An Efficient Online Hierarchical Supervoxel Segmentation Algorithm for Time-critical Applications
In Proceedings British Machine Vision Conference 2014
http://dx.doi.org/10.5244/C.28.130
Abstract
Video segmentation has been used in a variety of computer vision algorithms as a pre-processing step. Despite its wide application, many existing algorithms require pre-loading all or part of the video and batch processing the frames, which introduces temporal latency and significantly increases memory and computational cost. Other algorithms rely on human specification for segmentation granularity control. In this paper, we propose an online, hierarchical video segmentation algorithm with no latency. The new algorithm leverages a graph-based image segmentation technique and recent advances in dense optical flow. Our contributions include: 1) an efficient, yet effective probabilistic segment label propagation across consecutive frames; 2) a new method for label initialization for the incoming frame; and 3) a temporally consistent hierarchical label merging scheme. We conduct a thorough experimental analysis of our algorithm on a benchmark dataset and compare it with state-of-the-art algorithms. The results indicate that our algorithm achieves comparable or better segmentation accuracy than state-of-the-art batch-processing algorithms, and outperforms streaming algorithms despite a significantly lower computation cost, which is required for time-critical applications.
Session
Poster Session
Files
Extended Abstract (PDF, 1 page, 364K)Paper (PDF, 12 pages, 1,008K)
Bibtex File
Citation
Yiliang Xu, Dezhen Song, and Anthony Hoogs. An Efficient Online Hierarchical Supervoxel Segmentation Algorithm for Time-critical Applications. Proceedings of the British Machine Vision Conference. BMVA Press, September 2014.
BibTex
@inproceedings{BMVC.28.130 title = {An Efficient Online Hierarchical Supervoxel Segmentation Algorithm for Time-critical Applications}, author = {Xu, Yiliang and Song, Dezhen and Hoogs, Anthony}, year = {2014}, booktitle = {Proceedings of the British Machine Vision Conference}, publisher = {BMVA Press}, editors = {Valstar, Michel and French, Andrew and Pridmore, Tony} doi = { http://dx.doi.org/10.5244/C.28.130 } }