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rounding soft tissue of the affected joint. Categorisation of the disease into grades of
severity is subject to errors of measurement and poor observer agreement. There is an
urgent need for automated methods to measure radiographic features and remove, as
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automated system to analyse all aspects of the knee in radiographs. The methods eval-
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This project is the first to combine explicit and implicit features across the whole of
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Chapter 1

Introduction

1.1 Motivation

Osteoarthritis (OA) is a degenerative disease in which bones and surrounding soft

tissue of the affected joint deteriorate. The knee is one of the most commonly affected

sites. Knee OA affects approximately one in five of the UK population (18.2%) with

the frequency increasing with age [1]. Due to a demographic shift towards an older

population the number of people affected by knee osteoarthritis is set to increase

significantly over the next 50 years. Symptoms of the disease include pain, stiffness,

occasional swelling, and loss of function. There are currently no treatments which slow

progression of the disease.

Characteristic features of Osteoarthritis of the knee on plain radiographs include nar-

rowing of the joint space, thickening of the joint line (bone sclerosis) and new bone

formation at the joint margin (osteophytes). Magnetic Resonance Imaging (MRI)

provides additional information on knee structures including involvement of the lin-

ing of the joint (synovium) and other soft tissue structures. OA may be detected

based on these features using semiquantitative approaches, into distinct categories or

grades (typically normal, doubtful, minimal, moderate and severe) [2] [3] [4]. The cost

and availability of plain radiographs (compared to MRI images) make x-rays the most

common imaging modality used in clinical and research settings. Classification criteria

based on categorisation into grades is, however, subject to errors of measurement and

poor observer agreement. Imprecision when assigning a grade is compounded when
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looking at structural change over time, as is the case in both prospective studies and

clinical trials. Such errors result in misclassification and make it more difficult to de-

tect change when it really is present. The consequence of this is that for observational

studies and clinical trials a larger number of people need to be recruited in order to

detect change.

There is an urgent need for automated methods to measure radiographic features and

remove, as far as possible, the element of subjectivity in assessment. Osteoarthritis

has no cure, but the development of improved methods for detecting and analysing

OA will improve understanding of disease development and applying new treatments

that may slow or prevent progression of the disease. Further to this a precise system

will help analyse the effect of treatments and determine an improvement or worsening

of radiographic OA features. Automated methods apply a standardised set of rules

to evaluating radiographic features of OA. Current automated systems tend to focus

on singular aspects of the disease [5] [6] [7] [8] or implicitly capture OA features [9]

[10]. These methods primarily focus on later stages of OA development, with minimal

application to early features and taking account of clinical symptoms [6] [11] [12].

In the project we have created a fully automated system to analyse all aspects of

the knee in radiographs. The methods evaluated explicit and implicit features of OA

and find the optimal combination of features to assess current and later onset disease

development. The project was extended to analyse the association of radiographic

features with the clinical assessment of pain in the respective knee.

1.2 Aims and Objectives

The main aim of the project was to create a system to automatically analyse the

bones of the knee from radiographic images, allowing precise measurements of change

across the joint. The development of this was done using a state of the art algorithm

for initially detecting the knee, and then the application of various feature extraction

methods to analyse implicit and explicit features across the whole joint. The main

objectives to meet this aim were:
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1. Create an automated system to detect OA or non-OA from radiographs of the

knee.

• This was done by analysing various radiographic OA features, such as: over-

all bone shape, osteophytes, trabecular structure, tibial spines and inter-

condylar notch, and Joint Space Narrowing (JSN).

2. Explore the correlation between radiographic features and later onset OA.

• Radiographic features were extracted from non-OA baseline images and

used to predict participants that later develop OA at any point in the

follow-up visits.

3. Analyse current and later onset pain reported by the participants

• Similar to objective 2, the feature analysis was applied to detect current

non-painful and painful images, and later onset painful knees from non-

painful baseline images.

1.3 Contributions

The project developed a fully automated system to analyse all aspects of knee OA.

During the project a number of contributions to knowledge were made, these were:

• A fully automated analysis of radiographic knee images that analysed both im-

plicit and explicit features, and combined the features to strengthen the detection

accuracy of both OA and pain assessments.

• A novel technique for analysing trabeculae texture was developed. The method

achieves a better detection of current OA than other state-of-the-art trabeculae

texture analysis algorithms.

• A novel fully automated osteophyte analysis was developed using combined shape

and texture information. The algorithm achieves a higher accuracy than the

semi-automated and osteophyte area algorithms reported in the literature.
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• An improved measure of joint space change using shape models that achieves

better accuracy (in all current and later onset experiments) than the commonly

used xJSW features.

1.4 Outline of the Thesis

The next chapter (Chapter 2) presents an overview of the relevant literature. The

review describes Osteoarthritis and the effects of knee OA, current manual and auto-

mated grading methods, and an introduction to the state-of-the-art algorithm used to

detect the knee and localise the feature extraction methods. Chapter 3 describes the

feature extraction methods, the data used throughout the experiments (Chapters 4-6),

and the techniques used to evaluate the features. The experiments chapters (Chapters

4 and 5) compare and evaluate the feature extraction methods in comparison to other

methods from Chapter 3 and features provided in the dataset.

Chapter 6 uses the best features from the previous two experiments chapters and ex-

pands the data in each of the four experiments: current OA, current pain, later onset

OA, and later onset pain. The results are compared to the manual Kellgren-Lawrence

grades provided in the dataset.

We conclude the thesis in Chapter 7 and discuss limitations and future extensions of

the project.



Chapter 2

Literature Review

The chapter provides an overview of the structure and function of the knee, occur-

rence of Osteoarthritis (OA) of the knee, underlying causes and structural features

of the disease, and symptoms linked with Osteoarthritis. The focus of the project

is quantitative imaging of the knee; the literature relating to imaging of knee OA is

summarized including manual grading techniques, past and current automated meth-

ods, and concludes with a section exploring the best reported object segmentation

methods.

2.1 Structure and Function of the Knee Joint

The knee constitutes one of the largest joints in the body, and comprises an articulation

between three bones: tibia, femur and patella (knee cap). The bones are held together

by collateral ligaments which attach to the tibia and femur. The anterior and posterior

cruciate ligaments which run from the lower femur to the upper tibia provide joint

stability (see Fig. 2.1). The bones at the joint are lined by a protective layer of

hyaline cartilage. The joint space (JS) between the tibia and femur is lined by a

layer of synovium which is responsible for secretion of viscous fluid to reduce friction.

Two crescent shape cartilages (menisci) are attached to the medial and lateral tibia

and help stabilize the joint. The joint takes the weight-bearing stress during upright

movement, and allows flexion, extension and some medial and lateral rotation [13].

The bones in the knee are made up of two types of material: cortical and trabecular
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(see Fig. 2.2). Cortical bone, a dense and compact tissue, forms 80% of the bone mass

of the human body. Cortical tissue makes up the cortex (outer) layer of bone, and is

integral for support and protection of the organs in the body. Trabecular bone is a

cancellous (mesh-like) structure situated within the cortical envelope. The trabecular

structure has a higher surface area to weight ratio and provides support for the skeleton

[14].

Figure 2.1: Anatomy of the knee joint.

Figure 2.2: Structure of the

Femur.

2.1.1 Bone Remodelling

Bone is a living tissue and continuously being renewed, often in response to physi-

ological, environmental and mechanical triggers. It is a normal process to maintain

the strength and integrity of bone, whereby mechanosensors within the bone influence

remodelling to repair or distribute structure to prevent concentrations of pressure

[15]. Bone modelling may be influenced by mechanical stress and bone-related disease

pathology (i.e. during Osteoarthritis) [16] [17], creating malformed and enlarged bones

around the afflicted areas.
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2.2 Osteoarthritis of the Knee

OA of the knee is a disease in which the normal structure of the joint is disrupted with

loss of cartilage and bony remodelling resulting in new bone formation (osteophytes)

and thickening of bone (sclerosis) at the joint margins. Ultimately this results in joint

failure. Originally the disease was considered to be primarily due to a loss of hyaline

cartilage though it is now recognised as a disease of the whole joint. Symptoms of the

disease include pain, stiffness, occasional swelling, and loss of function. Osteoarthritis

of the knee is one of the most frequent causes of disability in the UK affecting just

under one in five of the UK population (18.2%) [1]. Due to a demographic shift towards

an older population the numbers of people with Osteoarthritis of the knee are set to

increase significantly over the next 20 years.

2.2.1 Causes

The causes are split into two groups: primary (caused either by genetic factors or

in circumstances without a clear causative mechanism), and secondary (caused as a

factor of another disease or mechanical strain).

Environmental and mechanical factors are linked with an increased risk of devel-

oping Osteoarthritis, these include: genetics, age, BMI, gender, hormones, race and

ethnicity, joint injury, repetitive overloading of joints, joint deformity and periarticu-

lar muscle weakness. These risk factors vary between participants, with some knees

developing OA with no factors present. This makes diagnosis and prevention difficult

to target specific risks or even understand the true cause of any one person’s disease

development.

Recent findings have found particular subgroups in the disease pathomechanics and

the risk factors associated. Whereby pathomechanics are the alterations to the normal

function and response of the knee caused by Osteoarthritis. The work of Waarsing

et al. [18] found four different subgroups of radiographic OA relating to different risk

factors, with the subgroups illustrating different rates of OA feature progression, dis-

ease severity and clinical symptoms.
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2.2.2 Features of Knee Osteoarthritis

Osteoarthritis is a disease of the whole joint. Structural features of the disease include:

Joint Space Narrowing (JSN), osteophytes, denudation and attrition of articular sur-

faces, cysts, sclerosis, orientation changes and thickening of underlying trabeculae,

Bone Marrow Lesions (BML), and inflammation of the synovium. These features are

linked to mechanical stress [19]. As OA progresses, mechanical alterations can occur,

which further the biomechanical response of the knee. This results in altered mechan-

ical loads and further disease progression. The project focuses on features visible in

radiographic images: osteophytes, JSN, bone attrition, joint alignment, and trabecu-

lae changes. The Figure 2.3 below describes the regions (referenced in later sections)

typical for these features to occur in PosteroAnterior (PA) radiographs. The terms

medial and lateral are used frequently in the text, these describe the areas of the knee

(see Figure 2.4), with the medial sides facing the centre (central plane) of the body and

the lateral side facing away from the centre. This orientation is consistent throughout

the thesis.

Figure 2.3: Reference regions on an AP

right knee.

Figure 2.4: Reference medial and

lateral regions on left and right

knees.

Osteophytes

Osteophytes are bony spurs that form from the articular cortical surface of the bone,

typically around the joint margins with some formation in the inter-condylar notch.

The osteophytes are reported to be a pro-inflammatory reaction to damage of the
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cartilage and tendons [20]. They occur throughout OA development (Figs. 2.5-2.8),

and often in later stages of the disease multiple large osteophytes (Fig. 2.9) will be

found.

Figure 2.5: Normal

tibial margin

Figure 2.6: Mild os-

teophyte

Figure 2.7: Moder-

ate osteophyte

Figure 2.8: Severe

osteophyte

Figure 2.9: Multiple severe and mod-

erate osteophytes

Bone Sclerosis

In the early stages OA bone resorption increases and there is thinning of the sub-

chondral bone. In later disease stages there is lower resorption and increased bone

formation, resulting in thickened low mineral bone (sclerosis) at the bony articular

surface (Fig 2.10), and some widening and flattening of the plateaus (attrition) (Fig.

2.11).
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Figure 2.10: Sclerosis seen beneath

blue region

Figure 2.11: Red arrows show the

movement of attrition and the pocket

formed in the medial plateau

Joint Space Narrowing

Joint Space Narrowing (JSN) occurs as a result of cartilage degradation [21] and de-

velops during more advanced stages of the disease. Tears in the menisci or meniscal

extrusion may also be linked with joint space narrowing [22]. The medial compart-

ment is typically more likely to be affected by cartilage loss and JSN than the lateral

compartment (Figures 2.12-2.15). As the disease progresses, cartilage loss and JSN

increase (see Fig. 2.15).

Figure 2.12: Normal joint space Figure 2.13: Mild narrowing
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Figure 2.14: Moderate narrowing

(lateral)
Figure 2.15: Severe narrowing

Joint Mal-alignment Another factor of OA which is linked to JSN, is joint mal-

alignment. This occurs when the tibia and femur begin to angle outside the typical

amounts, away or towards the central plane (illustrative vertical line dissecting the

body lengthways) from the inflection point (knee joint) [23]. This is often caused

by compartment JSN, with the tibia and femur bones shifting from the acute angle

formed in the joint space. This mal-alignment is termed either varus (angulation away

from the central plane and caused by medial JSN) or valgus (angulation towards the

central plane and caused by lateral JSN) [24]. Examples of both can be seen in the

Figures 2.16 and 2.17 below.

Figure 2.16: Varus alignment of

the right knee.

Figure 2.17: Valgus alignment of

the right knee.
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Trabeculae

In OA affected knees, trabeculae under the weight-bearing subchondral surfaces of the

tibia will thicken and alter direction in conformity with Wolff’s Law [25], acting to

alleviate the strain caused by focal pressure. The trabeculae are strong to compression

along the typical direction (moving down the leg on a normal aligned joint) but are

weak to tension forces. Through the shift in weight and pressure, the horizontal

trabeculae start to thicken to handle the extra tension forces during early OA [26] [27]

[28] and more vertically orientated trabeculae appear in the later stages to handle the

increased pressure from complete joint loss (see Figure 2.15 above).

Tibial Spines

The tibial spines become rough, spiked and irregular in shape (see Figs. 2.18-2.19).

These changes are caused as a result of the formation of new bone across the knee.

Figure 2.18: Normal tibial spines. Figure 2.19: Tibial spines during OA.

Pain and Structural Changes

One of the main factors clinicians base treatment of Osteoarthritis on is the symptoms,

particularly the pain associated with the disease. There is significant discordance be-

tween symptoms and radiographic change in knee OA with some relatively unaffected

joints experiencing severe pain, and some with severe OA having relatively little or

any pain. These discrepancies have been attributed to the subjective nature of pain

and disability, as well as other environmental and mechanical influences outside the

disease.
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There is evidence of an association between radiographic features of the disease and

pain scores. The work in [6] found a positive association between Joint Space Width

(JSW) and pain in the respective joint, this is supported by [22] who found a correla-

tion between extended pain severity and an increase in JSN. Similarly [29] found an

association between the angle of mal-alignment in the knee and average pain reported

by the participant.

These findings are contradicted by studies that looked at a broader range of features,

comparing JSN, osteophytes and overall disease grade to the level of pain in the re-

spective joint. Shin and Lee [20] and Cicuttini et al. [30] found osteophytes detected

and predicted pain better than JSN. The study on tibial spines [31] found some weak

association with spike angulation and pain. Whereas the study by [32] shows that

combining multiple radiographic features creates a stronger prediction for current and

later onset chronic pain.

2.2.3 Management of Knee Osteoarthritis

Current management of the disease focuses on reducing pain and functional impair-

ment. There are a range of pharmacological and non-pharmalogical interventions

(including nutriceutical and orthotics) which may be used. Lifestyle advice, such as

losing weight and taking regular exercise, are also important. There are currently no

treatments that have been shown to slow down progression of the disease.

2.2.4 Grading of Knee Osteoarthritis

Different grading systems have been developed to classify features and severity of OA.

The main purpose of these criteria is to facilitate comparison of results between studies

and enhance understanding of the causes and treatment of the disease. The different

methods typically comprise a set of numerical stages of increasing severity; some focus

on individual structural features while others focus on composite features. Methods

that use radiographs focus on measures of the overall shape and texture change across

the bone, whereas MRI methods tend towards analysing soft tissue and 3D bone

properties. MRI gives much more information than radiographs, however the process

is costly and labour intensive. Radiographs are a faster and cheaper alternative and
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the typical imaging modality of choice used by clinicians and large sample research

trials.

2.3 Manual Grading

Manual grading methods can be split into two groups: quantitative, where the grad-

ing makes use of specific measurements of the Osteoarthritic features; and semi-

quantitative, that makes use of comparing radiographs against typical representations

of the different grades. The commonly used methods for each are: Kellgren-Lawrence

[2] grading and atlas grading methods [3] [33] for semi-quantitative methods; and

Ahlback grading [34] for quantitative methods.

2.3.1 Semi-Quantitative

Semi-quantitative grades are split into composite scorings, where the stages of the

disease are detailed in a combination of OA features; and individual scorings, which

have separate scales for each feature.

Composite Scoring

The most widely used composite OA grading is the Kellgren-Lawrence (KL) method

[2], which splits disease development into five classes: normal (KL0), doubtful (KL1),

minimal (KL2), moderate (KL3) and severe (KL4). Onset of the disease is usually

taken to be KL2 and above (see Table 2.1 for details of each grade). KL grading is

performed through visual inspection, comparing the signs in the radiographs to the

documented features. The reliance on experience and training can make the grading

susceptible to subjective views of the observer. This is shown through only moderate

inter-observer variability, especially when distinguishing between the central grades

(KL 1-3). Inter-observer variability is shown in papers reporting weighted kappa (kw)

in the range 0.36 - 0.8 [35], and discrepancies between observers reaching 0.41 kw [36],

where 0 means agreement equivalent to chance, and 1.0 perfect agreement.

Some issues of variability in the KL grading have been improved by altering the detail

of the stages to make the classifications more distinct [37] [38]. Felson et al. [37] uses an
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Grade Description
0 - No disease No evidence of disease (see Figure 2.20)
1 - Doubtful Possible JSN and osteophytes at the

subchondral edges (see Figure 2.20)
2 - Mild Visible osteophytes and possible JSN

(see Figure 2.21)
3 - Moderate Multiple osteophytes, definite JSN with

possible deformity of the bone (see Fig-
ure 2.21)

4 - Severe Large osteophytes, JSN and definite
bone deformity around the joint (see
Figure 2.22)

Table 2.1: Table of the Kellgren-Lawrence grades and descriptions

altered Kellgren-Lawrence scale that defines OA incidence at grade 2 as having both

Joint Space Narrowing and osteophyte development, but then also splits the grade to

classify joints that only show osteophyte development. Whereas, Brandt et al. [38]

removed the occurrence of osteophytes, using only Joint Space Narrowing to grade the

radiographs.

Figure 2.20: KL0, no signs of OA (left image) and KL1, possible osteophytes on tibia

(right image).
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Figure 2.21: KL2 osteophyte on lateral tibial margin, possible medial JSN (left image)

KL3 definite medial JSN, multiple small osteophytes on lateral tibia and inter-condyle

notch (right image).

Figure 2.22: KL4 large osteophytes on lateral (femur and tibia) and medial margins

(tibia only), medial JSN and definite bone deformity on lateral side of tibia.

Individual Scoring

The individually scored methods include the work of Altman et al. [33] and Nagaosa

et al. [3], both of which make use of an atlas describing the grading of each feature
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on a series of images. The OARSI [33] atlas uses a series of radiographic images of

the different features of Osteoarthritis. Whereas, the Line Drawing Atlas [3] uses a

simplified outline of the OA features to help categorize the development of OA. The

atlas maps the bone changes across the knee, focusing on Joint Space Narrowing (JSN)

and osteophyte growth in each individual compartment of the knee. The development

is split into four stages: normal (0), mild (1), moderate (2) and severe (3). The

reliability across a comparison of extended line atlas grades achieved a high weighted

kappa and Confidence Interval (CI) of 0.86 (CI 0.85-0.87) for JSN, and 0.78 (CI 0.77-

0.79) in osteophyte development [39]. This is similar to the osteophyte inter-observer

reliability kw 0.72 (CI 0.64-0.8) in [40]. The OARSI grades can vary between observers,

however, with some studies reporting OARSI atlas inter-observer kw as 0.48 (JSN) and

0.64 (osteophytes) [41]. The use of atlas methods often takes longer in distinguishing

grades because the images need to be compared to each representative image in the

atlas’ set of features.

2.3.2 Quantitative Methods

Quantitative methods focus on the exact measurements of OA features in radiographs.

The work of Ahlbäck [34] uses the specific measurement of JSN and attrition, where the

latter grading scores are influenced by the amount of growth (in millimetres) the tibial

plateaus advance over the course of OA. Despite being a relatively simple measurement

with few confounding factors, the reliability of the method was found to be very low,

with a weighted kappa of 0.23 [42].

Older methods, such as the work of [43] and [44] measured features of osteophytes,

sclerosis and JSN by hand using a pair of dividers and a magnifying glass. The work of

Lane et al. [43] measured individual features of the disease for hands, hips and spines.

Focusing on specific disease features occurring in each with inter-observer reliability

ranging from 0.42 for sclerosis and 0.66 for osteophytes, to 0.8-0.93 for minimal JSW

(mJSW). The method split the quantitative measures into stages according to the

severity of the disease per feature. A similar method was conducted in [44] with the

individual features then being combined into one overall assessment of severity based

on all features. The inter-observer reliability (kw) improved to 0.74 knees, 0.73 hips

and 0.74 hands. However, these methods relied heavily on the exact magnification,
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quality, flexion and rotation of the knees in the radiographs, and did not account for

discrepancies between mJSW sites the observers measured [45].

2.3.3 Summary

Manual methods are useful in giving a visual representation of the grades and Os-

teoarthritic features to be compared and allow flexibility of feature development during

progression.

Despite this, manual grading methods are time consuming and have problems

consistently producing reproducible results. Reproducibility problems arise from gen-

eralisations of features (semi-quantitative measurements); or combinations of features

to define grades, removing precise definitions relative to the varied OA features. These

problems often lead to differing standards applied to radiographs between studies and

clinical sites. This proves problematic when coallating data and transferring partici-

pants between clinics.

Quantitative measurements solve these problems by finding distinctions in severity

based on precise distance and size measurements, however, these methods are often

time consuming and require clear, un-rotated x-rays to avoid erroneous measures and

miss-classifications of the disease [45].

The application of automated mathematical measurements is a technique for avoiding

these problems. The early work of Buckland et al. [46] used magnified radiographs

to accurately measure the progression of an arthritic disease, calculating joint space

and the margin of bony erosions using an automated system and a series of projected

lines. This quantitative method cultivated various semi-automated projects [45] [47]

[48]. The system by Dacre et al. [48] sought to semi-automate the process via overlay-

ing graph lines over the knee radiographs, measuring the Joint Space Area (JSA) and

Joint Space Width (JSW) in the tibial-femoral space in the knee. These methods have

been noted to be cumbersome and inefficient [45], due to the old technology. However,

the general principle of automating the analysis and measurement of Osteoarthritis

opens up the concept of systematically detecting and predicting OA development.

Utilising a system that precisely and automatically measures the knee and the Os-

teoarthritic features, allows for further study into the pathogenesis of the disease and

its progression [45] [47] [48] [6][49].
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2.4 Automated Methods

Since the early automated methods [45] [47] [48], there have been considerable ad-

vancements in the area of automated disease analysis. Complex algorithms can be

applied to analysing object features in radiographic images. These methods typically

focus on specific features found correlated to disease progression from manual grading

methods [2] [33]. Due to the nature of radiographs, these features are found through

analysing shape and texture properties in the 2D images.

This section is split into the three core testing outcomes for knee OA in radiographs:

methods that detect current OA (cross-sectional OA analysis), methods that analyse

the clinical symptoms of pain in OA (pain detection), and methods that predict later

onset OA (longitudinal OA prediction).

2.4.1 Cross-Sectional Osteoarthritis Analysis

Cross-sectional analysis focuses on the current level of Osteoarthritis in the knee. The

methods focus on specific OA features, combinations of features and in a few examples,

overall shape and texture containing implicit signs of OA.

The following section is split into the various OA feature models and combinations of

them which have been developed.

Trabeculae

The trabeculae are parts of the underlying cancellous bone structure (see Section 2.2.2)

and can be seen in the subchondral areas of the joint (beneath the tibial plateau and

above the femoral condyles) as a series of thin uniform lines. The earliest method to

find a correlation between trabeculae changes and OA [50] measured intensity change

across the trabeculae by scanning individual horizontal and vertical lines across regions

of interest (ROI) in the radiographs.

From this various other semi-automated methods analysed the variation in the tra-

beculae, finding an increase in volume of trabeculae in the OA affected compartment

[51] and a decrease in horizontal trabeculae during early OA that progresses to thicker

more compact horizontal trabeculae with increased vertical trabeculae [27] [26] in later
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OA development. Eventually, the method of Fractal Signature Analysis (FSA) was

linked to the variation in thickness and orientation in the underlying trabeculae.

Fractal Signature Analysis The fractal signature of an image is a measure of the

underlying 3D structure, or Fractal Dimension (FD), which in trabecular structure

measures the number, spacing and cross-connectivity of the trabeculae [52]. The work

of Pentland [53] and Peleg et al. [54] brought about applying FD to analysing image

texture. These methods were based off Mandelbrot’s calculations of fractal dimensions

in nature, whereby the fractal dimension of an object, or ’roughness’ of a surface, could

be measured via taking the pixel intensity differences at varying scales of the image.

The main feature for calculating fractal dimension, is that the structures must have

the properties of a Brownian fractal [26]. These properties are: 1) the pixel differences

across varying scales must be normally distributed, and 2) a line can be fitted to a

log-log plot of the intensities across the scales. These properties were found to be true

for trabeculae seen in radiographs, under the cortical surface (see Fig. 2.23).

Figure 2.23: Trabeculae seen under the cortical surface of the tibial plateau.

The simplest FD calculation is using a box-counting method. This calculates the

FD placing a grid over the object and counting the number of boxes that contain part

of the structure (n = number of boxes that contain the structure at the specific scale).

The grid squares are then scaled down so there is double the number within the same

area and the process is repeated. Once finished the n for each iteration is plotted in

a log-log plot and a line of best fit projected through the points. The FD is equal
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to 1 − β where β is the slope of the line fitted to the data. The work in [55] uses

a 2-D box counting method (measuring horizontal and vertical trabeculae within the

knee) to predict progression of OA. The paper achieves a fairly good Area Under the

ROC Curve (AUC) with 0.75 (CI 0.65 - 0.84). The single FD limits the accuracy of

the algorithm as the direction of the trabeculae has been found to be an important

factor in OA development [27] [26], calculating fixed angles will potentially miss slight

changes throughout the progression of OA. FD calculations progressed to analyse all

directions of trabeculae in the modified Hurst Orientation Transform (mHOT) method

[56].

The mHOT method finds the greatest intensity difference (between pairs of pixels)

in every direction across a ROI. The method samples a circle region Cxy across the

patch of image and taking the absolute difference between the central pixel intensity

I(x, y) and all other pixels within the region I(xij, yij), such that (xij, yij) 6= (x, y),

(xij, yij) ∈ Cxy, i = 1, 2, ...Nθ, j = 1, 2, ...Ndi. Where Nθ is the maximum number of

angles being measured, this is determined by selecting the angles with ≥ 4 pixels, and

Ndi is the number of distances along angle θi (see Fig. 2.24). The absolute differences

are stored in a table R(θ, d) splitting the values by angle θi, taken as the angle between

a vector connecting both pixels and the image horizontal axis, and the distance dij

between the pixels. The region Cxy is then shifted to a new centre and any absolute

differences that are larger than the corresponding values stored in R(θ, d) are replaced.

Once the image has been scanned, a log-log plot of each row of the table is plotted and

the Hurst coefficient, equal to H = β/2 where β is the slope of the line fitted to the

plot points, is then related to the Fractal Dimension is by the equation FD= 3−H.
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Figure 2.24: Circular region Cxy and sampling intensity difference I(x, y)− I(xij, yij)

at angle θi and distance dj.

To remove errors prone to digitization an inner radius is also set. In most work

the best reported inner and outer radii are 4 and 16 pixels respectively [56] [49] [57],

so that each distance is 4 ≥ dij ≤ 16 pixels. Each direction with ≤ 4 pixels are

removed from the table as there is not enough information to construct a useful Hurst

coefficient.

Data: Patch of trabeculae from radiograph

Result: fractal dimensions for each direction.

foreach pixel (x, y) in Image do

Set region Cx,y at new centre (x, y).;

foreach pixel (xij, yij) in Cxy, such that (xij, yij) 6= (x, y) and 4 ≥ dij ≤ 16

do

Calculate angle θi and distance dij to pixel (xij, yij);

Take the absolute difference between the pair diff = I(x, y)− I(xij, yij);

if diff > R(θi, dij) then R(θi, dij) = diff ;

end

end

Plot each row of maximum differences verses the distances in a log-log plot.;

Fit a line of best fit to the data. Take the slope β;

Calculate FD using FD = 3− (2/β);

Algorithm 1: mHOT algorithm to calculate FDs over an image patch
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The mHOT method has been used to measure roughness on surface images [56]

and trabecular structures [57]. The method was found to achieve the same if not

better results in estimating FD and handling noise and blur in the images [57]. The

main issues with this method are: the calculations are based on pixel maximal intensity

difference, which makes the method susceptible to noise, and the method has problems

generalising over different image magnifications. Two main improvements were made

from the mHOT method, these were the Variance Orientation Transform (VOT) [49]

and the Augmented Variance Orientation Transform (AVOT) [58].

The VOT method uses the mHOT method, but instead of using a variable number

of differences per angle, the method selects the missing values along each angle which

have not been filled. For each angle with fewer values than the major axes of the

circle (dij < 13). The algorithm searches for pixels to fill the empty distances in the

table by sampling a 3 × 3 region along a line projected down the angle, making sure

the pixels were not included in any other direction. The next major change is the

maximum absolute intensity difference is changed to be the variance of the absolute

intensity differences, to reduce the effect of noisy data. Finally, to handle the differ-

ent resolutions of the image, the log-log plot points are split into overlapping subsets,

shifted by one point. Each of the subsets must be an odd number and have at least

3 pixels (the central distance of each set represents the scale). This returns multiple

lines, fitted to each subset per angle, to get Hurst coefficients at multiple scales. The

VOT method achieved better results than its predecessors mHOT and other simi-

lar algorithms (Fractal Signature HOT and Blanket Rotating Grid algorithms) when

analysing trabeculae. The changes make the algorithm less susceptible to magnifica-

tion and exposure [49]. In the paper by Wolski et al. [59] they found the VOT method

returned more information to quantify trabecular differences between OA and non-

OA knees than the mHOT method. The results indicated changes in trabecular angle

(potentially from the abnormal stresses and loading of the joint), change in anisotropy

at different sizes and a change in thickness along the large trabeculae.

The AVOT [58] improved upon the VOT algorithm to handle variable image sizes,
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changing the region Cxy radii with the equations floor(
√
min(Rw,Rh)) and floor(r2/4)

to handle the outer (r2) and inner (r1) radii (respectively) and Rw and Rh indicate the

width and height of the texture region being analysed. The splitting of log-log points

into scales was also changed, with the marginal points (points at the extremes of the

inner and outer radii) split into subsets of 3 to handle small radii sizes. This algorithm

was developed to analyse trabecular structure of hand radiographs, which are much

smaller than knee radiographs, and can be used to standardise the FD measurements

between images of varying resolutions for all texture sizes.

Histogram based methods One of the main issues with FD methods is their

susceptibility to image artefacts, such as noise, magnification and the x-ray projection

angle. To adjust for these artefacts, methods which analyse pixels through sampling

regions and intensity gradients [60] [8] have been designed. The paper [60] compares

two image processing algorithms to define the fibrous structure of the trabeculae.

The first, a Local Binary Pattern (LBP), uses a 3x3 neighbourhood with weights set

perpendicular to direction of the fibres to get a clearer distinction of the structure in

the image. The second uses horizontal and vertical Laplacian-based matrices. Each

method generates a series of texture variables based on the enhanced pixel intensity

and contrast values to split OA and non-OA regions. Bone density was estimated

using the unprocessed mean and normalised pixel intensity across the region. The

paper found the bone density thickens with the increase in KL severity; this finding

is limited by the low inter-observer reliability. The structural analysis of the bone

(LBP and Lapacian methods) produced the best repeatability scores, and indicated

an increase of sclerosis throughout OA. Further to this, the paper also found some

structural changes in the trabeculae of the femur, but overlap from the patella can

cause difficulties in distinguishing the femur trabeculae from the patella.

The Signature Dissimilarity Measure (SDM) [8] removes the necessity of quantified

texture variables and instead calculates the difference in trabecular texture in OA and

non-OA images using Earth Mover’s Distances (EMD) [61]. This compares normalised

signature histograms of roughness and orientation per image and generates a distance

value, which can then be split by a classification algorithm. The roughness is calculated
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using a Gaussian kernel and gradients of the image intensities. The kernel is run over

varying scales δn which is fixed at δn = 1.1n with n = 1, ..., 25. Each scale is filtered

to highlight the maximum and minimum intensity pixels in the sampled image, so

that for each region, there are 25 × 2 images of gradient maxima and minima per

scale. The roughness measure at each pixel R(x, y) then becomes the difference in

maximum intensity differences at the δn scales. To remove noisy data from the image,

the roughness is normalised with respect to the standard deviation of roughness values

across the whole region (I). Rnorm = R(x,y)
StDev(I)

. These values are then stored in a

histogram.

The orientation is a calculation of the directions of highest edge roughness and the

difference from the Principal Gradient Direction (PGD). The edge roughness is taken

as the pixels along the edges of the maximum intensity regions from the binary image

(obtained by adding maxima and minima images) and storing the angle θ(x, y) between

the gradient vector at edge pixel (x, y) and the image horizontal axis. The PGD is

then calculated as the angle with the most edge pixels. The histogram is constructed

using the angles θ(x, y)−PGD. Both histograms are normalised so all values sum to

1. The paper compares the SDM to an LBP [60] algorithm and a texture analysis

method (WND-CHARM) that uses a series of image processing techniques [9]. The

results show that the SDM achieves the best accuracy in detecting KL 0 vs. KL 2 and

3, with 85.4%, compared to WND-CHARM: 64.2%, and is comparable to the LBP

method when analysing generated fractal images.

Joint Space Width

The measuring of joint space and joint space area has been automated since as early as

1989 [48] using a series of projected graph lines across the radiographs. Many methods

focus on edge detection algorithms to delineate the edges of the tibial plateaus and

femoral condyles [62] [63] [64] [65]. The most prominent work in this area is the semi-

automated software by Duryea et al. [63]. The software requires a technician/operator

to crop the knee from the image, with a vertical line dissecting the medial and lateral

compartments. The program then finds the edges of the femoral condyles and tibial

plateaus by finding the brightest gradient pixels, and applying a threshold and further

edge detection to select the pixels forming a continuous edge along the joint space
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outline. The measurement of the minimal joint space between the two bones was

constrained to avoid the inter-condylar notch, which is not relevant to JSN during

OA progression. The results were compared to manually measured radiographs in

order to assess the accuracy of the program with differences of between 0.16mm and

0.18mm for normal and Osteoarthritic knees. The automated methods resulted in

an increased accuracy of a factor of 2 over manual methods. This method was later

expanded in [7] to include a series of joint space widths across both compartments (see

Fig 2.25 below). The paper compared the fixed JSW to the progression of OA using

KL grades. The mJSW was the best measure for KL ≤ 1, but for KL ≥ 2 they found

that distances close to the inter-condylar notch were a better predictor for OA, not

the minimal distance. Including extra JSW values doubled the time taken per image

to acquire the data.

Figure 2.25: Fixed JSW measurements across the Medial compartment [7]

A fully automated algorithm, Knee Osteoarthritis Computer-Aided Diagnosis (KOA-

CAD) [6], used edge detection algorithms with Canny [66] and Roberts [67] filtering

to outline the tibia and femur in the radiographs. The paper reports inter-observer

correlation of the features with OA using Spearman’s correlation coefficients - where

1 is a strong positive correlation, -1 is a strong negative correlation, and 0 is no cor-

relation. They analysed the mJSW in both the medial and lateral compartments and

compared findings to the gold standard OARSI grades given, finding an inter-observer

reliability of 0.54 and 0.53 (medial and lateral respectively), they also evaluated the

AUC in detecting OA in a separate study [68] which achieved 0.728 and 0.5435 (medial

and lateral). The semi-automated algorithm, Knee Images Digital Analysis (KIDA)

[5] uses a similar process, but with two manually placed angled lines across the lowest
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point on the femoral condyles and a second line on the base of the tibial plateaus. The

algorithm measures the mJSW across the whole joint space and records the width at

two reference points along the lines along the femoral condyles and tibial plateau. The

algorithm compares the mJSW as well as the smallest compartment reference JSW.

The correlations with KL grades (Spearman’s correlation coefficient) are: mJSW -

0.57, medial JSW - 0.26 and lateral JSW - 0.15.

Knee Alignment

Knee alignment can be dependent on different features of the knee. Methods shift

between basing angle on the bone shafts (diaphysis) [69] [6] or the space between the

ends of the bones (epiphysis) [5] (see Figs. 2.26 and 2.27). The KIDA algorithm [5]

focuses on the epiphysis angle. The method starts with two lines (altered by the ob-

server) touching the lowest points of the femoral condyles and tibial plateaus. A series

of four circles in medial and lateral compartments of the tibia and femur (16 in total)

are placed along these lines based on distance from the margins. Using the central

two points positioned from each compartment (4 points from the tibia and 4 from the

femur) two straight regression lines are projected, one along the femur condyles and

one along the tibial plateau. Where these lines meet is the alignment angle. This

tibiofemoral angle achieved a fairly low correlation with KL grade (0.3), but good

repeatability 3◦ ± 2.1.

The paper [69] uses a semi-automated approach to measure the angle from the diaph-

ysis of the tibia and femur. This positions two lines along the femoral condyles and

tibial plateau, similar to the KIDA method [5]. The femur axis is then is calculated

by taking the femur line and projecting a perpendicular line halfway between the two

condyles towards the top of the image. The tibial axis is taken from two pairs of man-

ually annotated points 1cm and 10 cm beneath the lowest point on the tibial plateau.

Two lines are joined between the point pairs and a perpendicular line is drawn through

the centre of each line towards the top of the image. The angle between the two axes

(at the point they cross) is the angle of alignment of the two bones. The method

improved inter-observer reliability from past methods, with correlation coefficients of

0.92 for the semi-automated method and 0.98 for the current method.

The KOACAD algorithm [6] also uses the diaphysis lines for tibiofemoral angle. The



CHAPTER 2. LITERATURE REVIEW 48

algorithm uses a series of filters and edge detectors to find the medial and lateral out-

lines of the tibia and femur drawing a central line down the diaphysis of both bones to

the inflection points (curves that conjoin the diaphysis to the epiphysis). A straight

regression line is drawn along both central lines and the angle the lines create where

they cross is taken as the tibiofemoral angle. The paper analyses 1979 images over

varying flexion and x-ray angles, finding the repeatability ranges between 0.86-0.94,

meaning the method is robust to variation in x-ray method and knee positioning.

Figure 2.26: Angle be-

tween the diaphysis of

the tibia and femur (an-

gle and axes indicated

in red).

Figure 2.27: Angle between the epi-

physis of the tibia and femur (angle

and axes indicated in red).

Osteophytes

Osteophytes vary drastically in shape both during OA development and between dif-

ferent participants. The contrast of osteophytes in the radiographs also varies through

bone thickness, joint rotation and location in relation to the x-ray projection angle.

The methods in [70] and [5] overcome this problem by including operator input to
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locate osteophytes along the margins. The KIDA [5] software places the circles (scaled

to fit the average osteophyte size) close to the margins, the operators then shift them

to surround the osteophytes. A series of points are then manually annotated on the

outer edges of the osteophytes and program calculates the area between the manual

edge and the central point of the circle. The paper analyses 20 normal and 55 OA

knees, and measures reliability (correlation coefficients) of each of the four marginal

osteophytes: lateral femur - 0.42, medial femur - 0.45, lateral tibia - 0.53 and medial

tibia - 0.57.

The KOACAD algorithm [6] finds the medially prominent edge of the osteophytes

extending from the tibial plateau by drawing a line along the medial tibial side using

edge detection algorithms. The area is taken between the outline of the osteophyte and

the tibial outline. The inter-observer correlation coefficient of osteophyte area is 0.54.

This is comparable to the correlation found by the KIDA [5] medial tibia osteophyte

area (0.57). The KOACAD was also run on 5950 images in a separate study [68], where

the osteophyte area achieved AUCs of 0.691 when detecting OA (KL ≥ 2) in women.

An improvement for both algorithms could be to include more osteophyte information:

include more osteophyte areas in [6], and look at more aspects of shape/height in [5]

and [6].

Tibial Spines

The tibial spines are a relatively unexplored area to determine OA development. The

experiments in [31] report very weak associations if any at all in 950 images. The only

automated method that analyses tibial spines is in the KIDA software. The algorithm

places two circles on the image, to be moved by an observer so the bottoms of the

circles are touching the top of the lateral and medial tibial spines. The software then

measures the distance between the bottom of the circles and the line placed along

the tibial plateau. Findings in the experiments were insignificant, with the lateral

and tibial spines showing a correlation of -0.15 and 0.14 (respectively) with KL grade.

Including more information about the angle and spiking of the tibial spines could

create a stronger association, similar to the findings in [71].
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Composite Feature Methods

Many algorithms combine features to strengthen the OA detection and inter-observer

repeatability. These methods are roughly split into two groups: implicit features, these

methods analyse raw image data (i.e. shape or texture) without distinguishing any

specific OA characteristics but implicitly including them; and explicit features, which

specifically measure OA features and then combine the features/outputs to analyse

disease development.

Implicit Features These methods focus on analysing the shape or texture of the

whole joint. The work by Shamir et al. [9] looks at a texture-based fully automated

analysis of radiographic images. The algorithm first detects the knee through scan-

ning a frame across each image. Once the relevant area of the image is detected, the

algorithm extracts features from the data, based on shape and appearance (1470 in

total). These are then reduced using Fisher’s Discriminant [72], which finds the fea-

tures that best separate data into the two classes. The classification of new images

is done through a distance measure from other images belonging to each class. Each

image that returns a strong weighting towards features relevant to Osteoarthritis will

be closer to the images in KL grades 3-4. The study tested the method on 140 im-

ages, grades ranging from KL 0 to 3, and achieved an overall classification accuracy of

91.5%. The algorithm achieves a high accuracy, but the distance-based classification

can be prone to errors when an image lies directly in between two classes (grade 1.5).

The algorithm by Anifah et al. [73] uses shape information across the whole image,

calculated from the texture features in the image. The algorithm first highlights con-

trast using Histogram equalisation. Then a series of methods are applied to extract

edge orientation information and frequency of edges in the image. A series of textural

features are extracted based on contrast, correlation and location of the edge informa-

tion. A Self Organising Map (SOM) [74] is then used to spatially separate the image

data and classify the images into the different KL grades. The paper uses 303 images,

and achieved high accuracy (AUC) for the extreme grades (KL 0 and 4), but lower

AUC for the middle grades: KL0 - 0.96, KL1 - 0.8, KL2 - 0.08, KL3 - 0.14, KL4 - 0.98.

The low AUC for grades 2 and 3 could be due to the similarities between the grades,

and the overall texture and shape information does not capture enough information
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about specific osteophyte and JSN development in the images.

The experiments in [10] analyse shape information of the tibia and femur outlines

using Active Shape Models (ASM) [75]. The model makes use of statistical model

that maps the shape of the object and its deformations. The shape is based on a set of

manually placed points annotating the key shape features of the objects. The model

learns to place the points in new images based on texture information around each

annotated point. To learn the shape features, the points are combined and aligned to

the same co-ordinate frame. Once completed a Principal Component Analysis (PCA)

method is applied to find the highest shape deformations across the training set, these

are called shape modes and are ordered from highest to lowest. The paper found that

5 of the top 6 modes correlated with KL progression (107 images), with the highest

mode predominantly showing compartmental JSN, modes 5 and 6 varied the shape of

the tibial plateau and femoral condyles.

Explicit features These methods contain features which have been explicitly de-

scribed in the independent feature sections above [6] [55]. The algorithm by Kraus

et al. [55] combines FD based on the 2-D box counting method with a manual knee

alignment angle and JSN score. The paper reports an improvement in accuracy (AUC)

from 0.75 FD assessment to 0.79 when combining all features in their prediction of

OA. These features focus on trabeculae structure and alignment angle. Adding extra

features for osteophytes and further detail on multiple FDs, like in [49], could improve

this accuracy further.

2.4.2 Pain Detection

The prediction and detection of pain related to Osteoarthritic features is still a de-

bated topic, with many contradicting and weakly correlated findings. Automated

methods have related quantified features to detecting and predicting pain and dis-

ability [32] [11]. A multi-feature assessment in [32] found an association with groups

of radiographic feature measurements and the cross-sectional and longitudinal predic-

tion of chronic pain. The model uses Duryea’s semi-automated JSW measurements,
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coupled with a series of manually assessed features: osteophytes, sclerosis, cysts, attri-

tion, JSN, and Chondrocalcinosis (deposits of calcium pyrophosphate dihydrate which

tend to cause damage in the knee during OA progression). The algorithm collected

this data from the OsteoArthritis Initiative (OAI) dataset, using only the images

with either all the semi-quantitative measurements or all quantitative JSW measure-

ments available. This left 163 images with quantitative JSW measurements in one

set, and 123 with semi-quantitative manual measures of OA features in the other.

Three pain assessments were run, evaluating performance with AUC. The T0 com-

parison used case and controls at the time of chronic pain development (AUC 0.695

JSW, 0.62 semi-quantitative). T1y looking at images 1 year before (0.623 JSW, 0.62

semi-quantitative), and T2y which used images from two years prior to incidence of

chronic pain (0.62 JSW, 0.61 semi-quantitative). They extracted the features for best

detecting the outcome in each test, with JSW being the overall strongest feature in

all experiments. The strongest semi-quantitative features found were osteophytes and

Chondrocalcinosis. The semi-quantitative features make the data sets difficult to com-

pare adding a lot less information and more susceptibility to error than quantitative

measurements. Automating the analysis of the other features would allow comparison

of the features on the same data, and allow analysis over a larger range of images.

The KOACAD [6] method applied explicit features (joint space area, mJSW, tibiofemoral

angle) to detect painful from non-painful knees at a specific time point (cross-sectional

data). The data found only a weak association with low mJSW and a high tibiofemoral

angle, and no association with the linear progression of KL severity. This weakly sup-

ports the findings in [22] [32]. The KIDA algorithm [11] found osteophytes more

correlated than JSW, when applying the various semi-automated features to clinical

symptoms of OA (JSW, tibofemoral angle, osteophyte area, bone density and height

of the tibial spines). The outcome was the WOMAC score, an assessment of pain and

functionality in the respective knee. The paper assessed the time points of baseline

(T0), 2 years before incidence (T2y) and 5 years before incidence (T5y). In all tests,

osteophyte area showed significant correlation with the presence of pain. This corre-

lates with the findings in [32]. Other significant features were: height of tibial spines

(T0), tibeofemoral angle (T2y), and bone density (T5y).
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2.4.3 Longitudinal Osteoarthritis Prediction

Early and pre-osteoarthritic signs of the disease are an important area to improve

understanding and treatment of OA [76]. Automated methods have been developed

that analyse properties of the bones in relation to the prediction of later onset disease

development. The most prominent works look at 3-D bone shape [77] and surface

area [78]. The following section will be split into MRI and radiographic methods

that automatically analyse features to predict later onset disease from early and pre-

Osteoarthritic images.

Magnetic Resonance Imaging Methods

A novel method by Bowes et al. [78] uses an Active Appearance Model (AAM) to detect

Osteoarthritis through 3-D area change in the bones. The algorithm compares features

of baseline non-OA patients to predict the outcome of follow-up visits two years later.

The AAM detects the shape of the bones from the MRI images, defining the outline

so that the area within can be calculated. The bone surface area was compared to

Joint Space Width and cartilage thickness grades. They found that area change of the

three bones (patella, tibia and femur) appeared before any other Osteoarthritic signs

were visible.

A similar study by Neogi et al. [77], used 3-D bone shapes to predict later onset

radiographic Osteoarthritis. The automated method also used an AAM to detect

the individual shapes of the tibia, femur and patella. The knee examples were then

separated into positive and negative cases, using Linear Discriminant Analysis (LDA),

to find a linear threshold that best separates the data. The method then examined the

abnormal bone shapes and the likelihood of OA developing in the 12 months following

the baseline scans. The radiographic Osteoarthritis was graded at both points using

the Kellgren-Lawrence method, with all baseline images included at KL0. They found

that the best predictor came from combining the shape vectors of all three of the

bones, patients with abnormal shapes in all three bones were three times more likely

to develop OA in the 12 months after baseline. This prediction was found to increase in

likelihood in follow-up visits longer than 12 months, predicting the future development

of Osteoarthritis up to 2-4 years in advance. This is still a developing area of research,

but as these changes have been detected in the bones of the joint, it is possible that
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radiographs could also be used to predict later onset OA.

Radiographic

The work of Shamir et al. [12], analyses multiple texture features across the joint

space (described in Sec 2.4.1) to predict the development of OA up to 20 years after

the baseline images. All initial x-rays in the 246 images were classified with KL0. The

method achieved fairly good results, predicting images would progress from KL 0 to

KL 2 in 20 years with 62% accuracy, and KL 0 to KL 3 with 72% accuracy. The main

issue with this paper is the gap between visits, as the participants could have developed

OA at any point during the 20 years after the initial x-rays, conducting analysis over

multiple time point predictions, like in [32] and [11], or reducing the length between

the follow-up visit could add more information about the disease development and

improve prediction accuracy.

The work by [79] used features from the KIDA algorithm to measure later onset OA

(KL ≥ 2) from baseline images with KL ≤ 1. The model achieved a good accuracy

when predicting OA 5 years from baseline, with an AUC of 0.74 in the combined

feature analysis (gender, Body Mass Index (BMI), mJSW and osteophyte area).

Joint Space Narrowing Prediction The prediction of later onset OA has also

been expanded to focus on the development of JSN in radiographic images, as loss

in joint space is a key factor in the progression of OA [2]. The combined feature

analysis in [55] which made use of explicit FSA, JSW and the area of the joint space

(JSA) predicted JSN and decrease in JSA using the direction of the trabeculae in the

image. This prediction was predominantly based on a shift of trabeculae becoming

more vertical, and predicted a 5% change in JSW with an AUC of 0.85 and 5% change

in JSA with an AUC of 0.81.

This is supported by the work in [8], which used the SDM method (described in

Section 2.4.1) to predict a decrease in joint space from knees with early OA KL ≤ 1

(n=135), knees with late OA KL ≥ 2, and using all images in both medial and lateral

trabeculae regions. The prediction was assessed using AUC and achieved: all images -

0.74 (0.67,0.82) medial and 0.68 (0.62,0.75) lateral, early OA - 0.74 (0.67,0.82) medial

and 0.72 (0.64,0.8) lateral, and late OA - 0.76 (0.68,0.84) medial and 0.68 (0.60,0.77)
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lateral.

The prediction of loss in joint space is useful for measuring the specific progression

of OA, however, the disease features are reported to vary widely between patients

[18]. Predicting only JSW could be limiting the algorithm, targeting only people who

develop OA through joint space loss. Also, using FSA to predict JSN could just be

emphasising the relation between joint reloading (from JSN, alignment change and

remodelling that happens concurrently) and a response in trabeculae to mediate the

focal pressure, stated in [15] and [16]. The change in JSN seen in radiographs will

not be measured with perfect accuracy, so the trabeculae shift could be compensating

loading that is already present.

2.4.4 Summary

As can be seen, automated methods have greatly improved Osteoarthritis analysis, al-

lowing detailed analysis of features that were previously ungraded in manual methods

(trabeculae, alignment, osteophyte area, joint space area, and multiple JSW measure-

ments), adding flexibility for multiple features to add implicit information, improve

OA grading, and speed up analysis over large sets of radiographs. However, manual

methods still achieve a better accuracy for OA classification than their automated

counterparts. The KOACAD achieves the best independent feature AUCs with: os-

teophytes 0.645, medial mJSW - 0.728, and lateral mJSW - 0.5435. This could be

improved by combining features to detect OA, such as in [55] which combines FD and

JSN to achieve an AUC of 0.79. The KIDA algorithm also achieved fairly good results,

correlating the inter-observer repeatability to KL grade with: osteophytes - lateral fe-

mur 0.42, medial femur 0.45, lateral tibia 0.53 and medial tibia 0.57, alignment 0.3

and mJSW 0.57. These results are comparable to the manual grading inter-observer

repeatability (0.36-0.8). A more comprehensive analysis could be done if the features

were combined or compared to individual OARSI grades.

Furthermore, the combined explicit feature models analyse various features, but none

have looked at analysing explicit and implicit combined models. OA is a disease that

affects the entirety of the joint in varying feature development, extending the analysis

to include overall shape or texture features and explicit measurement of OA features

could expand understanding of OA and create a stronger detector and predictor of
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future onset of the disease.

Another issue apparent from the literature is the dependence on operator input, requir-

ing input and interaction for every image. This slows the process down and removes

the ability to run the algorithms over large sets of data, without being extremely ex-

pensive and time consuming. Expanding these algorithms so that explicit and implicit

features are analysed using a fully automated system would allow for further analysis

of OA features and allow for additional methods to be applied on top without the need

for operator input.

The current automated methods all use two primary functions: 1) image processing -

methods to analyse the radiographs and gather the necessary information for further

processing, 2) feature analysis - from the gathered data, the main features associated

with the disease and non-diseased joints are processed further before being used to

train the relevant classification/regression algorithms.

Following these stages, the first problem to approach is how to first segment the rel-

evant information from the image. During OA the shape of the knee changes with

the development of osteophytes, widening and flattening of the plateaus (attrition),

JSN and alignment and a general change in normal shape properties (bone remod-

elling). So to accurately distinguish change, automated methods must first accurately

find the outline of the bones. This concept is termed Object Segmentation, and is an

extensively researched problem within the area of Computer Vision.

2.5 Object Segmentation

Object segmentation is an important field of study in Computer Vision and Machine

Learning, and is used to detect and track objects in a given image. It is a process

of applying algorithms to discriminate the object from a background, and locate the

relevant properties and boundaries. The algorithm itself requires three things to be

able to run: a model that learns the most defining features of an object, an optimisation

algorithm that will best fit the learned parameters to a new image, and a set of images

to form a template that is used to compare to the new data.

The first approaches to segmenting objects were to apply a simple rigid structure of
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the object, similar to a fixed template of the object shape, which uses a correlation

measurement to detect similarities between the rigid object and the texture in the

image. However, applying the model to deformable and organic structure, such as

faces, hands, and bones, means that the models must be able to adapt over a diverse set

of transformations the object can vary between. Training each of these deformations

into a model can be time consuming, and often has unwarranted effects. The learning

algorithms applied must be able to determine the true nature of the object through its

key characteristics. These characteristics are based upon observed features, defined in

the initial stages of the creation of the model. The model then learns the characteristics

during training, using a set of example images with different forms and positions

(training data).

The different methods of detection have spanned various solutions: from simple thresh-

olds, to matching a pre-defined template of the object to the new images. Previous

algorithms that attempted to locate deformable objects [80] [81] looked to making a

base template object and allowing a certain degree of freedom on each of the defining

features, so making the models ’elastic’. This involved the model points moving over

a region around their current position, trying to find the best fit irrespective of the

logical transformations of the object. The work of Cootes et al. [75] aimed to remove

this ’elasticity’ by constraining the deformations to those based on statistical measure-

ments of the object (Statistical Model). A statistical model maps the characteristics,

such as shape and appearance, which best describe the object as a whole. The features

will span a set of many variations across one object. This model can then be applied

to new images by optimising a quality of fit function.

2.5.1 Statistical Model Methods

Statistical models are a method for mapping the observable variation of an object

across a given set, and representing the examples as the mean example plus some lin-

ear combination of the modes of variation. Statistical Shape Models (SSM) map this

variation through the shape of the object. The shape is represented through a series of

annotated points and connecting curves. The SSM then takes the shape of each object
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in the training set and learns the variation using PCA. This process constructs eigen-

vectors and corresponding eigenvalues that describe the variation of the object and

amount the shape features vary across the data. The eigen-vectors are then ordered

according to eigenvalue from highest to lowest. Each shape can then be represented

using the equation:

x = x̂+ Pb (2.1)

Where x is a vector representing the shape, x̂ is the mean values across all features of

the object, P is the eigenvectors that describe different forms of variation and b is the

set of object specific parameter values.

The number of modes (or features) depends on the number of eigenvectors kept. This

is done by including a percentage of the variation, i.e. 100% shape variation = all

modes, 50% variation = shape modes that make up 50% variation. The amount kept

depends on the how noisy the data is and how much variation is needed for the problem.

Appearance models work similarly to SSMs, but instead of shape, they use smoothed

texture from the data to find the best change in intensity regions and gradients from

the training data.

Various statistical models are used in detecting bone objects: ASM [10], Active Ap-

pearance Models (AAM) [78], and Random Forest Constrained Local Models (RF-

CLM) [82]. The work by Lindner et al. [83] compares a series of statistical models

in detecting the outlines of proximal femurs from 839 radiographic images. The pa-

per compares an ASM, AAM, and Constrained Local Models (CLM). For the CLM

models, the points are initially placed, before the CLM optimises the positions, using

three different methods. The first two are based on comparing textural regions using

correlation and probabilistic models, the third is a Random Forest (RF) regression

voting model (RFCLM [84] model). The methods were compared using a point-to-

curve error between the model output points and connecting curves, and the manual

(ground-truth) annotations. When testing the algorithms, the RFCLM outperformed

all other methods with a mean point-to-curve error of 0.9mm for 99% of the images.

The accuracy of the RFCLM algorithm has lead to its use in many similar problems,
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such as segmenting spinal vertebrae [85], and knees [82].

2.5.2 Random Forest Constrained Local Model

The RFCLM is split into two parts, the first is a RF regression-voting algorithm to

search patches in the image and predict the placement of the points, the second part

is the application of a Constrained Local Model to fit the most likely points to the

observed shape boundaries from the training data.

Random Forest Regression-Voting

The Random Forest Regression-Voting algorithm [84] works on the principle that a

large number of separate independent votes will result in a majority vote on the correct

answer. The algorithm applies multiple decision trees to solve a problem, combining

the votes of each tree. A decision tree is a predictive model, trained by finding features

that best split a given sample of data. The resulting ’leaf’ nodes (where no more splits

can occur) are then outcomes of the data, decided by the majority of class samples in

the node. In relation to the current algorithm, the decision trees form a prediction on

the location of the shape model points in an image. The trees form decisions on sections

of texture detailing the shading and edges in the image using Haar-like features, similar

to the Viola-Jones [86] model. The tree outputs a displacement from the given patch

of the image, based on learned displacements from the training set, along with a

weight on how likely it thinks the prediction is. The mean and standard deviation

of the displacements are stored in the ’leaf’ nodes during training. This will give

the response (mean displacement) and how accurate (standard deviation the result is

during testing. Each of the trees are individually trained using a boot-strapped subset

of samples and a constrained number of features. The predicted displacement results

in a series of votes and accumulated weights per shape point, called a response image

(Ri). The stronger the weight of any one displacement, the higher the likelihood the

displacement is accurate. The response image is then passed to an optimiser (CLM),

to shift the shape model to the best fitting points given by the Random Forest.
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Data: Image patches.

Result: Response images, Ri.

for each point i do

Create and zero a response image Ri;

for Each tree in Forest t do

for Each patch centred on (px, py) do

Predict displacement (dx, dy) and weight w for point i.;

Increment votes in Ri: Ri(px + dx, py + dy)+ = w;

end

end

end

Algorithm 2: Estimate Response Images

Constrained Local Model

The CLM uses a more complex model for the statistical shape, with an added function

to match the overall global transformation of the image to the model. The CLM uses

a similar method of acquiring a statistical model as the ASM, with a model based on

the learned shape characteristics of the object. The CLM then optimises where the

points are shifted using the highest weighted votes in the response images, with an

added constraint of the shape model to keep the points within realistic bounds.

The algorithm uses an adapted version of Equation 2.5.1 (see Equation ??) to assess

the points quality of fit.

xi = T (x̂i + Pib; t) (2.2)

With the cost function:

Q(b, t) =
∑
i

Ri(xi) (2.3)

Where T (; t) is a function mapping the global similarity transform of all the points in

the image, and Q(b, t) optimises the shape parameters and global transforms using

the response images from each point.
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This optimisation is applied to all of the shape points, shifting the shape and position

variables to optimise the most likely position and the shape constraints of the model.

The pseudo code below (see Algorithm 3) shows the basic steps to converge the shape

model, where the initial point estimates are acquired from the weighted positions of

the response image. The algorithm searches around the feature positions in a slowly

decreasing radius (narrowing the search area to speed up convergence), calculating the

shape variation and global pose of the object. If the chosen ’most likely’ points fail to

fit within the object bounds, then the points are shifted to the closest valid location

in the radius. Regularisation of the points is then applied to transform the points

into the reference frame. If the search radius is not at its pre-set minimal value, then

the search is iterated with a reduced radius. Once the search is finished, the resulting

point relocations are applied to the model points.

Data: Image template and Estimated points.

Result: Converged shape model points.

while r ≥ r min do

Search in a radius r for best weighted points.;

Estimate shape variation value and pose b, t to fit the selected points.;

If shape is outside the constraints (in relation to the shape points as a

whole), move b to the nearest valid point in the radius.;

Regularise the points to the reference frame xi → T (xi + Pib, t);

Reduce the radius;

end

Map results to the image frame;

Algorithm 3: Fitting the shape model to the response images

The RFCLM is both efficient and robust in finding objects within an image. The

algorithm improves on problems in the earlier methods, such as the search getting stuck

in local minima (AAMs), containing more information about the object in question

(ASMs) and applying efficient optimisation relative to the global object shape. The

algorithm has been applied to many detection problems and has been used to detect

spines, knees and hips from radiographs, making this an ideal algorithm to apply to

knee joint detection problems.
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2.6 Summary

Osteoarthritis is a prevalent and disabling disease with variable pathomechanics. There

exists no known cure or preventative treatment. There is a need for further research

of progression and features of the disease. Current grading methods are mostly based

on semi-quantitative measurements, which lead to subjective opinions and generalised

severity scores applied to the disease. This is shown in the variable inter-observer

reliability scores, ranging between 0.36-0.8 for KL grading. Automated methods have

been developed to create quantified measures of OA, provide further insight and classify

large numbers of radiographs to help clinical trials and patient assessments (reducing

the need for expensive manual grading). Improvements are still required in the current

automated methods, namely to remove the need for operator input [69] [65] [7] [5],

expand features to focus on a broader range of OA characteristics [6] [87] [65], and

automatically analyse osteophytes [6] [5].

Automated methods have demonstrated that detectable features can predict the later

onset of the disease and pain. These methods are limited in radiographs, but MRI

studies have shown that the features are relevant to the bone shape and area. The work

by Shamir et al. [12] uses an implicit feature method that analyses texture features

over the whole joint space, however, the outcomes are limited by the data. The images

acquired only show baseline and then 20 years later follow-up. Including follow-up out-

comes from visits one or two years after baseline could create a better analysis, similar

to the pain prediction methods in [32] [11]. Applying an all encompassing explicit

and implicit radiograph model over a large number of radiographs could potentially

improve on knee Osteoarthritis detection and prediction. One of the first issues to

tackle when designing a method to approach this problem, is to accurately extract

the relevant data from the radiographs. The work of Lindner et al. [83] has shown

the best accuracy was from an RFCLM algorithm, when comparing multiple object

segmentation algorithms for segmenting proximal hips from radiographs.

In the remainder of the thesis we document: the fully automated system based on

an RFCLM to analyse all aspects of the disease, using both implicit and explicit
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OA features; the application of the automated model to a large set of radiographs,

detecting current and later onset disease; and the accuracy of the radiographic feature

model on other clinical factors, such as the occurrence of current and later onset pain.

The methods in the remainder of the thesis use techniques based those found in the

literature, the project hopes to combine optimal features for all radiographic features

associated with OA. Something which has not been done by methods found in the

literature. For comparison, the table below illustrates the various methods used in the

current automated methods (see Table 2.3).
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Chapter 3

Data and Methods

This chapter describes the data used throughout the project and the various methods

to extract features from knee radiographs. The algorithms have been chosen following

the key analyses from the literature (see Section 2.4). The chapter is split into five

parts: a description of the data used throughout the project; shape localisation, to

find the knee in the image; shape methods, which extract features of shape from the

image; texture methods, which extract features based on areas of pixel intensities; and

classification, the algorithms used to separate the data based on the extracted features

and evaluate the results of the experiments.

3.1 Data

To analyse Osteoarthritis (OA) features and evaluate the accuracy of our methods, we

used a series of OA and non-OA images with associated grades from the OsteoArthri-

tis Initiative (OAI) [89] dataset. The OAI is a multi-centre, prospective observational

study of Osteoarthritis, run across four different sites over the US. The different sites

have a single standardised approach to acquiring radiographic images, however, these

are likely to differ because of the facilities, operators and patients used for each scan.

This presents a set of data with varying contrast, rotational and positional error which

may be present. The OAI was chosen because of the high number of participants, and

the centrally assessed manual OA grades that are available in the data. The study

recruited 4796 people at baseline, ages ranged between 45-79 and 58% of the partici-

pants were female. The study is still on-going and has taken x-rays of the participants

65
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at baseline, to 108 months follow-up. Centrally assessed images are available for the

visits at 12, 24, 36 and 48 months. The centrally assessed radiographs were graded

by experienced radiologists blinded to the grades attributed by the sites that collected

the images. An experienced adjudicator clarified any disagreements between the two

gradings. A subsample of 150 participants was used to test inter-observer of the man-

ual grading, on the baseline images the blinded radiologists scored a weighted kappa

of 0.70, and a 95% Confidence Interval (CI) of 0.65-0.76. All the x-rays were acquired

at fixed-flexion and 10 degree beam angle. For this study we have taken images from

baseline to 48 months follow-up.

3.2 Shape Localisation

A shape localisation algorithm is used to fit a series of shape points to the knee

in the radiographs and localise the feature extraction methods. In this project the

methods are based on an RFCLM [84] algorithm, chosen because of the high accuracy

in analysing similar 2D bone shapes [85] [82] [90]. An object detection algorithm is

run first to find the approximate global parameters of the knee. The object detection,

or global model, uses a RF regression voting technique (see Section 2.5.2) to find two

points central to the knee (Figure 4.6). The position, scale and orientation of the knee

can be approximated using these points. These approximated parameters are then

used by the Random Forest Cinstrained Local Model (RFCLM) to find the outline

of the bones. The RFCLM algorithm uses manually annotated landmarks to train

the displacements from patches of texture around the points, and the variation of the

point locations to train the shape model.

A sample of images were analysed to understand the variation in shape and orientation

of the knees. Using this information a set of points were placed to describe the key

shape characteristics of the tibia and femur i.e. the corners of the two bones, the

points of the tibial spines, and the edges of the femoral condyles and tibial plateaus.
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3.2.1 Annotating images

Annotated shape points represent the relevant characteristics of the object to aid both

object detection and feature analysis. Ideally the shape should be defined through a

concise set of points, containing only necessary features to reduce wasting memory and

processing time. Each point increases the number of regression-voting trees required

by the algorithm. To aid in placing the points, the annotations were split into two

iterations: guide points and detail points. The guide points are used to describe the

main shape characteristics on the bone, such as the corners and minimal points on

curves. These points are placed first and then a set of equally spaced detail points are

placed along curves between the guide points. The detail points fill out extra shape

needed on the segments of the object with few distinguishing characteristics. In this

project, the points were placed around the outer edge of the tibia and femur, connected

with straight-line curves to outline each bone (see image 3.1). The annotations were

revised several times to optimise the locations and number of points in the set. The

final set took approximately 6 minutes to annotate on each image, and contains 37

points for both the tibia and femur models (74 points in total).

Figure 3.1: Full knee points (left) and points with curves (right).
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3.2.2 Random Forest Constrained Local Model Algorithm

The manually annotated points are used to train and test a Random Forest with a

Constrained Local Model (explained in Section 2.5.2). The manual annotations enable

the algorithm to learn the shape and displacements of the points, and can be used

as a gold standard when evaluating the RFCLM output. The application of learning

methods to find the optimal shape point locations before fitting shape models has been

done in the past, with Multivalue Neurons [91], a neural network non-linear learning

method; and k-Nearest Neighbours [92]. The RFCLM method has been chosen for

this project because of the previously reported high segmentation accuracy on similar

radiographic image problems; the points fitted to the image are easier visualise changes

and to apply further texture region segmentation; and the availability of the software

within the faculty.

3.2.3 Training and Testing the Algorithm

The RFCLM construction follows a similar process to that in Lindner et al. [93], with

a single global model to find a small subset of points central to the joint and a series of

local models to find the final 74 points. The global model fits two points to either side

of the knee and by fitting a mean example of the points gives an estimate orientation,

scale and location of the knee. The local models are a series of RFCLM models built

to iterate through increasing resolutions of the image, fitting the points to the best

location at each stage. Each resolution iterates the RF search for the displacement

of each of the 74 points, a CLM then fits each point to the optimal displacement

that complies with the global pose and shape parameters t and b of the points (see

Equation 3.2.3 below).

The local model is trained on a set of manually annotated images transformed to

the same reference frame (image resolution). A Statistical Shape Model (SSM) is

constructed from the aligned shapes of the training set. The points are shifted towards

a selected mean image, this is iterated with a new image selected as the mean until

there is a minimal shift in the images since the last iteration. The model is then scaled

to fit the reference frame (set prior to training). The object segmentation algorithm is
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split into two stages: firstly, the Random Forest performs the initial point displacement

predictions (see Algorithm 2 in Section 2.5.2); and the second step is the shape fitting,

which fits the points to highest weighted response positions that agree with the shape

model constraints (see Algorithm 3 in Section 2.5.2).

The Random Forest (RF) is trained on patches of texture around each model point.

The pose and orientation is estimated by minimising the difference between the SSM

points and the manual annotated points, with respect to the global pose of the object

(t). During testing the pose is estimated by the global model. We find the pose

parameters, t, to minimise:

|T (x̂; t)− x|2 (3.1)

Where x̂ is the mean SSM point locations, x is the current image points, and t is

the global pose of the object. T (:, t) applies a scale, rotation and translation encoded

in parameters, t. t is selected to best fit the mean points to the pose of the new points.

To improve the accuracy and efficiency of the local models we use a coarse to fine

approach. By changing the number of pixels in the reference frame we can modify the

level of detail captured by the model. Using a reference frame with fewer pixels in the

early stages enables a rough estimate of the shape to be found quickly. Later models

then use more pixels in the reference frame, giving more detail and thus more accurate

results.

The model trains a RF for each of the 74 points to be able to locate the point in

a new image. This is done by first sampling each image into the reference frame.

For each point we sample regions of image at displaced positions around each model

point, recording the image patch and the displacement. The displacement is set to

be within a predetermined range from the true point position to keep the texture

patches localised to the shape points. Once all the patches and displacements from

the training set have been gathered, we then train the RF on the gradient information

(in this case Haar-like features) contained in the patches. The trees in the Random

Forest are given a bootstrapped sample of these features to be trained on. The trees
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then split the samples by a threshold tf that compactly splits the data according to

the ’best’ feature in the sample they have been given. This is done by finding tf to

minimise the following equation:

GT (t) = G({di : fi < tf}) +G({di : fi ≥ tf}) (3.2)

Where fi is one feature from sample i and G(..) is a function evaluating the set of

vectors. The function finds the threshold that best splits the sample features by the

resulting variance of the displacement values di that result from the split. A forest

is trained to predict the displacement of one shape point from the given subset of

texture features (see Fig. 3.2). These features are fixed and are later used to predict

the position and the likelihood of the displacement (weight) of the point in new images.

Figure 3.2: Illustration of a single tree in the Random Forest learning the features (f)

to split the texture data to predict the correct displacements (d).

Once a Forest has been trained for each point in the shape model, the features

and thresholds in each tree are fixed. When given a new image, similar displacements

around the estimated mean shape points are taken. The trees apply the trained

thresholds to the Haar-like features and form a predicted displacement of where the

shape point should lie in the image (see Fig. 3.3).
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Figure 3.3: Illustration of a Random Forest predicting displacements (red arrows) from

patches of image. Displacements and weights are stored in the Response Image.

The predictions form the weighted votes of the Response Image for that point.

The Constrained Local Model (CLM) then finds the shape and pose parameters which

maximise the total number of votes at each model point. The optimal point positions

per reference frame stage are found through the CLMs slowly decreasing radius around

each of the 74 points. This will find the best position that fits with the global pose

and shape of the rest of the model, shift all points to the optimal, then decrease the

radius around the shifted points and search again. This is iterated until a minimal

shift or minimal radius size is reached.

3.3 Shape Analysis

This section covers all the methods to extract shape information from the output

points found by the RFCLM. Each shape method utilises a SSM to encode the shape

using shape parameters b = P× T (x− x̂).

3.3.1 SSM

Statistical Shape Models [94] have been used in previous automated methods [10] [77].

They represent the shape of the relevant object as a linear sum of vectors (modes)

representing the main ways in which the shapes vary. The modes are found using the
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Equation 2.5.2 in Section 2.5.1. These vectors can then be used to train a classifier to

separate the image data.

3.3.2 Contour Extraction using Dynamic Programming

In the literature, one of the main algorithms used in automated OA analysis is edge

detection. This is used to delineate edges of key OA features such as joint space [7]

[62] [64], osteophytes [6], and the bone diaphysis [6] [69]. Previous algorithms scan

edges for gradient change [62] [64] and draw the contours along the brightest edges.

The RFCLM is dependent on fitting the points to a shape model and so often misses

unnseen or unusual variations in the object, such as bone remodelling and boney spurs

(osteophytes). A per point edge detection was chosen to detect these unseen shapes

following methods used in the literature. The algorithm consists of two parts, first

is the extraction of the gradient change across the relevant area of bone, the second

is fitting an optimal curve to the gradient variation so that it fits the outline of the

feature. Using the points output from the RFCLM, we select the points relevant to

the area we want detailed edge information. As the RFCLM is trained to find a sparse

set of points to keep processing time minimal, these points must be expanded. This is

done using Bézier curve interpolation [95] to expand the points by estimating the new

positions based on the properties of the known data points. We interpolate N points

between sections of shape model points output from the RFCLM stage.

Gradient Sampling

Once the interpolated points have been found, the region is sampled to find the in-

tensity variation. Each of the interpolated points have normal vectors projected per-

pendicular to the line between the current point and the next point in the set. Along

this normal the algorithm samples the average gradient at a set number of (M) equally

spaced distances. The profiles are defined as the lines nj = xi+di.ui, where j = 0, .., N

j = 0, ..,M , xi is a point on the main bone contour, ui is the unit normal to the curve

at that point and di is the distance along the profile. This is illustrated in the Figure

3.4 below.
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Figure 3.4: Illustrating the projected profiles from the interpolated points (blue cir-

cles), and the gradient profiles at set distances along the point profiles.

The gradient between pairs of intensities along the normal project lines are taken

and stored in a (NxM) matrix G and passed to the optimisation algorithm.

Dynamic Programming

To find the best continuous contour we find the points at distance di along each profile

from the bone model contour, which minimise the following cost function:

Q =
n∑
i=1

−|gi(di)|+ α
n−1∑
i=1

(di − di+1)
2 (3.3)

where gi(di) is the intensity gradient at distance di along the profile i and the second

term encourages a smooth shape. The α variable is a weight to control the strength

of the second term, a large α means a straighter line is fitted. This equation can be

solved using Dynamic Programming (DP). DP is an optimisation algorithm that can

fit the interpolated shape points to the outline of the bone (see Fig. 3.5) based on the

optimal values of Q. The resulting points can then be encoded using shape models to

train and test classification algorithms.
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Figure 3.5: Interpolated purple (left) and DP optimised green (right) points.

3.4 Texture Analysis

These methods evaluate the variation of pixel intensities from patches of image. To

analyse the texture, a patch must be extracted from a specific area of the image. Prob-

lems can arise when sampling texture where the object is not consistent in location,

orientation or scale. To avoid this problem we sample texture in a fixed region on each

knee, using the RFCLM output points. The positions of two points are sufficient to

define the position, scale and orientation of a local reference frame, in which a rect-

angular region can then be constructed (see Figure 3.6). This means that any region

selected will be rotated, scaled and displaced relative to the global properties of each

knee.

r

x+r0.5
width: r0.95

r0.4
height:

y+r0.2

Figure 3.6: Projecting the red region by the vector r between the two blue points.
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3.4.1 Fractal Signature Methods

Texture analysis algorithms used in OA studies tend to focus on the Fractal Signature

(FS), mapping the roughness, spacing and orientation of the trabeculae as a Frac-

tal Dimension (FD) [49] [57]. The best reported algorithms for analysing OA are

the Variance Orientation Transform (VOT) [49] and Augmented Variance Orientated

Transform (AVOT) [58] methods.

Variance Orientation Transform

The VOT method analyses the FD of an image by the variation in pixel intensities

across a fixed number of distances per angle. The method, described in Section 2.4.1,

uses this roughness and orientation to measure trabeculae changes on patches of bone

texture. The method extends the modified Hurst Orientated Transform (mHOT)

algorithm (see the Algorithm 1) by adding more complexity to the scales and variation

used. The differences can be seen in Algorithm 4.
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Data: Texture from ROI

Result: fractal dimensions for each scale per direction.

foreach pixel (x, y) in Image do

Set region Cx,y at new centre (x, y).;

Calculate mHot pixel differences along each angle.;

Remove all directions with ≤ 4 pixel distances.;

foreach Angle θi with distances ≤ d0j do

foreach Missing distances dj in θi do

Search in sampling region at distance dj;

if Pixel (xij, yij) not used in other angles then

R(θi, dj)+ = I(x, y)− I(xij, yij) ;

end

end

end

Calculate variation of intensity differences for each distance per angle;

foreach Angle θi do

Plot each distance vs. pixel intensity variation in a log-log plot;

Split distances into N subsets (scales) ;

foreach Scale s per angle θi do

fit a line using logistic regression;

His = gradient of the line β/2;

FD= 3−His ;

end

end

Algorithm 4: VOT algorithm to calculate FDs over an image patch
The Figure 3.7 below shows the log-log plot of a single angle θi plotted with the

data split into scales. The Hurst orientations can then be plotted using a polar/rose

plot to show the orientation of roughness in the image (see Fig. 3.8).
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Figure 3.7: Plotted log-log distance vs.

variance, with highlighted subset.
Figure 3.8: Rose plot of the Hurst co-

efficients across all angles at scale 4.

A limitation of this algorithm is that it only looks specific angles, only expanding

θi with ≥ 4 distances. An improvement we explored was expanding these directions

to cover a wedge of the circular region Cxy so to include all pixels within the sampling

region.

Wedge Variance Orientation Transform

This algorithm uses the same process as VOT, but instead calculating the intensities

along rays from the centre, the region is split into θ sized ’wedges’ (see Figure 3.9).

The angle between the pixel and the region centre is rounded up to the nearest θ angle.

An increasing number of pixels are used to compare to the central pixel as the distance

from the inner radii increases (see Figure 3.10). The increased values are taken into

account when calculating the variation of intensity differences. The log-log plots are

then split into the respective scales and plotted the same as the VOT algorithm [49].

θi

Figure 3.9: Circular region split into θ

wedges

d10d9

Figure 3.10: Pixels rounded to the

nearest distances d in one wedge.
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Augmented Variance Orientation Transform

The AVOT algorithm, explained in Section 2.4.1, uses a similar process as the VOT

method. The AVOT differs through adapting the algorithm to handle variable texture

sizes, this was done to calculate FS in hand radiographs [58], which could not be

analysed using VOT method due to the fixed radii and log-log scales. The method

changes the sizes of the circular region radii depending on the size of the texture region

FS is being calculated from. The inner (r1) and outer (r2) radii are calculated using

the equations r2 = floor(
√
min(Rw,Rh)) and r1 = floor(r2/4). Where Rw and Rh

indicate the region width and height. Coinciding with this change, the scales of the

log-log points (see Figure 3.7) are changed to handle smaller number of pixel distances.

The VOT method uses fixed size subsamples of 5 log-log points. The AVOT method

splits the three marginal points into subsamples, before splitting the remaining points

(see Fig. 3.11). This allows smaller regions to be plotted and adds extra detail in the

number of scale gradients per angle.

log distance

lo
g
 i
n
te

n
si

ty
 v

a
ri
a
n
ce

Figure 3.11: The marginal three points on either side (circled) as the start and end

scales, remaining subsets contain 5 points.

3.4.2 Pixel Ratios

Other texture methods utilise sampling regions and intensity gradients to evaluate

OA [60] [8]. Following these methods, we developed a new Raw Pixel Ratios (RPR)

method. The RPR uses a square pixel sampling region but instead of applying filters

and contrast enhancements, we extract raw pixel intensities. Samples of fixed pixel size

are taken randomly from the texture patch. The method uses N samples per image

i using each sample as a separate example to train the classifiers. The training set is

made of N samples per all training images xi,j where j = 1..N . The RF classifier trains
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on ratios between randomly selected intensity pairs in each sample. When testing the

classifiers, a single image i is taken and N samples of image are collected xj, the result

of the classification is taken as the mean over each sample extracted from the image:

1
N

∑
f(xj). The number of samples across the region is flexible, but large numbers of

samples will slow processing time.

3.4.3 Signature Dissimilarity Measure

This algorithm, explained in Section 2.4.1, uses a Gaussian sampling region across a

series of scales to acquire pixel gradient maxima and minima values. The paper [8]

reports the best number of scales is N = 25 with n = 1..N and each scale shifting the

region δn = 1.1n. The sampled gradients are then taken to extract features of rough-

ness and orientation of roughness from the entire image region. Intensity gradients

are sampled in smoothed regions of the image by taking the first and second order

derivatives of the data:

D1(x, y, δn) =
√
L2
x,norm(x, y, δn) + L2

y,norm(x, y, δn) (3.4)

D2(x, y, δn) = Lxx,norm(x, y, δn) + Lyy,norm(x, y, δn) (3.5)

Where δn is the current scale of the Gaussian sampling region, Lx,norm and Ly,norm are

the first order derivatives, and Lxx,norm and Lyy,norm are the second order derivatives of

the intensity gradients at pixel (x, y). TheN smoothed images are stored at the varying

scales. The roughness is then the variation of maximum gradient values (maximum

value across all scales of each pixel) of D2. The maximum and minimum of the

D2 values across all scales are taken, and the summed images with a threshold on

0 forms a binary image of the regions of the image - with white being the gradient

peaks and the black regions the gradient troughs. The outlines of the peaks are used

to indicate edge gradients to calculate the roughness orientation and the Principal

Gradient Direction (PGD). The roughness and orientation roughness are stored in

two separate histograms, which are used as features for subsequent classifiers.

3.4.4 Haar-feature Analysis

A widely used feature for analysing patches of pixel intensities is Haar-like features

[86]. The Haar-like features are formed from weighted sums of the pixels within two or
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more rectangular regions (see Fig. 3.12 below). The regions vary in size, orientation

and pattern. The pixel intensity values underneath the different colour sections are

summed and the difference is taken between the two. This value is then the feature of

that region under that specific Haar-like feature, and is used to categorise subsections

of the image. A classifier can then learn to separate the data using such features.

These differences will correspond edges or shadows in the image that vary between the

classes, for example, shape and texture change over OA.

Edge features

Line features

Figure 3.12: Examples of Haar-like features [96].

3.4.5 Texture with Implicit Shape

The method developed by Shamir et al. [9] (publically available from [97]) analyses

implicit features to study the progression of OA. The method, explained in Section

2.4.1 uses a series of texture analysis methods, across varying image scales, to extract

a large number of features across the whole joint region. The region is placed by

comparing a set of 20 selected images of the central joint space (see Fig. 3.13) to the

radiograph, the centred region is fit by optimising the equation:

di,w =

√√√√ 15∑
y=1

15∑
x=1

(Ix,y −Wx,y)
2 (3.6)

Where di,w is the distance of the selected region w from the patch i of the image being

searched, Wx,y is the intensity value in the selected region at pixel x, y, Ix,y is the

intensity of the pixel x, y in the new image. The 15× 15 search region is then shifted

and compared to each of the 20 representative joint space images. The best d is chosen

as the correct location of the joint space in the new image. The texture extraction

algorithms applied to the whole joint are: Zernike features [98], which describe image
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properties through a series of orthogonal polynomials; multiscale histograms, which

represent intensity information in a series of discrete bins; variation of intensity values

taken across four orientations (0◦, 45◦, 90◦, 135◦); Tamura texture features [99], these

calculate the coarseness, directionality and contrast in the image; Haralick features

[100], which record the matching intensity values that occur within a set distance

of each other; and Chebyshev statistics [101], these approximate the image intensity

regions across varying distances and angles. The 1470 extracted features (210 features

across seven image scales) are then put into a Fisher’s Discriminant Analysis (FDA)

method to find the features which best split the data into the given classes.

Figure 3.13: An example of one joint space to find the knee in the new image [9].

3.5 Classification

3.5.1 Random Forest Classifiers

A classification algorithm is used to separate the data depending on the features rele-

vant to each of the classes. In this project we use a Random Forest classifier, similar to

the Regression-Voting algorithm (explained in Section 3.2.3), but instead of predict-

ing displacements, the algorithm will separate the data into discrete classes. Random

Forests can be more cumbersome than simpler methods, but produce accurate results

and can be adapted to classify data into many classes. The forests contain multiple

trees which classify the data on subsets of the features, finding the best split at each

branch by calculating the Mutual Information (MI) or mutual gain. MI uses entropy

to calculate the gain of selecting each feature. During training the features fi are
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selected by calculating whether more information is gained by the data classes in the

new nodes for each outcome of the split, these features are then fixed for the introduc-

tion of new data (test samples). The equation below illustrates a simplified measure

of entropy on the data X when choosing a binary feature fi:

H(X|fi = 1) = −
∑
x∈X

p(x)logp(x) (3.7)

Where p(x) is the probability of data in each class x after splitting given fi = 1. This

is taken for both sides of the binary split and a weighted average taken of them both:

H(X|fi) =
n1

N
×H(X|fi = 1) +

n0

N
×H(X|fi = 0) (3.8)

Where nval is the number of samples in that node, and N is the total samples across

both nodes. The entropy is also taken for the data before the split, H(X) and the MI

for choosing fi to split the data becomes MI(X; fi) = H(X) − H(X|fi). This value

is calculated for each feature, and the feature with the maximum information gain is

selected. Once the branching stops, when the nodes contain data that cannot be split

any further, the leaf nodes are then evaluated. The probability of each class arriving

at each leaf is estimated from the training samples.

In the case of the features extracted from the shape and texture data, the values are

typically float numbers, so instead of a simple on-off for the entropy, a threshold is

used to split it into the two nodes. This threshold is shifted per feature to find the

best split and is compared to the best threshold on the other features that could be

chosen at the branch.

For the multi-class problems, i.e. splitting the data by KL or OARSI grade, the

calculation is the same, but instead of a probability of two classes, each node contains

a histogram of the numbers of each data sample per class (see Figure 3.14 below).
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fi

= class 0

0 1 2 3 4

fi

fifi fi

data

Figure 3.14: Illustration of a tree from the RF splitting the data and classifying the

leaf node depending on the histogram distribution.

3.5.2 Cross Validation

Cross validation was used to measure how well the RFs classify unseen data. The

method selects a subsample of test data and trains the classifiers on the remaining

examples. This process is iterated, choosing different test examples each time, until

all samples have been selected for testing. The examples are chosen by splitting the

data into k folds, so that one in every fold is selected for the test set. The project used

5-fold cross validation and repeats the method with permutated data to give a mean

accuracy, Area Under the ROC Curve (AUC) and standard deviation across the two

iterations. The Receiver Operating Characteristic (ROC) curve plots the performance

of the binary classification (between positive and negative classes) by plotting the true

positive rate (number of correctly classified true images) against the false positive rate

(number of misclassified true images).

3.5.3 Statistical Analysis

To analyse the results from the RF and cross validation methods we used a series of

statistical analyses to adjust for bias, calculate confidence intervals on the results, and

compare the agreement to the gold-standard assessments.
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Confidence Intervals Taking the output from the cross validation method, logistic

regression was run using the class outcome as a dependent variable. This measures the

relationship between the estimated output and the dependent variable and generates

a 95% Confidence Interval (CI) by assuming a normal error distribution. The CI

represents the range within which 95% of samples would lie.

Contralateral Knees The project used images from the OAI data. To include

more data both knees per participant were selected. This can cause biased estimates,

as the contralateral knee of a single participant is more susceptible to OA development

and associated symptoms [102]. Using data from both knees violates the assumption

that all observations are independent, and therefore this needs to be accounted for

in the analysis. Using random-effects panel logistic regression on the cross validation

outputs and associated classes we adjusted for this bias by assuming all pairs of knees

are correlated. The analysis first generates a value of this correlation between all

pairs of right and left knees per participant, and then adjusts the final AUC output

to remove potential bias.

Comparison With Gold Standard To assess how well the results compare against

the gold-standard (manually assigned grades) in the project we used weighted kappa

[103] to compare the automated outputs against the manually assessed grades. Weighted

kappa takes into consideration the disagreements between both assessments, and weights

the disagreement linearly depending on distance from the true answer. The kw is a

value between 0 and 1, where 0 means the agreement is equivalent to chance, and 1.0

is a perfect agreement.

3.6 Summary

This section covers a range of different methods to analyse specific features of shape

and texture. All methods are based on the object detection RFCLM algorithm, and

each method has flexibility to be tailored to specific bone features. The next step

compares these methods in evaluating the different features of OA to find the best

individual and then combination of features to classify OA.
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The next three chapters compare the various methods, and use the best combination

to analyse current and future onset of OA and related outcomes of the disease.



Chapter 4

Comparison of Methods

This chapter summarises experiments comparing the methods in Chapter 3 and eval-

uates the features using images from the Osteoarthritis Initiative (OAI) dataset [89].

The main comparisons will focus on: trabecular structure features, comparing shape

and texture to analyse osteophytes, and finding the best combination of all extracted

features to detect Osteoarthritis (OA). The Figure 4.1 shows the layout of the system

with a radiographic image first being segmented and then analysed for each of the

radiographic features using the shape and texture methods. The optimal features are

then compared to manual Kellgren Lawrence (KL) grading and current state-of-the-art

automated methods.

Figure 4.1: Chapted layout explaining the system and referencing method sections.

86
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4.1 Data

Experiments were run using images from the OAI dataset (see Section 3.1). To com-

pare the feature extraction methods four datasets were chosen to test for various out-

comes. These include: i) object detection accuracy, with OA and non-OA images from

male and female participants; ii) the presence of osteophytes, using manual OARSI

osteophyte grades; iii) the presence of JSN, using manual OARSI Joint Space Narrow-

ing (JSN) scores; and iv) OA/KL grades, which contains a range of KL grades that

can be split into the two class (OA vs. non-OA) and multi-class problems (splitting by

KL grade). The experiments using OARSI grades were used as partial testing for the

feature specific methods (osteophytes and joint space narrowing). The data was taken

from the subset of OA and non-OA images (747 OAI images) and was believed to be

sufficient to compare the feature specific methods. The two-class detection uses the

KL grade to split the images into OA (KL ≥ 2) and non-OA (KL ≤ 1). The statistics

of the three sets are as follows:

• Object detection : 500 knees with a range of KL grades: KL0 - 111 (22.2%),

KL1 - 135 (27%), KL2 - 90 (18%), KL3 - 121 (24.2%) and KL4 - 43 (8.6%). This

divides into 246 non-OA, and 254 OA, of these 61.3% are female.

• OARSI osteophytes : 640 knees with a range of OARSI osteophyte grades

(see Table 4.1) across the four sites: medial tibia, lateral tibia, medial femur,

and lateral femur.

Table 4.1: OARSI osteophyte dataset statistics

OARSI (% samples) medial tibia lateral tibia medial femur lateral femur

0 (44.7%) 173 301 303 368

1 (30%) 327 231 95 114

2 (11.3%) 90 57 73 70

3 (14%) 50 51 169 88

• OA/KL detection 747 images, with KL grades: KL0 - 169 (22.7%), KL1 - 203

(27.2%), KL2 - 134 (18%), KL3 - 176 (23.6%), KL4 - 64 (8.5%). The OA vs.

non-OA then becomes : OA - 374, non-OA - 373



CHAPTER 4. COMPARISON OF METHODS 88

– OARSI JSN : The 747 images were reduced to 704 images with JSN

grades, the grades are split into each side of the knee (medial and lateral

joint space). As the 747 contain predominantly medial OA knees, the lateral

JSN scores are fairly low - see Table 4.2.

Table 4.2: OARSI JSN dataset statistics

OARSI (% samples) Medial JS Lateral JS

0 (44.7%) 315 671

1 (30%) 182 18

2 (11.3%) 142 13

3 (14%) 65 5

4.2 Methods

The methods from Chapter 3 can be applied to various radiographic features. This

section details how the methods extract the relevant implicit and explicit OA features

for the classification experiments. The section is split into object detection (RFCLM),

the overall shape model built from the RFCLM, the individual radiographic features,

and combined and comparison methods. In this chapter, we make reference to pilot

experiments undertaken to acquire optimal parameters for the models. These experi-

ments used 500 OA and non-OA images (250 samples per class). All shape and texture

models ran through multiple iterations of the same 250 train, 250 test experiments on

varying shape mode variation (iterating from 70% to 99%) or varying the number of

samples included in the texture models (10 samples - 2000). The optimal results were

found by plotting the Area under the ROC curves. The experiments were not included

in this thesis to reduce space and because the experiments were primarily used for pa-

rameter optimisation and added little to the overall project aim of combining multiple

OA features to create a stronger classifier.

4.2.1 Random Forest Constrained Local Model

All methods are based on the RFCLM output points (see Section 3.2.3). The algorithm

is trained on manually annotated images, a series of annotation models were tested
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during preliminary experiments. The models varied in amount of points and point

locations (see Figures 4.2-4.5 below).

Figure 4.2: 24 point model of

key shape features.

Figure 4.3: Original full

model, 78 points.

Figure 4.4: Revised 74 point

model with deformations an-

notated.

Figure 4.5: Revised 74 point

model outlining ’normal’ bone

(see Figure 3.1).

The optimal points were found to be the 74-point model, which outlines the ’nor-

mal’ shape of the tibia and femur. The annotations ignore bone remodelling and

osteophytes where possible and outline the base knee (see the difference in Figures 4.4

and 4.5 above). This reduces errors (from a mean distance error of 0.47% to 0.39%).

The RFCLM model contains a single global model to find two points along the joint



CHAPTER 4. COMPARISON OF METHODS 90

margins of the femur, and four local models that find 74 points around the knee outline

(see Figures 4.6).

Figure 4.6: Global searcher points (left). Local searcher points, global initialised points

are highlighted red (right).

The global model uses a Random Forest trained to find two points on the medial

and lateral margins of the femur. The model estimates the global parameters to

initialise the local Random Forest Constrained Local Model (RFCLM) searchers. The

points were chosen on the femur margins to localise the search to centre of the knee

joint, and estimate the scale by finding points across the width of the knee.

The local RFCLM models are split into three stages, with each stage initialised using

the point positions from the previous stage. The frame widths were scaled each stage:

50 (coarse), 100 (medium) and 200 (fine). The fine stage was split to find the femur

and tibia separately, fitting both points to the image before evaluating the fit. This

allowed for the fine tuning of the tibia and femur separately (see Fig. 4.7). Extra

parameters were optimised for each of these stages, these controlled: the search radius

around the points, to set the search region for the Constrained Local Model (CLM)

optimisation; and displacements of the point model in training, to displace the initial

points during RFCLM training.
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Coarse (50 fw)

Medium (100 fw)

Fine (200 fw)

Figure 4.7: Illustration of local RFCLM searches with the models iterating over the

various frame widths (fw).

4.2.2 Overall Shape

In the literature, methods such as [9] and [10] focused on implicitly capturing OA

features. This analysis does not specifically target a certain part of the knee but

extracts texture and shape features from the whole joint. This allows the detection

of bone changes such as, alignment, JSN, attrition, and subtle changes in the overall

shape/texture. A Statistical Shape Model (SSM) built on the RFCLM output points

was chosen to capture similar information of overall shape change.

The SSM is built using a Principal Component Analysis (PCA) algorithm, the number

of shape modes extracted is controlled by the amount of shape variation specified. For

the overall shape experiments a 99% variation was found to be optimal, which equalled

44 shape modes. This parameter was optimised through pilot experiments on a smaller



CHAPTER 4. COMPARISON OF METHODS 92

subset of training and testing images.

4.2.3 Trabeculae

Trabeculae are narrow and tightly packed in small regions of subchondral texture.

Current methods that analyse these features focus on extracting pixel intensity and

gradient variation values (see Section 3.4.1). The methods used to extract the tra-

beculae features are: Augmented Variance Orientation Transform (AVOT), Variance

Orientation Transform (VOT), wedgeVOT, Signature Dissimilarity Measure (SDM),

Haar-like features, and Raw Pixel Ratios (RPR).

Region Sampling

To extract the relevant trabeculae features a region of interest (ROI) must first be

selected in the image. We use the region sampling explained in Section 3.4 with two

points of the RFCLM output and the vector r projected between them. The location

of the fibula (lateral side of the tibia) overlaps with the trabeculae structure beneath

the lateral tibial plateau and can produce noisy texture features (see Fig. 4.8). The

algorithms focus on the medial side of the tibia to analyse trabeculae, targeting medial

OA in the knee, which has a much higher prevalence in the OAI dataset and overall

population [104] [105].

Figure 4.8: Fibula overlapping the lat-

eral side of the tibia

Experiments were run on various locations (avoiding the lateral tibia), including

the femur medial and lateral sides, and central tibia (see Figures 4.9-4.11). These

areas all achieved lower accuracies than the medial tibia region, and added no extra

information when combined with the medial tibial texture in preliminary experiments.
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Figure 4.9: Central placed tibia ROI.
Figure 4.10: Femur medial ROI.

Figure 4.11: Femur lateral ROI.

Following the literature, the region was placed below the tibial plateau to avoid

thickened bone texture from sclerosis. The region was placed relative to the angle of

the tibia, and was shifted 0.8r along and −0.1r above the vector. The region size

varied depending on the texture sampling method (see Figures 4.12, 4.13 below), with

the FSA and SDM methods following the best reported parameters from the literature:

256 × 256 size pixel region, with a region size of 0.2r × 0.2r. For the methods which

used raw pixel intensity data (RPR and Haar features) a region of 256 × 125 pixels,

and a region size of 0.2r × 0.1r was found to be optimal.

Figure 4.12: Larger ROI used for FSA

methods.

Figure 4.13: ROI used for Haar fea-

tures and RPR.
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Fractal Signature Methods

The Fractal Signature methods are: VOT (Section 3.4.1), wedge VOT (Section 3.4.1),

and AVOT (Section 3.4.1). All three extract features of pixel intensity variation and

produce a series of Hurst coefficients from fitted line gradients for the scales (subsets

of log-log points per angle).

The wedge VOT algorithm had a variable number of angles to split the circle sampling

region; to keep the methods consistent 24 angles of 15◦ was used. The distances were

kept the same as the VOT algorithm parameters from the literature (13 pixel distances

per angle). The VOT and AVOT each sampled pixels along 24 angles; the VOT used

fixed radii size of 4 and 16 pixels. The AVOT had variable radii sizes depending on

the size of the texture region, however, as the texture regions were fixed at 256× 256

the sizes were the same as the VOT method.

Signature Dissimilairty Measure

The SDM method (described in Section 3.4.3) builds histograms of trabeculae rough-

ness and orientation. Roughness is constructed using a Gaussian sampling (see Figures

4.14-4.16 below), with the orientation taken from the edges of the trabeculae (see Fig.

4.17). All parameters were taken from the literature [8], using a sampling size of

δ = 1.1n where n = 1, ..., 25. The histograms of trabeculae roughness and orientation

are used to train and test the classifiers.

Figure 4.14: Orig-

inal trabeculae im-

age.

Figure 4.15: D2

minimum gradients

image.

Figure 4.16: D2

maximum gradients

image.

Figure 4.17: Binary

image of trabeculae

regions.
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Haar features

Haar features (explained in Section 3.4.4) measure intensity patterns based on differ-

ences between the mean intensity in nearby rectangular regions of the image. The

classifiers are trained on the features gathered from the optimal ROIs beneath the

tibial plateau.

Raw Pixel Ratios

The RPR method (explained in Section 3.4.2) extracts multiple samples of raw pixel

intensities from each image. The classifier trains on the ratios of random pixel pairs

in the samples extracted (see Fig. 4.18).

Figure 4.18: Illustration of RPR taking 32×32 pixel samples. The method finds a ROI

beneath the medial tibial plateau, from that segmented region we sample 670 samples

(of size 32 x 32 pixels) per image. These samples are saved as 1024 pixel vectors to

train the Random Forest classifiers.

The number of samples taken per region (670) and the size of the regions (32×32)

was optimised during preliminary experiments. Each of the 670 samples were trained

as separate examples, in testing the mean output (over all samples) is chosen as the

image classification.

4.2.4 Osteophytes

Osteophytes vary in size and shape between participants irrespective disease severity,

due to this there is a need for algorithms that are sensitive to variable shape change

that are not limited to detect objects that follow a typical progression. To extract

the relevant features we use the shape methods explained in Section 3.3, and Haar

features to measure edges and gradient change.
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To compare the analysis to OARSI grades we extract osteophyte features that occur

along the joint margins (see Figure 4.19).

Figure 4.19: The red squares illustrate the four regions to detect marginal osteophytes.

The experiments compare features extracted from: a Statistical Shape Model built

from a RFCLM search (SSM-RS), a SSM built from DP detected contours (SSM-DP),

and Haar-like features (Haar).

Statistical Shape Model - Random Forest Constrained Local Model Search

(SSM-RS)

To build an osteophyte SSM-RS model the images have manually annotated points

along the joint margins. A new set of points was placed on the images from the RFCLM

object detection experiments. The osteophyte point model included 44 points added

to capture the shape variation of the osteophytes. The points were added along the

corners of the joint space and the medial and lateral sides of the tibial and femoral

epiphysis (see Figure 4.20).
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Figure 4.20: The 44 points outlining

the joint margins.

Figure 4.21: The 74 base knee points

with the 44 SSM-RS points highlighted

in red.

The 44 points were attached to the 74-point model and a new RFCLM set up to

find 118 points. The 44 osteophyte points are extracted from the output. Prelimi-

nary experiments applied a sequence of models to optimise osteophyte detection. The

optimal used the original 74-point model found in the coarse stage, and the larger

118-point model placed in the medium and fine stages. The points are split per object

in the fine stage, with 59 on the tibia object and 59 on the femur (see Fig. 4.21).

When training the SSM on the extracted osteophyte points 99% of the shape variation

contained the optimal amount of features (50 shape modes).

Statistical Shape Model - Dynamic Programming Search (SSM-DP)

This model builds an SSM from the shape points found using the Bézier curves and

Dynamic Programming optimisation explained in Section 3.3.2. The algorithm first

interpolates a set of points between a set control points from the RFCLM output, for

this we use points either side of the areas marginal osteophytes develop (see Fig. 4.22).

Each of the four regions had 12 points interpolated to capture enough shape detail

over the margins (see Fig. 4.23).
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Figure 4.22: Control points (red)

selected to interpolate new osteo-

phyte points.

Figure 4.23: The 48 points found by the

SSM-DP algorithm.

Dynamic programming then fits the points to the strongest edge by optimising the

Equation 3.3. Through prior experiments we found that the best value for the curve

constraint α was 0.2 as the osteophytes varied in height rapidly and often extended

across the corners of the joint (see Figures 4.24-4.25 below).

Figure 4.24: Contours with k =

0.9.

Figure 4.25: Contours with k =

0.1.

The SSM was built on the 48 contour points (see Fig. 4.23) and used 85% shape

variation (30 shape modes).
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Haar Features

Similar to the trabeculae feature extraction (see Section 4.2.3) Haar features (explained

in Section 3.4.4) are used to extract edge and shading information across the osteophyte

regions. The regions were placed over the four margins (medial tibia, lateral tibia,

medial femur and lateral femur), the method used two points close to the margin to

position and scale the regions (see Fig. 4.26). The region was shifted so the centre lies

over the corner points (x = −0.5r). The size used is 25 × 25 pixels taken using the

vector r to scale the texture sample.

Figure 4.26: The four regions placed to sample osteophyte texture. The points (circled

in red) are used to shift each region relative to the margin.

4.2.5 Joint Space

JSN and Joint Space Width (JSW) change is a prevalent factor of OA development

[22]. The work by Duryea et al. [63] looks at the distances from the front line of the

plateau, quantifying OA change using a series of joint space widths (xJSW) along set

distances of the tibial plateaus. The measurements analyse the widths from the front

brightest edge of the plateaus to keep the calculations consistent and less susceptible

to knee rotation. Our methods expand on this to include all of the joint space shape

by building a Joint Space Statistical Shape Model (JS-SSM), and extracting Haar

features in the region.
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Joint Space Shape Model

The JS-SSM uses the same edge feature extraction as the osteophyte SSM-DP, inter-

polating points between fixed points on either side of the femoral condyles and tibial

plateaus (see Fig. 4.27).

Figure 4.27: The control points (red) used to interpolate new edge points.

The optimal number of points across the femur and tibia surfaces was 10, with

α = 0.2 (see Fig. 4.28). This α achieved the highest in preliminary experiments, with

AUCs of 0.851 α = 0.4, to 0.858 α = 0.2.

Figure 4.28: Contours fitted to all four joint space surfaces.

We then built a SSM from the four curves. The SSM used 99% shape variation,

18 shape modes. The overall shape model (see Section 4.2.2) includes some JSN

information, the SSM-DP was included to interpolate extra detail along the joint

space.

Haar features

To analyse extra joint space information, texture samples for Haar features (explained

in Section 3.4.4) were also extracted. The regions were placed using the start and end
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control points from the JS-SSM contours (see Figure 4.27). Two regions (see Fig. 4.29

below) of 25x15 pixels were sampled to span the medial and lateral joint spaces.

Figure 4.29: Medial and lateral joint space regions (red boxes) extracted.

4.2.6 Mal-alignment

The joint mal-alignment measures the angle of the tibia and femur either in projected

lines across the joint space or the angle between the intersections of lines projected

down the diaphysis of the two bones. The mal-alignment is also apparent in the

positions of the two bones. This information we extract implicitly (see Figures 4.30-

4.31) in other feature extraction methods i.e. overall shape (Section 4.2.2) and joint

space (Section 4.2.5).

Figure 4.30: Overall shape SSMs with femur mal-

alignment.

Figure 4.31: JS-SSM with JSN and mal-alignment.
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4.2.7 Tibial Spines

Literature on the association of tibial spines with OA is conflicting. These features are

included in the experiments to expand on current analysis that compares height and

spike angle [31] [71]. To extract features from the tibial spines we use: DP extracted

contours (SSM-DP) and Haar features.

Haar features

Haar features (explained in Section 3.4.4) are used to extract edge and shading infor-

mation across the tibial spines and intercondylar notch. The region is placed using

two points either side of the spines (see Fig. 4.32), with 19× 19 pixels sampled. The

intercondylar notch was included from the overall of tibial spines with the notch in

knees with severe JSN (see Fig. 4.33).

Figure 4.32: ROI texture sampling

of tibial spines.

Figure 4.33: Tibial spines overlap-

ping the intercondylar notch.

Tibial Spine Contours

The SSM-DP extracts contours along the tibial spines using similar points to extract

the Haar features (see Fig. 4.34). A set of 24 points were found to be optimal in

capturing the tibial spine shape (see Fig. 4.35), the α was set to be 0.1 so that the

contour would follow the edges over the peaks of the spines.
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Figure 4.34: Control points for inter-

polating new tibial spines edges.

Figure 4.35: SSM-DP found tibial

spines points, k = 0.1.

A SSM is built from the tibial spine points extracted from the RFCLM output.

This included 9 points between the tibial plateaus (see Fig. 4.34). Specific tibial

spine annotations were used during preliminary experiments, but the extra points had

with no significant increase in classification accuracy. The SSM built from the points

contained 99% variation (8 shape modes).

4.2.8 Combined Model

The combined model uses the optimal methods from each experiment. This includes

features that are best evaluated by combining shape and texture methods, or using a

single method that achieves comparable classification results. The optimal OA features

are combined one at a time, to find the combination of radiographic features that

achieves the highest detection accuracy of OA. We then compare the optimal model

with the WND-CHARM algorithm by Shamir et al. [9] (explained in Section 3.4.5).

The parameters for WND-CHARM were taken from the literature.

4.3 Experiments

The experiments compare the various extracted features using the accuracy of the

Random Forest classifiers (described in Section 3.5.1). The validity and mean accuracy
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of the classifiers is reported using 5-fold cross validation (see Section 3.5.2). The symbol

** will be used in all the tables to state that the best accuracy is significant compared

to the other results reported in the same table. The significance will be based on

the difference between the mean values and the standard deviation of the highest and

second highest result in the table.

For the two-class shape model experiments a Linear Discriminant Analysis (LDA)

was run. This outputs a shape mode that spans the shape space between the two

classes (OA and non-OA). These LDA shape modes have been included in the relevant

sections.

4.3.1 Random Forest Constrained Local Model

The RFCLM object detection uses the set 500 images split into 250 training and 250

testing examples. The results are in point-to-curve Euclidean distance error (see Fig.

4.36). This error was chosen over point-to-point and curve-to-curve, to both minimise

the penalty of finding the shape but not the exact point positions (point-to-point)

and to reduce computation time over comparing points along each curve between the

manual and automated points (curve-to-curve).

Pk

Dk

Manual points

Figure 4.36: The point-to-curve distance error Dk is found between the point Pk and

the closest part on the curve (blue line between the manual points).

The RFCLM models achieved a high accuracy across the 250 images: mean: 0.39%

(0.29mm)±0.14mm, median: 0.34% (0.26mm) and 95th percentile: 0.72% (0.54mm).

The error Cumulative Distribution Function (CDF) in Figure 4.38 shows that 95% of

the images have a mean point-to-curve distance of less than 1% of the relative distance

(see Fig. 4.37). Following [93] the mean point-to-curve distance was converted to mm
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by assuming a mean knee width of 75mm. These results are similar to those presented

by Lindner et al. [93], though on a different dataset.

Figure 4.37: The error is taken as a

percentage of the reference distance

(between the two red points).
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Figure 4.38: The CDF shows the

relative distance error of all 250

images.

The images that fall in the last 5% are likely to be knee shapes that are untypical

or unseen in the 250 training images, examples of the RFCLM poor output points can

be seen in Figures 4.39 below.

Figure 4.39: Examples of poor RFCLM output.

4.3.2 Overall Shape

The shape model taken from the RFCLM output points was analysed using OA/KL

grades, splitting the experiments into OA vs. non-OA (see Figure 4.55) and KL grades

(see Table 4.9). The LDA shape information illustrates the effect of moving along a
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vector projected between the two classes in shape space (see Figure 4.40). The shape

change shows JSN and spiking of the tibial spines in the knee. The AUC for the

two-class problem is 0.84, whilst the KL grades achieved a mean accuracy of: 33.9%

±1.8%.

Figure 4.40: LDA shape model of the differences between the non-OA (left) and OA

(right) classes.

4.3.3 Trabeculae Comparison

All trabeculae methods were compared using the OA/KL grade 747 images. The

comparisons were all run on detection of OA vs. non-OA images (see Fig. 4.41) and

multi-class features (see Table 4.3). The results show that the best method was the

RPR method in splitting the data, with an AUC of 0.703. Combining the RPR method

with the best FS method (AVOT) added nothing to the accuracy with 0.703 RPR,

and 0.702 combined texture AUC. The multi-class results for all texture features are

fairly poor (27.7% - 30.8%). This is likely because the KL grades are based on shape

analysis. For the optimal trabecular model, the RPR was chosen because of the strong

two-class AUC.
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Figure 4.41: Comparison of the various texture methods in detecting OA vs. non-OA

images.

Table 4.3: Trabeculae AUC and multi-class performance

Analysis Method AUC (stdev.) multi-class % (stdev.)

Haar 0.615 (0.012) 28.1 (0.5)

wedge VOT 0.619 (0.018) 29.1 (0.3)

SDM 0.64 (0.009) 30.8 (0.7) **

VOT 0.621 (0.003) 28.8 (0.8)

AVOT 0.669 (0.008) 28.8 (0.8)

RPR 0.703 (0.004)** 25.7 (0.2)

All FSA methods were compared with comparable parameters, each used 24 angles

and pixel distances (di) between 4 ≤ di ≤ 16 (13 in total). Out of the three methods the

AVOT achieves the highest AUC (0.669 AVOT, to 0.623 VOT and 0.619 wedgeVOT).

These results show that measuring intensity differences along specific angles, and not

a wider sampling region achieves a better accuracy. The main difference in the AVOT

algorithm, with the texture regions fixed at 256 × 256, is the number of scales the

method splits the distances per angle into: AVOT using 13 scales (pixels 4 to 16), and

VOT using 11 scales (pixels 6 to 14). This improved the AUC from 0.623 (VOT) to
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0.669 (AVOT).

4.3.4 Osteophyte Comparison

To test the accuracy of the osteophyte methods, we ran various experiments:

(i) RFCLM object detection on finding extended 118 point model

(ii) Detecting osteophytes via OARSI grades (0, 1 vs. 2, 3)

(iii) Detection of OA and non-OA images (374/372)

(iv) Multi-class classification into grades (KL0-4) using the best method from the OA

vs. non-OA experiments.

We report independent and combined results for each method: Statistical Shape Model

- RFCLM Search (SSM-RS), Statistical Shape Model - Dynamic Programming contour

detection (SSM-DP), and texture analysis using Haar-features (Haar).

Statistical Shape Model - Random Forest Constrained Local Model Search

(SSM-RS) Object Detection

Using a similar split to the RFCLM experiments (explained in Section 4.3.1) we used

the 500 images with a 250/250 (train/test) split. The overall point-to-curve distance

error is worse than the base point model with 0.39% (74 point model) to 0.836% (118

point model). This error is likely to be caused by the variability of the extra osteophyte

shape (see Fig. 4.42).

Figure 4.42: Examples of the SSM-RFCLM not finding the correct edges of the osteo-

phytes.
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Osteophyte Detection

We ran each method over the four regions (lateral femur, medial femur, lateral tibia

and medial tibia) detecting osteophytes in each region separately. The mean AUC from

each region per method is reported in Table 4.4 below. The best independent classifier

is the Random Forest (RF) based on Haar-features with AUC 0.77. By combining all

methods we achieve AUC 0.85.

Table 4.4: Osteophyte detection performance

Analysis Method mean AUC (stdev.) mean multi-class % (stdev.)

SSM-RS 0.756 (0.056) 47.8 (0.9)

SSM-DP 0.663 (0.072) 46.3 (1.4)

Haar features 0.771 (0.053) 54.1 (2.0)

SSM-RS + SSM-DP 0.769 (0.065) 50.9 (2.0)

SSM-RS + Haar 0.826 (0.015) 55.7 (1.6)

SSM-DP + Haar 0.806 (0.015) 60 (1.6)**

All methods 0.846 (0.014) 55.8 (1.9)

The multi-class automated KL grades compared to the gold standard achieved

weighted kappas of: 0.12(0.07-0.17) lateral femur, 0.41(0.35-0.47) medial femur, 0.26(0.2-

0.32) lateral tibia, 0.24(0.18-0.3) medial tibia. The mean weighted kappa (kw) of these

is 0.26, which is lower than the manual OARSI osteophyte grading (0.64-0.78) [41] [40].

This lower accuracy could be due to the limited numbers in the 2-3 grades, with lat-

eral marginal osteophytes having between 51-88 in grades 2 and 3. Medial marginal

osteophytes have more samples (50-169) but are still lower than the number of samples

with grades 0 and 1 (95-327).

Osteoarthritis vs Non-Osteoarthritis

The cross validation mean AUC results are shown in Table 4.5 and ROC curves in

Figure 4.43. The best extracted features are the Haar features, with an AUC of 0.92.

Combining this method with both the SSM-DP and SSM-RS method slightly improves

the AUC to 0.929.
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Figure 4.43: Comparison of the various osteophyte feature extraction methods in

detecting OA vs. non-OA images.

The methods were combined to improve the detection from an Area Under ROC

Curve (AUC) of 0.92 Haar features, to 0.929 fully combined (see Table 4.5 below).

For further comparison, the overall shape model was included with the osteophyte

features. The SSM-RS features were found to add less accuracy than the overall shape

with AUCs of 0.929 (Haar, SSM-DP and SSM-RS) to 0.933 (Haar, SSM-DP and overall

shape). The optimal osteophyte features are Haar features and SSM-DP contours (see

Fig. 4.44). The SSM-RS was removed because the features captured focus primarily

on the shape of the bone (see Fig. 4.45). These features are captured with extra detail

about the JSN and alignment in the overall shape model.
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Figure 4.44: Comparison of combined osteophyte and shape features.

The LDA shape vectors of the SSM-RS (see Fig. 4.45) and SSM-DP (see Fig.

4.46) show that the shape change is mainly shown in the JSN of the knee, with some

marginal osteophytes and bone remodelling in the severe OA cases.

Figure 4.45: LDA shape model of the osteophyte SSM-RS between

the non-OA (left) and OA (right) classes.

Figure 4.46: LDA shape model of the osteophyte SSM-DP between

the non-OA (left) and OA (right) classes..

Multi-class Experiments

The features were combined by training three separate RF classifiers on the osteo-

phyte features, and taking the mean of the outputs as the final classification. The
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features were concatenated to train and test a single classifier in preliminary experi-

ments with no significant improvement. The combination of all features improved the

multi-class overall probability from: 47.8% ±0.3 (Haar features), 40.7% ±0.5 (SSM-

DP), 43% ±0.8 (SSM-RS), to 50.2% ±0.5 (combined features). Table 4.9 shows the

per-class accuracy and the overall probability that the correct class is chosen. Re-

placing the SSM-RS features with the overall shape features had minimal effect when

taking into account the standard deviation (stdev.) of the values, with the combined

osteophyte features and SSM-RS replacement with overall shape achieving similar ac-

curacies (50.6%± 1.1 to 49.6%± 1.7).

Table 4.5: Osteophyte AUC and multi-class performance

Analysis Method mean AUC (stdev.) multi-class accuracy (stdev.)

SSM-RS 0.851 (0.001) 43 (0.8)

SSM-DP 0.865 (0.003) 40.7 (0.5)

Haar features 0.92 (< 0.001) 47.8 (0.3)

Shape 0.843 (< 0.001) 33.9 (1.8)

SSM-RS + SSM-DP 0.872 (0.002) 39.7 (0.7)

SSM-RS + shape 0.866 (0.001) 41.9 (0.1)

SSM-DP + shape 0.877 (< 0.001) 42.3 (0.1)

SSM-RS + Haar 0.926 (0.002) 48.5 (1.5)

SSM-DP + Haar 0.929 (0.001) 48.3 (1.6)

All OS 0.929 (0.002) 50.2 (0.5)

SSM-DP + Haar + shape 0.933 (0.001) 49.6 (1.7)

All OS + shape 0.93 (0.002) 50.6 (1.1)

The algorithms did miss some shape variation in both SSM-DP (see Fig. 4.47) and

SSM-RS (see Fig. 4.42). SSM-RS tends to stick to the edges of the bone; this is likely

because the RFCLM uses the mean shape seen in the training set. SSM-DP finds the

strongest and brightest edges, often missing some faint osteophyte edges and affected

by varying image contrasts (see Fig. 4.48).
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Figure 4.47: SSM-DP missing the os-

teophytes along the edge.

Figure 4.48: SSM-DP missing edge

from image contrast.

4.3.5 Tibial Spines

For the tibial spines we compare the Haar, SSM-DP contours and SSM-RS contours

extracted from the overall shape points. The Haar features achieved the highest ac-

curacy with 0.824 AUC (see Fig. 4.55), the combination of the shape and texture

features (see Fig. 4.49) did not improve this accuracy with an AUC of 0.785 (com-

bined), to 0.824 (Haar), 0.647 (SSM-DP), 0.651 (SSM-RS). The increased accuracy of

the Haar features is attributed to the overlap with the intercondylar notch, this can

add features about JSN and osteophytes in the region. The Haar features achieve an

overall multi-class accuracy of 34% ±0.9% (see Table 4.6).

Table 4.6: Spines AUC and multi-class performance

Analysis Method mean AUC (stdev.) multi-class accuracy (stdev.)

SSM-DP 0.647(0.003) 41.6 (0.4)

SSM-RS 0.651 (0.004) 27.2 (2.7)

Haar 0.824 (0.006)** 45.8 (0.4)**

SSM-RS + SSM-DP 0.68 (0.009) 29.1 (1.9)

SSM-DP + Haar 0.811 (0.003) 33.9 (0.5)

SSM-RS + Haar 0.807 (0.005) 33.9 (1.1)

All features 0.785 (0.003) 29.9 (0.9)
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Figure 4.49: Comparison of tibial spine Haar, SSM-DP, and combined features .

The LDA shape modes show no discernable change in shape (see Fig. 4.50). The

shape models in Figure 4.40 show a change in the overall shape model, this could mean

that tibial spine change is only apparent in a few cases of OA and so not strongly

associated with disease development.

Figure 4.50: Tibial spines SSM-DP LDA model, the red cir-

cles represent the cases, blue points represent the control

class mean shape.

4.3.6 Joint Space

The JS-SSM is compared to xJSW [7] measurements, available in the OAI the dataset,

in the next chapter (Chapter 5). The experiments are separated due to the xJSW

measurements available in the data.

This section analyses the detection of JSN using the 704 images with OARSI JSN

grades (0-3), and the joint space shape change across the OA - splitting the experiments

into OA vs. non-OA (see Figure 4.55) and KL grades (see Table 4.9).
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JSN Detection

The JS-SSM was run over the medial and lateral compartments of the knee separately

(the shape models were split into two halves) analysing the OARSI JSN grade in each

compartment. The OARSI grades categorise the narrowing into grades (0-3) depending

on severity, with 0 = no JSN and 3 = severe joint space loss. The AUC and multi-class

JSN accuracy is shown in the Table 4.7 below. The experiments also compared the

JS-SSM, JS Haar features and the combined joint space features (combined JS). The

combined model achieved the best results for the medial JSN, with an AUC of 0.977.

For the lateral side the JS Haar achieved the best results with an AUC of 0.947.

For overall multi-class repeatability when compared to the gold standard the method

achieved a kw of 0.64 (0.6-0.69) medial JSN, and 0.17 (0.01-0.32) lateral JSN. The

lateral accuracy is low because of the limited numbers in lateral JSN ≥ 1. The medial

kw (0.64) achieves an accuracy that is within the reported manual JSN grading (0.48-

0.86) [41] [39].

Table 4.7: OARSI JSN detection performance

Medial Lateral

Analysis Method AUC(stdev.) multi-class(stdev.) AUC(stdev.) multi-class(stdev.)

JS-SSM 0.972(0.003) 61.4(1.5) 0.918(0.009) 94.7(0.6)

JS Haar 0.96(0.003) 64(0.1) 0.947(0.012) 95.1(0.4)

Combined JS 0.977(0.001)** 66.1(0.6)** 0.944(0.001) 95.3(0.2)

Osteoathritis Classification

These experiments evaluate the two-class and multi-class problems using JS-SSM and

JS Haar features. The experiments are also expanded to show the effect of combining

JS features (combined JS), and the combination with osteophyte Haar features and

overall shape model (see Table 4.8). The JS Haar features achieved a higher accuracy,

with 0.887 (Haar), 0.867 (JS-SSM). However, when both features were combined with

osteophyte Haar features, the results were comparable 0.929 (JS-Haar + osteophytes),

0.930 (JS-SSM + osteophytes), indicating that the extra information in the joint space

Haar features overlaps the osteophyte texture regions.
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Table 4.8: Joint Space AUC and multi-class performance

Analysis Method mean AUC (stdev.) multi-class % (stdev.)

JS-SSM 0.867(0.004) 41.6 (0.4)

JS Haar 0.887 (0.001) 40.7 (0.5)

OS Haar 0.92 (< 0.001) 47.8 (0.3)

Shape 0.843 (< 0.001) 33.9 (1.8)

JS-SSM + shape 0.884 (0.002) 44.4 (0.7)

JS-SSM + Haar 0.901 (0.001) 46.8 (0.2)

JS Haar + OS Haar 0.929 (0.003) 47.7 (0.2)

JS-SSM + OS Haar 0.93 (0.002) 49.4 (1.8)

Combined JS + OS Haar 0.931 (0.001) 47.7 (0.1)

JS-SSM + OS Haar + shape 0.933 (0.001) 47.7 (0.7)

Adding the JS-SSM to the overall shape model increases the AUC (see Fig. 4.51)

from: 0.843 and 0.867 to 0.884 (shape, JS-SSM, combined) and a multi-class of 41.6%

±0.4 JS-SSM, to 44.4% ±0.7 overall shape + JS-SSM.
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Figure 4.51: JS-SSM, overall shape and combined feature ROC curves.

The LDA shape modes from the two-class experiments (see Fig. 4.52) show that

the main shape feature used to split the data is JSN in the knee, with some pockets

and rotation of the lateral plateau occurring in the OA class shape.
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MedialLateral

Figure 4.52: JS-SSM LDA model of the differences between the OA (left) and non-OA

(right) classes.

The lower α from the DP optimisation had trouble finding the correct edges in

some cases (see Figures 4.53-4.54 below).

Figure 4.53: Contours switching be-

tween plateau lines.

Figure 4.54: Contours following ro-

tated edge of the plateau.

4.3.7 Combined Methods

The combined model takes the best features and method combinations from the in-

dividual feature evaluations. The features are combined to improve on the OA vs.

non-OA and KL grade.

Osteoarthritis vs. Non-Osteoarthritis

Experiments found that all combined features and all features without the osteophyte

SSM-RS achieved the best detection for the two-class experiments, with 0.939 (AUC)

fully combined, and 0.939 (AUC) all without SSM-RS. The difference between the two

is minimal (< 0.001). From the independent features, the osteophyte features achieved

the best detection accuracy, with an AUC of 0.93 (see Fig. 4.55 below). The fully

combined features were compared with the WND-CHARM [9] algorithm built on the

same data (see Fig. 4.56), we found our algorithm achieved a higher AUC of 0.94

(combined model) to 0.82 (WND-CHARM).
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Figure 4.55: ROC curves of all features: osteophytes (SSM-RS + SSM-DP + Haar),

Joint space shape models (JS-SSM), overall shape SSM , tibial spines (Haar features),

trabeculae (RPR) in detecting OA vs. non-OA images. Osteophyte features have been

abbreviated to OS.
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Figure 4.56: ROC curves comparing: combined features (left), combined feature model

with the WND-CHARM model (right).

All methods are combined through taking the mean (unweighted) outputs of all

random forests trained on the separate extracted features. Preliminary experiments

varied weights on the classifier outputs before taking the mean, but this weakened

the detection on larger datasets. Experiments were run on training the RFs on con-

catenated feature vectors, this achieved similar accuracy to the mean outputs (0.937
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combined outputs vs. 0.937 concatenated features), but slowed the RF training from

splitting larger feature sizes.

Multi-class

The best combination of features for KL classification was found to be: overall shape

(shape), osteophytes (OS), and tibial spines (spines) (see Table 4.9). The trabeculae

and joint space (JS) features were removed because they weaken the accuracy from

51.8% (optimal method) to 42.7% (fully combined), and 48.1% (optimal + JS-SSM).

This is likely because of noise introduced from the features, the trabeculae provide

no clear distinction between the specific KL grades (25.7%), and JS-SSM features

have a weak KL2 accuracy (13.7%). All two-class and multi-class experiments are

shown in the table below (see Table 4.9). The osteophyte SSM-DP + Haar features is

abbreviated to OS×2.
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4.4 Discussion

This chapter has evaluated various shape and texture methods orientated around spe-

cific radiographic OA features. The experiments were run on a small subset of 747

OAI images to evaluate OA classification (both two-class and multi-class), with an

even distribution of OA to non-OA knees. Further experiments were run to classify

OARSI grades of osteophytes and JSN using the joint space and osteophyte features.

The OARSI grades were available on a subset of the 747 images, which left some class

unbalance in the experiments. This is recognised as a limitation when evaluating the

methods for classifying OARSI grades, but was felt to be sufficient for comparing the

feature specific methods. The experiments in this chapter have shown that combining

various shape and texture features from plain radiographs of the knee create a better

OA and KL classification. Osteophytes provide the best independent detection of OA.

The best features for the two-class (OA vs. non-OA) experiments were a combination

of all features (overall shape, osteophytes, joint space, trabeculae and tibial spines).

The multi-class KL experiments found that the optimal model contained all but the

trabecular and joint space features. The reliability of the optimal combined multi-class

model has a weighted kappa (kw) 0.57, which is within the range achieved by human

grading (0.36 - 0.8) [35]. When compared to the inter-observer reliability of the OAI

dataset, our algorithm is worse, with 0.57 (automated method) to 0.70 (OAI subset).

The optimal features for all methods in the final model can be seen in the Table 4.11

below.

From the literature, it might be expected that the osteophyte and joint space models

would be the optimal multi-class model, as KL grade is mainly based on osteophyte and

JSN development [2], however the optimal model was in fact the combined osteophyte,

spines and overall shape features. The decrease in accuracy mainly comes from KL2,

which is 9.4% with the JS-SSM model and 22.4% with the shape model. This could

indicate noisy data from the JS-SSM, or that the shape captures more information from

the alignment and JSN relating to KL grade than the specific JS-SSM measurement.
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The multi-class experiments have shown that all methods are relatively poor at de-

tecting KL2 grades. This may be due to the similarities of the central KL grades

(1-3), with the distinctions between ”doubtful” (KL1), ”definite” (KL2) and ”multi-

ple definite” (KL3) being less comprehensible by the automated method. The manual

grading is reliant on osteophytes and JSN being visible to the observer, meaning the

automated method could have detected smaller ”definite” features, where a manual

grader might classify them as ”doubtful”. This is supported by the majority of the

KL2 images (83.8%) classified in the range KL1-3 (KL1 42%, KL2 22.9%, and KL3

18.9%). Further to this, the automated method classifies most KL2 images as KL1

(42%) meaning that the distinction between ”doubtful” and ”definite” features is not

as clear for the extracted features.

The automated method was compared to the WND-CHARM algorithm by Shamir

et al. [9]. We trained the algorithm on the same 747 images and found that our fully

combined model achieved a higher OA detection AUC. The implicit feature method by

Anifah et al. [73] (tested on a different dataset) the fully combined features achieved

a higher AUC compared to the mean AUC of 0.592 over all KL grades. No two-class

AUC was given in the literature.

Experiments show that the osteophytes achieved the best AUC of the independent

features and of the combined osteophyte features, Haar features added the most in-

formation. This is likely because the SSM-DP will find the edges with the highest

gradient differences, this can often ignore less well-defined edges in the radiographs

caused through under-exposed regions. SSM-RS can be biased towards the mean shape

within images missing the osteophytes, which can exhibit a wide range of shapes.

Our combined osteophyte features achieve a good OARSI osteophyte detection, and a

mean OARSI multi-class probability of 55.8% across all four regions. The comparison

to the gold standard OARSI grades achieved a low mean kw of 0.26 (0.12-0.41), where

0 = agreement equivalent to chance and 1.0 = perfect agreement. This is lower than

the manual repeatability (kw = 0.64-0.78), but could be improved by expanding the

datasets to include an even distribution of OARSI osteophyte grades in all marginal
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regions.

The osteophyte features achieved a better result than the KOACAD [68] algorithm (on

different datasets) in detection on the medial tibial osteophytes only (0.895 osteophyte

Haar, 0.65 KOACAD). This may be because of important information in the texture

surrounding the osteophytes. However, there may also be some bias towards our

algorithm that will inherently measure some joint space narrowing information in the

extreme cases of OA.

The joint space experiments show that combining Haar features over the same area

adds accuracy to the JSN shape, but increases accuracy from overlap with osteophytes.

This can be seen in the AUCs from the two-class experiments: 0.93 Haar joint space

+ Haar osteophytes, 0.93 JS-SSM + Haar osteophytes, 0.93 JS-SSM + Haar JS and

Haar osteophytes.

The JS-SSM achieved a high JSN detection, with an AUC of 0.92 (lateral) and 0.97

(medial). The comparison to the gold standard OARSI JSN grades from the medial

joint space is comparable to manual inter-observer OARSI grading kw: 0.6 JS-SSM,

(0.48-0.86) manual JSN. The lateral comparison to the gold standard is lower than

this (kw: 0.31), which is likely due to the few lateral JSN grades ≥ 1 to train on, JSN

≥ 1 = 33. This was due to the focus on medial OA participants from the restrictions

of the trabecular features (trabeculae on the lateral side of the knee are obstructed by

the fibula). More lateral OA samples trained in the classifier should produce similar

accuracies to the medial side.

The JS-SSM features achieved a higher AUC than the best reported method in the

literature [68]. The KOACAD algorithm was run on separate data (5950 images) and

achieved AUCs of: medial mJSW - 0.728 ±0.003, lateral mJSW - 0.544 ±0.032, medial

JSA - 0.685 ±0.043, lateral JSA - 0.53 ±0.03. No combined joint space AUC was given,

the mean scores were taken across the separate male and female participant results

given in the paper.
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Trabecular texture is best captured through RPR rather than gradient and FS analysis;

however, this only adds useful information in OA vs. non-OA experiments, with weak

accuracy for KL classification. This could be from the KL grade being based on shape

features and trabeculae structure only varying in the extreme KL grades, i.e. KL0 and

KL3. The two class experiments detect this change, but the discrepancy of trabecular

change in the between grades (KL1, 2 and 4) appear to weaken the accuracy of the

model overall.

The experiments on the tibial spines, show that the features do have some association

with OA, but the Haar features achieve a better accuracy. This increase could be

attributed to the detection of faint edges, missed by the DP optimal edges, but is more

likely to be from the added osteophyte and JSN information from the intercondylar

notch. The two-class finding a fairly moderate AUC, although this is the weakest of

all the independent features. The multi-class results produce a similar correlation to

the literature with [71] showing a weak correlation (close to 0) of -0.15 and 0.14, and

a kw of 0.08 for the tibial spines shape.

In the following chapters the experiments on the JS-SSM are expanded to analyse

further features of OA: detection of pain and the prediction of later onset OA (KL

≥ 2) and later onset pain in follow-up visits from the OAI dataset. Also, the JS-SSM

features are compared in all experiments, including the detection of OA, to classifiers

trained on the multiple JSW measurements (xJSW) found through the method by

Duryea et al. [63] available in the OAI data.

The thesis follows this with an analysis of the fully combined feature model on the

pain detection and prediction of later onset pain and OA experiments.

4.4.1 Important Findings

The optimal model for detecting OA contains features across all areas of the knee:

• Overall shape Using a SSM built on RFCLM output, these features capture

JSN and mal-alignment of the bones.

• Joint margins Focuses on features of marginal osteophytes and some JSN. The
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optimal model uses Haar features and a SSM built on DP optimised contours.

• Joint space The features analyse: JSN, some attrition and mal-alignment. The

optimal model uses SSM features from DP contours.

• Tibial spines and intercondylar notch Change to the tibial spines, osteo-

phytes and some JSN is analysed using Haar texture features.

• Subchondral tibia Trabeculae structure is gathered beneath the tibial plateau

using RPR features.
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Chapter 5

Joint Space Method Comparison

This chapter summarises the analysis comparing the Joint Space Statistical Shape

Model (JS-SSM) (described in Chapter 4) with the widely used xJSW approach by

Duryea et al. [63]. Following the literature, experiments have been expanded to eval-

uate current knee pain [6] [29] [32] [11], later onset knee pain [32] [11], and later onset

OA [79] [7].

5.1 Data

The images and outcomes are taken from the Osteoarthritis Initiative (OAI) dataset,

explained in Section 3.1. The data is split into the classification of current disease

outcomes and the prediction of later onset disease outcomes. All images are restricted

to knees with pain, xJSW and Kellgren and Lawrence (KL) grades recorded at the

specific visit.

The current disease features include: Osteoarthritis (OA) detection, taken from the

previous experiments in Section 4.1; and pain detection, using all images from the

baseline visit with pain, KL grade and xJSW. The later onset outcomes include: OA

prediction, to detect images with no OA (KL ≤ 1) that develop later onset OA (KL

≥ 2); and pain prediction, detecting participants with no pain at baseline developing

pain during follow-up visits. The outcome of pain is based on the calculated binary

variable, reported as any occurrence of pain, aching or stiffness experienced in the

last 30 days in the respective knee. This measurement is calculated from a clinical

questionnaire taken at each visit (baseline and follow-up) for the participant. The pain

127
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assessment [106] measures the knee pain using various scoring mechanisms i.e. Western

Ontario and McMaster Universities Arthritis Index (WOMAC) and Knee injury and

Osteoarthritis Outcome Score (KOOS) [107]. The binary variable is then taken as any

occurence of pain, aching or stiffness reported using the pain variables. The statistics

for each dataset are:

Current features

• Current OA 547 images (from the 747 images in Section 4.1), with KL grades:

KL0 - 83, KL1 - 141, KL2 - 103, KL3 - 157, KL4 - 63. The two-class OA vs.

non-OA is then: OA - 323, non-OA - 224.

• Current pain 5932 images taken from baseline visit. The images are split:

pain - 2084, no pain - 3846. The KL grades are: KL0 - 1177, KL1 - 877, KL2 -

2355, KL3 - 1230, KL4 - 293.

Later onset features

• Later onset OA contains 2060 images with KL grades ≤ 1: KL0 - 1178, KL1

- 882. The case (participants who develop OA) and controls (participants who

do not develop OA) over follow up are split: case - 463, controls - 1597.

• Later onset pain contains 3840 images with KL grades: KL0 - 918, KL1 - 587,

KL2 - 1560, KL3 - 675, KL4 - 100. The images are split into: 1541 participants

who develop pain and 2299 participants who do not develop pain.

5.2 Methods

This section describes the methods used to extract xJSW and JS-SSM features for the

experiments. The Random Forest Constrained Local Model (RFCLM) for the JS-SSM

method is the same as in the previous experiments (see Section 4.2.1).

Duryea’s Joint Space Width Measurements (xJSW)

The xJSW measurements, explained in Section 2.4.1, are a series of joint space widths

at fixed distances along the joint space. The measurements are taken from the OAI
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data and were collected using a semi-automated method by Duryea et al. [63]. The

distances are measured relative to the whole knee by projecting a line (x) across the

femoral condyles (see Fig. 5.1). The measurements are split between the medial and

lateral compartments of the joint space, missing the tibial spines and intercondylar

notch. The medial joint space has 7 widths between x = 0.15 and x = 0.3 with

increments of 0.025. The lateral joint space has 9 widths at x = 0.7 to x = 0.9 in

0.025 increments. The distance at the minimal Joint Space Width (mJSW) of the

medial compartment is also measured.

Figure 5.1: xJSW measurements at points along projected line x within the manual

placed region (green box).

The xJSW distances are recorded at points where a line can be drawn from the

plateau to the condyle above, the JSW values are left blank in cases where the joint

is mal-aligned or the plateaus are shorter than the condyles. To fill the missing values

we used ”-1” values to null the features. This was found to be the optimal value

during preliminary experiments. The Random Forests are trained and tested using 17

variables, JSW and mJSW concatenated into a single vector per image.

Joint Space Shape Model

The method from Section 4.2.5 is used to place 40 points across the medial and lateral

joint space compartments. The shape variation for the SSM was fixed at the opti-

mal value from the preliminary experiments (99%), this equated to 18 modes for all

datasets except later onset OA which used 20 modes. Prominent shape modes from
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the preliminary experiments are seen in Figures 5.2-5.4 below.

MedialLateral

Figure 5.2: Shape mode showing JSN and medial plateau shape change.

MedialLateral

Figure 5.3: Shape mode showing slight shift of the femur and tibia.

MedialLateral

Figure 5.4: Shape mode showing some medial plateau shape change.

5.3 Experiments

The experiments compare the utility of JS-SSM, xJSW, and the combined joint space

features (combined JS). The features are compared using the accuracy of Random

Forest (RF) classifiers (described in Section 3.5.1) trained and tested using 5-fold

cross validation with one repeat (see Section 3.5.2). The data was analysed using

the methods in Section 3.5.3. The results reported are adjusted for potential bias

from the correlation between the participants knees, as the difference between Area

Under ROC Curves (AUCs) in treating the knees as independent and correlated was

< 0.01. The features were compared using the four datasets: 1) Current OA (two-class

and multi-class) 2) Current pain 3) Later onset OA 4) Later onset pain. Results are
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reported as: mean AUC for all two-class experiments, and mean overall and per-class

accuracy (OA multi-class). Linear Discriminant Analysis (LDA) shape modes have

been generated from the JS-SSM features for each experiment. The symbol ** will be

used in all the tables to state that the best accuracy is significant compared to the

other results reported in the same table.

5.3.1 Current Disease Outcomes

The following experiments detects images depending on the current disease outcome

(OA or pain). The images are taken across any time point (baseline or follow-up

visits).

Current Osteoarthritis

The xJSW and JS-SSM were compared using the 547 OA detection images. The

experiments split the data either into OA vs. non-OA (two-class) or KL grade (multi-

class). The results show that the JS-SSM achieves the best two-class accuracy (see

Figure 5.5) with an AUC of 0.849 (JS-SSM) to 0.798 (xJSW). The combination of

the two features increases the two-class AUC to 0.859, see Table 5.1. The multi-class

experiments (see Table 5.2) show the two features are comparable with accuracy rates

of 45.6% (xJSW) to 44.5% (JS-SSM). The combined JS features show a significant

improvement in the multi-class experiments with an overall accuracy of: 44.5% (JS-

SSM) and 45.6% (xJSW), to 51% (combined JS).
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Figure 5.5: Comparing ROCs for the JS features: xJSW, JS-SSM and combined JS.

Table 5.1: Joint Space Two-class OA Detection Results

Analysis Method AUC (stdev.)

xJSW 0.798 (0.76 - 0.83)

JS-SSM 0.849 (0.82 - 0.88)

Combined JS 0.859 (0.83 - 0.89)

Table 5.2: Joint Space Multi-class OA Classification Results

Accuracy (%) kw (CI 95%)

Analysis Method KL 0 KL 1 KL 2 KL 3 KL 4 Overall (stdev.)

xJSW 33.0 41.5 15.5 69.4 70.6 45.6 (1.6) 0.47(0.42-0.53)

JS-SSM 28.3 43.0 25.6 64.7 53.9 44.5 (0.3) 0.49(0.44-0.54)

Combined JS 28.1 43.4 28.1 78.2 70.8 51 (1.5) 0.58(0.53-0.62)

Combining the two JS features significantly increases the accuracy of KL grades 2

and 3. The increase could come from the specific measurements of xJSW adding to

the shape and alignment information captured by JS-SSM features. The LDA shape

modes show the same variation as the previous OA detection experiments (see Figure

4.51).
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Current Pain

The current pain experiments compare JS-SSM and xJSW across 5932 baseline images

(see Fig. 5.6) when used with classifiers to predict whether the participant reports

pain in the respective knee. The JS-SSM achieves a higher AUC with 0.609 (JS-SSM)

to 0.594 (xJSW). The combined JS features achieve the best AUC with 0.621 (see

Table 5.3).
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Figure 5.6: Comparing ROCs for the JS features: xJSW, JS-SSM and combined JS.

Table 5.3: Joint Space Pain Detection Results

Analysis Method AUC (stdev.)

xJSW 0.594 (0.58 - 0.61)

JS-SSM 0.609 (0.59 - 0.62)

Combined JS 0.621 (0.62 - 0.65)

The LDA shape modes in Figure 5.7 illustrate some medial JSN and lateral plateau

rotation.

Figure 5.7: LDA shape model of the JS-SSM between the painful and non-painful

classes (red and blue points).
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5.3.2 Future Disease Outcomes

All experiments in this section compare joint space features in predicting later onset

outcomes. The images have no reported outcomes and are taken from the baseline

visit. The radiographic features are used to detect participants who develop a disease

outcome at any point over the four follow-up visits (cases), and those who do not

develop the outcome at any point over follow-up (controls).

Later Onset Osteoarthritis

The JS-SSM and xJSW features are compared in predicting later onset OA (KL ≥ 2)

from baseline. The JS-SSM achieves a higher AUC with 0.54 (JS-SSM) to 0.526

(xJSW). The combined features do not significantly increase the AUC with 0.543 (CI:

0.51 - 0.57) (combined JS), to 0.54 (CI: 0.51 - 0.57) (JS-SSM). All results are shown

in the Figure 5.8 and Table 5.4 below.
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Figure 5.8: Comparing ROCs for the JS features: xJSW, JS-SSM and combined JS.

Table 5.4: Joint Space OA Later Onset Prediction Results

Analysis Method AUC (stdev.)

xJSW 0.526 (0.5 - 0.56)

JS-SSM 0.54 (0.51 - 0.57)

Combined JS 0.543 (0.51 - 0.57)
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The LDA shape modes for the JS-SSM in Figure 5.9 show the slight medial plateau

shape variation between the knees which do not develop OA (control) and knees which

develop OA (case).

Figure 5.9: LDA shape model of the JS-SSM between the case and control classes (red

and blue points).

Later Onset Pain

The joint space features are compared in predicting later onset pain (see Figure 5.10

and Table 5.5) The results show that the JS-SSM and xJSW achieve comparable AUC

with xJSW - 0.565 (CI: 0.55 - 0.58) to JS-SSM - 0.572 (CI: 0.55 - 0.59). The combined

features improve the AUC to 0.583.
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Figure 5.10: Comparing ROCs for the JS features: xJSW, JS-SSM and combined JS.

Table 5.5: Joint Space Pain Later Onset Prediction Results

Analysis Method AUC (stdev.)

xJSW 0.565 (0.55 - 0.58)

JS-SSM 0.572 (0.55 - 0.59)

Combined JS 0.583 (0.56 - 0.6)
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The LDA shape modes in Figure 5.11 show minimal shape variation between the

knees which do not develop pain (control) and knees which develop pain (case).

Figure 5.11: LDA shape model of the JS-SSM between the case and control classes

(red and blue points).

5.4 Discussion

The experiments have shown that the JS-SSM features achieve the best independent

accuracy. This is likely to be because the xJSW features are limited to specific mea-

surements at set locations across the joint space, whilst the JS-SSM adds shape and

alignment information about the tibia and femur. In the experiments combining both

JS-SSM and xJSW achieves the best accuracy, with an increase in AUC between 0.001

- 0.012. The improvement is likely from the xJSW specifically measuring JSW from

the front lines of the joint space, whereas the JS-SSM contours have been shown to fit

to lines of the rotated tibial plateaus (see Figures 4.53-4.54).

The current pain experiments show a weak association with radiographic features

(AUC: 0.621). The results are consistent with findings that joint space measurements

are associated with clinical symptoms of pain and stiffness [6] [22]. Further to this,

the detection of current OA is stronger than current pain with the AUCs: 0.862

(OA), to 0.621 (pain). Similar findings have been reported in automated radiographic

assessments [6][11]. This is because KL grade is based on radiographic features, whilst

pain is a clinical measure and is based on subjective participant experience. Weak

associations between radiographic features and clinical evaluated OA have been well

documented in the past [108] [109]. An improvement to this assessment would be

including more radiographic features (osteophytes and overall shape), which have been

shown to correlate with current knee pain [20] [30].

The experiments show that the current disease outcomes consistently achieve a higher

accuracy than the later onset prediction with: OA - 0.862 (current) to 0.543 (later
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onset), and pain - 0.621 (current) to 0.583 (later onset). These findings are consistent

with the literature [32] [11], which show that features to predict later onset disease

outcomes are much weaker than the current features. The KIDA algorithm [11] as-

sessed JSW and mJSW features from 1002 participants for association with pain and

function. The algorithm runs over multiple time points: T0 (current), T2y (2 years

prior to incidence) and T5y (5 years prior to incidence). The pain results are reported

as Odds Ratios (OR), where 1.0 is not significant. The results show a weak OR with

time points over T0, with: T0 - medial JSW - 0.7 (0.49 - 1.0), lateral JSW 1.38 (0.99

- 1.94), T2y - lateral JSW 0.87 (0.76 - 0.99), T5y - mJSW 0.79 (0.7 - 0.9). Galván-

Tejada et al. [32] uses xJSW features from the OAI data to evaluate current and later

onset pain. The experiments are split into T0, T1y (1 year prior to incidence pain),

and T2y. The experiments achieve AUCs of: T0 - 0.695, T1y - 0.623, and T2y - 0.62.

The results are higher than the xJSW results achieved in the current experiments (T0

- 0.695 ([32]), 0.619 (combined JS)), this could be caused by better defined joint space

measurements in the smaller subset (163 [32] to 2966 combined JS).

The joint space is weakly associated with later onset OA (random AUC = 0.5), with

AUCs: 0.526 - 0.543. These results are better than findings from the KIDA algorithm

[79], which finds no association when predicting incidence OA (KL ≥ 2) over 5 years

follow-up from baseline images. The results show a weak OR: medial JSW - 0.67

(0.57 - 0.83), lateral JSW - 1.09 (0.97 - 1.22), and mJSW - 0.75 (0.66 - 0.86). This

could be due to limitations in the features used, with the medial and lateral JSW

measuring the smallest distance per compartment. The xJSW and JS-SSM both add

more information about the shape and widths across the joint space. This is supported

by findings in [7], that showed using the multiple xJSW rather than singular mJSW

measurements gave better accuracy in assessing longitudinal KL progression.

The results suggest that the fully automated features (JS-SSM) can replace the semi-

automated (and thus time consuming) xJSW features. The remainder of experiments

of the project include joint space features from JS-SSM only. The benefit of 0.012 AUC

increase from the combined JS features is limited by the restriction of images, which

have xJSW measurements available. The xJSW measurements rely on a region to be
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placed manually on the knee (see Figure 5.1) to project the line x across the femoral

condyles. The restriction of sampling images with xJSW measurements reduced the

baseline images from 8847 with pain scores to 5932 (current pain detection set). The

JS-SSM is unrestricted and can be run fully automatically across all images without

the need for operator input.

The next chapter evaluates the four disease outcomes covered in these experiments

(current and later onset OA and pain) using the optimal fully combined features (from

Section 4.4.1).



Chapter 6

Osteoarthritis and Pain

Experiments

This chapter evaluates the radiographic features from Chapter 4 evaluating current

and later onset disease features with all the extracted radiographic features: overall

shape, trabecular structure, osteophytes, joint space shape, and tibial spines. The

experiments are split into four sections:

1. Current Osteoarthritis (OA) - To split knees into two-class (OA vs. non-OA)

and multi-class (KL grades).

2. Current pain - Classifying features to detect pain in the respective knee.

3. Later onset Osteoarthritis - Analysing features from images with no OA (KL

≤ 1) to predict later onset disease (KL ≥ 2)

4. Later onset pain - Analysing features from knees with no pain to predict pain

reported in follow-up visits.

The combined feature models are compared to the implicit feature method, WND-

CHARM [9], and manual Kellgren and Lawrence (KL) grades taken from the Os-

teoarthritis Initiative (OAI) data.

139
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6.1 Data

Baseline images from OAI (see Section 3.1) are used to evaluate the extracted radio-

graphic features from Section 4.4.1. The experiments are split into current and later

onset disease outcomes. The current OA is revisited to expand on the experiments

from Chapter 4. The baseline set includes 9014 radiographs. Knees with artificial

joints and implants were removed, leaving 8880 images. Metal implants and screws

can cause problems for Raw Pixel Ratio (RPR) trabeculae and the overall shape fea-

tures. The sets were then split into 8875 images with KL grades, and 8847 images

with pain assessments and KL grades. The later onset data contains images with no

current outcome (OA or pain) to predict features related to the occurrence (case) or

no change (control) over the participant follow-up visits. Pain outcomes are assessed

using the binary variable reporting any pain, aching or stiffness over the last 30 days

in the respective knee. The stats for each dataset are:

Current features The data is used to evaluate the current outcomes of OA or pain

across the baseline images.

• Current OA 8875 images (4445 participants) with KL grades: KL0 - 3454, KL1

- 1569, KL2 - 2344, KL3 - 1215, KL4 - 293. The two-class (OA vs. non-OA) is:

OA - 3852, non-OA - 5023.

• Current pain 8847 images (4440 participants) taken from baseline visit. The

images are split: pain - 2641, no pain - 6206. The KL grades are: KL0 - 3438,

KL1 - 1558, KL2 - 2344, KL3 - 1215, KL4 - 292.

Later onset features The data evaluates features to predict later onset outcomes

of OA or pain. All baseline images included have no occurrence of the outcome. The

features predict knees that later develop OA or pain (cases), and knees that do not

change outcome throughout the 6 years follow-up (controls).

• Later onset OA contains 2060 images (3110 participants) with KL grades ≤ 1:

KL0 - 1178, KL1 - 882. The images are split into: 463 (case) and 1597 (control).

• Later onset pain contains 6206 images (3618 participants) with KL grades:
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KL0 - 2724, KL1 - 1151, KL2 - 1559, KL3 - 669, KL4 - 103. The images are split

into: 2215 (case) and 3991 (controls).

6.2 Methods

The methods for this chapter are taken from Section 4.4.1. The radiographic features

extracted include: overall shape 4.2.2, RPR trabeculae 4.2.3, osteophytes (Statistical

Shape Models with Dynamic Programming Search (SSM-DP) 4.2.4 and Haar features

4.2.4), joint space shape models (JS-SSM 4.2.5), and tibial spines 4.2.7. This section

covers the parameters for each feature extraction method and Linear Discriminant

Analysis (LDA) shape models taken from the new datasets.

6.2.1 Overall Shape

The overall shape extracts features of alignment and Joint Space Narrowing (JSN)

from the data. The shape modes are set at 99% variation, and extracted 44-45 modes

for all datasets. The LDA shape modes (Figures 6.1-6.3) show the differences between

the case/control classes mean shape. The later onset OA and pain LDA shape models

(Figures 6.2 and 6.3) have similar tibial spine spiking between the classes. The current

pain shape (Figure 6.1) shows tibial spine spiking and medial JSN.
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Figure 6.1: LDA interpolated shape model between the two

classes: non-painful knees (left), and painful knees (right).

Figure 6.2: Later onset OA LDA shape model with no later

onset OA (left) and later onset OA (right).

Figure 6.3: Later onset pain LDA shape model between con-

trol mean shape (left) and case mean shape (right).

6.2.2 Trabeculae Structure

The trabeculae texture extraction method was altered to handle the larger image sets.

The increased number of images meant that the samples per region could be decreased

from 670 to 100 (current experiments) and 150 (later onset experiments). This allowed

more efficient run-time with minimal decrease in accuracy. The optimal region size

(0.2r × 0.1r) with samples of 32× 32 pixels was kept the same for all experiments.
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6.2.3 Osteophytes

The osteophyte features are extracted using Haar features and SSM-DP contours

placed on the marginal regions of the knee (medial tibia, lateral tibia, medial fe-

mur and lateral femur). The SSM-DP features used 85% variation; this equalled 31

shape modes for later onset OA, and 30 shape modes for the remaining experiments.

The LDA shape modes (Figures 6.4-6.6) show the differences between the case/control

classes mean shape. The later onset OA and pain LDA shape models (Figures 6.5 and

6.6) have similar medial tibia change. The current pain shape (Figure 6.4) shows some

medial JSN and knee shape change between current pain and no-pain classes.

Figure 6.4: LDA shape models of non-painful knees

(blue points) and painful knees (red points).

Figure 6.5: Later onset OA LDA shape

models of case (blue points) and con-

trol (red points).

Figure 6.6: Later onset pain LDA

shape models of case (blue points) and

control (red points).

6.2.4 Tibial Spines and Intercondylar Notch

The tibial spines and intercondylar notch information is extracted from a region placed

over the central area of the joint space (see Figure 4.32). Haar features are used to

extract edge and shading information across the region.
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6.2.5 Joint Space Shape Model

The joint space features are extracted using shape points placed along the medial and

lateral compartment (JS-SSM). The shape models built from these points (see Figure

4.29) explain 99% of the shape variation, which equated to 18-20 shape modes for each

of the experiments. The LDA shape models in Section 5.2 show the variation across

the different experiments.

6.2.6 Comparative Methods

In the experiments we compare the combined feature model to both KL grade classi-

fication and the WND-CHARM algorithm. The WND-CHARM algorithm, explained

in Section 3.4.5, reports high accuracies in analysing current [9] and later onset OA

[12].

Current manual assessments of pain and later onset OA depend on the KL grades or

multiple Joint Space Width (xJSW) measurements. The previous Chapter 5 demon-

strated that the JS-SSM features achieve a higher accuracy than xJSW. The exper-

iments compared the combined features against detection using manual KL grades -

except in current OA where the KL grade is the outcome. The KL grade is taken

from the gold-standard available in the OAI data, detection is assessed by generating

a Receiver Operating Characteristic (ROC) curve and Area Under the ROC Curve

(AUC) for the KL grade vs. outcome.

6.3 Experiments

The experiments train and test Random Forest (RF) classifiers (Section 3.5.1) on

the independent radiographic features. The combined model uses the outputs from

all RFs, taking the mean as the image classification. The classifiers are evaluated

using 5-fold cross validation (Section 3.5.2) and are compared using the mean AUC

and 95% Confidence Intervals (CI) (two-class experiments) and mean accuracy with

weighted kappa (kw) (OA multi-class).The results for each experiment are adjusted

for the correlation between participants with both knees included in the data following
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the statistical analysis explained in Section 3.5.3. The difference in AUC between the

independent and correlated knees results in all experiments was < 0.01. The combined

feature models are compared against the KL grades and WND-CHARM algorithms

(see Section 6.2.6). The WND-CHARM algorithm is a self-contained program; as such

we were unable to adjust for the correlation between participant knees. The symbol

** will be used in all the tables to state that the best accuracy is significant compared

to the other results reported in the same table.

6.3.1 Current Osteoarthritis

The current OA experiments evaluate the optimal fully combined features (Section

4.4.1) to detect OA (two-class) and KL grades (multi-class). The results in Table

6.1 show that the best independent feature is osteophytes (OS) (see Figure 6.7), and

combining all features increases the AUC from 0.887 (OS Haar features) to 0.903 (fully

combined). The WND-CHARM algorithm achieves a lower AUC (see Fig. 6.8) with

0.704 (WND-CHARM) to 0.903 (fully combined). The model was also compared with

the previous results in Section 4.3.6. The model run on 747 images in the previous

Chapter 4 achieves a higher AUC than the 8875 images: 0.903 (8875 images), 0.939

(747 images). This may be caused by the inclusion of lateral OA images or poor image

quality in the baseline set.
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Figure 6.7: ROC curves of all independent features: osteophytes (SSM-DP + Haar),

Join space shape models (JS-SSM), overall shape SSM, tibial spines (Haar features),

trabeculae (RPR) in detecting OA vs. non-OA images.
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Figure 6.8: Comparing the OA detection of the previous experiments (747 images),

current experiments (8875 images) and the WND-CHARM algorithm (8875).

The optimal multi-class features are taken from the experiments on the smaller

dataset (Section 4.3.7), and contain: osteophytes (Haar and SSM-DP features), tibial

spines and overall shape features.
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The results show only a marginal difference between the combined osteophyte features

and the optimal combined features (see Table 6.2), with the mean accuracies: 54.2%

±0.2 (osteophyte Haar features) and 55.6% ±0.2 (combined model). The optimal

combined features achieve a higher accuracy than the WND-CHARM algorithm, with

36.5% (WND-CHARM) and 55.6% (combined model).

Table 6.1: Current OA Two-class Detection Results

Analysis Method AUC (CI 95%)

Overall shape 0.824 (0.82 - 0.83)

RPR trabeculae 0.576 (0.56 - 0.59)

OS Haar 0.887 (0.88 - 0.89)

OS SSM-DP 0.812 (0.8 - 0.82)

Spines 0.818 (0.81 - 0.83)

JS-SSM 0.76 (0.75 - 0.77)

WND-CHARM 0.704 (0.69 - 0.71)

Combined features

Combined features 0.904 (0.9 - 0.91)**

Table 6.2: Current OA Multi-class Classification Results

Accuracy (%)

Analysis Method KL 0 KL 1 KL 2 KL 3 KL 4 Overall(stdev.) kw(CI 95%)

Overall shape 68.6 15.0 27.1 27.8 26.3 41.1 (0.0) 0.28(0.26-0.3)

RPR trabeculae 60.4 13.7 21.3 5.7 0.5 32.4 (0.1) 0.01(0-0.02)

OS Haar 86.0 6.6 45.1 45.8 42.9 54.2 (0.4) 0.47(0.45-0.48)

OS SSM-DP 70.0 14.8 27.7 45.0 34.3 44.4 (0.5) 0.34(0.33-0.36)

Spines 72.7 16.1 30.6 24.5 14.2 43 (0.7) 0.3(0.3-33)

JS-SSM 68.0 13.3 28.1 30.0 31.2 41.3 (0.3) 0.29(0.27-0.3)

WND-CHARM 38.6 30.0 27.6 29.5 57.0 36.5 (2.2) -

Combined features

Combined features 91.2 3.6 43.6 49.9 39.2 55.6 (0.2)** 0.49(0.48-0.5)

The baseline images contain both medial and lateral OA knees, with 3264 medial

OA and 588 lateral OA. Lateral OA was defined as OA positive images with a higher
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lateral compartment JSN grade. The data was split into medial and lateral OA, with

all 5023 non-OA used in each. The AUCs were generated using subsets of the RF

outputs from the combined medial and lateral experiments above. The results show

a much higher AUC for JS-SSM features in the lateral OA detection (see Table 6.3),

with AUCs: 0.765 (all OA), 0.778 (medial OA) and 0.929 (lateral OA). The combined

features show similar results, with: 0.903 (all OA), 0.891 (medial OA) and 0.971

(lateral OA). Multi-class accuracies show an increase in the lateral set for the optimal

combined model, with: 55.6% ±0.2 (all OA), 56.5% ±0.1 (medial), and 59.5% ±0.6

(lateral). The kw is higher in the medial subset: medial - 0.48 (CI: 0.47 - 0.5), lateral

- 0.36 (CI: 0.33 - 0.38).

Table 6.3: Current OA - Medial and Lateral OA Detection Results

All OA Medial OA Lateral OA

Analysis Method AUC (CI 95%) AUC (CI 95%) AUC (CI 95%)

Overall shape 0.824 (0.82 - 0.83) 0.808 (0.8 - 0.82) 0.909 (0.9 - 0.92)

RPR trabeculae 0.576 (0.56 - 0.59) 0.578 (0.57 - 0.59) 0.568 (0.54 - 0.59)

OS Haar 0.887 (0.88 - 0.89) 0.877 (0.87 - 0.89) 0.944 (0.93 - 0.95)

OS SSM-DP 0.812 (0.8 - 0.82) 0.795 (0.78 - 0.8) 0.914 (0.9 - 0.93)

Spines 0.818 (0.0.81 - 0.83) 0.8 (0.79 - 0.81) 0.9 (0.89 - 0.91)

JS-SSM 0.765 (0.75 - 0.77) 0.778 (0.77 - 0.79) 0.929 (0.92 - 0.94)

Combined Features

Combined features 0.903 (0.9 - 0.91)** 0.891 (0.88 - 0.9) 0.971 (0.96 - 0.98)**

6.3.2 Current Pain

The extracted features are used to detect current pain across the 8847 images from

baseline. We compare our combined model against KL grade and WND-CHARM

detection on the same images (see Figure 6.10). The osteophyte features (Haar features

and SSM-DP) achieve the highest AUC with 0.634. The fully combined model achieves

higher detection accuracy than KL grade and WND-CHARM, with AUCs: 0.574

(WND-CHARM), 0.629 (KL grades) and 0.661 (combined model). The KL grade

was added to the combined model output to form a Composite result, this achieves a

similar AUC of: composite - 0.666 (CI: 0.65 - 0.68), combined - 0.663 (CI: 0.65 - 0.68).
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Figure 6.9: Detection of current pain using independent features: osteophytes (SSM-

DP and Haar features), joint space (JS-SSM), overall shape, tibial spines (Haar fea-

tures), and trabeculae (RPR).
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Figure 6.10: Comparing the combined features, WND-CHARM and KL grade in de-

tecting current pain.
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Table 6.4: Current Pain Detection Results

Analysis Method AUC (CI 95%)

Overall shape 0.636 (0.62 - 0.65)

RPR trabeculae 0.572 (0.56 - 0.58)

OS Haar 0.645 (0.63 - 0.66)

OS SSM-DP 0.62 (0.61 - 0.63)

Spines 0.625 (0.61 - 0.64)

JS-SSM 0.605 (0.59 - 0.62)

WND-CHARM 0.57 (0.56 - 0.58)

KL 0.629 (0.62 - 0.64)

Combined Features

Combined features 0.663 (0.65 - 0.68)

Composite (KL + combined) 0.666 (0.65 - 0.68)

6.3.3 Later Onset Osteoarthritis

The later onset OA experiments use the radiographic features to split baseline images

with no OA (KL ≤ 1) into two classes: developing OA during the follow-up visits

(cases), and not developing OA over follow-up (controls). The osteophytes achieve the

best independent AUC with 0.596 (see Fig. 6.11). The combined model is compared to

KL grade and WND-CHARM prediction features. The composite features (combined

model + KL grade) achieves a higher AUC than the combined model and the WND-

CHARM algorithm (see Fig. 6.12), with: 0.614 (combined), 0.583 (WND-CHARM)

and 0.746 (composite features).
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Figure 6.11: Prediction of later onset OA using: osteophytes (SSM-DP and Haar

features), joint space (JS-SSM), overall shape, tibial spines (Haar features), and tra-

beculae (RPR).
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Figure 6.12: ROC curves comparing: combined features, WND-CHARM and KL

grades (left). The figure to the right shows the combined feature accuracy when the

data is split between the KL grades in the set.

The data was split into KL 0 and KL 1 images (see Table 6.5) to determine if either

subset increased the prediction accuracy. The results found the KL0 set achieved a

higher AUC: 0.619 (KL0), 0.563 (KL1).
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Table 6.5: Later Onset OA Prediction Results

AUC (CI 95%)

Analysis Method Both KL KL 0 KL 1

Overall shape 0.56 (0.53 - 0.59) 0.592 (0.54 - 0.64) 0.517 (0.48 - 0.55)

RPR trabeculae 0.545 (0.53 - 0.59) 0.548 (0.5 - 0.6) 0.541 (0.51 - 0.58)

OS Haar 0.593 (0.57 - 0.62) 0.581 (0.53 - 0.63) 0.566 (0.53 - 0.6)

OS SSM-DP 0.543 (0.52 - 0.57) 0.563 (0.51 - 0.61) 0.513 (0.48 - 0.55)

Spines 0.584 (0.56 - 0.61) 0.61 (0.56 - 0.66) 0.53 (0.49 - 0.56)

JS-SSM 0.554 (0.53 - 0.58) 0.585 (0.53 - 0.63) 0.519 (0.48 - 0.55)

WND-CHARM 0.583 (0.55 - 0.61) 0.542 (0.49 - 0.59) 0.551 (0.52 - 0.59)

KL 0.709 (0.69 - 0.73) 0.463 0.506

Combined Features

Combined features 0.614 (0.59 - 0.64) 0.619 (0.57 - 0.67) 0.563 (0.53 - 0.6)

Composite features 0.746 (0.72 - 0.77) 0.619 (0.57 - 0.67) 0.563 (0.53 - 0.6)

6.3.4 Later Onset Pain

The later onset pain experiments predict baseline non-painful knees as either, develop-

ing pain during follow-up visits (case), or not developing pain over follow-up (control).

The radiographic features are applied to the 6206 images from baseline (see Table

6.6). The best independent feature to predict the data is the overall shape, with an

AUC of 0.603 (see Figure 6.13). Combining all features increases the AUC to 0.609;

the best AUC is from the composite model with 0.617. The RPR trabeculae features

were removed from the combined model because of the low accuracy (AUC: 0.527).

This improved the combined model from 0.604 (with RPR), to 0.609 (without RPR).

The combined model is compared against KL grade and WND-CHARM models (see

Figure 6.14), and achieves the highest accuracy, with: 0.531 (WND-CHARM), 0.6

(KL grade), and 0.608 (combined model). All results reported are adjusted for the

contralateral knees as the differences in AUC is < 0.004 for all features.
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Figure 6.13: Prediction of later onset pain using: osteophytes (SSM-DP and Haar

features), joint space (JS-SSM), overall shape, tibial spines (Haar features), and tra-

beculae (RPR).

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

S
e

n
s
it
iv

it
y
 (

%
)

100 - Specificity (%)

Comparison of Combined Features and KL - Later onset pain

Combined features (0.608)

Random line (0.5)
WND-CHARM (0.531)

KL grade (0.59)

Figure 6.14: Comparison of combined features with WND-CHARM and KL grade

prediction.
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Table 6.6: Later Onset Pain Prediction Results

Analysis Method AUC (CI 95%)

Overall shape 0.603 (0.59 - 0.62)

RPR trabeculae 0.527 (0.51 - 0.54)

OS Haar 0.59 (0.57 - 0.6)

OS SSM-DP 0.585 (0.57 - 0.6)

Spines 0.584 (0.57 - 0.6)

JS-SSM 0.57 (0.56 - 0.59)

WND-CHARM 0.528 (0.51 - 0.54)

KL 0.6 (0.59 -0.62)

Combined Features

Combined features 0.604 (0.58 - 0.61)

Combined without RPR 0.609 (0.59 - 0.62)

Composite features 0.617 (0.6 - 0.63)

6.4 Discussion

The results have shown that combining multiple radiographic features improves pre-

diction accuracy for all four experiments (current OA, current pain, later onset OA and

later onset pain). Our combined explicit and implicit radiographic features achieve a

higher accuracy than the WND-CHARM algorithm in each experiment. This shows

that implicitly capturing radiographic OA features is weaker than combining multiple

explicit and implicit features from the same knee.

The images from each set were restricted to knees with disease outcomes available, and

no reported replacement surgery. No adjustments for image quality were made, mean-

ing some pixelated and over/under exposed images were included in the experiments

(see Figures 6.15).
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Figure 6.15: Examples of poor quality images found in the baseline datasets.

Current OA The results show that the best independent feature for current OA

detection is the marginal osteophytes with an AUC of 0.893. This is improved with

the fully combined radiographic features to an AUC of 0.902 and an overall multi-

class accuracy of 55.6%. The kw when comparing the results to the gold standard

manual KL grades is within the range of manual grading, with combined features -

0.49 (CI: 0.48-0.51), and manual grading - 0.58 (0.36 - 0.8). The OAI conducted a

reliability test on 150 participant images from baseline, achieving a kw of 0.70 (CI: 0.65-

0.76). The manual reliability could achieve higher because of the smaller subsample

of images compared to the larger set of baseline images (8875 images) used in our

optimal combined algorithm.

The combined feature AUC is lower in the larger OA experiments, with: 0.903 (8875

images) to 0.939 (747 images). This drop in accuracy is likely to come from the poor

images included in the data (Figures 6.15). The overall multi-class accuracy is higher

for the larger data, with: 55.6% (8875 images) and 51.8% (747 images). This is from

the number of KL0 images shifting the overall mean higher. The proportion of KL0

images are larger in the 8875 image set (8875 - 38.9% KL0, 747 - 22.7% KL0) and

achieves a multi-class accuracy of 91.2%, the remaining grades have significantly lower

accuracies (3.6% - 49.9%).

The current OA images include both medial OA (3264) and lateral OA (588) images.

We split the data to determine the accuracy of the two compartments, with a fully

combined AUC of 0.903 (all) to 0.891 (medial) and 0.971 (lateral). This increase in

AUC is especially seen in the JS-SSM (medial: 0.778, lateral: 0.929), shape (medial:

0.808, lateral: 0.909) and tibial spine (medial: 0.8, lateral: 0.9) features. Clearer
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features defining the disease in the lateral compartment may potentially explain the

increase in lateral joint space accuracy. The distribution of grades in the subsets

supports this, with: KL2 - 63.9% (medial), 44% (lateral), KL3 - 29.9% (medial), 40.6%

(lateral), KL4 - 6.2% (medial), 15.3% (lateral). The medial images contain a higher

proportion of KL2 and a lower proportion of KL4 images than the lateral OA set.

KL2 images are often mistaken for non-OA images with both medial and lateral OA

sets classifying the majority of KL2 images as KL0 and KL1: medial - 50.5% (KL0),

14.0% (KL1), 28.1% (KL2), lateral - 55.4% (KL0), 14.9% (KL1), 19.5% (KL2). The

higher proportion of KL4 images also makes the lateral set easier to distinguish in the

two-class experiments (OA vs. non-OA) as the features are more pronounced than the

less severe grades.

The trabeculae features have dropped the most in accuracy from the previous exper-

iments (Section 4.3.7), with an AUC of 0.703 (747 images) to 0.576 (8875 images).

Trabeculae texture is restricted to the medial subchondral bone, however, splitting

the data into medial and lateral compartments only marginally improved the accu-

racy, with: 0.576 (all OA), 0.578 (medial OA), and 0.568 (lateral OA). Poor image

quality is likely to be the cause of the lower accuracy as the RPR features are based on

unadjusted intensities taken from raw image data. This means that any images with

over and under exposed regions like in Figure 6.15, would result in trabeculae features

with minimal structure information.

Later Onset Osteoarthritis The experiments show that prediction of future dis-

ease is higher using KL grade features to split the data, with KL1 images more likely

to develop later onset disease than KL0 images. The KL grade improves the accuracy

of the combined feature model, with: 0.614 (combined features), 0.705 (KL grade), to

0.746 (composite features). The images were split by KL grade to determine if the

combined feature analysis performed better in the separate subsets. The results show

that the KL1 group achieved a worse AUC: 0.614 (all KL), 0.619 (KL0), and 0.563

(KL1). This outcome could be caused by the smaller number of images and dispro-

portionate amount of case images to controls in the two sets, with: KL0 - 141 case

and 3311 controls (3452 images), and KL1 - 319 case and 1250 controls (1569 images).



CHAPTER 6. OSTEOARTHRITIS AND PAIN EXPERIMENTS 157

The proportion of images in the KL0 set means that if the model predicts most of the

images as not developing disease, then it will automatically get a higher AUC than

the KL1 set which has a higher proportion of case examples.

Prediction of later onset OA features is fairly poor, with a combined AUC of 0.614.

The combined features improve the accuracy from the JS-SSM (0.54) and the combined

joint space features (0.543) from Section 5.3.2. The optimal AUC is also higher than

the WND-CHARM algorithm (0.583). The WND-CHARM algorithm in [12] reports

a higher overall accuracy of 62%-72% using a different dataset. The experiments

used KL0 baseline images and predicted later onset disease 20 years after baseline.

The current experiments analyse change over 6 years follow-up. The OAI dataset

has taken follow-up scans later than 6 years after baseline, these visits have KL and

JSN grades provided by the separate centres, in the future similar experiments will

be conducted to analyse OA development and compare the automated radiographic

feature methods over the larger time frame.

The KIDA algorithm also reports results on later onset OA prediction in [79], the AUC

achieved is higher than the combined features, with 0.614 (combined) and 0.74 (KIDA).

This is likely because of the clinical information included in the KIDA features, which

uses BMI and gender to split the data. The purpose of the combined radiographic

feature model was to predict disease outcomes without any manual or clinical infor-

mation to determine the accuracy of a fully automated system. Later experiments will

be run including similar participant information to improve the accuracy.

Pain Experiments Current pain experiments show that osteophyte Haar features

are the best independent feature at detecting current pain, with an AUC of 0.645. The

results support findings in [11] [30] and [110] that found osteophyte grade and area

better detectors for pain than other OA features. This is improved to 0.663 with the

combined radiographic features. The composite features achieve the best AUC with

0.666, compared to the WND-CHARM algorithm (0.57), KL grade features (0.627)

and combined features (0.663).
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The tibial spines and intercondylar notch show a relatively high AUC in detecting

current pain, with an AUC of 0.625. This is supported by the KIDA algorithm [11]

which found the height of the tibial spines correlated with current pain in a set of 1002

participants from the CHECK cohort.

The combined features achieve a higher AUC than the results in [32] which analyse

semi-quantitative features and JSW separately. The semi-quantitative features com-

bine grades for: osteophytes, sclerosis, cysts, attrition, JSN and Chondrocalcinosis.

The current pain AUCs are 0.695 JSW and 0.62 semi-automated. The combined

features likely achieve a higher AUC from the combination of JSW and the other ra-

diographic features. The later onset results in the same paper show a better detection

AUC with JSW and semi-quantitative features over the time points, JSW - 0.623(T0)

- 0.62(T2y), and semi-quantitative - 0.62(T0) - 0.61(T2y). This could be higher be-

cause of the smaller datasets the features were taken from (163 JSW images and 123

semi-quantitative images), or the inclusion of extra features not specifically measured

by our combined model (cysts, sclerosis, and Chondrocalcinosis).

The later onset pain experiments show the overall shape features achieve the best

independent AUC (0.603). The optimal combined features achieve an AUC of 0.609.

The optimal method contains all radiographic features except the RPR trabeculae,

which lowered the AUC to 0.604. This is likely because the trabecular structure has a

weak accuracy in predicting later onset pain (AUC: 0.527) and the increased features

(150 examples per image) shifted the mean taken across all RF classifier outputs.

The results find a weak correlation between clinical pain and radiographic features,

similar to findings in the KIDA [11] and KOACAD [6] algorithms. This lack of strong

association is well documented in previous literature [108] [109], which have found

that clinical symptoms of pain and function are highly variable in participants with

radiographic knee OA. The findings have also shown that including more radiographic

views creates a better assessment of OA and the features present in the knee. This

allows a better correlation to be found between the features of OA across multiple views

per participant and the presence of pain in the respective knee. Future development
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will include lateral view radiographs to determine if the assessment on current and

later onset pain can be improved.

The table below (Table 6.8) shows a comparison between our algorithm and the

various automated OA methods from the literature.
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Chapter 7

Discussion and Future Work

The project has shown that combining explicit and implicit radiographic features im-

proves Osteoarthritis (OA) and related pain detections. Our combined feature model

achieved better results than other state-of-the-art algorithms tested on the same data

(WND-CHARM), and on different datasets (KIDA and KOACAD). The model was

tested using large sets of radiographs, which were not filtered for image quality. This

shows that the algorithm can predict the level of knee OA on data representative of

real-world clinical radiographs.

The fully automated methods improve on manual grading methods: removing the

need for operator input, providing consistent detection accuracies on large datasets,

and evaluating features across the whole knee (including trabeculae structure and tibial

spines). The current OA classification results achieve a similar inter-observer reliability

to manual KL grading when comparing the automated results to the gold standard

manual KL grades, with weighted kappa (kw): combined - 0.58 (CI: 0.54-0.62), and

manual - 0.58 (0.36 - 0.8). Combining manual Kellgren and Lawrence (KL) grades

improves the accuracy of the combined features in all experiments (composite features),

meaning the automated method still needs improvement to capture all information

seen by observers in the radiographs.

The project demonstrates the first fully automated analysis of marginal osteophytes,

analysing both shape and texture information over the four regions. Classifiers based

on osteophytes achieve the highest independent accuracy in all experiments. The

161
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classification of OARSI osteophyte grades achieved high two-class osteophyte detection

accuracy, but a weaker multi-class accuracy when compared to the gold standard

manual OARSI grades.

The trabecular structure analysis compared various fractal signature and texture anal-

ysis methods, finding Raw Pixel Ratios achieved the highest current OA detection. The

trabeculae achieved low accuracies in the pain and later onset pain and OA experi-

ments; this is attributed to the features having minimal association with the outcomes

and poor image quality.

The joint space shape models achieve a higher accuracy than multiple Joint Space

Width (xJSW) measurements from the Osteoarthritis Initiative (OAI) data, and achieve

a comparable kw accuracy when comparing the results against the gold standard man-

ual Joint Space Narrowing (JSN) grading. The combination of both joint space fea-

tures increases the accuracy in all two-class experiments; later work will improve on

the Joint Space Statistical Shape Model (JS-SSM) features by capturing the accurate

quantitative measurements.

The pain and later onset experiments show that there is some correlation between the

outcomes and radiographic features, but these results are still weak. Further analysis

will be done in the future to improve results with features from other radiographic

views (i.e. skyline and lateral).

7.1 Future Work

This section suggests ways in which the work could be extended.

Pain Assessments The pain assessment variable used in the project is a good mea-

sure for recent pain (over the last 30 days), however, there are many pain assessments

available in the data. A comprehensive analysis of pain should be run using WOMAC

pain scores and any pain experienced over a longer period of time, i.e. over the last

12 months. This will add extra detail to the type of pain (WOMAC) and remove any
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baseline knees that experienced less frequent pain, longer than 30 days prior to the

baseline visit.

Combining Radiographic Views Another aspect of the project to be evaluated

is the combination of features in other radiographic views. This will include shape,

texture, osteophytes and alignment features from lateral and eventually skyline views

of the same knee. The extra information will give a better analysis on the amount of

OA present and development of features missed in Posterior-Anterior (PA) view knees.

This will lead to better current OA and pain assessments, and potentially add more

features to predict later onset disease and pain. Current work is being conducted on

the combination of lateral and PA knee views.

Clinical Features Some current assessments of later onset disease include clinical

features to increase the prediction accuracy, such as BMI and gender of the participant.

The inclusion of these features would be useful in determining correlations between

radiographic and clinical features, and improving detection and prediction accuracy.

Trabeculae Features The trabeculae features are dependent on image quality.

More experiments will be conducted in the future with poor quality images filtered out

of the datasets. The re-run experiments will then compare the trabecular structure

with the current and later onset outcomes. We will also evaluate Fractal Signature

(FS) features, reported to be robust to poor image quality, on the pain and later onset

OA experiments.

Longitudinal Data The experiments in this project all use cross-sectional data.

The future work of this project will analyse the longitudinal change of the features

across a single participant. This analysis will evaluate how the features change across

the follow-up visits and create a stronger understanding of the progression of the

disease. This can be analysed across many participants to develop a threshold of

the change in features that determines OA progression and the development of early

Osteoarthritic features. The longitudinal data will include the later OAI images > 6

years follow-up to evaluate development of OA and pain over a longer time frame.
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Comparison to 3D Features This project has focused on manually assessed out-

comes that are widely documented as reliant on subjective views of the observer. To

quantitatively evaluate the radiographic features grading of 3D MRI features could

be used. The features would each be compared to the 3D counterparts: osteophytes

compared with osteophyte grades in the same regions, JSN compared with cartilage

scores, and trabeculae correlated with Bone Marrow Lesions (BMLs) scored in the

region. The comparison would provide an insight into the extent the radiographic

features describe the 3D features of the knee.

System Optimisation The features used in the project are optimised using prelim-

inary two-class current OA data. Optimisation to multi-class and later onset outcomes

will be run in the future. The JS-SSM and osteophyte features in particular require

optimisation to capture all quantified joint space measurements, and improve osteo-

phyte grade classification. The osteophyte features could be improved by adjusting

the image contrast to make edges clearer before applying Statistical Shape Model with

Dynamic Programming search (SSM-DP) contours, or expanding the Haar feature tex-

ture region to cover more of the surrounding areas. Altering the curve restrictions and

combining multiple JS-SSM models per image with different curve constraints could

improve the joint space features. The OARSI experiments used in Chapter 3 were

taken from the subset of 747 images and were found sufficient for comparing the fea-

ture specific methods (osteophytes and joint space narrowing), however it is recognised

that there is class unbalance in the lower proportion of OARSI grades 2 and 3 com-

pared to the less severe grades (OARSI 0 and 1). This is a limitation of the work and

later experiments with even OARSI grades can be run to fully evaluate how well the

methods classify and detect osteophytes and joint space narrowing. Optimising the

Random Forest Constrained Local Model (RFCLM) and manual annotations to im-

prove detection accuracy on the bad images found in the experiments will also improve

shape feature accuracies. The osteophyte and joint space features could be improved

by using a multiresolution shape model, such as the ones used in [112], instead of the

Dynamic Programming edge detection. The shape models could specifically be trained

on osteophyte and joint space areas of the knee to improve detection accuracy.
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New Datasets The OAI dataset contains images from four sites across the US. This

data could be expanded using alternative OA and general knee datasets to determine

how well the model performs using data with different angle and knee positioning

specifications. Subchondral bone density (sclerosis) could also be measured in the

future by analysing radiographs with an aluminium step wedge placed next to the

knees. The image intensity of the subchondral bone is compared to the gradients of

the wedge to determine the thickness of the bone. The use of a wedge can also be used

to correct for any image contrast errors caused during the x-ray scanning procedure.

The sclerosis analysis would use a region fitted to the area beneath the medial and

lateral tibial plateaus, comparing the mean gradient to the varying thickness of the

step wedge.
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