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Abstract
Sign languages are visual-spatial languages, representing the natural means of communi-
cation for deaf communities. Despite recent advancements in vision and language tasks,
automatic sign language understanding remains largely unsolved. A key obstacle to
making progress is the scarcity of appropriate training data. In this thesis, we aim to
address this challenge.

First, we focus on visual keyword spotting (KWS) – the task of determining whether
and when a keyword is spoken in a video – and leverage the fact that signers sometimes
simultaneously mouth the word they sign. We initially propose a convolutional KWS
architecture inspired by object detection methods, trained on data of talkings faces. We
then improve the cross-modal interaction between the video and keyword representations
by leveraging Transformers. Subsequently, we use the KWS model out-of-domain on
signer mouthings as a means to localize signs: we automatically annotate hundreds of
thousands of signs in readily available sign language interpreted TV data, by leveraging
weakly-aligned subtitles to provide query words.

Second, to move beyond mouthings which are sparse, we propose different sign spotting
approaches to automatically annotate signs in the continuous interpreted signing: (i) us-
ing visual sign language dictionaries in a multiple instance learning framework, (ii) ex-
ploiting the attention mechanism of a Transformer trained on a video-to-text sequence
prediction task, (iii) pseudo-labelling from a strong sign recognition model, (iv) leverag-
ing in-domain exemplars from previous approaches and sign representation similarities.
All four approaches leverage the weakly-aligned subtitles and increase the vocabulary
and density of automatic sign annotations. As a result, we obtain a large-scale, diverse,
supervised dataset, and facilitate the learning of strong sign representations.

Third, we explore sign language tasks that entail predicting sequences of signs: finger-
spelling and continuous sign language recognition (CSLR). For fingerspelling, we pro-
pose a weakly-supervised approach to detect and recognise sequences of letters, with a
multiple-hypothesis loss function to learn from noisy supervision. For CSLR, we design
a multi-task model capable of also performing sign language retrieval, and demonstrate
promising results in large-vocabulary settings.

Finally, we explore obtaining stronger supervision from weak signals for a more gen-
eral task, beyond the domain of sign language. Specifically, our focus shifts to verb
understanding in video-language models – an important ability for modeling interac-
tions among people, objects and the environment through space and time. For this
task, we introduce a verb-focused contrastive framework consisting of two components:
(i) leveraging pretrained large language models to create hard negatives for cross-modal
contrastive learning; and (ii) enforcing a fine-grained alignment loss.

Keywords – video understanding, deep learning, vision & language, multimodal, sign

language
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

In today’s digital landscape, video content is experiencing an unprecedented surge,

swiftly becoming the predominant mode of communication. Hundreds of hours of

footage are uploaded to online platforms such as Youtube and Instagram every

minute, and the trend of video content creation and consumption shows no signs

of slowing down. A recent study1 reveals that viewers retain 95% of a message

when watching it on a video versus only 10% through text, highlighting the intrin-

sic richness, engagement, and dynamism of video content. For social media and

video-sharing platforms, key video applications include search and retrieval, rec-

ommendation systems as well as content moderation. Beyond entertainment, video

understanding extends to other applications such as autonomous driving [A. Hu

et al. 2023], animal behavior analysis [Bain et al. 2021a], sports evaluations [Zhe

Wang et al. 2023] and health diagnosis [Ouyang et al. 2020].

In the realm of deep learning, developing models for video understanding tasks

demands an abundance of annotated training examples. Over the past decade, sig-

nificant efforts have been directed towards the manual curation of video datasets.

These datasets typically fall into two categories: video classification datasets [Soomro

et al. 2012; Kuehne et al. 2011; Joao Carreira and Zisserman 2017], where short

video clips are paired with action labels, and video caption datasets [Das et al.

2013; J. Xu et al. 2016], where video clips are associated to captions describing

the captured objects and events. While these datasets have facilitated substantial

advancements in video modeling, manual annotation remains an arduous, time-
1https://www.synthesia.io/post/video-statistics
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consuming and costly process. It does not scale efficiently to the vast amount of

unlabelled video data, particularly as the complexity of the task increases (for ex-

ample, from action classification to object tracking), and as we shift to untrimmed

videos lasting minutes or even hours.

Obtaining labeled training data is therefore a fundamental challenge of the field.

To alleviate the need for manual supervision, researchers typically pursue two main

strategies. The first strategy entails video-only self-supervised learning methods,

serving as a promising alternative to traditional supervised approaches [Krizhevsky

et al. 2012]. These methods learn from unlabelled, uni-modal data by solving a

pretext task. The pretext task typically does not match the final video under-

standing task of interest. Instead, it is designed to encourage the model to learn

strong, general and semantically meaningful representations that can subsequently

be transferred to downstream applications. Recent advancements in video model-

ing have introduced various pretext tasks, including spatio-temporal Jigsaw puz-

zles [Noroozi and Favaro 2016; Ahsan et al. 2019; Huo et al. 2021], frame or clip

ordering [Fernando et al. 2017; Misra et al. 2016; D. Xu et al. 2019], and prediction

of masked video tubelets [Tong et al. 2022; Bardes et al. 2024] or future frames [T.

Han et al. 2019]. While the concept of self-supervision theoretically enables easy

scalability without the need for annotation efforts, the development of effective

self-supervised algorithms remains a challenging endeavor. This is particularly

true for video and image-based approaches, which often require extensive tuning

compared to their language-based counterparts.

An alternative strategy for scaling up datasets without the cost of labeling involves

collecting readily available video data from the Web, along with various sources

of associated textual metadata such as titles, tags, speech transcriptions [Miech et

al. 2019], descriptions [Bain et al. 2021b], or comments [Hanu et al. 2022]. While

this form of language supervision is easily accessible, and initially generated by

humans (via text or speech), it is considered weak. In fact, the supervision may be

incomplete, lacking spatial or temporal correspondences, and may fail to describe

all objects and events in the video. Additionally, the supervision may be inaccurate

and noisy, with the annotation semantics not aligning with the video content or

the language being ambiguous. Despite these challenges, scaling up datasets in

this manner offers significant advantages, notably automatic scalability, and the
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ability to capture a diverse array of concepts and scenes. Importantly, recent

works have demonstrated that such large-scale datasets can facilitate the training

of joint vision-text embedding spaces, yielding state-of-the-art results on various

tasks [Alayrac et al. 2022; Radford et al. 2021]. In contrast to self-supervised

methods (which may sometimes seem unnatural), weakly supervised, multi-modal

approaches enable video representation learning by exploiting the inherent shared

information between video and language. In addition, by leveraging language,

models can be trained to naturally comprehend videos, connecting visual content

to human concepts.

While weakly supervised, multi-modal approaches hold considerable promise, the

efficacy of the learned representations relies heavily on two factors: (i) the volume

of available training data, and (ii) the level of noise in the supervision. This thesis

endeavors to address both of these challenges within the domain of automatic sign

language understanding, an area that remains largely unsolved, despite advance-

ments in related vision and language tasks. To combat data scarcity, we leverage

sign language interpreted TV broadcasts along with corresponding weakly-aligned

subtitles, tapping into readily available resources. Furthermore, to enhance the

signal to noise ratio, we explore diverse methodologies in subsequent chapters

for obtaining stronger supervision from weak supervision for sign language data,

thereby facilitating learning strong video representations.

We begin the thesis by introducing motivations in Section 1.1. We then present

key concepts behind the work in Section 1.2. Finally, in Section 1.3, we highlight

the four primary themes of the thesis along with their respective contributions,

followed by a full list of included research papers in Section 1.4.

1.1 Motivation

Sign languages serve as the natural means of communication for deaf commu-

nities [Rachel Sutton-Spence and Woll 1999]. They are visual-spatial languages

and lack standardized written forms. They exist independently of spoken lan-

guages, possessing their own lexicons and grammatical structures. Indeed, the

ordering of words between spoken and sign languages is typically not preserved.

Sign languages are expressed through both manual and non-manual components,
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potentially simultaneously. In addition to hand shape, location and motion, other

articulators such as the eyebrows, mouth, head, shoulders and eye gaze all con-

tribute to semantics [Wilbur 2000]. Today, there exist over 200 distinct sign lan-

guages (interestingly, American and British sign languages are different) and 70

million deaf individuals worldwide using them.2

In this thesis, we establish the groundwork for developing a robust and scalable

solution for sign language translation: the task of predicting a natural text sen-

tence from a video sequence of signs. Despite great progress in related fields such

as lipreading [K R Prajwal et al. 2022a] and translation of spoken and written lan-

guages [A. Fan et al. 2021], the current performance of automatic sign language

translation models remains limited [Koller 2020], with sign language technologies

significantly lagging behind [Wojtanowski et al. 2020]. Automatic sign language

translation has the potential for large societal impact when deployed in the real

world, by fostering inclusivity and bringing communities closer together. Poten-

tial applications span various domains, including educational tools for sign lan-

guage learners with features like auto-correct prompts (‘did you mean this sign?’);

translation of signed queries into text for search engines; integration of virtual

assistants to respond to signed wake works (e.g. ‘OK Google’, ‘Hey Siri’); auto-

matic transcription of signed content to facilitate efficient search and indexing of

sign language videos; and real-time automatic interpreting in video calls, or critical

scenarios such as hospitals, police stations, and airports, where human interpreters

may not be readily available.

A key obstacle to making progress towards automatic sign language translation

is the scarcity of large-scale annotated training data. Sign languages, being low-

resource languages, have limited availability of sign language videos online. More-

over, the manual annotation of signing is very challenging, given the absence of

standard written forms in sign languages and the use of multiple input streams (for

example, the hands and mouth can convey an object and its description simultane-

ously). This necessitates proficient annotators, skilled in sign language grammar

and equipped with advanced annotation tools. To tackle this obstacle, drawing

inspiration from [Buehler et al. 2009], we propose to leverage a readily available

and large-scale source of data: sign language translated TV broadcasts that con-
2https://wfdeaf.org/our-work/
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sist of an overlaid interpreter performing signs, and subtitles corresponding to the

speech content. In this thesis, we focus mainly on BBC shows and therefore on

British Sign Language (BSL), the sign language of the British deaf community.

Although interpreted TV programs are abundant and easily accessible, leveraging

written subtitles as the primary source of signing supervision presents additional

challenges. The supervision provided by the subtitles is weak because the subtitles

are temporally aligned with the speech content, but not necessarily with the signing

– a sign may appear several seconds before or after its corresponding translated

word appears in the subtitles. Moreover, the supervision is noisy because the

presence of a word in the subtitles does not necessarily imply that the word is

signed, and vice versa. In fact, sign interpreters translate speech rather than

transcribe it, resulting in a many-to-many mapping between signs and subtitle

words. Additionally, both signed and spoken language lexicons are extensive, and

represent long-tailed distributions. All these factors introduce significant noise and

difficulty in training translation models directly from interpreted signing video and

subtitle pairs, and in practice, this approach fails to achieve meaningful results [N.

Camgoz et al. 2021]. Instead, in this thesis, we propose to focus on automatically

and densely annotating the sign sequences in videos, by leveraging the weakly

aligned speech from which they are interpreted. We explore various approaches

to achieve this goal, primarily involving querying words in the subtitle text and

searching for corresponding signs in the sign language video using visual cues.

The approaches we explore in subsequent chapters enable us to bootstrap weak

supervision to construct larger, more diverse datasets with stronger supervision

and improved alignment, which are crucial for training translation models capable

of generalizing in real-world scenarios and at scale, where their potential impact

is greatest.

We note several limitations of our approach. Firstly, whilst interpreted signing

offers the opportunity to scale up training data, it introduces certain biases com-

pared to conversational signing used in deaf communities. Interpreting can lead to

a simplification in signing style and vocabulary, and even a reduction in speed for

comprehension [Bragg et al. 2019]. Although our ultimate goal is to transition to

conversational signing, learning effective representations of signs from interpreted

data serves as a foundational step in this direction. However, we highlight the ne-
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cessity of future works to bridge this domain gap, potentially by creating datasets

with native signing. Secondly, this work focuses solely on densely annotating

lexical signs, which are easily associated with spoken language words. However,

non/partially-lexical signs, such as a pointing signs, depicting signs and fragment

buoys (used to make associations between identities) [Belissen et al. 2020a], are

integral components of sign language and must be considered for accurate trans-

lations. Partially lexical signs exhibit appearances that are highly dependent on

context, and are utilized, for instance, to convey position, motion, size and shape

of objects [Braffort and Filhol 2014].

1.2 Key Ideas

The research presented in this thesis, centered on sign language understanding,

contributes to and builds upon several fundamental themes in machine learning,

including multimodal representation learning and learning with weak supervision.

1.2.1 Multimodal Learning

The world inherently presents itself through multiple modalities, and consequently,

the data we gather mirrors this diversity of experiences. For example, a video up-

loaded on Youtube often encompasses additional modalities, such as audio (back-

ground sounds, music or speech) and text (titles, comments, and subtitles). More-

over, other modalities, like body keypoints reflecting human pose or optical flow

capturing motion, can be extracted. While different modalities may contain over-

lapping information (for example, speech and subtitle transcriptions corresponding

to the audio content), each modality offers a distinct perspective on the captured

data (for example, subtitle text may not convey crucial intonations and pauses

in the audio). Recent learning algorithms have thus transitioned from uni-modal

settings to leverage the natural multimodality of data, accounting for the fact

that individual modalities may be noisy and insufficient in conveying the complete

meaning of the captured experience. However, in practice, multimodal learning

poses challenges due to the considerable variation in representation spaces across

modalities. For instance, images are typically viewed as continuous signals, rich

in spatial information, while text is discrete, governed by language grammar and
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syntax. Developing algorithms therefore demands careful consideration of model

design choices and learning objectives to effectively bridge modalities.

In this thesis, focused on sign language understanding, a visual-spatial language

expressed through multiple articulators, we naturally explore a range of multi-

modal approaches. Here, modalities encompass signing videos and corresponding

spoken language text, but also different body parts such as hands and mouth.

We explore diverse forms of multimodal learning, including (i) transforming one

modality into another. Notably, in Chapters 6 (‘Read and Attend’), 8 (‘Weakly-

supervised Fingerspelling’) and 9 (‘Large-vocabulary CSLR’), we introduce models

that take continuous signing video sequences as input and generate text as output.

Specifically, Chapter 6 aims to predict subtitle text, while Chapters 8 and 9 aim to

predict sequences of fingerspelled characters and signed words, respectively. Addi-

tionally, we investigate methods for (ii) jointly learning from multiple modalities.

For instance, in Chapters 2 (‘Audio-visual KWS’) and 3 (‘Visual KWS’), we pro-

pose architectures utilizing audio, visual and textual inputs for keyword spotting,

employing late and mid fusion strategies in Chapters 2 and 3, respectively. Finally,

we explore (iii) how one modality can enhance learning in another. For example,

in Chapter 4 (‘BSL-1K’), we explore how labeled data in one modality (mouth

movements in talking faces) can facilitate the transfer of supervision to another

modality (hands in sign language). In Chapter 10 (‘Verbs in Action’), we also

examine how text can be leveraged to generate valuable negatives in contrastive

pretraining to enhance video representations.

1.2.2 Learning with Weak Supervision

Weakly-supervised learning makes use of partial, noisy labels, or even unlabelled

data to train models. It offers an effective, scalable learning strategy, shown to

achieve remarkable generalization [Radford et al. 2021; Miech et al. 2019]. This

approach is particularly well-suited for numerous real-world applications where

supervision is often incomplete. However, the lack of detailed supervision can

sometimes result in suboptimal model performance, especially when data is lim-

ited. Designing such methods is indeed challenging as models need to discern

between true patterns and noisy information during training.

In this thesis, we propose to leverage weakly supervised data – specifically, sign
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language interpreted TV broadcast along with subtitles – to expand sign lan-

guage datasets by an order of magnitude, surpassing 1000 hours of video. A key

idea in subsequent chapters is to derive stronger supervision from weak signals,

thereby improving the learning of sign representations. We investigate various

weakly-supervised methods to automatically and densely annotate sign sequences

in videos, by using the subtitles which offer insights into potential signs present. In

particular, in Chapter 5 (‘Watch Read Lookup’), we present a (i) multiple instance

learning approach, where a bag of instances (rather than a single instance) is asso-

ciated with a single label. In Chapter 8 (‘Weakly-supervised Fingerspelling’), we

propose a (ii) multiple hypothesis framework, tasking the model with selecting the

most accurate label for the signing instance from a set of hypotheses. We show

the advantages of (iii) pseudo-labelling and bootstrapping methods in Chapter 4

(‘BSL-1K’) and Chapter 9 (‘Large-Vocabulary CSLR’), where models trained on

labeled data generate labels for unlabeled data iteratively. In Chapter 6 (‘Read and

Attend’) and Chapter 7 (‘Automatic dense annotation’), we demonstrate how to

leverage (iv) similarities between cross-modal or uni-modal representations, along-

side the noisy constraints imposed by the subtitle content. These approaches for

acquiring stronger supervision lay the groundwork for training robust and scalable

translation models. Beyond sign language, in Chapter 10 (‘Verbs in Action’), we

illustrate the benefits of (v) data augmentation through large language models

to obtain hard negatives for verb understanding, serving as a form of stronger

supervision.

1.3 Thesis Outline and Contributions

In this section, we present an overview of the subsequent chapters in the thesis. The

thesis is structured into four main parts: (i) Keyword Spotting in Sign Language,

(ii) Approaches for Sign Spotting, (iii) Sequence Recognition in Sign Language,

and (iv) Enhancing Verb Representations. For Chapters 2 to 10, we outline the

main contributions below. Chapter 11 explores the implications of this research

and suggests potential avenues for future exploration.
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1.3.1 Keyword Spotting in Sign Language

Signers often simultaneously mouth the word they sign, as an additional sig-

nal [Rachel Sutton-Spence and Woll 1999], performing similar lip movements as

for the spoken word. Mouthings serve various purposes, including disambiguating

manual homonyms – signs that share visual similarity but convey different mean-

ings – or simply to provide redundancy [Woll 2001]. In this theme, we introduce

the concept of leveraging mouthing cues from signers to automatically localize sign

instances, thereby acquiring stronger supervision. Our approach entails using the

weakly-aligned subtitles along with a visual keyword spotting model, whose goal

is to automatically determine whether and when a keyword from the subtitle is

mouthed within a continuous signing window.

In Chapter 2 (‘Audio-visual KWS’), we leverage lipreading datasets of talking

faces [Chung and Zisserman 2016a; Chung et al. 2017] to train a novel convolu-

tional architecture for visual keyword spotting. Inspired by object detection meth-

ods, our model uses a similarity map intermediate representation between visual

and phonetic modalities to separate the task into two steps: sequence matching

and pattern detection. Beyond its applications for sign language, we demonstrate

the model’s versatility in leveraging audio and extending to other spoken lan-

guages such as French and German. In Chapter 3 (‘Visual KWS’), we improve

the visual keyword spotting model by integrating Transformers, which allow for

much stronger interaction between the visual and phonetic streams through full

cross-modal attention. We also conduct preliminary experiments illustrating the

model’s capability to generalize from videos of talking faces to out-of-domain data

of signer mouthings. In Chapter 4 (‘BSL-1K’), we use visual keyword spotting

of mouthings to automatically annotate hundreds of thousands of sign instances

for a vocabulary of 1,000 signs in 1,000 hours of video. We show how the auto-

matically collected data can be used to train strong sign recognition models for

co-articulated signs in BSL, with these models also serving as excellent pretraining

for other sign languages.

1.3.2 Approaches for Sign Spotting

While leveraging mouthings in Part I provides a strong signal, not all signs can

be identified in this manner since signers do not mouth continuously. Under this
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theme, we investigate methods to further our sign discovery process by utilizing

automatic annotations previously collected to learn robust sign representations,

together with noisy constraints imposed by the subtitle content.

There is a rich body of literature on using visual exemplars for spatial localisation of

objects or temporal localisation of actions [Deselaers et al. 2010; K. Cao et al. 2020].

In Chapter 5 (‘Watch Read Lookup’), we propose to leverage visual exemplars from

sign dictionaries to localize sign instances in continuous signing, without being

limited to mouthings. Sign language dictionaries offer the advantage of covering a

large vocabulary of signs. However, this task presents challenges: (i) dictionaries

typically contain only a few example videos per sign, (ii) a word may be signed

in different ways due to semantic or regional variations, and (iii) there exists a

significant domain gap between isolated signing in dictionary videos and the co-

articulated, continuous signing we wish to annotate. To effectively learn a joint

embedding space between these two sources of signing, we leverage prior mouthing-

based sign annotations, dictionaries, and subtitles within a framework grounded in

Multiple Instance Learning and Noise Contrastive Estimation [Miech et al. 2020].

When combining mouthing and dictionary based automatic annotations, we boost

sign recognition performance.

In Chapter 6 (‘Read and Attend’), we leverage the fact that cross-modal attention

has been employed in the literature for various localisation problems such as vi-

sual grounding in videos [Huijuan Xu et al. 2019] or images [Deng et al. 2018], and

audio-visual sound source localisation [Arandjelovic and Zisserman 2017]. Specif-

ically, our approach exploits the attention mechanism of the Transformer, trained

on a video-to-text sequence prediction task with weakly aligned subtitles. The

core hypothesis motivating this approach is that in order to solve the sequence

prediction task, the attention mechanism of the Transformer must be capable of

localising sign instances. Through our learned attention, we automatically an-

notate hundreds of thousands of new sign instances. By adding these automatic

annotations to those obtained from mouthings and dictionaries, we train an even

stronger sign recognition model.

In Chapter 7 (‘Automatic dense annotation’), we propose a simple, scalable frame-

work to vastly increase the density of automatic annotations. We measure density

in two ways: (i) minimizing temporal gaps in the timeline to achieve a densely
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spotted signing sequence; and also (ii) increasing the number of words we recall

in the corresponding subtitle. We significantly improve previous annotation meth-

ods (from mouthings and dictionaries) by making use of synonyms and automatic

subtitle-signing alignment. Moreover, we show the value of pseudo-labelling from

a sign recognition model as a means of sign spotting. Lastly, we introduce a novel

approach for increasing our annotations of known and unknown classes based on

in-domain exemplars, effectively propagating previously collected examples across

video data by leveraging sign representation similarities.

1.3.3 Sequence recognition in Sign Language

While the focus in Part I and Part II revolves around identifying and localizing

individual signs within continuous signing windows, our objective in this theme is

to delve into sign language tasks that entail predicting sequences of signs. These

tasks represent pivotal foundational steps towards realizing sign language transla-

tion capabilities.

In Chapter 8 (‘Weakly-supervised Fingerspelling’), we aim to detect and recognise

sequences of letters signed using fingerspelling. Fingerspelling in signed languages

is a means to encode words from written language into sign language via a man-

ual alphabet, i.e. one sign per letter. Words from a written language with no

known sign may be fingerspelled, such as names of people and places. Within

our interpreted TV shows, we estimate roughly 5-10% of signs are fingerspelled.

Consequently, it is important to incorporate automatic fingerspelling recognition

methods to be able to exhaustively translate. In contrast to other methods, our

approach only uses weak annotations from subtitles for training. We propose a

Transformer architecture adapted to this task, with a novel multiple-hypothesis

CTC loss function to learn from alternative annotation possibilities. We employ a

multi-stage training approach to enhance our training data before retraining again

to achieve better performance.

In Chapter 9 (‘Large-vocabulary CSLR’), we focus on the task of large-vocabulary

continuous sign language recognition (CSLR) – providing time aligned and dense

word predictions for each sign within a signing sequence. This is an essential first

step towards translation, as English sentence-level annotations have been shown

to be difficult to use directly as targets for sign language translation [N. Camgoz
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et al. 2021]. To facilitate CSLR evaluation in the large-vocabulary context, we

manually curate the most extensive test set of continuous sign-level annotations,

spanning over 6 hours. Our proposed approach then involves leveraging weak and

noisy pseudo-labels generated from a sign recognition model, and constructing a

multi-task model capable of both CSLR and retrieving sign language to subtitle

sentences. Through this strategy, we demonstrate promising results in tackling

the demanding large-vocabulary setting.

1.3.4 Enhancing verb representations

In this final theme, we explore obtaining stronger supervision from weak supervi-

sion for a more general task, beyond the domain of sign language. Specifically, our

focus shifts to the task of understanding verbs, which is crucial for modeling in-

teractions among people, objects and the environment through space and time. In

fact, recent state-of-the-art video-language pretrained models based on CLIP have

limited verb understanding and rely extensively on nouns, as evidenced by eval-

uations on new benchmarks [Hendricks and Nematzadeh 2021; Park et al. 2022].

This restricts their performance in real-world video applications that require action

and temporal understanding.

In Chapter 10 (‘Verbs in Action’), we propose the first method to address the verb

understanding challenge in video-language models, while preserving their profi-

ciency in noun-related tasks. We introduce a contrastive framework consisting of

two components: (i) leveraging pretrained large language models to create hard

negatives for cross-modal contrastive learning, together with a calibration strat-

egy to ensure balanced concept occurrences in positive and negative pairs; and

(ii) enforcing a fine-grained alignment loss for extracted verb phrases. Through

this pretraining strategy, we develop a unified model that improves zero-shot verb

understanding performance across a range of downstream tasks (video-text match-

ing, video question-answering and video classification); while maintaining robust

performance in noun-centric scenarios.
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1.4 Publications

In this section, we list publication contributions. Excluding Chapter 8 which in-

troduces ongoing work, Chapters 2 to 10 each contains a research paper which has

been peer reviewed and accepted for publication in a conference. The published

papers are included here without modifications, except for formatting changes.

Additional implementation details for each paper can be found in the supplemen-

tary materials of their online versions. A statement of authorship is also presented

for each paper in the Appendix. The papers included in the thesis are listed below.

Chapter 2: “Seeing wake words: Audio-Visual Keyword Spotting” Lil-

iane Momeni, Triantafyllos Afouras, Themos Stafylakis, Samuel Albanie, An-

drew Zisserman. In British Machine Vision Conference, 2020.

Chapter 3: “Visual Keyword Spotting with Attention” K R Prajwal*,

Liliane Momeni*, Triantafyllos Afouras, Andrew Zisserman. In British Machine

Vision Conference, 2021.

Chapter 4: “BSL-1K: Scaling up co-articulated sign language recogni-

tion using mouthing cues” Samuel Albanie*, Gül Varol*, Liliane Momeni,

Triantafyllos Afouras, Joon Son Chung, Andrew Zisserman. In European Confer-

ence on Computer Vision, 2020.

Chapter 5: “Watch, read and lookup: learning to spot signs from multi-

ple supervisors” Liliane Momeni*, Gül Varol*, Samuel Albanie*, Triantafyllos

Afouras, Andrew Zisserman. In Asian Conference on Computer Vision (Best Ap-

plication Paper), 2020.

Chapter 6: “Read and Attend: Temporal Localisation in Sign Lan-

guage Videos” Gül Varol*, Liliane Momeni*, Samuel Albanie*, Triantafyllos

Afouras*, Andrew Zisserman. In Conference on Computer Vision and Pattern

Recognition, 2021.

Chapter 7: “Automatic dense annotation of large-vocabulary sign lan-

guage videos” Liliane Momeni*, Hannah Bull*, K R Prajwal*, Samuel Al-

banie, Gül Varol, Andrew Zisserman. In European Conference on Computer Vi-

sion, 2022.

Chapter 8: “Weakly-supervised Fingerspelling Recognition in British
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Sign Language” K R Prajwal*, Hannah Bull*, Liliane Momeni*, Samuel Al-

banie, Gül Varol, Andrew Zisserman. In British Machine Vision Conference, 2022.

Chapter 9: “A Tale of Two Languages: Large-Vocabulary Continuous

Sign Language Recognition from Spoken language supervision” Charles

Raude*, K R Prajwal*, Liliane Momeni*, Hannah Bull, Samuel Albanie, An-

drew Zisserman, Gül Varol. Work in progress.

Chapter 10: “Verbs in Action: Improving verb understanding in video-

language models” Liliane Momeni, Mathilde Caron, Arsha Nagrani, Andrew

Zisserman, Cordelia Schmid. In International Conference on Computer Vision,

2023.

Papers not included:

“Signer Diarisation in The Wild” Samuel Albanie*, Gül Varol*, Liliane Mo-

meni*, Triantafyllos Afouras, Andrew Brown, Chuhan Zhang, Ernesto Coto, N.

Cihan Camgöz, Ben Saunders, Abhishek Dutta, Neil Fox, Richard Bowden, Bencie

Woll, Andrew Zisserman. Technical Report, 2021.

“Aligning Subtitles in Sign Language Videos” Hannah Bull*, Triantafyllos

Afouras*, Gül Varol, Samuel Albanie, Liliane Momeni, Andrew Zisserman. In

International Conference on Computer Vision, 2021.

“BOBSL: BBC-Oxford British Sign Language Dataset” Samuel Albanie*,

Gül Varol*, Liliane Momeni*, Hannah Bull*, Triantafyllos Afouras, Himel Chowd-

hury, Neil Fox, Bencie Woll, Rob Cooper, Andrew McParland, Andrew Zisserman.

Technical Report, 2021.

* denotes equal contribution
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Part I

Keyword Spotting in Sign

Language
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CHAPTER 2. SEEING WAKE WORDS: AUDIO-VISUAL KEYWORD SPOTTING

Chapter 2

Seeing wake words: Audio-Visual

Keyword Spotting

The paper has been accepted for publication at the British Machine Vision Con-

ference (BMVC), 2020.
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Seeing wake words: Audio-Visual Keyword

Spotting
Liliane Momeni1 Triantafyllos Afouras1

Themos Stafylakis2 Samuel Albanie1 Andrew Zisserman1

1 Visual Geometry Group, University of Oxford, UK
2 Omilia Conversational Intelligence, Athens, Greece

Abstract

The goal of this work is to automatically determine whether and when a

word of interest is spoken by a talking face, with or without the audio. We

propose a zero-shot method suitable for ‘in the wild’ videos. Our key con-

tributions are: (1) a novel convolutional architecture, KWS-Net, that uses a

similarity map intermediate representation to separate the task into (i) se-

quence matching, and (ii) pattern detection, to decide whether the word is

there and when; (2) we demonstrate that if audio is available, visual keyword

spotting improves the performance both for a clean and noisy audio signal.

Finally, (3) we show that our method generalises to other languages, specifi-

cally French and German, and achieves a comparable performance to English

with less language specific data, by fine-tuning the network pre-trained on

English. The method exceeds the performance of the previous state-of-the-

art visual keyword spotting architecture when trained and tested on the

same benchmark, and also that of a state-of-the-art lip reading method.

2.1 Introduction

Keyword spotting (KWS) is the task of detecting a word of interest within con-

tinuous speech. In audio-visual data, the keyword can be detected from the audio

stream only, from the visual stream only, or from both streams. The task differs
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Figure 2.1: General approach of KWS-Net: The inputs to the model are a
user-specified keyword and either audio, video or both. The objective is to detect
whether the keyword occurs in the input signal and, if present, then where it is.

from automatic speech recognition (ASR) or from automatic visual speech recog-

nition (AVSR, lip reading), where the aim is to recognise the phrases and sentences

being spoken from scratch. In KWS, the word that is sought is provided by the

user, and consequently the task is easier than recognising with no knowledge as

in ASR or AVSR. This suggests that a KWS model can (i) be much simpler than

ASR or AVSR, and (ii) have higher performance.

KWS is more practical in many situations. Indeed, ASR is frequently not the

aim of real-world speech processing applications and complete speech transcrip-

tion can therefore be redundant. Keyword search, which consists in retrieving

speech utterances including a keyword from a large database, is often a more use-

ful task. KWS also surpasses ASR in cases where context is limited, for example

for detecting mouthings in sign language [Albanie et al. 2020].

Visual KWS has clear applications to cases where audio is unavailable such as

for browsing archival silent films, and more importantly for cases where audio has

been corrupted with noise, including for wake-word recognition (e.g. ‘OK Google’,

‘Hey Siri’ and ‘Alexa’) as well as other human-robot interactions, such as in smart

home technologies (for example, turning off the lights) or to assist people with

speech impairment or aphonia [Shillingford et al. 2018].

A fundamental constraint for any visual KWS system is detecting words which

sound different but involve the same lip movements (they have the same ‘visemes’

– visemes are the visual equivalent of phonemes; phonemes are the smallest unit

of sound in speech). For instance, the words ‘may’, ‘pay’ and ‘bay’ cannot be

distinguished without audio as the visemes for ‘m’, ‘p’ and ‘b’ look the same.

Other difficulties include intra-class differences (such as accents, speed of speech
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and mumbling which modify lip movements) and variable imaging conditions (such

as lighting, motion, resolution) [Chung and Zisserman 2016a]. Spotting words from

continuous speech is also challenging as there may be co-articulation of the lips.

In this paper, we introduce a novel convolutional architecture, KWS-Net, for spot-

ting keywords in visual speech. The model introduces a similarity map that splits

the task into (i) matching a token phoneme sequence against a viseme sequence,

and (ii) detecting an alignment pattern to decide whether and when the keyword

occurs (see Figure 2.1). Step (ii) is performed in a detector-by-classification man-

ner, inspired by sliding window object detection methods. The model is able to

spot words that are unseen during training, and are specified by a user at test

time (zero-shot). We show that KWS-Net exceeds the previous state-of-the-art

network of Stafylakis et al. [Stafylakis and Tzimiropoulos 2018] for visual KWS on

standard benchmarks. Furthermore, we show that audio-visual KWS outperforms

the audio-only KWS counterpart marginally for clean audio, but substantially for

noisy audio. The visual-only and audio-visual KWS models are described in Sec-

tion 2.3. Finally, we apply our method to French and German datasets built from

TED videos (see Section 2.4) and demonstrate that our model can perform com-

parably to English in other languages with less language specific training data.

The project webpage is at: www.robots.ox.ac.uk/~vgg/research/kws-net/.

2.2 Related Work

Lip reading. Recent deep learning methods involving character-level recogni-

tion of visual sequences can be divided into two types: (i) models trained with

a Connectionist Temporal Classification (CTC) loss [Graves et al. 2006], where

frame-wise label predictions are made in search for an optimal alignment with the

output sequence, and (ii) models trained with a sequence-to-sequence (seq2seq)

loss, that first read the entire input before attending to different parts of it at each

step of an autoregressive output sequence prediction process. Examples of CTC

models include LipNet [Assael et al. 2016] and more recently LSVSR [Shilling-

ford et al. 2018], that shows state-of-the-art performance with a word error rate

as low as 40.9% when trained on vast amounts of data. Examples of seq2seq

models include the LSTM with attention model from Chung et al. [Chung et al.
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2017], which extends the audio model ‘Listen, attend and spell’ [Chan et al. 2016]

to visual and audio-visual ASR. Afouras et al. [Afouras et al. 2018a] combine the

seq2seq loss with self-attention layers and propose a transformer-based model. Hy-

brid approaches combining CTC and seq2seq losses were also recently proposed

[Petridis et al. 2018; Afouras et al. 2019], demonstrating promising results on the

LRS2 benchmark [Chung and Zisserman 2016c; Afouras et al. 2019].

Audio KWS. Traditional audio-based KWS methods are based on HMMs [Szoke

et al. 2005]. More recent deep learning works investigate fully connected networks

[G. Chen et al. 2014; Tucker et al. 2016], time delay neural networks [Myer and

Tomar 2018; M. Sun et al. 2017], convolutional neural networks (CNNs) [Sainath

and Parada 2015; Yundong Zhang et al. 2017; Yuxuan Wang et al. 2017; Palaz

et al. 2016], graph convolutional neural networks [X. Chen et al. 2019], and recur-

rent neural networks (RNNs) [Fernandez et al. 2007; Hwang et al. 2015; M. Sun

et al. 2016]. RNNs are also combined with convolutional layers [Arik et al. 2017;

Lengerich and Hannun 2016; Taejun Kim and Nam 2019] to simultaneously model

local features and temporal dependencies. Recent works also explore seq2seq mod-

els for KWS [Haitong Zhang et al. 2018; Audhkhasi et al. 2017; Zhuang et al. 2016;

Rosenberg et al. 2017].

Visual KWS. Yao et al. [Yue Yao et al. 2019] use sliding windows to split sentence-

level videos into smaller segments on which they perform word-level classification

and aggregate across segments using a max pooling layer. Their method is used

for a closed-set of 1000 Mandarin keywords, whereas our method is zero-shot. We

cannot compare to their work as (i) we do not have access to Mandarin phonetic

dictionaries, and (ii) their validation and test sets are unavailable. Jha et al.

[Jha et al. 2018] propose a query by example visual KWS architecture, where the

word query and retrieval are both videos, and a cosine similarity score is used to

assign a label query to a target video. Recently, Stafylakis et al. [Stafylakis and

Tzimiropoulos 2018] devised an end-to-end architecture which uses RNNs to learn

correlations between visual features and a keyword representation, extracted from

a grapheme-to-phoneme encoder-decoder.

Audio-visual KWS. Ding et al. [Ding et al. 2018] build an audio-visual decision

fusion KWS system, consisting of 2D CNNs to model the time-frequency features

of the log mel-spectrogram and 3D CNNs to model the spatio-temporal features
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of the mouth. The softmax outputs of the audio and visual networks are com-

bined through a summation, with fixed weights for each modality, to estimate the

posterior probability of each keyword. In [P. Wu et al. 2016], adaptive decision

audio-visual fusion based on HMMs is performed using a proposed lip descriptor.

Both of these works are evaluated on the private, relatively small PKU-AV dataset

of 3000 clips and 30 keywords, involving no more than 20 speakers and excluding

any mouth occlusions. These methods are evaluated with keywords seen during

training, as opposed to zero-shot.
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Figure 2.2: Visual-only KWS-Net pipeline: The viseme and phonetic sequence
embeddings are used to compute a similarity map, which is expected to show a
strong diagonal component when the keyword is present. This pattern can be
detected by a CNN-based classifier. The output keyword detection probabilities
are plotted for the clip. See details in Section 2.3.

2.3 KWS-Net

The visual KWS-Net model, shown in Figure 2.2, contains two input streams: a

visual feature extractor and a keyword encoder that produces an embedding for

the pronunciation of the queried keyword. The visual and phonetic representations

are fused into a single channel similarity bottleneck, which is then passed through

a CNN classifier to detect an alignment pattern. Full details of the model are given

in the appendix.

Visual feature extractor. The visual feature extractor takes as input a sequence

of frames from a clip of a talking face and outputs visual features. The feature

extraction is based on an 18-layer spatio-temporal ResNet [K. He et al. 2016; Stafy-

lakis and Tzimiropoulos 2017] which has shown good results on related tasks such

as lip reading [Afouras et al. 2019] and audio-visual speech enhancement [Afouras

et al. 2018c]. The network applies 3D convolutions on the input image sequence,

followed by a 2D ResNet that gradually decreases the spatial dimensions, while
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preserving the temporal resolution. The visual encoding obtained is a sequence

of dimension tv × 512, where tv is the number of input frames. The features are

then passed through a BiLSTM [Hochreiter and Schmidhuber 1997; Schuster and

Paliwal 1997] to model temporal dynamics.

Keyword encoder. The keyword encoder is a BiLSTM that ingests the phoneme

token sequence of the input keyword (e.g. ‘HH,’ ‘AE1,’ ‘P,’ ‘IY0’ for ‘happy’), ob-

tained using the CMU pronouncing dictionary [Speech Group at Carnegie Mellon

University 2014], and outputs a phonetic keyword embedding sequence with di-

mensions np × 512, where np is the number of phonemes in the keyword.

Similarity map. We compute the dot product between the phonetic sequence

embedding P (np ×512) and the visual feature sequence V (tv ×512) which results

in a similarity map (np × tv), expected to show high activation when the keyword

occurs in the clip (positive pair), i.e. when the two modalities align.

CNN detector and classifier. The similarity map is processed by a shallow

CNN, which outputs the probability that the keyword is present at a specific

location, by detecting patterns in it (e.g. a strong diagonal component). The CNN

gradually subsamples the temporal dimension by a factor of 8 and collapses the

phoneme dimension to a singleton, resulting in an output of length tout
v = tv/8 .

We apply a sigmoid activation on the resulting temporal sequence that outputs

for every frame the probability that the keyword occurs around it. The sample is

predicted to contain the keyword if the maximum probability over all the frames

is above a certain threshold, and the frame position of the maximum is regarded

as the predicted location of the keyword.

As shown in Figure 2.2, before feeding the similarity map to the CNN, we concate-

nate the phonetic sequence embedding (broadcast over time) to it. The intuition

for the addition of this shortcut is the following: (i) Some phonemes have a short

duration so they may not appear in the map, especially in visual-only experiments

where the frame rate is 25Hz. (ii) Some phonemes may appear more than once

in the keyword, meaning the diagonal assumption of the pattern might no longer

hold since off-diagonal components may appear.

Loss function. For training we create clip-keyword sample pairs which are la-

beled positive or negative depending on whether or not the keyword occurs in the
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clip (which can contain an arbitrarily long utterance). Given a sample pair, the

KWS-Net model outputs a probability pt(y = 1|V, P ) representing how likely the

keyword is to occur at every temporal location t ∈ [1, tout
v ]. We obtain a sequence-

level prediction by taking the maximum probability over all time locations. The

optimisation objective is then a binary cross-entropy loss between this prediction

and the ground truth sequence-level label y∗ (1 for positive sample, 0 otherwise):

Lkws(V, P, y∗) = −y∗ logmax
t
pt(y = 1|V, P ) − (1 − y∗) log(1 − max

t
pt(y = 1|V, P ))

(2.1)

If we have access to the exact word time boundaries then the temporal interval

is used as extra supervision to help the model learn to correctly localise keywords

within the clip: for positive samples, we calculate the maximum only within those

time boundaries where the keyword is known to occur, instead of the full length

[1, tout
v ]. If not stated otherwise, this is the method that we use. The boundaries can

be obtained by forced alignment and are included with some datasets (e.g. LRS2

[Chung and Zisserman 2016c]).

Differences to prior work. Here, KWS is converted to an object detection

problem where the CNN detects patterns from a similarity map that correspond

to alignments between viseme and phonetic sequences. Similar alignments can

be detected by word-level HMMs, that typically follow a ‘left-to-right, no skips’

structure. Instead of detecting these patterns with probabilistic models, we employ

a CNN and train the whole architecture jointly in an end-to-end manner, leveraging

the large size of the datasets (see Table 2.1) and following the recent trend in lip

reading state-of-the-art methods (see Section 2.2).

In [Stafylakis and Tzimiropoulos 2018], fixed length word embeddings are obtained

from a grapheme (character) to phoneme (G2P) encoder-decoder architecture, us-

ing an additional decoder loss to encourage word representations that reflect the

pronunciation. Instead, we build variable length word embeddings by directly

encoding the phonemes using simply a BiLSTM. This approach has several advan-

tages: (i) it strongly reflects the pronunciation and aligns better with the viseme

features, (ii) it offers more control of words with multiple pronunciations, compared

to G2P, and finally, (iii) phonemes are more language-independent compared to

graphemes, enabling the encoder to be shared between languages.
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Audio-only KWS-Net. We design an audio-only variation of the model, that

operates on audio waveforms instead of video clips. We extract acoustic features

by applying a STFT to the audio clip, with a 32ms window and 10ms hop-length,

at a 16 kHz sample rate. The resulting spectrograms are projected to mel-scale,

yielding 80-dimensional features. Since the video is sampled at 25 fps (40 ms per

frame), every video input frame corresponds to 4 acoustic feature frames. The

spectrograms are therefore passed through two strided convolutions to get the

acoustic features down to video resolution, achieving a common temporal-scale for

both modalities. This subsampling step allows us to keep the overall architecture

the same for visual-only, audio-only and audio-visual inputs.

Audio-visual KWS-Net. We employ a late decision audio-visual fusion. In

this case, the audio-only and visual-only KWS-Net models are trained separately

as explained above. The logits from the output of the CNN classifier from each

of the audio-only and visual-only models are then averaged before applying the

sigmoid activation, with the weights for each modality chosen according to the best

performing value on the validation set. We explore the effect of varying modality

weights in the appendix.

2.4 Experiments

Datasets. The audio-visual datasets used are summarised in Table 2.1. LRW [Chung

and Zisserman 2016a] consists of single-word utterances from BBC television broad-

casts. LRS2 [Chung and Zisserman 2016c; Afouras et al. 2019] and LRS3 [Afouras

et al. 2018b] consist of thousands of spoken sentences from BBC and TED/T-

EDx talks respectively. Both datasets contain samples from multiple viewpoints,

however LRS3 is more challenging than LRS2: speakers are pictured from a wider

range of viewpoints and with microphones/headsets, while addressing the audience

results in more frequent head movements. We also use the French and German

subsets of LRS3-Lang1, collected from TED/TEDx videos following the procedure

from [Afouras et al. 2018b], and refer to them as LRS3-Fr and LRS3-De respec-

tively. In Section 2.5, we compare the performance of KWS-Net on LRS3-Fr and

LRS3-De with that of LRS3, instead of LRS2, as the datasets come from the same
1Available at www.robots.ox.ac.uk/~vgg/data/lip_reading/lrs3-lang
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Dataset Split #Utt. #Words #Hours Vocab. Examples

LRW Train-val 514k 514k 165 500
Test 25k 25k 8 500

Pre-train 96k 2M 195 41k
LRS2 Train-val 47k 336k 29 18k

Test 1.2k 6k 0.5 1.7k

Pre-train 132k 3.9M 444 51k
LRS3 Train-val 32k 358k 30 17k

Test 1.3k 10k 1 2k

LRS3-Fr Train-val 69k 1M 107 28k
Test 1.3k 10.7k 1.2 2.1k

LRS3-De Train-val 12k 185k 20 11.2k
Test 1.7k 10.6k 1.5 1.9k

Table 2.1: Statistics on datasets: Division of development and test data, num-
ber of utterances and word instances, duration, vocabulary size and examples for
LRW [Chung and Zisserman 2016b], LRS2 [Chung and Zisserman 2016c; Afouras
et al. 2019], LRS3 [Afouras et al. 2018b], LRS3-Fr and LRS3-De datasets.

domain.

We set up our experiments following [Stafylakis and Tzimiropoulos 2018]: for both

training and evaluation, we use only keywords pronounced with np ⩾ 6 phonemes.

Moreover, as we want to evaluate on unseen keywords, we ensure that training

and testing are performed on disjoint keyword vocabularies. To that end, we

use all the words appearing in the test sets with np ⩾ 6 phonemes as evaluation

keywords and we remove them from the training vocabulary, i.e. those words are

not used in training the keyword encoder. We perform the language generalisation

experiments on LRS3, LRS3-Fr, and LRS3-De in the seen and unseen keywords

setting, therefore we drop the last constraint: test keywords for these datasets may

have been seen during training. For exact details about the size of the resulting

train and test keyword vocabulary of every dataset, please refer to the appendix.

Baselines. We have four baselines: three are evaluated on LRS2 and the final one

on LRW. As a first baseline we use our implementation of the model of Stafylakis

et al. [Stafylakis and Tzimiropoulos 2018], which we also pre-train on LRW for

fair comparison. This architecture is described fully in the appendix. Our second

baseline is a variant of Stafylakis et al. [Stafylakis and Tzimiropoulos 2018], where

the G2P network is switched to phoneme-to-grapheme (P2G) for a more expressive

phonetic word representation.
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Our third baseline is the lip reading visual-ASR model from Afouras et al. [Afouras

et al. 2020], a CTC based model learned through cross-modal distillation, which

is currently the state of the art on LRS2 for training only on publicly available

data. The implementation code and pre-trained models are obtained from the

authors. In order to apply the ASR model to KWS, we follow the method in [Y.

He et al. 2017]: rather than only using the best decoding prediction, we extract

the n highest scoring hypotheses using a beam search and estimate the posterior

probability that the keyword occurs in a clip using Equation (7) in [Y. He et al.

2017].

Our final baseline is the work of Jha et al. [Jha et al. 2018], although our methods

are not directly comparable as they perform query by example (as opposed to

query by string). Their retrieval pipeline uses the LRW test set for querying and

the LRW validation set for retrieval over 500 words. It should be noted that

their model only works for a closed set of words, for which examples are provided,

whereas KWS-Net can be used to spot words unseen during training. We directly

compare to the results reported in their paper.

Ablations. We consider three ablations for our visual-only KWS-Net architecture:

(i) not using the word time boundaries for training, which we refer to as ‘no LOC’

since this training regime does not explicitly encourage the correct localisation of

the keyword, (ii) removing the shortcut phonetic embedding, which we refer to

as ‘no SH’, and (iii) switching the BiLSTM keyword encoder for a P2G encoder-

decoder, which we refer to as ‘+P2G’.

Pre-training and fine-tuning. We initialise the weights of the ResNet-18 visual

feature extractor [Stafylakis and Tzimiropoulos 2017] from a model pre-trained

on word-level lip reading (code and weights publicly available from [Afouras et

al. 2018a]). This part of the network is kept frozen during training: following

the practice of [Afouras et al. 2018a], we pre-compute the features on the entire

datasets, then train the rest of the model directly on them to accelerate training.

We employ a curriculum training procedure for the rest of the network that consists

of two stages: (i) it is initially trained on the training set of LRW. As LRW contains

clips of single words, here the model is trained without word time boundaries, (ii)

the model is then fine-tuned on the sequence-level datasets.
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Test setup. The performance of the models is evaluated on the test set of every

dataset, using as queries all the held out test words (see datasets). We look for

each query keyword in all the clips of the test set. Note that there is no balancing

of positive and negative clips during evaluation: there are one or a few positive

clips for a given keyword and the rest are negatives. During testing, in order to

obtain fine-grained localisation, we apply the CNN classifier with a stride of one.

Evaluation metrics. The performance is evaluated based on ranking metrics.

For every keyword in the test vocabulary, we record the percentage of the total

clips containing it that appear in the first N retrieved results, with N=[1,5,10],

this is the ‘Recall at N’ (R@N). Note that, since several clips may contain a

query word, the maximum R@1 is not 100%. The mean average precision (mAP)

and equal error rate (EER) are also reported. For each keyword-clip pair, the

match is considered correct if the keyword occurs in the clip and the maximum

detection probability occurs between the ground truth keyword boundaries. For

each experiment, the average and standard deviation of each metric is computed

over the last 5 checkpoints once the model has converged (validation loss has not

improved for 5 epochs).

Audio noise addition. To investigate the robustness of the audio-only and

audio-visual models against loud environments, we train by adding babble noise

to the audio 50% of the time with signal-to-noise-ratio (SNR) of 0 dB. Babble

noise (interference from people talking simultaneously) is commonly used for au-

dio degradation in audio-visual speech recognition [Afouras et al. 2019; P. Wu et

al. 2016] as it is more challenging than other types of environmental noise [Krish-

namurthy and Hansen 2009].

2.5 Results

2.5.1 Visual-only KWS-Net

Baselines. As can be seen in Table 2.2, Stafylakis et al. G2P [Stafylakis and

Tzimiropoulos 2018]* performs worse than the P2G baseline we propose. Com-

pared to Stafylakis et al. P2G, KWS-Net significantly improves R@1 from 30.0%

to 37.9% and mAP from 43.5% to 53.9%, with the EER also decreasing from 6.3%
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R@1 R@5 R@10 mAP EER

Stafylakis et al. (G2P)* 22.8 49.0 59.1 36.0 8.9
Stafylakis et al. (P2G) 30.0 53.7 65.3 43.5 6.3
Visual-ASR 41.9 53.6 54.5 51.3 -

KWS-Net 37.9 ± 0.3 66.8 ± 0.6 75.6 ± 0.5 53.9 ± 0.3 5.7 ± 0.2
no LOC 37.2 ± 0.8 65.1 ± 0.2 73.7 ± 0.3 53.0 ± 0.6 6.9 ± 0.4
no SH 35.0 ± 0.5 62.4 ± 0.4 72.7 ± 0.9 50.4 ± 0.3 7.5 ± 0.4
+P2G 39.1 ± 0.3 66.2 ± 0.6 75.1 ± 0.4 54.3 ± 0.3 5.9 ± 0.3

Table 2.2: Visual-only results: Performance of baselines, visual-only KWS-Net,
and ablations on the LRS2 test set. *refers to our implementation of [Stafylakis
and Tzimiropoulos 2018] and Stafylakis et al. P2G refers to switching G2P to P2G.
Visual-ASR denotes our lip reading baseline from [Afouras et al. 2020]. KWS-
Net refers to our architecture from Section 2.3. no LOC represents not using
the keyword time boundaries for training; no SH denotes not concatenating the
phonetic embedding shortcut; +P2G denotes using a P2G encoder-decoder instead
of a BiLSTM keyword encoder.

to 5.7%.

KWS-Net has a higher R@5 compared to the lip reading visual-ASR baseline

(66.8% vs. 53.6%) and a higher mAP (53.9% vs. 51.3%). In fact, over a third of

the keywords do not appear at all in the n-best list. KWS-Net has the advantage

of retrieving more clips containing a keyword by using a higher R@N. Visual-ASR

has a slightly higher R@1 (41.9% vs. 37.9%), but the method benefits from context

of surrounding words.

Next, we replicate the test setting from [Jha et al. 2018] and calculate their metrics

on LRW: we achieve (not shown on the table) a higher P@10 of 77.1% compared

to 65.2% and a higher R@10 of 15.4% compared to 13.0% as well as a slightly

higher mAP of 57.8% compared to 57.0%. See [Jha et al. 2018] for P@10 and

R@10 metric definitions; note that R@N is defined differently in their experiments

compared to in our work.

Ablations. In Table 2.2, we assess the value of each component of the architecture.

For example when using the keyword time boundaries during training (see loss

description in Section 2.3), the EER is reduced from 6.9% to 5.7%; however even

if our method is trained without this extra annotation, KWS-Net no LOC still

outperforms the Stafylakis et al. P2G baseline (37.2% vs. 30.0% R@1). Similarly,

the value of the phonetic shortcut embedding is shown in the decrease from 7.5%

to 5.7% EER. Finally, we carry out an ablation by replacing the BiLSTM (KWS-
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Net) with P2G (KWS-Net+P2G), and conclude that the ablation performs overall

worse than the original BiLSTM.

Visualisations. In practice, we observe quasi-diagonal patterns in the similarity

map visualisations in Figure 2.3, which matches our intuition that viseme and

phonetic feature sequences align when the keyword occurs in the clip. As explained

in Section 2.3, there might be off-diagonal components due to repeated phonemes.

Please refer to the appendix and project webpage for more qualitative examples.

“and a same proportion”

“am just hopeful”“it’s cosmetically improved quite drastically”

“if it gives me some sense of control back”
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Figure 2.3: Qualitative results: Example similarity maps with visual-only KWS-
Net for keywords ‘improved’, ‘hopeful’, ‘control’ and ‘proportion’ for clips in the
LRS2 test set, with the application of a sigmoid for better visualisation. The ver-
tical axis represents the phonemes in the keyword (graphemes are shown here for
simplicity). The horizontal axis corresponds to the visual sequence; for visualisa-
tion we add phoneme ground truth start times for the entire clip utterance, with
those corresponding to the keyword in red.

Keyword length. We explore how varying the minimum phoneme length of

keywords np effects the performance of visual-only KWS-Net on the LRS2 test set

(see Table 2.3). As np increases, the EER decreases and the mAP and R@1 increase

as longer keywords are easier to visually spot. For this evaluation, additional

shorter words are selected from the original LRS2 test set. Note, the network has

not been trained for keywords with np < 6.

Phrases vs. Keywords. We evaluate visual-only KWS-Net on the LRS2 test set,

now using 3 word phrases as queries. For each of the evaluation unseen keywords,

we construct a phrase query by concatenating the keyword with its preceding and

succeeding words from the clip utterance, resulting in 666 phrases. The R@1

increases from 37.9% to 65.3% (see Table 2.3).

Seen vs. Unseen keywords. We fine-tune our visual-only KWS-Net model, now

including the previously unseen keywords from the LRS2 test set that occur in the

training set (note there is no overlap between the training and testing videos). As
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query type np vocab. R@1 R@5 R@10 mAP EER

unseen words 4 1278 25.8 ± 0.4 50.6 ± 0.5 61.2 ± 0.4 40.4 ± 0.3 11.5 ± 0.2
unseen words 6 644 37.9 ± 0.3 66.8 ± 0.6 75.6 ± 0.5 53.9 ± 0.3 5.7 ± 0.2
unseen words 8 227 53.1 ± 0.9 81.2 ± 0.5 87.1 ± 0.8 68.9 ± 0.3 3.9 ± 0.4

seen words 6 644 39.5 ± 0.6 69.5 ± 0.4 78.9 ± 0.7 56.7 ± 0.6 5.1 ± 0.2
phrases 9 666 65.3 ± 0.9 84.7 ± 0.3 89.1 ± 0.4 74.1 ± 0.6 3.7 ± 0.2

Table 2.3: Query investigation: Performance of visual-only KWS-Net on the
extended LRS2 test set with different query types and minimum phoneme lengths
np.

seen in Table 2.3, the performance marginally improves for seen words compared

to the zero-shot case, showing that our model is robust to words unseen during

training (5.7% vs. 5.1% EER).

2.5.2 Audio-visual KWS-Net

We now look at whether we can augment audio with visual information. The re-

sults in Table 2.4 indicate that lip movements improve performance even when the

audio signal is clean – for example, R@1 increases from 67.7% to 72.2%. When the

audio signal is corrupted with noise, the task of audio KWS becomes much harder.

This is demonstrated by the decrease in R@1 from 67.7% to 27.6%. However, com-

bining the audio and visual modalities results in a much higher performance, with

R@1 increasing from 27.6% to 52.7%. The audio-visual model is more robust,

surpassing the performance of both video-only and audio-only KWS-Net with a

noisy audio signal, for a range of SNRs (-10 dB to 20 dB), as seen in Figure 2.4.

Mod. Noise R@1 R@5 R@10 mAP EER

V ✗ 37.9 66.8 75.6 53.9 5.7
A ✗ 67.7 91.1 94.6 83.3 1.9

AV ✗ 72.2 94.7 97.0 87.5 1.7

A ✓ 27.6 49.8 59.4 39.7 12.8
AV ✓ 52.7 81.9 87.0 69.6 4.3

SNR

Table 2.4: (Left) Audio-visual results: Performance results for visual-only,
audio-only and audio-visual KWS-Net on the LRS2 test set with clean audio and
in the presence of noise at 0 dB SNR. Standard deviations for this table are given
in the appendix. Figure 4: (Right) Mean average precision for visual-only (red),
audio-only (blue) and audio-visual (green) KWS-Net with a noisy audio signal, as
the SNR is varied between -10 dB and 20 dB.
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2.5.3 Extension to other languages: French and German

We now move on to assess the generalisation of our method to other languages. For

each of the experiments in Table 2.5, the model is first trained on LRW, then fine-

tuned on LRS2 and subsequently LRS3. For LRS3-Fr and LRS3-De, the model

is additionally fine-tuned on their corresponding training set. Due to the lack of

word timings for LRS3-Fr and LRS3-De, we train the models here without them

(see loss description in Section 2.3). During evaluation, we do not consider the

location of the maximum keyword detection probability.

The more challenging setting of LRS3 compared to LRS2 (see Section 2.4) is

reflected in the visual-only KWS; lip reading is also found to be harder on LRS3

compared to LRS2 [Afouras et al. 2019]. In fact, we split the LRS3 test set into

near-frontal and profile views: we find that the model is robust to side views

(48.7% mAP) but as expected, the performance is overall better on frontal clips

(60.6% mAP).

The performance on LRS3-Fr is close to that on LRS3: the audio-only EER is

slightly worse as a lot more English audio from LRW and LRS2 is used for train-

ing. The visual-only EER for LRS3-De is higher than LRS3-Fr (13.0% vs. 8.4%).

However, LRS3- Fr training set is five times bigger than that of LRS3-De (see Ta-

ble 2.1). In all cases, the audio-visual model performs better than audio-only and

visual-only. The results in Table 2.5 show that KWS-Net can be used for other

languages, even if less language specific data is available.

Dataset Modality R@1* R@5* R@10* mAP* EER*

LRS3 V 25.5 ± 0.4 50.0 ± 0.5 62.1 ± 0.3 45.7 ± 0.3 8.3 ± 0.3
LRS3 A 52.0 ± 0.9 88.4 ± 0.5 94.0 ± 0.4 85.2 ± 0.6 2.1 ± 0.1
LRS3 AV 55.4 ± 0.9 90.6 ± 0.2 95.9 ± 0.2 88.3 ± 0.4 1.6 ± 0.1

LRS3-Fr V 28.8 ± 0.3 55.3 ± 0.9 65.8 ± 0.7 43.9 ± 0.3 8.4 ± 0.1
LRS3-Fr A 52.3 ± 0.6 86.9 ± 0.2 92.7 ± 0.2 72.6 ± 0.3 3.4 ± 0.1
LRS3-Fr AV 53.3 ± 0.4 88.9 ± 0.2 93.9 ± 0.3 74.1 ± 0.3 3.2 ± 0.1

LRS3-De V 13.3 ± 0.1 33.7 ± 0.1 43.5 ± 0.2 24.9 ± 0.1 13.0 ± 0.2
LRS3-De A 48.1 ± 0.4 79.9 ± 0.5 88.1 ± 0.2 67.4 ± 0.3 3.7 ± 0.2
LRS3-De AV 50.5 ± 0.3 83.3 ± 0.1 90.2 ± 0.1 70.3 ± 0.2 3.4 ± 0.1

Table 2.5: Language results: Performance of visual-only, audio-only and audio-
visual KWS-Net on LRS3 (English), LRS3-Fr (French) and LRS3-De (German).
*The task here is classifying whether the keyword occurs in the clip, and keywords
may be seen during training.
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2.6 Conclusion

In this paper, we present a novel CNN-based KWS architecture, KWS-Net, in-

spired by object detection methods. Our best visual-only model exceeds the per-

formance of the previous state of the art on the LRS2 dataset. We show that

combining audio and visual modalities helps KWS for both clean and noisy au-

dio. Finally, we demonstrate that KWS-Net generalises to languages other than

English. In future work, we plan to improve KWS-Net by incorporating context

of surrounding words.
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Abstract

In this paper, we consider the task of spotting spoken keywords in silent

video sequences – also known as visual keyword spotting. To this end,

we investigate Transformer-based models that ingest two streams, a visual

encoding of the video and a phonetic encoding of the keyword, and output

the temporal location of the keyword if present. Our contributions are as

follows: (1) We propose a novel architecture, the Transpotter, that uses full

cross-modal attention between the visual and phonetic streams; (2) We show

through extensive evaluations that our model outperforms the prior state-of-

the-art visual keyword spotting and lip reading methods on the challenging

LRW, LRS2, LRS3 datasets by a large margin; (3) We demonstrate the

ability of our model to spot words under the extreme conditions of isolated

mouthings in sign language videos.

3.1 Introduction

In recent years, there has been significant progress in automatic visual speech

recognition (VSR) due to the availability of large-scale annotated datasets and

the development of powerful neural network-based learners [Chung et al. 2017;

Assael et al. 2016; Afouras et al. 2019]. These methods are continually improving

and becoming more sophisticated, by incorporating better visual models, stronger

language modelling and training on larger datasets. Indeed the best industrial

grade lip reading models today are far superior to humans, and achieve error rates
∗Equal contribution.



approaching Automatic Speech Recognition (ASR) performance [Makino et al.

2019; K R et al. 2021].

However, for many applications it is not necessary to transcribe every word that

is spoken in a silent video (the task of VSR), rather only specific utterances or

keywords need to be recognised. This is for example the case in “wake word”

recognition, where only particular keywords need to be spotted over long input

sequences. A further drawback of VSR methods is that they are heavily reliant

on language modelling; in general, their performance decreases significantly when

context is limited (e.g. short utterances) or parts of the input are occluded, e.g.

from the speaker’s hands or a microphone. In this work, we focus instead on

the task of Visual Keyword Spotting (KWS), where the the goal is to detect and

localise a given keyword in (silent) spoken videos.

Automatic visual KWS enables a diverse range of practical applications: indexing

archival silent videos by keyword to enable content-based search; helping virtual

assistants (e.g. Alexa and Siri) and smart home technologies respond to wake

words and phrases; assisting people with speech impairment (e.g. amyotrophic

lateral sclerosis patients) or aphonia in communication [Shillingford et al. 2018];

and detecting mouthings in sign language videos [Albanie et al. 2020].

KWS differs in complexity from VSR primarily because in KWS we are armed with

the keyword we need to recognise, whereas VSR has the harder task of recognising

every word from scratch. The core hypothesis motivating this work is that this ad-

ditional knowledge renders visual KWS an easier task than VSR; and it is therefore

expected that KWS should achieve a higher performance than VSR, and gener-

ally be more robust to challenging and adversarial situations. Nevertheless, visual

KWS remains a very difficult task and shares similar challenges to VSR meth-

ods: first, some words sound different but involve identical lip movements (‘man’,

‘pan’, ‘ban’), these homopheme words cannot be distinguished using only visual

information. Second, speech variations such as accents, speed, and mumbling can

alter lip movements significantly for the same word. Third, co-articulation of the

lips between preceding and subsequent words in continuous speech also affects lip

appearance and motion.

In this paper, we make the following three contributions: (i) We propose a novel
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Transformer-based architecture, the Transpotter (a portmanteau of Transformer

and Spotter), that is tailored to the visual KWS task. The model takes as input

two streams, one encoding visual information from a video and the other providing

a phonetic encoding of the keyword; the heterogeneous inputs are then fused using

full cross-modal attention. (ii) Through extensive evaluations, we show that our

Transpotter model outperforms the prior state-of-the-art visual KWS and VSR

methods on the challenging LRW, LRS2 and LRS3 lip reading datasets by a large

margin. (iii) We test our best model under extreme conditions: finding words

in mouthings of people communicating using sign language. Signers sometimes

mouth words as they sign as an additional non-manual signal to disambiguate

and help understanding [Rachel Sutton-Spence 2007]. This new task is extremely

challenging as there is a significant domain shift between full spoken sentences

(in our training and test sets) and mouthings, where the context is sporadic and

phonemes of the keyword may be missing – as sometimes only parts of words are

mouthed [Boyes Braem and RL Sutton-Spence 2001]. Our approach outperforms

previous KWS models in this challenging, practical use-case. Video examples

are available at the project’s webpage: www.robots.ox.ac.uk/~vgg/research/

transpotter.

3.2 Related work

Our work relates to prior work on KWS, lip reading, visual grounding, and appli-

cations of Transformers for text and video. We present a brief discussion of these

topics below.

KWS. KWS in audio (speech) is a well studied problem with a long history, span-

ning several decades. Prior to the establishment of deep learning models, KWS

methods were based on Hidden Markov Models [Rose and Paul 1990; Wilpon et

al. 1989], dynamic time warping [Itakura 1990; Sakoe and Chiba 1978; Yaodong

Zhang and Glass 2010] or indexing of ASR lattices [Can and Saraçlar 2011]. A

number of works have since used deep architectures suitable for sequence mod-

elling (e.g. RNNs, CNNs, or graph convolutional networks) [Sainath and Parada

2015; Yundong Zhang et al. 2017; Yuxuan Wang et al. 2017; Palaz et al. 2016;

X. Chen et al. 2019; Fernandez et al. 2007; Hwang et al. 2015; M. Sun et al. 2016;
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Arik et al. 2017; Lengerich and Hannun 2016; Taejun Kim and Nam 2019], in-

cluding encoder-decoder approaches [Haitong Zhang et al. 2018; Audhkhasi et al.

2017; Zhuang et al. 2016; Rosenberg et al. 2017]. Berg et al. [Berg et al. 2021]

recently proposed using a Transformer model for the same task. Different from

ours, this work uses a single input stream (audio) and only learns to spot a fixed

vocabulary of keywords. In contrast, we use Transformers to temporally process,

then fuse the multi-modal inputs, building a model that can eventually perform

open-set KWS. Visual KWS has also received attention recently. The proposed

methods include query-by-example [Jha et al. 2018] approaches, sliding window

classification [Yue Yao et al. 2019], or looking up phonetic queries in lip reading

feature sequences [Stafylakis and Tzimiropoulos 2018; Momeni et al. 2020a], while

audio-visual methods [P. Wu et al. 2016; Ding et al. 2018; Momeni et al. 2020a]

that fuse the two modalities to improve robustness to noise have also been pro-

posed. Our method builds upon these approaches: we address various weaknesses

and propose superior video-text modelling as well as explicit keyword localization,

resulting in significantly improved performance.

Lip reading. Early works in lip reading usually relied on hand-crafted pipelines

and features [Potamianos et al. 2003; Gowdy et al. 2004; Papandreou et al. 2009;

Ziheng Zhou et al. 2014]. The availability of large scale lip reading datasets [Chung

et al. 2017; Afouras et al. 2018b] and the development of deep neural network

models resulted in major performance improvements, initially in word-level lip

reading [Chung and Zisserman 2016a; Stafylakis and Tzimiropoulos 2017] and

constrained sentences [Assael et al. 2016]. Sentence level models were subsequently

developed, using sequence-to-sequence architectures based on RNNs [Chung et

al. 2017], CTC-based [Shillingford et al. 2018] approaches, or a hybrid of the

two [Petridis et al. 2018]. Replacing RNNs with Transformers resulted in better

performing architectures [Afouras et al. 2019; X. Zhang et al. 2019; Gulati et

al. 2020]. Joint audio-visual training and cross-modal distillation [Afouras et al.

2020; Jianwei Yu et al. 2020; W. Li et al. 2019] have also been investigated.

The current state-of-the-art model uses Transformers in the visual front-end and

achieves remarkable results with word error rates reaching as low as 30.7% [K R

et al. 2021].

Visual grounding. Our work is also related to tasks such as natural language
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grounding in videos [Hendricks et al. 2017; Gao et al. 2017; M. Liu et al. 2018;

Huijuan Xu et al. 2019; Yuan et al. 2019; Ghosh et al. 2019; Jingyuan Chen et al.

2018; R. Zeng et al. 2020] and subtitle alignment in sign language clips [Bull et al.

2021a].

Transformers. Since their introduction for machine translation, Transform-

ers [Vaswani et al. 2017] have become ubiquitous and are used today in a wide

range of applications from natural language processing [Devlin et al. 2019; Radford

et al. 2019] and speech recognition [Dong et al. 2018; Karita et al. 2019; Mohamed

et al. 2019] to visual representation learning [Dosovitskiy et al. 2021; Bertasius et

al. 2021; B. Wu et al. 2020; K R et al. 2021]. In this work, we rely on Transformers

as our building blocks for their strong sequence modelling capability and inherent

potential for localisation through attention.

3.3 Visual KWS with Attention

In this section, we describe our proposed method shown in Figure 3.1. We outline

the architecture of our model (Section 3.3.1), our training procedure (Section 3.3.2)

and differences to prior work (Section 3.3.3). We refer the reader to the arXiv

version of the paper for further details.

3.3.1 The Transpotter Architecture

Our model ingests two input streams: (i) a textual keyword q = (q1, q2 · · · , qnp),

and (ii) a silent video clip v ∈ RT ×H×W ×3 in which we need to spot the keyword.

For each of the inputs, we have separate encoders that learn initial modality-

specific representations. This is followed by a joint multi-modal Transformer that

learns cross-modal relationships between the video and text features. The joint

transformer predicts two outputs: (i) a sequence-level probability of the keyword

occurring in the video and (ii) frame-level probabilities indicating the location of

the keyword in the video if present. We describe each of the modules next.

Text Representations. Our textual input is a phonetic representation of the

keyword, obtained using a pronunciation dictionary. The input phoneme sequence

of length np is mapped to a sequence of learnable embedding vectors Q ∈ Rnp×d.

Sinusoidal positional encodings are added to the input phoneme feature vectors,
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Figure 3.1: The Transpotter architecture: Video frames are inputted to a
visual front-end (CNN [Afouras et al. 2019] or VTP [K R et al. 2021]) to extract
low-level visual features, which are then passed to Nv Transformer layers to encode
temporal information. The keyword in the form of a phoneme sequence is encoded
using Nt Transformer layers. The text and visual features are finally concatenated
in time and processed using a joint multi-modal Transformer which predicts: (i) the
probability the keyword occurs in the video, (ii) frame-level probabilities indicating
the location of the word. PE corresponds to positional encoding.

and the result is passed through a Transformer Encoder [Vaswani et al. 2017] with

Nt layers to capture temporal information across the phoneme sequence:

Qenc = encoderq(Q+ PE1:np) ∈ Rnp×d.

Video Representations. We use a pre-trained visual front-end (either a CNN [Afouras

et al. 2019] or VTP [K R et al. 2021]) to extract a feature vector for each input video

frame, V ∈ RT ×d. Similar to the text encoder Qenc, we pass the visual features

through a Transformer Encoder with Nv layers to capture temporal information,

after adding positional encodings:

Venc = encoderv(V + PE1:T ) ∈ RT ×d.

Joint Video-Text Representations. The uni-modal representations V and Q

are concatenated along the time dimension to produce a single sequence of feature

vectors. A learnable [CLS] token embedding (such as in BERT [Devlin et al. 2019]
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and ViT [Dosovitskiy et al. 2021]) is then prepended to the result:

J = ([CLS];Venc;Qenc) ∈ R(1+T +np)×d.

We use a Transformer encoder with Nm layers to jointly learn the relationships

across video and phoneme vectors:

Z = encodervq(J + PE1:(1+T +np)) ∈ R(1+T )×d.1

Prediction heads. The [CLS] output feature vector Z1 serves as a joint aggregate

representation for the video-text pair. An MLP head for binary classification, fc

is attached to Z1 to predict the probability of the keyword being present in the

video:
ŷcls = σ(fc(Z1)) ∈ R1,

where σ denotes a sigmoid activation. To localise the keyword, we attach a second

MLP head fl that is shared across all the video output states from the multi-modal

joint Transformer:

ŷloc = σ(fl(Z2:(T +1))) ∈ RT .

The output yloc
t at each video frame time-step t ∈ T indicates the probability of

the frame t being a part of the keyword utterance.

3.3.2 Training

Optimisation objectives. Given a training dataset D consisting of tuples (v, q, ycls, yloc)

of silent video clips, text queries, class labels and location labels (indicating the

position of the keyword within the clip), we define the following objectives:

Lcls = −E(v,q,ycls)∈D BCE(ycls, ŷcls) (3.1)

Lloc = −E(v,q,ycls,yloc)∈D ycls

[
1
T

T∑
t=1

BCE(yloc
t , ŷloc

t )
]

(3.2)

BCE(y, ŷ) = y log ŷ + (1 − y) log(1 − ŷ), (3.3)

1the np outputs corresponding to the phonetic embeddings are dropped.
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where BCE stands for the binary cross-entropy loss. The labels ycls are set to

1 when the given keyword occurs in the video and 0 otherwise; the frame labels

yloc are set to 1 for the frames where the keyword is uttered and 0 otherwise. To

train the model the optimise the total loss L = λLcls + (1 − λ)Lloc, where λ is a

balancing hyper-parameter.

3.3.3 Discussion

Compared to prior approaches, the design of our model offers several important

advantages.

Stronger Visual Representations. Previous works [Stafylakis and Tzimiropou-

los 2018; Momeni et al. 2020a] model temporal relationships between video frames

using RNNs. In contrast, we employ Transformers [Vaswani et al. 2017], which

are far more effective in modeling temporal relationships [Al-Rfou et al. 2019;

Hochreiter et al. 2001].

Joint Video-text Modeling. Prior works such as KWS-Net [Momeni et al.

2020a] follow a late-fusion strategy. In our model each frame-wise video feature

can attend to any keyword token (phoneme) and vice-versa. The information

exchange across the modalities occurs at every layer, without restrictions on the

receptive field for either modality.

Stronger keyword localisation. Fine-grained localisation of the keyword in

the video can be important for applications such as sign spotting [Albanie et al.

2020]. Existing methods [Momeni et al. 2020a; Stafylakis and Tzimiropoulos 2018]

“weakly” localise the keyword by taking the sequence-level prediction to be the

maximum probability over all the video time-steps. We instead provide stronger

frame-level supervision, by enforcing the model to predict the exact temporal ex-

tent of the keyword in the video.

3.3.4 Implementation details

Pre-training the visual front-end. We explore two different visual front-end

architectures for the Transpotter: (1) a CNN, highly similar in architecture to

TM-seq2seq [Afouras et al. 2019] and (2) VTP [K R et al. 2021], the current state-

of-the-art for lip reading (trained only on public data). Both models are trained
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end-to-end on two-word video clips of LRS2 [Chung et al. 2017] and LRS3 [Afouras

et al. 2018b] for lip reading. We refer the reader to the arXiv version of the paper

for the exact CNN architecture and training hyper-parameters. We refer the reader

to [K R et al. 2021] for architectural hyper-parameters and training protocols for

VTP. We pre-compute the visual features for each backbone for both datasets and

then train directly on them for faster training. All our models and ablations use

the pre-trained CNN features, unless otherwise stated.

Sampling. We form the training dataset D by randomly sampling with 50% prob-

ability a positive or negative video clip v for each query q. Each video v contains

word boundary annotations, which allows (i) performing data augmentation by

randomly cropping video segments during training, and (ii) creating frame labels

yloc, as described in 3.3.2.

Misc. The keyword q is mapped to a phoneme sequence using the CMU dictionary

[Speech Group at Carnegie Mellon University 2014]; words not present in the

dictionary are discarded from training D. We set λ = 0.5.

3.4 Experiments

This section is structured as follows: We first present the datasets used as well

the evaluation protocols that we follow in our experiments (Section 3.4.1). Next,

we compare the performance of our proposed Transpotter model against strong

baselines (Section 3.4.2) and then present a comprehensive study ablating our

design choices (Section 3.4.3). Finally, we perform further performance analysis

and provide qualitative results (Section 3.4.4).

3.4.1 Datasets and Evaluation Protocol

Datasets. All models and baselines are trained and evaluated on LRS2 [Chung

et al. 2017] and LRS3 [Afouras et al. 2018b] lip reading datasets. LRS2 contains

BBC broadcast footage from British television and LRS3 is based on TED/TEDx

videos downloaded from YouTube (refer to the arXiv version of the paper for

detailed statistics). The video clips for both datasets are tightly cropped face-

tracks of active speakers only. For each clip, a full transcription of the utterance

as well as word boundary alignments are provided. The number of videos, number
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of keyword instances and keyword vocabulary for each of the test sets is shown in

Table 3.1.

Evaluation Protocol. Evaluation is performed for every test dataset as follows:

First, the vocabulary of test keywords is determined, by considering all the words

occurring in the test set transcriptions with above a certain phoneme length np. If

not specified, we use np ≥ 3. Every word in the query vocabulary is then searched

for in all the test set videos.

Metrics. Given ground truth video-keyword samples, we assess the performance

of our model in two ways. First, we assess classification performance, i.e. whether

the model can accurately predict whether the keyword occurs in the video or not.

We compute accuracy (AccCls
@k ) and mean average precision (mAPCls) metrics,

where AccCls
@k measures how often a given keyword occurs in any of the top-k

retrievals, and mAPCls is obtained with the above criterion (where every word in

the test keyword vocabulary is considered as a separate class).

Second, we assess the model’s localisation capability, i.e. whether the model can

accurately localise the keyword in the video clip. We follow common practice

from the detection literature: we consider a keyword accurately detected when the

intersection-over-union (IOU) between the prediction ŷloc and ground truth label

yloc is above a certain threshold, and calculate the mean average precision mAPLoc.

To calculate the IOU, we binarise the model’s predictions using a threshold τ = 0.5.

3.4.2 Comparison to baselines

We compare our model’s performance against a state-of-the-art VSR model and

KWS-Net [Momeni et al. 2020a], the previous state-of-the-art visual KWS model.

VSR baseline. We use an improved version of the TM-seq2seq [Afouras et al.

2019] VSR model, with the same pre-trained CNN backbone (Section 3.3.4) that

we use for the KWS models. The model is trained with the curriculum train-

ing strategy of [Afouras et al. 2019] (details in the arXiv version of the paper).

The VSR model achieves state-of-the-art Word Error Rate (WER) performance of

36.9% and 48.0% on the LRS2, LRS3 test sets respectively. Since the VSR model

only produces text transcriptions of a given video, but no localisation prediction,

we can only evaluate its classification performance (AccCls
@k ,mAPCls). We follow
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the method detailed in [Y. He et al. 2017] to estimate the posterior probability

that the keyword occurs in a video clip.

KWS-Net. As a KWS baseline we use the state-of-the-art model of Momeni et

al. [Momeni et al. 2020a]. For fair comparison, here too we use the same CNN

backbone that is also used for our model.

LRS2 LRS3
1.2K vids. / 4.3K inst. / 1.6K vocab. 1.3K vids. / 6.1K inst. / 1.9K vocab.

Model AccCls
@1 AccCls

@5 mAPCls mAPLoc AccCls
@1 AccCls

@5 mAPCls mAPLoc

KWS-Net [Momeni et al. 2020a] 36.1 61.2 41.0 36.2 29.8 54.6 34.3 29.2
VSR 63.7 76.3 64.3 - 52.3 66.0 50.3 -
Transpotter 65.0 87.1 69.2 68.3 52.0 77.1 55.4 53.6
Transpotter (VTP) 68.7 90.7 72.5 71.6 55.7 78.5 58.2 56.1

Table 3.1: Comparison to baselines: We outperform the current state-of-the-art
KWS and VSR methods by a large margin. Our Transpotter model is particularly
effective in localising the keyword in the video. Moreover, by using the recently
proposed VTP [K R et al. 2021] architecture as the Transpotter’s visual backbone
instead of a CNN, we achieve even better performance.

State-of-the-art KWS. We report our model’s performance and compare it with

strong baselines in Table 3.1. It is clear that our model outperforms both baselines.

On the last row, we show the boost in performance by replacing the CNN with

the recently proposed VTP backbone [K R et al. 2021], resulting in state-of-the

art performance on both the LRS2 and LRS3 datasets.

Evaluation on LRW. We also compare the performance of KWS-Net [Momeni

et al. 2020a] with our proposed Transpotter model on the LRW [Chung and Zisser-

man 2016a] test set following the same evaluation protocol. The test set contains

25K single-word video clips spanning a vocabulary of 500 words (50 instances

per word). Note that KWS-Net has been pretrained on the LRW training split,

but the Transpotter has only been trained on LRS2 and LRS3. As we can see

in Table 3.2, the Transpotter outperforms the previous state-of-the-art baseline

KWS-Net by a large margin. We refer the reader to the arXiv version of the paper

for a qualitative error analysis in this setting.

3.4.3 Architecture ablations

To assess our design choices for the Transformer skeleton, we perform a number

of ablations considering variations of the model architecture. We briefly explain
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Model AccCls
@1 AccCls

@5 mAPCls

KWS-Net [Momeni et al. 2020a] 66.6 89.0 33.0
Transpotter 85.8 99.6 64.1

Table 3.2: Comparison on LRW [Chung and Zisserman 2016a]: The Trans-
potter outperforms the previous state-of-the-art KWS model on the LRW test set,
despite not having been trained on LRW data. The localization metric mAPLoc is
not reported as the input videos are single-word clips.

the alternative approaches below; more details can be found in the arXiv version

of the paper.

In particular we consider two alternative encoder-decoder architectures, with the

video input at the encoder side and the text query at the decoder (Encvid-Dectext)

and vice versa (Enctext-Decvid). Since the latter model outputs at the temporal

resolution of the video input, it can explicitly localise the keyword (in the same

way as the Transpotter), while the former can only perform classification. We also

consider a variant of the Transpotter, where the model does not output localisation

predictions (hence no Lloc is used for its training). We show the results in Table 3.3.

The selected Transpotter architecture outperforms all variants. In particular, by

comparing rows 2 and 4, we observe that training with a localisation head and loss

Lloc also improves classification (e.g. 64.0 vs 69.2 mAPCls).

LRS2 LRS3

Model AccCls
@1 AccCls

@5 mAPCls mAPLoc AccCls
@1 AccCls

@5 mAPCls mAPLoc

Encvid-Dectext 52.5 80.0 57.9 - 40.3 66.9 43.2 -
Transpotter w/o loc. 59.4 84.1 64.0 - 46.5 72.1 49.8 -
Enctext-Decvid 63.8 86.8 68.4 67.8 52.1 76.6 54.9 53.1
Transpotter 65.0 87.1 69.2 68.3 52.0 77.1 55.4 53.6

Table 3.3: Model ablations: Our approach of jointly modeling text and video
sequences with a localisation head for stronger supervision outperforms other ar-
chitectural designs.

3.4.4 Transpotter performance analysis

In this section, we analyse the performance of our proposed method when varying

the keyword length and the size of the surrounding visual context.

Keyword length. In Figure 3.2a, we plot the model’s performance on the LRS2

test set against the minimum keyword length in phonemes np. As expected, longer

keywords are easier to spot and therefore result in better retrieval performance.

Indeed for long 7-phoneme keywords, mAPLoc reaches as high as 82.5. We note
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(a) (b)

Figure 3.2: (a) Transpotter’s performance increases with the keyword length; (b)
Transpotter performs far better than VSR with limited context. Both methods
improve with more context.

however that even for very challenging short keywords with only 2 phonemes (such

as "my", "to", "at"), mAPLoc stays high at 67.5.

Context. The visual appearance of spoken words can be highly ambiguous [Afouras

et al. 2019], therefore recognising isolated words from visual input alone may be

very challenging. Current lip reading models utilise the surrounding visual context

to resolve this ambiguity. In Figure 3.2b, we illustrate how the performances of our

Transpotter KWS model and our VSR baseline vary based on the amount of con-

textual information available. We plot the mAPCls against the number of words

in the video clip. We observe that both models benefit from larger surrounding

context, with the Transpotter outperforming the VSR baseline consistently.

Qualitative analysis. In Figure 3.3, we show qualitative examples from the

LRS2 and LRS3 test sets. It is clear that the model produces smooth predictions

that precisely indicate the full location of the word. In the bottom right corner we

observe a failure case where the model’s confidence is low – the keyword “that’s”

in this case is short.

Model response to homophemes. We further probe our Transpotter model

for failure cases. In visual-only keyword spotting, a common failure case is due to

homophemes, i.e. words with identical lip movements. To investigate the response

of our model to such cases, we construct a list of keywords from the LRS2 test set

sentences that are known to have homopheme counterparts (e.g.mark, which has

two matching homophemes, bark and park) and then for each test set clip that

contains one of the keywords, we query that keyword along with its corresponding

homophemes and plot the model’s outputs. We illustrate several examples in

Figure 3.4. We observe that in such cases, the model spots the keyword as well as

its homophemes at the same (ground truth) location.
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Figure 3.3: Qualitative results on LRS2 and LRS3: The Transpotter accu-
rately localises the keyword in most examples. In the bottom right example, the
model’s confidence is low, most likely because it is a short word. The IOU is zero
since we threshold at τ = 0.5.
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Figure 3.4: Model’s response to homophemes: We query words and their
corresponding homophemes for LRS2 test set clips. We observe that the model
spots the words and their homophemes at the same (ground truth) location.

3.5 Mouthing Spotting in Sign Language videos

In this section, we investigate the application of our method for spotting mouthed

words in sign language videos. This is an important application of visual KWS, as

it has enabled an entire line of work on sign language recognition [Albanie et al.

2020; Momeni et al. 2020b; Varol et al. 2021].

Data description & evaluation protocol. Here, we use a subset of BSL Cor-

pus [Schembri et al. 2013; Schembri et al. 2017] as a test set. BSL Corpus is a

large public dataset containing videos of conversations conducted in sign language

by deaf signers, from various regions across the UK. We extend the dataset’s an-

notations by adding a Mouthing tier and asking a deaf annotator to identify and
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localise mouthing occurrences that correspond to visible signs. We obtain 383

mouthing instances, from 29 different signers, over a keyword vocabulary size of

187. We use a pre-processing pipeline similar to [Chung et al. 2017] to obtain face-

cropped tracks around the faces of the signers. To evaluate KWS performance, we

take 8-second video clips centered around the annotated mouthings and follow the

same evaluation protocol described in Section 3.4.

Results. We summarise the evaluation results in Table 3.4. The Transpotter

model is far superior to the prior state-of-the-art KWS baseline, achieving a great

improvement in performance (e.g. 29.6 vs 15.6 mAPCls score). To complete this

analysis, we also show qualitative examples of the spotted mouthings in Figure 3.5.

Discussion. We note that sign language mouthings are often very different from

equivalent spoken words. Words may be partially mouthed and can be occluded

by the signing hands. There is therefore a significant domain gap between the

BSL-Corpus signing videos and our lip reading training videos. However, we note

that our proposed model greatly outperforms the KWS-Net baseline – a variant of

which has been successfully deployed for detecting mouthings in order to bootstrap

learning of sign spotting methods [Albanie et al. 2020; Momeni et al. 2020b; Varol

et al. 2021]. This indicates the potential of our proposed method to greatly improve

these pipelines.

Model AccCls
@1 AccCls

@5 mAPCls

KWS-Net [Momeni et al. 2020a] 12.4 29.6 15.6
Transpotter 22.5 47.1 29.6

Table 3.4: Spotting mouthings in BSL-Corpus: The Transpotter is far more
accurate than the current state-of-the-art in spotting keywords in videos.
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Figure 3.5: Qualitative results on BSL-Corpus: Despite the large domain
shift from our training examples and additional challenges such as partially
mouthed words and hand occlusions, the Transpotter succeeds in correctly spot-
ting mouthings in these challenging conditions. We observe a failure case (bottom
right) where the localisation is incorrect. We note that contrary to LRS2 and LRS3,
where word boundaries are obtained through robust audio-based forced alignment,
the annotations for BSL-Corpus are noisier as they are performed manually.

3.6 Conclusion

We have presented the Transpotter, a cross-modal attention based architecture for

visual keyword spotting. Our method surpasses the performance of the previous

best visual keyword spotting approach by a large margin, as well as that of a

state-of-the-art lip reading baseline. We demonstrate the ability of our model to

generalise to sign language videos where it can be used to spot mouthings, enabling

automatic annotation of sign instances. In future work, we plan to further improve

our method’s performance by incorporating keyword semantics and context of the

surrounding words.
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Abstract

Recent progress in fine-grained gesture and action classification, and

machine translation, point to the possibility of automated sign language

recognition becoming a reality. A key stumbling block in making progress

towards this goal is a lack of appropriate training data, stemming from

the high complexity of sign annotation and a limited supply of qualified

annotators. In this work, we introduce a new scalable approach to data

collection for sign recognition in continuous videos. We make use of weakly-

aligned subtitles for broadcast footage together with a keyword spotting

method to automatically localise sign-instances for a vocabulary of 1,000

signs in 1,000 hours of video. We make the following contributions: (1)

We show how to use mouthing cues from signers to obtain high-quality

annotations from video data—the result is the BSL-1K dataset, a collection

of British Sign Language (BSL) signs of unprecedented scale; (2) We show

that we can use BSL-1K to train strong sign recognition models for co-

articulated signs in BSL and that these models additionally form excellent

pretraining for other sign languages and benchmarks—we exceed the state
∗Equal contribution.



of the art on both the MSASL and WLASL benchmarks. Finally, (3) we

propose new large-scale evaluation sets for the tasks of sign recognition and

sign spotting and provide baselines which we hope will serve to stimulate

research in this area.

4.1 Introduction

With the continual increase in the performance of human action recognition there

has been a renewed interest in the challenge of recognising sign languages such

as American Sign Language (ASL), British Sign Language (BSL), and Chinese

Sign Language (CSL). Although in the past isolated sign recognition has seen

some progress, recognition of continuous sign language remains extremely chal-

lenging [N. C. Camgoz et al. 2018]. Isolated signs, as in dictionary examples, do

not suffer from the naturally occurring complication of co-articulation (i.e. transi-

tion motions) between preceding and subsequent signs, making them visually very

different from continuous signing. If we are to recognise ASL and BSL performed

naturally by signers, then we need to recognise co-articulated signs.

Similar problems were faced by Automatic Speech Recognition (ASR) and the

solution, as always, was to learn from very large scale datasets, using a parallel

corpus of speech and text. In the vision community, a related path was taken with

the modern development of automatic lip reading: first isolated words were recog-

nised [Chung and Zisserman 2016a], and later sentences were recognised [Chung et

al. 2017]—in both cases tied to the release of large datasets. The objective of this

paper is to design a scalable method to generate large-scale datasets of continuous

signing, for training and testing sign language recognition, and we demonstrate

this for BSL. We start from the perhaps counter-intuitive observation that sign-

ers often mouth the word they sign simultaneously, as an additional signal [Bank

et al. 2011; Rachel Sutton-Spence and Woll 1999; Rachel Sutton-Spence 2007],

performing similar lip movements as for the spoken word. This differs from mouth

gestures which are not derived from the spoken language [Crasborn et al. 2008].

The mouthing helps disambiguate between different meanings of the same manual

sign [Woll 2001] or in some cases simply provides redundancy. In this way, a sign

is not only defined by the hand movements and hand shapes, but also by facial

expressions and mouth movements [Cooper et al. 2011].
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We harness word mouthings to provide a method of automatically annotating

continuous signing. The key idea is to exploit the readily available and abundant

supply of sign-language translated TV broadcasts that consist of an overlaid inter-

preter performing signs and subtitles that correspond to the audio content. The

availability of subtitles means that the annotation task is in essence one of align-

ment between the words in the subtitle and the mouthings of the overlaid signer.

Nevertheless, this is a very challenging task: a continuous sign may last for only

a fraction (e.g. 0.5) of a second, whilst the subtitles may last for several seconds

and are not synchronised with the signs produced by the signer; the word order of

the English need not be the same as the word order of the sign language; the sign

may not be mouthed; and furthermore, words may not be signed or may be signed

in different ways depending on the context. For example, the word “fish” has a

different visual sign depending on referring to the animal or the food, introducing

additional challenges when associating subtitle words to signs.

To detect the mouthings we use visual keyword spotting—the task of determining

whether and when a keyword of interest is uttered by a talking face using only

visual information—to address the alignment problem described above. Two fac-

tors motivate its use: (1) direct lip reading of arbitrary isolated mouthings is a

fundamentally difficult task, but searching for a particular known word within a

short temporal window is considerably less challenging; (2) the recent availabil-

ity of large scale video datasets with aligned audio transcriptions [Afouras et al.

2019; Chung and Zisserman 2016c] now allows for the training of powerful visual

keyword spotting models [Stafylakis and Tzimiropoulos 2018; Yue Yao et al. 2019;

Jha et al. 2018] that, as we show in the experiments, work well for this application.

We make the following contributions: (1) we show how to use visual keyword spot-

ting to recognise the mouthing cues from signers to obtain high-quality annotations

from video data—the result is the BSL-1K dataset, a large-scale collection of BSL

(British Sign Language) signs with a 1K sign vocabulary; (2) We show the value of

BSL-1K by using it to train strong sign recognition models for co-articulated signs

in BSL and demonstrate that these models additionally form excellent pretraining

for other sign languages and benchmarks—we exceed the state of the art on both

the MSASL and WLASL benchmarks with this approach; (3) We propose new

evaluation datasets for sign recognition and sign spotting and provide baselines for
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each of these tasks to provide a foundation for future research1.

4.2 Related Work

Sign language datasets. We begin by briefly reviewing public benchmarks

for studying automatic sign language recognition. Several benchmarks have been

proposed for American [Athitsos et al. 2008; Joze and Koller 2019; D. Li et al.

2019; Wilbur and Kak 2006], German [Koller et al. 2015b; von Agris et al. 2008],

Chinese [Chai et al. 2014; J. Huang et al. 2018b], and Finnish [Viitaniemi et al.

2014] sign languages. BSL datasets, on the other hand, are scarce. One exception

is the ongoing development of the linguistic corpus [Schembri et al. 2017; Schembri

et al. 2013] which provides fine-grained annotations for the atomic elements of sign

production. Whilst its high annotation quality provides an excellent resource for

sign linguists, the annotations span only a fraction of the source videos so it is

less appropriate for training current state-of-the-art data-hungry computer vision

pipelines.

Tab. 4.1 presents an overview of publicly available datasets, grouped according to

their provision of isolated signs or co-articulated signs. Earlier datasets have been

limited in the size of their video instances, vocabularies, and signers. Within the

isolated sign datasets, Purdue RVL-SLLL [Wilbur and Kak 2006] has a limited

vocabulary of 104 signs (ASL comprises more than 3K signs in total [Valli and

University 2005]). ASLLVD [Athitsos et al. 2008] has only 6 signers. Recently,

MSASL [Joze and Koller 2019] and WLASL [D. Li et al. 2019] large-vocabulary

isolated sign datasets have been released with 1K and 2K signs, respectively. The

videos are collected from lexicon databases and other instructional videos on the

web.

Due to the difficulty of annotating co-articulated signs in long videos, continu-

ous datasets have been limited in their vocabulary, and most of them have been

recorded in lab settings [J. Huang et al. 2018b; von Agris et al. 2008; Wilbur and

Kak 2006]. RWTH-Phoenix [Koller et al. 2015b] is one of the few realistic datasets

that supports training complex models based on deep neural networks. A recent

extension also allows studying sign language translation [N. C. Camgoz et al. 2018].
1The project page is at: https://www.robots.ox.ac.uk/~vgg/research/bsl1k/

64

https://www.robots.ox.ac.uk/~vgg/research/bsl1k/


Table 4.1: Summary of previous public sign language datasets: The BSL-
1K dataset contains, to the best of our knowledge, the largest source of annotated
sign data in any dataset. It comprises of co-articulated signs outside a lab setting.

Dataset lang co-articulated #signs #annos (avg. per sign) #signers source
ASLLVD [Athitsos et al. 2008] ASL ✗ 2742 9K (3) 6 lab
Devisign [Chai et al. 2014] CSL ✗ 2000 24K (12) 8 lab
MSASL [Joze and Koller 2019] ASL ✗ 1000 25K (25) 222 lexicons, web
WLASL [D. Li et al. 2019] ASL ✗ 2000 21K (11) 119 lexicons, web
S-pot [Viitaniemi et al. 2014] FinSL ✓ 1211 4K (3) 5 lab
Purdue RVL-SLLL [Wilbur and Kak 2006] ASL ✓ 104 2K (19) 14 lab
Video-based CSL [J. Huang et al. 2018b] CSL ✓ 178 25K (140) 50 lab
SIGNUM [von Agris et al. 2008] DGS ✓ 455 3K (7) 25 lab
RWTH-Phoenix [Koller et al. 2015b; N. C. Camgoz et al. 2018] DGS ✓ 1081 65K (60) 9 TV
BSL Corpus [Schembri et al. 2013] BSL ✓ 5K 50K (10) 249 lab
BSL-1K BSL ✓ 1064 273K (257) 40 TV

However, the videos in [N. C. Camgoz et al. 2018; Koller et al. 2015b] are only

from weather broadcasts, restricting the domain of discourse. In summary, the

main constraints of the previous datasets are one or more of the following: (i)

they are limited in size, (ii) they have a large total vocabulary but only of isolated

signs, or (iii) they consist of natural co-articulated signs but cover a limited do-

main of discourse. The BSL-1K dataset provides a considerably greater number

of annotations than all previous public sign language datasets, and it does so in

the co-articulated setting for a large domain of discourse.

Sign language recognition. Early work on sign language recognition focused on

hand-crafted features computed for hand shape and motion [Ali Farhadi et al. 2007;

Fillbrandt et al. 2003; Starner 1995; Tamura and Kawasaki 1988]. Upper body and

hand pose have then been widely used as part of the recognition pipelines [Buehler

et al. 2009; N. C. Camgoz et al. 2017; Cooper et al. 2011; Ong et al. 2012; Pfister

et al. 2014]. Non-manual features such as face [Ali Farhadi et al. 2007; Koller et al.

2015b; T. D. Nguyen and Ranganath 2008], and mouth [Antonakos et al. 2015;

Koller et al. 2014a; Koller et al. 2015c] shapes are relatively less considered. For

sequence modelling of signs, HMMs [A. Farhadi and D. Forsyth 2006; Agris et al.

2008; Forster et al. 2013; Starner 1995], and more recently LSTMs [N. C. Camgoz

et al. 2017; J. Huang et al. 2018b; Ye et al. 2018; H. Zhou et al. 2020b], have

been utilised. Koller et al. [Koller et al. 2017] present a hybrid approach based on

CNN-RNN-HMM to iteratively re-align sign language videos to the sequence of

sign annotations. More recently 3D CNNs have been adopted due to their repre-

sentation capacity for spatio-temporal data [Bilge et al. 2019; N. C. Camgoz et al.

2016; J. Huang et al. 2015; Joze and Koller 2019; D. Li et al. 2019]. Two recent

concurrent works [Joze and Koller 2019; D. Li et al. 2019] showed that I3D mod-
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els [João Carreira and Zisserman 2017] significantly outperform their pose-based

counterparts. In this paper, we confirm the success of I3D models, while also show-

ing improvements using pose distillation as pretraining. There have been efforts to

use sequence-to-sequence translation models for sign language translation [N. C.

Camgoz et al. 2018], though this has been limited to the weather discourse of

RWTH-Phoenix, and the method is limited by the size of the training set. The

recent work of [D. Li et al. 2020b] localises signs in continuous news footage to

improve an isolated sign classifier.

In this work, we utilise mouthings to localise signs in weakly-supervised videos.

Previous work [Buehler et al. 2009; Cooper and Bowden 2009; Pfister et al. 2014;

Chung and Zisserman 2016c] has used weakly aligned subtitles as a source of

training data, and both one-shot [Pfister et al. 2014] (from a visual dictionary)

and zero-shot [Bilge et al. 2019] (from a textual description) have also been used.

Though no previous work, to our knowledge, has put these ideas together. The

sign spotting problem was formulated in [Eng-Jon Ong et al. 2014; Viitaniemi

et al. 2014].

Using the mouth patterns. The mouth has several roles in sign language that

can be grouped into spoken components (mouthings) and oral components (mouth

gestures) [Woll 2001]. Several works focus on recognising mouth shapes [Antonakos

et al. 2015; Koller et al. 2015c] to recover mouth gestures. Few works [Koller et

al. 2014a; Koller et al. 2014b] attempt to recognise mouthings in sign language

data by focusing on a few categories of visemes, i.e., visual correspondences of

phonemes in the lip region [Fisher 1968]. Most closely related to our work, [Pfister

et al. 2013] similarly searches subtitles of broadcast footage and uses the mouth

as a cue to improve alignment between the subtitles and the signing. Two key

differences between our work and theirs are: (1) we achieve precise localisation

through keyword spotting, whereas they only use an open/closed mouth classifier

to reduce the number of candidates for a given sign; (2) scale—we gather signs

over 1,000 hours of signing (in contrast to the 30 hours considered in [Pfister et al.

2013]).
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Subs: Are you all happy with this application?

Locate occurence of target word e.g. "happy" in subtitles. Build mouthing 
search window from the s second window when subtitle appears, padded by 

p seconds on either side (to account for misalignment).

Keyword spotter locates precise 0.6 second window containing "happy" sign  

 subtitle appears

Keyword 
Spotter

Result: BSL-1K

Stage 1:

Stage 2:

padding
Visual keyword spotting search window

Keyword Spotting Annotation Pipeline

Happy

Happy

Perfect

Strong

Accept

padding

Figure 4.1: Keyword-driven sign annotation: (Left, the annotation pipeline):
Stage 1: for a given target sign (e.g. “happy”) each occurrence of the word in the
subtitles provides a candidate temporal window when the sign may occur (this
is further padded by several seconds on either side to account for misalignment
of subtitles and signs); Stage 2: a keyword spotter uses the mouthing of the
signer to perform precise localisation of the sign within this window. (Right):
Examples from the BSL-1K dataset—produced by applying keyword spotting for
a vocabulary of 1K words.

4.3 Learning Sign Recognition with Automatic

Labels

In this section, we describe the process used to collect BSL-1K, a large-scale dataset

of BSL signs. An overview of the approach is provided in Fig. 4.1. In Sec. 4.3.1,

we describe how large numbers of video clips that are likely to contain a given sign

are sourced from public broadcast footage using subtitles; in Sec. 4.3.2, we show

how automatic keyword spotting can be used to precisely localise specific signs to

within a fraction of a second; in Sec. 4.3.3, we apply this technique to efficiently

annotate a large-scale dataset with a vocabulary of 1K signs.

4.3.1 Finding probable signing windows in public broad-

cast footage

The source material for the dataset comprises 1,412 episodes of publicly broadcast

TV programs produced by the BBC which contains 1,060 hours of continuous BSL

signing. The episodes cover a wide range of topics: medical dramas, history and

nature documentaries, cooking shows and programs covering gardening, business

and travel. The signing represents a translation (rather than a transcription) of
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the content and is produced by a total of forty professional BSL interpreters. The

signer occupies a fixed region of the screen and is cropped directly from the footage.

A full list of the TV shows that form BSL-1K can be found in the appendix.

In addition to videos, these episodes are accompanied by subtitles (numbering

approximately 9.5 million words in total). To locate temporal windows in which

instances of signs are likely to occur within the source footage, we first identify

a candidate list of words that: (i) are present in the subtitles; (ii) have entries

in both BSL signbank2 and sign BSL3, two online dictionaries of isolated signs

(to ensure that we query words that have valid mappings to signs). The result is

an initial vocabulary of 1,350 words, which are used as queries for the keyword

spotting model to perform sign localisation—this process is described next.

4.3.2 Precise sign localisation through visual keyword spot-

ting

By searching the content of the subtitle tracks for instances of words in the initial

vocabulary, we obtain a set of candidate temporal windows in which instances of

signs may occur. However, two factors render these temporal proposals extremely

noisy: (1) the presence of a word in the subtitles does not guarantee its presence in

the signing; (2) even for subtitled words that are signed, we find through inspection

that their appearance in the subtitles can be misaligned with the sign itself by

several seconds.

To address this challenge, we turn to visual keyword spotting. Our goal is to

detect and precisely localise the presence of a sign by identifying its spoken com-

ponents [Rachel Sutton-Spence and Woll 1999] within a temporal sequence of

mouthing patterns. Two hypotheses underpin this approach: (a) that mouthing

provides a strong localisation signal for signs as they are produced; (b) that this

mouthing occurs with sufficient frequency to form a useful localisation cue. Our

method is motivated by studies in the Sign Linguistics literature which find that

spoken components frequently serve to identify signs—this occurs most promi-

nently when the mouth pattern is used to distinguish between manual homonyms4

2https://bslsignbank.ucl.ac.uk/
3https://www.signbsl.com/
4These are signs that use identical hand movements (e.g. king and queen) whose meanings

are distinguished by mouthings.
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(see [Rachel Sutton-Spence and Woll 1999] for a detailed discussion). However,

even if these hypotheses hold, the task remains extremely challenging—signers

typically do not mouth continuously and the mouthings that are produced may

only correspond to a portion of the word [Rachel Sutton-Spence and Woll 1999].

For this reason, existing lip reading approaches cannot be used directly (indeed,

an initial exploratory experiment we conducted with the state-of-the-art lip read-

ing model of [Afouras et al. 2019] achieved zero recall on five-hundred randomly

sampled sentences of signer mouthings from the BBC source footage).

The key to the effectiveness of visual keyword spotting is that rather than solving

the general problem of lip reading, it solves the much easier problem of identifying a

single token from a small collection of candidates within a short temporal window.

In this work, we use the subtitles to construct such windows. The pipeline for

automatic sign annotations therefore consists of two stages (Fig. 4.1, left): (1) For

a given target sign e.g. “happy”, determine the times of all occurrences of this

sign in the subtitles accompanying the video footage. The subtitle time provides

a short window during which the word was spoken, but not necessarily when

its corresponding sign is produced in the translation. We therefore extend this

candidate window by several seconds to increase the likelihood that the sign is

present in the sequence. We include ablations to assess the influence of this padding

process in Sec. 4.5 and determine empirically that padding by four seconds on each

side of the subtitle represents a good choice. (2) The resulting temporal window

is then provided, together with the target word, to a keyword spotting model

(described in detail in Sec. 4.4.1) which estimates the probability that the sign

was mouthed at each time step (we apply the keyword spotter with a stride of

0.04 seconds—this choice is motivated by the fact that the source footage has

a frame rate of 25fps). When the keyword spotter asserts with high confidence

that it has located a sign, we take the location of the peak posterior probability

as an anchoring point for one endpoint of a 0.6 second window (this value was

determined by visual inspection to be sufficient for capturing individual signs).

The peak probability is then converted into a decision about whether a sign is

present using a threshold parameter. To build the BSL-1K dataset, we select a

value of 0.5 for this parameter after conducting experiments (reported in Tab. 4.3)

to assess its influence on the downstream task of sign recognition performance.
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Lovely (603) Meeting (230) Success (119) Barbecue (57) Culture (35) Strict (19) Compass (8)

Figure 4.2: BSL-1K sign frequencies: Log-histogram of instance counts for the
1,064 words constituting the BSL-1K vocabulary, together with example signs.
The long-tail distribution reflects the real setting in which some signs are more
frequent than others.

4.3.3 BSL-1K dataset construction and validation

Following the sign localisation process described above, we obtain approximately

280k localised signs from a set of 2.4 million candidate subtitles. To ensure that the

dataset supports study of signer-independent sign recognition, we then compute

face embeddings (using an SENet-50 [J. Hu et al. 2019] architecture trained for

verification on the VGGFace2 dataset [Q. Cao et al. 2018]) to group the episodes

according to which of the forty signers they were translated by. We partition the

data into three splits, assigning thirty-two signers for training, four signers for val-

idation and four signers for testing. We further sought to include an equal number

of hearing and non-hearing signers (the validation and test sets both contain an

equal number of each, the training set is approximately balanced with 13 hearing,

17 non-hearing and 2 signers whose deafness is unknown). We then perform a

further filtering step on the vocabulary to ensure that each word included in the

dataset is represented with high confidence (at least one instance with confidence

0.8) in the training partition, which produces a final dataset vocabulary of 1,064

words (see Fig. 4.2 for the distribution and the appendix for the full word list).

Validating the automatic annotation pipeline. One of the key hypotheses

underpinning this work is that keyword spotting is capable of correctly locating

signs. We first verify this hypothesis by presenting a randomly sampled subset

of the test partition to a native BSL signer, who was asked to assess whether

the short temporal windows produced by the keyword spotting model with high

confidence (each 0.6 seconds in duration) contained correct instances of the target
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Table 4.2: Statistics of the proposed BSL-1K dataset: The Test-(manually
verified) split represents a sample from the Test-(automatic) split annotations that
have been verified by human annotators (see Sec. 4.3.3 for details).

Set sign vocabulary sign annotations number of signers
Train 1,064 173K 32
Val 1,049 36K 4
Test-(automatic) 1,059 63K 4
Test-(manually verified) 334 2103 4

sign. A screenshot of the annotation tool developed for this task is provided in

the appendix. A total of 1k signs were included in this initial assessment, of which

70% were marked as correct, 28% were marked as incorrect and 2% were marked as

uncertain, validating the key idea behind the annotation pipeline. Possible reasons

for incorrect marks include: BSL mouthing patterns are not always identical to

spoken English and mouthings many times do not represent the full word (e.g.,

“fsh” for “finish”) [Rachel Sutton-Spence and Woll 1999].

Constructing a manually verified test set. To construct a high quality,

human verified test set and to maximise yield from the annotators, we started

from a collection of sign predictions where the keyword model was highly confident

(assigning a peak probability of greater than 0.9) yielding 5,826 sign predictions.

Then, in addition to the validated 980 signs (corrections were provided as labels

for the signs marked as incorrect and uncertain signs were removed), we further

expanded the verified test set with non-native (BSL level 2 or above) signers who

annotated a further 2k signs. We found that signers with lower levels of fluency

were able to confidently assert that a sign was correct for a portion of the signs

(at a rate of around 60%), but also annotated a large number of signs as “unsure”,

making it challenging to use these annotations as part of the validation test for

the effectiveness of the pipeline. Only signs marked as correct were included into

the final verified test set, which ultimately comprised 2,103 annotations covering

334 signs from the 1,064 sign vocabulary. The statistics of each partition of the

dataset are provided in Tab. 4.2. All experimental test set results in this paper

refer to performance on the verified test set (but we retain the full automatic test

set, which we found to be useful for development).

In addition to the keyword spotting approach described above, we explore tech-

niques for further dataset expansion based on other cues in the appendix.
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4.4 Models and Implementation Details

In this section, we first describe the visual keyword spotting model used to collect

signs from mouthings (Sec. 4.4.1). Next, we provide details of the model architec-

ture for sign recognition and spotting (Sec. 4.4.2). Lastly, we describe a method

for obtaining a good initialisation for the sign recognition model (Sec. 4.4.3).

4.4.1 Visual keyword spotting model

We use the improved visual-only keyword spotting model of Stafylakis et al. [Stafy-

lakis and Tzimiropoulos 2018] from [Momeni et al. 2020a] (referred to in their paper

as “P2G [Stafylakis and Tzimiropoulos 2018] baseline"), provided by the authors.

The model of [Stafylakis and Tzimiropoulos 2018] combines visual features with a

fixed-length keyword embedding to determine whether a user-defined keyword is

present in an input video clip. The performance of [Stafylakis and Tzimiropoulos

2018] is improved in [Momeni et al. 2020a] by switching the keyword encoder-

decoder from grapheme-to-phoneme (G2P) to phoneme-to-grapheme (P2G).

In more detail, the model consists of four stages: (i) visual features are first ex-

tracted from the sequence of face-cropped image frames from a clip (this is per-

formed using a 512 × 512 SSD architecture [W. Liu et al. 2016] trained for face

detection on WIDER faces [S. Yang et al. 2016]), (ii) a fixed-length keyword rep-

resentation is built using a P2G encoder-decoder, (iii) the visual and keyword

embeddings are concatenated and passed through BiLSTMs, (iv) finally, a sig-

moid activation is applied on the output to approximate the posterior probability

that the keyword occurs in the video clip for each input frame. If the maximum

posterior over all frames is greater than a threshold, the clip is predicted to con-

tain the keyword. The predicted location of the keyword is the position of the

maximum posterior. Finally, non-maximum suppression is run with a temporal

window of 0.6 seconds over the untrimmed source videos to remove duplicates.

4.4.2 Sign recognition model

We employ a spatio-temporal convolutional neural network architecture that takes

a multiple-frame video as input, and outputs class probabilities over sign cate-

gories. Specifically, we follow the I3D architecture [João Carreira and Zisserman
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2017] due to its success on action recognition benchmarks, as well as its recently

observed success on sign recognition datasets [Joze and Koller 2019; D. Li et al.

2019]. To retain computational efficiency, we only use an RGB stream. The model

is trained on 16-frame consecutive frames (i.e., 0.64 sec for 25fps), as [Buehler

et al. 2009; Pfister et al. 2013; Viitaniemi et al. 2014] observed that co-articulated

signs last roughly for 13 frames. We resize our videos to have a spatial resolution

of 224 × 224. For training, we randomly subsample a fixed-size, temporally con-

tiguous input from the spatio-temporal volume to have 16×224×224 resolution in

terms of number of frames, width, and height, respectively. We minimise the cross-

entropy loss using SGD with momentum (0.9) with mini-batches of size 4, and an

initial learning rate of 10−2 with a fixed schedule. The learning rate is decreased

twice with a factor of 10−1 at epochs 20 and 40. We train for 50 epochs. Colour,

scale, and horizontal flip augmentations are applied on the input video. When

pretraining is used (e.g. on Kinetics-400 [João Carreira and Zisserman 2017] or on

other data where specified), we replace the last linear layer with the dimensional-

ity of our classes, and fine-tune all network parameters (we observed that freezing

part of the model is suboptimal). Finally, we apply dropout on the classification

layer with a probability of 0.5.

At test time, we perform centre-cropping and apply a sliding window with a stride

of 8 frames before averaging the classification scores to obtain a video-level pre-

diction.

4.4.3 Video pose distillation

Given the significant focus on pose estimation in the sign language recognition

literature, we investigate how explicit pose modelling can be used to improve the

I3D model. To this end, we define a pose distillation network that takes in a

sequence of 16 consecutive frames, but rather than predicting sign categories, the

1024-dimensional (following average pooling) embedding produced by the network

is used to regress the poses of individuals appearing in each of the frames of its

input. In more detail, we assume a single individual per-frame (as is the case

in cropped sign translation footage) and task the network with predicting 130

human pose keypoints (18 body, 21 per hand, and 70 facial) produced by an

OpenPose [Z. Cao et al. 2018] model (trained on COCO [T.-Y. Lin et al. 2014])
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that is evaluated per-frame. The key idea is that, in order to effectively predict pose

across multiple frames from a single video embedding, the model is encouraged to

encode information not only about pose, but also descriptions of relevant dynamic

gestures. The model is trained on a portion of the BSL-1K training set (due to

space constraints, further details of the model architecture and training procedure

are provided in the appendix).

4.5 Experiments

We first provide several ablations on our sign recognition model to answer questions

such as which cues are important, and how to best use human pose. Then, we

present baseline results for sign recognition and sign spotting, with our best model.

Finally, we compare to the state of the art on ASL benchmarks to illustrate the

benefits of pretraining on our data.

4.5.1 Ablations for the sign recognition model

In this section, we evaluate our sign language recognition approach and investi-

gate (i) the effect of mouthing score threshold, (ii) the comparison to pose-based

approaches, (iii) the contribution of multi-modal cues, and (iv) the video pose

distillation. Additional ablations about the influence of the search window size for

the keyword spotting and the temporal extent of the automatic annotations can

be found in the appendix.

Evaluation metrics. Following [Joze and Koller 2019; D. Li et al. 2019], we

report both top-1 and top-5 classification accuracy, mainly due to ambiguities in

signs which can be resolved in context. Furthermore, we adopt both per-instance

and per-class accuracy metrics. Per-instance accuracy is computed over all test

instances. Per-class accuracy refers to the average over the sign categories present

in the test set. We use this metric due to the unbalanced nature of the datasets.

The effect of the mouthing score threshold. The keyword spotting method,

being a binary classification model, provides a confidence score, which we threshold

to obtain our automatically annotated video clips. Reducing this threshold yields

an increased number of sign instances at the cost of a potentially noisier set of

annotations. We denote the training set defined by a mouthing threshold 0.8 as
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Table 4.3: Trade-off between training noise vs. size: Training (with Kinetics
initialisation) on the full training set BSL-1Km.5 versus the subset BSL-1Km.8,
which correspond to a mouthing score threshold of 0.5 and 0.8, respectively. Even
when noisy, with the 0.5 threshold, mouthings provide automatic annotations that
allow supervised training at scale, resulting in 70.61% accuracy on the manually
validated test set.

per-instance per-class
Training data #videos top-1 top-5 top-1 top-5
BSL-1Km.8 (mouthing≥0.8) 39K 69.00 83.79 45.86 64.42
BSL-1Km.5 (mouthing≥0.5) 173K 70.61 85.26 47.47 68.13

BSL-1Km.8. In Tab. 4.3, we show the effect of changing this hyper-parameter

between a low- and high-confidence model with 0.5 and 0.8 mouthing thresholds,

respectively. The larger set of training samples obtained with a threshold of 0.5

provide the best performance. For the remaining ablations, we use the smaller

BSL-1Km.8 training set for faster iterations, and return to the larger BSL-1Km.5

set for training the final model.

Pose-based model versus I3D. We next verify that I3D is a suitable model

for sign language recognition by comparing it to a pose-based approach. We im-

plement Pose→Sign, which follows a 2D ResNet architecture [K. He et al. 2016]

that operates on 3 × 16 × P dimensional dynamic pose images, where P is the

number of keypoints. In our experiments, we use OpenPose [Z. Cao et al. 2018]

(pretrained on COCO [T.-Y. Lin et al. 2014]) to extract 18 body, 21 per hand,

and 70 facial keypoints. We use 16-frame inputs to make it comparable to the

I3D counterpart. We concatenate the estimated normalised xy coordinates of a

keypoint with its confidence score to obtain the 3 channels. In Tab. 4.4, we see

that I3D significantly outperforms the explicit 2D pose-based method (65.57% vs

49.66% per-instance accuracy). This conclusion is in accordance with the recent

findings of [Joze and Koller 2019; D. Li et al. 2019].

Contribution of individual cues. We carry out two set of experiments to

determine how much our sign recognition model relies on signals from the mouth

and face region versus the manual features from the body and hands: (i) using

Pose→Sign, which takes as input the 2D keypoint locations over several frames,

(ii) using I3D, which takes as input raw video frames. For the pose-based model,

we train with only 70 facial keypoints, 60 body&hand keypoints, or with the

combination. For I3D, we use the pose estimations to mask the pixels outside
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Table 4.4: Contribution of individual cues: We compare I3D (pretrained on
Kinetics) with a keypoint-based baseline both trained and evaluated on a subset of
BSL-1Km.8, where we have the pose estimates. We also quantify the contribution
of the body&hands and the face regions. We see that significant information can
be attributed to both types of cues, and the combination performs the best.

per-instance per-class
body&hands face top-1 top-5 top-1 top-5

Pose→Sign (70 points) ✗ ✓ 24.41 47.59 9.74 25.99
Pose→Sign (60 points) ✓ ✗ 40.47 59.45 20.24 39.27
Pose→Sign (130 points) ✓ ✓ 49.66 68.02 29.91 49.21

I3D (face-crop) ✗ ✓ 42.23 69.70 21.66 50.51
I3D (mouth-masked) ✓ ✗ 46.75 66.34 25.85 48.02
I3D (full-frame) ✓ ✓ 65.57 81.33 44.90 64.91

Table 4.5: Effect of pretraining the I3D model on various tasks before fine-
tuning for sign recognition on BSL-1Km.8. Our dynamic pose features learned on
16-frame videos provide body-motion-aware cues and outperform other pretraining
strategies.

Pretraining per-instance per-class
Task Data top-1 top-5 top-1 top-5
Random init. - 39.80 61.01 15.76 29.87
Gesture recognition Jester [Materzynska et al. 2019] 46.93 65.95 19.59 36.44
Sign recognition WLASL [D. Li et al. 2019] 69.90 83.45 44.97 62.73
Action recognition Kinetics [João Carreira and Zisserman 2017] 69.00 83.79 45.86 64.42
Video pose distillation Signers 70.38 84.50 46.24 65.31

of the face bounding box, to mask the mouth region, or use all the pixels from

the videos. The results are summarised in Tab. 4.4. We observe that using only

the face provides a strong baseline, suggesting that mouthing is a strong cue for

recognising signs, e.g., 42.23% for I3D. However, using all the cues, including body

and hands (65.57%), significantly outperforms using individual modalities.

Pretraining for sign recognition. Next we investigate different forms of pre-

training for the I3D model. In Tab. 4.5, we compare the performance of a model

trained with random initialisation (39.80%), fine-tuning from gesture recognition

(46.93%), sign recognition (69.90%), and action recognition (69.00%). Video pose

distillation provides a small boost over the other pretraining strategies (70.38%),

suggesting that it is an effective way to force the I3D model to pay attention to

the dynamics of the human keypoints, which is relevant for sign recognition.

4.5.2 Benchmarking sign recognition and sign spotting

Next, we combine the parameter choices suggested by each of our ablations to

establish baseline performances on the BSL-1K dataset for two tasks: (i) sign

recognition, (ii) sign spotting. Specifically, the model comprises an I3D archi-
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sausage

Pred : sausage (0.90)  
GT   : chips

Pred : happy (0.66) 

GT   : happen

happy

Pred : west (0.84) 
GT   : wednesday

west

Pred : three (0.65) 

GT   : tree

three

Pred : orange (1.00)  
GT   : orange

Pred : fantastic (1.00)  

GT   : fantastic
Pred : competition (1.00)  
GT   : competition

Pred : before (1.00)  
GT   : before

orange fantastic competition before

similar manual features similar mouthing

Figure 4.3: Qualitative analysis: We present results of our sign recognition
model on BSL-1K for success (top) and failure (bottom) cases, together with their
confidence scores in parentheses. To the right of each example, we show a random
training sample for the predicted sign (in small). We observe that failure modes are
commonly due to high visual similarity in the gesture (bottom-left) and mouthing
(bottom-right).

Table 4.6: Benchmarking: We benchmark our best sign recognition model
(trained on BSL-1Km.5, initialised with pose distillation, with 4-frame temporal
offsets) for sign recognition and sign spotting task to establish strong baselines on
BSL-1K.

per-instance per-class
top-1 top-5 top-1 top-5

Sign Recognition 75.51 88.83 52.76 72.14

mAP
(334 sign classes)

Sign Spotting 0.159

tecture trained on BSL-1Km.5 with pose-distillation as initialisation and random

temporal offsets of up to 4 frames around the sign during training (the ablation

studies for this temporal augmentation parameter are included in the appendix).

The sign recognition evaluation protocol follows the experiments conducted in the

ablations, the sign spotting protocol is described next.

Sign spotting. Differently from sign recognition, in which the objective is to

classify a pre-defined temporal segment into a category from a given vocabulary,

sign spotting aims to locate all instances of a particular sign within long sequences

of untrimmed footage, enabling applications such as content-based search and

efficient indexing of signing videos for which subtitles are not available. The eval-

uation protocol for assessing sign spotting on BSL-1K is defined as follows: for

each sign category present amongst the human-verified test set annotations (334

in total), windows of 0.6-second centred on each verified instance are marked as

positive and all other times within the subset of episodes that contain at least one

instance of the sign are marked as negative. To avoid false penalties at signs that
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were not discovered by the automatic annotation process, we exclude windows of

8 seconds of footage centred at each location in the original footage at which the

target keyword appears in the subtitles, but was not detected by the visual key-

word spotting pipeline. In aggregate this corresponds to locating approximately

one positive instance of a sign in every 1.5 hours of continuous signing negatives.

A sign is considered to have been correctly spotted if its temporal overlap with

the model prediction exceeds an IoU (intersection-over-union) of 0.5, and we re-

port mean Average Precision (mAP) over the 334 sign classes as the metric for

performance.

We report the performance of our strongest model for both the sign recognition

and sign spotting benchmarks in Tab. 4.6. In Fig. 4.3, we provide some qualitative

results from our sign recognition method and observe some modes of failure which

are driven by strong visual similarity in sign production.

4.5.3 Comparison with the state of the art on ASL bench-

marks

BSL-1K, being significantly larger than the recent WLASL [D. Li et al. 2019]

and MSASL [Joze and Koller 2019] benchmarks, can be used for pretraining I3D

models to provide strong initialisation for other datasets. Here, we transfer the

features from BSL to ASL, which are two distinct sign languages.

As models from [Joze and Koller 2019] were not publicly available, we first re-

produce the I3D Kinetics pretraining baseline with our implementation to achieve

fair comparisons. We use 64-frame inputs as isolated signs in these datasets are

significantly slower than co-articulated signs. We then train I3D from BSL-1K

pretrained features. Tab. 4.7 compares pretraining on Kinetics versus our BSL-

1K data. BSL-1K provides a significant boost in the performance, outperforming

the state-of-the-art results (46.82% and 64.71% top-1 accuracy). Find additional

details, as well as similar experiments on co-articulated datasets in the appendix.
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Table 4.7: Transfer to ASL: Performance on American Sign Language (ASL)
datasets with and without pretraining on our data. I3D results are reported from
the original papers for MSASL [Joze and Koller 2019] and WLASL [D. Li et
al. 2019]. I3D† denotes our implementation and training, adopting the hyper-
parameters from [Joze and Koller 2019]. We show that our features provide good
initialisation, even if it is trained on BSL.

WLASL [D. Li et al. 2019] MSASL [Joze and Koller 2019]
per-instance per-class per-instance per-class

pretraining top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5
I3D [Joze and Koller 2019] Kinetics - - - - - - 57.69 81.08
I3D [D. Li et al. 2019] Kinetics 32.48 57.31 - - - - - -
I3D† Kinetics 40.85 74.10 39.06 73.33 60.45 82.05 57.17 80.02
I3D BSL-1K 46.82 79.36 44.72 78.47 64.71 85.59 61.55 84.43

4.6 Conclusion

We have demonstrated the advantages of using visual keyword spotting to auto-

matically annotate continuous sign language videos with weakly-aligned subtitles.

We have presented BSL-1K, a large-scale dataset of co-articulated signs that, cou-

pled with a 3D CNN training, allows high-performance recognition of signs from a

large-vocabulary. Our model has further shown beneficial as initialisation for ASL

benchmarks. Finally, we have provided ablations and baselines for sign recognition

and sign spotting tasks. A potential future direction is leveraging our automatic

annotations and recognition model for sign language translation.
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Abstract

The focus of this work is sign spotting—given a video of an isolated

sign, our task is to identify whether and where it has been signed in a con-

tinuous, co-articulated sign language video. To achieve this sign spotting

task, we train a model using multiple types of available supervision by: (1)

watching existing sparsely labelled footage; (2) reading associated subtitles

(readily available translations of the signed content) which provide addi-

tional weak-supervision; (3) looking up words (for which no co-articulated

labelled examples are available) in visual sign language dictionaries to enable

novel sign spotting. These three tasks are integrated into a unified learning

framework using the principles of Noise Contrastive Estimation and Mul-

tiple Instance Learning. We validate the effectiveness of our approach on

low-shot sign spotting benchmarks. In addition, we contribute a machine-

readable British Sign Language (BSL) dictionary dataset of isolated signs,

BslDict, to facilitate study of this task. The dataset, models and code are

available at our project page1.

5.1 Introduction

The objective of this work is to develop a sign spotting model that can iden-

tify and localise instances of signs within sequences of continuous sign language.
∗Equal contribution.
1https://www.robots.ox.ac.uk/~vgg/research/bsldict/

https://www.robots.ox.ac.uk/~vgg/research/bsldict/


Sign: Apple

“And who knows? An apple tree might grow, or perhaps not.”

“A French apple tart which is cooked upside down.”

“And who first recognised that this was such a special apple?”

“This is the Big Apple. This is where things are big.”
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“We had some pretty reasonable-sized apple trees in the garden.”

Figure 5.1: We consider the task of sign spotting in co-articulated, continuous
signing. Given a query dictionary video of an isolated sign (e.g. “apple”), we aim
to identify whether and where it appears in videos of continuous signing. The wide
domain gap between dictionary examples of isolated signs and target sequences of
continuous signing makes the task extremely challenging.

Sign languages represent the natural means of communication for deaf communi-

ties [Rachel Sutton-Spence and Woll 1999] and sign spotting has a broad range

of practical applications. Examples include: indexing videos of signing content

by keyword to enable content-based search; gathering diverse dictionaries of sign

exemplars from unlabelled footage for linguistic study; automatic feedback for lan-

guage students via an auto-correct tool (e.g. ‘did you mean this sign?’); making

voice activated wake word devices accessible to deaf communities; and building

sign language datasets by automatically labelling examples of signs.

The recent marriage of large-scale, labelled datasets with deep neural networks

has produced considerable progress in audio [Coucke et al. 2019; Véniat et al.

2019] and visual [Momeni et al. 2020a; Stafylakis and Tzimiropoulos 2018] key-

word spotting in spoken languages. However, a direct replication of these keyword

spotting successes in sign language requires a commensurate quantity of labelled

data (note that modern audiovisual spoken keyword spotting datasets contain

millions of densely labelled examples [Chung et al. 2017; Afouras et al. 2018b]).

Large-scale corpora of continuous, co-articulated2 signing from TV broadcast data

have recently been built [Albanie et al. 2020], but the labels accompanying this

data are: (1) sparse, and (2) cover a limited vocabulary.

It might be thought that a sign language dictionary would offer a relatively straight-

forward solution to the sign spotting task, particularly to the problem of covering

only a limited vocabulary in existing large-scale corpora. But, unfortunately, this

is not the case due to the severe domain differences between dictionaries and con-

tinuous signing in the wild. The challenges are that sign language dictionaries typi-
2Co-articulation refers to changes in the appearance of the current sign due to neighbouring

signs.
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cally: (i) consist of isolated signs which differ in appearance from the co-articulated

sequences of continuous signs (for which we ultimately wish to perform spotting);

and (ii) differ in speed (are performed more slowly) relative to co-articulated sign-

ing. Furthermore, (iii) dictionaries only possess a few examples of each sign (so

learning must be low shot); and as one more challenge, (iv) there can be multiple

signs corresponding to a single keyword, for example due to regional variations of

the sign language [Schembri et al. 2017]. We show through experiments in Sec. 5.4,

that directly training a sign spotter for continuous signing on dictionary examples,

obtained from an internet-sourced sign language dictionary, does indeed perform

poorly.

To address these challenges, we propose a unified framework in which sign spot-

ting embeddings are learned from the dictionary (to provide broad coverage of the

lexicon) in combination with two additional sources of supervision. In aggregate,

these multiple types of supervision include: (1) watching sign language and learn-

ing from existing sparse annotations; (2) exploiting weak-supervision by reading

the subtitles that accompany the footage and extracting candidates for signs that

we expect to be present; (3) looking up words (for which we do not have labelled

examples) in a sign language dictionary. The recent development of large-scale,

subtitled corpora of continuous signing providing sparse annotations [Albanie et

al. 2020] allows us to study this problem setting directly. We formulate our ap-

proach as a Multiple Instance Learning problem in which positive samples may

arise from any of the three sources and employ Noise Contrastive Estimation [Gut-

mann and Hyvärinen 2010] to learn a domain-invariant (valid across both isolated

and co-articulated signing) representation of signing content.

We make the following six contributions: (1) We provide a machine readable

British Sign Language (BSL) dictionary dataset of isolated signs, BslDict, to

facilitate study of the sign spotting task; (2) We propose a unified Multiple Instance

Learning framework for learning sign embeddings suitable for spotting from three

supervisory sources; (3) We validate the effectiveness of our approach on a co-

articulated sign spotting benchmark for which only a small number (low-shot) of

isolated signs are provided as labelled training examples, and (4) achieve state-of-

the-art performance on the BSL-1K sign spotting benchmark [Albanie et al. 2020]

(closed vocabulary). We show qualitatively that the learned embeddings can be
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used to (5) automatically mine new signing examples, and (6) discover faux amis

(false friends) between sign languages.

5.2 Related Work

Our work relates to several themes in the literature: sign language recognition (and

more specifically sign spotting), sign language datasets, multiple instance learning

and low-shot action localization. We discuss each of these themes next.

Sign language recognition. The study of automatic sign recognition has a

rich history in the computer vision community stretching back over 30 years, with

early methods developing carefully engineered features to model trajectories and

shape [Kadir et al. 2004; Tamura and Kawasaki 1988; Starner 1995; Fillbrandt

et al. 2003]. A series of techniques then emerged which made effective use of hand

and body pose cues through robust keypoint estimation encodings [Buehler et al.

2009; Cooper et al. 2011; Ong et al. 2012; Pfister et al. 2014]. Sign language

recognition also has been considered in the context of sequence prediction, with

HMMs [Agris et al. 2008; Forster et al. 2013; Starner 1995; Kadir et al. 2004],

LSTMs [N. C. Camgoz et al. 2017; J. Huang et al. 2018b; Ye et al. 2018; H. Zhou

et al. 2020b], and Transformers [N. C. Camgoz et al. 2020b] proving to be effective

mechanisms for this task. Recently, convolutional neural networks have emerged as

the dominant approach for appearance modelling [N. C. Camgoz et al. 2017], and

in particular, action recognition models using spatio-temporal convolutions [João

Carreira and Zisserman 2017] have proven very well-suited for video-based sign

recognition [Joze and Koller 2019; D. Li et al. 2019; Albanie et al. 2020]. We

adopt the I3D architecture [João Carreira and Zisserman 2017] as a foundational

building block in our studies.

Sign language spotting. The sign language spotting problem—in which the

objective is to find performances of a sign (or sign sequence) in a longer sequence

of signing—has been studied with Dynamic Time Warping and skin colour his-

tograms [Viitaniemi et al. 2014] and with Hierarchical Sequential Patterns [Eng-

Jon Ong et al. 2014]. Different from our work which learns representations from

multiple weak supervisory cues, these approaches consider a fully-supervised set-

ting with a single source of supervision and use hand-crafted features to represent
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signs [Ali Farhadi et al. 2007]. Our proposed use of a dictionary is also closely tied

to one-shot/few-shot learning, in which the learner is assumed to have access to

only a handful of annotated examples of the target category. One-shot dictionary

learning was studied by [Pfister et al. 2014] – different to their approach, we explic-

itly account for dialect variations in the dictionary (and validate the improvements

brought by doing so in Sec. 5.4). Textual descriptions from a dictionary of 250

signs were used to study zero-shot learning by [Bilge et al. 2019] – we instead

consider the practical setting in which a handful of video examples are available

per-sign (and make this dictionary available). The use of dictionaries to locate

signs in subtitled video also shares commonalities with domain adaptation, since

our method must bridge differences between the dictionary and the target con-

tinuous signing distribution. A vast number of techniques have been proposed to

tackle distribution shift, including several adversarial feature alignment methods

that are specialised for the few-shot setting [Motiian et al. 2017; Junyi Zhang et al.

2019]. In our work, we explore the domain-specific batch normalization (DSBN)

method of [Chang et al. 2019], finding ultimately that simple batch normalization

parameter re-initialization is most effective when jointly training on two domains

after pre-training on the bigger domain. The concurrent work of [D. Li et al. 2020b]

also seeks to align representation of isolated and continuous signs. However, our

work differs from theirs in several key aspects: (1) rather than assuming access to a

large-scale labelled dataset of isolated signs, we consider the setting in which only

a handful of dictionary examples may be used to represent a word; (2) we develop

a generalised Multiple Instance Learning framework which allows the learning of

representations from weakly aligned subtitles whilst exploiting sparse labels and

dictionaries (this integrates cues beyond the learning formulation in [D. Li et al.

2020b]); (3) we seek to label and improve performance on co-articulated signing

(rather than improving recognition performance on isolated signing). Also related

to our work, [Pfister et al. 2014] uses a reservoir of weakly labelled sign footage

to improve the performance of a sign classifier learned from a small number of

examples. Different to [Pfister et al. 2014], we propose a multi-instance learning

formulation that explicitly accounts for signing variations that are present in the

dictionary.

Sign language datasets. A number of sign language datasets have been proposed
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for studying Finnish [Viitaniemi et al. 2014], German [Koller et al. 2015b; von Agris

et al. 2008], American [Athitsos et al. 2008; Joze and Koller 2019; D. Li et al. 2019;

Wilbur and Kak 2006] and Chinese [Chai et al. 2014; J. Huang et al. 2018b] sign

recognition. For British Sign Language (BSL), [Schembri et al. 2013] gathered

a corpus labelled with sparse, but fine-grained linguistic annotations, and more

recently [Albanie et al. 2020] collected BSL-1K, a large-scale dataset of BSL signs

that were obtained using a mouthing-based keyword spotting model. In this work,

we contribute BslDict, a dictionary-style dataset that is complementary to the

datasets of [Schembri et al. 2013; Albanie et al. 2020] – it contains only a handful

of instances of each sign, but achieves a comprehensive coverage of the BSL lexicon

with a 9K vocabulary (vs a 1K vocabulary in [Albanie et al. 2020]). As we show

in the sequel, this dataset enables a number of sign spotting applications.

Multiple instance learning. Motivated by the readily available sign language

footage that is accompanied by subtitles, a number of methods have been proposed

for learning the association between signs and words that occur in the subtitle

text [Buehler et al. 2009; Cooper and Bowden 2009; Pfister et al. 2014; Chung

and Zisserman 2016c]. In this work, we adopt the framework of Multiple Instance

Learning (MIL) [Dietterich et al. 1997] to tackle this problem, previously explored

by [Buehler et al. 2009; Pfister et al. 2013]. Our work differs from these works

through the incorporation of a dictionary, and a principled mechanism for explicitly

handling sign variants, to guide the learning process. Furthermore, we generalise

the MIL framework so that it can learn to further exploit sparse labels. We also

conduct experiments at significantly greater scale to make use of the full potential

of MIL, considering more than two orders of magnitude more weakly supervised

data than [Buehler et al. 2009; Pfister et al. 2013].

Low-shot action localization. This theme investigates semantic video localiza-

tion: given one or more query videos the objective is to localize the segment in

an untrimmed video that corresponds semantically to the query video [Feng et al.

2018; H. Yang et al. 2018; K. Cao et al. 2020]. Semantic matching is too general

for the sign-spotting considered in this paper. However, we build on the temporal

ordering ideas explored in this theme.
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1 - Watch

2 - Read

3 - Look-up

Sign: Oven

Sign: Temperature

“Oh, what it might have been is my oven was the wrong temperature.”

Localised sign

Figure 5.2: The proposed Watch, Read and Lookup framework trains
sign spotting embeddings with three cues: (1) watching videos and learning from
sparse annotation in the form of localised signs (lower-left); (2) reading subtitles
to find candidate signs that may appear in the source footage (top); (3) looking
up corresponding visual examples in a sign language dictionary and aligning the
representation against the embedded source segment (lower-right).

5.3 Learning Sign Spotting Embeddings from Mul-

tiple Supervisors

In this section, we describe the task of sign spotting and the three forms of super-

vision we assume access to. Let XL denote the space of RGB video segments con-

taining a frontal-facing individual communicating in sign language L and denote

by X single
L its restriction to the set of segments containing a single sign. Further,

let T denote the space of subtitle sentences and VL = {1, . . . , V } denote the vo-

cabulary—an index set corresponding to an enumeration of written words that are

equivalent to signs that can be performed in L3.

Our objective, illustrated in Fig. 5.1, is to discover all occurrences of a given

keyword in a collection of continuous signing sequences. To do so, we assume

access to: (i) a subtitled collection of videos containing continuous signing, S =

{(xi, si) : i ∈ {1, . . . , I}, xi ∈ XL, si ∈ T }; (ii) a sparse collection of temporal sub-

segments of these videos that have been annotated with their corresponding word,

M = {(xk, vk) : k ∈ {1, . . . , K}, vk ∈ VL, xk ∈ X single
L ,∃(xi, si) ∈ S s.t. xk ⊆ xi};

(iii) a curated dictionary of signing instances D = {(xj, vj) : j ∈ {1, . . . , J}, xj ∈

X single
L , vj ∈ VL}. To address the sign spotting task, we propose to learn a data

representation f : XL → Rd that maps video segments to vectors such that they
3Sign language dictionaries provide a word-level or phrase-level correspondence (between sign

language and spoken language) for many signs but no universally accepted glossing scheme exists
for transcribing languages such as BSL [Rachel Sutton-Spence and Woll 1999].
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friend friend

language

name what

speak

Continuous signing Dictionary exemplars

foreground word background words

}

Continuous foreground

Continuous background Dictionary background

Dictionary foreground

Figure: Batch sampling and positive/negative pairs: We illustrate the formation of a batch when jointly training on BSL-1K continuous video and 
BSL-Dict isolated dictionary videos. Top: For each continuous video, we sample the dictionaries corresponding to the labeled word (foreground), as well as 
the dictionaries corresponding to the subtitles (background). Bottom: We construct positive/negative pairs by anchoring at 4 different portions of a batch 
item: BSL-1K foreground/background and BSL-Dict foreground/background. The anchor is denoted with light green, positives from the other domain as dark 
green, negatives from the other domain as red. We mark the orange samples as negatives if there is no overlap within subtitles or word labels, otherwise we 
discard them. Note that we sample a 1 BSL-1K foreground sample per word in an entire batch to maximize the number of negatives.

languageba
tc

h

Figure 5.3: Batch sampling and positive/negative pairs: We illustrate the
formation of a batch when jointly training on continuous signing video (squares)
and dictionaries of isolated signing (circles). Left: For each continuous video,
we sample the dictionaries corresponding to the labelled word (foreground), as
well as to the rest of the subtitles (background). Right: We construct posi-
tive/negative pairs by anchoring at 4 different portions of a batch item: continu-
ous foreground/background and dictionary foreground/background. Positives and
negatives (defined across continuous and dictionary domains) are green and red,
respectively; anchors have a dashed border (see supplementary).

are discriminative for sign spotting and invariant to other factors of variation.

Formally, for any labelled pair of video segments (x, v), (x′, v′) with x, x′ ∈ XL

and v, v′ ∈ VL, we seek a data representation, f , that satisfies the constraint

δf(x)f(x′) = δvv′ , where δ represents the Kronecker delta.

5.3.1 Integrating Cues through Multiple Instance Learn-

ing

To learn f , we must address several challenges. First, as noted in Sec. 5.1, there

may be a considerable distribution shift between the dictionary videos of isolated

signs in D and the co-articulated signing videos in S. Second, sign languages often

contain multiple sign variants for a single written word (resulting from regional

dialects and synonyms). Third, since the subtitles in S are only weakly aligned

with the sign sequence, we must learn to associate signs and words from a noisy

signal that lacks temporal localisation. Fourth, the localised annotations provided

by M are sparse, and therefore we must make good use of the remaining segments

of subtitled videos in S if we are to learn an effective representation.

Given full supervision, we could simply adopt a pairwise metric learning approach

to align segments from the videos in S with dictionary videos from D by requiring

that f maps a pair of isolated and co-articulated signing segments to the same

point in the embedding space if they correspond to the same sign (positive pairs)
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and apart if they do not (negative pairs). As noted above, in practice we do not

have access to positive pairs because: (1) for any annotated segment (xk, vk) ∈ M,

we have a set of potential sign variations represented in the dictionary (annotated

with the common label vk), rather than a single unique sign; (2) since S provides

only weak supervision, even when a word is mentioned in the subtitles we do not

know where it appears in the continuous signing sequence (if it appears at all).

These ambiguities motivate a Multiple Instance Learning [Dietterich et al. 1997]

(MIL) objective. Rather than forming positive and negative pairs, we instead form

positive bags of pairs, Pbags, in which we expect at least one pairing between a

segment from a video in S and a dictionary video from D to contain the same

sign, and negative bags of pairs, N bags, in which we expect no (video segment,

dictionary video) pair to contain the same sign. To incorporate the available

sources of supervision into this formulation, we consider two categories of positive

and negative bag formations, described next (due to space constraints, a formal

mathematical description of the positive and negative bags described below is

deferred to to the supp. mat.).

Watch and Lookup: using sparse annotations and dictionaries. Here,

we describe a baseline where we assume no subtitles are available. To learn f

from M and D, we define each positive bag as the set of possible pairs between

a labelled (foreground) temporal segment of a continuous video from M and the

examples of the corresponding sign in the dictionary. The key assumption here

is that each labelled sign segment from M matches at least one sign variation in

the dictionary. Negative bags are constructed by (i) anchoring on a continuous

foreground segment and selecting dictionary examples corresponding to different

words from other batch items; (ii) anchoring on a dictionary foreground set and

selecting continuous foreground segments from other batch items. To maximize

the number of negatives within one minibatch, we sample a different word per

batch item.

Watch, Read and Lookup: using sparse annotations, subtitles and dic-

tionaries. Using just the labelled sign segments from M to construct bags has

a significant limitation: f is not encouraged to represent signs beyond the initial

vocabulary represented in M. We therefore look at the subtitles (which contain

words beyond M) to construct additional bags. We determine more positive bags
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between the set of unlabelled (background) segments in the continuous footage and

the set of dictionaries corresponding to the background words in the subtitle (green

regions in Fig. 5.3, right-bottom). Negatives (red regions in Fig. 5.3) are formed

as the complements to these sets by (i) pairing continuous background segments

with dictionary samples that can be excluded as matches (through subtitles) and

(ii) pairing background dictionary entries with the foreground continuous segment.

In both cases, we also define negatives from other batch items by selecting pairs

where the word(s) have no overlap, e.g., in Fig. 5.3, the dictionary examples for

the background word ‘speak’ from the second batch item are negatives for the

background continuous segments from the first batch item, corresponding to the

unlabelled words ‘name’ and ‘what’ in the subtitle.

To assess the similarity of two embedded video segments, we employ a similar-

ity function ψ : Rd × Rd → R whose value increases as its arguments become

more similar (in this work, we use cosine similarity). For notational convenience

below, we write ψij as shorthand for ψ(f(xi), f(xj)). To learn f , we consider a

generalization of the InfoNCE loss [Oord et al. 2018; P. Wu et al. 2016] (a non-

parametric softmax loss formulation of Noise Contrastive Estimation [Gutmann

and Hyvärinen 2010]) recently proposed by [Miech et al. 2020]:

LMIL-NCE = −Ei

 log
∑

(j,k)∈P(i) exp(ψjk/τ)∑
(j,k)∈P(i) exp(ψjk/τ) + ∑

(l,m)∈N (i) exp(ψlm/τ)

, (5.1)

where P(i) ∈ Pbags, N (i) ∈ N bags, τ , often referred to as the temperature, is set

as a hyperparameter (we explore the effect of its value in Sec. 5.4).

5.3.2 Implementation details

In this section, we provide details for the learning framework covering the embed-

ding architecture, sampling protocol and optimization procedure.

Embedding architecture. The architecture comprises an I3D spatio-temporal

trunk network [João Carreira and Zisserman 2017] to which we attach an MLP

consisting of three linear layers separated by leaky ReLU activations (with negative

slope 0.2) and a skip connection. The trunk network takes as input 16 frames
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from a 224 × 224 resolution video clip and produces 1024-dimensional embeddings

which are then projected to 256-dimensional sign spotting embeddings by the MLP.

More details about the embedding architecture can be found in the supplementary

material.

Joint pretraining. The I3D trunk parameters are initialised by pretraining for

sign classification jointly over the sparse annotations M of a continuous signing

dataset (BSL-1K [Albanie et al. 2020]) and examples from a sign dictionary dataset

(BslDict) which fall within their common vocabulary. Since we find that dic-

tionary videos of isolated signs tend to be performed more slowly, we uniformly

sample 16 frames from each dictionary video with a random shift and random

frame rate n times, where n is proportional to the length of the video, and pass

these clips through the I3D trunk then average the resulting vectors before they

are processed by the MLP to produce the final dictionary embeddings. We find

that this form of random sampling performs better than sampling 16 consecutive

frames from the isolated signing videos (see supplementary material for more de-

tails). During pretraining, minibatches of size 4 are used; and colour, scale and

horizontal flip augmentations are applied to the input video, following the proce-

dure described in [Albanie et al. 2020]. The trunk parameters are then frozen and

the MLP outputs are used as embeddings. Both datasets are described in detail

in Sec. 5.4.1.

Minibatch sampling. To train the MLP given the pretrained I3D features, we

sample data by first iterating over the set of labelled segments comprising the

sparse annotations, M, that accompany the dataset of continuous, subtitled sam-

pling to form minibatches. For each continuous video, we sample 16 consecutive

frames around the annotated timestamp (more precisely a random offset within

20 frames before, 5 frames after, following the timing study in [Albanie et al.

2020]). We randomly sample 10 additional 16-frame clips from this video outside

of the labelled window, i.e., continuous background segments. For each subtitled

sequence, we sample the dictionary entries for all subtitle words that appear in VL

(see Fig. 5.3 for a sample batch formation).

Our minibatch comprises 128 sequences of continuous signing and their correspond-

ing dictionary entries (we investigate the impact of batch size in Sec. 5.4.3). The

embeddings are then trained by minimising the loss defined in Eqn.(5.3.1) in con-
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junction with positive bags, Pbags, and negative bags, N bags, which are constructed

on-the-fly for each minibatch (see Fig. 5.3).

Optimization. We use a SGD optimizer with an initial learning rate of 10−2 to

train the embedding architecture. The learning rate is decayed twice by a factor

of 10 (at epoch 40 and 45). We train all models, including baselines and ablation

studies, for 50 epochs at which point we find that learning has always converged.

Test time. To perform spotting, we obtain the embeddings learned with the

MLP. For the dictionary, we have a single embedding averaged over the video.

Continuous video embeddings are obtained with sliding window (stride 1) on the

entire sequence. We calculate the cosine similarity score between the continuous

signing sequence embeddings and the embedding for a given dictionary video. We

determine the location with the maximum similarity as the location of the queried

sign. We maintain embedding sets of all variants of dictionary videos for a given

word and choose the best match as the one with the highest similarity.

5.4 Experiments

In this section, we first present the datasets used in this work (including the

contributed BslDict dataset) in Sec. 5.4.1, followed by the evaluation protocol

in Sec. 5.4.2. We illustrate the benefits of the Watch, Read and Lookup learning

framework for sign spotting against several baselines with a comprehensive ablation

study that validates our design choices (Sec. 5.4.3). Finally, we investigate three

applications of our method in Sec. 5.4.4, showing that it can be used to (i) not

only spot signs, but also identify the specific sign variant that was used, (ii) label

sign instances in continuous signing footage given the associated subtitles, and

(iii) discover faux amis between different sign languages.

5.4.1 Datasets

Although our method is conceptually applicable to a number of sign languages, in

this work we focus primarily on BSL, the sign language of British deaf commu-

nities. We use BSL-1K [Albanie et al. 2020], a large-scale, subtitled and sparsely

annotated dataset of more than 1000 hours of continuous signing which offers an

ideal setting in which to evaluate the effectiveness of the Watch, Read and Lookup
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Dataset #Videos Vocab. #Signers
BSL-1K[Albanie et al. 2020] 273K 1,064 40

BslDict 14,210 9,283 148

Table 5.1: Datasets: We provide (i) the number of individual sign videos, (ii)
the vocabulary size of the annotated signs, and (iii) the number of signers for
BSL-1K and BslDict. BSL-1K is large in the number of annotated signs whereas
BslDict is large in the vocabulary size. Note that we use a different partition of
BSL-1K with longer sequences around the annotations as described in Sec. 5.4.1.

sign spotting framework. To provide dictionary data for the lookup component of

our approach, we also contribute BslDict, a diverse visual dictionary of signs.

These two datasets are summarised in Table 5.1 and described in more detail

below.

BSL-1K [Albanie et al. 2020] comprises a vocabulary of 1,064 signs which are

sparsely annotated over 1,000 hours of video of continuous sign language. The

videos are accompanied by subtitles. The dataset consists of 273K localised sign

annotations, automatically generated from sign-language-interpreted BBC tele-

vision broadcasts, by leveraging weakly aligned subtitles and applying keyword

spotting to signer mouthings. Please refer to [Albanie et al. 2020] for more details

on the automatic annotation pipeline. In this work, we process this data to extract

long videos with subtitles. In particular, we pad +/-2 seconds around the subtitle

timestamps and we add the corresponding video to our training set if there is a

sparse annotation word falling within this time window, assuming that the signing

is reasonably well-aligned with its subtitles in these cases. We further consider

only the videos whose subtitle duration is longer than 2 seconds. For testing, we

use the automatic test set (corresponding to mouthing locations with confidences

above 0.9). Thus we obtain 78K training and 3K test videos, each of which has a

subtitle of 8 words on average and 1 sparse mouthing annotation.

BslDict. BSL dictionary videos are collected from a BSL sign aggregation plat-

form signbsl.com [https://www.signbsl.com/ n.d.], giving us a total of 14,210

video clips for a vocabulary of 9,283 signs. Each sign is typically performed sev-

eral times by different signers, often in different ways. The dictionary videos are

downloaded from 28 known website sources and each source has at least 1 signer.

We used face embeddings computed with SENet-50 [J. Hu et al. 2019] (trained on
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VGGFace2 [Q. Cao et al. 2018]) to cluster signer identities and manually verified

that there are a total of 148 different signers. The dictionary videos are of isolated

signs (as opposed to co-articulated in BSL-1K): this means (i) the start and end

of the video clips usually consist of a still signer pausing, and (ii) the sign is per-

formed at a much slower rate for clarity. We first trim the sign dictionary videos,

using body keypoints estimated with OpenPose [Z. Cao et al. 2018] which indi-

cate the start and end of wrist motion, to discard frames where the signer is still.

With this process, the average number of frames per video drops from 78 to 56

(still significantly larger than co-articulated signs). To the best of our knowledge,

BslDict is the first curated, BSL sign dictionary dataset for computer vision

research, which will be made available. For the experiments in which BslDict is

filtered to the 1,064 vocabulary of BSL-1K (see below), we have a total of 2,992

videos. Within this subset, each sign has between 1 and 10 examples (average of

3).

5.4.2 Evaluation Protocols

Protocols. We define two settings: (i) training with the entire 1064 vocabulary of

annotations in BSL-1K; and (ii) training on a subset with 800 signs. The latter is

needed to assess the performance on novel signs, for which we do not have access to

co-articulated labels at training. We thus use the remaining 264 words for testing.

This test set is therefore common to both training settings, it is either ‘seen’ or

‘unseen’ at training. However, we do not limit the vocabulary of the dictionary as

a practical assumption, for which we show benefits.

Metrics. The performance is evaluated based on ranking metrics. For every sign

si in the test vocabulary, we first select the BSL-1K test set clips which have a

mouthing annotation of si and then record the percentage of dictionary clips of si

that appear in the first 5 retrieved results, this is the ‘Recall at 5’ (R@5). This

is motivated by the fact that different English words can correspond to the same

sign, and vice versa. We also report mean average precision (mAP). For each

video pair, the match is considered correct if (i) the dictionary clip corresponds

to si and the BSL-1K video clip has a mouthing annotation of si, and (ii) if the

predicted location of the sign in the BSL-1K video clip, i.e. the time frame where

the maximum similarity occurs, lies within certain frames around the ground truth
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Train (1064) Train (800)
Seen (264) Unseen (264)

Embedding arch. Supervision mAP R@5 mAP R@5

I3DBslDict Classification 2.68 3.57 1.21 1.29
I3DBSL-1K [Albanie et al. 2020] Classification 13.09 17.25 6.74 8.94
I3DBSL-1K,BslDict Classification 19.81 25.57 4.81 6.89
I3DBSL-1K,BslDict+MLP Classification 36.75 40.15 10.28 14.19

I3DBSL-1K,BslDict+MLP InfoNCE 42.52 53.54 10.88 14.23
I3DBSL-1K,BslDict+MLP Watch-Lookup 43.65 53.03 11.05 14.62
I3DBSL-1K,BslDict+MLP Watch-Read-Lookup 48.11 58.71 13.69 17.79

Table 5.2: The effect of the loss formulation: Embeddings learned with the
classification loss are suboptimal since they are not trained for matching the two
domains. Contrastive-based loss formulations (NCE) significantly improve, par-
ticularly when we adopt the multiple-instance variant introduced as our Watch-
Read-Lookup framework of multiple supervisory signals.

mouthing timing. In particular, we determine the correct interval to be defined

between 20 frames before and 5 frames after the labelled time (based on the study

in [Albanie et al. 2020]). Finally, because BSL-1K test is class-unbalanced, we

report performances averaged over the test classes.

5.4.3 Ablation Study

In this section, we evaluate different components of our approach. We first com-

pare our contrastive learning approach with classification baselines. Then, we

investigate the effect of our multiple-instance loss formulation. We provide abla-

tions for the hyperparameters, such as the batch size and the temperature, and

report performance on a sign spotting benchmark.

I3D baselines. We start by evaluating baseline I3D models trained with classifi-

cation on the task of spotting, using the embeddings before the classification layer.

We have three variants in Tab. 5.2: (i) I3DBSL-1K provided by [Albanie et al. 2020]

which is trained only on the BSL-1K dataset, and we also train (ii) I3DBslDict and

(iii) I3DBSL-1K,BslDict. Training only on BslDict (I3DBslDict) performs signifi-

cantly worse due to the few examples available per class and the domain gap that

must be bridged to spot co-articulated signs, suggesting that dictionary samples

alone do not suffice to solve the task. We observe improvements with fine-tuning

I3DBSL-1K jointly on the two datasets (I3DBSL-1K,BslDict), which becomes our base

feature extractor for the remaining experiments to train a shallow MLP.

Loss formulation. We first train the MLP parameters on top of the frozen I3D
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Supervision Dictionary Vocab mAP R@5
Watch-Read-Lookup 800 training vocab 13.69 17.79
Watch-Read-Lookup 9k full vocab 15.39 20.87

Table 5.3: Extending the dictionary vocabulary: We show the benefits of
sampling dictionary videos outside of the sparse annotations, using subtitles. Ex-
tending the lookup to the dictionary from the subtitles to the full vocabulary of
BslDict brings significant improvements for novel signs (the training uses sparse
annotations for the 800 words, and the remaining 264 for test).

(a) (b)

Figure 5.4: The effect of (a) the batch size that determines the number of nega-
tives across sign classes and (b) the temperature hyper-parameter for the MIL-
NCE loss in Watch-Lookup against mAP and R@5 (trained on the full 1064 vocab.)

trunk with classification to establish a baseline in a comparable setup. Note that,

this shallow architecture can be trained with larger batches than I3D. Next, we

investigate variants of our loss to learn a joint sign embedding between BSL-1K

and BslDict video domains: (i) standard single-instance InfoNCE [Oord et al.

2018; P. Wu et al. 2016] loss which pairs each BSL-1K video clip with one positive

BslDict clip of the same sign, (ii) Watch-Lookup which considers multiple pos-

itive dictionary candidates, but does not consider subtitles (therefore limited to

the annotated video clips). Table 5.2 summarizes the results. Our Watch-Read-

Lookup formulation which effectively combines multiple sources of supervision in

a multiple-instance framework outperforms the other baselines in both seen and

unseen protocols.

Extending the vocabulary. The results presented so far were using the same

vocabulary for both continuous and dictionary datasets. In reality, one can assume

access to the entire vocabulary in the dictionary, but obtaining annotations for the

continuous videos is prohibitive. Table 5.3 investigates removing the vocabulary

limit on the dictionary side, but keeping the continuous annotations vocabulary at

800 signs. We show that using the full 9k vocabulary from BslDict significantly

improves the results on the unseen setting.
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Batch size. Next, we investigate the effect of increasing the number of negative

pairs by increasing the batch size when training with Watch-Lookup on 1064 cat-

egories. We observe in Figure 5.4(a) an improvement in performance with greater

numbers of negatives before saturating. Our final Watch-Read-Lookup model has

high memory requirements, for which we use 128 batch size. Note that the effec-

tive size of the batch with our sampling is larger due to sampling extra video clips

corresponding to subtitles.

Temperature. Finally, we analyze the impact of the temperature hyperparam-

eter τ on the performance of Watch-Lookup. We observe a major decrease in

performance when τ approaches 1. We choose τ = 0.07 used in [P. Wu et al. 2016;

K. He et al. 2020] for all other experiments. Additional ablations are provided in

the supplementary material.

BSL-1K Sign spotting benchmark. Although our learning framework primar-

ily targets good performance on unseen continuous signs, it can also be naively

applied to the (closed-vocabulary) sign spotting benchmark proposed by [Albanie

et al. 2020]. We evaluate the performance of our Watch-Read-Lookup model and

achieve a score of 0.170 mAP, outperforming the previous state-of-the-art perfor-

mance of 0.160 mAP [Albanie et al. 2020].

5.4.4 Applications

In this section, we investigate three applications of our sign spotting method.

Sign variant identification. We show the ability of our model to spot specif-

ically which variant of the sign was used. In Fig. 5.5, we observe high similarity

scores when the variant of the sign matches in both BSL-1K and BslDict videos.

Identifying such sign variations allows a better understanding of regional differ-

ences and can potentially help standardisation efforts of BSL.

Dense annotations. We demonstrate the potential of our model to obtain dense

annotations on continuous sign language video data. Sign spotting through the

use of sign dictionaries is not limited to mouthings as in [Albanie et al. 2020] and

therefore is of great importance to scale up datasets for learning more robust sign

language models. In Fig. 5.6, we show qualitative examples of localising multiple

signs in a given sentence in BSL-1K, where we only query the words that occur
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“One of Britain’s worst cases of animal cruelty.”

Sign: Animal
Time frames
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“I’ve never known you talk like this before, Johnnie. It’s mad!”

Sign: Before

Figure 5.5: Sign variant identification: We plot the similarity scores between
BSL-1K test clips and BslDict variants of the sign “animal” (left) and “before”
(right) over time. The labelled mouthing times are shown by red vertical lines and
the sign proposal regions are shaded. A high similarity occurs for the first two
rows, where the BslDict examples match the variant used in BSL-1K.

“The only thing that’s wrong here, Sir, is the weather.”

Time frames
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re

Sign: Weather

Sign: Wrong

Sign: Only

Sign: Million

Sign: Bring

Sign: Project

“It is a huge project, we are bringing 4.5 million tonnes.”

Figure 5.6: Densification: We plot the similarity scores between BSL-1K test
clips and BslDict examples over time, by querying only the words in the subtitle.
The predicted locations of the signs correspond to the peak similarity scores.

in the subtitles, reducing the search space. In fact, if we assume the word to

be known, we obtain 83.08% sign localisation accuracy on BSL-1K with our best

model. This is defined as the number of times the maximum similarity occurs

within -20/+5 frames of the end label time provided by [Albanie et al. 2020].

“Faux Amis”. There are works investigating lexical similarities between sign

languages manually [SignumMcKee and Kennedy 2000; Aldersson and McEntee-

Atalianis 2007]. We show qualitatively the potential of our model to discover

similarities, as well as “faux-amis" between different sign languages, in particular

between British (BSL) and American (ASL) Sign Languages. We retrieve nearest

neighbors according to visual embedding similarities between BslDict which has

a 9K vocabulary and WLASL [D. Li et al. 2019], an ASL isolated sign language

dataset, with a 2K vocabulary. We provide some examples in Fig. 5.7.
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Figure 5.7: “Faux amis” in BSL/ASL: Same/similar manual features for differ-
ent English words (left), as well as for the same English words (right), are identified
between BslDict and WLASL isolated sign language datasets.

5.5 Conclusions

We have presented an approach to spot signs in continuous sign language videos

using visual sign dictionary videos, and have shown the benefits of leveraging mul-

tiple supervisory signals available in a realistic setting: (i) sparse annotations in

continuous signing, (ii) accompanied with subtitles, and (iii) a few dictionary sam-

ples per word from a large vocabulary. We employ multiple-instance contrastive

learning to incorporate these signals into a unified framework. Our analysis sug-

gests the potential of sign spotting in several applications, which we think will

help in scaling up the automatic annotation of sign language datasets.

Acknowledgements. This work was supported by EPSRC grant ExTol. The

authors would to like thank A. Sophia Koepke, Andrew Brown, Necati Cihan

Camgöz, and Bencie Woll for their help. S.A would like to acknowledge the gen-

erous support of S. Carlson in enabling his contribution, and his son David, who

bravely waited until after the submission deadline to enter this world.

100



CHAPTER 6. READ AND ATTEND: TEMPORAL LOCALISATION IN SIGN
LANGUAGE VIDEOS

Chapter 6

Read and Attend: Temporal

Localisation in Sign Language

Videos

The paper has been accepted for publication at the Computer Vision and Pattern

Recognition Conference (CVPR), 2021.

101



Read and Attend:

Temporal Localisation in Sign Language Videos
Gül Varol1∗ Liliane Momeni2∗ Samuel Albanie2∗

Triantafyllos Afouras2∗ Andrew Zisserman2

1 LIGM, École des Ponts, Univ Gustave Eiffel, CNRS, France
2 Visual Geometry Group, University of Oxford, UK

Abstract

The objective of this work is to annotate sign instances across a broad

vocabulary in continuous sign language. We train a Transformer model

to ingest a continuous signing stream and output a sequence of written

tokens on a large-scale collection of signing footage with weakly-aligned

subtitles. We show that through this training it acquires the ability to

attend to a large vocabulary of sign instances in the input sequence, enabling

their localisation. Our contributions are as follows: (1) we demonstrate the

ability to leverage large quantities of continuous signing videos with weakly-

aligned subtitles to localise signs in continuous sign language; (2) we employ

the learned attention to automatically generate hundreds of thousands of

annotations for a large sign vocabulary; (3) we collect a set of 37K manually

verified sign instances across a vocabulary of 950 sign classes to support our

study of sign language recognition; (4) by training on the newly annotated

data from our method, we outperform the prior state of the art on the

BSL-1K sign language recognition benchmark.

6.1 Introduction

Sign languages are visual languages that, for deaf communities, represent the nat-

ural means of communication [Rachel Sutton-Spence and Woll 1999]. Our goal in
∗Equal contribution.



“The first plants to choose when planning any garden”

plant

garden plant
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Figure 6.1: Sign localisation emerges from sequence prediction. In this
work, we show that the ability to localise instances of signs emerges naturally
by training a Transformer model [Vaswani et al. 2017] to perform a sequence
prediction task on hundreds of hours of continuous signing videos with weakly-
aligned subtitles.

this paper is to identify and temporally localise instances of signs among sequences

of continuous sign language. Achieving automatic sign localisation enables a di-

verse range of practical applications: construction of sign language dictionaries to

support language learners, indexing of signing content to enable efficient search

and intelligent fast-forward to topics of interest, automatic sign language dataset

construction, wake-word recognition for signers [Rodolitz et al. 2019] and tools to

assist linguistic analysis of large-scale signing corpora.

In recent years, there has been a great deal of progress in temporally localising

human actions within video streams [Shou et al. 2016; H. Zhao et al. 2019] and

spotting words in spoken languages through aural [Coucke et al. 2019] and vi-

sual [Stafylakis and Tzimiropoulos 2017; Momeni et al. 2020a] keyword spotting

methods. In both cases, a key driver of progress has been the availability of large-

scale annotated datasets, enabling the powerful representation learning abilities of

convolutional neural networks to be brought to bear on the task.

By contrast, annotated datasets for sign language are limited in scale and typically

orders of magnitude smaller than their spoken counterparts [Bragg et al. 2019].

Widely used datasets such as RWTH-PHOENIX [Koller et al. 2015a; N. C. Camgoz

et al. 2018] and the CSL dataset [J. Huang et al. 2018b] provide continuous sign

annotations in the form of glosses1 or free-form sentences, but lack precise temporal
1Glosses are atomic lexical units used to annotate sign languages.



annotations and are limited in content diversity, vocabulary, and scale. Large-scale

collections of continuous signing videos exist, but are limited to sparse annotation

coverage [Albanie et al. 2020; Schembri et al. 2013].

In the absence of large-scale annotated training data, in this work we turn to

a readily available and large-scale source: sign-interpreted TV broadcast footage

together with subtitles of the corresponding speech in English. We propose to

annotate this data with signs by training a Transformer [Vaswani et al. 2017]

to predict, given input streams of continuous signing, the corresponding subtitles,

and then using its trained attention mechanism to perform alignment from English

words to signs.

This is a very challenging task: first, subtitles are only weakly aligned to the sign-

ing content—a sign may appear several seconds before or after its corresponding

translated word appears in the subtitles, thus subtitles provide a relatively impre-

cise cue about the temporal location of a sign. Second, sign interpreters produce

a translation of the speech that appears in subtitles, rather than a transcription—

words in the subtitle may not correspond directly to individual signs produced by

interpreters, and vice versa. Third, grammatical structures between sign languages

and spoken languages differ considerably [Rachel Sutton-Spence and Woll 1999],

and consequently the ordering of words in the subtitle is typically not preserved

in the signing.

The core hypothesis motivating this approach is that in order to solve the sequence

prediction task, the attention mechanism of the Transformer must be capable of

localising sign instances. We demonstrate that by employing recent sign spotting

techniques [Albanie et al. 2020; Momeni et al. 2020b] to coarsely align subtitles,

sequence prediction is rendered tractable. One of the primary findings of this work

is that, when performed at large scale (across hundreds of hours of continuous

signing content), the ability to localise signs indeed emerges from the attention

patterns of the sequence prediction model (Fig. 6.1).

We make the following four contributions: (1) by training on an appropriate se-

quence prediction task, we show that the attention mechanism of the Transformer

learns to attend to specific signs, enabling their localisation; (2) we employ the

learned attention to automatically generate hundreds of thousands of annotations



for a large sign vocabulary; (3) we collect a set of 37K manually verified sign

instances across a vocabulary of 950 sign classes to support our study of sign lan-

guage recognition; (4) by training on the newly annotated data from our method,

we outperform the prior state of the art on the BSL-1K sign language recognition

benchmark.

6.2 Related Work

Our approach relates to prior work on sign language recognition, translation, spot-

ting, and in particular automatic annotation of sign language data. We present

a discussion of these, followed by a brief overview of Transformers in natural lan-

guage processing (NLP) and works in other domains using attention mechanisms

for localisation.

Sign language recognition and translation. The computer vision commu-

nity has a long history of efforts to develop systems for sign language recognition,

reaching back to the 1980s [Tamura and Kawasaki 1988]. Initial work focused

on hand-crafting features [Tamura and Kawasaki 1988; Fillbrandt et al. 2003] to

model discriminative shape and motion cues and explored their usage in com-

bination with Hidden-Markov Models [Starner 1995; Vogler and Metaxas 2001].

These works were followed by approaches that employed pose estimation as a ba-

sis for recognition [Ong et al. 2012; Pfister et al. 2014]. The community later

transitioned to employing convolutional neural networks (CNNs) for appearance

modelling [N. C. Camgoz et al. 2017]. In particular, the I3D architecture, orig-

inally developed for action recognition [Joao Carreira and Zisserman 2017], has

proven to be effective for sign recognition [D. Li et al. 2019; D. Li et al. 2020b;

Joze and Koller 2019; Albanie et al. 2021a; Momeni et al. 2020a]—we similarly

employ this model in our work.

Continuous sign language recognition entails important challenges compared to

isolated sign recognition, including epenthesis effects and co-articulation [Bragg

et al. 2019] as well as the non-trivial definition of temporal boundaries between

signs [Brentari 2009]. Towards dealing with these problems, [K. L. Cheng et

al. 2020] uses the CTC loss [Graves et al. 2006] to infer an alignment between

sequence-level annotations and visual input and introduces an auxiliary loss to use



 GT (original): “and we were talking about his army days”

 GT (stemmed & filtered to 11K vocab.):   “talk armi days”

Transformer Encoder Transformer Decoder
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Figure 6.2: Pipeline: We use an I3D model pretrained on sign classification to
extract spatio-temporal visual features by using a sliding window. We then train
a 2-layer Transformer model to predict stemmed subtitles from the input video
feature sequence. We use the learned model’s attention vectors to spot new in-
stances of signs by checking which words in the predicted hypothesis overlap with
the stemmed subtitle. For example, here the tokens “talk" and “armi", found in the
model’s hypothesis, also appear in the subtitle and are therefore retained, while
“know" does not and is hence discarded. The location of a new spotting is deter-
mined by the index at which the corresponding encoder-decoder attention peaks.
Note: we omit the sample index, subscript i, shared by all variables (described in
Sec. 6.3).

the alignments as pseudolabels; while [Bull et al. 2020] proposes a graph convolu-

tional network to automatically segment large sign language video sequences into

short sentences, aligned with their subtitle transcription.

Recent works have applied sequence-to-sequence models to sign language trans-

lation. Camgöz et al. [N. C. Camgoz et al. 2018] use a two-stage pipeline that

translates a video into gloss sequences then those into spoken language. Subse-

quent work [N. C. Camgoz et al. 2020b] replaces this framework with a Transformer

model trained on frame-level features jointly for recognition and translation, while

[N. C. Camgoz et al. 2020a] combines multiple articulators including face and

upper body pose to train a translation system without gloss annotations. These

approaches [N. C. Camgoz et al. 2018; N. C. Camgoz et al. 2020b; N. C. Cam-

goz et al. 2020a] have shown improvements towards translation in the restricted

domain of discourse of the RWTH-PHOENIX-Weather-2014T German Sign Lan-

guage (DGS) dataset [N. C. Camgoz et al. 2018]. Ko et al. [Ko et al. 2019b]

train a sequence-to-sequence model using keypoint features on Korean Sign Lan-

guage translation. Although these methods show promising results in constrained

conditions, open-vocabulary sign language translation in the wild remains largely

unsolved.

Automatic annotation of sign language data. Sign language datasets either



offer isolated gloss-level annotations of single signs, e.g., MSASL [Joze and Koller

2019], WLASL [D. Li et al. 2019], or are heavily constrained in visual domain and

vocabulary, e.g., RWTH-PHOENIX [Koller et al. 2015a; N. C. Camgoz et al. 2018],

KETI [Ko et al. 2019b] (only 105 sentences). Large-scale continuous sign language

datasets, on the other hand, are not exhaustively annotated [Albanie et al. 2020;

Schembri et al. 2017]. The recent efforts of Albanie et al. [Albanie et al. 2020]

scale up the automatic annotation of sign language data, and construct the BSL-

1K dataset with the help of a visual keyword spotter [Stafylakis and Tzimiropoulos

2018; Momeni et al. 2020a] trained on lip reading to detect instances of mouthed

words as a proxy for spotting signs. Sign spotting refers to a specialised form of

sign language recognition in which the objective is to find whether and where a

given sign has occurred within a sequence of signing. It has emerged as an interme-

diate step to collect more annotated sign language data. With this goal, Momeni

et al. [Momeni et al. 2020b] use dictionary lookups in subtitled videos and improve

low-shot sign spotting. Other automatic annotation approaches include an auto-

matic pipeline for active signer detection and sign language diarisation [Albanie

et al. 2021a]. While these previous methods are context-free, in this work, we in-

troduce a context-aware approach that can be used to localise signs automatically.

In fact, while we profit from annotations obtained in prior works using mouthing

cues [Albanie et al. 2020] and dictionaries [Momeni et al. 2020b], our approach

differs considerably from theirs in method—we define the supervision directly on

subtitles and formulate the problem as a sequence-to-sequence prediction task. We

demonstrate the benefits of our approach empirically in Sec. 6.4.

Transformers in NLP. Incorporating an attention mechanism into encoder-

decoder architectures led to a revolution in neural machine translation [Bah-

danau et al. 2015] by reducing dependency on strong text alignment. Vaswani

et al. [Vaswani et al. 2017] further extended this approach by replacing all re-

current and convolutional components of a sequence-to-sequence model with self-

attention. Even though such methods implicitly model source-to-target alignment

with attention, their primary focus is on translation performance, rather than

word-alignment. [Garg et al. 2019] further studies how to simultaneously opti-

mise for accurate word-alignment without sacrificing translation performance—we

investigate a variant of their approach in Sec. 6.4.



Attention mechanisms for localisation. Cross-modal attention has been em-

ployed in the literature for various localisation problems such as visual grounding

in videos [Huijuan Xu et al. 2019; Yuan et al. 2019; M. Liu et al. 2018; Jingyuan

Chen et al. 2018] or images [Deng et al. 2018; L. Yu et al. 2018], keyword spotting

in audio [Shan et al. 2018] or visual speech [Stafylakis and Tzimiropoulos 2018;

Momeni et al. 2020a] and audio-visual sound source localisation [Arandjelovic and

Zisserman 2017; Senocak et al. 2018; Harwath et al. 2018]. However, to the best

of our knowledge, our work is the first to apply these ideas at large-scale to sign

localisation from weakly-aligned subtitles.

6.3 Sign Localisation with Attention

In this section, we describe how we train a Transformer model on a weakly-

supervised sign language sequence-to-sequence task and then use the trained model

to perform sign localisation (see Fig. 6.2 for an overview).

Let XL denote the space of sign language video segments L, and T denote the

space of subtitle sentences. Further, let VL = {1, . . . , V } represent the vocabulary

(an enumeration of spoken language tokens that correspond to signs that can be

performed in L) and let S denote a subtitled collection of I videos containing

continuous signing, S = {(xi, si) : i ∈ {1, . . . , I}, xi ∈ XL, si ∈ T }. Our objective

is to localise potential occurrences of signs in S.

Transformer training with subtitled videos. To address this task, we pro-

pose to train a sequence-to-sequence model with attention. Given a video-subtitle

pair (xi, si) ∈ S, we train a Transformer [Vaswani et al. 2017] to predict the

target text sequence si = (s1
i , s

2
i · · · , sTdec

i ) from the source video sequence xi =

(x1
i , x

2
i , · · ·xTenc

i ), one token at a time. Specifically, the Transformer’s encoder

transforms xi into an encoded sequence enc(xi) = (e1
i , e

2
i , · · · eTenc

i ). The de-

coder then attends on the encoded sequence and predicts the output sequence

ŝi = (ŝ1
i , ŝ

2
i , · · · ŝTdec

i ) auto-regressively, factorising its joint probability into a prod-

uct of individual conditionals:

p(ŝi|xi) =
Tdec∏
t=1

p(ŝt
i|ŝ1

i , ŝ
2
i · · · ŝt−1

i , enc(xi)). (6.1)



Using the target subtitles si as the ground truth output sequences, we train the

model to maximise their log likelihoods by minimising the following loss:

L = −E(xi,si)∈S log p(si|xi) (6.2)

Note that we assume access to a sparse collection of automatic sign annotations,

N = {(xk, vk) : k ∈ {1, . . . , K}, vk ∈ VL, xk ∈ XL,∃(xi, si) ∈ S s.t. xk ⊆ xi}, using

mouthing cues [Albanie et al. 2020] and dictionaries [Momeni et al. 2020b]. In

practice, we restrict the Transformer training on a subset of videos SA ⊆ S, con-

taining at least one of these annotations within the subtitle timestamps, formally

SA = {(xa, sa) : a ∈ {1, . . . , A}, xa ∈ XL,∃(xk, sk) ∈ N s.t. xk ⊆ xa}. This ensures

approximate alignment between the source video and target subtitle. For arbitrary

sequences in S this is not guaranteed due to imperfect synchronisation between

subtitles (corresponding to audio) and sign language interpretation. The goal of

our training is therefore to exploit the knowledge of the unannotated words in the

subtitles in SA in order to discover a new collection of (x, v) sign-video pairs (that

is not included in N ) in the entire set S.

Localising new sign instances with attention. Next, we describe how we

use the Transformer model to look for new sign instances (see Fig. 6.2). After

inputting the video sequence xi into the trained model, we use a decoding strat-

egy (e.g., greedy) to predict the output sequence ŝi and corresponding attention

vectors ai = (a1
i , a2

i , · · · aTdec
i ) ∈ RTdec×Tenc . We iterate over the predicted sequence

ŝi and localise new sign instances only for the tokens predicted correctly (i.e., ap-

pearing in subtitle si); the video location is determined by the index at which the

corresponding attention vector is maximised, to yield sets of (location, sign) pairs

of the form: {(argmaxj∈{1,2···Tenc}at
i(j), st

i) : ŝt
i = st

i, t ∈ {1, 2 · · ·Tdec}}.

Implementation details. We represent the input video xi with features ex-

tracted using a pretrained spatio-temporal convolutional neural network model,

applied in a sliding window manner with a 4-frame stride. In particular, we train

an I3D architecture [Joao Carreira and Zisserman 2017] on an extended set of

automatic annotations N that we obtain by combining the methods of [Albanie

et al. 2020] and [Momeni et al. 2020b], to spot signs via mouthing cues and sign

language dictionaries, respectively. We train with a single-sign classification ob-



jective and follow the same hyperparameters (e.g., 16-frame inputs) of the sign

language recognition models in [Albanie et al. 2020]. The 1024-dimensional video

features from I3D are used as input to the Transformer encoder.

To construct ground-truth text labels for our Transformer training, we stem the

words in every subtitle under the assumption that variations of a written word

could map to the same sign. We note that the many-to-many mapping between

words and signs is a complex problem, which we do not explicitly deal with in this

work. To establish a tractable problem, we define a vocabulary of 11,515 stems

based on their frequency and occurrence within the automatic annotations N . This

is reduced from an original set of 40K words appearing in the full set of subtitles S.

We further remove stop words for which there is often no sign correspondence. This

approach resembles glossing sign language data, i.e., representing sign sequences

with word sequences, without spoken language grammar.

Following common practice in the sequence-to-sequence literature [Vaswani et al.

2017], we train the model with teacher forcing [Williams and Zipser 1989], i.e. at

every decoding step we provide the previous-step’s ground truth as input to the

decoder. During inference we experiment with three different decoding strategies:

auto-regressive greedy decoding, left-to-right beam search, and teacher forcing.

With greedy decoding, we iterate over the available sequences and for each one,

we select as new spottings all the words in the predicted hypothesis that appear

in the reference subtitle. For beam search, we iterate over the predictions which

overlap with the reference from the multiple returned hypotheses, and select for

each predicted word the location with maximum attention score. We show results

for another variant of beam search where we choose the hypothesis with the highest

recall in the appendix. With teacher forcing, we do not use the token predictions of

the model, but only the attention scores, which we associate with the next ground-

truth word in the subtitle at every decoding step. Since we consider all words

in the subtitles, this strategy provides good yield but no notion of the model’s

confidence. In order to obtain a confidence score we use the following heuristic:

For every sequence, a word found in the subtitle is automatically annotated if the

attention peak for the corresponding decoding step is higher than a threshold τ .

When using Transformers with multiple attention heads, we obtain single attention

scores by averaging the attention vectors of the individual heads. In Sec. 6.4.3 we



discuss results on combining attention from different decoder layers.

6.4 Experiments

This section is structured as follows: We first present the datasets used as well as

the various training and evaluation protocols that we follow in our experiments

(Sec. 6.4.1). Next, we show how we choose our pretrained input video features

(Sec. 6.4.2). Then, we evaluate our Transformer models trained with these features

and discuss different strategies for mining new instances to obtain an automatically

annotated training set (Sec. 6.4.3). We show that, when adding our newly mined

training samples, we outperform the previous state of the art on sign language

recognition (Sec. 6.4.4). Finally, we provide qualitative results on two datasets

(Sec. 6.4.5) and discuss limitations (Sec. 6.4.6).

6.4.1 Data and evaluation protocols

Datasets. We use BSL-1K [Albanie et al. 2020], a large-scale, subtitled and

sparsely annotated dataset (for a vocabulary of 1,064 signs) of more than 1000

hours of continuous signing from sign language interpreted BBC television broad-

casts. The programs cover a wide range of genres: from medical dramas and nature

documentaries to cooking shows. In Sec. 6.4.5, we show qualitative examples on

the RWTH-PHOENIX [N. C. Camgoz et al. 2018] dataset, which is significantly

smaller in size and from weather broadcasts only, restricting the domain of dis-

course.

Transformer training and evaluation on TestLoc
7K . To form the video-subtitle

training data pairs, we sample 183K (SA) out of 685K subtitles from the BSL-1K

training set (S), in which there exists at least 1 automatic annotation (with a

confidence score above 0.7) from the annotations collection N . N is formed by

applying the method of [Albanie et al. 2020] on a large vocabulary of words beyond

1K to find signs via mouthing cues and applying the method of [Momeni et al.

2020b] to find signs via automatic dictionary spotting. See appendix for details

on this step. Subtitles originally contain 9.8 words from the initial 40K words

vocabulary on average, which is reduced to 4.4 words per subtitle from the 11K

stems vocabulary after stemming and filtering. Corresponding videos are tightly



TestRec
2K [Albanie et al. 2020] TestRec

37K

2K inst. / 334 cls. 37K inst. / 950 cls.
per-instance per-class per-instance per-class

Training #ann. top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5
M [Albanie et al. 2020]§ 169K 76.6 89.2 54.6 71.8 26.4 41.3 19.4 33.2
D 510K 70.8 84.9 52.7 68.1 60.9 80.3 34.7 53.5
M+D 678K 80.8 92.1 60.5 79.9 62.3 81.3 40.2 60.1

Table 6.1: A new recognition test set TestRec
37K and an improved I3D model:

We employ the method of [Momeni et al. 2020b] to find signs via automatic dictio-
nary spotting (D), significantly expanding the training and testing data obtained
from mouthing cues by [Albanie et al. 2020] (M). We also significantly expand
the test set by manually verifying these new automatic annotations from the test
partition (TestRec

2K vs TestRec
37K). By training on the extended M+D data, we obtain

state-of-the-art results, outperforming the previous work of [Albanie et al. 2020]
and providing strong I3D features for the subsequent steps of our method. §The
slight improvement in the performance of [Albanie et al. 2020] over the original
results reported in that work is due to our denser test-time averaging when apply-
ing sliding windows (8-frame vs 1-frame stride).

extracted according to the subtitle timestamps, and are on average 3.52 seconds

long.

For evaluating the localisation capability of the proposed method, we use the au-

tomatic annotations N in the BSL-1K test set whose confidence scores are above

0.9, resulting in 7497 subtitle-video pairs with a total of 7661 annotations, referred

to as TestLoc
7K . We measure the localisation accuracy for the annotated words in

each subtitle and only on the correct predictions: we consider a correct prediction

to be also correctly localised if its predicted location lies within 8 frames of the

annotation time. We also report recall and precision of the model’s predictions for

each sequence by measuring the percentage of words in the subtitle that are pre-

dicted (recall) and the percentage of predicted words which appear in the subtitle

(precision). For all three metrics, we report the average over all sequences in the

test set.

Single-sign recognition benchmark. In order to justify the value of our au-

tomatic annotation approach with the Transformer model, we evaluate on the

proxy task of single-sign recognition on trimmed videos by using our localised sign

instances from the training set as labels for classification training. Similar to [Al-

banie et al. 2020; Joze and Koller 2019; D. Li et al. 2019], we adopt top-1 and



Loc. Acc. (GD) Loc. Acc. (TF)
Tr. Recall Prec. Att. layer 1/2/3 [avg] Att. layer 1/2/3 [avg]
1L 15.8 36.4 65.9 [65.9] 44.8 [44.8]
2L 16.5 37.2 63.9/57.8 [66.1] 51.1/37.6 [44.5]
3L 16.5 36.9 62.5/60.8/16.4 [65.3] 51.4/38.4/15.7 [46.4]

Table 6.2: Localisation performance of attention layers. We evaluate the
performance of Transformers on TestLoc

7K for different number of encoder/decoder
layers in the training (different rows). We report the localisation accuracy for
the encoder-decoder attention scores from every layer, as well as the average over
layers, for both teacher forcing (TF) and greedy decoding (GD) modes.

top-5 accuracy metrics reported with and without class-balancing.

We use the BSL-1K manually verified recognition test set with 2K samples [Al-

banie et al. 2020], which we denote with TestRec
2K , and significantly extend it to 37K

samples as TestRec
37K . We do this by collecting new annotations from human anno-

tators using the VIA tool [Dutta and Zisserman 2019] with a verification task as

in [Albanie et al. 2020]. This extended test set reduces the bias towards signs with

easily spotted mouthing cues (since we also include dictionary spottings [Momeni

et al. 2020a]) and spans a larger fraction of the training vocabulary, i.e. 950 out

of 1064 sign classes (vs 334 classes in the original benchmark TestRec
2K of [Albanie

et al. 2020]).

6.4.2 Comparison of video features

We first conduct experiments to determine which I3D video features are best suited

as input to the Transformer model as described in Sec. 6.3. In Tab. 6.1, we demon-

strate the benefits of combining annotations from both mouthing (M) [Albanie et

al. 2020] and dictionary spottings (D) [Momeni et al. 2020b]. We show that our sign

classification training using 678K automatic annotations obtains state-of-the-art

performance on TestRec
2K , as well as our new and more challenging test set TestRec

37K .

We therefore use this M+D model for the rest of our experiments. Note that all

three models in Tab. 6.1 (M, D, M+D) are pretrained on Kinetics [Joao Carreira

and Zisserman 2017], followed by video pose distillation as described in [Albanie

et al. 2020]. We observed no improvements when initialising M+D training from

M-only pretraining.



6.4.3 Mining training examples through attention

Next, we ablate different design choices for the Transformer model.

Which attention layer for sign-video alignment? Similarly to [Garg et al.

2019], we conduct an investigation into which decoder layer gives attention scores

that are more useful for localising signs. We train three models, with 1, 2 and

3 encoder and decoder layers and report the localisation accuracy when using

the attention from each layer separately, or an average of all layers. The results

on TestLoc
7K in Tab. 6.2 suggest that averaging the attention scores over all layers

gives the best localisation when using greedy auto-regressive decoding, while using

the attention scores from the first decoder layer works best with teacher forcing.

We note that this finding stands in contrast to those of [Garg et al. 2019] which

concluded that the penultimate layer works better for word alignment in a machine

translation task. We conjecture that the difference results from the different nature

of the two domains, i.e., video versus text inputs. In terms of precision and recall,

all three models perform similarly with rates at 37% and 16%, respectively. We

continue with a 2-layer Transformer model for the rest of the experiments and

given the observations in Tab. 6.2, we use the layer-averaged attention with greedy

decoding and the first layer attention with teacher forcing.

Incorporating sparse annotations. As explained in Sec. 6.3, we make use of

the available sparse annotations N to restrict the training subtitles to those with

at least 1 annotation. When removing this constraint, the model does not train

as well, and reaches a recall of only 6.8% (vs 16.5%).

Here, we also report some of our findings by employing three additional strategies

to improve the Transformer training using the sparse annotations N . In all three

cases, we observe no or minor gains (on TestLoc
7K ), at the cost of a more complex

method and the need for annotations. Therefore, we do not integrate them in our

final model and provide detailed results in appendix.

Alignment loss on sparse annotations: We investigate whether the sparse annota-

tions N could be used for supervising the sign-video alignment explicitly (similar

to [Garg et al. 2019] in NLP). To this end, we define an additional loss that oper-

ates on the encoder-decoder attention to enforce a high response whenever there

is known location information. We achieve this via an additional L2 loss term



between a 1D gaussian centered around the annotated time frame and the corre-

sponding attention vector. While the localisation performance with teacher-forcing

increases (58.7% vs 51.1%), it still remains lower compared to the corresponding

greedy decoding result and we observe no significant gains for other metrics mea-

sured on the predictions.

Curriculum learning with sparse annotations: To provide warmup for the model

training, we start by temporally trimmed video inputs around known sign loca-

tions N . We gradually increase the number of annotations from 1 to 3, before

we fully input the subtitle duration to the Transformer. We only observe minor

improvements: 16.0% vs 15.8% recall with the 1-layer architecture.

Subtitle alignment through active signer detection and sparse annotations: To over-

come the alignment noise present in the data, we apply an algorithm that combines

a pose-based active signer detection [Albanie et al. 2021a] and the knowledge of

sparse annotations N . Specifically, we apply temporal shifts to subtitles such that

their temporal midpoint aligns with the average time of any annotated signs they

contain. We then apply affine transformations to the subtitles without annotations

such that they fill the regions between those with annotations, subject to the hard

constraint that the expansions do not overlap periods of inactive signing. This

approach increases the amount of training subtitles with annotations to 230K;

however, training with this new set does not improve recall (15.4% vs 16.5% with

2-layers).

Which decoding mechanism? To form a new annotated set for sign recognition

training, we apply the trained Transformer models on the whole 685K training

video-subtitle pairs of the BSL-1K dataset. In Tab. 6.3 we summarise and compare

the yield of new training samples mined with the different decoding strategies we

discussed in Sec. 6.3. We report the number of previously unannotated subtitles,

for which the attention mechanism is able to localise signs, to demonstrate the

benefits of our approach. We also report the amount of new annotations for

both the full 11K vocabulary and the 1064-subset which is used for the proxy

recognition evaluation. We observe that a significant number of new automatic

sign annotations are obtained with our approach.

To compare the different decoding strategies, we train recognition models on the



#subtitles #ann. #ann. top-1 top-1
Spotting mode unannot. 11K 1K per-inst per-cls
TF (≥ .2) 114K 290K 97K 22.2 4.7
TF (≥ .1) 408K 1.7M 545K 37.3 13.4
TF (≥ .05) 457K 2.3M 754K 38.7 14.4
TF (≥ .05) (align. loss) 457K 2.3M 757K 38.8 14.6
BS (10 best) 109K 329K 166K 49.6 22.7
GD (no subtitle filtering) 480K 1.4M 910K 50.6 22.6
GD (align. loss) 53K 188K 108K 53.6 24.8
GD 53K 188K 107K 53.9 24.7

Table 6.3: Automatically annotating the training data: We show the yield
obtained from various decoding strategies in terms of number of additional anno-
tations (left). Training models only with these annotations, we evaluate the recog-
nition accuracy on TestRec

37K . Greedy decoding (GD) obtains better results than
teacher forcing (TF) even when not filtering the predictions against the ground-
truth subtitles. Neither including 10 best predictions from beam search (BS) nor
using the model trained with the alignment loss influences the recognition evalu-
ation significantly.

resulting training sets containing the new annotations and evaluate them on the

proxy sign recognition task. Note that for faster training, we learn a 4-layer MLP

architecture on top of the pre-extracted I3D video features (architecture and op-

timisation details are given in the appendix).

We observe that greedy decoding with the simple filtering mechanism (checking

against ground truth) gives best downstream recognition performance on TestRec
37K .

Teacher forcing, beam search and no filtering all yield larger but noisier training

sets that result in lower performance. However, we note that the “no subtitle

filtering” experiment assumes no access to ground-truth subtitles during annota-

tion mining and uses all the predictions, while providing competitive recognition

performance (50.6% vs 53.9%).

6.4.4 Comparison with other automatic annotations

In this section, we train for sign recognition on BSL-1K [Albanie et al. 2020] on

various label sets, comparing different automatic annotation methods and show-

ing that our new sign instances are complementary when added to training data,

achieving state of the art. As in the previous experiments, we use the MLP ar-

chitecture on frozen I3D features to compare the different annotation sets. This

time we perform 3 trainings per model with different random seeds and report the



per-instance per-class
Training #ann. top-1 top-5 top-1 top-5
A 107K 54.0±0.08 67.9±0.10 24.8±0.10 35.5±0.20

M [Albanie et al. 2020]† 169K 40.8±0.17 62.2±0.07 21.7±0.19 38.5±0.29

M+A 276K 58.5±0.17 75.5±0.02 30.4±0.04 45.9±0.26

D [Momeni et al. 2020b]† 510K 62.1±0.24 80.8±0.10 35.1±0.38 54.3±0.11

D+A 276K 64.2±0.08 81.7±0.07 36.0±0.26 54.0±0.32

M+D 678K 63.5±0.28 82.1±0.04 37.2±0.12 56.4±0.17

M+D+A 786K 65.0±0.14 82.6±0.02 37.9±0.07 56.3±0.02

Table 6.4: Sign recognition on BSL-1K TestRec
37K: We evaluate our 4-layer MLP

classification models trained on video feature inputs for 1064-sign recognition for
various training label sets: mouthing (M), dictionary (D), and our proposed atten-
tion (A) spottings. We obtain state-of-the-art results, by consistently improving
over previous works when including our attention localisations. †The results are
obtained from our MLP trained with the annotations from [Albanie et al. 2020]
and our application of [Momeni et al. 2020b].

average and standard deviation.

Tab. 6.4 summarises the results on TestRec
37K . We first note that the MLP perfor-

mance of M+D annotations matches and slightly outperforms that of I3D from

Tab. 6.1 (63.5% vs 62.3%), validating the suitability of MLP for efficiently com-

paring annotation set quality. When compared to the visual keyword spotting

through mouthing (M) [Albanie et al. 2020], our automatic attention localisations

(A) show significant improvements. Furthermore, we observe consistent improve-

ments when combining our new annotations with either the mouthing (M+A) or

dictionary (D+A) annotations. Combining all available annotations (M+D+A),

we achieve state-of-the-art performance (65%) outperforming previous work of [Al-

banie et al. 2020] (M: 40.8%), as well as a new much stronger baseline (D: 62.1%)

that we establish in this work, which uses the new annotations obtained using sign

language dictionaries for sign spotting [Momeni et al. 2020b]. Our final recog-

nition model can be interpreted as distilling information from multiple sources

(mouthing, dictionary, attention), each of which has access to a large training set.

We also evaluate the performance of our MLP trained on M+D+A annota-

tions on the BSL-1K sign spotting benchmark proposed by [Albanie et al. 2020],

following their protocol, and achieve a score of 0.174 mAP, outperforming the pre-

vious state-of-the-art performance of 0.170 mAP [Momeni et al. 2020b] and 0.159

mAP [Albanie et al. 2020].
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GT: “morgen früh bildet sich über der nordsee ein neues tief das von 
norden für kräftigen regen sorgt” 
Pred: “der nordsee morgen norden regen”

GT: “und am mittwoch dann noch reste dieser schauer und gewitter 
über dem osten und über dem süden” 
Pred: “noch schauer und gewitter osten”
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Figure 6.3: Qualitative analysis on the RWTH-PHOENIX: We show ex-
ample sign localisation results on the test set of RWTH-PHOENIX 2014T. For
each video clip, we show the ground-truth sentence as well as the predicted words
from the Transformer model of [N. C. Camgoz et al. 2020b] which overlap with
the target sentence. We plot attention scores over time frames for these predicted
words and show the frame index at which the corresponding attention vector is
maximised for a subset of the correctly predicted words.
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GT: (original) “It smells sweet here absolutely smells sweet here” 
GT: (stemmed) “smell sweet absolut smell sweet”  
Pred: “smell sweet”

GT: (original) “Mr Griffin, I didn’t expect to see you” 
GT: (stemmed) “mr expect see”  
Pred: “see expect test”

GT: (original) “When I lived in a city, winter I could see had no purpose” 
GT: (stemmed) “live citi winter could see purpos”  
Pred: “live citi winter”

GT: (original) “But my concern would be fish and chips we all love it” 
GT: (stemmed) “concern would fish chip love”  
Pred: “chip fish”

GT: (original) “I never use less than five different types of fish” 
GT: (stemmed) “never use five differ type fish” 
Pred: “never use fish”

GT: (original) “Yeah absolutely, and we were talking about his army days” 
GT: (stemmed) “absolut talk armi days”  
Pred: “talk armi know”
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Figure 6.4: Qualitative analysis on BSL-1K: We show example sign localisa-
tion results on the BSL-1K test set (TestLoc

7K ). For each video clip, we show the
original subtitle, the ground-truth stemmed and filtered to 11K vocabulary ver-
sion, and the prediction of our Transformer model. We plot attention scores over
time frames for the predicted words which overlap with the subtitle and for which
we have annotated sign times in N (shown by vertical dashed lines). We highlight
the frame at which the corresponding attention vector is maximised.



6.4.5 Qualitative analysis

We demonstrate the potential of our Transformer model to localise sign instances

through its attention mechanism. Fig. 6.4 shows qualitative examples of localising

multiple signs, by plotting attention scores over video time frames for predicted

words that occur in corresponding subtitles of the BSL-1K test set (TestLoc
7K ). We

observe close alignment with the automatic annotations N . One potential limi-

tation of this approach for localisation is that the attention vector does not peak

only at the corresponding sign location, but also on other signs suggesting that

the predictions use context (e.g., “smell” and “sweet” in Fig. 6.4, top-left).

We also investigate whether this localisation ability extends to other datasets. In

particular, we reproduce the translation method of Camgöz et al. [N. C. Camgoz

et al. 2020b] on RWTH-PHOENIX 2014T [N. C. Camgoz et al. 2018] and similarly

to [N. C. Camgoz et al. 2018], we visualise the attention score plots for predicted

words in Fig. 6.3. We are unable to compute the localisation accuracy as sign

annotation times are not available for RWTH-PHOENIX 2014T; however, we ob-

serve correct signs when indexing the frame at which the corresponding attention

vector is maximised. This suggests that alignment emerges from the attention

mechanism also for a full translation system.

6.4.6 Discussion

From our investigations in this work, we believe there are important and chal-

lenging problems to be solved before achieving large-vocabulary sign language

translation from videos to spoken language. First, significantly expanding the

coverage of the vocabulary of both languages is necessary, and the current state

of the art only covers about 3K spoken language and 1K sign language vocabu-

laries [N. C. Camgoz et al. 2020b]. In preliminary experiments, we found that a

direct application of [N. C. Camgoz et al. 2020b] to translation on the significantly

broader vocabulary of 40K contained within the subtitles of BSL-1K failed to con-

verge to meaningful results (for more details see appendix). In this work, we have

extended to an 11K spoken language vocabulary, but the NLP literature typically

works with much larger vocabularies (e.g. a few hundred thousand words [Dai

et al. 2019]). Our attempts to move to 40K words did not obtain sufficient-quality

results. Second, the alignment between text and video is far from perfect in large-



scale sign language datasets which inserts significant amount of noise in training.

Our automatic alignment attempts in this work did not obtain improvements. Re-

lying on sparse annotations for approximate alignments limits the amount of data.

Third, most of the works, including ours, focus on interpreted data, which has

certain biases. In fact, the act of interpreting can cause a simplification in signing

style and vocabulary, and even lead to a reduction in speed for comprehension

[Bragg et al. 2019]. Datasets of native signers should be built to train strong, ro-

bust models that generalise at scale and in the wild. Given these observations, we

believe that future work that specifically targets translation systems will benefit

from addressing these challenges. We refer to the appendix for a discussion of

broader impact.

6.5 Conclusions

We have presented an approach to localise signs in continuous sign language

videos with weakly-supervised subtitles by leveraging the attention mechanism of

a Transformer model trained on a video-to-text sequence prediction task. We find

that state-of-the-art translation models have very low recall on a large-vocabulary

dataset, but a satisfactory localisation accuracy through attention that allows us to

annotate sign timings. We automatically annotate hundreds of thousands of new

signing instances through our learned attention and validate their quality by using

them to train a sign language recognition model that surpasses the state of the

art on the BSL-1K benchmark as well as a more robust sign language benchmark

which is 18 times larger. Future work can leverage our automatic annotations and

recognition model for large-vocabulary sign language translation.
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Abstract

Recently, sign language researchers have turned to sign language inter-

preted TV broadcasts, comprising (i) a video of continuous signing and

(ii) subtitles corresponding to the audio content, as a readily available and

large-scale source of training data. One key challenge in the usability of

such data is the lack of sign annotations. Previous work exploiting such

weakly-aligned data only found sparse correspondences between keywords

in the subtitle and individual signs. In this work, we propose a simple, scal-

able framework to vastly increase the density of automatic annotations. Our

contributions are the following: (1) we significantly improve previous anno-

tation methods by making use of synonyms and subtitle-signing alignment;

(2) we show the value of pseudo-labelling from a sign recognition model as

a way of sign spotting; (3) we propose a novel approach for increasing our

annotations of known and unknown classes based on in-domain exemplars;

(4) on the BOBSL BSL sign language corpus, we increase the number of con-

fident automatic annotations from 670K to 5M. We make these annotations

publicly available to support the sign language research community.

∗Equal contribution.



Subtitle: “But Ron did not want to go into a home so he’s persuaded his son David to be his full-time carer.”
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Figure 7.1: Densification: For continuous sign language, we show automatic sign
annotation timelines, along with their confidence and annotation source, before
and after our framework is applied. M, D, A refer to automatic annotations from
previous methods from mouthings [Albanie et al. 2020], dictionaries [Momeni et al.
2020b] and the Transformer attention [Varol et al. 2021]. M∗, D∗, P, E, N refer
to new and improved automatic annotations collected in this work. Annotation
methods are compared in the appendix.

7.1 Introduction

Sign languages are visual-spatial languages that have evolved among deaf commu-

nities. They possess rich grammar structures and lexicons that differ considerably

from those found among spoken languages [Rachel Sutton-Spence and Woll 1999].

An important factor impeding progress in automatic sign language recognition

– in contrast to automatic speech recognition – has been the lack of large-scale

training data. To address this issue, researchers have recently made use of sign

language interpreted TV broadcasts, comprising (i) a video of continuous sign-

ing, and (ii) subtitles corresponding to the audio content, to build datasets such

as Content4All [N. Camgoz et al. 2021] (190 hours) and BOBSL [Albanie et al.

2021b] (1460 hours).

Although such datasets are orders of magnitude larger than the long-standing

RWTH-PHOENIX [N. C. Camgoz et al. 2018] benchmark (9 hours) and cover a

much wider domain of discourse (not restricted to only weather news), the supervi-

sion they provide on the signed content is limited in that it is weak and noisy. It is

weak because the subtitles are temporally aligned with the audio content and not

necessarily with the signing. The supervision is also noisy because the presence

of a word in the subtitle does not necessarily imply that the word is signed; and

subtitles can be signed in different ways. Recent works have shown that training

automatic sign language translation models on such weak and noisy supervision

leads to low performance [N. Camgoz et al. 2021; Varol et al. 2021; Albanie et al.



2021b].

In an attempt to increase the value of such interpreted datasets, multiple works [Al-

banie et al. 2020; Momeni et al. 2020b; Varol et al. 2021] have leveraged the

subtitles to perform lexical sign spotting in an approximately aligned continuous

signing segment – where the aim is to determine whether and when a subtitle

word is signed. Methods include using visual keyword spotting to identify signer

mouthings [Albanie et al. 2020], learning a joint embedding with sign language

dictionary video clips [Momeni et al. 2020b], and exploiting the attention mech-

anism of a transformer translation model trained on weak, noisy subtitle-signing

pairs [Varol et al. 2021]. These works leverage the approximate subtitle timings and

subtitle content to significantly reduce the correspondence search space between

temporal windows of signs and spoken language words. Although such methods are

effective at automatically annotating signs, they only find sparse correspondences

between keywords in the subtitle and individual signs.

Our goal in this work is to produce dense sign annotations, as shown in Fig. 7.1.

We define densification in two ways: (i) reducing gaps in the timeline so that we

have a densely spotted signing sequence; and also (ii) increasing the number of

words we recall in the corresponding subtitle. This process can be seen as auto-

matic annotation of lexical signs. Automatic dense annotation of large-vocabulary

sign language videos has a large range of applications including: (i) substantially

improving recall for retrieval or intelligent fast forwards of online sign language

videos; (ii) enabling large-scale linguistic analysis between spoken and signed lan-

guages; (iii) providing supervision and improved alignment for continuous sign

language recognition and translation systems.

In this paper, we ask the following questions: (1) Can we improve current methods

to improve the yield of automatic sign annotations whilst maintaining precision?

(2) Can we increase the vocabulary of annotated signs over previous methods? (3)

Can we ‘fill in the gaps’ that current spotting methods miss? The answer is yes,

to all three questions, and we demonstrate this on the recently released BOBSL

dataset of British Sign Language (BSL) signer interpreted video.

We make the following four contributions: (1) we significantly improve previous

methods by making use of synonyms and subtitle-signing alignment; (2) we show



Figure 7.2: Yield of automatic annotations and vocabulary size: We high-
light the increase in the number of automatic annotations and vocabulary size at
each stage in our proposed framework. M, D, A refer to annotations from previous
methods. M∗, D∗, P, E, N refer to new and improved annotations collected in this
work. The number of annotations is shown within each circle. The vocabulary
size is reported below each circle and also represented by the circle diameter.

the value of pseudo-labelling from a sign recognition model as a way of sign spot-

ting; (3) we propose a novel approach for increasing our annotations of known and

unknown sign classes based on in-domain exemplars; (4) we will make all 5 million

automatic annotations publicly available to support the sign language research

community. Our increased yield and vocabulary size is shown in Fig. 7.2. Our

final vocabulary of 24.8K represents the vocabulary of English words (including

named entities) from the subtitles which have been automatically associated to a

sign instance; different words may have the same sign.

We note that this work is focused on interpreted data, which can differ from

conversational signing in terms of style, vocabulary and speed [Bragg et al. 2019].

Although our long-term aim is to move to conversational signing, learning good

representations of signs from interpreted data can be a ‘stepping stone’ in this

direction. Moreover, non-lexical signs, such as a pointing sign and spatially located

signs, are essential elements of sign language, but our method is limited to the

annotation of lexical signs associated to words in the text.

7.2 Related Work

Our work relates to several themes which we give a brief overview of below.

Sign Spotting. One line of research has focused on the task of sign spotting,

which seeks to detect signs from a given vocabulary in a target video. Early efforts



for sign spotting employed lower-level features (colour histograms and geometric

cues) in combination with Conditional Random Fields [H.-D. Yang et al. 2008],

Hidden Markov Models (HMMs) [Viitaniemi et al. 2014] and Sequential Interval

Patterns [Ong et al. 2014] for temporal modelling. A related body of work has

sought to localise signs while leveraging weak supervision from audio-aligned sub-

titles. These include the use of external dictionaries [D. Li et al. 2020b; Momeni

et al. 2020b; T. Jiang et al. 2021] and other localisation cues such as mouthing [Al-

banie et al. 2020] and Transformer attention [Varol et al. 2021]. The performance

of these approaches depends on the quality of the visual features, keywords, and

the search window. In this work, we show improved yield of existing sign spot-

ting techniques by employing automatic subtitle alignment techniques to adjust

the time window and incorporating synonyms when forming the keywords. Going

further beyond the spotting task explored in prior work, we use the automatic

spottings to initiate additional algorithms for sign discovery based on in-domain

exemplar matching (7.3.1). This is similar to dictionary-based sign spotting tech-

niques [Momeni et al. 2020b; T. Jiang et al. 2021] except we do not source the

exemplars from external dictionaries, avoiding the domain gap issue. Besides in-

domain sign exemplars as in [T. Jiang et al. 2021], we explore the weak subtitle

exemplars with unknown sign locations.

A recent progress in mouthing-based keyword spotting was presented by Trans-

potter [K. Prajwal et al. 2021]. This architecture comprises a transformer joint

encoder of visual features and phoneme features that is trained to regress both the

presence and location of the target keyword in a sequence from mouthing patterns.

Preliminary small-scale experimental results reported by Prajwal et al. [K. Prajwal

et al. 2021] demonstrated that Transpotter can perform visual keyword spotting

in signing footage. Here, we showcase its suitability for the large-scale annotation

regime, and further train it on sign language data to obtain a greater density of

sign annotations.

In this work, we demonstrate the additional value of pseudo-labelling [Yarowsky

1995; Lee et al. 2013] with a sign classifier as an effective mechanism for sign spot-

ting. While pseudo-labelling has been explored previously for category-agnostic

sign segmentation [Renz et al. 2021b] and temporal alignment of glosses [Koller

et al. 2017; K. L. Cheng et al. 2020] to the best of our knowledge, this is the



first use of pseudo-labelling for sign spotting by directly leveraging the predictions

of a sign classifier in combination with a pseudo-label filter constructed from the

subtitles themselves.

Sign Language Recognition. Efforts to develop visual systems for sign recog-

nition stretch back to work in 1988 from Tamaura and Kawasaki [Tamura and

Kawasaki 1988], who sought to classify signs from hand location and motion fea-

tures. There were later efforts to design hand-crafted features for sign recogni-

tion [Charayaphan and Marble 1992; Starner 1995; Vogler and Metaxas 1997;

Vogler and Metaxas 1998; Ong et al. 2012]. Deep convolutional neural networks

then came to dominate sign representation [Koller et al. 2016], particularly via 3D

convolutional architectures [Joze and Koller 2019; D. Li et al. 2019; Albanie et al.

2020; D. Li et al. 2020b] with extensions to focus model capacity around human

skeletons [J. Huang et al. 2018a] and non-manual features [H. Hu et al. 2021b].

In the domain of continuous sign language recognition, in which the objective is

to infer a sequence of sign glosses, prior work has explored HMMs [Bauer and

Hienz 2000; Koller et al. 2015a] in combination with Dynamic Time Warping

(DTW) [Jihai Zhang et al. 2014], RNNs [Cui et al. 2017] and architectures capable

of learning effectively from CTC losses [H. Zhou et al. 2020b; K. L. Cheng et al.

2020]. Recently, sign representation learning methods inspired by BERT [Devlin

et al. 2019] have shown the potential to learn effective representations for both

isolated [H. Hu et al. 2021a] and continuous [Zhenxing Zhou et al. 2021] recognition.

Koller [Koller 2020] provides an extensive survey of the sign recognition literature,

highlighting the extremely limited supply of datasets with large-scale vocabularies

suitable for continuous sign language recognition. In our work, we aim to take

a step towards addressing this gap by developing “densification” techniques for

constructing such datasets automatically.

Sign Language Translation. The task of translating sign language video to

spoken language sentences was first tackled with neural machine translation by

Camgöz et al. [N. C. Camgoz et al. 2018], who also introduced the PHOENIX-

Weather-2014T dataset to facilitate research on this topic. Several frameworks

have been proposed to employ transformers for this task [N. C. Camgoz et al.

2020b; K. Yin and Read 2020], with extensions to improve temporal modelling [D.

Li et al. 2020a], multi-channel cues [N. C. Camgoz et al. 2020a] and signer inde-



pendence [Jin and Z. Zhao 2021]. Related work has also sought to contribute to

progress on this task by exploiting monolingual data [H. Zhou et al. 2020a] and

gloss sequence synthesis [Moryossef et al. 2021; D. Li et al. 2021]. To date, various

works have shown promise on the PHOENIX-Weather 2014T [N. C. Camgoz et al.

2018] and CSL Daily [H. Zhou et al. 2020a] benchmarks. However, sign language

translation has not yet been demonstrated for a large vocabulary across multiple

domains of discourse. Differently from the works above, this paper focuses on

developing methods that are applicable to large/open vocabulary regimes.

Weakly-supervised Object Discovery and Localisation. Our approach is

also related to the rich body of literature on object cosegmentation [Rother et al.

2006; Joulin et al. 2010; G. Kim et al. 2011; Rubinstein et al. 2013], weakly super-

vised object localisation [M. H. Nguyen et al. 2009; Deselaers et al. 2010; Z. Shi

et al. 2013; C. Wang et al. 2014; Gokberk Cinbis et al. 2014], object colocalisa-

tion [Tang et al. 2014; Joulin et al. 2014] and unsupervised object discovery and

localisation [Cho et al. 2015; Vo et al. 2021]. Here, we propose an algorithm for

discovering and localising novel signs (i.e. for which we have no labelled examples),

but instead have weak supervision in the form of subtitles containing keywords of

interest. Moving beyond initial work that sought to learn from subtitles in an

aligned setting [Ali Farhadi and David Forsyth 2006], classical approaches for sign

discovery using subtitles have included Multiple Instance Learning where the sub-

titles are considered as positive and negative bags for a particular keyword [Buehler

et al. 2009; Kelly et al. 2010; Pfister et al. 2013] and a priori mining [Cooper and

Bowden 2009]. Differently from these works, we first bootstrap our sign discovery

process with sign spotting to both obtain initial candidates and learn robust sign

representations, then propagate these examples across video data by leveraging the

similarities between the resulting representations together with noisy constraints

imposed by the subtitle content.

7.3 Densification

Our goal is to leverage several ways of sign spotting to achieve dense annotation on

continuous signing data. To this end, we introduce both new sources of automatic

annotations, and also improve the existing sign spotting techniques. We start



by presenting two new spotting methods using in-domain exemplars: to mine

more sign instances with individual exemplar signs (Sec. 7.3.1) and to discover

novel signs with weak exemplar subtitles (Sec. 7.3.2). We also show the value

of pseudo-labelling from a sign recognition model for sign spotting (Sec. 7.3.3).

We then describe key improvements to previous work which substantially increase

the yield of automatic annotations (Sec. 7.3.4). Finally, we present our evaluation

framework to measure the quality of our sign spottings in a large-vocabulary setting

(Sec. 7.3.5). The contributions of each source of annotation are assessed in the

experimental results.

7.3.1 Mining more Spottings through In-domain Exem-

plars (E)

The key idea is: given a continuous signing video clip and a set of exemplar clips

of a particular sign, we can use the exemplars to search for that sign within the

video clip. In our case, the exemplars are obtained from other automatic spotting

methods (M∗, D∗, A, P), described in Sec. 7.3.3 and Sec. 7.3.4, and come from

the same domain of sign language interpreted data, i.e. the same training set. We

hypothesise that signs from the same domain are more likely to be signed in a

similar way and in turn help recognition; in contrast, for example, to signs from a

different domain such as dictionaries.

Formally, suppose we have a reference video V0 in which we wish to localise a

particular sign w, whose corresponding word occurs in the subtitle. We also have N

video exemplars V1, . . . , VN of the sign w. For each video, Vi, let Ci denote the set of

possible temporal locations of the sign w and let c = (f, p) ∈ Ci denote a candidate

with features f at temporal location p. We compute a score map between our

reference video V0 and each exemplar V1, . . . , VN by computing the cosine similarity

between each feature at each position in c0 ∈ C0 and (c1, c2, . . . cn) ∈ C1 × · · · × CN .

This results in N score maps of dimension |C0| × |Ci| for i = 1 . . . N . We then

apply a max operation over the temporal dimension of the exemplars, giving us N

vectors of length |C0|, which we call M1, . . . ,MN .

We subsequently apply a voting scheme to find the location of the common sign

w in V0. Specifically, we let L = 1
N

∑N
i=1 1(Mi>h) for a threshold h, where the



vector 1(Mi>h) takes the value 1 for entries of Mi which are greater than h and

0 otherwise. The candidate location of w in V0 is then c = (f, p) ∈ C0 where p

corresponds to the position of the maximum non-zero entry in the vector L (see

Fig. 7.3 for a visual illustration). If there are multiple maxima, we assign p to be

the midpoint of the largest connected component. If all entries in L are zero, we

conclude w is not present. We perform two variants of this approach using mean

and max pooling of the score maps (instead of voting); these are described in the

appendix. We note that for a given signing sequence, we only focus on finding

signs for words in the subtitle that have not been annotated by other methods.

7.3.2 Discovering Novel Sign Classes (N)

One limitation of our proposed method in Sec. 7.3.1 is that we are only able to

collect more sign instances from a closed vocabulary, determined by sign exemplars

obtained from other methods (described in Sec. 7.3.3 and Sec. 7.3.4). Here, we

extend our approach to localise novel signs, for which we have no exemplar signs

but whose corresponding word appears in the subtitle text. We follow our approach

described in Sec. 7.3.1, computing score maps between our reference video and

exemplar subtitles (instead of exemplar signs, see Fig. 7.3). We note that by

‘exemplar subtitle’, we are referring to the video frames corresponding to the

subtitle timestamps. Non-lexical signs, such as pointing signs or pause gestures,

are very common in sign language. To avoid annotating such non-lexical signs as

the common sign across V0 and V1, . . . , VN , we also choose N− negative subtitle

exemplars U1 . . . UN− presumed to not contain w (due to the absence of w in the

subtitle). We compute L+ and L− using the score maps from positive exemplars

V1, . . . , VN and negative exemplars U1, . . . , UN− respectively. We then let L =

L+−L−. Implementation details on the number of positive and negative exemplars

used can be found in the appendix.

7.3.3 Pseudo-labelling as a Form of Sign Spotting (P)

We propose to re-purpose a pretrained large-vocabulary sign classification model

(see vocabulary expansion in Sec. 7.3.5) for the task of sign spotting. Specifically,

we predict a sign class from a fixed vocabulary for each time step in a continuous

signing video clip. We subsequently filter the predicted signs to words which occur
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Figure 7.3: Sign spotting through exemplars to find instances of known
classes (E) and novel classes (N): By comparing a reference video V0 to a set
of exemplars (either sign exemplars for known sign class instances or weak subtitle
exemplars for novel sign class instances), we can find the common lexical sign in
the collection. We (1) form a set of score maps by calculating the cosine similari-
ties between reference and exemplar representations; (2) we perform a maximum
operation over the temporal dimension of exemplars; (3) we apply a voting-based
aggregation to find the temporal location of the commmon sign in V0. The dura-
tion of exemplar signs is fixed.

in the corresponding English subtitle. Similarly to [Varol et al. 2021], here the task

is to recognise the sign from scratch, without a query keyword. The subtitle is only

used as a post-processing step to filter out signs which are less likely performed

(due to absence in the subtitle).

7.3.4 Improving the Old (M∗, D∗)

Here, we briefly describe our improvements over the existing sign spotting tech-

niques, additional details are provided in the appendix.

Better Mouthings with an Upgraded KWS from Transpotter [K. Pra-

jwal et al. 2021]. In previous work [Albanie et al. 2021b], an improved BiLSTM-

based visual-only keyword spotting model of Stafylakis et al. [Stafylakis and Tz-

imiropoulos 2018] from [Momeni et al. 2020a] (named “P2G [Stafylakis and Tz-

imiropoulos 2018] baseline") is used to automatically annotate signs via mouthings.

In this work, we make use of the recently proposed transformer-based Transpotter

architecture [K. Prajwal et al. 2021], provided by the authors, that achieves state-

of-the-art results in visual keyword spotting on lipreading datasets. We follow the

procedure described in [Albanie et al. 2020; Albanie et al. 2021b] to query words

in the subtitle in continuous signing video clips.

Finetuning KWS on Sign Language Data through Bootstrapping. The vi-

sual keyword spotting Transpotter architecture in [K. Prajwal et al. 2021] is trained

on silent speech segments, which differ considerably from signer mouthings. In fact,



signers do not mouth continuously and sometimes only partly mouth words [Boyes

Braem and RL Sutton-Spence 2001]. In order to reduce this severe domain gap,

we propose a dual-stage finetuning strategy. First, we extract high-confidence

mouthing annotations using the pre-trained Transpotter from [K. Prajwal et al.

2021] on the BOBSL training data. We query for the words in the subtitle and

obtain the temporal localization of the word in the video. We finetune on this

pseudo-labeled data using the same training pipeline of [K. Prajwal et al. 2021],

where the spotted mouthings (word-video pairs) act as positive samples. For the

negative samples, we pair a given word with a randomly sampled video segment

from the dataset. As we observe the Transpotter to predict a large number of

false positives, we remedy this by sampling a larger number of negative pairs in

each batch. We also do a second round of fine-tuning by training on the pseudo-

labels from the finetuned model of the first stage. We did not achieve significant

improvements with further iterations.

Better Search Window with Subtitle Alignment with SAT [Bull et al.

2021a]. One challenge in using sign language interpreted TV broadcasts is that

the original subtitles are not aligned to the signing, but to the audio track. In [Al-

banie et al. 2021b], a signing query window is defined as the audio-aligned subtitle

timings together with padding on both sides to account for the misalignment. We

automatically align spoken language text subtitles to the signing video by using

the SAT model introduced in [Bull et al. 2021a], trained on manually aligned and

pseudo-labelled subtitles as described in [Albanie et al. 2021b]. By using subti-

tles which are better aligned to the signing, we reduce the probability of missing

spottings.

Better Keywords with Synonyms and Similar Words. To determine whether

a keyword belongs to a subtitle, previous works [Albanie et al. 2021b] check

whether the raw form, the lemmatised form, or the text normalised form (e.g.

two instead of 2 ) appears in the subtitle text. We notice that this is sub-optimal

as multiple words may correspond to the same sign, often due to (i) English syn-

onyms, (ii) identical signs for similar words, or (iii) ambiguities in spoken language.

For example, dad and father or today and now can be the same signs in BSL. In

this work, we investigate whether the automatic annotation yield could be im-

proved by querying words beyond the subtitle, by querying synonyms and similar



words to the words in the subtitle. We collect the additional words to query

through (i) English synonyms from WordNet [Feinerer and Hornik 2020], (ii) the

metadata present in online sign language dictionaries such as SignBSL1 [Momeni

et al. 2020b] and BSL Sign-Bank2 which provide a set of ‘related words’ for each

sign video entry; (iii) words with GloVe [Pennington et al. 2014] cosine similarity

above 0.9 to account for ambiguities in spoken language.

7.3.5 Evaluation Framework

Our framework consists of three stages: (a) a costly end-to-end classification train-

ing to learn sign category aware video features given an initial set of sign-clip an-

notation pairs; (b) a lightweight classification training given pre-extracted video

features for a large number of annotations; (c) a sliding window evaluation of the

trained lightweight model by comparing dense sign predictions against the sub-

titles (see Sec. 7.4.1). These stages are illustrated in Fig. 7.4. Note that the

annotations we refer to are always automatically localised sign spottings from con-

tinuous videos using subtitle information. The motivation for the video backbone

and lightweight classifier is purely related to computational costs. Unlike tradi-

tional video recognition datasets, we work with untrimmed video data of 1400

hours, where the set of sign-clip pairs is not fixed. Instead, our goal is to increase

the number of sign-clip pairs within the continuous stream, and assess the quality

of the expanded annotation yield on the proxy task of continuous sign language

recognition. Next, we describe the training stages for the video backbone and the

lightweight classifier.

Improving the I3D Feature Extractor through Vocabulary Expansion.

Following previous works [Joze and Koller 2019; D. Li et al. 2019; Albanie et al.

2020; Albanie et al. 2021b], we use the I3D spatio-temporal convolutional archi-

tecture to train an end-to-end sign recognition model. We input 16 consecutive

RGB frames and output class probabilities. The details about optimisation are

provided in the appendix. As explained above, this model forms the basis of sign

video representation which corresponds to the spatio-temporally pooled latent em-

bedding before the classification layer. The prior work of [Albanie et al. 2021b]
1www.signbsl.com
2bslsignbank.ucl.ac.uk

www.signbsl.com
bslsignbank.ucl.ac.uk


8K
 class probabilities

Video feature 
extractor

Input: video 
(16 frames 224x224)

1024-d feature

fc(256, 1064)

fc(512, 256)

fc(1024, 512)

L
R

elu(0.2)

L
R

elu(0.2)

L
R

elu(0.2)

fc(1024, 1024)
Linear classifier

Lightw
eight M

LP
 

classifier

(a) Initial end-to-end training 
[670K M+D annotations]

(b) Iterative classifier only training 
 [From 187K to 5.19M annotations]

(c) Sliding window evaluation 
Lightw

eight 
classifier

…
sentence boundaries

today channel island british france

1024-d feature

1024-d feature

8K
 class probabilities

Lightw
eight M

LP
 

classifier

Video feature 
extractor

Figure 7.4: Evaluation framework: (a) Video features are obtained by train-
ing an I3D architecture end-to-end given M + D annotations from [Albanie et al.
2021b]. The I3D ingests 16-frames of video and has a linear classifier for 8K sign
categories. The end-to-end training is a costly procedure which is not affordable
to repeat for each set of our new sign spottings that are on the order of several
million training samples. (b) As new sets of spottings are generated, a light weight
MLP classifier is trained on the pre-extracted I3D features. This relatively inex-
pensive training procedure means that we benefit from new annotations without
the expense of end-to-end training. (c) The MLP is applied in a sliding window
fashion to the signing sequence to generate sign predictions.

trains this classifier on the BOBSL dataset (see Sec. 7.4.1) with 2K categories

obtained through the vocabulary of mouthing spottings. As a first step, we per-

form a vocabulary expansion and construct a significantly increased vocabulary of

8K categories. This is achieved by including each sign that has at least 5 train-

ing spottings above 0.7 confidence from both mouthing (M) and dictionary (D)

annotations. The confidence for the mouthing annotation corresponds to the prob-

ability that a text keyword (corresponding to the sign) is mouthed at a certain

time frame, as computed in [Albanie et al. 2020]. The confidence for the dictionary

annotation corresponds to the cosine similarity (normalised between 0-1) between

the representations of a dictionary clip of the sign and the continuous signing

at each time frame, as in [Momeni et al. 2020b]. The resulting M+D training

set comprises 670K annotations, with a long-tailed distribution. Furthermore, we

note that the categories are noisy where multiple categories may correspond to

the same sign, and vice versa. Despite this noise, we empirically show that this

model provides better performance than its 2K-vocabulary counterpart. We use

our improved I3D model for two purposes: as the frozen feature extractor and as

the source of pseudo-labelling for sign spotting (see Sec. 7.3.3).

Lightweight Sign Recognition Model. Following [Varol et al. 2021], we opt

for a 4-layer MLP module (with one residual connection) to assess the quality of

different sets of annotations. Given pre-extracted features, this model is trained



for sign recognition into 8K categories. We note that we do not train on a larger

vocabulary to avoid the presence of many singletons in the training set. The

efficiency of the MLP allows faster experimentation to analyse the value of each of

our sign spotting sets. The input is one randomly sampled feature around the sign

spotting location (the receptive field of one feature 16 frames). The MLP weights

are randomly initialised. Additional training and implementation details are given

in the appendix.

7.4 Experiments

We start by describing our dataset and evaluation metrics (Sec. 7.4.1). We then

present experimental results on the contribution of each source of annotation and

show qualitative examples (Sec. 7.4.2).

7.4.1 Data and Evaluation Protocol

BOBSL [Albanie et al. 2021b] is a public dataset consisting of British Sign Lan-

guage interpreted BBC broadcast footage, along with English subtitles correspond-

ing to the audio content. The data contains 1,962 episodes, which have a total

duration of 1,467 hours spanning 426 different TV shows. BOBSL has a total

1,193K subtitles covering a total vocabulary of 78K words. We note that in this

work we use the word subtitle to refer to the processed BOBSL sentences from [Al-

banie et al. 2021b] as opposed to the raw subtitles. There are a total of 39 signers

in the dataset. Further dataset statistics can be found in [Albanie et al. 2021b].

For a subset of 36 episodes in BOBSL, referred to as SENT-TEST in [Albanie

et al. 2021b], the English subtitles have been manually aligned temporally to the

continuous signing video. We make use of this test set to evaluate the quality

of our predicted automatic annotations. SENT-TEST covers a total duration of

31 hours and contains 20,870 English subtitles. The total vocabulary of English

words is 13,641, of which 5,604 are singletons. The 3 signers in SENT-TEST are

different to the signers in the training set, this enables signer-independent BSL

recognition to be evaluated.

Evaluation protocol. Given an English subtitle and the temporally aligned



Subtitle: 	 	 I hope they taste really good!

Lemmatise, no stopwords (L+NS): 	 hope taste really good 

MLP predictions: 	                             do hope miss mouth taste delicious delicious good do do do

L+NS+combine synonym classes:	 hope miss mouth taste good

Recall = 0.75  
(MLP predicts 3 out of 4 words in subtitle)

 
IoU = 0.5  
(intersection=3, union=6)

Subtitle: 	 	 So one of the first indicators of spring?

Lemmatise, no stopwords (L+NS): 	 one first indicator spring


MLP predictions:  	                              receive green year grow sell true start start start spring spring spring spring one one fast charles

L+NS+combine synonym classes:	 receive green year spring sell true first one fast charles

Recall = 0.75  
(MLP predicts 3 out of 4 words in subtitle)

 
IoU = 0.27  
(intersection=3, union=11)

Figure 7.5: Evaluation illustration on sample prediction: We illustrate the
processing applied to the predicted sign sequence from the MLP predictions and
corresponding English subtitle for calculating our metrics. As the MLP model
predicts one sign per time-step, some predictions are repeated and irrelevant words
appear at transition periods between signs, decreasing the IoU. Some signs are not
predicted as they are not signed, showing the limitations of using the subtitle to
measure performance.

continuous signing video clip, we evaluate our predicted signs for the clip using

(i) intersection over union (IoU); (ii) recall between signs and the English word

sequence; and (iii) temporal coverage: this is defined as the proportion of frames

in the clip assigned to signs that occur in the word sequence, where a sign is given

a fixed duration of 16 frames (for 25Hz video). Note that none of these metrics

depend on the word order of the English subtitle, only the words it contains. All

metrics are rescaled from the range 0-1 to 0-100 percentage for readability.

For this evaluation, stop words are filtered out since often they are not signed.

This reduces the number of test subtitles from 20,870 to 20,547: subtitles such

as “is it?”, “Oh!”, “but no” are removed. The sign and word sequences are also

lemmatised. We also remove repetitions from the predicted sign sequence and

allow the prediction of synonyms of words in the English subtitle. This processing

is highlighted in Fig. 7.5, where the IoU and recall are computed for a pair of

predicted signs and English text. While this evaluation is suboptimal due to the

simplified word-sign correspondence assumption, it tests the capacity of the sign

recognition model in a large-vocabulary scenario, necessary for open-vocabulary

sign language technologies.

Note, the predicted signs for a clip can be produced in two ways. In the first

way, the signs are obtained from the automatic annotations using knowledge of the

content of the English subtitle – we refer to these as Spottings. In the second, signs

are predicted directly from the clip using the MLP sign predictions, without access

to the corresponding English subtitle. These are referred to as MLP predictions.

Spottings are evaluated using all the words; this metric is important to monitor

how dense we can automatically annotate the data. The MLP evaluation is limited



Table 7.1: Comparison of I3D video features: We highlight the improved
performance of I3D on the test set (SENT-TEST) when trained on a larger vo-
cabulary (8K instead of 2K) with more samples (670K instead of 426K).

I3D predictions
(subtitle independent)

Annot. source Num. I3D train annot. Vocab. size Recall IoU Coverage
M [Albanie et al. 2020]+D [Momeni et al. 2020b] 426K 2K 25.5 6.4 15.5
M [Albanie et al. 2020]+D [Momeni et al. 2020b] 670K 8K 26.3 7.9 16.3

Table 7.2: Improved mouthing and dictionary spottings: We evaluate dif-
ferent sets of spottings and their respective MLP predictions. M [K. Prajwal et al.
2021] shows our finetuned version for all the rows in the last block. We quantify
the effects of subtitle alignment and querying synonyms. We also show the oracle
performance and a translation baseline.

Training set Spottings [full] MLAP predictions [8K]
Subtitle full #ann. #ann. (subtitle dependent) (subtitle independent)

Annotation source alignment Synonyms vocab [full] [8K] Recall IoU Coverage Recall IoU Coverage
Oracle - - - - - - 86.7 86.3 55.2
Translation baseline [Albanie et al. 2021b] - - - - - - 11.7 8.3 7.6
M [Albanie et al. 2020] 13.6K 197K 187K 2.5 2.2 1.3 15.1 3.2 8.7
M [K. Prajwal et al. 2021] (no finetuning) 21.5K 725K 661K 9.4 8.3 4.9 20.4 4.8 11.9
M [K. Prajwal et al. 2021] 18.6K 445K 412K 7.1 6.5 3.9 23.6 4.8 13.8
M [K. Prajwal et al. 2021] (M∗) ✓ 19.6K 598K 552K 8.9 8.2 4.9 27.4 6.3 16.7
M [K. Prajwal et al. 2021] ✓ ✓ 19.6K 1.38M 1.25M 11.8 10.4 6.1 25.3 6.2 16.3
D [Momeni et al. 2020b] 4.4K 482K 482K 6.5 6.3 3.7 24.0 7.2 15.1
D [Momeni et al. 2020b] ✓ 4.5K 535K 535K 7.0 6.9 4.0 24.2 7.3 15.3
D [Momeni et al. 2020b] (D∗) ✓ ✓ 5.0K 1.40M 1.39M 12.5 11.6 7.0 26.0 7.3 16.9
M∗+ D∗ ✓ ✓(D-only) 20.9K 2.00M 1.94M 19.0 17.6 10.5 29.0 7.9 18.4
M∗+ D∗+ A [Varol et al. 2021] ✓ ✓(D-only) 20.9K 2.43M 2.37M 21.9 20.1 11.8 29.6 9.1 19.0

to the fixed classification vocabulary (of size 8K in our experiments). We note that

when different annotations are combined, the sign spotting methods are applied

independently.

7.4.2 Results

Comparison of Video Features. By finetuning our Kinetics pretrained I3D

model on BOBSL M+D annotations from [Albanie et al. 2021b] using an 8K

vocabulary instead of a 2K vocabulary, we improve predictions on the test set,

as shown in 7.1. We increase the recall from 25.5 to 26.3 and the coverage from

15.5 to 16.3. We therefore use the 8K M+D model for the rest our experiments

as the frozen feature extractor. We note that we restrict the M+D annotations to

the high-confidence ones (over 0.8 threshold) used for the I3D baseline in [Albanie

et al. 2021b], as these present an appropriate signal-to-noise ratio. We use the

same threshold for subsequent automatic annotations unless stated otherwise.

Oracle. As the MLPs are trained on a restricted 8K vocabulary, it is not possible

to predict the full vocabulary of 13,641 words present in the test set subtitles.

Furthermore, not all words in the subtitle are signed and vice versa. This means



a recall, IoU and coverage of 100% is not achievable between predicted signs and

English subtitle words. However, we propose an oracle in Tab. 7.2 whereby we

measure the recall and IoU assuming each word in the subtitle, which either falls

within the 8K vocabulary or corresponds to a synonym of a word in the 8K vocab-

ulary, is signed and correctly predicted. The oracle achieves a recall of 86.7 and

IoU of 86.3. For the coverage metric, we assume each correctly predicted sign has

a duration of 16 frames and no signs overlap. The resulting oracle coverage is 55.2.

This low coverage is partly due to the signer pausing within subtitles and also due

to the presence of non-lexical signs. In fact, the percentage of fully lexical signs in

three other sign language corpora (Auslan [Johnston 2012], ASL [Johnston 2012]

and LSF [Belissen et al. 2020b]) is estimated to be only 70-85% of total signing.

Translation Baseline. Although the goal in this work is not translation, but

achieving dense annotations, we can nevertheless compare our MLP predictions

to the translation baseline in [Albanie et al. 2021b]. Using the test set translation

predictions from this model, we perform the same processing as highlighted in

Fig. 7.5 to calculate our metrics. As shown in Tab. 7.2, all our simple MLP models

clearly outperform the transformer-based translation model used in [Albanie et al.

2021b], demonstrating that we are able to recognise more signs in the English

subtitle.

Improving Mouthing and Dictionary Spottings. As shown in Tab. 7.2, by

using the Transpotter [K. Prajwal et al. 2021] for spotting mouthings M, our yield

of total annotations triples from 197K to 725K. The quality of these new anno-

tations is reflected in the increased performance of the MLP: the recall increases

from 15.1 to 20.4 and the coverage from 8.7 to 11.9. Finetuning the keyword spot-

ter on sign language data through pseudo-labelling also helps considerably despite

the drop in the number of training annotations since there are less false positives;

recall increases from 20.4 to 23.6 and coverage from 11.9 to 13.8. Subtitle align-

ment improves the yield of both mouthing and dictionary annotations, as shown

in Tab. 7.2. This translates to a significant boost for mouthings on the MLP

performance; the recall increases from 23.6 to 27.4 and the coverage from 13.8 to

16.7. For dictionary annotations, the improvement by using aligned subtitles is

less striking. By querying synonyms when searching for mouthings, the yield more

than doubles. However, these additional annotations seem to be quite noisy as



Subtitle 1: “I'm a teeny tiny bit claustrophobic, so if you  
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Figure 7.6: Discovering novel sign classes (N): For two pairs of continuous
signing sentences, we plot the score maps (as described in Sec. 7.3.1) between
their feature sequences. We highlight the ability of our approach to spot novel
sign classes.

they decrease the performance of our MLP. Due to the nature of sign language

interpretation, it is possible that signers are far more likely to mouth a word which

is actually in the written subtitle than a synonym of that word. We therefore do

not query synonyms for mouthing spottings. For dictionary spottings, we observe

the opposite effect. By incorporating synonyms, the yield of dictionary spottings

more than doubles and the recall of the MLP predictions also increases from 24.2

to 26.0. We denote our best performing mouthing and dictionary spottings with

M∗ and D∗, respectively. Adding attention spottings from [Albanie et al. 2021b]

(with a threshold of 0) adds around 400K additional annotations and boosts the

MLP performance; increasing recall from 29.0 to 29.6 and coverage from 18.4 to

19.0, compared to the oracle recall of 86.7 and coverage of 55.2.

Sign Recognition as a Form of Pseudo-labelling. Pseudo-labels P are a

source of over 1M new annotations (when using a threshold of 0.5) on top of our

best M∗, D∗, A spottings. As shown in Tab. 7.4, they greatly increase the spottings

recall from 21.9 to 25.4 and coverage from 11.8 to 13.9, while only marginally

increasing the recall and coverage for MLP predictions. As the pseudo-labels come

from our 8K I3D model in Tab. 7.1 whose frozen features are also used for training

the MLP, P may not be providing additional information for our downstream

evaluation. Nevertheless, they provide a great source of additional spottings (not

found by previous methods) for our goal of dense annotation.

Mining more Examples of Known and Novel Sign Classes with In-



Table 7.3: Ablation on mining exemplar-based spottings for known signs
E: We perform different ablations for mining known signs which have been unan-
notated by previous methods (M∗, D∗, A, P). We experiment with the source of
exemplar data (same episode, same signer, all data), the confidence of exemplar
signs (0,0.5,0.8), the number of samples of exemplar data (5,10,20) and the pooling
mechanism (average, max, vote). We evaluate on the test set (SENT-TEST).

Training set Spottings [full] MLP predictions [8K]
Ann. ex. ex. ex. ex. full #ann. #ann. (subtitle dependent) (subtitle independent)
src. data thres # pooling vocab [full] [8K] Recall IoU Coverage Recall IoU Coverage
E same ep. 0 var avg 11.6K 869K 833K 10.4 9.6 5.8 25.1 6.9 15.3
E same signer 0 20 avg 15.9K 505K 421K 7.8 7.5 4.4 23.1 5.6 14.2
E all 0 20 avg 16.7K 351K 252K 5.7 5.7 3.3 21.5 5.1 13.4
E all 0.5 20 avg 16.6K 370K 261K 5.9 5.8 3.4 21.9 5.2 13.5
E all 0.8 20 avg 16.6K 458K 358K 7.4 7.3 4.3 25.2 6.2 15.7
E all 0.8 20 max 15.4K 1.48M 1.38M 20.2 18.6 10.8 27.6 8.4 17.7
E all 0.8 10 max 15.4K 1.07M 982K 15.2 14.0 8.3 27.9 8.0 17.7
E all 0.8 5 max 15.3K 740K 664K 10.7 10.0 6.0 27.6 7.6 17.4
E all 0.8 20 vote 15.9K 1.76M 1.63M 25.8 23.3 13.5 28.4 8.5 18.1
E all 0.8 10 vote 15.8K 1.32M 1.21M 20.0 18.1 10.7 28.4 8.3 18.1

Table 7.4: Pseudo-label spottings P & Exemplar-based sign spottings for
known E and novel classes N: We highlight the boost in annotations by adding
our pseudo-label annotations (P) as well as exemplar-based spottings of known (E)
and novel (N) classes. We evaluate Spottings and MLP predictions on the test set
(SENT-TEST). For the novel classes, we only show the evaluation of spottings
since these are beyond the 8K training vocabulary of the MLP.

Training set Spottings [full] MLP predictions [8K]
full #ann. #ann. (subtitle dependent) (subtitle independent)

Annotation source vocab [full] [8K] Recall IoU Coverage Recall IoU Coverage
M∗ + D∗ + A [Varol et al. 2021] + P 20.9K 3.64M 3.56M 25.4 23.5 13.9 29.8 8.9 19.2
M∗ + D∗ + A [Varol et al. 2021] + P + E 20.9K 5.40M 5.19M 45.3 40.7 23.3 30.7 9.5 19.8
M∗ + D∗ + A [Varol et al. 2021] + P + E + N 24.8K 5.47M - 45.6 40.9 23.4 - - -

domain Exemplars. By explicitly querying words in the subtitle text which

are not present in our annotations, we can obtain significantly more annotations.

Tab. 7.3 shows multiple methods to use exemplar signs to find additional annota-

tions for these signs. The best performing method takes spotting exemplars from

across the whole training set, irrespective of signer or episode, and uses the voting

scheme described in Sec. 7.3.1 to localise signs. By using 20 spotting exemplars,

we acquire 1.63M additional annotations. An MLP model trained only on these

additional annotations achieves a recall of 28.4 and coverage of 18.1. Tab. 7.4

illustrates the impact of combining these additional annotations from spotting ex-

emplars to M∗, D∗, A and P annotations. With the additional exemplar-based

annotations E, recall increases from 29.8 to 30.7 and coverage increases from 19.2

to 19.8, where the oracle recall and coverage are 86.7 and 55.2. Furthermore,

by mining instances of novel sign classes N (see Fig. 7.6), we increase our total



vocabulary to 24.8K and total number of annotations to 5.47M.

7.5 Conclusion

Progress in sign language research has been accelerated in recent years due to

the availability of large-scale datasets, in particular sourced from interpreted TV

broadcasts. However, a major obstacle for the use of such data is the lack of avail-

able sign level annotations. Previous methods [Albanie et al. 2020; Momeni et al.

2020b; Varol et al. 2021] only found sparse correspondences between keywords in

the subtitle and individual signs. In our work, we propose a framework which

scales the number of confident automatic annotations from 670K to 5.47M (which

we make publicly available). Potential future directions for research include: (1)

increasing our number of annotations by incorporating context from surrounding

signing to resolve ambiguities; (2) investigating linguistic differences between spo-

ken English and British Sign Language such as the different word/sign ordering;

(3) leveraging our automatic annotations for sign language translation.
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Abstract

The goal of this work is to detect and recognize sequences of letters signed

using fingerspelling in British Sign Language (BSL). Previous fingerspelling

recognition methods have not focused on BSL, which has a very different

signing alphabet (e.g., two-handed instead of one-handed) to American Sign

Language (ASL). They also use manual annotations for training. In contrast

to previous methods, our method only uses weak annotations from subtitles

for training. We localize potential instances of fingerspelling using a sim-

ple feature similarity method, then automatically annotate these instances

by querying subtitle words and searching for corresponding mouthing cues

from the signer. We propose a Transformer architecture adapted to this

task, with a multiple-hypothesis CTC loss function to learn from alterna-

tive annotation possibilities. We employ a multi-stage training approach,

where we make use of an initial version of our trained model to extend and

enhance our training data before re-training again to achieve better perfor-

mance. Through extensive evaluations, we verify our method for automatic

annotation and our model architecture. Moreover, we provide a human ex-

pert annotated test set of 5K video clips for evaluating BSL fingerspelling

recognition methods to support sign language research.

∗Equal contribution.



Subtitle text with
 fingerspelled word “He was so successful that, in 1871, he purchased Astley's thriving amphitheatre in London.” 

Letters which are 
fingerspelled

Continuous signing 
frame sequence

A S Y

Figure 8.1: Fingerspelling recognition. We study the task of recognising a se-
quence of BSL fingerspelled letters in a continuous signing window in sign language
interpreted TV broadcast data. We exploit the accompanying English subtitles to
automatically collect training data. However, the task remains very challenging
as (i) the signer may fingerspell only a subset of the letters – as shown above,
although the subtitle contains the word ‘Astley’, only the letters ‘A’, ‘S’ and ‘Y’
are fingerspelled – and (ii) due to occlusions from the hands, different letters can
visually look very similar.

8.1 Introduction

Fingerspelling in signed languages is a means to encode words from the surrounding

written language into sign language via a manual alphabet, i.e. one sign per letter.

Words from a written language with no known sign may be fingerspelled, such

as names of people and places. Additionally, some signs are derived from finger-

spelled words, for example, initialized signs in BSL such as ‘F’ for ‘father’ or ‘KK’

for ‘kitchen’ [Rachel Sutton-Spence and Woll 1999]. Padden & Gunsauls [Pad-

den and Gunsauls 2003] estimate that signers fingerspell 12-35% of the time in

ASL. Within the BSL videos used in this work [Albanie et al. 2021b], we estimate

roughly 5-10% based on the duration of automatically detected fingerspelling con-

tent. Consequently, it is important to incorporate automatic fingerspelling recogni-

tion methods to be able to exhaustively transcribe signs in continuous sign language

videos.

Some sign languages, such as ASL and LSF, use a one-handed manual alphabet,

and others, including BSL and Auslan, use a two-handed manual alphabet [Schem-

bri and Johnston 2007]. One-handed manual alphabets typically do not involve

significant wrist movements, while two-handed fingerspelling resembles other lexi-

cal signs, making it relatively more difficult to detect fingerspelling beginning and

end times from a longer signing sequence. The presence of two-hand movements

further results in occlusions, making it challenging to differentiate between certain

characters, e.g. especially vowels.

In this work, we focus on BSL, i.e. the more challenging two-handed fingerspelling.



Given a sign language video, our goal is to temporally locate the fingerspelling

segments within the video (i.e. detection) and to transcribe the fingerspelled letters

to text (i.e. recognition). To this end, we design a Transformer-based model that

jointly performs both detection and recognition. Our key contribution lies in the

data collection procedure used to automatically obtain training data for this task,

which is applicable to any sign language videos that have approximately-aligned

subtitle translations. We also provide the first large-scale benchmark for BSL

fingerspelling recognition based on the recently released BOBSL dataset [Albanie

et al. 2021b]. Our experiments on this benchmark demonstrate promising results

with a 53.3 character error rate on this challenging task while only using weak

supervision.

Previous works building fingerspelling datasets rely on manual annotation, either

by expert annotators resulting in limited data [B. Shi et al. 2018], or by crowdsourc-

ing noisy large-scale annotations [B. Shi et al. 2019]. In contrast to these works on

ASL fingerspelling, we introduce a practical methodology to automatically anno-

tate fingerspelling in the presence of subtitled sign language video data, allowing

to scale up the data size, and potentially to be applicable to other sign languages.

Starting from a small number of manually annotated fingerspelling exemplars, we

use an embedding space to find numerous similar instances of fingerspelling in the

corpus. To annotate these instances, we exploit the observation that signers often

simultaneously mouth the words (i.e. silent speech with lip movements) which they

fingerspell. We obtain an initial set of annotations by querying potential words

from the subtitles, especially proper nouns, and identifying mouthing cues [Al-

banie et al. 2020; K. Prajwal et al. 2021] which also coincide with fingerspelling

instances. This initial set of annotations are further extended and enhanced by a

pseudolabeling step, also making use of subtitles (see Sec. 8.4).

A key challenge with training through automatic annotations is label noise. For

example, the mouthing model [K. Prajwal et al. 2021] may spot a single word,

while the fingerspelling contains multiple words, such as name-surname pairs. In

some other cases, the mouthing model may fail, associating the wrong word in

the subtitle with the fingerspelling segment. Also, some letters of the word may

be skipped within fingerspelling as illustrated in Fig. 8.1. To account for this

uncertainty, we implement a multiple-hypotheses version of the CTC loss [Graves



et al. 2006] (MH-CTC) where we consider all nouns from the subtitle, as well as

bigrams and trigrams, as potential targets.

Our main contributions are: (i) Training a BSL fingerspelling detection and recog-

nition model using only weak labels from subtitles, mouthing cues, and a small

number (115) of manual fingerspelling exemplars; (ii) Employing multiple hy-

potheses from the subtitle words within the CTC loss to train with noisy la-

bels; (iii) Demonstrating advantages of a pseudolabeling step incorporating the

subtitle information; and (iv) Providing a large-scale manually annotated bench-

mark for evaluating BSL fingerspelling recognition, released for research purposes.

Please check our website for more details: https://www.robots.ox.ac.uk/~vgg/

research/transpeller.

8.2 Related work
Our work relates to four themes in the research literature: the broader topics of

sign language recognition and learning sign language from weak/noisy annotation,

and the more directly related literature on spotting mouthings and fingerspelling

recognition.

Sign language recognition. Building on the pioneering 1988 work of Tamura

and Kawasaki [Tamura and Kawasaki 1988], early approaches to automatic sign

recognition made use of hand-crafted features for motion [M.-H. Yang et al. 2002]

and hand shape [Fillbrandt et al. 2003; Vogler and Metaxas 2003]. To model the

temporal nature of signing, there has also been a rich body of work exploring the

use of Hidden Markov Models [Starner 1995; Vogler and Metaxas 2001; Fang et al.

2004; Cooper et al. 2011; Koller et al. 2016; Koller et al. 2017] and Transform-

ers [N. C. Camgoz et al. 2020b; De Coster et al. 2020]. One notable trend in

prior work is the transition towards employing deep spatiotemporal neural net-

works to provide robust features for recognition. In this regard, the I3D model

of [Joao Carreira and Zisserman 2017] has seen widespread adoption, achieving

strong recognition results on a range of benchmarks [Joze and Koller 2019; D. Li

et al. 2019; Albanie et al. 2020; D. Li et al. 2020b]. In this work, we likewise

build our approach on strong spatiotemporal video representations, adopting the

Video-Swin Transformer [Z. Liu et al. 2022] as a backbone for our model.

https://www.robots.ox.ac.uk/~vgg/research/transpeller
https://www.robots.ox.ac.uk/~vgg/research/transpeller


Learning sign language from weak/noisy annotation. Given the paucity

of large-scale annotated sign language datasets, a range of prior work has sought to

leverage weakly aligned subtitled interpreter footage as a supervisory signal [Cooper

and Bowden 2009; Buehler et al. 2009; Pfister et al. 2014; Momeni et al. 2020b] for

sign spotting and recognition via apriori mining [Agrawal et al. 1993] and multiple

instance learning [Dietterich et al. 1997]. Similarly to these works, we likewise aim

to make use of subtitled signing footage. However, we do so in order to detect and

recognize fingerspelling in a manner that allows for scalable training. To the best

of our knowledge, this approach has not been considered in prior work.

Spotting mouthings in sign language videos. Signers often mouth the

words that they sign (or fingerspell) [Rachel Sutton-Spence 2007]. The recent

advancements in visual keyword spotting [K. Prajwal et al. 2021; Stafylakis and

Tzimiropoulos 2018; Momeni et al. 2020a] have enabled the automatic curation

of large-scale sign language datasets by spotting a set of query words using the

mouthing cues and matching them with the corresponding sign segment. The

state-of-the-art architecture for the visual KWS task is the Transpotter [K. Pra-

jwal et al. 2021], which we use in Sec 8.4.1 to obtain our initial set of automatic

fingerspelling annotations. Our fingerspelling architecture also partly takes inspi-

ration from the Transpotter (and more broadly from prior works for text spotting

that detect words and learn to read them via CTC [H. Li et al. 2017; Borisyuk

et al. 2018]), wherein we process video features with a single Transformer encoder

and then employ multiple heads to solve related tasks such as detection and clas-

sification with a [CLS] token. In this work, we add also add a recognition head

supervised by a novel loss function. We also show the benefits of our multi-stage

training pipeline in training this model when we only have weak supervision.

Fingerspelling recognition and detection. Early work on automatic finger-

spelling recognition explored the task of classification under fairly constrained

settings, focusing on isolated signs and limited vocabularies (e.g. 20 words [Goh

and Holden 2006], 82 words [Ricco and Tomasi 2009] and 100 words [Liwicki and

Everingham 2009]). Kim et al. propose to consider instead a “lexicon-free” set-

ting which they tackle with frame-level classifiers in combination with segmental

CRFs on a newly introduced dataset, of 3,684 American Sign Language (ASL)

fingerspelling instances [Taehwan Kim et al. 2017]. Moving towards more chal-



lenging data, the ChicagoFSWild (7304 fingerspelling sequences across 160 signers

annotated by ASL students) [B. Shi et al. 2018] and ChicagoFSWild+ (55,232 fin-

gerspelling sequences signed by 260 signers annotated by crowdsourcing) [B. Shi

et al. 2019] datasets sourced from YouTube and Deaf social media target greater

diversity and visual variation.

From a modeling perspective, Pugealt and Bowden employ random forests on

depth and intensity images for real-time recognition of 24 fingerspelled letters [Pugeault

and Bowden 2011]. Shi et al. demonstrate the benefits of using a signing hand de-

tector for fingerspelling recognition without frame-level labels [B. Shi and Livescu

2017], motivating later work to attain this benefit automatically through visual

attention without an explicit region detector [B. Shi et al. 2019]. Other work

has explored the feasibility of using synthetic hand training data to fine-tune a

CNN for isolated Irish Sign Language (ISL) fingerspelling recognition [Fowley and

Ventresque 2021].

More closer to our work, several works have considered detecting the temporal

location of fingerspelling in addition to recognition. This includes efforts to seg-

ment signing into sign types (classifiers, lexical signs, and fingerspelling) prior to

recognition [Yanovich et al. 2016], as well as systems for fingerspelling detection

supervised with segment boundaries [B. Shi et al. 2021]. The recently proposed

FSS-Net learns joint embeddings to enable fingerspelling search within and across

videos [B. Shi et al. 2022b]. In contrast, our work is weakly supervised with noisy,

automatic annotations. It is weakly supervised in the sense that the model lacks

access to ground truth fingerspelling boundaries at training, while the annotation

is noisy in the sense that it is derived from subtitles from which the signing is

produced as a translation, rather than a transcription.

8.3 Fingerspelling detection and recognition
In this section, we introduce Transpeller, our Transformer-based model to recog-

nize and detect fingerspelling (Sec. 8.3.1). Our model is trained only on automat-

ically curated data. In order to circumvent this label noise, we also propose a new

loss function in Sec. 8.3.2.



Subtitle text with
 fingerspelled word

“I’m very excited, I’ve got my bag packed, my hat, my 
passport, all we need now is Edward.” 

Continuous signing 
frame sequence
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Figure 8.2: Transpeller architecture. Given a short clip of a signer, we extract
features from a visual front-end pre-trained on the sign language recognition task.
We project these features to a desired hidden dimension and add positional encod-
ings before encoding these feature vectors using a transformer encoder. We use
three heads on top of the transformer outputs to predict if the clip contains fin-
gerspelling (classification prediction), and if so, where it is in the clip (localization
prediction) and what it is (recognition prediction). The subtitle shown on the left
is used for curating the training data and is shown here for illustrative purposes.

8.3.1 The Transpeller architecture
Our model ingests a video clip of a signer, encodes it with a Transformer en-

coder [Vaswani et al. 2017], and produces three outputs with each of its prediction

heads: (i) a classification head that predicts if the given video clip contains finger-

spelling, (ii) a localization head that produces per-frame probabilities indicating

where the fingerspelling is in the clip, (iii) a recognition head that produces a se-

quence of letter probabilities indicating what is being fingerspelled. We illustrate

this architecture in Figure 8.2.

Visual backbone. Our input is a sequence of RGB frames constituting a short

clip of a signer. In order to extract the visual features, we follow prior sign-

language works [Bull et al. 2021b; Momeni et al. 2022; Varol et al. 2021] and use

a pre-trained sign classification model. The sign classification model used in prior

works is an I3D model [Bull et al. 2021b; Momeni et al. 2022; Varol et al. 2021]

pre-trained on Kinetics [Kay et al. 2017] and finetuned using a sign classification

objective. We replace the I3D with a relatively modern Video-Swin-S [Z. Liu et

al. 2022] architecture and finetune it for the sign classification task in a similar

fashion. We pre-extract the features for all our videos and save them at a temporal

stride of 4. The Transpeller operates on these feature vectors V ∈ RT ×df .

Transformer Encoder. Given a sequence of visual feature vectors V ∈ RT ×df ,

we first use two fully-connected layers (FC) to project the feature dimension to d,

which is the hidden dimension of the transformer encoder. We add the temporal

positional encodings and prepend this sequence with a learnable [CLS] token em-



bedding (such as in BERT [Devlin et al. 2019] and ViT [Dosovitskiy et al. 2021]).

We encode the temporal information of this sequence by passing it through a

Transformer encoder consisting of N layers:

Venc = encoder([CLS]; [FC(V ) + PE1:T ]) ∈ R(1+T )×d.

Prediction heads. The [CLS] output feature vector Venc(1) serves as a aggregate

representation for the entire input video clip. An MLP head for binary classifica-

tion, fc is attached to Venc(1) to predict the probability of a fingerspelling segment

being present in the input video:

ŷcls = σ(fc(Venc(1))) ∈ R1,

where σ denotes a sigmoid activation. To localize the fingerspelling segment, we

attach a second MLP head fl that is shared across the encoded video feature

time-steps Venc(2:T +1):
ŷloc = σ(fl(Venc(2:T +1))) ∈ RT .

The output yloc
t at each feature time-step t ∈ T indicates the probability of the

time-step t being a part of a fingerspelling segment. In order to recognize what

is being fingerspelt, a third MLP head fr is attached in a similar fashion to fl to

predict C letter probabilities at each time-step:

ŷrec = softmax(fr(Venc(2:T +1))) ∈ RT ×C.

Loss functions. Given a training dataset D consisting of video clips v, class

labels ycls, location labels yloc and recognition labels (whenever present) yrec, we

define the following training objectives:

Lcls = −E(v,ycls)∈D BCE(ycls, ŷcls) (8.1)

Lloc = −E(v,ycls,yloc)∈D ycls

[
1
T

T∑
t=1

BCE(yloc
t , ŷloc

t )
]

(8.2)

Lrec = −E(v,yrec)∈D CTC(yrec, ŷrec) (8.3)

where BCE stands for the binary cross-entropy loss and CTC stands for Connec-

tionist Temporal Classification [Graves et al. 2006] loss. The labels ycls are set to

1 when the given keyword occurs in the video and 0 otherwise; the frame labels



yloc are set to 1 for the frames where the keyword is uttered and 0 otherwise.

We optimize the total loss L = Lcls + Lloc + λLrec where, λ = 1 if a given input

video has a word label annotation, else, λ = 0 to only train the classification and

localization heads.

8.3.2 Multiple Hypotheses (MH) CTC loss
As described earlier, our word labels for fingerspelling recognition are weak labels

from subtitles and mouthing cues. The process for obtaining these labels is de-

scribed in Sec. 8.4.1 & 8.4.2. Since this process is automatic, it introduces a degree

of label noise. For example, the mouthing model can detect false positives; the

detection boundaries can be erroneous, or multiple mouthings can be spotted for

a single detection interval. We observed that our automatic detection pipeline is

more accurate than our process of obtaining word labels. If we assume the finger-

spelling detection is correct, then it is quite likely that the fingerspelled word is

among one of the words (usually a noun) in the subtitle.

With this idea in mind, we design an improved CTC loss function, termed Multiple

Hypotheses CTC (MH-CTC), that allows the model to “pick” the most correct

word label from a set of possible word hypotheses. This set comprises a number

of words, of which one is the correct word label for the fingerspelling sequence in

the input video clip. For example, the set of word hypotheses could be the proper

nouns in the subtitle corresponding to the input video clip. Given a list of word

hypotheses H for the input video clip v, our modified recognition loss Lrec is:

Lrec = −E(v,H)∈D min
∀h∈H

CTC(h, ŷrec)

This corresponds to backpropagating the recognition loss for the word that achieves

the minimum CTC loss among all the hypotheses. Since this allows the model to

“choose” its own target, we found two strategies that help the model converge.

Firstly, pretraining the model with CTC loss using Eqn 8.3.1 before using MH-

CTC is essential. Secondly, when using MH-CTC, we found that randomly (with

50% chance) setting H to be a single hypothesis containing the word found by our

automatic annotation also prevents the model from diverging.



Train Val
#labels vocab avg. dur. #labels vocab avg. dur.

Stage 1: Exemplar detections 149k - 1.4s 3.0k - 1.3s
w/ mouthing labels: nouns 59k 18k 1.8s 1.2k 0.8k 1.6s
w/ mouthing labels: pr. nouns 39k 14k 1.9s 0.9k 0.5k 1.7s

Stage 2: Transpeller detections 129k - 1.9s 2.5k - 1.8s
w/ mouthing labels: nouns 61k 19k 2.1s 1.3k 0.9k 1.9s
w/ mouthing labels: pr. nouns 41k 15k 2.2s 0.9k 0.5k 2.0s
w/ Transpeller labels 111k 32k 2.0s 2.2k 1.4k 1.8s

Table 8.1: Two stages of automatic annotations. Stage 1: We use exemplars
to detect fingerspelling and mouthing cues to obtain letter labels. Stage 2: We
obtain detections and letter labels using Transpeller pseudolabels.

8.4 Automatic annotations
Our model is completely trained with weak labels that are automatically curated.

We perform two stages of automatic annotation. In the first stage (Sec. 8.4.1), we

automatically annotate fingerspelling detections using exemplars and letter labels

using mouthing cues. In the second stage (Sec. 8.4.2), we obtain detection and let-

ter pseudolabels from the Transpeller model that has been trained on annotations

from the first stage. The number and duration of these fingerspelling detections,

as well as the number of detections associated with either a noun or proper noun

letter label, is shown in Tab. 8.1.

8.4.1 Exemplar and mouthing annotations
Detections using exemplars. We manually annotate a small number E of sin-

gle frame exemplars of fingerspelling amongst videos from different signers in the

training set (E = 115). Using these exemplars, we search for frames in continuous

signing with high feature similarity to these frames containing fingerspelling. This

exemplar-based annotation technique is inspired by [Momeni et al. 2020b; Mo-

meni et al. 2022]. We use features from [Momeni et al. 2022] and compute cosine

similarity with fingerspelling features. This simple method provides approximate

annotation of fingerspelling detections. We use this method for two reasons: firstly,

to help our model learn fingerspelling temporal detection, and secondly, to select

video segments containing fingerspelling for manual annotation. Technical details

on the computation of the feature similarity can be found in the supplementary

material.

Letter labels from mouthings. To obtain word annotations for the finger-

spelled segments, we use mouthing cues, as fingerspelled words are often mouthed



simultaneously in interpreted data [Davis 1990]. In [Momeni et al. 2022], the au-

thors use an improved Transpotter architecture [K. Prajwal et al. 2021] to query

words from surrounding subtitles and localize corresponding mouthing cues. We

consider all mouthing annotations from [Momeni et al. 2022] falling within the

interval of the fingerspelling detections. As the fingerspelling detection boundaries

are approximate, and the automatic mouthing annotations are not always accu-

rate, these annotations are noisy. Tab. 8.2 shows that almost all fingerspelling

annotations refer to nouns, and most refer to proper nouns. Thus, restricting

mouthing annotations to nouns or proper nouns reduces noise.

8.4.2 Transpeller annotations
Improving detections with Transpeller pseudolabels. The model described

in Sec. 8.3.1 outputs a per-frame localization score, predicting the presence of

fingerspelling. After training this model, we can improve upon the exemplar-based

detections using pseudolabels. Given localisation scores s1, ..., sN for a window of

N frames, we consider that the window contains fingerspelling if max(s1, ..., sN) >

t1. We consider that a sub-interval [i, j] (1 <= i <= j <= N) of this window

contains fingerspelling if si, ..., sj >= t2, where t2 < t1. To smooth the localization

scores, we take the moving maximum score amongst K consecutive scores. We let

t1 = 0.7, t2 = 0.3 and K = 5.

Improving letter labels with Transpeller pseudolabels. Using pseudolabels

from the model in Sec. 8.3.1, we can also improve automatic letter label annota-

tions. After decoding the CTC outputs using beam search, we can then compute a

proximity score with words from neighboring subtitles, i.e. dist(w1, w2), where w1

is a subtitle word and w2 is the output of beam search decoding. The proximity

score is a variant of the Levenshtein edit distance, but where deletions are not

heavily penalized. This is because words such as ‘Sarah Jane’ can be reasonably

fingerspelled as ‘SJ’. Details of this proximity score are provided in the supple-

mentary material. We can use this proximity score to find the subtitle word most

likely to be fingerspelled.

8.4.3 Multi-stage training
We perform a multi-stage training strategy where we start by training on exemplar-

based annotations (lines 2 and 3 of Tab. 8.1) using the vanilla CTC loss to supervise



the recognition head. Upon convergence, we finetune this model further using MH-

CTC, this time additionally considering proper nouns in neighboring subtitles as

the hypotheses.

Using the above pre-trained model, we now extract the Transpeller annotations

as detailed in Sec. 8.4.2. Using these new annotations, we repeat the process: we

start with the vanilla CTC loss and then finetune this model further using MH-

CTC. Given that we have pseudo-labels from the Stage 1 Transpeller model, we

can restrict the MH-CTC search space. The hypotheses now only contain nouns

and proper nouns from neighboring subtitles with at least one letter in common

with the CTC decoded outputs from the Transpeller model of Stage 1.

8.5 Experiments

8.5.1 BOBSL Fingerspelling benchmark
We collect and release the first benchmark for evaluating fingerspelling in British

Sign Language. The test set annotations are collected by adapting the VIA Whole-

Sign Verification Tool [Dutta and Zisserman 2019] to the task of fingerspelling

recognition. Given proposed temporal windows around the automatic exemplar

and mouthing annotations, annotators mark whether there is any fingerspelling in

the signing window and type out the exact letters which are fingerspelled. We use

a temporal window of 2.1s before to 4s after the midpoint of the automatically

detected fingerspelling instance. Since the fingerspelled letters could be a subset

of the actual full word (e.g. SH for SARAH), we also obtain the corresponding full

word annotations. Descriptive statistics on the test set annotations are in Tab. 8.2.

Evaluation criteria. We measure the fingerspelling recognition performance

using the Character Error Rate (CER), which provides a normalized count of

the substitution/deletion/insertion errors in the predicted letter sequence when

compared to the ground-truth sequence. We report two CERs for the two different

ground-truth annotations we have for each clip: (i) CERfspell - ground-truth is the

actual fingerspelled letters which, as mentioned before, may only be part of a

word, and (ii) CERfull - ground-truth is the full word annotation to which the

fingerspelling refers to. Given that our model(s) are trained only with automatic

weakly-supervised full-word annotations (Sec. 8.4), these two different CER scores

can help us see if the model learns to pick up on the fingerspelled letters, rather



#labels (full word) vocab. %nouns %pr. nouns %full avg. % missing
4923 3442 96% 74% 22% 34%

Table 8.2: Statistics on test set annotations. Most fingerspellings refer to
proper nouns or nouns. Around 22% of fingerspelling instances contain all letters
of the encoded word, but on average 34% of the letters of a word are omitted
during fingerspelling.

Annotations #Recogn. ex. CERfspell CERfull

Exemplars + Mouthings: proper nouns 39k 58.5 62.1
Exemplars + Mouthings: nouns 59k 58.6 62.9

finetuned with MH-CTC 59k (avg. 4 hyp.) 57.6 64.3
Table 8.3: Stage 1: Transpeller model with exemplar + mouthing super-
vision. All rows use 149k fingerspelling detections for training. When assigning
a word label for these detections from the subtitle, we choose to look at nouns,
especially proper nouns, as they are more likely to be fingerspelt. We obtain the
best results when using MH-CTC loss.

than only relying on the mouthing cues or memorizing the full word annotations.

Implementation details. We use a batch size of 32 and an initial learning rate

of 5e−5, which is reduced to 1e−5 after the validation loss does not improve for 3

epochs. At test time, we decode with a beam width of 30. More implementation

details are provided in the supplementary material.

8.5.2 Results
We now evaluate different variations at each stage of the Transpeller recognition

pipeline.

Using exemplar detections and mouthing cue letter labels with CTC

loss. Our initial set of annotations from the exemplar detections gives us 149k

fingerspelling instances, out of which a fraction of them can be associated with

Annotations #Recogn. ex. CERfspell CERfull

Transpeller detect. + Mouthings 61k 57.5 63.1
Transpeller detect. + Char. labels 111k 55.4 63.0

finetuned with MH-CTC 111k + (avg. 9 hyp.) 53.3 60.1
Table 8.4: Stage 2: Transpeller pseudolabels. All rows use 129k fingerspelling
detections for training. Using both the refined detections and word annotations
from the Stage 1 model gives a clear reduction in the CER. Further, using MH-
CTC gives a 2.1 CER boost. Overall, our Stage 2 achieves a final best CER of
53.3 which is 4.3 CER better than the best model of Stage 1, thus validating the
impact of our multi-stage training pipeline.



word labels using mouthing cues. In Tab. 8.3, we show how our performance

depends on our choice of recognition annotations. Restricting our automatic word

label annotations to proper nouns gives us a cleaner training set, as they are most

likely to be fingerspelt. However, this comes at the expense of having very few

training samples. In row 2 of Table 8.3, we find that we can tolerate a bit of label

noise and expand to all nouns. We finetune the best CTC-based model from the

above using our MH-CTC loss, which further results in an improvement of 1.0

CERfspell. This is our best model with the initial set of annotations.

Transpeller detections. We now expand our training data, by extracting pseu-

dolabels (Sec. 8.4.2) from the best model from the previous stage. We train on

these new annotations and report our results in Tab 8.4. When we use the refined

detections but still use the mouthing cues for assigning word labels, we obtain a

CERfspell of 57.5, a similar result to the corresponding model (57.6) from Stage 1.

Transpeller letter labels. The error rates drop further when we also improve

the recognition annotations. We do so by using a variant of the edit distance

to match the predictions of the Stage 1 Transpeller to a word in a neighboring

subtitle. These results can be seen in row 2 of Tab. 8.4.

Finetuning with MH-CTC. Finally, when finetuning further with our MH-

CTC loss, our final Stage 2 model gives a CERfspell of 53.3 which is 4.3 points

better than the best model (57.6) of Stage 1. It is evident from both these tables

that both MH-CTC and our multi-stage training with pseudolabelling improve our

recognition performance.

Fingerspelling recognition vs. spotting mouthings. An interesting line of

thought is: if we have access to the subtitles at test time, can we use a mouthing

model to accurately predict words instead of doing fingerspelling recognition? To

judge this, we restrict the test set to instances where there is a noun or a proper

noun mouthing annotation and compute the CER between the mouthing annota-

tion and the ground truth annotation, and we get 55.6. On this same subset, our

best model obtains 53.3 CER, demonstrating that it in fact performs better than

a mouthing method with access to the subtitle text.

Error analysis of the best model on the test set. In Tab. 8.5, we show a

few examples of our predictions and the corresponding ground-truth sequence. We



can see our model makes reasonable errors for most examples, where it confuses

between letters that are visually quite similar. In Fig. 8.4, we show how the CER

varies based on the length of the ground-truth character sequence. It is evident

that the model struggles the most with very short sequences (one or two letters).

This is expected because it has only been supervised with full word annotations

during training and has never been trained to predict one or two letters in isolation.

Lookup-based correction at inference-time. We explore the possibility of

correcting the errors in the model’s outputs at test-time with the help of a pre-

determined list of words, e.g. “atlanic" to “atlantic". We first curate a list of nouns

present in the subtitles of the BOBSL train set and use edit distance to match the

model’s predictions to the closest noun in our list. If the edit distance is below a

set threshold, i.e., a very close match, we replace the predicted character sequence

with the matched word from our list. However, we found that this increases the

CERfspell to 57.0 and CERfull to 61.1. Such a lookup-based correction method leads

to several false matches because (i) it is done with no context of the surrounding

words, (ii) not all the letters of the word are fingerspelled, (iii) fingerspelled words

in the test set can also be novel and unseen.

8.5.3 Architecture ablations
Importance of joint recognition and detection. As described in Sec 8.3.1, our

model contains three prediction heads for classification, localization, and recogni-

tion. All three heads are essential and are used to obtain the Stage 2 annotations

as described in 8.4.2. We conduct an experiment to also demonstrate that it is

beneficial to train these heads jointly. We find that joint training leads to a bet-

ter recognition performance (55.4 CERfspell) than training without the localization

head (56.3 CERfspell) or without the localization and classification heads (56.2

CERfspell).

Sequence-to-Sequence vs. CTC-based models. We also compare our CTC-

based recognition head with a sequence-to-sequence (seq2seq) encoder-decoder ar-

chitecture supervised with a cross-entropy loss. We use the standard Transformer-

Base [Vaswani et al. 2017] model, which contains a Transformer encoder similar

to Transpeller and a 6-layer auto-regressive Transformer decoder. We compare

with the CTC model trained on the Stage 2 annotations. The seq2seq network



Subtitle text with
 fingerspelled word “This area will be redeveloped quickly now Berkeley Homes have got their foot on this corner.” 

Letters which are 
fingerspelled

Continuous signing 
frame sequence

B E R K E L E Y

Exemplar & mouthing annotation

“Homes” is mouthed as well as signed and wrongly 
assigned as the fingerspelling annotation. 

Transpeller annotation

Using pseudolabelling, the Transpeller predicts ‘B’, ‘E’, ‘R’, ‘E’, ‘Y’ which 
is accurately corrected to the fingerspelling annotation for ‘Berkeley.’

Figure 8.3: Benefit of Transpeller annotations: Here, we are given a finger-
spelling clip of “BERKELEY”. The initial annotation with exemplars + mouthing
cues assigns an incorrect word label because the spotted mouthing of the word
“Homes” is temporally close to the fingerspelling location, resulting in a false word
assignment. In the second annotation stage, we correct this using the Transpeller’s
predicted characters “BEREY” that are matched to the subtitle word “BERKE-
LEY”.

Figure 8.4: Variation of CER vs
the number of letters in the
ground-truth. Transpeller strug-
gles to correctly predict very short
fingerspelling segments, which are
usually partial fingerspellings (e.g.
MJ for Mary Jane). This happens
because the model is only super-
vised with full-length words.

Ground Truth Prediction CER

chloride churide 25
nurembrg turmug 50
ivory ener 80
elind elinc 20
bnmm ben 75
clove clune 40
semnoa samol 50

Figure 8.5: Qualitative examples.
Model predictions on our manually veri-
fied test set. The CERs are shown for ref-
erence. We see that one of the most com-
mon error sources is confusion between
letters that are visually similar: (a, e, i),
(d, c), (l, n, m, v, t), (o, u).

performs worse (57.4 CERfspell) than the CTC model (55.4 CERfspell). This is ex-

pected because only 22% of the test samples contain no missing letters, i.e. full

words, so conditioning on past letters can lead to errors in future letter predictions.

However, conditioning on past letters can be very helpful if we want to actually

estimate the full word and not determine the exact letters that are fingerspelled.

This is indeed validated by the fact that the seq2seq model performs much better

on CERfull, achieving 55.2 compared to the CTC model’s 63.0. We also note that

due to the sequential decoding in the seq2seq model, it is ≈ 20× slower in terms of

run-time speed than the CTC model, which decodes all the characters in parallel.



8.6 Conclusion
We presented a new BSL fingerspelling recognition benchmark and our Transpeller

model designed to jointly detect and recognize fingerspelled letters in continuous

sign language video. Our training data is largely constructed automatically, ex-

ploiting English subtitles and mouthing cues. The evaluation data is manually

curated, and we achieve promising recognition results (Tab. 8.5). However, we

note some limitations. First, there remains room for improvement in the accu-

racy of the model to further reduce the character error rate. Second, our training

and evaluation of the Transpeller is limited to the use of interpreted data and

therefore is not necessarily representative of more natural, conversational signing.

Addressing these limitations would be a valuable future research direction.
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Abstract

In this work, our goals are two fold: large-vocabulary continuous sign

language recognition (CSLR), and sign language retrieval. To this end, we

introduce a multi-task Transformer model, CSLR2, that is able to ingest

a signing sequence and output in a joint embedding space between signed

language and spoken language text. To enable CSLR evaluation in the large-

vocabulary setting, we introduce new dataset annotations that have been

manually collected. These provide continuous sign-level annotations for six

hours of test videos, and will be made publicly available. We demonstrate

that by a careful choice of loss functions, training the model for both the

CSLR and retrieval tasks is mutually beneficial in terms of performance –

retrieval improves CSLR performance by providing context, while CSLR

improves retrieval with more fine-grained supervision. We further show

the benefits of leveraging weak and noisy supervision from large-vocabulary

datasets such as BOBSL, namely sign-level pseudo-labels, and English sub-

titles. Our model significantly outperforms the previous state of the art on

both tasks.
∗Equal contribution.



CVPR24 Teaser Figure (v2)
CSLR.

forest tree quick look animal see wow

Task 1: CSLR

Predicted sign sequence

1. Forests are incredible habitats and, if you're up early enough, there's a good 
    chance you'll see some of the animals.

Top ranked spoken language sentences

2. And so conifers are actually amongst our best habitats for many types of animal.
3. What is the point in bringing back an animal whose habitat is destroyed?

Task 2: Sentence retrieval

Gallery of 
sentences

Input: Sign language video clip

Word
dictionary

forest tree wake early see animal see wow

2

Figure 9.1: CSLR2 model: We illustrate our multi-task model that performs
both CSLR and sentence Retrieval, thanks to its joint embedding space between
signed language and spoken language text.

9.1 Introduction

Recognising continuous and large-vocabulary sign language is a vital step towards

enabling real-world technologies that enhance communication and accessibility for

the deaf or hard of hearing. With the availability of data that depicts continuous

signing from a large vocabulary of signs [Albanie et al. 2021b; N. Camgoz et al.

2021; Duarte et al. 2021], the computer vision field has recently gained momentum

towards this direction, building on previous research that had largely focused on

restricted settings such as recognising single signs in isolation [Joze and Koller

2019; D. Li et al. 2019] or signs covering relatively small vocabularies [Koller et al.

2015b; H. Zhou et al. 2020a].

Our goal in this paper is two-fold: first, to enable large-vocabulary continuous sign

language recognition (CSLR) – providing time aligned and dense word predictions

for each sign within a signing sequence. This is an essential first step towards

translation, as English sentence-level annotations have been shown to be difficult

to use directly as targets for sign language translation [Varol et al. 2021; Albanie et

al. 2021b; N. Camgoz et al. 2021]. Our second goal is sentence retrieval, i.e. given a

signing video, to retrieve the most similar sentence text or vice versa (see Fig. 9.1).

This is important as indexing sign language videos to make them searchable has

been highlighted as a useful application for deaf or hard of hearing [Bragg et al.

2019]. Also, video to subtitle retrieval can be seen as a proxy for translation – it is

reminiscent of the pre-deep learning style of machine translation where sentences
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were broken down into phrases and translation proceeded by a lookup of paired

phrases in the two languages [Koehn et al. 2003].

There are several challenges to achieving these goals, primarily due to the lack of

suitable data for training and evaluation. For CSLR, ideally, each individual sign

within a continuous video should be associated to a symbolic category. However,

current training supervision sources are restricted by their weak or sparse nature.

For instance, in the largest dataset BOBSL [Albanie et al. 2021b], the available

annotations are either (i) at sentence-level, weakly associating the entire signing

video to an English sentence, rather than breaking the video into individual sign-

word correspondences, or (ii) at sign-level, but sparse with gaps in the temporal

timeline (despite the densification efforts in [Momeni et al. 2022] to scale up the

number and vocabulary of annotations). Also, there is no evaluation benchmark

with continuous ground truth sign annotations for the BOBSL dataset, so it is

not possible to assess and compare the performance of large-vocabulary CSLR

algorithms at scale.

In this paper, we introduce a simple Transformer encoder model [Vaswani et al.

2017] that ingests a signing video sequence and outputs tokens in a joint embedding

space between signed and spoken1 languages. The output space enables both the

CSLR and sentence retrieval tasks. The Transformer architecture outputs CSLR

predictions by leveraging temporal context, and a retrieval embedding through

pooling. The joint embedding language space may also help to overcome yet

another challenge of sign language recognition: polysemy where the same word may

correspond to several sign variants, and conversely the same sign may correspond

to several different words.

We train our model on both tasks by leveraging noisy supervision from the large-

scale BOBSL dataset. Specifically, we use an individual sign predictor to gen-

erate continuous pseudo-labels (for training CSLR) and available weakly-aligned

sentence-level annotations (for training sentence retrieval). We show that training

for both tasks is mutually beneficial – in that including CSLR improves the re-

trieval performance, and including retrieval improves the CSLR performance. To

enable CSLR evaluation, we manually collect new sign-level annotations that are

continuous on the timeline. Since we focus on the large-vocabulary setting, we
1We refer to the written form of spoken language, not the speech audio.
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collect annotations on the BOBSL test set. We hope our new CSLR benchmark

will facilitate further exploration in this field.

In summary, our contributions are the following: (i) We demonstrate the advan-

tages of a single model, CSLR2, that is trained jointly for both CSLR and sign

language sentence retrieval with weak supervision. (ii) Thanks to our joint em-

bedding space between spoken and signed languages, we are the first to perform

sign recognition via video-to-text retrieval. (iii) We build a benchmark of substan-

tial size for evaluating large-vocabulary CSLR by collecting continuous sign-level

annotations for 6 hours of video. (iv) We significantly outperform strong base-

lines on our new CSLR and retrieval benchmarks, and carefully ablate each of our

components. We will make our code and data available for research.

9.2 Related Work

We briefly discuss relevant works that operate on (i) continuous sign language

video streams, (ii) sign language retrieval, and (iii) CSLR benchmarks.

Ingesting continuous sign language video streams. In the recent years,

the community has started to move beyond isolated sign language recognition

(ISLR) [Joze and Koller 2019; D. Li et al. 2019], which only seeks to assign a

category (typically also expressed as a word) to a short video segment trimmed

around a single sign without context. Besides CSLR, several tasks that require

ingesting a continuous video stream exist. These include sign spotting [Albanie

et al. 2020; Momeni et al. 2020b; Varol et al. 2021; Momeni et al. 2022], sign

tokenization [Renz et al. 2021a; Renz et al. 2021b], translation [N. C. Camgoz

segmented #sentences hours vocab. #glosses source

train
PHOENIX-2014 [Koller et al. 2015b] ✗ 006K 0011 1K 065K* TV
CSL-Daily [H. Zhou et al. 2020a] ✗ 018K 0021 2K 134K* lab
BOBSL [Albanie et al. 2021b] ✗ 993K 1220 72K* ..5.5M* TV

test
PHOENIX-2014 [Koller et al. 2015b] ✗ 0629 0.99 0500* 07089* TV
CSL-Daily [H. Zhou et al. 2020a] ✗ 1176 1.41 1345* 09002* lab
BOBSL CSLR-Test ✓ 4451 5.93 4462* 30172* TV

Table 9.1: Recent CSLR training and evaluation sets: Our manually-curated
BOBSL CSLR-Test set is larger in number of annotated signs and vocabulary,
compared to other CSLR test sets from the literature. In addition, it also comes
with sign segmentation annotations. *Note that the BOBSL training has different
vocabulary sets of varying sizes: 72K words spanned by subtitles and 25K words
spanned by 5.5M automatic annotations generated in [Momeni et al. 2022].
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et al. 2018; N. C. Camgoz et al. 2020b; N. C. Camgoz et al. 2020a; Benjia Zhou

et al. 2023; A. Yin et al. 2023], subtitle alignment [Bull et al. 2021a], subtitle

segmentation [Bull et al. 2020], text-based retrieval [Duarte et al. 2022; Y. Cheng

et al. 2023] and fingerspelling detection [K R Prajwal et al. 2022b]. Our work is

related to some of these works in that they also operate on a large-vocabulary

setting [Albanie et al. 2020; Momeni et al. 2020b; Varol et al. 2021; Bull et al.

2021a; Momeni et al. 2022]; however, they do not tackle CSLR, mainly due to

lack of continuous sign annotations. While [Duarte et al. 2022] addresses retrieval,

their method is not suitable for CSLR – our work differs in that we perform both

tasks jointly.

State-of-the-art CSLR methods have so far focused on PHOENIX-2014 [Koller et

al. 2015b] or CSL-Daily [H. Zhou et al. 2020a] benchmarks, where the performances

are saturated. These methods typically consider a fully-supervised setting, and

train with RNN-based [J. Huang et al. 2018b; Cui et al. 2019; Huaiwen Zhang

et al. 2023], or Transformer-based [N. C. Camgoz et al. 2020b] models. Due to

lack of sign segmentation annotation (i.e., the start and end times of signs are

unknown), many works use the CTC loss [N. C. Camgoz et al. 2020b; K. L.

Cheng et al. 2020; Jiao et al. 2023; F. Wei and Y. Chen 2023; Zuo and Mak

2022]. Our work differs from these previous works on several fronts. We consider a

weakly-supervised setting, where the training videos are not annotated for CSLR

purposes, but are accompanied with weakly-aligned spoken language translation

sentences. We also study the benefits of joint training with CSLR and retrieval

objectives. In a similar spirit, the works of [N. C. Camgoz et al. 2020b; Zuo and

Mak 2022] jointly train CSLR with sentence-level objectives (translation in [N. C.

Camgoz et al. 2020b], margin loss for gloss-sequence text retrieval in [Zuo and Mak

2022]), but in significantly different settings (e.g., 8× smaller vocabulary, and with

manually-annotated CSLR labels for training).

Sign language retrieval. Early works focused on query-by-example [Athitsos

et al. 2010; S. Zhang and Bo Zhang 2010], where the goal is to retrieve individ-

ual sign instances for given sign examples. The release of continuous sign video

datasets, like BOBSL [Albanie et al. 2021b], How2Sign [Duarte et al. 2021], and

CSL-Daily [H. Zhou et al. 2020a] with (approximately) aligned spoken language

subtitles, has shifted the interest towards spoken language to sign language re-
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trieval (and vice-versa). The first work in this direction is the recent method

of [Duarte et al. 2022], which focuses on improving the video backbone that is

subsequently used for a simple retrieval model using a contrastive margin loss.

CiCo [Y. Cheng et al. 2023] also focuses on improving video representations, specif-

ically, by designing a domain-aware backbone. In contrast, our main emphasis is

on (i) the use of weakly-supervised data, and (ii) the joint training with CSLR.

Our work naturally derives lessons from the large number of efforts in the parent

task of sign language retrieval, i.e., video-text retrieval [Bain et al. 2021b; Gabeur

et al. 2020; S. Liu et al. 2021; Y. Liu et al. 2019; H. Luo et al. 2022; C. Sun

et al. 2019; Y. Yu et al. 2018]. Works such as CoCa [Jiahui Yu et al. 2022]

and JSFusion [Y. Yu et al. 2018] have shown that jointly training with a cross-

modal retrieval objective can help in other tasks such as captioning and question-

answering. Our approach is in the same vein as these works: we show that jointly

training for retrieval and CSLR improves performance for both tasks.

CSLR benchmarks. Early works with continuous signing videos provided very

small vocabularies in the order of several hundreds (104 signs in Purdue RVL-

SLLL [Wilbur and Kak 2006] and BOSTON104 [Dreuw et al. 2008] ASL datasets,

178 in CCSL [J. Huang et al. 2018b], 310 in GSL [Adaloglou et al. 2020], 455

in the SIGNUM DGS dataset [von Agris et al. 2008], and 524 in the KETI KSL

dataset [Ko et al. 2019b]). BSL Corpus [Schembri et al. 2013] represents a large-

vocabulary collection; however, it is mainly curated for linguistics studies, and has

not been used for CSLR.

Relatively large collections made it possible to train CSLR methods based on

neural networks (see Tab. 9.1). Most widely used RWTH-PHOENIX-Weather

2014 [Koller et al. 2015b] dataset contains around 11 hours of videos sourced from

weather forecast on TV. CSL-Daily [H. Zhou et al. 2020a] provides 20K videos

with gloss and translation annotations from daily life topics, covering a 2K sign

vocabulary, and 23 hours of lab recordings. In Tab. 9.1, we provide several statistics

to compare against our new CSLR benchmark, mainly on their evaluation sets

(bottom). While being larger, we also provide sign segmentation annotations.

Recently released large-vocabulary continuous datasets (such as BOBSL [Albanie

et al. 2021b], How2Sign [Duarte et al. 2021], Content4All [N. Camgoz et al. 2021],
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Figure 9.2: Method overview: (a) We show a simplified view for our model
architecture which consists of both video and text streams. On the video side,
features are extracted from a signing video clip V by running VSign

enc in a sliding
window fashion and passed through a Transformer model VSent

enc . A video embedding
V and sign video embeddings {vf} are subsequently extracted. On the text side,
we input an English subtitle sentence T and sign pseudo-labels {tw} to the text
encoder Tenc and obtain sentence and sign text embeddings (T, {tw}), respectively.
While we illustrate only one triplet data point (V, T, {tw}), in practice, we operate
on a minibatch of triplets, and employ two contrastive losses to jointly train on
sentence retrieval LSentRet and sign retrieval LSignRet. (b) For text-to-video retrieval
inference, we simply extract a sentence text embedding given a text query, and
rank the sentence video embeddings corresponding to gallery videos according
to their cosine similarities. (c) For CSLR inference, each sign video embedding
is matched to the top-ranked word from a large vocabulary of size 8K. A post-
processing strategy is applied on frame-level predictions to produce final outputs.
For visibility, we omit linear layers which project embeddings into the learnt joint-
space. See Sec. 9.3.1 for a detailed description of the architecture and inference
procedure.

and OpenASL [B. Shi et al. 2022a]) do not provide sign-level gloss annotations due

to the prohibitive costs of densely labeling within the open-vocabulary setting. In

this work, we leverage an isolated sign recognition model to generate continu-

ous pseudo-labels for training CSLR, and available weakly-aligned sentence-level

supervision for retrieval.

9.3 Joint Space for Signed and Spoken Languages

We start by describing the model design that goes from raw sign language video

pixels to a joint embedding space with spoken language text (Sec. 9.3.1). We then

present the losses of our joint training framework with sentence-level and sign-

level objectives (Sec. 9.3.2). Next, we detail our supervision which consists of

(noisy) sign-level pseudo-labels and weakly-aligned subtitles (Sec. 9.3.3). Finally,

we provide model implementation details (Sec. 9.3.4).
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9.3.1 Model overview and inference

Our model, shown in Fig. 9.2, consists of three main components: (i) a sign video

encoder VSign
enc based on a pretrained Video-Swin [Z. Liu et al. 2022], (ii) a sentence

video encoder VSent
enc based on a randomly initialised Transformer encoder, and (iii)

a text encoder Tenc based on a pretrained T5 model [Raffel et al. 2020]. Given

raw RGB video frame pixels V for a signing sentence, we obtain a sequence of

isolated sign video embeddings from VSign
enc as {v̂f} = VSign

enc (V ). In practice, such a

sequence is obtained by feeding 16 consecutive frames to the sign video encoder in

a sliding window fashion, with a stride of 2 frames. These are then fed through the

sentence video encoder VSent
enc to have context-aware sign video embeddings {vf},

as well as a single sentence video embedding V, denoted ({vf},V) = VSent
enc ({v̂f}).

Similarly, for the text side, we embed the sentence T into T = Tenc(T ). Ad-

ditionally, we define sign-level text embeddings for each sign in the sentence as

{tw}W
w=1 = {Tenc(tw)}W

w=1, where W is the number of signs in the sentence. In

practice, we get these embeddings by independently feeding the word(s) corre-

sponding to each sign to the text encoder.

CSLR inference. Sign-level recognition predictions are obtained by using the

sequence of sign video embeddings in vf that lies in the same space as spoken lan-

guage. To associate each feature frame f to a word (or phrase), we perform nearest

neighbour classification by using a large text gallery of sign category names, as

illustrated in Fig. 9.2c. In our experiments, we observe superior performance of

such retrieval-based classification over the more traditional cross-entropy classifi-

cation [M. Wang et al. 2021], with the advantage that it is potentially not limited

to a closed vocabulary. In order to go from per-feature classification to continuous

sign predictions, we perform a post-processing strategy detailed in Sec. 9.3.3. We

note that this same post-processing strategy is used for obtaining our sign-level

pseudo-labels for training.

Retrieval inference. For sign-video-to-text (V2T) retrieval, the video sentence

embedding V is matched to a gallery of text sentence embeddings, ranking text

sentences by their cosine similarities. Symmetrically, text-to-sign-video (T2V)

retrieval is performed in a similar manner, as shown in Fig. 9.2b.
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9.3.2 Training with sentence- and sign-level losses

We train the Transformer-based model, that operates on sentence-level sign lan-

guage videos, to perform two tasks, namely, CSLR and sign language Retrieval

(CSLR2). As illustrated in Fig. 9.2a, we employ two retrieval losses: (i) a sentence-

level objective, supervised with weakly-aligned subtitles, and (ii) a sign-level ob-

jective, supervised with pseudo-labels obtained from a strong ISLR model [K R

Prajwal et al. 2022b]. We next formulate each objective individually before in-

troducing our joint framework that leverages both sentence-level and sign-level

information.

Sentence-level objective: sign language sentence retrieval (SentRet).

We explore the task of retrieval as a means to obtain supervision signal from

the subtitles. Following the success of vision-language models building a cross-

modal embedding between images and text [Radford et al. 2021; J. Li et al. 2022],

we employ a standard contrastive loss, and map sign language videos to spoken

language text space.

Sign language sentence retrieval is made of two symmetric tasks, that is, V2T and

T2V retrievals. For the former, given a query signing video V , the goal is to rank

a gallery of text samples (here subtitles) such that the content of V matches the

content in the highest ranked texts. Symmetrically, in the latter, given a text

query T , the goal is to rank a gallery of signing videos.

Formally, given a dataset D = {(Vi, Ti)}N
i=1 of video-subtitle pairs, the goal is to

learn two encoders ϕV , ϕT mapping each signing video V and subtitle T into a

joint embedding space. In the following, Vi = ϕV (Vi) and Ti = ϕT (Ti) denote

the video and text embeddings, respectively. The encoders are trained using a

recently proposed Hard-Negative variant of InfoNCE [van den Oord et al. 2018],

HN-NCE [Radenovic et al. 2023], that re-weighs the contribution of each element

in the computation of the contrastive loss. Let {(Vi,Ti)}B
i=1 be a batch of encoded

video-subtitle pairs and Sij = VT
i Tj be the similarity between the pair (i, j). For

the sake of visibility, we only detail the equations for V2T:

LHN-NCE,V2T = − 1
B

B∑
i=1

log eSii/τ

α · eSii/τ + ∑
j ̸=i w

V 2T
ij · eSij/τ

, (9.1)
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with wV 2T
ij weights defined as

wV 2T
ij = (B − 1) · eβSij/τ∑

k ̸=i eβSik/τ
, (9.2)

where the temperature τ > 0, α ∈ (0, 1], and β ≥ 0 are hyperparameters. By

training to maximise the similarity between correct pairs of video and subtitle em-

beddings, while minimising the similarity between negative pairs, HN-NCE serves

as a proxy for the retrieval by ranking that we perform at inference.

Sign-level objective: sign classification via sign retrieval (SignRet). Given

a continuous signing video, the goal of CSLR is to recognise a sequence of individ-

ual signs. The continuous video is encoded into a sequence of context-aware sign

video embeddings {vf}F
f=1, with F the number of video frames. Again, since these

embeddings are in the same joint space as the text embeddings, a contrastive loss

can be used as a proxy for sign retrieval.

Similarly to the sentence-level retrieval, we use the HN-NCE contrastive formu-

lation defined in Eq.(9.1) for the sign retrieval (SignRet) loss. However, instead

of the full sentence video-text embedding pair (V,T), we map individual sign

video-word embedding pairs (v, t) (see Fig. 9.2c).

Overall loss. Our model is trained jointly using a weighted sum of the two

retrieval terms:

L = λSentRetLSentRet + λSignRetLSignRet

with LSentRet,LSignRet, i.e. two contrastive losses for sentence and sign retrieval,

respectively. The training details including the batch size, learning rate, and other

hyperparameters can be found in the supplementary materials.

9.3.3 Sources of supervision

Leveraging weak and noisy text labels for the CSLR and retrieval training consti-

tutes one of the key contributions of this work. Next, we present our two sources

of text supervision, namely, sign-level pseudo-labels and sentence-level weakly-

aligned subtitles.

171



Sign-level pseudo-labels. We start with (V, T ) video-subtitle pairs that do not

contain sign-level annotations. In order to obtain sign-level supervision to train

for CSLR, we perform sign-level pseudo-labelling. Specifically, we apply an ISLR

model in a sliding window fashion with a stride of 2 frames, and perform post-

processing of sign predictions as an attempt to reduce noise. Our post-processing

strategy consists of 3 steps: (i) we first combine confidence scores of synonym

categories for the Top-5 predictions from the ISLR model (using the synonym list

defined in [Momeni et al. 2022]); (ii) we then filter out low confidence predictions

(below a threshold value of θ = 0.6); (iii) finally, we remove non-consecutive

predictions – since each sign spans several video frames, we expect repetitions

from the ISLR model (we keep predictions with at least m = 6 repetitions).

In practice, for each subtitle, we define a sentence-level video (on average 3.4

seconds) by trimming the episode-level video (∼1h duration) using the subtitle

timestamps. The sentence-level video is further broken down into frame-sign cor-

respondences based on pseudo-label timestamps. The sign-level loss is then only

computed on frames associated to a pseudo-label after post-processing.

Weakly-aligned subtitles. The source of our large-scale video-subtitle pairs is

from sign language interpreted TV shows, where the timings of the accompanying

subtitles correspond to the audio track, but not necessarily to signing [Albanie

et al. 2021b]. For better sign-video-to-text alignments, we use automatic signing-

aligned subtitles from [Bull et al. 2021a] (described in [Albanie et al. 2021b]) to

train our models. We restrict our training to subtitles spanning 1-20 seconds,

resulting in 689K video-subtitle training pairs.

9.3.4 Implementation details

In the following, we detail each component of our model.

Sign video encoder (VSign
enc ). Similar to [K R Prajwal et al. 2022b], our sign

video features are obtained by training a Video-Swin model [Z. Liu et al. 2022], on

ISLR. The network ingests a short video clip (16 frames, < 1 second) and outputs

a single vector v̂ ∈ Rd (d = 768), followed by a classification head to recognise iso-

lated signs. Specifically, we finetune the Video-Swin-Tiny architecture, pretrained

on Kinetics-400 [Joao Carreira and Zisserman 2017], using automatic annotations

172



released in [Momeni et al. 2022]. These annotations provide individual sign la-

bels along with timestamps of where they occur in the video. Note that the

annotations have been automatically obtained with the help of subtitles (by ex-

ploiting cues such as mouthing), and can thus be noisy. Once trained for ISLR, we

freeze the parameters of this relatively expensive backbone, and extract isolated

sign video embeddings v̂ in a sliding window manner with a stride of 2 frames.

Note we use RGB-based embeddings, instead of body keypoint estimates, due to

their more competitive performance in the large-vocabulary setting, where sign

differences are subtle and nuanced [Albanie et al. 2021b].

Sentence video encoder (VSent
enc ). We adopt a Transformer encoder architecture,

similar to BERT [Devlin et al. 2019], with 6 encoder layers, 8 attention heads and

768 hidden dimensionality. It ingests the sign sentence video as isolated sign video

embeddings {v̂f} and outputs context-aware sign video embeddings {vf}. We ob-

tain a single sentence video embedding by simply max-pooling over the temporal

dimension, i.e. V = MaxPoolf ({vf}F
f=1), with F video features, and experimen-

tally validate this choice. We restrict our training to video clips shorter than 20

seconds. The parameters of the Transformer encoder are learnt using the sentence

retrieval loss LSentRet between sentence text T and video V embeddings, and the

sign retrieval loss LSignRet between sign text embeddings tw and the corresponding

sign video embeddings vf , as described in Sec. 9.3.2.

Text encoder (Tenc). We use the encoder part of a pre-trained T5 [Raffel et al.

2020] (t5-large), and keep its weights frozen. Note we do not use its decoder.

The output text embeddings have dimensionality 1024.

Projection heads. We additionally learn projection layers, mainly to reduce

the joint embedding dimensionality to 256 before contrastive loss computations.

Specifically, we have a total of 4 projection heads: two for reducing the text dimen-

sionality (1024 → 256) with a separate projection for sign categories and sentences,

two for reducing the video embedding dimensionality (768 → 256) separately for

sign and sentence video embeddings.
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You know, the America's cup is a design cup as much as it is a sailing race.Beneath the shadow of the Severn Bridge is a jetty that once bustled with travellers.

I worked in the finance industry, so I just want to do something a little bit more…I’m catching a ferry back to another coast connected by this water.

Figure 9.3: Annotation examples from the CSLR-Test dataset: As well as
assigning the English word(s) corresponding to a sign (i.e. ‘gloss’), the annotators
indicate the type of sign when appropriate. For example, ‘*P’ for pointing, ‘*FS’
for fingerspelling, ‘*G’ for gesture sign.

9.4 A New CSLR Evaluation Benchmark

In this section, we describe the new continuous sign annotations that we collected

for evaluating CSLR. We first describe what the CSLR-Test is, and then how it

was annotated.

CSLR-Test. The continuous annotations are provided for a subset of the Sent-

Test partition of BOBSL [Albanie et al. 2021b]. Sent-Test is a 31 hour subset of

the BOBSL test set where the BSL signing sequences have been manually aligned

temporally with their corresponding English subtitle sentences.

The CSLR-Test annotations consist of a time aligned sequence of sign ‘glosses’2,

where each sign is annotated with its temporal interval, the type of the sign, and

its word equivalent if that exists. In addition to lexical signs (i.e. signs that have

an English word equivalent), a wide range of sign types such as fingerspelling,

pointing, depicting or no-signing are annotated. These are marked with special

characters such as *FS and *P for fingerspelling and pointing, respectively.

Note, that there exists no universally accepted writing system for sign languages to-

day [Filhol 2020], though attempts have been made with descriptive languages such

as HamNoSys [Hanke 2004] and SignWriting [Sutton 1990]. Also, careful glossing

that is linguistically consistent (e.g., enumerating each sign variant [Schembri et al.

2017]) is a tedious process which hinders scaling up. For these reasons, we make

a compromise when annotating for CSLR and use English words for the glosses,

assigning ‘any’ reasonable English word for a sign segment, but prioritising words

in the surrounding subtitle. For example, if the ‘natural’ English word for the
2We abuse the gloss terminology, despite our sign-level annotations not being careful linguistic

glosses, but rather free-form sign-level translations.
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sign is ‘laugh’ but a synonym word such as ‘giggle’ is in the subtitle, then the

gloss would be ‘giggle’ (with ‘laugh’ also provided as a more general translation).

However, one should keep in mind that associating words to signs is a lossy and

error-prone process in any case.

Fig. 9.3 shows example ground truth gloss annotations for CSLR-Test. In total,

we curate these continuous labels for 5.93 hours of video, comprising 30,172 indi-

vidual signs from a vocabulary of approximately 4,462 glosses. The CSLR-Test

annotations evenly cover all 35 episodes in Sent-Test. Additional statistics for

the dataset are given in Tab. 9.1. We note that we also annotate a small subset

of the BOBSL training and validation subtitle-aligned splits. All annotations will

be publicly released.

Dataset annotation. The annotation procedure uses a web based annotation

tool that is built from the VIA video annotation software [Dutta and Zisserman

2019]. Annotators are provided with a video sequence with 10 time aligned subtitle

sentences. Annotators enter free-form text for each sign token, taking into account

the context by watching the full video around a given subtitle. The subtitle is also

displayed on the video and the annotators are encouraged to prioritise assigning

words that appear in the corresponding subtitle. The annotators additionally

assign sign types when appropriate (see Fig. 9.3) and temporally align each gloss

to the duration of the sign.

We facilitate faster annotation iterations by incorporating several strategies. We

adopt a semi-automatic labeling technique where we initialise the sign boundaries

by using an automatic sign segmentation method [Renz et al. 2021a]. Annotators

are thus given an initial set of sign intervals, and are instructed to refine these

sign boundaries (or add/remove sign intervals) if necessary. We further show a

dropdown menu for each sign and prioritise at the top of the list words from the

corresponding subtitle. Two native BSL users worked on this task for over one year.

Further details on the annotation procedure are provided in the supplementary

material.
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9.5 Experiments

In this section, we first present evaluation protocols used in our experiments

(Sec. 9.5.1) and describe baselines (Sec. 9.5.2). Next, we provide ablations to

assess the contribution of important components (Sec. 9.5.3). We then report

CSLR and retrieval performance, comparing to the state of the art (Sec. 9.5.4),

and illustrate qualitative results (Sec. 9.5.5).

9.5.1 Data and evaluation protocol

BOBSL [Albanie et al. 2021b] consists of about 1500 hours of video data ac-

companied with approximately-aligned subtitles. A 200-hour subset is reserved

for testing. We reuse existing manually-aligned validation and test sets (Sent-

Val [Albanie et al. 2021b], Sent-Test [Albanie et al. 2021b]) for our sen-

tence retrieval evaluation (20,870 and 1,973 aligned sentences respectively). We

perform our retrieval ablations on the validation set, and report the final model on

both evaluation sets. For CSLR evaluation, we use our manually annotated test

set (CSLR-Test) as described in Sec. 9.4, which corresponds to 4950 unseen test

subtitles.

For retrieval evaluation, we report both T2V and V2T performances using stan-

dard retrieval metrics, namely recall at rank k (R@k) for k ∈ {1, 5}. For CSLR

evaluation, given a video sequence defined by CSLR-Test, we compute our pre-

dicted gloss sequence (after post-processing the raw per-frame outputs with the

optimal θ and m heuristics – see Sec. 9.3.3 for post-processing strategy) and com-

pare against its corresponding ground-truth gloss sequence using several metrics.

We note that we filter out sign types and signs that are not associated to lexical

words from the ground-truth sequence. In addition, if several annotation words

are associated to one sign (e.g. ‘giggle’ and ‘laugh’), predictions are considered to

be correct if one of these words is predicted correctly.

As in other CSLR benchmarks [Koller et al. 2015b; H. Zhou et al. 2020a], we report

word error rate (WER) as our main performance measure. We also monitor mIoU

(mean intersection over union) between predicted and ground truth sequences’

words, without considering any temporal aspect. In all metrics, similar to [Momeni

et al. 2022], we do not penalise output words if they are synonyms.
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In order to assess the model’s ability to correctly predict sign segments at the right

temporal location, we also report the F1 score. We define a segment to be correctly

predicted if (i) the predicted sign matches, up to synonyms, the ground-truth gloss,

and (ii) the IoU between the predicted segment’s boundaries and the ground truth

gloss segment’s boundaries is higher than a given threshold. We compute the F1

score as the harmonic mean of precision and recall, based on this definition of

correct segment detection. We report the F1 score at different thresholds values,

namely, F1@{0.1,0.25,0.5}

9.5.2 Baselines

Subtitle-based automatic annotations CSLR baseline. The first baseline

for CSLR is obtained using spotting methods that search for signs corresponding

to words in the spoken language subtitles. The initial set of sparse sign annotations

along with timestamps was released with the BOBSL dataset [Albanie et al. 2021b],

using sign spotting methods from [Albanie et al. 2020; Momeni et al. 2020b; Varol

et al. 2021], followed by denser spottings in [Momeni et al. 2022]. We evaluate

these existing sequences of spottings, in particular the ones corresponding to our

CSLR-Test subtitles. In practice, we filter these automatic annotations using the

same sets of thresholds as in [Albanie et al. 2021b; Momeni et al. 2022], respectively

(see supplementary material for details). Note that these spottings make use of

the weakly-aligned subtitles (and cannot go beyond words in the subtitles), and

therefore cannot be used as a true CSLR method. They are also point annotations,

without precise temporal extent, thus we omit F1 scores.

ISLR baselines for CSLR. This set of baselines uses ISLR models in a sliding

window fashion to obtain continuous frame-level predictions. We aggregate the

sliding window outputs by performing the post-processing strategy described in

Sec. 9.3.3 (for optimal θ and m parameters, tuned on unseen manually annotated

CSLR sequences from the validation set). We use the I3D [Joao Carreira and

Zisserman 2017] and Video-Swin [Z. Liu et al. 2022] models trained from spotting

annotations of [Albanie et al. 2021b; Momeni et al. 2022]. We build on prior works

for these baselines: we use the I3D weights released in [Albanie et al. 2021b] and

train a Video-Swin-Tiny model in a similar fashion as in [K R Prajwal et al. 2022b].

InfoNCE retrieval baseline. Our baseline for sentence retrieval is the standard
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SentRet Sign-level loss WER ↓ mIOU ↑ F1@{0.1, 0.25, 0.5} ↑

ISLR Baseline 71.3 30.0 51.8 50.5 42.4
✗ CTC 74.1 28.4 - - -
✗ CE 73.5 29.5 46.5 45.8 39.0
✗ SignRet 70.8 30.0 50.0 49.4 43.1
✓ CE 71.8 27.6 49.0 48.5 42.9
✓ SignRet 65.3 35.3 54.0 53.2 47.1

Table 9.2: CSLR ablations on CSLR-Test: Only using CTC, cross entropy
(CE), or SignRet does not perform well, remaining below the ISLR baseline. We
observe best results when incorporating joint sentence retrieval training.

contrastive training [van den Oord et al. 2018] employed by many strong vision-

language models [Radford et al. 2021; J. Li et al. 2022]. We train this vanilla model,

without the CSLR objective, on the automatically-aligned subtitles from [Bull et

al. 2021a]. Sentence embeddings, obtained by feeding subtitle text into Tenc, are

compared against a learnable cls token on the video side which pools the video

embeddings as done in [Dosovitskiy et al. 2021; Radford et al. 2021].

9.5.3 Ablation study

CSLR components. In Tab. 9.2, we experiment with the choice of training

objectives for CSLR performance. In particular, we train with the standard CTC

or cross-entropy (CE) losses, as well as our sign retrieval (SignRet) loss alone.

Without an additional sentence retrieval loss, i.e. if we only optimise for a sign-

level objective, we observe that the performance is worse than the strong ISLR

baseline (i.e. with Video-Swin) for CTC and CE, and comparable for SignRet.

In the final two rows, we observe clear gains by combining the SentRet loss with

either (i) our SignRet loss or (ii) the standard CE loss. While the joint training

with the CE loss brings a performance boost, from 73.5 to 71.8 WER, it does not

surpass the competitive ISLR baseline. Our model CSLR2, which jointly trains

sentence and sign retrieval, brings a major improvement by reducing the WER by

6 points, from 71.3 to 65.3.

Retrieval components. In Tab. 9.3, we compare design choices for the retrieval

task: (i) choice of the contrastive loss function – InfoNCE vs. HN-NCE; (ii) choice

of pooling the temporal features – using a cls token [Devlin et al. 2019; Dosovitskiy

et al. 2021] vs. max-pooling. We observe a clear boost in all metrics by using HN-

NCE with our weakly-aligned data, which gives more weight to the hard-negatives
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SentRet Sign-level T2V V2T
Pool. loss loss R@1 ↑ R@5 ↑ R@10 ↑ R@1 ↑ R@5 ↑ R@10 ↑

cls InfoNCE ✗ 38.9 62.1 69.1 39.2 61.0 68.1
cls HN-NCE ✗ 48.9 68.3 73.9 46.5 67.2 72.8
max InfoNCE ✗ 43.4 64.9 71.0 42.7 64.8 70.7
max HN-NCE ✗ 50.5 69.5 75.1 49.7 69.7 74.7

max HN-NCE CE 50.0 69.1 74.4 48.7 68.7 74.3
max HN-NCE SignRet 51.7 69.9 75.4 50.2 69.1 74.7

Table 9.3: Retrieval ablations on Sent-Val: We experiment with the choice
of the contrastive sentence retrieval (SentRet) loss (standard InfoNCE vs. HN-
NCE), the visual encoder pooling (cls vs max), the addition and choice of sign-
level losses (cross entropy CE vs. contrastive sign retrieval SignRet). The last two
rows correspond to the joint models evaluated for CSLR in Tab. 9.2.
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Around the world, zoos like London Zoo dedicated a lot of their 
time and money to saving some of world's most endangered species.The majority of sweat is 

just straightforward water.
And just take me through 

their very complicated bodies.

And, for the first time in a very long time, 
I have three functioning cooling units.

It is a normal, inevitable part 
of the process of evolution.

We were worried that it might happen again, falling on 
a primary school, someone’s home, or a playground.

OK, this is primitive United Kingdom, we’re going to have 
Scotland at one end, the Isle of Wight on the other end.

Since we began exploring space in the 1960s, 
nearly 7,000 satellites have been sent into orbit. With the lost child safe, the camp 

team can prepare for the guests’ lunch.
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understand ≠ idea
mountain ≠ home

imagine = clear
island = town
hit = make
that it  = what
down = low
worry = concern
like = same
altogether = whole
1960 = sixty
explain = story
evidence = witness
lunch = eat
seven = six

decrease / few
rocket / upstairs
often / regular
most / especially

Figure 9.4: Qualitative CSLR results: We compare our model’s predictions
(Pred) against the ground truth (GT), providing examples from several error
ranges (sorted by WER). The subtitles displayed below each example are not used
by the model. While we observe that our model correctly predicts a large portion
of signs, handling both English synonyms as well as sign language polysemy (two
visually similar signs with different meanings) makes the CSLR task challenging.
Synonyms are depicted with the same color coding, e.g. ‘earth’ and ‘world’ in 3rd
row, middle.

when computing the contrastive loss: there is a minimum improvement of +7 R@1

for T2V comparisons. We further observe that max-pooling the visual Transformer

encoder outputs, instead of using a learnable cls token, consistently gives better

results. The joint training of retrieval and CSLR, with SignRet, also improves

retrieval performance: R@1 for T2V increases from 50.5 to 51.7. More importantly,

joint training enables a single, strong model which can perform both tasks.

9.5.4 Comparison to the state of the art

We compare to the current state-of-the-art approaches, both for large-vocabulary

CSLR and sentence retrieval, in Tab. 9.4.

CSLR performance. First, in terms of the baselines, it can be seen from Tab. 9.4,

that our post-processing strategy significantly strengthens the original ISLR I3D-
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CSLR CSLR-Test
Model WER ↓ mIOU ↑ F1@{0.1, 0.25, 0.5} ↑

Subtitle-based spotting [Albanie et al. 2021b] 93.6 07.2 - - -
Subtitle-based spotting [Momeni et al. 2022] 81.6 19.8 - - -
ISLR I3D-2K [Albanie et al. 2021b] 453.0 08.7 11.5 09.5 06.2
ISLR I3D-2K [Albanie et al. 2021b] † 82.4 17.9 46.5 44.5 35.2
ISLR I3D-8K [Momeni et al. 2022] † 74.6 27.0 49.5 47.9 39.1
ISLR Swin-8K [K R Prajwal et al. 2022b] † 71.3 30.0 51.8 50.4 42.4
CSLR2 (Ours) † 65.3 35.3 54.0 53.2 47.1

Retrieval Sent-Val (2K) Sent-Test (20K)
T2V V2T T2V V2T

Model R@1 ↑ R@1 ↑ R@1 ↑ R@5 ↑ R@1 ↑ R@5 ↑

InfoNCE 38.9 39.2 19.5 35.1 18.9 33.8
CSLR2 (Ours) 51.7 50.2 29.4 45.2 28.1 44.9

Table 9.4: Comparison to the state of the art: Our joint model significantly
outperforms both CSLR (top) and retrieval (bottom) baselines. For CSLR, note
that the automatic spotting annotations [Albanie et al. 2021b; Momeni et al. 2022]
have access to the subtitles at inference (unlike our fully automated approach). We
also compare to raw ISLR outputs from sign classification models from [Albanie
et al. 2021b; Momeni et al. 2022; K R Prajwal et al. 2022b] with various backbones
(I3D or Swin) and with various vocabularies (2K or 8K categories). Our optimal
filtering and post-processing strategy at inference is denoted with † (see. 9.3.3).
We note that for the ISLR I3D-2K baseline without †, we still remove consecutive
repetitions.

2K [Albanie et al. 2021b] performance by removing significant noise (with/with-

out †) – we reduce the WER by more than a factor of 5 (453.0 vs 82.4). Also, our

post-processing strategy combined with the 8K vocabulary ISLR models, delivers

models of higher performance (by more than 6 WER) than all subtitle-based spot-

tings methods, even though the ISLR models do not have access to the subtitles.

Second, our joint model, CSLR2, outperforms all CSLR baselines by a significant

margin on all metrics. Indeed, CSLR2 surpasses the best subtitle spotting method

by 16.3 WER and the strongest ISLR baseline by 6 WER. Please refer to the

supplementary material for a breakdown of performance based on different sign

types.

Retrieval performance. As Tab. 9.4 shows, our joint CSLR2 model outperforms

a standard InfoNCE [van den Oord et al. 2018] baseline for retrieval on all reported

metrics, with gains in R@1 for both T2V and V2T of almost 10 points. On the

more challenging Sent-Test gallery of 20k video-subtitle pairs, our CSLR2 model

achieves a Top-5 accuracy of 45.2% for T2V retrieval. We observe that for cases

where the target sentence is not the Top-1, the top-retrieved results usually exhibit
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semantic similarities with the correct sentence, with multiple common words (see

the qualitative examples in the supp. mat.).

9.5.5 Qualitative analysis

In Fig. 9.4, we show several qualitative examples of our CSLR predictions (Pred

rows) against the corresponding ground truth (GT rows) on CSLR-Test. Note

that we display the corresponding ground truth subtitles below each example to

give context to the reader, but they are not given as input to the model. We

illustrate examples from several error ranges, sorting them by WER per sample

(reported at the top). These timelines show that our model is able to predict a

large proportion of the annotations, in the correct order, with approximate sign

segmentation. For instance, even though the bottom-right example in Fig. 9.4

has a high error rate of 75 WER, our predictions correctly identify 4 out of the 8

ground truth words, and catch the meaning of the sentence.

However, we also observe several challenges: (i) our model has difficulty predict-

ing several words for a single sign, as the 8K training vocabulary of pseudo-labels

primarily comprises of individual words (e.g. the phrase ‘long time’ is associated

to a single sign in the 2nd row - middle - but our model predicts two separate

signs ‘long’ and ‘time’, leading to an extra insertion) (ii) our model performance

is sensitive to the synonyms list, which must be carefully constructed to not un-

fairly penalise predictions (e.g. in the top left example, ‘regular’ is counted as a

substitution since ‘often’ is not present in ‘regular”s synonyms list) (iii) our model

still struggles with visually similar signs in BSL which correspond to different En-

glish words (e.g. ‘upstairs’ and ‘rocket’ signs are visually similar, both signed by

pointing upwards, 3rd row - middle); (iv) finally, our model is more likely to fail in

recognising names of places and people as these are often fingerspelled in BSL and

may therefore not be in our 8K sign vocabulary of pseudo-labels (e.g. ‘isle wright’

is predicted as ‘america’ in the bottom left ). Future directions include addressing

such limitations.
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9.6 Conclusion

In this work, we demonstrate that jointly training for CSLR and sign language

retrieval is mutually beneficial. We collect a large-vocabulary CSLR benchmark,

consisting of 6 hours of continuous sign-level annotations. By leveraging weak

supervision, we train a single model which outperforms strong baselines on both

our new CSLR benchmark and existing retrieval benchmarks. While our approach

shows substantial improvements, future work includes increasing the vocabulary

size beyond 8K and modeling non-lexical signing classes such as pointing and

gesture-based signs.

Societal impact. The two sign language understanding tasks we address can

have positive implications by bridging the gap between spoken and sign languages.

These tasks can enable more seamless communication, content creation and con-

sumption by breaking down the language barriers that are prevalent today. At the

same time, the ability to automatically search a large volume of signing videos can

lead to risks such as surveillance of signers. We believe that the positives outweigh

the negatives.
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21-CE23-0003-01.

182



Part IV

Enhancing verb representations
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Abstract

Understanding verbs is crucial to modelling how people and objects inter-

act with each other and the environment through space and time. Recently,

state-of-the-art video-language models based on CLIP have been shown to

have limited verb understanding and to rely extensively on nouns, restrict-

ing their performance in real-world video applications that require action

and temporal understanding. In this work, we improve verb understanding

for CLIP-based video-language models by proposing a new Verb-Focused

Contrastive (VFC) framework. This consists of two main components: (1)

leveraging pretrained large language models (LLMs) to create hard nega-

tives for cross-modal contrastive learning, together with a calibration strat-

egy to balance the occurrence of concepts in positive and negative pairs;

and (2) enforcing a fine-grained, verb phrase alignment loss. Our method

achieves state-of-the-art results for zero-shot performance on three down-

stream tasks that focus on verb understanding: video-text matching, video

question-answering and video classification. To the best of our knowledge,

this is the first work which proposes a method to alleviate the verb un-

derstanding problem, and does not simply highlight it. Code and model

available at scenic/projects/verbs_in_action.

https://github.com/google-research/scenic/tree/main/scenic/projects/verbs_in_action
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Figure 10.1: Verb-Focused Contrastive (VFC) learning: (Left): Given a
video and its corresponding caption, we leverage a Large Language Model (LLM)
to output (1) hard negative captions, where only the verb has been changed while
keeping the remaining context, and (2) verb phrases which succinctly describe the
action in the video. (Right): To encourage better verb reasoning, we subsequently
enforce (1) a calibrated hard negative loss, using our generated hard negative cap-
tions and other captions in the batch, and (2) a fine-grained, verb phrase loss. We
show that VFC improves verb understanding of video-language models compared
to the standard contrastive loss.

10.1 Introduction
Large-scale visual-language models (VLMs) such as CLIP [Radford et al. 2021]

have shown strong performance on multiple video-language tasks such as text-

to-video retrieval [H. Luo et al. 2022], video question-answering, and open-set

action recognition [Z. Lin et al. 2022]. These models perform surprisingly well on

these tasks in a zero-shot setting, despite being trained only on image-language

pairs (with no access to temporal data), even outperforming strong video-specific

models [Bain et al. 2021b; S. Yan et al. 2022].

A recently highlighted and well-documented problem with such models, however,

is their strong noun or object bias, as evidenced by their lower performance in

distinguishing between verbs in natural language descriptions [Hendricks and Ne-

matzadeh 2021; Park et al. 2022; Yuksekgonul et al. 2023]. This was first stud-

ied in images alone by the SVO-Probes benchmark [Hendricks and Nematzadeh

2021], which shows that image-language models struggle to distinguish between

different verbs, and often rely on the nouns instead. This problem persists with

video-language models that inherit these VLMs, even after they are fine-tuned on

video-text datasets [J. Xu et al. 2016; Rohrbach et al. 2017]. For example, Park

et al. [Park et al. 2022] similarly propose evaluation sets with hard verb negatives,

and show that CLIP-based models, even when fine-tuned on video datasets, have

difficulties discriminating verbs in a multi-choice setting where the context remains

unchanged. Yuksekgonul et al. [Yuksekgonul et al. 2023] further highlight limita-



tions of vision-language models at understanding attribute, relationship, and order

information. This deficiency in verb understanding limits the model’s applicability

for real-world tasks. Verbs encapsulate how people and objects interact with each

other, and the environment, via actions in space and time.

We believe that there are two probable causes for this deficiency, even after fine-

tuning on video-text data: (i) existing visual-text datasets have a strong bias

towards single-frame concepts such as objects and backgrounds as well as static

actions [Sevilla-Lara et al. 2021; Buch et al. 2022; Lei et al. 2022]. Models are

hence less incentivized to understand dynamics and temporal actions [Sevilla-Lara

et al. 2021], biasing them towards noun understanding; and (ii) the limitations

of the cross-modal contrastive pretraining objective used by most current vision-

language models [Yuksekgonul et al. 2023]. In contrastive learning, the model is

trained to distinguish correct video-caption pairs from incorrect ones. Since it

is unlikely that existing datasets contain many examples with captions of similar

context but different verbs, the task can be solved by taking little verb information

into account. This relates to shortcut learning in deep neural networks [Geirhos

et al. 2020].

In an attempt to mitigate this problem, we propose a novel training framework

for tackling the task of verb understanding in vision-language models. Our frame-

work, called Verb-Focused Contrastive pretraining (VFC), consists of two novel

technical modifications to the contrastive learning framework. We first introduce

a method to automatically generate negative sentences for training where only the

verb has changed, keeping the context the same. This is done using LLMs [Raffel

et al. 2020; et al 2022], in an automatic and scalable manner. Note that we gener-

ate hard negative captions, unlike works that simply mine hard negatives from an

existing paired dataset [Radenovic et al. 2023], or change the order of words [Yuk-

sekgonul et al. 2023]. For example, given the caption ‘two brown horses eating

grass’, we generate the negative caption ‘two brown horses running on the grass’

(see Fig. 10.1). While this improves performance on some downstream tasks, we

find that introducing concepts simply in negative examples can also lead to an

imbalance in the contrastive objective, favouring certain concepts in the feature

space. To solve this, we propose a simple but effective calibration strategy to

balance the occurrence of verbs in both positive and negative captions.



Secondly, inspired by recent works on grounding concepts in vision-language learn-

ing [Kamath et al. 2021; M. Cao et al. 2022], we also introduce a verb phrase loss

that explicitly isolates the verb from a caption for more focused training. For

example, we extract the verb phrase ‘eating grass’ from the caption ‘two brown

horses eating grass’ (see Fig. 10.1). We find that this helps particularly for zero-

shot performance on downstream tasks that do not use long sentences in their

evaluation [Ghadiyaram et al. 2019]. Verb phrases are also extracted from sen-

tences using LLMs.

We then train a CLIP-based model [H. Luo et al. 2022] on a video-language dataset

with this novel training framework. We show that a single model trained in this

way transfers well to diverse downstream tasks that focus particularly on verb un-

derstanding, including three video benchmarks (multiple choice video-text match-

ing on MSR-VTT [J. Xu et al. 2016], video question answering on Next-QA [Xiao

et al. 2021], action recognition on Kinetics [Joao Carreira and Zisserman 2017]) and

one image benchmark (SVO-probes [Hendricks and Nematzadeh 2021]), achieving

state-of-the-art performance compared to previous works in zero-shot settings (and

often with fine-tuning as well); while maintaining performance on noun-focused

settings. On Kinetics, we also introduce a verb split of the data which specif-

ically highlights classes that are challenging to distinguish without fine-grained

verb understanding (‘brushing hair ’ vs ‘curling hair ’) and show that our model

particularly improves performance on this split.

10.2 Related works
LLMs for video-text tasks. LLMs have been used for various vision applica-

tions, for example to initialise vision-text models [Seo et al. 2022; Jun Chen et al.

2022; Z. Luo et al. 2022]. Recent works further use frozen LLMs via prompting

for tackling vision-language tasks [Alayrac et al. 2022; Tsimpoukelli et al. 2021; A.

Zeng et al. 2023; A. Yang et al. 2022; Zhenhailong Wang et al. 2022; Zhengyuan

Yang et al. 2022; et al. 2023]. LLMs have also been used in creative ways to obtain

better supervision for training for various tasks [A. Yang et al. 2021; Zellers et al.

2022; X. Lin et al. 2022; Y. Zhao et al. 2022; Santurkar et al. 2022]. For example,

[A. Yang et al. 2021] use LLMs to generate question-answer pairs from transcribed

video narrations, while [Zellers et al. 2022] use LLMs to rephrase questions into



sentences. [X. Lin et al. 2022] use LLMs to match noisy speech transcriptions to

step descriptions of procedural activities. [Nagrani et al. 2020] train BERT [De-

vlin et al. 2019] to predict action labels from transcribed speech segments and

use this to scale up training data for action classification. [Y. Zhao et al. 2022]

use pretrained LLMs conditioned on video to create automatic narrations. Re-

cent works [Y. Zhao et al. 2022; Santurkar et al. 2022] also show the benefits

of using LLMs to paraphrase captions for data augmentation for video-language

pretraining. [M. Li et al. 2022] use LLMs to generate negative captions by ma-

nipulating event structures. Our work differs to [M. Li et al. 2022] in that we

focus specifically on verb negatives, and videos instead of images. Most closely

related to our work, [Park et al. 2022] construct a test set for verb understanding

by leveraging T5 [Raffel et al. 2020] and highlight the poor performance of current

video-language models. Our work is substantially different: (i) we automatically

construct hard negative captions for training (not testing), (ii) we compare the

use of different LLMs, (iii) we show that training with such negative captions can

improve verb understanding on various verb-focused benchmarks.

Hard negatives for contrastive pretraining. Hard negatives have been used

to improve performance in metric representation learning and contrastive learn-

ing [Kalantidis et al. 2020; Harwood et al. 2017; C. Wu et al. 2017]. Recent works

mine hard negatives from an existing paired dataset [Radenovic et al. 2023; Hu Xu

et al. 2021; J. Yang et al. 2021]. In comparison, in our work, we generate hard neg-

ative captions and propose a careful calibration mechanism for training effectively

with such unpaired data. We also verify here the benefit of the HardNeg-NCE

loss [Radenovic et al. 2023] when training with generated hard negative captions.

[Yuksekgonul et al. 2023] construct hard negative captions by shuffling words from

the original caption to improve order and compositionality understanding. Our

work differs by (i) focusing specifically on verb reasoning, as opposed to object-

attribute relationships, (ii) using LLMs to construct hard verb text negatives as

opposed to perturbing the word order, (iii) focusing on video-language models.

Learning from parts-of-speech in video. Recent works use parts-of-speech

(PoS) tags for video understanding [Sadhu et al. 2021; Wray and Damen 2019;

Falcon et al. 2022; Ghadiyaram et al. 2019; Ran Xu et al. 2015]. [Wray and

Damen 2019] learn multi-label verb-only representations, while other works fo-



cus on learning adverb representations [Doughty et al. 2019; Doughty and Snoek

2022]. [Alayrac et al. 2016] use verb-noun pairs for unsupervised learning with

instructional videos, while [Falcon et al. 2022] leverage such pairs to generate data

augmentations in the feature space. Other works exploit PoS for fine-grained or

hierarchical alignment between video and text [Bowen Zhang et al. 2018; S. Chen

et al. 2020]. [Wray et al. 2019] learn a separate multi-modal embedding space for

each PoS tag and then combine these embeddings for fine-grained action retrieval.

[S. Chen et al. 2020] construct a hierarchical semantic graph and use graph reason-

ing for local-global alignments. Most closely related to our work, [J. Yang et al.

2021] use a PoS based token contrastive loss. Our work differs in that: (i) we

apply a verb phrase contrastive loss, as opposed to separate verb and noun losses;

(ii) we extract verb phrases using a LLM and show this performs better than PoS

tagging with NLTK [Bird et al. 2009] (Tab. 10.5); (iii) we evaluate our methods

on verb-focused downstream tasks. Similarly to [Ghadiyaram et al. 2019], we find

that training with verb phrase supervision helps for zero-shot performance on tasks

with shorter sentences.

Temporal understanding in videos. A long term goal in computer vision is

temporal understanding in videos [Joao Carreira and Zisserman 2017; Goyal et

al. 2017; Diba et al. 2019; Schindler and van Gool 2008; C.-Y. Wu et al. 2019;

Bolei Zhou et al. 2018; Sigurdsson et al. 2017]. However, current training and test

datasets have a strong visual bias towards objects and backgrounds as well as static

actions [Sevilla-Lara et al. 2021; D.-A. Huang et al. 2018], with some works [Buch

et al. 2022; Lei et al. 2022] demonstrating strong results with a single frame.

Despite these challenges, many recent works in video-only self-supervised learning

propose pretext tasks for improving temporal modelling [D. Kim et al. 2019; Ahsan

et al. 2019; Pickup et al. 2014; D. Wei et al. 2018; Price and Damen 2019; Benaim

et al. 2020; Jiangliu Wang et al. 2020; Yuan Yao et al. 2020; Dorkenwald et al.

2022; Misra et al. 2016; Liang et al. 2021; Jue Wang et al. 2022; Behrmann et al.

2021; Recasens et al. 2021; Dave et al. 2022]. Unlike these works that use only

video, [Y. Sun et al. 2022; M. Cao et al. 2022] focus on fine-grained temporal

video-text alignment via localization of text sub-tokens. [Bagad et al. 2023] also

leverage before/after relations in captions to create artifical training samples for

video-text. Differently to these works (which create augmented video negatives



or positives), we approach the problem of improving verb understanding in video-

language models from the language side, by leverging the strong generalization

capabilities of LLMs.

10.3 Method
Our goal is to adapt large-scale vision-language pretrained models (such as CLIP)

to understand verbs. We aim to do this without requiring such models to be re-

trained from scratch, but by simply fine-tuning them on a video-language dataset.

However, given the pitfalls with using the standard video-text contrastive setup [Rad-

ford et al. 2021] on existing video-language datasets, we propose a new framework

which we call Verb-Focused Contrastive pretraining (VFC). It consists of two

components, both using the power of LLMs: (i) a novel calibrated hard negative

training method where we train with synthetic verb-focused hard negative cap-

tions, and (ii) an additional verb phrase loss where videos are contrasted against

isolated verb phrases as opposed to the entire caption. Note that a ‘verb phrase’

can be a single verb or verb-noun pair depending on the caption (see Fig. 10.1).

10.3.1 Preliminaries
Large Language Models (LLMs) are generative text models with impressive

capacities, in particular for few-shot or prompt-based learning [et al 2022]. In

our work, we design prompts to instruct a LLM to (i) create verb-focused hard

negative captions and (ii) isolate verb phrases from the captions of a dataset.

LLMs allow scalability and generalisation, and as we show in the ablations (see

Tab. 10.2 and 10.5), are preferable to manual or rule based methods (eg. NLTK [Bird

et al. 2009]). In particular, we use PaLM [et al 2022], a state-of-art autoregressive

model, throughout this paper. However, our framework is model agnostic and

other LLMs can be used (see Tab. 10.2).

Video-language contrastive pretraining works by learning to distinguish be-

tween aligned and non-aligned video-text pairs. Given a dataset of N pairs

{(Vi, Ti)}i∈N with video Vi and caption text Ti, we extract normalised feature

representations vi and ti by using a video encoder f and text encoder g: we have

vi = f(Vi) and ti = g(Ti). We use the InfoNCE loss [van den Oord et al. 2018]

to make aligned (‘positive’) pairs close in feature space and all other pairwise



it’s a video of a bald monk sitting at a temple looking at his laptop 
it’s a video of a bald monk lying at a temple looking at his laptop   
it’s a video of a bald monk standing at a temple looking at his laptop   
it’s a video of a bald monk dancing around a temple holding his laptop   
it’s a video of a bald monk jumping up at a temple closing his laptop 
it’s a video of a bald monk running in a temple searching for his laptop  

man is arguing with another man in the dark 
man is kissing another man in the dark 
man is talking to another man in the daylight 
man is kicking another man in the light 
man is hugging another man in the dark

man is punching another man in the dark

a person draws a dragon

a person carves a dragon 
a person paints a dragon 
a person doodles a dragon 
a person sculpts a dragon 
a person destroys a dragon

a girl skateboarding in a public place

a girl dancing in a public place 
a girl running in a public place 
a girl singing in a public place 
a girl sitting on her skateboard in a public place 
a girl falling off her skateboard in a public place

Figure 10.2: Qualitative examples of hard negatives generated by PaLM.
We show a single frame per video and the corresponding caption in bold, with
the verb highlighted in green. We see that PaLM can effectively generate hard
negatives where the verb has changed (changes in red). When there are several
verbs in the caption (see top left), PaLM may replace one or all verbs. As a failure
case (bottom right), we show an example where PaLM can change more than just
the verb, which could make it an easier negative (replacing ‘punching’ by ‘talking’
but also ‘dark’ by ‘daylight’).

combinations in the batch further apart [Radford et al. 2021]. We optimize for

video-to-text Lv2t and text-to-video Lt2v alignments:

Lt2v
i = −t⊤i vi/σ + log

B∑
j=1

exp(t⊤i vj/σ) (10.1)

where B is the batch size and σ a temperature parameter controlling the sharpness

of the distribution. Lv2t is obtained by inverting v and t in Eq. 10.1.

Adapting image-text models to videos. We leverage CLIP [Radford et al.

2021] for video-language tasks following the CLIP4CLIP ‘seqTrans’ protocol [H.

Luo et al. 2022]. Both single-modal encoders (video f and text g) are initialized

with CLIP weights, with four additional temporal frame aggregation transformer

blocks stacked on top of the image encoder (see [H. Luo et al. 2022] for more

details). Our approach is agnostic to model architecture and so any state-of-the-

art video-language architecture could be potentially used.

10.3.2 Verb-Focused Contrastive Pretraining (VFC)

We describe both our calibrated hard negative training (Sec. 10.3.2) and the pro-

posed verb phrase loss (Sec. 10.3.2).

Calibrated Hard Negative training

In regular contrastive learning, given a video-caption pair, other captions in the

batch are simply pushed further in the feature space. Since it is unlikely that

existing datasets contain many examples with captions of similar context but dif-

ferent verbs, the task can be solved by paying little attention to verbs. Instead,



Name Video-to-text alignment loss Rω

Baseline −v⊤
i ti/σ + log ∑B

j=1 exp(v⊤
i tj/σ) (B−1)Sω

Sω
⊥⊥ ω

HN −v⊤
i ti/σ + log

(∑B
j=1 exp(v⊤

i tj/σ) + ∑B
j=1

∑Nhard
k=1 exp(v⊤

i thard
jk

/σ)
)

(B−1)Sω+BGω

Sω
∝ B Gω

Sω

Calibrated HN −v⊤
i ti/σ + log

(∑B
j=1 exp(v⊤

i tj/σ) + ∑Nhard
k=1 exp(v⊤

i thard
ik

/σ)
)

(B−1)Sω+Gω

Sω
∝ Gω

Sω
with Gω ≈ Sω

Table 10.1: Different choices for video-to-text alignment when training with
additional hard negatives (HN). Rω is the ratio of the number of times a given verb
phrase ω is used as a negative versus the number of times it is used as a positive.
We note that for the regular contrastive loss (Baseline), Rω only depends on
the batch size B, however when training with generated hard negatives (HN),
it depends on the verb phrase ω. We minimise this effect using our proposed
Calibrated HN loss, which we denote as LCHN

i . See details in Section 10.3.2.

our goal is to encourage the video-language model to focus on verb reasoning. We

do so by tasking a LLM to generate hard negative captions where only the verb(s)

in the captions change. Second, we train with these additional negative captions.

We find that naive training with additional data leads to imbalances affecting the

resulting video-text feature space. We propose a simple but effective calibration

mechanism to solve this.

Generating verb-focused hard negatives with PaLM. Given a caption Ti,

we task PaLM to replace the verbs with other verbs that convey a different action,

but still form a linguistically and semantically viable sentence (which may not

be guaranteed with random verb replacements – see qualitative examples in the

appendix). For example, in the caption ‘a man washes his face’, the verb ‘washes’

should not be replaced with ‘jumps’ or ‘plays’. The generated caption is then a

negative match for the corresponding video Vi (albeit a hard negative, as the nouns

and context remain the same). We experiment with different handcrafted prompts,

and find our best performing prompt to be the following: ‘In this task, you are

given an input sentence. Your job is to tell me 10 output sentences with a different

meaning by only changing the action verbs’. We also add four input-output pair

examples to the prompt, which increases the quality of PaLM’s predictions (see

in the appendix). We use one PaLM forward pass per caption Ti to generate ten

verb-focused hard negatives for that caption (qualitative examples of the gener-

ated captions can be seen in Fig. 10.2). During training, we randomly sample

Nhard generated captions for each pair (Vi, Ti) in the minibatch, which we denote(
T hard

ik

)
k∈[1,Nhard]

. Importantly, note that a T hard
ik

is a new generated text caption,

or an unpaired data sample, meaning that it does not come with a corresponding

matching (‘positive’) video.



Calibration. Interestingly, we observe that naively adding in negative captions

into training with a contrastive loss leads to harmful feature space distortions, as

some concepts are only seen in negative captions but never in positives. This is

observed by careful analysis of downstream performance (see Tab. 10.3 and 10.4).

We next describe a calibration mechanism to avoid such distortions: we first denote

the vocabulary of all verb phrases in the original and generated captions as Ω. For

each verb phrase ω (or ‘concept’) in Ω, we denote Sω as the number of times it

appears in the captions of the original dataset and Gω as the number of times it

appears in the PaLM-generated captions. We then derive equations for Rω (see

Tab. 10.1), which we define as the ratio of the number of times a verb phrase ω is

used as a negative versus as a positive during training, for different choices of the

video-to-text contrastive loss (note Lt2v is unchanged).

Contrastive training with paired data (Baseline). We first note that the

ratio Rω is independent of the verb phrase ω in regular contrastive learning (paired

data only). It simply depends on the batch size B, as Sw is cancelled from both

the numerator and denominator. This means that the number of times a concept

is used as a positive versus negative sample is the same regardless of the consid-

ered verb phrase. This naturally balances training, and is a great property of the

contrastive framework.

Adding generated unpaired negative captions (HN). However, when train-

ing with unpaired captions, this ratio is proportional to Gω/Sω and therefore

becomes dependent on the considered verb phrase ω. This can have significant

consequences for the video-text feature representations. The model can learn to

either ignore or always predict some concepts based on the average concept occur-

rences in positive or negative pairs during training.

Hard negatives with calibration (Calibrated HN). In order to make Rω

as ω-agnostic as possible, we introduce an ensemble of two techniques which we

refer to as ‘calibration’. First, we ignore the hard negative captions from the other

elements of the batch (see row 3 in Tab. 10.1), which allows us to mitigate the

influence of Gω/Sω by not amplifying it by the batch size B (equal to 256). Second,

we filter the generated PaLM captions to have Gω ≈ Sω. In practice, we discard

some generations so that the number of times a verb phrase appears in the set

of kept generations is equal to the number of times it is originally present in the



dataset. We denote our video-to-text loss (text-to-video is unchanged) as LCHN
i

for calibrated hard negative training.

Video mining. An alternative to avoid imbalances due to the addition of negative

captions would be to avoid training with unpaired data at all, by mining a matching

video V hard
ik

for each generated caption T hard
ik

. We attempt this via CLIP-based

text-to-video retrieval in a large video database but found that finding a video

matching a detailed, long caption is challenging, as such a precise video may not

exist in a given corpus (see in the appendix for examples).

The verb phrase loss

In order to further encourage our model to focus on verbs, we introduce a con-

trastive ‘verb phrase’ loss. We use PaLM to extract the verb phrase T verb
i in

a caption Ti with the following prompt: ‘In this task, you are given an input

sentence. Your job is to output the action verb phrases.’ While multiple parts-of-

speech (PoS) tagging tools exist, we use a LLM for the following reasons: (i) we

would like to isolate verb phrases, which may correspond to single verbs or verb-

noun pairs depending on the caption , (ii) LLMs deal better with ambiguous cases

(see qualitative examples in the appendix). We show the benefits experimentally

via an ablation in Tab. 10.5. During training, we minimize the loss:

Lverb-phrase
i = −v⊤

i t
verb
i /σ + log

B∑
j=1

exp(v⊤
i t

verb
j /σ)

where the negative verb phrase representations tverb
j simply come from other cap-

tions in the batch. Note that we do not require the calibration mechanism de-

scribed in Section 10.3.2 since all verb phrases T verb
i have a positive video match

Vi (i.e. the video aligned with Ti).

Overall, our verb-focused contrastive (VFC) pretraining optimizes the sum of three

objectives:
LVFC = 1

B

B∑
i=1

(
λ1L

t2v
i + λ2L

CHN
i + λ3L

verb-phrase
i

)
with parameters λ1, λ2 and λ3 weighting the contribution of the different terms.

We learn the parameters of f and g via back-propagation.

10.3.3 Implementation details

Spoken Moments in Time (SMiT) pretraining dataset. The SMiT [Mon-

fort et al. 2021] training set consists of 481K pairs of 3 seconds video clips with



corresponding captions. It is a subset of Moments in Time (MiT) [Monfort et al.

2019]. Our work falls under the umbrella of transfer learning: we pretrain on

SMiT and then use the resulting features to solve different downstream tasks in a

zero-shot or fine-tuned manner. Pretraining is either done as in regular contrastive

learning (‘baseline’) or with our VFC framework. We find that the baseline al-

ready performs competitively on our benchmarks, despite the relatively small size

of SMiT compared to other datasets such as HowTo100M [Miech et al. 2019], due

to the quality and diversity of the manually annotated captions. We encourage

the community to consider SMiT as a powerful pretraining dataset.

PaLM. We use PaLM-540B [et al 2022] with beam size 4, output sequence length

512, and temperature of 0.7. The negative captions are generated in an autogres-

sive way and are therefore of arbitrary length. We post-process them by removing

text after any newline character and by filtering out candidates which contain the

same verbs as the original caption.

Training details. Most hyper-parameters follow CLIP4CLIP [H. Luo et al. 2022].

We initialise our model with CLIP ViT/B-32 and train with VFC for 100 epochs

with a batch size of 256, base learning rate of 1e-7, weight decay of 1e-2, tem-

perature of 5e-3 and weights λ1 = 2, λ2 = λ3 = 1 which we empirically find to

work best in our experiments. Indeed, this balances the video-to-text and text-to-

video loss terms. We also normalise each loss term by its value obtained from a

random uniform prediction in order to have all loss terms in the same range (loss

always equal to 1 for a random uniform prediction). We sample 32 frames per

video at 25fps, with a 2 frame stride. See in the appendix for implementation and

evaluation details.

10.4 Experiments
We curate a suite of benchmarks from existing works to evaluate verb understand-

ing in Sec. 10.4.1. Then we ablate various components of VFC in Sec. 10.4.2.

Finally, we demonstrate improved performance on our set of downstream tasks in

Sec. 10.4.3, and compare to the state of the art.



Method Hard negatives VerbH K-400

Baseline ∅ 69.9 55.6

w/o LLM
Random verb 73.6 (+3.7) 55.0 (-0.6)
Antonym verb 72.4 (+2.5) 55.4 (-0.2)

w/ LLM
T5 [Raffel et al. 2020] 75.1 (+5.2) 55.8 (+0.2)

Ours PaLM [et al 2022] 78.0 (+8.1) 55.8 (+0.2)

Table 10.2: Hard negatives generation. We explore both LLM based and
non LLM-based methods to obtain hard negative captions. Although PaLM LLM
captions achieve the best performance, other LLMs (T5) achieve good results too.
All methods are evaluated with calibration.
10.4.1 Verb-Focused Benchmarks

MSR-VTT multiple choice (MC) is a benchmark of 10K videos of length

10–30 secs. We evaluate on the standard 3k split and on VerbH from [Park et

al. 2022]. In this setting, the task is to associate each video to the right caption

among five choices. While the four wrong captions are randomly chosen from other

videos in the standard 3k split, one of them is replaced by a hard verb negative in

VerbH [Park et al. 2022].

Video question answering on NEXT-QA The train (resp. val) split con-

tains 3870 (resp. 570) videos with 32K (resp. 5k) questions. There are three

types of questions: causal (C), temporal (T) and descriptive (D). We consider the

standard setting as well as ATPhard [Buch et al. 2022], a subset automatically con-

structed with questions that are non-trivially solved with a single frame. ATPhard

is designed to be a better benchmark for the model’s true causal and temporal

understanding which we believe is strongly related to verb reasoning.

Kinetics-400 is a video classification dataset with 400 human action classes. We

report top-1, top-5 and their average classification accuracy. We follow [Radford

et al. 2021] to evaluate classification in an open-set, zero-shot manner. This bench-

mark allows to assess transfer ability to action classification, which requires strong

verb understanding (given actions are usually described with verb phrases).

SVO-probes dataset is a benchmark designed to measure progress in verb un-

derstanding of image-text models [Hendricks and Nematzadeh 2021]. It contains

image–caption pairs with 421 different verbs. We simply replicate the image mul-

tiple times as input to our video model. We report Average Precision (AP) on the



Method Rω # HN VerbH K-400

Baseline ⊥⊥ ω 0 69.9 55.6

w/o calibration ∝ B Gω
Sω

8.7M 80.5 (+10.6) 54.5 (-1.1)
w/ calibration ∝ Gω

Sω
, Gω ≈ Sω 0.9M 78.0 (+ 8.1) 55.8 (+0.2)

Table 10.3: Importance of the calibration mechanism when training with
hard negative captions. The model trained without calibration suffers from a
drop of performance on Kinetics.
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Rω ∝ 37 12 78 53 27
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Table 10.4: Confusion matrix for the hair classes on Kinetics. Without
proper calibration, the verb phrase ‘brushing hair’ becomes highly attractive in
the video-text feature space. This deteriorates the performance on all the ‘hair’
related classes. Our calibration mechanism alleviates this issue by making the
ratio Rω independent of verb phrases (see details in Sec. 10.3.2). More examples
are shown in the appendix.

entire dataset as well as the verb-focused setting (details about our evaluation are

provided in the appendix).

10.4.2 Ablation Study

In this section, we analyze our different design choices. We report results when

transferring the models on two of our benchmarks: MSR-VTT multi-choice verb

split (‘VerbH ’) and Kinetics-400 video classification (‘K-400’). We chose these

two benchmarks as they have very different properties: the first involves captions,

while the second involves action labels. We note that Nhard = 1 for all ablations

unless otherwise specified.



PaLM captions: VerbH K-400

∅ 69.9 55.6
Positive 69.3 55.4
Negative 78.0 55.8

Verb isolation: VerbH K-400

∅ 69.9 55.6
MiT labels 69.9 57.0

NLTK [Bird et al. 2009] 70.1 56.4
PaLM [et al 2022] 70.3 57.6

Table 10.5: (left): Generating negative versus positive captions with
PaLM. (right): Verb phrase isolation methods.

Hard negative captions generation. In Tab. 10.2, we ablate the technique

used to obtain additional negative captions: we compare two LLMs (T5 [Raffel

et al. 2020] and PaLM [et al 2022]) and two non LLM-based methods: (i) ‘random

verb’: we replace verbs by random verbs from the UPenn XTag verb corpus and (ii)

‘antonym verb’: we replace verbs with their antonyms, using the NLTK [Bird et al.

2009] package. We see in Tab. 10.2 that ‘random verb’ and ‘antonym verb’ already

give moderate performance gains on VerbH compared to the baseline. However,

using LLM-based generations improves the results by a large margin compared

to the non LLM-based methods. This is likely due to the fact that (i) random

or antonym replacements often create non semantically or linguistically plausible

negative captions; (ii) some verbs do not have antonyms in NLTK (see qualitative

examples in the appendix). Finally, we see in Tab. 10.2 that T5 generations work

very well in our framework too, which demonstrates that our framework is LLM-

agnostic. We observe that the best performance is achieved using PaLM, with a

substantial gain over the baseline on MSR multi-choice (+8.1%) and a moderate

gain on Kinetics (+0.2%).

Hard negative captions: the importance of calibration. We demonstrate

the effect of the calibration mechanism described in Section 10.3.2 for training

with unpaired captions. Tab. 10.3 shows the performance of hard negative train-

ing with (‘w/’) versus without (‘w/o’) calibration. First, we observe that the

performance boost on MSR-VTT compared to the baseline is slightly stronger

without calibration than with calibration. We believe this is because calibrating

the PaLM generations reduces their number. However, we see that training with

hard negatives without calibration deteriorates a lot the performance on Kinetics

(−2.0% compared to the baseline). We hypothesize that this is due to some verb

phrases being seen only as repulsive in the video-text feature space, while others

are seen equally as attractive and repulsive. We illustrate this in Tab. 10.4 by



Method Hard negatives Verb phrase VerbH K-400

Baseline 69.9 55.6

✓ 78.0 (+8.1) 55.8 (+0.2)
✓ 70.3 (+0.4) 57.6 (+2.0)

VFC (Ours) ✓ ✓ 76.3 (+6.4) 58.5 (+2.9)

Table 10.6: Combining hard negative and verb phrase loss achieves 9.2%
and 5.2% relative improvements on MSR-VTT MC (acc.) and Kinetics (top-1)
respectively compared to the baseline.

Method Nhard VerbH K-400
VFC (Ours) 1 76.3 58.5
VFC (Ours) 3 77.8 58.5
VFC (Ours) 5 78.3 58.5

Table 10.7: Maximum number of hard negative captions. We observe that
increasing the maximum number of hard negative captions sampled per video
increases the performance on VerbH . We use Nhard = 5 in the remaining of the
paper.

showing the confusion matrix for a subset of the Kinetics classes, along with the

ratio Rω (defined in Sec. 10.3.2) for each verb phrase. Intuitively, Rω measures

the ‘attraction’ (if low) and ‘repulsion’ (if high) of a verb phrase ω. The confu-

sion matrix in Tab. 10.4 shows that the verb phrase ‘brushing hair’ becomes an

attraction point in the absence of calibration. Indeed, the number of times the

verb phrase ‘brushing hair’ is repulsive versus attractive is low (Rbrushing hair ≈ 12)

compared to the other concepts such as ‘curling hair’ (Rcurling hair ≈ 78): we have

Rbrushing hair << Rcurling hair. Hence, predictions for ‘brushing hair’ become domi-

nant. This actually improves the performance for that class but deteriorates the

performance on all the other classes related to ‘hair’. We see in Tab. 10.4 that our

calibration mechanism alleviates this effect by making the ratio Rω independent of

ω as in regular contrastive learning. Calibration allows us to improve performance

over the baselines on both tasks with a single model.

Generating positive versus negative captions. In Tab. 10.5 (left), we investi-

gate the impact of generating positive captions instead of negatives with PaLM. In

this case, positives correspond to sentences where the verb in the original caption

is changed to a synonym verb, but the remaining context is unchanged: PaLM

therefore acts as a data augmentation generator for text (similar to [Y. Zhao et al.

2022; Santurkar et al. 2022]). Details about positive caption generations are in



Method Contrastive loss VerbH K-400
Baseline NCE 69.9 55.6
Baseline HardNeg-NCE 72.0 56.4
VFC (Ours) NCE 78.3 58.5
VFC (Ours) HardNeg-NCE 80.5 58.8

Table 10.8: Complementarity with other negative mining methods. We
observe that using the HardNeg-NCE loss, instead of standard NCE, gives the
highest performance. We use HardNeg-NCE from now on. We note that for VFC
we use Nhard = 5.

the appendix. We observe that using positive captions has a negative impact on

the performance in our benchmarks, possibly because the model becomes more

invariant to different verbs.

Verb phrase loss. In Tab. 10.5 (right), we explore two alternatives for verb

phrase extraction used in the verb phrase loss: (i) using human-annotated action

labels for clips from the Moments in Time (MiT) dataset (these are available as

SMiT data inherits from MiT [Monfort et al. 2019]) and (ii) using a rule-based

method (NLTK [Bird et al. 2009]) to isolate verbs. We observe in Tab. 10.5 that

using PaLM to extract verb phrases from the caption outperforms both, probably

because it extracts more fine-grained action information. Qualitative analysis of

the verb phrases is shown in the appendix.

Combining calibrated hard negatives and verb phrase loss. We show in

Tab. 10.6 the complementarity between our two contributions: the calibrated hard

negative training and the verb phrase loss. The former greatly improves perfor-

mance on tasks requiring complex language understanding such as MC VerbH . On

the other hand, the verb phrase loss improves transfer to video classification by

focusing particularly on the action label in the sentence. We see in Tab. 10.6 that

combining both approaches during training results in a single model with excellent

performance on both MSR-VTT MC and Kinetics zero-shot transfer. Compared

to the baseline, VFC pretraining achieves 9.2% and 5.2% relative improvements

on MSR-VTT MC and Kinetics respectively.

Number of hard negative captions. In Tab. 10.7, we vary the maximum

number of hard negative captions Nhard sampled per video in the batch. We find

that setting this to 5 increases the performance on VerbH while maintaining the

performance on Kinetics. We use this setting going forward. We note that we do



Model # params. 3k val. VerbH [Park et al. 2022]

Zero-shot
VideoCLIP [Hu Xu et al. 2021] – 73.9 -
CLIP [Radford et al. 2021] 151M 91.1 64.1
InternVideo [Yi Wang et al. 2022] ≈ 460M 93.4 -
VFC (Ours) 164M 95.1 80.5

Fine-tuned
ClipBERT [Lei et al. 2021] – 88.2 -
MMT [Gabeur et al. 2020] – 92.4 71.3
VideoCLIP [Hu Xu et al. 2021] – 92.1 -
CLIP-straight [Portillo-Quintero et al. 2021] 151M 94.1 65.1
MMT [Gabeur et al. 2020] (CLIP features) – 95.0 71.4
C4CL-mP [Park et al. 2022] 151M 96.2 73.7
VFC (Ours) 164M 96.2 85.2

Table 10.9: Multi-choice MSR-VTT. We report accuracy on the 3k val and
on the verb-focused VerbH [Park et al. 2022] splits. While VFC improves the
performance on both splits in a zero-shot setting, the gap with previous works is
especially important on VerbH [Park et al. 2022]. When available, we add model
parameter counts.

not try larger values as our maximum number of hard negatives per video after

calibration is 5.

Complementarity with other negative mining methods. We investigate

whether our VFC framework is complementary to existing approaches for hard

negatives with the contrastive learning framework. Specifically, we reimplement

the hard negative noise contrastive multimodal alignment loss from [Radenovic et

al. 2023; Robinson et al. 2021], which is denoted as HardNeg-NCE. With this ob-

jective, difficult negative pairs (with higher similarity) are emphasised, and easier

pairs are ignored. We use α = 1 and β = 0.1 in the equations from [Radenovic et

al. 2023]. We note that we only adapt Lt2v
i and LCHN

i with HardNeg-NCE. Adapt-

ing Lverb-phrase
i does not bring further improvements, so we omit this for simplicity.

We observe in Tab. 10.8 that VFC is complementary to existing frameworks: using

HardNeg-NCE instead of the standard NCE loss achieves the highest performance.

We observe a large boost on VerbH [Park et al. 2022], a benchmark that specifically

involves hard negatives. We adopt HardNeg-NCE in the remaining of this paper.

10.4.3 Comparisons to the State of the Art

We compare VFC to the state of the art on a diverse set of tasks requiring verb

understanding. Note that we use the same model across different tasks, which is



ATPhard [Buch et al. 2022]
Model all D T C all T C

Zero-shot
CLIP [Radford et al. 2021] 43.9 57.0 38.1 43.6 23.0 21.8 23.8
VFC (Ours) 51.5 64.1 45.4 51.6 31.4 30.0 32.2

Fine-tuned
HGA‡ [P. Jiang and Y. Han 2020] 49.7 59.3 50.7 46.3 44.1 45.3 43.3
ATP [Buch et al. 2022] 49.2 58.9 46.7 48.3 20.8 22.6 19.6
Temp[ATP] [Buch et al. 2022] 51.5 65.0 49.3 48.6 37.6 36.5 38.4
TAATP† [Xiao et al. 2022] 54.3 66.8 50.2 53.1 - - -
VGT [Xiao et al. 2022] 55.0 64.1 55.1 52.3 - - -
VFC (Ours) 58.6 72.8 53.3 57.6 39.3 38.3 39.9

Table 10.10: NEXT-QA video question answering. We report accuracy. We
consider either ‘all’ questions or only causal (‘C’), temporal (‘T’) or descriptive
(‘D’) questions. We also use ATPhard split [Buch et al. 2022]. VFC improves per-
formance for both zero-shot and fine-tuning. †Temp[ATP]+ATP. ‡ Uses additional
motion features.

non-trivial as the tasks cover different domains and evaluation protocols.

MSR-VTT MC results. We see in Tab. 10.9 that our verb-focused pretraining

transfers well to the MSR-VTT multi-choice task, especially on the hard verb split

(curated to assess exactly the task we are trying to solve). We even outperform

concurrent InternVideo [Yi Wang et al. 2022] while using a significantly smaller

setting both in terms of architecture (InternVideo uses 2.8× more parameters and

12.4× more flops) and pretraining dataset size (they use 24× more data). We also

note that our method does not degrade performance on other standard object-

based tasks, such as text-to-video retrieval on MSR-VTT (results compared to the

state of the art are shown in the appendix).

NEXT-QA results. We show in Tab. 10.10 that our verb-focused pretraining

gives a significant boost in both the standard and ATPhard setting introduced

by [Buch et al. 2022]. To the best of our knowledge, we are the first work to

report zero-shot results for NEXT-QA and our zero-shot numbers improve upon

some previously published fine-tuning numbers. Finally, although HGA [P. Jiang

and Y. Han 2020] performs worse than ours on the standard setting, it achieves

a high accuracy of 44.1 on ATPhard. Their high performance on ATPhard can

be explained by the use of additional motion features, aiding in answering hard

dynamics questions, as noted by [Buch et al. 2022]. The addition of extra motion

features on the video side can be complementary to our verb-focused pretraining



Model # param. top-1 top-5 average

Val-Set
CLIP [Radford et al. 2021] 151M 48.9 75.8 62.4
ActionCLIP [M. Wang et al. 2021] ≈ 164M 56.4 - -
VFC (Ours) 164M 59.4 85.3 72.4

Test-Set
Flamingo-3B [Alayrac et al. 2022] 3B 45.2 66.8 56.0
Flamingo-80B [Alayrac et al. 2022] 80B 49.1 71.5 60.3
Flamingo-9B [Alayrac et al. 2022] 9B 49.7 71.5 60.6
CLIP [Radford et al. 2021] 151M 47.9 75.1 61.5
VFC (Ours) 164M 58.8 84.5 71.7

Table 10.11: Zero-shot transfer to Kinetics-400. We report top-1 accuracy,
top-5 accuracy, and their average on the validation and test set, as well as the
parameter counts of the different models.

Method all Kinetics-verb

Baseline 55.6 52.1
VFC (Ours) 58.8 (+3.2) 57.1 (+5.0)

Table 10.12: Zero-shot Kinetics-verb. We report accuracy performance on our
newly proposed Kinetics-verb split (from test split).

approach.

Zero-shot Kinetics-400 results. In Tab. 10.11 we see that our verb-focused

features transfer very well to Kinetics video classification benchmark in a zero-

shot setting, achieving state-of-the-art results. We achieve better results than

Flamingo models [Alayrac et al. 2022] while using a significantly smaller model:

relative improvement of 20% over Flamingo-80B model while using 489 × less

parameters.

Kinetics-verb. To further analyse the VFC framework’s effect on action classifi-

cation, we introduce the Kinetics-verb split. We isolate classes from the Kinetics-

400 dataset that share a common noun with another class, but have a different

verb (and therefore action). For example, distinguising between ‘braiding hair’,

‘brushing hair’ and ‘curling hair’ requires the model to focus on verb understanding

as predictions cannot be inferred from the simple presence of hair in the frame.

We use this rule to create a subset of 97 classes from the Kinetics-400 test set

(see in the appendix) called ‘Kinetics-verb’. We show in Tab. 10.12 that our VFC

improves substantially over the baseline (+5%) on this split.

Assessing verb understanding on SVO-probes. In Tab. 10.13, we see that



Model AP APverb

CLIP [Radford et al. 2021] 48.3 52.3
No-MRM-MMT [Hendricks and Nematzadeh 2021]† 51.5 53.1
Baseline (Ours) 60.2 61.9
VFC (Ours) 61.8 64.6

Table 10.13: Verb understanding on SVO-probes [Hendricks and Ne-
matzadeh 2021]. We report Average Precision (AP) on the entire dataset and
on the verb-specialized setting. †Scores provided by authors to calculate AP.

our VFC framework improves the performance on SVO-probes compared to the

baseline (particularly in the verb setting), and outperforms prior work [Hendricks

and Nematzadeh 2021] with 21.7% relative improvement in the verb setting.

10.5 Conclusion

Video-language models based on CLIP have been shown to have limited verb

understanding, relying extensively on nouns. We attempt to alleviate this problem

with two technical contributions on the contrastive learning framework: first, we

leverage LLMs to automatically generate hard negative captions focused on verbs;

second, we introduce a verb phrase alignment loss. We validate our verb-focused

pretraining by showing improved performance on a suite of benchmarks, chosen in

particular to assess verb understanding. Our framework is general and could be

employed for other video-language tasks, and further readily scales with the rapid

progress in language modelling.
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CHAPTER 11. DISCUSSION

Chapter 11

Discussion

In this chapter, we first provide a summary of the achievements and the impact

of the presented works in this thesis (Section 11.1). We then briefly discuss eth-

ical considerations (Section 11.2) and highlight directions for future works (Sec-

tion 11.3).

11.1 Achievements and Impact

Keyword Spotting in Sign Language. In Chapter 2 (‘Audio-visual KWS’),

we introduce a novel zero-shot keyword spotting method, suitable for in the wild

videos, that can take as input either video, audio or both. The proposed method

generalizes to other languages, specifically French and German. In Chapter 3 (‘Vi-

sual KWS’), we address the challenge of limited cross-modal interaction between

the visual and phonetic streams by proposing a new spotting architecture based

on Transformers. This model surpasses the previous state-of-the-art visual key-

word spotting method presented in Chapter 2 on the challenging LRW [Chung and

Zisserman 2016a], LRS2 [Chung et al. 2017], LRS3 [Afouras et al. 2018b] datasets

by a significant margin. In Chapter 4 (‘BSL-1K’), we pioneer the use of a visual

keyword spotting model along with weakly-aligned subtitles, which provide query

words, to automatically label hundreds of thousands of signs in sign language

interpreted TV shows via mouthing cues. The resulting collected training data

not only enables training strong sign recognition model for co-articulated signs in

BSL, but also serves as valuable pretraining data for other sign languages. Our

scalable annotation strategy, leveraging signer mouthings, has been adopted in
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other datasets such as How2Sign [Duarte et al. 2022], comprising American Sign

Language.

Approaches for Sign Spotting. In Chapter 5 (‘Watch Read Lookup’), we

propose to identify and localize signs in continuous signing by leveraging visual

sign language dictionaries. Our approach not only aims to bridge the domain gap

between continuous and isolated signing, but also uniquely considers the possibility

of signs having multiple variants. This strategy greatly increases the amount of

automatic annotations compared to relying solely on mouthings, both in terms of

vocabulary coverage and number of instances. Employing dictionaries has been

successfully applied to other datasets [Duarte et al. 2022] and inspired subsequent

research in sign spotting [T. Jiang et al. 2021]. In Chapter 6 (‘Read and Attend’),

we further extend our automatic annotation efforts by leveraging the attention

mechanism of a Transformer trained on a video-to-text sequence prediction task.

This approach enables the identification of hundreds of thousands of more signs.

By combining these newly generated annotations with those previously collected

from mouthings (Chapter 4) and dictionaries (Chapter 5), we develop a robust sign

language recognition model. This model has served as a foundation for subsequent

research on signing-subtitle retrieval [Y. Cheng et al. 2023] and alignment [Bull

et al. 2021a]. In Chapter 7 (‘Automatic dense annotation’), we demonstrate the

efficacy of pseudo-labelling from a sign recognition model as a way of sign spotting.

We also introduce a novel approach of leveraging in-domain exemplars, further

enhancing the density of annotations in sign language data.

Through our proposed sign spotting methodologies (outlined in Chapter 4 through 7),

we curate the BOBSL BSL sign language corpus [Albanie et al. 2021b], including

over 5M confident automatic annotations for a vocabulary of 25K signs. This

large-scale dataset has supported research on diverse tasks, including sign recog-

nition [Shen and anc Yi Yang 2022; Wong et al. 2023] and translation [Guo et al.

2024; Sincan et al. 2023; Sincan et al. 2024].

Sequence recognition in Sign Language. In Chapter 8 (‘Weakly-supervised

fingerspelling’), we focus on BSL fingerspelling recognition, which is more chal-

lenging than American Sign Language (e.g., two-handed instead of one-handed).

Our method both detects and recognises sequences of signed letters, using only

weak annotations. Additionally, we contribute a test set of 5K video clips, anno-

207



tated by human experts for evaluating BSL fingerspelling recognition methods to

support sign language research. In Chapter 9 (‘Large-vocabulary CSLR’), we de-

sign a multi-task transformer model, capable of performing both large vocabulary

continuous sign language recognition (CSLR), and sign language retrieval. This

marks an important step towards translation in open vocabulary settings. We also

construct the largest CSLR test set, with continuous sign-level human annotations

spanning six hours of videos, which will be made publicly available.

Enhancing verb representations. In Chapter 10 (‘Verbs in Action’), we pro-

pose the first method to tackle the verb understanding challenge in video-language

models, while maintaining their effectiveness in noun-related tasks. Our framework

utilizes LLMs to generate verb-focused hard negatives for cross-modal contrastive

learning. Furthermore, it incorporates a fine-grained loss on isolated verb phrases.

Our model achieves state of the art zero-shot verb understanding performance

across a range of tasks and benchmarks, including MSR-VTT, Kinetics-400, Next-

QA and SVO-Probes. Our approach inspires many subsequent studies exploring

the use of LLMs to augment text descriptions [X. Huang et al. 2024] and to gen-

erate hard negatives for action, event, compositional and fine-grained understand-

ing [Zhenhailong Wang et al. 2023; Hakim et al. 2023; Sahin et al. 2023; G. Zhang

et al. 2023; S et al. 2024], even in the context of diffusion models [Motamed et al.

2023].

11.2 Ethical considerations

In this section, we discuss some of the opportunities and limitations of the work

in this thesis.

11.2.1 Applications

While research on sign language understanding holds promise for positive impact,

it is crucial to ensure the resulting applications are genuinely useful and practi-

cal for deaf communities. To achieve this goal, it’s essential to involve deaf re-

searchers and their perspectives from the outset of projects. This approach helps

prevent misalignment between hearing researchers and members of the deaf com-

munity, thereby mitigating the risk of producing outcomes with limited practical

208



value [Bragg et al. 2019; Erard 2017].

In this context, we draw attention to two applications of particular significance to

deaf communities: the efficient search and indexing of sign language videos, and

the integration of sign-reading capabilities into virtual assistants such as Siri and

Alexa [Bragg et al. 2019]. In fact, relying solely on text-based interfaces for commu-

nication with virtual assistants presents considerable practical limitations [Glasser

et al. 2020]. Other applications include educational tools for sign language learners

with features like auto-correct prompts (‘did you mean this sign?’) and real-time

automatic interpreting in video calls, or critical scenarios such as hospitals, police

stations, and airports, where human interpreters may not be readily available.

11.2.2 Limitations

While this thesis facilitates the creation of a large-scale dataset, there are impor-

tant limitations to be highlighted. Firstly, the data covers interpreted signing,

introducing certain biases compared to conversational signing. Interpreting can

lead to a simplification in signing style and vocabulary, and even a reduction in

speed for comprehension [Bragg et al. 2019]. More work is required to quantify

and bridge this domain gap, allowing models to be transferred to native, conver-

sational signing in real-world scenarios. Additionally, although the data spans a

considerable number of hours, it involves only 39 signers, with a biased distribution

of interpreters in terms of demographics and hearing status, potentially impacting

signing style [Stone and Russell 2013]. These data biases can result in decreased

model performance among underrepresented groups. Moreover, during the manual

verification of test sets, a few signs were flagged as inappropriate (e.g. containing

either harmful or racist content). While these signs have been removed from evalu-

ation sets, it’s likely that similar instances exist within the remaining data. Efforts

are needed to systematically eliminate such harmful content to prevent issues in

models trained on this data. Finally, although interpreters have consented to the

use of their footage for research purposes, additional measures should be explored

for signer anonymisation to prevent tracking of particular individuals [Bigand et

al. 2020].
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11.3 Future Work

Here, we discuss several promising directions for future work related to this thesis.

11.3.1 Sign Language Translation

While recent works have shown promising outcomes for sign language translation

in constrained settings [N. C. Camgoz et al. 2018; N. C. Camgoz et al. 2020b;

Ko et al. 2019a], open-vocabulary sign language translation in the wild remains

largely unsolved. In this thesis, the aim is to pave the way to this more realistic

setting by focusing on automatic dense annotation of lexical signs (Chapter 7 ‘Au-

tomatic dense annotation’) and large vocabulary continuous sign language recog-

nition (Chapter 9 ‘Large-vocabulary CSLR’). Indeed, research has indicated the

advantages of sign-level supervision in enhancing translation performance [N. C.

Camgoz et al. 2018; N. C. Camgoz et al. 2020b].

However, achieving sign language translation entails numerous additional steps.

Firstly, understanding non/partially-lexical signs in sign language discourse is cru-

cial. Partially lexical signs vary significantly based on context and are employed,

for instance, to convey position, motion, size and shape of objects [Braffort and

Filhol 2014]. Robust translation performance necessitates models capable of learn-

ing generalisable representations, that are also sensitive to context, given there is

not a fixed sign language lexical dictionary as in spoken languages. Secondly, de-

spite the known importance of non-manual components in sign languages [N. C.

Camgoz et al. 2020a], our work does not explicitly address the simultaneous mod-

eling of multiple articulators. In fact, this highly distinguishes sign languages from

written languages, where a single stream of symbols is processed sequentially. To

effectively leverage data from all articulators, translation architectures may neces-

sitate hierarchical structures to generalize to such heterogeneous sources of data.

Finally, to facilitate generalization in real-world scenarios, models must be trained

with data from native signers and in more complex situations – such as conversa-

tions involving several signers or signers viewed from challenging viewpoints.

210



11.3.2 Model-assisted annotation for video

In this thesis, we explore various methods to automatically obtain stronger super-

vision for sign language datasets, such as leveraging other modalities (Chapter 3

‘Visual KWS’) or visual exemplars (Chapter 5 ‘Watch Read Lookup’). However,

it is interesting to also consider how such automatic labeling methods can be ex-

tended to other video tasks. Recent works utilize models pretrained on small anno-

tated datasets [Kirillov et al. 2023], while others employ large language models [A.

Yang et al. 2021; H. Liu et al. 2023], visual language models, or combinations [A.

Zeng et al. 2023]. Advancing research in this direction for videos is important to

enable scaling models without the need for manual annotation.

Further research is needed to determine the most efficient, automated methods

for collecting annotations for videos. Annotating each individual frame in a video

can incur substantial costs, particularly when leveraging large multimodal models.

Furthermore, if the objective is to develop a comprehensive, unified video model

that generalizes across numerous video tasks, encompassing both spatio-temporal

localisation and understanding capabilities, it remains unclear what level of su-

pervision in terms of quantity, granularity and style is optimal. Additionally,

it’s important to consider the biases transferred through automatic labeling and

iterative methods, necessitating thorough assessments of error propagation and

annotation diversity. Finally, more research on how generalization varies as a

function of dataset mixture can provide valuable insights to guide the automatic

data curation process [Sorscher et al. 2022].

11.3.3 Temporal modeling

In Chapter 10 (‘Verb in Action’), we tackle the problem of improving verb un-

derstanding in video-language models from the language side, by leveraging the

strong generalization capabilities of LLMs. Closely related to this theme is the

broader goal in computer vision of temporal understanding in videos [Joao Car-

reira and Zisserman 2017; Goyal et al. 2017; Diba et al. 2019; Sigurdsson et al.

2017; Schindler and van Gool 2008; C.-Y. Wu et al. 2019]. Indeed, understanding

temporal information is a fundamental ability required for intelligent systems, en-

abling the comprehension of relationships between events (such as causality and

dynamics), and more generally physics and the structure of the world. For exam-
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ple, by watching a cooking video, one might learn that a raw egg can be turned

into an omelet but the omelet cannot be turned into a raw egg. In the context of

videos, temporal understanding plays a pivotal role in various applications, such

as video summarisation, compression and generation.

Further efforts are essential to design systems in a way that optimally captures

temporal information. Firstly, there are fundamental challenges surrounding train-

ing data. Current training datasets have a strong visual bias towards single-

frame concepts such as objects and static actions [Sevilla-Lara et al. 2021; D.-A.

Huang et al. 2018], so models are less incentivised to learn temporal informa-

tion from them. Moreover, achieving strong performance on current video and

video-language benchmarks does not necessarily require temporal understanding,

as evidenced by some studies that have achieved impressive results using a single

frame [Buch et al. 2022; Lei et al. 2022]. Even when many frames are used, the

evaluation might not require complex temporal reasoning to solve (for example,

“Needle in a Haystack” [Reid et al. 2024]). Future endeavors should focus on ei-

ther collecting or augmenting video data to ensure it contains sufficient richness

in dynamics, both short and long-term, to prevent shortcuts in learning.

As progress is made in addressing data challenges, there are also many important

modeling problems to solve from frame sampling, to tokenization and positional

encoding strategies, as well as the design of model architectures and learning ob-

jectives. Further work is also required to develop efficient methods at training

and inference for processing long videos, given their abundance of information

compared to images and the potential redundancy across different frames. Addi-

tionally, we must account for the impact of variable-length videos on our modeling

decisions. For instance, approaches akin to large language models may naturally

accommodate varying duration, whereas special considerations may be needed for

JEPA-style models [Bardes et al. 2024].

11.4 Conclusion

In this thesis, we develop multi-modal, weakly-supervised approaches to scale up

sign language datasets in the large-vocabulary setting. We also demonstrate how

the resulting large-scale, more strongly supervised data can empower sequence-
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level tasks such as fingerspelling and continuous sign language recognition. These

strides bring us closer to training translation models capable of generalizing in

real-world contexts, where their impact is most profound. When coupled with

forthcoming advancements in visual language models, these works will pave the

way for the development of machines adept at bridging the gap between spoken

and signed languages.
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