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This research project is concerned with automated analysis of microscopic images
used in clinical pathology for diagnosing disease. Application of computer vision
methods can improve the accuracy, reliability and availability of tests, reduce the
associated costs and ultimately improve patient outcomes.

Three different areas of pathology are covered:

e identification of clustered nuclei and detection of chromosomal abnormal-
ities in DAPI-stained samples,

e diagnosis of auto-immune diseases from indirect immunofluorescence (I1F)
images, and

e detection of dividing nuclei in H&E stained histopathology sections.

Despite the diversity of these application domains, the techniques used for their
analysis are similar.

For cluster identification in DAPI images we focus on object shape and extend
existing methods of shape analysis with novel measurements of the boundary pro-
file which detect notches between overlapping nuclei in a cluster. For abnormality
detection we focus on texture and develop a novel decision-tree dictionary for
patch quantisation.

We continue to focus on texture for IIF images, developing suitable isotropic
measurements as well as exploring the connections between classification of in-
dividual cells and whole patient samples.

Detection of dividing cells in tissue sections requires a combined assessment
of shape, texture and colour in order to fully represent all relevant facets of
the object. Here we develop a method for stain normalisation which efficiently
compensates for batch variations in stain strength and proportions, followed by
a full pipe-line of segmentation, feature extraction and classification, resolving
issues of class imbalance implicit in detection of rare objects.

We develop an efficient and effective segmentation method, which is free of
weight parameters and adaptable for use in different imaging modalities. We
explore a variety of classifier types and ensemble structures, and suggest promis-
ing directions of future development in the broad application area of pathology
image analysis.
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Chapter 1

Introduction

The subject of this research project is automated analysis of microscopic images
of various human tissue samples, as used in clinical pathology for diagnosis and
screening of various diseases. Improvements in their automatic assessment can
greatly increase the accuracy, reliability, and/or availability of tests, reduce the
associated costs and ultimately improve clinical outcomes. The majority of the
work is concerned with the technical aspects of machine analysis and interpreta-
tion of digital images, but a small amount of biological and medical background
is given in order to motivate the study.

1.1 Description of problem domains

The project covers automated analysis of images in three different areas of pathol-
ogy, acquired using different stain types, but the techniques that are used for
their analysis are broadly similar. The three staining methods are DAPI, ANA-
IIF and H&E. DAPI (diamidino-2-phenylindole) is a fluorescent stain which bonds
strongly to DNA-rich parts of the cell, allowing visualisation of the nucleus. Anti-
nuclear antibodies (ANA) are used for diagnosis of auto-immune diseases, and
are most commonly visualised through indirect immunofluorescence (IIF) with a
substrate of HEp-2 cells. Hematoxylin and Eosin stain (H&E) is very widely used
in histopathology, the study of whole tissues and their structures, as opposed to
separate cells. Analysis of tissues can be considerably more complex than the
relatively simple study of cells as individual objects.

1.1.1 DAPI

DAPI-stained cell nuclei in various human tissue samples can be used for diagnosis
and screening of cancers and pre-cancerous conditions, and improvements in
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their automatic assessment can greatly increase the accuracy and availability of
tests, reduce the associated costs and ultimately improve clinical outcomes. Two
tasks are investigated for this modality: identification of cell clusters that require
further splitting, and the possibility of determining chromosomal abnormalities
from nuclear appearance.

1.1.2 1IF HEp-2 pattern classification

A wide variety of auto-immune diseases affects different parts of the body, but are
all associated with an immune reaction to, and an attack on, the person’s own
tissues. This reaction, known as anti-nuclear antibody (ANA), forms the most
reliable basis for ascertaining the presence of, and establishing the specific type
of auto-immune disease. The diagnosis is usually performed by highly trained
physicians directly at the microscope, although better results can be obtained
through digital imaging of the slides, as the fluorescence decays fairly rapidly.
Both the overall brightness and the visual pattern of the fluorescence feed into
the diagnostic decision, although many clinical settings will only use the brighter
samples, known as positive, for identification of specific patterns. A large number
of these visual patterns of fluorescence is described in the medical literature, and
various groups or subsets of these have been targeted for automatic recognition
by previous published works in the computer vision field.

1.1.3 Mitosis detection in H&E sections

H&E staining is the most widespread method of visualisation for histology slides,
but this investigation is restricted to breast cancer biopsy specimens, and specif-
ically to the task of mitosis detection within these. Mitosis is the process of
cell division, and the proportion of cells within a tumour that are undergoing
division gives an indication of the rate of growth of the tumour, and therefore its
aggressiveness, the likely prognosis and the most appropriate treatments. The
task is most challenging, for both human and machine, as the nucleus changes
its shape and structure throughout the different stages of mitosis, and when
this is combined with all the possible viewpoint orientations and exact slicing
positions relative to the nucleus, the variety of resulting appearances is bewil-
dering. Pathologists train for many years, and yet the inter-observer agreement
on whether a nuclear figure is mitotic has been found to be only x = 0.38 [1]
(N=43, balanced sample, 7 observers). This creates considerable additional dif-
ficulty in training an automated process for mitosis detection, as the 'ground
truth’ is never entirely reliable.
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1.2 Motivation

Automation of medical image analysis using computer vision methods can have
a number of desirable benefits compared to manual techniques, which depend
on the precise application area. At the simpler end, cell counting in homoge-
neous populations can improve accuracy, save time and consequently free up the
skilled personnel for more complex and less repetitive tasks. The benefits come
at the cost of having to digitise the pathology process, which so far remains
largely optical for the majority of routine work, but is gradually being augmented
by automated scanning technology, initially for archival and indexing, or remote
consultation purposes [2,3]. Digital slides are also well suited for use in the train-
ing of new pathologists, and as their availability becomes more wide-spread and
practitioner familiarity grows, the scope for automating their analysis increases.

Image analysis algorithms can provide a fast search for regions of particu-
lar interest within the slide, mechanise measurements of cell appearance that
support the pathologist’s decision making, and improve reliability of subjective
evaluations. As growth of digital imaging in pathology accelerates, more data
will become available for training and evaluating machine learning approaches,
leading to improved performance which should, in turn, help to boost acceptance
of these methods in clinical practice.

At its most advanced, automated image analysis can discover features of the
tumorous tissue that have great prognostic value, but were previously not known
by clinicians [4]. Discoveries such as these can then stimulate further research into
the underlying biological processes that generate a particular tissue appearance,
advancing the understanding of factors which affect the disease progression.

1.3 Existing methods

In its broadest sense, the subject of this work is computer vision, that is, an at-
tempt to devise an algorithm capable of ascribing meaning to an image. Modern
computer vision is largely based on machine learning methods, in their majority
statistical ones, and several that are particularly applicable for image classifica-
tion will be reviewed here. As the most comprehensive current review of image
analysis in histopathology indicates [5], specific properties of pathology images,
such as high data volumes or staining techniques, create a different set of re-
quirements in their analysis as compared to the more general imagery of everyday
objects commonly addressed by computer vision, and even to the more established
computer-aided diagnosis in radiology. Much of this work has been concerned
with identifying these distinguishing properties of microscopic pathology images,
and analysing how they are connected to the suitability or otherwise of particular
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algorithms. These differ between cytology, which is concerned with isolated cells
or small clusters, and histology, which preserves the tissue structure and therefore
more high-level information, but presents a considerably more complex analysis
challenge as a result.

As a newcomer to the vision field, | expected this connection between image
properties and the relevant algorithms to be well understood, but have found,
with some dismay, a plethora of works evaluating a particular algorithm on a
particular dataset (or a few at best) but offering no guidance as to its likely
performance on a different set of images. Further exploration uncovered an
ongoing tug-of-war between the hand-crafted algorithms, carefully designed and
optimised for a very specific task, and the more generic vision architectures, which
reach for the Al ideal of matching the human visual abilities, but nonetheless rely
on a number of system parameters which have to be optimised by brute force in
order to achieve acceptable performance.

The structure of the following sections tracks the pipeline of analysis under-
gone by an image: segmentation into objects of interest is followed by feature
extraction, with features broadly sub-divided into those relating to the object’s
shape and to its internal texture; finally, the extracted features are combined by
a classification algorithm to reach a decision.

1.3.1 Segmentation

The range of image segmentation methods is extremely broad. They can be based
on thresholding (at the simplest end), clustering, histograms, edges, contour
energy, watersheds, graph partitioning - the list goes on. Not only is there
very little solid evidence as to the suitability of a particular method for use on
a particular image type, but the very notion of segmentation performance or
quality is highly ambiguous [6].

One option for evaluating segmentation performance is to compare the au-
tomatically segmented boundary with a manually drawn one, and measure the
number or proportion of misclassified pixels or some form of distance between
the two boundaries. This has two drawbacks: the necessity of procuring a man-
ual annotation of the image, which quickly becomes very resource-intensive for
a large dataset, and the potential inaccuracy of the manual contour, which is
taken as 'ground truth’. In attempting to delineate the boundary of an object
in an image with a finite sampling grid, no answer that is limited to integer
pixel positions can be better than half a pixel wrong on average. Much more
importantly, the manual boundary is subjective, with potentially large areas of
ambiguity occurring in noisy real images. So any comparison to this subjective
'truth’ is potentially misleading as to the quality of segmentation.

The alternative approach is one of qualitative assessment of segmentation
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results, which suffers from limitations on the number of examples that can be
evaluated in a reasonable time, or included in published work, as well as the
obvious subjectivity of such evaluations. In cases of large differences between
the candidate methods such comparisons can nonetheless be quite illuminating.
Since segmentation is rarely the final objective, but more likely an early step
in a processing chain involving measurements of the segmented objects, it is
the effect of different segmentation methods on these measurements that is of
greatest import, and can be the ultimate arbiter of the suitability of a particular
segmentation process to the task. Such evaluation of segmentation quality is,
of course, only applicable in that specific context, and does not provide further
insight into its performance under other conditions.

The range of segmentation methods that are used on pathology images is
much narrower, due to the particular nature of the images, and the choice is
further constrained for each imaging modality and sample type. Since the ear-
liest days of segmentation of cellular images, thresholding has been used exten-
sively [7-9], and with remarkable success. This success can be attributed to
the simple fact that many types of cell image contain objects with a fairly uni-
form interior and a reasonably strong contrast to the background. As long as a
good threshold value is applied, the resulting contour will often match the visual
boundary very closely, without recourse to more complex segmentation methods.
The remaining question is how to select the best threshold, and it is here that the
specifics of different cell and staining types come into play, creating a diversity
of algorithms.

The one threshold selection method that is often unsuitable for use on cellular
imagery is the first one in the textbook: Otsu’'s method [10]. This is based on the
objective of minimising intra-class variance, or equivalently maximising the inter-
class variance, which can be interpreted as finding a clustering for the foreground
and background that is tight within each cluster and has well-separated centres.
Unfortunately, the variances of background and foreground in cytopathology im-
ages are not comparable: the background is usually extremely flat, almost uni-
formly black in fluorescent images, while the foreground will exhibit some texture
and therefore much higher variance. This difference of variances creates a strong
bias, explored in depth by [11], resulting in thresholds that are much higher than
optimal, and consequently losing outer edges of cells and producing extremely
meandering contours for even the smoothest and rounded objects. Regrettably,
this method does still get used in practice, as it is built into many libraries and
toolkits, and included in most introductory courses and textbooks.

Based on a much weaker assumption of normal distributions, but explic-
itly allowing for differences in spread, Kittler and lllingworth's 1986 method of
threshold selection based on minimum error (MET, [12]) does not suffer from
such bias, and was still top of the table in a broad and robust 2004 survey
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of thresholding techniques [13], nearly 20 years later. Other criteria that have
been used for threshold selection in segmentation of cytology images include
gradient measurements, originally suggested by Kohler in 1981 under the term
'contrast of edges’ [14], and essentially looking for a threshold that would create
contours with the greatest average difference between pixel values on opposite
sides. This is distinct from using edge detection as basis of segmentation, which
has to involve some form of merging decisions to construct a complete outline.
A similar approach is employed by [15], although they prioritise the number of
edge points that have high gradients, rather than a high average, and follow the
thresholding with a number of heuristic post-processing steps to arrive at the
final segmentation.

More sophisticated segmentation techniques, which go beyond threshold-
ing, have also been used for cell images, in particular active shape contours,
or 'snakes’. The 'balloon" form is especially suitable here [16], provided a good
initialisation can be found. Different formulations of the energy function have
been proposed for particular specimen types and imaging modalities, for exam-
ple [17], but all have a high computational cost due to the large search space and
iterative nature of the algorithm. Such models generally cope better with overlap-
ping cells than thresholding does, as long as the amount of overlap is moderate,
although in general segmentation of overlapping cells in low-contrast modalities,
such as phase-contrast microscopy, remains an active research topic [18, 19].

Most of the advanced, complex segmentation methods remain tied to very
specific image types and are not readily transferable to another domain [20]. In
this work both DAPI and H&E cellular images have sufficient contrast to success-
fully employ adaptive thresholding. Our concern with clusters of overlapping cells
is limited to identifying them, rather their segmentation into constituent parts,
although there is an extensive body of literature addressing this related topic,
most recent ones approaching detection of boundary concavities by looking for
changes in the direction of the normal [21,22]. Identification of clusters is largely
based on analysing the shape of the segmented object, which is the subject of
the next section.

1.3.2 Shape analysis

The breadth of methods for shape analysis proposed in the general computer
vision literature is similarly enormous to that of segmentation. The most re-
cent comprehensive review, carried out in 2004 [23], classifies the methods as
either contour- or region-based, a distinction that is largely not relevant for cel-
lular objects, as they do not contain holes. The other division is between global
representations that analyse the shape as a whole, and structural, or local, rep-
resentations, which break it down into a series of segments or primitives of some
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form. The strengths of local approaches are partial matching and handling of
occlusions, which is not a major issue in tissue images, provided that the segmen-
tation has been done well. So the majority of relevant methods are global, from
the simplest single features such as circularity or eccentricity, to more complex
transform techniques such as Fourier or wavelet descriptors. Finally, a distinc-
tion is often drawn between information-preserving representations, which are
invertible, and non-information preserving descriptions, which lead to ambiguity
in reconstruction. As reconstruction is not a requirement for any of the applica-
tions we are considering here, this distinction is not relevant.

Another very thorough survey of shape features [24] describes and examines
a rich menagerie of methods and attempts to characterise each one according to
its invariance qualities as well as its resistance to noise, occlusions and non-rigid
deformations. Some measure of the computational complexity involved is also
given. The authors acknowledge that such judgements are necessarily approx-
imate, but also depend on the 'type of shapes' under consideration, although
no further guidance is offered on which might be most suitable for a particular
combination of shape type (however that may be defined) and required task.

A more recent exploration of shape analysis in the specific context of biologi-
cal images is given in the introductory chapters of [25], with a focus on statistical
models of deformation. In the broadest terms, a statistical shape model is ob-
tained from data and characterises the variations in shape that are present in
the subject domain. Successful application of such models depends strongly on
the choice of a suitable underlying shape representation. Principal component or
eigenvector analysis can then be used to derive a statistical model of variation
within the shapes. The representation chosen for the remainder of [25], based
on landmark points, is not appropriate for the relatively simple, but much more
variable, shapes of cellular and nuclear objects, and therefore not relevant here.

As confirmed by [5], the shape features most commonly used in histopathol-
ogy automation are restricted to global, single-value measurements such as as-
pect ratio or solidity, and boundary transforms. Many of these are formulated
to be invariant to scale and orientation changes, which is important for pathol-
ogy images, while others require additional normalisation steps to ensure these
invariance properties. They are also among the more computationally efficient
shape representations [24], which becomes very valuable when the number of
cells is large. One very well-established boundary transform method is Fourier
Descriptors (FD), which applies Fourier frequency transform to the radial bound-
ary profile. Among the advantages of FDs listed by [23] are their relative sim-
plicity, in both computation, and in interpretability, or connection to the visually
recognisable properties of the shape. A number of variants of Fourier Descrip-
tors have been proposed in the literature, which were compared by [26] to find
that centroid distance outperformed complex coordinate, angular and curvature
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representations in retrieval applications.

The relative merits of different shape representations can only be evaluated
in the context of a particular application, which generally requires some distance
metric to compare the degree of similarity between two shapes. There is no
objective universal measure of shape similarity, so a metric has to be chosen to
reflect some relevant notion of shape difference, but also one that is appropriate
for the particular shape representation. This point is explored little in recent
literature, with majority of applications employing Euclidean distance regardless
of the properties of their chosen shape features.

The importance of shape features in classification depends enormously on the
nature of the images: cells that are uniformly elliptical cannot be differentiated by
shape features. There are cases where they can be better distinguished according
to their texture, which is the subject of the next section.

1.3.3 Texture analysis

If the number of shape analysis methods is staggering, that of texture is simply
vast [27]. This is partly due to the fact that texture is a very ill-defined property,
as compared to shape, and can be understood to mean quite different things de-
pending on context. One fundamental division is between physical texture of the
object and its appearance in an image, which depends on the imaging conditions
such as lighting or distance. In the context of histopathology images, we are
concerned primarily with appearance, as the physical objects are not measurable
in any other way. The imaging conditions that most affect the appearance in
this case are variations of stain distribution and microscope focus.

Image texture is fundamentally concerned with dependencies between pixel
values at different spatial offsets and scales. As such, the simplest measure of
texture is grey-level variance, either global across the whole object of interest,
or local in a defined neighbourhood of each pixel. This measures the amount of
variation between pixels, but takes no account of their relative position, which
does however grant it automatic rotational invariance. Other early texture mea-
sures concentrate on edge [28] and gradient statistics [29] as salient factors in
texture discrimination. Similar observations motivate the use of Gabor filter re-
sponses at different orientations and widths as texture representation [30], and,
by extension, that of any other bank of filters, for example Laws' masks [31, 32]
and MR8 filter bank [33].

By the far the most commonly used texture quantification technique is the
second-order Grey-Level Co-occurrence Matrix (GLCM) [34], sometimes referred
to as ‘Haralick features'. These features are derived as various statistics of the
joint distribution over grey-level value combinations for pairs of pixels that are
a certain offset apart. The rotationally invariant version is typically used for
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cellular analysis [35], as orientation of a cell should not impact on its assessment.
A large number of statistics can be defined based on the co-occurrence matrix,
but many of them are strongly correlated with each other, so no additional
information is obtained from using more than two or three measures from each
matrix. Of similar vintage is the Grey-Level Run Length matrix (GLRLM) [36],
which operates on the distribution of lengths of 'runs’ of identical or similar pixel
values. Careful selection of quantisation step size is necessary in order to get the
best performance from either method.

A more localised model of explicit higher-order correlation for analysing tex-
ture was proposed by Kurita and Otsu [37], but has not found wide-spread accep-
tance outside Japan. Instead, a much coarser model that only considers whether
a pixel is brighter or darker than its neighbour has been spectacularly successful
in texture-based segmentation and has spawned a multitude of variants and ex-
tensions [38-42]. Local Binary Patterns (LBP), introduced in the late 1990s by
Ojala et al. [43], turn their very coarseness into a strength, as they are extremely
robust to monotonic transformations of the grey-scale and computationally effi-
cient. The local neighbourhood analysed by LBP and assigned a pattern code
can be regarded as a micro-texton. Introduced by Varma and Zisserman [44],
texton texture recognition has, as yet, seen little application to nuclear analysis.
Similarly to a Bag-of-Words model, all patches of a certain size are extracted
from the image and quantised according to a dictionary, or code-book, which is
obtained by clustering patches from the training examples. Both dictionary and
LBP methods compare objects or larger image regions based on histograms, i.e.
empirical estimates of the distribution of particular textural patterns within the
image, with x? histogram distance most commonly employed for classification.

Transform approaches to texture analysis include Fourier spectrum [29] and
wavelet analysis. The Fourier power spectrum is both straight-forward to com-
pute and easily understandable in terms of frequency content of the image.
Wavelet analysis [45—-47] can provide not only the strength of different frequen-
cies in the image, but also a measure of their spatial non-uniformity, which may
be a discriminating factor in some applications.

Fractal dimension has found widespread use as a texture measure [48], in-
cluding applications in cytology [49]. Its computation from images of limited
resolution can be problematic, and the validity of some formulations has been
questioned [50], as they are not invariant to linear intensity transformations.

Morphological approaches to texture divide into those of successive applica-
tion of a structuring element to the image (granulometry) [51], and of quantify-
ing morphological properties of connected elements in image slices at a range of
thresholds [52, 53].

Some commonly desirable properties of textural representations are invariance
to perturbations in scale, orientation or illumination, and many of the techniques
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described above have variants or extensions that cater for these needs. In the
context of pathology images, rotation invariance is essential, but is sometimes
confused with the isotropic nature of most cellular textures, which allow simpli-
fied, lower-dimensional feature formulations. Invariance, or at least insensitivity,
to blurring caused by variations in focus quality can be a very valuable property in
quantification of microscopic texture, and current methods based on local phase
quantisation can outperform LBP and Gabor filter banks [54].

Multi-scale representations capture additional information and often improve
performance compared to a single scale chosen arbitrarily. Many texture repre-
sentations have multi-scale extensions, for example patches of different sizes in
a dictionary system, different offsets for co-occurrence, or sizes of rings for local
binary patterns. Others have built-in multi-scale capability, for example wavelet
or fractal techniques.

Another issue which can greatly complicate texture analysis is colour. Most of
the images we are concerned with are either grey-scale or have a single dominant
colour component and can be easily converted to grey-scale. Some extensions
necessary to make full use of coloured or multi-spectral texture are suggested
in [27,55].

Despite the large number of works addressing the use of various texture
analysis techniques, their relative applicability to a particular practical problem
remains poorly understood, with little indication of the limitations and trade-offs
that could guide the selection of most suitable method. What is shown to be
'best’ actually depends entirely on the application examined by each particular
review or comparison, and tend to be highly specific to the particular imaging
conditions, including tissue type, staining method and magnification. One general
trend which emerges from the application studies is that a combination of several
different texture measurements often provides better classification performance
than any individual method on its own, and the most suitable way of combining
their contributions is one of the subjects covered in the next section.

1.3.4 Machine Learning

Machine Learning is usually described as the study of systems that learn from
data, in other words that can predict outcomes for new data points based on
previously examined examples. Its fuzzy boundaries with Pattern Recognition,
Artificial Intelligence and Statistics continue to be argued over by practitioners
on all sides, although it is not clear to what end. Some of the distinctions are
historical, such as Pattern Recognition’s roots in statistical data analysis or Al's
background in emulation of human cognitive function; others are a matter of
emphasis or perspective: is the subject about problems and how to solve them,
or tools and which way to use them? My personal view places statistics and
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computational theory as foundations for the strongly overlapping fields of PR
and ML within the much broader scope of Al, but useful insights from any area
are all gratefully received.

All the applications we are concerned with in this work fall into the category
of supervised learning, where some set of labels is attached to each of the known
training examples, and the system is attempting to predict the labels for new
points. This construction suffers from the fundamental problem of relying on the
correctness of training labels, or 'ground truth’, which in practice can be quite
poor in the subjective area of medical opinion [56]. Limited work has been done
to address this from a ML perspective [57]. On the positive front, it is easy to see
how to evaluate the performance of a supervised learner by testing it on unseen
material, whereas the performance of unsupervised tasks, such as clustering, is
not so easily measured.

One aspect of performance evaluation which can, nonetheless, trip up the
unwary is class imbalance, that is a large disparity in the frequency of occurrence
of different labels, which is a common scenario in diagnostic systems where an
overwhelming proportion of presented examples is disease-free. A naive measure
of accuracy such as the percentage of predictions that are correct would fail
to spot the problem with a system that missed most of the ill patients, if they
were but a small proportion of the total. This issue is very clearly understood
in medical statistics, although computer vision sometimes takes a rather laxer
approach. Class imbalance also presents problems for the learning process itself:
a minority class may be represented by so few examples that it becomes very
hard to make generalisations; also, some algorithms are inherently vulnerable to
imbalance, and effectively mistake rarity for unimportance [58-60].

This is but one illustration of the lack of statistical underpinnings in many
machine learning methods. The introduction of Neil Thacker’s attempt to define
probability for scientists [61] describes this bleak state of affairs as follows:

'"The dominant attitude to statistical methods being that we can
largely pick various measures out of thin air and worry about how
they behave on data afterwards, rather than deriving techniques from
principles based upon the characteristics of the data.’

His assessment reflects my own view of much of the field, especially in computer
vision applications: assumptions are rarely understood, let alone questioned, and
the link between data characteristics and applicable methods is rarely explicit.
The typical pipeline in computer vision consists of feature extraction, which
converts the huge mass of pixel values into a more compact representation,
followed by a classifier. In this pipeline, the enormous choice of possible features,
which has been explored in the previous two sections, albeit non-exhaustively,
interacts with the choice of many different types of classifier, and performance
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can only be evaluated for the whole system. Both features and classifiers have
tunable parameters, and several feature types may be needed to comprehensively
cover all relevant aspects of the image, resulting in a combinatorial explosion.
The deluge of published papers describing a particular combination of attributes
and classifier, with a tweak of some aspect of either or both, tested on a particular
data set or two, is a reflection of the random stumble around algorithm space
that is the outcome of this lack of systematic understanding.

Highlighted as an issue by Haralick over two decades ago [62], performance
measurement of computer vision systems has hardly improved since, and certainly
not reached the stage of his suggested systematic assessment of the effects of
both parameter variation and input noise. The subject resembles biology at
the stage of collecting beetles, rather than constructing evolutionary theories.
One way that current research attempts to address this is the considerable effort
directed towards the possibility of learning the suitable features, or representation
learning. This is usually done in unsupervised contexts, and is aimed at discovery
of features that are inherently good at representing the domain data by capturing
the underlying factors causing variation [63]. The space of features that are learn-
able by these systems is frequently constrained to a particular architecture, e.g.
auto-encoders or Restricted Boltzmann Machines, so they are parametric, albeit
non-linear. This restriction is, perhaps, one of the reasons that representation
learning is often done in combination with deep learning [64], which builds a
hierarchy of representations from low-level ones that are closely related to the
image pixel values, up to higher levels of abstraction that are closer to the
target concepts of visual understanding. Multiple layers of Convolutional Neural
Networks (CNN) have been applied to a range of challenging visual recognition
tasks, including mitosis detection, with very positive results [65]. The same
approach of stacking multiple layers of feature extraction can be successfully
combined with non-parametric models such as Gaussian Processes (GP) and
associated latent variable models (LVM) [66].

Latent variables are a fundamental concept in dimensionality reduction [67]
and the closely related sub-field of manifold learning [68]. The input image
space, where each pixel's colour corresponds to at least one dimension (more
if the colour representation is richer than grey-scale), is very high-dimensional
and creates enormous challenges for learning algorithms, for the simple reason
that it is practically impossible to populate such a vast space with a sufficient
number of training examples - the requirement grows exponentially with each ad-
ditional pixel. It is consequently necessary to find a smaller number of underlying
variables that control the correlations between pixel values to create the overall
picture, and subsequently use these latent (i.e. unobserved directly) variables
as the basis of classification. Many linear and non-linear methods of modelling
such variables have been proposed, starting with the basic statistical technique
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of Principal Component Analysis (PCA) and extending to a kaleidoscope of ker-
nel, spectral, adaptive, probabilistic and information-theoretic justifications for a
particular choice of embedding. Van der Maaten concludes in his comparative re-
view [67] that the artificial datasets presented to illustrate the advantages of many
non-linear methods are too specific, and the purported advantages fail to gen-
eralize to real data, where simple PCA continues to perform robustly. Although
barely given a mention in the review, Gaussian Process LVMs, discussed in greater
depth in Section 4.1.3, have made significant advances in recent years [69], and
offer the additional bonus of Automatic Relevance Determination (ARD), which
is the ability to determine how many latent dimensions are actually needed to
represent all the salient variations of the data, a question that is left unanswered
by most other types of dimensionality reduction.

The original aim of dimensionality reduction methods was visualisation, which
partly explains their propensity for fixed target dimensionality and also for their
basis in the concept of distance preservation, for a particular interpretation of
"distance’. This connection to distance metric learning, and by extension to one
of the earliest types of classification - k Nearest Neighbours (kNN), which relies
on a suitable measure of distance between pairs of examples - potentially reduces
classification based on latent positions to kNN with a learnt distance metric.

Another conceptual difficulty with such an approach is that even latent vari-
ables that perfectly explain the variability in the data are not necessarily optimal
for discriminative classification tasks: many variations will occur unconditionally
of class, and therefore will only distract the classifier - these are sometimes known
as nuisance variables. Imaging conditions are a classic example of such distract-
ing variation in the context of image classification. Some notable attempts have
been made to improve the discriminative value of learnt features in a super-
vised setting. Snoek et al. in [70] use a GP-LVM to ensure that it is possible
to construct a smooth mapping from their trained auto-encoder representation
to the class labels, without restricting the form of this mapping in any way, i.e.
giving the auto-encoder non-parametric guidance towards a more discriminative
representation. Although the results are clearly superior to those from a normal
single-layer auto-encoder, the method cannot outperform a deep convolutional
network, and requires tuning of a weight between representation accuracy and
discriminative power in order to achieve best results. Urtasun & Darrell in [71]
take a more direct approach of penalising examples that come from different
classes but lie close in latent space during the optimisation. Their method also
involves a trade-off parameter between its discriminative and generalisation abil-
ities. Finally, a fully probabilistic treatment of supervised learning with GP-LVM
is offered in [72], utilising the conditional independence of observed examples
and their labels given the latent variables. So far, GP methods have proved good
at generalising from a very small number of samples in a high-dimensional space,
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but suffer from scalability problems if the number of samples is large, as their
training is cubic in the number of samples. The use of GP-LVMs in classification
is also problematic because they are formulated as forward mappings from latent
space to observed values, so to determine the latent position of a new test point
requires a slow numerical optimisation. However, some recent advances in sparse
GP modelling are showing potential ways to overcome this limitation [73].

Of particular relevance to our application area, texture descriptors (introduced
in Section 1.3.3) tend to be high-dimensional, and generic feature selection tech-
niques are sometimes used to reduce their dimensionality by identifying a subset
of the features that is most valuable for classification (although this subset may
be specific to a particular type of classifier). As an intermediate step between
this simplistic scheme and the fully flexible mapping of latent variables, Nielsen
et.al. in [74] attempt to reduce dimensionality of textural features by taking a
weighted sum of the ones that exhibit strong differences between classes. While
correctly pointing out that as the number of features becomes larger than the
number of training examples, simple feature selection results may no longer gen-
eralise, the authors make some strong assumptions, such as independence of
input features, and some arbitrary choices, such as restricting the target space to
2 dimensions. Their potentially promising experimental results are not supported
by a sufficiently robust analysis to show that the comparison with existing ad-hoc
features passed to one classifier type is a valid one.

Another texture recognition technique, described in Section 1.3.3 as textons,
is an example of the dictionary learning branch of ML. The basic premise of
dictionary learning, which originates in the unsupervised context of encoding and
compression of signals, is to represent each sample point by an approximation
chosen from a set of predefined 'words’, which together form the dictionary.
The encoding is then formed listing the code, or identifier, of each word, the
bit-length of which depends only on the size of the dictionary and not on the
size of the original sample. In classification, it is the frequency of occurrence of
each 'word’, collected in a histogram, that is used as the discriminating basis.
Two major questions arise from this configuration: firstly, how to arrange the
dictionary entries in the original feature space so as to collect the most useful
information in the histogram, and, secondly, what is the optimal measurement of
difference between histograms? The first part also comes with attendant queries
of how big should the dictionary be and how do we determine which dictionary
entry is nearest, in other words what distance measure is most appropriate for
our samples? The most common set of answers to these questions is 'k-means’
with an empirically optimised value of k, Euclidean distance for the samples,
and 2 distance for the histograms. As k-means (and similarly k-medoids) is an
unsupervised clustering method, which aims to minimise the overall distortion
of the representation under the Euclidean distance metric [75], it has no funda-
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mental connection to the discriminative information contained in the resulting
histogram. Similarly, the x? histogram distance is an entirely heuristic way of
comparing two empirical distributions. Some attempts have been made to take
into account the discriminative needs of a supervised problem in dictionary de-
sign: based on minimising loss of discriminative information, [76] essentially aims
to align partition boundaries with class density changes, making each partition
more pure. The method is limited by hard assignment of each point to a par-
tition, and is fundamentally concerned with predicting the label given a point,
even though in dictionary-based classification the prediction is actually made
from the distribution of (encoded) points, and it is this distribution that needs to
be made more distinctive. An alternative approach to more discriminative use of
dictionary learning, proposed in [77], makes a separate dictionary for each class,
optimised for good reconstruction of samples belonging to that class, and then
uses the reconstruction error as the discriminative feature. It makes underlying
assumptions about comparable variability within each class, as an equal size of
dictionary is employed for all classes, and therefore may not be applicable in some
scenarios.

By far the most prevalent method of supervised classification in modern com-
puter vision is Support Vector Machine (SVM). Introduced in mid-1990s, SVMs
construct a dividing hyper-plane in feature space that separates the classes and
gives the largest possible margin between the boundary and its nearest training
points. SVMs are frequently, but not necessarily, combined with a kernel func-
tion, effectively boosting the dimensionality of the feature space and allowing
the construction of far more complex boundaries. This extension of the method
to address problems that are not linearly separable has accounted for much of
its popularity, as does its deterministic behaviour and superior classification per-
formance in many domains, particularly where the number of training samples is
limited. The method does require optimisation of kernel and margin parameters,
usually done by a hierarchical search for best performance on a validation set.

Gradually gathering momentum, especially in medical imaging applications,
is a technique known as Random Forests [78]. Based on the earlier concept of
decision trees, which make planar bisections of the feature space at each node,
random forests add probabilistic and information-theoretic underpinnings to pos-
tulate that injecting randomness into the previously deterministic process of tree
construction improves the robustness and generalisation capability of the overall
system. Instead of seeking a single perfect answer (for example, the maximum
margin separating hyper-plane of SVMs), random forests embody the collective
wisdom of many different 'quite-good’ opinions. The diversity, or randomness,
of decisions implemented by individual trees is an essential component of the
method's strength, and it usually relies on the plentiful supply of randomly gen-
erated features, which often consist of simple differences between pairs of pixels
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or local integrals. By eliminating the need for a separate feature extraction step,
which is never fully optimal, random forests unify many learning tasks, such as
classification, regression and density estimation, into a single framework. They
do require optimisation of parameters such as number of trees, their maximum
depth and randomness, and generally perform better when a large quantity of
training data is available. A notable recent proposal strengthens RF performance
by giving higher weight to trees that are known to be better discriminators in
combination with narrowing the pool of possible features to contain a selection
of relatively strong ones [79].

The word 'learning’ implies some change in the system, yet most formulations
of supervised learning tasks in ML are actually one-shot: given a set of training
data, construct a system capable of prediction of similar data, which will then
be tested on a different set of data. Only the relatively small sub-fields of active
learning and reinforcement learning address the questions of altering an existing
system in light of new experience. Active learning approaches these from the
specific view-point of the cost of labelling, and attempts to acquire labels only
for those examples which will give it the greatest improvement in performance.
Although these are very promising directions in the medical context, where acqui-
sition of data can be particularly difficult [80,81], they remain subjects of future
work in our particular applications.

Despite its length, this overview of machine learning is far from exhaustive,
giving only a cursory introduction to the topics most relevant to the applications
of interest, and leaving out such large sections as genetic programming and evo-
lutionary optimisation [82], sparse methods, independent component analysis,
fuzzy logic and many more. Beyond the basic 'feature extractor plus classifier’
pipeline lie questions of combining features of different origin and characteris-
tics into a single prediction, either through optimisation of feature weights or
more sophisticated kernel fusion [83]. Underlying all machine learning is the
fundamental concept of distance between samples in the high dimensional mea-
surement space, a notion of similarity or dissimilarity that is most appropriate
for the categories that are being compared, and one that is potentially very dif-
ferent to the common Euclidean distance. Ultimately, feature extraction must
preserve the information about this similarity in its manipulation of the pixels, as
no clever classifier can compensate for its loss, but there is currently no univer-
sally accepted way to gauge the informational quality of a representation without
pairing it with a specific classifier type.
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1.4 Qutline and Areas of Contribution

In the following three chapters of the thesis we examine in greater detail the three
application domains described in Section 1.1, and their associated algorithms:
Chapter 2 considers identification of clustered nuclei in DAPI-stained screening,
and explores the scope for detecting chromosomal abnormalities from the ap-
pearance of single nuclei; Chapter 3 looks at diagnosis of auto-immune diseases
through automated classification of immunofluorescence images; and Chapter 4
investigates methods of detecting mitotic nuclei in histopathology sections. Only
the broad principles of the relevant existing methods have been reviewed here,
and more detailed explorations of application-specific proposals are included in
each of the chapters. Finally, Chapter 5 will summarise the contributions of this
work and draw some conclusions, as well as offer suggestions for possible future
directions.

The goals of this work in all three domains are highly challenging and open-
ended. A major source of this challenge is the lack of clear understanding within
the subject of the connection between image (or data) properties and the most
suitable or promising method to apply. Although it is beyond the scope of this
thesis to answer the broad question for all image types and all algorithms, we
make some progress within the narrower scope of the specific pathology image
categories.

In the initial task of Chapter 2, that of cluster identification, we focus on
object shape as the primary characteristic of interest. Existing methods of shape
analysis, reviewed in Section 1.3.2 above, are augmented with novel measure-
ments of the boundary profile that are designed to detect notches between par-
tially overlapping nuclei in a cluster. We then address the more ambitious under-
taking of abnormality detection based on appearance, in the absence of definitive
knowledge about visual features potentially associated with abnormality. Our fo-
cus here is texture, and we develop a novel dictionary construction, based on
decision trees, to replace the more established models for texton quantisation in
the texture analysis (see Section 1.3.3). This dictionary is extremely fast and, un-
like the traditional methods, specifically targets discriminative power in different
areas of feature space in order to improve final classification performance.

We continue to focus on textural features in Chapter 3, exploring and compar-
ing a number of different approaches to measuring texture. Our main conclusion,
however, is not about the relative merits of particular texture features, but the
processes that should be used to evaluate and compare methods that assess in-
dividual cells when the diagnostic context is ultimately one of a whole patient
sample. We investigate this subject in greater depth in Section 3.3, and com-
pare methods that model the entire sample directly with those that view it as a
collection of cells.
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We raise the stakes once more in Chapter 4, by moving from cytopathology to
histopathology, with the corresponding increase in scene complexity, and search-
ing for objects with inherently variable appearance and ill-defined characteristics.
Here we need to bring together aspects of shape, texture and colour in order to
fully represent all relevant facets of the object, as well as address major complica-
tions on the classification side that arise from extreme levels of class imbalance
implicit in detection of rare objects. We develop a unique adaptation of his-
togram matching suitable for transmission microscopy images in order to remove
the effects of batch variations in stain strength and proportions on the colour
profile, and hence on the texture and contrast measurements that we make. In
a parallel to the conclusions of Chapter 3 we reflect here that the ultimate task
of diagnostic relevance is not finding the individual objects, but assessing their
average density, and this should form the basis for future evaluation of algorithms
in this application.

Throughout the thesis, segmentation plays a prominent and vital role. The
quality of segmentation results determines how accurately the downstream pro-
cesses can measure shape, and how well the object’s texture can be separated
from that of the background. We propose an efficient and effective segmentation
method, adaptable for use in different imaging modalities, and apply it to both
DAPI-stained nuclei in Section 2.2.1 and H&E stained tissues in Section 4.2.3.

In every domain we examine, we have explored the use of a variety of classifier
types as well as methods for combining them into ensembles. Although support
vector machines (SVM) prove versatile and succeed in many of the learning
tasks we consider, we have also explored the potential of random forests, k-
nearest neighbour and Bayesian GP-LVM classifiers in application to our chosen
domains. In the case of Random Forests we find that they can't compete with
SVMs when given fixed manually constructed features as input, as they need the
richer space of pixels and their combinations to randomise. Nearest neighbour
methods are very dependent on the distance metric used, and are only appli-
cable when the number of training samples is relatively small. GP-LVMs prove
both computationally difficult and fundamentally more limited in their represen-
tational power than their formulation suggests, at least in their current stage of
development.

Not all the experiments that | have tried out have made it into this document,
just the major themes and threads of development. This is particularly true of
feature extraction, which is the hardest part of the development process, the
“black art”, requiring intuition and ingenuity [84], and frequently resulting in
disappointment. To avoid the disappointment and give a more solid basis to the
belief that the features used are the best, or at least nearly the best, that they
can be, the promising directions of research are those which draw features from
a very large space of possible functions and evaluate them automatically, such
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as the random combinations of attributes in random forests or linear kernels in
multiple layers of deep CNNs.
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INTRODUCTION



Chapter 2

Abnormality Detection in DAPI
images

This chapter covers automated analysis of DAPI-stained cell nuclei in human
tissue samples used for diagnosis and screening of cancers and pre-cancerous
conditions. The two parts of the processing chain that we focus on are identi-
fication of cell clusters and detection of chromosomal abnormalities from DAPI
appearance characteristics alone. The latter is very much a speculative endeav-
our, as such a task cannot be performed reliably by human experts.

Following a description of the application domain in Section 2.1, Section 2.2
will present an enhanced method of segmentation for fluorescence images of cells,
and detail the features necessary for successful segregation of single cells from
cell clusters and other fragments present on the slide. For the textural charac-
teristics that are the chief identification criterion for chromosomal abnormalities,
Section 2.3 presents a novel decision-tree dictionary for patch quantisation, be-
fore overall conclusions are drawn in Section 2.4.

The data sets used throughout this chapter have been provided by lkonisys
Inc., a supplier of pathology equipment and services, and are not publicly avail-
able.

2.1 Application Domain

DAPI (4',6-diamidino-2-phenylindole) is a fluorescent stain that binds to DNA,
and has been used extensively for visualisation of the cell nucleus in fluorescence
microscopy. The samples used in our study have been processed to break down
the cells and spread them in a thin layer over the slide. At 20 times magnification,
each field of view captured by a microscope (Fig. 2.1) contains hundreds of nuclei.

The first step in processing these images is to identify the location of all the

21
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Figure 2.1: Example of 1600x1200 pixel field of DAPI-stained image captured by
microscope at 20x magnification, showing an area approximately 0.25mm across

objects of interest, which is achieved through thresholding followed by connected
component search. Objects below a certain area are rejected as noise or debris
resulting from side-effects of the sample preparation process, while very large
objects are excluded as they are likely to be very congested clumps of overlapping
nuclei that are not possible to separate.

The objects that remain fall into one of three categories: single isolated
nuclei, small clusters of two or three nuclei, or larger pieces of remaining debris.
Classification of objects into one of these categories is the subject of Section 2.2.
Single nuclei or split-up clusters can then be assessed for abnormal appearance.

Chromosomal abnormalities are known to cause certain changes in the ap-
pearance of the nucleus [85], which affect both its shape and texture. However
these are not generally sufficient for establishing the abnormality status of a cell
on their own. The reliable method of detecting chromosomal abnormalities is
through a specific chromosome count based on FISH signals. FISH (Fluorescence
in situ hybridization) is a technique for localisation of specific genetic sequences,
which are marked by an attached fluorescent molecule. The FISH markers are
imaged in a separate channel, which can be aligned with the DAPI images, and
appear as small bright spots within the area of the nucleus. An excessive number
of markers in a nucleus is a sign of abnormality, potentially related to oncogenesis
and requiring further investigation. The question investigated in Section 2.3 is
whether it is possible to predict abnormalities from DAPI appearance alone well
enough for a first pre-screening stage, reducing the number of nuclei requiring
more detailed and costly investigation with FISH.
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2.2 Object type identification

In this supervised learning problem, DAPI images and segmented masks are pro-
vided in four categories: singles, doubles, triples and debris. Table 2.1 details
the numbers of objects by type in the training and test partitions of the data set,
and some examples of each category are shown in Fig. 2.2. The total number
of labelled examples is over 14,000, and they include a large degree of variation
in brightness, size and texture of nuclei, and arrangement of clusters. Unfor-
tunately, exact details of the imaging conditions, equipment and the labelling
protocol are not available.

Set Single | Double | Triple | Debris
Training set | 6676 | 2909 437 | 1503
Test set 700 685 519 675
| Total | 7376 | 3594 | 956 | 2178 |

Table 2.1: Numbers of objects in provided data sets

Although the data is labelled with 4 different categories, it is beyond the
scope of this study to distinguish doubles from triples, although they are counted
separately as it is sometimes informative to compare error rates and failure mech-
anisms between these two types. In light of this, for the remainder of this section
the problem is defined as three-class, to sort the inputs into singles, clusters and
debris.

Cluster identification relies significantly on a good segmentation to provide a
reliable basis for shape assessment, and this step is discussed in Section 2.2.1. We
then explore a number of attributes that are valuable for discrimination of clusters
from single nuclei, as well as identification of debris objects, in Section 2.2.2.
Experimental results are presented in Section 2.2.3.

2.2.1 Segmentation

Segmentation masks are supplied as part of the data set, but a significant pro-
portion of them are poor, particularly among clusters. This will inevitably affect
classification performance, as shape is the major discriminative factor.

Analysis of the masks shows that they are obtained by a simple thresholding
operation, although a different threshold is chosen for each example object. In
the most problematic cases the threshold used is 20 to 30 grey-levels above that
which would produce a clear mask reasonably coincident with the object’s visual
boundary. The threshold is consistent with that computed by Otsu's method [10],
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a) Single ) Debris
) Double ) Triple

Figure 2.2: Contrast-boosted examples of each object type. Each nucleus is
30-40 pixels, or 5-7um, in diameter.

the unsuitability of which for cellular images was explained in Section 1.3.1. We
therefore devise an alternative method, still based on thresholding, but selecting
the threshold based on different requirements, more aligned to the properties of
DAPI images.

We search for the optimal threshold by measuring contour smoothness (some-
times referred to as circularity, defined as S = A/P? for area A and perimeter P)
and the boundary gradient for each of the candidate threshold values, from the
Otsu threshold down to 30 levels lower. The two measurements are combined in
a weighted sum to produce a single quality metric:

Topt = arg max {G(t) + ws - S(t)} (2.1)

where G is the boundary gradient and S is the smoothness ratio at each threshold
position ¢. The boundary gradient G(t) is computed as the average of grey-level
differences across the boundary, i.e. in the direction normal to the boundary at
each point of its contour, with a base of 2 pixels either side of the contour
position.

The weight wg is calculated from the ratio of sample variances of the two
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parameters across the image set as

S Var,[Ci(0)
> VarSi(t) (22)

where ¢ is the image index within the data set. To be clear, the variance is
computed with respect to changes in threshold level for each image within the
data set, and all such variances are averaged across all images in the data set.
Such a measure provides a robust estimate of the range of each parameter in
its sensitivity to threshold changes. Using the ratio wg as a weight on S(¢) is
equivalent to normalising each parameter by its range, as equation (2.1) can be
reformulated as

Topt = arg max{ G) + S0 0l } (2.3)

Ws =

\/Z Var|G;(t)] \/ZZ Var[S;(t

Thus the method gives an essentially equal weight to the two constituent mea-
sures, and provides a balance between searching for a rounded shape, but also
matching the object’s edge within the image.

a) Single

) Double c) Triple

Figure 2.3: Examples of improved threshold selection, showing grey-scale source
image, mask from Otsu's method, and the improved mask for each one.

The improvement in mask shape resulting from this process is consistent and
visually apparent, with several examples given in Fig. 2.3, and is particularly pro-
nounced for clusters where the constituent nuclei differ in brightness. The images
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presented in Fig. 2.3 have been selected to demonstrate the most improvement
over the baseline method, as they exhibit its most severe failure cases, generally
caused by a high degree of brightness variation within the object.

The proposed method is subject to potential failure modes of a rather different
kind: the selected threshold may break up a cluster whose nuclei only just touch,
resulting in two separate single nuclei while the label indicates a cluster; no such
cases occurred in this dataset as the selected threshold is generally lower than
the original. Conversely, lowering the threshold may merge an object labelled
as single with a nearby nearly-touching nucleus which was previously segmented
separately (and is partially outside the region of interest). This eventuality has
to be explicitly guarded against as part of the algorithm, detecting the threshold
at which such a merge occurs from a sudden increase in the area of segmented
object, and excluding the lower threshold values from the search. A few such
cases are illustrated in Fig. 2.4.

Figure 2.4: Examples of potential failure cases, showing grey-scale source image,
mask from Otsu’s method, and the proposed segmentation for each one, avoiding
merge with nearby objects.

2.2.2 Feature Extraction

The measurements that we use to distinguish between the classes describe both
the object’s shape and its content.

The geometric features, most of which were reviewed in Section 1.3.2, in-
clude the basic attributes of area, perimeter and circularity, which by themselves
are sufficient to achieve around 90% accuracy. To help in separating singles
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from clusters, we add a measure of concavity, defined as the area difference be-
tween the object and its convex hull, as proportion of the object area. Single
nuclei are almost perfectly convex, and the addition of this measure improves the
misclassification rate for this class.

We use the magnitudes of Fourier shape descriptor coefficients, rather than
their complex components, to obtain explicit rotation invariance. We find that
terms 1 through 6 carry the most useful information, with higher harmonics not
bringing any improvement in classification. We choose radial profiles constructed
as distance to centroid at equally spaced sections of arc length as the basis for
the Fourier Descriptors, as they are robust to the highly convex configurations
sometimes encountered among the cluster shapes where the centroid is outside
the object.

The final morphological contributions come from direct analysis of these cen-
tral distance profiles, some typical examples of which for the different classes
are shown in Fig. 2.5. The characteristic feature of these profiles for most single
nuclei is the small amount of variation, when compared to the other object types,
and the very gentle slopes involved when the profile does vary. Most variation in
single profiles comes from the elongated shape, which is smooth, whereas clusters
tend to have much sharper notches and angles between the nuclei, which result
in much deeper and sharper troughs in the profiles. Profiles of debris objects
tend to be much noisier and generally less consistent in their shape.

Based on the observations above, two measurements are derived from the
profiles: the first is a ratio between the minimum and the maximum of the
profile, marked by red diamonds in Fig. 2.5, indicating the relative depth of the
biggest trough within the profile. An inverse of this measurement (Rna:/ Rimin)
has been used in the literature to detect ‘bulging’ nuclei, but not for cluster
detection [86]. The second set of measurements assesses the steepness of the
sides of the lowest trough by taking gradients either side of the minimum. This
is a different approach from the most works on notch (concavity) detection,
which are usually based on the more complex analysis of changes in the tangent
direction [21]. In this case we do not need to locate the positions of all significant
concavities for cluster splitting, merely to establish whether they are present, so
the simpler measurements of local gradients around the minimum are sufficient.
The two gradients, from left and right, are sorted into the larger and the smaller,
as no significance can be attached to the orientation. Both are normalised by
the DC term of the Fourier transform, representing mean radius, to provide size
invariance. To reduce the effect of noise, these are taken as differences from
the minimum to values several points away from the minimum position, marked
by yellow triangles in the Figure. It has been established experimentally that
5 points (out of the total of 64 used for Fourier analysis) is more robust to
noise in the segmentation boundary and variation in cluster configurations than
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Figure 2.5: Typical examples of central distance profiles for different object types,
showing min and max positions (diamonds) and sides of lowest trough (triangles).

gradients taken at +1 or +3 points from the minimum, and provide a better
overall classification performance. Together these features provide a very strong
contribution to distinguishing single nuclei from other object types.

Explicit attempts to count the number of large indentations within the shape,
either as large lumps in convex hull difference, or local minima in the central
distance profile, have not proved fruitful. Neither did a measure which assessed
the difference of the shape from a perfect ellipse with the same major and minor
axes as the object under consideration.

As well as object shape, which provides the bulk of relevant cues for differen-
tiation of single nuclei from clusters, as well as from debris, information derived
from the object content is also beneficial. The first content feature is based
on the observation that well-formed nuclei have a strong edge, while debris is
smeary and blurred. This suggests that a measurement of image gradient in the
direction normal to the boundary may allow better differentiation of debris from
the other classes. The gradients are integrated around the boundary, and nor-
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Figure 2.6: Average brightness provides separation between cluster and debris
classes that are not well distinguished by morphology features.

malised by its length, as well as by the mean luminance of the object, to make the
measurement independent of overall brightness of the object. Gradients taken at
41 pixel around the contour were found to be too noisy, while those 4+2 pixels
either side of the contour were much more useful.

The average brightness within the object, which is used to normalise the
gradients above, proves a surprisingly useful feature in its own right, largely due
to its interactions with the morphological features, providing separation where
the other features overlap. The scatter plot in Fig. 2.6 illustrates one such
interaction, with the R,/ R feature, demonstrating additional separation of
the cluster and debris classes which have overlap in the space of morphological
parameters.

Another easily computed measurement is standard deviation of luminance
within the object boundary. The variance is generally increased for singles and
clusters by the presence of brighter and darker spots, and is even higher for
clusters due to variation in brightness between the nuclei which comprise the
cluster, and extra brightness in areas of overlap. Luminance variance in debris
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tends to be lower, as it is largely amorphous and uniform.

A more specific assessment of this difference in texture between actual nuclei
and smeary debris is supplied by a spot filter. This is a circular filter constructed
as a difference of Gaussians of different widths (o7 = 0.96, 05 = 1.55), with total
aperture of 7 pixels in each direction. The parameters are estimated from size
of commonly encountered spot textures in the nuclei, and are used to compute
the filter coefficients according to equation 2.4, where indices 7 and j have their
origin at the centre of the filter. The filter is not separable.

Z‘2 —I—]2 Z‘2 +]2
A A e

The result of convolution with this filter is normalised by the average brightness
of the object to ensure illumination invariance. This is followed by squaring
the signal, to produce an energy measurement and to pick up darker as well as
brighter spots. The energy signal is masked to exclude areas near the edge of the
object’s mask in order to avoid the filter's strong response to edges biasing the
internal texture measurement. Finally we apply a heuristic threshold to reduce
contributions from low-level noise (pixels with a low signal value are set to zero).
The total of filter responses collected from the masked object area is used a
feature for classification.

2.2.3 Results

We evaluate the performance of the proposed feature set with 10-fold cross-
validation, using SVM with RBF kernel. The feature set consists of the following
parameters, described in detail in the previous section:

Area

Perimeter

Circularity

Concavity (based on convex hull)

Six Fourier Descriptor coefficients
Distance profile Rin/Rimax

Sharpness of distance profile trough (ordered as smaller and larger)
Average brightness

Luminance standard deviation
Luminance gradient across the boundary
Spot-filter total energy

We compare this feature set with a base-line method based on complex
Fourier Descriptors alone, comprising 10 terms each of real and imaginary parts
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of the normalised Fourier coefficients, a total of 20 features. This well-established
shape signature yields an overall error rate of 7.9% when applied to our image set.
In contrast, the overall error rate of the proposed method is only 1.95%, nearly
4 times less than the base-line. The detailed confusion matrix of the proposed
method is given in Table 2.2.

Classified as— Single Cluster Debris
Actual class |
Single 7313 (99.13%) 52 (0.70%) 11 (0.15%)
Cluster 77 (1.69%) | 4432 (97.43%) 41 (0.90%)
Debris 45 (2.07%) 52 (2.39%) | 2083 (95.55%)

Table 2.2: Confusion matrix from 10-fold cross-validation using 17 features

As illustration of the efficacy of the distance profile features, when used on
their own (three features: R,/ Rimasr and two trough gradients), these are able
to distinguish single nuclei with an accuracy of 96.1%.

Classification of images segmented by the baseline Otsu’s threshold, but

applying the proposed set of features, yields an increased error rate of 2.22%
(£0.37%).

2.2.4 Discussion

While the segmentation improvements described in Section 2.2.1 have a rel-
atively small impact on classification performance (around 0.2%), the general
approach is potentially useful in other segmentation applications. Although the
computational cost of assessing each threshold is relatively high, the restriction
of search space to one dimension allows a favourable overall cost comparison
to two-dimensional segmentation methods which optimise some measure of a
boundary’s desirability, such as snakes [16]. The segmentation method is par-
ticularly suitable for this application because it disregards most of the textured
object content, but concentrates on the resulting shape, which is known a priori
to be smooth, and aligns it with highest edge contrast.

Among the features that have been evaluated for cluster detection, direct
measurements on the central distance profile are notable for their novelty and
efficacy. While Fourier analysis of these profiles is widely used for general shape
matching, these measures are more tailored to the specific task of detecting
notches between overlapping or touching nuclei within a cluster. Conversely, the
rather general measurements such as luminance mean and standard deviation
provide a surprisingly large amount of information to the classifier. Overall, it
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is the diversity of the features that provides a strong basis for the classification
performance.

2.3 Abnormality detection

As outlined in Section 2.1, DAPI images alone cannot provide a conclusive diag-
nosis of nuclear abnormality, but may supply enough clues to make an automated
preliminary priority judgement. Therefore we do not expect to obtain very high
accuracy rates, but are exploring the possibilities that computer vision techniques
may offer as part of the bigger system.

The changes in nuclear appearance caused by abnormalities can be divided
into differences of texture and of shape. Characteristic textural changes, induced
by oncogene activation which alters the protein composition of the nuclear matrix,
include very bright spots or a 'spongy’ surface, as illustrated in Fig. 2.7, and
the shape of abnormal nuclei can significantly deviate from the usual elliptical
form [85]. It is important to note however, that there is a significant proportion
of nuclei which are known to be abnormal (from FISH counts) but do not exhibit
any of these signs in their DAPI images. Conversely, there is considerable natural
variation of both texture and shape in normal healthy cells, some of which is
similar to the signs of abnormality, for example a degree of brighter spots within
the texture.

(a) Spongy texture (b) Bright spots (c) Irregular shape

Figure 2.7: Examples of abnormal nuclei showing various typical changes

The following sections describe an evaluation of a number of texture clas-
sification methods applied to this challenging problem, analyse the results and
discuss potential ways to improve them further.
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2.3.1 Methods

For developing abnormality detection we use a separate data set, consisting of
729 examples of (single) normal nuclei and 836 abnormal ones, all at 20 times
magnification. Clearly this class ratio does not represent the general incidence
of abnormality, but rather an approximately balanced set which provides a rich
variety of examples of abnormality. Masks identifying the object boundary within
the image are provided, but are drawn by hand and are very crude (polygonal),
so can't be used for automatic shape measurements. Only pixels within the
masked object area contribute to the texture measurements. The images vary
in size from 20 to around 70 pixels across, so the number of pixels that can be
used for texture assessment within each image is between a few hundred and
several thousand. Information on the precise preparation methods and imaging
conditions is, unfortunately, not available.

From the review of texture comparison methods given in Section 1.3.3, we
choose two candidate methods for evaluation on our dataset: co-occurrence
matrices and patch statistics. Simplicity and long-established use of GLCM (grey-
level co-occurrence matrix) measures gives a base-line for the comparisons. The
patch method provides a very general representation of texture, and as a relatively
new development supplies an opportunity to advance performance of nuclear
abnormality detection. We also test a specialist method designed specifically to
assess texture of nuclear chromatin structures, called contour complexity [87]. It
analyses changes in the length of outline obtained from different threshold levels,
and claims to be much more sensitive than fractal dimension for detection of
nuclear abnormality.

Six co-occurrence matrices were calculated for each image, with each ma-
trix containing co-occurrence totals from four directions, spaced at 90°, as the
textures of interest are isotropic. The offsets used are 1, £2 and +3 pixels,
separately for axially aligned and diagonal (45°) orientations, as the diagonals are
longer by a factor of v/2. Contrast, mean and correlation statistics are computed
for each matrix, resulting in a feature set of 18 attributes: 3 statistics for 3 pixel
offsets at 2 orientations (axial and diagonal).

For the patch representation, we compare two alternative constructions of
the dictionary: the widely used k-means clustering, as implemented by the
Linde-Buzo—Gray (LBG) algorithm [88], and a novel decision-tree partitioning
of feature space based on degree of overlap between classes, explicitly dividing
the feature space into areas of different discriminating ability. To learn the deci-
sion tree, each dimension of the feature vector is assessed to determine the value
of splitting feature space with a threshold in that dimension. The test threshold
is placed half-way between the class means in the relevant dimension, calculated
for the subset of points belonging to each leaf of the currently constructed de-



34 CHAPTER 2. ABNORMALITY DETECTION IN DAPI IMAGES

cision tree. The assessment compares proportions of points of each class on
either side of the proposed boundary, and whether they differ significantly from
the parent leaf's population. Significance is judged by the one-proportion z-test,
defined as

_ P—Po
MRV Ny (29)

where pg is the proportion of abnormal patches in the parent population, and p is
the proportion of abnormal patches in the putative subset, which has a total of n
points. The denominator represents an estimate of the sample standard deviation
based on the null hypothesis that the same binomial distribution with parent
proportions applies on both sides of the proposed split. The z-test estimates
the number of standard deviations by which the actual proportion deviates from
the null hypothesis, and we reject the null hypothesis if |z| > 2 on one or both
sides, corresponding to one-sided p-value of around 5%. If the proposed split is
not found to be significant, no decision branches are added to the tree at this
point, and we proceed to consider other dimensions. The process is repeated
for all attribute dimensions until no further significant splits can be added. The
z-statistic assumes that the sample is large enough for the binomial distribution
to approximate the Gaussian distribution, placing a lower limit on the number
of samples that are needed to make a valid assessment. At least 10 points of
each class have to be present on each side of the boundary to satisfy the validity
conditions, providing a natural stopping criterion to the growth of the decision
tree. Each leaf of the final dictionary tree corresponds to a codeword. All patches
wholly contained within the object boundary are converted to codewords, and
the normalised histogram of codeword occurrence is used as attribute vector for
classification of the image.

Finally, we consider the option of combining results from multiple classifiers to
improve overall accuracy. We use two classifiers with quite different feature sets
to support each other in obtaining a better decision: the confidence or predicted
probability output of the first classifier guides selective application of the second.
For samples whose GLCM-based confidence is above a certain threshold 7., the
predicted class is used directly, without further assessment by the patch classifier.
For samples with lower confidence, patch classifier is used instead; it is important
that this second-stage classifier is trained exclusively on examples which have
low confidence in GLCM decision. The optimal value of 7,.=0.85 is established
experimentally by cross-validation on the training set. This cascade construction
can be seen as a very simple form of boosting, which is nonetheless adaptive
to the variable accuracy of the two constituent classifiers in different regions of
feature space, as well as focusing the downstream classifier's learning on the
regions where the upstream one performs less well.
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Method Error rate (%) | ROC Area
GLCM 18.1 (0=2.3%) | 0.913
Contour complexity 27.3 (0=3.6%) 0.811
LBG Dictionary 18.6 (0=3.0%) 0.905
Discriminative Tree Dictionary || 16.8 (0=3.4%) 0.914
Cascade 14.6 (n/a)

Table 2.3: Results summary of all texture classification methods

2.3.2 Experimental Results

All experiments use an SVM with RBF (radial basis function) kernel for classifi-
cation, and we report error rates with their standard deviations based on 10-fold
cross-validation, summarised in Table 2.3.

The contour complexity measure proved rather disappointing: the lowest error
rate, obtained in combination with average luminance and luminance standard
deviation, is 27.3% (0=3.6%).

GLCM was able to extract rather more information: the full feature set of
18 attributes can predict abnormality with error of 19.9% (0=2.2%). However,
evaluation of attribute information gain highlights the relatively low value of

contrast features, and removing them from the feature set can actually drop
errors to 18.1% (0=2.3%).

Quantisation using a discriminative decision tree shows promise, improving
the texture classification error rate from 18.6% (0=3.0%) for LBG dictionary of
32 clusters, to 16.8% (0=3.4%) for a tree of 1483 leaf nodes, using same patch
features.

Receiver Operating Curves presented in Fig. 2.8 confirm the relative parity
of GLCM and the two dictionary-based methods in this case, while the contour
complexity measure is clearly inferior. This is also supported by area under the
curve figures included in the last column of Table 2.3.

As success of our ensemble arrangement depends on the two individual clas-
sifiers making mistakes in different parts of input space, we assess the degree of
correlation between the error instances of the two methods. We find that of 280
mistakes made by the GLCM-based classifier and the 257 mistakes of the patch-
based classifier, there are 113 shared errors, giving a lower bound of 7.2% for
error rate of the combined system. This would only be achievable if in each case
of diverging classifier opinions we could perfectly predict which one is actually
correct. The achieved combined error rate is 14.6%, significantly improving on
both the constituent methods (18.1% for GLCM and 16.8% for patches).
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Figure 2.8: ROCs for the various abnormality classification methods

2.3.3 Discussion

It is very difficult to pick the most suitable method from the plethora of texture
classification algorithms on offer. Trial and error is the prevalent selection mech-
anism, but the computational and development costs of trying all the potential
combinations is prohibitive. While accuracy is a very important characteristic
of performance, computational efficiency, robustness and transparency are also
relevant. Specific aspects of the application may also influence the choice of
method, for example the degree of similarity and overlap between the texture
classes, which is very high in our case. We are additionally hampered by the rel-
atively low magnification (20x) of the available images, which may not capture
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sufficient detail for accurate recognition; and the crude manual segmentation,
which precludes the use of shape attributes even though these are known to
be related to malignancy. Our exploration is therefore quite limited, but does
demonstrate potential for automation in this application.

Contour complexity has been claimed to be much more sensitive than fractal
dimension for detection of nuclear abnormality [87]. However, this claim is based
on a Kolmogorov-Smirnov test of distribution differences, not actual classification
performance. While the distributions of contour complexity values are indeed
different between benign and malign cells, a large proportion of both normal
and abnormal nuclei have very low values of contour complexity, which therefore
provides no discriminating information in these cases. So only a minority of
malign cells, those with a high contour complexity, can be differentiated from
the benign in a classification context, severely limiting the utility of this measure
in a practical application. An additional limitation of this measure is its low
dimensionality, fundamentally reducing its classification potential. This limitation
is confirmed by experimental data on our own image set.

Co-occurrence matrices prove their enduring worth as fundamental represen-
tations of the statistical correlations underlying the concept of texture. It is par-
ticularly important to include multiple offsets to cover a broader range of texture
scales, and to correctly handle the need for rotational invariance by combining
contributions from different rotations of the image into a single matrix, where
they can robustly reinforce each other, rather than compute separate statistics
for each orientation to produce a larger, but noisier, feature vector.

The texton distribution comparison is not able to improve on GLCM results,
although applying the x? kernel for histogram comparison in the classifier could
be potentially beneficial. The accuracy of the representation is limited by hard
assignment of a patch to a single dictionary entry, especially as the dictionary
size is constrained by computational cost of the k-means algorithm. Our novel
discriminative dictionary constructs a much larger representation at a negligible
computational cost, and is able to better separate the classes in this bigger feature
space. It also requires no distance metric between patches, so there are no issues
of finding an appropriate one. As the tree's principal objective is finding areas
of relatively high discriminative ability in feature space, it is robust to issues of
overall class imbalance, unlike dictionaries based on clustering which represent
samples of high-density dominant class much more accurately than those of the
minority class. The tree could be further improved at a small computational
cost by taking account of the measured variances of each class within the parent
population when calculating the proposed boundary position, rather than the
current implicit assumption of equal variance.

The combined cascade classifier is able to implement a more complex decision
boundary than either of the constituent methods. Although our assessment of
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divergence between the error instances of the two methods is encouraging, we
do not achieve the best possible ensemble accuracy as confidence of the first
classifier is an imperfect predictor of error cases. The dependency between the
two stages also creates difficulty in optimisation of the decision thresholds of the
two classifiers.

Some preliminary examinations of and experiments with an augmented dataset
containing additional focus planes either side of the images included in our abnor-
mality data suggest that a significant proportion of the images we have used are
not optimally focused, which would have strongly affected their textural proper-
ties and measurements. Although in some cases the shift of focus one step closer
or further brings a distinct sharpening of the whole image, other cells exhibit dif-
ferentiated blurring at opposite sides of the cell, caused by the cell’'s skewed
orientation in relation to the plane of the slide. In these situations, a simple
choice of optimal focus plane based on some global measure of sharpness would
not be sufficient, and a more sophisticated adaptive focus method would have
to be employed in order to provide the most accurate texture measurements.

The differences in accuracy between several of the examined methods are
small, and do not provide a full picture of their relative merits. The true utility
of each method within a larger system would depend on actual incidence of
abnormality, which is not available for our study, and the desired balance between
type | and type Il errors when adjusted for that incidence. The precise distribution
of errors will also interact to produce different effects on classification of a whole
sample based on the cells it contains, a subject which is explored in much greater
depth in Chapter 3.

2.4 Conclusions

In Section 2.2 we demonstrate a system able to distinguish single nuclei from
nuclear clusters and also from fragmentary debris objects, which can be optimised
to generate errors in less than 2.0% of cases. This is a very promising result in
an application which could lead to major advances in accuracy and availability
of early detection of cancers and pre-cancerous conditions, and it derives its
strength from the richness of the feature vector used to describe the object.
Development of specific measurements that target the characteristics of interest,
such as the sharpness of notches in the radial profile, boosts the robustness as
well as transparency of the overall design.

The abnormality detection task described in Section 2.3 is a difficult instance
of texture recognition as the two classes are so similar and even ambiguous. We
have tried to adapt the methods to squeeze the most discriminating information
out of the available data. The discriminating dictionary tree developed for this
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purpose can be applied to many other areas of computer vision which employ a
bag-of-words approach. It is considerably faster than normal clustering methods
in both training and assignment, and does not require an explicit distance metric
for feature vectors. It is also much faster to train and has a more flexible structure
than similar tree-structured descriptors that aim to directly optimise the classifi-
cation performance [89], and is independent of the specific type of downstream
classifier. Similarly, the combination of classifiers based on the confidence output
of the first stage is potentially applicable to many other scenarios.
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Chapter 3

HEp-2 pattern classification

This chapter is concerned with automated analysis of indirect immunofluores-
cence images (IIF) introduced in Section 1.1.2. As previously outlined, the par-
ticular type of images, which visualise the anti-nuclear auto-antibody (ANA)
reaction using the HEp-2 cell line, are routinely used by pathology laboratories
as the most reliable basis for diagnosis of auto-immune diseases. The diagnosis
is usually performed by laboratory staff directly at the microscope, determining
the specific type of auto-immune disease from the visual pattern of the fluores-
cence. A large number of these patterns is described in the medical research
literature, although only a smaller subset of the more common ones is routinely
differentiated by clinical laboratories.

Recent years have seen increasing interest in automation of parts of this
diagnostic work-flow, both to reduce the pressure on overstretched pathology
specialists and to provide a more objective and repeatable mechanism of image
interpretation. The precise nomenclature of staining patterns continues to be
a matter of debate within the medical community [90], with additional causes
of variability in results stemming from differences in laboratory processes and
natural variability of the reagents involved [91,92], as well as the inter-observer
variability in interpretation of the visual patterns, which is estimated to have only
76% agreement [93]. The photo-bleaching effect offers an additional difficulty
for manual pattern interpretation, as the rapid fading of the fluorescence limits
the time window for accurate analysis.

We review the latest research in this application area in Section 3.1, and anal-
yse some of its short-comings in the context of the larger diagnostic system. We
describe some of our own experiments in Section 3.2, and relate their results to
the underlying search for connections between image characteristics and the best
ways of measuring them as attributes suitable for classification. In particular, we
suggest several measurements suitable for assessment of isotropic texture, which
is frequently seen in biological objects, that are preferable to simple application

41
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of full 2D analysis as they concentrate the relevant information in fewer features
with less noise. A major theme of this chapter is the difference between cell and
sample classification, so in Section 3.3 we depart from the late fusion approach
and analyse each sample in its entirety, either by modelling the distribution of
cell parameters within the sample, or by pooling contributions from all image
regions that represent internal cell content into a single histogram of textural
properties. The implications of both sets of experiments are analysed in Sec-
tion 3.4, together with some promising suggestions for further improvements in
this application area.

3.1 State-of-the-art review

The subject of automatic analysis of HEp-2 fluorescence patterns has been stud-
ied for around 15 years [94], and has gradually developed to cover automated
detection of cells within the captured slide images, their segmentation [95], clas-
sification of the overall staining intensity as positive or intermediate [96-98], and
finally identification of specific staining patterns associated with particular dis-
eases [96,97,99-102]. A very recent comparative study of commercially available
systems reported pattern recognition accuracies between 52% and 79% [103], al-
though the manufacturer's own findings are often much more favourable. Meta-
analysis of the various studies is highly challenging due to the variety of chosen
class definitions, as well as the differing quality and quantity of images used in
each one. Some studies only consider positive cells as part of the dataset, which
allows a higher recognition accuracy than inclusion of the fainter, and therefore
more difficult, intermediate intensity cells.

The most recent flurry of activity in the field has been prompted by intro-
duction of public data sets, associated with contests or challenges, and aimed at
attracting new researchers to the area. The HEp-2 Cells Classification contest
at ICPR 2012 recognised the difficulty in comparing earlier works, and provided
a single dataset for “the comparison of systems able to automatically recognize
the pattern of cells within IIF images [..] on a large and significant set of real
data” [104]. Unfortunately, the design of the dataset labelling was flawed, and
its inaccurate description led to massive discrepancies between cross-validation
and test performance, rendering the comparison ineffective.

The follow-up competition at ICIP 2013 reflected the statistical structure of
the problem much better, and contained a much larger volume of cells, although
it changed the definition of classes from that used in the earlier dataset, making
cross-comparisons very difficult [105]. So far, the only work using this dataset
that has reached publication performs a very broad-base comparison of feature
and classifier types, and concludes that texture is the most relevant discrimi-
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nant, and (of those tested) Laws' masks combined with RBF-SVM produce the
best performance [106]. This dataset, as all the previous ones, contains images
produced by a single laboratory using a single set of equipment, which limits
its ability to fully test the generalisation capabilities of any proposed methods.
The images contained in the two datasets described above exhibit significant
differences of colour, resolution and focus quality, so it would not be possible
to reliably predict the performance of a method on one dataset based on its
performance on the other.

In addition to the two challenge datasets, a medium-size public dataset has
been released recently by the same laboratory that prepared the ICIP 2013 con-
test data, Sullivan Nicolaides Pathology in Australia, under the name SNPHEp-
2 [107]. The dataset, and a few of the corresponding published works, are
described in detail in Section 3.1.3, following an in-depth review of the more nu-
merous studies based on the earlier MIVIA dataset in Section 3.1.1. All are based
on some combination of the computer vision and machine learning techniques
described in Section 1.3.

3.1.1 MIVIA Data Set

The data consists of 1457 IIF images of individual cells, each having an associated
binary mask (removing issues of segmentation from any comparison), an intensity
label (positive or intermediate), and a ground-truth class label from one of 6
classes. The classes are as follows:

e Homogeneous: a diffuse pattern, fairly uniform across the whole nucleus.

e Fine speckled: a very fine-grained isotropic texture, not dissimilar to
white noise.

e Coarse speckled: an isotropic texture of somewhat larger specks.

e Centromere: this class is characterised by large numbers of strong bright
spots on a darker background. These are 2-3 pixels across, and 40-60
are supposed to be present, although in a number of intermediate inten-
sity examples of this class none are visible to the eye, even after contrast
normalisation.

e Nucleolar: a small number (less than 6) of larger bright areas within the
nucleus.

e Cytoplasmatic: these nuclei are characterised by a strongly irregular
shape, as compared to the generally elliptic nature of all other classes.
The texture is equally irregular.

Examples of each class are given in Fig. 3.1, contrast boosted to make their
detail more visible. Typical contrast range for positive examples is around 120
grey-levels, but can be as low as 25 levels for cells in intermediate samples, greatly
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) Homogeneous ) Fine speckled (c) Coarse speckled

) Centromere ) Nucleolar (f) Cytoplasmatic

Figure 3.1: Positive examples of each class

exacerbating the effect of sensor noise. Image sizes range from 45 to 130 pixels
across.

The images suffer from a number of artefacts: sensor impulse noise affecting
groups of between 4 and 8 pixels across appears in a number of locations; 4-pixel
wide vertical banding is visible in areas of high gradients, and probably originates
from a crude up-sampling algorithm in the scanning device. Finally, a variation
in focus precision, which can affect textural measurements, is present within the
image set.

3.1.2 ICPR 2012 Contest

The HEp-2 Cells Classification contest held at ICPR 2012 attracted the partici-
pation of 28 groups from across the world, evaluating a rich variety of algorithms.
Sadly, due to a flaw in the experimental design of the contest, its results, now
published in [108], shed little light on the actual usefulness or otherwise of any
of the methods. The contest description misrepresented the labelling procedure,
suggesting that each cell was independently labelled. The submitted algorithms,
designed on the basis of this statistical independence of the supplied data points,
performed very well in cross-validation on the training set (error rates of around
5% were reported by a number of participants) but failed across the board when
exposed to the test set, which consisted of genuinely independent samples from
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other patients. Rather than over 700 training samples across 6 classes, the train-
ing set only contained 14 independently labelled whole-well images for each class,
which had then been split up into cells with inherited, propagated labels.

Despite the contest’s failure to give definitive answers about the relative mer-
its of different feature sets for this application, it is nonetheless informative to
consider the range of features employed by the participants. The summary report
for participants includes method descriptions of all submissions, and a number
of more detailed papers were included in ICPR proceedings [109-116]. Most al-
gorithms included some form of texture measurement, and often a combination
of several; co-occurrence matrices, Local Binary Patterns, and various extensions
thereof, as well as gradients, frequency transforms and Gabor wavelets were rep-
resented. Morphological and granulometry features form another strand, recog-
nised by several researchers as relevant to these image patterns. Convolutional,
dictionary learning, randomized and evolutionary feature extraction methods were
also evaluated.

Following identification of the cause of the gap in performance between train-
ing and test conditions, additional labelling information was released, which re-
lates each cell image to its parent sample image. This allows cross-validation
procedures to take account of the dependencies between cells originating from
the same sample, and structure cross-validation folds in the same manner as the
training-test split, i.e. always evaluating performance on cells that have come
from a previously unseen patient, not just previously unseen cells. A special issue
of the Pattern Recognition journal, containing follow-up studies based on this
augmented dataset [117], is currently still 'in press’. The protocols prescribed
for the special issue articles allow comparison of both cell-level performance and
the accuracy of sample-level predictions, assuming an independent prediction for
each cell and a vote for most frequently selected class. Given that human experts
examine the entire sample before making their decision, we find this approach
too limiting, and discuss potential improvements in Section 3.2.

Additionally, it is worth bearing in mind that some classes are not fully char-
acterised by the appearance of their inter-phase nuclei as described earlier, but
can only be distinguished if mitotic (dividing) cells are present within the sample
and exhibit the characteristic features of a particular class. The appearance of
these nuclei is very different from the rest of the sample, and they had been
explicitly manually excluded from the original contest dataset. Only a few mi-
totic cells are present in any one sample (and sometimes none at all), making a
proper statistical treatment of the connection between mitotic and inter-phase
appearance very difficult.

Several of the special issue papers are of particular interest: the best overall
result at the sample level is reported in [118], with accuracy of over 95%, which
is considerably higher than any other reported results. The method is based on
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subclass discriminant analysis (SDA, [119]), and combines morphological fea-
tures at 7 different thresholds with both global and local textural statistics. It
remains a matter of concern, however, that the number of sub-classes is in this
case very close to the number of samples of each class (which are very few in
this dataset), and the sub-classes may be learning to model each sample rather
than sub-classes as such. Separate feature selection and classifiers for positive
and intermediate samples are potentially beneficial due to their different char-
acteristics, but discovery of sub-classes that is inherent in SDA is perhaps less
justified.

Winners of the original ICPR 2012 contest, Nosaka et al. improve on their
own result by introducing explicit rotational invariance of the co-occurring binary
patterns, but also find it necessary to include rotated versions of training images
in their training set, which is counter-intuitive [120]. A promising direction of
optimising a dictionary for more discriminative representation gives disappointing
results in [121], reaching only 71.4% sample level accuracy with leave-one-out
protocol, perhaps due to the inherent limitations of using reconstruction error as
the basis of classification, and its consequent sensitivity to noise, which is high
in this dataset. Finally, Theodorakopoulos et al. [122] propose a dissimilarity
representation, based on a combination of local gradients and a rotationally-
invariant version of CoALBP, and although their consideration is limited to cell,
rather than sample, similarity, they do remark on the lack of coherent block
structure within their dissimilarity matrix, something which we explore further in
Section 3.2.

3.1.3 SNP HEp-2 Data Set

The images from 40 patients contain 1884 cells in 5 different classes [123], which
match those in the MIVIA dataset, except for the omission of cytoplasmatic,
which is a reasonable exclusion given that this class is easily distinguishable by
shape, and only dilutes evaluation of texture recognition performance when mixed
with the others. This dataset exhibits a much greater variation in focus precision
than in the earlier images, and wide variation of exposure, including strong over-
saturation in some cases, but has lower levels of white noise due to better cooling
of the camera. No mitotic nuclei are differentiated in the labelling of this dataset.

So far, relatively few works evaluating methods on this dataset have reached
publication; of these, Faraki et al. is notable for the explicit consideration of how
robustly a method maintains its performance when applied to a different data set
than it was trained on [124]. The theme of regional codebooks, giving separate
consideration to cell edges and their interiors, first suggested in the original paper
describing the dataset [123], continues in [125]. The improvement obtained
by additional application of multiple kernel learning is variable, depending on
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which dataset it is evaluated on. An approach based on so called Spontaneous
Activity Patterns (SAP), evaluated in [126], shows better cell-level accuracy than
some of the other proposals, but, as we demonstrate through our experiments
in the following section, cell-level accuracy is not a reliable guide to sample-level
performance, which is the ultimate goal of this application.

3.2 Cell Experiments

It is evident from the review in the previous section that the majority of current
work concentrates on improving accuracy of recognition for individual cells, with
an implicit assumption that this will automatically translate into improved sam-
ple decisions downstream. In this section we demonstrate through comparative
experiments (published in [127]) that this is not necessarily the case, and that
therefore a richer statistical model of connections between cell appearance and
sample class is needed. We propose the use of a distance metric for sets of
cells, which can take into account the full set of measurements from a patient’s
sample, instead of narrowing the cell information down to a hard class decision
before allowing it to be combined with information from other cells within the
sample. We show that this approach has a stronger connection to the ultimate
goal of performing a clinical diagnosis, and provides the researcher with a richer
insight into the causes of confusion.

We describe the different protocols that are used to compare features in Sec-
tion 3.2.1, and detail the evaluated descriptors in Section 3.2.2. Experimental
results for each combination of feature set and evaluation protocol are sum-
marised in Section 3.2.3.

3.2.1 Evaluation protocols

Two experimental protocols are compared: the original ICPR contest protocol
and a sample-based cross-validation procedure. For each protocol, we report both
the accuracy of prediction for individual cells, and the sample-level predictions
made by highest vote share. Each protocol is applied to a number of different
descriptors in order to evaluate the correlation between cell- and sample-based
performance.

Contest protocol

The original contest data set was split into training and withheld test portions,
with separate patient samples used for each portion. The training set contained
2-3 labelled samples from each class, but cells from all the samples were mixed
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together, with no information on which cell came from which sample. Such a
data set only allows for cell-based cross-validation within the training portion,
resulting in folds which contain cells from the same sample in both training
and validation sections. Under these conditions, methods that are sensitive to
a sample’s specific imaging characteristics, such as focus or contrast, rather
than broader class characteristics, can provide a very accurate prediction for the
validation set, but may not generalise well to the held-out test. For this protocol,
we report both cell and sample-level accuracy for the test set, and compare the
former to the average accuracy obtained by cross-validation within the training
set in order to assess the generalisation performance.

Sample-based cross-validation

The second protocol addresses the problems of the contest protocol by using
additional information about the source sample for each cell. It is a leave-one-
out procedure, where all cells from a single sample are held out as validation
set for each fold. This gives a much fairer assessment of the expected real-
life performance of a classification method, and has the additional benefit of a
much larger training set, with 4-6 independent samples of each class available
for training in each fold. Prediction of class label is still made independently
for each cell, without making use of any information from other cells within the
same sample.

3.2.2 Feature sets

As the class descriptions in Section 3.1.1 make clear, most of the distinctions
between HEp-2 patterns are based on textures. With this in mind, we compare a
number of different approaches to texture measurement against each other. As
the cytoplasmatic class is also characterised by shape, we include circularity of the
mask (calculated as area divided by square of the perimeter) as shape descriptor
in every feature set. All feature vectors also include the basic measurements of
pixel value average within the cell mask, and their standard deviation normalised
by min-max contrast range of the entire cell image. We also note that all the
textures are completely isotropic, allowing simplified formulations compared to
the general case. As the fluorescence is monochromatic, we further simplify
texture assessment by only using the dominant green component of the images.

DCT based descriptor

We note from the class descriptions that their distinctions are often ones of
scale, rather than a specific textural pattern. This is most apparent in fine vs.



3.2. CELL EXPERIMENTS 49

coarse speckled cases, but also continues to larger spots in centromere, and even
larger bright areas in nucleolar. We therefore use the power spectrum to capture
the scale at which textural variation is strongest, as described in greater detail
in [113].

The frequency analysis is performed as a 32-point DCT of line sections
from inside the segmented mask boundaries. As the texture is isotropic, a 1-
dimensional transform is sufficient to establish its frequency distribution. Trans-
forms from all the qualifying lines within a cell image are averaged to reduce
variability and noise, and intensity normalised by min-to-max range of the image.
The higher frequencies of the transform are dominated by noise, so it is found
beneficial to use only the lower 16 of the resulting coefficients for classification.

Pixel differences

Pixel difference statistics at different scales are another way to capture the varia-
tion of textural energies. Basic average absolute difference between nearby pixels
(horizontal and vertical offsets combined), is defined in Eq. 3.1, with pixel inten-
sity at position (7, j) denoted I; ; and the summation covering only those pixels
that are within the segmentation mask C' of the cell.

D) =& D s = Tigl+ ijes — Ll (3.1)
| | (i,5)eC

When offset § = 1, the difference is highest for fine speckled and homogeneous
classes, whereas differences from 2 pixels apart (0 = 2) are increased for coarse
speckled and centromere. Subsampling the image by a factor of 2 in each di-
rection (following a suitable low-pass filter to avoid aliasing) and applying the
pixel-difference operator again creates a textural signature at a coarser scale.
The subsampling smooths out most of the finer textures, but brings the stronger
gradients of centromere and nucleolar classes to pixel-level scale. Further levels
of subsampling are not useful in this particular application, as resulting images
are too small to retain any relevant information, but could be used in the general
case to create a multi-scale representation of the texture.

The difference averages at the various scales are strongly linearly correlated
with each other, but at characteristically different slopes for each class. We
therefore derive the most classification benefit by taking pairwise ratios between
measurements at different scales, and including them in the feature vector. The
ratios are also independent of overall brightness and contrast of the image, aside
from quantisation effects.



50 CHAPTER 3. HEP-2 PATTERN CLASSIFICATION

Morphology features

Another way of comparing these textures, used by a number of contest partici-
pants [114,115,128], is granulometry or morphological measurements of image
slices at different thresholds. Similarly to [128], we consider 7 thresholds equally
spaced between the extremes of intensity within each image, and compute 3
parameters from the connected objects produced at each threshold:

e mean area of each object relative to the area of the nucleus mask
e variance of all object relative areas
e average circularity of all the objects

Again following [128], we filter out objects below a certain size (1% of the average
object area) as noise. The resulting descriptor has 7 % 3 = 21 features.

Co-occurrence features

Another well-established and common method of quantifying texture characteris-
tics is the grey-level co-occurrence matrix (GLCM). It was used by a great many
of the contestants as part of larger feature vectors, and so it is useful to compare
its contribution. As the textures in question are isotropic, it is not necessary to
consider different orientations separately, but offsets of different length can pro-
vide extra information about different scales of texture, so we include contrast,
energy and correlation for matrices at d = 2 and d = 4 in the descriptor.

3.2.3 Results

A summary of the results, comparing the feature sets to each other, is given
in Table 3.1. “Contest:cells” gives the cell-level accuracy on the test partition
of the contest dataset for methods trained on the training partition, and “con-
test:samples” gives the sample-level accuracy using the same train-test split.
“Leave-1-out:cells” row lists the cell-level accuracy using the sample-based leave-
one-out cross-validation protocol, and finally “Leave-1-out:samples” lists the
sample-level accuracies from the same protocol. All experiments in this sec-
tion use multi-class SVM with RBF kernel, provided by LibSVM library [129],
whose hyper-parameters are determined by a cross-validation grid search.

Tables 3.2 through 3.5 present the detailed cell-level confusion matrices for
the leave-one-out protocol, to allow analysis of the suitability of each feature set
to identification of particular classes.

Additional experiments using a combined feature set containing both DCT
coefficients and difference statistics, as well as the shape parameter of circularity,
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Evaluation DCT | Pixel Diffs | Morphology | GLCM
Training 90.9% | 95.3% 87.8% 91.1%
Contest:cells 523% | 56.5% 52.2% 35.3%
Contest:samples 71.4% | 71.4% 64.3% 35.7%
Leave-1-out:cells 535% | 53.7% 50.6% 39.4%
(positive) 60.7% | 62.8% 61.4% 45.6%
(intermediate) 48.1% | 38.7% 41.4% 26.2%
Leave-1-out:samples || 64.3% | 64.3% 71.4% 60.7%

Table 3.1: Summary of accuracy rates for the different feature sets and forms of
evaluation, highlighting overall best in bold type.

True Class Centr | Homog | Nucl | Coarse Fine | Cytopl FNR
Centromere || 78.7% | 0.8% | 53% | 5.0% | 10.1% | 0.0% | 21.3%
Homogen 0.0% | 53.2% | 24.9% | 1.8% | 18.8% | 1.2% || 46.8%
Nucleolar 21.6% | 46.5% | 16.6% | 83% | 7.1% | 0.0% || 83.4%
Coarse 76% | 19% | 7.6% | 61.4% | 21.4% | 0.0% || 38.6%
Fine 19.7% | 34.1% | 13.5% 72% | 25.5% | 0.0% || 74.5%
Cytoplasm 0.0% | 45% | 00% | 18% | 1.8% | 91.8% | 8.2%

Table 3.2: Cell-level confusion matrix for leave-one-out protocol using DCT fea-
tures, expressed as percentages of number of cells of true class in the test set

which is very similar to the method in [113], show an improvement over the
constituent features taken on their own: the accuracies for the leave-one-out
protocol are 56.2% for cells, and 67.9% for samples. This suggests that the two
feature types provide some complementary information and can support each
other in different sections of the dataset, but cannot surpass the overall accuracy
of the morphological features.

3.3 Caell Distribution Experiments

Human experts assessing a sample take account of the appearance of all its
cells together, and assign a single class label to the entire image. Experiments
placing a human expert into the same conditions as the cell-based protocols
presented in the previous section, i.e. only able to examine a single cell at any
one time, show that their performance on the MIVIA dataset drops to 73% cell-
level accuracy [108]. We therefore explore the possibilities of basing the overall
sample decision on a model directly representing the properties of the sample as
a whole, as opposed to voting by independently examined cells.
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True Class || Centr | Homog | Nucl | Coarse Fine | Cytopl FNR
Centr 70.6% 08% | 7.0% | 62% | 143% | 1.1% | 29.4%
Homog 1.5% | 53.0% | 16.4% | 4.2% | 23.0% | 1.8% || 47.0%
Nucl 31.1% | 29.9% | 29.5% | 6.6% | 2.9% | 0.0% || 70.5%
Coarse 8.6% | 19% | 86% | 64.3% | 16.2% | 0.5% || 35.7%
Fine 28.8% | 27.4% | 1.4% | 8.7% |33.2% | 0.5% | 66.8%
Cytopl 5.5% 82% | 0.0% | 55% | 82% | 72.7% | 27.3%

Table 3.3: Cell-level confusion matrix for leave-one-out protocol using pixel dif-
ference features, expressed as percentages of number of cells of true class in the

test set

True Class || Centr | Homog | Nucl | Coarse Fine | Cytopl FNR
Centr 66.9% 59% | 12.0% | 7.6% | 6.4% | 1.1% | 33.1%
Homog 11.2% | 35.5% | 5.8% | 10.0% | 37.3% | 0.3% | 64.5%
Nucl 37.8% | 16.6% | 353% | 50% | 41% | 1.2% || 64.7%
Coarse 7.6% | 10.0% | 6.7% | 61.9% | 13.8% | 0.0% || 38.1%
Fine 72% | 447% | 14% | 7.2% |39.4% | 0.0% | 60.6%
Cytopl 5.5% 45% | 109% | 2.7% | 0.0% | 76.4% | 23.6%

Table 3.4: Cell-level confusion matrix for leave-one-out protocol using morpho-
logical features, expressed as percentages of number of cells of true class in the

test set

True Class || Centr | Homog | Nucl | Coarse Fine | Cytopl FNR
Centr 62.7% | 104% | 73% | 56% | 59% | 8.1% || 37.3%
Homog 16.1% | 31.8% | 11.8% | 9.4% | 21.5% | 9.4% | 68.2%
Nucl 224% | 585% | 29% | 7.9% | 62% | 2.1% || 97.1%
Coarse 10.0% | 11.4% | 3.8% | 50.5% | 18.1% | 6.2% | 49.5%
Fine 82% | 31.7% | 58% | 11.5% | 42.3% | 0.5% || 57.7%
Cytopl 17.3% | 19.1% | 3.6% | 16.4% | 3.6% | 40.0% | 60.0%

Table 3.5: Cell-level confusion matrix for leave-one-out using co-occurrence fea-
tures, as percentages of number of cells of true class in the test set
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3.3.1 Normal distribution modelling

One approach to modelling the overall properties of a sample is to estimate
the distribution of cell parameters within it, and compare distribution overlap
for samples of the same class and from different classes. A feature extraction
process which is invariant to the ‘distractor’ variables, such as differences in
overall sample intensity or focus, while being sensitive to the true class-dependent
characteristics of the image, should produce distributions that overlap strongly
with those from the same class, while being well separated from distributions of
other classes. We use the Bhattacharyya distance (denoted Dp) for multivariate
Normal distributions, based on sample mean and full co-variance, calculated
according to Eq. 3.2, where 1 and po are sample means of the two distributions,
Y1 and ¥, are the corresponding co-variances, and the combined co-variance is
Y=(%+%)/2.

1 _ 1 X
D= —(p1 — p2)S  (py — o) + = log(————
B =g = p2)X7 (1 — p2)” + 5 log( oA
The normality assumption holds better for some feature sets than for others. We
produce distance maps for a variety of feature sets to illustrate their strengths
and weaknesses.

The distribution overlap data is presented as distance maps, with dark points
corresponding to closely overlapping distributions, and brighter ones being more
separated. The samples are grouped by class and also by intensity, so that
the first 3 samples are centromere and positive, the next 3 are centromere and
intermediate, followed by the 5 homogeneous samples, similarly split by intensity,
etc. This arrangement allows for easy visualisation of the expected performance
of a feature set, based on the degree of block-diagonality within the distance
map.

The distance matrix for the distributions of cells using DCT features is visu-
alised in Fig. 3.2, that of the pixel difference feature set in Fig. 3.3, and GLCM
in Fig. 3.4.

) (3.2)

3.3.2 Cumulative histogram modelling

Another approach to whole-sample representation works better for features that
are based on histograms, i.e. empirical estimates of probability distributions,
Local Binary Patterns (LBP) being a typical example for textural properties. In
this section we compare the decisions based on LBP for individual cells with those
accumulated from all the cells in a whole sample. We choose a rotation-invariant
form of uniform 8-point LBP, applied at multiple scales to provide information
about a range of sizes of textural feature. Histograms are compared using the
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Figure 3.2: Distance map using DCT features
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Figure 3.3: Distance map using pixel difference features
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Bhattacharyya distance, calculated according to equation 3.3, where p and q are
the normalised LBP histograms of the two cells or samples being compared.

Drpp(p,q) = — IHZ VDi Qi (3.3)

Two additional coarser scales are produced by Gaussian filtering and down-
sampling, followed by application of the same 8-point uniform LBP operator,
resulting in a total of 30 attributes, of 10 LBP bins at 3 scales. Cytoplasmatic
class is excluded throughout these experiments as indications of its distinctive
shape cannot be easily included in a textural histogram vector.

We use the leave-one-out protocol to obtain classification accuracy estimates
for k Nearest Neighbours algorithm with optimal value of £k = 1 determined by
cross-validation. All cells from a single sample are excluded from training and
used as validation set in both cell and sample predictions. The majority vote
by independent cells correctly predicts 62.5% of samples (15 out of 24), based
on a cell-level accuracy of only 43.9%. Accumulated histograms for a whole
sample produce correct predictions in 41.7% of cases (10 out of 24). A complete
sample-level distance matrix is illustrated in Fig. 3.5.

3.4 Discussion

We have performed an experimental comparison of a number of different texture
measures on a publicly available dataset of medical images. Our main goal was
not necessarily to achieve the best possible result, which would be unrealistic
given the absence of earlier publications providing a base-line, but to approach
a better understanding of the intrinsic properties of this type of images and
their class characteristics. We also examine and compare different approaches
to combining information from individual cells comprising a sample in order to
make a class prediction for the entire sample.

3.4.1 Analysis of experimental results

We have performed experiments comparing both different texture features for
their efficacy in predicting the correct immunofluorescence pattern class, and
between different methods of combining cell properties into a sample prediction.
Due to the limitations of the leave-one-out procedure, no spread can be placed
on the accuracy estimates, making it impossible to judge the significance of any
difference in performance.

Of the feature sets tested, the morphological parameters clearly outperform
the others on the ultimate measure of sample-level decisions in a leave-one-out
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protocol (see Table 3.1). The important point to note is that this difference of
performance could not be predicted from the cell-level performance of the various
classifiers, as the morphological features actually perform slightly worse for that
evaluation, and its training cross-validation results are actually the worst of all
the features tested. It is possible that the improved performance is mostly due to
the comparatively larger dimensionality of the morphological vector, rather than
its intrinsically greater relevance to the class characteristics.

Examination of the detailed cell-level confusion matrices in Tables 3.2-3.5
shows that the DCT-based descriptor performs very poorly on nucleolar samples,
but is perfectly accurate on cytoplasmatic ones. This is reflected in a strong
block associated with the cytoplasmatic class in its distance matrix (bottom
right in Fig. 3.2), as compared to a thin diagonal line for nucleolar. GLCM is the
worst performing feature set across the board, but is also the smallest vector.
It particularly struggles with the nucleolar class, suggesting that, in its current
formulation, it does not extend to large enough scales, and its quantisation level
may not be optimal for this application. Pixel-difference features seem most
suited to the centromere class, but could also be used to separate the finer-
grained classes (ie homogeneous and both speckled) from the rest.

Careful inspection of the predicted class for each sample (available in [127])
shows that some samples are predicted correctly with every feature set, while
others are wrong in every case, suggesting that there may be an issue of variable
image quality which is affecting the texture itself, however it is measured. Specific
blur-tolerant texture descriptors may need to be deployed to combat this problem.

Distribution-overlap distance maps clearly visualise the fundamental problem:
none of the feature sets is able to produce a block-diagonal matrix which would
indicate reliable similarity within classes and differentiation between them. There
is too much variability within classes which is not adequately represented by the
few examples that are available. Even within just the positive samples of the
homogeneous class there is a lack of class consistency that is apparent in every
distance matrix: instead of a block, it is showing up as a diagonal cross, because
the middle of the 3 available samples is very different from the other two.

Similarly to the contest report [108], we find that intermediate intensity pat-
terns are much more prone to errors than positive ones. This discrepancy persists
with all types of attribute, including local binary patterns, which are generally
taken to be very robust to changes of intensity as they only take account of
the sign of pixel differences, and not their magnitude. We speculate that in this
case the differences between positive and intermediate images are more quali-
tative than mere scaling of intensity; that the intermediate images are so faint
that pixel differences which were noticeable in their positive counterparts fall
below the 8-bit quantisation step of the sensor, and therefore count towards a
different LBP bin. This is supported by the distance map of whole-sample LBP



58 CHAPTER 3. HEP-2 PATTERN CLASSIFICATION

histograms, which in several classes shows a within-class block pattern of much
greater similarity between samples of same intensity (see Fig. 3.5, visible as two
smaller blocks instead of one large block covering the whole class).

While LBP accuracy rates are not directly comparable with the other results
because of the exclusion of cytoplasmatic class, which affects the percentage
represented by each sample in the dataset, the prediction accuracy of the accu-
mulated sample histograms is disappointingly low. It is likely that the observa-
tions above, on the intrinsic differences between the intermediate and positive
images due to quantisation effects, also come into play here, as the only truly
similar samples within the dataset are those that have both the same class and
the same intensity. For many classes there are only 2 examples in this dataset
that share both these labels, which in a leave-one-out protocol results in a single
comparable training example for many test samples. This is simply not enough
to make a reliable prediction, especially when the number of classes is large.

3.4.2 Further work

The distribution distance matrix can be used as the basis of an ensemble combin-
ing distance information from several feature vectors. Other ways of combining
two or more different feature sets through either early or late fusion should also
be explored, as there are indications of complementary information represented
by different texture measures. As some feature types are more suited to identifi-
cation of certain classes, they could also be combined in a cascade which filters
out each class based on its most favourable features.

Another potentially fruitful approach to addressing the shortage of labelled
image data is the use of semi-supervised methods. Leverage of large numbers of
unlabelled HEp-2 images could allow development of much better understanding
of the effect of imaging conditions on the resulting image texture, and compen-
sating for these common variations in classification, for example through the use
of manifold learning or subspace methods [130].

If or when larger quantities of labelled training data become available, it would
become possible to treat positive and intermediate samples of each pattern as
separate sub-classes, which could be very beneficial to their recognition as we
find their characteristics to be significantly different from each other. At least 3
or 4 samples of each combination of intensity and pattern class would have to be
present in each of training and test sets to produce meaningful learning results
in this case.

Mitotic cells, whose appearance allows the experts to differentiate between
fine and coarse speckled patterns, must be brought into the analysis and com-
bined with information from the rest of the sample. An extensive range of
methods for combining evidence would need to be explored to determine which
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is most appropriate for this situation.

The most recent competition on the subject of automated pattern recognition
for IIF images, the 13A workshop at ICPR 2014! (held after the completion of this
thesis), should make a significant step forward in the research, as it includes both
cell-level and specimen-level classification, with no restrictions on methods. Its
dataset includes the mitotic nuclei necessary for differentiation of certain classes,
although they are not labelled, and matches the class definitions of the dataset
used in the ICIP 2013 contest.

3.5 Conclusion

We conclude strongly that cell-level performance of a classifier offers little guid-
ance to its performance in whole-sample decisions, even in a simplistic majority-
vote setting. This is supported by the recently published detailed report of the
ICPR 2012 contest findings [108], which shows great variability between method
rankings by cell-level and by sample-level performance. Consideration of the
sample as a whole, including complete measurements from all the relevant cells,
allows the application of a much richer set of pattern recognition methods, and
is a better match for the ultimate goal of replicating the diagnostic decision of a
physician. Whilst considerable progress is being made in identifying likely meth-
ods for single cell classification, we feel that assessment of their suitability for
use in a realistic clinical system requires a larger quantity of data that more fully
covers the variability of cell appearance, such as the new SNP dataset.

http://i3a2014.unisa.it
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Chapter 4

Mitosis detection

The subject of this chapter is detection of mitotic figures in breast biopsy images,
which are described in Section 1.1.3, and it is by far the most complex challenge
of the three domains investigated in this thesis. There are no separate cells with
plain background, but an intricate mosaic of multifarious shapes and textures. It
takes many years of training to identify the different constituent elements within
the sliced tissue, which varies in its appearance depending on a number of factors:
the organ from which the tissue is taken, tumour type and stage, the preparation
process undergone by the sample and individual patient characteristics.

Figure 4.1: Example section of H&E stained breast biopsy image
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Identification of cells which are dividing, or mitotic, is just one step on the way
to grading the tumour: the frequency of division is correlated to aggressiveness of
tumour growth, but there are other indications which also contribute to the grade,
such as nuclear pleomorphism (marked variation in nucleus shape and/or size)
and tubule formation, which are outside the scope of this study. ldentification
of dividing nuclei is itself an imprecise art, chiefly due to the extreme variability
of the visual presentation of the nucleus, depending on the exact phase of the
division process in conjunction with the nucleus orientation relative to the slice
plane. Four major phases of mitosis are recognised:

e Prophase, in which the genetic material of the cell condenses, relative to
its inter-phase diffuse state.

e Metaphase, in which the ball of nuclear material elongates.

e Anaphase, in which the nucleus splits into two parts. This phase is brief,
and is therefore relatively rarely observed.

e Telophase, in which the two new cells move apart and gradually assume
the normal inter-phase appearance. This phase can be particularly diffi-
cult to handle as there are two separate segmented objects present, which
nonetheless have to be identified as a coherent pair and counted as a single
mitotic figure.

‘!l };.E‘
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(a) Prophase (b) Metaphase (c) Anaphase (d) Telophase

Figure 4.2: Examples of each phase of mitosis

Typical appearance changes associated with each phase are illustrated in
Fig. 4.2, although it is worth noting that these are subject to considerable vari-
ation, depending on viewing angle or due to abnormalities of the tumour cells.
For example, instead of normal elongation in metaphase, one can observe cases
of three or four-way splits, as shown in Fig. 4.3(a). The strongest distinguish-
ing feature of mitotic nuclei is their dense staining with the hematoxylin (H)
component of the stain, which binds to DNA-rich regions and colours them a
deep purple (the eosin component produces the bright pink colouring of the ma-
jority of other cell structures). However, the colouring alone is insufficient for
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accurate detection, due to the presence of distractor objects of similarly dense
appearance, particularly cells that are apoptotic, or undergoing the process of
cell death, see Fig. 4.3(c). Other highly confusing scenarios include metaphase
nuclei that have been sliced across the mitotic spindle, rather than along it, and
consequently appear as a collection of scattered dots, the end-on view of the
stretched chromosomes, as in Fig. 4.3(b).

(a) 3-way division (b) Spindle slice (c) Apoptotlc ) Inter-phase
Figure 4.3: Examples of difficult presentation, and an inter-phase cell

We now review the published work on the specific subject of automated
mitosis detection in H&E-stained breast biopsies, with reference to the image
analysis and machine learning methods covered in Section 1.3. We then describe
the detailed experiments carried for this project in Section 4.2, present the results
in Section 4.3, and discuss the findings in Section 4.4. Our contributions cover
stain profile normalisation, segmentation, feature extraction and imbalanced class
learning, as well as particular adaptations in patch pre-processing which enable
use of GP-LVM methods in this application.

4.1 Review of prior art

On the specific topic of mitosis detection in malignant breast tissue with H&E
staining, two public datasets are available, each associated with a challenge or
contest comparing the performance of a wide range of algorithms. We describe
each dataset, and the methods submitted to the corresponding contest, in the
following two sections. It is important to bear in mind that low agreement among
experts makes it challenging to provide definitive ground-truth labels for any such
dataset [5,65].

4.1.1 ICPR 2012 Contest and MITOS dataset

'Mitosis detection in breast cancer histological images’, a contest held at ICPR
in 2012, provided a dataset of scanned biopsy slides from 5 patients, each one
represented by 10 high-power fields (HPF) at 40x magnification [65]. Each HPF



64 CHAPTER 4. MITOSIS DETECTION

of 512um by 512um was scanned by three different scanners, two of which
came from different manufacturers but were of similar resolution, and a 10-
band multi-spectral microscope, which also included 17 different focus planes
(Z-stack) in 500nm steps. The contest submissions were evaluated separately
for each scanner, with the majority of entrants only supplying predictions for
the first scanner. The ground-truth annotations included not only the centroids,
but a full pixel-wise segmentation of each mitotic figure, which in the case of
telophase cells may not include the centroid itself.

The dataset is split into 70% training and 30% test, with 3 fields from each
of the patients held back for testing. This split makes the contest task consid-
erably easier than the realistic one of presenting an entirely unseen sample for
testing, as the training portion contains images from the same patient samples
as the test. Predictions from participant algorithms were evaluated and ranked
by Fi-measure, with detections counting as a true positive if their centroid was
within 8 um of the ground-truth centroid. The original contest description sug-
gested that finer distinctions between algorithms of same F-measure would be
evaluated based on the extent of overlap between ground-truth and predicted
segmentations, but in the event the spread of results was quite broad, and some
of the entries did not include detailed segmentations.

Only 4 teams submitted results for the multi-spectral Z-stack dataset, and
all the results were much poorer than for the normal 3-channel RGB images,
despite the higher resolution of images and the additional information contained
in the multiple focus planes and the additional spectral bands, which was clearly
a disappointment. However, the drop in performance is easily explained by the
lack of special treatment to extract the greatest possible amount of information
from the additional data; of the few entries that described their multi-spectral
and multi-focus algorithms during the contest workshop, all restricted themselves
to picking a single best focus plane, and a single best channel, across the entire
dataset. Better results may have been obtained by applying adaptive focus tech-
niques and using a combination of channels to derive the optimal projection of
the hematoxylin and eosin signals.

There were 14 submissions for the main image set, the best of which achieved
an Fj-measure of 0.78, with a considerably higher precision of 0.89 but lower
recall of 0.70. The balance between precision and recall varied quite strongly
between methods.

Of the highest ranking entries, IDSIA’s (Dalle Molle Institute for Artificial
Intelligence, Switzerland) deep convolutional neural network [131], consists of 10
alternating layers of small-aperture convolutional linear filters and max-pooling
sub-sampling operators, followed by a final fully-connected layer of neurons pro-
ducing a 2-class prediction of the probability that the input window is centred on
a mitotic figure. The network operates directly on the RGB values of the input
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image pixels, and assesses a dense grid of window offsets. The training of such a
deep network requires immense amounts of computation, and would take years
without GPU acceleration, which brings it down to a matter of days. Similarly,
test-time application of deep convolutional networks is quite computationally in-
tensive, and can take several minutes per high-power field unless accelerated by
a GPU implementation.

Most other entries followed the more traditional detector pipeline of identi-
fying candidate or seed points, segmentation of the nucleus outline and com-
putation of features based on the segmented mask, and finally classification as
mitosis or not, based on the extracted features. Most of the candidate detec-
tions were based on simple thresholding, followed by mathematical morphology
filters, but the entry from the University of Warwick included an additional step
of high-level segmentation of the tissues to exclude non-tumour areas from the
detection process [132,133]. Although the segmentation masks of the detected
nuclei were not used for the ranking comparison, and some of the entries did not
even include detailed segmentations, the quality of segmentation would affect
the accuracy of the extracted features in this type of pipeline, so it remains an
important step. The most crucial choice, however, is the constitution of the
feature vector, which varied considerably between methods; careful tuning of the
classifier to cope with the potentially very high level of class imbalance (depend-
ing of the precise characteristics of the earlier candidate detection step) is also
essential. Detailed descriptions of individual methods can be found in [134-139].

All samples in this dataset were of high-grade tumours, with little variation in
mitosis density between patients. This choice was probably made on the grounds
of providing the greatest number of mitotic figures for a given size of dataset,
but it does limit how representative the dataset is of the range of cases typically
presented for annotation.

4.1.2 AMIDA Grand Challenge

Following the findings of the 2012 contest, a new challenge, named 'Assessment
of Mitosis Detection Algorithms' (AMIDA)?!, was held at the MICCAI (Medical
Image Computing and Computer Assisted Intervention) 2013 conference. A new
dataset was provided by the University Medical Center Utrecht, which included a
much greater variety, as well as number, of patient samples, covering both high
and low grade tumours. The experimental design was also improved, so that
the training and test images never came from the same source sample; this is a
much more realistic scenario than that of the ICPR 2012 contest, but does result
in lower overall levels of accuracy. In all, 12 patient samples were available for

http://amidal3.isi.uu.nl
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training, and a further 11 used for test.

Additional care was taken with ground-truth labelling of the images, using two
independent annotators, and a panel of two further experts to adjudicate on any
cases of disagreement between them. Only centroids of the agreed mitotic figures
are listed as ground-truth, and any predictions within 7.5um, or 30 pixels, of the
labelled position are considered true positives. The density of mitotic figures
varies between 0 and 13 per HPF, with at least 10 fields from the diagnostic
region-of-interest of each sample, but as many as 60 for some samples. In total,
the training set contains 550 examples of mitosis across 331 HPFs, including
around 30 examples of telophase pairs. Evaluation by F}-measure was performed
both for the dataset overall, which gives a greater weight to patient samples with
lots of mitotic figures, and for each patient sample separately, providing greater
insight into the strengths and weaknesses of the submitted algorithms on different
input material. As some (low-grade) samples contain no mitotic figures in any
of their images, making conventional F-measure evaluation impossible (as the
number of true positives is zero), the ranking of algorithms for these cases was
performed based on the number of false positives alone.

A single device was used for digitization of the slides (with similar resolution
to that of the ICPR 2012 dataset), but the length of time over which the samples
had been collected meant that there was a lot of variation in stain strength and
exact hues, as different batches of stain would have been in use in the laboratory
at different times. In this respect the AMIDA challenge is again harder, but
more representative, than the earlier contest, and many entries suffered drops
in accuracy on samples with particularly strong or weak staining. Some ways of
dealing with these variations have been suggested in the literature, which take
into account the light transmission (as opposed to reflection) nature of bright-
field microscopy and therefore operate in the logarithmic space of optical density,
but they usually target the more challenging task of multiple stain separation and
may therefore be unnecessarily complex for this application [140].

The challenge received results from 14 teams from around the world, and
was again won by a deep convolutional neural network from IDSIA, by an even
greater margin than previously (full competition results are listed in Table 4.3
and will be published in [141]). No method descriptions have as yet reached
publication, but some teams were present at the workshop to give an overview
of their algorithms. A common thread through several methods was the use of
'blue ratio’ (BR) images as the colour pre-processing step that 'accentuates’ the
nuclear regions. First appearing in [142], and defined as BR = 11+01ng- 1+BQJE?%+G'
this seems to be an entirely heuristic transformation, with no basis in measured
stain properties, although perhaps an improvement on the entirely simplistic
approach of using the Red channel on its own, chosen by some of the teams.

Second-best performance was achieved in both overall and per-patient rank-




4.1. REVIEW OF PRIOR ART 67

ings by the team from Technical University of Denmark, whose method, titled
'Donut spatial pooling’, was based on histograms of colour, gradient orienta-
tion and shape index, collected from soft concentric ring regions around the test
position. The use of shape index, calculated as s = Zarctan(2%2), where
k1 and ko are the two eigenvalues of the Hessian matrix V2L of the Gaussian
scale-space L. = G * I of the image I, captures the principal local curvature of
the image surface and was found to be the most significant component of the
feature vector in terms of classification performance. The classifier chosen by
this team, an RBF-kernel SVM, is probably not the most suitable for histogram
features, particularly in terms of kernel, and even better results may have been
achieved with greater optimisation of this part of the process, compensating for
class imbalance and selecting a kernel targeted at distribution comparisons, such
as x2. All features used in this method are inherently rotation-invariant, which is
an important property in this application, but treating the three colour channels
completely separately spreads the extracted information over a larger number of
bins than necessary and holds back their effectiveness in recognition.

Below the second place the two rankings, those based on overall accuracy
and those giving equal weighting to each patient case, regardless of how many
mitoses are present in the corresponding images, differ considerably from each
other. Neither form of evaluation can be considered the ultimate way to assess
performance, particularly when using a relatively small dataset such as this one;
the overall F-score gives excessive weight to accuracy on the high-grade cases
with lots of mitoses, and per-case accuracy can vary enormously for any partic-
ular method, from completely wrong to total perfection, making their average
somewhat meaningless. Many of the lower-ranked entries suffered from extreme
imbalance between precision and recall, mostly in the direction of quite high
recall but very poor precision. Of the methods presented at the workshop and
reporting their cross-validation performance on the training set (and correctly im-
plementing a patient-based cross-validation procedure), the difference between
cross-validation and test results was around 0.1 on overall F-score, suggesting
that even this larger training set did not cover sufficient variation of the input
material, and the test set presented new challenges.

4.1.3 Gaussian Process Latent Variable Models

Although Section 1.3.4 provided a broad overview of machine learning methods
applicable to histopathology image analysis, a more detailed exposition of one of
the models which has been evaluated as part of this project is given here.

In statistics, a Gaussian Process is a stochastic process characterised by a
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mean function m and a covariance or kernel function K, denoted as
X ~ GP(m,K) (4.1)

and having a multivariate Normal distribution when sampled at any one point.
In the context of dimensionality reduction, Gaussian Processes allow the ex-
tension of principal component analysis (PCA) with non-parametric non-linear
mappings from the latent variables, while maintaining a fully probabilistic frame-
work [143]. The probabilistic treatment allows estimation of the model's uncer-
tainty at any point in the latent space, while the non-parametric nature of the
mapping gives ultimate flexibility to cope with highly non-linear relationships to
the high-dimensional image space. The main drawbacks of the method are non-
convexity of the optimisations needed to find the best mapping for a particular
configuration of observed data points, and the lack of a direct reverse mapping
from the observed samples to their latent positions, necessitating further non-
convex optimisation when assessing new test points. Extensions of the method
using variational inference allow automatic determination of the number of latent
dimensions necessary to describe the relationships inherent within the data [69],
but these come at the expense of further computational complexity. Explicit
modelling of noise as an additive component in the observed variables helps to
further isolate the meaningful latent interactions. Finally, a variety of possible
kernel functions allows representation of a rich set of potentially non-stationary
processes, although the infinitely differentiable Gaussian kernel is by far the most
common in practice.

4.2 Experimental methods

In this section we describe the full details of the algorithms submitted to the
AMIDA challenge, one solely by the University of Surrey, and one in collabo-
ration with the University of Sheffield's Institute for Translational Neuroscience
(SITraN). The two submissions share the first blocks of the detection pipeline:
colour normalisation (Section 4.2.1), detection of seed points (Section 4.2.2,
greyscale conversion and segmentation (Section 4.2.3). The traditional super-
vised pipeline then proceeds with feature extraction (Section 4.2.4) and classifi-
cation (Section 4.2.5), while the alternative GP-LVM approach (Section 4.2.6)
works directly on the pixel values of the image patches. The GP-LVM modelling
and simulations were carried out by SITraN in Sheffield based on labelled rotated
image patches, and their results are included here for completeness.

Exactly the same methods are applicable for the MITOS dataset, and some
of the sections cover our findings for both cases. The main novel contribution
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Figure 4.4: Red channel histograms for a selection of cases from the AMIDA
database, each line corresponding to distribution of pixel values originating from
a single patient sample

of this work to the detection pipeline is the stain normalisation process, which is
presented in the next section.

4.2.1 Stain normalisation

To compensate for variability of staining and preparation, the images are first
aligned in colour space. Figs. 4.4 through 4.6 show examples of individual channel
histograms from several samples in the AMIDA dataset, to illustrate the type and
degree of variation between slides. As so much of the downstream processing is
dependent on pixel colour, it would be unwise to feed images of such variable
colour distributions directly into the next stage.

The only other contest entry to include explicit stain normalisation as part of
their pre-processing stage was the team from University of Warwick [132, 144].
They cite an earlier work for details of the method used, which does not actually
describe a method for stain normalisation [145]. Instead, the algorithm targets
classification of each pixel as belonging to one of the two component stains, or
to background, based on a combination of its full colour vector and a global
‘context’ vector derived from the image histogram. The most confident areas
of this pixel-wise classification are then used as inputs for computing a full stain
deconvolution matrix. Manual pixel labelling is required to train the classifier and
the method does not produce images with a normalised stain profile, so cannot
be considered comparable to our proposal.
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Figure 4.5: Green channel histograms for a selection of cases from the AMIDA
database, each line corresponding to distribution of pixel values originating from
a single patient sample
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Figure 4.6: Blue channel histograms for a selection of cases from the AMIDA
database, each line corresponding to distribution of pixel values originating from
a single patient sample
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Figure 4.7: Example HPF covering tissue edge, and the corresponding mask
excluding all white areas

The distributions in Figs. 4.4-4.6 all have two modes: a broad peak at lower
pixel intensities (between 50 and 120 for the green channel) and a much sharper
peak at the very top of the range. Blue channel histograms follow similar profiles,
with a broad peak at an intermediate range of values, between 130 and 150. In
the red channel, the lower-value broad peak is in some cases so close to the
higher peak that they are no longer distinguishable as separate modes. The
cause of the separate sharp peaks at the top (white) end of the range is the
presence of variable amounts of white space (holes, tears or edges) within the
tissue on the slide; an example is shown in Fig. 4.7(a). Variable amounts of
adipose (fatty) tissue also contribute to the white peak, and therefore affect the
whole distribution, but have no diagnostic bearing. We therefore seek to exclude
these white, or near-white, areas from all further processing, and particularly from
any adjustments of the colour profiles of different slides. We base the decision of
which pixels are considered “white” on a threshold applied to the green channel,
as the green channel histograms have the best separation of the two modes, due
to the low green content of either staining dye. We select the threshold to be
used for each 2K x 2K field separately, finding the lowest point between the two
peaks in the field's green histogram. Selecting a single threshold for the entire
slide would be sub-optimal as the proportion of white areas varies across different
parts of the slide and the overall histogram is not as clearly split as those from
single fields. An example mask resulting from such threshold selection is shown
in Fig. 4.7(b), alongside its source image.
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Figure 4.8: Histograms for a selection of cases from the AMIDA database, fol-
lowing exclusion of white areas

Histograms of the remaining pixels, following exclusion of white areas, are
shown in Fig. 4.8. The second peak has disappeared completely from the blue
channel, and for most of the red channel histograms the second peak has been
greatly reduced, if not completely eliminated. It is now possible to apply his-
togram matching methods to adjust the colour profile of differently stained slides,
without bias from the proportion of white areas present in each sample. Each
colour channel is adjusted independently, with mean histogram from the whole
training set used as the target distribution, and a histogram of each patient’s
images (taken together, not from each HPF) as the source. For reference, his-
togram matching is performed by comparing cumulative histograms of the source
and destination profiles, and replacing the intensity value of each source pixel with
the value that reaches the same level in the target cumulative histogram. The
visual effect of the adjustment is illustrated in Fig. 4.9.

Following the histogram matching procedure, the images can be analysed
based on pixel colour without bias from staining variation between different sam-
ples.

4.2.2 Detection of candidate locations

The next step in the detection pipeline is identification of locations which warrant
more detailed investigation, sometimes referred to as “seed points”. We base
this initial pre-selection primarily on pixel colour, as mitotic figures are known
to be characterised by condensed chromatin, manifesting as darker purple areas
following the staining. The strong distinctions of pixel colour between mitotic
figures and the rest of the image are demonstrated by Fig. 4.10, which shows
separate histograms of the pixels labelled as mitotic in the ground-truth annota-
tions of the MITOS dataset as dashed lines, and overall colour distribution in the
same dataset as solid lines. The mitosis distributions are noisier, simply because
there are relatively few pixels contributing to them, but occupy a much lower
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Figure 4.9: The effect of histogram-matching on varied stain strength
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Figure 4.10: Histograms of pixels belonging to mitotic figures (dashed lines),
against background pixels (solid lines) from the MITOS dataset

section of the intensity range.

The labelling of individual pixels as “mitotic” is somewhat more difficult for
the AMIDA training set, as the annotations do not include a full segmentation,
only a centroid of the mitotic figure. As an approximation, we take locations
within 10 pixels of the labelled centroid as likely to be within the nucleus, and
collect full 3-dimensional RGB histograms of these as the colour distribution of
mitotic pixels. Although it is impossible to visualise the full histogram, we show
2-D projections along each of the axes, presented as contour plots, in Fig. 4.11.
The histograms are collected in 64 bins along each axis, or 4 intensity levels per
bin, in order to reduce the overall size of the histogram and to limit the effect
of noise, particularly for the less numerous mitotic pixels. The extremely small
amount of overlap that is seen between the mitotic and the all-pixels distribu-
tions in 3 dimensions demonstrates that, unlike the single-channel histograms in
Fig. 4.10, the full RGB colour of a pixel can give very good guidance as to the
likelihood of that pixel belonging to a mitotic nucleus. Fig. 4.11 also illustrates
the beneficial effect of the earlier histogram matching step (described in the pre-
vious section) on the separability of mitotic nuclei based on pixel colour. The
distributions in Fig. 4.11(b) are tighter and less overlapping with each other than
those in Fig. 4.11(a). The Bhattacharya coefficient of overlap between the two
distributions reduces from 0.57 to 0.55 as a result of the histogram matching
process.

The two histograms, of mitotic pixel colours and of the overall colour distri-
bution, are used to create a quantised mapping from pixel colour to likelihood
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(b) Mitotic and overall colour distributions after Histogram Matching

Figure 4.11: Projections of 3-D histograms of pixels close to mitosis centroids
are shown in red-to-blue colour map, and background pixels in purple-to-green,
before and after stain normalisation on the AMIDA dataset.
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Figure 4.12: Trade-off between number of candidate locations and of false neg-
atives in the first stage for the MITOS dataset

of mitosis, as likelihood ratio P(R, G, B|mitosis)/P(R,G, B). The likelihood
ratio is clipped to avoid extremes generated in areas of colour space where the
denominator is low, and applied to every pixel to produce a map of likelihood
across the image. This map is then filtered by a 5x5 box filter, to ensure that the
detected locations come from a spatially coherent group of the likely pixels, not
single dots of noise. Following the filter, a threshold is applied to generate a bi-
nary map, and the centres of contiguous objects within it are taken as candidate
locations.

The choice of threshold level is crucial in controlling the trade-off between
false negative rate and class imbalance (and therefore false positive rate): a low
threshold will generate a massive number of false candidates requiring detailed
analysis and create an extreme class imbalance to the true positive examples,
while a high threshold will miss more ground-truth positions before they have a
chance of more detailed consideration, creating an underlying bias for the false
negative rate of the overall system. Fig. 4.12 shows the effect of this trade-
off for the MITOS dataset, with a similar relationship exhibited by the AMIDA
images. The size of the box filter aperture was optimised in conjunction with the
likelihood threshold, as it also affects both the number of generated candidates
and which of the ground-truth positions are missed.

At this stage in the pipeline, a large number of possible mitotic locations have
been detected by a relatively fast pixel-based method. The remaining process is
one of classic supervised classification, with features extracted from the patch
around each candidate location, and used either for training or test.
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4.2.3 Segmentation

As many of the features used by specialists to distinguish mitosis are related to
shape, the automated process requires a segmented outline of the object under
analysis in order to measure and describe its shape. We use a 70 x 70 pixel
square around each candidate location for the detailed assessment, as none of
the ground-truth segmentations in the MITOS dataset extend outside this region.
The image is first converted to greyscale, as segmentation in full colour would
be much more complex, as well as unnecessary in this case: we know that a
single stain is responsible for the colouring of nuclei, as evidenced by the narrow,
near-linear, spread of mitotic pixel colours in Fig. 4.11(b). We use PCA of these
pixels around labelled mitotic positions to calculate their dominant staining axis
in colour space, and project onto this axis to obtain greyscale images.

The basic segmentation algorithm is similar to that described in Section 2.2.1
for DAPI-stained nuclei, in that it selects a threshold which optimises a combi-
nation of two different aspects of the boundary. However, the object shapes in
this application are more variable and not necessarily smooth or elliptical, so we
base the threshold selection on a different combination of properties: the great-
est gradient across the segmentation boundary together with the lowest variance
of the pixels within the foreground object. This additional criterion favours in-
ternal solidity of the segmented object, which for many negative candidates -
inter-phase nuclei whose chromatin is quite dispersed - results in highly irregular
outlines.

Major complications arise in the segmentation of telophase pairs, as the patch
contains not one, but two separate objects, and their joint centroid lies outside
either of the objects. The two daughter nuclei trigger the pixel-level detector
described in the previous section at two separate locations, yet need to be assessed
as a unified pair. Any two objects within a certain distance of each other may,
in fact, constitute a telophase pair, and have to be entered into the candidate
list as a jointly centred and segmented patch, as well as separate objects in their
own right. This further adds to the class imbalance problem, as many more
coincidentally adjacent pairs are listed as candidates. To reduce this burden,
two-object segmentation applies the same threshold across both objects, and
rejects any patches that do not produce objects of a comparable size (within
30% of each other) and similar intensity (within 8% of pair average) to each
other.

Centroid of the segmented object(s) is used as the new location of the de-
tection, and duplicate removal is applied to filter out patches which started as
separate hits of the pixel-colour detector, but converged onto the same position
following segmentation and the positional refinement that it brings. Examples of
segmentation results for various categories of objects are shown in Fig. 4.13.
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Figure 4.13: Examples of segmentation for candidate patches from the AMIDA
dataset.

To reduce the class imbalance, minimum limits are imposed on object area (50
pixels) and on contrast between foreground and background means (background
at least 70% brighter than foreground), filtering out many small or faint negative
candidates without any loss of true positives. This step produces a total of
100.5K negative patches for the AMIDA training set, of which 75K are single
objects, and the rest pairs. For comparison, the training portion of this data set
contains 550 positive examples, of which 30 are pairs.

4.2.4 Feature extraction

The following rotation-invariant features are calculated for each segmented object
and the surrounding greyscale patch:

e Area, in number of pixels

e Circularity, calculated as perimeter squared over area

e Convex hull area as proportion of the object area

e Elongation of minimal-area fitted rectangle, calculated as major axis over
minor axis

e Fourier Descriptors, based on radial profile of segmented shape, 64 points.
The first 5 terms are used as individual attributes (normalised by the DC
term), and the rest are added together as high-frequency total.

e Contrast ratio between background and foreground means, excluding white
holes.
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e Average "depth” of object relative to segmentation threshold, calculated
as the difference between the threshold and the foreground mean.

e Morphology of slices at 1/3 and 2/3 of total depth (between segmentation
threshold and minimum value inside mask). At each depth, we calculate
the average area per contiguous object, as proportion of the overall object
area. This gives an indication of how quickly the object breaks up internally
with lowering threshold.

e Average gradient across the segmentation boundary, indicating the sharp-
ness and contrast of the edge

e Average contrast-independent edge sharpness across the boundary, mea-
sured as ratio of +1 pixel gradient to 42 pixel gradient at each point

e Standard deviation inside the object

e Mean local variance inside the object, measured on densely sampled 7x7
patches that lie wholly within the object mask

e High-band energy inside the object, measured as ||I — ;5|2 where I},
is the output of 7x7 low-pass box filter and the norm is computed with a
mask which has been eroded with a 3x3 structuring element in order to
reduce edge effects

e Average local variance of background, measured on densely sampled local
patches of size 5x5 that lie wholly outside the object mask

e Average low-band energy of background, ||I},,|2 for same 7x7 box filter
as the object’s high-band

e Ratio of high-band and low-band energy for background areas (outside a
dilated object mask)

Of these, around a third relate to shape of the object, a third measure intensity
parameters, and the last third describe certain aspects of the textures inside
and outside the object. A total of 23 attributes is combined to represent all
the relevant aspects of the object and its context in a single feature vector.
Each feature is normalised to zero mean and unit variance prior to using it for
classification.

4.2.5 Classification

The biggest challenge for classification in this application is class imbalance,
closely followed by the sheer number of training points coming from the detection
stage. For single objects the imbalance is 150:1, and for pairs it is 800:1 (AMIDA
dataset). Inspired by the success of under-sampling methods proposed in [146],
we address both imbalance and size of dataset for single objects by employing
dominant (negative) class sub-sampling with model averaging. The negative part
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of the training set is split into a number of partitions, and each one is combined
with all of the positive examples to train an RBF SVM, with appropriate class
weights to compensate for the remaining imbalance. The predictions from all
the models are averaged to give the final estimate.

Model parameters, consisting of SVM hyper-parameters and the decision
threshold applied to the average score, were selected using a cross-validation
procedure, based on leaving out all cells from one patient as the validation set
(leave-one-out). Experiments were also performed to assess the impact of chang-
ing the number of negative-example partitions, and therefore classifiers in the
ensemble.

For pairs, each object is first assessed by the single-object classifier, and if at
least one of the constituent parts has a high enough prediction, the pair is assessed
further on its pair-specific features. This filtering step reduces class imbalance for
pairs and produces a dataset which is sufficiently small that no model averaging
is needed. In addition to object attributes described in Section 4.2.4, pairs are
characterised by ratio and average of a subset of the parameters from each of
the objects, which assess their compatibility as a pair: area, contrast, circularity,
depth and elongation. In addition, the total of the two single-object prediction
scores is used as an extra feature. A separate RBF SVM is then trained for
performing identification of telophase pairs.

4.2.6 GP-LVM detection of mitosis

Our application of Gaussian Process Latent Variable Models, described in Sec-
tion 4.1.3, to detection of mitotic figures follows the same initial steps of stain-
normalisation (Section 4.2.1), and candidate detection (Section 4.2.2) as the
traditional features-plus-classifier path. Pixel values of the resulting patches then
serve as observed measurements of the model.

To improve the correlation between pixel values from different samples, the
segmentation algorithm of Section 4.2.3 was augmented to include rotational
alignment of the segmented object(s). The necessary angle of rotation is deter-
mined from PCA of pixel coordinates that make up the segmented object area,
and a rotated patch is extracted from the full field image, although the seg-
mentation masks themselves are not directly used in the modelling. Rotating all
objects to spatially align along the same axis saves the need for complex mod-
elling of the angle of rotation as one of the latent variables, and gives a more
consistent meaning to the intensity of a pixel at a particular position: all elon-
gating metaphase nuclei affect the values of the same set of pixels, reinforcing
each other’s contributions.

To further reinforce spatial connections between neighbouring pixels, which
would ordinarily be treated by GP-LVM as completely independent dimensions of
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the input space, we construct a scale-space pyramid of each patch and augment
the input vector with pixel values from the higher levels of the pyramid. As each
coarser pixel represents a combination of several pixels from the lower level, it
provides additional information on the overall layout of a patch and correlations
within it which would otherwise be inaccessible to the GP-LVM as it models each
observed dimension (image pixel) independently.

The main challenges faced in applying GP-LVM to this problem are computa-
tional: a training set of 550 positive examples, of nearly 5’000 dimensions each,
is already at the upper limit of what is currently possible to construct a GP-LVM
for; the addition of over a hundred thousand negative examples puts it squarely
into the realm of the impossible. Our solution was to build two separate models,
one for the positive manifold, and another for a heavily sub-sampled selection
of negative examples; the detector’s decision is then based on whichever model
predicts a higher likelihood, with weights to compensate for the original class
imbalance.

The sheer number of test points generated by the candidate detection mech-
anism also presented a computational problem, as the latent position of each
one had to be calculated by an iterative optimisation, for each of the positive
and the negative models. It is not possible to sub-sample the test set as this
would randomly miss a high proportion of the positive candidates. This severely
limited the scope for experimentation with different options and settings of the
algorithm, reducing the final performance.

The final thorn in applying GP-LVM to this challenging scenario is selection
of the appropriate noise level within the model. For smaller datasets the most
suitable noise level can be determined by a brute-force search across a certain
range, to find one that gives the best converged model. However, on this large
dataset exhibiting strong textural variations, this proved impossible as none of
the noise settings within the normal range (10-30 dB) could produce a converging
model. Both the positive and the negative models had to use the extremely high
noise setting of 2 dB in their training.

4.3 Results

Most of the detailed results presented here are for the AMIDA dataset. For
comparison, both test results reported in [65] and training accuracy from our
own experiments on the MITOS dataset show much higher levels of mitotic figure
recognition: above 70% and around 65% respectively. However, the significance
of these results is compromised by the training-test split which uses the same
patient samples across both partitions, and by the general homogeneity as well
as low number of samples in the MITOS dataset.
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Results for the traditional feature extraction pipeline, as described in sec-
tions 4.2.1 through to 4.2.5, are detailed in the following section, while those for
the GP-LVM approach are given in Section 4.3.2.

4.3.1 Extracted Features pipeline

Patient-based leave-one-out cross-validation on the training set was performed
to establish the effect (if any) of the number of negative partitions on the perfor-
mance of the single-object classifier ensemble. A separate optimisation of SVM
hyper-parameters and decision threshold was carried out for each of the sub-
sampling ratios tested. As can be seen from Table 4.1, the effect is negligible up
to ratios of 50:1, so as a compromise between performance and training speed,
30 classifiers were used. Please note that the percentages in this table are not
directly comparable with those in Table 4.2, as they are measured in proportion
to the number of single-object positive examples, not the overall total. Experi-
ments were also performed to evaluate the effect of having additional classifiers
in the ensemble, for the same level of random sub-sampling of the dominant
class; these showed no discernible benefit.

Sub-sampling Ratio: || 10:1 15:1 30:1 50:1 | 300:1
F-score 45.2% | 45.1% | 45.0% | 44.9% | 43.0%

Table 4.1: Effect of dominant class sub-sampling and model averaging on cross-
validation accuracy for single object patches (AMIDA dataset).

Selection of parameters for the pairs classifier was done taking into account
the numbers of true positives, false positives and false negatives produced by the
single-object classifier, and looking for highest overall F-score. It was found that
this resulted in the same parameter values as those optimised for best F-score
among the pair samples only, although the two methods would not necessarily
agree in the general case. Selection of threshold for the pair filter, applied to
individual object scores in order to decide whether the pair is deserving of further
assessment, was guided by balance between its impact on the number of false
negatives (rejection of positive examples where one half is unusually small or
faint) and on the class imbalance (letting through a great flood of coincidentally
close negative examples). The final choice of threshold value of 0.4 results in
missing 7 positive examples (out of a total of 550) and reduces class imbalance
for pairs from over 800:1 to around 30:1 (depending on the exact configuration
of the single-object classifier). As the number of telophase pairs in the training
set in relatively small, such class imbalance does not result in a computationally
difficult size of training set, but class weights are needed in the SVM to cope
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with this degree of imbalance. The contribution of the pair classification stage to
the overall error rates can only be evaluated on the training set, as ground-truth
for the test set remains undisclosed; the cross-validation F-score for pairs alone
is around 38%.

Entry || Training F-score || Test Precision | Test Recall | Test F-score
#1 45.2% 41.2% 26.5% 32.2%
#2 43.8% 38.2% 28.0% 32.3%
#3 44.1% 35.7% 33.2% 34.4%

Table 4.2: Summary of cross-validation and test results for the AMIDA challenge
submissions.

In total, three separate submissions were made for the challenge, with slightly
different optimisations of model parameters, and resulting in different test scores,
which are summarised in Table 4.2. Submission #1 was optimised for best over-
all F-score, which gives much higher weight to performance on patient samples
that contain a large number of mitotic figures, and therefore can perform quite
poorly on the low-grade cases with few mitoses. In an attempt to even out the
performance across different samples, submission #2 was optimised to give the
best average score based on equal weight for each patient. Although this ap-
proach improves the balance between precision and recall on the test set, the
overall F-score is unaffected. Both of these submissions show a considerable gap
between precision and recall, which is not evident in the training cross-validation
results, so the final submission deliberately favours recall at the expense of pre-
cision. At the operating point measured by cross-validation, an improvement of
one in the number of false negatives can be offset by a deterioration of five in
the false positives and maintain the same F-score, due to the specific formula-
tion of F-measure as a function of precision and recall. Submission #3 therefore
lowers the decision threshold, as compared to the optimal value for best cross-
validation score, to allow five times more extra false positives than it loses from
true positives; although the cross-validation precision drops to 37.2%, recall rises
to 54.2%. Most importantly, the desired effect of better balance between preci-
sion and recall on the test set is achieved, and gives an overall boost for the test
F-score.

An analysis of the total number of detections for each test patient case, and
the corresponding density of mitoses per unit area, shows a 0.82 correlation to
the true mitotic density, see Fig. 4.14.
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Figure 4.14: Correlation between true and predicted mitotic density for patients
in AMIDA test set, and the linear regression line of the two densities.

4.3.2 GP-LVM pipeline

A single submission was made for this computationally expensive method, re-
sulting in test precision of 11.9%, recall of 10.7%, and a combined F-score of
11.3%. Some illustrative examples of the latent axes found by the GP-LVM pos-
itive model are shown in Fig. 4.15. Other axes are related to object contrast,
curvedness or the splitting into two symmetrical parts observed in telophase.
These images are sampled from the generative model, and therefore not present
in the training set.

(a) Large -ve (b) Zero (c) Large +ve

Figure 4.15: Images reconstructed by the positive GP-LVM at varying positions
along latent dimension 8, clearly related to vertical elongation of the object.
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4.3.3 AMIDA Contest

For contextual comparison, we include a summary of the AMIDA challenge re-
sults, published in full in [141].

Team name Precision | Recall | F;-Score
IDSIA 0.610 0.612 0.611
DTU 0.427 0.555 0.483
SURREY 0.357 0.332 0.344
ISIK 0.306 0.351 0.327
PANASONIC 0.336 0.310 0.322
CCIPD/MINDLAB 0.353 0.291 0.319
WARWICK 0.171 0.552 0.261
POLYTECH/UCLAN 0.186 0.263 0.218
MINES 0.139 0.490 0.217
SHEFFIELD/SURREY 0.119 0.107 0.113
NTUST 0.011 0.685 0.022

Table 4.3: Summary of all entries for the AMIDA challenge, giving precision,
recall and F}-score for overall numbers of detections.

The top two entries of Table 4.3 have been described in detail in sections 4.1.1
and 4.1.2, with our proposed method coming third. Many of the lower ranked
methods used similar detection pipelines with initial candidate locations chosen
on the basis of colour, followed by extraction of hand-picked features and some
form of supervised learning, but none included either explicit stain normalisation
or special treatment of telophase pairs.

4.4 Discussion

The cross-validation accuracies listed in Table 4.2 are over 10% higher than the
corresponding test results, and similar gaps of 5-10% between validation and test
were reported by other participants in the challenge. Such large discrepancies in
performance estimation suggest that the training set does not fully represent all
the variations present in the underlying data, as the test set offers additional,
unforeseen, challenges. To overcome the difficulty of obtaining additional labelled
images that would increase the representational coverage of the training set it
may be possible to use semi-supervised methods to leverage large quantities of
unlabelled images, which are more easily available, to build a richer model of
possible tissue appearances.
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The histogram adjustment stage of the pipeline has proved to be very valu-
able: as the only entry to have an explicit normalisation step, the method
achieved a much higher ranking for certain cases with exceptionally light or heavy
staining which caused difficulty for other methods. The candidate point detec-
tion is probably sub-optimal, and many participants reported less extreme class
imbalance ratios for the training set through better seed-point selection methods.
Alternative means of selecting promising patches for further detailed assessment,
such as a suitable variant of the “objectness” measure, could improve both the
class imbalance and the final accuracy of the system [147].

Although no data is available for comparison, it could well be the case that
additional care to cope with the complexities of telophase pairs throughout the
chain has given this method the edge over other algorithms of similar struc-
ture. One unfortunate drawback of the separate treatment of single objects and
pairs has been the inability to provide a unified prediction score for every patch
which could be subjected to a single threshold to produce the final decision. The
challenge organisers allowed submission of probabilistic predictions for every can-
didate location, which would have enabled production of complete ROC curves,
but only one threshold could be submitted for actual competition performance
measurement for all cases, whereas our separate single and pair classifiers require
separate decision thresholds.

The optimisation of SVM hyper-parameters provided an unexpected difficulty:
the results are evaluated by F-measure, but the conventional search strategy of
coarse-to-fine grid fails to find the global optimum, because the F-score surface,
unlike pure error rate, is not convex. This is even more pronounced for the
averaged per-patient scores, as a single different decision in a sample with very
few or no true positives can massively alter the measured performance of the
whole system. A compromise measure of performance, where each patient score
is weighted by the number of HPF images available for that patient, as opposed
to equal weight for each patient score, smooths out some of the more extreme
sensitivities.

Predictive performance of the GP-LVM proved hugely disappointing. To
circumvent the need for a manually crafted feature set of relevant attributes would
have been a major gain for the application area, as well as a notable expansion of
valuable applications for GP-LVMs. So far, the data has proven to be too noisy,
as well as too large, for current GP-LVM implementations to successfully digest.
It is also possible that this problem domain is inherently so complex as to require
some form of deep learning, as even the most non-parametric of models cannot
connect the latent variations to their image expressions in one step. Although
the latent axes found by the current model look promising, and can be ascribed
meanings related to nucleus shape or intensity, they entirely fail to deal with the
textural aspects of the images.
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To extend the work in the future, several improvements can be suggested:
bigger patches would allow more information to be gathered from the surrounding
context and also avoid cropping of some widely separated pairs. Full colour
processing, or two channels for separate eosin and hematoxylin signals, could
boost performance as texture of the eosin-stained protein in the surrounding
area may be informative.

Our overall performance of 3rd place out of 14 entries shows the merits of this
carefully constructed algorithm, but the significantly higher performance of the
leading entries suggests that more unconventional measures are needed in order to
solve this highly complex and ambiguous challenge. Deep learning, whether based
on convolutional networks or other learners such as Gaussian Process, has shown
a lot of potential in many recent works, and definitely removes the guesswork
inherent in manual selection of the most relevant image features. In the case
of this particular clinical application, the most important goal, however, is not
the precise localisation of mitotic figures, but a measurement of their density.
The density scatter in Fig. 4.14 is very similar to those obtained when comparing
manual mitotic counts from light microscopy and from digital slides: there is
greater spread at higher densities and tighter correlation at low grades [148].
The correlation figure of 0.82 confirms that even a relatively low F-score for
detection of individual mitotic cells can be of great benefit in the diagnostic task
of tumour grading.
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Chapter 5

Reflection

The work described in this thesis has covered a range of applications for auto-
mated analysis of microscopic histopathology images. On first inspection, the
very attempt is a little foolhardy, as, unlike in the majority of vision tasks, the
human visual system itself struggles to deliver a consistent and unambiguous
answer, thus depriving us of the luxury of reliable ground truth. But the reward
for success is correspondingly greater, as it allows objective measurements to
become the basis of diagnostic decisions in a repeatable mechanism.
Automation of histopathology image analysis is finally attracting the attention

of researchers, and has enjoyed an increasing amount of coverage and coopera-
tion between medical specialists and computer scientists [149-151]. The scope
of these research projects is very diverse, and they cover all parts of the image-
processing pipe-line needed to address the overall goal of diagnostic assistance:
auto-focus to ensure acquisition of the best possible images [152], identification
or segmentation of tissue types [133, 153, 154], segmentation of individual nu-
clei [155,156], analysis of nuclear features and their connections to diagnostic or
prognostic labels [80, 157], which can include grading of disease progression or
severity [158]. They cover a wide range of microscopic imaging modalities and
staining techniques, but often fall into the trap of blindly following the human
procedures and steps towards a decision, instead of concentrating on the only
solid evidence, which is outcome [159]. The outlook for the future is, however,
very positive [160]:

further advances in image analysis algorithms are warranted in order

to fully realize the benefits of digital pathology in medical discovery

and patient care. In coming decades, pathology image analysis will

extend beyond the streamlining of diagnostic workflows and mini-

mizing interobserver variability and will begin to provide diagnostic

assistance, identify therapeutic targets, and predict patient outcomes

and therapeutic responses.

89
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We will first reflect on the underlying connections between machine learning
paradigms and human learning and decision making, as there is much to be gained
from cross-fertilisation between these areas. In the remainder of the chapter we
will summarise the contributions made by this work, dissect its limitations and
suggest possible ways around them, before drawing the final conclusions.

5.1 Human vs Machine Learning

As there is no such thing as a free lunch [161], assumptions have to be made in
order to be able to learn inductively at all, even if very simple ones [162]. There
are enormous parallels here with human learning and education systems. All
education is social, and involves training with a teacher, who may not be a perfect
oracle and therefore produces some label noise, but possesses the know-how of
the subject as well as the correct answers which can be used as training examples.
This knowledge of how the subject’s processes should be conducted corresponds
to the structural assumptions which must be made a priori to achieve machine
learning. Their importance is evident in the drilling to ‘show your workings'
which is enforced on human students from an early age. Off-training set (OTS)
error, the only unbiased estimate of an algorithm's performance corresponds
to the unseen examination questions present in the vast majority of educational
qualifications, and the variation in pass marks between subjects is quite similar to
the range of accuracy figures achieved by state-of-the-art algorithms for problems
of different degrees of difficulty.

‘Study skills’, or meta-learning about how to learn, are the subject of much
fundamental research underlying machine learning. Amongst valuable study skills,
the ability to distinguish essential information from irrelevant corresponds to
robustness of an algorithm to nuisance variables, spotting patterns of similarity
is the principal inductive basis of all machine learning, and the capacity to identify
gaps in one's own learning translates to a boosting algorithm's increased attention
to incorrectly classified examples. As a student’s proficiency at study skills is
judged by their mastery of a number of a different subjects, so the excellence
of a learning algorithm is only evident from its successful application in a broad
range of different learning tasks.

Recent growth of interest in learning methods which involve an element of
randomness, such as random forests, could be justified by the necessity of sleep
for generating truly creative solutions to complex problems, as classically exem-
plified by the periodic system of elements appearing to Mendeleyev in a dream.
The random connections and combinations generated by the sleeping mind and
perceived as dreams are, in their vast majority, not useful and are discarded,
just as the bulk of randomly generated feature combinations and thresholds are



5.2. SUMMARY OF CONTRIBUTIONS 91

rejected during the construction of random decision tree, but the process does
throw up some gems on occasion.

Classifier ensembles, and the manner in which they are improved by diversity
of the constituent hypotheses, are echoes of every panel, council, committee or
representative body ever convened by humans to pool their collective wisdom
and experience of multiple individuals in order to arrive at a better decision.

Distinctions between specialist and more general skills are reflected in the
restrictions placed on the probability distribution whose samples the algorithm is
trying to predict. Distinctions between skill and knowledge also find a reflection in
machine learning as differences between supervised training for prediction making
in a specific task and discovery of more general structure through clustering or
visualisation. Finally, human judgement, as precursor to decision and action, is
always associated with a valuation of the potential outcomes, which is encoded
in machine learning as a loss or utility function [163]. There are also connections
between the improvement in long-term neuronal potentiation brought by the
excitement and satisfaction of a successfully completed task, through the effect
of dopamine and noradrenaline on synapse formation and growth, and machine
learning strategies such as reinforcement learning or boosting.

The forthcoming special issue of Pattern Recognition Letters on Philosophical
Aspects of Pattern Recognition should provide a timely consolidated view of
developments in this area, including connections with epistemology and decision
theory.

5.2 Summary of Contributions
The contributions of this work in its three application areas are as follows:

e Improved identification of cell clusters and debris objects in cytology, in-
cluding segmentation and extraction of features which highlight presence
of notches in cluster boundaries.

e Advances in classification of staining patterns in indirect immunofluores-
cence images, both at cell and at sample level, using texture and shape
analysis methods.

e Progress in automated mitosis detection in breast biopsy sections for tu-
mour aggressiveness grading, including stain normalisation and nucleus
segmentation methods.

Some of these are based on a shared methodology that is sufficiently flexible
to be adapted to multiple domains. For example, the segmentation method
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described in Section 2.2.1 involves threshold selection based on a combination of
two attributes of the resulting boundary: cross-boundary gradient and contour
circularity. The segmentation algorithm used on cell nuclei in Section 4.2.3 is
similarly choosing a threshold based on two attributes, but in this case the more
suitable combination is one of cross-boundary gradient and internal variance.
In both cases the relative weights of the two contributing measurements are
determined automatically from the ratio of their respective variances. Contrasting
this with other segmentation methods that are based on a cost function with
multiple contributing factors, such as the energy function in ‘snake’ optimisation,
whose relative weights have to be tuned to obtain good results, our method is
inherently more automatic. As the method is also very fast due to its single
search dimension, it is a very versatile approach to threshold selection.

The dictionary construction based on discriminative power in different areas
of feature space, described in Section 2.3.1, deserves some extra attention. Al-
though it did not make an enormous difference to the classification performance
of the specific application, which is extremely challenging due to high class over-
lap, it does give a principled basis for drawing quantisation boundaries in feature
space when the ultimate goal is one of discrimination, rather than approximation,
while being extremely fast in both training and test. A similar principle of class
purity increase from a split, measured as information gain, is used in construction
of random forests [78], and there may be merit in injecting a degree of random-
ness and diversity into the discriminative dictionary formulation, perhaps in the
order in which dimensions are examined or the position of the putative boundary.
This would allow cheap construction of a larger dictionary with multiple trees
whose higher dimensionality may lend itself to linear classification methods.

The novel features measuring slope of radial profile around its lowest point,
introduced in Section 2.2.2, make a contribution to identification of single nuclei
as distinct from clusters or other debris in DAPI images. They are robust to
noise and invariant to spatial scaling.

The work on HEp-2 pattern classification highlights the importance of assess-
ing a sample as a whole, and the potential ‘cliff-edge’ effects that result when
individual cells are treated as independent even though they are not. More study
remains to be done to determine the best way of utilising the evidence from
multiple cells to build up the informational basis for an overall decision in this
particular application, but it is essential to remember the patient as primary unit
of diagnostic assessment [164]. Interesting parallels can be drawn between the
statistical treatment of cells as constituent parts of a patient sample and that
of texton patches in a textural bag-of-words model: if an appropriate dictionary
could be constructed to represent individual cells and their relevant properties,
the distribution of cells in a sample could be viewed in the same way as the
distribution of patches in an image, and used to determine the sample class.
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Another important contribution arising from the work on HEp-2 pattern is the
method for generating a one-dimension texture spectrum from a two-dimensional
image, as described under ‘DCT based descriptor’ in Section 3.2.2. Most DCT
processing and analysis is performed in two dimensions, as this retains the full
distribution of frequencies within the image. However, for assessment of isotropic
textures frequently encountered in pathology imagery the full two-dimensional
spectrum spreads the relevant information over too many bins, drowning it in
noise. lIdeally, the contributions of same spatial frequency at any orientation
should be averaged to cancel out some of the noise and boost the desired signal,
but this is computationally expensive. Instead, we approximate the same result
by sampling the horizontal spectrum at multiple vertical positions and average
these to achieve the same improvement in signal-to-noise ratio at a fraction of
the computational cost. We also avoid problems associated with the complex
shape of the object which can make it difficult to fit a sufficiently large 2-D DCT
sampling block without overlapping object edges and significantly distorting the
resulting spectrum. As the line sections used to compute the horizontal spectrum
can be positioned differently on each line, we can flexibly accommodate complex
object shapes and avoid unwanted edge effects without compromising the size of
DCT and therefore the resolution of the spectrum.

Our method for stain normalisation of H&E histopathology images, described
in Section 4.2.1, also achieves the desired outcome in a very efficient way. By
excluding the white areas, whose presence has a strong effect on the colour
histograms, but has no bearing on the stain strength and balance, we allow
the use of a very fast, robust and simple method of colour balance adjustment,
namely histogram matching, for images that were previously treated with complex
techniques of logarithmic stain separation.

5.3 Limitations

The chief limitation of any work involving feature extraction is the impossibility
of complete proof that the proposed features are the best that could be used.
Even the most comprehensive assembly of all known features, followed by the
most sophisticated process of feature selection, gives no guarantee that a more
suitable feature or set of features, which reflect a more pertinent aspect of the
input data or images, will not be dreamt up tomorrow. As the diversity of non-
linear functions of the inputs is infinite, we can never try them all, and as we
have shown by the experiments with Gaussian Process Latent Variable models
(Section 4.3.2), current state-of-the-art techniques for automatic discovery of
such functions struggle to produce competitive results in the challenging tasks
under consideration.
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Limitations of the methods proposed here for each of the tasks of interest
largely fall into this category. Some also suffer from a rather limited amount of
training and test data: the HEp-2 dataset comes from 28 patient samples, and
the AMIDA dataset covers 23 cases. Neither of these are large numbers, but
as both are essentially feasibility studies, rather than products ready for clinical
introduction, this is understandable.

Ambiguities of ground-truth annotation plague mitosis detection tasks. In
order to establish how many of the ‘false positives’ produced by automated al-
gorithms were actually mitotic figures missed by the initial panel of experts, a
follow-up experiment presented a new panel with false positives from the lead-
ing two methods, as well as ground-truth labelled mitotic locations as control.
Nearly 30% of the ‘false positive’ detections from the winning method were la-
belled as mitoses on re-evaluation, while only 71% of ‘ground-truth’ locations
could pass the same re-inspection [141], a figure that is in line with other studies
of inter-observer variation in mitotic labelling [56]. We can only guess on how
this level of label noise affects the training and performance evaluation of our
own method.

Limitations specific to our approach to mitosis detection include the poten-
tially sub-optimal early choice of cut-off level for candidate location detection:
this trade-off between class imbalance and false negative bias may have been
improved by a lower value of the threshold, allowing more candidate locations
through to the segmentation stage, with a large proportion then rejected based
on simple area and contrast limits. More generally, the design and development
of a pipe-line algorithm such as the mitosis detection one is very prone to opti-
misation of one part of the chain while others are not yet in their final form. As
all the steps are interconnected, and performance can only be measured for the
overall process, this brings a danger that design choice or parameter values of
a particular step become sub-optimal when other parts are changed to improve
their operation. This is a similar problem to issues of feature selection, but on a
somewhat larger scale.

The main limitation of all the examined approaches to HEp-2 pattern classifi-
cation is the lack of a sufficiently robust method for combining the evidence from
individual cells into a final decision for a sample. The majority vote approach
loses too much information about each cell by forcing a hard class decision prior
to combining cells into a sample. The distribution distance makes strong as-
sumptions of normality, and the cumulative histogram reduces the number of
training points too far for successful training. It also fails to account for, and
therefore learn from, the patterns of variation present within each sample.
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5.4 Future directions

One of the most expensive parts of developing a vision system is acquisition of
a sufficiently large labelled dataset, especially in medical domains where the ex-
pert's time is an extremely limited resource. To address this, pathology image
analysis should make greater use of both semi-supervised algorithms, which lever-
age additional information from unlabelled images, and active learning paradigms
which seek user input on cases that would be of greatest benefit to the system's
performance. The use of these techniques in the specific application area of
pathology image analysis has not been explored to date, but is a very promising
direction based on its contribution in other areas of machine learning [165].

Another very promising avenue, particularly when the exact image features
of relevance are not clearly understood, which is frequently the case in complex
micro-biological imagery, is deep learning. This approach negates the need for
a pre-defined feature extraction stage, instead searching out the most pertinent
aspects of the images from a vast space of complex, non-linear functions of the
input pixels. Deep learning hierarchies can be constructed from different types
of underlying machine learning algorithms [63,66,166], and have been shown to
be very effective in some histopathology applications already [131]. The training
of all such algorithms is extremely computationally intensive, and requires GPU
acceleration in order to deliver results in days, rather than years.

In the specific case of mitosis detection, boosting techniques, which can
give greater weight to the relatively rare configurations and presentations of the
nucleus, could significantly improve the overall recognition rates. They would
also be able to place greater emphasis on keeping out the apoptotic nuclei that
are similar in appearance to mitoses. Sub-class learning may also be of benefit
here, for similar reasons of giving the rarer appearance arrangements a chance
to be properly represented and recognised.

For HEp-2 pattern classification, it is essential to develop a proper statistical
treatment for combining evidence from the interphase cell appearance, which are
the majority of cells within the sample, and the few mitotic cells, which have so
far been excluded from most datasets and treatments, despite their massive im-
portance in manual determination of staining pattern. Relatively simple Bayesian
inference rules may prove sufficient here.

The future of automated pathology image analysis is about more than repli-
cating the manual diagnostic procedures of pathologists, but also using the image
analysis and machine learning methods to discover new properties of prognos-
tic significance [160]. It has already been shown that the search for a more
direct correlation between pathology images and patient outcomes can discover
tissue features that have not been previously identified as being of diagnostic
importance [4].
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5.5 Conclusions

The original intention of this project was to study the application of computer
vision methods to pathology images in order to improve the scope for automation
of pathology analysis and consequently increase its reliability, repeatability and, in
due course, acceptance in clinical use. Ultimately, we have achieved this original
goal, producing new algorithms for cell and tissue analysis, as well as investigating
dependencies between cell and sample classification. All stages of a computer vi-
sion system have been addressed in one form or another across the three problem
domains that we have examined: colour pre-processing for stain normalisation,
segmentation in both cytopathology and histopathology, feature extraction in
every domain of interest, covering a wide variety of shape and texture analysis
algorithms, and finally learning itself, particularly dictionary learning in a su-
pervised setting. The significance of these advances is acknowledged by their
publication in peer-reviewed conference proceedings and journals [113,127,141].

Across all the research areas, the greatest challenge has consistently been one
of separately optimising stages in a processing chain, when the optimal parame-
ters for a later stage actually depend on the method and configuration adopted
for the previous stages, and vice versa. For example, the choice of features and
their number affects the choice of best classifier, but the features themselves
cannot be evaluated and selected without using some classification method. The
loop is closed because the results of feature evaluation depend on the exact
type and parameters of the classifier used. Design of such systems is notoriously
difficult and the result fragile and highly susceptible to over-fitting. None of
the algorithms that we have produced can claim to be completely optimal, even
within the constraints of available data and processing. Only radically different
approaches which optimise the entire process as a single entity can hope to break
free of these limitations.

The two most promising trends in current computer vision research, random
forests and convolutional neural networks, take different routes to freedom from
manual feature extraction design: random forests evaluate the information gain
of very large numbers of random features, which is independent of classifier type,
while deep CNNs use unsupervised learning in their early stages, simply seeking a
more compact representation that suits the input data. Neither approach is op-
timal in every setting, and both require tuning of parameters in order to achieve
their best, as well as large quantities of training data and considerable amounts of
computation. However, both of these commodities, data and processing power,
are more easily obtainable in the long run than additional supplies of special-
ist expertise in feature extraction, which do not reliably deliver superior results
anyway.

In terms of the specific application area of pathology image analysis, we must
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additionally look forward to machine learning'’s ability to discover new correlations
between visual characteristics of cells and tissues and the biological processes
within those tissues that ultimately determine patient outcomes. This could
revolutionise not only the delivery of diagnostic pathology services, but also the
research into potential treatments and more personalised medicine.



98

CHAPTER 5. REFLECTION



Acknowledgements

| would first of all like to thank my supervisors, Prof. Josef Kittler and Dr. William
Christmas, for their unstinting support and encouragement, as well as valuable
direction over the three and a half years of my doctoral study. Other fellow
members of the Centre for Speech, Vision and Signal Processing have also pro-
vided assistance and insight, along with a broader perspective of the research
area, that are much appreciated. The Researcher Development Programme of
the University of Surrey has provided many courses that | have found immensely
useful and helpful, which have made a real contribution to my wider development
as an academic researcher, communicator and teacher.

| am grateful to lkonisys Inc. for supplying the datasets used in Chapter 2,
as well as the background information relating to this problem domain.

| am indebted to Dr. Peter Jackson, Consultant Pathologist at the Royal
Surrey County Hospital, for his guidance on the realities of pathology practice
and the opportunity to see a non-digital version of H&E slides.

| must acknowledge the huge contribution made by the group of Prof. Neil
Lawrence at the Sheffield Institute for Translational Neuroscience to the appli-
cation of Gaussian Process learning to mitosis detection (Chapter 4). Special
thanks go to Dr. Teo de Campos and Andreas Damianou for running immensely
long simulations, and Dr. James Hensman for tuition in the theoretical founda-
tions.

My own computational experiments would be considerably harder without the
use of WEKA machine learning environment [167], OpenCV image processing
library [168] and LibSVM [129].

| acknowledge the generous financial support of the UK Engineering and
Physical Sciences Research Council (EPSRC) for both tuition fees and stipend
during my period of study.

Finally, | must express my appreciation for the much needed moral support
from friends and relatives too numerous to mention, and to my children for their
patience while mummy spent endless hours staring at various grey, green or pink
blobs.

99



100 ACKNOWLEDGEMENTS



Bibliography

[1]

2]

8]

[4]

[5]

[6]

[7]

J. S. Meyer, C. Alvarez, C. Milikowski, N. Olson, I. Russo, J. Russo,
A. Glass, B. A. Zehnbauer, K. Lister, and R. Parwaresch, “Breast car-
cinoma malignancy grading by Bloom-Richardson system vs proliferation
index: reproducibility of grade and advantages of proliferation index,” Mod
Pathol, vol. 18, no. 8, pp. 1067-1078, 2005.

L. Pantanowitz, P. N. Valenstein, A. J. Evans, K. J. Kaplan, J. D. Pfeifer,
D. C. Wilbur, L. C. Collins, and T. J. Colgan, “Review of the current state

of whole slide imaging in pathology.,” Journal of Pathology Informatics,
vol. 2, no. 36, 2011.

S. Al-Janabi, A. Huisman, and P. J. Van Diest, “Digital pathology: current
status and future perspectives,” Histopathology, vol. 61, no. 1, pp. 1-9,
2012.

A. H. Beck, A. R. Sangoi, S. Leung, R. J. Marinelli, T. O. Nielsen, M. J.
van de Vijver, R. B. West, M. van de Rijn, and D. Koller, “Systematic
analysis of breast cancer morphology uncovers stromal features associated

with survival,” Science Translational Medicine, vol. 3, no. 108, p. 108ral13,
2011.

M. Guican, L. Boucheron, A. Can, A. Madabhushi, N. Rajpoot, and
B. Yener, “Histopathological image analysis: A review,” Biomedical Engi-
neering, IEEE Reviews in, vol. 2, pp. 147-171, 2009.

H. Zhang, J. E. Fritts, and S. A. Goldman, “Image segmentation evalu-
ation: A survey of unsupervised methods,” Computer Vision and Image
Understanding, vol. 110, no. 2, pp. 260-280, 2008.

R. L. Cahn, R. S. Poulsen, and G. Toussaint, “Segmentation of cervical
cell images.," Journal of Histochemistry & Cytochemistry, vol. 25, no. 7,

pp. 681-8, 1977.

101



102

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

BIBLIOGRAPHY

H. Borst, W. Abmayr, and P. Gais, “A thresholding method for automatic
cell image segmentation.,” Journal of Histochemistry & Cytochemistry,
vol. 27, no. 1, pp. 180-7, 1979.

A. Elmoataz, M. Revenu, and C. Porquet, “Segmentation and classification
of various types of cells in cytological images,” in Image Processing and its
Applications, 1992., International Conference on, pp. 385-388, Apr. 1992.

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE
Transactions on Systems, Man and Cybernetics, vol. SMC-9, pp. 62-6, 01
1979.

Z. Hou, Q. Hu, and W. Nowinski, “On minimum variance thresholding,”
Pattern Recognition Letters, vol. 27, no. 14, pp. 1732-1743, 2006.

J. Kittler and J. lllingworth, “Minimum error thresholding,” Pattern Recog-
nition, vol. 19, no. 1, pp. 41-47, 1986.

M. Sezgin and B. Sankur, “Survey over image thresholding techniques
and quantitative performance evaluation,” Journal of Electronic Imaging,
vol. 13, pp. 146-168, 2004

R. Kohler, “A segmentation system based on thresholding,” Computer
Graphics and Image Processing, vol. 15, no. 4, pp. 319-338, 1981.

Q. Liao and Y. Deng, “An accurate segmentation method for white blood
cell images,” in Biomedical Imaging, 2002. Proceedings. 2002 IEEE Inter-
national Symposium on, pp. 245-248, 2002.

D. Cohen, “On active contour models and balloons,” in CVGIP: Image
Understanding, vol. 53, pp. 211-218, Academic Press, March 1991.

M. Hu, X. Ping, and Y. Ding, “Automated cell nucleus segmentation using
improved snake,” in Image Processing, 2004. ICIP '04. 2004 International
Conference on, vol. 4, pp. 2737-2740 Vol. 4, oct. 2004.

Z. Lu, G. Carneiro, and A. Bradley, “Automated nucleus and cytoplasm
segmentation of overlapping cervical cells,” in Medical Image Computing
and Computer-Assisted Intervention — MICCAI 2013 (K. Mori, I. Sakuma,
Y. Sato, C. Barillot, and N. Navab, eds.), vol. 8149 of Lecture Notes in
Computer Science, pp. 452-460, Springer Berlin Heidelberg, 2013.

M. Nosrati and G. Hamarneh, “Segmentation of cells with partial occlu-
sion and part configuration constraint using evolutionary computation,”



BIBLIOGRAPHY 103

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

in Medical Image Computing and Computer-Assisted Intervention — MIC-
CAI 2013 (K. Mori, |. Sakuma, Y. Sato, C. Barillot, and N. Navab, eds.),
vol. 8149 of Lecture Notes in Computer Science, pp. 461-468, Springer
Berlin Heidelberg, 2013.

E. Meijering, “Cell segmentation: 50 years down the road,” Signal Pro-
cessing Magazine, IEEE, vol. 29, pp. 140-145, Sept 2012.

S. Kothari, Q. Chaudry, and M. Wang, “Automated cell counting and clus-
ter segmentation using concavity detection and ellipse fitting techniques,”
in Biomedical Imaging: From Nano to Macro, 2009. ISBI '09. IEEE Inter-
national Symposium on, pp. 795-798, july 2009.

H. Kong, M. Gurcan, and K. Belkacem-Boussaid, “Partitioning histopatho-
logical images: An integrated framework for supervised color-texture seg-
mentation and cell splitting,” Medical Imaging, IEEE Transactions on,
vol. 30, pp. 1661-1677, Sept 2011.

D. Zhang and G. Lu, "Review of shape representation and description
techniques,” Pattern Recognition, vol. 37, no. 1, pp. 1-19, 2004.

M. Yang, K. Kpalma, J. Ronsin, et al., “A survey of shape feature extrac-
tion techniques,” Pattern Recognition, pp. 43-90, 2008.

D. A. V. Amaro, Statistical Shape Analysis for bio-structures: Local Shape
Modelling, Techniques and Applications. PhD thesis, Warwick University,
2009.

D. Zhang and G. Lu, "A Comparative Study on Shape Retrieval Us-
ing Fourier Descriptors with Different Shape Signatures,” in International
Conference on Intelligent Multimedia and Distance Learning, (Fargo, ND,
USA), pp. 1-9, June 2001.

M. Mirmehdi, X. Xie, and J. Suri, Handbook of Texture Analysis. London,
UK, UK: Imperial College Press, 2009.

N. Pressman, R. Haralick, H. Tyrer, and J. Frost, “Texture analysis for
biomedical imagery,” tech. rep., Dahlem Workshop on Biomedical Pattern
Recognition and Image Processing, May 1979.

J. S. Weszka, C. R. Dyer, and A. Rosenfeld, “A comparative study of
texture measures for terrain classification,” Systems, Man and Cybernetics,
IEEE Transactions on, vol. SMC-6, no. 4, pp. 269-285, 1976.



104

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

BIBLIOGRAPHY

B. V. Levienaise-Obadia, J. Kittler, and W. J. Christmas, “Compara-
tive study of strategies for illumination-invariant texture representations,”
vol. 3656, pp. 653-664, 1998.

C. Christodoulou, S. Michaelides, and C. Pattichis, “Multifeature texture
analysis for the classification of clouds in satellite imagery,” Geoscience and
Remote Sensing, IEEE Transactions on, vol. 41, no. 11, pp. 2662-2668,
2003.

P. Linares, P. McCullagh, N. Black, and J. Dornan, “Feature selection
for the characterization of ultrasonic images of the placenta using tex-
ture classification,” in Biomedical Imaging: Nano to Macro, 2004. IEEE
International Symposium on, pp. 1147-1150 Vol. 2, 2004.

M. Varma and A. Zisserman, “A statistical approach to texture classifica-
tion from single images,” International Journal of Computer Vision, vol. 62,
no. 1-2, pp. 61-81, 2005.

R. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for im-
age classification,” Systems, Man and Cybernetics, IEEE Transactions on,
vol. SMC-3, no. 6, pp. 610-621, 1973.

S. Heynen, E. Hunter, and J. Price, “Review of cell nuclear features for
classification from fluorescence images,” Proceedings of the SPIE - The
International Society for Optical Engineering, vol. 3921, pp. 54-65, 2000.

M. M. Galloway, “Texture analysis using gray level run lengths,” Computer
Graphics and Image Processing, vol. 4, no. 2, pp. 172-179, 1975.

T. Kurita and N. Otsu, “Texture Classification by Higher Order Local
Autocorrelation,” Proc. ACCV, vol. 93, pp. 175-178, 1993.

T. Ojala, M. Pietikanen, and T. Maenpaa, “Gray scale and rotation invari-
ant texture classification with local binary patterns,” in Computer Vision -
ECCV 2000, vol. 1842 of Lecture Notes in Computer Science, pp. 404—420,
Springer Berlin Heidelberg, 2000.

T. Ojala, M. Pietikainen, and T. Maenpaa, “A generalized local binary pat-
tern operator for multiresolution gray scale and rotation invariant texture
classification,” in Advances in Pattern Recognition ICAPR 2001 (S. Singh,
N. Murshed, and W. Kropatsch, eds.), vol. 2013 of Lecture Notes in Com-
puter Science, pp. 399-408, Springer Berlin Heidelberg, 2001.



BIBLIOGRAPHY 105

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and
rotation invariant texture classification with local binary patterns,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 24, no. 7,
pp. 971-987, 2002.

W.-H. Liao, “Region description using extended local ternary patterns,”
in Pattern Recognition (ICPR), 2010 20th International Conference on,
pp. 1003-1006, 2010.

G. Zhao, T. Ahonen, J. Matas, and M. Pietikainen, “Rotation-invariant
image and video description with local binary pattern features,” Image
Processing, IEEE Transactions on, vol. 21, no. 4, pp. 1465-1477, 2012.

T. Ojala, M. Pietikainen, and D. Harwood, “A comparative study of tex-
ture measures with classification based on featured distributions,” Pattern
Recognition, vol. 29, no. 1, pp. 51-59, 1996.

M. Varma and A. Zisserman, “A Statistical Approach to Material Clas-
sification Using Image Patch Exemplars,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 31, no. 11, pp. 2032-2047, 2009.

G. V. D. Wouwer, B. Weyn, P. Scheunders, W. Jacob, E. V. Marck,
and D. V. Dyck, “Wavelets as Chromatin Texture Descriptors for the
Automated ldentification of Neoplastic Nuclei,” Journal of Microscopy,
vol. 197(pt 1), pp. 25-35, 2000.

S. Niwas, P. Palanisamy, and K. Sujathan, “Complex wavelet based texture
features of cancer cytology images,” in Industrial and Information Systems
(ICIIS), 2010 International Conference on, pp. 348-353, Aug. 2010.

C. Kocur, S. Rogers, L. Myers, T. Burns, M. Kabrisky, J. Hoffmeister,
K. Bauer, and J. Steppe, “Using neural networks to select wavelet fea-
tures for breast cancer diagnosis,” Engineering in Medicine and Biology
Magazine, IEEE, vol. 15, no. 3, pp. 95-102, 108, 1996.

R. Lopes and N. Betrouni, “Fractal and multifractal analysis: A review,”
Medical Image Analysis, vol. 13, no. 4, pp. 634-649, 2009.

D. Sabino, E. Nakamura, L. Costa, R. Calado, and M. Zago, “Chromatin
texture characterization using multiscale fractal dimension,” in Digital Sig-
nal Processing, 2002. DSP 2002. 2002 14th International Conference on,
vol. 2, pp. 529-533 vol.2, 2002.



106

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

BIBLIOGRAPHY

P. Soille and J.-F. Rivest, “On the Validity of Fractal Dimension Measure-
ments in Image Analysis,” Journal of Visual Communication and Image
Representation, vol. 7, no. 3, pp. 217-229, 1996.

N. Theera-Umpon and S. Dhompongsa, “Morphological Granulometric
Features of Nucleus in Automatic Bone Marrow White Blood Cell Classi-
fication,” Information Technology in Biomedicine, IEEE Transactions on,
vol. 11, pp. 353-359, may 2007.

Y. Q. Chen, M. S. Nixon, and D. W. Thomas, “Statistical geometrical
features for texture classification,” Pattern Recognition, vol. 28, no. 4,
pp. 537-552, 1995.

R. Walker and P. Jackway, “Statistical geometric features - extensions for
cytological texture analysis,” in Pattern Recognition, 1996., Proceedings
of the 13th International Conference on, vol. 2, pp. 790-794 vol.2, 1996.

V. Qjansivu and J. Heikkila, “Blur insensitive texture classification using
local phase quantization,” in Image and Signal Processing (A. Elmoataz,
O. Lezoray, F. Nouboud, and D. Mammass, eds.), vol. 5099 of Lecture
Notes in Computer Science, pp. 236—243, Springer Berlin Heidelberg, 2008.

V. Arvis, C. Debain, M. Berducat, and A. Benassi, "“Generalization of
the cooccurrence matrix for colour images: Application to colour texture
classification,” Image Analysis & Stereology, vol. 23, no. 1, 2011.

C. Malon, E. Brachtel, E. Cosatto, H. P. Graf, A. Kurata, M. Kuroda, J. S.
Meyer, A. Saito, S. Wu, and Y. Yagi, “Mitotic figure recognition: Agree-
ment among pathologists and computerized detector,” Analytical Cellular
Pathology, vol. 35, no. 2, pp. 97-100, 2012.

S. Fefilatyev, M. Shreve, K. Kramer, L. Hall, D. Goldgof, R. Kasturi,
K. Daly, A. Remsen, and H. Bunke, “Label-noise reduction with support
vector machines,” in Pattern Recognition (ICPR), 2012 21st International
Conference on, pp. 3504-3508, 2012.

T. Jo and N. Japkowicz, “Class imbalances versus small disjuncts,”
SIGKDD Explor. Newsl., vol. 6, pp. 40-49, June 2004.

W. Liu and S. Chawla, “Class confidence weighted kNN algorithms for
imbalanced data sets,” in Proceedings of the 15th Pacific-Asia Conference
on Advances in Knowledge Discovery and Data Mining - Volume Part |I,
PAKDD'11, (Berlin, Heidelberg), pp. 345-356, Springer-Verlag, 2011.



BIBLIOGRAPHY 107

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

D. Yin, C. An, and H. Baird, “Imbalance and concentration in k-NN clas-
sification,” in Pattern Recognition (ICPR), 2010 20th International Con-
ference on, pp. 2170-2173, 2010.

N. Thacker, “Defining probability for science,” tech. rep., TINA Memo
2007-008, 2007.

R. M. Haralick, “Performance characterization in computer vision,”
in Computer Analysis of Images and Patterns (D. Chetverikov and
W. Kropatsch, eds.), vol. 719 of Lecture Notes in Computer Science,
pp. 1-9, Springer Berlin Heidelberg, 1993.

Y. Bengio and A. Courville, “Deep Learning of Representations,” in Hand-
book on Neural Information Processing (M. Bianchini, M. Maggini, and
L. C. Jain, eds.), vol. 49 of Intelligent Systems Reference Library, pp. 1-28,
Springer Berlin Heidelberg, 2013.

Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review
and new perspectives,” Pattern Analysis and Machine Intelligence, |IEEE
Transactions on, vol. 35, no. 8, pp. 1798-1828, 2013.

R. Ludovic, R. Daniel, L. Nicolas, K. Maria, |I. Humayun, K. Jacques,
C. Frédérique, G. Catherine, L. Gilles, N. Metin, et al., “Mitosis detection
in breast cancer histological images An ICPR 2012 contest,” Journal of
Pathology Informatics, vol. 4, no. 1, p. 8, 2013.

A. C. Damianou and N. D. Lawrence, “Deep Gaussian Processes,” JMLR,
2013.

L. Van der Maaten, E. Postma, and H. Van den Herik, “Dimensionality
reduction: A comparative review,” Technical Report TiCC TR 2009-005,
2009.

A. J. Izenman, “Introduction to manifold learning,” Wiley Interdisciplinary
Reviews: Computational Statistics, vol. 4, no. 5, pp. 439-446, 2012,

M. Titsias and N. Lawrence, “Bayesian Gaussian process latent variable
model,” JMLR, 2010.

J. Snoek, R. P. Adams, and H. Larochelle, “On nonparametric guidance
for learning autoencoder representations,” Proceedings of the Fifteenth
International Conference on Artificial Intelligence and Statistics, 2012.



108

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

BIBLIOGRAPHY

R. Urtasun and T. Darrell, “Discriminative gaussian process latent variable
model for classification,” in Proceedings of the 24th international confer-
ence on Machine learning, pp. 927-934, ACM, 2007.

X. Gao, X. Wang, D. Tao, and X. Li, “Supervised gaussian process latent
variable model for dimensionality reduction,” Systems, Man, and Cybernet-
ics, Part B: Cybernetics, IEEE Transactions on, vol. 41, no. 2, pp. 425-434,
2011.

J. Hensman, N. Fusi, and N. D. Lawrence, “Gaussian processes for big
data,” in Proceedings of the Twenty-Ninth Conference on Uncertainty in
Artificial Intelligence (UAI2013), 2013.

B. Nielsen, F. Albregtsen, and H. Danielsen, “Low dimensional adaptive
texture feature vectors from class distance and class difference matrices,”
Medical Imaging, IEEE Transactions on, vol. 23, no. 1, pp. 73-84, 2004.

S. Lloyd, “Least squares quantization in PCM," Information Theory, IEEE
Transactions on, vol. 28, no. 2, pp. 129-137, 1982.

S. Lazebnik and M. Raginsky, “Supervised Learning of Quantizer Code-
books by Information Loss Minimization,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 31, pp. 1294-1309, july 2009.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Discrimina-
tive learned dictionaries for local image analysis,” in Computer Vision and
Pattern Recognition, IEEE Conference on, pp. 1-8, 2008.

A. Criminisi and J. Shotton, Decision Forests for Computer Vision and
Medical Image Analysis. Advances in Computer Vision and Pattern Recog-
nition, Springer London, 2013.

M. Yaqub, M. Javaid, C. Cooper, and A. Noble, “Investigation of the role of
feature selection and weighted voting in random forests for 3D volumetric

segmentation,” Medical Imaging, IEEE Transactions on, vol. PP, no. 99,
pp. 1-1, 2013.

E. Cosatto, M. Miller, H. Graf, and J. Meyer, “Grading nuclear pleomor-
phism on histological micrographs,” in Pattern Recognition, 2008. ICPR
2008. 19th International Conference on, pp. 1-4, dec. 2008.

M. Horn and M. Berthold, “Towards active segmentation of cell images,”
in Biomedical Imaging: From Nano to Macro, 2011 IEEE International
Symposium on, pp. 177-181, 30 2011-april 2 2011.



BIBLIOGRAPHY 109

[82]

[83]

[84]

[85]

[86]

[87]

[83]

[89]

[90]

[91]

[92]

O. Oechsle, Towards the Automatic Construction of Machine Vision Sys-
tems using Genetic Programming. PhD thesis, University of Essex, 2009.

C.-H. Chan, J. Kittler, and M. Tahir, “Kernel fusion of multiple histogram
descriptors for robust face recognition,” in Structural, Syntactic, and Sta-
tistical Pattern Recognition (E. Hancock, R. Wilson, T. Windeatt, |. Ulu-
soy, and F. Escolano, eds.), vol. 6218 of Lecture Notes in Computer Sci-
ence, pp. 718-727, Springer Berlin Heidelberg, 2010.

P. Domingos, “A few useful things to know about machine learning,”
Commun. ACM, vol. 55, pp. 78-87, Oct. 2012.

D. Zink, A. H. Fischer, and J. A.Nickerson, “Nuclear structure in cancer
cells,” Nature Reviews, vol. 4, pp. 677-687, Sept 2004.

S. Mohapatra, D. Patra, and S. Satpathi, “Image analysis of blood mi-
croscopic images for acute leukemia detection,” in Industrial Electronics,
Control Robotics (IECR), 2010 International Conference on, pp. 215-219,
2010.

T. Kiyuna, A. Saito, E. Kerr, and W. Bickmore, “Characterization of chro-
matin texture by contour complexity for cancer cell classification,” in BIBE
2008 (8th IEEE International Conference on Biolnformatics and BioEngi-
neering, 2008), pp. 1-6, Oct. 2008.

Y. Linde, A. Buzo, and R. Gray, “An algorithm for vector quantizer design,”
Communications, IEEE Transactions on, vol. 28, pp. 84—95, Jan 1980.

J. Krapac, J. Verbeek, and F. Jurie, “Learning tree-structured descriptor
quantizers for image categorization,” in British Machine Vision Conference,
2011.

A. S. Wiik, M. Hgier-Madsen, J. Forslid, P. Charles, and J. Meyrowitsch,
“Antinuclear antibodies: a contemporary nomenclature using HEp-2 cells,”
Journal of autoimmunity, vol. 35, no. 3, pp. 276-290, 2010.

P. L. Meroni, M. Biggioggero, S. S. Pierangeli, J. Sheldon, |. Zegers, and
M. O. Borghi, “Standardization of autoantibody testing: a paradigm for
serology in rheumatic diseases,” Nature Reviews Rheumatology, 2013.

N. Agmon-Levin, J. Damoiseaux, C. Kallenberg, U. Sack, T. Witte,
M. Herold, X. Bossuyt, L. Musset, R. Cervera, A. Plaza-Lopez, C. Dias,
M. José Sousa, A. Radice, C. Eriksson, O. Hultgren, M. Viander,



110

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

BIBLIOGRAPHY

M. Khamashta, S. Regenass, L. E. Coelho Andrade, A. Wiik, A. Tin-
cani, J. Ronnelid, D. B. Bloch, M. J. Fritzler, E. K. L. Chan, |. Garcia-De
La Torre, K. N. Konstantinov, R. Lahita, M. Wilson, O. Vainio, N. Fabien,
R. A. Sinico, P. Meroni, and Y. Shoenfeld, “International recommenda-
tions for the assessment of autoantibodies to cellular antigens referred to
as anti-nuclear antibodies,” Annals of the Rheumatic Diseases, 2013.

N. Bizzaro, R. Tozzoli, E. Tonutti, A. Piazza, F. Manoni, A. Ghirardello,
D. Bassetti, D. Villalta, M. Pradella, and P. Rizzotti, “Variability between
methods to determine ana, anti-dsdna and anti-ena autoantibodies: a col-
laborative study with the biomedical industry,” Journal of Immunological

Methods, vol. 219, no. 1-2, pp. 99-107, 1998.

P. Perner, “Image analysis and classification of hep-2 cells in fluorescent
images,” in Pattern Recognition, 1998. Proceedings. Fourteenth Interna-
tional Conference on, vol. 2, pp. 1677-1679 vol.2, 1998.

Y.-L. Huang, Y.-L. Jao, T.-Y. Hsieh, and C.-W. Chung, “Adaptive auto-
matic segmentation of hep-2 cells in indirect immunofluorescence images,”
in Sensor Networks, Ubiquitous and Trustworthy Computing, 2008. SUTC
'08. IEEE International Conference on, pp. 418-422, 2008.

U. Sack, S. Knoechner, H. Warschkau, U. Pigla, F. Emmrich, and M. Kam-
prad, “Computer-assisted classification of hep-2 immunofluorescence pat-
terns in autoimmune diagnostics,” Autoimmunity Reviews, vol. 2, no. 5,
pp. 298-304, 2003.

C. Plata, H. Perner, S. Speth, K. J. Lackner, and P. von Landenberg,
“Automated classification of immunofluorescence staining of hep-2 cells
in clinical routine diagnostics,” Transactions on Mass-Data Analysis of
Images and Signals, vol. 1, no. 2, pp. 147-159, 2009.

K. Egerer, D. Roggenbuck, R. Hiemann, M.-G. Weyer, T. Buttner,
B. Radau, R. Krause, B. Lehmann, E. Feist, and G.-R. Burmester, “Au-
tomated evaluation of autoantibodies on human epithelial-2 cells as an
approach to standardize cell-based immunofluorescence tests,” Arthritis

Research & Therapy, vol. 12, no. 2, p. R40, 2010.

P. Perner, H. Perner, and B. Miiller, “Mining knowledge for hep-2 cell
image classification,” Artificial Intelligence in Medicine, vol. 26, no. 1,
pp. 161-173, 2002.

R. Hiemann, N. Hilger, J. Michel, J. Nitschke, A. Bohm, U. Anderer,
M. Weigert, and U. Sack, “Automatic analysis of immunofluorescence



BIBLIOGRAPHY 111

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

patterns of HEp-2 cells,” Annals of the New York Academy of Sciences,
vol. 1109, no. 1, pp. 358-371, 2007.

P. Soda and G. lannello, “A Hybrid Multi-Expert Systems for HEp-2 Stain-
ing Pattern Classification,” in Image Analysis and Processing, 2007. ICIAP
2007. 14th International Conference on, pp. 685—690, sept. 2007.

T.-Y. Hsieh, Y.-C. Huang, C.-W. Chung, and Y.-L. Huang, “HEp-2
cell classification in indirect immunofluorescence images,” in Information,
Communications and Signal Processing, 2009. ICICS 2009. 7th Interna-
tional Conference on, pp. 1-4, dec. 2009.

N. Bizzaro, A. Antico, S. Platzgummer, E. Tonutti, D. Bassetti, F. Pe-
sente, R. Tozzoli, M. Tampoia, and D. Villalta, “Automated antinu-
clear immunofluorescence antibody screening: A comparative study of six
computer-aided diagnostic systems,” Autoimmunity Reviews, 2013.

“HEp-2 cells classification contest,” 2012.
http://nerone.diiie.unisa.it/hep2contest/.

“Competition on cells classification by fluorescent image analysis.” Hosted
at ICIP, 2013. http://nerone.diiie.unisa.it/contest-icip-2013.

P. Agrawal, M. Vatsa, and R. Singh, “HEp-2 cell image classification: A
comparative analysis,” in Machine Learning in Medical Imaging (G. Wu,
D. Zhang, D. Shen, P. Yan, K. Suzuki, and F. Wang, eds.), vol. 8184 of
Lecture Notes in Computer Science, pp. 195-202, Springer International
Publishing, 2013.

“SNP HEp-2 dataset,” Sept 2013. http://itee.uq.edu.au/"lovell /snphep2/.

P. Foggia, G. Percannella, P. Soda, and M. Vento, “Benchmarking HEp-
2 cells classification methods,” Medical Imaging, |IEEE Transactions on,
vol. 32, no. 10, pp. 1878-1889, 2013.

S. Di Cataldo, A. Bottino, E. Ficarra, and E. Macii, “Applying textural fea-
tures to the classification of HEp-2 cell patterns in |IF images,” in Pattern
Recognition (ICPR), 2012 21st International Conference on, pp. 3349-
3352, 2012.

|. Ersoy, F. Bunyak, J. Peng, and K. Palaniappan, “HEp-2 cell classification
in IIF images using Shareboost,” in Pattern Recognition (ICPR), 2012 21st
International Conference on, pp. 3362-3365, 2012.



112

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

BIBLIOGRAPHY

S. Ghosh and V. Chaudhary, “Feature analysis for automatic classification
of HEp-2 florescence patterns : Computer-aided diagnosis of auto-immune
diseases,” in Pattern Recognition (ICPR), 2012 21st International Confer-
ence on, pp. 174-177, 2012.

K. Li, J. Yin, Z. Lu, X. Kong, R. Zhang, and W. Liu, “Multiclass boosting
SVM using different texture features in HEp-2 cell staining pattern classi-
fication,” in Pattern Recognition (ICPR), 2012 21st International Confer-
ence on, pp. 170-173, 2012.

V. Snell, W. Christmas, and J. Kittler, “Texture and shape in fluores-
cence pattern identification for auto-immune disease diagnosis,” in Pattern
Recognition (ICPR), 2012 21st International Conference on, pp. 3750—
3753, 2012.

P. Strandmark, J. Ulén, and F. Kahl, "HEp-2 Staining Pattern Classifica-
tion,” in ICPR, 2012.

G. Thibault and J. Angulo, “Efficient statistical /morphological cell texture
characterization and classification,” in Pattern Recognition (ICPR), 2012
21st International Conference on, pp. 2440-2443, 2012.

W. Bel Haj Ali, D. Giampaglia, M. Barlaud, P. Piro, R. Nock, and
T. Pourcher, “Classification of biological cells using bio-inspired descrip-
tors,” in Pattern Recognition (ICPR), 2012 21st International Conference
on, pp. 3353-3357, Nov 2012.

“"MIVIA HEp-2 Images Dataset,” 2012.
http://mivia.unisa.it/datasets/biomedical-image-datasets/hep2-image-
dataset/.

S. D. Cataldo, A. Bottino, I. U. Islam, T. F. Vieira, and E. Ficarra, “Sub-
class discriminant analysis of morphological and textural features for HEp-2
staining pattern classification,” Pattern Recognition, no. 0, pp. —, 2013.

M. Zhu and A. Martinez, “Subclass discriminant analysis,” Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on, vol. 28, no. 8,
pp. 1274-1286, 2006.

R. Nosaka and K. Fukui, “HEp-2 cell classification using rotation invariant
co-occurrence among local binary patterns,” Pattern Recognition, no. 0,
pp. — 2013.



BIBLIOGRAPHY 113

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

X. Kong, K. Li, J. Cao, Q. Yang, and L. Wenyin, “HEp-2 cell pattern
classification with discriminative dictionary learning,” Pattern Recognition,
no. 0, pp. —, 2013.

|. Theodorakopoulos, D. Kastaniotis, G. Economou, and S. Fotopoulos,
“HEp-2 cells classification via sparse representation of textural features
fused into dissimilarity space,” Pattern Recognition, no. 0, pp. —, 2013.

A. Wiliem, Y. Wong, C. Sanderson, P. Hobson, S. Chen, and B. Lovell,
“Classification of human epithelial type 2 cell indirect immunofluoresence

images via codebook based descriptors,” in Applications of Computer Vi-
sion (WACV), 2013 IEEE Workshop on, pp. 95-102, 2013.

M. Faraki, M. T. Harandi, A. Wiliem, and B. C. Lovell, “Fisher tensors
for classifying human epithelial cells,” Pattern Recognition, no. 0, pp. —,
2013.

A. Wiliem, C. Sanderson, Y. Wong, P. Hobson, R. F. Minchin, and B. C.
Lovell, “Automatic classification of human epithelial type 2 cell indirect
immunofluorescence images using cell pyramid matching,” Pattern Recog-
nition, no. 0, pp. —, 2013.

Y. Yang, A. Wiliem, A. Alavi, B. C. Lovell, and P. Hobson, “Visual learning
and classification of human epithelial type 2 cell images through sponta-
neous activity patterns,” Pattern Recognition, no. 0, pp. —, 2013.

V. Snell, W. Christmas, and J. Kittler, “HEp-2 fluorescence pattern clas-
sification,” Pattern Recognition, vol. 47, no. 7, pp. 2338-2347, 2014.

|. Theodorakopoulos, D. Kastaniotis, G. Economou, and S. Fotopoulos,
“HEp-2 Cells classification via fusion of morphological and textural fea-
tures,” in Bioinformatics Bioengineering (BIBE), 2012 IEEE 12th Interna-
tional Conference on, pp. 689-694, nov. 2012.

C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector ma-
chines,” ACM Transactions on Intelligent Systems and Technology, vol. 2,
pp. 27:1-27:27, 2011.

T.-K. Kim, J. Kittler, and R. Cipolla, “Discriminative Learning and Recog-
nition of Image Set Classes Using Canonical Correlations,” Pattern Analysis
and Machine Intelligence, IEEE Transactions on, vol. 29, no. 6, pp. 1005—
1018, 2007.



114

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

BIBLIOGRAPHY

D. C. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, “Mitosis
detection in breast cancer histology images with deep neural networks,” in
Medical Image Computing and Computer-Assisted Intervention—MICCAI
2013, pp. 411-418, Springer, 2013.

A. Khan, H. EI-Daly, and N. Rajpoot, “A gamma-gaussian mixture model
for detection of mitotic cells in breast cancer histopathology images,”
in Pattern Recognition (ICPR), 2012 21st International Conference on,
pp. 149-152, 2012.

A. Khan, H. El-Daly, E. Simmons, and R. NM., “HyMaP: A hybrid
magnitude-phase approach to unsupervised segmentation of tumor areas in

breast cancer histology images,” Journal of Pathology Informatics, vol. 4,
no. 1, 2013.

H. Irshad, S. Jalali, L. Roux, D. Racoceanu, L. J. Hwee, G. Le Naour, and
F. Capron, “Automated mitosis detection using texture, sift features and

hmax biologically inspired approach,” Journal of pathology informatics,
vol. 4, no. Suppl, 2013.

H. Irshad, “Automated mitosis detection in histopathology using morpho-
logical and multi-channel statistics features,” Journal of pathology infor-
matics, vol. 4, 2013.

C. D. Malon and E. Cosatto, “Classification of mitotic figures with convo-
lutional neural networks and seeded blob features,” Journal of pathology
informatics, vol. 4, 2013.

F. B. Tek, “Mitosis detection using generic features and an ensemble of
cascade adaboosts,” Journal of pathology informatics, vol. 4, 2013.

A. Albayrak and G. Bilgin, “Detection of mitotic cells in histopathological
images using textural features,” in Signal Processing and Communications
Applications Conference (SIU), 2013 21st, pp. 1-4, 2013.

E. Aptoula, N. Courty, and S. Lefevre, “Mitosis detection in breast cancer
histological images with mathematical morphology,” in Signal Processing
and Communications Applications Conference (SIU), 2013 21st, pp. 1-4,
2013.

M. Macenko, M. Niethammer, J. Marron, D. Borland, J. Woosley, X. Guan,
C. Schmitt, and N. Thomas, “A method for normalizing histology slides
for quantitative analysis,” in Biomedical Imaging: From Nano to Macro,
2009. ISBI '09. IEEE International Symposium on, pp. 1107-1110, 2009.



BIBLIOGRAPHY 115

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

M. Veta, P. J. van Diest, M. A. Viergever, H. Wang, A. Madabhushi,
F. Gonzalez, A. A. C. Roa, A. B. L. Larsen, J. S. Vestergaard, A. B.
Dahl, D. C. Ciresan, J. Schmidhuber, A. Giusti, L. M. Gambardella, F. B.
Tek, T. Walter, C.-W. Wang, S. Kondo, B. J. Matuszewski, F. Precioso,
V. Snell, J. Kittler, T. E. de Campos, A. M. Khan, N. M. Rajpoot, E. Ark-
oumani, M. M. Lacle, S. Willems, and J. P. W. Pluim, “Assessment of
mitosis detection algorithms in breast cancer histopathology images.” Sub-
mitted to 'Medical Image Analysis’, 2014.

H. Chang, L. A. Loss, and B. Parvin, “Nuclear segmentation in H and E
sections via multi-reference graph-cut (MRGC)," in International Sympo-
sium Biomedical Imaging (1SBI), 2012.

N. Lawrence, “Probabilistic non-linear principal component analysis with
gaussian process latent variable models,” J. Mach. Learn. Res., vol. 6,
pp. 1783-1816, Dec. 2005.

A. Khan, H. El-Daly, and N. Rajpoot, “A gamma-gaussian mixture model
for detection of mitotic cells in breast cancer histopathology images,” Jour-
nal of Pathology Informatics, vol. 4, no. 1, p. 11, 2013.

D. Magee, D. Treanor, P. Chomphuwiset, and P. Quirke, “Context aware
colour classification in digital microscopy.,” in Proceedings Medical Image
Understanding and Analysis, pp. 1-5, BMVA, 2010.

M. A. Tahir, J. Kittler, and F. Yan, “Inverse random under sampling for
class imbalance problem and its application to multi-label classification,”
Pattern Recognition, vol. 45, no. 10, pp. 3738-3750, 2012.

B. Alexe, T. Deselaers, and V. Ferrari, “Measuring the objectness of image
windows,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 34, pp. 2189-2202, Nov 2012.

N. Stathonikos, M. Veta, A. Huisman, and P. van Diest, “Going fully digi-
tal: Perspective of a Dutch academic pathology lab,” Journal of Pathology
Informatics, vol. 4, no. 1, p. 15, 2013.

K. Kayser, J. Gortler, M. Bogovac, A. Bogovac, T. Goldmann, E. Vollmer,
and G. Kayser, “Ai (artificial intelligence) in histopathology-from image
analysis to automated diagnosis.,” Folia Histochemica et Cytobiologica,
vol. 47, no. 3, 2009.



116

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

BIBLIOGRAPHY

S. Park, A. V. Parwani, R. D. Aller, L. Banach, M. J. Becich, S. Borkenfeld,
A. B. Carter, B. A. Friedman, M. G. Rojo, A. Georgiou, et al., “The his-
tory of pathology informatics: A global perspective,” Journal of pathology
informatics, vol. 4, 2013.

S. Kothari, J. H. Phan, T. H. Stokes, and M. D. Wang, “Pathology imaging
informatics for quantitative analysis of whole-slide images,” Journal of the
American Medical Informatics Association, vol. 20, no. 6, pp. 1099-1108,
2013.

A. Willitzki, R. Hiemann, V. Peters, U. Sack, P. Schierack, S. Rodiger,
U. Anderer, K. Conrad, D. P. Bogdanos, D. Reinhold, et al., “New plat-
form technology for comprehensive serological diagnostics of autoimmune
diseases,” Clinical and Developmental Immunology, vol. 2012, 2012.

C.-H. Veillard, A. Roux, L. Loménie, N. Racoceanu, and D. Huang, “Time-
efficient sparse analysis of histopathological whole slide images,” Comput-
erized Medical Imaging and Graphics, vol. 35, no. 7-8, pp. 579-591, 2011.

T. Amaral, S. McKenna, K. Robertson, and A. Thompson, “Classifica-
tion and immunohistochemical scoring of breast tissue microarray spots,”
Biomedical Engineering, IEEE Transactions on, vol. 60, pp. 2806-2814,
Oct 2013.

S. Kothari, Q. Chaudry, and M. Wang, “Extraction of informative cell fea-
tures by segmentation of densely clustered tissue images,” in Engineering
in Medicine and Biology Society, 2009. EMBC 2009. Annual International
Conference of the IEEE, pp. 67066709, sept. 20009.

K. Nandy, P. Gudla, K. Meaburn, T. Misteli, and S. Lockett, “Automatic
nuclei segmentation and spatial FISH analysis for cancer detection,” in
Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual
International Conference of the IEEE, pp. 6718-6721, sept. 2009.

A. Chekkoury, P. Khurd, J. Ni, C. Bahlmann, A. Kamen, A. Patel, L. Grady,
M. Singh, M. Groher, N. Navab, et al., "Automated Malignancy Detection
in Breast Histopathological Images ,” SPIE Medical Imaging, vol. 8315,
2012.

N. V. Orlov, A. T. Weeraratna, S. M. Hewitt, C. E. Coletta, J. D. Delaney,
D. Mark Eckley, L. Shamir, and I. G. Goldberg, “Automatic detection of
melanoma progression by histological analysis of secondary sites,” Cytom-
etry Part A, vol. 81A, no. 5, pp. 364-373, 2012.



BIBLIOGRAPHY 117

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

R. Riber-Hansen, B. Vainer, and T. Steiniche, "“Digital image analysis:
a review of reproducibility, stability and basic requirements for optimal
results,” APMIS, vol. 120, no. 4, pp. 276-289, 2012.

L. Cooper, A. Carter, A. Farris, F. Wang, J. Kong, D. Gutman, P. Widener,
T. Pan, S. Cholleti, A. Sharma, T. Kurc, D. Brat, and J. Saltz, “Digital
pathology: Data-intensive frontier in medical imaging,” Proceedings of the
IEEE, vol. 100, no. 4, pp. 991-1003, 2012.

D. H. Wolpert, “The lack of a priori distinctions between learning algo-
rithms,” Neural Comput., vol. 8, pp. 1341-1390, October 1996.

T. Lattimore and M. Hutter, “No Free Lunch versus Occam’s Razor in Su-
pervised Learning,” in Proc. Solomonoff 85th Memorial Conference, (Mel-
bourne, Australia), 2011.

J. L. Carroll, A Bayesian Decision Theoretical Approach to Supervised
Learning, Selective Sampling, and Empirical Function Optimization. PhD
thesis, Brigham Young University, 2010.

O. Tsybrovskyy and A. Berghold, “Primary unit for statistical analysis in
morphometry: patient or cell?,” Analytical Cellular Pathology, vol. 18,
no. 4, pp. 191-202, 1999.

F. Schwenker and E. Trentin, “Pattern classification and clustering: A
review of partially supervised learning approaches,” Pattern Recognition
Letters, vol. 37, no. 0, pp. 4-14, 2014.

Q. V. Le, R. Monga, M. Devin, K. Chen, G. S. Corrado, J. Dean, and A. Y.
Ng, “Building high-level features using large scale unsupervised learning,”
in Proceedings of the 29th International Conference on Machine Learning,
2012.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and |. H.
Witten, “The WEKA Data Mining Software: An Update,” SIGKDD Ex-
plorations, vol. 11, no. 1, 2009.

G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools,
2000.



