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Abstract

Video segmentation has been used in a variety of computer vision algorithms as a
pre-processing step. Despite its wide application, many existing algorithms require pre-
loading all or part of the video and batch processing the frames, which introduces tempo-
ral latency and significantly increases memory and computational cost. Other algorithms
rely on human specification for segmentation granularity control. In this paper, we pro-
pose an online, hierarchical video segmentation algorithm with no latency. The new
algorithm leverages a graph-based image segmentation technique and recent advances
in dense optical flow. Our contributions include: 1) an efficient, yet effective proba-
bilistic segment label propagation across consecutive frames; 2) a new method for label
initialization for the incoming frame; and 3) a temporally consistent hierarchical label
merging scheme. We conduct a thorough experimental analysis of our algorithm on a
benchmark dataset and compare it with state-of-the-art algorithms. The results indicate
that our algorithm achieves comparable or better segmentation accuracy than state-of-
the-art batch-processing algorithms, and outperforms streaming algorithms despite a sig-
nificantly lower computation cost, which is required for time-critical applications.

1 Introduction
Video segmentation has been an active research topic for the last decade. It is often used as
a pre-processing procedure for subsequent vision algorithms. Examples include scene un-
derstanding [10], shadow/lighting estimation [14], and robotics [11]. Despite its significant
practical relevance, research on video segmentation does not catch up with its counterpart of
image segmentation, due to multiple challenges including:

Higher dimensional (3D) segmentation. Video segmentation works in a higher dimen-
sional space (i.e., the spatio-temporal 3D volume of the video) instead of the 2D image space
in the image segmentation case. The segmentation needs to respect the 3D volume bound-
aries between objects in the spatio-temporal space instead of just 2D boundaries in images.

Scalability and efficiency. Many existing algorithms pre-load the entire video and batch
process all the frames as a 3D spatial-temporal volume. However, this usually requires a
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Figure 1: An illustration of the processing flow of the proposed algorithm. Each color cor-
responds to a supervoxel.
large amount of memory and inevitably limits the maximum length of videos that can be
processed. Also, it usually results in a high computation cost and cannot support time-critical
applications such as robotics and real-time surveillance. Some recent algorithms divide the
video stream into consecutive clips with overlapping frames and batch process each clip
sequentially and utilize the overlapping frames to infer the temporal consistency across clips.
This way, it achieves streaming processing but still has the algorithmic latency (i.e., wait for
forthcoming frames to form the clip). Also, the segmentation quality deteriorates quickly
when the clip length approaches to 1 frame [21].

In this paper, we propose an efficient online hierarchical supervoxel segmentation algo-
rithm for time-critical applications. Here by online, we mean the algorithm computes the
supervoxel segmentation of the video stream up to the latest frame once it arrives. Therefore
the algorithm requires no streaming buffer but the incoming frame and thus runs in the truly
online manner. It also automatically segments the video with hierarchical granularity. The
main contributions of the work include 1) an efficient, yet effective probabilistic segment
label propagation across consecutive frames; 2) a new method for label initialization for the
incoming frame; and 3) a temporally consistent hierarchical label merging scheme.

Figure 1 illustrates the processing flow of our algorithm. The algorithm starts with the
over-segmentation and the corresponding hierarchical segmentations of the first frame us-
ing the hierarchical graph-based segmentation (see Section 4.1.) Then it propagates the
over-segmentation labels onto the second frame based on both motion (dense optical flow)
and appearance cues to form the “seed” segments and the corresponding new graph for the
second frame (see Section 4.2.) The seed segments grow in the second frame and new
segments (if any) are naturally generated using the graph-based merging to complete the
over-segmentation for the second frame (see Section 4.3). Finally, higher-level segmenta-
tions of the second frame are generated with a self-supervision merging scheme based on the
segmentation at the same level in the previous frame (see Section 4.4.) These steps are re-
peated when the new frame is coming to form the up-to-date video stream segmentation. We
test our algorithm on a public benchmark dataset [20], and use a wide range of performance
metrics to thoroughly compare it with multiple state-of-the-art algorithms (see Section 5.)

2 Related Work
Extended from the 2D image segmentation, video segmentation has attracted considerable
research attention recently due to its strong practical relevance and abundant applications.
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One popular class of algorithms is the graph-based approaches [2, 6, 16]. In [6], a graph
based image segmentation algorithm is proposed. Grandmann et al. [9] extend the approach
to a hierarchical video supervoxel segmentation. Our algorithm borrows the graph-based
concept. In particular, we segment the first frame using the approach as in [9]. In addition,
we leverage the latest dense optical flow to assist propagating the labels to the next frame and
create an initial graph of the next frame for graph-based segmentation. The process repeats
iteratively on forthcoming frames to produce the supervoxel segmentation of the video.

Many state-of-the-art algorithms such as [9, 13] require to load the entire video. The
consequent high memory cost significantly limits the maximum length of video that can
be processed. Also, the computation time of this class of algorithms is usually very high.
A hierarchical streaming video segmentation algorithm [21] divides the entire video into
consecutive K-frame small clips with one frame overlapping between adjacent clips. Each
clip is batch-processed and the overlapping frame is used to infer the correspondence of the
segmentation results across clips. Although the algorithm reduces to the case that has no
algorithmic latency when K = 1 (i.e., truly online mode), the quality of the segmentation
deteriorates significantly (see both [21] and Section 5.2.) Our algorithm runs in a com-
pletely online manner. It does not require to either pre-load the video or periodically load
a streaming buffer of the video. It processes every incoming frame and produce the video
segmentation up to this frame immediately without waiting for future frames, i.e., no algo-
rithmic latency. This way, both the computation and memory cost of our algorithm are very
low (see Table 1 in Section 5.4.)

With the recent maturity of optical flow techniques such as [3], many recent segmenta-
tion algorithms start to utilize the optical flow for both intra-frame pixel clustering and inter-
frame label consistency. In [7], affinity scores between pre-extracted superpixels across all
frames are computed with both motion (long-term point trajectories) and appearance cues.
Supervoxel segmentation is realized by a spectral clustering based on these affinity scores.
In [13], long term voxel trajectories are computed with the dense optical flow across frames.
Supervoxel segmentation is realized by clustering these voxel trajectories with additional
appearance cues. Both of these algorithms are essentially still patch-processing algorithms.
Computing and introducing the optical flow information further complicates the computa-
tion. As a result, they are computationally very expensive1. Although we also utilize the
dense optical flow, our algorithm uses it in a novel way for label propagation and only re-
quires the flow between consecutive frames at a time (i.e., no requirement for long-term
point trajectory). As a result, our algorithm runs in an online manner and is very efficient
(see Table 1 in Section 5.4.)

Lately, there are a few efforts that compute superpixels of each frame, such as SLIC [1]
and SEEDS [17], and then link them sequentially across consecutive frames [4, 18], or track
individual superpixels across frames [19]. However, the granularity of the segmentation (e.g.,
number of superpixels per frame) is pre-determined. Our algorithm is able to hierarchically
segment the video from fine to coarse with layered granularity, which better aligns with
human’s perception and is more useful for segmenting an object of interest in scene as a
complete region instead of multiple small supervixels with similar size and appearance.

3 Supervoxel Segmentation Problem and Evaluation
Any video V consists of a saptio-temporal 3D lattice of pixels V = F×Z, where F denotes
the frame pixel lattice, and Z is the frame indices. Then video V can be considered as the

1[13] is reported to take 1000 seconds and 20 GB memory for 3 million voxels. [7] is reported as the slowest
algorithm as in [8].
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mapping from lattice V to color space R3, i.e., V : V→ R3. A supervoxel segmentation
S= {si|i = 1,2, ...} of the video is a set of mutually exclusive subsets of V, which satisfies:

1. V=
⋃

i si.
2. si∩ s j = φ with i 6= j, and i and j are supervoxel indices.
3. Any pixel p ∈ si is labelled by label ψi ∈Ψ.
4. Given frame at time t, F t , then si∩F t is a connected component (superpixel) in F t .

The elements in S are called supervoxels and the boundaries between the supervoxels are
called 3D boundaries BS. Given a video V, the task is to find the segmentation S such that
its difference to the ground-truth segmentation G= {gi|i = 1,2, ...} is minimized,

S∗ = argmin
S

diff(S,G),

where the function diff(·, ·) returns the measure of difference between S and G.
It is usually difficult to model a single scalar diff(S,G) to cover all aspects of the seg-

mentation quality (e.g., temporal consistency, boundary identification, etc.) Therefore, it is a
common practice to evaluate segmentations against different specific metrics, each reflecting
some aspect of the objective function (see Section 5.2.) Furthermore, different people may
have different opinions towards the ground truth segmentation. This motivates the hierar-
chical segmentation as in this work, which is able to automatically segment the video with
different granularity. Hence, a thorough evaluation of a supervoxel segmentation algorithm
needs to evaluate the objective function/metrics under different granularity.

To facilitate the paper presentation from here on, we define the following index notation
conventions: i and j are used as indices of supervoxel or superpixel, u and v are used as pixel
coordinates in images, l is used as segmentation layer index, and t is the frame index.

4 Approach
4.1 Graph-based Hierarchical Image Segmentation
Our algorithm starts with the segmentation of the first frame. We adopt the graph-based
hierarchical segmentation algorithm [9]. Here we briefly review the algorithm.

The first frame is initially modelled as a graph with each pixel at (u,v) being a ver-
tex. Each vertex is connected to one of its (up to) 8 neighbors by an undirected edge
e, whose weight w(e) is the color difference between the two pixels. Initially, each ver-
tex is a superpixel R on its own. The internal variation of any superpixel R is defined as
RInt(R) , Int(R)+ τ

|R| , where Int(R) = maxe∈MST(R) w(e) is the maximum edge weight in
the Minimum Spanning Tree (MST) of R, | · | returns the cardinality of a (pixel) set, and τ

is a parameter that controls the granularity of the segmentation. The edges are sorted in an
ascending order based on their weights. Each edge is then visited in the ascending order to
check if it should be cut and the superpixels it connects should merge. Given an edge ea,b,
which connects pixels a and b, and a ∈ Ra and b ∈ Rb, then the merging condition is,

I(ea,b) =

{
1 if w(ea,b)< min(RInt(Ra),RInt(Rb)),

0 otherwise.

By traversing all edges, we have an over-segmention of the frame with many small homoge-
nous color patches called superpixels. We term this as level 1 segmentation (see Figure 1.)

For hierarchical segmentation, each superpixel is treated as a vertex in the graph. The
edge weight w(e) is replaced by the χ2 distance in the L∗a∗b∗ color space between two
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Figure 2: An illustration of the label propagation. The blue object moves towards right from
F t to F t+1. (a) The segmentation of frame F t . (b) Label probability map after forward label
voting. The regions close to object boundaries usually have multiple label votes (with over-
lapping color) due to Gaussian kernel smoothing (see (2).) Some regions has no label votes
due to motion. (c) “Seed” segments propagated from the previous frame after thresholding
on the label probability map (see (5).) A new graph with the seed segments is built for F t+1.
(d) Final segmentation for F t+1. New appearing object is identified.

neighboring superpixels, and parameter τ increases appropriately to allow further merging
of superpixels. After traversing and cutting remaining edges in the ascending weight order,
we obtain a higher level segmentation with a new set of superpixels which are parents of
those on level 1 (see Figure 1.) Finally, the process above is iteratively repeated to obtain
higher level segmentations. The Hierarchy of the segmentations defines a structure of forest.
Details of the hierarchical graph-based segmentation can be found in [9].

Now we have the layered supervpixels for the first frame. Next we try to propagate the
labels onto the forthcoming frames to form layered supervoxel segmentations.

4.2 Initial Multi-cue Probabilistic Label Propagation
Given the layered segmentations {S1:t

l |l = 1,2, ...} up to frame F t , and the next incoming
frame F t+1, we shall extend the segmentations to F t+1.

4.2.1 Label propagation.

We first compute the forward optical flows from F t to F t+1, denoted as
−→
fu and

−→
fv , which

“project” pixel coordinates from (ut ,vt) ∈ F t to (ût+1, v̂t+1) ∈ F t+1 by

(
ût+1, v̂t+1)= (ut ,vt)+(−→fu(ut ,vt),

−→
fv (ut ,vt)

)
. (1)

Here we use the hat notation “ˆ” to indicate the “projected” coordinates. Similar to (1),
we compute the backward flows

←−
fu and

←−
fv . With the forward flow as in (1), given any

pixel at (ut ,vt), we project its level 1 label, denoted as Ψt
1(u

t ,vt), onto F t+1 by voting in a
neighborhood around (ût+1, v̂t+1) with Gaussian kernel weights:

ω
t+1
u,v (ψ|ut ,vt)=

{
N
(
(u− ût+1,v− v̂t+1),Σ f

)
if Ψ

t
1(u

t ,vt) = ψ and (u,v) ∈ N((ut+1,vt+1)),

0 otherwise,
(2)

where N (·) is the Gaussian function, Σ f is the 2×2 covariance matrix indicating the Gaus-
sian kernel size, and N(·) returns the neighborhood of a pixel in the frame.
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Due to occlusions in the scene, we cannot trust all the forward optical flows. Here we
use the bi-directional consistency to determine if a flow should be filtered out.

I f (ut ,vt) =

1 (filtered out) if ‖(ut ,vt)−
(←−

fu(ût+1, v̂t+1),
←−
fv (ût+1, v̂t+1)

)
‖2 > δ

0 (not filtered out) otherwise,

where δ is a threshold. Then we vote all surviving pixels onto F t+1, and accumulate the label
weights at each pixel (u,v) ∈ F t+1 : ω t+1

u,v (ψ) = ∑(ut ,vt )∈Ft ω t+1
u,v (ψ|ut ,vt). After normalizing

these lable weights at each pixel, we obtain a probability map of the the labels for F t+1 :

pt+1
u,v (ψ) =

ω t+1
u,v (ψ)

∑ψ ′ ω
t+1
u,v (ψ ′)

. (3)

4.2.2 Motion Cue and Appearance Cue.

The label probability in (3) is based on optical flow, i.e., the object/scene motion information.
Though we use a state-of-the-art optical flow algorithm, it is not perfect. Also some corre-
spondence between frames is inevitably missing due to various factors such as occlusion,
object disappearing and new object appearing. Therefore, besides the optical flow-based
label propagation, we further propose an appearance-based label propagation.

With over-segmentation in F t , each superpixel with label ψ, denoted as Rt
ψ , represents

a homogeneous color patch. We model its appearance by a Gaussian model with its mean
and covariance as µ t

ψ = mean(a(Rt
ψ)) and Σt

ψ = cov(a(Rt
ψ)), respectively, where function

a(·) returns the appearance values of a set of pixels. In our work, we use the L∗a∗b∗ color
to represent the appearance of pixels. Considering the pixels in corresponding superpixels
across two frame should have similar appearance, we model the probability of any pixel
(u,v) ∈ F t+1 belonging to the superpixel Pt+1

ψ (corresponding to Pt
ψ ) as

qt+1
u,v (ψ) =N

(
a(F t+1(u,v))−µ

t
ψ ,Σ

t
ψ

)
. (4)

Fusing both motion-based label probability in (3) and appearance-based label probabil-
ity in (4), we obtain a final label probability map, ξ t+1

u,v (ψ) = pt+1
u,v (ψ)qt+1

u,v (ψ). The fused
label probability map is illustrated in Figure 2(b). It is noticed that regions close to object
boundaries are likely to have multiple label votes due to the Gaussian kernel smoothing as
in (2.) It is also noticed that some pixels do not have any vote because they were occluded
in F t and appear in F t+1, and thus have no forward optical flow information. With this label
probability map, we are ready to propagate the level 1 labels from F t to F t+1 :

ψ
∗
u,v = argmax

ψ
ξ

t+1
u,v (ψ), Ψ

(t+1)
1 (u,v) =

{
ψ
∗
u,v if ψ

∗
u,v > η

φ
(5)

where η is a threshold and Ψ
(t+1)
1 (u,v) being empty set φ means the level 1 label for (u,v)

is not determined yet.
Figure 2(c) illustrates the initial labeling of F t+1 after label propagation using (5). Com-

pared to Figure 2(b), there are more regions/pixels that are not colored/labelled due to rela-
tively low confidence of correspondence in either motion or appearance across two frames.
Some pixels are not labelled due to color/illumination changes across two consecutive frames.
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Furthermore, those pixels close to the object boundaries having multiple label votes are thus
not likely to be labelled due to the voting smoothing as in (2). This is desirable for our initial
labeling since it does not ruin the supervoxel boundaries. Our label propagation is essentially
different from that in GBH [9] where optical flow is used to construct inter-frame graph.

4.3 Complete the Labelling Using Graph-based Merging
According to (5), the labelled pixels have high confidence of correspondence to superpixels
in F t . We identify these pixel sets as core representatives of the superpixels in F t+1 and use
them as the “seeds” for completing the labelling. In particular, we first model F t+1 as a
new graph: For each seed segment, we cut its internal edges (i.e., merging) and compute its
internal variation. The rest pixels are treated as individual superpixels on their own. Then
we apply the graph-based image segmentation on this new graph, same as the process in
Section 4.1. This way, the algorithm gracefully handles the birth and death of superpix-
els, as well as splitting of old superpixels, instead of human specification for maintaining
fixed number of superpixels as in [4, 18]. Figure 2(d) shows the final level 1 labelling of
F t+1. Since the edges across boundaries usually have high weights and survive the initial la-
belling, they are less likely to be cut than those edges connecting the seed segments to other
unlabelled pixels (on the same side of the boundary.) This way, the boundaries between su-
perpixels are preserved. If new objects appear, they are unlikely to be labelled in the initial
labelling stage as explained earlier. Therefore, they are more likely to be labelled as new
superpixels in this stage. Now we have propagated the level 1 labels from F t to F t+1. Next,
we extend the labels to higher levels.

4.4 Self-supervised Hierarchical Labeling
Denote the level (l +1) labelling of F t as Pt

l+1 and the level l labelling of F t+1 as Pt+1
l , the

objective here is to infer the level (l+1) labelling of F t+1, denoted as Pt+1
l+1 . First, we transfer

the label merging knowledge (from level l to l +1) in F t to that in F t+1. Given any pair of
superpixels Rt+1

l,i ,Rt+1
l, j in Pt+1

l , and they have their corresponding superxiels in F t denoted
as Rt

l,i,R
t
l, j. If Rt

l,i and Rt
l, j were merged on level l +1 in F t , we cut the edges between

Rt+1
l,i and Rt+1

l, j and merge them correspondingly. This way, the hierarchical relation between
superpixels is propagated from F t to F t+1. Figure 1 illustrates the process of such self-
supervised hierarchical labelling. After that, we apply the graph-based merging as described
in Section 4.1 on the remaining superpixels.

Now we have completed our description of the the hierarchical segmentation from F t

to F t+1. The same process is iteratively repeated when new frame is coming to realize the
online hierarchical video segmentation (see Figure 1.)

5 Experiment
To evaluate our new algorithm, we carry out experiments and a thorough quantitative anal-
ysis on a well-accepted benchmark dataset, LIBSVX [20], and compare our algorithm with
multiple state-of-the-art algorithms.

5.1 Compared Algorithms
We consider three state-of-the-art algorithms, namely, Segmentation by Weighted Aggre-
gation (SWA) [5, 15], Graph-Based Hierarchical segmentation (GBH) [9], and Streaming
Graph-Based Hierarchical segmentation (StreamGBH) [21]. In particular, SWA and GBH
are offline algorithm which load the video at once. According to both [8] and [20], GBH
is one of the top-performing algorithms. StreamGBH loads a buffer of K frames at a time.
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Figure 3: Quantitative comparison with granularity-dependent metrics: (a) 3D underseg-
mentation error (UE), (b) 3D segmentation accuracy (ACCU), (c) explained variation (EV).

Here we test and compare two of its variations with K = 10 and K = 1, respectively. It is
worth emphasizing that the only fair comparison for our algorithm is the StreamGBH with
K = 1, since it is the only algorithm that is 1) truly online and 2) hierarchical. Though it is
not our focus to beat the best-performing algorithms (in terms of segmentation quality), we
still include some offline and streaming algorithms for a comprehensive analysis.

5.2 Performance Metrics and Quantitative Comparison
LIBSVX [20] proposes multiple metrics for evaluating different aspects of the algorithm per-
formance. Here we use most of its metrics as briefed below. However, it is also noticed that
the metrics in LIBSVX focus very much on the recall/identification of the 2D/3D bound-
ary/volume, and the precision of the boundary/volume identification as well as the temporal
consistency of labels is largely ignored. Almost all metrics in [20] are granularity-dependent
and finer granularity of segmentation always produces higher performance scores. To over-
come this issue and give a more thorough evaluation, we extend some metrics in [20] and
also borrow some other metrics from literatures, detailed below.

3D Undersegmentation Error (UE). Introduced in [20], this metric measures the frac-
tion of computed supervoxels exceed the annotated volumes.

UE(gi) =

(
∑{ j|s j∩gi 6=φ} |s j|

)
−|gi|

|gi|
defines the 3D UE for a given annotated supervoxel. Following [20], we average it across
all annotated supervoxels in the video as our metric. In general, finer granularity of the seg-
mentation would lead to lower UE. Figure 3(a) summarizes the UEs for different algorithms.
Different from [20] which plots UE against the average number of supervoxels, considering
different video length leads to different number of supervoxels and the segmentation gran-
ularity is visually better perceived by number of super pixels in individual frames, here we
plot the 3D UE against the average number of superpixels per frame. It is shown that our
algorithm outperforms all the counterparts.

3D Segmentation Accuracy (ACCU). This metric [20] measures the fraction of an an-
notated segment that is correctly classified. Ideally, each computed supervoxel overlaps with
only one annotated segment. For each annotated segment gi, we collect the set of computed
supervoxels that each has more than half of its voxels (i.e. majority of its voxels) overlapping
with gi, then the 3D Segmentation Accuracy (ACCU) of gi is defined as

ACCU(gi) =
∑{ j||s j∩gi|>|s j |} |s j ∩gi|

|gi|
.

Figure 3(b) summarizes the comparison between different algorithms using ACCU. It is
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shown that our algorithm has a consistently higher ACCU than StreamGBH with K = 1, and
generally outperforms all other algorithms.

Explained Variation (EV). Unlike other metrics, explained variation [12, 20] is inde-
pendent with the human annotation:

EV =
∑i (µi−µ)2

∑i (xi−µ)2 ,

where xi is the actual voxel value, µ is the global voxel mean and µi is the mean value of the
supervoxel that contains xi. Figure 3(c) summarizes the EV scores for different algorithms.
SWA shows to have the best performance on EV. Our algorithm is comparable to GBH
and StreamGBH with K = 10, and consistently outperforms StreamGBH with K = 1 across
different granularity.
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Figure 4: Comparison of Precision-Recall.

3D Boundary Recall and Preci-
sion. In [20], 3D boundary recall
is proposed as a metric. However,
it inevitably favors finer granularity.
Higher 3D boundary recall is always
achieved at the price of finer granu-
larity, while the precision of the 3D
boundaries is ignored. Here we extend
the 3D boundary recall metric in [20]
to both recall and precision,

Rb =
|BS∩BG|
|BG|

, Pb =
|BS∩BG|
|BS|

.

Figure 4(a) shows the 3D boundary PR of all algorithms2. SWA appears to have the best PR
tradeoff. Our algorithm is comparable to GBH and StreamGBH with K = 10, and outper-
forms StreamGBH with K = 1.

3D Volume Recall and Recision. Besides good boundaries, what is equally important
for video segmentation is to correctly identify the spatio-temporal 3D volume. Here we
adopt the volume recall and precision as proposed in [8]:

Rv =
∑g∈G (maxs∈S |s∩g|−1)

∑g∈G |g|− card(G)
, Pv =

(
∑s∈S maxg∈G s∩g

)
−maxg∈G |g|

∑{s,g|s∩g6=φ} |s|−maxg∈G |g|
,

where card(·) returns the cardinality of a set. Figure 4(b) shows the 3D volume precision-
recall of all algorithms. Our algorithm is comparable to GBH and SWA and outperforms the
two StreamGBH variations.

5.3 Qualitative Comparison
Besides the quantitative comparison above, Figure 5 shows a qualitative comparison based
on a set of sample segmentations using different algorithms (see more examples in the sup-
plementary material.) All segmentation results are at similar granularity. It is shown that the
results of SWA and our algorithm result are more plausible to human perception, in terms of
the intactness/regularity of the object shape.

2These are not typical PR curves. They are not generated by sweeping a threshold for recognition decision.
Instead they are precision and recall pairs by different granularity configurations. The convex shape of the curve
does not means the algorithm is worse than random guess.
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Figure 5: A qualitative comparison of algorithms with similar granularity of segmentation.

Proposed StreamGBH GHB SWA3
K = 1 K = 10

Time (sec.) per input frame4 0.72 4.27 8.23 12.96 5.88
per frame segmentation 0.03 0.20 0.39 0.62 0.98

Memory (GB) 0.1 0.1 0.5 3.7 8.2
Table 1: Comparison on computation time and memory requirement.

5.4 Computation Cost
Besides the segmentation quality comparison, our algorithm inherently supports online pro-
cessing, which leads to much more efficient computation. Table 1 summarizes the compu-
tation time and memory requirement for all algorithms on the benchmark dataset. All tests
are carried out on a laptop PC with a 1.8 GHz dual-core CPU. For fair comparison: 1) We
set all algorithms but SWA to produce 21 layers of segmentations. SWA is set to produce 6
layers to save time; 2) We use fixed-length videos (85 frames) since the computational times
of batch-processing algorithms (GBH and SWA) are super-linear to the video length. Ta-
ble 1 shows that our algorithm is significantly faster than all the other algorithms including
the StreamGBH with K = 1. This is because our graph-based segmentation is carried out
only on individual 2D frames, while that in StreamGBH is carried out on a (K + 1)-frame
3D volume. Even with K = 1, the number of edges that need to be cut (for each frame) in
StreamGBH is at least a couple of times of that in our algorithm.

Our algorithm is also memory-efficient. Offline algorithms or streaming algorithms re-
quires the memory size proportional to the size of the 3D volume buffer, while our algorithm
only requires memory size proportional to the 2D frame size. Table 1 summarizes the mem-
ory requirements for all algorithms. Our algorithm clearly requires the least memory.

6 Conclusion
We reported a new efficient online hierarchical supervoxel segmentation algorithm, which
leverages the graph-based image segmentation technique and the latest advance in dense
optical flow. We validated our algorithm on a benchmark dataset and compared it with the
state-of-the-art algorithms. The comparison showed that our algorithm achieved comparable
segmentation quality to the offline algorithms and outperformed the streaming algorithms,
despite significantly less computation time and memory, which supports time-critical tasks.

3SWA is set to produce only 6 layers of segmentation to save time.
4For each input frame, we produce a number of layers of segmentations.
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