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Abstract

Visual tracking of unknown objects in unconstrained video-sequences is extremely
challenging due to a number of unsolved issues. This thesis explores several of these
and examines possible approaches to tackle them.

The unconstrained nature of real-world input sequences creates huge variation in
the appearance of the target object due to changes in pose and lighting. Additionally,
the object can be occluded by either parts of itself, other elements of the scene, or
the frame boundaries. Observations may also be corrupted due to low resolution,
motion blur, large frame-to-frame displacement, or incorrect exposure or focus of the
camera. Finally, some objects are inherently difficult to track due to their (low) texture,
specular/transparent nature, non-rigid deformations, etc.

Conventional trackers depend heavily on the texture of the target. This causes is-
sues with transparent or untextured objects. Edge points can be used in cases where
standard feature points are scarce; these however suffer from the aperture problem. To
address this, the first contribution of this thesis explores the idea of virtual corners,
using pairs of non-adjacent line correspondences, tangent to edges in the image. Fur-
thermore, the chapter investigates the possibility of long-term tracking, introducing a
re-detection scheme to handle occlusions while limiting drift of the object model. The
outcome of this research is an edge-based tracker, able to track in scenarios including
untextured objects, full occlusions and significant length. The tracker, besides report-
ing excellent results in standard benchmarks, is demonstrated to successfully track the
longest sequence published to date.

Some of the issues in visual tracking are caused by suboptimal utilisation of the
image information. The object of interest can easily occupy as few as ten or even one
percent of the video frame area. This causes difficulties in challenging scenarios such
as sudden camera shakes or full occlusions. To improve tracking in such cases, the next
major contribution of this thesis explores relationships within the context of visual
tracking, with a focus on causality. These include causal links between the tracked
object and other elements of the scene such as the camera motion or other objects.
Properties of such relationships are identified in a framework based on information
theory. The resulting technique can be employed as a causality-based motion model to
improve the results of virtually any tracker.
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Significant effort has previously been devoted to rapid learning of object proper-
ties on the fly. However, state-of-the-art approaches still often fail in cases such as
rapid out-of-plane rotations, when the appearance changes suddenly. One of the major
contributions of this thesis is a radical rethinking of the traditional wisdom of mod-
elling 3D motion as appearance change. Instead, 3D motion is modelled as 3D motion.
This intuitive but previously unexplored approach provides new possibilities in visual
tracking research.

Firstly, 3D tracking is more general, as large out-of-plane motion is often fatal for 2D
trackers, but helps 3D trackers to build better models. Secondly, the tracker’s internal
model of the object can be used in many different applications and it could even become
the main motivation, with tracking supporting reconstruction rather than vice versa.
This effectively bridges the gap between visual tracking and Structure from Motion.
The proposed method is capable of successfully tracking sequences with extreme out-
of-plane rotation, which poses a considerable challenge to 2D trackers. This is done by
creating realistic 3D models of the targets, which then aid in tracking.

In the majority of the thesis, the assumption is made that the target’s 3D shape is
rigid. This is, however, a relatively strong limitation. In the final chapter, tracking and
dense modelling of non-rigid targets is explored, demonstrating results in even more
generic (and therefore challenging) scenarios. This final advancement truly generalises
the tracking problem with support for long-term tracking of low texture and non-rigid
objects in sequences with camera shake, shot cuts and significant rotation.

Taken together, these contributions address some of the major sources of failure
in visual tracking. The presented research advances the field of visual tracking, fa-
cilitating tracking in scenarios which were previously infeasible. Excellent results are
demonstrated in these challenging scenarios. Finally, this thesis demonstrates that 3D
reconstruction and visual tracking can be used together to tackle difficult tasks.

Keywords: computer vision, visual tracking, 3D tracking, aperture problem, bundle
adjustment, causality, edge, Gaussian process regression, line correspondence, long-
term tracking, low texture, motion model, online modelling, out-of-plane rotation,
structure from motion, transfer entropy, virtual corner.
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Ḟ all 3D features

H entropy (HX→Y stands for transfer entropy from X to Y )

It t-th frame of a video-sequence

It inlier features in the t-th frame (a subset of X ′t)

Kt camera calibration matrix (intrinsic parameters) in the t-th frame

lti i-th 2D line feature in the t-th frame

Lt all 2D line features in the t-th frame

Li i-th 3D line feature

L̇ all 3D line features

M object model

Mi i-th point (3D) sampled on the model
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Chapter 1

Introduction

1.1 Motivation

Visual object tracking is an area of computer vision which has been studied exten-

sively in the last few decades. The task of a tracker is, given a video-sequence and a

user-chosen target object marked in the first frame, to output the pose of this object

in all subsequent frames of the sequence. The nature of the pose is application-specific

and can be as simple as an x-y location in the image, or as complex as a full pixel-wise

segmentation (see Figure 1.1 for several examples).

Visual tracking has numerous applications such as video augmentation or anno-

tation propagation (see Figure 1.2 for an example of a shoppable video where user-

Figure 1.1: Different possible object poses, shown on the sequence Gymnastics. From
left to right: centre location, centre and size, axis-aligned bounding box, general rect-
angular bounding box, pixel-level segmentation.

1



2 Chapter 1. Introduction

Figure 1.2: Example of a tracker application: annotation propagation in a shoppable
video.

Figure 1.3: Example of a tracker application: tracked trajectories used for dynamic
scene analysis.

annotated hyperlinks are tracked throughout the sequence and allow customers to buy

the marked accessories). However, tracking is primarily used as a building block or a

preprocessing step by techniques in other application areas – tracking is an enabling

technology. As such, its major and most obvious output, the object trajectory, i.e. the

location (or more generally pose) as a function of time, may be used in applications

such as behaviour analysis, area monitoring, action recognition or human-computer

interaction (see Figure 1.3 for an example). Secondly, successful tracking provides

object stabilisation, i.e. object-centric spatial alignment of the sequence. This allows
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Figure 1.4: Example of a tracker application: object stabilisation used for super-
resolution. Top: selected frames of a video-sequence; bottom: detail of an input frame
and of the output image.
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Figure 1.5: Examples of a trackers internal models. Left: an edge quality field of the
2D LT-FLO tracker (Chapter 3); middle: a Gaussian-Process implicit model of the 3D
TMAGIC tracker (Chapter 5); right: the same model made explicit and textured.

extraction of richer information than could be provided by a single view and proves in-

valuable in subsequent tasks such as (object or person) recognition or super-resolution

(see Figure 1.4 for an example).

Finally, most trackers employ some sort of internal model of the target object.

While this model is primarily intended for the tracker’s own usage, it often encapsu-

lates interesting and/or exploitable information about the target object and can thus

be regarded as one of possible tracker outputs. See Figure 1.5 for examples of internal
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(a) shape variations in the Gymnastics sequence

(b) viewpoint variations in the Rally-VW sequence

(c) illumination variations in the LiverRun sequence

(d) size variations in the LiverRun sequence

(e) distractors in the Bolt sequence

(f) background clutter in the Singer2 sequence

Figure 1.6: Examples of common challenges within visual tracking.
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(a) low-textured target in the Page sequence

(b) transparent target in the Spaceship sequence

(c) full occlusions in the LiverRun sequence

(d) motion blur in the BlurFace sequence

Figure 1.7: Examples of common challenges within visual tracking (continued).

models of 2D and 3D trackers presented in this thesis. A significant part of this thesis

is devoted to 3D tracking, where this internal model is a probabilistic model of the

3D shape of the target object’s surface. It can be easily extended to an explicit tex-

tured mesh model and may even become the major motivation for such a tracker. 3D

shape models automatically extracted from videos can be employed in a broad range

of applications, ranging from the entertainment industry (models for video-games, 3D

film uplifting, etc.), through to 3D printing (as an accessible consumer-grade scanning

technique) and robotics (object recognition, manipulation,etc.).
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Visual object tracking is a difficult task, where state-of-the-art algorithms tend to

fail in scenarios considered relatively simple by humans. Reliable results have been

achieved only in simple settings and/or controlled conditions. There are many chal-

lenges that a tracker needs to overcome in order to provide robust, accurate and stable

results. To name a few, the target may undergo huge variations in appearance (caused

by change of its shape, viewpoint, illumination or distance), while the scene may con-

tain other, possibly very similar, distractor objects, as well as background clutter. Of

this potentially immense space of appearance variations, a tracker is given merely one

example in a single frame, and a handful of prior assumptions. Additional challenges

may include low-textured or transparent targets, camera shake and strong (even com-

plete) occlusions. These challenges are illustrated in Figures 1.6 and 1.7. Furthermore,

a tracker needs to be able to track the target for very long duration of time, ideally in-

definitely. This work addresses several of these challenges, as described in the following

section.

1.2 Contributions

This work aims to address several of the challenges mentioned above, which every

long-term tracker needs to face. In this section, the contributions of each chapter are

summarised, alongside supporting publications.

Chapter 2 brings an overview of tracking and reconstruction (including visual

SLAM) literature. The most influential works of each field as well as recent publi-

cations are used to illustrate the background of this thesis and to state its relationship

with the state of the art.

In Chapter 3, the problem of texture-independent long-term tracking is addressed.

It is shown how line features based on edges in the image can be used for tracking.

Virtual corners are defined by pairs of the lines. Correspondences of these virtual

corners can then be employed to track a range of challenging objects, such as those

with no texture (Figure 1.7a) or even transparency (Figure 1.7b). Furthermore, a
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redetection scheme is introduced, highly resistant to drift, that facilitates tracking of

extremely long sequences with strong appearance changes (Figures 1.6c and 1.6d) and

full occlusions (Figure 1.7c). This chapter’s main contributions were published in the

following articles.

• [128] K. Lebeda, S. Hadfield, J. Matas, and R. Bowden. Texture-Independent

Long-Term Tracking Using Virtual Corners. In IEEE Transactions on Image

Processing, 2016.

• [127] K. Lebeda, S. Hadfield, J. Matas, and R. Bowden. Long-Term Tracking

Through Failure Cases. In Proceedings of the ICCV workshop on Visual Object

Tracking Challenge, 2013.

• [129] K. Lebeda, J. Matas, and R. Bowden. Tracking the Untrackable: How to

Track When Your Object Is Featureless. In Proceedings of the ACCV workshop

on Detection and Tracking in Challenging Environments, 2012.

Some of the issues in visual tracking are caused by suboptimal utilisation of the

image information. The object of interest can easily occupy as few as ten or even one

percent of the video frame. This causes difficulties in challenging scenarios such as full

occlusion (Figure 1.7c) or sudden camera shake causing large inter-frame displacement

and motion blur (Figure 1.7d). In Chapter 4, causal relationships in the context of

visual tracking are investigated to mitigate these problems. More concretely, the re-

lationship between the tracked object and the camera motion is explored, as well as

between different elements of the scene. An information-theoretic approach is taken

to identify the presence and extent of such causal links and to measure their prop-

erties. It is then shown how these relationships can be exploited to causally predict

the future trajectory of the target object, or the trajectory of a fully occluded object.

The obtained information can be then supplied as a prior to any tracker, benefiting

it by improving robustness. This chapter’s main contributions were published in the

following articles.
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• [124] K. Lebeda, S. Hadfield, and R. Bowden. Causal Relationships in Visual

Tracking. Under review for IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2016.

• [123] K. Lebeda, S. Hadfield, and R. Bowden. Exploring Causal Relationships

in Visual Object Tracking. In Proceedings of the International Conference on

Computer Vision, 2015.

Chapter 5 focuses on the issues of strong viewpoint variation (Figure 1.6b) in visual

tracking, specifically out-of-plane rotation. The conventional approach is to treat such

motion as an appearance change. Conversely, this chapter argues that an intrinsically

3D object in the 3D world should be modelled as such, and variation of viewpoint should

be treated explicitly as the camera motion, in accordance with reality. Techniques from

visual tracking, Structure from Motion, and Simultaneous Tracking and Modelling are

brought together into a unified framework, the outcome of which is an approach able

to track and model objects during strong out-of-plane rotation. This chapter’s main

contributions were published in the following articles.

• [126] K. Lebeda, S. Hadfield, and R. Bowden. TMAGIC: A Model-free 3D

Tracker. Under review for IEEE Transactions on Image Processing, 2016.

• [121] K. Lebeda, S. Hadfield, and R. Bowden. 2D or not 2D: Bridging the

Gap Between Tracking and Structure from Motion. In Proceedings of the Asian

Conference on Computer Vision, 2014.

In Chapter 6, the problem of tracking and modelling non-rigid objects is studied

(Figure 1.6a). It is shown how the (3D) shape of any target object, rigid or non-rigid,

can be modelled based solely on the input video sequence, with minimal user input. The

object segmentation and more flexible model allow the use of unconstrained in-the-wild

videos as the input. Furthermore, it is shown how using dense features allows more

general tracking (e.g . per-frame focal length estimation) and modelling (higher level of
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detail). Finally, the issue of long-term tracking is revisited in the context of 3D tracking

and unconstrained videos, providing tracking through shot cuts. This chapter’s main

contributions were published in the following articles.

• [125] K. Lebeda, S. Hadfield, and R. Bowden. Direct-from-Video: Unsupervised

NRSfM. Under review for the European Conference on Computer Vision, 2016.

• [122] K. Lebeda, S. Hadfield, and R. Bowden. Dense Rigid Reconstruction From

Unstructured Discontinuous Video. In Proceedings of the ICCV workshop on 3D

Representation and Recognition, 2015.

Chapter 7 concludes this work. It summarises how some of the major failure cases

in visual tracking can be addressed and how tracking and 3D reconstruction can be

used together to tackle difficult tasks. Finally, possible directions for future work are

shown, to which this thesis paves a way.

1.3 Used Notation

Symbol type Typeface Examples Note
scalars italics t, E, ρ
vectors bold f ,X,µ lowercase usually denote 2D vectors, upper-

case 3D; all vectors are column-matrices
matrices typewriter P, E, I including bitmap images

sets calligraphic C,L, Ẋ sets of 3D entities marked with a dot above
others roman M,E,Ψ functions, probability distributions, struc-

tured entities, etc.

Table 1.1: General notation used in this work.

In this work, a general notation is used as tabulated in Table 1.1. Homogeneous

entities are denoted by a tilde, e.g . x̃, and are considered normalised in mathemati-

cal operations. Points are normalised to a unit last component, lines and planes to

a unit-length normal vector. A hat over a symbol denotes an estimate or an ap-

proximation of a variable, while a bar under it identifies a tentative or local entity,
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Accent Example Explanation

tilde x̃ homogeneous entity
hat x̂ estimate or approximation

bar under x tentative or temporary entity
bar over x various (context-dependent)

dot above Ẋ 3D set

Table 1.2: Accents used within this work.

Type Letter 2D 3D 2D sets 3D sets

generic Features F f ti Fi F t Ḟ
(sparse) points X xti Xi X t Ẋ
Dense points D dti Di Dt Ḋ

Lines L lti Li Lt L̇
Supervision S sti Si St Ṡ
Model points M – Mi – Ṁ

Table 1.3: Feature types and typefaces used within this work.

e.g . in x = arg minx f(x). These are tabulated in Table 1.2. On several occasions, a

bar over a symbol (e.g . x̄) is used. This notation is however context dependent and is

explained whenever used.

Throughout this work, a number of feature types are used in different contexts.

The same type of feature (e.g . point or line) is referred to using the same letter. 2D

features are denoted by a lower-case vector (i.e. bold), 3D features by an upper-case

vector. Sets of features are printed in a calligraphic typeface; sets of 3D features are

marked with a dot above the symbol. These are all tabulated in Table 1.3 for clarity.



Chapter 2

Related Work

This chapter discusses literature related to the topic of the thesis. The most influ-

ential “seed” publications are examined as well as current state-of-the-art approaches.

The chapter is divided into several sections, each covering one particular topic of inter-

est. In Section 2.1, the area of 2D visual object tracking is explored and the main trends

within the area discussed and compared. Since the problem of strong out-of-plane rota-

tion is tackled using 3D tracking, Section 2.2 discusses this topic, both model-based and

model-free. This is then accompanied by two sections focusing on areas from which

3D tracking emanated: both rigid and non-rigid Structure from Motion (SfM), and

Simultaneous Localisation And Mapping (SLAM), in Sections 2.3 and 2.4, respectively.

Finally, the problem of causal motion models is explored within this thesis. There-

fore causality is examined in Section 2.5, both in general scientific use and within the

context of computer vision.

2.1 2D Visual Tracking

One of the most influential works in the field of visual tracking is undoubtedly the

Lucas-Kanade (LK) tracker [134]. This technique, also called tracking by local opti-

misation, iteratively matches image patches by linearising the local image gradients

11
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and minimising the sum of squared pixel errors within a tracked patch. It has been

recently extended using segmentation-like object/background likelihoods [153]. Since

the LK tracker tracks an image patch, rather than a concrete object, it is sometimes

referred to as a sparse optical flow algorithm. During the iterations, a matrix of image

gradients is inverted. To achieve good stability in tracking, this matrix needs to have

large eigenvalues and the majority of commonly used image features fulfil this condi-

tion. However, a new type of features was developed in order to explicitly address this

in the extended Kanade-Lucas-Tomasi (KLT) tracker [187], so-called good features to

track [169].

While the LK tracker has become extremely popular, it suffers from several prob-

lems such as illumination variance (caused by the use of the Sum of Squared Distances

(SSD) metric). An alternative formulation has been proposed, using mutual informa-

tion: Mutual Information for Lucas-Kanade Tracking (MILK) [40]. This information-

theoretic metric is invariant to illumination (allowing, for example, the registration of

near-infrared and visible-light images) while keeping the computational costs close to

the standard SSD formulation.

Visual tracking has significantly evolved since the LK and KLT trackers. Modern

trackers can be roughly divided into two separate classes. Trackers from the first group,

using tracking by detection employ advanced machine learning techniques to distinguish

the object from the background. In the second class, feature-based trackers extend the

idea using a group of semi-independent tracklets or features (small parts of the target)

which are tracked using an LK or similar simple tracker, with an upper level managing

them.

2.1.1 Tracking by Detection

All of the trackers mentioned above try to minimise the difference between the

template and the image. In other words, they attempt to maximise generalised correla-

tion between the two. Commonly used metrics include standard correlation, SSD and
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mutual information. LK, as well as MILK, use local optimisation to predict tracker

location in the new frame. Many correlation based trackers however take different

approach, based on object scoring[21, 83]. Numerous object location hypotheses are

sampled within the new frame and the one with the highest object score is chosen as a

result. A simple version would be to use sliding window for generating these hypothe-

ses. In state-of-the-art trackers, however, the sequential nature of tracking is exploited

such that the sampled windows lie nearby the object pose in the previous frame (or, if

a motion model is used, in the vicinity of the predicted move).

A special kind of tracking by detection is particle filtering. These approaches use

a set of object pose hypotheses (the particles) to capture the possibly multimodal

classifier objective. Similarly to the standard tracking by detection, the output is

defined by the particle with the highest detection score. However, multiple hypotheses

are kept as long as their score is sufficiently high, instead of keeping only the best one.

One of the most notable is Conditional Density Propagation (CONDENSATION) [95],

which brought into the field of visual tracking the use of particles for non-parametric

modelling of a pose probability distribution. In their IVT tracker, Ross et al . [166]

extended particle filtering by introducing incremental learning of an object appearance

subspace that allowed the model to adapt to changes.

IVT is an example of a more recent approach to tracking: classification based

tracking. Here tracking is defined as a classification task. There are two classes to be

decided between: the object and the background. In the first frame, the classifier is

trained on the positive sample from the initialisation (possibly augmented by synthetic

training examples sampled from its near neighbourhood) and negative samples from

the background. This model is usually updated online assuming the tracking so far has

succeeded. The simplest, näıve solution is to add the tracked bounding box as a positive

example after each frame and retrain the model. While this gives a tracker the ability to

adapt to changes in the object appearance, it also provides opportunities for accumula-

tion of error – drift. Different trackers employ different measures to address this issue,

ranging from intelligent update conditions to advanced machine learning techniques.
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For instance, Grabner et al . [62, 63] employ an online boosting method to update

the appearance model while minimising error accumulation. Babenko et al . [10] use

multiple instance learning, instead of traditional supervised learning, for a more robust

tracker. Zheng et al . [215] address drift during tracking explicitly, using a dynamic

set of basis classifiers, employing different basis classifiers for different problems. Since

the object can get occluded by other elements of the scene, it is useful to detect this

and prevent learning these occlusions as a part of the model. This is addressed in the

`1-norm tracker [210], which learns a dictionary from local patches.

All of these trackers, however, suffer from the need to convert the estimated object

position into a set of labelled training examples, and to couple the objective for the

classifier (label prediction) to the objective for the tracker (object position estimation),

which is difficult to perform optimally. This is solved in regression based trackers,

predicting the location output directly to avoid the need for these intermediate steps.

This is somewhat similar to the original LK tracker, where the estimated inter-frame

shift is computed from the difference between the template and the target frame. Mayol

and Murray address the question of regressing the transformation parameters in their

work [139]. Another, more recent example is the successful Struck tracker [75], which

addresses this by explicitly using structured output prediction of the target translation.

In recent years, a great deal of attention was paid by the computer vision community

to Convolutional Neural Networks (CNNs), which provide great performance in many

tasks. However, until recently the use of CNNs in visual tracking was limited by

the lack of training data. This is further exacerbated by the fundamental difference

between visual tracking and image classification, which is often used for pre-training

networks before fine-tuning them for a particular task [144]). As the results of the

latest Visual Object Tracking challenge (VOT) 2015 [114] show, this is not the case any

more. The top two trackers in this benchmark were based on convolutional networks.

At the top of the leader-board is the MDNet [144], using classification based tracking

with a CNN. To mitigate the lack of training data, the network is divided into two

parts: shared layers and domain specific layers. While shared layers are pre-trained
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on a wide range of tracking sequences, domain specific (the uppermost) layers are

trained online for each sequence. The final proposal is refined using bounding box

regression [61]. The second place in the challenge [114] is taken by a version of the

SRDCF tracker using convolutional features. SRDCF is a correlation-based tracker,

removing the assumption of circular structure by spatial regularisation. Replacing its

used features (such as the Histogram of Oriented Gradient (HOG)) by convolutional

features improves performance as indicated in the challenge.

2.1.2 Feature-based Tracking

As a target is tracked through a video-sequence, it can undergo appearance variation

for numerous reasons. The brings a challenge to every tracker in how and when the

target representation (model) should be updated. This is the so called template update

problem [138]. If the object model is not updated, it cannot sufficiently cover the space

of possible appearance. On the other hand, näıve updates lead to the accumulation of

small errors – drift. For this reason, trackers often employ an upper layer managing

the update of the target model (template).

An upper, managing layer is also used in feature-based trackers, which employ a

cloud (also called flock) of features. Each of the features is tracked (at least par-

tially) independently and provides a hypothesis of the object motion, or a constraint

on it in cases of more complex motion model (e.g . including scale change or rotation).

The final resulting object pose is then reported as an agglomerate of these hypothe-

ses/constraints. The upper level is responsible for management of the features – their

creation, removal, re-detection, etc.

One of the first trackers built on this principle is the Flocks of Features (FoF)

tracker by Kölsch and Turk [113]. This tracker, tracks human hands in a video from a

head-mounted camera, using a flock of KLT features. To manage them, an approach

was taken, inspired by flocks of birds. Without any bird in control, the flock still

stays packed tightly together in a decentralised way, and the motion of the flock can be

observed although the individual trajectories might differ significantly. The assumption
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used is that good features (like birds) stay close together, but maintain a minimal

distance (safe to fly) from any other feature. This provides robust tracking despite

failure of any individual feature.

This principle has been extended by Kalal et al . in the Median Flow algorithm [105],

where validation of features is performed based on forward-backward error [39]. Intu-

itively, this means that if a good feature is tracked to its new position in the new frame,

and then back in the original frame, it returns to its original location. This principle

was further improved in the more robust Flock of Trackers (FoT) [137, 199] by Voj́ı̌r et

al . In FoT, features are additionally (in)validated based on a number of measures such

as neighbourhood consistency or Markov chain probability.

Another recent example is the Local-Global Tracker (LGT) [25] by Cehovin et al .,

using a coupled-layer visual model. The local layer consists of independently tracked

visual patches, constraining the appearance of object components. The global layer

models object features such as colour, shape or motion. The global model is learned

from the local patches and it in turn constrains the addition of new patches. Consistency

of local trackers is enforced, however changes in shape are possible, allowing LGT to

track highly non-rigid objects. This makes LGT very robust as was made clear in the

VOT challenges (see below).

On the boundary between these two directions (tracking by detection and using

features), Kalal et al . combined tracking with detection in their Tracking-Learning-

Detection (TLD) [106] framework, where (in)consistency of the tracker and detector

helps to indicate tracking failure. While the (feature-based) tracker estimates the

frame-to-frame motion, the detector treats every frame as independent (as in the

tracking-by-detection scenario). Positive and negative examples are learned accord-

ing to the (dis-)agreement of these two components, improving further detection. Ex-

plicit modelling of failures for both components coupled with independent detection

makes this tracker suitable for long-term tracking, with inherent drift-resistance and

redetection after full occlusions.
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Figure 2.1: Accuracy-robustness plot of the Visual Object Tracking challenge (VOT)
2013 results. The 95th percentiles of fitted normal distributions are shown, in the
feature-based case with the LGT trackers (both vanilla and enhanced) excluded.

2.1.3 Comparison of Tracking Techniques

In general, feature-based trackers attempt to estimate the exact frame-to-frame mo-

tion (transformation) of the bounding box. This requires the features within a cloud

to be at least partially consistent with each other. On the other hand, in the tracking-

by-detection scenario, the classifier decides whether the object is present in a sampled

bounding box. Intuition is that this may lead to lower accuracy for tracking by detec-

tion. On the other hand, the inherent insensitivity (to intra-class variance) may increase

robustness to the object appearance changes. As visualised in Figure 2.1, experimental

results from VOT 2013 confirm this intuition: feature-based trackers show overall higher

accuracy and lower robustness, according to the standard VOT measures [115]. The

highly robust LGT [25] and LGT++ [209] trackers were excluded from the cluster when

plotting the 95th percentile ellipses, due to the flexible bounds between the low-level

features. With these included, the difference in robustness disappears; feature-based

trackers however have on average still higher accuracy.
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2.1.4 Insufficient Texture and Edge Features

A quality, common to all of these trackers, is their reliance on the object texture.

In tracking by detection, the learned detector needs a consistent texture to distinguish

between the object and the background, making it unsuitable for texture-less tracking.

Similarly all the feature-based approaches are based on variants of point features, which

renders them ineffective in cases where these are scarce, or unstable.

There have been previous attempts to decrease the reliance on object texture, in-

cluding the use of edges. The aperture problem (see Figure 3.2) renders these spatially

unstable, as neighbouring pixels along the direction of the edge are indistinguishable [78]

and a unique motion cannot be determined. For this reason, conventional trackers of-

ten avoid edges. However, such features are still valuable: Tsin et al . [191] fit line

segments modelling the object to detected edge-points. The same approach was used

in [42] and [77], when searching for the pose of a wireframe-represented 3D object. It

should be, however, noted that in all of these cases the line-based model was supplied

by the user and there has been no previous use of line features for model-free tracking.

2.2 3D Visual Tracking

3D monocular tracking attempts to recover the trajectory of the object as well,

however in a 3D world (relative to the camera) instead of in the image plane. Typically,

such techniques employ 3D models of the object, which are either user-supplied or

previously learnt. Examples of this are the tracking of the pose of human bodies [152,

172], vehicles in traffic scenes [33, 163, 203] or general boxes [110]. Model-based 3D

tracking is not limited to a particular class of object; examples include planar trackers,

generic model supplied as a mesh or wireframe, and tracking via fiducial markers.

Planar trackers use the assumption the target is planar in 3D and, since they do

not attempt to learn the target shape on the fly, can be seen as a type of model-based

tracker. These usually estimate homography between the 3D plane and its projected
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image to obtain the camera trajectory. These find many applications, such as UAV

control [141] or Augmented Reality (AR) [96, 174]. In some cases, the whole scene can

be modelled as a set of planar patches [173] and the camera trajectory can then be

estimated within the scene.

Generic 3D models are often supplied as wireframes. Then the contour of the

object can be used for tracking, as mentioned above [42, 77], using either the gradient

information directly, or explicitly extracting line features during image preprocessing.

For textured objects, the model can be in the form of a polygonal mesh, which is fitted

to the video frames through a reference image [193] (which has the camera pose set

manually). This approach extends natually into the non-rigid case and is the base for

many modern template-based Non-Rigid Structure from Motion (NRSfM) techniques

(e.g . [213]).

Finally, fiducial markers are often used to track the camera pose relative to an

environment [90, 112], usually for AR applications. While marker-based approaches

tend to be very accurate and robust in general, they however require environment

engineering and may be disruptive to the end user. This may disadvantage them

against natural-featue based methods.

The focus of this thesis is on model-free tracking and there has been considerably

less research in this field. While there have been relatively few attempts at learning 3D

tracking models on the fly, such approaches are fundamental to online SfM. However,

these assume the interest is in reconstructing the whole scene. In the area of visual

object tracking, 3D based approaches must extract 3D shape and trajectory even for

objects represented in only a minority of the video frame. For this reason, Kundu et al .

[117] use motion segmentation to track and reconstruct moving bodies in their SLAM

pipeline.

An example of a recent model-less 3D tracker is the work of Feng et al. [50], who

introduced the idea of 3D monocular tracking with no offline modelling or training,

using explicit colour-based segmentation. This allowed reconstruction of the segmented



20 Chapter 2. Related Work

object using visual SLAM techniques. However, they do not attempt to estimate the

surface shape beyond just a cloud of points. Another similar approach is the work

of Prisacariu et al. [162] who use level-set techniques for 3D modelling. This work is

however not online, as it processes the video-sequence as a batch, which significantly

limits possible applications of such a “tracker”.

2.3 Structure from Motion

Structure from Motion (SfM) is an area of great interest for the computer vision

community. Here the task is to simultaneously estimate the structure of a scene ob-

served by multiple cameras, and the poses of these cameras. Images of the scene can

be either unordered [60, 3] or ordered in a sequence [156, 160, 184] (in such a case

this knowledge can be exploited). Great advances have been recently achieved in the

scalability and automation of the SfM process by Snavely et al . in their Bundler sys-

tem [3, 179], based on Bundle Adjustment (BA). Their approach is sequential, i.e.

starting reconstruction with a smaller number of cameras and then adding progres-

sively more. A different approach has been taken by Gherardi et al . [60], who merge

smaller reconstructions hierarchically.

The main differences between the topic of this thesis (especially 3D tracking) and

conventional SfM techniques is firstly its online nature and secondly the active back-

ground segmentation. While computing the overall scene geometry, SfM extracts the

dominant motion and discards outliers. However, the object of interest can easily be

as small as 1 % of the frame area. In such a case it is completely ignored by SfM

algorithms as an outlier and the background scene is reconstructed instead. This is the

exact opposite of what is sought in visual tracking, where the minority of the scene,

the target, is of an interest, while the background needs to be actively ignored.

Regarding the online processing, there have been several exploratory works in-

vestigating online SfM. These mostly aim to provide feedback to a human operator,

performing the scanning procedure. While ProFORMA by Pan et al . [156] builds a
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partial coarse 3D model by tetrahedralisation of a cloud of sparse features to reveal

unseen parts of a scanned object/scene, the work of Hoppe et al . [92] goes further and

provides the operator with a redundancy map of the reconstructed area.

In the field of texture-independent reconstruction, there has been work on line-based

reconstructions. The basics have been laid by Hartley in [79], using the trifocal tensor

(although it was not named as such) to reconstruct a 3D scene from a triplet of images.

The theory has been further developed by Zhang [214] who explored the properties of

lines and line segments in the whole SfM pipeline – from matching through Perspective-

n-Lines (PnL) to 3D reconstruction. The work of McLauchlan et al . [140] suggests using

higher-level constraints arising from lines and planes in the SfM pipeline. This allows

reconstruction of nearly texture-less scene from a sequence of images.

2.3.1 Non-rigid Structure-from-Motion

Non-Rigid Structure from Motion (NRSfM) is a subarea considering reconstruction

of time-varying object shapes, usually from a video-sequence. Most approaches to

NRSfM are based on factorization [188], as introduced by Bregler et al . [20]. To sim-

plify the problem, the orthographic camera model is used [32, 154, 185]. This way,

the 2D point locations (per frame) can be expressed as an affine function of the 3D

locations, which are in turn a linear combination of basis shapes. The set of projection

equations is then rewritten as a matrix-matrix multiplication, for each 3D point and

video frame where it is visible. The projection multiplication is decomposed back to

the factors, yielding the camera parameters (translation and rotation, for each frame),

basis shape mixing parameters (i.e. coefficients of the linear combination, for each

frame) and basis shape locations (for each point).

This problem is inherently ill-posed, having significantly more unknowns than equa-

tions. To render it solvable, additional constraints are applied. In the original pa-

per [20], the low-rank constraint was applied, effectively setting/limiting the number of

basis shapes. All following approaches use this constraint and apply additional con-
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Zollhofer Newcombe Garg Yu Chapter
Property [217] [146] [57] [213] 6

Template-free X X X
Direct X X X X
Monocular RGB X X X
Perspective camera X X X X
Closed mesh w. self-occl. handling X X X

Table 2.1: Comparison of state-of-the-art approaches for reconstruction of generic dy-
namic shapes. Inspired by [213].

straints, priors, heuristics and regularizations. These include spatial smoothness of

shape [12, 154, 159, 197] (the points lying close to each other in 2D tend to lie close

to each other in 3D); temporal smoothness of shape [4, 12, 154] (the shape changes

smoothly over time); temporal smoothness of camera poses [4, 154] (the camera tra-

jectory is smooth in time); and inextensibility [159, 197] and other physics-based pri-

ors [4, 5].

One limitation of this formulation is that it is conditional on all 2D tracks spanning

the length of the video. This condition is removed by either estimating the missing

data [47] or using methods based on Bundle Adjustment (BA) [4, 12]. In this case ma-

trix factorization is replaced with global optimization of the model parameters (basis

shapes, mixing coefficients, camera trajectory). Another reason for the use of Bun-

dle Adjustment, besides natural inclusion of missing data, is the ability to use more

complicated camera models. Finally, BA-based techniques also scale well in terms of

memory and computational time.

Table 2.1 compares the properties of selected state-of-the-art NRSfM approaches.

Although there are many more works, this comparison captures general trends which

can be observed in the field. All current techniques use either a template, a precomputed

set of 2D trajectories, or an RGBD camera to address the task. There has been no

previous approach to solve NRSfM which would be at the same time direct (i.e. using

no precomputed tracks), template-free and using only a single RGB camera. The

work presented in Chapter 6 addresses the task of simultaneous tracking and non-rigid

reconstruction as indicated in the last column of the table.
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SfM Tracking Visual SLAM

Sequentiality images may or may
not be in sequence

online (preferably
real-time)

online (preferably
real-time)

2D / 3D 3D 2D or 3D 3D
Appl. focus model camera trajectory model and camera
Target scene object of interest scene (and possibly

objects)
Input monocular RGB

(from definition)
RGB or RGBD RGB, RGBD, stereo

cameras, etc.

Table 2.2: Comparison of the studied problems: SfM, SLAM and visual tracking.

2.4 Simultaneous Localisation and Mapping

SLAM has been one of the fundamental challenges of robotics for decades, with an

active research community. The task is to create a map of an unknown environment

on-the-fly as it is traversed and at the same time to localise the robot within this

environment. A number of sensors are used to gather the necessary information about

the outer world, including video cameras. In principle there is no difference between

localisation within an unknown environment and tracking a 3D object. Both can be

essentially reduced to the problem of finding the camera pose relative to the map/model,

based on 2D-to-3D feature correspondences. Similarly, mapping of such an environment

is equivalent to object modelling. Again, in principle the task consists of finding 3D

locations of features based on 2D observations from a video, and possibly building

a higher-level map or model. This results in an interesting duality between the two

problems, the only difference being the point of view – from the inside (SLAM) vs.

from the outside (3D tracking). The problems (including SfM as well) are compared in

Table 2.2. Clearly, there is an opportunity for an overlap of techniques used in SLAM

and visual tracking, thus a review on (especially vision-based) SLAM is presented in

this section.

Robot navigation and mapping were at first studied separately [43]. One of the

first to treat them simultaneously was Smith et al . [177], who used an Extended

Kalman Filter (EKF) [59] to capture and optimise the map and trajectory together,
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taking correlation and covariances within and between these into account. Another

great breakthrough was the discovery of convergent properties of SLAM in the work

of Durrant-Whyte et al . [44]. This publication was also the first one to use the term

(and acronym) “SLAM”. Additional theory on convergence was developed and some

of the first realistic experiments were carried out by Csorba [31]. Another vital part

of any modern SLAM technique are loop closures, i.e. recognition of previously visited

locations and associating them with the correct locations in the map. Studied in the

work of Bar-Shalom [11], this still receives considerable interest within the community

due to the importance of long-term consistency. Although most of the early SLAM

works used radars, numerous sorts of sensors have been in use, such as sonars, laser

scanners or video cameras (either RGB or IR [198]).

Video cameras are an extremely valuable type of sensor due to their low cost, pas-

sive operation and long-distance high-resolution measures of the environment’s visual

properties. They are, however, burdened by a higher computational cost necessary to

process and use such data [9]. Classic SLAM techniques (e.g . based on scanning laser

data) can use visual information alongside their regular methods. One such example

is the work of Newman and Ho [150], who use image features to initialise loop closures.

When a robot’s estimated trajectory deviates grossly from its actual path, it may be-

come impossible to connect the ends of a loop, i.e. to explain the current pose based on

a previously seen part of the map. A global database of seen visual features can facil-

itate a drift-resistant linking mechanism: an attempt for a loop closure is commenced

if there is a match between currently and previously seen features.

Image/video input can be, however, used as the main source of information. Since

all the measurements are only angular and relative, the scene can be modelled by purely

visual information only up to a similarity transform, i.e. the coordinate system is free

to rotate, shift and undergo isotropic scaling. To overcome this and provide metric

(in world units) information, additional sensors are often used, such as Inertial Mea-

surement Units (IMUs) [73, 99], robot odometry [14, 15], depth sensor [7] or GPS [170].

Alternatively, the metric measurements can be provided knowing the physical set-up
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of a fixed camera stereo rig on the robot, if this is used [56, 189]. Finally, it is pos-

sible to incorporate different kinds of higher knowledge, such as fixed dimensions of

reconstructed common objects (such as human faces or an artificial calibration object).

However, in the context of this thesis, the only available input is a monocular RGB

video; hence monocular visual SLAM [36] is of primary interest. The idea of metric

reconstruction is therefore abandoned and all models are of an arbitrary scale.

The first solely monocular vision-based SLAM technique was MonoSLAM devel-

oped by Davison et al. [36]. They used sparse probabilistic 3D mapping using point

features of [169] to obtain real-time (30 Hz) mapping and navigation in a room-sized

environment. Similarly to the depth-sensors based SLAM literature, an EKF is used.

This system had to be nevertheless initialised manually; this was done by placing a

known object in front of the camera at the beginning of the video-sequence. To this

day, initialisation features as a part of the majority of SLAM techniques [142], prevent-

ing completely solving the kidnapped robot [46] scenario (when the robot is turned on

in a completely unknown environment and may not use any prior knowledge of it).

This framework was later extended to work with straight lines [87, 176]. These algo-

rithms (based on an EKF as well) were similarly able to run in real time and typically

managed a very low number of features in both the point and line clouds. Using line

features, the dependency on texture is significantly lowered, allowing employment in

a standard indoor (e.g . corridor) environment, where straight lines are abundant and

most surfaces are painted by a single colour.

More recently, there has been a shift from the EKF to BA [91]. There has been an

observation that while filtering-based methods may still find their use in scenarios with

very limited resources, methods based on optimisation (such as BA) provide better

accuracy per unit of computing time [181].

In recent years, growing computational power and its more effective use has led to a

transition from sparse to dense features. An example is the popular technique Parallel

Tracking And Mapping (PTAM) [111]. Running the tracking and modelling parts of
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the algorithm in parallel allows for real-time tracking to be performed independently

of the more computationally intensive optimisation. Using such a separation provides

real-time execution with maps of sizes up to thousands of features.

However, even denser maps can be achieved, ultimately leading to whole-image-

alignment works [148]. A particularly interesting work is Dense Tracking And Mapping

(DTAM) by Newcombe et al . [149], which can be seen as standing between SfM and

SLAM. It offers real-time reconstruction of a static scene based on a monocular video

stream, using a variational approach. One aspect, common to all of these methods is

that they assume the modelled object covers the majority of the scene. When that is

the case, the distractors can be avoided by a simple outlier rejection. As explained in

the previous section, this is not the case for a large portion of video footage, which

could be used for 3D reconstruction.

Modern approaches to monocular visual SLAM [183] try to remove this assump-

tion. However, while increasingly focusing on dynamic scenes, the main aim within the

scope of SLAM is increased robustness against occlusions. Although recent approaches

such as ORB-SLAM [143] offer excellent performance in cases of strong occlusion, the

requirement that the modelled target is the only part of the scene being preserved in

time is restrictive. This clearly prevents direct use of SLAM techniques in 3D track-

ing (although the principle is similar) and emphasises the need for object/background

segmentation.

There has been a significant amount of work in the area of online 3D modelling

based on depth sensors. The most notable in this area is the work of Newcombe et al .,

in particular Kinect Fusion [147] and Dynamic Fusion [146]. However, since this thesis

focuses on tracking and modelling from strictly monocular RGB video, a more detailed

review is omitted here. Recommended recent overviews for 3D modelling and tracking

from RGBD are [26] and [180], respectively.
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2.5 Causality

Chapter 4 of this thesis is focusing on motion models in visual tracking, especially

causality-based. For this reason, literature concerning causality detection and its use

is reviewed in this section. There have been numerous philosophical publications on

causality in both ancient and modern times, originating from Aristotle [8] and being

significantly influenced by Hume [94]. This section focuses more on applied rather than

philosophical publications; a recent overview [158] is therefore recommended for further

reading. It should be noted that it is impossible to reason about true causality without

higher, semantic understanding of the scene. Therefore this thesis works with predictive

causality instead, which reasons about apparent causal links instead of true causation.

One of the early uses of causality for time series analysis was done by Granger [65].

He proposed a statistical causality test, determining the presence of causal relation-

ships between two normally distributed time-series. This approach has become known

as Granger causality and has been successfully used in economics [84, 186], neuro-

sciences [54, 74], and recently in computer vision [161, 211]. Although it has been

revised and improved over the decades (e.g . Hacker and Hatemi-J [68] avoided the as-

sumption of a normal distribution), Granger causality is suitable only for linear signals,

since it is based on linear regression.

More recently, a novel concept of measuring causality has been proposed in the form

of Transfer Entropy (TE) by Schreiber [168]. TE has since found its place in many

areas, including again neurosciences [196], chemistry [13] and others [102], however it

has not been previously used in computer vision. As the name suggests, it is based on

information theory and is therefore able to detect arbitrary non-linear relationships.

In this work, TE is used in Chapter 4 to measure causation in visual object tracking,

capturing possibly complex relationships between the motion of the camera and the

object.
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Transfer entropy, as well as the basic measure of information, Shannon entropy,

generally works with probabilities of states of discrete random variables (vectors in the

multivariate case). However, both camera and object motions are inherently continu-

ous processes, despite natural quantisation on a pixel grid. Fortunately, TE can also

be calculated for continuous processes [88, 102], using an alternative formulation with

probability densities and a differential entropy. Kaiser and Schreiber [102] proved that

even though differential entropy is not invariant to coordinate change, continuous TE is

invariant (to C1-diffeomorphisms in general). This ensures consistent results regardless

of image rescaling, cropping, etc.

As noted above, causal relationships have been previously examined in the area

of computer vision for linear relationships. Fan et al . [48] used Granger causality to

explore actions and the temporal dependencies between them in a surveillance scenario.

This was then used to cluster and classify video-clips, according to the actions present.

In a similar direction was the work on learning causal relationships between events in

video-sequences, which has clear potential in action recognition and related tasks. An

example is Fire and Zhu [52], who use Causal And-Or Graphs and Bayesian grammar

models for inference about hidden effects, otherwise undetected. Gupta et al . [66]

similarly use And-Or Graphs for automatic creation of descriptions for sport footage,

while Sumioka et al . [182] use causality to learn joint attention for robots (in a human-

robot interaction scenario). The work of Brand [19] explores the causal physics of the

scene (how the mechanics of objects influence other objects). Similarly Mann et al .

[135] derive a computational theory describing the kinematic and dynamic properties

of a video-sequence.

Prabhakar et al . [161] use Granger causality on sequences of keywords (quantised

spatio-temporal visual features) directly for the task of human action recognition. Yi

and Pavlovic [211] perform the same task, but based on motion-capture data. They use

Granger causality to infer the edges in a joint-influence graph of the human body, which

improves the performance compared to fixed graphs. Narayan and Ramakrishnan [145]

remove the need for motion-capture systems, using causal relationships between clusters
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of dense trajectories. Finally, Zhou et al . detect causal links (using Granger causality)

between pairs of trajectories obtained by a visual tracker to provide additional features

for bi-actor action recognition.

However, there has been no previous work in the field of computer vision exploiting

the modern TE approach to causality estimation, and no use of any type of causality for

visual object tracking. Learning causal relationships between the motion of the camera

and of the tracked object, or between multiple objects, can significantly help a tracker,

when used in a causal motion model. In both scenarios of tracking by detection and

feature-based tracking, the tracker can benefit not only by improved accuracy, but

also by support during challenging events in the scene, such as camera shake or full

occlusion.

Scene context has been previously used to improve robustness of a tracker in the

work of Grabner et al . [64]. Their approach uses the Generalised Hough Transform to

find supporters within the video features, i.e. features which can be useful for determin-

ing the target object location. These are then used to help tracking in cases where the

followed object might be occluded or lost. Another publication on a similar topic was

by Dinh et al . [38], who added the notion of distracters: objects similar but unrelated

to the target. The two approaches, however, use very simplistic models for both the

discovery of the relationships and the location prediction, allowing only for a constant

offset and no time delay between the target and its supporters. On the other hand, the

use of transfer entropy and machine learning in this thesis allows complex, nonlinear

relationships to be detected and employed.
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Chapter 3

Long-Term 2D Tracking of

Texture-less Objects

This chapter focuses on two common sources of failure in visual object tracking:

low texture of the target and full occlusions in long-term scenarios. These are often

difficult, as a tracker needs to learn and adapt a model of object appearance (commonly

described by its texture) to follow the object or to redetect it after full occlusions. This

chapter investigates solutions to these common sources of failure by abandoning more

common point features and using lines instead; line features are more robust to lighting

and are present even in cases of low-textured objects where point features are scarce.

Long-term trackers attempt to model and adapt to changes in object appearance

over time, using multiple observations to enrich their representations. This in turn leads

to drift (the accumulation of small frame-to-frame inaccuracies) due to the difficulty

of unsupervised learning. Recent approaches overcome this through a combination of

detection combined with local search and intelligent online update strategies, which

can compensate for drift via redetection. As such, consistency of appearance is vital,

because radical changes can cause tracking failure or corruption of the model. The

notion of appearance typically relies on texture or other strong visual attributes. How-

ever, there are a whole range of scenarios where sufficient texture is either absent or

31
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(a) frame #1 (b) frame #300 (c) frame #680

(d) frame #1 (e) frame #172 (f) frame #539

Figure 3.1: Examples of results on challenging sequences.

highly variable due to changes in pose or scene illumination. While this is only true

for a subset of tracking sequences, it is a common source of tracking failure for most

approaches.

Figure 3.1 shows example frames from two challenging sequences which typically

lead to tracking failures. Figures 3.1a to 3.1c show images from the David sequence of

Ross et al . [166] where the initial target face (Figure 3.1a) is so dark that visual features

are almost indistinguishable to the human eye. However, as shown by the bounding box,

illumination invariant trackers are capable of tracking the entire sequence. Even the

original authors do not track this sequence from the start, only beginning at the 300th

frame (shown in 3.1b) where the visual appearance from lighting is more consistent with

the remainder of the video. This sequence was recently used in a visual tracking bench-

mark [206] starting from the latter frame as well. Similarly Figures 3.1d–3.1f show a

texture-less object (a single piece of white paper on a light background). Trackers which

rely on texture or appearance fail on this sequence. Again the resulting bounding boxes

show that it is possible for a texture-independent tracker to overcome this challenge.
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Figure 3.2: Establishing line correspondences regardless of the aperture problem.

3.1 Exploiting Edge-based Line Features

The task of the tracker is to find a pose pt (position, rotation, size) of an object

in frame It. In feature-based tracking, the tracked object is represented as a set of

features. The commonly used point features are however scarce in scenarios involving

low-textured objects, which are relatively common (e.g . painted man-made objects).

Furthermore, they tend to lie near the object boundaries in such cases, and thus to be

influenced by the background. Therefore, edge-point features are explored here instead,

i.e. locations of locally maximal intensity gradient. The fundamental elements for

tracking are tentative correspondences of lines tangential to edges in the image. In other

words, to estimate the frame-to-frame motion of the target object, correspondences of

lines are used, which are in turn defined by correspondences of edge-points.1 This is a

similar task to estimation of the image transformation from point correspondences.

Figure 3.2a shows two points {at−1,bt−1} identified on the contour of an object

and their tangent lines. Attempting to locate the motion of these points in the next

consecutive frame is ill-defined. Figure 3.2b shows that a local search normal to the

edge direction incorrectly identifies correspondences {at,bt} which are shifted along the

contour, instead of the true correspondence {at∗,bt∗}. This is due to the well known

aperture problem [85], which makes it impossible to detect the correct motion for points

1While an edge point is defined by its location and edge orientation, lines are in theory infinite,
without any “anchor point”. Hence while a line can be uniquely derived from an edge point, the same
line can be derived from several (collinear and with equal orientation) edge points so this inference is
only one-directional.
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laying on edges. Should these incorrect corresponding pairs {(at−1,at), (bt−1,bt)} be

used directly as point-to-point corrsepondences, the estimated motion would be incor-

rect. However, under the assumptions of a small shift between two consecutive frames

and a local linearity of the edges, these points generate the same tangent lines as the true

correspondences. By using the intersection ct of the tangent lines and its motion from

the intersection in the previous frame (ct−1), transformations can be calculated using

edge features while overcoming the aperture problem. The intersection can be seen as a

virtual corner point, where the two edges forming the corner are allowed to be separated.

In other words, traditional techniques use point features (e.g . corners) to simultane-

ously provide the two orthogonal constraints needed to overcome the aperture problem.

An alternative explored in this work is to use pairs of distant non-parallel lines instead,

each providing one constraint, to define the virtual corners. These pairs of lines are

assumed to be rigidly attached in 3D, which introduces the limitation of the approach

to tracking (approximately) rigid objects. Virtual corners, besides being an interesting

theoretical concept, are beneficial during the computation as they simplify the trans-

formation equations compared to using lines directly.

It should be noted that some edge-points may slide too far along the contour for

the lines to provide a valid correspondence, in cases where the assumption of local

linearity and small shift is violated. This is pronounced especially in cases of strongly

curved edges. However, since the presented approach uses a robust two-stage estimation

scheme, it is robust to such violation.

Figure 3.3 shows an overview of the Long-Term Feature-Less Object Tracker (LT-

FLOTrack) algorithm [128] which is built on these principles. It consists of two modules

performing different tasks. The first is a short-term tracker, which finds line corre-

spondences and estimates frame-to-frame transformations (block (i)). It then updates

knowledge about the object in each frame (block (ii)), including the positions of good

edges to track and observed edge stability (edge quality field). The short-term tracker

is formalised in Algorithm 1.
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Figure 3.3: Overview of the LT-FLOTrack algorithm.

The second module maintains long-term relations. In cases of low confidence within

the short-term tracker, a procedure to correct the pose is performed (block (iii)). Al-

ternatively, if short-term tracking leads to a correct pose estimate, its state is stored

(block (iv)) for future corrections. Block (iv) also includes updates to the observed

pose probability distribution Ψ(p) in every frame.

3.2 Short-term Edge-based Tracking

To find the pose pt, the short-term tracker estimates a (similarity) transformation

S, such that pt = S(pt−1). Algorithm 1 describes this short-term part of LT-FLOTrack,

where T is the total number of frames to process. Lines 4 to 8 correspond to the block

(i) and lines 3 and 9 refer to the block (ii) of Figure 3.3. In each frame, a set of edge-

points xt−1
i ∈ X t−1 is generated (line 3). Successfully matched correspondences (inliers

It−1 to St−1) from the last frame are retained and new edge-points are generated to

keep a stable number of correspondences. As this number has a significant impact
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Algorithm 1 The Short-term Tracker

1: Q1 ← initialise edge quality field (Sec. 3.2.4)
2: for t = 2→ T do
3: X t−1,Lt−1 ← generate edge-points and lines It−1 (Sec. 3.2.1&3.2.2)
4: X ′′t,L′′t ← find tentative correspondences (X t−1,It) (Sec. 3.2.2)
5: S′′ ← estimate transformation by LO-RANSAC (Lt−1, L′′t) (Sec. 3.2.3)
6: X ′t,L′t ← find tent. correspondences (X t−1,It, init by S′′) (Sec. 3.2.2&3.2.3)
7: S′ ← estimate transformation by LO-RANSAC (Lt−1, L′t) (Sec. 3.2.3)
8: S← refine transformation (S′, Qt−1) (Sec. 3.2.4)
9: Qt ← update edge quality field (It,S, Qt−1) (Sec. 3.2.4)

10: end for

on execution times, it should be as low as possible. To estimate a suitable number of

correspondences for a given sequence, a data-driven method is proposed, which accounts

for the object’s size and complexity; see Section 3.2.5 for details.

3.2.1 Good Edges to Track

The first step is to determine which edges are good for tracking and generate a set

of new edge-points. These edges should be invariant to brightness changes and evenly

distributed on the object, i.e. strong edges should be selected where possible and weaker

edges only in regions of low contrast. LT-FLOTrack uses an iterative procedure, which

searches for strong nearby edges. A point qt0 is randomly drawn from inside the object

bounding box (given by pt). The edge search is then performed along a line normal

to the edge direction [77], starting from this point, to find qt1. This is iterated until

convergence (xti = qtn when qtn = qtn−1; the subscript n here does not mark a particular

point, but rather an iteration number). Using only the gradient, this is dubbed an

unguided edge search. The selected edge-points are defined as

qtn = qtn−1 + λ~∇It(qtn−1) , (3.1)
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where the best distance λ along the line (in the direction if the image gradient ~∇I) is

λ = arg max
λ

||~∇It
(
qtn−1 + λ~∇It(qtn−1)

)
|| · exp(−λ2/σ2) (3.2)

and σ is a scaling factor (proportional to the object size). Notice that since edge-point

(and consequently line) correspondences between the previous and the current frame

are sought: (X t−1, X ′t) and (Lt−1, L′t), respectively, the points X t−1 =
{
xt−1
i

}
used

for tracking into It have been previously localised in It−1.

3.2.2 Frame-to-Frame Correspondences

When establishing correspondences (line 4), another edge search is required, how-

ever the task is different. Instead of locally strong edges, edges similar to those from

the previous frame are sought. As such, a guided (using information from the previous

frame) edge search is used. This searches for positions with similar gradient angle and

local appearance. The search starts at the locations of edge-points x′′ti ∈ X ′′t from the

previous frame:

x′′ti = arg max
q∈xt−1

i +λ~∇It−1(xt−1
i )

(
cos(∆α) + 1

2

)
· δ(xt−1

i ,q) · Λx(λ)

s. t. q is a local maximum of gradient ,

(3.3)

where δ(xt−1
i ,q) measures similarity of local appearance of It−1 around xt−1

i and It

around q, ∆α is the difference between gradient angles at It−1(xt−1
i ) and It(q) and

Λx is a locality-preserving regularisation. This is defined as constant in the range of

σ (as used above) and then linearly falling to zero with distance. Cosine is used as a

measurement of angle error due to its tolerance (the flat region around zero), robustness

(no outlier over-penalisation) and absence of problems with angle periodicity. It is

scaled and shifted to the [0; 1] range. For the guided edge search, multiple search lines

are used: normal to the edge in the last frame (~∇It−1(xt−1
i )) and offset by ± π

10 .
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The tentative edge-point correspondences (xt−1
i ,x′′ti ) are then transformed to line-

to-line correspondences (lt−1
i , l′′ti ) using the gradient direction:

lt−1
i =

(
n>,−n>xt−1

i

)>
(3.4)

(homogeneous), where n is normal to the gradient:

n = J~∇It−1(xt−1
i ) , (3.5)

using J, a matrix of 2D counter-clockwise rotation,

J =

 0 −1

1 0

 . (3.6)

The same process is performed for edge-points x′′ti to get lines l′′ti based on ~∇It.

The set of inliers It(S) is defined as a subset of correspondences (lt−1
i , l′ti ) having

low geometric error dG (see Section 3.2.6 for details) with respect to the estimated

transformation S:

It(S) =

{
(lt−1
i , l′ti )

∣∣∣∣√dG

(
l′ti , S(lt−1

i )
)2

+ dG

(
lt−1
i ,S−1(l′ti )

)2 ≤ θd} . (3.7)

This can be equivalently seen as a set of point-to-point correspondences (xt−1
i , x′ti ),

since lines are defined by edge-points (as used in Equation (3.12)). The subset of edge-

point inliers X ′t (i.e. defining lines belonging to the inlier set) is retained for use in

the next frame as X t. Additional edge-points are then generated as described above

(line 3 of Algorithm 1), which encloses the short-term tracking loop. The relationship

between the points X t−1, X ′t and It is visualised in Figure 3.4.
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Figure 3.4: Relationships and transitions between features.

3.2.3 Frame-to-Frame Transformation

The Locally Optimised RANSAC (LO-RANSAC) [130] uses the correspondences

(lt−1
i , l′′ti ) to estimate an initial geometric transformation S′′ between the two frames,

maximising image evidence Et (Algorithm 1, line 5). The similarity transformation is

used within this chapter. This is defined as the average fit ext−1
i

of edge-points from

It−1 to the edges in It. The computation of image evidence is based on an oriented

Chamfer distance [151, 171] as

Et(S′′) = ΛE ·
1

|X t−1|

|X t−1|∑
i=1

ext−1
i

, (3.8)

ext−1
i

=
1

1 + d(S′′(xt−1
i ))

· cos(∆α) + 1

2
, (3.9)

where d(·) is Euclidean distance of a point to the nearest Canny’s edge [23], ∆α is the

difference between the gradient angle of a point and its nearest edge (taking rotation

induced by S′′ into account) and ΛE is a regularisation term penalising large changes

between pt−1 and pt (smoothness enforcing prior). The minimal sample for Random



40 Chapter 3. Long-Term 2D Tracking of Texture-less Objects

Figure 3.5: Examples of an image and its edge quality field after several frames of
tracking.

Sample Consensus (RANSAC) is a triplet of lines, whose intersections (the virtual cor-

ner points) are used to generate a transformation hypothesis. While two points would

suffice for the similarity transformation, two lines do not provide sufficient constraints

and thus a triplet is necessary. These lines are sampled in a way to ensure sufficient an-

gles between any two of them. This provides good location of virtual corners and thus

numerical conditioning. In this “triangle sample”, the vertices (the virtual corners) can

be seen as dual to the edges (lines).

To get a more precise transformation with a higher number of inliers, the process

of correspondence search and transformation estimation is repeated using the transfor-

mation estimate S′′ as initialisation (lines 6 and 7). In this second iteration, the new

locations of correspondences X ′t =
{
x′ti
}

and L′t =
{
l′ti
}

are computed. LO-RANSAC

is then executed again using the new correspondences to obtain S′.

3.2.4 Beyond Frame-to-Frame Tracking

The estimated transformation S′ is usually more accurate than S′′, however it may

still be noisy, which would ultimately result in tracker drift. It is therefore necessary to

stabilise the estimation relative to previous frames. In LT-FLO this is done by learning

the locations of edges, which have previously predicted a correct transformation. This

knowledge is stored as an edge quality field Qt, giving an estimate of object structure

(stable edges, see Figure 3.5 for an example). The corresponding edges in the new

frame are expected to fit to this model of previously stable edges w.r.t. the estimated
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transformation (line 8 of Algorithm 1):

S = arg max
S

Q(S) (3.10)

with

Q(S) =

|X ′t|∑
i=1

Qt−1(S−1(x′ti )) ; (3.11)

maximised using Nelder-Mead iterative optimisation of the transformation parameters.

In every frame, Qt is updated as follows:

Qt = ω · S(Qt−1) +
⋃

(xt−1
i ,x′ti )∈It

ext−1
i

, (3.12)

where ω is a forgetting factor (line 9 of Algorithm 1). The field Q1 is initialised taking

all the edge-points from the first frame as reliable (line 1).

To allow reference to the short-term tracker in a compact form, we adopt the fol-

lowing notation. The complete state of the tracker (or model of the object) will be

referred to as ϕt and includes information about the object pose pt, edge-points X t

and the edge quality field Qt. The short-term tracker can then be seen as a series of

consecutive calls to a tracking function, performing a local search started at pt−1:

pt = τ(pt−1|ϕt−1, It) . (3.13)

Similarly the update of the current state comprises of updating Qt−1 to Qt according to

Equation (3.12), estimating pt = S(pt−1) and generating new points xti, which can be

concisely summarised as

ϕt = update(ϕt−1) . (3.14)
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Figure 3.6: Dependences of the number of correspondences and inliers on the number
of generated points. The red line in the right image shows the standard deviation in
bins of size 20. In this particular case (beginning of the Dudek sequence), one can
expect stable behaviour with about 350 correspondences, thus it is enough to generate
500 new points.

3.2.5 On the Number of Generated Edge-points

To estimate a sufficient number of correspondences for successful tracking of a given

sequence, an approach that accounts for the object’s size and complexity is employed.

The number of final correspondences after the edge search is usually lower than the

number of generated edge-points. Furthermore, this dependency is strongly non-linear

and saturates (see Figure 3.6).

In LT-FLOTrack, this saturation level is found in the first frame by initialising

with a high number of random points. Then the number of generated points is set

proportional to the saturation level. This is adjusted according to the observed scale

changes in subsequent frames.

3.2.6 Geometric Error of Line Correspondences

Previously, we have worked with terms such as “inliers”, or “consistent line corre-

spondence”, which require a measure of distance between projected and measured line

features (an equivalent to the projection error for point correspondences). But what

does it mean for two lines in an image l and l′ to be close to each other? Hartley [79]

stated that distance (or geometric error) of lines has to be measured with respect to

some point of interest. He suggested to use the distance between a line and line seg-
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Figure 3.7: Geometric meaning of dP and dA.

ment, as in general there is rarely any interest in infinite lines. This approach yields

usable results. However, lines in LT-FLOTrack are not defined by segments, and are

infinite in extent, since their real endpoints are unknown, and possibly invisible due

to (self-)occlusion. It is therefore necessary to calculate intersections between the lines

and all four sides of the tracked object bounding box. Computational complexity is

then prohibitively large. Furthermore, this approach introduces a bias, giving lower

errors to lines near borders of the tracked area, as their intersections with the borders

lie closer to each other.

A more feasible approach is to see the distance as two independent components –

difference of angles dA and difference of position dP with respect to a given point of

interest qi (e.g. centre of gravity of the tracked object), as can be seen in Figure 3.7.

The error of position is defined as the difference between the distances from the lines

to qi, in normalised homogeneous coordinates as:

dP =
∣∣∣q̃>i l̃∣∣∣− ∣∣∣q̃>i l̃′∣∣∣ . (3.15)

The angular error is defined as the divergence of the lines at some specified distance

from their intersection (in 2D). This distance is a constant L, which can be derived

from the size of the tracked object, or set manually.

dA = 2 · L · tan
∆α

2
, (3.16)

where ∆α is the angle between the lines. The choice of L can be used to control the

relative strength of the two components (dP and dA). Selection around half the size of
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the tracked bounding box will ensure approximately equal weights. The value of 50 px

was used in all experiments throughout this chapter. Finally, the geometric error term

is computed as

dG =
√
d2

P + d2
A . (3.17)

This technique gives errors similar to Hartley’s approach in significantly lower time

(10-fold speed-up with correlation coefficient 0.9). It should be noted that dP is strongly

underestimated in the case of qi laying between the lines. However, as we are usually

concerned with the distance of lines that are close to each other, this condition appears

rarely (the correspondences are incorrectly classified as inliers less than one percent of

the time).

3.3 Drift and Long-term Relationships

Using line-correspondences for short-term tracking works well for short sequences.

However, for longer sequences it suffers from error accumulation (drift) and is not

robust to severe occlusions.

The long-term module of Long-Term Feature-Less Object Tracker (LT-FLO) con-

tinuously checks the image evidence score Et, as this is a good indicator of the quality

of the estimated transformation. When Et decreases suddenly, this indicates a problem

(the confidence in the current solution is low). On such an occasion, the short-term

tracker may experience difficulties and may need correction (block (iii) of Figure 3.3).

The desired property of the (local) correction is that it can, given the last known pose

of the tracked object, estimate its new pose regardless of any drift in the short-term

tracker. Furthermore, it should identify a disappearance of the object (either because

of a tracker failure or a full occlusion) and start a global redetection.

A correction procedure is proposed, which fulfils these requirements and works

both on a local level and in a redetection scenario. The long-term module has several

states of the short-term tracker stored – a set Φ (initialised as Φ = {ϕ1}). When
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a tracking failure is detected, the short-term tracker is initialised using each of the

stored states ϕu ∈ Φ at the last known valid pose pt−1. A process analogous to

the standard short-term tracking function τ is performed, yielding several correcting

hypotheses in addition to the current one (using ϕt−1). Each hypothesis is assigned

a score Γ, based on transformation quality, temporal consistency and the inlier ratio

(Equations (3.8, 3.11&3.7)):

Γ (τ(p|ϕ, I)) = E(Sϕ) ·Q(Sϕ) ·

√
|I (Sϕ)|
|X ′|

, (3.18)

where Sϕ is the estimate of the transformation given by tracking from a state ϕ. The

best correcting hypothesis is selected as:

ϕ∗ = arg max
ϕ∈Φ

Γ
(
τ(pt−1|ϕ, It)

)
, (3.19)

where all the corrections (local search) are started at the position pt−1. It is then

used for correction where appropriate, replacing the current estimate in the short-term

tracker.

If the best correcting hypothesis estimated is an object pose similar to the current

one, ||p(ϕ∗)−p(ϕt−1)|| < θ2, it is a signal that the original estimated pose was correct

and the current state is not replaced as it is expected to be better adapted to the

current object appearance. In the extreme case, when the agreement of the estimated

pose is (almost, up to θ1) exact, the current state is stored for use in future corrections

(block (iv) of Figure 3.3).

See Figure 3.8 for a schema of these situations. The estimated pose p and score Γ

of ϕ∗ are compared with the ones obtained before the correction (using ϕt−1). One of

the following four cases can happen. 1) If the tracking so far is considered good enough

(up to θ2), the current tracking is not corrected. 2) The same happens if the current

estimate is better (has higher score Γ) than the best correction. 3) If the pose from

tracking so far is even closer to the best correction (up to θ1), the current tracking is
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not corrected and additionally its state ϕt−1 is learned. 4) Finally, if the current pose

is considered worse than the best correction (lower score Γ and significantly different

pose p), the correction is applied.

The correction procedure can be formalised as:

S =


Sϕ∗ if Γ(ϕ∗) > Γ(ϕt−1)

∧
||p(ϕ∗)− p(ϕt−1)|| ≥ θ2

Sϕt−1 otherwise ,

ϕt =


update(ϕ∗) if Γ(ϕ∗) > Γ(ϕt−1)

∧
||p(ϕ∗)− p(ϕt−1)|| ≥ θ2

update(ϕt−1) otherwise ,

(3.20)

where p(ϕ∗) is a shorthand for τ(pt−1|ϕ∗, It) and Γ(ϕ∗) for Γ
(
τ(pt−1|ϕ∗, It)

)
(and

analogously for ϕt−1; these are also used for conciseness in the text). The thresholds

θ1 and θ2 are calculated from the object size. The learning can be formalised as:

Φnew =


Φ ∪ϕt−1 if ||p(ϕ∗)− p(ϕt−1)|| < θ1

Φ otherwise .

(3.21)

The corrections may consume a significant portion of the execution time. As the

asymptotic time complexity is O(T · |Φ|), it is not feasible to keep all observed states.

Therefore a method is needed to maximise the diversity of the learned states to cover

as much variation in object appearance as possible in a fixed space and time. A limit is

therefore placed on the cardinality of Φ (in experiments within this chapter, |Φ|max = 5),

and when it is reached, the state used least often in recent corrections is replaced, as

this is a good indicator of state’s usefulness in the future:

Φnew = Φ \ arg min
ϕ∈Φ

Υ(ϕ) , (3.22)

where Υ is the number of occasions in the past when ϕ was selected according to

Equation (3.19). This pruning is carried out before expanding the set Φ in the former

option of Equation (3.21).
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Figure 3.8: Possible situations during correction. Thresholds θ1 and θ2 for the decisions
are calculated from the object size.

3.4 Tracking Failure and Redetection

In a significant portion of real-world scenarios, the object of interest undergoes

strong (sometimes full) occlusion by either other objects in the frame, or the video

frame boundaries. It is therefore necessary for a long-term tracker, to handle such

occlusions and to redetect the object afterwards. We call these global redetections, or

corrections, as opposed to the previous section’s corrections which are local to pt−1.

3.4.1 Disappearance or Failure Discovery

The first step of the redetection procedure is to identify object disappearances

and/or tracking failures. Since LT-FLOTrack is edge-based, loss of tracking is closely

related to the observed gradient. By definition, the edge-points are extracted in areas

of strong, reliable gradient, therefore if this is not true after tracking, it indicates a

problem.

More specifically, the proposed approach to failure discovery is based on the follow-

ing observation. In the correction stage of LT-FLO (block (iii) of Figure 3.3), the points
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Figure 3.9: Agreement of gradient direction in a pixel with its neighbourhood. Left im-
age: region of strong, stable gradient, right image: noisy gradient with low magnitude.

X t from a stored state ϕt (from frame It, as used in Equation (3.19)) are applied to

the previous frame It−1, to search for correspondences X ′t. Since this is a local search,

the projected edge-points (q = S t→t−1(x
t
i)) are expected to lie near edges (i.e. areas

of strong gradient) in the current frame It. When they are moved to an area of weak

or noisy gradient (see Figure 3.9), the direction of the gradient at a particular pixel is

not in accordance with its neighbourhood:

accordance(q) =


true

∣∣atan(Ix(q), Iy(q))− atan(Īx(q), Īy(q))
∣∣ < 90◦

false otherwise ,

(3.23)

where Ix, Iy are components of the image gradient ~∇I (i.e. Ix = ∂I
∂x , Iy = ∂I

∂y ) and Ī

indicates the average over the 3× 3 neighbourhood of q. The number of points not in

accordance
∣∣ {q|accordance(q) = false}

∣∣ is recorded. A failure is identified, when there

is an unusually high number of such points across all the corrections. The threshold is

set using the 99-th percentile of the fitted normal distribution for that sequence, such

that sequences with different contrast levels are handled appropriately.

Object disappearance and tracking failures are also detected, based on the geomet-

ric properties of the object pose. Specifically, this happens when the tracked rectangle

is too small, as sizes under 10 px render the similarity function δ (as used in Equa-

tion (3.3) in Section 3.2.2) unreliable, objects are thus considered too distant to track.

Furthermore, it happens when the target bounding box is larger than the image or

when a large portion of it is outside the image (more than three quarters of the object
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is out of the scene). Finally, a failure is indicated when there are no inliers to the

estimated transformation S.

3.4.2 Object Redetection

Once the tracker detects that the object is lost, a redetection occurs. Firstly, a

local correction is performed (Section 3.3, Equation (3.19)). This is followed by a

global redetection, employing the stored states Φ. Instead of initialisation by pt−1, the

global redetection is initialised at several random poses prand (discussed in the next

section):

ϕ∗ = arg max
ϕ∈(Φ∪ϕt−1)

Γ
(
τ(prand|ϕ, It)

)
. (3.24)

The best hypothesis is used for correction in the same way as ϕ∗ in Equation (3.20).

After a failure, this global redetection is performed in every frame, until a good pose

is found.

3.4.3 Object Pose Distribution

In the context of LT-FLOTrack, a sliding-window redetection approach would mean

restarting tracking (see below) many times, in numerous different positions, rotations

and scales. This would be excessively computationally demanding. For many sequences,

however, the object-and-camera system does not use the entire parameter space of

object poses (induced by rigid transformations). Instead, only a significantly smaller

subspace is occupied. An example would be the appearance of a car, followed from the

rear. In such a scenario, there is almost no rotation and scale is correlated with the

y-coordinate (related to the actual distance between the cars), see Figure 3.10.

This property of the sequences can be exploited to obtain prior information about

the object pose pt. The distribution Ψ of the object pose is modelled as a multivariate

Gaussian distribution (Ψ = N (µΨ,ΣΨ), log-normal for the scale component). This

models the distribution well despite the fact that the true distribution is often not
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X-Y coordinates Scale-Rotation
(log-polar coordinates)

Figure 3.10: Examples of probability distribution Ψ (scale relative to the initial size).
Top row: tracking a car, change only in the x-coordinate (visible steps in the upper
left image indicate how narrow Ψ is). Bottom row: tracking the Page sequence with
large variation in rotation.

Figure 3.11: Examples of probability distribution Ψ, over x- and y-coordinates (for the
same sequences as in Figure 3.10). Although the distributions on the left (estimated
by KDE) are not unimodal, they are well modelled by the fitted Gaussian distribution
(right column).

unimodal. See Figure 3.11 for an illustration of this phenomenon. For instance, for the

Page sequence, the Kernel Density Estimation (KDE) and Gaussian distributions have

a Bhattacharyya coefficient (approximate overlap measure) of 0.92 and KL-divergence

of 1.1 bits (both distributions have an entropy of around 15 bits).
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The distribution’s parameters are learned online from observed object poses, ac-

cording to [16]. This has negligible computational cost; in contrast, the complexity of

KDE would be quadratic in the number of frames. In the t-th frame, the update is

calculated as:

µtΨ = µt−1
Ψ +

pt − µt−1
Ψ

t
(3.25)

and

Σt
Ψ =

(
Σt−1

Ψ +

(
pt − µt−1

Ψ

) (
pt − µt−1

Ψ

)>
t

)
t− 1

t
. (3.26)

Given this probability distribution Ψ, one can make assumptions about the object’s

pose. For example, false “corrections” where the resulting pose has extremely low

probability can be rejected. This adds the following constraint to the optimisation in

Equation (3.19):

s. t. Ψ(τ(pt−1|ϕ, It)) > θΨ . (3.27)

An example of this constraint’s value is a rectangular object, which looks very similar

when rotated. However, a low probability for this pose may help to identify such a

situation as incorrect.

Finally, the pose distribution is used to guide the search during redetection (Equa-

tion (3.24), prand ∼ Ψ). This is more efficient than dense sampling of the whole pa-

rameter space. To improve the ability to generalise to possible, but previously unseen

or rare poses, the search space is extended by multiplying the covariance matrix ΣΨ by

a constant factor during subsequent redetection.

3.5 Experimental Evaluation of LT-FLOTrack

This section provides experimental evaluation of edge-based tracking and the pro-

posed redetection scheme. Firstly LT-FLOTrack is evaluated on several recent bench-

marks (VOT 2013 and 2014, and Visual Tracker Benchmark (VTB) 1.0). Then the

behaviour is evaluated in detail and compared to several state-of-the-art trackers on
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grayscale region noise

Name Acc. Rob. Speed Acc. Rob. Speed

Bicycle 0.58 1.73 4.52 0.57 1.60 4.10
Bolt 0.48 5.27 3.16 0.47 4.87 2.99
Car 0.44 2.00 2.37 0.44 1.33 3.43
Cup 0.87 0.00 8.65 0.79 0.00 9.09
David 0.64 0.07 6.54 0.63 0.33 5.70
Diving 0.38 1.53 3.06 0.37 1.67 2.72
Face 0.82 0.00 5.46 0.72 0.07 5.32
Gymnastics 0.53 1.33 2.95 0.50 1.20 2.45
Hand 0.45 4.93 3.89 0.45 4.67 4.38
Iceskater 0.39 2.47 2.51 0.43 1.80 2.26
Juice 0.89 0.00 6.74 0.78 0.07 6.87
Jump 0.52 0.27 3.55 0.52 0.20 3.61
Singer 0.60 0.53 0.67 0.60 0.20 0.76
Sunshade 0.68 1.40 5.33 0.63 1.47 5.73
Torus 0.58 2.27 4.19 0.55 1.87 4.62
Woman 0.51 6.33 3.10 0.49 5.53 3.18

Table 3.1: Results of LT-FLOTrack in the VOT2013 benchmark. The tabulated values
are accuracy, robustness and speed in FPS.

selected sequences in both short-term and long-term scenarios. These contain examples

of completely texture-less and even transparent objects. Finally, the contribution of

different components of the algorithm is explored.

3.5.1 VOT Challenge 2013 Results

In this section, the performance of the proposed tracker on the standard VOT2013

dataset is reported, in the VOT benchmark scenario [115]. The results are tabulated

in Table 3.1, using accuracy, robustness and speed in FPS. Accuracy is defined as the

average overlap between the tracked and ground-truth bounding boxes and robustness

as the number of tracker failures per sequence, when the overlap dropped to zero.

Results are averaged over 15 runs. The region noise experiment is carried out with

perturbed initialisation. Only the results of experiments 2 and 3 are reported, since

LT-FLOTrack performs equally well on both coloured and greyscale sequences (due

to the use of gradient information). The performance of LT-FLOTrack is the best on
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Tracker Acc. Rank Rob. Rank Combined Rank

PLT 5.9 3.0 4.5
FoT 4.3 10.4 7.3
EDFT 7.9 11.8 9.8
LGT++ 14.8 5.2 10.1
LT-FLO 7.3 14.8 11.0
GSDT 10.7 11.4 11.1
SCTT 6.1 16.5 11.3
CCMS 10.0 12.7 11.4
LGT 17.3 5.9 11.6
Matrioska 10.1 13.3 11.7
AIF 7.7 16.2 12.0
Struck 11.5 12.5 12.0
DFT 10.8 13.7 12.2
IVT 10.4 14.8 12.6
ORIA 12.2 15.1 13.7
PJS-S 12.6 15.3 13.9
TLD 9.5 20.2 14.8
MIL 17.9 12.8 15.4
RDET 19.9 11.1 15.5
HT 20.0 12.9 16.5
CT 21.1 13.2 17.1
Meanshift 20.5 15.7 18.1
SwATrack 18.9 19.6 19.3
STMT 22.0 19.3 20.6
CACTuS-FL 24.2 17.8 21.0
ASAM 21.7 23.0 22.4
MORP 25.1 26.7 25.9

Table 3.2: Overall results of the VOT Challenge 2013 [115]. The trackers are sorted
according to combined performance.

sequences where a rigid object is tracked (Cap, Juice). On the other hand, sequences

with highly non-rigid objects (Diving, Hand) score lower, as well as cases of strong

out-of-plane rotation (Car).

Table 3.2 brings an overall comparison of all trackers competing in the VOT Chal-

lenge 2013. In this highly competitive challenge, LT-FLOTrack performed favourably

compared to other state-of-the-art trackers and finished fifth place in the competition

– out of 27. See Figure 3.12 for a visual comparison of trackers’ performance in the

challenge. Rankings in both accuracy and robustness are plotted, the higher and fur-
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Figure 3.12: Accuracy-robustness plot of the VOT Challenge 2013 results. For each
tracker, the accuracy and robustness rankings were computed as a mean over all three
experiments. Legend shown only for the best five trackers, see [115] for a full report.

ther right a tracker is, the better its rank. LT-FLOTrack, while having only average

robustness (mainly due to its difficulties with articulated objects), excels in the accu-

racy ranking, where its drift-resistant nature proves invaluable. However, it should be

noted that the VOT Challenge does not test properties where LT-FLO is the strongest,

in particular low texture and long sequences (possibly with full occlusions), but it does

provide evidence that it remains extremely effective on these simpler sequences.

3.5.2 VOT Challenge 2014 Results

The same experiments were carried out on the VOT2014 [116] dataset – see Table 3.3

for results. Among the best scoring are, unsurprisingly, rigid-object sequences such as

Sphere or Car (not to be confused with the VOT2013 sequence of the same name).

Although the tracked object in the Surfing sequence is a person, LT-FLOTrack per-
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baseline region noise

Name Acc. Rob. Speed Acc. Rob. Speed

Ball 0.38 4.07 5.01 0.38 4.27 5.09
Basketball 0.52 4.60 2.04 0.48 4.80 2.12
Bicycle 0.58 1.67 5.05 0.57 1.60 4.41
Bolt 0.50 4.40 3.20 0.46 5.07 3.23
Car 0.75 0.87 4.27 0.68 0.87 4.62
David 0.68 0.00 7.60 0.62 0.20 6.51
Diving 0.24 3.27 2.68 0.28 3.53 3.02
Drunk 0.59 0.93 1.77 0.45 0.73 2.07
Fernando 0.32 1.27 1.49 0.32 1.40 1.21
Fish1 0.36 6.80 4.85 0.33 7.20 4.37
Fish2 0.27 6.27 2.61 0.23 6.13 2.73
Gymnastics 0.56 1.07 3.13 0.51 2.20 2.57
Hand1 0.48 3.80 3.70 0.47 4.67 4.77
Hand2 0.40 9.00 3.63 0.35 9.13 4.21
Jogging 0.68 1.13 5.46 0.63 1.07 5.57
Motocross 0.61 1.67 2.43 0.55 1.47 2.56
Polarbear 0.63 0.00 5.19 0.54 0.07 4.77
Skating 0.40 1.73 4.17 0.44 1.60 4.26
Sphere 0.81 0.00 4.48 0.76 0.00 4.50
Sunshade 0.70 1.33 5.28 0.69 1.20 5.45
Surfing 0.80 0.07 9.54 0.72 0.07 9.13
Torus 0.58 1.73 4.78 0.58 2.13 4.12
Trellis 0.62 2.13 5.58 0.60 1.67 5.93
Tunnel 0.60 0.60 2.68 0.55 0.67 2.05
Woman 0.55 5.53 3.57 0.50 5.40 3.72

Table 3.3: Results of LT-FLOTrack in the VOT2014 benchmark. The tabulated values
are accuracy, robustness and speed in FPS.

forms well, since the person does not move his limbs such that body articulation does

not create a problem. On the other side of the spectrum is highly articulated Diving

(as in VOT2013), and Ball, which, while rigid, contains strong out-of-plane rotation.

In Table 3.4 and Figure 3.13 the performance of LT-FLO with other trackers com-

peting in the VOT2014 challenge is compared. As can be seen from the accuracy-

robustness plot, the proposed tracker again performs well in terms of accuracy, being

placed near the top of the vertical axis. However, the weaker performance in robustness

prevents it from outperforming the main body of the competing trackers, placing it in
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Figure 3.13: Accuracy-robustness plot of the VOT Challenge 2014 results. For each
tracker, the accuracy and robustness rankings were computed as a mean over the two
experiments. Legend shown only for the best five trackers, see [116] for a full report.

the lower half of the leader-board. It should again be emphasised that the benchmark

has a very different focus than this chapter and it fails to test our contributions: texture-

less objects, transparencies and long-term sequences. However, it is useful to show the

long-term and texture-less adaptations do not preclude competitive performance on

standard sequences.

3.5.3 Visual Tracker Benchmark 1.0 Results

The proposed tracker was additionally evaluated in the context of the Visual Tracker

Benchmark (VTB) 1.0 [206], also known as the CVPR tracker benchmark. This reports

results of a different (mostly disjoint with VOT) set of trackers and a more extensive

dataset (although with a significant overlap). The dataset contains sequences with

longer durations and larger, even full, occlusions. The results can be seen in Table 3.5.

Following common practice, Area Under Curve (AUC) of the success plots on the
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baseline region noise

Tracker Acc.R. Rob.R. Comb. Acc.R. Rob.R. Comb. Σ

DSST 5.4 11.9 8.7 5.4 12.3 8.9 8.77
SAMF 5.3 13.6 9.4 5.2 12.3 8.8 9.10
KCF 5.0 14.6 9.8 5.2 12.5 8.8 9.33
DGT 10.8 9.1 9.9 8.3 9.7 9.0 9.48
PLT14 13.9 6.2 10.0 13.1 4.8 9.0 9.51
PLT13 17.5 3.7 10.6 16.6 4.7 10.6 10.62
eASMS 13.5 13.3 13.4 10.9 13.7 12.3 12.85
HMM-TxD 9.4 19.9 14.7 9.1 18.8 14.0 14.33
MCT 15.9 13.5 14.7 16.8 12.3 14.5 14.61
ACAT 13.0 14.5 13.7 16.9 14.2 15.6 14.65
MatFlow 21.2 8.5 14.9 18.3 14.0 16.2 15.51
ABS 19.7 17.9 18.8 14.6 14.7 14.6 16.72
ACT 20.1 15.9 18.0 21.4 14.5 17.9 17.97
qwsEDFT 16.6 18.5 17.6 18.1 20.2 19.1 18.37
LGT 28.1 11.2 19.7 25.2 9.1 17.2 18.42
VTDMG 20.8 17.7 19.2 19.8 16.3 18.1 18.65
BDF 22.4 17.1 19.8 20.9 17.3 19.1 19.44
Struck 20.1 20.3 20.2 20.6 18.1 19.3 19.77
DynMS 21.5 18.8 20.1 20.8 18.8 19.8 19.97
ThStruck 21.7 19.4 20.5 21.3 17.9 19.6 20.06
aStruck 21.4 18.4 19.9 20.0 21.2 20.6 20.24
Matrioska 21.1 19.9 20.5 21.2 23.4 22.3 21.40
SIR-PF 23.6 20.1 21.9 21.6 21.7 21.7 21.76
EDFT 19.4 23.8 21.6 21.4 23.4 22.4 22.00
OGT 13.8 29.1 21.4 16.1 29.2 22.6 22.04
CMT 18.9 24.6 21.8 21.3 24.1 22.7 22.23
FoT 18.5 25.7 22.1 21.0 26.2 23.6 22.84
LT-FLO 16.0 29.8 22.9 19.6 30.2 24.9 23.90
IPRT 26.7 21.7 24.2 25.5 22.7 24.1 24.16
IIVTv2 24.8 24.8 24.8 24.6 23.0 23.8 24.29
PT+ 32.0 20.7 26.4 29.2 19.4 24.3 25.34
FSDT 23.6 31.2 27.4 23.6 28.3 25.9 26.65
IMPNCC 25.6 27.7 26.6 28.3 28.3 28.3 27.45
IVT 27.2 28.9 28.1 26.6 27.3 26.9 27.51
FRT 23.4 30.4 26.9 26.2 31.0 28.6 27.74
NCC 17.7 34.2 26.0 22.8 36.8 29.8 27.90
CT 31.5 27.8 29.6 29.7 26.9 28.3 28.98
MIL 34.0 24.2 29.1 34.6 24.9 29.7 29.41

Table 3.4: Overall results of the VOT Challenge 2014 [116]. The trackers are sorted
according to overall performance.
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One-Pass Evaluation (OPE) test is reported, for all the sequences and broken down

by the scene attributes (Illumination Variation (IV), Out-of-Plane Rotation (OPR),

Scale Variation (SV), Occlusion (OCC), Deformation (DEF), Motion Blur (MB), Fast

Motion (FM), In-Plane Rotation (IPR), Out-of-View (OV), Background Clutter (BC),

Low Resolution (LR)).

The longer sequences with stronger occlusion allow the long-term module of LT-

FLO to prove its value. It placed third (i.e. in the top 10 %) in the overall leader-board.

Unsurprisingly, the results on sequences with occlusions (the OCC column of Table 3.5)

are even better (the second place with AUC 0.43). On the other hand, in sequences

with out-of-plane rotation (OPR) the performance is not as good, as virtual corners

assume edges are rigidly attached in 2D. This shows an opportunity for improvement

based on 3D lines; this idea is explored in Chapter 5.

3.5.4 Short-term Tracking

In the previous experiments, the value of LT-FLOTrack was demonstrated on mul-

tiple standard benchmarks. In this section, its properties are examined in detail on

several selected sequences.

The performance of the LT-FLOTrack algorithm is first evaluated in a short-term

tracking scenario, against a number of competitive state-of-the-art approaches – Trac-

king-Learning-Detection (TLD) [106], Local-Global Tracker (LGT) [25] and Flock of

Trackers (FoT) [137] using both standard and low-textured sequences. Properties of the

sequences are summarised in Table 3.6 and selected frames with overlaid initialisation

are shown in Figure 3.14. The same settings were used for all the sequences. Although

the global redetection was enabled during all the experiments, it was not required in the

short-term tracking scenario and only local corrections were employed by the method.
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The speeds are shown in Table 3.7. In most cases LT-FLOTrack is faster than

both FoT and LGT (everywhere except Spaceship, where the competing trackers fail).

It should be noted that while the trackers are generally implemented as a compiled

(C/C++) core with Matlab front-end, the FoT tracker is written completely in C++.

The tests were carried out on a computer with the Intel i7-2600 processor (3.4 GHz,

single core used). LT-FLO takes around 300 MB of RAM.

Figures 3.15 to 3.17 show the quantitative and qualitative results, respectively.

Performance is measured using location error (distance of the bounding box centre

from its ground truth position) and scale error (logarithm of the ratio of the estimated

object size to its ground truth size, 0 means no error). The values were averaged over

20 executions.

For the Dog sequence, the most challenging part is between frames 700 and 1200,

with a strong scale change and occlusion by the image boundary. While LT-FLO has

no major problems and FoT experiences only light scale drift, LGT and TLD have

severe problems, both in localisation and scale estimation.

The largest challenge of the Dudek sequence comes around the 210th frame, when

Name Resolution Frames

Dog [27] 320×240 1 353
Dudek [97] 720×480 1 145
MugN 640×480 737
PageN 640×480 539
SpaceshipN 640×360 360

Table 3.6: Experimental video sequences for short-term tracking. Sequences marked
by N are new and are available online with ground truth [118].

Name LT-FLO TLD LGT FoT

Dog 6.3 4.3 3.4 405.5
Dudek 3.3 2.0 2.1 131.7
Mug 4.8 2.6 2.8 230.6
Page 3.1 2.7 2.5 212.4
Spaceship 2.5 5.0 4.6 112.9

Table 3.7: Speed comparison of different trackers (in FPS).
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Figure 3.14: Short-term tracking dataset (initialisation overlaid). From top to bottom:
Dog [27], Dudek [97], MugN, PageN and SpaceshipN.
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Figure 3.15: Results of short-term tracking evaluation. From top to bottom: Dog,
Dudek, Mug, Page and Spaceship.
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Figure 3.16: Results of short-term tracking evaluation: the Page sequence and a de-
tailed view of the most challenging part of the Dudek sequence.

the face is occluded by the right hand. While LT-FLO’s pose is corrected in several

frames, TLD requires a significantly longer time and the other trackers never fully

recover (see Figure 3.16 for details). LT-FLO also experiences difficulties around frame

800, where background points influence tracking and cause drift. Nevertheless, LT-FLO

recovers in every run.

Due to non-existent texture in the Mug scene, LGT is unable to track this sequence;

the points simply drift off the mug and stay at the person’s wrist. TLD often suffers

from under- or overestimation of the object size and sometimes loses it completely. We

mark these frames, where the object was (incorrectly) reported as missing in more than

half the runs, by a dotted line. Frames where the object is always lost have no yellow

plot at all. FoT works well in this sequence until around frame 550, where it fails.

LT-FLO is comparable up to around frame 500, at which point tracking is lost in some

of the runs, resulting in a poorer average score. However, the object is successfully

re-detected before frame 600.

For Page, LGT performs similarly to the Mug sequence, all the points stabilise

at the person’s hand and wrist. FoT uses only features from fingers and TLD often

loses tracking and rarely re-detects even when the paper returns to a pose similar to

the initial one. LT-FLO experiences difficulties, but still significantly outperforms all

the other trackers. Due to higher errors observed in this sequence for all the trackers,

a rescaled plot of the position error is shown in Figure 3.16.
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Figure 3.17: Short-term tracking qualitative results. From top to bottom: Dog,
Dudek, Mug, Page and Spaceship.

Spaceship is an augmented reality sequence (a computer generated object on a real

background). The tracked object becomes mostly transparent with only the outline

roughly visible. TLD reflects this by confidently reporting it as missing. LGT fails

to separate the target from the background, leading to high errors from the beginning

and a failure later when it starts moving. Both FoT and LT-FLO track successfully

throughout the sequence until the end when the object is partially occluded by trees.

Their performance is comparable; FoT having slightly lower position error and LT-FLO

lower scale error.
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Name Resolution Frames

CarChase [106] 290×217 9 928
Panda[106] 312×233 3 000
Volkswagen[106] 640×480 8 576
LiverRunN 320×240 29 700
NissanN 640×480 3 800

Table 3.8: Experimental video sequences for long-term tracking. Sequences marked
by N are new and are available online with ground truth [118].

3.5.5 Long-term Tracking

In the short-term tracking scenario, LT-FLOTrack’s performance is comparable or

superior to state-of-the-art trackers. However, it obviously still loses track in cases of

full occlusion/disappearance, thus it is necessary to test robustness of trackers to these

conditions. For the evaluation of long-term tracking, different sequences are necessary.

Not only should they be longer, but more importantly they must include full occlusions,

background clutter and scale and illumination changes [106]. A common source of such

sequences are traffic scenes such as car chases, when a vehicle is followed by another

(possibly aerial) vehicle. The majority of sequences in this evaluation are therefore

of this type. These sequences explore redetection capability and predisposition to

drift. Their properties are tabulated in Table 3.8 and selected frames with overlaid

initialisation are shown in Figure 3.18. Qualitative results of LT-FLOTrack on selected

sequences are shown in Figure 3.19.

In a long-term tracking scenario, it is necessary to check whether the detection

and/or tracking is precise (when the overlap with the ground truth bounding box is

higher than 50 %) as well as to check for successful detection of object disappearance.

Kalal et al . [106] applied the precision/recall/F-measure comparison. To check sensi-

tivity of trackers to the initialisation, the experiments are run multiple times with the

bounding box in the first frame shifted by 5 % in both horizontal and vertical direction

and also scaled up and down by 5 % (averaging the results over all 7 possibilities). The

concept of partial occlusion is also introduced into the evaluation process. When the

object is not fully visible, but not fully occluded, the tracker can receive a score for

either overlap of bounding boxes or for reporting disappearance.



66 Chapter 3. Long-Term 2D Tracking of Texture-less Objects

Figure 3.18: Long-term tracking dataset (initialisation overlaid). From top to bottom:
CarChase [106], Panda [106], Volkswagen [106], LiverRunN and NissanN.
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Figure 3.19: Long-term tracking qualitative results. From top to bottom: LiverRun
and Nissan.

The proposed LT-FLO tracker is compared with TLD [106], the first explicitly long-

term tracker. The results can be found in Table 3.9. The trackers were initialised by

a tight bounding box. It should be noted that the experiments of TLD on their own

dataset have significantly different results if their own initialisation is used (better on the

CarChase and Panda sequences and worse on the Volkswagen sequence, relating

to F-measures of 0.45, 0.49 and 0.57 respectively). This indicates high sensitivity to

the initialisation.

The results show that LT-FLO is capable of long-term tracking with competitive

performance. In three out of five of the tested sequences it performed significantly

better than TLD and comparably on one sequence. Also the average performance is

better than TLD. The worst results of LT-FLO were acquired on the Panda sequence.

This again highlights sensitivity to highly non-rigid objects with out-of-plane rotation.
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Name LT-FLO TLD

CarChase .42±.07 (3.2) .15±.08 (11.3)
Panda .17±.04 (4.1) .23±.07 (12.0)
Volkswagen .51±.20 (3.0) .62±.13 ( 5.4)
LiverRun .56±.20 (6.1) .29±.28 ( 4.0)
Nissan .88±.14 (4.1) .63±.14 ( 4.4)

mean .53±.17 (4.9) .36±.22 ( 6.0)

Table 3.9: Results of long-term tracking. Tabulated values are in the format: F-
measure (speed in FPS). The mean values (in the last row) are weighted by the number
of frames.

Experiments were carried out with the short-term trackers as well, but results of

these are not tabulated as they lost tracking at or before the first full occlusion (e.g .

frame 440 for LiverRun or 1860 for Nissan). These include FoT, LGT and LT-FLO

without global correction, which proves its importance in long-term tracking.

3.5.6 Contributions of Algorithm Components

Local Corrections

As all of the short-term trackers failed, a similar experiment was designed, to explore

the behaviour of LT-FLOTrack without local corrections. To test the contribution

of local corrections, only the short-term tracker (as introduced in Section 3.2) was

executed. See the results in Figure 3.20. First, the short-term tracker was run on the

Dog sequence. The results are comparable to those of LGT or TLD, with errors almost

an order of magnitude worse than those of LT-FLO. The high errors can, however, be

attributed to drift only – the tracker did not lose the object completely.

The Page sequence is more difficult. Without the corrections, the short-term

tracker failed completely several times, usually after approximately 100 frames. At

this point (when the bounding box overlap decreased below 10 %) the tracking was

restarted from GT, hence the low error after each discontinuity. This is similar to the

VOT challenge evaluation protocol. In this case, the short-term tracker was not able to
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Figure 3.20: Tracking without local corrections. Left: Dog, right: Page.

track the object throughout the sequence, with high errors reported very shortly after

each manual intervention.

Transformation Quality Measures

To test the contribution of different components of the transformation quality mea-

sure (E , Q and I in Equation (3.18)), each of them was removed and the final perfor-

mance of the tracker was tested without them. Table 3.10 summarises the effect of the

elements in both the short-term (Dog, Page) and long-term (Panda, Nissan) scenar-

ios. While in simple sequences (Dog) the variation is low, more challenging scenarios

have significant differences in performance.

The full technique performs the best in all cases. From the results it is not clear

which of the individual measures performs the best. It can however be observed, that

the combination of edge quality field fit with the number of inliers obtains the highest

score of all the two-component combinations. This can be probably attributed to the

fact that the image evidence E is maximised explicitly and is thus high in all hypotheses

compared using the score Γ.
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Name E Q I E ·Q E · I Q · I E ·Q · I
Dog 0.76 0.73 0.74 0.73 0.76 0.74 0.77
Page 0.18 0.13 0.27 0.20 0.23 0.32 0.61

Panda 0.14 0.10 0.08 0.12 0.10 0.21 0.21
Nissan 0.20 0.42 0.31 0.25 0.41 0.78 0.88

Table 3.10: Effect of elements in Equation (3.18): short-term tracking (mean bounding
box overlap tabulated) and long-term tracking (F-measure tabulated).

Thresholds Selection

Finally, the effect of changing the algorithm parameters and its robustness to such

selection is tested. The most important parameters (besides the number of generated

edge-points discussed in Section 3.2.5) are the position error thresholds θ1 and θ2 as

specified in Section 3.3, which control the behaviour of the redetection framework.

These are defined relative to the object size, as a portion of the bounding box diagonal.

In our implementation, θ1 = 0.03 and θ2 = 0.06 are used (see the vertical cyan lines).

Figure 3.21 shows the performance of LT-FLOTrack as a function of these thresh-

olds. Both graphs are relatively flat, indicating low sensitivity. However, certain obser-

vations can be made. In the case of θ1, a good range to choose from is between 1 and

5 %. Setting the threshold too low causes the learning to be too strict, preventing the

tracker’s ability to adapt. On the other hand, too high a setting renders the tracker

too adaptive and thus drift-prone. In the case of θ2, the lower values in general provide

better performance. This indicates that it is advantageous to accept even very similar

corrections, as long as they have higher score Γ.

3.6 Closing Remarks on LT-FLOTrack

In this chapter, virtual corners are explored as a solution to low texture tracking.

A two module approach is used, where the short-term tracker finds the frame-to-frame

transformations, using correspondences of lines tangent to edges. This works for tex-

tured, low-textured and even transparent objects, only requiring rigid sets of edges,
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Figure 3.21: Sensitivity of the method to parameters: the learning threshold θ1 (left)
and the correction threshold θ2 (right).

not uniquely localisable corners. The long-term module facilitates learning of common

modes of appearance for the tracked object, recovery from failures and redetection af-

ter full occlusions. Strict learning rules make it robust to drift. This, in conjunction

with a guided redetection framework, renders LT-FLOTrack capable of tracking long

sequences robustly. This is demonstrated, among others, by its excellent performance

on the LiverRun sequence of nearly 30 000 frames, the longest sequence published so

far.

LT-FLOTrack covers several challenging cases, where traditional trackers often fail.

However, it does not attain the highest score on every sequence. As the experiments

show, there are several failure cases. Firstly, edge-distorting compression artefacts

typically cause the edge-correspondence search to fail. Typically, performance is also

degraded for highly non-rigid or articulated objects (e.g . in the Panda sequence), as

non-rigid objects break the definition of virtual corners (assuming that distant edges

are rigidly attached). LT-FLO can cover these only partially, using its multiple models.

The same reasoning applies to cases of strong out-of-plane rotation, which will be

explained in more detail in Chapter 5.
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Chapter 4

Causality-based Motion Models

in Visual Tracking

Until lately, the evaluation protocols varied wildly between different publications

on visual tracking. In the recent years, however, several widely-used benchmarks have

set standard measures allowing for a broad comparison of large numbers of trackers.

Such a comparison, besides being beneficial to the tracking community, brought several

unexpected observations. Conclusions can be drawn when looking in detail at, for

instance, the Visual Object Tracking challenge (VOT) 2013 [115]. Some sequences,

which should be tracked easily (and are trivial for a human observer), are actually

surprisingly difficult. An example is the Diving sequence, with an extreme case of a

central bias. Others should be trivial, like the static scene in the Juice sequence (where

the entire motion is due to the camera being moved). Finally, there are sequences, which

have isolated moments where many approaches fail, such as Bicycle.

In all of these cases, the motion of the object is different than motion commonly

considered when designing motion models of trackers. The motion of the camera plays

a significant role with artefacts such as the mentioned centre bias, or sudden camera

shake. In this chapter, the relationship between the camera and object motion, as well

as between the motion of multiple objects within the scene is explored. Automated

73
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identification of such relationships and ways to exploit them are investigated. This can

lead to improved motion models, which take the context of the scene into consideration.

4.1 Tracking within Scene Context

An example of a relationship, which can be observed (and exploited) in the area

of visual tracking, is the relationship between the motions of the camera and an ob-

ject. There are different possible relationships. For instance, the motion of the camera

instantly causes motion of the object in the image frame. An abrupt movement of

the camera (e.g . a shake) can cause a tracker to fail even in otherwise simple tracking

scenarios. A particular example can be seen in the performance of all submitted track-

ers on the Bicycle sequence in the ICCV Visual Object Tracking challenge (VOT)

2013 [115]. While this sequence is relatively easy to track in general, there are two

challenging moments (see Figure 4.1, showing the number of failed trackers per frame

in the VOT Challenge). Many tracking failures are present around frame 180, caused

by a strong occlusion, and around frame 140, stemming from an abrupt camera shake.

If these were detected and accounted for, many of the failures could be prevented,

regardless of the tracker.

Another interesting relationship often arises when the motion of the object causes

changes of the camera motion. If there is a human in the loop, e.g . a cameraman, they

are partially tracking an object by definition. A similar conclusion would hold for an

automatically-controlled camera, tracking the object. When the object moves towards

the edge of the image, the cameraman is likely to move the camera such that the object

does not disappear from the scene. An extreme case of this is the satirical Zero-order

Tracker [136], shown to successfully track a challenging sequence by simply returning

a bounding box on a constant location in the image. As illustrated in Figure 4.2,

here the cameraman kept the diver in the centre of the image frame for almost whole

sequence. However, even in less extreme cases, the commonly assumed centre bias can

be detected, measured and exploited.
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Figure 4.1: Top: selected frames of the Bicycle sequence in the VOT Challenge (1,
140&173). Bottom: number of trackers from the challenge, which failed on particular
frames. Notice the two challenging moments, a strong occlusion around frame 180 and
an abrupt camera shake around frame 140.

Figure 4.2: Selected frames from the Diving sequence, challenging for many trackers,
with overlaid “results” of the Zero-order Tracker [136].

It should be emphasised that the work presented in this chapter does not assume any

kind of high-level oracle (e.g . a human operator) driving the camera motion. In cases

where a relationship exists, its influence can be discovered and measured. However, if
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none is present, no link is found and no further action (such as object motion prediction)

is performed. This even extends to changes in behaviour within a sequence. This means

the motion model can be applied to any existing tracking framework to improve results.

To demonstrate this, its effect on two state-of-the-art trackers FoT [199] and Struck [76],

as well as on the LT-FLO tracker presented in the previous chapter, are examined on

two benchmark datasets. It should be noted that while the prediction helps the tracker,

it does not replace it and the result is thus still limited by the abilities of the tracker.

However, relationships in the context of visual object tracking are not limited to the

camera↔object links. Different elements of the scene may simultaneously be moving

along their own trajectories, which may also be linked. These links are explored and

described in a way similar to the object-camera relationship. They can be analogously

exploited to make predictions about the object even when it is completely occluded.

4.2 Measuring Causal Relationships: Transfer Entropy

In this chapter, the relationships are identified as causal relationships. It should

be however noted that it is impossible to reason about true causality without higher,

semantic understanding of the scene. Therefore this chapter works with predictive

causality instead, which reasons about apparent causal links instead of true causation

(i.e. it does not distinguish between causation and delayed correlation).

Causality is a relation between two events, a cause (source) and an effect (conse-

quence). In general terms, we say that an event causes another event (its effect), if

it precedes the effect in time and it increases the probability of the effect happening.

Although causality has been studied by philosophers for millennia, it received little

attention from the scientific community before the twentieth century. Recently, theo-

retical advances have brought practical progress in the analysis of time series in many

scientific areas.
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We can measure the degree of causality between the camera and the object motion

using various mathematical tools. Granger causality has become a standard approach

used in numerous applications. However, as discussed in Chapter 2, it is limited to

linear relationships despite its recent improvements. Approaches based on information

theory are beneficial, as they impose few assumptions about the signals. Mutual infor-

mation, a measure of general statistical dependence, has been used. While removing

the assumption of linearity, it is symmetric, i.e. does not distinguish between a cause

and an effect. In this work, Transfer Entropy (TE) is used, a directional information-

theoretic formulation employing (differential) entropies (see Sections 4.2.1 and 4.2.2).

To discover if the relationship is significant, a statistical significance analysis can then

be employed (Section 4.2.3). This can be executed in each frame, until such a re-

lationship is found. In the case it is not, it can be concluded that the motions are

unrelated (static camera or independent motion) and no information can be supplied

to the tracker (uniform prior), possibly until the end of the sequence. In the case where

a statistically significant causal relationship is found, its parameters can be estimated

(Section 4.2.4). This information may then be used to predict future object motion

(Section 4.3); such information is supplied to the tracker.

4.2.1 Differential Entropy

Histogram-based methods are usually employed to estimate the entropy of a ran-

dom process [40, 41]. However, in the visual tracking scenario this has two major

disadvantages. Firstly, there is an arbitrary choice of bin size for the histograms (for

quantisation of continuous signals). Secondly, the number of bins grows exponentially

with the number of dimensions. This causes the histograms to be very sparse (and

thus not representative of the distribution). Furthermore it requires immense compu-

tational cost even for a small number of bins per dimension. Discrete entropy measures

also tend to introduce artefacts to the estimation process, which need to be taken into

account [41]. The effect of these can be seen by the periodic oscillations of the discrete

estimate in Figure 4.3a.
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Figure 4.3: Comparison of discrete and differential entropy. Points were uniformly
sampled from an interval (0;x) (x varies along the horizontal axis). The histogram bins
for discrete entropy computation were fixed at integer positions. Notice how stable
differential entropy is, even with sparsely distributed points (no interpolation used).

Therefore, differential entropy is used instead, which operates directly on the con-

tinuous variables (see Figure 4.3 illustrating the advantages of differential entropy). In

this work the Kernel Density Estimation (KDE) [88] approach to compute differential

entropy is employed, which only requires a choice of kernel (a Gaussian kernel with full

covariance is used). The differential entropy of a continuous random process X is

H(X) = −
∫
X
p(x) log p(x) dx , (4.1)

similar to its discrete counterpart. For a finite sample set S it is approximated using

KDE by:

Ĥ(X) = − 1

|S|
∑
xi∈S

log p̂(xi) = − 1

|S|
∑
xi∈S

log

 1

|S| − 1

∑
xj∈S\xi

κΣ(xi − xj)

 , (4.2)

where κΣ is a Gaussian kernel with covariance Σ. In this formulation, the probability

p(xi) outside the logarithm is approximated by the distribution of the samples from

S (i.e. assuming S was drawn according to p(x)). The kernel covariance matrix Σ is

computed using an EM algorithm. This removes the necessity to choose a bandwidth

for KDE manually. In related work, it has been suggested that over-relaxation may
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speed the estimation up [88], however, this proved unstable with high-dimensional data

(when the number of data points is less than roughly two orders of magnitude over the

number of dimensions) and was not used here.

Even without using overrelaxation, the results are often unstable when the number

of data points is of the same order of magnitude as the number of dimensions. However,

it is possible to emulate having more data. Since the motion of both camera and object

are continuous (and can be assumed to be smooth between frames), their positions

can be interpolated at non-integer time moments (between the frames). This makes

the entropy estimation robust even at the beginning of the sequence, where only a few

samples are available.

4.2.2 Transfer Entropy

Differential entropy describes the amount of information within a random process.

However, in this chapter, the interest lies in relationships between several processes.

For this purpose, Transfer Entropy (TE) is used, a measure of directed influence flow

between two processes (X → Y , with windows1 of length n and lag ∆t, see Figure 4.4).

For continuous signals it is defined as:

HX→Y =

∫∫∫
p(yt,ytn,x

t−∆t
n ) log

p(yt|ytn,xt−∆t
n )

p(yt|ytn)
dyt dytn dxt−∆t

n , (4.3)

with time windows defined as ytn = (yt−n, ..., yt−1). It can be reformulated (using

differential entropies from Section 4.2.1) as the difference of two information gains:

HX→Y =
(
H(Y t,Yt

n)−H(Yt
n)
)
−
(
H(Y t,Yt

n,X
t−∆t
n )−H(Yt

n,X
t−∆t
n )

)
. (4.4)

Intuitively, this tells us that if there is an information transfer betweenX and Y with the

correct direction and lag, then adding knowledge about Y t brings more information to

a system which does not know X, than to one which does (as X can partially predict it).

1Although the window lengths are equal for X and Y throughout this work, they do not necessarily
need to be such.



80 Chapter 4. Causality-based Motion Models in Visual Tracking

Figure 4.4: Illustration of information transfer between two processes X and Y .

TE is used here as the measure of the strength of a causal link. It is estimated on

every frame, using the observed history (all the xt−∆t
n and ytn windows) thus far. This

creates a time series, which can be investigated using statistical methods, as detailed

in the next section.

4.2.3 Statistical Significance Analysis

Once the transfer entropy between the motion of the camera and the object is

known, it needs to be decided if this relationship is significant enough to make pre-

dictions of the object movement. Tests of statistical significance are preferred rather

than comparing to a fixed threshold. They offer theoretically founded decisions with

probabilistic thresholds and explicitly cope with the inherent uncertainty caused by

insufficient data.

T-tests are one of the best established statistical methods. In this framework, a

null hypothesis is formulated as an opposite of what is sought to be confirmed. Then a

probability of the null hypothesis being valid is computed and compared to a threshold.

An extremely unlikely null hypothesis can be disproved and therefore the original idea

confirmed. If the null hypothesis cannot be rejected, it can mean either that it is valid,

or that there was not enough data.

The null hypothesis, sought to be disproved (and hence the opposite hypothesis

proved) in this case could be formulated simply as E(HX→Y ) ≤ 0. In other words, the
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Figure 4.5: Left: Results of t-test for information transfer on synthetic data. Notice
that very high statistical significance (p-value beyond any commonly used threshold)
was reached even for random/invalid signal, due to non-independent samples. Right:
Results of Welch’s t-test using surrogate data.

expectation (i.e. the mean of the underlying distribution) of the TE is negative or zero,

meaning X is not informative about Y . This will however often fail as the samples

of TE are not independent (a large portion of the data is overlapping in consecutive

calculations) and many false positives appear (see Figure 4.5 for an example). There-

fore one needs to compare the distribution of HX→Y with known false surrogate data

(a synthetic baseline).

Welch’s test, a more robust and reliable adaptation of Student’s t-test, is used for

such comparison. This test, also known as unequal variances t-test is a statistical test

to compare the means of two random distributions (assumed normal). No assumptions

are taken regarding the numbers of samples given or the variances. It can be, how-

ever, applied to distributions with equal variances without any significant disadvantage

against more common (such as Student’s) tests.

To provide a sequence-specific baseline with no causal relationship the target time

series Y is shuffled to remove any causality while still retaining the appropriate dis-

tribution of amplitudes. The shuffled signal is denoted as Ȳ . Then a Welch’s t-test

is performed, to obtain a p-value indicating the probability of the null hypothesis

E(HX→Y ) ≤ E(HX→Ȳ ): that the information gain between the signals E(HX→Y ) is

weaker than the information gain of the shuffled signals E(HX→Ȳ ) (the opposite of
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Figure 4.6: Dependence of TE on the time lag and the size of the time window.

what could be expected if there was a causal link). Figure 4.5 shows the advantage

of using the surrogate-data test, as opposed to a standard t-test. When the observed

causal relationship is statistically more significant than what is likely to arise by chance

given the signal distributions, it is concluded that it can be used for object motion pre-

diction. This approach is shown to be successful in 15 out of 16 sequences from the

VOT2013 dataset.

4.2.4 Finding the Optimal Parameters

When a causal relationship has been confirmed, an attempt can be made to predict

the object motion from the overall movement of the scene (which is dual to the camera

motion). Since different processes have, in general, different causal relationships, each

particular sequence will have unique properties. These may even change within a

sequence, the process allowing this change is described in Section 4.4.1. In other words,

an optimal set of parameters needs to be identified for this prediction. These parameters

are the time delay and the length of the time window, which can be seen as a mean

and variance of the lag ∆t. These should be chosen such that TE is maximal:

(∆t∗, n∗) = arg max
∆t,n

HX→Y (∆t, n) , (4.5)
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where HX→Y (∆t, n) relates to TE parameterised with a particular window length and

lag. Unfortunately, optimising the window length n is not as simple as optimising

∆t. The transfer entropy stays high even when the window length is overestimated.

Notice the characteristic triangular shape of the area with consistently high TE in

Figure 4.6: when the time window already containing the most relevant information is

extended, no significant information is gained or lost. However, even though the longer

windows still contain all the important information from the smaller windows, they are

more computationally expensive. Furthermore, non-discriminative features are likely

to degrade performance, particularly with small training sets [67]. Therefore a relative

improvement measure R(∆t, n) from adding an additional frame to the window length

is defined, visualised by the column colours in Figure 4.7. This is required to be higher

than a given threshold θR. This leads to a constrained optimisation problem:

(∆t∗, n∗) = arg max
∆t,n

HX→Y (∆t, n) s. t. R(∆t, n) > θR , (4.6)

with R defined as

R(∆t, n) =
HX→Y (∆t, n)−Hmax(n− 1)

Hmax(n)
, (4.7)

where Hmax(n) is the maximal entropy achievable with a window of length (at most) n:

Hmax(n) = max
∆t; n≤n

HX→Y (∆t, n) (4.8)

For experiments in this work, θR = 10 % was used.

Figure 4.7 shows the effect of the parameters ∆t and n. Note that in Figure 4.7b the

decrease of TE is slower when moving from the optimal lag to the future (lower lag),

than to the past (higher lag). This is caused by future data providing more information

than the more redundant information from the past, as the past information can be

already recovered from the Y signal.
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Figure 4.7: Dependence of TE on the time lag and the size of the time window. The
column colours and the red line in (c) visualise the relative improvement R. The red
stars denote all combinations of n and ∆t with R > θR (i.e. where the condition from
Eq. (4.6) is satisfied).

4.3 Exploiting Causal Relationships: Causal Predictions

The knowledge of the relationships between the camera motion and the object

motion is interesting in itself, and can be useful, for instance, in the task of behaviour

analysis [18]. However, since the causal relationships were formulated in the domain

of visual object tracking, it is natural to apply them to this task and explore their

effectiveness in helping to improve tracking results. The global motion of the camera

can be estimated robustly using the inter-frame shift of the whole image, with higher

reliability than the object tracking. Therefore, any discovered relationship can be used
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Figure 4.8: Window-based prediction function φw for the Juice sequence. The training
data are denoted by crosses and their associated colour, the background colour illus-
trates prediction of yt (inter- and extrapolation from the training data), given ytn and
xt−∆t
n , by the learned function φw. In this case n = 1, however in general ytn and xt−∆t

n

can be high-dimensional.

to transfer information from one (reliably estimated) signal to the other. In this chapter,

this information transfer is seen as the estimation of a distribution of possible poses for

an object, based on its history Y and additionally on its relation to the information from

the image signal X. This distribution can be supplied to a tracker as prior information

to guide the tracking process. Two different approaches to object position prediction

are examined; the following sections describe these.

4.3.1 Window-based Prediction

In the first case, a window-based prediction is used, similar to a non-linear au-

toregressive model. This approach is intuitively similar to the formulation of transfer

entropy as described in Section 4.2.2. In autoregression, the current state is esti-

mated (predicted) using a learned autoregressive function φa from its own history:

yt = φa(y
t
n). This is similar to Kalman Filter (KF), which predicts future state of

the filtered process based on previous observations, assuming that the process and ob-

servation noises are Gaussian. As is the case with autoregression, KF uses only the

observations of the predicted signal. Knowing there is a causal relationship between
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Figure 4.9: Predictions for the Juice sequence. Black and red: the training data
(crosses) and ground truth (in the extrapolated regions) of the X and Y signals, re-
spectively; blue: mean and 95 % confidence intervals (too narrow to be seen in (a)) of
the prediction. The learned relationships ensure predictions of Y for frames 60–90 have
higher accuracy and confidence than would be possible with simple extrapolation.

the two signals, the prediction can be improved using the other signal:

yt = φw(ytn∗ ,x
t−∆t∗

n∗ ) (4.9)

This window-based regressive function φw can be learned. In other words, a set of all

windows from the history is taken as training data and a regression (mapping) from the

known part (ytn or both (ytn∗ ,x
t−∆t∗

n∗ ) knowing the optimal parameters) to the current
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pose yt is learned. This learned structure proves beneficial in experiments, compared

to the one of KF, which is fixed.

The principle of this is visualised in Figures 4.8 and 4.9a. In Figure 4.8, the colour

is visualised as a function of the image coordinates. In Figure 4.9a, both the training

data and predictions are shown as a function of time. Normally, the image pose is

predicted only one step in advance, for the extrapolation beyond frame 61, the last

prediction of Y was used along with the measured X value.

4.3.2 Time-based Prediction

In the second case, both the object position and the image position are modelled as

functions of time Xt and Y t. A sequential version of the autoregressive function can be

learned, using the information about the data sequentiality: yt = φs(t | y1..t−1). This

strenghtens the influence of nearby training points, rather than treating all of them as

equal.

Exploiting the causal knowledge, the X signal is shifted forward by the lag found

as described in Section 4.2.4, Equation (4.6), to create Xt−∆t∗ (aligning the signals).

Then, the relationship between the two time-aligned signals is learned to predict the

future changes of Y . A (time-based) regressive function φt is defined such that

yt = φt(t | y1..t−1, x1..t−∆t∗ , n∗) . (4.10)

The window length n∗ is used as a measure of uncertainty in the timing of X, i.e. how

large a part of X must be taken into account during the prediction. In other words,

both X and Y are modelled as related functions of time with one guiding prediction

of the other in areas of insufficient data. The time-based function φt is visualised in

Figure 4.9b.

Comparing the graphs in Figure 4.9, several observations can be made. The window-

based method is very confident about its (inaccurate) prediction – the confidence in-
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tervals cannot be seen in Figure 4.9a as they are too narrow. The time-based method

predicts the signal more accurately in the extrapolated region (frames 60–90), the

ground truth values are always within the 95 % confidence intervals. Additionally, the

time-based prediction is able to extrapolate beyond the extent of the training inputs

in both the X and Y domains (frames 90–100).

4.4 Application to Visual Tracking

4.4.1 Causality Detection

When using real data, the signals are defined as follows. Two time-series are as-

sumed, c for the camera (image) and p for the object pose. Multivariate signals are

used: x and y coordinates and size (bounding box diagonal length), but additional di-

mensions are possible (such as rotation). Within this work a simple approach based on

feature matching and Random Sample Consensus (RANSAC) is used for camera track-

ing (the inter-frame shift), but a more complicated method (e.g. based on tracklets like

in Flock of Trackers (FoT) [199]) may be used in challenging scenarios. For the camera,

the measured quantity is the image position relative to the first image. This is expressed

in pixels, and is defined by the accumulated inter-frame motion (∆xt,∆yt,∆st)>, i.e.:

ct =

(
t∑

u=2

∆xu,
t∑

u=2

∆yu, s1
t∏

u=2

∆su

su−1

)>
. (4.11)

The meaning of these camera parameters is visualised in Figure 4.10. The object pose

p is used as given by the tracker, i.e. pt = τ(pt−1) with p1 supplied by the user as

target selection.

The complexity of the overall relationship can be significant, rendering it difficult

to model. For the object coordinates pt, the camera motion creates instantaneous

feedback, an apparent object motion in the opposite direction (as seen in the the Juice

sequence of Figure 4.13). This clearly can be measured and exploited. It can be
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Figure 4.10: The meaning of camera parameters ct.

particularly valuable in the case of static objects and camera ego-motion. On the other

hand, for autonomous objects (such as in Gymnastics), the causal relationship is

often in the opposite direction: the camera follows the moving object. However, the

previously noted relationship is still present, creating a feedback loop with different

latencies in each direction.

To address this, the dominant relationship is isolated by testing the object position

in both image (p) and scene coordinates (ps, computed using the inter-frame motion,

i.e. with the camera motion compensated). Both are independently tested for causal

relationships, and the subsequent prediction is performed in the coordinate frame where

the first (strongest) causal link was found. Then the information transfer from the

image motion to this object motion is sought. Since it is more likely that the cameraman

will move the camera based on the object motion than vice versa, the area of negative

∆t is given more attention. While the other direction is theoretically possible (e.g . if

a person was deliberately trying to escape out from the camera’s view), this does not

occur in any of the VOT sequences and is not evaluated here to reduce computational

time. It is worth reiterating that this chapter works with predictive (apparent) causality

instead of true, semantic causality.

On these signals the causality analysis is performed, using Hc→p ; the c signal takes

the role of X as used in Section 4.2.2 while p represents Y . To obtain reliable measures

of a time series, one should use multiple realisations of the random process (i.e. obser-

vations drawn from the distribution). However, since the causal relationships are not
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consistent between sequences, only one realisation of the signal is available. Neverthe-

less, it is possible to use multiple samples from the same signal as realisations under

the assumption the signal is stationary (i.e. that the distribution of the signal does not

change over time). In this work a less stringent assumption is used, that the signal

is approximately locally stationary, i.e. its distribution does not change significantly

in a limited time window (where the properties of the signals are analysed). It is,

however, allowed and expected to change in the longer term, allowing different causal

relationships to be found and measured in different parts of the sequence.

For an initial coarse estimation of the signals lag, several overlapping windows with

fixed length are used and TE with its statistical significance is computed for each of

them in each frame, using Equation (4.4). When the statistical significance of any

window exceeds a specified significance level α, a causal relationship is assumed and

the optimal set of parameters is found according to Equation (4.6). If no window is

significant enough, it is assumed there is currently no causal relationship between the

camera and the object motion. In the experiments, n = 4 and ∆t ∈ {−4,−7,−10, . . . }

are used, such that the immediate feedback, caused by camera motion, is covered

and that there is a one-frame overlap between neighbouring windows. A conservative

significance level (in literature often denoted by α) θp = 0.01 % is used.

4.4.2 Causal Predictions

The prediction was carried out as described in Sections 4.3.1 and 4.3.2. For the

machine-learning stage, Gaussian Process Regression (GPR) was employed [165], as

a probabilistic non-parametric regression approach, robust to overfitting. In all cases a

combination of an RBF and a bias kernel was used. Since different video-sequences in

general do not share their causal properties, all the predictions were made using online

sequence-specific learning. In other words, a tracker is required to track successfully

for some time at the beginning of the sequence and this initialisation is used to learn

the properties of the sequence (this implies that early tracking failures may lead to
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incorrect causal relationships, which would then be rejected as not significant). The

prediction would be then supplied to the tracker as prior information and its tracking

result would be added to the history data for the next prediction. The duration of the

sequence history was limited to 100 frames, partially for reasons of speed, and partially

to avoid the assumption of stationarity of the signal (as described in Section 4.4.1).

For the window-based autoregression φa, windows containing a short history (3 fra-

mes: pt3) of the position signal p were taken as features to predict the position in the

consecutive frame pt. Any other temporal information (inter-window relationships)

was discarded, treating the data as a bag of equally important training inputs. The

function φa was then learned and queried with the current history window pt3 to obtain

the prediction. The window-based causal prediction was done in a similar manner.

The history windows ptn∗ and ct−∆t∗

n∗ were concatenated together into (3 × 2 × n∗)-

dimensional features (3× because of both ct and pt being (x, y, s)> vectors), and the

function φw was trained on the available history.

In the case of the time-based autoregressive (non-causal) prediction via φs, the

independent features are simply the frame indices and the dependent features the co-

ordinates. For the causal prediction (the φt function), a method is needed to tie the

two signals together in an a priori unknown relationship. This can be achieved using

a coregionalisation in the GPR. Coregionalisation is a technique which can model both

signals pt and ct−∆t∗ as functions of time with a hidden relationship. Knowing the

shape of one of the signals (c) then guides the prediction of the other one (p) even in

locations distant from any training points of p, as shown in Figure 4.9b.

Applying the prediction to a tracker is a non-trivial task. Ideally, a tracker should

be designed with the causal prediction in mind as its internal motion model. In the

experiments presented below, the prediction was applied to state-of-the-art trackers at

the top of the recent VOT and VTB benchmarks. Incorporating a new motion model

would essentially mean redesigning the trackers. For this reason, the causal prediction

was used as a pre-processing step, applied to the input video. Only the mean of the
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predicted distribution was used. Every following frame was shifted and scaled such that

the predicted object position matched the object position reported from the previous

frame, before being given to the tracker.

4.5 Experimental Evaluation of Causality Detection

Firstly, the proposed approach to detecting causal relationships is validated. This

is done on both synthetic data with known Ground Truth (GT) and real data from a

standard VOT benchmark dataset [115]. The evaluation of causal prediction follows in

Section 4.6.

4.5.1 Synthetic Experiments

For the purpose of synthetic-data evaluation, a number of 1D stationary autoregres-

sive processes (random walks with exponential fading) were generated as input signals

X. The dependent signals Y were created by delaying X, applying transformations

(ranging from an identity to complex non-linear transformations) and adding Gaussian

noise. The transfer entropy between the real signals is compared with random signals

Ȳ . For comparison, the measurements are also included for the signals with cause and

effect reversed. Then the significance analysis is performed, and finally the optimal

parameters for prediction are found.

See Figure 4.12 for results, showing the generated and computed signals described

in Section 4.2 (the last column uses the same legend as Figure 4.7) with the different

transformations. In all cases, TE of the correct signal is consistently much higher than

that of the other signals. The correct signal is also the only statistically significant

relationship. In all the cases, the true parameters (∆t∗ = 4 and n∗ = 1) were revealed

by the method. The results for the derivative signal are different, since at least two

frames are needed for its estimation (and therefore ∆t∗ = 3 and n∗ = 2). Since

the integral transformation uses information from a longer time interval (in fact from
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Sequence Length Length ratio ∆t∗ n∗

Bicycle 271 81.2 % -3 7
Bolt 350 64.3 % -1 2
Car 374 64.7 % -10, -14 7, 5
Cup 303 53.5 % -3, -3 4, 8

David 770 94.9 % -2, -1 2, 1
Diving 231 40.3 % -11 8
Face 415 91.3 % -1 1
Gymnastics 207 81.6 % -1 1

Hand 244 0.0 % NA NA
Iceskater 500 92.4 % -11, -2 3, 7
Juice 404 90.6 % -1 1
Jump 228 0.0 % NA NA

Singer 351 82.3 % -17, -13, -11 6, 1, 1
Sunshade 172 59.3 % -8 8
Torus 264 0.0 % NA NA
Woman 597 49.6 % -8, -3, -3 5, 8, 1

Average 355 59.1 %

Table 4.1: Causal detections on the VOT2013 dataset – detected durations and prop-
erties.

the whole history), there is a noticeable transport of information even in the reversed

direction.

The results clearly show, that transfer entropy is an excellent approach for analysing

time series with complex causal relationships. While transfer entropy of the correct

relationship gains statistical significance after only a small number of frames, the

significance of the reversed causal relationship stays low for the duration of the se-

quences. Performance under even highly non-linear transformations shows the value of

the information-theoretic approach over simpler ones (such as Granger causality [65]).

4.5.2 Real-Data Experiments

For further evaluation, the ICCV VOT Challenge 2013 [115] dataset was used (16

sequences, each containing between 172 and 770 frames). See Table 4.1 for the results.

In the third column, the fraction of the sequence marked as containing a significant
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causal relationship is shown. Then the optimal parameters for prediction are shown; in

the case of different relationships for different time periods there are multiple parameter

sets (e.g . 1 for Bicycle, none for Hand or 3 for Singer).

There are no “ground-truth causal relationships” that could be used to measure

the quality of detection on the sequences (with the exception of zero relationship in

the case of a static camera). However, the detected relationships are consistent with

intuitive understanding of the scene dynamics and the optimal prediction parameters

fulfill human expectations. This shows that it is possible to use information-theory

based measures to discover and quantify relationships between signals in real sequences

for the task of visual object tracking.

In the case of the sequence Jump, none of the detected causal relationships were

statistically significant. However, this is not necessarily an error as although the camera

is not static, it is not known if a true relationship exists between object and camera

motion. There are three sequences with a static camera (constant zero c) and therefore

no causal relationships, these are marked in grey in the tables. For two of them, this

was correctly detected using TE. For the Car sequence, a causal relationship was

incorrectly discovered due to inaccurate estimation of c. However, this means that

causality detection only failed in 1 out of 16 sequences (and this failure had a negligible

effect on the tracking results). It is also worth pointing out the relatively common

occurrence of the (−1, 1) pair, indicating the immediate causal effect of a moving camera

on the apparent motion of a static object.

See Figure 4.13 for detailed results on selected sequences. The same measures

as in the previous section were taken. In the first row, the static object and ego-

motion (see the relation between c and p) Juice sequence is shown. Naturally, the

feedback between the camera motion and apparent object motion (in image coordinates)

is immediate, identified within the (∆t = −4, n = 4) window in the second and third

column and refined (to ∆t = −1, n = 1) in the search of the 4th column. In the

parameter set optimisation, the expected triangular shape of the high-TE area can
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be seen and the correct window length and lag were recovered. The signal containing

the most relevant lag has significantly higher TE and reaches the statistical significance

after several frames. However, while the other signals are not optimal, they still achieve

statistical significance, as they contain relevant information.

The Gymnastics sequence is characterised by its strong centre bias (object being

tracked by the cameraman, similarly to Figure 4.2). This is visible from the strong link

between c and ps. Here the TE of the p signal is lower than of ps, and significantly

noisier, due to nearly constant levels of p. The optimal parameter set is, however,

identical to Juice: ∆t = −1 and n = 1 (although in the scene coordinates, where the

camera motion has been compensated for).

The David scene shares properties of both the previous sequences. Both p and

ps signals contain recognisable elements of c, each in a different manner. Intuitively,

this can be related to c sharing high-frequency components with p (image movement

induced by camera shakes) and lower frequencies with ps (the cameraman follows the

general motion of the target). Indeed, both show significant levels of TE, however in

different periods of the sequence. At the very beginning of the sequence, the TE of ps

gains sufficient statistical significance and therefore prediction is started in the scene

coordinates, with optimal parameters ∆t = −2 and n = 2 (a slightly delayed and less

consistent relationship). After the significance of this signal drops (at frame #155), the

prediction is stopped and the optimal parameter set is re-estimated, using the window

with the most significant TE (denoted in red in the second and third column). In

the case none exceeds θp, it would be assumed there is no relationship. By constantly

monitoring TE, this allows changes of the causal relationships during the sequence.

In this particular case, the prediction continues as an immediate image-coordinates

feedback from camera shake, i.e. using the p signal with ∆t = −1 and n = 1.

Finally, the Hand sequence was recorded using a stationary camera. This is obvious

from the constant signal c. Therefore TE for both p and ps is negligible and purely

caused by noise and as such it is not statistically significant. In such a case, it is
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impossible to exploit causality to help the tracker using the (non-existent) camera

motion, the approach correctly detects this and no prediction takes place.

Summarised, all these results show that it is possible to use information-theory

based measures to discover and quantify relationships between signals in real sequences

in the task of visual object tracking. Using these, one can measure if there is a causal

relationship between a camera and an object in a video-sequence, in which parts of the

sequence, and then measure its properties. Additionally, variations of these properties

in time can be detected and the prediction parameters consequently updated. The final

question that remains is, can detected causal relationships be employed to increase

tracking robustness?

4.6 Experimental Evaluation of Causal Predictions

In this section, the performance of causal prediction and its effect on tracking results

is evaluated. The prediction is computed and supplied to the tracker as detailed in

Section 4.4.2. Figure 4.14 shows an example of such a prediction on synthetic data

(with the linear transform). The knowledge of the c signal, allowed by the discovered

causal relationship, gives the predictor φt better accuracy and lower variance compared

to φs.

4.6.1 Qualitative Prediction Evaluation

The task given during the prediction stage is to estimate the distribution of the

possible object positions to be supplied to the tracker as a prior. The performance

measure should demonstrate how well the GT position is represented by this distribu-

tion. While simple distance between the distribution mean and the GT indicates the

prediction accuracy, it does not take uncertainty into account. In particular, if two pre-

dictors predict the same correct position, the one with high confidence is of most benefit

to the tracker. The opposite is true as well, for a misprediction it is better to report
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Figure 4.14: Example of the time-based prediction on synthetic data. Notice how φt
predicts p more accurately than φs. The narrower 95 % confidence interval CI(φt) also
indicates a lower variance for the φt predictor.
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Figure 4.15: Qualitative prediction results on the Juice sequence, frame #400. Pre-
dicted distributions shown with the ground truth position (in red) and ground truth
inter-frame shift (blue) overlaid. See the text for discussion.

lower certainty. For qualitative evaluation, the probability densities of the predicted

distributions were compared on selected examples from the VOT 2013 dataset.

The causality-based prediction was compared with several alternative approaches

as follows. Firstly, two näıve approaches are examined, treating all historical states as
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Figure 4.16: Qualitative prediction results on the Diving sequence, frame #200.

equally important, based on the assumption that the object stays in an approximately

stable location. One models the distribution as a Gaussian, as used in the re-detector of

the LT-FLO tracker (Chapter 3), while the other one uses a Kernel Density Estimation

(KDE) to model the probability density with higher accuracy. These can be seen

as implementations of the central bias and stable location priors. Visual tracking

algorithms often use a Kalman Filter (KF), or its extension, as their internal motion

model [45, 101, 107, 212]. Therefore, the KF is a natural alternative to causal prediction.

Finally, the autoregressive functions φa and φs and the causal predictions φw and φt

(as defined in Section 4.3) are evaluated.

The results are visualised in Figures 4.15 and 4.16. In both cases, the GT is in-

side the näıvely predicted distributions. However, these distributions are spread over

large portions of the image and therefore the probability density is relatively low at the

correct position. In the case of the KF, knowledge of recent poses leads to a tighter

distribution, however the predictions lag behind the true signal somewhat, causing mis-

predictions. The autoregression given by φa and φs helps significantly with much tighter

distributions; φs shows better performance than φa, particularly evident in Figure 4.16.

Window-based causal prediction φw gives accurate modes for the distribution, although
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the long window in the case of Diving (n∗ = 8) results in a low confidence and thus

a lower density. The time-based method performed the best of all the tested predictors;

φt predicted positions close to the GT while having an appropriate confidence.

4.6.2 Quantitative Prediction Evaluation

Similarly to the qualitative evaluation, the probability density is used as a perfor-

mance measure in the experiments. Additionally, the error is integrated over the entire

probability density support region to obtain the expectation for the prediction error.

The mean values of both across each sequence are used as quantitative measures. These

two error types are mutually complementary: while the mean probability density says

how likely a prediction is to be wrong, the error expectation shows how wrong a wrong

prediction can be.

They are similar to other complementary error measures used within this work.

For instance, in the VOT measures, the robustness (similarly to the mean probability

density) indicates the probability of failure and the accuracy the average quality of a

returned solution. Similarly, the often used precision and recall measures show both

how likely one is to get a good answer (recall or probability density) and how good an

average answer is (precision or error expectation).

There are periods in the sequences, where no causal relationship was detected,

and therefore no prediction parameters exist. In such places, the causal prediction is

replaced by the appropriate autoregressive function: φw by φa and φt by φs. This

explains the identical results for the sequences without causality during quantitative

experiments in Section 4.6.2 (Hand, Jump and Torus).

See Table 4.2 for the results. In the Car sequence, the tracked car stops for a large

part of the sequence in one location, the KDE predicted very high probability for this

location, which is reflected by a very high mean density. A similar phenomenon can be

found in Gymnastics, with the tracked person standing in one place for part of the

sequence. In the Bolt and Iceskater sequences, the c signal estimation failed for
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one region of each sequence due to very low texture of the background. This renders

the relationship between the camera and object motions unstable and therefore the φw

and φt predictors have lower performance in these sequences. This is more noticeable

in the case of error expectation, where these outliers mean the φt prediction does not

have the lowest average error, despite being the lowest on the majority of sequences.

In general, disregarding these outliers, several statements can be made about the

performance of the compared predictors. Both global probability distributions have

an image-wide spread and therefore a very low density. Prediction using KF is better

localised and has therefore significantly better performance, although still worse than

the learned regressive functions. For the learned functions, the time-based ones (φs and

φt) in general perform better than the window-based φa and φw. This is attributed

to the lower dimensionality of the signals in time-based prediction and the usage of

the ordering information. Regressive function φw performs slightly worse than its non-

causal counterpart φa, due to the lower confidence of the prediction (higher variance

and therefore lower probability density). The time-based causal function φt was shown

as the best predictor, beating the second best by a large margin (62 %). In addition, it

performs more than three times better than a KF, which is a commonly used motion

model.

4.6.3 Effect on Tracking Results

In the previous section, it was demonstrated that causal prediction provides a

better estimate of the future target pose than common motion models such as au-

toregression or Kalman Filter. This can be incorporated in a tracker to improve its

tracking performance. This section shows how two state-of-the-art trackers Flock of

Trackers (FoT) [199] and Structured Output Tracking with Kernels (Struck) [76] can

benefit from such a prediction. These were chosen as the highest scoring methods in

the VOT 2013 and VTB 1.1 benchmarks, respectively. Additionally, the effect on Long-

Term Feature-Less Object Tracker (LT-FLOTrack) presented in the previous chapter
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is examined. In all cases, the tabulated values are the VOT accuracy/robustness met-

rics [115] – mean bounding box overlap (higher is better) and number of failures per

sequence (lower is better).

Table 4.3 shows the effect of causal prediction on tracking performance on the

VOT 2013 dataset. The causal prediction is compared against vanilla trackers and

a simple Background Motion Compensation (BMC), using the image context but no

temporal causal relationships (this was incorporated the same way as the causal pre-

diction, as described in Section 4.4.2). While the simple camera motion information

does not prove useful, supplying the tracker prior information from causality-based

prediction improves its performance significantly. In general, robustness is affected

only slightly, while the main improvement is in the accuracy domain. For FoT on the

Iceskater sequence, there is a marginal drop in accuracy, which is more than bal-

anced by a dramatic increase in robustness, lowering the number of failures by 60 %.

For comparison, the same experiments were carried out with the Zero-order Tracker

(as described in Section 4.1). While it works in some cases, the mean performance is

significantly poorer: accuracy of 0.34 and robustness 6.25.

Finally, in Table 4.4, the results of the Long-Term Feature-Less Object Tracker (LT-

FLO) (as introduced in the previous chapter) are shown. In this case, the causality-

based motion model does not improve the tracking results: there is no significant

difference between the first and third column. This is probably due to the inherent

robustness of LT-FLO to the issues the causal prediction aims to prevent (such as

camera shake). Such robustness is likely caused by the larger basin of convergence,

which is (automatically) chosen for edge searching instead of being limited by the

image content which is the case for local optimisation approaches.

Additionally, further experiments were carried out on the much larger Visual Trac-

ker Benchmark (VTB) 1.1 [207].2 The Struck tracker is at the head of the leader-board.

2Background Clutter (BC), Deformation (DEF), Fast Motion (FM), In-Plane Rotation (IPR),
Illumination Variation (IV), Low Resolution (LR), Motion Blur (MB), Occlusion (OCC), Out-of-Plane
Rotation (OPR), Out-of-View (OV), Scale Variation (SV).
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Sequence FoT FoTBMC FoTφt Struck StruckBMC Struckφt
Bicycle 0.70/ 1 0.70/ 1 0.71/ 1 0.43/0.3 0.39/0.2 0.54/0.0
Bolt 0.46/14 0.59/13 0.52/13 0.76/3.7 0.58/8.5 0.72/5.4
Car 0.55/ 1 0.53/ 1 0.59/ 1 0.40/0.0 0.42/0.0 0.38/0.0
Cup 0.81/ 0 0.80/ 0 0.82/ 0 0.78/0.0 0.83/0.0 0.82/0.0
David 0.76/ 0 0.59/ 0 0.75/ 0 0.67/0.7 0.60/0.5 0.70/0.9
Diving 0.25/ 5 0.32/ 3 0.25/ 5 0.39/1.0 0.36/1.0 0.36/1.0
Face 0.74/ 0 0.84/ 0 0.78/ 1 0.83/0.0 0.80/0.0 0.83/0.0
Gymnastics 0.63/ 6 0.60/ 4 0.61/ 6 0.55/2.3 0.59/3.9 0.56/4.0
Hand 0.40/ 4 0.38/ 3 0.38/ 4 0.52/4.1 0.52/4.6 0.52/4.1
Iceskater 0.43/10 0.45/10 0.38/ 4 0.62/0.0 0.32/9.4 0.54/0.7
Juice 0.88/ 0 0.93/ 0 0.90/ 0 0.65/0.0 0.91/0.0 0.89/0.0
Jump 0.62/ 1 0.71/ 0 0.72/ 0 0.56/0.0 0.57/0.0 0.57/0.0
Singer 0.74/ 0 0.65/ 0 0.74/ 0 0.30/0.0 0.41/1.0 0.33/0.0
Sunshade 0.59/ 2 0.57/ 1 0.76/ 2 0.77/0.0 0.77/0.0 0.74/0.0
Torus 0.73/ 0 0.75/ 1 0.72/ 0 0.49/4.3 0.55/5.2 0.56/5.1
Woman 0.61/ 0 0.12/ 1 0.71/ 5 0.75/0.0 0.65/0.0 0.74/0.0

Average 0.62/2.8 0.60/2.4 0.65/2.6 0.59/1.0 0.58/2.1 0.61/1.3

Table 4.3: Tracking results on the VOT2013 benchmark. The best and second best
results are highlighted separately for the FoT/Struck families of trackers and for accu-
racy/robustness.

As shown in Table 4.5, using the causal predictions further improves this — by more

than the current difference between the first two trackers — leading to a new state-

of-the-art on this benchmark. However, it is worth noting that a new state-of-the-art

tracker was not the objective of this work, but rather to demonstrate that causal

prediction can be used to assist an existing tracker.

4.7 Tracking Through Occlusion

The relationships between the object and camera motion can help tracking when

they are related. The target may interact with (e.g . get occluded by) other objects in

the scene, which can pose a challenge for a tracker. However, other elements of the

scene can also help tracking – it is possible to use the scene context to infer the object

location even in cases of full occlusion. This section extends the previous discussion of

relationships in visual tracking beyond the scope of the camera motion.
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Sequence LT-FLO LT-FLOBMC LT-FLOφt

Bicycle 0.62/1.6 0.64/ 3.8 0.54/0.9
Bolt 0.49/4.7 0.13/25.9 0.47/4.5
Car 0.44/1.8 0.48/ 1.3 0.42/0.7
Cup 0.87/0.0 0.86/ 0.0 0.87/0.0
David 0.73/0.2 0.64/ 0.9 0.73/0.0
Diving 0.38/1.8 0.34/ 3.5 0.39/1.7
Face 0.83/0.0 0.82/ 0.0 0.83/0.0
Gymnastics 0.54/1.3 0.46/ 9.3 0.53/1.5
Hand 0.45/4.1 0.46/ 4.5 0.45/4.1
Iceskater 0.38/1.5 0.26/24.3 0.44/3.8
Juice 0.88/0.0 0.89/ 0.0 0.88/0.0
Jump 0.59/0.1 0.52/ 1.1 0.52/0.3
Singer 0.67/0.2 0.41/ 0.5 0.69/0.1
Sunshade 0.67/0.7 0.70/ 2.1 0.68/0.1
Torus 0.64/1.3 0.61/ 1.7 0.59/1.6
Woman 0.54/5.4 0.38/10.3 0.50/5.1

Average 0.61/1.5 0.54/ 5.6 0.59/1.5

Table 4.4: Tracking results on the VOT2013 benchmark with LT-FLOTrack.

Cat. ASLA[98] SCM[216] Struck[76] Struck StruckBMC Struckφt
BC 0.59/3.0 0.61/2.9 0.59/3.3 0.60/1.9 0.55/1.9 0.61/1.7
DEF 0.51/4.5 0.52/4.8 0.52/4.6 0.55/2.4 0.55/2.6 0.60/2.2
FM 0.42/6.5 0.43/6.5 0.56/3.8 0.53/3.2 0.51/3.3 0.57/2.5
IPR 0.52/4.1 0.52/4.3 0.57/3.4 0.53/2.6 0.50/3.0 0.55/2.0
IV 0.60/3.0 0.61/3.1 0.59/3.3 0.58/2.1 0.51/1.9 0.60/1.6
LR 0.59/2.3 0.62/2.5 0.59/3.9 0.51/1.4 0.48/1.1 0.56/1.0
MB 0.45/5.9 0.45/5.9 0.60/2.8 0.53/3.0 0.51/2.9 0.56/2.0
OCC 0.56/3.8 0.57/3.8 0.56/4.1 0.55/2.5 0.54/2.9 0.59/2.0
OPR 0.56/3.7 0.57/3.8 0.57/3.7 0.55/2.3 0.54/2.7 0.59/1.9
OV 0.55/4.3 0.56/4.5 0.59/3.4 0.55/3.0 0.58/2.7 0.55/2.5
SV 0.54/3.9 0.56/3.9 0.58/3.6 0.52/2.3 0.49/2.7 0.57/1.9

All 0.53/4.1 0.54/4.1 0.57/3.6 0.55/2.4 0.51/2.6 0.59/1.9

Table 4.5: Tracking results on VTB1.1. Results in the last three columns were obtained
using the VOT evaluation criteria, using the VTB criteria would improve the accuracy
even further.

Thus far, the focus of this chapter was on the relationship between the motion of the

camera and the tracked object (Hc→p). In this section, this focus is changed slightly,

exploring the relationships between multiple elements of the scene: Hp′→p . The most
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Figure 4.17: Where is the mug? Causality-based prediction indicates its position even
after the person turned away and completely occluded it.

notable example of this idea in the literature is the context tracker of Grabner et

al . [64]. This uses features from across the image as supporters, helping to predict the

object position in cases of full occlusion. In this section, the proposed causality-based

approach is used to achieve a similar result: to recognise which parts of the image

are moving with some relationship to the tracked object, and to use them for motion

prediction. Similarly Sivic et al . [175] used affine factorisation to group together parts

belonging to an object. However, unlike these simpler methods, the presented approach

allows complex non-linear relationships to be used. See Figure 4.17 for an example of

prediction for an object under full occlusion.

To achieve this, windows p′ are sampled on a regular grid across the whole video

frame and each of them is tracked independently using FoT [199]. The causal re-

lationships to the target object p can be inspected: whether the null hypothesis

E(Hp′→p) ≤ E(Hp′→p̄) can be disproved (using the Welch’s test as described in Sec-

tion 4.2.3). The results are visualised in the upper-left corners of Figures 4.18 and 4.19.

Windows which were tracked successfully but had no causal relationship are denoted in

red (windows unable to be tracked were not used and are not shown). Windows with

significant causal relationship detected and with an overlap with the tracked object are

denoted in yellow. Windows, which are not overlapping the object, but are causally

related to it, are considered supporters and are denoted in green. Once this set of

supporters is found, object pose can be predicted from them:

pt = median
p′

(
φ(p′t−∆t

n )
)

(4.12)
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Figure 4.18: Robust prediction during tracking failure on the ETH-Cup sequence of
Grabner et al . [64].

where φ is the causal prediction function (learned using Gaussian Process Regression

(GPR)). Inconsistency between the predictions and the tracked location of the target

using a standard tracker may be used to indicate failure of the object tracker, e.g . due

to occlusion. At this point, the causal prediction can take over.

See Figures 4.18 and 4.19 for the results. The upper left images show the first

frames with windows to eventually become supporters in green. The upper right images

visualise frames where an inconsistency between tracking and prediction was detected.

The remaining rows show selected frames after causal prediction takes over. During
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Figure 4.19: Robust prediction during tracking failure on the CVMPMug sequence.

successful tracking, the tracked (red) and causally predicted (blue) trajectories are

almost identical. However, after the occlusion of the object, whilst the causal prediction

still correctly indicated its position, the tracker has failed.

The results are similar to those of Grabner et al . on the ETH-Cup sequence. How-

ever, the proposed causality-based approach can handle more complex relationships,

such as the highly non-linear scale changes in the CVMPMug sequence. Here it learns

that a complex relationship between object motion and the reflection in the window

can be used to predict the object pose even under full occlusion. See the relationships

visualised in Figure 4.20, which could not be modelled as a constant offset (such as

in [64]) or even with a linear relationship, especially for the y-coordinate, where the

learned causal prediction proves necessary. Additionally, the proposed approach even

discovered two complex supporters on the shadow of the hand (mirrored and scaled

y-component, see Figure 4.18) that [64] was not able to use. The ultimate result is
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Figure 4.20: Detail of the causal prediction, with individual windows contributions
visualised.

then tracking the object pose without actually being able to see it, using solely cues

from related objects in the video. After the occlusion, the tracker could be automat-

ically reinitialised; the occlusion detection and causal prediction prevent drift of the

appearance model in such cases.

Figure 4.21 shows quantitative results, compared to [64]. The error (measured by

deviation from the mean human-annotated position) was reduced by more than one

third, from 41.8± 70.3 to 27.5± 23.1 pixels. In [64], the points of failure, returned with

lower (however still higher than 50 %) confidence are discarded. These can be seen as

the blue spikes in Figure 4.21. Even when ignoring these, the proposed approach still

significantly improves results over the sequence.

4.8 Closing Remarks on Causal Relationships

In this chapter, causal relationships between object and camera motions were ex-

plored. An approach was proposed to discover and quantify this relationship using

transfer entropy, a statistical tool which has not been used in any previous publication

in the area of computer vision. It was also shown that it is possible to find the optimal

time window for prediction of the object position based on the global image motion even

for complex non-linear relationships. Finally, these causality-based motion predictions

were evaluated on a range of standard tracking sequences, and shown to offer signifi-
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Figure 4.21: Tracking and prediction results on the ETH-Cup sequence. Mean and
confidence intervals (three standard deviations in dotted line) shown for human anno-
tations.

cant improvements (increasing average prediction accuracy by 62 % and improving the

top performing tracker on VTB1.1 by 7 % in accuracy and 22 % in robustness), with

particular robustness to camera shakes and fast motion. However, the improvements

are variable, indicating the shortcomings of not fully integrating the prediction into the

motion model of the trackers. Employing the prediction directly inside the tracker, or

alternatively designing a tracker with this prediction in mind would certainly improve

the results further. This would be a very interesting topic for future research.

Additionally, causal relationships between different elements of the scene help in

cases of strong (even full) occlusion. These are typically the greatest source of errors

in modern tracking, as shown in recent benchmarks, and thus the proposed techniques,

which were made publicly available, could provide an invaluable addition to any tracking

algorithm.



Chapter 5

Between Tracking and Structure

from Motion

One of the challenges mentioned in the Introduction chapter is out-of-plane rotation,

caused by variations in viewpoint. This is a hard problem, and a significant cause of

failure for most state-of-the-art trackers. The LT-FLO track introduced in Chapter 3 is,

unfortunately, not an exception. Out-of-plane rotations are one of its common failure

cases, e.g . the rather poor performance on the Car sequence from the VOT2013 dataset

in Table 3.1. Similarly in the VTB benchmark (Table 3.5), LT-FLOTrack dropped from

its excellent overall third position to the ninth position, when considering only sequences

with strong out-of-plane rotation (column OPR). It is obvious that any tracker needs to

address this kind of appearance change, which comes from the object pose and cannot

be modelled by a simple planar transformation.

Many approaches have been proposed to overcome variations of appearance. Online

approaches typically assume that the tracking has thus far succeeded, using this to en-

rich the representation of the object over time. The object is usually represented as a 2D

patch [76, 166], a cloud of 2D points [25, 113] or a combination of these [106]. Unfor-

tunately, variations of viewpoint lead to rapid changes in appearance – see Figure 5.1

for an example. This causes problems for 2D trackers which do not have sufficient

observations to confidently update their object representation.

113
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Figure 5.1: Out-of-plane rotations change the object appearance significantly, here is
a complete change in just 50 frames. First row: original images. Second row: feature
cloud and final model returned by the tracker. Notice the bottom and back side of the
car, which have not been observed yet, so the point cloud does not reach there and the
model is smoothly extrapolated.

In this chapter, the conventional approach of treating appearance changes resulting

from viewpoint variation as object appearance diversity is challenged. Instead, it is ar-

gued that an intrinsically 3D object in the 3D world should be modelled as such. This is

similar to the case of model-based 3D tracking (reviewed in Section 2.2), where the pose

of the camera is sought relatively to the model (which may be user-supplied [77, 193],

assumed to be a plane [96, 174], or induced by fiducial markers [90, 112]). Variations of

viewpoint should then be treated explicitly as the camera motion, in accordance with

reality. By doing so, the negative effects of out-of-plane rotation are not only mitigated;

it actually proves beneficial, as it improves the numerical conditioning (wider baseline).

The 3D shape of the object is estimated online using techniques developed in the

fields of Structure from Motion (SfM) and Simultaneous Localisation And Mapping

(SLAM). As such, this approach can be seen as a bridge between visual tracking and

SfM/SLAM, combining 2D feature tracking and object segmentation with camera pose

and 3D point/line estimation, while avoiding the need for initialisation in SLAM [142].

Another difference from SfM/SLAM is object/background segmentation, where only a

small portion of the image is used (e.g . 10 %, but this could be as low as 1 %). This can
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easily become a significant issue as SfM/SLAM techniques would attempt to model the

scene (background) while features on the object would be rejected as outliers. However,

exactly the opposite behaviour is desired. Therefore it is vital to use the tracking to

provide object/background segmentation to focus on the target object and actively

ignore the background.

To achieve this, a novel approach to modelling the object’s 3D shape using a

Gaussian Process (GP) is explored. This model helps to distinguish which parts of

the image belong to the projection of the object and which are background, allowing

intelligent detection of new features. In addition, the GP shape model 1) provides

an initialisation of the 3D positions for newly detected 2D features, 2) mitigates the

sparsity of features that would lead to failure of techniques such as PTAM [111], 3) the

surface normals of the GP indicate which points on the object may be visible to a par-

ticular camera to aid redetection and loop closure and 4) the GP offers a model of the

surface for visualisation and subsequent tasks, such as dense reconstruction or robot

navigation. For instance, the model, which is learned online as the video-sequence is

processed, can be shown to the user as immediate feedback (analogous to [92, 156] with

hand-held or remote-controlled aerial recording) on how successful the modelling has

been thus far.

5.1 Simultaneous 3D Tracking and Reconstruction

The objective is tracking a 3D object throughout a sequence and learning a model

of appearance on the fly. However, unlike most online tracking approaches, ideas from

both SfM and SLAM are employed in this chapter, to form a 3D representation of the

model that can cope with out-of-plane rotation. The program and data flow of the

proposed Tracking, Modelling And Gaussian-process Inference Combined (TMAGIC)

tracker is illustrated in Figure 5.2. It consists of two parts: tracking and modelling (see

the subsequent sections for full descriptions of the individual elements).
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Figure 5.2: Overview of the TMAGIC tracker. Symbols on the right side of each step
indicate inputs and outputs, as labelled for the case of 2D tracking. While the tracking
loop is repeated in every frame, modelling only runs when necessary (according to
Equation (5.4)). The numbers in upper left corners denote sections covering individual
steps.

The tracking loop is performed on every frame. 2D features (points and line seg-

ments in the image) are tracked in the new frame (Section 5.2.1), yielding the sets of

features currently visible. Using these, the new camera pose can then be estimated (a

linear perspective camera model is used, Section 5.2.2), while keeping the corresponding

3D features (points and lines in the real world) fixed. Without an outer reference, the

world coordinate system is not fixed. Therefore it can be, without loss of generality,

safely assumed that the camera is moving around a stationary object. The tracking

loop is repeated until a change in viewpoint necessitates an update of the 3D features,

using the modelling subsystem.

The first step of modelling is a Bundle Adjustment (BA) (Section 5.3.1). This refines

the positions of 3D features and the camera, using the 2D observations. The updated

features are subsequently used to retrain the shape model (Section 5.3.2), which can

be exploited in two ways. The model defines regions of the image which are eligible

to detect new 2D features. Secondly, it provides an initialisation of the corresponding

backprojected 3D features (Section 5.3.3). Features, successfully extracted using the

current frame, camera pose and the shape model, then enrich the 2D and 3D sets for use

in future tracking. The TMAGIC tracker assumes a single rigid object is selected for
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tracking. Tracking and modelling of non-rigid objects is the subject of the next chapter.

Multiple object tracking with advanced correlation/occlusion reasoning is beyond the

scope of this thesis, but would be an interesting topic for future work.

5.2 Camera Pose Tracking

5.2.1 2D Features and Tracking

The TMAGIC algorithm uses two types of features: points and line segments. The

main advantages of point features are that they form readily available unique descriptors

(patches), are localised precisely and have intuitive and simple projective properties.

On the other hand, line features, which provide complementary information about the

image, have different virtues. Lines encode a higher level of structural information [140,

214], e.g . constraining the orientation of the surface. They can be not only texture-

based, but also stemming from the shape of the object [129]. Therefore in man-made

environments they appear in situations where point features are scarce [176] (such as in

a low texture scenario). This observation was used extensively in the LT-FLO tracker

presented in Chapter 3.

Features of both types go through the same life cycle, visualised in Figure 5.3.

Firstly, they are extracted from the image, in areas belonging to (i.e. segmented as)

the tracked object. This is denoted as S1. Newly created features are regarded as

active. These features may be deactivated (and their 2D counterparts removed), if

they cannot be tracked, or are deemed to be on an invisible part of the object. This

transition to the invisible state is marked as S2. On the other hand, invisible features

may be redetected and thus return to the active state (S3). Finally, features considered

invalid (e.g . laying on the background) are discarded (S4). Particular techniques used

are described in the following paragraphs and the role of the online learned model is

detailed in Section 5.3.3.
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Figure 5.3: Life cycle of features used for 3D tracking.

The 2D point features xti ∈ X t are extracted (S1) using two techniques: Difference

of Gaussians (i.e. SIFT points) and Hessian Laplace [195]. These features are tracked

independently by a Lucas-Kanade (LK) tracker from frame It−1 to It. Features, which

do not converge are removed from the 2D feature cloud (S2). The tracked features gen-

erate a set of correspondences {(xt−1
i ,xti)}, which are subsequently verified by Locally

Optimised RANSAC (LO-RANSAC) [30, 130]. Outliers to RANSAC, i.e. correspon-

dences inconsistent with a global epipolar geometry model, are removed (S4), as well

as their respective 3D features, as these are likely to lie on the background.

The 2D line features lti ∈ Lt are extracted (S1) using the Line Segment Detector

(LSD) [200] approach with false-positive detection control. Lines are tracked as follows.

Firstly, the LSD is executed on It to obtain a set of candidate segments l′tj ∈ L′t. Along

each of the previous line segments lt−1
i a number of edge points are then sampled. Each

of these is tracked independently, using the guided edge search as in Section 3.2, leading

to a new edge point in the current frame. If this new point belongs to a line segment in

L′t, this point votes for the segment. The segment l′tj with the most votes becomes the

new feature lti. As there is no way to validate line correspondences w.r.t. an epipolar

geometry [80], the features are validated using a threshold on the minimum number of

votes (3 out of 5 in all the experiments in this chapter). See Figure 5.4 for an example.
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Figure 5.4: An example of line tracking. Yellow: line feature lt−1
i , black: line feature l′tj ,

blue: pixels belonging to l′tj (as given by LSD), green: edge-to-edge correspondences.
Since 3 out of the 5 sampled edge points converged, feature l′tj is validated and will
become lti.

5.2.2 Camera Estimation

The camera Ct with a projection matrix Pt is defined by the rotation Rt and position

Ct of the projection centre in the world coordinate frame, given by the decomposition

Pt =
1

f
KRt

[
E3| −Ct

]
, (5.1)

where f is a focal length (in world units, e.g. millimetres) and K is a calibration matrix of

intrinsic camera parameters [80], while E3 stands for the 3×3 identity matrix. Since Pt is

a homogeneous entity, f can be neglected in the computation. For simplicity, a general

projection function Π is defined, such that 3D lines are projected as lti = Π(Li|Ct) and

3D points as xti = Π(Xi|Ct).

Assuming a cloud of 3D features (points Xi ∈ Ẋ and line segments Li ∈ L̇, which

are defined by their end-points, specified in Section 5.3.1) and their projections (X t,

Lt) is given, it is possible to estimate a pose (in particular Rt,Ct) of the camera Ct.

The calibration matrix K of the camera is not computed exactly, instead an estimate
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based on image dimensions [160] is used within this chapter:

K =


w + h 0 w/2

w + h h/2

1

 , (5.2)

where w and h are the width and height of the image respectively. This formula would

not suffice for cases of strong zoom, wide-angle cameras, or cropped videos (shift of the

principal point and narrowed viewing angle). However, Pollefeys et al . [160] show that

images obtained by standard cameras are generally well approximated by this formula.

Estimation of calibrated camera pose given 2D to 3D point correspondences (the so-

called Perspective-n-Points (PnP) problem) is a standard textbook problem, e.g . solved

by a P3P-RANSAC [80]. However, although research has been done in the P3L/PnL

area for lines [214], combining these two is not straightforward. Therefore an optimisa-

tion approach is used to solve for camera pose:

Ct = arg min
C

|X t|∑
i=1

ρ1

(
||xti −Π(Xi|C)||

)
+

|Lt|∑
i=1

(
ρ1

(
µ̃>lti

Π(Li|C)
)

+ ρ1

(
ν̃>lti

Π(Li|C)
)) ,

(5.3)

using both point and line features in a unified framework and exploiting the sequential

nature of tracking [71]; ρ1 is a robust cost function to provide outlier tolerance (similar

to [190]). The error function consists of an error term for each point and line feature

(in the first and second summation, respectively). For points, this is just a norm of the

projection error. For line features, the error terms are defined as orthogonal distances of

the end-points of the segment li (µ̃li
, ν̃li , in homogeneous coordinates), to the projection

of the 3D line Π(Li|C) (homogeneous, normalised to the unit length of the normal

vector). Note that since the line may not be fully visible (and is theoretically infinite),

only perpendicular distances are used, in order to cope with the aperture problem (see

Section 3.1, also [176]). This minimisation is initialised at the pose in the previous

frame (Ct−1). During experimentation, it was found that due to the smooth nature of
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the derivatives of (5.3), the basin of convergence for this optimisation is several orders

of magnitude larger than typical inter-frame difference.

In the first frame, the world coordinate frame is chosen as follows. The object,

initialised as a sphere, is centred at the origin and camera centre C1 is at (0, 0, 1)>.

The rotation R1 is set such that the origin is projected to the centre of the user-given

bounding box and the y axis of the camera coordinate system is parallel to the y-z

plane of the world coordinate system (see Figure 5.9). This is, however, not fixed,

and changes freely during BA, which optimises both the camera trajectory and feature

positions.

5.3 Online Modelling 3D Shapes

5.3.1 Bundle Adjustment

After initialisation, 2D tracking is performed until the distance between camera

centres exceeds a specified threshold θC [156]:

||Ct −Ct′ || > θC , (5.4)

where t′ is the time of the last BA. Theoretically, θC could be set to 0 such that

BA is executed on every frame, however that would be excessively time-consuming.

Requiring a baseline of sufficient width (non-negligible camera motion) between two

consecutive BA runs creates well-timed on-demand execution on keyframes character-

ized by equidistant camera poses. When the condition (5.4) is satisfied, the modelling

part of the algorithm is performed. Firstly, the Bundle Adjustment refines the positions

of 3D features Ẋ , L̇ and cameras C . For the purposes of BA, we define C as the set of

previous cameras C1,. . . ,Ct. If speed is an issue, one may limit the BA to take only the

last k cameras into account, i.e. to define C = {Cu|u = max(1, t− k), . . . , t}, however,

in experiments within this chapter this did not prove necessary (thus setting k = ∞
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Figure 5.5: Examples of 3D feature clouds and GP-learned smooth models. Notice
the unseen parts of the objects, which are without features and where the model is
extrapolated (i.e. the rear side of the car and the “pole” on the left side of the cube).

was employed). The BA [2] minimises a similar error to (5.3):

arg min
Ẋ ,L̇,C

t∑
u=1

( |Xu|∑
i=1

ρ2(||xui −Π(Xi|Cu)||)+

|Lu|∑
i=1

(
ρ2

(
µ̃>lui Π(Li|Cu)

)
+ ρ2

(
ν̃>lui Π(Li|Cu)

)
+ Λi

))
,

(5.5)

where the added term Λi is a regularisation term, which ensures that the lengths of

3D line segments are close to those observed. The robust cost function ρ2 employed

here is the Cauchy loss, as provided by the Ceres Solver [2]. Note also that every point

from X t and Lt has a correspondence in Ẋ and L̇, respectively, for every t, but not

necessarily vice-versa, due to features which are not currently visible. After the 3D

feature positions have been refined, they are used to train the shape model.

5.3.2 Gaussian Process Modelling

As discussed previously in this chapter, the object shape is modelled as a Gaussian

Process (GP) [1, 165]. This allows us to infer a fully dense 3D model from the finite

collection of discrete observations Ẋ and L̇. Using the GP in this manner can be seen as
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estimating a distribution over an infinite number of possible shapes. The expectation

of such a distribution (the most probable shape) can be used to model the object, while

the variance at any point represents confidence.

For online target/background segmentation, a Gaussian Process (GP) is trained as

a coarse, probabilistic model. The representation can be chosen such that every point

X on the surface is represented in spherical coordinates (θ, ϕ) relative to the object

centre Y◦ as:

X = Y◦ + r · (sin θ cosϕ, sin θ sinϕ, cos θ)> (5.6)

(for more details on the choice of Y◦ see below). For any pair of angles, the radius

would then be modelled as:

r = GP(θ, ϕ|κ) , (5.7)

where κ is the kernel of the GP, relating to the surface properties of the modelled

object, and may be any positive definite two-parameter function. This function is

learned during tracking, such that the likelihood of the training data is maximised.

This is a natural, minimal (i.e. using exactly 2 parameters for the two-dimensional

space of 3D directions) parameterisation. However, it suffers from singularities at the

“poles”, where the whole range of azimuths represent a single point. For this reason,

the unit-vector parameterisation is used within this work instead. A 3D point is first

re-expressed as a vector from the centre Y◦ of the object:

X = Y◦ + Y . (5.8)

These are then modelled such that the unit-length normalised vectors Ȳi = Yi/||Yi||

represent the independent variable and the radii rȲi
= ||Yi|| the dependent variable,

i.e.:

X = Y◦ + r · Ȳ , (5.9)

r = GP(Ȳ|κ) . (5.10)
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As it does not suffer from a singularity in any direction, this parameterisation was

found superior to alternatives such as the spherical coordinates, despite its higher di-

mensionality.

The observed 3D points Ẏ = {Yi} (point features Ẋ and end-points1 of line features

L̇, in both the active and invisible states) are used as training data for the Gaussian

Process (GP). It could be argued that the 3D parameter space in this new represen-

tation is not sufficiently covered by training data. It is true that only training points

laying on the unit sphere (a 2D manifold) are provided and the parameter space outside

the manifold is unconstrained. However, this does not create a problem in practice,

since only query points laying on the unit sphere (i.e. direction vectors) are queried.

Without loss of generality, we can assume that the centre Y◦ coincides with the

origin of the world coordinate system. In this case, for a query direction Q̄ (where

||Q̄|| = 1), the resulting 3D point Q is predicted as [165]:

Q = Q̄
(
κ( ˙̄Y, Q̄)> κ( ˙̄Y, ˙̄Y)−1 r ˙̄Y

±κ( ˙̄Y, Q̄)> κ( ˙̄Y, ˙̄Y)−1 κ( ˙̄Y, Q̄)
)
,

(5.11)

or more succinctly as

Q = Q̄
(
rQ̄ ± σQ̄

)
, (5.12)

where rQ̄ is the predicted radius and σQ̄ is the confidence. The notation r ˙̄Y represents

a vector of norms of all vectors in the training set Ẏ, i.e. r ˙̄Y;i
= rȲi

= ||Yi||.

Intuitively, Equation (5.11) shows that the predicted radius at any point is defined

by the training radii while accounting for the spatial relationships between the data

points. The influence of any particular element of the training data is quantified by

κ( ˙̄Y, Q̄), while κ( ˙̄Y, ˙̄Y)−1 removes any correlation within the training data.

This kind of representation means that the object shape is modelled by an implicit

non-parametric function. While one can query the surface in any direction, there is

no discrete “set of vertices” marking the shape. Instead, for visualisation the model is

1It is possible to sample more points along line features which have high confidence.
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Figure 5.6: Star domain example in 2D. Left: Every region of the car shape can be
reached from the centre without crossing the boundary, i.e. its shape is a star domain.
Right: Since there are regions unreachable by a straight line, it is not a star domain.

queried at regularly sampled positions (see Figure 5.5 for an example). This, however,

is not an obstacle for its use.

As the Gaussian Process (GP) shape model is fully probabilistic, not only a shape

estimate is provided, but a whole distribution of shapes (radius functions). From this

distribution, the mean (i.e. the most probable) shape is used as the estimate, and the

variance as the uncertainty at any given point of the object surface. The probabilistic

nature of the GP model further prevents overfitting through an implicit “Occam’s-

razor” effect, that favours models which are both simple and which explain the obser-

vations well. Other beneficial properties of GP modelling include smooth interpolation

and extrapolation in regions without training inputs. Several alternatives for the sur-

face shape modelling were tested, such as a mesh-based model, a parametric probability

distribution and a spherical-coordinate model with a different machine-learning tech-

nique (such as nearest neighbour regression, neural network, random regression forest

or support vector regression). However, none had the properties required.

The non-parametric nature of the model used makes it possible to model a wide

range of object shapes and resolutions without the need for reparameterisation. To

specify rigorously what class of objects can be modelled, one needs to consider the

properties of the spherical representation. Since the radius for any given direction
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Figure 5.7: Iterative search for the shape centre. Black: training data. Coloured:
shape centre (◦) and sampled points (×), iterating from the centre of mass (blue) to
convergence (green).

angle must be unique, there must exist a point inside the object, the shape centre, such

that the line segments connecting it to all the points on the shape surface lie inside the

object. This class of objects is known in computational geometry as star shapes or star

domains (of a Euclidean space). See Figure 5.6 for 2D examples of objects which are and

are not a star domain. While this choice of parameterisation might seem overly limiting,

in practice most “compact” objects (without deep concavities or long, extended parts)

are of approximately star shape. Furthermore, it is not necessarily harmful when the

online model smooths over minor regions which break this assumption.

However, attention must be paid to the selection of the shape centre Y◦. While

using the centre of mass is a viable solution for many shapes, this can sometimes lie

too close to the object surface, which leads to unwanted artefacts (see the blue samples

in Figures 5.7 and 5.8). Therefore a data-driven shape centre is found as follows. The

centre of mass of the training points is used only as an initialisation and the centre is

subsequently shifted towards the midpoint between this and the centre of mass of the

sampled points (trained with the previous centre). The sampled points change with
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Figure 5.8: Iterative search for the shape centre with the RBF kernel; legend is the
same as in Figure 5.7. Right: detail of regression near the shape centre.

the shift of the centre, so this needs to be iterated:

Ynew
◦ = γ

1
|Ẏ|
∑
Ẏ Yi + 1

|Ṁ|
∑
ṀMi

2
+ (1− γ)Y◦ , (5.13)

where γ is a learning factor and Mi is a point sampled on the surface model (in regular

angular intervals, visualised as × throughout this chapter). The factor γ was set to 0.5

in the experiments throughout this thesis. See Figure 5.7 for a 2D illustration of the

convergence. It is necessary to repeat this search for the shape centre every time the

training data changes (after every bundle adjustment). However, it is not necessary

to repeat all steps to full convergence. Instead, only one step is performed after each

bundle adjustment, which converges eventually as the relative magnitude of updates of

the training data decreases.

One of the most important choices while designing a technique using a GP is the

choice of kernel or a combination of kernels. The kernel choice represents prior knowl-

edge about properties of the modelled function (in this case surface shape), especially

smoothness and differentiability. Formally the only condition on a function to be used

as a kernel is that it is positive definite. A sum or a product of positive definite functions

are positive definite as well, thus a kernel can be created as an additive or multiplicative

combination of sub-kernels.
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One of the most commonly used kernels is the RBF kernel (also called Gaussian

kernel), which is infinitely differentiable and therefore induces smooth shape contours.

This, however, causes artefacts in the shape, as the overly smooth gradient extrapolates

too far from the training data and exaggerates rapid radius changes (see Figure 5.8).

The same holds for the Matérn kernel (of both common orders 3/2 and 5/2). For this

reason, the exponential kernel is employed, which allows fast changes in both the radius

and its gradient and thus models sharp edges (the gradient can even be discontinuous

as the kernel is only once differentiable). This kernel is (additively) combined with a

bias kernel to avoid the assumption of zero-centred data and with a white-noise kernel

to gain robustness against outliers:

κGP = λExpκExp + λBκB + λWκW . (5.14)

Besides this choice of kernel, there are no other parameters in the GP modelling.

There are, however, several hyper-parameters λ, which are learned from the train-

ing data (hence not algorithm parameters). These include the weights λ from Equa-

tion (5.14) as well as the length parameter of the exponential kernel (controlling the

input scaling). The hyper-parameters are optimised to maximise the likelihood of the

training data Ẏ. This provides the previously mentioned implicit “Occam’s razor”

principle [164], preventing overfitting, a unique feature of Gaussian Process modelling.

It should be noted, that at the beginning of the video-sequence (i.e. before the

first Bundle Adjustment), there is no depth estimate and therefore no 3D information.

As an initialisation of the model, a sphere is used, with dimensions inferred from the

user-given initial bounding box (see Figure 5.9). While this model would be useless as

an output, it gives sufficient information to track for a limited time. The model is then

trained as soon as the 3D feature positions are refined.
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Figure 5.9: State of the proposed TMAGIC tracker after the first frame. Left: a
bounding box, X 1 and L1. Right: Ẋ , L̇, initial model M (the blue sphere visualises
sampled points Ṁ) and C1 (magenta). For the camera, the visualisation shows the
projection centre C, principal direction and image plane. The upper left corner of the
image plane is indicated by the dashed line.

5.3.3 Feature generation

For camera pose estimation (Sec. 5.2.2), it was assumed that the 3D feature clouds

Ẋ and L̇ are known and fixed. In this section, the issue of feature generation and

localisation is addressed. The assumption is made that a shape model of the object is

known (trained according to the previous section).

In the first frame I1, initial sets of 2D features X 1 and L1 are generated inside a

user-supplied bounding box. When generating a 3D feature Xi for a new 2D feature

xti (in the case of line features, both end-points must lie on the surface), the process

is as follows. Firstly, the corresponding ray Z from the camera centre is generated,

parameterised by α:

Z(α) = Ct + α(KRt)−1x̃ti (α > 0) , (5.15)

where x̃ti is the homogeneous representation of xti. Then a search for the (nearest to

the camera) intersection between the ray and the shape is performed:

Xi = Z(α) , (5.16)

α = arg min
α>0

α s. t. ||Z(α)|| = rZ̄(α) . (5.17)
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C

Figure 5.10: Model intersection search example. The intersection points (+) are initial
3D locations of the newly generated features. C marks the camera centre.

If the minimisation of (5.17) has no solution, it means that the ray does not intersect

the mean surface given by the GP (see Figure 5.10). The use of the mean surface

corresponds to a threshold such that there is an equal probability of false positives and

false negatives. A false positive happens when a detection on the background is added

to the feature set, while a rejected point on the object surface is a false negative. If

there is prior knowledge about the respective robustness of other system components,

this can be exploited by adding the appropriate factor (multiple of σZ̄(α)) to rZ̄(α) in

Equation (5.17).

It should be noted that as in parts of the previous section, the shape centre Y◦ is

assumed to be the origin of the coordinate system, to keep the notation uncluttered.

Therefore the (finite-length) ray can be simply expressed, similarly to Equation (5.12),

as cast from the origin: Z = rZ̄ · Z̄. This, again, does not limit generality, as reintro-

ducing Y◦ back to the equations is trivial.

Thus far, the process has been the same both for initialisation in the first frame

and for adding new features after model retraining in the subsequent frames. However,

there are several differences. Firstly, if a ray does not intersect the surface during the

generation of new features in frame t > 1, it is not used: features are detected over the

whole image but only those covering the target object are used. However, in the first

frame, all the 2D features will lie inside the user-specified bounding box. In this case,

their 3D positions are reconstructed such that even when they do not intersect, they
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minimise the distance to the mean surface:

α = arg min
α>0

(||Z(α)|| − rZ̄(α))
2 . (5.18)

This can lead to the characteristic fringe seen in Figure 5.9. Generation of new features

in t > 1 has one further condition. Since adding new features increases the time

complexity of all other computations, new features are added only into uncertain regions

of the object, with variance greater than a specified threshold:

σZ̄(α) > θσ . (5.19)

As previously mentioned, some of the 3D features may be temporarily occluded,

i.e. without 2D correspondences (in the invisible state). Surface normals, given by the

shape model, provide a tool to determine which parts of the object are visible from

a particular direction. This is done by sampling several points from the GP in close

proximity to the location of interest (i.e. several orders of magnitude below the object

dimensions) and locally fitting a tangent plane. TMAGIC uses this information in two

complementary ways. Firstly, if a 3D feature is deemed not visible, but it has a 2D

correspondence, it can be removed (transition S2 in Figure 5.3, e.g. when it adheres to

an object contour). On the other hand, if a 3D feature has no 2D correspondence, but

is on a surface which is seen by Ct under an angle close to normal, the 2D feature can be

redetected (S3). This is performed by projecting it into It by Πt and then tracking it in

2D using a stored appearance patch. Loop closures (as termed in the SLAM literature)

are thus possible when a number of previously seen features are redetected.

5.4 Experimental Evaluation of TMAGIC

In all experiments, the parameters were fixed as follows: θC = 10 %, θσ = 0.5 %,

relative to the scene size. The tested proof-of-concept implementation (Matlab frame-

work with several parts in C++) currently runs at several seconds per frame. However,
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Figure 5.11: Selected frames from the Cube1 sequence. Notice, how TMAGIC learns
the new face of the cube. #194: unknown shape, the surface is smoothed over. #213:
first features detected, shape roughly estimated. #239: more features identified, shape
refined. #272: Final state, model in agreement with the object.

there are possibilities for trivial technical improvements and for parallelisation, allowing

real-time application.

5.4.1 Synthetic data

Firstly, results on a synthetic sequence Cube1 are shown (Figure 5.11). This has

been rendered to have the following properties. It contains a cube, rotating with speed

1◦/frame. Some of the sides are rich in texture, some are weakly textured. From the

point of view of the TMAGIC tracker, the camera circles around the fixed cube with a

perfect circular trajectory (see Figure 5.12). However, since the world coordinate frame

is defined only up to a similarity transform and can be moved freely during the BA, it

is not possible to measure the quality of a tracker directly w.r.t. this expected position

(i.e. no absolute ground truth is possible). Therefore a 3D circle is fitted to the camera
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Figure 5.12: The 3D scene in t = 180 and 360. The camera and features are shown in
the same way as in Figure 5.9, the camera trajectory (centres and principal directions
for each previous frame) is shown in black. Ground-truth trajectory is in yellow. The
details of the model can be seen in Figure 5.5.
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Figure 5.13: Deviation of the trajectory from a perfect circle (least-squares fitted).
Errors are relative to the radius of the circle.

trajectory and the error measured as the distance from this circle. Figure 5.13 shows

the results. If we assume the camera orbits at a distance of 1 m, the mean camera

pose error is 1.3 cm. This indicates a close approximation to the circular trajectory.

Despite being based on sparse data, the learned shape model represents the cubic shape

(of side equal to approximately 17 cm) accurately, having a mean reconstruction error

of 3.4 mm. The trajectories at the beginning and end of the sequence did not meet

(due to accumulated error prior to loop closure), thus the deviation from the fitted



134 Chapter 5. Between Tracking and Structure from Motion

ground truth is distributed between the two. The peak around frame #100 is due

to a temporary inaccuracy during the transition between sides of the cube, when the

continuously visible side is lacking visual features. However, TMAGIC recovers once

sufficient visual evidence has been accumulated. The input video and additional results

can be found online [120].

To compare the method with currently used reconstruction approaches, this se-

quence (with no background to account for) was processed with VisualSfM [204, 205]

and Bundler [178, 179]. While Bundler surprisingly failed, reconstructing 2 separate

cubes, VisualSFM performs worse than TMAGIC with a comparable reconstruction

error of 2.8 mm, but 72 % larger camera trajectory error of 2.3 cm. On real sequences

including background the reconstruction techniques perform even worse, rarely mod-

elling any reasonable part of the target object. This can be seen in the next chapter,

where more reconstruction-oriented experiments are performed.

5.4.2 Real data

The performance of TMAGIC was further analysed on several sequences, used

in previous 2D visual tracking publications. These sequences contain visible out-of-

plane rotation in most cases. Additionally, several new sequences of drifting cars

were used, which have significant out-of-plane rotation (in addition to strong motion

blur). These new sequences are available online including human annotated Ground

Truth (GT) [120]. Selected frames are shown in Figures 5.14 and 5.15. Figure 5.16

shows qualitative results of TMAGIC on selected sequences.

The TMAGIC tracker is compared with several state of the art tracking algorithms:

Local-Global Tracker (LGT) [25], Tracking-Learning-Detection (TLD) [106] and Flock

of Trackers (FoT) [137]. The FoT tracker is similar to the proposed approach, in that

it employs a group of independently tracked features with a higher management layer,

however it operates in 2D only. GT in 3D is not available for these sequences: neither

shape not trajectory. Therefore the performance metric used was localisation error,
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Figure 5.14: Selected frames from the test sequences (sequences from literature). From
top: Dog, Fish, Sylvester and Twinings. The initial bounding boxes are overlaid.

i.e. the distance of the centre of the bounding box2 to the ground-truth centre, and

additionally overlap of the tracked and ground-truth bounding boxes. TLD can report

an absence of the object. There are, however, no full occlusions in the tested scenes,

thus in such cases the frames were assigned the maximal error found in the sequence.

The results are visualised in Figure 5.17 and the mean values tabulated in Table 5.1.

2In the case of LGT the centre is returned directly.
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Figure 5.15: Selected frames from the test sequences (newly created sequences). From
top: Rally-Lancer, Rally-VW, TopGear1 and TopGear2. The initial bounding
boxes are overlaid.

On the Dog sequence, the TMAGIC and TLD trackers perform similarly, and LGT

slightly worse. All these trackers experience difficulties at about frame #1000, where

the dog is partially occluded by the image border. This is however not a problem

for FoT, which estimates the position accurately even under such strong occlusion.

The Fish sequence is relatively simple, with all the trackers reaching low errors and

TMAGIC being the best. On the Sylvester scene, TMAGIC as well as FoT track

consistently well until the end. Both LGT and TLD have similar momentary failures

(frames #450 and #1100, respectively) but both are able to recover. For LGT, the

duration of the problematic part of the sequence is shorter and the error is smaller,

rendering it the best tracker for this sequence. The Twinings sequence contains full

rotation and was originally created to measure trackers’ robustness to out-of-plane
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Figure 5.16: Qualitative results of the TMAGIC tracker. From top to bottom: Rally-
Lancer, Rally-VW, TopGear1.

LGT TLD FoT T TMIC TMAGIC

Dog [27] 19.3/20 12.3/56 4.7/63 13.9/65 9.3/71 12.1/46
Fish [166] 15.6/20 8.8/72 9.2/75 8.0/68 10.4/65 5.6/69
Sylvester [166] 13.1/16 18.0/58 18.0/58 37.3/42 35.3/9 17.8/48
Twinings [10] 22.5/18 13.2/38 15.5/44 42.9/31 16.2/29 9.1/53

Rally-Lancer 145.8/19 333.5/13 734.5/13 127.8/43 121.3/42 94.3/53
Rally-VW 91.3/21 152.5/48 196.9/39 149.4/39 148.3/39 47.6/62
TopGear1 16.3/49 65.1/34 80.4/41 39.0/49 44.5/43 40.0/56
TopGear2 84.3/37 104.3/21 117.9/29 48.4/51 84.1/31 34.7/59

Average 48.4/25 88.5/43 147.1/45 58.3/49 58.7/41 32.7/56

Table 5.1: Tracking results: mean localisation error (in pixels) and mean overlap (in
percents). Bold numbers indicate the best result, underlined numbers the second best.

rotation [10]. Unsurprisingly, TMAGIC significantly outperforms the state of the art

on this sequence. The average localisation error reduction for all these scenes is 22 %.

The car sequences are chosen because they contain rigid 3D objects under strong

out-of-plane rotation (around 180◦) with significant camera motion. Therefore the TLD

and FoT trackers, which are trying to track a plane only (one side of the car) instead

of the 3D object, fail. As the cars rotate, the tracked parts are no longer usable and
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Figure 5.17: Visualisation of results of the quantitative performance analysis. From
top and left: Dog, Fish, Sylvester, Twinings, Rally-Lancer, Rally-VW,
TopGear1 and TopGear2.

TLD reports this (the horizontal sections in Figure 5.17). FoT is incapable of reporting

object disappearance and it attempts to continue tracking, exacerbating the situation.

The LGT tracker, which has a less rigid model of the object, is sometimes capable of

tracking after the cars start to rotate, if the rotation is slow enough for the 2D shape

model to adapt. The TMAGIC tracker is also able to adapt as the object rotates, and
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explicitly modelling the car in 3D improves robustness by allowing it to intelligently

detect new features. While 2D trackers attempt to mitigate the effects of out-of-plane

rotation, TMAGIC actively exploits it. This gives it a significant edge, resulting in

the localisation error being reduced by 58 % on average. Notice that the errors in

the Rally sequences are generally higher, due to the higher resolution. The resulting

model for the Rally-VW sequence is visualised in Figures 5.1 and 5.5. The car is

modelled accurately, except for missing elements at the rear of the vehicle, which have

not been observed during the sequence.

The last three columns of Tab. 5.1 show the effect of the different stages of TMAGIC

on performance. The simplest version, T, assumes a fixed 3D model (sphere) and

feature locations. TMIC additionally performs refinement of the 3D features and fits

a näıve spherical model. Firstly, FoT is compared with T, which can be seen as 2D and

3D trackers based on the same principle. FoT performs better on sequences without

rotation (higher accuracy of the solution) and the advantage of 3D tracking becomes

apparent with stronger out-of-plane rotations (decreasing the error up to five-fold).

The next step is T→TMIC. However, the effect of the more advanced procedure on

the performance of tracking in the image plane is imperceptible, despite the improved

plausibility of the feature cloud. The final stage is training a more complex GP shape

model using the feature cloud (TMIC→TMAGIC, using the full system). This yields

the most significant improvement (average error reduction of 50 %), rendering TMAGIC

by far the best of the evaluated trackers in cases of out-of-plane rotations. In the case

of TopGear1, mostly the front part of the car is being modelled, shifting the centre

of the bounding box forward and therefore adversely affecting the final results.

Figure 5.18 shows an example of a failure case, where TMAGIC failed to pick the

foreground object. Although after the first frame (upper left) foreground features were

successfully identified and used for tracking, but the situation has changed after the

first BA (upper right). The updated model had slightly wider extent, causing more

background features to be included in the segmented area, leading to correct point

features being discarded as epipolar outliers (according to Section 5.2.1). This did not
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Figure 5.18: Results on the Torus sequence: a failure case.

cause TMAGIC to fail immediately, as correct line features were still present, but it

led to drift and eventually to another increase in model size after the next retraining

(bottom left). This exacerbated the situation, leading to a complete tracking failure

(bottom right).

5.5 Closing Remarks on TMAGIC

The experiments show that the Tracking, Modelling And Gaussian-process Infer-

ence Combined (TMAGIC) tracker is able to track standard sequences, used in many

previous publications, with a comparable performance to the state of the art. However,

by explicitly modelling the 3D object, it handles out-of-plane rotations significantly

better and can also track in cases of full rotation. TMAGIC consistently outperforms

simpler variants (TMIC etc.), especially in scenarios when the object/background seg-

mentation is vital. This shows the benefit of the shape model, used for filtering features

and initialisation of their 3D positions.
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TMAGIC works under the assumption that the object is rigid. It is robust to small

shape variations (e.g. a face), but is not capable of tracking articulated objects, e.g. a

walking person. Another limitation would be full occlusions in long-term tracking.

However, the algorithm is robust to low textured objects through the use of line fea-

tures (similarly to Chapter 3). TMAGIC assumes fixed camera calibration during the

tracking. Cases of zooming in the sequences or cropped sequences usually do not cause

tracking failures, but the resulting model is distorted. Online estimation of calibration

parameters is addressed in the following chapter, as well as tracking and modelling of

non-rigid targets.
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Chapter 6

Dense 3D Tracking of Non-Rigid

Objects

In all the previous chapters of this thesis, the assumption was made that the tar-

get object is rigid. While this is valid in many scenarios and approximately holds

in many more, it still remains a limiting factor. In this chapter, this assumption is

abandoned. Explicitly non-rigid modelling of the object of interest is explored; such

modelling allows tracking in a wider range of scenarios. See Figure 6.1 for an example

of a synthetic sequence, containing an object undergoing strong shape variation. The

reconstructed non-rigid model shows how 3D tracking combined with Non-Rigid Struc-

ture from Motion (NRSfM) can lead to a success even in such a challenging scenario.

The second major contribution of this chapter is 3D tracking through shot cuts.

Since this chapter is focused on tracking and reconstruction in unconstrained scenes,

it is necessary to take into accounts scenarios such as archive, broadcast or online-

sourced footage. These are often composed of sub-sequences separated by shot cuts.

Therefore the problem of re-detecting the target after a shot cut and resuming tracking

is examined. See Figure 6.2 for an example sequence and a resulting model proving the

effectivness of combining tracking with Structure from Motion (SfM).

143
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Figure 6.1: Example of input sequence and models output by the proposed method:
frames #60, 70, 80 and 90 of the sequence CubicGlobe.

Figure 6.2: The Hillclimb sequence, a broadcast video divided into many sub-
sequences by shot cuts. We provide an automatic modelling algorithm working through
these sub-sequences.

To support both of these aims, the feature cloud is densified. Besides sparse features,

as used in the previous chapter, dense features, based on optical flow, are employed. The

additional information from dense features proves useful to provide more constrains to



6.1. Tracking under Non-Rigid Motion 145

the problem of non-rigid motion estimation. Furthermore, aspects of the motion such as

per-frame focal length can be estimated using this additional data. Finally, with dense

reconstruction, a better 3D model can be built, which (besides being one of the targets

on its own) helps with camera alignment after a shot cut. Since optical-flow based

tracking suffers from inherent drift, frame-to-frame optical flow is usually replaced by

registration of every frame to a reference frame (e.g . in NRSfM literature [4, 6, 154,

185]). This, however, imposes a very strong limitation on out-of-plane rotation of the

target, preventing a truly 3D solution. For instance, in neither of the examples in

Figures 6.1 and 6.2 could a reference frame be used. In this chapter, the problem of

optical flow drift is addressed explicitly.

6.1 Tracking under Non-Rigid Motion

The tracking and modelling approach explored in this chapter is in principle sim-

ilar to Tracking, Modelling And Gaussian-process Inference Combined (TMAGIC) as

presented in Chapter 5 and shown in Figure 5.2 (which for brevity will occasionally be

referred to as vanilla TMAGIC). There are, however, several important differences that

make it more generic and able to handle less constrained scenarios. Foremostly, the 3D

feature clouds are considered varying in time (as detailed in Section 6.1.1), while they

are fixed in TMAGIC. This makes it possible to model non-rigid deformations of the

tracked targets. Secondly, dense points, an additional kind of feature, are employed

(see Section 6.1.2). These provide additional constraints for more stable computation

of the camera parameters and higher detail of the object model. In addition to the

online-learned Gaussian Process (GP) model, similar to vanilla TMAGIC, an explicit

polygonal mesh model is produced (Section 6.2.2). It is then used to tackle shot cuts

as described in Section 6.2.1, in addition to being one of the motivations and outputs

of the algorithm. In cases where the video consists of several discontinuous shots, the

model is aligned with the first frame of the new sub-sequence and used to initialise

processing of this sequence. This can be imagined as an outermost, re-initialisation
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Figure 6.3: Overview of the proposed dense non-rigid tracking and reconstruction
scheme.

loop around the TMAGIC processing loop from Figure 5.2 (which is executed on each

sub-sequence). It is visualised in Figure 6.3.

Even though the proposed technique does not require any supervision (beyond the

video sequence and a single target bounding box), it extends easily to supervised sce-

narios more traditional in NRSfM. Additional correspondences, such as tracks of SIFT

features, regressed facial landmarks, etc., can be exploited within the framework to

further improve performance.

6.1.1 Representing Time-Varying Shapes

Along with the majority of state-of-the-art approaches, the instantaneous 3D shape

(a cloud of features Fti) is expressed as a linear combination of K basis shapes. The

i-th feature position is combined as:

Fti = Fiα
t =

K∑
j=1

Fi j© αtj© , (6.1)

where αt = (αt1©, αt2©, ..., αtK©)> is a vector of mixing coefficients, controlling the shape

in the t-th frame. The encircled subscripts are used throughout this chapter to indicate

indices of shapes within a basis or their coefficients. This instantaneous shape can be
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projected to find the equivalent 2D observations:

f ti = Π
(
Fti|Ct

)
, (6.2)

i.e. every 3D feature Fti is projected by a camera with parameters Ct to create the

corresponding 2D feature f ti . The camera model used is full projective, however the

approach generalises to any other camera model (e.g . orthographic, spherical, etc.) as

long as it provides a unique back-projection (a 2D point to a 3D ray) for any 2D image

location. This way the motion for every frame t is separated into the rigid camera

motion (captured by Ct) and the non-rigid shape deformation (captured by αt). The

common 3K-rank constraint used extensively throughout the NRSfM literature, is

equivalent to fixing the number of basis shapes to K.

In this chapter a novel regularisation is introduced which forces the basis shapes to

be meaningful modes, or “extremes”, of the target’s shape. While used extensively in

the field of computer graphics [157] (known as blend shapes or morph target animation),

this regularisation has not been widely used in the area of NRSfM. It becomes impor-

tant during the optimisation process and is also useful for modelling and visualisation.

It is done via the following constraints:

1>Kα
t = 1 and ∀j : αtj© ∈ [0; 1] , (6.3)

where 1K is a vector of K ones. This effectively limits the targets shape to a convex

combination of the basis shapes: a finite K − 1 dimensional manifold in the full shape

space.

In the first frame, sparse and dense 2D features (X 1 =
{
x1
i

}
and D1 =

{
d1
i

}
) are

extracted as detailed in Section 6.1.2. Optionally, further supervision points S1 =
{
s1
i

}
can be supplied from another source (such as regressed landmarks in the case of a face

sequence). These 2D points are backprojected to the dense object model to create 3D

feature clouds Ẋ , Ḋ and Ṡ (see Section 5.3.3 for details on the initialisation of point
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depths). These are then first estimated (like in standard rigid 3D tracking or SfM) as

single points Fi and then duplicated K times:

Fi = (Fi 1©,Fi 2©, ...,Fi K©) , (6.4)

with added Gaussian noise (of magnitude negligible compared to the point coordinates)

to form the initial basis shapes. The initial mixing coefficients are chosen as:

αt = 1/K · 1K . (6.5)

Similarly to TMAGIC, on every subsequent frame the existing 2D features are first

tracked in the new image frame. Using these 2D tracks and their 3D correspondences

(f ti ↔ Fi), the current camera parameters Ct are estimated. The projection equa-

tion provides a simple geometric error to be minimised during the rigid camera pose

estimation:

Ct = arg min
C

∑
Ḟ∈{Ẋ ,Ḋ,Ṡ}

|Ft|∑
i=1

wiρ1

(∣∣∣∣f ti −Π(Fti|C)
∣∣∣∣) (6.6)

where wi is a feature weight and ρ1 is a robust cost function to provide outlier tolerance

(similar to [190]). This is minimised using the conditional gradient method. Unless the

camera has undergone significant motion, the algorithm then continues processing the

next frame.

There are two ways in which the instantaneous 3D shape for each frame could be

estimated. Firstly, the unknown set of coefficients αt could be included as parameters

to Equation (6.6) and estimated each frame, jointly with the camera pose. The second

approach is to postpone the estimation of the mixing coefficients (αt ← αt−1) until

the next bundle adjustment. Empirically it was found that the latter approach is

more stable as it allows more observations and additional regularisation to be used to

constrain the non-rigid deformations.
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As in the case of TMAGIC, the whole system of point clouds and camera trajectory

is optimised by Bundle Adjustment (BA) at regular intervals. Since BA is the most

time-consuming stage of the algorithm even with sparse execution (see Table 6.2), the

rule of minimal baseline is imposed (Equation (5.4)). Besides the camera trajectory

Ct and basis shapes Ḟ , the per-frame mixing coefficients up to the current time At =

(α1,α2, ...,αt) are optimised. Bundle Adjustment is preferred over filtering and other

methods since it provides better performance given the same inputs [181]. Due to the

novel regularisation, the obtained basis shapes are well constrained and stable. This

helps to avoid difficulties with the basis ambiguity issue – without additional constraints

such as in Equation (6.3), a linear transformation of a set of basis shapes is a new set

of eligible bases [208].

The cost function optimised in BA is similar to (5.5) and (6.6), using the constraints

of Equation (6.3):

min
Ẋ ,Ḋ,Ṡ,Ct,At

t∑
u=1

∑
Ḟ∈{Ẋ ,Ḋ,Ṡ}

|Fu|∑
i=1

wiρ2 (||fui −Π(Fiα
u|Cu)||) +

Λα(At) + ΛC(Ct) + ΛḞ (Ẋ , Ḋ, Ṡ)

s. t. 1>Kαt = 1 and αtj© ∈ [0; 1] ∀j, t ,

(6.7)

where Ct contains all cameras up to frame t. Since it is vital to update the mixing

coefficients α during BA, the combination of basis shapes is expressed explicitly. The

projection errors are summed across all the frames seen thus far (a windowed version,

limited to a recent history may be considered if speed is an issue). As in TMAGIC

(Chapter 5), the robust cost function ρ2 employed here is the Cauchy loss, as pro-

vided by the Ceres Solver [2]. Finally, there are additional priors and regularisations

employed. Significant effort is given to these throughout the literature, and sometimes

they constitute the major novelty of an article [12, 155].

Firstly the temporal smoothness of shape prior is employed. This means the shape

cannot change suddenly between two consecutive frames. This is achieved by penalising
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fast changes in the mixing coefficients:

Λα(At) = wα

t∑
u=2

||αu−1 −αu||2 (6.8)

where wα is an appropriate weighting.

To enforce the prior of temporal smoothness of camera trajectory, a different cost

is chosen. It is desirable to penalise sudden changes in camera parameters without

creating an energy inhibiting free camera motion in the world. Therefore the following

is used:

ΛC(Ct) = wC

t∑
u=2


1 if ||Cu−1 −Cu|| ≥ θC

0 if ||Cu−1 −Cu|| < θC ,

(6.9)

where θC is a chosen threshold and wC is a large (relative to the other costs) constant.

Consistently with the previously chapter, Ct is the centre of the camera Ct (a 3D

vector).

Finally, in the proposed method, the basis shapes are constrained to be extremes

(rare, but feasible instances) of the shape variation. In other words, the instantaneous

shapes are required to span a (convex) subspace, tightly bounded by the basis shapes.

This renders the method very robust to overfitting (e.g . in the case when the chosen

K is too large for the observed data, see [119] for a comparison of results with different

K used). The first requirement, that the instantaneous shapes span a limited space,

is achieved by limiting the α coefficients (Equation (6.3)). The second requirement,

that the bounding subspace is tight around the observed poses, stems from the need

to decouple the rigid and non-rigid motions, to make the model as rigid as possible.

Therefore the final regularisation term is introduced:

ΛḞ (Ẋ , Ḋ, Ṡ) = wḞ

∑
Ḟ∈{Ẋ ,Ḋ,Ṡ}

|Ḟ |∑
i=1

K∑
j=2

j−1∑
k=1

∣∣∣∣Fi j© − Fi k©
∣∣∣∣2 (6.10)

where wḞ is an appropriate weighting.
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An online-learned Gaussian Process (GP) model is used analogously to the case

of vanilla TMAGIC. For training, the canonical (average over all previous frames)

feature clouds are used. It is possible to model the non-rigid deformations within the

GP, however this would drastically increase computational costs and did not prove

necessary in the experiments performed. It is, however, a very interesting direction for

future research.

6.1.2 Dense Features and Drift in Frame-to-Frame Optical Flow

In (rigid) 3D reconstruction, the standard approach is to compute the scene geom-

etry based on sparse feature correspondences and then triangulate a dense cloud as a

post-processing step. Alternatively, sparse features can be densified by iterating expand

and filter steps [55]. However, the proposed approach aims for online processing, return-

ing to earlier frames only for the purpose of texturing the obtained model. Inspiration

is thus taken from Non-Rigid Structure from Motion (NRSfM) approaches, which often

use dense trajectories as a basic building block. Therefore, in addition to long-living

sparse features (keypoints) as used in the previous chapter, dense (optical-flow based)

trajectories are used. While sparse features are robust to drift and provide long-term

global geometric consistency (including loop closures), dense features bring another

benefits, including additional constraints and a higher-detail model. They, however,

bring also several challenges. Besides inevitably higher computational demands (e.g .

seconds per frame for optical flow estimation on its own), there is an inherent problem

of drift in using optical flow. Without enforced long-term consistency, tracking via

concatenating frame-to-frame optical flow accumulates error quickly. For this reason,

concatenation of flow vectors has been in general avoided in literature.

Throughout this thesis, the problems of 2D point tracking and object modelling are

addressed jointly. This includes this chapter, where tracking is combined with NRSfM.

As pointed out in Chapter 2, all state-of-the-art template-free NRSfM techniques use

precomputed 2D tracks (i.e. correspondences between images/video frames) of points
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Figure 6.4: Life cycle of dense features.

as their input. These 2D tracks required are either precomputed or taken from known

annotations. For this precomputation, it is common to work with a reference template

or video frame, against which all other frames are registered. This is important as

the concatenation of frame-to-frame correspondences inevitably leads to the mentioned

accumulation of errors. This is not a problem if each correspondence is computed

independently to a reference frame, however this limits the possible applications of

the technique. In contrast, the problem of track drift is addressed here explicitly.

Multiple overlapping (both spatially and temporally) sets of dense trajectories are used,

in addition to the easily localised sparse trajectories, for long-term consistency. This

obviates the need for a reference frame, and makes it possible to process a wider range

of scenarios. These include strong rotations and self-occlusions, where there may be

zero overlap between the first frame and some frames later in the video.

Figure 6.4 illustrates the life cycle of dense features, with transitions D1–D3. They

are sampled from the image on a regular grid (D1) within the initial bounding box

(in the first frame), or within the area of the estimated object boundary found by

projecting the GP model into the current frame (using Π(M|Ct), the segmentation

is identical to the one of vanilla TMAGIC). After each BA, new dense features are

created, spanning the entire area of the projected model, to ensure overlap between the

subsets of dense trajectories within Ḋ. The grid size is based on the image resolution

and required density of the model. There is a trade-off between resulting quality and

processing time, so the sampling density can be used as a user-defined parameter. The
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dense trajectories are estimated on a frame-to-frame basis from a Convolutional Neural

Network (CNN) based dense optical flow (FastDeepFlow [201]). This is prone to drift,

thus the dense trajectories are kept short. For this reason there is no invisible state.

Dense features are either successfully tracked during their life span, after which they

are transferred (D2) into the archived state, or discarded as outliers (using epipolar

constraint like in Section 5.2.1, D3). Features in the archived state are used for 3D

modelling, but are not tracked any more.

There is a significant imbalance between the numbers and importance of sparse

and dense features. For this reason, one might want to give them different weights wi

during the process – in camera tracking, bundle adjustment, model creation, etc. In all

these cases, the dense features are downweighed by a factor 0.01 in the experiments.

This reflects their numbers (usually 1–2 orders of magnitude more than that of sparse

features) and the notion of dense features being omnipresent but less reliable.

6.2 3D Tracking through Shot Cuts

Tracking thus far was limited to a single sequence where small motions can be

tracked at the feature level via Lucas-Kanade (LK). However, to track and build a

compound model from multiple sequences or over shot cuts in broadcast video it is

necessary to combine information from discontinuous shots.

6.2.1 Model-based Reinitialisation

There are two basic approaches to this problem: 1) processing the sub-sequences

independently and merging the models post-hoc (batch processing) and 2) redetecting

the object in each new sub-sequence (sequential processing).

In the first case, the sub-sequences (shots) can be each processed independently

and the final trajectories and models merged as a post-processing step. While this has

the advantage of not needing the re-alignment of the partial model with every new
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sub-sequence, there is the challenge of aligning the partial models, which may have

only a small overlap (as the parts of the object visible in one shot may be mostly

unseen in others). Furthermore, the evidence in a single shot may not be sufficient for

even a partial 3D reconstruction (e.g . due to insufficient camera motion); this may also

adversely affect tracking results. Finally, this approach needs a user-given initialisation

for every sub-sequence.

The other possible approach is to re-detect the object at the beginning of a new

sub-sequence (analogously to re-detection in long-term tracking, such as in Chapter 3

or [106]) and continue processing from that point, using the information gathered from

the previous parts of the footage. This alleviates problems with insufficient information

present in any particular shot (except the very first one) and no matching and alignment

of partial models is needed. However, the problem of aligning the model gathered thus

far with the new sub-sequence needs to be resolved.

Since the aim is to provide an automated approach with minimal user input, the

latter approach is employed. To achieve this, a rough alignment of the model with

the first frame of the next sub-sequence is first obtained (i.e. the camera pose in that

frame is estimated assuming a fixed model), using the sparse feature cloud and keypoints

independently extracted in the frame. The 3D features from the cloud Ẋ were originally

detected as keypoints using the same technique. Feature descriptors (e.g . SIFT) can

therefore be extracted for both and matches between the sets found. On these 2D-to-3D

matches, P3P-RANSAC is executed. The inliers (consistent matches) to the camera

pose are taken as visible sparse features after the reinitialisation.

Given an explicit, textured model (see Section 6.2.2 for details how this model is

obtained), the pose can be refined using every model point and not just a sparse subset.

This is done (using a conditional gradient method) as follows. The brightness constancy

constraint is defined as:

T(M) = It
(
Π(M|Ct)

)
∀M ∈ Ṁ where v(M|Ct) , (6.11)
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where T is the object texture, v(M|C) is a function indicating the visibility of the point

M by the camera C and Ṁ is the set of all the points on the surface of the object

model. In other words, for each visible 3D point on the model M, its colour in the

texture T must be the same as the colour in the image It where it is projected using the

true (unknown) camera Ct. The brightness constancy is approximated by a first-order

Taylor expansion. This gives us a simple equation:

T(M) ≈ It (Π(M|C)) +∇ItJΠ∆C , (6.12)

which is similar to the optical flow constraint [93], including the projection function Π

and its Jacobian JΠ . Linear least squares are used to solve for an unknown step in the

camera parameters ∆C1. Since the formulation is in terms of intensity and the input

video consistes typically of colour (RGB) frames, the total number of equations is 3

times the number of sampled pixels. This optimisation is initialised with the solution

of the P3P-RANSAC and iterated until convergence, optimising the alignment of the

textured model with the first frame of the new sub-sequence. A multi-scale approach

is taken, solving on a blurred image in the early steps, to increase robustness against

local minima.

The new sequence is processed using this initialisation, without the need for human

intervention. The first step is local redetection of sparse features (S3 in Figure 5.3), to

maximise the number of visible existing-model features used and therefore the accuracy

of camera pose estimation in the first frames. After this sequence has been processed,

the new feature cloud is integrated into the original one and a new, more detailed and

complete model is created. There is no need for any additional alignment since both

feature sets are in the same coordinate frame.

1The camera C is used here instead of the camera parameter vector c for clarity.
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Figure 6.5: Sparse GP model (made explicit) and dense polygonal model.

6.2.2 Final model extraction

Due to its implicit nature, the online-learned GP model is not suitable for the re-

alignment of the first frame of a new sub-sequence. While it could be made explicit by

sampling and triangulating a set of vertices on the surface, and then textured, the GP

model has several disadvantages. Firstly, it is limited to star domains, as mentioned

in Section 5.3.2. Secondly, the GP tends to oversmooth the surface both in areas with

sufficient data and in extrapolated regions. Finally, the canonical GP model cannot be

warped according to the mixing coefficients α. For these reasons, an explicit polygonal

mesh model is created (directly from the feature clouds), which is then used for the

task of shot alignment. Additionally, this model can be, as one of the outputs of the

algorithm, used in numerous applications, as with a standard NRSfM technique. This

model is created at the end of each (sub-)sequence. As for the coarse model, sparse

features in both the active and invisible states and dense features in the archived state

are used for modelling. See Figure 6.5 for an example of an extracted model and the

difference to the sparse GP model.

There are numerous approaches to reconstruct a surface model from a set of scat-

tered points, such as marching cubes [132], marching triangles [86], ball pivoting [17]

or methods based on Moving Least Squares [167]. For an extensive study a recent

survey [202] is recommended, evaluating a broad range of techniques and summaris-

ing their properties. In this work, the Poisson reconstruction [108, 109] is used, in its

screened variant. Input surface normals are provided by the GP model at locations of
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the features from Ḟ (by sampling points in a very close neighbourhood and fitting a

tangent plane). These are interpreted as samples of a vector function ~β. The implicit

indicator function χ (resolving the inside/outside problem) is found as a solution of

the Poisson equation, such that its gradient ∇χ approximates the sampled normals ~β:

∆χ = ∇ · ∇χ ≈ ∇ · ~β . (6.13)

Poisson reconstruction provides a global solution to this approximation and hence to

the reconstruction problem and therefore smoothly fills even large gaps in the surface.

This is the main reason why it is used in this work, as a watertight surface is required.

The set of all the points on the model (χ0-isosurface) is referred to as

Ṁ = {M|χ(M) = χ0} , (6.14)

where χ0 is chosen as the mean χ of the training points:

χ0 =
1

|Ḟ |

∑
Fi∈Ḟ

χ(F∗i ) . (6.15)

A collection of smoothed model vertices V may then be selected from the χ0 isosurface.

Since the task given is tracking and reconstruction of time-varying shapes, the

model needs to be non-rigid, as are the feature clouds. The transfer of the deformation

is achieved as follows. Firstly, the model is created using the canonical shape (averaged

over all observed poses), analogously to the GP model training. Every canonical vertex

V∗ of the polygonal mesh model is assigned a fixed set of features Ṅ (V∗) in the cloud,

determined as its k nearest neighbours (k is a small constant, set to 3 in the experiments

in this chapter). Since for each 3D feature the offset of basis poses (from the canonical

position F∗i ) is known (i.e. Fi j© − F∗i ), the offset of basis poses of each vertex can be

computed as a mean of offsets of its k nearest neighbours (Ṅ ). Since the topology of

the model does not change when performing the warp, its basis shapes differ only by

the vertex coordinates: these are computed by applying the offsets to the canonical
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model:

V j© = V∗ +
1

k

∑
Fi∈Ṅ (V∗)

Fi j© − F∗i . (6.16)

As mentioned, the texture is a vital part of the model for shot cut reinitialisation,

visualisation and further applications. As the model is only provided at the end, the se-

quence is processed again in the second pass. The model is warped into the appropriate

shape for each frame using previously estimated mixing coefficients, and the texture of

visible mesh faces is updated. For each point of the texture the colour is computed as

the median of the observations from all frames (cameras V(M)) where the particular

point was visible:

T(M) = median
Ct∈V(M)

(
It
(
Π(M|Ct)

))
, (6.17)

V(M) = {C ∈ C |v(M|C)} . (6.18)

To avoid extracting unreliable information, e.g . near the edges of the object, the angle

between the surface normal and the ray from the camera centre is required to be below

a given threshold (85◦ in the tested implementation). The texture is extracted at a

resolution specified by the user. With precise camera tracking and a high-detail shape

model, it is possible to sample points at resolutions exceeding the original video, leading

ultimately to a 3D super-resolution model.

6.3 Experimental Evaluation of Dense Modelling

In this section, the proposed framework is evaluated experimentally. Firstly, the

benefits of using dense features are demonstrated in the scenario of rigid simultaneous

tracking and reconstruction. This includes experiments on long sequences containing

shot cuts. Secondly, it is shown how the improved object model allows tracking in

scenarios containing non-rigid objects in both synthetic and real video sequences.
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Figure 6.6: Resulting models on sequences from literature with varying resolution.
From top to bottom: Dog1 (90 px [27]), Sylvester (50 px [166]) and Rally-VW
(410 px, Chapter 5).

6.3.1 Rigid Object Experiments

To evaluate performance of the proposed algorithm, it is first tested in the short-

term scenario, i.e. one continuous video where the target is fully visible in all the frames.

See Figure 6.6 for example frames and results on several video-sequences used in recent

tracking publications. Model regions, which were unseen in the original sequence and

are therefore untextured, are marked by bright green colour. Since this subsection tests

rigid reconstruction, the number of basis shapes is fixed to one.

For comparison, reconstructions made by the CMP SfM WebService [81] is shown

in Figure 6.7. In the first row, the reconstruction from the raw video can be seen,

with only a fraction of the car partially reconstructed. When supplied with Ground

Truth (GT) bounding boxes at every frame to segment out the background and focal

length estimates (provided in C), it yields the model shown in the second row. The
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Figure 6.7: Results on the Rally-VW sequence. Top and bottom rows show the
top and side views of models from the same method (the right column is manually
cropped for CMP results). Top to bottom: CMP SfM WebService [81] (raw video
input); CMP SfM WebService [81] with added information; textured sparse GP model;
full final model.

proposed approach (last row) returns significantly cleaner results automatically without

such extensive user interaction. The textured sparse GP model (roughly equivalent to

vanilla TMAGIC) is shown in the third row. An example of an untextured resulting

model is shown in Figure 6.5.

Additionally, in Figure 6.8 several models are shown, obtained from four different

sub-sequences of the rally sequence Hillclimb. In all of these sequences, there is
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Figure 6.8: Resulting models on several sub-sequences from the Hillclimb sequence.

strong background clutter (distractors), which makes conventional SfM approaches

fail. Notice, however, how inaccurate and incomplete the models are, compared to the

model combined from multiple shots in Figure 6.10. The original data of the Hillclimb

sequence, together with additional results, are available online [119].

To test the ability of the proposed algorithm to model the geometry of long se-

quences including shot cuts, the modelling results are shown on the Hillclimb se-

quence. As new shots are added to the reconstruction, the model becomes slowly more

detailed and complete. See Figure 6.9 for a visualisation of the shot cut handling and

Figure 6.10 for the results. The first sequences track the car mostly from the front, i.e.

the rear parts are missing information. However, the later addition of sub-sequences

covering the rear of the car incorporates these missing regions. One region which re-

mains unmodelled after all the sequences are processed is the bottom of the model,

which is completely unseen. This is, however, an inherent property of this dataset and

cannot be addressed without human intervention.



162 Chapter 6. Dense 3D Tracking of Non-Rigid Objects

Figure 6.9: Shot initialisation after the first three cuts in the Hillclimb sequence.
Left: the last frame of a previous shot with the model overlaid; middle: the first frame
of a new shot; right: the model is registered with the new frame.

Figure 6.10: Progressive growth of the model after processing particular shots from
Hillclimb. The first two models and the final model are shown.

A natural way of processing the sequence is in temporal order, i.e. the first shot first

and then the rest as they follow. However, changing the ordering can be beneficial. One

such heuristic is used for the ordering of the sub-sequences. After breaking the original
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sequence into shots, the longest one is first used, as it can be expected to yield the

most complete model. Subsequent sequences are then chosen in the order of decreasing

quality of alignment, i.e. the P3P-RANSAC is executed (as detailed in Section 6.2.1) on

all the sequences and the one with the highest number of inliers (successfully matched

features) is chosen.

6.3.2 Synthetic Non-rigid Experiments

An initial quantitative evaluation on the synthetic CubicGlobe dataset is now

performed. This sequence contains a rotating globe which repeatedly warps into cu-

bic shape and then back to sphere. The performance of the proposed algorithm is re-

ported by a number of quantitative measures, comparing against several state-of-the-art

template-free NRSfM techniques which have source code available online. These include

Bilinear modeling via Augmented Lagrange Multipliers (BALM) [37], using Augmented

Lagrange multipliers to solve for the bilinear factorisation problem in the presence of

missing data, Local Isometric and Infinitesimally Planar NRSfM (LIIP) [28], using

isometric deformation instead of basis shape combination and SoftInex [197], which

employs the material inextensibility prior as a soft constraint in its energy function.

These tests measure three important properties. Firstly the accuracy of modelling:

the fit of the estimated basis shapes to a perfect cube/sphere (the deviation of each

reconstructed feature is measured, relative to the model size). The second property is

the accuracy of the 3D tracking. For this the camera rotation error is measured in the

angle-axis representation (for each camera pose, the axis error is measured as the angle

between the reported and GT axis and the angle error as the absolute deviation from

the GT). Since the global coordinate frame is not fixed, the rotation is measured as

relative to the first frame. Finally, the depth error of the instantaneous point locations

is measured, i.e. accuracy of deformations. This is measured as Spearman correlation

between the measured and ground-truth depth, to overcome the inherent scale ambi-

guity of the 3D reconstruction (the reconstructed and GT point cloud depths are used

as datasets with 1-to-1 correspondences to obtain every per-frame correlation). The
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sequence is available online including all ground truth information, such as shape, tra-

jectory, depth, etc. along with additional results [119]. In this experiment, the number

of basis shapes K was set to two, to capture the two extremes of the shape.

It is important to note that all three state-of-the-art comparison methods use the

orthographic camera model to simplify computation. This makes it more challenging

to evaluate the camera trajectory and depth correlations against the ground truth.

To resolve this issue a state of the art Perspective-n-Points (PnP) algorithm [51] with

outlier rejection was used to find the optimal projective camera pose, corresponding to

the reconstructed 3D point clouds.

Since there are no ground-truth point tracks for this sequence, the state-of-the-art

techniques were provided with tracks obtained by the proposed technique. LIIP and

SoftInex do not handle occlusions; therefore they were only provided a limited portion

of the sequence (the first 50 frames), with only those tracks, which were visible in

all the 50 frames. Furthermore, neither of the techniques directly provide meaningful

basis shapes. Therefore for the shape comparison the instantaneous shape was used

from frames 30, 90 and 150 for cube, and 1, 60, 120 and 180 for sphere (where the GT

shape is pure). The table contains the best observed performance for each of these.

See Table 6.1 for results. It is clearly visible that BALM failed completely on this

sequence, producing large reconstruction and camera rotation errors. Similarly, the

depth reported by BALM is not correlated to the GT depth. The results of LIIP are

significantly better, with much lower reconstruction errors and rotation error reduced

by an order of magnitude, compared to BALM. The average depth correlation is 0.5.

SoftInex produces better 3D reconstructions, with error comparable to the proposed

method (although of only one side of the object since it does not handle occlusions).

The camera pose is less accurate than that of LIIP, the reported depth is nevertheless

strongly correlated with the ground truth.

The results of SoftInex demonstrate an interesting phenomenon. While the per-

frame point depth, returned by the algorithm (and used to infer the non-rigid shape)
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Cube (%) Sphere (%) Axis (◦) Angle (◦) Depth (%)

BALM 51±54 14±12 52.6±28.0 56.9±39.7 5±26
LIIP 29±20 5± 5 12.9±20.4 8.1± 4.4 50±29
SoftInex 4± 3 3± 2 22.3± 8.5 11.8± 8.1 79±13

Proposed 2± 3 3± 3 0.4± 0.8 3.5± 1.4 95± 3

Table 6.1: Quantitative tracking and reconstruction results on the CubicGlobe se-
quence. See the text for discussion.
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Figure 6.11: Distribution of errors on the CubicGlobe sequence.

is realistic, it is “flipped” in the z-direction (in the camera coordinate system) for

some frames, i.e. the object side is turned inside out. This is probably due to the

lack of a temporal smoothness constraint. For a fair comparison, it was necessary to

detect and correct this during the experiments. Without this, the results of SoftInex

are significantly worse, e.g . the mean depth correlation drops to 16 %. When using

the proposed method, the reconstructed models cover the whole object (as visualised

in Figure 6.1) with very low errors. The camera rotation demonstrates even better

performance, with error reduced by an order of magnitude due to its inherent ability to

perform tracking and modelling simultaneously. The depth estimated by the proposed

method is nearly perfect, reaching 95 % correlation with the observed depth. The

distribution of the errors can be seen in Figure 6.11.

See Figure 6.12 for visualisation of the obtained mixing coefficients αt in the first

180 frames of the CubicGlobe sequence. The shape is changing from spherical to cubic

linearly, which was closely captured by the coefficient change. Notice the “cropped”

peaks, a typical artefact of the proposed method. This is caused by the compactness

prior, forcing the basis shapes (spherical and cubic in this case) to lie close to each



166 Chapter 6. Dense 3D Tracking of Non-Rigid Objects

t

0 30 60 90 120 150 180

α

0

0.5

1

α
t

1©
α
t

2©

Figure 6.12: Mixing coefficients αt in the CubicGlobe sequence. The dotted signals
show the GT.

Tracking Reconstruction Modelling Total

BALM (s) 1 357 248 372 1 977
LIIP (s) 1 357 18 768 372 20 497
SoftInex (s) 1 357 5 416 372 8 130

Proposed (s) 1 357 3 234 372 6 230
22 % 52 % 6 % 100 %

Table 6.2: Times of processing the first 180 frames of the CubicGlobe sequence. The
last row does not sum up to 100 % due to various overhead computations, visualisation,
I/O wait, etc.

other and hence being unable to truly capture the very extremes of this sequence. It,

however, does not significantly affect the overall performance, as can be seen in both

the qualitative (Figure 6.1) and quantitative (Table 6.1) results.

Table 6.2 shows a breakdown of the execution speed for the different algorithms.

It should be reiterated that the competing state-of-the-art techniques use point tracks

provided by the proposed method. Therefore the times for tracking and GP model

training (necessary for tracking) should be included in their timings for a fair compar-

ison. These are marked in blue. It is also worth noting, that the time for LIIP and

SoftInex was consumed in computing reconstruction from only 260 tracks in 50 frames,

while the others from nearly 20 000 tracks in 180 frames. BALM also has scaling issues

in terms of memory usage. Operating on the same point tracks used in the proposed

approach, BALM consumed more than 200 GB of RAM, two orders of magnitude more

than the proposed algorithm.
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Figure 6.13: Example of modelling results on the 300VW:002 sequence. From top to
bottom: original video frames; video frames overlaid with the instantaneous models; the
instantaneous model in its estimated pose (textured and untextured); the instantaneous
model facing forward with modified texture.

6.3.3 Real-Data Non-rigid Experiments

To show the performance of the proposed algorithm on real data, the recently

published 300VW dataset [29, 100, 192] is used. See Figures 6.13 and 6.14 for example

of modelling results (obtained with K = 3). The models are similar to the results

generated by state-of-the-art NRSfM techniques. Although they show slightly lower
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Figure 6.14: Example of modelling results on the 300VW:004 sequence. From top to
bottom: original video frames; video frames overlaid with the instantaneous models; the
instantaneous model in its estimated pose (textured and untextured); the instantaneous
model facing forward.

levels of detail, it should be re-emphasised that the problem addressed here is much

more challenging: the fully unsupervised simultaneous tracking and modelling. As can

be seen, the proposed method captures the rough shape of the target with variations

in time. In Figure 6.15 the basis shapes are shown for one of the sequences. Although

exaggerated, they are all valid face models which could be observed during the sequence.

Finally, Figure 6.16 shows the resulting reconstruction of the proposed technique and
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α = (1, 0, 0)> α = (0, 1, 0)> α = (0, 0, 1)>

Figure 6.15: Basis shapes in the non-rigid model produced by the proposed algorithm.

the trajectory of the model in the shape space. It is worth re-iterating that the shown

texture is fixed to particular polygons in the produced mesh model, and the variations

visible in the textured results are caused by warping of the model and not re-texturing

from a particular frame.

In Figure 6.17, the performance of the proposed technique is compared against

BALM on the 300VW:002 sequence. When given only the sparse facial landmarks,

BALM performs similarly to the proposed technique. However, it has difficulties inte-

grating noisier observations; when BALM is provided with the denser internal trajecto-

ries generated by the proposed method, it fails to produce a reasonable reconstruction.

In contrast the proposed technique is able to fuse these, to produce a far more detailed

reconstruction than from the landmarks alone. A similar situation was also observed

with LIIP. Once again, this demonstrates the value of performing the tracking and

modelling simultaneously.
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Figure 6.16: Reconstructed model overlaid over frames from the 300VW:002 sequence.
The shape space visualises the weighted combination of the basis shapes.

Figure 6.17: Comparison of BALM (left 2 columns) against the proposed technique
(right 2 columns) on the 300VW:002 sequence. Results are shown using only the
sparse supervision (top row), and using the sparse supervision with additional densely
estimated trajectories (bottom row).

It is not only the reconstruction which benefits from the proposed joint approach.

Using a non-rigid model can significantly improve tracking results as well. This is

demonstrated in Figure 6.18, where results compared between rigid and non-rigid track-

ing. For non-rigid objects, a “centre” is ill defined. Therefore, a face-tracking scenario

is used and the accuracy of landmark tracking is measured. The error is defined as the
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Figure 6.18: Landmark tracking error on the 300VW:002 sequence, when using rigid
(i.e. vanilla TMAGIC) and non-rigid tracking and reconstruction. Left: error his-
togram, right: landmark error from low (green) to high (red).

distance between the GT and the landmarks tracked using the non-rigid 3D model. For

each landmark, the error is averaged over all frames.

Firstly, 3D landmarks were obtained by back-projecting the manually annotated

landmarks from the first frame into the 3D model space (Section 5.3.3) and in the non-

rigid variant warped as described in Section 6.2.2. These were then projected back into

each consecutive frame using the obtained camera parameters and mixing coefficients.

It can be seen that the proposed method has a fraction of landmarks tracked with near-

zero error, while the rigid case has no “perfectly tracked” landmarks. Additionally, the

rigid variant has a significant portion of landmarks tracked with errors around 20–30 px

(mostly near the mouth where the non-rigid deformation is the most pronounced). On

average, the tracking error is reduced from 17.4±14.1 to 10.8±10.5 px by using a non-

rigid model.

In Figures 6.19 and 6.20, the performance of the proposed technique in the fully

unsupervised scenario is explored, on the Face [58] and T-shirt [194] sequences (with

K = 4). As can be seen, all estimated target poses are feasible despite the lack of

supervision. It is also obvious from the second rows that estimates of the rigid motion

(i.e. the camera pose) are accurate. Table 6.3 brings quantitative comparison on the T-

shirt sequence. The results indicate the proposed approach is competitive with state

of the art, even though it does not use a template or another kind of prior knowledge

and operates directly on the raw RGB images.
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Figure 6.19: Example of modelling results on the Face sequence. From top to bottom:
original video frames; video frames overlaid with the instantaneous models; the in-
stantaneous model in its estimated pose (textured and untextured); the instantaneous
model facing forward.

PCA Uncon. LVM CLVM DDD Proposed
[194] [194] [194] [213]

Error (mm) 18.44 15.50±1.78 14.79±0.90 7.05 17.82±4.72

Table 6.3: Quantitative results on the T-shirt sequence.

In Figure 6.21, the canonical T-shirt model (before cropping to contain only the

region of interest) is shown in detail. Notice the creases near the top of the model,
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Figure 6.20: Example of modelling results on the T-shirt sequence. From top to
bottom: original video frames; video frames overlaid with the instantaneous models; the
instantaneous model in its estimated pose (textured and untextured); the instantaneous
model facing forward.

caused by the way the T-shirt is held. Finally, Figure 6.22 shows the basis shapes for

the Face sequence, automatically identified by the proposed method (with a wireframe

mesh overlaid to help visualise the 3D shape).

6.4 Closing Remarks on Dense Tracking and Modelling

In this chapter, an algorithm for automated tracking and reconstruction of non-rigid

targets in unconstrained, unstructured, discontinuous videos was presented. Besides
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Figure 6.21: Details of the model obtained (directly) from the T-shirt sequence.

α = (1, 0, 0, 0)> α = (0, 1, 0, 0)> α = (0, 0, 1, 0)> α = (0, 0, 0, 1)>

Figure 6.22: Basis shapes obtained from the Face sequence.

the 3D camera trajectory, it provides a textured model of an a priori unknown object

with the only user input being a single bounding-box initialisation of the object to be

reconstructed – even from videos consisting of several shots. It actively avoids modelling

the scene background, removing the assumption that the object of interest covers most
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of the frame. Use of tracking techniques also removes several important limitations of

conventional NRSfM methods, most importantly it provides robustness against strong

target rotation and self-occlusion. The presented algortithm can be extended trivially

to different camera models and additional priors, constraints and regularisations.

The modelling approach, as presented, has several limitations. Resolution of the

video-sequence is one limiting factor. While it is possible to obtain a 3D camera trajec-

tory and a coarse model of objects at resolutions as low as 320×240 px (e.g . Sylvester

in the eponymous sequence is approximately 50 px in size – see Figure 6.6), the re-

sulting models are blob-like with low levels of detail; therefore higher resolution is

recommended. Most of the examples shown in this chapter come from videos with

the resolution 1280×720 px (with target size in hundreds of pixels). Additionally, the

reconstruction is thus far limited to star domain shapes (technically only in the case of

the sparse model, however the final model is influenced by this as well). This is however

a limitation of virtually all current model-free NRSfM approaches. This limitation may

be addressed in the future work, for instance using an intermediate reparameterisation

layer.
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Chapter 7

Conclusions and Future Work

7.1 Summary and Conclusions

This thesis examined numerous failure cases endemic to visual object tracking.

These stem from several sources. They include challenges caused by the properties of

the tracked target, such as shape variation, low texture or transparency. Another set

of failures is induced by the scene within which the target exists; these include back-

ground clutter, distractors and occlusions. Finally, there is a class of issues related

to the capture circumstances. These include 1) technical issues, such as video resolu-

tion, temporal resolution (causing motion blur and large inter-frame displacement) and

incorrect camera focus or exposure, and 2) issues caused by variation in the capture

settings, such as viewpoint, illumination or target distance. These challenges need to

be tackled by any tracker used in realistic scenarios, otherwise it will be limited to ap-

plications constrained to laboratory conditions. Some of these challenges were explored

in higher detail in this thesis and solutions were presented.

The issues, caused by the nature of the object appearance (such as low texture or

transparency), often lead to failure of conventional trackers. In Chapter 3, it was shown

how edge-based features can be used to tackle this kind of challenge. Since edge points

often suffer from the aperture problem, the idea of virtual corners was introduced and

177
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examined. This leads to reliable tracking, independent of the illumination, texture or

appearance of the target object.

Edge-based tracking gives a reliable estimate of frame-to-frame tracking, however

does not provide long-term stability. Similarly, numerous state-of-the-art trackers focus

on short-term tracking, where a fully visible object is tracked for a limited amount

of time. However, many applications require tracking in a long-term scenario. Two

challenges arise in such a case. Firstly, the long duration of the tracking imposes

strong emphasis on the robustness of any tracker to error accumulation, i.e. drift. This

creates the need for a long-term tracker to be conservative about its model updates.

Secondly, the target may disappear from the video either due to (full) occlusion by

another part of the scene, leaving the scene (i.e. occlusion by the frame boundary) or a

shot cut. After this happens, a tracker needs to detect this, and then resume tracking

when the target object reappears. These challenges were addressed within Chapter 3.

A tracking approach based on the previously mentioned edge-based correspondences

was combined with an effective redetection scheme. It was demonstrated as successful,

being placed near the top of several benchmarks.

There are issues related to the scene properties, such as background clutter and

distractors. For this reason, trackers dedicate significant effort to object segmentation

and actively ignoring the background. The explored edge-based approach is not an

exception in this. However, the rest of the scene can often contain useful information.

This information can be exploited to increase the robustness and accuracy of a tracker

in difficult settings, such as full occlusion or rapid motion. This was explored within

Chapter 4, with the focus on causal relationships. Two types of causal relationships

were examined, between the camera motion and the object motion, and between dif-

ferent elements of the scene. A method was introduced, which can be employed with

any tracker, supplying it prior information to improve its performance.

As indicated by recent benchmarks, many failures stem from problems with view-

point variation. Conventional trackers attempt to model the viewpoint-induced ap-
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pearance change as a change in the model. However, this is often not possible in cases

of rapid out-of-plane rotation, since the ability to quickly adapt the model necessarily

decreases resistance to drift. One major breakthrough of this thesis is in opposition to

this standard (but inadequate) solution. Instead, the 3D motion is perceived as a 3D

motion, and the object is modelled as a 3D object in a 3D world. Following this, the

second half of this thesis investigated the possibilities for 3D tracking. In Chapter 5,

it was demonstrated that 3D tracking, while competitive in the standard 2D-tracking

scenario, is much more general and extends into cases where 2D algorithms fail.

Finally, a further step was taken to increasing generality and removing limitations,

when this idea was extended to the task of non-rigid tracking and modelling. An

improved model was introduced, allowing 3D tracking of non-rigid objects through shot

cuts. The use of dense, optical-flow based features increases the detail of the model and

stabilises the estimation. Chapter 6 combined 3D tracking and non-rigid reconstruction,

and was shown as competitive to online Non-Rigid Structure from Motion (NRSfM)

techniques, providing a time-varying 3D model directly from video, without template,

reference frame or any other kind of prior knowledge often used in NRSfM. Such a

combination of simultaneous tracking and reconstruction benefits both: reconstruction

by effectively segmenting the target and thus relaxing requirements on the input data;

and tracking by providing an improved target model to better span the space of possible

variations.

7.2 Possible Future Directions

This section presents several suggestions of possible directions of future research

within the topics of this thesis. These include technical improvements of the proposed

tracking approaches, with the potential to boost performance. Furthermore, several

directions of a more principled nature are discussed, possibly reaching beyond the sub-

area of visual tracking.
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There are several possible directions where this work could be extended. The ma-

jority of this thesis is concerned with feature-based tracking, where trackers maintain

clouds of features to estimate the object trajectory. These features are validated based

on different measures, but in general they are either retained or discarded. The work

on both 2D and 3D tracking might benefit from a soft feature management, where the

feature quality could be judged based on its history.

In both 2D and 3D, tracking of a single object was considered. A näıve extension to

allow multi-object tracking would be trivial. Since neither requires any pre-learning and

the object properties are modelled online, it is possible to simply run multiple instances

in parallel. A more interesting direction of further research would be advanced reasoning

about correlation (or causal links) or occlusion between these multiple tracked objects.

In TMAGIC, the internal object model is thus far constrained to star domain shapes.

Technically, this is true only in the case of the sparse GP model, however the final model

can be influenced by this as well and could be addressed in future work, for instance

using an intermediate reparameterisation layer. A possible solution would be to fit a

non-radial model (such as 2D B-spline surface) to the 3D feature cloud and then the

GP model can be applied in the spline control coordinates.

Furthermore, it would be interesting to see the influence of the causal model on

the trackers presented, when applied inside the trackers (as mentioned in Section 4.8).

Preliminary experiments were carried out with variable results, therefore further inves-

tigation of integration with the trackers is needed. In the case of LT-FLOTrack, this

would mean predicting the object position in 2D, as discussed in Chapter 4. In the

case of TMAGIC, the situation is slightly more complicated. The prediction could be

either in 2D, to help with the underlying feature tracking (which is one of the limiting

factors) in a rather standard way, or alternatively to predict the camera parameters

directly in 3D.

The concept of virtual corners assumes that edges are rigidly attached in 2D. In

Chapter 5, this condition is relaxed to rigid attachment in 3D. However, further relax-
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ation of this condition is possible, allowing the use of virtual corners in the non-rigid

scenario. Researching the possibilities of such a direction is another interesting topic for

further research. Another challenge of non-rigid targets is their online 3D modelling.

There is a potential for great improvements in the area of 3D tracking of deformable

objects using better models. An example of this may be to employ a Latent Variable

GP, with the observed variables modelling the 3D shape and the latent variables the

deformation.

While modelling the 3D shape, the feature clouds are used as positive samples,

indicating where the object is. However, it might be a viable idea to use negative

data as well, indicating where the object is not. For this objective, the relationship

between tracking and segmentation could be explored in closer detail. The segmented

object outline (in 2D) can provide 3D constraints on the extent of the object. Finally,

the research on 3D tracking brought a number of interesting insights into the camera

tracking problem in general as well as into general real world reconstruction. It would be

interesting to take these insights into the field of visual SLAM where similar challenges

are encountered.
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