One-Shot Learning for Semantic Segmentation
Amirreza Shaban, Shray Bansal, Zhen Liu, Irfan Essa and Byron Boots
Abstract
Low-shot learning methods for image classification support learning from sparse
data. We extend these techniques to support dense semantic image segmentation. Specifically, we train a network that, given a small set of annotated images, produces parameters
for a Fully Convolutional Network (FCN). We use this FCN to perform dense pixel-level
prediction on a test image for the new semantic class.
Session
Posters
Files
Paper (PDF)
Supplementary (PDF)
DOI
10.5244/C.31.167
https://dx.doi.org/10.5244/C.31.167
Citation
Amirreza Shaban, Shray Bansal, Zhen Liu, Irfan Essa and Byron Boots. One-Shot Learning for Semantic Segmentation. In T.K. Kim, S. Zafeiriou, G. Brostow and K. Mikolajczyk, editors, Proceedings of the British Machine Vision Conference (BMVC), pages 167.1-167.13. BMVA Press, September 2017.
Bibtex
@inproceedings{BMVC2017_167,
title={One-Shot Learning for Semantic Segmentation},
author={Amirreza Shaban, Shray Bansal, Zhen Liu, Irfan Essa and Byron Boots},
year={2017},
month={September},
pages={167.1-167.13},
articleno={167},
numpages={13},
booktitle={Proceedings of the British Machine Vision Conference (BMVC)},
publisher={BMVA Press},
editor={Tae-Kyun Kim, Stefanos Zafeiriou, Gabriel Brostow and Krystian Mikolajczyk},
doi={10.5244/C.31.167},
isbn={1-901725-60-X},
url={https://dx.doi.org/10.5244/C.31.167}
}