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Abstract

This work considers novel image-processing and computer-vision techniques to

advance the automated analysis of low-resolution, complex 3D volumetric Com-

puted Tomography (CT) imagery obtained in the aviation-security-screening do-

main. Novel research is conducted in three key areas: image quality improvement,

segmentation and classification.

A sinogram-completion Metal Artefact Reduction (MAR) technique is pre-

sented. The presence of multiple metal objects in the scanning Field of View

(FoV) is accounted for via a distance-driven weighting scheme. The technique is

shown to perform comparably to the state-of-the-art medical MAR techniques in

a quantitative and qualitative comparative evaluation.

A materials-based technique is proposed for the segmentation of unknown ob-

jects from low-resolution, cluttered volumetric baggage-CT data. Initial coarse

segmentations, generated using dual-energy techniques, are refined by partitioning

at automatically-detected regions. Partitioning is guided by a novel random-forest-

based quality metric (trained to recognise high-quality, single-object segments). A

second segmentation-quality measure is presented for quantifying the quality of

full segmentations. In a comparative evaluation, the proposed method is shown to

produce similar-quality segmentations to the state-of-the-art at reduced processing

times.

A codebook model constructed using an Extremely Randomised Clustering

(ERC) forest for feature encoding, a dense-feature-sampling strategy and a Sup-

port Vector Machine (SVM) classifier is presented. The model is shown to offer

improvements in accuracy over the state-of-the-art 3D visual-cortex model at re-

duced processing times, particularly in the presence of noise and artefacts.

The overall contribution of this work is a novel, fully-automated and efficient

framework for the classification of objects in cluttered 3D baggage-CT imagery. It

extends the current state-of-the-art by improving classification performance in the

presence of noise and artefacts; by automating the previously-manual isolation of

objects and by decreasing processing times by several orders of magnitude.
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Chapter 1

Introduction

The central role of baggage screening in the aviation-security domain has led to

an increased interest in the development of automated, software-based solutions

to challenging tasks such as the detection and classification of contraband items.

This work considers the application of image-processing and computer-vision tech-

niques to advance the automated analysis of low-resolution, complex 3D volumetric

baggage Computed Tomography (CT) imagery obtained in the aviation security-

screening domain.

1.1 Motivation

Aviation security has traditionally been performed in three sequential stages [Pol94]:

1. Access denial: preventing initial access to the civil aviation facility (via

police intelligence).

2. Baggage inspection: implementing efficient explosives and/or threat de-

tection procedures.

3. Damage control: ensuring the installation of sufficient structures and/or

systems to minimise aircraft damage and maximise passenger survivability.

Baggage inspection is the principal safeguard against the transportation of

illicit and/or dangerous materials and is typically performed using a combination

of five approaches [BP02]: 1) manual search; 2) sniffer dogs; 3) Explosive Trace

Detection (ETD); 4) 2D X-ray based imaging and 5) Explosive Detection Systems

(EDS).

Singh [Sin03] discusses the increasingly important role of image-based auto-

mated baggage inspection within the aviation security infrastructure and empha-

sises two primary objectives: 1) the improvement of image quality to aid visual (i.e.

human) inspection and software-based analysis of imagery and 2) the automated

detection of explosives. The latter has more recently been extended to consider the
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broader task of general threat and/or illicit materials detection [FBM12, CMP13].

The accomplishment of these two objectives requires the development and imple-

mentation of efficient software-based techniques for image denoising and artefact

reduction, automated segmentation, feature extraction and image classification

[Sin03]. These tasks are notoriously challenging in the security-screening domain

due to the variability and complexity of security imagery (compared to medical

imagery for example) and the demand for high throughput - it has been estimated

that the congestion at large international airports such as Heathrow demands bag-

gage inspection times of approximately 6 seconds per item [Spe01]. It has thus

been suggested that image-based automated aviation security-screening systems

should be characterised by: high-speed detections - to minimise traveller inconve-

nience; robustness to clutter (i.e. capable of detecting well-hidden objects); low

false-positive (false alarms) rates and affordability [Sin03].

Owing to its speed (1200-1500 bags/hour) and relative affordability, X-ray

based 2D imaging has traditionally been used for the screening and analysis of

baggage items [BP02]. The interpretation of 2D X-ray imagery is however, compli-

cated by variations in object orientation, clutter and density confusion [AZGA06].

Three-dimensional X-ray Computed Tomography (CT), which has enjoyed much

success in a broad range of medical applications, has thus been introduced to the

security-screening domain in so-called Explosive Detection Systems (EDS), in an

attempt to mitigate the limitations of conventional 2D X-ray imagery [ZPA10a].

X-ray CT is based on the same physical principles as conventional radiography.

An external X-ray source is used to produce cross-sectional images of the X-ray

attenuation properties of the object being scanned. In conventional 2D radiogra-

phy the attenuation values along the path of each X-ray beam are superimposed

resulting in line integrals of the attenuation. In contrast, CT acquires a set of

contiguous 2D cross-sectional images (which may be stacked to produce a vol-

umetric image) and then reconstructs the attenuation values in each volumetric

element (or voxel) separately. This produces a three-dimensional dataset [Man01].

The attenuation of an X-ray beam is a function of the effective atomic number,

density and thickness of the material it traverses. Material-based discrimination

is thus possible using the correlations between the effective atomic numbers and

densities of materials and has formed the basis of automated explosives detection

in security-screening applications. The advent of Dual-Energy Computed Tomog-

raphy (DECT) [Joh11], whereby objects are scanned at two distinct energies, has

provided an effective means for performing such material-based discrimination.

Owing to the primary explosives detection-based objective of imaging within the

aviation-security domain, DECT machines have thus been the baggage-CT scan-

ners of choice.
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The primary, non-object recognition-based objective of typical baggage-CT

scanners, coupled with the demand for high throughput, means that 3D baggage-

CT imagery typically presents with substantial noise, metal-streaking artefacts

and poor voxel resolution (Figures 1.3 and 2.9). Baggage-CT imagery is thus

generally of a much poorer quality than medical-CT imagery. In the medical

domain, the constraints of throughput and the need for dual-energy materials

detection are not forthright.

Currently baggage-CT scanners do not meet the demands of aviation security.

Typical baggage-CT scanners process between 150 and 200 bags per hour (which

does not meet the 6s inspection window as laid out by Speller [Spe01]) and are

characterised by high false-positive rates (∼ 30%) [BP02]. The development of a

high-speed, yet accurate CT-based automated baggage screening system is thus

an open problem and is addressed in this work through the development and

application of efficient techniques for:

1. Image quality improvement, whereby denoising and artefact-reduction

techniques are implemented to mitigate the detrimental effects of the charac-

teristically high levels of noise and artefacts in baggage-CT imagery (Chapter

4).

2. Segmentation, whereby the objects within an image are isolated from one

another to allow for accurate labelling (Chapter 7).

3. Classification, involving the labelling of images based on their contents

(Chapters 5 and 8).

1.2 3D Baggage-CT Imagery

The 3D volumetric baggage-CT data used for the research conducted in this the-

sis has been obtained from a CT80-DR dual-energy baggage-CT scanner manufac-

tured by Reveal Imaging Inc (Figure 1.1), designed specifically for materials-based

explosive detection. A fan-beam geometry was employed with a focus-to-isocentre

distance of 550mm, a focus-to-detector distance of 1008.4mm and nominal tube

voltages of 160kVp and 80kVp. Raw projection data was rebinned to parallel-beam

data [Man01]. Reconstructed 512 × 512 2D CT images are obtained via Filtered

Back-Projection (FBP) [Hsi03] and are represented in Modified Hounsfield Units

(MHU), where the CT densities at each pixel fall in the range [0, 60000] with

air calibrated to 0 MHU and water calibrated to 10000 MHU. Volumetric data

was obtained by stacking all axial slices obtained for a given bag. The data is

characterised by anisotropic voxel resolutions of 1.56× 1.61× 5.00mm.

The complete dataset is composed of 552 scans obtained at the two aforemen-

tioned nominal tube voltages. This dataset has been used in a variety of ways
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Figure 1.1: Reveal Imaging CT80-DR dual-energy baggage-CT scanner.

(dependent on the particular experimental procedure) throughout this thesis - de-

tailed explanations are provided in the relevant chapters. Throughout this work,

references are made to whole volumes, subvolumes and 2D axial slices. A whole-

volume scan contains all of the stacked 512× 512 axial slices obtained for a given

bag. Subvolume scans are generated by cropping out particular regions or items

of interest from the whole-volume scans - they retain the same voxel resolutions

but have reduced dimensions. Axial slices refer to the individual 512 × 512 2D

FBP reconstructions obtained for each scan. The data-gathering process was per-

formed prior to the commencement of this work and thus not all relevant details

are readily available (e.g. precise contents of scans).

The vast majority of CT-based literature is found in the medical domain.

It is thus important to emphasise that there exist several significant differences

in the nature and quality of typical medical-CT imagery and that encountered

in the aviation-security domain. These differences mean that computer-vision

techniques, such as segmentation and classification, which have been successfully

applied to medical imagery are not guaranteed to be met with the same degree of

success when applied to baggage-CT data. The most pertinent of these differences

are discussed below.

Image quality: The nature of dual-energy-based baggage-CT scanners and

the demands for higher scan speeds in the aviation-security domain (compared to

the medical domain), lead to compromises in image quality - both in terms of noise

and resolution [Sin03]. Sub-millimetre isotropic resolutions in all three dimensions

have become the norm in medical CT scanners - Toshiba and GE Healthcare, for

example, have advertised scanners with 0.35mm and 0.23mm isotropic voxel reso-

lutions respectively [tos, geH] (Figure 1.2). In contrast the CT80-DR volumetric

data used in this study is characterised by comparatively low anisotropic voxel res-

olutions of 1.56x1.61x5.00mm (Figure 1.3). Anisotropic voxel resolution and poor

resolution in the axial plane in particular are known to compound the effects of

image noise and artefacts [KKRH+00]. Consequently, in addition to significantly

poorer resolutions, baggage-CT data typically presents with a lower signal-to-noise
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Figure 1.2: Medical-grade CT scans with sub-millimetre isotropic resolution [geH, tos].

Figure 1.3: Reveal CT80-DR baggage-CT scans illustrating poor image quality, low
resolution, artefacts and clutter.

ratio and a greater degree of artefacts. Ibanez et al. [ISNC05] make the following

emphatic statement regarding the impact of low resolution imagery of this nature

on the efficacy of computer-vision techniques: ‘... such datasets are close to use-

less for the purpose of computer assisted image analysis.”. The contributions of

this thesis will contrast sharply with this view.

A priori information: In the medical domain, a priori knowledge related

to the properties and spatial relations of the anatomical structures being scanned

exists. It would, for example, be reasonable to assume that a CT scan of the head

will be composed of brain matter, bone and air (see Toshiba CT scan in Figure

1.2). Furthermore, theoretical or expected X-ray attenuation properties for most

anatomical structures/tissues exist. The exploitation of such a priori knowledge

allows for the development of algorithms designed or fine-tuned for particular tasks

or anatomical structures [KKRH+00]. In contrast, the contents of any given bag

are entirely unknown prior to scanning and may exhibit considerable variability in

shape, size, material and spatial context (Figure 1.3 (b)), making the fine-tuning

of algorithms significantly more challenging.

Image complexity: In addition to the availability of a priori knowledge, most

medical CT scans exhibit relatively low degrees of complexity and clutter (i.e. they

are fairly homogeneous). Checked baggage, on the other hand, is generally tightly

packed and thus extremely cluttered/complex (Figure 1.3 (b)) with no a priori

information available related to the number of objects in any given bag. It is well

documented that complexity and clutter have a significant detrimental effect on
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both human and computer detection rates [Sin03].

The low-resolution, complex and unpredictable volumetric CT imagery encoun-

tered in the aviation-security domain is thus generally of a much poorer quality

than that encountered in the medical domain. Throughout this thesis, this data is

referred to as low-resolution, complex volumetric imagery to distinguish it from the

comparatively high-resolution and uncluttered medical-CT imagery (see Figures

1.2 and 1.3). Algorithms designed for baggage-CT applications are thus required

to be independent of the number of objects in an image as well as the composition

of these objects, making their development particularly challenging.

1.3 Current State-of-the-Art

Noise and artefact reduction: The majority of denoising and artefact-

reduction CT literature is found in the medical domain. The development of

novel techniques or the evaluation of existing (medical) techniques in non-medical

applications of CT imagery are extremely limited [XZX+09, GSK+12]. Existing

comparative studies are limited in the techniques that are compared, the CT do-

mains or applications which are considered and the performance-evaluation tech-

niques that are employed.

Segmentation: Volumetric segmentation techniques (again existing predom-

inantly in the medical literature) are typically fine-tuned for particular anatomical

structures and are unlikely to be effective for the segmentation of multiple, un-

known objects. The state-of-the-art in the segmentation of unknown objects from

cluttered volumetric CT imagery [Gra06] has been developed using high-resolution

medical-grade imagery with relatively low levels of noise and metal-streaking arte-

facts [CMP13]. The segmentation of low-resolution, cluttered volumetric imagery

in the presence of multiple metal objects has not been considered previously.

Classification: The current state-of-the-art in 3D object classification in

non-medical complex 3D volumetric imagery [FBM12] relies on the manual seg-

mentation of the input data; incurs large computational overhead and suffers a

decline in performance in the presence of image noise and/or artefacts. An effi-

cient, fully-automated classification framework that is robust to image noise and

artefacts does not currently exist in this domain.

1.4 Contribution to Knowledge

The research conducted in this thesis addresses each of the aforementioned limi-

tations in the state-of-the-art via the following contributions:

� A novel interest-point based quantitative performance measure is presented,

extending traditional denoising performance evaluation approaches by eval-
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uating the potential benefits of denoising on the application of more complex

operations (volume rendering and 3D object classification) within the cur-

rent imaging context.

� A novel Metal Artefact Reduction (MAR) technique, designed specifically

for cluttered baggage-CT imagery containing multiple metal objects, is pre-

sented and shown to perform comparably to state-of-the-art medical tech-

niques when applied to cluttered baggage-CT imagery.

� A comprehensive comparative performance evaluation (which has not pre-

viously been considered in medical or non-medical CT domains) is con-

ducted for seven image-denoising techniques [ZPA10a, PM90, ROF92, ZG08,

CDAO95, BCM05b] and twelve artefact-reduction techniques [WSOV96,

KHE87, ZBWW02, BS06, YZB+07, JR09, LBY+10, AAA+10, MRL+10,

MRS+11, MRL+12, MMB+13].

� A novel dual-energy-based segmentation technique is presented and shown

to provide fast, high-quality segmentations of complex volumetric baggage-

CT imagery. Within the proposed framework, four novel contributions

have been made: 1) a materials-based coarse segmentation technique; 2)

a random-forest-based model for measuring the quality of individual ob-

ject segments; 3) a random-forest-based model for measuring the quality of

entire segmentations and 4) an efficient segmentation-refinement procedure

for splitting fused objects. In a comparative performance evaluation, the

proposed technique is shown to perform comparably to the state-of-the-art

[CMP13, WGW12, Gra06].

� A codebook image classification model constructed using random-forest-

based feature encoding, a dense-feature sampling strategy and a Support

Vector Machine (SVM) classifier is presented and shown to significantly out-

perform the current state-of-the-art [FBM12] both in terms of accuracy as

well as runtime.

� The culmination of the research conducted in this thesis is a novel, fully-

automated and efficient framework for the classification of objects in complex

volumetric baggage-CT imagery. The framework is shown to improve on

the current state-of-the-art [FBM12] by reducing the detrimental effects of

image noise and artefacts; by automating the segmentation process and by

improving both runtime as well as accuracy.

Portions of the work presented in this thesis have previously been published in

the following peer reviewed publications:
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� An Experimental Survey of Metal Artefact Reduction in Computed To-

mography (A. Mouton, N. Megherbi, T.P. Breckon, K. Van Slambrouck,

J. Nuyts) Journal of X-ray Science and Technology, IOS Press, Volume 21,

No. 2, pp. 193-226, 2013. Bibliographic reference [MMvS+13].

� A Distance-Driven Method for Metal Artefact Reduction in CT (A. Mouton,

N. Megherbi, T.P. Breckon, K. Van Slambrouck, J. Nuyts) Proceedings of the

IEEE International Conference on Image Processing, pp. 2334-2338, 2013.

Bibliographic reference [MMB+13].

� A Novel Intensity Limiting Approach to Metal Artefact Reduction in 3D

CT Baggage Imagery (A. Mouton, N. Megherbi, G.T. Flitton, S. Bizot,

T.P. Breckon), Proceedings of the IEEE International Conference on Image

Processing, pp. 2057-2060, 2013. Bibliographic reference [MMFB12]

� An Evaluation of CT Image Denoising Techniques Applied to Baggage Im-

agery Screening (A. Mouton, G.T. Flitton, S. Bizot, N. Megherbi, T.P.

Breckon), Proceedings of the IEEE International Conference on Industrial

Technology, pp. 1063-1068, 2013. Bibliographic reference [MMFB13].

� 3D Object Classification in Complex Volumes using Randomised Clustering

Forests (A. Mouton, T.P. Breckon, G.T. Flitton) Submitted to IEEE Inter-

national Conference on Image Processing: under review.

� A Review of Automated Analysis within 3D Baggage Security Screening

Computed Tomography (A. Mouton, T.P. Breckon), Submitted to Machine

Vision and Applications: under review.

� Materials-Based 3D Segmentation of Unknown Objects from Dual-Energy

Computed Tomography Imagery in Baggage Security Screening (A. Mouton,

T.P. Breckon), Submitted to Pattern Recognition: under review.

� On the Relevance of Denoising and Artefact Reduction in 3D Segmentation

and Classification within Complex CT Imagery (A. Mouton, T.P. Breckon),

Submitted to IEEE Transactions on Pattern Analysis and Machine Intelli-

gence: under review.

1.5 Thesis Structure

The reader is introduced to the general topic of X-ray Computed Tomography

(CT) in Chapter 2 through a brief overview of the fundamental principles gov-

erning the generation and detection of X-rays; the acquisition of CT data; the

reconstruction of CT images and the factors affecting the quality of CT imagery.
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The foundation of the research conducted in this thesis is then established via

a critical review in Chapter 3 of the prior literature and current state-of-the-

art in noise and artefact reduction, volumetric image segmentation, dual-energy

techniques and image classification.

Chapter 4 addresses the topics of noise and artefact reduction in the pre-

viously unconsidered context of low-quality, complex volumetric baggage-CT im-

agery through experimental comparisons and the development of novel dedicated

baggage-CT techniques.

The feasibility of codebook-based classification in 3D volumetric baggage-CT

imagery is investigated and substantiated in Chapter 5 via a comparative per-

formance evaluation of five codebook models to the current state-of-the-art 3D

visual cortex approach [FBM12].

Thereafter, the potential benefits of incorporating dual-energy CT techniques

into an object-classification framework for 3D volumetric baggage-CT imagery are

experimentally investigated in Chapter 6.

Chapter 7 then addresses the segmentation of unknown objects from clut-

tered, low-quality volumetric data and presents a novel materials-based approach

which is shown to produce fast, high-quality segmentations of baggage-CT images.

The contributions of the preceding chapters are combined in Chapter 8 to

create a fully-automated and efficient classification framework which demonstrates

state-of-the-art performance in complex, volumetric baggage-CT imagery.

Finally, an overview of the research conducted in this work and several potential

directions for future developments are presented in Chapter 9.





Chapter 2

X-Ray Computed Tomography

X-ray Computed Tomography (CT) is a non-destructive imaging modality that

produces cross-sectional images representing the X-ray attenuation properties of

the substances being scanned. X-ray CT is used for visualising the interior features

of solid objects and for obtaining information regarding their three-dimensional

geometric characteristics. A single CT slice represents a cross-sectional view of

a certain thickness of the object being scanned. A volumetric representation is

generated by stacking a set of contiguously acquired slices.

The development and evaluation of Metal Artefact Reduction (MAR) tech-

niques (Chapter 4) demands an understanding of the theory of tomographic re-

construction (Section 2.3) as well as knowledge of the causes and effects of noise

and artefacts in CT imagery (Section 2.4). The physics governing the interaction of

X-rays with matter (Section 2.1.2) is central to the development of dual-energy-

based techniques (Chapter 6). A brief overview of the fundamental principles

governing the generation and detection of X-rays; the acquisition of CT data; the

reconstruction of CT images and the factors affecting the quality of CT imagery

thus follows.

2.1 The Physics of X-Rays

Electromagnetic radiation is composed of individual photons. The energy, E, of

every individual photon is inversely proportional to its wavelength λ:

E =
hc

λ
= hv, (2.1)

where h = 6.6261 ∗ 10−20Js is Planck’s constant, c = 3× 108m/s is the speed

of light and v is the frequency of the wave. X-rays are electromagnetic waves

characterised by wavelengths in the Angstrom range (0.1nm), or equivalently, by

photon energies in the order of 10 keV (1 eV = 1.60210−19 J).
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2.1.1 X-ray Source

X-rays are generated in an X-ray tube - the main components of which are a

vacuum tube, an anode and a cathode. The heated cathode filament releases

a stream of electrons, via thermal excitation, which is accelerated across a high

voltage towards the anode. The stream of accelerated electrons flowing between

the cathode and anode is referred to as the tube current (typically approximately

100mA), while the potential difference between the cathode and anode is referred

to as the tube voltage (generally in the range 80kV to 140kV). A vacuum is main-

tained within the glass envelope of the X-ray tube to prevent the electrons from

interacting with gaseous particles [HR03, Man01]. As the high energy electron

stream collides with the anode, X-rays are generated by two distinct atomic pro-

cesses [Lu99]:

1. The Bremsstrahlung process : This is the radiation that is released as the

incident electrons are decelerated on interaction with nuclei of the anode.

The resulting X-rays are characterised by a continuous spectrum and are

bounded by the electric charge of the electron q and the tube voltage V :

E ≤ Emax = qV (2.2)

A tube voltage of 80kV thus yields X-rays with a maximum energy of Emax=

80keV.

2. X-ray fluorescence: High energy electrons may collide with and subsequently

eject the orbital electrons of the inner electron shell (e.g. the K-shell). As

a result, electrons from a higher energy shell (e.g. the L-shell) fill the gaps

left by the ejected orbital electrons and emit X-ray photons with discrete

energies, known as the line spectrum (in this case a K-spectrum). More

specifically, the energy of a photon emitted in this manner is equal to the

difference between the energies of the two electron states [Man01]. The

line spectrum is material-dependent and is depicted by characteristic peaks

superimposed onto the continuous Bremsstrahlung spectrum and is referred

to as the characteristic radiation (Figure 2.1).

The quantity and energy of the emitted photons are controlled by the cathode

current (this is not the same as the tube current) and the tube voltage respectively.

2.1.2 The Interaction of X-Rays With Matter

There are four predominant means of interaction between X-ray photons and mat-

ter:
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Figure 2.1: Typical X-ray spectrum, characterised by a continuous Bremsstrahlung ra-
diation spectrum with sharp peaks at characteristic energies (caused by X-ray fluores-
cence).

1. The photoelectric effect: this refers to the interaction between an incident

X-ray photon and matter in which the photon energy is completely absorbed

by an atomic electron that is ejected from the atom.

2. Coherent scattering: (also known as Rayleigh scattering) occurs when a

very low energy X-ray photon interacts with a strongly bound electron. Since

the incident photon energy is insufficient to overcome the binding energy of

the electron, the photon is deflected, or scattered, from its original path.

The interaction involves no transfer of energy to kinetic energy (and hence

no change in the wavelength or frequency of the photon) and ionisation does

not occur.

3. Incoherent scattering: (also known as Compton scattering) this refers

to the interaction of an X-ray photon with matter in which the photon is

deflected and retains part of its original energy.

4. Pair production: occurs when the incident X-ray photon interacts with

the nucleus of the target atom, resulting in the creation of a positron-electron

pair. Pair production only occurs at very high energy levels (generally

greater than 1.022 MeV).

The typical energy range of the X-ray photons generated for use in baggage-

security CT, as well as medical-diagnostic CT, fall within the range 20 keV -

200 keV. Pair production only occurs at considerably higher energy ranges and

is therefore not of concern in this work. Coherent scattering makes its major

contribution at low photon energies (less than 50 keV) for materials with high

atomic numbers. Nonetheless, since coherent scattering involves no transfer of

energy it is of limited interest in CT. In the context of this work, the interaction

of X-ray with matter is thus dominated by the photoelectric effect and incoherent

(Compton) scattering.
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The manner in which photons interact with matter is probabilistic in nature.

The likelihood of a particular type of interaction occurring is defined by the cross-

section of interaction [Coo98]. In high-energy particle physics, the cross-section is

defined as a hypothetical area governing the probability of a particular interaction

occurring when small particles collide. In X-ray physics, these cross-sections are

material and energy-dependent and may be represented as a function of the atomic

number of the target atom (or the effective atomic number for a compound mate-

rial) and the incident photon energy. The photoelectric cross-section σpe and the

incoherent scattering cross-section σis may be approximated as follows [AM76]:

σpe ≃ K1
Zn

E3
(n ≈ 4.5) (2.3)

σis ≃ K2ZfKN(E) (2.4)

where Z is the atomic number of the target atom, E is the incident photon

energy in keV and K1 and K2 are constants. The function 1/E3 approximates the

energy dependence of the photoelectric cross-section, while the energy dependence

of the incoherent scattering cross-section is defined by the Klein-Nishina function

fKN(E):

fKN(α) =
1 + α

α2

[
2(1 + α)

1 + 2α
− 1

α
ln(1 + 2α)

]
+

1

2α
ln(1 + 2α)− (1 + 3α)

(1 + 2α)2
(2.5)

where α = E/510.975keV. An important observation regarding these rela-

tionships is that σpe decreases rapidly as the atomic number Z (or the effective

atomic number Zeff for compound materials) decreases and as the photon en-

ergy E increases. In contrast, σis decreases much more slowly with increasing

energy. Consequently, the photoelectric effect is the dominant effect at low en-

ergies, while incoherent scattering becomes the dominant attenuation mechanism

at higher photon energies (and especially for organic materials with low atomic

numbers). Furthermore, the relationship of σpe to the atomic number and photon

energy (σpe ∝ Zn and σpe
1
∝E

3) indicates that lower-energy photons are useful for

low-contrast differentiation of materials.

2.1.3 The Principles of X-ray Detection

Detectors are the image receptors that ‘capture’ the attenuated X-ray beams that

have passed through the patient/object and convert them first to an electrical

signal and then to a digital (binary-coded) signal for computerised reconstruction.

In third-generation CT scanners, the most common detectors are comprised of
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either a high-pressure inert gas (usually xenon) or solid-state scintillators coupled

with photo-diodes [KKRH+00].

Gas detectors are comprised of a series of thin Tungsten ionisation plates sub-

mersed in a high-pressure xenon gas chamber. A single detector cell consists of a

low-voltage (cathode) and a high-voltage (anode) Tungsten plate. When the X-

ray photons collide with the charged Tungsten plates a photoelectric interaction

occurs, resulting in the ionisation of the xenon gas. The ionised xenon nuclei drift

towards the cathode, while the free electrons (released in the photoelectric inter-

action) gather on the anode, producing an electric current. Xenon gas detectors

have a characteristically low quantum detection efficiency (∼ 60%) and a high

response time (∼ 700µs). Due to their comparatively low cost, several low-end

single-slice CT scanners still use xenon gas detectors.

Solid-state scintillation detectors overcome many of the limitations of xenon

detectors and are the most commonly used detectors in state-of-the-art scanners.

A scintillation detector consists of a crystal that fluoresces when struck by an X-ray

photon, producing a visible photon (light energy). The visible photon impinges on

a photodiode coupled to the scintillator and is converted into an electrical signal.

Modern solid-state detectors are characterised by low response times (order of

1× 10−12s) and a high quantum efficiency (≥ 98%) [Man01].

The net effect of the interactions of an X-ray beam with matter is a gradual

decrease in its intensity (due to absorption and scattering). Cooke [Coo98] defines

the intensity of an X-ray beam as: “the rate of flow of photon energy through a

unit area lying at right angles to the path of the beam”. This reduction in intensity

is referred to as attenuation. The X-ray photons which are neither absorbed nor

scattered, pass through the matter via a process referred to as transmission.

The attenuating ability of a material is quantified by its attenuation coefficient.

More particularly, the linear attenuation coefficient of a material may be defined

as the fraction of a parallel X-ray beam that is attenuated per unit distance of the

material being traversed [See01]. X-ray images are essentially representations of

these linear attenuation coefficients.

The Beer-Lambert Law states that, for monochromatic X-ray beams, the X-

ray intensity of the beam passing through a homogeneous material of uniform

thickness ds and atomic number Z, falls off exponentially as a function of the

product of the path length (i.e. the object thickness) and the linear attenuation

coefficient of the object:

I = I0e
−µds (2.6)

where I and I0 are the incident and transmitted X-ray intensities respectively
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and µ is the linear attenuation coefficient of the material. The linear attenuation

coefficient µ is related to the total cross-section per atom σtot according to [Dys05]:

µ =
ρNA

uA
σtot (2.7)

where NA = 6.022521023 mol−1 is Avogadro’s number, u is the unified atomic

mass unit (1/12 the mass of an unbound neutral 12C atom) and A is the relative

atomic mass of the target element. The total cross-section σtot may defined as the

sum of the contributions of the relevant photon interactions [Dys05]:

σtot(Z,E) = σpe(Z,E) + σis(Z,E) (2.8)

For non-uniform substances, the Beer-Lambert law in Equation 2.6 may be

applied in a cascade fashion [Hsi03]:

I(s) = I0e
−

∫ s
0 µ(s′)ds′ (2.9)

Equation 2.9 still assumes a monochromatic X-ray beam. In reality, the X-ray

beam emitted by an X-ray tube is polychromatic in nature, covering a broad spec-

trum (Figure 2.1). Due to the dependence of the linear attenuation coefficient on

photon energy, the degree of attenuation experienced by the X-ray beam for each

distinct energy in the spectrum is thus different. For polychromatic X-rays and

heterogeneous materials, the transmitted intensity is computed as the summation

of the intensities over all the energies in the spectrum. Equation 2.9 becomes

[Man01, Hsi03]:

I(s) =

∫ Emax

0

I0(E)e
−

∫ s
0 µ(s′,E)ds′dE (2.10)

where I0(E) represents the polychromatic spectrum emitted by the X-ray tube

and Emax is the maximum photon energy (equal to the tube voltage).

When considering the linear attenuation coefficients for different substances

at a given energy, the differences are often quite small. The small differences

are enhanced via a linear transformation of the linear attenuation coefficients

according to the Hounsfield Scale (named after the pioneer of CT, Sir Godfrey

Hounsfield). The output of the transformation is the so-called CT number and is

measured in Hounsfield Units (HU). The values in reconstructed CT images are
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commonly measured in HU. The scale has been designed such that the CT number

of distilled water at the Standard Pressure and Temperature (STP) is 0 HU and

that of air is -1000 HU:

CT Number = 1000 · µ− µH2O

µH2O

(2.11)

where µ is the linear attenuation coefficient of the voxel and µH2O is the linear

attenuation coefficient of water. The Hounsfield Scale results in CT numbers of

-1000 HU, 0 HU and ±1000 HU for air, water and bone respectively. A dynamic

range of 2000 HU is beyond what can be represented in grayscale and perceived

by the human eye. A gray-level transformation is thus generally applied via a

window/level operation such that the window is defined as the total span of a

given display interval and the level is defined as the centre of the interval [Man01]:

Window = CTmax − CTmin (2.12)

Level =
CTmax + CTmin

2
(2.13)

where [CTmin CTmax] is the desired image display interval. Various window/level

settings can be applied to view different structures in a given image (e.g. bone

settings vs. soft-tissue settings).

2.2 Data Acquisition

The mathematical model typically used in X-ray CT (incorrectly) assumes a

monochromatic X-ray beam and ignores the effects of scattering, beam hardening

and other physical phenomena. The X-ray beam can thus be approximated as a set

of parallel lines. Therefore, we consider the 2D parallel-beam geometry in Figure

2.2. The object being scanned lies along the z-axis (coming out of the page). The

distribution of the linear attenuation coefficient of the object in the xy-plane is

represented by µ(x, y). The function µ(x, y) is assumed to be compactly supported

- that is to say, it is zero outside a bounded domain. In this case, the bounded

domain is defined as a circular region with diameter DFoV known as the scan FoV

(the region within the gantry from which the projection data is acquired). A new

coordinate system (r, s) is defined by rotating the (x, y) axes through an angle θ

such that:
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Figure 2.2: A parallel-beam geometry. The X-ray beams make an angle of θ with the
y-axis and are at a distance r from the origin.

[
r

s

]
=

[
cos θ sin θ

− sin θ cos θ

][
x

y

]
[
x

y

]
=

[
cos θ − sin θ

sin θ cos θ

][
r

s

]
(2.14)

Assuming that the Beer-Lambert Law (Equation 2.6) is obeyed, the attenuated

X-ray intensity profile (as measured by the detector) for some fixed angle θ, is

represented as a function of r:

Iθ(r) = I0e
−

∫
Lr,θ

µ(r cos θ−s sin θ,r sin θ+s cos θ)ds
(2.15)

where r is the distance of the X-ray beam from the origin and s is the X-ray

path length. Lr,θ is then the line that makes an angle θ with the y-axis at distance

r from the origin. Equation 2.15 thus reads: if a monochromatic X-ray beam with

intensity I0 enters an object, and travels along the line Lr,θ it will exit with an

intensity Iθ(r). The measured intensity data Iθ(r), however, is not typically used

directly in computed tomography. Instead, the attenuation profile is obtained by

log-converting the ratio of the input to output X-ray intensities:

Pθ(r) = −ln
Iθ(r)

I0
=

∫
Lr,θ

µ(r cos θ − s sin θ, r sin θ + s cos θ)ds (2.16)
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Figure 2.3: A sparse input image (a) composed of two point sources results in a
sinusoidally-shaped sinogram (b).

Pθ(r) is referred to as the projection measurement (or ray-sum) of the attenu-

ation function µ(x, y) and represents the set of line integrals for all parallel lines

intersecting the support (the FoV) of µ in a particular direction defined by θ. Note

that Pθ(r) is often denoted as ρθ(r) - an uppercase P is used here to avoid con-

fusion with references made to mass densities in Chapter 6. In the mathematical

literature, the integral operator in Equation 2.16 is referred to as the Radon trans-

form of a function f(x, y): R{f(x, y)} (after its inventor Johan Radon). In fact,

the Radon transform provides a decomposition of any function f(x, y) (which may

represent the linear attenuation distribution of an object) into a set of parallel line

projections P (r, θ):

P (r, θ) = R{f(x, y)} =

∫ ∞

−∞
f(r cos θ − s sin θ, r sin θ + s cos θ)ds (2.17)

A collection of projection measurements obtained over a range of angles results

in a 2D data set P (r, θ) referred to as the singogram. This nomenclature is used

because the Radon transform of the Dirac delta function is sinusoidal in shape

(Figure 2.3). The Radon transform of a several small objects (e.g. several points

on a 2D grid) will appear as a number of blurred sinusoids with varying amplitudes

and phases. Two important properties of the Radon transform are:

1. P (r, θ) is periodic in θ with period 2π:

P (r, θ) = P (r, θ + 2π) (2.18)

2. P (r, θ) is symmetric in θ with period π:

P (r, θ) = P (−r, θ ± π) (2.19)

Therefore, while projection measurements may be acquired for a full rotation:
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θ ∈ [0, 2π), it is only necessary to consider the subset θ ∈ [0, π). In sinogram space,

the horizontal axis represents the distance r from the origin and is defined by the

number of detector channels. The vertical axis represents the projection angle

θ. A sinogram computed for M views (i.e. M projection angles) and N detector

samples can thus be represented as an M x N matrix:

P [n,m] = P (n∆r,m∆θ) (2.20)

To avoid aliasing, the detector spacing ∆r and the rotational increment be-

tween views ∆θ need to be set appropriately.

2.3 Image Reconstruction

Given a sinogram P (r, θ), the computational problem in CT is to determine the

function µ(x, y) representing the distribution of linear attenuation coefficients. In

other words, a formulation for the inverse Radon transform is required:

f(x, y) = R−1 {P (r, θ)} (2.21)

2.3.1 Back-Projection

The back-projection method (also known as the summation method [Old61] or the

linear superposition method [KE63]) is the original and most basic technique for

reconstructing a 2D distribution from multiple 1D projections. Back-projection

involves taking each view and smearing it along the path upon which it was

acquired. While offering a rather crude solution to the CT-reconstruction problem,

back-projection is a crucial component of the most popular CT reconstruction

technique - Filtered Back-Projection (FBP). Mathematically, the back-projection

method is represented as:

µ̂(x, y) =

∫ π

0

P (x cos θ + y sin θ, θ)dθ (2.22)

Therefore, for a given line (or ray) Lr,θ (where r = x cos θ + y sin θ), the back-

projection method assigns the projection value P (r, θ) to all the points (x, y) falling

on that line. This is repeated for all θ ∈ [0, 2π). The final back-projected density

at each point (x, y) is thus the sum of all the ray-sums (projection measurements)
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Figure 2.4: Bilinear interpolation process used in discretised back-projection [Man01].

passing through that point. Equation 2.22 is discretised as follows:

µ̂(xi, yj) =
M∑

m=1

P (xi cos θm + yj sin θm, θm)∆θ (2.23)

The discrete implementation of the back-projection algorithm requires an inter-

polation step (Figure 2.4): for each view, a projection line is drawn through every

pixel (x, y). The intersection of this line with the detector array is computed. This

intersection (given by xi cos θm + yj sin θm) does not always coincide exactly with

the discrete detector positions. Therefore, the corresponding projection value for

each intersection is calculated by interpolating between the neighbouring values

(i.e. the projection readings at the two nearest discrete detector positions).

Reconstruction by back-projection has several major limitations. Since each

ray-sum is applied to all points along that ray and not only to regions of high-

density, the reconstructed image will have non-zero values in regions outside of

the object of interest. Consequently, the non-zero region in the reconstructed

image is larger than the area of increased activity in the object. If a low number

of projections is used the rays appear as a star. As the number of projections

is increased, the star shape fades into a general blurring of the image [Pre12]

(Figure 2.5). These defects are most evident in discrete areas of high density.

The Point Spread Function (PSF) of the back-projection operator (the response

of the operator to a point source) is circularly symmetric with a magnitude that

decreases with the reciprocal of its radius. Mathematically, this can be described

as the convolution of the true image with the kernel 1/r:

f̂(x, y) = f(x, y) ⋆
1

r
(2.24)
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Figure 2.5: Back-projection of a point source. (a) Using only three views results in
star-shaped artefacts. (b) Using many views results in a global blurring [Smi03].

2.3.2 The Fourier-Slice Theorem

The Fourier-slice theorem (equivalently the central-slice or projection theorem) is

central to tomographic reconstruction. The theorem states that the 1D Fourier

transform of a parallel projection of an object f(x, y) obtained at angle θ, is equal

to a slice of the 2D Fourier transform of the original object f(x, y) obtained in the

same direction θ.

Let F (kx, ky) be the 2D Fourier transform of the function f(x, y):

F (kx, ky) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−2π(kxx+kyy)idxdy (2.25)

The inverse Fourier transform is given by:

f(x, y) =

∫ ∞

−∞

∫ ∞

−∞
F (kx, ky)e

−2π(kxx+kyy)idkxdky (2.26)

where i =
√
−1 and kx and ky are the polar frequency parameters (i.e. the

spatial frequencies in the x and y directions respectively):

(
kx

ky

)
= k

(
cos θ

sin θ

)
(2.27)
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Let P(k, θ) be the 1D Fourier transform of the projection P (r, θ) with respect

to the variable r:

P(k, θ) =

∫ ∞

−∞
P (r, θ)e−2πkirdr (2.28)

The Fourier-slice theorem then states:

P(k, θ) = F (kx, ky) if

{
kx = k cos θ

ky = k sin θ
(2.29)

The reader is referred to [Hsi03] for a proof of this theorem. Given sufficient

projection data (i.e. obtained over the range θ ∈ [0, π)), the entire 2D Fourier

transform of the original object can be obtained. It follows that the original

object can be reconstructed by performing a simple 2D inverse Fourier transform

(Equation 2.26). The Fourier-slice theorem thus provides a solution to the inverse

Radon transform by use of 1D and 2D Fourier transforms. Given a discrete set of

projection data P (rn, θm), the direct Fourier reconstruction of the function f(x, y)

is performed as follows [Man01]:

1. For all θm where θm ∈ [0, π), compute the 1D Discrete Fourier Transform

(DFT) of P (rn, θm) with respect to rn:

F1P (rn, θm) = P(kn′ , θm) (2.30)

2. Place P(kn′ , θm) on a polar grid ∀θm.

3. Resample P(kn′ , θm) to a Cartesian grid by bilinear interpolation (to allow

for the application of the Fast Fourier Transform (FFT) [Bra90]).

4. Compute the FFT F (kx′
i
, ky′j) from the resampled P(kn′ , θm).

5. Compute the 2D inverse DFT of F (kx′
i
, ky′j):

f(xi, yj) = F−1
2 {F (kx′ , ky′)} (2.31)

Interpolation errors in the frequency domain (associated with the bilinear in-

terpolation in Step 3 above) are not localised in the spatial domain and thus affect

the entire spatial-domain image. The associated artefacts are the main reason that

Direct Fourier reconstruction is not generally used in CT.
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2.3.3 Filtered Back-Projection

The Filtered Back-Projection (FBP) algorithm is a reconstruction technique that

overcomes the data resampling limitations of the direct Fourier method as well as

the star-shaped artefacts associated with the characteristic 1/r blurring effect of

the simple back-projection procedure.

The 2D inverse Fourier transform in Equation 2.26 may be transformed from

the Cartesian coordinate system (kx, ky) to an equivalent polar coordinate system

(k, θ) using the transformation defined in Equation 2.29, thereby avoiding the issue

of interpolation. If |k| is the absolute value of the polar coordinate transformation,

the 2D inverse Fourier transform is given by:

f(x, y) =

∫ π

0

∫ ∞

−∞
P(k, θ)e−2πikr|k|dkdθ (2.32)

Letting P∗(k, θ) = P(k, θ)|k| and P ∗(r, θ) =
∫∞
−∞ P∗(k, θ)e2πikrdk Equation

2.32 simplifies to:

f(x, y) =

∫ π

0

P ∗(r, θ)dθ (2.33)

Equation 2.33 requires that the projection data be available for the angular

range [0, π]. Mathematically, P∗(k, θ) is obtained by multiplying the Fourier do-

main sinogram data with the Fourier response of a ramp filter. Since multiplication

in the Fourier domain is equivalent to convolution in the spatial domain, P∗(k, θ)

may also by obtained by convolving the measured sinogram with the impulse re-

sponse h(r) of the ramp filter (obtained via the 1D inverse Fourier transform of

|k|):

h(r) = F−1 {|k|} =

∫ ∞

−∞
|k|e2πikrdk (2.34)

Since the ramp filter |k| is a high-pass filter, it propagates high frequency noise.

This is typically counteracted by applying a windowing function to the filter (i.e.

discretising or band-limiting the filter). The simplest approach is to use a rectan-

gular windowing function (in the Fourier domain), resulting in what is commonly

referred to as the Ram-Lak filter (named after its creators Ramachandran and

Lakshiminarayanan). Rectangular windowing, however, results in ringing arte-

facts and aliasing. Windowing functions with smoother roll-offs are thus more

effective. Examples include classical signal processing functions (e.g. Hamming,

Hanning, Butterworth etc.) as well as dedicated CT reconstruction functions (e.g.



2.3 Image Reconstruction 25

Shepp-Logan).

In summary, reconstruction by Filtered Back-Projection may be achieved as

follows:

1. Filter the measured sinogram data with a band-limited filter:

P ∗(r, θ) = P (r, θ) ⋆ h(r) (2.35)

2. Back-project the filtered sinogram:

f(x, y) =

∫ π

0

P ∗(r, θ)dθ where r = x cos θ + y sin θ (2.36)

Filtered back-projection remains the most widely implemented reconstruction

technique in CT imagery.

2.3.4 Fan-Beam to Parallel-Beam Rebinning

While the aforementioned FBP algorithm assumes parallel-beam sinogram data,

the majority of modern CT scanners employ fan-beam geometries. While dedi-

cated fan-beam FBP algorithms do exist [HLN76, HL80], a more popular approach

is to resample the fan-beam data to obtain the equivalent parallel-beam data and

then to apply the traditional FBP reconstruction approach [Wan77, HL80, PL77].

Consider a fan-beam geometry defined by the angles β, between the focus

(fan-apex) and the y-axis and α, between a given ray and the centre line of the

fan (Figure 2.6). The parallel-beam coordinates (r, θ) are related to the fan-beam

coordinates according to the following transformation:

θ = α + β

r = R sinα
(2.37)

where R is the focus-to-isocentre distance. In contrast to the parallel-beam

geometry, an angular range of β ∈ [0, π] is not sufficient to capture all possible

line measurements. Instead, a range of β ∈ [0, π+∆α] is required, where ∆α is the

total fan-angle. Assuming the fan-beam data has been obtained for lines (αn, βm)

for n = 1 · · ·N and m = 1 · · ·M , the corresponding parallel-beam measurement

may be computed as follows [Man01]:

P (rn′ , θm′) =
1∑

i=0

1∑
j=0

cidiP (αn′+i, βm′+j) (2.38)
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Figure 2.6: Fan-beam geometry: β is the angle between the fan centre line and the y-
axis; α is the angle between a given ray and the fan centre line; ∆α is the total fan-angle
and R is the focus-to-isocentre distance [Man01].

where:

c0 = (αn′+1 − α)/(αn′+1 − αn′)

c1 = 1− c0

d0 = (βm′+1 − β)/(βm′+1 − βm′)

d1 = 1− d0

(2.39)

and αn′ , βm′ are the largest values satisfying:

αn′ ≤ α = arcsin
rn′
R

βm′ ≤ β = θm′ − α
(2.40)

2.4 CT Image Quality

The quality of a CT image is typically measured according to resolution (high-

contrast spatial resolution, low-contrast spatial resolution and temporal resolu-

tion); CT number uniformity; CT number accuracy; image noise and image arte-

facts [KKRH+00]. A brief overview of each is provided here.

2.4.1 Image Resolution

Spatial resolution measures the degree to which lines can be resolved in an image

and is perhaps the most important measurement regarding the clarity of an image.

In CT, reference is generally made to high and low-contrast spatial resolution

[Man01].
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High-contrast spatial resolution refers to the ability of the scanner to resolve

closely spaced or small foreground objects [KKRH+00]. Such objects are said to

have a high spatial frequency, while large and/or widely spaced objects have a

low spatial frequency. Spatial resolution is generally defined in terms of line pairs

per millimetre (lp/mm) (i.e. the number of independent pixel values per unit

length [PB99]). The in-plane spatial resolution of a CT image is considerably

worse than that of a conventional radiograph: the typical limiting resolution of

a conventional X-ray screen film is 4-20 lp/mm while the limiting resolution of

CT is only 0.5-2 lp/mm [Man01]. The modulation transfer function (MTF) is

a plot of spatial frequency as a function of light amplitude (or image sharpness)

and is used to measure the response (i.e. performance) of a system to different

frequencies. The response of an ideal system would be independent of frequency

and thus have a flat MTF curve. Such a system would be able to reproduce

all objects perfectly, regardless of their size or proximity to other objects. In

reality, however, the magnitude of the frequency response (i.e. the image fidelity)

decreases rapidly with increasing frequency [PB99]. In multi-slice CT both the

in-plane (i.e. within the imaging plane) and cross-plane (i.e. inter-slice) spatial

resolution is of importance.

Factors impacting the in-plane spatial resolution of a CT image include: the

physical properties of the scanner; sampling rates; scanning parameters (e.g. slice

collimation, tube voltage and tube current) and the choice of reconstruction pa-

rameters [KS88, Man01]. The majority of these factors are determined (and hence

optimised) by the operator. Image-processing techniques are generally not used

to improve the spatial resolution of images.

The introduction of multi-slice CT technologies has increased the relevance of

the cross-plane resolution. A major advantage of contemporary medical multi-

slice CT scanners is that they offer near isotropic resolution. That is to say, the

CT system exhibits equivalent point-spread functions in every spatial direction

(i.e. the resolution is uniform across all viewing planes). Isotropic resolution is

essential if undistorted visualisation of small structures, independent of the view-

ing plane, is desired. Radially symmetric 2D isotropy in the x− y (i.e. transverse

or axial) plane is virtually guaranteed with current CT reconstruction techniques.

With the introduction of multi-slice CT and volumetric imaging, however, view-

ing is not restricted to this plane. Although much progress has been made in

achieving 3D isotropy in medical CT imaging, this is not the case in the security-

screening CT domain. While the resolution in the x−y plane is generally isotropic,

the resolution in the z-direction usually differs substantially. The effect of this

anisotropic cross-plane resolution on the imaging and visualisation of small struc-

tures is significant. Beyond the distortion of small structures in the image, noise

levels are also impacted by the spatial resolution, leading to directional noise in the
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non-isotropic planes. Much research has been conducted in determining the opti-

mal scanning and reconstruction parameters to achieve near-isotropic resolutions

[Mah02, Kal95].

The low-contrast resolution of a CT scanner refers to the ability of the scanner

to differentiate objects which differ only slightly in intensity from their back-

grounds [KS88]. While conventional radiography can discriminate a density dif-

ference of approximately 10%, modern CT can detect differences as small as 0.25%

[Man01]. This remarkable Low-Contrast Detectability (LCD) is one of the major

advantages of CT over conventional radiography. The LCD of a CT scanner is

affected by both the size and intensity difference (with respect to its background)

of an object. The other major factor affecting LCD is the noise level in the image.

While a higher signal-to-noise ratio typically corresponds to an improved LCD,

in some scenarios a trade-off exists. Increasing the slice thickness, for example,

reduces the noise level in the image while also negatively impacting the visibility

of small structures (i.e. degrades the low-contrast resolution). Techniques for im-

proving the LCD are generally operator based, as opposed to software based, and

involve selecting optimal scanning parameters.

The temporal resolution of a CT scanner refers to the efficiency of the scanner

in producing clear images of moving objects (for example, cardiac imaging in

medical CT) [Man01]. The most obvious way of minimising the effects of motion

is to increase the scan speed. The majority of modern scanners rely on a high scan

speed and the half-scan reconstruction algorithm when imaging moving objects

[KKRH+00, Man01].

2.4.2 CT Number Accuracy and Uniformity

CT number accuracy refers to the proximity of a scanner-generated CT number

to the theoretical CT number of the material under investigation. Ideally, when

scanning a uniform phantom, the CT numbers should remain constant across

the entire phantom. The degree of this consistency defines the uniformity of the

CT number. In reality, uniformity is negatively affected by numerous factors

(e.g. beam hardening, scattered radiation etc.) and can thus only be maintained

within a reasonable range (typically 2HU). The chosen reconstruction algorithm

has a significant impact on the resulting CT number [KKRH+00].

2.4.3 Noise

In computed tomography there are three predominant factors that contribute to

image noise: quantum noise, the inherent physical limitations of the scanner and

the chosen reconstruction parameters [Man01].

Quantum (or shot) noise arises due to statistical fluctuations inherent in the
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Figure 2.7: Baggage CT image before (a) and after (b) Histogram Equalisation (HE).
HE highlights the background noise previously not visible due to the high dynamic range
of baggage-CT imagery.

detection of a finite number of photons (or X-ray quanta) at the detector of a CT

scanner [Han81]. Quantum noise is most evident when the number of photons

emitted by the X-ray tube is sufficiently small such that uncertainties due to the

Poisson distribution (describing the occurrence of independent random events) are

of significance [HC94]. The only certain way of reducing the effects of statistical

quantum noise in a CT image is to increase the number of X-ray photons emitted

(by increasing the radiation dose). While quantum noise is an unavoidable sta-

tistical occurrence, its quantity is further influenced by the scanner parameters,

scanner efficiency, detector efficiency and the physical properties of the object

being scanned [Man01].

As with any image acquisition system, the mechanical components of particular

scanners pose limitations on the image quality. Factors such as electronic noise,

the data acquisition system and scattered radiation all contribute to the level of

noise in a CT image. The degree to which these factors impact the noise level

varies from scanner to scanner.

The reconstruction procedure further contributes to the noise-level in CT im-

agery. The majority of noise in digital signals presents as high frequency signals

[PB99]. In order to obtain a high-resolution image, the reconstruction kernel thus

needs to preserve the high-frequency contents of the sinograms. This has the unfor-

tunate consequence of additionally preserving (or enhancing) the high-frequency

noise in the sinograms. A trade-off between noise and resolution thus exists and

a suitable balance needs to be determined [KS88].

Owing to the characteristically high dynamic range of baggage-CT imagery,

the presence of background noise is not always obvious [ZPA10b]. Image en-

hancement, using Histogram Equalisation (HE) [SB10], for example, reduces the

effective dynamic range of the image and often reveals significant quantities of

background projection noise (Figure 2.7). Popular image denoising techniques

may be implemented to improve the signal-to-noise ratio in CT imagery - this is

explored further in Chapter 4.
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2.4.4 Artefacts

Barrett and Keat [BK04] define a CT image artefact as: “any systematic discrep-

ancy between the CT numbers in the reconstructed image and the true attenuation

coefficients of the object.” CT images are inherently more susceptible to arte-

facts than conventional radiographic images. Each individual 2D CT image is

reconstructed from a massive number (∼ 106) of independent projection read-

ings. Furthermore, the contribution of every projection sample is not limited to a

single point in the reconstructed image since the mechanics of the Filtered Back

Projection (FBP) process dictate that a single point in the projection profile is

mapped to a straight line in the reconstructed image [KS88] (refer also to Section

2.3). In contrast to conventional radiology, projection reading errors are thus not

localised, significantly increasing the probability of artefacts in the reconstructed

images. These artefacts generally manifest in one of the following ways: streaking,

rings, bands or shading [BK04].

Streaking artefacts arise due to errors of isolated projection readings [Man01].

The errors are enhanced during reconstruction and mapped into intense dark and

bright lines radiating across the reconstructed image. For an error-free projection,

the FBP process maps each individual point in the projection profile to a straight

line in the image domain. Positive and negative contributions from neighbour-

ing lines are combined, ensuring that no unwanted straight lines appear in the

reconstructed image. If there are inconsistencies in the projection data, however,

the positive and negative contributions are not combined correctly, resulting in

streaks in the reconstructed image [KS88]. When streaking artefacts appear in

large quantities they can significantly degrade the quality of an image (Figure

2.9).

When isolated errors in the projection readings occur over a range of views (i.e.

no longer isolated) the back-projection process maps them to a series of straight

lines in the image domain. These straight lines occur at a fixed distance from

the iso-centre, due to the rotational motion of a third-generation detector. The

terminal points of the straight lines thus cancel out, forming ring-like artefacts

in the reconstructed image. In a similar fashion to the formation of streaking

artefacts, small errors in the projection data are magnified during the filtering

stage of reconstruction [Man01].

Shading artefacts are most prominent in the vicinity of high-density objects.

They are generally caused by a gradual deviation of a group of projection readings

from their true measurements.

The aforementioned CT artefacts are caused by a range of phenomena, most

notably: beam hardening, the partial volume effect, partial volume averaging,

photon starvation, undersampling (in accordance with the Nyquist sampling the-

ory [PB99]), non-stationary objects, the cone-beam effect and scattered radiation
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Figure 2.8: The beam hardening effect. Ideal and actual attenuation profiles obtained for
an X-ray beam passing through a uniform cylindrical phantom. Adapted from [BK04].

[BK04]. In the presence of high-density objects, such as metals, the effects of

noise, beam hardening, scattered radiation, photon starvation and the partial vol-

ume effect cause the FBP algorithm to produce reconstructions characterised by

streaking and star-shaped artefacts (Figure 2.9). These are the artefacts which are

most prominent in the low-quality, complex volumetric imagery obtained from the

security-screening domain and used throughout this work. It is not uncommon for

the quality of these images to be significantly degraded by such artefacts, making

their reliable interpretation extremely challenging (Figure 2.9). The effects and

reduction of metal-streaking artefacts in baggage-CT imagery are thus major focal

areas of this work and are addressed in greater depth in Chapters 3 and 4. Only

a brief overview of the relevant principles (beam hardening, scattered radiation,

photon starvation and the partial volume effect) is provided below.

Beam hardening is the process by which the mean energy of a polychromatic

X-ray beam increases as it passes through an object. The rate of absorption of the

photons of an X-ray beam passing through an object is proportional to the energies

of those photons. Subsequently, the mean energy of an X-ray beam increases (i.e.

it becomes ‘harder’) as it traverses an object (Figure 2.8).

As an X-ray beam passes through an object, its photons deviate (or scatter)

from their initial straight-line trajectories leading to shading artefacts. Collima-

tors are typically used to ‘narrow’ (or realign) the deviated X-ray beam, thereby

eliminating the scattered photons and reducing (in part) the associated artefacts

[KKRH+00].

The partial volume effect (not to be confused with partial volume averaging)

leads to shading artefacts in several ways. The most common of which occurs when

an X-ray beam partially intersects a dense object. In such scenarios, the object
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Figure 2.9: Example of streaking artefacts caused by metallic objects. (a) Medical scan
containing metallic hip replacements (b) Security screening scan containing metallic
handgun

is only correctly scanned at certain tube positions. The partial volume effect is

especially problematic in regions where there are large variations (in object shape

and/or size) along the z−axis and thus a high probability of the X-ray beam

encountering off-centre objects. A narrow acquisition section-width is usually an

adequate solution, although the corresponding increase in image noise needs to be

considered [Man01]. In contrast, partial volume averaging refers to the scenario

where a CT number of a given voxel is representative of the average attenuation

of the materials constituting that voxel [BK04]. Partial volume averaging, which

typically manifests as streaking and bands, is always present to some degree and

can never be eliminated entirely [KKRH+00].

Photon starvation occurs when insufficient photons reach the detectors, usually

as a consequence of a highly-attenuating material or region in the scanning FoV.

The resulting projections are characterised by high levels of noise and/or missing

data, leading to streaking artefacts in the reconstructed images. The effects of

photon starvation are exacerbated by poor object positioning, incorrect scanning

parameters and the inherent physical limitations of the scanner. [KS88].

2.5 Summary

An overview of the fundamental principles of X-ray CT has been presented, with

a particular focus on those principles deemed central to the latter chapters of this

work.

While the causes of noise and artefacts in CT imagery are far-reaching, vir-

tually all types originate in the data acquisition phase of the CT process, prior

to the reconstruction of the CT images. In most cases, in fact, the acquisition

errors/inconsistencies are greatly magnified by the widely-used Filtered Back-

Projection (FBP) reconstruction algorithm. A sound understanding of the prin-

ciples of tomographic reconstruction is thus invaluable in the development of ef-

fective noise and artefact-reduction techniques (Chapter 4). To this end, the

principles of X-ray generation and detection, tomographic reconstruction and the

causes and effects of noise and artefacts in CT imagery have been addressed.
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Chapter 6 of this work proposes Dual-energy Computed Tomography (DECT)

as a means of capturing information related to the chemical characteristics of

the CT scans. While the principles of DECT have not been addressed in this

chapter, the fundamentals of the physical processes governing the interactions of

X-rays with matter (which are central to the understanding and development of

DECT-based techniques) have been discussed.

While the theoretical overview presented here is sufficient for the purposes of

this work, a more comprehensive and detailed analysis of the theory of X-ray CT

may be found in the literature [KS88, Dea93, CDMC90, Hsi03, KBK03].





Chapter 3

Literature Review

This chapter presents an overview of the prior literature relating to and motivat-

ing the research presented in this thesis. The broader objective of this work is

the development of a fully-automated framework for the classification of objects

in low-quality, complex volumetric imagery. From the outset, it is apparent that

this framework will require at least the following stages: noise and artefact re-

duction (based on the theory presented in Chapter 2.4); segmentation (to isolate

target objects) and classification. The following review addresses and evaluates

the current state-of-the-art in the research topics relevant to these components.

Sections 3.1 and 3.2 investigate prior works addressing the reduction of noise

and artefacts in low-resolution, cluttered volumetric CT imagery, with a particular

focus on the reduction of metal-streaking artefacts. Thereafter the recent advances

in classification and the automated classification of objects in complex volumetric

imagery encountered outside of the medical domain in particular, are presented

(Section 3.3). The availability of CT imagery captured at different energies al-

lows for the extraction of the chemical characteristics of the materials present in

a scan using dual-energy decomposition techniques. Section 3.4 reviews the prior

applications and successes of dual-energy-based techniques in an attempt to de-

termine their potential for use in materials-based segmentation and classification.

Finally, Section 3.5 presents the recent advances in the automated segmentation

of volumetric imagery, drawing predominantly from the medical literature.

Portions of this chapter have previously been published as [MMvS+13, MB14a].

3.1 Denoising

Previous work addressing the reduction of noise in low-resolution, cluttered volu-

metric CT imagery is limited. Zhou et al. [ZPA10b] use image enhancement to

remove background noise and improve the resolution of baggage-CT imagery. The

approach is comprised of two stages: noise removal and image enhancement. The

noise-removal step relies on the notion that much of the projection noise present
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in baggage-CT imagery is characterised by very low intensity values relative to

the characteristically high dynamic range of such imagery. A simple thresholding-

based approach is thus proposed for noise removal. In particular, a given 2D

input image is separated into two parts via Alpha-Weighted Mean (AWM) inten-

sity thresholding: 1) an object image (containing the ‘valuable’ information in the

image) and 2) a noise image (which is subsequently discarded). A second threshold

is then used to further subdivide the object image into two sub-images: an up-

per image, containing the brighter regions of the object image and a lower image,

containing the darker, yet still informative, regions of the object image. The two

intensity thresholds are computed as scalar multiples of the mean intensity of the

input image (hence the term ‘alpha-weighted mean’) and are chosen empirically.

The upper and lower sub-images are then enhanced by intensity clipping and His-

togram Equalisation (HE) [SB10] respectively. The final, enhanced CT image is

computed as the summation of the enhanced sub-images.

The performance of the so-called Alpha-Weighted Mean Separation and His-

togram Equalisation (AWMSHE) technique is evaluated using a novel enhance-

ment measure which quantifies the improvement in image contrast using second-

order derivatives. In terms of this measure as well as a standard qualitative perfor-

mance analysis (visual comparisons), the AWMSHE technique is shown to improve

the contrast and visual quality of baggage-CT imagery. Performance analysis,

however, is focussed on the improvement in image contrast and little mention is

made regarding the effectiveness of the denoising stage of the technique (partic-

ularly from a quantitative perspective). It is also worth noting that the images

used in the study [ZPA10b] are largely free of metal artefacts and the efficacy of

the method in terms of metal artefact reduction is thus unclear. Furthermore,

performance is found to be sensitive to the chosen thresholds, which need to be

manually adjusted on a per-slice basis, rendering the algorithm inefficient when

applied to large volumes.

Despite the vast resource of general denoising literature, there do not appear to

be any further works concerned specifically with low-quality, complex volumetric

CT imagery. An extension of the work of Zhou et al. [ZPA10b], by evaluating the

performance of popular denoising techniques (obtained from the broader image

processing literature) within this previously unconsidered context is a necessary

task and is presented in Chapter 4.

3.2 Metal Artefact Reduction (MAR)

Metal artefacts can corrupt CT images such that they become difficult to inter-

pret and of limited diagnostic value. Filtered Back-Projection (FBP) is the CT-

reconstruction algorithm that is most widely used in daily clinical practice. The
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FBP algorithm, however, is based on an analytical inversion of the Radon trans-

form [Dea93], and only yields satisfactory reconstructions in ideal conditions. In

the presence of high-density objects, such as metals, the effects of beam harden-

ing, scattered radiation, photon starvation, noise and the partial volume effect

cause the FBP algorithm to produce reconstructions characterised by streaking

(Figure 2.9) and star-shaped artefacts. Such streaking can degrade the quality of

the image tremendously, often obscuring valuable details and detracting from the

usability of the image. It has been shown that for typical abdominal geometries,

as little as 1 cm of iron or 2 cm of titanium can be sufficient to produce this effect

[KKRH+00]. Efficient strategies to minimise the impact of metal artefacts on the

readability of CT images are invaluable.

The problem of Metal Artefact Reduction (MAR) in CT has been widely stud-

ied with over 100 publications in the last 10 years. While many of these published

techniques claim fairly substantial improvements to previous methods, these claims

are often based on rather limited comparisons. For instance, a large portion of

publications base their claims solely on qualitative comparisons made with the

standard linear-interpolation-based approach [KHE87, GP81] - a technique which

is widely accepted to perform poorly in complex (i.e. most real-world) scenarios.

Comprehensive comparative studies, where both the qualitative as well as quan-

titative performance of state-of-the-art methods are compared, are surprisingly

limited. Rinkel et al. [RDF+08] compared the performance of 3 fairly simple

interpolation-based approaches with the primary aim of determining the value of

MAR when detecting small features near large metallic objects. The primary ob-

jective of this previous study was thus not to determine the optimal available MAR

technique. Golden et al. [GMB+11] compared the performance of 4 MAR tech-

niques (3 sinogram-completion-based approaches and 1 iterative approach) with

the aim of determining their effectiveness in improving the diagnostic quality of

medical-CT images (determined by the independent assessments of 3 radiologists).

There are presently no reviews or quantitative comparative studies where a broad

range of state-of-the-art MAR techniques are considered.

The vast majority of CT-based literature, and MAR-based CT literature in

particular, is found in the medical domain. The development of novel MAR tech-

niques or the evaluation of existing, medical MAR techniques in novel applications

of CT imagery (outside of medicine) are extremely limited [MMFB12, XZX+09,

GSK+12]. The advantages of CT imagery, however, extend beyond the medical

domain and its applications in other fields are widespread, ranging from micro CT

for non-invasive imaging of wood anatomy to the scanning of baggage for potential

threat items in aviation-security settings [vKD05]. While the challenges posed by

metal objects extend to all applications of CT imagery, the differences in the na-

ture of medical images and those encountered in other domains (e.g. Section 1.2)
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mean that the MAR techniques which have been successfully applied to medical

images will not necessarily be successful when applied to non-medical-CT images

[MMFB12].

In X-ray CT the most widely implemented reconstruction technique is the ana-

lytical Filtered Back-Projection (FBP) (Section 2.3). According to reconstruction

theory, FBP yields fast and accurate reconstructions of the attenuation function

for ideal (or near ideal) projections which contain a sufficient number of projection

samples and low degrees of noise, beam hardening and other imperfections [Hsi03].

In reality, projections are only approximations of the ideal case. This is due to the

finite number of projection samples; Poisson noise in the projection data; beam

hardening and scattered radiation (Section 2.4). When these approximations are

relatively small (as is often the case), FBP still produces satisfactory reconstruc-

tions. When the errors become large, however, the reconstructed images become

corrupted by artefacts [BK04].

Metal objects in particular cause significant artefacts in CT images [BK04].

In an extensive simulation study, De Man et al. [MND+99] cite beam harden-

ing (the preferential attenuation of low-energy photons in a polychromatic X-ray

beam [KCWM12]), scattered radiation, photon (projection) noise and the expo-

nential edge-gradient effect (trans-axial non-linear partial volume effect) as the

predominant causes of metal-streaking artefacts in high resolution 2D fan-beam

CT images. While additional factors contribute to metal artefacts in CT imagery

[BK04, KCWM12], the aforementioned factors are considered dominant in the

remainder of this work.

The majority of the published Metal Artefact Reduction (MAR) techniques fall

into one of four categories: sinogram (or projection) completion methods (Section

3.2.1); iterative methods (Section 3.2.3); hybrid methods (Section 3.2.4) and mis-

cellaneous methods (Section 3.2.4).

3.2.1 Sinogram-Completion Methods

The vast majority of sinogram-completion-based approaches to MAR rely on re-

constructions using the FBP approach. Under certain conditions, however, FBP

produces reconstructions containing bright and dark streaking artefacts Section

2.4. When streaking artefacts appear in large quantities they can result in an

image which is significantly degraded (Figure 2.9).

Sinogram completion methods typically regard these inconsistencies in the pro-

jection data as missing data and use various techniques to estimate the correct

projection values. The vast majority of sinogram-completion-based approaches

adhere to the following framework: metal segmentation, sinogram completion,

final image reconstruction.

Metal object segmentation involves isolating the metal objects in the original
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CT image and creating a metal-only image. The segmentation results are used

to determine which regions of the original sinogram are corrupted and need to

be adjusted or replaced. Sinogram completion involves the actual replacement of

these corrupted points via a broad range of techniques [KHE87, AAA+10, YZB+07,

MRL+10, TMK+06, JR09, ZBWW02, LBY+10, DZX+08]. The final, artefact-

reduced image is created by back-projecting the interpolated sinogram and re-

inserting the metal-only image into this corrected image.

Segmentation by thresholding, followed by direct interpolation-based sinogram

completion (i.e. interpolating the sinogram data on either side of the metal traces)

is generally considered the simplest approach to MAR in CT and is used in many

recent studies as a benchmark for performance comparisons [AAA+10, AAAZ10,

MND+00, DZX+08, JR09]. Although such direct interpolation-based MAR ap-

proaches were popular in early studies [KHE87, KKSF90a], many recent studies

have highlighted their limitations [MRL+10, AAAZ10, RLP+03, AAA+10, MB09,

Man01, ZBWW02].

3.2.1.1 Metal Object Segmentation

The most widely implemented segmentation method employs simple thresholding,

whereby a single threshold is used to distinguish the metal from the non-metal

objects in the image [KHE87, AAAZ10, AAA+10, DZX+08, JR09, MMFB12].

Thresholding exploits the fact that the CT values of metals are extremely high

(due to their high atomic numbers), especially relative to other materials. Despite

the simplicity of this approach, thresholding generally produces reasonably accu-

rate results and has been widely implemented, even in some of the most complex

MAR techniques [AAA+10, DZX+08]. Nonetheless, several studies have claimed

that minor segmentation errors may have significant detrimental effects on the

overall performance of the MAR technique [YZB+07, MRL+10, LFN09, LBY+10].

These effects generally manifest as a loss of information from both the struc-

tures surrounding the metal objects as well the metal objects themselves, lead-

ing to the generation of secondary streaking artefacts in the reconstructed image

[MB09, MND+99]. More sophisticated segmentation processes such as the mean-

shift technique [YZB+07, CM02] and Mutual Information Maximised Segmenta-

tion (MIMS) [LBY+10] claim to better preserve edge and contrast information of

the metal objects and their direct surroundings. It is worth noting that the major-

ity of the aforementioned studies involve more sophisticated processes in the other

stages of the MAR procedure (e.g. complex sinogram-completion methods, pre-

filtering and/or post-filtering etc.), making it unclear if the improved segmentation

alone contributes to the improved results.
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3.2.1.2 Sinogram Completion

The simplest sinogram-completion techniques employ basic interpolation-based

approaches to replace the corrupted data (e.g. linear interpolation [KKSF90b];

spline interpolation [AAAZ10, RLP+03]).

Although simple and convenient to implement, direct interpolation is generally

sufficient when only a single, small metal object is present in the Field-of-View

(FoV). When larger and/or multiple metal objects are present, however, the relia-

bility of the interpolated values decreases. Muller and Buzug [MB09] have demon-

strated that the biggest disadvantage of sinogram correction by direct interpolation

is that all edge information lying on the beams passing through the metal objects

is lost - in other words, the loss of edge information affects the entire image and

is not restricted to the edges in the vicinity of the metal objects. Sinogram cor-

rection by this so-called ‘naive interpolation’ ultimately leads to the generation

of secondary streaks in the corrected images [MND+99, MB09]. These secondary

streaks may be comparable in severity to the original artefacts. Although the orig-

inal streaks are usually reduced to some degree with interpolation, they are rarely

eliminated entirely [RLP+03]. Variations to the sinogram-completion procedure

thus constitute the bulk of MAR-based literature and numerous approaches have

been proposed to overcome the aforementioned limitations.

3.2.1.3 Sinogram Completion using Priors

Several approaches have been proposed with the primary objective of better pre-

serving edge and contrast information and thereby reducing secondary artefacts in

the corrected images. Many of these methods exploit the predictability of the char-

acteristics (e.g. CT numbers) of the anatomical structures present in medical-CT

scans to generate priors which are used to guide the sinogram-completion process.

The majority of these methods employ some variation of intensity thresholding seg-

mentation (e.g. k-means clustering [BS06] and multiple thresholding [MRL+10])

to generate priors and then focus on variations in the sinogram-completion phase

to improve MAR results. Meyer et al. [MRL+10, MRS+11] and Muller and Buzug

[MB09] use normalisation schemes based on the ratio of the raw sinograms to the

sinograms of the prior images, to increase the homogeneity of the interpolation re-

gions. Interpolation is claimed to be less problematic when applied to relatively ho-

mogeneous regions [MRL+10]. Meyer et al. [MRL+12] propose frequency-splitting

techniques to reduce the characteristic, undesired blurring of edges near to metal

objects seen in interpolated images by utilising the high-frequency edge informa-

tion available in the original FBP reconstructions.

The core of the aforementioned techniques lies in intensity thresholding to gen-

erate the prior information. Intensity thresholding however, often leads to poor

segmentations and hence inaccurate priors [KCWM12]. While the use of priors is
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intended to better preserve edge and contrast information and thereby minimise

secondary artefacts [BS06, MRL+10, KCWM12], inaccurate priors can in fact lead

to a loss of edge information in the sinogram and hence cause greater degrees of

secondary artefacts in the corrected images. Karimi et al. [KCWM12] demon-

strate that the accuracy of the prior has a greater impact on artefact reduction

than the chosen interpolation strategy. They propose focussing on generating an

accurate prior (as opposed to improving the interpolation procedure) to improve

artefact reduction. In particular, the prior is generated by segmenting regions

of the original CT image, and distinguishing between metal artefact regions and

anatomical regions. The metal artefact regions are assigned a constant soft-tissue

value, while anatomical regions are left unchanged. The sinogram of the resulting

prior is used to guide the sinogram-completion phase (performed using standard

interpolation techniques). The algorithm successfully reduces metal artefacts and

produces fewer secondary artefacts than related (intensity threshold-based) tech-

niques [BS06, MRL+10], even in cases involving multiple metal objects.

While these prior-based techniques have shown impressive results, optimal pa-

rameter tuning relies heavily on the predictability of the structures present in the

scan. Since they are all intended for use in the medical field, it is appropriate to

assume prior knowledge of the likely anatomical structures present in the scans

and reliable thresholds and parameters can thus be set. In settings where this

prior knowledge or predictability regarding the nature of the scanned objects does

not exist, however, the selection of suitable parameters will become significantly

more challenging. Prior-based techniques are expected to be less effective in such

domains.

3.2.1.4 Sinogram Completion with Multiple Metal Objects

Another major challenge in MAR arises in cases involving multiple metal objects.

The presence of multiple (or large) metal objects means that the effective shape of

the metal regions will be asymmetric across views resulting in unequal quantities

of beam hardening and scatter across views. For example, at a particular tube

position the beam may only pass through one of the metal objects and thus be

hardened less than at another tube position where it passes through both objects

[BK04]. This exacerbates the effects of beam hardening and scatter, usually lead-

ing to more prominent (dark) streaks in the regions connecting the metal objects

[MND+99, ZBWW02, Man01]. The presence of multiple metal objects also com-

plicates the process of multiclass segmentation, particularly in the regions of and

near to the metal objects [KCWM12]. Poor segmentations invariably result in poor

priors, characterised by a loss of edge information of the anatomical structures sur-

rounding the metal objects [KCWM12]. As mentioned, Karimi et al. [KCWM12]

demonstrate that the use of inaccurate priors has a significant detrimental effect
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on artefact reduction. Finally, multiple metal objects lead to sinograms with mul-

tiple metal traces. Direct interpolation of such data is more likely to result in a

loss of edge information in the metal trace of the sinogram which ultimately re-

sults in secondary artefacts in the corrected image (as discussed above) [YZB+07].

Several studies have proposed interesting approaches to deal with the challenge of

multiple metal objects in particular.

Takahashi et al. [TMK+06] propose a very simple approach where the sino-

gram of the metal-only image is subtracted from that of the original image and the

reprojection of the resulting difference image used as the corrected image. Qual-

itative improvements to the visual quality of the images are, however, limited.

Abdoli et al. [AAA+10] compute a corrected sinogram as a weighted combina-

tion of the spline-interpolated sinogram and the original, uncorrected sinogram,

where the optimal weighting scheme is determined using a Genetic Algorithm

(GA) [BNKF97]. Yu et al. [YZB+07] employ a feedback interpolation strategy

whereby interpolation is carried out repeatedly until all interpolated sinogram val-

ues are less than the original corrupted values. Jeong and Ra [JR09] employ Total

Variation (TV) pre-filtering of the original image to reduce the initial severity of

streaking artefacts. Interpolation is then performed only in regions where the sino-

gram traces of multiple metal objects intersect (elsewhere, the corrupted sinogram

data is replaced by the reprojection of the TV-filtered image), thereby reducing

the effective size of the interpolated regions. A scaled combination of the original

and interpolated sinograms is reconstructed to yield the final image. Zhao et al.

[ZRW+00, ZBWW02] extend the conventional linear-interpolation-based approach

by performing an additional interpolation in the wavelet domains of the original

and linearly interpolated sinograms. While effective, the algorithm requires sev-

eral parameters to be set manually. Kratz et al. [KKM+08] treat the problem

of CT MAR as a scattered data interpolation problem and perform interpolation

based on the 2D Nonequispaced Fast Fourier Transform (NFFT) [Kun06]. The

technique is, however, met with limited visual improvements.

3.2.1.5 Sinogram Completion using Image Inpainting

While interpolation is the most common technique for replacing corrupted or

missing sinogram data, image inpainting techniques have also been successfully

implemented in sinogram-completion schemes [LBY+10, DZX+08, ZPH+11]. Im-

age inpainting is the process of replacing missing or corrupted data in images

in a non-detectable way, using local geometric and/or textural information from

uncorrupted regions in the same image [RC01]. Li et al. [LBY+10] combine Non-

Local (NL) inpainting and linear interpolation to replace corrupted sinogram data,

while Duan et al. [DZX+08] employ Total Variation (TV) inpainting within the

conventional sinogram-completion framework. Zhang et al. [ZPH+11] present a
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fractional-order TV-inpainting approach, where the conditional conductivity co-

efficient for TV is replaced by a novel fractional-order curvature parameter. The

approach is shown to outperform simple linear interpolation as well as the TV-

inpainting approach of Duan et al. [DZX+08]. The main drawback of using

inpainting as opposed to interpolation is the significant increase in computational

cost.

3.2.1.6 The Virtual Sinogram

The majority of sinogram-completion methods operate directly on the raw sino-

gram (projection) data. This approach may pose practical challenges as raw pro-

jection data is often vast and stored in a proprietary format. This makes the prac-

tical implementation of MAR algorithms difficult and dependent on the scanner

manufacturer. Abdoli et al. [AAA+10, AAAZ10] introduce the concept of a virtual

sinogram (obtained by the forward projection of the CT image) to overcome this

challenge. They do assert, however, that CT images obtained by back-projecting

virtual sinograms are not of diagnostic quality.

3.2.1.7 Final Reconstruction

The final, corrected image is generally constructed by filtered back-projection of

the corrected sinogram, giving a corrected background image (i.e. free of metal

objects). The metal-only image is then reinserted into this corrected background

image, yielding the final image. A simple addition, however, may result in a loss

of edge information for the metal objects. To combat this, Yu et al. [YZB+07]

propose using an adaptive scale and filter scheme (originally developed by Chen et

al. [CLSR02]) to compose the final image, whereby a scaled and lowpass filtered

version of the metal-only image is added to the background image. Roeske et al.

[RLP+03] reconstruct the final, corrected image in the usual way and then apply

a pixel-by-pixel correction factor to the original image to reduce the severity of

metal artefacts.

3.2.2 Pre and Post-Processing Operations

Several studies have implemented interesting pre-processing and post-processing

steps which appear to have some beneficial effects. The predominant motivation

for pre-filtering operations is to reduce minor streak artefacts and background

noise [MB09, LBY+10]. A variety of common 2D image denoising filters have

been used for these purposes such as: adaptive filtering [LBY+10, BS06], Total

Variation (TV) filtering [JR09] and Non-Local Means (NLM) filtering [MMFB12].
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Figure 3.1: General framework for iterative-reconstruction techniques. Starting from the
current reconstruction, a sinogram is calculated. A measure for the sinogram error is
transformed to the image domain. The reconstruction is updated in a way that reduces
the sinogram error.

3.2.3 Iterative Reconstruction Methods

Iterative-reconstruction techniques provide an interesting alternative to the FBP

approach with several known advantages (especially in terms of MAR) [LC84,

SV82].

The problem of iterative reconstruction is solved by optimising a chosen objec-

tive function. Algorithm variations generally occur in the choice of this objective

function (e.g. minimum least squares error, maximum likelihood etc.) and the

particular optimisation technique used (e.g. steepest ascent, conjugate gradients

etc.). The chosen objective function and optimisation technique are used in an

iterative optimisation framework composed of the following steps (Figure 3.1):

1) an initial reconstruction is estimated (typically a blank image); 2) the virtual

sinogram of the estimate is computed; 3) the error between the virtual sinogram

and the raw sinogram is computed; 4) the error is transformed to the image do-

main and used to update the estimate. Steps 2 to 4 are repeated until the error

converges or some predefined termination criteria are met.

The most significant advantage of iterative approaches in general, is the supe-

rior performance in reconstructing images from incomplete projection data, as the

assumption of uniformly sampled projection data is not required (as is the case

for analytical approaches such as FBP).

The two most common iterative methods are algebraic reconstruction and max-

imum likelihood reconstruction. The Algebraic Reconstruction Technique (ART)
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[GBH70, Hou72] is a special case of the Projection Onto Convex Sets (POCS)

[BB96] iterative operator. POCS iteratively solves for f in the reconstruction

problem:

p = A · f (3.1)

where p is the log-converted CT data, A is the projection matrix, describing

all of the projections lines and f is the unknown reconstruction. The Simulta-

neous Algebraic Reconstruction Technique (SART) [AK84] and the Simultaneous

Iterative-reconstruction technique (SIRT) [Gon72] are variations of ART.

Maximum Likelihood (ML) reconstruction is a statistically-based iterative al-

gorithm that is typically used to find the Maximum Likelihood (ML) estimates of

the parameters in a statistical model. The model parameters that yield a distri-

bution giving the observed data the greatest probability are found by maximising

the log-likelihood for the observed data [DLR77]. When considering CT recon-

struction, the objective of ML is to estimate the reconstructed image that best

fits the measured projection data under the assumption that this data obeys the

laws of a Poisson distribution. Intuitively, this equates to finding the image which

is most likely to have produced the measured projection values [Don07]. While

transform-based reconstruction techniques (such as FBP) attempt to compensate

for the stochastic nature of the projection data by filtering out high frequencies

prior to reconstruction, statistical iterative-reconstruction techniques employ sta-

tistical models to approximate the projection data [Man01]. Statistical iterative-

reconstruction techniques (such as ML approaches) offer the additional benefit of

significantly decreased noise levels compared to FBP, provided that the appropri-

ate statistical models are employed. Ultimately, statistical reconstruction leads to

a significant reduction in streaking artefacts. These improvements are attributed

to the fact that the iterative approach seeks to find the optimal fit to the mea-

sured data, while FBP assumes the data to be exact, consistent and complete

[WSOV96].

In nuclear medicine applications such as Positron Emission Tomography (PET)

and Single Photon Emission Tomography (SPECT), Maximum Likelihood Expec-

tation Maximisation (MLEM) is the common method for image reconstruction

[SV82]. The Poisson log-likelihood is optimised by using an Expectation Max-

imisation (EM) technique. For CT applications, the MLEM algorithm is usually

applied to the log-converted data. However, the MLEM algorithms assumes the

data are Poisson-distribution which is only correct for the measured data but not

for the log-converted projection data.

A dedicated MLEM algorithm for CT was developed by Lange and Carson
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[LC84]. Ollinger [Oll94] has, however, demonstrated that the EM algorithm con-

verges extremely slowly for transmission reconstructions. Consequently, several

ML [SB93] and Penalised Likelihood (PL) [FFCL97] transmission reconstruction

algorithms have adopted the approach of directly maximising the objective func-

tion as opposed to relying on the classical EM in order to reduce computational

costs. Erdogan and Fessler [EF99] present an alternate simultaneous update al-

gorithm to the transmission EM algorithm of Lange and Carson [LC84]. The

so-called Separable Paraboloidal Surrogates (SPS) algorithm is shown to converge

considerably faster than the transmission EM algorithm. Other examples of direct-

maximisation techniques include the convex algorithm [LF95] and Maximum Like-

lihood for Transmission (MLTR) [NMD+98].

Hudson and Larkin [HL94], introduced the concept of Ordered Subset Expec-

tation Maximisation (OSEM) to reduce the computational demands of MLEM. In

OSEM, the projection views are divided into several Ordered Subsets (OS) which

are used to sequentially update the current reconstruction estimate. The same

principle can be applied to other ML reconstruction techniques [EF99, BK01].

OS is capable of accelerating the convergence of the ML algorithms by a factor

approximately equal to the number of ordered subsets and generally requires only

small modifications to the algorithm. The main limitation of the approach is that

convergence is only guaranteed if an exact solution exists: if this is not the case,

OS results in limit cycles [HL94]. Convergence can, however, be enforced by re-

ducing the step size at each iteration (relaxed update schemes [BdP96]) or by

gradually reducing the number of subsets during reconstruction [Ber97]. Relaxed

update schemes, however, require the manual specification of relaxation parame-

ters, as there exists no mathematical technique for selecting optimal parameters.

Such user input can have a significant detrimental effect on the convergence rate

[LAL05].

A major advantage of ML reconstruction algorithms is that a priori informa-

tion about the image to be reconstructed can incorporated into the algorithms.

In Maximum a-posteriori (MAP) a combined likelihood is used. The first part of

MAP is the ML-part, where the likelihood for the reconstructed image with respect

to the measurement is given. The second part, the prior, describes the likelihood

of the reconstructed image based on a-priori information. Alternatively, in Pe-

nalised Likelihood (PL), ‘less likely’ reconstructions are penalised. The a-priori

information used in both MAP and PL is usually a smoothness constraint.

As has been discussed extensively by de Man [Man01], ML approaches allow

for a direct incorporation of mathematical models for various physical limitations

of the acquisition process into the system matrix (e.g. noise, beam hardening,

partial volume effect etc.) as well as a priori information regarding the recon-

structed image (e.g. smoothness constraints [MND+00]). The FBP approach
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does not account for these limitations, leading to artefacts in the final reconstruc-

tion. While accurate modelling of the acquisition process is challenging and has

a significant impact on the accuracy of the reconstruction, even techniques using

simple acquisition models have been shown to produce better reconstructions (in

terms of metal artefacts) than FBP reconstructions. The predominant limitation

of iterative-reconstruction techniques, in the context of this study, is the high

computational cost.

De Man et al. [MND+01] use an effective noise model, a Markov random

field smoothness prior, a polychromaticity model (to combat the effects of beam

hardening) and increased sampling in the reconstructed image in a transmission

maximum likelihood reconstruction (MLTR) framework [NMD+98]. While this

Iterative Maximum-Likelihood PolyChromatic Algorithm for CT (IMPACT) is

not a dedicated MAR technique, preliminary experimentation does suggest an

effective reduction in the effects of metal artefacts. The benefits of incorporat-

ing prior information and establishing an accurate acquisition model are clearly

demonstrated. As with most iterative approaches, computational cost is an issue

- comparing the computational complexity of IMPACT to the MLTR approach

yields a ratio of 8:3 [SN12]. Elbakri and Fessler [EF02, EF03] and Menveille et

al. [MGOS05] describe ML methods which, similarly to the IMPACT algorithm,

incorporate a polychromatic acquisition model for multiple materials. Van Slam-

brouck and Nuyts [SN12] demonstrate that the computational cost of iterative

reconstruction using complex reconstruction models (e.g. [MND+01, NMD+98])

can be reduced without a significant decline in performance (in terms of metal

artefact reduction) by limiting the use of the complex models for the reconstruc-

tion of image regions near to the metal objects. Less complex models can then be

used for reconstructing the remainder of the image. The images are automatically

subdivided into metal and non-metal regions (patches) and reconstruction models

of varying complexity (MLTRC - a simple polychromatic extension to the MLTR

model [NMD+98]; IMPACT - a fully polychromatic model [MND+01] with or with-

out increased resolution model) are then applied to these patches depending on

the contents of the patch. The study compares the performance of several itera-

tive reconstruction schemes to a number of sinogram-completion-based approaches

(linear interpolation [KHE87, GP81], NMAR [MRL+10] and FSMAR [MRL+12]).

Applying the MLTRC model in metal-free patches and the IMPACT model in

metal patches, while resulting in a considerable reduction in computational cost,

is shown to yield reconstructions of a similar quality to those obtained when using

the IMPACT model for the entire image. While the sinogram-completion methods

are shown to produce reconstructions with less obvious metal artefacts (compared

to the iterative approaches) they are also shown to be characterised by a loss of

edge and contrast information in the direct vicinity of the metal objects.
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Since iterative-reconstruction techniques are inherently better suited to pro-

ducing metal artefact-free images, the majority of recent work in this area has

been concerned with minimising the computational costs of iterative approaches

[HL94, LAL05, BF11, BdP96, MND+00, WFV00, YTB+11, CCFT06]. Despite

the development of optimised approaches such as Ordered Subset Expectation

Maximisation (OSEM) [HL94], the Row-Action Maximum Likelihood Algorithm

(RAMLA) [BdP96], Model-Based Iterative Reconstruction (MBIR) approaches

[YTB+11], Iterative Coordinate Descent (ICD) optimisation [BS96, TSBH07],

Block-Iterative (BI) modifications [Byr97] and numerous hybrid methods [LAL05,

BF11, MND+00], high computational cost remains the main factor preventing the

universal implementation of such techniques in commercial CT machines. Process-

ing times are still often quoted to be as much as three orders of magnitude higher

than corresponding FBP processing times and for this reason iterative techniques

have yet to be incorporated into routine clinical practice [Man01].

The work of Wang et al. [WSOV96] may perhaps be considered the benchmark

for iterative-reconstruction techniques aimed specifically at metal artefact reduc-

tion in CT. While several earlier studies [GBH70, Opp77] address the issue of metal

artefact reduction using iterative-reconstruction approaches, the majority of ear-

lier work considered only reconstructions from complete projections. Wang et al.

[WSOV96] present modifications to the Expectation Maximisation (EM) approach

[SSO92] and the Simultaneous Iterative-Reconstruction Technique (SIRT) [Gon72]

(an algebraic technique) to deal specifically with reconstructing CT images from

incomplete projections. In particular, it is shown that two factors set the proposed

approaches aside from related works. Firstly, the EM-type algorithm of [WSOV96]

adopts simultaneous iterations: while the approach is similar in many ways to the

Multiplicative Algebraic Reconstruction Technique (MART) [GBH70], the MART

is derived from the Kaczmarz-method [Kac37] for solving a system of linear equa-

tions and is sequential in nature. In other words, the correction factors (to be

applied to the image estimates at each iteration) are computed and applied based

on individual projections profiles. The EM algorithm of Wang et al. [WSOV96]

computes these correction factors by simultaneously taking into account all of

the projection profiles and then updating the image estimates. While sequential

approaches generally converge faster than simultaneous approaches, they gener-

ally yield poorer reconstructions characterised by noise-induced salt-and-pepper

like stripes [AK84]. Furthermore, the convergence of the EM-type iterations has

been established under moderate conditions (regardless of whether the projection

data is complete or not), while the MART method cannot converge in the data-

inconsistent case [WSOV96]. The second factor contributing to the superiority (in

terms of MAR) of the methods proposed in [WSOV96] is that the authors adopt

a spatially varying relaxation coefficient in each iteration. In previous works, this
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coefficient was traditionally constant in each iteration and did not compensate

for the non-uniform densities of the re-projecting and back-projecting rays (non-

uniformities are especially prominent near metal surfaces). In addition to demon-

strating that both iterative approaches (EM-based and ART-based) outperform

FBP for incomplete projection data as well as for noisy, but complete projection

data, the authors conclude that the EM-type algorithm converges faster than the

ART-type algorithm in terms of both the I-divergence [Csi75] and the Euclidean

distance between the measured and the reprojected data [WSOV96]. The differ-

ences in the computational complexity of the two proposed approaches are shown

to be negligible [WSOV96].

The majority of statistically-based iterative reconstruction methods are for-

mulated as unconstrained optimisation models that minimise or maximise some

data-dependent cost function [ZWX11]. Zhang et al. [ZWX11] consider the metal-

affected sinograms as systems with incomplete data and employ a constrained

optimisation model to compute the optimal solution. Within the constrained

optimisation framework, the data fidelity term (in the optimisation model) be-

comes an inequality and is used to determine a set of images that satisfy the

measured data to within a predefined tolerance. The regularisation term (in the

model) becomes the objective function and is used to select the optimal image

from the feasible set. The optimisation problem is solved using a combination of

the Projection-Onto-Convex-Sets (POCS) iterative operator [BB96] (a combina-

tion of the ART updating scheme and the image non-negativity constraint) and

the steepest gradient descent of the objective function. The constrained optimisa-

tion algorithm is evaluated using a novel Penalised Smoothness (PS) function with

an edge-preserving prior to generate an artefact and noise reduced solution. The

method is shown to outperform linear interpolation [KHE87], ART [WSOV96] and

EM [WSOV96] methods in terms of simultaneous artefact and noise reduction as

well as edge and contrast preservation in a series of phantom experiments. While

the EM and ART methods yield artefact-reduced images, the authors demonstrate

that the proposed approach is able to eliminate artefacts entirely.

3.2.4 Hybrid and Miscellaneous Methods

Several studies have attempted to exploit the advantages of fundamentally differing

approaches in hybrid algorithms to improve reconstruction performance.

Watzke and Kalender [WK04] propose merging the outputs of a conventional

linear-interpolation-based approach with that of a Multi-dimensional Adaptive Fil-

ter (MAF) [KWK01] to combat the common shortcomings of direct interpolation-

based approaches. The approach is motivated by the fact that interpolation and

MAF compliment one another at varying distances from the metal objects.

Oehler and Buzug [OB06, OB07] present a modified MLEM approach that uses
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a weighted MLEM algorithm to reconstruct interpolated sinograms. Different pro-

jection lines through the scanned object are weighted such that the influence of the

residual inconsistencies of the interpolation procedure are minimised. Although

an overall improvement in image quality is demonstrated, high computational ex-

pense is again highlighted as a concern.

Lemmens et al. [LFN09] show that the success of iterative reconstruction ap-

proaches rely heavily on algorithm initialisation and propose a hybrid approach

whereby a Maximum a Posteriori (MAP) scheme is used to define a constrained

image (free of artefacts) which is ultimately used to initialise an MLTR recon-

struction. The proposed method involves three separate iterative reconstructions:

an initial MLTR reconstruction, a MAP reconstruction and the final MLTR re-

construction and processing times are thus extremely high. To combat this, the

authors propose replacing the initial and final MLTR reconstructions with FBP

reconstructions and show that the deterioration in performance is minimal.

Based on the principle that CT reconstruction fidelity is proportional to the

number of projections used [Hsi03], Bruyant et al. [BSM00] present a level line-

based interpolation scheme for increasing the number of projections, without in-

creasing the acquisition time, to reduce streaking artefacts. The algorithm is fully

automated and eliminates the need for a high-pass filter in the reconstruction

process.

Image-domain MAR [NLA+11, NLP+09], whereby all processing is performed

in the image domain, has been proposed as an alternative to the virtual sinogram

[AAAZ10, AAA+10] (Section 3.2.1.6) in scenarios where raw projection data is

unavailable. Naranjo et al. [NLA+11, NLP+09] propose two approaches for deal-

ing with situations where raw projection data is not available. The first approach

[NLP+09] involves morphological filtering in the polar domain (to exploit the in-

herent symmetry in FBP reconstructed images). A second, more recent approach

[NLA+11] uses a comparison between the current, artefact-containing slice and an

adjacent, artefact-free slice to locate corrupted regions in the image, which are

ultimately replaced via 2D linear inpainting. Image registration and morpholog-

ical dilation are used to accurately locate the corrupted regions whilst avoiding

anatomical structures. The method requires considerable user input and thus

suffers from high processing times.

Finally, it is worth noting that the implementation of all iterative-reconstruction

techniques as well as hybrid approaches, combining sinogram-completion and iter-

ative reconstruction, rely on the availability of the raw (original) projection data.

When this data is not readily available the iterative approach is not feasible.
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3.2.5 MAR Performance Evaluation

Performance evaluation is an important yet challenging task. All of the MAR

studies discussed in the preceding sections share a primary objective of improving

the diagnostic quality of medical-CT images; in other words making the CT image

easier to read for a radiologist. Therefore, in reality, the problem is a qualitative

one: a MAR technique is deemed effective if a radiologist (or some other expert

human observer) concludes that the image is easier to interpret after applying

the MAR algorithm. It is thus not surprising that the majority of studies rely

heavily on a subjective analysis of performance. This makes it challenging to

reliably compare different techniques. Nonetheless, some studies have presented

some form of quantitative analysis.

A common trend is to perform both clinical studies using real-world CT scans,

as well as simulated studies using phantoms (objects which are designed to mimic

the properties of human tissue and organs). In the medical domain, the use

of physical phantoms [MB08, LBY+10, YZB+07, MRL+10, ZBWW02] as well

as software-generated phantoms [YZB+07, MND+01, Man01, MND+00, LFN09]

have become accepted comparative protocols. The use of phantoms (numerical

and physical) allows for the establishment of gold standard images (usually ob-

tained by scanning or simulating the phantom without metal inserts) and hence

the implementation of any standard image reconstruction performance measure

[SB10].

Meyer et al. [MRL+10] compare the projection (sinogram) profiles and image

profiles of software generated phantom images (containing artefacts) after applying

MAR with the corresponding profiles of a reference image (artefact-free phantom

image) to quantify MAR performance. It is claimed that effective MAR will yield

profiles that closely resemble those of the reference image. It is important to note,

however, that this analysis technique would not be possible using real-world data.

The true challenge thus lies in quantifying the performance of an algorithm on

real-world data.

A simple reduction in the standard deviation of the reconstructed image is often

cited as evidence of successful reduction in streaking [TMK+06]. This approach

exploits the notion that streaking results in large and frequent fluctuations in the

CT values of the reconstructed image with respect to the underlying CT values.

Hence, reducing these fluctuations will result in a more homogeneous image and

a lower standard deviation. This approach is somewhat rudimentary however, as

it does not account for the unwanted blurring of image details in the artefact-

free regions of the images, which would also lead to more homogeneous images

and hence reduced standard deviations. Although more sophisticated standard

deviation-type measures have been employed [YZB+07], these usually rely on the

prior knowledge of the ideal attenuation values of the regions in the direct vicinity
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of the metal objects, which is not always available outside of the medical domain

[vKD05].

Abdoli et al. [AAA+10] perform quantitative performance analysis using Bland-

Altman plots [AB83]. Three regions are specified in each of the CT slices: overes-

timated regions (pixel densities higher than expected due to artefacts), underesti-

mated regions (pixel densities lower than expected due to artefacts) and unaffected

regions (regions not affected by streaking). The Bland-Altman plot (or, equiva-

lently, the Tukey mean-difference plot) is used to compare the pixel densities in

these regions before and after applying MAR and ultimately to quantify perfor-

mance. While this approach does rely on the knowledge of the intensity distribu-

tions of the images prior to MAR, this extends only to the ability to distinguish

between regions in the images which are and are not affected by streaking (a dis-

tinction which can be performed by manual inspection of any image). It does not

require prior knowledge of the actual characteristics (i.e. ideal CT numbers) of the

contents of the scan, as is the case in the more sophisticated standard deviation

methods mentioned previously.

Ens et al. [EKB10] present a reference-free performance measure termed the

Band-Pass filtered Gradient (BPG) measure to quantitatively evaluate the per-

formance of MAR techniques when ground-truth data is not available. The BPG

measure is computed as the sum of the pixel values in the gradient image of a

given image, where the sum is limited to gradient values falling within a prede-

fined band (hence band-pass filtered). This band is defined by manually selected

upper and lower band-limits. The BPG of a given image is expected to be higher

in an image corrupted with streaking artefacts.

Kratz et al. [KEMB11] also present a reference-free ground-truth metric for

quantitatively evaluating the performance of MAR techniques. The authors make

the assumption that in the original projection data, the presence of metal objects

have no influence on the projection readings outside of the actual metal traces -

this is not the case for the virtual sinogram [AAAZ10]. The original projection

data, outside of the metal traces, is thus considered to be an inherent ground-

truth which is used as a reference for evaluating the degree of image artefacts.

Using a standard distance metric, the regions in the original and corrected (vir-

tual) sinograms outside of the metal traces are compared. For a given CT image,

the value of this metric should decrease with a reduction in metal streak arte-

facts. While the quality of the performance measure is shown to be comparable to

other reference-free measures, such as the BPG measure [EKB10], the approach

is deemed superior in that it is fully automated.

To date, there appear to be no system-level quantitative performance measures

(whereby the performance of a given MAR technique is quantified according to

its impact on subsequent operations, such as object classification). Furthermore,
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existing approaches only consider performance in 2D cross-sectional images (i.e. in

R2) - the performance of MAR techniques in true 3D space has not been considered

previously.

3.2.6 MAR Summary

Previous work, where the relative performance of several state-of-the-art MAR

techniques are compared, is limited [RDF+08, GMB+11]. There are presently no

comprehensive reviews or quantitative comparative studies of the state-of-the-art

MAR techniques. Furthermore, all of the MAR studies discussed in this review

have been intended for use in the medical-imaging domain only. Many of these

rely on the use of priors to guide the sinogram-completion process. While the

need for metal artefact reduction in CT imagery extends beyond the medical do-

main, the performance of the state-of-the-art medical MAR techniques in settings

where isolated metal objects occur in non-tissue surroundings (making the gener-

ation of accurate priors more challenging), is unclear. An investigation into the

performance of these existing, medically-based MAR techniques when applied to

non-medical images has not been conducted previously. Existing studies are thus

limited in the techniques that are compared, the CT domains or applications which

are considered and the performance-evaluation techniques that are employed.

3.3 Classification

The classification of images (or parts thereof) is a core problem in computer vision.

Broadly speaking, image classification refers to the labelling of images according to

the object categories (i.e. classes) they contain. Virtually all approaches are based

on the assumption that the features characterising a given image (e.g. geometric

shapes, textures etc.) may be ‘matched’ in some way to those of the predefined

classes [JKS95].

For the most part, supervised image classification (where classification models

are inferred from labelled training data) relies on at least the following compo-

nents/stages [AT13]: 1) feature extraction and description; 2) training and 3)

classification. While this section presents a brief review of the recent advances

in image classification, the primary focus is on the classification of low-quality,

complex volumetric imagery (encountered in non-medical domains). The reader is

referred to the literature for a more comprehensive review of image classification

[AT13, Jor02, Sze10].
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3.3.1 Feature Extraction and Description

Although selecting suitable properties (or features) by which to represent object

classes and images is a crucial component of a classification system, it is not the

central focus of this review and only a brief overview of the fundamental concepts

and popular techniques is provided.

Image representations based on local feature descriptors are widely applied in

image-classification and object-recognition frameworks due to their robustness to

partial occlusion and variations in object layout and viewpoint. Distinctive fea-

tures of objects are detected at interest point locations which generally correspond

to local maxima of a given saliency measure calculated at each location in an im-

age. The intensity patterns around these interest points are then encoded using a

descriptor vector.

Interest-point detection has been performed in a number of ways, depend-

ing on the desired characteristics of the detected points/regions. Harris detectors

[MS04], for example, respond to corners and highly textured points and are more

effective when exact interest points are desired. In contrast, interest-point detec-

tors such the Difference-of-Gaussians (DoG) [Low99] and Laplacian-of-Gaussians

(LoG) [MS04]) detectors, respond mainly to image blobs and are preferred when

invariant regions are desired. Furthermore, different detectors offer invariance to

different scenarios (e.g. scale and/or affine invariance). Lowe [Low99], for ex-

ample, determined scale invariant interest points by computing local extrema in

scale-space pyramids constructed using DoG filters (which is shown to offer a good

approximation of the LoG operator at significantly lower computational costs).

Tuytelaars and Van Gool [TVG99], on the other hand, compute affine invariant

interest points using local edge information computed at ‘anchor’ points located

using the Harris detector. Mikolajczyk and Schmid [MS04] present a detector that

results in interests points that are invariant to changes in both scale as well as

affine transformations and demonstrate state-of-the-art performance. Particularly,

a multi-scale representation of the Harris detector is used to determine candidate

points. Scale invariant points are then determined by maximising a local Lapla-

cian measure across all scales. Finally, affine invariance is achieved by estimating

the local affine shape of each point by iteratively modifying its location, scale

and neighbourhood. The aforementioned techniques are some of the most popular

interest-point detection approaches, for a more comprehensive review of existing

methods the reader is referred to the literature [SMB00, MLS05, TM08].

Feature description is the process by which the characteristics of the de-

tected interested points are encoded in a vector suitable for classification. To

this end, the Scale Invariant Feature Transform (SIFT) [Low04], which encodes

the interest point information via localised sets of 3D gradient orientation his-

tograms, has been one of the most successful and widely adopted techniques in
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the computer-vision literature. This has been substantiated in a recent com-

parative evaluation of image features in the context of object class recognition

[MLS05]. In addition to evaluating five state-of-the-art interest-point detectors

(Harris-Laplace [MS04]; DoG [Low04]; Hessian-Laplace [MTS+05]; salient regions

[KB01] and Maximally Stable Extremal Regions (MSER) [MCUP04]) the following

five state-of-the-art descriptors are considered: the SIFT descriptor [Low04]; the

Gradient Location-Orientation Histogram (GLOH) [MS05b] - an extension of the

SIFT descriptor aimed at improving robustness and distinctiveness [MTS+05]; the

PCA-SIFT descriptor [KS04] - a (reduced dimensionality) vector of image gradi-

ents computed in the x and y directions within a region-of-interest; moment invari-

ants [VGMU96] and a basic cross-correlation descriptor [MTS+05] computed as a

set of normalised points sampled at 9×9 pixel locations within a smoothed version

of the detected region. Within this extended experimental comparison, it is shown

that the extended SIFT descriptor (GLOH [MS05b]) performs best. The SIFT for-

mulation has in fact been met with success in a broad range of computer-vision

applications including: object recognition [SEZ05, LMT+07, BD09, FBM10]; seg-

mentation [SFTA08]; registration [BN08, YZY08] and panoramic image stitching

[Sze06, BL07]. More recently, Bay et al. [BETG08] have presented the Speeded Up

Robust Features (SURF) descriptor, which is loosely based on SIFT, but claimed

to offer superior performance at a significant reduction in computational cost.

The aforementioned survey [MLS05] considered classification of 2D imagery.

In the context of cluttered volumetric baggage imagery, Flitton et al. [FBM13]

compare the performance of four 3D interest-point descriptors of varying complex-

ities (sampled at SIFT interest points): the Density Histogram (DH) descriptor

[FBM13]; the Density Gradient Histogram descriptor (DGH) [FBM13]; the 3D

SIFT formulation of [FBM10] and a 3D extension to the Rotation Invariant Fea-

ture Transform (RIFT) [LSP03, LSP05]. The study considers the detection of

known rigid objects within low-resolution, noisy and complex volumetric CT im-

agery. Surprisingly, it is shown that the simpler density statistics-based descriptors

(DH and DGH descriptors) outperform the more complex 3D descriptors (SIFT

and RIFT). The comparatively poor performance of the SIFT and RIFT descrip-

tors are attributed to the low, anisotropic voxel resolution and high level of noise

and artefacts characteristic to this type of imagery.

3.3.2 Classifiers

Two predominant classification paradigms exist: generative models and discrimi-

native models. For a given input sample x and a class label y, generative classi-

fication models (e.g. Gaussian Mixture Models (GMM) [MP04]; Hidden Markov

Models (HMM) [Edd96]; naive Bayes [Ris01]) learn the joint probability p(x, y)

and perform a classification by using Bayes’ rule [JMF11] to compute the condi-
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tional probability p(y|x) and then selecting the most likely label y. Discriminative

classification models (e.g. Support Vector Machines (SVM) [BHW10]; boosting

[FS95]; random forests [Bre01]) model the conditional posterior probability distri-

bution p(y|x) directly (i.e. a direct mapping from the inputs x to the class labels

y is inferred) [Jor02]. In contrast to generative models, discriminative models are

inherently supervised. Despite the widely-held belief that discriminative models

are better suited to the classification problem, it has recently been shown that

while the discriminative model typically has a lower asymptotic error, the genera-

tive model often approaches its asymptotic error considerably faster [Jor02]. It is

further shown that there exist two scenarios (dependant on the size of the training

set) in which each model outperforms the other. Nonetheless (likely due to the

aforementioned misconception) much of the recent literature has employed discrim-

inative models for image classification [Cri11, MC11, CRLR12, JWP+12, CMS12].

The Support Vector Machine (SVM) [Vap00] is one of the most widely

used classification algorithms. In binary classification tasks (i.e. two classes)

SVMs seek the optimal linear separation of the classes by maximising the mar-

gin of separation between classes (Figure 3.2). Using this criterion, optimisation

results in a separator that can be recovered at any time using only a few data

points - namely those lying nearest to the boundary of separation (and hence

determining the margin). These data points are aptly named the support vectors

and can be used to identify the class of a previously unseen observation as lying on

one side of the identified hyperplane separator in N -dimensional space. In cases

of linearly inseparable data, separation is still attainable via kernel projection.

Maximal-margin separation of classes is obtained by projecting the data into this

higher-dimensional space using a suitable non-linear kernel function (e.g. Radial

Basis Function (RBF) kernel [SSB+97]) (Figure 3.2 (a)). A soft margin may be

used, allowing for some degree of misclassification (controlled by an input cost

parameter C). The parameter C essentially weights the misclassified examples

during training such that the total (training) misclassification error is minimised.

The SVM classification algorithm offers guaranteed maximum-margin separation

of classes (Figure 3.2 (b)) and good generalisation using only a fraction of the avail-

able training data (i.e. the samples near the class boundaries). It has thus enjoyed

widespread popularity and success in image-classification and pattern-recognition

problems [PV98, BL03, FM04, MC11].

Supervised learning algorithms, such as the aforementioned support vector

machine, use labelled training data and search through a given function space for

a function that will make good predictions of the labels of new (unseen) data.

Suitable predictors, however, are not always easily found. In such scenarios,

the advantages of ensemble-based learning, whereby classifiers are constructed

by combining or fusing together multiple weak classifiers, are well documented
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Figure 3.2: Illustration of binary classification using an SVM. The feature space is
related to the input space via a non-linear mapping, allowing for linearly inseparable
input data to be separated using a linear hyperplane in feature space.

[Fre01, Tu05, MGE11, Cri11]. The random-forest classifier [Bre01] is one such ap-

proach which has enjoyed a notable surge in popularity in recent years. Random

forests are ensembles of randomly trained decision trees [Bre01]. Decision trees

are models composed of sets of nodes and edges arranged in a hierarchical tree-like

manner and employ branching strategies to predict an outcome given some input

sample [Qui86] (Figure 3.3).

Decision trees are typically constructed in a supervised manner using a la-

belled training set and a greedy, top-down approach [Qui86]. Every training in-

stance is completely described by a scalar-valued feature vector and an associated

class label. A decision tree is composed of zero or more internal nodes and one

or more leaf nodes. In the case of a binary decision tree (as is used in this work),

all internal nodes (indexed by j ) have exactly two child nodes. Internal nodes are

characterised by a binary test (or node split function) defined over the incoming

data (feature set) [Cri11]:

f(v, θj) : F × T → {0, 1} (3.2)

where v is the incoming data point and θj ∈ T is the parameter space of the

split function. An optimal split function (type and parameters) is that which op-

timally separates the incoming data into two disjoint subsets - where the optimal

separation is determined according to a chosen objective function (e.g. the infor-

mation gain [Weh96]). Given an incoming training sample Sj at an internal node

j, the function that optimally splits Sj into two disjoint subsets SL
j (left child) and
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SR
j (right child) where SL

j ∪ SR
j = Sj and SL

j ∩ SR
j = ∅ is that which maximises

the objective function Ij = I(Sj, S
L
j , S

R
j , θj) [Cri11]:

θ∗j = argmax
θj∈T

Ij (3.3)

In the context of binary classification, the objective function is typically chosen

such that the optimal split is that which produces the purest disjoint subsets of

the input sample (a node j is said to be pure if all the training samples at j belong

to a single class) [SL91].

In addition to determining the optimal node split functions, the training pro-

cess also seeks to optimise the tree structure (i.e. depth, number of leaf nodes etc.).

Greedy top-down tree construction [Qui86] is the most widely adopted method for

building decision trees. Beginning with the entire dataset and an empty tree,

top-down construction involves recursively partitioning the data into meaningful

subsets until some termination criteria have been met (e.g. maximum tree depth

or completely partitioned data). More particularly, beginning at the root node,

j = 0, the optimal split function is found as described above. Two child nodes

(left and right) are then constructed, receiving as input the two disjoint subsets

of the initial training set. For each of the child nodes, the optimal split functions

are again determined over the new input samples. This process is repeated for

all subsequent child nodes until the termination criteria have been met. A wide

variety of stopping criteria have been proposed in the literature (e.g. maximum

tree depth; minimum number of samples at a leaf node etc.). The outputs of the

tree training process are thus: 1) a tree structure; 2) the optimal split functions

for each node and 3) the information about the training samples at each leaf node

(e.g. class distribution) [Qui86].

Tree testing: A test sample is classified by passing it down the tree: beginning

at the root node, the split function associated with each internal node is applied

to the sample and based on the result of the binary test, the sample is sent to the

left or right child node. The process is repeated until a leaf node is reached, where

an output is assigned to the test sample using the information stored at the leaf

node (e.g. class label or posterior probability) (Figure 3.3 (b)).

Leaf predictor model: The data available at a given leaf node may be used

in several ways to assign an output to a test point. In the case of classification

trees, a widely adopted approach is to estimate the conditional probability p(c|v)
that a given test data point v belongs to the class c, where c is a discrete class

label. The distribution is conditional on the specific leaf node reached by the data

point [Cri11].

Randomness: Randomness may be incorporated into the tree training pro-
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Figure 3.3: Decision tree classification diagram. (a) Generalised tree composed of a
set of internal nodes (circles) and leaf nodes (squares). (b) Decision tree classification
procedure: internal nodes store binary split functions which are applied to the incoming
data sample v. Leaf nodes store specific class information (e.g. posterior probability).
Adapted from [Cri11]

.

cess in two ways [BZM07]: 1) random node optimisation and 2) random training

set sampling. Random node optimisation uses the entire available training set at

each node. Randomness is obtained by considering only a random subset of the

available parameter values Tj ⊂ T . The degree of randomness is determined by

the ratio |Tj|/|T |. A ratio of 1 indicates no randomness, while a value of 1/T
indicates maximum randomness. Random training set sampling (or bagging) in-

jects randomness into the tree by considering only a randomly drawn subset of

the training sample at each node. Random node optimisation and bagging may

be used simultaneously [Cri11].

Random forests: A known limitation of the decision tree model is its ten-

dency to overfit the training data [Bre01]. It has been shown that ensembles of

randomly trained decision trees (or random forests) yield superior generalisation

and stability relative to individual trees [Bre01]. Furthermore, in an extensive ex-

perimental comparison [CKY08], random forests have been shown to outperform a

number of popular binary classification algorithms (SVMs [Vap00]; Artificial Neu-

ral Networks (ANN) [DOM02]; logistic regression [DOM02]; naive Bayes [Ris01];

k-NN [SB10]; bagged decision trees [Die00] and perceptrons [FS99]), particularly

in high-dimensional problems. Several related studies, however, have contradicted

these observations, particularly in the bioinformatics domain. Statnikov et al.

[SWA08] for example, identify methodological biases of prior work comparing ran-

dom forests and support vector machines. In an extensive comparative study using

a broad range of microarray-based diagnostic and prognostic datasets it is shown

that SVMs consistently and significantly outperform random forests in the classi-

fication of cancer. Similarly, Ogutu et al. [OPSS11] demonstrate superior genomic

selection results for boosting relative to SVMs and random forests.

The individual trees in a forest are trained independently of one another (us-

ing the aforementioned framework), such that a random forest is comprised of an
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ensemble of randomly different trees. In this way, where one tree fails or performs

poorly on a given task, it is likely that another tree in the forest will perform well.

This assumption is dependent on the degree of correlation (similarity) between

the individual trees in a given forest. Forests composed of highly decorrelated but

individually accurate trees generally lead to improved generalisation and stability

[Bre01]. The degree of decorrelation between the individual trees of a forest is

determined by the degree of randomness of the individual trees and is also con-

trolled via the ratio |Tj|/|T |. Given a test data point, the output of a random

forest composed of T trees may, for example, be computed as the average of the

individual tree predictions or using a majority vote [Bre01].

A random forest is thus characterised by the following parameters [Cri11]:

the number of trees in the forest T ; the maximum individual tree depth DT ;

the type and degree of randomness (|Tj|/|T |); the node split function(s); the

node objective function; the leaf and forest prediction models and the choice of

features. The impact of each of the model parameters on system performance is

fairly well documented in the literature [Cri11]. In general, increasing the size

of the forest T improves the generalisation capabilities of the forest, but also

increases computational complexity. While large forests are known to alleviate the

problem of overfitting characteristic of individual trees (even for forests composed

of individual trees that heavily overfit), growing the trees of a forest to too great

a depth DT has been shown to have a negative impact on generalisation [Cri11].

Fully-grown trees (where each leaf node in the tree contains only a single training

point) are therefore ill-advised. Overfitting may be avoided by terminating tree

growth when one or more stopping criteria have been met (e.g. maximum tree

depth; minimum size of training sample at nodes etc.). Alternatively, overfitting

may be alleviated via the pruning of fully-grown or very large trees [HTF01].

Pruning involves reducing the depth of a decision tree by recursively removing

nodes of the tree (usually bottom-up) until some termination criteria have been

met (e.g. a threshold on the information gain). While various methods for tree-

pruning exist (e.g. reduced-error pruning [EK01]; minimal cost complexity pruning

[PS01]; rule post pruning [NHS01]), they can add significant complexity to the

training process.

Extremely randomised forests: Extremely Randomised Trees (ERT) deter-

mine the node split functions by randomising both the attribute choices as well as

the quantisation thresholds [GEW06, MTJ07]. Ensembles of such trees are referred

to as Extremely Randomised Forests (ERF). ERFs typically do not incorporate

bagging. With reference to the aforementioned ratio, ERFs use |Tj|/|T | = 1/|T |,
∀j - essentially, the degree of randomisation is maximised and node training is

eliminated entirely. The degree of randomisation may, however, be controlled

[MTJ07]. Although true ERFs may lead to lower overall prediction confidence,
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they are highly efficient to train [Cri11].

Random forests have demonstrated state-of-the-art performance (both in terms

of classification accuracy as well as runtime) in a broad range of image-classification-

related tasks [SLT+03, DUDA06, CEJB+07, GMC+10, BZM07, Cri11]. In contrast

to techniques such SVMs and boosting, random forests also extend naturally to

multiclass problems [Cri11]. For a more comprehensive review of the role of ran-

dom forests in computer vision, the reader is referred to [Cri11].

Boosting algorithms [FS95], whereby strong (i.e. good) classifiers are built as

collections or ensembles (i.e. linear combinations) of many weak classifiers, have

also enjoyed widespread success in the context of image classification. The bases

of the majority of boosting algorithms rely on an iterative procedure whereby

a weak classifier is learnt at each iteration using a weighted distribution of the

training data. Having added the weak classifier to the final classifier, the training

distribution is recomputed such the misclassified samples from the previous iter-

ation are assigned heavier weights (i.e. they are ‘boosted’), while the weightings

of the correctly classified samples are reduced or left unchanged. The next weak

classifier is then built using this re-weighted distribution. In this manner, future

weak classifiers focus more on the previously misclassified samples. Boosting algo-

rithms (e.g. AdaBoost [FS95]; BrownBoost [Fre01] - which is more robust to noise;

linear program boosting (LPBoost) [DBST02]) have demonstrated success in a va-

riety of image-classification [DB03, HES+07], detection [VJ01, VJ04, ZPV05] and

recognition [OPFA06] tasks.

Bag-of-Words model: Sivic and Zisserman [SZ03] proposed the original Bag-

of-Words (BoW) (or bag-of-visual-words) model for images, whereby local features

obtained from images are grouped into a finite number of clusters. The cluster

centroids form a codebook which is used to encode the features of images in a

vector quantised representation. The cluster centroids are intuitively referred to

as visual words. Any given image may then be represented by its (orderless)

histogram over these visual words. Traditionally, image classification using the

BoW model is composed of the following steps [NJT06a] (Figure 3.4): 1) feature

detection and description; 2) visual codebook generation and vector quantisation

and 3) classification (using any standard classifier).

Although feature detection and description are most commonly performed us-

ing interest-point detectors and local descriptors (refer to Section 3.3.1), an ex-

tensive investigation into the impact of sampling strategies on the classification

performance of BoW models [NJT06b] has demonstrated that dense sampling of

the feature space significantly outperforms interest-point detectors, provided the

number of sampled points is large enough. The performance gains are attributed

to the increase in the amount of information captured by a dense sampling strat-

egy. While performance improves with sampling density, the associated increase
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Figure 3.4: The Bag-of-Words (BoW) classification model.

in computational demand needs to be considered.

Feature encoding: Following feature description, an image is represented

as an orderless set of descriptors. To allow for the use of standard classification

techniques (e.g. SVM), the unordered descriptors are transformed into fixed-sized

vectors via vector quantisation (middle column in Figure 3.4). This is achieved by

learning a visual vocabulary (or codebook) by partitioning a set of training descrip-

tors into clusters. Each cluster centre represents a visual word (or codeword) in

the codebook. Provided the set of training descriptors is sufficiently representative

of the data, the codebook will be universal. Each descriptor extracted from a new

image is then mapped to the nearest entry in the codebook (a process known as

vector quantisation) and a histogram of visual words is constructed for the image.

This histogram represents the BoW representation of the image and is fed to the

chosen classifier to determine the image class [MTJ07].

Of the various techniques that have been proposed for creating visual vocabu-

laries the most popular approach is k-means clustering [SZ03]. Given a set of N

training descriptors: x1, . . . , xN ∈ RD, k-means clustering typically finds k vec-

tors µ1, . . . , µk ∈ RD and a data-to-mean assignment q1, . . . , qN ∈ {1, . . . , k} that

minimises the cumulative error
∑N

i=1 ||xi − µqi ||2 [CLVZ11]. Despite its general

accuracy, the assignment of local descriptors to visual words (usually via some

nearest neighbour-based search) performed in both the construction of the code-

book as well as in subsequent testing, is computationally expensive. This detracts

from the suitability of a dense sampling strategy, where a massive number of

descriptors (each requiring quantisation) are extracted from every image.
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Several near real-time feature-encoding techniques have been proposed to ad-

dress the computational limitations of traditional k-means clustering. Moosmann

et al. [MTJ07] present a random-forest-based clustering algorithm that is con-

siderably faster to train and test, more robust to background clutter and more

accurate than traditional clustering methods and has arguably been the most

prominent high-speed feature-encoding methodology of late. The proposed algo-

rithm exploits the fact that component-wise decision trees offer logarithmic-time

coding (T (n) = O log(n)). This idea has been explored previously by Nister and

Stewenius [NS06] who constructed codebooks using a tree-based approach based on

hierarchical k-means quantisation. While the technique demonstrated good com-

promise between improved efficiency and loss of accuracy in image retrieval tasks,

Moosmann et al. [MTJ07] propose that no single data structure can sufficiently

capture the diversity of high-dimensional data, suggesting that k-means cluster-

ing is not the optimal approach for descriptor encoding. Instead, an ensemble of

decision trees (i.e. a random forest) is proposed - due to its simplicity, speed and

accuracy. In particular, codebooks are constructed using Extremely Randomised

Forests (ERF) [GEW06], whereby both attribute choices as well as the quantisa-

tion thresholds are randomised. While traditional random-forest-based algorithms

[Cri11] generate outputs by averaging over the constituent tree outputs, the clus-

tering forests build codebooks by assigning separate codewords to every leaf node

in the forest (i.e. a forest containing N leaf nodes, yields a codebook of size N).

Given a new image, every descriptor vector extracted from that image is fed

through every tree in the forest and the output of each tree recorded. The result

for a single descriptor is thus a set of labels (codewords) - one from each tree. The

BoW representation for the entire image is obtained by accumulating the codeword

counts after applying the forest to all the descriptors in the image. The resulting

histogram of codewords is then used in subsequent classification in the same way

as any standard BoW model. Using an SVM classifier, the proposed approach

has been shown to outperform both k-means clustering and kd-trees in terms of

processing time (training and testing), memory usage, classification accuracy and

robustness to background clutter in classical 2D image-classification tasks (using

the PASCAL VOC dataset [EVGW+10]) [MTJ07]. The efficacy of incorporating

ERC forests into BoW image-classification frameworks has been substantiated

further by the near real-time classification framework presented by Uijlings et al.

[USS09] (tested on the 2007 PASCAL VOC dataset).

Furuya and Ohbuchi [FO09] present a 3D model-retrieval approach using ERC

forests to encode densely sampled SIFT feature points. The study demonstrates

the benefits of employing a dense-feature sampling strategy as well as the compu-

tational advantages of ERC forests for feature encoding. Although the framework

is utilised for 3D model retrieval, feature extraction occurs in 2D depth images
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and thus does not represent a true 3D application of the clustering forests model

for feature encoding.

A similar model to the ERC forest is the class-specific Hough forest proposed

for the detection of object classes in 2D imagery [GL13]. Previous works have

accomplished this task via the generalised Hough transform-based Implicit Shape

Model (ISM) [LLS08]. The ISM for a given object class is essentially a codebook of

interest-point descriptors common to that class. Each entry in the codebook casts

a vote for the possible positions of the object centroid according to the spatial dis-

tribution observed in the training data [LLS08]. The descriptors extracted from

test images are then matched against the ISM codebook and votes regarding the

position of the object in scale-space are generated. The peaks observed in the re-

sulting Hough image (created by summing the probabilistic votes) are regarded as

detection hypotheses [GL13]. Similarly to the traditional BoW model, codebook-

based Hough transforms come at a significant computational cost. Class-specific

Hough forests utilise random forests to directly map image patch appearances to

the probabilistic object position votes. Similarly to the ERC forest, the set of

leaf nodes of each tree in the Hough forest represents a discriminative codebook.

Hough-forests have demonstrated state-of-the-art performance (as well as reduc-

tions in processing times) in a variety 2D object classification and segmentation

tasks [GL13, PT13].

To date, it does not appear that clustering forests have been applied to 3D

classification tasks. Nonetheless, random-forest-based encoding techniques have

been successfully implemented in related tasks, particularly in the medical domain.

Zikic et al. [ZGC13], for example, have presented a highly efficient Multi-Atlas

Label Propagation (MALP) scheme for automatically labelling healthy tissue in

3D Magnetic Resonance (MR) imagery of the human brain, by using a random-

forest-based atlas encoding scheme (known as Atlas Forests). State-of-the-art

performance is demonstrated at considerably lower computational cost.

3.3.3 Classification of Non-Medical Complex Volumetric

Imagery

Prior work related to the automatic classification of objects within complex 3D

volumetric imagery is limited. Here it is implied that medical-CT imagery is not

complex (or cluttered) in comparison to security-screening imagery (Chapter 1.2).

The techniques reviewed here are those which consider complex imagery of the na-

ture described in Chapter 1.2. Chen et al. [BCZX08] address the classification of

pistols in Dual-Energy CT (DECT) imagery. DECT decomposition is performed

using High-Low (HL) energy curves and look-up tables constructed for 28 calibra-

tion elements. In this way the chemical characteristics (effective atomic numbers

and electron densities) of the scans are determined. For each volumetric image, the
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central slice (cross-section) is assumed to contain all the information required for

correct classification. Only this central slice is used in the classification procedure,

thereby reducing the problem to 2D. Classification is performed by boosting 2D

Haar-like features [VJ01]. The technique is evaluated using volumes containing

only handguns with no clutter, noise or artefacts. While no experimental results

are presented, the data used is not representative of that encountered in the real-

world and it is unlikely that the aforementioned simplification to 2D will suffice

in cluttered and noisy environments. Further work by the same author [BCZX09]

presented a methodology for the detection of planar materials within baggage-CT

imagery using a 3D extension to the Hough transform [Bal81].

Megherbi et al. [MFB10, MHBF12] present a comparison of classifier-based

approaches using volumetric shape characteristics for the classification of pre-

segmented objects in cluttered volumetric CT imagery. The performance of com-

binations of three shaped-based feature descriptors (rotationally invariant 3D

Zernike descriptors [NK04]; the Histogram-of-Shape Index (HSI) [DJ95] and a

combination of the two) and five classifiers (Support Vector Machines (SVM)

[BHW10]; neural networks [Wan90]; decision trees [SL91]; boosted decision trees

[CS13] and random forests [CS13]) are considered for the classification of pre-

segmented bottles. Although encouraging classification results are presented, par-

ticularly for the HSI descriptor used in conjunction with the SVM or random-forest

classifier (correct classification rates in excess of 98.0%), only a very limited dataset

is considered. The effects of image noise and artefacts are not considered.

Extending upon their earlier work [FBM13], Flitton et al. [FMMB13] present

an experimental comparison to investigate the suitability of the Bag-of-Words

(BoW) model [SZ03] for the detection of threat items in both manually-segmented

as well as unsegmented baggage-CT imagery. Combinations of four 3D interest-

point descriptors (Density Histograms (DH) [FBM13]; Density Gradient Histograms

(DGH) [FBM13]; the 3D Scale-Invariant Feature Transform (SIFT) [FBM10] and

the 3D Rotationally-Invariant Feature Transform (RIFT) [LSP05]) and three code-

book assignment methodologies ((hard, kernel and uncertainty) are considered.

The classification of two classes of threats (handguns and bottles) in manually pre-

segmented subvolumes indicates that optimal correct classification rates (∼ 89%

for bottles; ∼ 97% for handguns) are obtained using an uncertainty assignment

protocol [vGVSG10] in conjunction with simple density-based descriptors [FBM13]

sampled at 3D SIFT [FBM10] keypoint locations. The impact of the classifier type,

the clustering method and the keypoint detection protocol are, however, not con-

sidered. Further experimentation, using unsegmented whole volumes, is shown to

result in a significant decline in performance (with false-positive rates in excess

of 15%). Poor resolution, image noise and metal-streaking artefacts characteristic

to baggage-CT imagery, are shown to negatively impact the efficacy of the 3D
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descriptors and ultimately the classification performance on both the segmented

and unsegmented volumes. Measures to reduce the effects of noise and artefacts

are not considered. Despite the decline in performance associated with the un-

segmented data, this currently represents the only fully-automated approach to

object classification in low-quality, complex volumetric CT imagery.

Finally, Flitton et al. [FBM12] have presented what may perhaps be con-

sidered the current state-of-the-art in the automated classification of objects in

low-quality, complex volumetric imagery. Particularly, a novel 3D extension to

the hierarchical visual cortex model for object classification [SWP05] is used for

the automated detection of threats in manually segmented 3D baggage-CT im-

agery. The approach is shown to outperform a traditional BoW approach with

correct detection rates in excess of 95% and low false-positive rates. Performance

is however, hindered by the presence of noise/artefacts and the high degree of

clutter. Furthermore, an extremely high computational cost is associated with the

construction of the model. Noise and artefact reduction are again not considered.

3.3.4 Classification Summary

A brief review of the most popular and traditionally successful image-classification

techniques has been presented. The individual components of a typical classifi-

cation framework (feature extraction; feature description and classification) have

been discussed. While feature descriptors based on the Scale Invariant Feature

Transform (SIFT) [Low04, KS04] are generally considered optimal in 2D classi-

fication tasks, this does not appear to be true in complex and noisy volumetric

imagery - where simpler density statistics-based descriptors have been shown to

outperform the more complex SIFT and RIFT [LSP05] descriptors [FBM13].

Descriptors are typically computed at keypoints detected using a variety of

scale and/or affine invariant interest-point detectors. Within the popular Bag-of-

Words (BoW) environment, however, it has been shown that classification perfor-

mance may be significantly improved by adopting a dense-feature-point sampling

strategy (whereby interest points are randomly and densely sampled throughout

the entire image). The increase in computational demand associated with a dense

sampling strategy is proportional to the density of sampling grid. For this reason,

the already computationally-demanding k-means clustering vector-quantisation

method has not been previously considered within the 3D imaging domain.

Support Vector Machines (SVM) [Vap00] have traditionally been one of the

most widely adopted and successful classifiers in the computer-vision literature.

Ensemble classifiers (whereby strong classifiers are built as collections of weak

classifiers) are known to offer improved classification performance. In particu-

lar, random forests-based classifiers [Bre01] have enjoyed a massive increase in

popularity in recent years. Owing to their efficiency and good generalisation (par-
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ticularly in multiclass and high-dimensional classification tasks [Cri11, CKY08]),

random forests have been successfully applied to a broad range of classification

and recognition-based tasks.

Randomised clustering forests [MNJ08] offer an efficient alternative to the k-

means clustering approach used in the traditional BoW model. This has allowed

for the benefits of dense-feature sampling strategies to be exploited without the

associated increase in computational demand. Although encouraging results have

been demonstrated in classical 2D classification tasks [MTJ07, MNJ08], the con-

cept has, to date, not been considered in 3D.

Finally, the current state-of-the-art in the automated classification of objects in

low-quality, complex volumetric CT imagery relies on the manual segmentation of

the input data; incurs large computational overhead (in building the cortex model)

and suffers a decline in performance in the presence of image noise and artefacts.

Although the need for manual segmentations have been eliminated in the fully-

automated approach of [FMMB13], the technique is computationally expensive

and leads to false-positive classification rates in excess of 15%.

3.4 Dual-Energy Computed Tomography (DECT)

Conventional, single-energy Computed Tomography (CT) systems produce recon-

structions representative of the Linear Attenuation Coefficients (LAC) of the ob-

ject under investigation. That is to say, the greyscale intensity values (i.e. CT

numbers, in Hounsfield Units (HU)) in the CT image are dependent on the LAC

of the scanned object. Consequently, it becomes challenging and in some cases,

impossible, to distinguish between materials that share similar LACs. In contrast,

Dual-Energy CT (DECT) techniques, whereby attenuation data is captured using

two distinct X-ray spectra, offer a means for characterising the chemical composi-

tion (e.g. atomic number and electron density) of the material under investigation

based on its response under these different spectral conditions.

Dual-energy computed tomography is not a new concept. In fact Godfrey

Hounsfield made mention of it in his pioneering work on computed tomography

in 1973 [Hou73]. Despite an early interest in DECT techniques, technological

limitations (e.g. unstable CT numbers, insufficient tube currents at low tube

voltages and poor separation of energy spectra [Jin11]) have meant that the first

commercial clinical DECT system was produced as recently as 2005 by Siemens

Healthcare. As a result of recent advances in CT technology, the popularity of

dual-energy-based CT imaging has enjoyed a rejuvenation with successful appli-

cations in a broad range of medical-imaging tasks [Joh11], industrial applications

such as non-destructive material evaluation [NWK+11, MSVGJ03] and illicit ma-

terial detection in airport security-screening [Sin03, YNC06].
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In general, DECT techniques fall into one of three categories [Jin11]: 1)

post-reconstruction techniques; 2) pre-reconstruction techniques and 3) iterative-

reconstruction techniques.

3.4.1 Post-Reconstruction Techniques

Post-reconstruction (or image-based) DECT techniques are both the most straight-

forward and the most widely used in the medical-imaging domain. In fact, the

most successful clinical application of DECT to date has been the differentiation

of iodine (a commonly used contrast medium in CT) [Joh11]. DECT for ma-

terial differentiation exploits the different absorption characteristics of materials

with differing atomic numbers [JKS+07]. Since human tissue is composed pre-

dominantly of atoms with low atomic numbers (namely: hydrogen (Z=1), carbon

(Z=6), nitrogen (Z=7) and oxygen(Z=8)), they exhibit very similar attenuation

characteristics across the clinically acceptable X-ray energy range (i.e. they have

similar CT numbers at low and high energies). In contrast, the CT numbers

of materials with high atomic numbers vary considerably at differing energies.

Therefore, the use of contrast mediums such as iodine (Z=53), which produce

higher attenuation at lower tube voltages, allows for the differentiation of mate-

rials at different energies by a direct measurement of the ratio of the high and

low-energy CT numbers [JKS+07, Joh11]. According to these principles, so-called

three material differentiation has become a well-established method in medical-CT

[JKS+07, LYPM09]. The basic concept is best explained by use of an example.

By plotting the high and low-energy CT numbers of three (sufficiently different)

materials of known density, a material differentiation may be performed. Figure

3.5 illustrates this plot for material differentiation in the liver [JKS+07]. Hepatic

tissue is composed predominantly of soft-tissue, water and fat. These components

exhibit an approximately linear relation between attenuation and energy. The

addition of the contrast medium iodine to the liver tissue alters the spectral be-

haviour of the components and causes a displacement in the CT numbers from the

(contrast-free) straight line. The change in the spectral behaviour arises due to

the strong photoelectric effect of iodine relative to the comparatively weak pho-

toelectric effects of soft-tissue and fat. The shaded area in Figure 3.5 represents

the different ratios of soft-tissue, fat and iodine in the liver and is used to deter-

mine the material composition ratios for a given low and high-energy CT number

[JKS+07].

DECT-based material differentiation has been successfully applied to a variety

of tasks including: the characterisation of kidney stones and gallstones in abdom-

inal imaging [GJCM09, CNB+10]; the characterisation, discrimination and moni-

toring of lesions and nodules in the liver [AHR+11], kidneys [GJCM09, GJH+09],

adrenal glands [GHM+10], pancreas [GJCM09, MSK+10] and lungs [SBHC+12];
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Figure 3.5: Principle of three material differentiation: differentiation of fat, soft-tissue,
water (the three main components of liver tissue) and iodine in the liver. The fat, water
and soft tissue components are approximately linearly related. The addition of iodine
displaces the CT values of the liver tissue from this line [JKS+07].

virtual colonoscopy for the detection of colorectal lesions [NKY12]; lung perfusion

imaging [TBH+08]; myocardial perfusion imaging [RLZ+08] and bone and plaque

removal for improved quantification of calcified carotid stenoses in head and neck

angiography [UWH+09, TKK+10]. The differentiation of tissues without the appli-

cation of contrast media is considerably more challenging and remains an unsolved

problem [Joh11].

A further post-processing application of DECT involves combining the low

and high-energy CT images to produce a so-called mixed or fused image [EHIS+08,

Joh11]. In DECT, the low-energy images typically exhibit superior contrast resolu-

tion but lower signal-to-noise ratios compared to the high-energy images [EHIS+08].

The objective of a fused image is to optimally combine the low and high-energy im-

ages such that the benefits of both are preserved. This fusion is generally achieved

via a simple, fixed linear combination of the high and low-energy scans:

IM = w.IL + (1− w).IH (3.4)

where IM , IL, IH are the mixed-energy, low-energy and high-energy images and

w is a weighting factor (usually fixed at w = 0.3). Eusemann et al. [EHIS+08]

present a comparative study demonstrating that the traditional fixed linear combi-

nation of the high and low-energy images does not optimally capture the benefits of

the individual scans. Instead, an organ-specific (i.e. tunable) nonlinear, sigmoidal

fusion scheme is shown to outperform the linear approach.
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The Dual Energy Index (DEI) of a material is a simple technique for quantify-

ing the dual-energy behaviour of scanned materials and can be used as a means for

material differentiation [Joh11]. The DEI of a material in air (i.e. not dissolved

in water) is given by [Joh11]:

DEI =
xL − xH

xL + xH + 2000
(3.5)

where xL and xH are the pixel values (in Hounsfield Units (HU)) for the low

and high-energy scans respectively. By definition, the HU value of water is 0, and

it remains unchanged at different energy levels of CT imaging. The DEI value of

water is thus 0. Materials which have effective atomic numbers less than that of

water (Zeff < 7.42) have negative DEI values (since the HU values of such materials

decrease with decreasing photon energy). In contrast, materials with atomic num-

bers greater than that of water have positive DEI values (since HU values increase

with decreasing energy) [CZLY13]. The DEI of a mixture of two materials falls

between the DEI of the constituent materials [Joh11]. While the DEI is therefore

an indicator of the effective atomic number of a material, in contrast to the true

effective atomic number (Section 3.4.2), its value does not rely on the photoelec-

tric cross-section characteristics of the material (which are not precisely known)

[Joh11]. Furthermore, its computation does not require a calibration procedure or

the availability of raw-data. Despite its ease of computation, the DEI has demon-

strated potential in material differentiation for a variety of clinical tasks including:

the differentiation of air and tagged faecal materials from soft-tissue colonic struc-

tures in CT colonography [CZLY13] and the chemical characterisation of urinary

stones in abdominal CT imagery [GJCM09]. It is worth noting that the DEI best

discriminates between materials with atomic numbers less than 40, beyond which

the relationship between DEI and Z becomes approximately uniform (i.e. DEI

remains constant for increasing Z) [Joh11].

The predominant limitation of post-reconstruction DECT techniques is their

susceptibility to artefacts in the reconstructed images [SM12].

3.4.2 Pre-Reconstruction Techniques

Alvarez and Macovski [AM76] pioneered the so-called pre-reconstruction DECT

technique by modelling the total attenuation of X-rays as a linear combination of

the photoelectric absorption and Compton scattering coefficients using a non-linear

polynomial approximation of the polychromatic measurement models [AM76].

This early work has formed the basis for a broad range of techniques known as

basis material decomposition methods [CH87, KPVK86, NBC03, YNC06].

The physical basis of DECT imaging relies on the energy dependence of the in-
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teraction of X-ray photons with matter (Section 2.1.2). More particularly, within

a photon energy range of approximately 30 keV to 200 keV, these interactions

are known to be dominated by the photoelectric effect and Compton scattering

[AM76]. Alvarez and Macovski [AM76] have demonstrated that, under these cir-

cumstances, the total attenuation of an X-ray beam may be modelled as follows:

µ(x, y, E) = ac(x, y)fKN(E)︸ ︷︷ ︸
Compton scatter

+ ap(x, y)fp(E)︸ ︷︷ ︸
photoelectric effect

(3.6)

where (x, y) represents the coordinates of the material being scanned; E is the

incident X-ray energy; fp(E) represents the energy dependence of the photoelec-

tric effect and fKN(E) is the Klein-Nishina cross section for Compton scattering.

Particularly, the photoelectric effect is proportional to 1/E3, while the energy

dependence of Compton scattering is governed by the Klein-Nishina formula (the

functions fp(E) and fKN(E) have been discussed in further detail in Section 2.1.2).

The parameters ac(x, y) and ap(x, y) are constants that are dependent on the ma-

terial composition [NBC03]:

ac(x, y) = ρe(x, y) (3.7)

ap(x, y) = ρe(x, y)BZ
n(x, y) (3.8)

where B = 9.8× 10−24, n ≈ 3, Z(x, y) is the atomic number and ρe(x, y) is the

electron density given by:

ρe(x, y) = NA

(
Z(x, y

uA(x, y)

)
(3.9)

where NA = 6.02252 × 1023 mol−1 is Avogadro’s number, u is the unified

atomic mass unit (1/12 the mass of an unbound neutral 12C atom) and A(x, y) is

the relative atomic mass.

The fundamental principle of dual-energy CT involves acquiring attenuation

measurements for an object at two different tube voltages (usually 80kVp and

140kVp for medical applications). This results in two separate attenuation profiles.

Considering Equation 3.6 and assuming a polychromatic X-ray beam and the

notation outlined in Section 2.2, dual-energy scanning produces two logarithmic

projections:



72 Literature Review

PH(r, θ) = fH(Ac, Ap) = − ln

∫
SH(E)e

−fKN (E)Ac(r,θ)−fp(E)Ap(r,θ)dE + lnSH(E)

(3.10)

PL(r, θ) = fL(Ac, Ap) = − ln

∫
SL(E)e

−fKN (E)Ac(r,θ)−fp(E)Ap(r,θ)dE + lnSL(E)

(3.11)

where SH(E) and SL(E) are the high and low-energy spectra respectively

and Ac(r, θ) =
∫
ac(x, y)ds and Ap(r, θ) =

∫
ap(x, y)ds are the line integrals of

the Compton scatter and photoelectric absorption coefficients respectively. These

dual-energy projections are typically acquired in one of three ways: 1) through

the use of energy-resolving detectors [AST04]; 2) X-ray source spectrum switching

[GWI+97] or 3) through the use of sandwich detectors (transmission dependent

filtering based on material type or thickness) [RP79]. The dual-energy decompo-

sition problem is to determine the Compton scatter coefficients Ac and the photo-

electric absorption coefficients Ap of the material from the measured projections

PH and PL. Alternatively, it has been shown that the attenuation coefficients for

any material may be expressed as a linear combination of the coefficients of two

basis materials, provided that the two chosen materials are sufficiently different in

their atomic numbers (and hence in their Compton and photoelectric coefficients)

[KPVK86].

While Equations 3.10 and 3.11 can be solved by direct approximation [Fen78,

BBHM81], the more popular approach is to approximate the relationship between

the dual-energy projections PL and PH and a set of decomposed projections as

polynomial functions. Alvarez and Macovski [AM76] used a non-linear polynomial

equation to approximate the integral PH and PL by a second order power series

in Ac and Ap:

PL = b0 + b1Ac + b2Ap + b3AcAp + b4A
2
c + b5A

2
p (3.12)

PH = c0 + c1Ac + c2Ap + c3AcAp + c4A
2
c + c5A

2
p (3.13)

A calibration procedure is used to determine the coefficients bi and ci. Particu-

larly, the projection values for two known materials of varying thicknesses are mea-

sured. Since PL, PH , Ac and Ap are known for the chosen materials, the coefficients

bi and ci are computed using a polynomial least-squares fitting algorithm. Equa-

tions 3.12 and 3.13 are then solved using the iterative Newton-Raphson method

[SBB+93]. It has been shown, however, that the method is both computationally

demanding and unstable, making it susceptible to noise and large approximation
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errors. Furthermore, the solutions are sensitive to the coefficients used in the

polynomial approximations [CH87].

Methods based on Look-Up Table (LUT) procedures have been proposed and

shown to be both faster (compared to Newton-Raphson methods [AM76]) and less

sensitive to the numerical procedure, thus producing solutions which are less sus-

ceptible to noise [CH87, KPVK86]. Chuang and Huang [CH87] propose a method

based on the use of iso-transmission lines and LUTs. For a given logarithmic

transmission value, an iso-transmission line is represented by a linear equation in

two basis functions:

PL = ata + btp (3.14)

PH = dta + etp (3.15)

where ta and tp are the aluminium and plastic equivalent thicknesses respec-

tively and a, b, d, e are the regression coefficients which are proportional to the

total attenuation coefficients of aluminium and plastic. The desired aluminium

and plastic thicknesses (ta, tp) for a given pair of projection values (PL, PH) are

determined by solving Equations 3.14 and 3.15 simultaneously (i.e. at the inter-

section of the two iso-transmission lines - see Figure 3.6). The computation of the

regression coefficients require a calibration procedure. A set of predefined projec-

tion values are obtained by scanning various combinations of thicknesses of two

well-defined materials (most commonly aluminium and plastic). The correspond-

ing regression coefficients (computed from Equations 3.14 and 3.15) are stored

in high and low-energy calibration tables. Linear interpolation between two pre-

defined coefficients in a calibration table is then used to compute the regression

coefficients for any new projection value. In clinical applications, the aluminium

and plastic thicknesses are chosen to mimic the maximum possible equivalent

thicknesses of bone and soft tissue in the human body. The acquired plastic and

aluminium components may then be transformed into any equivalent set of basis

materials or synthesised monoenergetic images using simple linear combinations

[LAM+81]. The main drawback of the iso-transmission line method is the inten-

sive calibration procedure required to generate the regression coefficients. It is

also evident that for high projection values, the iso-transmission lines become in-

creasingly non-linear. In those cases, the use of the linear equations in Equations

3.14 and 3.15 result in large approximation errors [NBC03].

The majority of dual-energy decomposition algorithms have been motivated

by medical applications. There has, however, been a growing interest in the appli-

cation of similar techniques for explosives detection in baggage-screening systems

employed at airport security checkpoints [YNC06, NBC03, SM12]. The fundamen-
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Figure 3.6: Iso-transmission lines for low and high-energy data: intersection gives equiv-
alent plastic and aluminium thicknesses. Plot generated using simulations presented in
Chapter 6.

tal objectives of dual-energy decomposition in the medical and security-screening

domains differ. In the medical domain, the primary goal is to generate high-quality

images to facilitate the diagnostic procedure, while in the security-screening do-

main, the main objective is the determination of the atomic properties of the

objects in a scan to allow for materials-based explosives detection. The nature of

baggage-CT data differs substantially from that encountered in the medical do-

main [MMFB12, MMvS+13]. In particular, the range of possible materials encoun-

tered in baggage scans is much broader and more unpredictable. Consequently,

dual-energy decomposition using basis materials is more challenging since fairly

accurate estimates of the combinations of basis material thicknesses to use in the

calibration procedures are required. Ying et al. [YNC06] have further highlighted

several limitations of traditional medical dual-energy decomposition methods (e.g.

[AM76, KPVK86, CH87]) when used for explosives detection. These limitations

include: high polynomial approximation errors (> 200% for [AM76]), caused by

the large dynamic range of the photoelectric coefficients (resulting from the broad

spectrum of materials encountered in baggage scans); a lack of boundary con-

straints in dual energy decomposition; image artefacts and X-ray spectral drifts.

Despite these fundamentally differing objectives and the increased complex-

ity of baggage data, the dual-energy techniques designed specifically for baggage

screening have been fairly similar to their medical counterparts [YNC06, NBC03].

Naidu et al. [NBC03], present a dual-energy decomposition approach for use in

baggage-CT using a multi-step fitting procedure. An iso-transmission method

based on [CH87], is used to solve the decomposition problem in Equations 3.10

and 3.11. In contrast to [CH87], the iso-transmission method is used to deter-

mine the photoelectric and Compton equivalent reconstructions (as opposed to

the plastic and aluminium equivalent reconstructions).
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Similarly to [CH87], a calibration procedure is performed to generate the LUT.

Interestingly, the calibration data is generated using simulated low and high-energy

spectra SL(E) and SH(E) (as opposed to the true, measured spectra). The liter-

ature indicates that this is a more commonly adopted approach in the security-

screening domain [NBC03, YNC06, YNSC07]. It is worth noting, however, that

although simulated spectra are used, CT images of known materials (termed Im-

age Quality Phantoms or IQPs), obtained on the CT scanner under investigation,

are generally used to calibrate the simulated spectra [YNC06].

Ying et al. [YNC06], propose a pre-reconstruction basis material decomposi-

tion method, whereby the photoelectric and Compton sinograms are obtained by

solving a constrained least squares minimisation problem:

(Ac, Ap) = arg min
Ac,Ap

[PL(Ac, Ap)− PL]
2 + [PH(Ac, Ap)− PH ]

2︸ ︷︷ ︸
Q(Ac,Ap)

(3.16)

subject to the constraint: Ac, Ap ≥ 0 and where PL(Ac,Ap) and PH(Ac, Ap) are

the measured (or simulated) low and high-energy projections respectively (Equa-

tions 3.10 and 3.11) and Q(Ac, Ap) is the cost function. Additionally, techniques

for adaptive scatter correction based on the work of Glover et al. [Glo82], destreak-

ing by nonlinear filtering of the decomposed projections and real-time image-based

correction for X-ray spectral drifts are incorporated into the proposed framework.

The resulting approach, termed the Constrained Decomposition Method (CDM),

is shown to yield numerically stable and physically meaningful solutions to Ac and

Ap. Furthermore, the solutions Ac and Ap are continuous functions of PL and

PH , eliminating the artefacts caused by discontinuities in Ac and Ap. The CDM

is also shown to yield a significant reduction in the approximation and boundary

constraint errors common to earlier methods - a comparison between the CDM

approach and the approach of Alvarez and Macovski (AM) [AM76], for example,

resulted in improvements in the approximation errors for the Ac and Ap projec-

tions respectively from 1.50% and 238.25% for the AM method to 0.00008% and

0.0002% for the CDM method. The large approximation error for Ap in the AM

method leads to physically meaningless values (e.g. negative atomic numbers)

preventing the direct application of such methods to the baggage-CT problem.

The high-fidelity recovery of the photoelectric coefficient is, in fact, a common

challenge in the majority of dual-energy decomposition methods. This is largely

due to the domination of Compton scattering relative to the photoelectric effect

in the photon energy range of interest for X-ray CT applications (Section 2.1.2).

The photoelectric component typically presents with much higher degrees of noise

(compared to the Compton coefficients), making the stable recovery of the photo-

electric coefficients more challenging [SM12].
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3.4.3 Iterative-Reconstruction Techniques

Iterative-reconstruction techniques [NH85, SV82], whereby CT images are recon-

structed iteratively using a statistical model and a chosen objective function, are

known to outperform traditional analytical approaches such as FBP in the recon-

struction of images from incomplete projection data. The improved performance

generally comes at a considerable increase in computation demand [MMvS+13].

The ever-increasing computational power of modern hardware, however, has seen

an increased interest in iterative techniques.

Semerci and Miller [SM12] present a polychromatic DECT algorithm, tailored

particularly for the detection of objects in unknown, cluttered environments (as

typically encountered in baggage-CT images). The availability of some degree

of a priori information regarding the Compton scatter and photoelectric absorp-

tion coefficients of the objects of interest is assumed. This prior information is

incorporated (as a series of constraints) into a variational framework, using the

Levenberg-Marquardt algorithm [Mar63] for minimisation. The photoelectric and

Compton scattering parameters are then modelled as the superposition of a para-

metrically defined object of interest and a non-parametric background. The object

model contains a geometric component (equal in the photoelectric and Compton

images) and a contrast component (specific to the photoelectric and Compton im-

ages) and is based on a parametric level-set representation of the characteristic

function of the object (via radial basis functions). The proposed approach pro-

vides simultaneous solutions to the problems of object detection and background

reconstruction. Tested on simulated data, the algorithm is shown to successfully

detect, locate and determine the geometric characteristics of objects of interest,

while simultaneously producing reasonable background reconstructions.

3.4.4 Computation of the Effective Atomic Number

Intuitively, the effective atomic number of a material is an estimate of the equiv-

alent, hypothetical element that will result in the same X-ray attenuation of the

given material. The formal computation of the effective atomic number of a ma-

terial requires precise knowledge of the composition of the material [WdB69]:

Zeff =

(∑
i

Zi/Ai∑
j Zj/Aj

Zn
i

) 1
n

(3.17)

where i and j are indices referencing the individual elements composing the

material; Zi and Ai are the atomic number and relative atomic weight respectively

of each individual element and n is a constant (traditionally n ≈ 2.94 [Spi46]).

In the baggage-screening context, the predominant application of DECT has
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been the determination of effective atomic numbers and densities for materials-

based detection of explosives. [Sin03]. In its simplest form, the detection of explo-

sives in baggage scans is based on two fundamental assumptions [Rod79]: 1) the

majority of explosives may be characterised as organic substances with effective

atomic numbers of approximately Zeff = 8 and densities of 1.15 ≤ ρ ≤ 1.85 g/cm3

and 2) the majority of (non-metallic) innocuous items typically found in packed

luggage (e.g. clothing, toiletries, books etc.) have densities of ρ < 1.0 g/cm3.

Figure 3.7, for example, illustrates Zeff as a function of density for common sub-

stances (and several illicit materials) found in packed luggage [EK93]. Innocuous

materials include organic substances (e.g. books, sausages, alcohol, leather, cotton

etc.); inorganic substances (e.g. salt, PVC, plastic) and metals (e.g. iron, copper).

The illicit drugs plotted are heroine and cocaine, while the explosives include C4,

TNT, Semtex and Detasheet [EK93]. Such plots have traditionally been used by

the US Federal Aviation Association (FAA) to evaluate the detection capabilities

of a given scanner. Most importantly, the plot demonstrates that typical explosive

materials (as well as illegal narcotics) are easily clustered and hence distinguished

from other innocuous organic and/or inorganic materials. Based on these observa-

tions, it is then theoretically possible to distinguish between illicit and innocuous

items by computing the effective atomic numbers and densities of the materials in

a scan [Rod79]. Traditionally, this has been achieved via a simple calibration and

interpolation procedure [SMK11].

A set of reference materials, with known chemical characteristics and whose

effective atomic numbers and densities span the expected range of the materials

of interest, are chosen. For explosives detection (where the materials of interest

are typically organic with low Zeff ) a reasonable range is typically 5 ≤ Zeff ≤
14 [Rod79, SMK11]. The low and high-energy Linear Attenuation Coefficients

(LACs) for each of the reference materials are then measured on the scanner under

investigation. The relationship between the known Zeff and the measured LAC

ratio (µH/µL) is approximated by an interpolating polynomial. Finally, the Zeff

of any unknown material may then be interpolated from the measured LAC ratio

and the approximation polynomial. The procedure is summarised by the curve in

Figure 3.8, which was generated using the following reference materials: ethanol,

Delrin, water, Teflon, neon, sodium, magnesium and aluminium. The chemical

properties of these materials are summarised in Table 3.1. The effective atomic

numbers for ethanol, Delrin, water and Teflon were computed according to the

classical equation (Equation 3.17). The low and high LACs were approximated

using simulated X-ray energy spectra (Figure 6.1), the energy-dependent photon

interaction cross-sections for each reference material (interpolated from published

databases [BH87, CHK97]) and Equation 3.6.

It is important to note, however, that this fundamental approach assumes a



78 Literature Review

Figure 3.7: Zeff as a function of density for common innocuous and illicit materials found
in packed luggage [EK93].

Figure 3.8: Determination of Zeff by interpolation of approximating polynomial - ap-
proximated using the ratio of the measured (or simulated) low and high-energy LACs
for a range of known reference materials [SMK11].

perfect measurement and observation of the constituents of the illicit and innocu-

ous substances [Lu99]. Naturally, such ideal conditions are not encountered in

reality. Furthermore, it is worth noting that various innocuous substances that

have very similar chemical characteristics to common explosives (e.g. honey and

chocolate), are typically not included in the evaluation of the detection capabili-

ties of a system (as they would fall within very similar regions as the explosives

in Zeff vs. density plots) [Lu99, EK93]. Therefore, even under the assumption of

ideal conditions, the discrimination of explosives by the interpolation of the Zeff

vs. density curve is at best a crude approximation.

Several more robust DECT-based techniques exist for computing the effec-

tive atomic number [AM76, LAM+81, NBC03, ZCZC06, YNC06, SMK11, SM12].

The majority of these rely on the decomposition of the low and high-energy data

into equivalent Compton scatter and photoelectric absorption coefficients (using

the methods described in Section 3.4.2). The most widely adopted approach for
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Material Molecular
Formula

Zeff

Ethanol C2H6O 6.35
Delrin H2CO 6.95
Water H2O 7.42
Teflon CF2 8.43
Neon Ne 10
Sodium Na 11
Magnesium Mg 12
Aluminium Al 13

Table 3.1: Reference materials used for computation of Zeff interpolating polynomial
[SMK11].

computing an estimate of Zeff, given the Compton scatter coefficient ac and the

photoelectric absorption coefficient ap, is formulated as follows [AM76]:

Zeff = K ′
(
ap
ac

) 1
n

(3.18)

where K ′ and n are constants. To obtain the photoelectric and Compton

coefficients requires two separate reconstructions (one for the photoelectric image

and one for the Compton image). The determination of Zeff in this manner is

thus computationally demanding. Ying et al. [YNC06] propose an alternative

formulation for computing the effective atomic number:

Zeff = K

(
ap
ahct

) 1
n

(3.19)

where K and n are constants and ahct is the CT number of the scanned materi-

als (obtained from the high-energy CT image). This approach eliminates the need

to compute the Compton reconstruction image, resulting in a significant reduction

in computational demand. Furthermore, the division of the photoelectric image

by the high-energy CT image, results in an elimination of the partial volume effect

in the Zeff image.

Equation 3.17 may be modified to compute the effective atomic number image

given a decomposition of the dual energy data into two basis material images

I1(x, y) and I2(x, y) [ZS12]:

Zeff(x, y) =

[
ρ1I1(x, y)Z

n
1 + ρ2I2(x, y)Z

n
2

ρ1I1(x, y) + ρ2I2(x, y)

] 1
n

(3.20)
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where ρ1 and ρ2 are the densities of the two basis materials and n is a constant

typically in the range of 3-4 [YNC06].

3.4.5 DECT Summary

This section has provided a review of various Dual-Energy Computed Tomography

(DECT) techniques. For the most part, DECT techniques may be grouped into

one of three categories: post-reconstruction techniques; pre-reconstruction tech-

niques and iterative-reconstruction techniques. Post-reconstruction techniques

operate directly on the low and high-energy scans and are the most straight-

forward and computationally efficient approaches. The literature does however,

indicate that the effectiveness of post-reconstruction techniques are limited by

artefacts and noise and provide comparatively little discriminative power (com-

pared to more advanced techniques). Pre-reconstruction DECT techniques are

the most widely implemented techniques, particularly in the security-screening

domain, where DECT decomposition and subsequent effective atomic number

computations have been successfully used for materials-based explosives detection

[Rod79, Sin03, SMK11, YNC06, NBC03]. Such techniques operate in the projec-

tion domain and typically decompose the low and high-energy scans into equiv-

alent Compton and photoelectric parts. Using the fundamental laws of DECT,

effective atomic number reconstructions may then be computed - providing an

indication of the chemical makeup of the objects present in a scan. Theoretically,

different object classes are distinguishable based on this information. Similarly to

the post-reconstruction techniques, reconstruction artefacts pose a significant chal-

lenge to these techniques. Furthermore, decompositions typically require two FBP

reconstruction per image, making pre-reconstruction techniques computationally

demanding.

Similarly to single-energy CT, DECT based on iterative-reconstruction tech-

niques provides superior performance, particularly considering the reduction of

artefacts. Improved performance does however, come at an increase in computa-

tional demand. Nonetheless, such techniques are gaining popularity with the ever

increasing computational power of modern hardware.

3.5 Segmentation

Image segmentation is a fundamental task in the field of computer vision and is

a critical component of a large variety of image analysis algorithms. In statistics,

the equivalent problem is generally referred to as cluster analysis and has been the

source of a wealth of literature [NJW+02, FR98]. The prior literature addressing

the problem of image segmentation is similarly extensive. Different algorithms are
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often classified according to their underlying methodology, for example: thresh-

olding techniques [S+04]; region-growing techniques [PBLL11, GVR+10, LW10];

split-and-merge techniques [Che91]; clustering techniques [CA79]; partial differ-

ential equation-based methods (e.g. level sets [VC02, HJWL13]); deformable

model-based methods (e.g. active contours [KWT88] and Active Shape Model

(ASM) [CHTH94, CTCG95]); graph-based methods [BJ01]; watersheds [VS91]

etc. A comprehensive analysis of the current state-of-the-art in segmentation is

not readily feasible. For the purposes of this study, the review of the current

state-of-the-art is thus restricted to the topic of volumetric-image segmentation

and CT imagery in particular [SSW88, SZD06, HvGS+09]. The reader is urged to

refer to Appendix A which is presented in parallel with this review and provides

a more comprehensive discussion of image segmentation and related concepts.

3.5.1 The Segmentation of Medical Imagery

In most medical applications, the segmentation task is concerned with a single

anatomical structure and therefore different segmentation techniques have been

developed specifically for particular structures or organs. Nonetheless, two com-

mon trends exist: 1) the exploitation of prior knowledge of the properties and

characteristics of the relevant human anatomy to develop effective models and 2)

the use of very simple techniques (e.g. greylevel thresholding) to provide coarse,

initial segmentations, which are subsequently refined or completed. The literature

addressing the problem of medical-image segmentation is vast (refer to [PXP00])

and only a brief overview of the most popular techniques is presented here.

Thresholding techniques are effective when the target structures have con-

trasting intensities or some other quantifiable features [PXP00]. Surprisingly,

such a simple approach is often sufficient to achieve the desired segmentation

in medical applications, where the target structures or organs are typically char-

acterised by distinctive features such as image intensity or gradient magnitude

[MTJM10]. Healthy lung tissue, for example, is characterised by a lower at-

tenuation value relative to that of the surrounding anatomy. The majority of

related segmentation techniques thus employ simple intensity-based operations

to obtain a coarse segmentation of the healthy lung fields. These estimations

are then refined (if necessary) using, for example, connected-component analy-

sis [HHR01, UR05, SPvG05, vRdHV+09]. Basic thresholding, however, produces

sub-optimal results in images with low signal-to-noise ratios and cases where the

foreground is not easily distinguishable from the background (based on intensity

values alone). A more comprehensive survey of thresholding techniques is provided

in [SSW88].

Region-growing techniques extract image regions based on predefined con-

nectivity/similarity criteria (e.g. intensity or edge information) [SZD06, BGMG+00].
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Region growing, however, typically relies on the selection of an accurate seed-point

(starting position) from which the region-growing kernel expands, extracting all

pixels connected to the initial seed (according to the predefined criteria). In med-

ical applications, seed-points are usually easily determined using prior-knowledge

of the surrounding anatomy. A seed-point located in the trachea (which is eas-

ily located using a simple tube detection procedure) for example, generally yields

satisfactory results for the segmentation of the lung fields. Several methods for

eliminating the dependence of region-growing algorithms on accurate seed-points

have been proposed and typically incorporate prior knowledge and statistical in-

formation [DYC03, PT01]. A more comprehensive review of segmentation by

region-growing is presented in Appendix A.2.

Supervised machine learning based methods employ pattern recognition

techniques to partition input images according to a model inferred from a set

of training data [Sze10]. These techniques again rely on target structures be-

ing characterised by distinctive features (e.g. texture or shape). A large variety

of approaches have been proposed, including: Multiple Sclerosis (MS) lesion seg-

mentation using a kNN classifier [AVV08]; liver segmentation in CT imagery using

artificial neural network classifiers [TT94]; segmentation of ultrasound images of

the liver using support vector machines [KP03] and multi-organ segmentation in

CT imagery using random forests [CSB09a, MSW+11b, GPKC12].

Atlas-based techniques (which employ machine-learning) are particularly pop-

ular in medical-image segmentation. An atlas is constructed by compiling informa-

tion related to the (approximately constant) locations and shapes of the anatomical

structures to be segmented. This may be performed manually or using information

from existing segmentations. An unseen image is segmented via image registration

techniques [MV98], whereby the input image is mapped to the coordinate space of

the atlas. Atlas-based segmentation algorithms have been widely implemented -

particularly in the segmentation of the structures of the brain within MR imagery

[CPB+04, AHH+09, LWK+10].

Clustering-based techniques have enjoyed much success in the medical-imaging

domain. Classical hard-clustering methods [Bab98] require that a given data point

(e.g. voxel) either belongs to a particular cluster or it does not. The data is

thus partitioned into a pre-specified number of mutually exclusive clusters. While

hard-clustering techniques have been used for the segmentation of medical images

[OSE05], fuzzy-clustering techniques are much more popular. In contrast to hard-

clustering, fuzzy-clustering methods, as in fuzzy logic, allow data points to belong

to several clusters simultaneously. The degree to which a given data point belongs

to each cluster is defined by a value between 0 and 1, such that the sum of its

membership degrees across all clusters is 1 [Bab98]. The vast majority of fuzzy-

clustering algorithms are based on the optimisation of the basic c-means objective
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function (or some modification thereof) [Bez81, Bab98], leading to what is com-

monly termed the Fuzzy C-Means (FCM) clustering algorithm. FCM clustering-

based segmentation has been used for the segmentation of: neurological struc-

tures within MR images of the brain [SBSA03, JSX11, ASB+12]; breast lesions in

dynamic contrast-enhanced MR images [CGB06]; tissues in ophthalmic-MR im-

agery [YHLL02]; the carotid artery in ultrasound images [ADES07]; pulmonary le-

sions within Positron Emission Tomography (PET) images [BZ10]; colonic polyps

within CT colonography [YMFS04] and structures within abdominal-CT images

[Tab07, WP08].

It is worth noting that several parameters need to be specified or initialised

prior to using the FCM algorithm, namely [Bab98]: the number of clusters; the

fuzziness exponent (determining the degree of fuzziness of the partition); the ter-

mination criterion; the norm-inducing matrix (determining the shape of the re-

sulting clusters) and the initial fuzzy partition matrix (defining the initial cluster

centroids). Of these, the number of clusters has the most significant impact on the

final segmentation. Medical applications allow for relatively accurate estimates of

the number of clusters to be selected - significantly increasing the likelihood of

accurate segmentations. Furthermore, while the fuzzy partitioning matrix is typi-

cally initialised randomly (i.e. random initial cluster centroids are assigned), med-

ical applications usually exploit knowledge of typical tissue distributions to more

accurately initialise this matrix - improving accuracy and the rate of convergence

[LY03].

Deformable statistical models are attractive options for a wide range of

anatomical segmentation tasks due to the combination of ease of incorporating

prior knowledge into the models and the predictable nature (e.g. shape and

appearance) of the target structures or organs. The active contour model (or

snakes), originally proposed by Kass et al. [KWT88], is a technique for detecting

the boundary of an object in an image and was the first deformable model ap-

plied to the task of medical-image segmentation. Kass et al. [KWT88] define a

snake (or contour) as an “energy-minimising spline guided by external constraint

forces and influenced by image forces that pull it toward features such as lines and

edges”. More particularly, an initial, parametrised contour is iteratively deformed

(or evolved) by minimising an energy function designed to be locally minimal at

the object boundary. The model is, however, sensitive to the initial placement

of the contour and requires prior knowledge regarding the position and shape

of the target object. Alternate constrained deformable models that have been

met with success in the domain of medical-image segmentation include: Active

Shape Models (ASM) [CHTH94, CTCG95, VGFS+02]; Active Appearance Mod-

els [CET01, BBLS05]; Geometric (or Geodesic) Active Contours (GAC) using

level-sets [LGF00, Par02] and active contours without edges [CV01]. The general
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technique of matching deformable models to image data has been extensively ap-

plied to the task of medical-image segmentation - for a more complete analysis

of such techniques, the reader is referred to one of many relevant surveys (e.g.

[MT96, HM09, MTJM10]. The predominant characteristic of such approaches,

which make them ill-suited to the segment-all task in the baggage imagery do-

main, is their reliance on the consistency or predictability in the properties of the

object being segmented (especially regarding shape).

Several medical-segmentation tasks present specific challenges (e.g. the seg-

mentation of abnormal or pathological anatomy or the segmentation of complex

structures such as the pulmonary vessel trees). In such cases, highly specified al-

gorithms are typically developed with a particular abnormality or target structure

in mind [vRvG13]. Consider, for example, the segmentation of the complete pul-

monary vessel trees. Vesselness filters [FNVV98], based on the eigenvalues of the

Hessian matrix or the eigenvalues of the structure tensor, exploit the greyscale cur-

vature characteristics of tube-like structures against a dark background such that

the vessels are enhanced and the surrounding anatomical structures are suppressed

[FNVV98, WBB05]. Vesselness filters are often used as the core segmentation tool

[FNVV98, ZCS+07, AAIW05] but have also been used to provide starting points

for tree growing or tracking techniques [SHS04, ZCK+12]. Similar approaches have

been successfully applied to the segmentation of the lung fissures [WBB05].

Approaches for the segmentation of pathological anatomy are often initiated

with a coarse segmentation obtained via simple greylevel thresholding and then

refined or completed using some case-specific technique. Various approaches have

been proposed to this end including: probabilistic atlas-based segmentation [SPvG05,

ASM+11, DFC+11, vRAvG07]; textural classification using statistical features

[KKK+08, WLL09, RK96]; knowledge-based methods exploiting knowledge of the

surrounding anatomy [SWB+11] and statistical shape-based learning approaches

[SWB+11, SBB12].

The simultaneous segmentation of multiple anatomical structures is more akin

to the task of segmenting complex baggage imagery. This problem has received

notably less attention in the literature. The most significant contributions in

this field address the issue of multi-organ segmentation in varied CT imagery

[CSB09a, MSW+11b, GPKC12]. The task is approached as a voxel classification

problem and is addressed via modifications to the popular random forest classi-

fier [Bre01] - thus falling in the category of machine-learning based segmentation

(see above). Random forests are feature-based classifiers and thus require the

extraction of informative image features. As is the trend in medical-imaging ap-

plications (referred to throughout this study), the availability of prior knowledge

is exploited. Particularly, anatomical context is captured via context-rich features

which describe the relative position of visual patterns in the local anatomy. These
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features are then used to build (or learn) a random-forest-based spatial-context

model. An important advantage of such an approach is its low computational

overhead [Bre01, CSB09a]. In fact, random forests have enjoyed increasing pop-

ularity in medical-image segmentation in general and have been successfully ap-

plied to the segmentation of adrenal gland abnormalities in CT imagery [SCS+13];

synaptic contacts in electron microscopy images [KSS+11]; foetal brain structures

in ultrasound images [YNI+12]; the myocardium in real-time 3D echocardiogra-

phy [LVNB09] and a range of structures in MR imagery (e.g. multiple sclerosis

[ABGG+09, GCM+11]; high-grade gliomas [ZGK+12]; left ventricle [MGCA12],

neurological structures [YCSB09, MBC+11]).

Overall, while this has not been a comprehensive review of the medical-imaging

segmentation literature (refer to [PXP00, WK08, HvGS+09, MTJM10, GOM+12,

vRvG13]), it has allowed for the emphasis of an important trend (in the context of

this work) - namely, the dependency of the majority of the current techniques on

the availability of prior anatomical information. While this is not a criticism of the

aforementioned techniques, it does make them ill-suited to the task of segmenting

unknown objects from complex 3D imagery.

3.5.2 Automatic Segmentation of Non-Medical Volumetric

Imagery

Complex volumetric imagery acquired in the security-screening domain is typi-

cally characterised by low, anisotropic voxel resolutions; a high level of noise and

artefacts; clutter (i.e. potentially large number of objects to segment) and a lack

of prior knowledge regarding the contents of the scan [MMFB13]. Consequently,

the segmentation of such data is a challenging task. Techniques that have been

successfully applied to medical-CT imagery (Section 3.5.1), where the segmenta-

tion objectives are typically well defined, are thus unlikely to be equally effective

in this domain.

This hypothesis has been verified by Megherbi et al. [MBFM13], who investi-

gated the effectiveness of classical medical-segmentation techniques when applied

directly to low-quality baggage-CT scans. In particular, four methods were eval-

uated on the task of segmenting bottles and handguns from complex baggage-CT

imagery: 1) confidence connected region growing [PB99]; 2) fuzzy connectedness

[US96]; 3) the watershed transform [VS91] and 4) fast marching [Set99]. It is found

that careful parameter tuning is required on a per-case basis to obtain meaning-

ful results and even then, the effects of image noise (despite pre-filtering), image

complexity and the lack of prior knowledge regarding the target objects lead to

suboptimal segmentation results which are notably poorer than those observed in

the medical domain.

The bulk of the prior literature addressing baggage-CT segmentation in partic-
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ular has its origins in a recent collaborative initiative between the US Department

for Homeland Security (DHS) and the Awareness and Localization of Explosives-

Related Threats (ALERT) Center of Excellence [CMP13]. The initiative (tasked

with promoting academic and third party research in security-screening) led to

the development of the following five baggage-CT-segmentation algorithms (two

of which have appeared in peer-reviewed publications [WGW12, GSK+12]).

Wiley et al. [WGW12] present a 3D region-growing method based on the

Stratovan Tumbler medical-segmentation technology [Wil09]. The technique is

composed of five stages: 1) definition of a 3D kernel; 2) determination of the

kernel movement criteria; 3) seed initialisation; 4) flood-fill and 5) splitting and

merging. Optimal results are obtained using a spherical kernel, provided the size

of the kernel (determined automatically, based on the amount of local clutter) is

smaller than the object being segmented and larger than any expected holes in its

boundary. The movement criteria for a given kernel are determined automatically

using a training procedure, whereby initial criteria are matured by manually im-

proving errant segmentations and adding each improvement to a central training

file. A polynomial is fitted to the training points and used to determine the future

movement criteria at any voxel. Seed-points are determined according to a voxel

ordering method which ensures that large kernel sizes, high intensity voxels and

voxels in the centres of objects are considered first. The 3D kernel traverses a

volume in a flood-fill manner provided the traversed voxels satisfy the movement

criteria. Composite objects are represented by hierarchical tree-like models. In

particular, objects are initially segmented into multiple parts and pairs of seg-

mented parts are merged if their degree of overlap exceeds a threshold. The study

demonstrates high-quality segmentations for homogeneous objects and results in

good separation of touching objects. Performance deteriorates for low-contrast

objects, thin objects and in the presence of artefacts. It is also indicated that

high-quality segmentations rely on near isotropic voxel resolutions in all three

dimensions. The technique is presented in further detail in Appendix A.2.2.

Song et al. (TeleSecurity Sciences, Inc.) [CMP13] present a sequential ap-

proach composed of three stages: 1) pre-processing (by 2D bilateral filtering

[TM98]; 2) object segmentation and 3) post-processing. Object segmentation

is achieved using a sequential ‘Segment-and-Carve’ (SC) approach, operating on

the principal that easy objects should be segmented first. The objects segmented

in each stage are carved out of the image before proceeding to the next stage.

Segmentation is performed using the Symmetric Region-Growing (SymRG) tech-

nique [WH03] (Appendix A.2.1) - a seedless (i.e. unsupervised) region-growing

technique based on a symmetric function and which is invariant to starting condi-

tions. In total, five SC stages are proposed, each targeting objects with different

characteristics: 1) homogeneous, bulk objects; 2) homogeneous, medium thickness
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objects; 3) homogeneous, sheet-like objects; 4) homogeneous, metal objects and 5)

heterogeneous objects. Each stage is composed of five steps: 1) binary mask gen-

eration by thresholding; 2) mask pre-processing; 3) segmentation by SymRG; 4)

boundary correction and 5) object carving. The five steps each require parameter

tuning, with parameters differing for each stage. On completion of the five-stage

sequential SC procedure, the segmented objects from each stage are subjected to

extensive post-processing operations to correct for over and under-segmentations.

Particularly, object-splitting is performed in four stages: 1) splitting by histogram

analysis; 2) splitting by RANSAC; 3) splitting by recursive k-means clustering

and 4) splitting by morphological opening. Object-merging is performed based on

three thresholds: 1) spatial proximity; 2) mean intensity and 3) object type. While

the study demonstrates high-quality segmentations for selected objects, the results

for complete scans are not presented. The approach is extremely convoluted (with

a large parameter set) and optimal performance requires careful parameter tuning.

Grady et al. [GSK+12] present a graph-based segmentation technique com-

posed of three stages: 1) foreground identification; 2) candidate splitting and

3) candidate refinement. Foreground identification is performed by applying a

Mumford-Shah functional [GA09] to artefact-reduced volumes (obtained by linear

interpolation-based MAR [Tuy93]), producing labelled volumes (voxels labelled as

foreground or background). Connected component analysis is applied to the la-

belled volumes. Each of the connected components in the foreground is recursively

partitioned into candidate segments using the Isoperimetric Distance-Tree (IDT)

algorithm [Gra06] (Appendix A.1). Recursions are driven by a novel Automated

QUality Assessment (AQUA) metric, which automatically computes the quality of

a segmentation without a priori knowledge of the object being segmented. Com-

putational expense is optimised by performing coarse-to-fine segmentation (i.e.

the segmentation from the previous level is used as the initial mask for further

splitting). High-quality segmentations are demonstrated for challenging cases.

Manageable run-times of approximately four minutes per volume (on an Intel

Core 2 Duo 2.8 GHz machine) are presented. Low-density and sheet-like objects

present the greatest challenges and it is suggested that superior MAR would be

beneficial.

Harvey et al. (University of East Anglia) [CMP13], present a technique based

on the multi-scale sieves class of algorithms [BCPL96, BHHC98]. Sieves function

by filtering input signals to remove the intensity extrema at specific scales. In the

context of image segmentation, semantically meaningful objects are removed at

specific (typically higher) scales. The proposed approach is composed of four steps:

1) sieve the input volume to four logarithmically-spaced scales; 2) compute four

channel volumes; 3) label the channel volumes by connected component analysis

and 4) merge the labelled channel volumes into a single labelled volume. Merging
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is performed by determining the similarities between the density histograms for

each labelled object in each channel volume using the Kolmogorov-Smirnov (K-

S) test [LHT10], which computes the probability that the histograms have been

drawn from the same distribution. The specific strengths and weaknesses of the

approach are not addressed in any great detail [CMP13]. An interesting observa-

tion is that since sieves segments all objects at all scales, at least one channel will

always contain a segmentation of an object. It is thus proposed that a more useful

approach (compared to channel merging) would be to pass the channel volumes

directly into some artificial intelligence system (e.g. a classifier, object detector or

salient region detector). The decision to merge the channels was dictated by the

specifications of the ALERT initiative [CMP13]. The computational complexity

of sieves is approximately N log p, where p is image dependent and is proportional

to the number of flat-zones (the largest connected components where the signal is

constant) in the image.

Feng et al. (Marquette University) [CMP13] present a true 3D (as opposed

to per-slice) technique which, although not explicitly specified, draws signifi-

cantly from the automatic segmentation and merging technique of Ugarriza et

al. [USV+09]. The approach is composed of three stages: 1) seed map generation;

2) adaptive region-growing and 3) merging. Seed maps are generated by locating

sufficiently large homogeneous regions in the input volume. Homogeneous regions

are determined by thresholding of the Sobel gradient map of the volume [SB10],

while region size is determined by connected component analysis. Seed regions are

grown by dynamic region-growing [USV+09], where the region-growing threshold

is not constant. To compensate for the variation of intensities within objects (due

to CT artefacts), the region-growing threshold is modelled as a non-linear func-

tion of the mean intensity of the region. On completion of the region growing,

pairs of touching objects (i.e. those sharing a common edge) are merged based on

their similarity in a 2D feature space (characterising mean texture and intensity).

This merging heuristic is applied recursively. The technique is shown to be sen-

sitive to parameter tuning and susceptible to under-segmentations (occurring in

approximately 15% of cases).

Each of the five aforementioned baggage-CT segmentation techniques were de-

veloped and evaluated using a fully labelled volumetric baggage-CT data set cap-

tured on a single-energy medical-CT scanner with a resolution of 0.98×0.98×1.29

mm. This data is not representative of the current benchmark in baggage screen-

ing, where data is typically captured on dual-energy scanners and are characterised

by considerably poorer voxel resolutions. The development of segmentation algo-

rithms for such data has not been considered previously.
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3.5.3 Segmentation Evaluation Metrics

An accurate quantitative analysis of a segmentation produced by an algorithm

is vital for the reliable comparison of different segmentation algorithms and to

demonstrate performance improvements of novel approaches. Segmentation eval-

uation techniques may be divided into two broad categories: subjective and ob-

jective evaluation [Zha96]. In subjective evaluation segmentations are rated by

human observers (e.g. five-level rating [AIGM98]). Although these are consid-

ered the gold-standard in clinical practice (if the rating is performed by expert

radiologists), such evaluation is both costly and time consuming and not guaran-

teed to produce repeatable results (hence subjective) [HvGS+09]. The objective

evaluation category presents a much richer array of techniques. In a comprehen-

sive survey, Zhang et al. [Zha96] present an informative hierarchy of segmen-

tation evaluation methods. Particularly, the objective methods are divided into

two categories: system-level techniques, quantifying the impact of the segmenta-

tion on the larger system/application (e.g. impact on object recognition results)

and direct techniques, which directly quantify the performance of a segmenta-

tion method. The direct evaluation techniques are then subdivided further into

analytical techniques, evaluating the method itself and empirical techniques, eval-

uating the results of a given method. Finally, the empirical methods are classed as

either supervised techniques, which employ ground-truth segmentations, or unsu-

pervised techniques, which do not require ground-truth images. It should be noted

that supervised evaluation techniques generally are not truly objective when the

ground-truth images are manually created.

The most common approach in the medical literature may be classified as

a supervised-empirical technique, whereby the algorithm-generated segmentations

are compared with expertly delineated ground-truth segmentations using any num-

ber of discrepancy measures [Zha96, NBVV00] or combinations thereof [GJC01,

DZS+07]. Such measures are typically based on volumetric overlap or surface

distances [HvGS+09]. A list of the most commonly used metrics may be found

in [GJC01]. It is worth noting again, however, that the manual generation of

ground-truth data is a time consuming task (especially for 3D data) and is not

guaranteed to provide true ground-truth segmentations (due to its intrinsic sub-

jectivity) [BMFU+07].

Quantification of the segmentation error is straightforward when ground-truth

data is available. In many real-world scenarios (i.e. beyond the algorithm develop-

ment stage), online evaluations of segmentations may be required for a number of

purposes (e.g. flagging poor segmentations; selecting optimal segmentations from

a candidate set etc.). Naturally, ground-truth segmentations are not available in

such scenarios (hence the requirement for a segmentation in the first place), de-

manding reliable unsupervised evaluation techniques. A number of methods have
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been proposed to perform unsupervised evaluation of segmentations. Several such

techniques are reviewed here - for a more comprehensive review, the reader is

referred to the survey of Zhang et al. [Zha96].

Warfield et al. [WZW04] propose an Expectation-Maximization (EM) based

algorithm for Simultaneous Truth And Performance Level Estimation (STAPLE).

Essentially, the performance of different algorithms on a given segmentation task

are estimated by their common agreement. In particular, the algorithm consid-

ers a collection of segmentations (produced by different segmentation algorithms)

and computes a probabilistic estimate of the true (reference) segmentation as a

weighted combination of these segmentations. The reference standard estimate

may then be used for the evaluation of each algorithm using any standard dis-

crepancy measure. Bouix et al. [BMFU+07] successfully employed this method

to compare the performance of brain-tissue classifiers. An obvious limitation of

STAPLE, however, is the danger of good segmentation scores arising from poor

segmentations which are characterised by similar errors.

Kohlberger et al. [KSA+12] present an approach for estimating the segmen-

tation error in the absence of ground-truth segmentations. Particularly, a generic

learning approach, based on a set of novel segmentation features, is adopted to

predict the volumetric overlap error [HvGS+09] and Dice coefficient [Dic45] of any

given segmentation. A novel set of 42 shape and appearance features is proposed to

characterise each segmentation. The proposed features are based on the objective

functions used in popular energy-based and graph-based segmentation algorithms

and are grouped into five categories: 1) unweighted geometric features (quantifying

the size and regularity of the segmentation); 2) weighted geometric features (lo-

cally emphasising the geometric features when intensity values are similar to each

other); 3) intensity features (measuring absolute intensity and intensity distribu-

tions within segmentations); 4) gradient features and 5) ratio features (computed

as ratios of previously computed features). These features are then used to train a

Support Vector Machine (SVM) classifier using the segmentation errors measured

against a known ground-truth. The trained SVM can then be used to predict a

given segmentation error using the features extracted from a segmentation without

the need for a ground-truth segmentation. Having trained the classifier using the

segmentations of eight organs, the proposed approach produces strong correlations

between the predicted and true errors when applied to an unseen test set. The

proposed approach is shown to produce considerably stronger correlations than the

responses of Probabilistic Boosting Classifiers [Tu05] trained on the ground-truth

segmentation boundaries.

Grady et al. [GSK+12] present an Automated QUality Assessment (AQUA)

measure that provides a novel confidence measure that automatically computes

the quality of a segmentation without a priori knowledge of the object being seg-
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mented. The confidence measure is obtained via a data-driven approach for model

learning. Particularly, 92 good object segments are identified, from which a set of

42 features (the same as those used in [KSA+12]) is extracted. A Gaussian Mix-

ture Model (GMM), using 8 Gaussians, is then fitted to the data via Expectation

Maximisation (EM) to create a model of a high-quality object. The trained GMM

is then used to compute the AQUA measure for subsequent segmented objects. A

high value for AQUA would indicate a high probability that the segmented object

is a single, high-quality object. It is further suggested that the AQUA measure

may be used to evaluate the overall segmentation of an image by averaging the

AQUA scores of each individual object. In this way, different segmentation al-

gorithms may be quantitatively compared in the absence of ground-truth. It is

worth noting, however, that such an evaluation may fail in scenarios where an

incorrect number of objects are segmented from a given image. Given an input

image composed of three objects, for example - if algorithm A correctly segments

the image into three components with AQUAs (0.8, 0.7, 0.9), while algorithm B

incorrectly segments the image into a single object (i.e. missing two objects) but

with an AQUA of 0.9, then the overall AQUA for algorithm A would be 0.8 while

that of algorithm B would be 0.9. This incorrectly suggests that the segmentation

result of B is superior to that of A.

In conclusion, different segmentation tasks (and even different stages within a

given segmentation algorithm) require different performance measures. Consider-

ing, for example, the broader objective of this study (i.e. the automatic subdivision

of baggage volumes for object recognition) the ultimate performance of a partic-

ular segmentation technique would perhaps best be quantified via a system-level

evaluation technique [Zha96] - whereby the impact of the segmentation on the

overall classification results are compared. In order to determine the optimal re-

sults for a given segmentation method, however, an online empirical evaluation

technique [Zha96] is more appropriate.

3.5.4 Segmentation Summary

This review has considered the segmentation of 3D volumetric imagery obtained

from two imaging domains: the medical-imaging domain and the security-screening

domain.

Based on the medical-imaging literature, several important observations (in

the context of this study) have been made. The majority of medical-segmentation

techniques exploit the availability of prior knowledge and are thus highly specified

to particular anatomical structures. Comparatively few methods address the issue

of the simultaneous segmentation of multiple anatomical structures - those that

do, still rely on prior, contextual information [CSRK11, CSB09b, MSW+11a]. The

dependence of medical-segmentation techniques on prior knowledge is an indica-
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tion that such techniques will yield suboptimal results when the segmentation of

multiple, unknown objects is required. This hypothesis has been substantiated by

the comparative work of Megherbi el al. [MBFM13].

Secondly, a review of segmentation methods developed for the security-screening

domain has been presented. Of the five methods reviewed, three are based on

region-growing algorithms [WGW12, CMP13]. These techniques are shown to

suffer from region leakage (where regions grow beyond the true object bound-

aries) when structures have poor contrast at their edges or when structures of

similar intensities are adjacent to one another. As a consequence, a common post-

processing step in the three region-growing approaches is to apply some form of

additional splitting and/or merging operations. Such additional processing, how-

ever, expands the parameter space (and hence the degree of user interaction) and

increases computational expense. Grady et al. [GSK+12] propose an optimisation

to the isoperimetric graph partitioning method [GS06a] to address the issue of

leakage through bottlenecks. The proposed isoperimetric distance tree algorithm

(a graph-based method) produces high-quality segmentations, with relatively few

cases of over-segmentation. The segmentation of thin, sheet-like objects presents

difficulties for each of the five methods and it has been suggested that separate

approaches be developed specifically for such cases. Furthermore, low-intensity

objects are often missed and incorrectly labelled as background.

Finally, several methods for the quantitative evaluation and comparison of

segmentation algorithms have been presented. The most suitable approach is

shown to be dependent on the particular objectives of the segmentation task.

3.6 Summary

A review of the prior literature relevant to the research conducted in this the-

sis has been presented. The following research areas have been addressed: the

reduction of noise and artefacts in CT imagery (particularly in the presence of

metallic objects); dual-energy-based decomposition techniques; unsupervised 3D

object segmentation and 3D object classification within low-resolution, complex

volumetric imagery.

While the key findings and observations related to each have been summarised

at the ends of their respective sections, it is worth highlighting those particular

areas where the current state-of-the-art is lacking and where opportunities for

novel contributions exist.

Noise and artefact reduction: The vast majority of denoising and MAR-

based CT literature is found in the medical domain. The development of novel

techniques or the evaluation of existing (medical) techniques in novel applications

of CT imagery (outside of medicine) are extremely limited [MMFB12, XZX+09,
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GSK+12]. The differences in the nature of medical images and those encountered

in other domains (particularly regarding the lack of a priori information) mean

that the state-of-the-art techniques from the medical literature are not guaranteed

to be successful when applied to non-medical-CT imagery. Existing studies are

limited in the techniques that are compared, the CT domains or applications which

are considered and the performance-evaluation techniques that are employed.

Classification: The current state-of-the-art in 3D object classification in

non-medical complex 3D volumetric imagery (such as that obtained in the security-

screening domain) [FBM12] relies on the manual segmentation of the input data;

incurs large computational overhead and suffers a decline in performance in the

presence of image noise and artefacts. An efficient, fully-automated classification

framework that is robust to image noise and artefacts does not currently exist in

this domain. Furthermore, despite the proven benefits (in terms of classification

accuracy) of densely sampled feature points, such strategies have not previously

been considered in this domain.

Segmentation: Volumetric segmentation techniques (existing predominantly

in the medical literature) are typically designed with a particular target object in

mind and are unlikely to be effective for the segmentation of multiple, unknown

objects. The blind segmentation of unknown objects in cluttered volumetric im-

agery is considerably more challenging and comparatively few solutions exist. The

state-of-the-art in this domain [Gra06] has been developed using high-resolution

medical-grade imagery with relatively low levels of noise and metal-streaking arte-

facts [CMP13]. Such data is not representative of that encountered in the current

security-screening domain. The segmentation of low, anisotropic resolution volu-

metric imagery in the presence of multiple metal objects has not been considered

previously.

The remainder of this work strives to address each of the aforementioned lim-

itations via the development of novel methodologies, with the ultimate objective

of producing a fully-automated 3D object classification framework.





Chapter 4

Noise and Artefact Reduction

The origins and effects of image noise and artefacts in volumetric-CT imagery

have been discussed in the preceding chapters of this work.

Although the topic of digital-image denoising has been studied extensively,

resulting in a vast resource of literature, the denoising of complex volumetric-

CT imagery, of the nature considered in this work, has received comparatively

little attention [ZPA10b, ZPA10a]. There is evidence in the medical literature

however, that simple denoising operations (which were not necessarily designed

for transmission imagery) can improve the quality of CT images and benefit the

implementation of subsequent, more complex operations [Hsi03, See01, YZB+07,

DZX+08]. The value of such techniques when applied to low-resolution, complex

CT imagery has however, not been considered previously.

Similarly, the vast majority of the literature addressing the reduction of metal-

streaking artefacts in CT imagery is found in the medical domain. It has been

shown (Sections 2.4.4 and 3.2) that the effects of metal-streaking artefacts are

particularly pronounced in cluttered, low-resolution imagery. The differences in

the nature of medical imagery and that encountered in other domains (e.g. the

security-screening domain) mean that the Metal Artefact Reduction (MAR) tech-

niques which have been successfully applied to medical images are not guaranteed

to be met with the same degree of success when applied to non-medical-CT im-

agery.

The review of the literature presented in Chapter 3 has revealed that in the

context of this work, the existing denoising and artefact-reduction literature is

limited in the following areas:

1. The potential benefit of popular denoising techniques when applied to low-

resolution complex volumetric-CT imagery has not been investigated.

2. The efficacy of state-of-the-art MAR techniques from the medical-CT liter-

ature has not been evaluated in non-medical domains.

3. To date, there do not exist any MAR techniques designed particularly for
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the reduction of artefacts in low-resolution, cluttered baggage-CT imagery

containing multiple metal objects.

4. Performance analysis is predominantly qualitative in nature. Comprehensive

quantitative analyses of both denoising as well MAR techniques are rare

[KEMB11].

These limitations/shortcomings are addressed by the following contributions

presented in this chapter:

1. A comparative performance evaluation is conducted for six popular 2D image

denoising techniques (based on the study of Buades et al. [BCM05b]) and

the baggage-CT-enhancement technique of Zhou et al. [ZPA10b, ZPA10a]

when applied to low-resolution, cluttered volumetric-CT imagery (Section

4.4.1).

2. A novel quantitative performance measure is presented, extending traditional

performance evaluation approaches by evaluating the potential benefits of

denoising on the application of more complex operations (volume rendering

and 3D object classification) within the current imaging context (Section

4.1).

3. A comprehensive comparative performance evaluation (considering both qual-

itative as well as quantitative measures) is conducted for eleven state-of-

the-art MAR techniques from the medical literature when applied to low-

resolution, cluttered volumetric-CT imagery (Section 4.4.2).

4. A novel MAR technique designed specifically for cluttered baggage-CT im-

agery containing multiple metal objects is presented (and included in the

above comparison) (Section 4.2).

The research presented in this chapter has been previously published as [MMFB12,

MMFB13, MMvS+13, MMB+13].

4.1 3D SIFT-Based Performance Measure

In the context of this work, a predominant motivation for effective denoising is to

aid the implementation of subsequent automated 3D object classification. The

performance measure proposed here is developed with this objective in mind.

Flitton et al. [FBM10] have investigated the implementation of object recognition

in complex volumetric-CT imagery using 3D SIFT features. It is shown that the

presence of noise and artefacts is the predominant factor that negatively impacts

the quantity of valuable 3D-SIFT interest points detected and ultimately leads to
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a decline in classification performance. With this in mind, it is proposed that a

denoising algorithm that leads to an increase in the number of high-quality 3D

SIFT points will benefit subsequent classification.

Interest points are detected using a 3D extension [FBM10] to Lowe’s SIFT

algorithm [Low99, Low04]. Similarly to the traditional 2D formulation, an initial

candidate set of keypoints is taken as the local extrema of multi-scale Difference of

Gaussian (DoG) volumes, where the DoG volumes are created by convolving the

input volume I(x, y, z) with 3D Gaussian filters G(x, y, z, kσ) at different scales:

DoG(x, y, z, k) = I(x, y, z) ⋆ G(x, y, z, kσs)

− I(x, y, z) ⋆ G(x, y, z, (k − 1)σs) (4.1)

where k is an integer representing the scale index. A voxel is then considered a

local extrema if it is a minimum or maximum in its local 3 x 3 x 3 (i.e. 26 voxels)

neighbourhood at the current scale k as well as in the 27-voxel neighbourhoods in

the two adjacent scale space DoG volumes (i.e. at scales (k+1) and (k−1)). This

initial candidate set of keypoints is refined by discarding unstable keypoints caused

by poor contrast if their densities are below a given threshold τc. The candidate

set is refined further by discarding the keypoints related to poor localisation on

edges - determined by a second threshold τe related to the Trace and Determinant

of the 3× 3 Hessian matrix of the DoG volume [FBM10].

This 3D SIFT point detector is applied to a given volume before and after

denoising and the number of object and noise SIFT points are recorded (Figure

4.1). An object feature point is identified as one located on an object of interest

within the CT image whilst a noise feature point is considered as one which is not

on the primary object within the CT image (i.e. assumed to be caused by noise

and/or artefacts). The ratio of the object feature points to total feature points

(object + noise) is used as an indication of the performance of the given technique.

It is assumed that an increase in this ratio will ultimately correspond to improved

object recognition results. It is important to note that the method is best suited

to volumes containing single isolated target objects, such that object and noise

feature points are easily distinguished (e.g. Figure 4.1).

4.2 Distance-Driven Metal Artefact Reduction

The majority of sinogram-completion-based MAR techniques adhere to the fol-

lowing framework: metal segmentation, sinogram completion, final image re-

construction. The technique proposed here employs the concept of the virtual

sinogram [AAAZ10] and follows the same general framework. Additionally, a
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Figure 4.1: Object (yellow) and noise (black) 3D-SIFT interest points detected for an
isolated handgun.

novel post-reconstruction refinement step is proposed to address the tendency of

interpolation-based sinogram completion to introduce secondary streaking arte-

facts in the interpolated images [MB09] (refer to Section 3.2.1). The components

of the proposed technique are discussed below (Figure 4.2).

4.2.1 Metal Segmentation

Metallic objects present in the original reconstructed image are segmented by bi-

nary thresholding, yielding a ‘metal-only’ image. Thresholding exploits the fact

that the CT values of metals are extremely high, especially relative to other ma-

terials. A metal-free image is then constructed by assigning a constant pixel value

to the metallic regions in the original, reconstructed image (the mean value of the

background (i.e. non-metallic) region of the image is used). The metal-free image

is then filtered with the edge preserving Non-Local Means (NLM) filter [BCM05b]

(see Section 4.3) to reduce weak streaking artefacts and background noise while

preserving the non-metallic regions of the image.

4.2.2 Reprojection and Sinogram Completion

The metal-only image and the filtered, metal-free image are forward projected

using the Radon transform [KKRH+00], yielding the corresponding virtual sino-

grams. The metal-only sinogram is used as a mask to reference the corrupted/missing

bins in the metal-free sinogram. The affected bins in the metal-free sinogram are

then replaced by interpolated estimates from adjacent bins using spline interpola-

tion.

4.2.3 Reconstruction

The interpolated sinogram is reconstructed to obtain the corrected, metal-free

image. Reconstruction is based on the FBP algorithm [KKRH+00] (Section 2.3).
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Figure 4.2: Distance-driven MAR flow chart. 1) Metal segmentation. 2) Metal removal
3) NLM filtering of metal free image. 4) Forward projection of metal only and filtered
metal free images. 5) Metal trace identification. 6) Sinogram completion. 7) Image
reconstruction 8) Reinsertion of metal objects. 9) Image refinement. 9) NLM filtering.

The metal objects are reinserted into the interpolated image, yielding the corrected

image.

4.2.4 Image Refinement

The image refinement step is motivated by the fact that the secondary streaking

artefacts introduced by the interpolation procedure generally manifest as intense,

bright lines affecting the entire image [KCWM12]. Regions previously unaffected

by streaking, but exhibiting secondary streaks, are thus characterised by higher

intensities (see white arrows in Figures 4.28 and 4.29). It is likely that much of

this secondary streaking may be removed by simply imposing an upper limit on

the corrected pixel values, such that the intensities of the corrected pixels are less

than or equal to the corresponding pixels in the original image. It is worth noting,

however, that when considering images containing multiple metallic objects, a

common manifestation of unequal beam-hardening across views [MND+99], is the

appearance of dark bands (underestimated attenuation values) in the straight-line
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regions connecting the metal objects (Figure 4.3). While the sinogram-completion

approach generally yields adequate correction of such regions, the correction is

likely to be undone by the aforementioned intensity-limiting procedure.

A distance-weighted refinement procedure, whereby the degree of intensity

limiting is dependent on the location of the pixels relative to the metal objects, is

proposed to address this limitation. Pixels falling within the straight-line regions

connecting two metal objects are subjected to less intensive intensity refinement.

For every pair of metal objects, a set of ‘refinement weights’ are computed in the

following way (illustrated in Figure 4.3):

1. The centroid of each metal object is determined (red ‘x’ in Figure 4.3).

2. For the smaller of the two metal objects (Metal 1 in Figure 4.3), an ellipse

having the same second-moments as the metal object is determined.

3. The angle that the line passing through the centroids makes with the hor-

izontal is computed and compared to the angles that the major and minor

axes of the ellipse make with the horizontal.

4. The width of the weight-mask is set to the length of the ellipse axis which

is nearest in orientation to the normal of the line connecting the centroids.

5. The weights (in the range [0, 1]) are computed based on the Euclidean

distance from the mask pixel to the nearest of the two metal objects such that

pixels nearer to metal objects have higher weights. For a pixel p = (pi, pj)

in the mask located at (i, j) on a rectangular image grid, the corresponding

weight w(i, j) is computed as follows:

w(i, j) =
|D(i, j)−Dmax|

Dmax

(4.2)

D(i, j) = min {D(p, L1), D(p, L2)} (4.3)

where D(p, L) is the perpendicular Euclidean distance between the pixel p

at image location (i, j) and the straight line L; L1,2 are the straight lines

passing through the centroids of the two metal objects, perpendicular to the

line connecting the two centroids; Dmax is the distance by which the mask

extends beyond each metal object and is a tunable parameter (Figure 4.3).

For every pixel outside of the mask, w(i, j) is set to zero.

6. For a pixel p = (pi, pj) the refined intensity I(i, j) is then computed as

follows:
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Figure 4.3: Distance-driven MAR weight computation. (a) Illustration of the weighted
mask generation. The intensity refinement of pixel pij is dependent on the distance to
the nearest metal object. The width of the mask is equal to the width of the ellipse
surrounding the smaller of the two objects (Metal 1). (b) Example input image (c)
Multiple metal objects (d) Resulting weighted mask.

I(i, j) = [1− w(i, j)] · I0 + w(i, j) · Ic (4.4)

where Ic is the corrected intensity value of the pixel (i.e. after Step 3.

in the aforementioned algorithm) and I0 is the original (uncorrected) pixel

intensity.

Finally, in order to eliminate the remaining weak streaking artefacts, the cor-

rected image is again filtered with the NLM filter [BCM05b].

4.3 Experimental Methodologies

An explanation of the proposed experimental methodology is presented below. In

particular, a brief overview of the selected denoising and metal artefact reduction

techniques is provided together with an explanation of the proposed comparative

methodologies (quantitative and qualitative performance-evaluation techniques)

employed in the respective studies.

4.3.1 Denoising Techniques Compared

In addition to the Alpha-Weighted Mean Separation and Histogram Equalisa-

tion (AWMSHE) approach (a dedicated baggage-CT technique) of Zhou et al.

[ZPA10b], the following six popular denoising techniques (based on the recent

denoising survey of Buades et al. [BCM05b]) are compared: anisotropic diffu-

sion [PM90]; Total Variation (TV) denoising [ROF92]; bilateral filtering [ZG08];
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translation invariant wavelet shrinkage [CDAO95] and Non-Local Means (NLM)

filtering [BCM05b]. While a brief mathematical basis for each is provided below,

for a more detailed explanation the reader is referred to the relevant literature (as

cited above).

In the following descriptions, I(x, y) denotes the input (unfiltered) image and

I∗(x, y) the denoised (or restored) image. All the filters described here are applied

in R2 (i.e. to the individual slices of a CT volume).

Anisotropic diffusion is a shape-adaptive filtering technique introduced by

Perona and Malik [PM90]. The basis of the Perona-Malik algorithm is to evolve

an image under an edge-controlled diffusion operator where the orientation of the

filter is determined by the local gradient in the image. Details such as edges and

lines are thereby preserved (or enhanced), while regions within edges are smoothed.

The generalised Perona-Malik diffusion equation is given by [PM90]:

g(x, y) =
δ

δt
I(x, y, t) = div(c(x, y, t)∇I(x, y, t)) (4.5)

I(x, y, 0) = I(x, y) (4.6)

where ∇(I) = δI
δx
x̂ + δI

δx
ŷ denotes the image gradient, div(.) is the divergence

operator and c(x, y, t) is the diffusivity function, controlling the rate of diffusion.

Edge information is preserved by modelling c(x, y, t) as a function of the local

image gradient [PM90]:

c(x, y, t) = 1/(1 +
|∇I|2

K2
) (4.7)

where K is a so-called contrast parameter and is determined automatically

using the noise estimator described by Canny [Can86]. Anisotropic diffusion has

been successfully applied to a variety of medical-imaging applications including:

the denoising of MRI data [GKKJ92]; pre-reconstruction sinogram restoration in

X-ray CT imagery [HLC12] and the enhancement of tubular structures to aid the

segmentation of vessels in 3D imagery [KMA97].

Total Variation (TV) denoising relies on the prinicple that reducing the

Total Variation (TV) [ROF92] of an image, while maintaining a close match to

the original image, removes image noise while preserving important details such

as edges [BT09, GSZ03, Cha04]. Rudin et al. [ROF92] define the total variation

of an image, I(x, y), as:
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J(I(x, y)) =
∑

1≤x,y≤N

|(∇I)| (4.8)

where |I| :=
√
I21 + I22 for every I = (I1, I2) ∈ R2. The total variation denoising

problem is then formulated as [ROF92]:

min
I∈X

∥I − I∗∥2

2λ
+ J(I) (4.9)

where ∥.∥ is the Euclidean norm and λ > 0 is a regularisation parameter. The

iterative TV minimisation approach developed by Chambolle [Cha04] is used in

this work to solve the minimisation problem in Equation 4.9.

Bilateral filtering is an edge-preserving smoothing filter defined by a Gaussian-

weighted average of the pixels in a predefined local neighbourhood [ZG08, Gun10,

TM98]. The technique is based on the principle that two pixels are similar not only

if they are close to one another spatially but also if they exhibit some similarity

in their photometric range or intensity [PKTD07]. The filtered pixel is computed

as a weighted combination of its neighbouring pixels according to [PKTD07]:

I∗(x, y) =

∑
k,l I(k, l)w(x, y, k, l)∑

k,l w(x, y, k, l)
(4.10)

where the weighting coefficient w(x, y, k, l) is computed as the product of a

domain kernel d(x, y, k, l) and a range kernel r(x, y, k, l):

d(x, y, k, l) = e
− (x−k)2+(y−l)2

2σ2
d (4.11)

r(x, y, k, l) = e
− ∥I(x,y)−I(k,l)∥2

2σ2
r (4.12)

Translation-Invariant Wavelet Shrinkage: Image denoising in the wavelet

domain has garnered considerable popularity in recent years. Wavelet shrinkage

[DJ94, Don95], whereby a hard or soft threshold is applied to the wavelet coeffi-

cients of a noisy image, is the most straightforward approach to denoising in the

wavelet domain. It has, however, been shown that traditional wavelet shrinkage

leads to the generation of artefacts in the denoised image as the wavelet basis is

not invariant under translations [CDAO95]. These artefacts may be reduced by

averaging out the translation dependence of the wavelet basis using a technique

termed cycle spinning [CDAO95].
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Cycle spinning involves shifting (translating) the image in the spatial domain,

applying the traditional wavelet-denoising procedure to the shifted image (i.e. in

the wavelet domain) and then ‘unshifting’ the denoised image. This is repeated for

a range of shifts. The final denoised image is obtained by averaging the results over

all the shifts. This technique is used in this work in conjunction with the Symlet

mother wavelet [GC11] with eight vanishing moments and a hard, VisuShrink

threshold [CDAO95]:

τ = σ
√

2log(N) (4.13)

where N is the number of pixels in the image and σ is the standard deviation

of the noise.

Non-Local Means (NLM) filtering [BCM05a, BCM05b] computes the

mean of the values of all points whose Gaussian neighbourhood is similar to the

neighbourhood of the current pixel. The estimated value for a pixel at coordinates

(x, y) is computed as a weighted average of all the pixels in the image:

I∗(x, y) =

∑
k,l w(x, y, k, l)I(k, l)∑

k,l w(x, y, k, l)
(4.14)

where the weights w(x, y, k, l) are computed based on the similarity of pixels

I(x, y) and I(k, l):

w(x, y, k, l) = e−
∥I(x,y)−I(k,l)∥2a

h2 (4.15)

where ∥I(x, y)− I(k, l)∥2a is a Gaussian-weighted Euclidean norm and a is the

standard deviation of the Gaussian kernel. The parameter h is a constant propor-

tional to the estimated noise in the input image. The NLM filter is widely accepted

to be a powerful denoising technique which often yields superior results compared

to other popular denoising techniques [BCM05b]. The NLM filtering algorithm in

its original form is computationally demanding, making it ill-suited for practical

applications [MS05a, BCM10]. Several recent studies have presented optimised

implementations of the NLM algorithm, several of which use some form of block

pre-classification to reduce the number of weighted-average computations required

for denoising each pixel in an image [MS05a, WGY+06, BV08, OEW08, AGDL09].

Of these, the accelerated NLM implementation of Mahmoudi and Sapiro [MS05a]

is used in this work. The algorithm is accelerated by pre-classifying neighbour-

hoods using the mean neighbourhood intensities and local gradients as measures
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of similarity (i.e. by computing their responses to a mean intensity-based filter

and a local gradient-based filter). The technique is shown to reduce the quadratic

complexity of the original NLM algorithm to a linear complexity.

Alpha-Weighted Mean Separation and Histogram Equalisation: Zhou

et al. [ZPA10b] present an image-enhancement algorithm that combines alpha-

weighted mean separation and histogram equalisation to remove background noise

and improve the contrast in CT-baggage imagery. The proposed algorithm is com-

prised of two stages: noise removal and image enhancement. The noise-removal

step exploits the fact that much of the projection noise present in CT-baggage im-

agery is characterised by very low pixel values relative to the high dynamic range

of the image, allowing for denoising using simple thresholding. An initial 2D CT

image I(x, y) is separated into an object image IO(x, y) (containing the valuable

information in the image) and a noise image IN(x, y) (comprised of only noise) via

Alpha-Weighted Mean (AWM) thresholding:

IO(x, y) = I(x, y) for I(x, y) ≥ τ1 (4.16)

IN(x, y) = I(x, y) for I(x, y) < τ1 (4.17)

where the noise threshold τ1 = α1I and I is the mean intensity of I. The

noise image IN(x, y) is subsequently discarded, while the object image IO(x, y)

is subdivided further into an upper and lower sub-image (IU(x, y) and IL(x, y)

respectively) by applying a second threshold τ2 = α2IO:

IU(x, y) = IO(x, y) for IO(x, y) ≥ τ2 (4.18)

IL(x, y) = IO(x, y) for IO(x, y) < τ2 (4.19)

The upper image IU(x, y) contains the brighter regions of the object image,

while the lower image IL(x, y) contains the darker (yet still informative) regions.

The lower sub-image IL(x, y) is enhanced via Histogram Equalisation (HE) [SB10]

yielding the enhanced image EL(x, y). The upper image IU(x, y) is clipped to the

maximum value of IL(x, y) (to compress the data range without introducing new

artefacts) yielding the upper enhanced image EU(x, y). The final image I∗(x, y)

is computed as the summation of EU(x, y) and EL(x, y):

I∗(x, y) = EU(x, y) + EL(x, y) (4.20)
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4.3.2 MAR Techniques Compared

Based on the review in Section 3.2, those methods claiming substantial perfor-

mance gains are experimentally reviewed here. Techniques which show little to no

improvement (qualitative or quantitative) when compared to simple interpolation-

based approaches, as well as techniques which are characterised by extremely high

processing times have been excluded from this comparative study. Furthermore,

the literature shows that many of the more recent iterative reconstruction-based

and hybrid MAR approaches rely on the efficacy of initial iterative approaches

such as Maximum Likelihood Expectation Maximisation (ML-EM). Therefore, for

the sake of simplicity, only the EM-based approach of Wang et al. [WSOV96] is

considered here. It is expected, however, that the performance of the simple EM-

based approach will be inferior to more recent iterative approaches that employ

sophisticated priors and acquisition models. As is common practice in MAR-based

literature, a linear-interpolation-based approach [KHE87] has also been included

in the comparison.

In summary, eleven sinogram-completion-based approaches [KHE87, ZBWW02,

BS06, YZB+07, JR09, LBY+10, AAA+10, MRL+10, MRS+11, MRL+12, MMB+13]

and one iterative reconstruction approach [WSOV96] are compared. Hereafter,

these twelve techniques are referred to using the following descriptors: Kalender

[KHE87]; Wang [WSOV96]; Zhao [ZBWW02]; Bal [BS06]; Yu [YZB+07]; Jeong

[JR09]; Li [LBY+10]; Abdoli [AAA+10]; Meyer1 [MRL+10]; Meyer2 [MRS+11];

Meyer3 [MRL+12]; DDMar [MMB+13]. Note that the DDMar method [MMB+13]

refers to the distance-driven MAR approach presented in Section 4.2 which was

denoted as Mouβ in the corresponding publication [MMB+13].

The MAR techniques were implemented according to the details available in

the original publications. There is thus a possibility that the implementations

evaluated here differ to some degree to those in the original works. Several of

the selected techniques are dependent on several input parameters - these were

determined empirically.

4.3.3 Denoising Performance Evaluation

Three images obtained on the Reveal CT80-DR baggage scanner are used in the

evaluation of the selected denoising techniques. 1) A whole-volume scan composed

of 71 512 × 512 axial slices and containing a single handgun in a container with

no background clutter. This volume is used in the qualitative analyses of the

selected denoising techniques. 2) A whole-volume scan composed of 102 512×512

axial slices and containing a handgun and a variety of background clutter objects

(dumbbell, binoculars, pliers, batteries etc.). This volume is used in the volume-

rendering experiments described below. 3) A subvolume scan composed of 34
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60×40 axial slices and containing a single handgun only - used for 3D SIFT point

evaluations. The subvolume scan was generated by manually cropping a handgun

from a whole-volume scan containing a single handgun in an empty container. The

densities in all three images are in Modified Hounsfield Units (MHU) (Section 1.2).

Denoising performance is evaluated in three ways (two qualitative and one

quantitative), with a particular focus on the potential impact of denoising on

subsequent operations. Firstly, a standard qualitative visual comparison of the

volumes before and after denoising is performed. This is done for both the orig-

inal volumes as well as the original volumes corrupted with Gaussian noise of

known standard deviation. It should be noted that CT noise is generally as-

sumed to be correlated Poisson noise (Section 2.4). Although it has been argued

that this noise may be approximated by a Gaussian distribution with a nonlinear

signal-dependent variance [LLHL02], this addition of Gaussian noise does not rep-

resent a model for reality and is instead intended to demonstrate the noise-removal

and edge-preservation capabilities of each of the denoising techniques. Secondly,

a volume-rendering technique, which uses a combination of Alpha-Compositing

ray-tracing and Marching Cubes surface rendering (denoted ACMC) [LCNC98],

is applied to a cluttered volume before and after filtering and the visual quality

of the resulting volumes compared (thereby giving an indication of the impact

of denoising on volume rendering as well as the efficacy of each technique in the

presence of clutter). Finally, the 3D SIFT-based measure presented in Section 4.1

is used to provide a quantitative measure of performance.

4.3.4 MAR Evaluation Data

The CT data used in the evaluation of the selected MAR techniques is described

below and summarised in Table 4.1. It is worth noting that, with the exception

of the distance-driven MAR technique presented in Section 4.2, each of the MAR

techniques included in the comparison have been designed for application in R2.

Performance evaluation is restricted to this domain in order to remain consistent

with the majority of MAR-based literature. Performance is evaluated under three

scenarios: 1) a simulated medical environment; 2) a true medical environment and

3) a true, non-medical (security-screening) environment.

Prior work (Section 3.2) shows that it is accepted practice in the literature

to use numerical simulations and mathematical phantoms to measure the perfor-

mance of MAR techniques, as this allows for reliable quantitative performance

analysis [YZB+07, MND+01, Man01, MND+00, LFN09, SN12].

A 2D phantom is thus employed. The phantom is composed of two large

circular iron inserts (diameter 2 cm) surrounded by circles of cancellous (soft) bone;

three small isolated circular iron inserts (diameter 0.4 cm) and a region of fatty
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Experiment Type Size Units Num.
images

Medical Axial slice 512× 512 HU 1
phantom

Clinical Axial slice 512× 512 HU 1
(medical)

Clutter-free bag Axial slice 512× 512 MHU 1

Cluttered bag Axial slice 512× 512 MHU 1

Bland-Altman Axial slice 512× 512 HU 42
(medical)

Bland-Altman Axial slice 512× 512 MHU 72
(bag)

Clutter-free Whole volume 512×512×77 MHU 1
volumetric

Cluttered Whole volume 512×512×99 MHU 1
volumetric

Table 4.1: Breakdown of test data used in MAR evaluation. The phantom, clinical,
clutter-free bag and cluttered bag experiments refer to the evaluation of all 12 selected
MAR techniques. The two Bland-Altman experiments refer to the comparative evalua-
tion between the DDMar (Section 4.2) and Mou [MMFB12] techniques. The clutter-free
volumetric and cluttered volumetric experiments refer to the evaluation of the DDMar
technique when applied to all axial slices in the specified whole volumes.

tissue. The remainder of the phantom is water. The artefact free phantom is shown

in Figure 4.5 (a). The numerical simulation of the phantom was performed using

a simulator based on that presented by De Man et al. [MND+99], extended with

a distance driven projector [MB04]. This 2D simulator has been used extensively

in previous MAR studies [MND+00, LFN09, MND+01, MND+99, SN12]. The

simulation models the effects of beam hardening (due to the polychromatic nature

of X-ray spectra), scattered radiation, projection noise and the trans-axial non-

linear partial volume effect (or the exponential edge-gradient effect (EEGE)). De

Man et al. [MND+99] have cited these as the predominant causes of streaking

in medical-CT images. The simulation includes a 10-times subsampling of the

detector elements, a 5-times subsampling of the source (using a source width of

1mm) and a 5-times subsampling of the projection views (to model the continuous

rotation of the gantry). The effects of afterglow and detector-crosstalk are not

considered. Scatter is simulated according to the following formula:



4.3 Experimental Methodologies 109

Figure 4.4: Simulated spectrum at a nominal tube voltage of 140kV used in polychro-
matic simulations. Generated using the Xcomp5 software [NH85].

si = F0 · Cc · yi ·mi (4.21)

where si is the scatter value at position i in the sinogram and i indicates both

the angle and position (within the detector array) of the projection line; F0 is the

fraction of photons scattered forward (at an angle of 0◦); Cc is the fraction of the

attenuation resulting from Compton scatter (i.e. electron-photon interactions); yi

is the transmission simulation value at i and mi is the log-converted sinogram:

mi = ln(bi/yi) (4.22)

where bi is the blank scan value at position i (the detected number of photons

in sinogram pixel i in the absence of an absorber).

A fan-beam acquisition was simulated using (Table 4.2): 672 detectors and

1160 views per rotation (360◦); a focus-to-isocentre distance of 570mm; a focus-

to-detector distance of 1040mm; a Field of View (FoV) diameter of 50 cm and

a detector angular aperture of 0.0741◦ (giving a fan-angle of approximately 52◦).

These geometric parameters approximate the Siemens SOMATOM Sensation 64

CT scanner. A simulated X-ray spectrum was generated using the Xcomp5r soft-

ware [NH85] at a nominal tube voltage of 140kV (see Figure 4.4). After simulation,

the fan-beam sinograms were rebinned to parallel-beam data using the methods

described in Section 2.3.4. Filtered Back Projection (FBP) was used to create

the reconstructed image with 512× 512 pixels. The final, artefact corrupted sim-

ulation is illustrated in Figure 4.5 (c). A reference image (Figure 4.5 (a)) was

generated using a monochromatic simulation at 70 keV (which approximates the

mean energy of the polychromatic spectrum in Figure 4.4) - this image is used as a

reference in the qualitative (visual comparison) analyses. To allow for quantitative
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Parameter Description
Beam geometry Fan-beam
Focus-to-isocentre distance 570mm
Focus-to-detector distance 1040mm
FoV diameter 50 cm
Number of detectors 672
Detector angular aperture 0.0741◦

Fan-angle 52◦

Number of views/rotation 1160/360◦

Table 4.2: Scanner geometry and reconstruction parameters used to generate simulated
CT data using the simulator of [MND+99].

Figure 4.5: Simulated and clinical medical data. a) Monochromatic FBP reconstruction
of software simulated phantom image (no artefacts). b) Polychromatic FBP reconstruc-
tion of metal-free phantom (used as a reference image in quantitative analysis). c)
Polychromatic FBP reconstruction of phantom with metal inserts (test image). d) FBP
reconstruction of patient scan with double hip prosthesis.

analysis, a second reference image was generated by an identical polychromatic

simulation but without metal inserts (Figure 4.5 (b)).

4.3.5 Performance Evaluation

In order to evaluate the MAR methods on clinical data, a true CT scan of a

patient with a double hip prosthesis is included. The spiral CT data was acquired

on a Siemens Sensation 16 system as part of a Biograph16 PET/CT scanner

(Siemens Medical Solutions, Knoxville, TN) at a nominal tube voltage of 120kVp,

a Computed Tomography Dose Index (CTDI) of 11.9, using a collimation of 16 x

1.5mm and a reconstruction slice thickness of 3mm. Prior to reconstruction, the

spiral data is rebinned to parallel beam data. The 512 × 512 FBP-reconstructed

slice used in this study is shown in Figure 4.5 (d).

Furthermore, two baggage-CT scans obtained using the CT-80DR baggage

scanner, have been used to provide insight into the performance of the predom-

inantly medically-based MAR techniques when applied to novel CT applications

(in this case aviation security). The scanning configuration employed has been

discussed in Section 1.2. The fan-beam projection data was rebinned to parallel

beam data prior to reconstruction. Individual 512×512 axial slices obtained from

the volumes generated by the CT-80DR scanner (Figure 4.6 (c) and (d)) are used

in the comparisons. The first of the two real-world security scans contains two
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metallic objects (handguns) in a container with no background clutter (Figure

4.6 (a)). The second real-world scan is of a cluttered passenger bag containing

multiple metallic objects (handgun, belt buckles, metallic zipper etc.) and a va-

riety of commonly encountered objects of varying density (e.g. clothing, bottles

etc.) (Figure 4.6 (b)). In the context of this comparative experimentation, all

non-metallic objects in the scan are regarded as clutter.

In addition to standard qualitative evaluations (visual comparisons), quantita-

tive performance analysis for the phantom study is performed by computing the

Normalised Root Mean Squared Error (NRMSE) [BDM10, Her09] of the difference

between the FBP-reconstructed image without metal inserts (Figure 4.5 (b)) and

the MAR-corrected images:

NRMSE =

√√√√∑Ñ
j=1(fj − f ref

j )2∑Ñ
j=1(f

ref
j − µ)2

(4.23)

where fj is the corrected image; f ref
j is the reference image; µ is the mean of

all the reference image intensities and Ñ is the (reduced) number of pixels in the

image (as the regions corresponding to the metal inserts are not considered). A

large difference (between fj and f
ref
j ) in a few pixels results in a high NRMSE. An

NRMSE value of 1 would correspond to a uniformly-dense corrected image with

an intensity value equal to µ [Her09].

For the patient and baggage-CT data (where no ground-truth is available),

quantitative performance analysis is performed using the reference-free ground-

truth metric of Kratz et al. [KEMB11], which utilises the raw projection data

outside of the metal trace as ground-truth data. The technique has been described

in further detail in Section 3.2.5. The Normalised Reference-Free Errors (denoted

as NRFE) are represented as factors of the unprocessed (FBP) error (a value of

1 would correspond to no improvement). In order to determine the veracity of

the reference-free metric, the NRFE and the NRMSE for the phantom data are

computed and compared.

While absolute computational times are presented, it is emphasised that lit-

tle attention has been paid to optimisation in the implementation of each of the

compared techniques. It is therefore acknowledged that the computational per-

formance results may be misleading in some cases. The relationship between the

error and processing time is quantified by computing a normalised product of the

error and processing time for each of the methods. The value of this product falls

in the range [0, 1] with a value of 1 being the worst possible value (i.e. highest

error and highest processing time).

The performance of the DDMar technique (Section 4.2) is further quantified
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Figure 4.6: Real-world security-screening CT data. a) Axial slice of two handguns in
clutter-free environment. b) Axial slice of multiple metal objects in cluttered environ-
ment. c) Volumetric rendering of clutter-free bag from which slice in (a) was obtained.
d) Volumetric rendering of cluttered bag from which slice in (b) was obtained.

using Bland-Altman plots [AB83] (Section 3.2.5). The Bland-Altman plot consid-

ers the mean intensities in three types of image regions before and after MAR:

1) overestimated regions (pixel densities higher than expected due to artefacts);

2) underestimated regions (pixel densities lower than expected due to artefacts)

and 3) unaffected regions (pixels unaffected by streaking). In each individual 2D

axial CT slice obtained from the clinical data as well as selected axial slices ob-

tained from the 12 volumetric baggage scans, 5 ROIs are manually specified (2

overestimated, 2 underestimated and 1 unaffected). Two measurements are made

for every ROI: 1) the mean intensity of the ROI before MAR and 2) the mean

intensity of the ROI after MAR. The Bland-Altman plot then plots the difference

of the two ROI measurements as a function of their mean. Successful MAR should

yield a decrease in the mean intensity of the overestimated regions, an increase

in the underestimated regions and little/no change in the unaffected regions. The

Bland-Altman plots are generated for the DDMar method as well as the global

intensity-limiting approach presented in [MMFB12], which imposes an upper limit

on the intensities of all the pixels in the corrected images (regardless of their lo-

cations relative to the metal objects). In the results presented in Section 4.4.2,

the method of [MMFB12] is denoted Mou. This additional quantitative evalua-

tion is included to demonstrate the impact on performance of the distance-driven

refinement (compared to a global intensity limiting - see Section 4.2). Finally, a

qualitative performance analysis of the DDMar technique applied to volumetric

imagery (as opposed to individual slices) is presented.
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4.4 Results

All the software for this study was developed according to the information available

in the original publications. Where relevant, optimal parameters were determined

empirically. All experiments were performed on an Intel Core i5 machine running

a 2.30GHz processor with 6GB of RAM.

4.4.1 Denoising Results

Figure 4.7 shows the results of applying the denoising algorithms to a scan of a

container containing a single handgun. The scalar opacity mappings and colours

have been chosen to provide the clearest visualisation of the relevant features in

each volume (i.e. noise and edges). Figure 4.7 (a) displays the original, unfiltered

volume (with notable streaking artefacts emanating from the handgun) while im-

ages (b) - (g) display the results of each of the denoising techniques. The TV filter

[Cha04] (Figure 4.7 (d)), wavelet shrinkage [CDAO95] (Figure 4.7 (e)) and NLM

filtering [BCM05a, MS05a] (Figure 4.7 (f)) resulted in the most significant im-

provements in image quality. Although the streaking artefacts were considerably

reduced for each of these methods, they were not removed entirely. Anisotropic

diffusion [PM90] (Figure 4.7 (b)) and bilateral filtering [PKTD07] (Figure 4.7 (c))

resulted in less of an improvement in image quality, characterised by a noticeable

blurring of the artefacts. The AWMSHE [ZPA10b] (Figure 4.7 (g)), yielded a

virtually artefact-free image but additionally resulted in a noticeable loss of edge

and contrast information (particularly evident in the outline of the container).

Figure 4.8 displays the denoising results for the same scan (in a different ori-

entation), corrupted with Gaussian noise of standard deviation of 15. Figure 4.9

illustrates a single slice from each of the volumes in Figure 4.8. The NLM filter

and wavelet-shrinkage techniques resulted in the greatest degree of noise reduc-

tion, with the majority of the noise removed and a clear image of the handgun

and container remaining. The edge preservation in the NLM image was marginally

superior to that of the wavelet-shrinkage image. Anisotropic diffusion, bilateral

filtering, TV filtering and the AWMSHE technique removed comparatively low

degrees of noise (particularly evident in the axial slices in Figure 4.9).

Figure 4.10 displays the results of the ACMC volume rendering algorithm

[LCNC98] pre-denoising and post-denoising. Wavelet shrinkage and NLM filter-

ing again yielded the most satisfactory results, with notable reductions in the

spurious structures in the vicinity of the pliers. The anisotropic diffusion, bi-

lateral filtering, TV filtering and AWMSHE techniques performed comparatively

poorly and yielded renderings similar in quality to the unprocessed rendering in

Figure 4.10 (a). To illustrate the effects of denoising on the rendering results more

clearly, Figure 4.11 shows a magnified region of the rendered volumes before and
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Figure 4.7: Volumetric renderings illustrating denoising results: (a) Original (b)
Anisotropic diffusion (c) Bilateral filter (d) TV filter (e) Wavelet thresholding (f) NLM
filter (g) AWMSHE

Figure 4.8: Volumetric renderings illustrating denoising results with added Gaussian
noise (standard deviation = 15). (a) Original image with Gaussian noise, σ = 15 (b)
Anisotropic diffusion (c) Bilateral filter (d) TV filter (e) Wavelet thresholding (f) NLM
filter (g) AWMSHE

after applying the NLM filter, which produced the optimal visual results. Denois-

ing resulted in a considerably cleaner result, as is indicated by the demarcated

regions.

Table 4.3 and Figure 4.12 display the results of the 3D SIFT-based quantitative

analysis. As mentioned, the SIFT-point-detection algorithm includes a refinement

procedure whereby candidate SIFT points are rejected due to poor contrast and/or

poor localisation on edges [FBM10]. These rejections are governed by two thresh-

olds which were set according to the optimal values recommended by Flitton et al.

[FBM10] (where the same data was used). The numbers of object and noise SIFT

points were manually recorded across three scale-space levels. The results in Table

4.3 indicate that there was no significant variation in the number of object feature

points detected for each of the volumes. For the unfiltered volume a total of 19

noise feature points was detected, yielding a ratio of 0.66. In every case, exclud-

ing TV filtering, denoising resulted in significantly fewer noise feature points and

subsequently much higher ratios. Wavelet thresholding (indicated in bold in Table

4.3) yielded the optimal results with 0 noise feature points and thus a perfect ra-

tio. The bilateral filter (2 noise feature points and ratio = 0.94) and NLM filter (1

noise feature point and ratio = 0.97) also returned significant improvements. The

TV filter resulted in a deterioration in image quality represented by a reduction in
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Figure 4.9: Denoising results for a single axial slice with Gaussian noise corruption. (a)
Original image with Gaussian noise, σ = 15 (b) Anisotropic diffusion (c) Bilateral filter
(d) TV filter (e) Wavelet thresholding (f) NLM filter (g) AWMSHE

Figure 4.10: Denoised volume visualisations using ACMC volume rendering technique:
(a) Original (b) Anisotropic diffusion (c) Bilateral filter (d) TV filter (e) Wavelet thresh-
olding (f) NLM filter (g) AWMSHE

the SIFT ratio relative to the unprocessed volume (0.64 vs. 0.66). Anisotropic dif-

fusion (0.74) and AWMSHE (0.76) yielded only minor improvements in the SIFT

ratio and resulted in a significant decrease in the number of object feature points

(27 and 26 respectively).

For illustrative purposes, the SIFT interest-point locations at the first scale-

space level on the volumes before and after applying each of the denoising tech-

niques are shown in Figure 4.12. These images illustrate keypoint locations at the

first scale-space level only and so the numbers of object and noise feature points

do not correspond directly with those in Table 4.3, which represent the numbers

of keypoints across all three scale-space levels. With the exception of TV filtering

(Figure 4.12 (d)), each of the denoising techniques resulted in a clear reduction in

the number noise feature points (black dots).
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Figure 4.11: Magnified region of ACMC rendered volumes from Figure 4.10 for NLM
filtering with regions of interest marked: (a) Original volume (b) NLM filtered volume

Method
Object
points

Noise
points Ratio

Unfiltered 37 19 0.66
Anisotropic 27 8 0.77
Bilateral 33 2 0.94
TV 36 20 0.64
Wavelets 35 0 1.00
NLM 33 1 0.97
AWMSHE 26 8 0.76

Table 4.3: Quantitative analysis results using the 3D SIFT-based performance measure.
Optimal performing method indicated in bold.

4.4.2 Metal Artefact Reduction Results

The results for the medical-CT data (simulated and patient) as well as the real-

world security-screening CT data are presented below.

4.4.2.1 Medical-CT Results

Tables 4.4 and 4.5 and Figures 4.13 - 4.16 show the results of the phantom data ex-

periments. Both the quantitative and qualitative results are, for the most part, in

agreement with the observations made in the literature. The iterative approach of

Wang et al. [WSOV96] yielded the lowest error (NRMSE = 0.174) and produced

an image with a substantial reduction in artefacts (compared to FBP) and good

preservation of edge and contrast information. The interpolation-based approaches

(especially the Kalender [KHE87], Meyer1 (NMAR) [MRL+10], Meyer2 (ANMAR)
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Figure 4.12: SIFT point locations at the first scale space level: (a) Original (b)
Anisotropic diffusion (c) Bilateral filter (d) TV filter (e) Wavelet thresholding (f) NLM
filter (g) AWMSHE

[MRS+11], and to a lesser degree, DDMar (Section 4.2)) yielded images which, at

first glance, appear smooth and apparently free of artefacts. Upon closer inspec-

tion however (Figure 4.15), the loss and/or deformation of image detail is evident.

This is reflected in the higher errors for these methods when compared to the it-

erative approach. The Meyer3 (FSMAR) [MRL+12] approach resulted in superior

preservation of edge and contrast information (compared to the Kalender, Meyer1

and Meyer2 images) but also reintroduced much of the original streaking from the

FBP image. Of the sinogram-completion-based approaches, the Zhao [ZBWW02],

Abdoli [AAA+10] and DDMar approaches yielded the most satisfactory images in

terms of artefact reduction and edge and contrast preservation. While the Zhao

(0.189), Bal (0.398), Yu (0.242), Abdoli (0.192), Meyer1 (0.243), Meyer2 (0.239),

Meyer3 (0.336) and DDMar (0.191) approaches all produced significant improve-

ments in the NRMSE, compared to the FBP (0.872) image, the Jeong (0.726)

and Li (0.478) approaches performed notably poorer than these methods - both in

terms of error and visual quality. In fact,both of these approaches yielded higher

errors than the original linear-interpolation-based approach of Kalender (0.401)

[KHE87].

To emphasise the difference in image quality, the image regions surrounding

and connecting the metallic objects have been magnified and are shown in Figure

4.15. The Wang, Zhao, Abdoli and DDMar images show significant reductions in

streaking, while the Meyer1, Meyer2, Bal and Kalender images are notably blurred.

The Jeong image, although showing a reduction in the original streaks, contains

significant amounts of secondary streaking, especially in the regions connecting

the metal objects.

The NRFE and NRMSE for the phantom data are compared in Table 4.5

and Figure 4.16. To allow for a direct comparison, the errors are represented

as a percentage of the unprocessed (FBP) error. While smaller variations in the
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Method NRMSE
Time

(seconds)
Normalised
Product

FBP 0.872 0.18 0.002
Kalender 0.401 1.62 0.006
Wang 0.174 123.30 0.200
Zhao 0.189 11.65 0.021
Bal 0.398 48.95 0.181
Yu 0.242 9.88 0.022
Jeong 0.726 16.59 0.112
Li 0.478 54.72 0.243
Abdoli 0.192 6.42 0.012
Meyer1 0.243 6.67 0.015
Meyer2 0.239 6.61 0.015
Meyer3 0.336 14.81 0.046
DDMar 0.191 10.48 0.019

Table 4.4: MAR quantitative analysis results for simulated scan (Figure 4.5 (c)).

reference-free metric are observed between the different methods, the two metrics

resulted in a very similar performance ranking.

Table 4.6 and Figure 4.17 and 4.18 show the results of the patient experiments.

Quantitative error analysis was performed using the NRFE metric of Kratz et al.

[KEMB11]. For the most part, the results are similar to the phantom data ex-

periments and are again largely in agreement with the observations made in the

literature. The Wang (0.172), DDMar (0.180) and Zhao (0.196) approaches yielded

the lowest errors, while the Jeong approach (0.842) was again the worst-performing

method, performing considerably worse than the linear interpolation approach of

Kalender (0.369) and only marginally better than standard FBP reconstruction

(1.0) (Table 4.6). The remaining approaches all resulted in significant reductions in

the NRFE (compared to the FBP reconstruction). With reference to the qualita-

tive results in Figure 4.18, the interpolation-based approaches (Kalender, Meyer1,

Meyer2, Bal and DDMar) produced smooth images, with apparently few artefacts

but a notable loss in edge and contrast information. Although the Meyer3 ap-

proach better preserved edge and contrast information, a greater degree of the

original streaking artefacts remained. The improvement in image quality yielded

by the Jeong approach is limited and despite noticeable secondary streaking (see

Figure 4.19), the approach still yielded a reasonable reduction in the NRFE (Ta-

ble 4.6) as the original streaking was reduced. This highlights the importance of

considering both quantitative and qualitative results in performance evaluation.

As expected, the iterative reconstruction approach (Wang) was the most com-

putationally intensive in both medical experiments (Tables 4.4 and 4.6). Although

all the techniques yielded higher processing times compared to the Kalender ap-

proach, the majority of these times are still considerably lower than the Wang
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Figure 4.13: Graphical comparison of MAR quantitative analysis results for phantom
scan (Figure 4.5 (c)). The plot illustrates the tradeoff between processing times and
error.

approach and within a manageable range. Of the sinogram-completion-based ap-

proaches, the Bal [BS06] and Li [LBY+10] approaches yielded times which were

considerably higher than the other methods. The significant computational ex-

pense of the Bal approach can most likely be attributed to the adaptive pre-

filtering stage of the algorithm. The plots in Figures 4.13 and 4.17 indicate that

performance (in terms of error) is not necessarily correlated with computational

expense. The Li approach, for example, yielded the highest processing time, but

also the second highest error. To quantify this relationship between the error and

processing time, the products of the normalised errors and processing times for

each of the methods are shown in the third column of Tables 4.4 and 4.17. Judg-

ing performance based on these products alone, emphasises the drawback of the

high computational cost associated with iterative reconstruction (Wang approach).

Figure 4.19 shows magnified regions in the patient images. The reduction in

streaking achieved by the best-performing techniques (Wang, DDMar and Zhao)

is perhaps less than that observed in the phantom experiments. In fact, the Wang

and DDMar images appear to contain greater degrees of streaking than the Zhao

image, despite lower errors. The Zhao image shows some blurring of the metal

edges and regions surrounding the metal objects. The Jeong image shows little,

if any, reduction in the original streaks and again contains significant amounts

of secondary streaking. Similarly to the phantom experiments, the sinogram-

completion-based approaches resulted in image blurring.
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Figure 4.14: MAR results for phantom scan in Figure 4.5 (c). (Window = 800 HU,
Centre = 0 HU)

4.4.2.2 Security-Screening Results

The quantitative analysis results for the security-screening CT scans are shown

in Tables 4.7 and 4.8 and Figures 4.20 and 4.21. For those MAR techniques that

utilise priors, the optimal input parameters were determined empirically, based

on preliminary experimentation using a large set of 2D slices (80 slices) randomly

selected from 20 real-world volumetric baggage scans with varying contents.

The results follow a similar trend for the two scenarios (clutter-free and clut-

tered). While all the methods yielded some reduction in error, the Wang (errors:

0.089 for clutter-free, 0.189% for cluttered), Zhao (0.087 and 0.231), DDMar (0.087

and 0.227) and Abdoli (0.151 and 0.292) approaches showed the most significant

improvements. Notably, the Zhao and DDMar approaches outperformed (albeit

marginally) the Wang approach for the clutter-free scenario. As was the case in
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Figure 4.15: Magnification of phantom images in Figure 4.14 illustrating the performance
each technique in the regions in and around the metallic inserts (Window = 800 HU,
Centre = 0 HU)

the phantom experiments, the Jeong (0.420 and 0.890) and Li (0.353 and 0.653)

approaches were the two worst-performing methods - yielding significantly higher

errors than the Kalender approach (0.201 and 0.447). Perhaps the most interesting

observation from these results is that several of the MAR methods that are consid-

ered state-of-the-art in the medical domain yielded minimal performance gains over

the simple linear-interpolation-based approach of Kalender. This is particularly

evident for the methods presented by Meyer et al. [MRL+10, MRS+11, MRL+12]

(Meyer1 (0.243 and 0.444), Meyer2 (0.224 and 0.440) and Meyer3 (0.348 and

0.428)) and Bal and Spies [BS06] (0.197 and 0.336) which use multiclass segmen-

tation to generate priors. The small performance gains are emphasised further by

the normalised products in the third column of Tables 4.7 and 4.8, which represent

a combined performance measure, assuming the error metrics and computational

times to be of equal performance. At the very least, judging from these error met-

rics alone, the performance gains of the more complex methods over the simple
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Method
NRMSE

(% original error)
NRFE

(% original error)
FBP 100 100
Kalender 45.99 26.31
Wang 19.95 11.34
Zhao 21.67 12.90
Bal 45.64 27.21
Yu 27.75 26.40
Jeong 83.26 42.13
Li 54.82 36.69
Abdoli 22.02 22.34
Meyer1 27.87 23.42
Meyer2 27.41 22.39
Meyer3 38.53 26.33
DDMar 25.34 17.68

Table 4.5: Comparison of NRMSE and NRFE [KEMB11] for phantom image in Figure
4.5. The correlation between the two measures verifies the feasibility of the reference-free
NRFE metric. Errors represented as percentage of FBP error.

linear interpolation approach were not as significant as indicated in the medical

literature.

The images in Figures 4.22 to 4.25 show the qualitative results for the real-

world scans. While the Wang, Zhao and DDMar approaches yielded significant

reductions in streaking for both the clutter-free (Figure 4.22) and cluttered (Figure

4.23) scenarios, all of the sinogram-completion-based approaches led to a loss of

and/or distortion in image details. This is especially evident in the cluttered

scenario where, despite the notable reductions in streaking, the Zhao, Bal, Abdoli,

Meyer1, Meyer2 and DDMar images are characterised by a noticeable blurring of

the low-density regions of the image (Figure 4.23). In both the clutter-free and

cluttered scenarios, the Jeong approach produced images characterised by intense

secondary streaking with little, if any, improvement in image quality. As expected,

performance on a whole was poorer in the cluttered scenario (Figure 4.23), where

even the best-performing methods (Wang, Zhao and DDMar) contained noticeable

streaking and/or loss of image detail in the non-metal regions.

Figure 4.24 and Figure 4.25 show magnifications of the clutter-free and clut-

tered scenarios respectively. For the clutter-free case (Figure 4.24), although the

best-performing methods in terms of error (Zhao and DDMar) produced consid-

erably cleaner images, a noticeable loss of edge and contrast information is again

evident (in the form of blurring). The Jeong image is again heavily corrupted by

secondary streaking. For the cluttered case (Figure 4.25), the Wang and Zhao

images again exhibit a significant reduction in streaking relative to the FBP im-

age, but image detail is compromised (e.g. the outline of the bag and low-density

objects in the direct vicinity of the metal objects). This is especially noticeable in
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Figure 4.16: Graphical comparison of NRMSE and NRFE [KEMB11] for phantom image
in Figure 4.5. As desired, the NRFE follows a similar trend to the NRMSE. Errors
represented as % of FBP error.

Figure 4.17: Graphical comparison of MAR quantitative analysis results for patient scan
(Figure 4.5 (d)). The plot illustrates the tradeoff between processing times and error.

the Zhao image, where the MAR process has resulted in a blurring of the regions

surrounding the metal objects. Again, the Jeong image shows little, if any, im-

provement in image quality. While the differences in the errors for the Wang, Zhao

and DDMar approaches are negligible, the Wang images appear to be of a slightly

superior visual quality. For the most part, however, the degree of improvement in

image quality for all the methods does seem to correlate fairly well with the error

analyses in Tables 4.7 and 4.8, thereby further verifying the authenticity of the

reference-free error metric.

Judging from the shapes of the curves in Figure 4.20 and 4.21 as well as the

readings in Tables 4.7 and 4.8, the processing times in both real-world experiments

followed a very similar pattern to that seen in the phantom experiment (Table 4.4

and Figure 4.13).
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Figure 4.18: MAR results for patient scan in Figure 4.5 (d). (Window = 500 HU, Centre
= 0 HU)

Method NRFE
Time

(seconds)
Normalised
Product

FBP 1.00 0.21 0.001
Kalender 0.369 1.32 0.003
Wang 0.172 149.80 0.172
Zhao 0.196 9.22 0.012
Bal 0.264 46.81 0.083
Yu 0.242 7.77 0.013
Jeong 0.842 8.00 0.045
Li 0.393 73.31 0.192
Abdoli 0.202 9.83 0.013
Meyer1 0.250 10.10 0.017
Meyer2 0.249 10.39 0.017
Meyer3 0.337 19.07 0.043
DDMar 0.180 11.65 0.012

Table 4.6: MAR quantitative analysis results for patient scan (Figure 4.5 (d)). Errors
computed using the NRFE metric of [KEMB11].

Figures 4.26 and 4.27 show the Bland-Altman plots generated from the uncor-

rected and corrected CT data for the patient and baggage data sets respectively.

The overestimated (OE), underestimated (UE), and unaffected (UA) regions in

each data set are represented using different coloured markers. The plots are

included to investigate the necessity of the distance-weighted intensity limiting

employed by the DDMar approach (versus a global intensity limit - refer to Sec-

tion 4.2). The graphs for both experiments confirm the desired modifications to

the image intensities in the overestimated (yellow markers) and unaffected regions

(red markers) after MAR. Since the DDMar approach only modifies the behaviour

of the Mou approach [MMFB12] in the regions connecting metal objects, the two

approaches give the same results for the overestimated and unaffected regions. As

desired, for both the patient (Figure 4.26) and baggage data (Figure 4.27), the
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Figure 4.19: Magnification of patient images in Figure 4.18 illustrating the performance
each technique in the regions in and around the metallic inserts (Window = 500 HU,
Centre = 0 HU).

Figure 4.20: Graphical comparison of MAR quantitative analysis results for clutter-free
baggage scan (Figure 4.6 (a)). The plot illustrates the tradeoff between processing times
and error.

readings in the overestimated regions are consistently in the positive portions of

the graphs (along the vertical axes), indicating a reduction in the overestimated

intensities after MAR. Furthermore, for both data sets, the readings in the un-

affected regions are closely clustered around the horizontal axes, indicating little

to no change in the image intensities after MAR. The green and blue markers

display the behaviour of the Mou and DDMar approaches respectively in the un-

derestimated regions and clearly demonstrate the improvement achieved by the

proposed modifications to the Mou approach. While the Mou approach yielded

readings clustered around the horizontal axes (indicating little/no change in the

intensities after MAR), the DDMar readings in both experiments consistently oc-

curred in the negative vertical portions of the graphs - indicating a successful

increase in the underestimated intensities.

Finally, Figures 4.28 and 4.29 show the volumetric artefact reduction results of

the DDMar technique applied to two volumes. Similarly to the 2D experiments,
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Figure 4.21: Graphical comparison of MAR quantitative analysis results for cluttered
baggage scan (Figure 4.6 (b)). The plot illustrates the tradeoff between processing times
and error.

one of the test images contained two handguns with no background clutter (Figure

4.28), while the other contained multiple metal/high-density objects in a cluttered

environment (Figure 4.29). Each input and artefact-reduced volume is shown in

three different orientations to better illustrate the presence and subsequent reduc-

tion of artefacts. In both the clutter-free (Figure 4.28) and cluttered (Figure 4.29)

volumes the application of DDMar resulted in significant reduction in streaking

artefacts, particularly evident in the direct surroundings of the high-density objects

(white arrows in Figures 4.28 and 4.29). In addition to the removal of streaking

artefacts, however, an obvious blurring is evident in both volumes (indicated in

yellow).

4.5 Discussion

Several observations related to the aforementioned denoising and metal artefact

reduction results are worth noting and elaborating.

4.5.1 Denoising

With reference to the images in Figure 4.7, even for the two best-performing

techniques (wavelet shrinkage and NLM filtering), a notable degree of artefacts

remain. The obvious limitation of denoising is that there exists a tradeoff between

the quantity of noise/artefacts removed and the fidelity of the edge and contrast

information in the image. That is to say, a greater degree of filtering is likely to

remove more of the streaking while simultaneously compromising valuable image

information. This scenario is particularly evident in the AWMSHE [ZPA10b] im-

age (Figure 4.7 (g)): although virtually all of the streaking has been removed,
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Method NRFE
Time

(seconds)
Normalised
Product

FBP 1.00 0.13 0.001
Kalender 0.201 0.73 0.001
Wang 0.089 143.94 0.089
Zhao 0.087 5.10 0.003
Bal 0.197 25.81 0.035
Yu 0.198 8.55 0.012
Jeong 0.420 6.56 0.019
Li 0.353 42.14 0.103
Abdoli 0.151 5.33 0.006
Meyer1 0.243 5.24 0.009
Meyer2 0.224 5.23 0.008
Meyer3 0.348 11.18 0.027
DDMar 0.087 7.49 0.005

Table 4.7: MAR quantitative analysis results for clutter-free baggage scan in Figure 4.6
(a). Errors computed using NRFE.

the edges of the container have been almost entirely eliminated. The AWMSHE

approach relies on the assumption that the noise in an image is characterised

by significantly lower grey values (intensities) than the ‘valuable’ image regions.

Threshold-based denoising approaches (e.g. AWMSHE) are ill-suited to removal

of streak-like artefacts (which are by definition characterised by high-density lines)

and high-frequency noise as the required threshold is likely to additionally elimi-

nate edge information. The aforementioned observations indicate that denoising

alone is not sufficient for the reduction of metal-streaking artefacts.

The variations in performance of the six denoising techniques are more pro-

nounced in Figures 4.8 and 4.9 where synthetic Gaussian noise (σ = 15) has been

added to the input image. While this degree of noise corruption is of course un-

likely in reality, it illustrates the efficacy of the denoising algorithms well. The

limitations of simple denoising in terms of artefact removal are also illustrated

clearer here: while the background noise is reduced, considerable streaking arte-

facts remain - even for the two most effective methods (NLM filtering and wavelet

shrinkage). Interestingly, despite the fact that the AWMSHE approach is the

only dedicated baggage-CT-denoising technique, it results in very little (if any)

improvement in image quality (Figure 4.8 (g) and Figure 4.9 (g)) and performs

notably worse than the five standard denoising techniques.

Several similar trends are revealed in the quantitative performance analysis of

the denoising techniques. The AWMSHE is again outperformed by the majority

of the standard denoising techniques. It is worth noting that the AWMSHE tech-

nique was initially developed using images which were not representative of those

encountered in practical security-screening settings and contained comparatively

low levels of artefacts and noise [ZPA10b]. The results presented here indicate that
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Method
Normalised

Error
Time

(seconds)
Normalised
Product

FBP 1.00 0.23 0.001
Kalender 0.447 1.46 0.004
Wang 0.224 167.80 0.224
Zhao 0.231 10.12 0.014
Bal 0.336 51.68 0.104
Yu 0.328 16.74 0.033
Jeong 0.890 13.01 0.069
Li 0.653 76.12 0.296
Abdoli 0.292 10.33 0.018
Meyer1 0.444 11.04 0.029
Meyer2 0.440 11.23 0.029
Meyer3 0.428 21.38 0.055
DDMar 0.227 16.45 0.022

Table 4.8: MAR quantitative analysis results for cluttered baggage scan Figure 4.6 (b).
Errors computed using the NRFE.

the technique is not well-suited to environments characterised by high degrees of

artefacts and noise.

The improvements in visual quality and the improvements in the 3D SIFT

interest-point ratios are indications that standard denoising techniques (particu-

larly NLM filtering [BCM05a, MS05a] and translation-invariant wavelet shrinkage

[CDAO95]) will benefit the implementation of subsequent operations such as the

object-classification techniques presented in [FBM10, FBM12] and the volume-

rendering techniques presented in [LCNC98].

4.5.2 Metal Artefact Reduction

While the interpolation-based approaches (especially the Kalender [KHE87], Meyer1

[MRL+10], Meyer2 [MRS+11], Bal [BS06] and DDMar (Section 4.2)) successfully

remove streaking, a common shortcoming is the loss of and/or distortion in edge

and contrast information. The Meyer3 approach (FSMAR) [MRL+12] compen-

sates for this by utilising high-frequency information from the initial FBP recon-

struction. While this results in better preservation of image details, an unfortunate

byproduct is that much of the original streaking is reintroduced into the corrected

image. Consequently, the Meyer3 images in both the phantom and real-world

studies present with greater degrees of streaking than the comparative methods.

The results of the four experiments reveal several trends. The Jeong [JR09] and

Li [LBY+10] techniques consistently produce the poorest results - quantitatively

as well as qualitatively. Coupled with their high computational costs, these two

techniques appear to be of little comparative value to the other approaches con-

sidered in this study. The iterative reconstruction approach (Wang [WSOV96]),
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Figure 4.22: MAR results for clutter-free baggage scan in Figure 4.6 (a).

despite not employing a complex prior model, consistently yields low errors in all

four experiments but is also consistently the most computationally intensive. It

is likely that incorporating more sophisticated modelling processes into the iter-

ative approach (e.g. [OB07, MND+01, SN12]) will lead to further reductions in

the errors. The Zhao [ZBWW02], Abdoli [AAA+10] and DDMar approaches also

yield significant quantitative and qualitative improvements across all four experi-

ments - with significant and noticeable reductions in streaking and relatively good

preservation of details. Of these, the Zhao and DDMar approaches yield the lowest

errors and in some cases perform comparably to the iterative approach of Wang

[WSOV96]. The processing times of the majority of the sinogram-completion-

based approaches remain manageable and considerably lower than the iterative

approach. It is worth emphasising, however, that little attention was paid to

computational optimisation of the algorithms.

Perhaps the most interesting observation is that the performance gains of the

state-of-the-art methods over the simple linear interpolation approach of Kalender

et al. [KHE87] are not as significant in the security-screening domain compared to

the medical domain. This observation is supported further by quantifying the re-

lationship between error and computational cost. When considering performance

based on this measure alone, simple linear interpolation comfortably produces the

best results in all four experiments. Performing a direct scalar multiplication of

the two values does, however, assume that the errors and processing times are

of equal importance in terms of performance. In reality the relative importance

of the two measures is dependent on the application. In security-screening appli-
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Figure 4.23: MAR results for cluttered baggage scan in Figure 4.6 (b)

cations processing times are of greater relative importance compared to medical

applications, where accurate diagnoses and hence image quality, are of the highest

importance. This highlights the potential benefit of establishing a suitable tradeoff

between the degree of artefact reduction and computational cost and performing a

weighted multiplication accordingly. Naturally, this tradeoff would be application

dependent.

The fact that the more complex methods perform only marginally better, or

worse in some instances (in terms of error) than linear interpolation in the security-

CT experiments can be attributed to the fact that many of the state-of-the-art

methods employ priors to guide the sinogram-correction process [ZBWW02, BS06,

MRL+10, MRS+11, MRL+12]. While medical-CT scans are consistent enough in

their appearance to allow for priors to be reliably generated based on known tissue

characteristics, the variability and unpredictability in the contents of baggage-CT

data, makes the generation of such priors more challenging. These observations

indicate that a poor choice of prior may lead to poorer results than not using any

prior information at all (i.e. the Kalender approach). This is not entirely surpris-

ing and is in concurrence with the conclusions of Karimi et al. [KCWM12] that an

inaccurate prior has a significant detrimental effect on the performance of a MAR

algorithm. Fine tuning of the parameters that influence the computation of the

priors would most likely result in improved performances and values that better

support the results obtained on medical images. Such tuning, however, can be a

laborious, empirical process and would detract from the efficiency of the method.

An exhaustive optimisation of the parameter space is left as an area for future
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Figure 4.24: Magnification of MAR results for clutter-free baggage scan in Figure 4.22.

work. While these results unfortunately indicate that the MAR techniques that

employ prior information are less well-suited to settings where the generation of

such priors is difficult (e.g. the security domain), they do not detract from the

claims made in the original publications regarding the success of the methods in

the medical domain.

As expected, the introduction of clutter complicates the MAR process further,

especially in terms of generating accurate priors. This is reflected in the universal

decrease in the overall performance of all of the methods. While streaking arte-

facts are reduced to some degree in most cases, the overall improvements in visual

quality of the images are in most cases minimal. In several cases, the negative

impact of the secondary artefacts and the corruption of important image details

(especially in the vicinity of metal objects) outweighs the positive impact of the

reduction of the original streaks.

The similar performance rankings produced in the phantom experiments by

the reference-free error metric (NRFE) [KEMB11] and the NRMSE, as well as

the correlation between image quality and error in the real-world studies, gives

credence to the authenticity of the reference-free metric. Despite the fact that a

reduction in error generally corresponds to some improvement in image quality,

it is important to emphasise that considering the results of either performance

measure (quantitative or qualitative) alone, is likely to be misleading. Even when

reference data is available, reliable quantitative performance analysis is challenging

and at the very least needs to be presented in conjunction with qualitative results
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Figure 4.25: Magnification of MAR results for cluttered baggage scan in Figure 4.23.

- this is a factor which has been neglected to a large degree in the literature and

has possibly contributed to exaggerated performance claims.

The additional Bland-Altman performance analysis of the DDMar and Mou

approaches has highlighted the necessity of the distance-based weighting of the

image refinement procedure (Section 4.2). As predicted, the Mou approach is

shown to perform poorly in image regions corrupted by dark bands (i.e. charac-

terised by underestimated intensity values). This phenomenon typically occurs in

the regions connecting the multiple metal objects and is appropriately handled by

the distance-weighting scheme. Nonetheless, the volumetric performance analysis

of the DDMar approach reveals that, although a notable degree of artefacts are re-

moved, image blurring (particularly within the neighbourhoods of metal objects)

is an obvious concern. The impact of such blurring on further processing (e.g.

classification and/or segmentation) is addressed in Chapters 5 to 8 of this work.
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Figure 4.26: Bland-Altman plot for patient data. The plot illustrates the change in
intensity values for different regions in the scan after applying MAR. Yellow = over-
estimated; red = unaffected; green = underestimated (Mou); blue = underestimated
(DDMar)

Figure 4.27: Bland-Altman plot for baggage data using Modified Hounsfield Units
(MHU). The plot illustrates the change in intensity values for different regions in the scan
after applying MAR. Yellow = overestimated; red = unaffected; green = underestimated
(Mou); blue = underestimated (DDMar)
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Figure 4.28: Distance-driven MAR results showing volumetric visualisations of clutter-
free baggage scan in three different orientations. Top row: Visualisation of input. Bot-
tom row: Visualisation post-DDMar. Regions illustrating significant metal artefact
reduction (white arrows) and undesired blurring (yellow circle) indicated.

Figure 4.29: Distance-driven MAR results showing volumetric visualisations of the clut-
tered baggage scan at three different orientations. Top row: Visualisation of input.
Bottom row: Visualisation post-DDMar. Regions illustrating significant metal artefact
reduction (white arrows) and undesired blurring (yellow circle) indicated.
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4.6 Conclusion

This chapter has presented a comparison of denoising and Metal Artefact Reduc-

tion (MAR) techniques in the previously unconsidered context of low-resolution,

complex volumetric-CT imagery. Previous studies considering the denoising of

such imagery are limited to the work of Zhou et al. [ZPA10b, ZPA10a], where

images with comparatively low degrees of noise and artefacts are considered and

no comparative analysis is performed.

Qualitative performance analysis indicated that, although all of the standard

2D denoising techniques yield improvements in the visual quality of the volumes,

the most significant improvements are offered by wavelet shrinkage [CDAO95]

and the Non-Local Means (NLM) filter [BCM05a, MS05a], both of which signif-

icantly outperform the dedicated CT-baggage-denoising approach of Zhou et al.

[ZPA10b].

A quantitative performance analysis using a novel performance metric (based

on the ratio of object to noise 3D-SIFT interest points) was used to quantify

the potential impact of denoising on subsequent feature-based automated classi-

fication. Performance evaluation using this technique demonstrated the positive

impact of denoising, particularly for wavelet shrinkage. The improvements ob-

served in the quantitative analysis and improved volume-rendering results for the

NLM filter and wavelet shrinkage, is an indication that these standard 2D denois-

ing techniques will benefit the application of complex computer-vision techniques

to low-resolution, cluttered volumetric-CT imagery [FBM10, MFB10, FBM12].

The contributions of the denoising component of this chapter have been the

extension of the previous works of Zhou et al. [ZPA10b, ZPA10a] by considering

low-resolution, cluttered volumetric-CT imagery which is more representative of

that encountered in industry; by comparing the performance of a variety of sim-

ple, yet popular denoising algorithms, which have been met with success in other

areas of image processing and by considering the impact of denoising on subse-

quent feature-based automated object classification within this environment via

the development of a novel 3D SIFT-based performance measure.

Current MAR literature is restricted almost entirely to the medical domain,

where CT imagery is typically of a much higher quality with comparatively low

degrees of artefacts and clutter and where a priori knowledge of the contents

and characteristics of the data exists. The majority of the state-of-the-art MAR

techniques have exploited these characteristics and their applicability to other

domains is thus unclear. A comprehensive evaluation of MAR in non-medical-

imaging domains has not been considered previously.

This chapter has presented an experimental comparison grounded in an evalu-

ation based on a standard scientific comparison protocol for MAR methods, using

a software generated medical phantom image. The experimental comparison has
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been extended beyond the medical-imaging domain by considering novel applica-

tions of CT imagery where the MAR literature is limited. In particular, CT images

obtained from the aviation security-screening domain, which consist of metal ob-

jects with no surrounding tissue in both isolated and cluttered environments, have

been considered. A quantitative analysis (of eleven state-of-the-art techniques

and one novel technique) has been performed by considering both image quality

as well as computational cost and has demonstrated the importance (especially in

non-medical applications) of considering the tradeoff between the two measures

when determining overall performance.

While the performance trends observed on the medical data (simulated and

clinical) are fairly similar to those predicted by the literature, two important

observations are made: 1) the medical MAR techniques that employ prior in-

formation, are less well-suited to settings where the generation of such priors is

difficult (i.e. the security-screening domain); 2) sinogram-completion-based ap-

proaches are generally sensitive to input parameters, require manual tuning and

result in a characteristic blurring of the regions surrounding high-density objects.

The experimental analysis has additionally supported the claims of Kratz et al.

[KEMB11] regarding the reliability and effectiveness of their reference-free quan-

titative performance measure. A comparative study of this nature, that considers

both medical and non-medical applications, has not been conducted previously.

The limitations in the existing MAR literature have been addressed further

through the development of a novel Distance-Driven MAR (DDMar) technique

designed particularly for images containing multiple metal objects in complex,

non-tissue surroundings. A qualitative as well as quantitative analysis of the

technique (in both 2D and 3D) has indicated that high-intensity streaking as well

as dark bands (typically occurring between metal objects) are effectively reduced

and image quality is improved. Nonetheless, as is a common trend with sinogram-

completion-based approaches, the corrected images contain undesired blurring.

The impact of denoising and MAR on the performance of subsequent auto-

mated object classification is directly investigated and quantified in Chapter 8

of this work. The importance of determining an appropriate tradeoff between

image quality and computational cost and the development of techniques to au-

tomatically determine optimal MAR algorithm parameters are highlighted and

left as areas for future work. The superiority of iterative reconstruction (in terms

of artefact removal), the ever increasing computational power of modern hard-

ware and the sensitivity of sinogram-completion-based approaches to parameter

settings, indicates that iterative reconstruction optimisation techniques may be a

more fruitful avenue to pursue in future work, as opposed to attempting to develop

novel sinogram-completion-based approaches.



Chapter 5

Classification of Subvolumes

Prior literature addressing the task of 3D object classification in low-resolution

cluttered volumetric CT imagery (such as that obtained in the security-screening

domain) is limited (Section 3.3). The majority of related studies are found in

the medical domain, where techniques such as Support Vector Machines (SVM)

[MMBB+05, MMK+09], boosting [EBPP12] and random forests [Cri11] have en-

joyed success in a broad range of classification tasks.

The Bag-of-Words (BoW) model [SZ03] (Section 3.3.2) has enjoyed success

in various object recognition and image classification tasks. Although the BoW

model, constructed using 3D SIFT keypoints and descriptors [FBM10], has demon-

strated reasonable performance in the classification of threats in cluttered volu-

metric baggage-CT imagery [FBM13, FBM12], it is shown to suffer a significant

decline in performance in the presence of noise and artefacts and does not offer

the same level of accuracy as the current state-of-the-art 3D visual cortex clas-

sification model [FBM12]. Due to the characteristically high computational cost

of traditional clustering techniques used for feature encoding in the BoW model

(e.g. k-means clustering [JT05]) the known advantages of dense-feature sampling

strategies have not previously been exploited in the baggage-CT domain.

Feature encoding and codebook generation using techniques such as Extremely

Randomised Clustering (ERC) forests [MTJ07] have been shown to offer signifi-

cant gains in terms of classification performance as well as runtime. The significant

reduction in computational cost associated with such techniques has allowed for

the incorporation of dense-feature sampling strategies into high-dimensional do-

mains. Although clustering forests have not previously been applied directly to

the task of 3D object classification in complex volumetric CT imagery, similar

techniques have demonstrated success in related 3D problems such as Multi-Atlas

Label Propagation (MALP) for the labelling of healthy brain tissue in MR imagery

[ZGC13].

The review of the literature in Section 3.3 has shown that prior works address-

ing the classification of objects in low-resolution complex volumetric baggage-CT
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imagery are limited in the following ways:

1. Classification is performed on manually segmented subvolumes.

2. The state-of-the-art visual cortex approach [FBM12] incurs large computa-

tional overhead.

3. Classification performance declines in the presence of noise and artefacts.

4. Codebook approaches using salient keypoints produce suboptimal perfor-

mance (especially in the presence of noise and artefacts).

5. High-speed feature-encoding techniques (e.g. ERC forests [MTJ07]) have

not been considered.

6. Dense feature sampling strategies have not been considered.

In an attempt to address these limitations in the state-of-the-art, the per-

formance of five codebook-classification models are compared to the baseline 3D

visual cortex approach [FBM12]. The codebook models are constructed using

various combinations of sampling strategies (salient and dense), feature-encoding

techniques (k-means clustering and ERC forests) and classifiers (Support Vector

Machines (SVM) and random forests). A codebook model constructed using ERC

forests, a dense-feature sampling strategy and an SVM is shown to yield correct

classification rates in excess of 98% and false-positive rates of less than 1% in

the classification of handguns and bottles, representing an improvement over the

state-of-the-art [FBM12]. These improvements, in conjunction with a significant

reduction in computational cost, make the proposed approach an attractive option

for the classification of threats in 3D baggage-CT imagery.

The BoW model and random forests form the bases of the research presented

in this chapter. An overview of the most relevant concepts related to each has

been presented in Section 3.3.2. The remainder of this chapter presents a detailed

description of the proposed classification methodologies (Section 5.1) followed by

a presentation and discussion of the results of the experimental comparisons (Sec-

tions 5.2 - 5.4).

Portions of this chapter have been submitted for publication and are currently

under review [MBF14].

5.1 Methods

Sivic and Zisserman [SZ03] proposed the original BoW model (or bag-of-visual-

words) for images, whereby local features obtained from images are grouped into

a finite number of clusters. The BoW model has since enjoyed success in a broad
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range of computer-vision tasks (Section 3.3.2). The traditional BoW-classification

framework is adopted here [NJT06a]: 1) feature detection (sampling strategies);

2) feature description; 3) visual codebook generation and vector quantisation and

4) classification.

5.1.1 Interest Point Sampling Strategies

The performance of two feature point sampling strategies are evaluated and com-

pared: 1) a sparse sampling strategy (using the 3D SIFT interest-point detector

[FBM10] and 2) a dense sampling strategy (described below).

The benefits (in terms of classification performance) of dense-feature-point

sampling strategies are well documented [NJT06b] (Section 3.3.1). Prior works

in object classification in baggage-CT imagery [FBM12, FBM13, FMMB13] have

adopted a sparse sampling strategy using the 3D SIFT keypoint detector [FBM10].

In accordance with the observations made in Section 3.3.1, the performance of a

dense-feature-point sampling strategy, whereby interest points are sampled uni-

formly and randomly, is evaluated against the SIFT keypoint approach (imple-

mented according to [FBM12]). An invariance to uniform changes in image scale

is obtained by sampling interest points from three image scales [Lin94] (as per

[FBM10]). At each of the scales a limit of τN = 0.006N on the number of ran-

domly sampled points is enforced (where N is the number of voxels in the Gaussian

scale-space image and τN is determined empirically)). For the volumes used in this

study (N ∼ 3×105), the proposed sampling strategy typically leads to an increase

of two orders of magnitude in the number of sampled points compared to the 3D

SIFT keypoint detection approach of Flitton et al. [FBM10] (making conventional

k-means unsuitable).

5.1.2 Feature Description

Flitton et al. [FBM13] have shown that simple density statistics-based descriptors

outperform more complex 3D descriptors (SIFT [FBM10] and RIFT [LSP03]) in

object detection within low-resolution, complex volumetric CT imagery (Section

3.3.3). In accordance with these findings, the Density Histogram (DH) descriptor

[FBM13] is used here.

This DH descriptor defines the local density variation at a given interest-point

as an N -bin histogram defined over a continuous density range. With reference to

Figure 5.1, for a given interest-point, P , every voxel k in the local neighbourhood of

that point contributes to a single histogram bin as follows. The active histogram

bin (determined by the density Ik of k) is incremented by an amount w(dk, σ),

where dk is the distance (in voxels) from I to k and w(d, σ) is a Gaussian window

function:
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Figure 5.1: Density Histogram Descriptor [FBM13]. (a) Local neighbourhood of interest-
point P . (b) Example density histogram descriptor for interest-point in metallic region.

w(d, σ) = exp

[
−
(
d

σ

)2
]

(5.1)

It should be noted that, given the definition of distance in voxels, this win-

dow remains consistent with the resolution of the volume being examined. On

completion, the resulting histogram is normalised to unit area. The descriptor is

parametrised by the width of the Gaussian window function σ and the histogram

bin-width Ndh. Figure 5.1 (b) illustrates an example of the density histogram

resulting from an interest-point located within a predominantly metallic region.

The histogram is shown to have a corresponding peak resulting from the high

concentration of metal within the neighbourhood of the interest-point.

5.1.3 Visual Codebook Generation

The performance of two feature-encoding techniques are evaluated and compared:

1) k-means clustering (using a sparse-feature sampling strategy) and 2) Extremely

Randomised Clustering (ERC) forests [MTJ07] (using both sparse and dense sam-

pling strategies). A description of the particular ERC forests procedure adopted

is presented below.

Traditional k-means clustering is computationally expensive, limiting its suit-

ability for use with a dense-feature sampling strategy [NJT06b] (Section 3.3.2). To

allow for the incorporation of a dense sampling strategy, codebooks are constructed

using Extremely Randomised Clustering (ERC) forests [GEW06, MTJ07], which

assign separate codewords to every leaf node in a given forest (a full description of

the technique is provided in Section 3.3.2). The BoW representation for a given

image is obtained by accumulating the codeword counts after applying the forest

to all the descriptors in the image. The resulting histogram of codewords is then

used in subsequent classification in the same way as any standard BoW model. In

contrast to k-means clustering, ERC forests are supervised. Trees are trained in
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a top-down recursive fashion [Bre01] using a set of labelled training descriptors,

where the labels are obtained from global image annotations (i.e. all descriptors

from a given image share the same label). A simple thresholding function is used

as the node split function for all internal nodes of the forest:

f(vi, θj) =

0 vi < θj

1 otherwise
(5.2)

where vi, i = 1, . . . , D is a single feature attribute selected from aD-dimensional

descriptor vector v ∈ RD and θj is a scalar valued threshold (D = 60). The op-

timality criterion used for node splitting is the classical Information Gain (IG)

[Cri11]:

IGj = H(Sj)−
∑

i∈{L,R}

|Si
j|

|Sj|
H(Si

j) (5.3)

where Sj is the input sample at node j; i indexes the left (L) and right (R)

child nodes and H(S) denotes the Shannon entropy of a set of points:

H(S) = −
∑
c∈C

p(c) log p(c) (5.4)

where p(c) is the normalised class-label distribution in S and c indicates the

class label (C being the set of all possible classes). A high value for IGj indicates

good class separation. Randomness is injected into the trees via random node

optimisation, whereby a random subset of the available node test parameter val-

ues Tj ⊂ T is considered at each node (i.e. performing |Tj| tests at each node)

and selecting the test that produces the highest gain. For each test a new ran-

domly selected threshold is considered and this threshold is tested for all feature

attributes. The attribute resulting in the best split is accepted for that threshold.

The entire available training set as well as every feature attribute is considered

at each node (i.e. no bagging and no randomised attribute selection). A fixed

value for |Tj| is used for all nodes. Trees are grown to a maximum depth DT and

leaf nodes are generated if the information gain falls below a minimum threshold

IGmin. The value for DT is chosen empirically using a validation set, to avoid

fully grown trees.
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5.1.4 Classification

The classification task considered in this work is binary in nature, whereby im-

ages are classified according to the presence or absence of a particular target item.

The performance of two classifiers are evaluated and compared using the afore-

mentioned combinations of sampling strategies and feature-encoding techniques:

1) Support Vector Machines (SVM) [Vap00] and 2) random forests [Bre01]. The

fundamentals of both approaches have been discussed in Section 3.3.2. An SVM

classifier using a Radial Basis Function (RBF) kernel is implemented here.

A random-forest classifier composed of trees constructed in a greedy, top-down

manner (beginning at the root) is used here. In order to maximise training and

classification speed, a common approach in recent literature has been to construct

random forests using very basic pixel-level node tests (e.g. pixel differences [SJC08,

WC06]). Similarly, in order to optimise the runtime of the random-forest classifier

presented here, a simple linear classifier on the encoded feature vector v is used

as the node-split function [BZM07]:

f(v, θj) =

0 nTv + b ≤ 0

1 otherwise
(5.5)

where θj = {n, b}; n is a vector of the same dimensions as v and b is a

constant. Randomness is incorporated via randomised node optimisation. That

is to say, the vector n is randomly populated with values in the range [−1, 1] and

the constant b is randomly selected. Despite its simplicity, the linear classifier-

based node split function has demonstrated good performance in previous studies

[BZM07]. Trees are again grown to a maximum depth DT and leaf nodes are

generated if the information gain falls below a minimum threshold IGmin. The

optimality criterion used for node splitting is the Information Gain (IG) as per

Equation 5.3.

Given a test data point v (representing a test image), the output posterior

probability of the random-forest classifier (composed of T trees) is computed as

the average of the individual leaf-node predictions [Bre01]:

p(c|v) = 1

T

T∑
t=1

pt(c|v) (5.6)

5.1.5 Subvolume Data

The proposed techniques are evaluated on the classification of two target objects

(handguns and bottles) in complex 3D baggage-CT imagery. The two object
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Target object Num. Images
Pistol 184
Revolver 100
Bottle 113
Clutter 179

Table 5.1: Whole volumes from which subvolumes were cropped. Handgun and bottle
volumes were manually cropped with 30mm margin around the target object. Clutter
subvolumes were automatically cropped. The handgun and bottle whole volume sets
are not mutually exclusive.

classes are considered independently of one another. The objective of this chapter

is to evaluate classification performance against the baseline visual cortex model

[FBM12]. The identical subvolume dataset (composed of handgun subvolumes,

bottle subvolumes and clutter subvolumes) used in this baseline study [FBM12] is

thus used here.

Flitton et al. constructed the handgun and bottle subvolumes by manually

cropping whole-volume scans in the dataset described in Section 1.2 such that

each subvolume contained a single handgun (pistol or revolver) or a single empty

or liquid-containing bottle (with variable liquids). A margin of 30mm was ex-

tended around each of the cropped objects. The handguns and bottles were origi-

nally scanned in random poses to obtain rotational invariance. The final handgun

dataset contained 284 handgun subvolumes, while the bottle dataset contained 534

bottle subvolumes. Clutter subvolumes were obtained by automatically subdivid-

ing bottle and handgun-free whole volumes into subvolumes of sizes spanning the

range of sizes in the handgun and bottle subvolume datasets. As the handguns

and bottles were scanned in numerous orientations, the subvolume sizes varied

considerably. Although the whole volumes from which the clutter subvolumes

were cropped contained a variety of items representative of that typically found in

packed luggage (e.g. books, clothing, shoes etc.), the cropping was unsupervised

and the resulting subvolumes were thus not guaranteed to contain any whole ob-

jects. In total 971 clutter subvolumes were generated in this way. Additionally,

199 handgun subvolumes were used as clutter subvolumes in the bottle classifi-

cation experiments. The anisotropic subvolumes (resolution 1.56 × 1.61 × 5mm)

were resampled to create isotropic voxel resolutions of 2.5 × 2.5 × 2.5mm using

cubic spline interpolation.

The final handgun dataset used here and in [FBM12] is thus composed of

971 clutter subvolumes, while the bottle dataset is composed of 1170 clutter sub-

volumes. The reasoning behind the choice of sizes for the handgun and bottle

datasets is not known. The datasets are summarised in Tables 5.1 and 5.2 and

several example subvolumes are shown in Figure 5.2.
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Dataset Target Clutter
Handgun 284 971
Bottle 534 1170

Table 5.2: Subvolume test datasets. Handgun dataset contains 284 handgun (target)
subvolumes and 971 clutter subvolumes. Bottle dataset contains 534 bottle (target)
subvolumes and 1170 clutter subvolumes (of which 199 are handgun subvolumes).

Figure 5.2: Example subvolume data: bottles (top); handguns (middle); clutter (bot-
tom). Handgun subvolumes are created to contain a single handgun; bottle subvolumes
a single bottle and clutter subvolumes are not guaranteed to contain any whole objects.

5.1.6 Summary of Methodology

In summary, the following six classification techniques are evaluated and compared

(Table 5.3):

1. Codebook1: A codebook model built using sparsely sampled 3D-SIFT

interest points [FBM10], k-means clustering feature encoding [FMMB13]

and an SVM classifier [BL03].

2. Codebook2: A codebook model built using sparsely sampled 3D-SIFT

interest points, ERC forest encoding [MTJ07] and an SVM classifier.

3. Codebook3: A codebook model built using sparsely sampled 3D-SIFT

interest points, ERC forest encoding and a random-forest classifier [BZM07].

4. Codebook4: A codebook model built using densely sampled feature points,

ERC forest encoding and an SVM classifier.

5. Codebook5: A codebook model built using densely sampled feature points,

ERC forest encoding and a random-forest classifier.

6. Cortex: The 3D visual cortex model [FBM12].
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Alias Sampling Model Classifier
Codebook1 Sparse SIFT k-means

codebook
SVM

Codebook2 Sparse SIFT ERC forest
codebook

SVM

Codebook3 Sparse SIFT ERC forest
codebook

Random forest

Codebook4 Dense ERC forest
codebook

SVM

Codebook5 Dense ERC forest
codebook

Random forest

Cortex Dense Gabor 3D visual cortex SVM

Table 5.3: Summary of classification techniques compared.

5.2 Results

Testing was conducted via a 10-fold cross-validation procedure, using the identical

data-splits used in the baseline study [FBM12]. This allowed for a direct perfor-

mance comparison between methods. Performance was quantified via traditional

measures (true-positive rate, false-positive rate and precision).

The cost C and the kernel width γ of the RBF kernel used in the SVM classifier

were optimised using a standard grid-search cross-validation procedure [BHW10].

The k-means clustering-based codebooks were generated using k = 1024 clusters

for the handgun target class and k = 512 clusters for the bottle target class. A

kernel-based cluster assignment methodology was adopted for both classes (with

kernel widths of σ = 0.04 and σ = 0.08 for handguns and bottles respectively).

These parameters were based on the extensive experimental comparison performed

on the same dataset in [FMMB13]. The optimal ERC forest parameters were

determined empirically using a small validation set. The number of tests performed

for each node split was set to |Tj| = 30 - this value was fixed for all nodes. Trees

were grown to a maximum depth of DT = 10, with a lower bound of IGmin = 10−4

on the information gain (see Section 3.3.2 for explanations of these parameters).

It was found that using these settings resulted in tree growth terminating prior to

maximum depth and thus no tree pruning was performed. The settings resulted

in trees with approximately 1000 leaf nodes each. For a forest containing T = 25

trees, codebooks therefore typically contained approximately 25000 codewords.

The optimal classification forest parameters were determined in a similar manner.

Forests were composed of 30 trees, grown to maximum depths of DT = 20 and

used a lower bound of IGmin = 10−4 on the information gain.

Experiments were performed on an Intel Core i5 machine running a 2.30GHz

processor with 6GB of RAM. The random forest clustering and classification meth-

ods were implemented in C++ using the Sherwood decision forest library [CS13].
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Method Time (s)
Codebook1
Codebook2 94.36
Codebook3 92.83
Codebook4 186.89
Codebook5 161.47
Cortex > 3.6× 103

Table 5.4: Classification processing times - averaged over handgun and bottle experi-
ments.

The processing times, measured over the entire 10-fold cross-validation procedure

and averaged over the two experiments (bottles and handguns) are recorded in

Table 5.4. Use of the average is justified by the fact that all subvolumes consid-

ered in this chapter are of similar sizes and hence result in similar-sized codebooks

(codebook sizes being the main factor impacting processing times). As the Code-

book1 and Cortex approaches were not directly implemented in this study, their

corresponding processing times are not known. It is known, however, that the

processing time for the construction of the 3D visual cortex model using the cur-

rent dataset, is in the order of hours [Fli12]. As expected, the sparse-feature

sampling strategy (for both the SVM and random-forest classifiers) led to con-

siderably lower processing times (∼ 90s) relative to the dense sampling strategy

(∼ 175s). For each sampling strategy, the random-forest classifier resulted in a

marginal improvement in processing time (∼ 2s for sparse sampling; ∼ 25s for

dense sampling).

Tables 5.5 - 5.8 summarise the results of the experiments averaged over the 10

folds. Table 5.5 shows the confusion matrices obtained in the handgun classifica-

tion experiments for each of the six methods tested. While there was no major

variance in performance across all six methods, the most significant improvements

over the baseline Cortex approach [FBM12] were produced by the Codebook2,

Codebook4 and Codebook5 approaches, each of which employ ERC forests. The

use of the random-forest classifier resulted in a decline in performance, particu-

larly in terms of the number of false-negative classifications (see Codebook2 (SVM)

vs. Codebook3 (random forest) and Codebook4 (SVM) vs. Codebook5 (random

forest)). Codebook4 (ERC forest, dense-feature sampling and SVM classifier)

produced the optimal performance, with only 4 erroneous classifications (1 false

negative and 3 false positives).

The results of the bottle classification experiments are shown in the confusion

matrices in Table 5.6. The codebooks constructed using sparse-feature sampling

resulted in the highest numbers of misclassifications (Codebook1 (92 misclassifica-

tions); Codebook2 (58 misclassifications) and Codebook3 (73 misclassifications)),

although the use of ERC forests resulted in an improvement over k-means clus-
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Clutter
(predicted)

Handgun
(predicted)

Clutter
(actual) 954 17

Handgun
(actual) 8 276

(a) Codebook1

Clutter
(predicted)

Handgun
(predicted)

Clutter
(actual) 964 7

Handgun
(actual) 4 280

(b) Codebook2

Clutter
(predicted)

Handgun
(predicted)

Clutter
(actual) 965 6

Handgun
(actual) 13 271

(c) Codebook3

Clutter
(predicted)

Handgun
(predicted)

Clutter
(actual) 968 3

Handgun
(actual) 1 283

(d) Codebook4

Clutter
(predicted)

Handgun
(predicted)

Clutter
(actual) 965 6

Handgun
(actual) 6 278

(e) Codebook5

Clutter
(predicted)

Handgun
(predicted)

Clutter
(actual) 960 11

Handgun
(actual) 9 275

(f) Cortex

Table 5.5: Handgun classification confusion matrices (284 handgun and 971 clutter
images)
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tering (Codebook1 vs. Codebook2). The most significant improvements over the

baseline Cortex approach (30 misclassifications) were produced by the densely

sampled codebooks (Codebook4 (13 misclassifications) and Codebook5 (22 mis-

classifications)). Optimal performance was again achieved using the ERC forest

with a dense sampling strategy and an SVM classifier (Codebook4), with only 6

false-negative and 7 false-positive classifications. Similarly to the handgun exper-

iments, the SVM classifier outperformed the random-forest classifier (see Code-

book2 vs. Codebook3 and Codebook4 vs. Codebook5).

The true-positive, false-positive and precision rates for the handgun and bottle

experiments are shown in Tables 5.7 and 5.8 respectively. The performance gains

of the ERC codebook using dense sampling and an SVM classifier (Codebook4

- in bold) over the state-of-the-art Cortex approach are clear with improvements

of > 3% and > 2% in the true-positive rates for handgun and bottle recognition

respectively and reductions of 70% and 40% in the corresponding false-positive

rates.

5.3 Discussion

The ERC forest codebook using dense-feature sampling and an SVM classifier

(Codebook4) has offered improvements in both processing times as well as clas-

sification performance over the current state-of-the-art [FBM12]. Several trends

are revealed upon closer examination of the aforementioned classification results.

Note that each of the subvolumes shown in Figure 5.2 were correctly classified by

all six methods.

Figure 5.3 illustrates several handgun misclassifications produced by each of

the six methods. In terms of false-positive (FP) classifications, the only obvious

trend is the presence of high-density objects (coloured red/orange), particularly in

the false-positive instances for the ERC forest codebooks (Codebook2, Codebook3,

Codebook4 and Codebook5). The k-means clustering codebook (Codebook1) and

the Cortex false positives bear minimal similarities to the handgun training data.

The only possible trend in the false-negative handgun classifications is the lack

of prominence of the handles of the handguns relative to the barrels for examples

from the Codebook2, Codebook3 and Codebook4 approaches (note that both the

Codebook2 and Codebook3 approaches had additional false negatives which did

not exhibit these characteristics). These examples have been magnified for clarity

in Figure 5.4. The handgun handles are noticeably more prominent in the correctly

classified handguns (Figure 5.2) as well as the remaining false-negative handguns

in Figure 5.3 (especially the Codebook1 and Cortex examples).

Considering the classification of bottles (Figure 5.5) the performance gains of

all four ERC forest-based codebooks over the traditional k-means codebook (Code-
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Clutter
(predicted)

Bottle
(predicted)

Clutter
(actual) 1135 35
Bottle
(actual) 57 477

(a) Codebook1

Clutter
(predicted)

Bottle
(predicted)

Clutter
(actual) 1148 22
Bottle
(actual) 36 498

(b) Codebook2

Clutter
(predicted)

Bottle
(predicted)

Clutter
(actual) 1127 43
Bottle
(actual) 30 504

(c) Codebook3

Clutter
(predicted)

Bottle
(predicted)

Clutter
(actual) 1163 7
Bottle
(actual) 6 528

(d) Codebook4

Clutter
(predicted)

Bottle
(predicted)

Clutter
(actual) 1162 8
Bottle
(actual) 14 520

(e) Codebook5

Clutter
(predicted)

Bottle
(predicted)

Clutter
(actual) 1158 12
Bottle
(actual) 18 516

(f) Cortex

Table 5.6: Bottle classification confusion matrices (534 bottle and 1170 clutter images)
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Method TPR (%) FPR (%) Precision
Codebook1 97.34 ± 3.41 1.81 ± 1.70 0.942 ± 0.053
Codebook2 98.60 ± 1.52 0.70 ± 0.31 0.976 ± 0.028
Codebook3 95.61 ± 3.30 0.61 ± 0.72 0.978 ± 0.023
Codebook4 99.71 ± 0.51 0.28 ± 0.21 0.990 ± 0.013
Codebook5 97.74 ± 2.13 0.57 ± 0.53 0.979 ± 0.018
Cortex 96.81 ± 2.64 1.10 ± 0.93 0.962 ± 0.029

Table 5.7: Overall handgun classification performance for six tested methods. Optimal
performance indicated in bold.

Method TPR (%) FPR (%) Precision
Codebook1 89.33 ± 5.52 3.01 ± 1.44 0.932 ± 0.029
Codebook2 93.31 ± 3.10 1.88 ± 1.22 0.958 ± 0.042
Codebook3 94.23 ± 3.31 3.70 ± 2.00 0.921 ± 0.037
Codebook4 98.88 ± 0.68 0.60 ± 0.25 0.987 ± 0.021
Codebook5 97.44 ± 0.66 0.69 ± 0.43 0.985 ± 0.009
Cortex 96.62 ± 3.23 1.01 ± 1.63 0.977 ± 0.034

Table 5.8: Overall bottle classification performance for six tested methods. Optimal
performance indicated in bold.

book1) are more substantial than observed in the handgun experiments. Closer

examination of the bottle misclassifications has not indicated any obvious sources

of error or notable trends within the false-negative classifications (i.e. missed bot-

tles) produced by all six approaches. The two most obvious consistencies in the

false-positive bottle classifications (again for all six methods) are: 1) the presence

of items with circular cross sections similar to that of a full bottle and 2) the pres-

ence of image regions that are similar in density to the liquids used in the training

set. It is worth noting that these observations are in accordance with those made

in the previous works of Flitton et al. [FBM12, FMMB13].

While codebook approaches, by nature, do not capture spatial/geometric re-

lations between codewords, it appears as if the increase in the amount of infor-

mation captured by a dense sampling strategy compensates for this limitation.

This is illustrated by the gain in performance of Codebook4 (dense sampling

with SVM) over Codebook2 (sparse sampling with SVM) and Codebook5 (dense

sampling with random-forest classifier) over Codebook3 (sparse sampling with

random-forest classifier). It is likely that the k-means codebook-classification

results (Codebook1) would improve using dense sampling, but at a significant

increase in computational cost. Furthermore, it is suspected that these gains

would not match those offered by the ERC forest codebooks using dense sam-

pling, judging from the superior performance of the Codebook2 (ERC forest) over
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Figure 5.3: Handgun misclassifications: FN indicates false-negative classifications
(handgun-containing subvolumes incorrectly classified as not containing handguns) and
FP indicates false-positive classifications (handgun-free subvolumes incorrectly classified
as containing handguns).

Figure 5.4: Magnified displays of missed handguns (false negatives) in Figure 5.3 result-
ing from low-density handles.

Codebook1 (k-means clustering) when using identical sparse features but different

feature-encoding techniques.

Interestingly, despite the marginal increase in processing time, the SVM classi-
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Figure 5.5: Bottle misclassifications: FN indicates false-negative classifications (bottle-
containing subvolumes incorrectly classified as not containing bottles) and FP indicates
false-positive classifications (bottle-free subvolumes incorrectly classified as containing
bottles).

fier consistently outperforms the random-forest classifier in terms of classification

accuracy (Codebook2 vs. Codebook3 and Codebook4 vs. Codebook5). This is

in contrast to what has been observed in the prior image classification literature

[CKY08] (Section 3.3.2), where a random-forest-based classifier is shown to out-

perform a variety of popular binary classifiers (including the SVM). It has however,

been noted (Section 3.3) that there does exist prior work (especially within the

bioinformatics literature) that demonstrates that SVMs consistently outperform

random forests in some classification problems [SWA08, OPSS11]. Furthermore,

Criminisi [Cri11] emphasises that the potential benefits of random-forest-based

image classification over popular techniques (e.g. SVM and boosting) are most

prominent in multiclass and high-dimensional classification problems (as opposed
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to the two-class classification problems considered here). Although it is thus likely

that the random-forest classification performance would improve relative to the

SVM performance when considering the classification of multiple threats, it is rea-

sonable to conclude that SVMs are the preferred mode of classification within the

current context.

It also is worth emphasising that no pre-processing in the form of noise and/or

metal artefact reduction (Chapter 4) has been considered in this chapter - demon-

strating the robustness of the dense sampling-based codebook approaches to back-

ground noise and artefacts. It is expected, however, that such techniques will be

of greater importance in the automation of the segmentation process and is ad-

dressed accordingly in Chapter 7 of this work. Finally, the results and observations

presented in this chapter have demonstrated an improvement over the state-of-the-

art in the automated classification of threats in low-resolution, complex volumetric

baggage-CT imagery [FBM12], both in terms of classification accuracy as well as

runtime.

5.4 Conclusion

This chapter has investigated the feasibility of a codebook approach for the au-

tomated classification of threats in manually segmented low-resolution, subvol-

umes of complex 3D volumetric baggage-CT imagery by comparing the perfor-

mance of five codebook models to the current state-of-the-art 3D visual cortex

approach [FBM12]. The codebook models are constructed using various combina-

tions of sampling strategies (salient and dense [NJT06b]), feature-encoding tech-

niques (k-means clustering and Extremely Randomised Clustering (ERC) forests

[MTJ07]) and classifiers (Support Vector Machines (SVM) [Vap00] and random

forests [BZM07]). An improvement over the current state-of-the-art, both in terms

of accuracy as well as runtime, is achieved using a codebook constructed using an

ERC forest, a dense-feature sampling strategy and an SVM classifier. The research

presented in this chapter has extended the current state-of-the-art in the following

ways:

1. State-of-the-art true-positive rates have been improved by > 3% and >

2% for handgun and bottle classifications respectively, with corresponding

reductions of 70% and 40% in the false-positive rates.

2. Runtime has been decreased by several orders of magnitude.

3. A high-speed feature-encoding technique (the ERC forest [MTJ07]) has been

implemented in the previously unconsidered domain of complex volumetric

baggage-CT imagery.
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4. Classification performance in the presence of noise and artefacts has been im-

proved using a dense feature-point sampling strategy (which was previously

not feasible using k-means clustering).

These improvements make the proposed approach an attractive option for the

classification of threats in 3D baggage-CT imagery. The final step towards a fully-

automated classification framework is the automation of the manual subvolume

generation procedure currently employed by the methods proposed in this chap-

ter. The automated segmentation of cluttered volumetric baggage-CT imagery is

addressed in Chapter 7 of this work.



Chapter 6

Dual-Energy Techniques

Dual-Enery Computed Tomography (DECT) techniques have formed the basis

for the majority of the state-of-the-art Explosives Detection Systems (EDS) used

within the aviation-security domain [Sin03]. DECT techniques may generally be

grouped into one of three categories (Section 3.4): post-reconstruction techniques;

pre-reconstruction techniques and iterative-reconstruction techniques.

Post-reconstruction techniques operate in the image domain (directly on the

low and high-energy scans). While such techniques are the most straightforward

and computationally efficient, they are known to be sensitive to image noise and

artefacts and the literature indicates that they offer comparatively limited discrim-

inative power (compared to more advanced techniques). Nonetheless, techniques

such as image fusion [EHIS+08] and the Dual-Energy Index (DEI) [Joh11] have

been successfully employed for a variety of clinical material-differentiation tasks

[CZLY13, GJCM09].

Pre-reconstruction DECT techniques are the most widely implemented tech-

niques, particularly in the security-screening domain, where DECT decomposition

and subsequent effective atomic number computations have been successfully used

for materials-based explosives detection [Rod79, Sin03, SMK11, YNC06, NBC03].

Such techniques perform decompositions in the projection domain to estimate

effective atomic number and electron density equivalent reconstructions, which

provide indications of the chemical makeup of the objects present in a scan. This

information has been shown to be invaluable in the discrimination of common ex-

plosive materials. The two primary drawbacks of pre-reconstruction DECT are 1)

their susceptibility to reconstruction artefacts and 2) the computational overhead

associated with two additional FBP reconstructions required per image.

DECT based on iterative-reconstruction techniques provides superior perfor-

mance, particularly considering the reduction of artefacts. Improved performance

does however, come at an increase in computational demand. Nonetheless, such

techniques are gaining popularity with the ever-increasing computational power

of modern hardware.
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Property Al PMMA Units
Mass density 2.7 1.21 g/cm3

Zeff 13 6.47 -
Compton coeff. 0.390 0.1952 cm−1

Photoelectric coeff. 69734.0 3309.0 keV3/cm
Min. thickness 0.16 1.27 cm
Max. thickness 2.56 21.59 cm
Thickness step 0.16 1.27 cm

Table 6.1: Calibration materials for DECT decomposition

DECT applications in aviation security-screening have, for the most part,

relied on pre-reconstruction decomposition techniques [SMK11, YNC06]. Such

techniques typically rely on calibration data and knowledge of the geometric and

spectral configurations of the CT scanner (Section 3.4). The less complex and

faster post-reconstruction Dual-Energy Index (DEI) has not been considered pre-

viously in this domain - predominantly due to the increased levels of noise and

metal-streaking artefacts characteristic of baggage-CT imagery. The effectiveness

of metal artefact reduction when used in conjunction with DECT is addressed in

this chapter.

While the chemical characteristics (e.g. effective atomic numbers and densi-

ties) of the materials in a scan are likely to be of value in both the segmentation

and classification of baggage-CT images, the configuration and calibration infor-

mation necessary to perform accurate dual-energy decompositions has not been

readily accessible in this work. This chapter presents an experimental evaluation of

the potential discriminative capabilities of the previously-unconsidered DEI within

the baggage-CT domain. Performance is compared to the traditional effective

atomic number Zeff obtained via pre-reconstruction dual-energy decompositions,

performed using simulated calibration and configuration data. The DEI demon-

strates meaningful discrimination of five material classes (with differing chemical

properties) and is shown to outperform the effective atomic number both in terms

of (estimated) accuracy as well as discriminative power. Crucially, high-quality

discrimination relies on sufficient metal artefact reduction.

6.1 DECT Experiments

The iso-transmission method of Chuang and Huang [CH87] (Section 3.4.2) was

used to perform the dual-energy decompositions. Similarly to [YNC06], simulated

spectra were used to generate the required calibration data, using aluminium and

plastic (Table 6.1) as the chosen calibration materials. The effective atomic num-

ber images were computed according to Equation 3.20 with n = 3.

The CT-80DR scanner is an Explosives Detection System (EDS) designed for
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Parameter Value
Focus-to-isocentre distance 550mm
Focus-to-detector distance 1008.4mm
FoV diameter 800mm
Rotation speed 90rpm
Detector elements 768
Views per rotation 960 (360◦ rotation)
Fan angle 95.875◦

Spatial resolution 1.56× 1.61× 5.00mm

Table 6.2: Reveal CT-80DR scanner geometry and reconstruction parameters

the inspection of checked baggage. The geometric and reconstruction parameters

of the scanner are summarised in Table 6.2. As discussed (Section 3.4.2), the re-

liable generation of calibration data using simulated energy spectra still requires

knowledge of various scanner parameters. Unfortunately, without direct access to

the scanner, these parameters are not readily available or are stored in a propri-

etary format. Those parameters which were not explicitly known for the CT-80DR

scanner were estimated, based on related literature [YNC06, SMK11].

The CT-80DR scanner employs a fan-beam geometry with a focus-to-isocentre

distance of 550mm, a focus-to-detector distance of 1008.4mm and an optimal

spatial resolution of 1.56 × 1.61 × 5.00mm. It is assumed that the dual-energy

X-ray spectra are generated by applying a high-voltage power supply to the X-ray

tube. The power supply is characterised by a sinusoidally-modulated waveform:

V (t) = Vdc + Vac sin(2πft) (6.1)

where the nominal values of Vdc and Vac were estimated at Vdc = 110kVp and

Vac = 40kVp. A waveform frequency of f = 54 Hz was assumed. These values

were estimated based on related literature [YNC06], as well as the limitations of

the spectrum-simulation software [NH85]. The dual-energy X-ray spectra were

simulated using the Xcomp5r software package [NH85], which generates X-ray

spectra based on an input DC voltage, a source-to-detector distance and absorber

filtration types and thicknesses. The following beamline filtration was assumed:

2.5mm aluminium and 0.2mm beryllium. Since the Xcomp5r software generates

spectra based on DC voltages, a single cycle of the voltage supply in Equation

6.1 was discretised into 100 equally-spaced samples. The low and high-energy

spectra were then computed by averaging the 50 X-ray spectra corresponding to

the negative and positive half-cycles respectively [YNC06]. The resulting spectra

(normalised to unit area) are illustrated in Figure 6.1.

In addition to the Zeff reconstructions, Dual-Energy Index (DEI) images were
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Figure 6.1: Normalised dual-energy spectra used in energy decompositions.

also generated. In order to evaluate the accuracy of both the Zeff and DEI im-

ages, knowledge of the contents and corresponding chemical characteristics of the

scanned objects are required. Such ground-truth information was not available for

the dataset under investigation here. Performance evaluation was thus performed

predominantly in a qualitative manner. Some degree of quantitative analysis was

performed by manually annotating objects composed predominantly of certain

material types. In particular, five object classes were considered (Figure 6.2):

outsoles of shoes; clothing and books; bottles; handguns and grenades and bullets.

Considering these object classes, several assumptions were made. The outsoles of

shoes are assumed to be composed predominantly of vulcanised rubbers which typ-

ically have effective atomic numbers in the range of Zeff = 5 to Zeff = 7 [SSAW83];

clothing and books are assumed to be composed predominantly of cellulose (molec-

ular formula: (C6H10O5)n) which has an approximate effective atomic number of

Zeff = 7; bottles are assumed to be constructed predominantly of plastic and con-

taining liquids which are assumed to have a similar chemical composition to water

(Zeff = 7.42); the handguns considered are composed predominantly of stainless

steel (main component is iron - ZFe = 26) and to a lesser degree plastic; similarly

the grenades are assumed to be fragmentation grenades composed of varying com-

binations of common raw materials which typically include polycarbonates, steel

and ammonium nitrate explosives etc. - handguns and grenades are thus expected

to have effective atomic numbers greater than that of water but less than pure

metals; bullets are assumed to be composed predominantly of lead alloyed with

tin and antimony or zinc (i.e. Zeff ≥ ZAl). The object classes and their assumed

characteristics are summarised in Table 6.3. It is worth noting that using Equa-

tion 3.20 to compute the effective atomic numbers imposes lower and upper limits

of min {Z1, Z2} and max {Z1, Z2} respectively on the computed value, where Z1

and Z2 are the effective atomic numbers of the calibration materials.

The aforementioned annotations were used to perform quantitative analyses
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Figure 6.2: Examples of image classes (outlined regions) used in histogram analyses: a)
sole of shoe; b) paperback book; c) bottle; d) handgun; e) bullets.

Class Annotations
Main

Component
Approx.

Zeff

Shoe soles 69 Vulcanised
rubber

6.4− 7

Clothing & books 102 Cellulose 7
Bottles 118 Liquid 7.42
Handguns & grenades 115 Iron, plastic 7− 13
Bullets 32 Lead 13

Table 6.3: Object classes used in DEI and Zeff histogram analyses. The estimated atomic
numbers are based on the upper limit of 13 (imposed by the calibration procedure).

by computing the mean Zeff and DEI values for each individual annotation and

recording the results in class-specific histograms. These histograms should the-

oretically provide an indication of both the accuracy of the measure as well as

the potential of the measure to provide a robust separation of the typical object

classes found in baggage scans.

Finally, all experiments were conducted with and without the application of

Metal Artefact Reduction (MAR) techniques. For these purposes, the MAR tech-

nique presented in Section 4.2 was employed.

6.1.1 DECT Data

The dual-energy techniques are evaluated on two cluttered volumetric baggage

scans obtained on the Reveal CT-80DR dual-energy baggage-CT scanner (Section

1.2). The data is characterised by anisotropic voxel resolutions of 1.56×1.61×5mm

and dimensions of 512× 512× 99 (Figure 6.3 (a)) and 512× 512× 87 (Figure 6.3

(c)). The scans were chosen to contain a broad range of objects (handguns, shoes,

spectacles, golf balls, magazines, alkaline batteries, cups etc.), expected to have

distinguishable chemical characteristics. Performance is evaluated on individual

2D 512× 512 axial slices as well as the whole volumes.

6.2 Results

Figures 6.4 and 6.5 show the results of the DECT decompositions and DEI compu-

tations applied to the two test images without and with metal artefact reduction
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Figure 6.3: DECT test data. (a) and (c): visualisations of test volumes. (b) and (d):
2D axial slices obtained from volumetric data (a) and (b) respectively. Several objects
of interest and artefacts have been labelled.

respectively. In both examples in Figure 6.4, the aluminium and plastic equivalent

images appear to have emphasised the appropriate object types - those with higher

expected atomic numbers for the aluminium images (e.g. metallic handguns and

belt buckles) and those with lower expected atomic numbers for the plastic images

(e.g. shoes). The impact of the metal-streaking artefacts is however, quite obvi-

ous - resulting in the greater than expected aluminium contributions from objects

such as the soles of shoes (predominantly rubber). Consequently, the resulting Zeff

images are heavily corrupted by streaking artefacts and almost certainly overesti-

mate the atomic numbers of the majority of the objects in the scans. Similarly,

the DEI images also contain significant amounts of streaking. The positive im-

pact of metal artefact reduction is clear in Figure 6.5. Observations worth noting

include reduced streaking in all the reconstructions; lesser aluminium contribu-

tions from metal-free obects (e.g. shoe soles) and a more obvious separation of

the constituent objects into plastic and aluminium components. While the re-

sulting Zeff images are considerably clearer (i.e. fewer artefacts), closer inspection

indicates only a subtle variation in the intensities (i.e. atomic numbers) of the

objects. The paperback in the second test image, for example, appears to have a

very similar atomic number (i.e. similar intensity) to the handgun - in reality, one

would expect the atomic numbers of the paperback to be noticeably lower than

that of the handgun. The DEI images appear to provide superior visualisation of

the objects in both test images (compared to the input high-energy scans), with

minimal streaking artefacts. This is encouraging for the separating power of the

DEI for tasks such as segmentation.
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Figure 6.4: Results of 2D DECT decomposition and DEI computation without metal
artefact reduction.

Figure 6.5: Results of 2D DECT decomposition and DEI computation with metal arte-
fact reduction.

Additionally, Figures 6.6 and 6.7 show the results of the Zeff and DEI compu-

tations applied to the original volumetric images (with and without MAR). Prior

to MAR (Figure 6.6), metal-streaking artefacts appear to have resulted in greater

than expected aluminium contributions from predominantly plastic-like objects

(e.g. the golf balls which are composed predominantly of rubber and thermoplas-

tics). Furthermore, all meaningful information appears to have been corrupted by

noise and artefacts in the Zeff volumes, where there is little (if any) distinction be-

tween the effective atomic numbers of various objects. The DEI volumes, although

containing some streaking, do separate the objects fairly accurately - low atomic

number objects (e.g. book) are, for example, characterised by negative DEIs (see

scale), while the high atomic number objects (e.g. handgun) are characterised by

high DEIs (∼ 0.3). The application of MAR (Figure 6.7) improves the quality

of all the volumes - the visualisation of the plastic-like golf balls, for example, is

noticeably improved in the plastic-equivalent volume. It is worth noting, however,

that the plastic volumes remain difficult to interpret, with considerable amounts

of noise. Consequently, the Zeff volumes exhibit very little variation in the com-

puted Zeff values, with the majority of the Zeff values towards the upper end of

the scale. In contrast, the post-MAR DEI volumes exhibit good separation of
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Figure 6.6: Results of 3D DECT decomposition and DEI computation without metal
artefact reduction (volumetric visualisations).

Figure 6.7: Results of 3D DECT decomposition and DEI computation with metal arte-
fact reduction (volumetric visualisations).

the object types and contain very little noise and/or artefacts, suggesting strong

discriminative capabilities.

Figures 6.8 - 6.10 display the results of the quantitative histogram analyses

of the various reconstructions with and without metal artefact reduction. Figure

6.8 displays the histograms for the selected objects based on the initial high-

energy CT values only. The streaking artefacts make the separation of objects,

based on intensity alone, challenging (Figure 6.8 (a)). This is especially true for

the low density objects (bottles, clothing and shoes), which exhibit very similar

intensities. As expected, the predominantly metallic objects (bullets, handguns

and grenades) are comparatively easy to distinguish. The application of MAR has

a significant impact on this separability. Two positive factors are worth noting:

firstly, the MAR procedure has resulted in a decrease in the mean intensities of the

low density objects (represented by a shift to the left on the x-axis in Figure 6.8

(b)) - indicating the removal of high intensity streaking and secondly, the overlap

between the shoes, clothing and bottle histograms has been reduced. Despite
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Figure 6.8: Histogram analysis using high-energy intensities only: a) without MAR; b)
with MAR.

this reduction, the overlap has not been removed entirely, indicating that the

separation of the low-density objects will remain a non-trivial task.

The results of the DEI computations are shown in Figure 6.9. The accuracy

of the DEI computations may best be determined by evaluating the DEI of each

object type relative to that of water (DEI of water ∼ 0) - materials with atomic

numbers less than that of water should return negative values, while materials

with atomic numbers greater than water should result in positive DEIs. There-

fore, under the assumption that the chemical characteristics of the liquids in the

test images approximate those of water, it is expected that the liquid DEIs be

approximately zero, the shoes and clothing DEIs less than zero and the handguns,

grenades and bullets DEIs greater than zero. Prior to the application of MAR, the

DEIs of liquids are centred around approximately 0.05 (Figure 6.9 (a) and (c)).

While the DEIs of both the low-atomic-number objects (shoes, clothing) and the

high-atomic-number objects (handguns, grenades and bullets) are correctly posi-

tioned relative to that of water, the fact that all the values are greater than zero is

an indication that the streaking artefacts have resulted in a slight overestimation

of the DEIs. As the various object groupings do contain common materials, some

overlap in their DEIs is expected. Nonetheless, the degree of overlap in Figure 6.9

(a) and (c) indicate that separation of the selected object classes based on the DEI

will be challenging. The application of MAR again has a positive impact on the

results (Figure 6.9 (b) and (d)). The mean of the liquid DEI histogram is nearer

to 0 and both the low and high atomic number object classes are better separated,

indicating that the DEI may be a valuable measure in object classification and/or

segmentation tasks. An important advantage of the DEI approach (compared to

the DECT decomposition) is the low computational demand - since both the low

and high-energy images are available by default, the DEI computation requires

only simple arithmetic and is thus performed in real-time.

Finally, Figure 6.10 illustrates the results of the DECT decomposition and

subsequent effective atomic number reconstructions. As indicated by the poor



164 Dual-Energy Techniques

Figure 6.9: Histogram analysis using dual-energy index: a) without MAR; b) with MAR.
Magnified regions shown in (c) and (d).

Figure 6.10: Histogram analysis using effective atomic number: a) without MAR; b)
with MAR.

quality Zeff images in Figure 6.4, the effective atomic numbers computed from

images without applying MAR provide little discriminative power. In fact, there

does not appear to be any meaningful order to the computed numbers, with almost

all object classes containing atomic numbers spanning the entire range of possible

values. While the application of MAR does lead to some improvement, the results

are generally poor. Most apparent are the overestimation of the atomic numbers

of the shoe soles and clothing items. These object classes are expected to be dom-

inated by plastic in the decomposition process and should thus generate effective

atomic numbers towards the lower end of the scale Zeff ∈ [6.47, 13]. The actual

values computed (especially for clothing and books - mean of approximately 10.7)

are almost certainly too high. The Zeff measure, as computed in this study, thus

appears to contain little discriminative power. It may be argued that the bullets

and handguns classes (which are correctly classified by high Zeff ) are exceptions

to this conclusion. It is worth noting however, that these object classes are charac-
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terised by considerably higher CT numbers relative to the other object classes and

are thus fairly easily distinguishable based on intensities alone (Figure 6.8). As

discussed in Sections 3.4.2 and 3.4.4, DECT decomposition requires an intensive

calibration procedure, a table look-up process as well as two FBP reconstructions

(which is the most computationally-intensive component of traditional CT imag-

ing). Consequently, the computation of the Zeff images requires considerably more

computational power and longer processing times.

6.3 Conclusion

This chapter has provided an experimental investigation into the efficacy of pre-

reconstruction and post-reconstruction DECT techniques when applied to the low-

resolution, cluttered baggage-CT data obtained from the Reveal CT-80DR scan-

ner. In particular, the potential discriminative capabilities of the previously un-

considered post-reconstruction Dual-Energy Index (DEI) and the traditional pre-

reconstruction effective atomic number Zeff have been evaluated on five manually-

annotated object classes (with differing chemical characteristics). Furthermore,

the impact of metal artefact reduction on each technique has been evaluated. Due

to the shortage of empirical data, the DECT decompositions have been performed

using simulated energy spectra and approximated scanner configurations.

While absolute quantitative analysis has not been possible, due to the lack of

ground-truth data, a rough analysis has been performed using histogram analysis.

It is important to emphasise that the precise contents of each of the test images are

not known - while several of the objects present in the scans are easily identifiable

(e.g. handguns and shoes), others range from challenging to virtually impossible.

It has thus not been plausible to make a definitive conclusion on the accuracy of

the reconstructions using the available information. At best, the results give an

indication of the likely benefit of each measure in subsequent processing.

Considering the broader objective of this work (automated segmentation and

classification), the most important observations of the aforementioned experimen-

tation have been:

� The dual-energy index outperforms the effective atomic number both in

terms of (estimated) accuracy as well as discriminative power.

� Performance is improved with metal artefact reduction.

� Errors resulting from the approximations of the scanner configuration and

the use of simulated energy spectra appear to be the predominant cause of

the comparatively poor performance of the Zeff measure.

It is likely that this work will benefit from performing calibration using at least

some empirical data (e.g. actual scans of materials with known properties and/or
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the measured energy spectra of the scanner). Alternatively, as is indicated by

[SM12], an iterative reconstruction DECT approach is likely to produce superior

results. These alternatives are left as areas for future work.

A novel 3D volumetric-CT segmentation technique, which incorporates the

DEI-based methods considered here, is presented and evaluated in Chapter 7 of

this work.



Chapter 7

Segmentation

The broader objective of this work is the development of a fully-automated frame-

work for the classification of objects in volumetric baggage-CT imagery. The cur-

rent state-of-the-art in this regard relies on the manual generation of subvolumes

containing at most a single target object [FBM12, FBM13]. This chapter presents

the development and implementation of a segmentation framework to automate

the generation of these subvolumes.

The dependence of the majority of the state-of-the-art medical-segmentation

techniques on a priori information (Section 3.5.1) detracts from their suitability

to the aviation security-screening domain, where the segmentation of multiple,

unknown objects is required. This has been substantiated by the comparative work

of Megherbi el al. [MBFM13], where popular medical-segmentation techniques

are shown to perform poorly on baggage-CT data. The blind segmentation of

unknown objects in cluttered volumetric imagery is considerably more challenging

and comparatively few solutions exist. The majority of the prior work in this

domain [Gra06, WGW12] has originated from the US Department of Homeland

Security’s ALERT baggage-segmentation initiative [CMP13] which considered the

segmentation of 3D volumetric baggage-CT scans. The ALERT initiative led to

the development of five dedicated baggage-CT segmentation techniques. Although

each technique demonstrated high-quality segmentations, the study considered

single-energy, medical-grade CT imagery, with comparatively low levels of noise

and metal-streaking artefacts [CMP13]. Such data is not representative of that

encountered in the current security-screening domain. The segmentation of low,

anisotropic resolution volumetric baggage-CT imagery in the presence of multiple

metal objects (such as that considered in this thesis) has not been considered

previously.

Drawing from these prior works and from the dual-energy techniques presented

in Chapter 6, a novel dual-energy-based segmentation technique is presented in

this chapter. Within the proposed framework, four novel contributions are made:

1. A materials-based coarse segmentation technique using the Dual-Energy In-
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dex (DEI) [Joh11] and connected component analysis.

2. A random-forest-based model for measuring the quality of individual object

segments, which is used to guide the segmentation process.

3. A random-forest-based model for measuring the quality of entire segmenta-

tions.

4. An efficient segmentation-refinement procedure for splitting fused objects.

The segmentation framework is shown to produce fast, high-quality segmenta-

tions of low-resolution volumetric baggage-CT images. Based on previous perfor-

mance and available information, three techniques (two region-growing [WGW12,

WH03] and one graph-based [Gra06]), derived from the ALERT initiative [CMP13],

are selected as benchmarks for comparative evaluations. The proposed approach is

shown to outperform both region-growing-based methods in terms of segmentation

quality and speed, but produces lower-quality segmentations than the graph-based

approach [Gra06]. These do however, come at a notable reduction in processing

time.

Portions of this chapter have been submitted for publication and are currently

under review [MB14b].

7.1 A Definition of Image Segmentation

Although the precise objective of any given segmentation algorithm is dependent

on a number of problem-specific variables, its core is typically based on some

variant of the following formal definition of image segmentation.

Consider a digital image I defined in an N -dimensional discrete coordinate

system Zn such that I ⊂ Zn. The objective of image segmentation is then to

partition the image into M disjoint Regions Of Interest (ROIs) such that the

segmented image S takes the form [WH03]:

S =
M⋃
i=1

Ri, where Ri ∩Rj = ∅ for i ̸= j (7.1)

where:

� RM is reserved for the background image region and is set to zero in S.

� Each ROI Ri, i ∈ [1,M), consists of a only one connected component.

� Individual regions are distinguished by region labels.
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As image-segmentation algorithms have been developed for a wide range of ap-

plications, the definition of what constitutes an object (i.e. what it is that needs

to be segmented) is problem-specific. This task is inherently trivial in applications

which require the segmentation of pre-specified objects (e.g. the segmentation of

specific organs from medical images). In this work, however, a segmentation algo-

rithm that does not require knowledge of the quantity and/or physical properties

of the objects to be segmented, is required. Considering the particular domain of

baggage security-screening, there are essentially two possible object-philosophies

[CMP13]:

1. Segment-all: requiring the segmentation of all the objects in a scan (a

universal definition of an object is then required).

2. Segment-threats: requiring the segmentation of threat-like objects only.

This allows for a simpler and more precise definition of an object, based

upon some prior knowledge of common threat items.

The task of defining an object is complicated further when considering objects

composed of multiple parts and deciding whether or not the object should be

segmented as one or into its constituents (e.g. bottle containing liquid). Several

techniques (e.g. splitting and merging [WH03], hierarchical object representations

[WGW12] etc.) have been presented to address such ambiguities and are discussed

in further detail in Section 3.5.

The current state-of-the-art in baggage-CT-image classification [FBM12] relies

on the manual generation of subvolumes containing at most a single target object.

The segmentation techniques developed in this chapter seek to automate this pro-

cedure by segmenting every object in a given scan and generating a corresponding

subvolume for each.

7.2 Proposed Segmentation Algorithm

The review of the literature in Section 3.5 has indicated that many popular seg-

mentation techniques (particularly in the medical-imaging domain) operate on

an initial coarse segmentation of the foreground (where the foreground refers to

those image regions/voxels that require segmenting) [HHR01, UR05, SPvG05]. A

similar framework has been successfully applied to the task of baggage-CT seg-

mentation [GSK+12]. Particularly, connected-component analysis is performed

on an initial estimation of the foreground. Each of the connected components in

the foreground is then iteratively separated into individual objects using a global

splitting algorithm and a segmentation-quality measure. The combination of all of

the individual objects constitutes the final segmentation (Equation 7.1). A similar

segmentation framework, consisting of three components, is proposed here:
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1. Coarse segmentation/foreground determination.

2. Segmentation refinement.

3. Segmentation quality measure.

7.2.1 Coarse Segmentation

Simple intensity thresholding is typically sufficient to provide an initial coarse

segmentation for the majority of medical applications [HHR01, UR05, SPvG05]. A

greater degree of clutter, noise and artefacts, however, detracts from the suitability

of this approach in the baggage-CT domain. Grady et al. [GSK+12] apply a

Mumford-Shah functional [GA09] to an artefact-reduced input image [Tuy93] to

generate a binary foreground-mask (where object voxels are labelled as 1). It has

been demonstrated that the availability of dual-energy data provides a means for

a coarse separation of the objects in a scan based on their material characteristics

(see Chapter 6). In particular, in the absence of dual-energy calibration data,

the use of the Dual-Energy Index (DEI) [Joh11] has been shown to exhibit the

most potential in terms of discriminative power. Based on these observations, a

DEI-based coarse segmentation is computed in the following way.

The Metal Artefact Reduction (MAR) technique described in Chapter 4 and

[MMB+13] is applied to the low and high-energy CT images. The artefact-reduced

images are then used to compute the DEI image using the techniques described

in Chapters 6 and 3 (Equation 3.5). The observations made in Chapter 6 indicate

that the objects in a scan are typically well separated by their DEI. The DEI

image is thus subjected to a multiple thresholding procedure:

Iτi =

1 if τi−1 ≤ Idei ≤ τi

0 otherwise
i = 1, . . . , Nτ (7.2)

where the number of thresholds Nτ is a user specified parameter. Connected

component analysis is then performed on each of the Nτ thresholded images. All

connected components smaller than a predefined minimum object size are dis-

carded. The remaining connected components are assigned individual labels and

represent the image foreground to be passed to the segmentation-refinement al-

gorithm. While it is likely that an improvement in the quality of the coarse

segmentations will result from a case-by-case fine-tuning of the DEI thresholds,

to ensure automation and maintain low processing times, a predefined, constant

set of thresholds are used. A constant uniformly-space threshold range is cho-

sen to optimise processing times and to ensure that consistent material types are

segmented across all images.
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The final segmented image is obtained by refining (i.e. further segmenting)

each of the coarsely segmented components. In order to achieve this refinement,

a measure of segmentation quality is required.

7.2.2 Segmentation Quality Measures

The segmentation-quality measure is intended to provide a quantification of the

likelihood that a given segmentation represents a single object (i.e. does not

require further segmentation). Various segmentation evaluation metrics were dis-

cussed in Section 3.5.3. For the purposes of online segmentation evaluation (i.e.

evaluation in the absence of ground-truth data), the feature-based generative

model of ‘high-quality’ segmentations presented by Kohlberger et al. [KSA+12]

has been met with success in related studies [GSK+12].

More specifically, Grady et al. [GSK+12] present the Automated QUality As-

sessment (AQUA) measure (see Section 3.5.3) to quantify segmentation quality

and control the splitting of connected components within their graph-partitioning

algorithm. Using a variety of segmentation metrics as features [GSK+12, KSA+12],

the AQUAmodule is trained (using a Gaussian Mixture Model (GMM)) on a train-

ing set of good object features to recognise high-quality segmentations. The model

is shown to provide meaningful separation of good object segments (i.e. high like-

lihood of consisting of only a single object) and bad object segments [CMP13].

As an equivalent measure is desired here, the suitability of the AQUA mea-

sure, using the Reveal CT-80DR dataset, and the 42-dimensional feature vector

described in [KSA+12, GSK+12], is examined. The feature vector quantifies the

shape and appearance of object segments by computing 42 shape and appearance

attributes falling into one of five categories: 1) unweighted geometric features

(quantifying the size and regularity of the segmentation); 2) weighted geomet-

ric features (locally emphasising the geometric features when intensity values are

similar to each other); 3) intensity features (measuring absolute intensity and

intensity distributions within segmentations); 4) gradient features and 5) ratio

features (computed as ratios of previously computed features). The proposed fea-

ture attributes have been inspired by metrics used in prior segmentation-based

literature [GSK+12, KSA+12]. For example, the geometric features are employed

in several early segmentation studies [MS89]; the concept of weighted geometric

features was first proposed by Caselles et al. [CKS97] in their work on geodesic ac-

tive contours and several of the ratio features are variations of the cut-over-volume

ratio, which has been used extensively as an objective function in graph-cut-based

segmentation algorithms [SM00, GS06a]. For a detailed description of the features

used, the reader is referred to Appendix B.

Similarly to [GSK+12], the aforementioned features are extracted from a set

of manually segmented good object segments (i.e. containing only a single object
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Figure 7.1: Object segment mask examples. Top row: manually generated single-object
segments containing a single target object only. Bottom row: manually generated multi-
object segments containing two or more connected objects (these would require further
partitioning).

each). A large range of objects are included in this training set (see Figure 7.1)

. Each feature is normalised by subtracting the mean over the entire feature

space and dividing by the standard deviation. Principal Component Analysis

(PCA) [JMF11] is then applied to reduce the dimensionality of the feature space.

The GMM is fitted over the PCA coefficients of all the segments in the training

set using the Expectation-Maximisation (EM) algorithm [Moo96]. When fitting

statistical models, the likelihood (or accuracy) improves with increasing model

complexity (i.e. by adding parameters). Increased complexity, however, carries

the risk of overfitting. Statistical model selection criteria (used to select the most

suitable model parameters) such as the Akaike Information Criterion (AIC) and

the Bayesian (or Schwarz) Information Criterion (BIC)[MP04] compensate for the

risk of overfitting by introducing a penalty term, which penalises the complexity

of the model. The cost functions of the AIC and BIC are both composed of

two terms: 1) a log-likelihood or accuracy term (favouring complexity) and 2) a

penalty term (penalising complexity):

AIC = −2 ln L̂(θ̂) + 2m (7.3)

BIC = −2 ln L̂(θ̂) +m ln(n) (7.4)

where L̂(θ̂) = p(x|θ̂,M) is the maximised log-likelihood of the modelM for the

parameter set θ̂ and the observed data x; m is the number of model parameters to

be estimated and n is the number of observations in x. In determining the order

of a mixture model, it is known that the AIC is order-inconsistent and thus tends

to overestimate the correct number of components (i.e. overfits) [KM88, CS96].

The BIC penalises complexity more heavily than the AIC and tends to better

avoid overfitting [KM88]. For these reasons, the BIC is used here to determine
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the optimal GMM parameters. In determining the optimal GMM, the number of

Gaussians and the covariance matrix type (diagonal or full-rank) are varied. The

model minimising the BIC cost function (Equation 7.4) is selected. Finally, the

AQUA measure of a given object segment (i.e. partition) S ⊆ V (where V is the

volume) is given by [GSK+12]:

AQUA(S) =
10∑
i=1

wiN (f(S);µi,Σi) (7.5)

As an alternative to the GMM-based generative model, the efficacy of a dis-

criminative model to distinguish between good and bad object segments is eval-

uated. To this end, a random-forest classification model [BZM07] (Section 3.3.2)

is used to provide a probabilistic classification of good and bad object segments.

For the purposes of building a discriminative model to distinguish between good

and bad object segments, a random forest composed of binary classification trees

is employed. The forest is constructed in the same manner as the classification

forest presented in Chapter 5. Training data points are represented by fixed-length

feature vectors extracted from a set of manually segmented good and bad object

segments. Trees are constructed in a top-down recursive manner using a simple

thresholding function as the node split function for all internal nodes. The op-

timality criterion used for node splitting is the classical Information Gain (IG)

[Cri11]. Randomness is injected into the trees via random node optimisation,

whereby a random subset of the available node test parameter values is consid-

ered at each node. Trees are grown to a maximum depth DT and leaf nodes are

generated if the information gain falls below a minimum threshold IGmin. The

value for DT is chosen empirically using a small validation set (thereby avoiding

fully grown trees). The quality of any given segmentation - denoted the Ran-

dom Forest Score (RFS) - may then be computed by averaging the corresponding

posterior probabilities of each of the leaf nodes reached in the forest:

RFS = p(c|v) = 1

T

T∑
t=1

pt(c|v) (7.6)

where T is the number of trees in the forest; p(c|v) is the estimated conditional

probability that a given test data point v belongs to the class c and c is a discrete

class label (i.e. (0, 1) → (bad,good)). The distribution is conditional on the

specific leaf node reached by the data point [Cri11].

In the random forest model, data points (i.e. object segments) are represented

by descriptor vectors. The 42-dimensional feature vector described in [KSA+12]

has been shown to provide a good representation of segmentation quality - both
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in the context of baggage segmentation [GSK+12] as well as in the evaluation of

segmentation error in the absence of ground-truth [KSA+12]. Based on its previous

success and its relative simplicity, the efficacy of this feature vector when used for

the representation of object segments in the random forest model is investigated

here. Furthermore, it is expected that the characteristics of the surface of a single-

object segment will differ from that of a segment representing multiple objects.

Based on this assumption, it may be possible to distinguish between single-object

(good) and multi-object (bad) segments using a description of the object shape.

3D shape-based descriptors have been successfully applied to a variety of similar

object-recognition, retrieval and classification tasks [YHQ04, ZdFFeR07, MFB10].

Based on these prior works, the following three 3D shape-based descriptors are

evaluated in addition to the 42-dimensional feature vector used in the AQUA

measure [GSK+12]: 1) 3D Zernike descriptors [NK04]; 2) the Histogram-of-Shape

Index (HSI) [DJ95] and 3) a hybrid 3D shape descriptor [MFB10].

Several recent studies have demonstrated the efficacy of 3D Zernike descriptors

for characterising 3D shape, particularly in proteomics (the study of proteins and

their structures) [NK04, VCK+09, SMPW, KSCER11]. Novotni and Klein [NK04]

developed the 3D Zernike descriptors by expanding upon the mathematical con-

cepts of 3D Zernike moments as laid out by Canterakis [Can99]. The 3D Zernike

polynomials are a set of basis functions that are orthogonal on the unit sphere. The

3D Zernike descriptor is an extension of the spherical harmonics-based descriptors

of Kazhdan et al. [KFR03] and have been shown to be compact, robust to noise

and invariant to rotation [NK04]. Canterakis [Can99] first introduced the concept

of 3D Zernike moments as a means for describing objects in a 3D Cartesian coor-

dinate system (as opposed to a spherical coordinate system, as used by spherical

harmonics [KFR03]). By combining a set of radial basis functions with spherical

harmonics, the nth-order 3D Zernike functions may be computed as [Can99]:

Zm
nl(r, θ, φ) = Rnl(r)Y

m
l (θ, φ) (7.7)

where Y m
l are complex valued spherical harmonics defined on the spherical

coordinate system given by (θ, φ); n, l,m are integers such that |m| ≤ n and

n − |m| is even and Rnl(r) are orthogonal radial basis polynomials [VCK+09].

Equation 7.7 may be rewritten in Cartesian coordinates:

Zm
nl(x) =

k∑
v=0

qvkl|x|2veml (x) (7.8)

where 2k = n − l and eml = rlY m
l (θ, φ) are the harmonic polynomials as
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defined by [KFR03]. The coefficients qvkl are computed such that the functions

are orthonormal in the unit sphere [NK04]. The Zernike moments are then the

projection of a given 3D shape function onto this orthonormal basis:

Ωm
nl =

3

4π

∫
||x||≤1

f(x)Zm
nl(x)dx (7.9)

where the voxelised 3D shape function f(x) : x ∈ R3 is a binarised rep-

resentation of the object surface, defined on a regular cubic grid. While these

moments are not invariant under rotations, Novotni and Klein [NK04] achieved

rotational invariance by collecting the moments into (2l+ 1)-dimensional vectors:

Ωnl = (Ωl
nl,Ω

l−1
nl , . . . ,Ω

−l
nl )

t. The rotationally invariant, 3D Zernike descriptors Fnl

are subsequently defined as the norms of the vectors Ωnl [NK04]:

Fnl = ||Ωnl||2 =

√√√√ l∑
m=−l

(Ωm
nl)

2 (7.10)

For a detailed description of the mathematical bases of 3D Zernike moments

and descriptors, the reader is referred to the original works of [Can99] and [NK04].

Dorai and Jain [DJ95] present the Histogram-of-Shape Index (HSI) for the

representation and recognition of arbitrarily curved rigid 3D objects. The Shape

Index (SI) is a scalar-valued quantitative measure of the shape of a surface at a

point p [DJ95]:

SI(p) =
1

2
− 1

π
tan−1 κ1(p) + κ2(p)

κ1(p)− κ2(p)
(7.11)

where κ1 and κ2 (κ1 ≥ κ2) are the principal curvatures of the surface at the

point p. Given a smooth, plane unit-speed (parametrised) curve γ(t), where t is

the arc-length, the curvature is defined as:

K(t) = ||γ̈|| :=
1

r
(7.12)

where r is the radius of the osculating (kissing) circle. If one defines a normal

vector field n along the curve γ, the curvature is denoted as positive when the

curve turns in the same direction as the normal vector and negative otherwise. If

M is defined as differentiable surface in R3, then at each point p onM , the surface

has two principal curvatures κ1 and κ2. These are computed in the following way

[DZ11]:
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1. Let n be the unit normal vector to M at p.

2. Determine the normal plane P ∈ R3 containing n.

3. Define the unit-speed curve: γP (t) = P ∩M (i.e. the plane curve resulting

from the intersection of P and M).

4. Compute the curvature KP of γP (t) according to Equation 7.12.

5. The principal curvatures are then defined as (κ1, κ2) = (min
P
KP ,max

P
KP )

According to this definition, every distinct shape may be mapped onto a unique

value in the interval SI ∈ [0, 1]. The exception to this is the planar shape, for which

SI is undefined since κ1 = κ2 = 0 for all points on a planar surface [DJ95].

Megherbi et al. [MFB10] propose combining the HSI and Zernike descriptors

(by direct concatenation) yielding a hybrid 3D shape descriptor. The proposed

descriptor demonstrates potential in the classification of threats in CT-baggage

imagery and is included in the evaluation here.

Prior to the extraction of the aforementioned shape-based features, the ob-

ject segments are pose-normalised to ensure invariance to changes in scale and

translation. This is achieved by translating and rescaling (voxel resampling by

nearest-neighbour interpolation) each object segment based on its approximate

minimum bounding box within the original CT image [MFB10].

7.2.3 Segmentation Refinement

Based on the results of preliminary experimentation regarding the aforementioned

segmentation-quality measures, a simple yet efficient technique for refining the

initial, coarse segmentation using a random-forest-based approach is proposed.

The Random Forest Score (RFS) is computed for each of the Nc components (or

objects) in a given coarse segmentation. Those components yielding an RFS below

a given threshold τRFS are considered to be composed of multiple objects and are

passed to a partitioning algorithm. Coarse components with RFS> τRFS are left

unchanged and assigned a unique label in the final image.

Poor-quality objects (RFS< τRFS) are partitioned at the estimated intersection

(or touching) points of the multiple objects comprising the given segment. These

points are found by detecting the perimeter voxels of the original object that are

likely to be common to two objects. Non-zero (i.e. object) voxels are assumed

to lie on the perimeter of the object if they are connected (see voxel connectivity

relationships in Figure 7.2) to at least one zero (i.e. background) voxel. The

assumption is made that those voxels corresponding to the intersections of multiple

objects will be surrounded by higher numbers of object voxels compared to regular

(non-intersection) perimeter points [CMP13]. The total number of object voxels
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Figure 7.2: 3D voxel connectivity relationships used to map volumetric images onto
lattice graphs.

Figure 7.3: Segmentation refinement examples using CCA (Section 7.2.3) and IDT
[GSK+12] algorithms. Hot-points (red) and RFS indicated.

in a predefined local cubic neighbourhood (11× 11× 11) of each perimeter voxel

is thus determined. If this number is greater than a predefined threshold, τHP ,

the perimeter voxel is considered to be an intersection point [CMP13] (red points

in Figure 7.3). For a given object, this analysis may result in multiple clusters

of such points (denoted hot-points), in which case it is assumed that the object

requires splitting at multiple regions. Each cluster of hot-points is considered

individually. It has previously been suggested that splitting of touching objects

may be performed by fitting a plane (e.g. by RANSAC [FB81]) to such hot-points

[CMP13]. Such planes, however, are likely to intersect the object at multiple

regions (not just at the locations of the hot-points) leading to over-segmentations.

Restricting the planes to local regions is challenging, especially when determining

which voxels lie above or below the plane. The plane-based approach becomes

particularly problematic when an object requires splitting at multiple locations.

A simpler approach is proposed here. A Connected Component Analysis

(CCA) is performed on a mask obtained by removal (i.e. setting to zero) of

the hot-points. The two connected components returning the highest RFS (com-

puted with the hot-points reinserted) are retained. If the CCA results in only

a single connected component, morphological dilation of the zeroed-out region is

performed until the CCA returns at least two components. If the RFS of one of
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Figure 7.4: Bayesian Information Criteria (BIC) for different Gaussian mixture model
parameters. Optimal model using 9 Gaussians and full-rank covariance matrix (indicated
by asterisk).

the regions falls below the RFS of the original region, or if the region is smaller

than the minimum permissible size of an object, then the region is assumed to

be noise or artefact-induced and is discarded. If both components result in a de-

crease relative to the original RFS, then the original object is retained (Figure 7.3).

Although objects split in this way are not guaranteed to produce segments with

RFS> τRFS, only splits resulting in improved scores are permitted. The procedure

thus performs both splitting as well as denoising of the coarse segmentations. For

objects containing multiple hot-point clusters, the quality of the final split objects

are affected by the order in which the clusters are dealt with. As the described

splitting procedure is fast and the number of hot-point clusters per object is gener-

ally low (≤ 3), the optimal order (i.e. that which results in the individual objects

with the highest RFS) may be determined by testing all possible orders.

7.3 Comparative Methodologies

The performance of the segmentation algorithm proposed in Section 7.2 is com-

pared to three segmentation techniques chosen based on their success in related

works: 1) the isoperimetric distance tree algorithm [Gra06]; 2) a symmetric region-

growing algorithm [WH03] and 3) a 3D flood-fill region-growing algorithm [WGW12].

The graph-partitioning Isoperimetric Distance Tree (IDT) algorithm [Gra06]

is evaluated as an alternative to the proposed segmentation-refinement procedure

(Section 7.2.3). The IDT algorithm has previously demonstrated success as part

of an automated segmentation algorithm for medical-grade CT imagery [Gra06,

GSK+12]. As opposed to applying the identical techniques used in [GSK+12]

(Section 3.5.2), the IDT algorithm is used as a direct alternative to the splitting

algorithm proposed in Section 7.2.3 - that is to say, the algorithm is applied to the
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DEI coarse segmentations (Section 7.2.1) and is driven by the random forest qual-

ity measure (Section 7.2.2). The reader is referred to Appendix A.1 for a detailed

explanation of the IDT algorithm. The IDT algorithm is applied recursively to

each individual connected component in the DEI mask until one of three criteria

is met [GSK+12]: 1) the input mask has a sufficiently high quality (as determined

by the chosen quality measure - Section 7.2.2); 2) the partitioned objects have a

quality measure below a given threshold τγ and an isoperimetric ratio greater than

that of the input mask (i.e. further partitioning produces low-quality segmenta-

tions) or 3) the input mask is smaller than the minimum permissible object size.

The second criterion is motivated by the fact that the partitioning of a connected

component, composed of multiple (fused) objects, may result in two components

which are themselves composed of multiple fused objects (which will by definition

have low quality scores) [GSK+12]. In order to prevent the early termination of

the recursive IDT algorithm in such scenarios, the recursion is only terminated

if the quality measure is less than the threshold τγ and the isoperimetric ratio

of the split component is greater (i.e. worse) than that of the input component.

Grady et al. [GSK+12] propose that, owing to the efficiency of the IDT algo-

rithm, several candidate segmentations for each connected component in a mask

may be generated by executing multiple runs of the IDT algorithm with different

(randomly selected) reference (ground) points (Appendix A.1) and selecting the

highest-quality candidate as the final result.

Song et al. [CMP13] applied a multi-stage segment-and-carve algorithm for the

segmentation of medical-grade baggage-CT images. As previously discussed (Sec-

tion 3.5.2), the predominant limitation of the technique is its complexity (owing

to the number of separate stages in the algorithm). Consequently, the technique

is characterised by a large parameter set which is shown to require careful, case-

by-case tuning to produce optimal results. Nonetheless, the core of the technique

- the (seedless) Symmetric Region Growing (SymRG) algorithm [WH03] - is a

parameter-free efficient region-growing technique which has demonstrated success

in a variety of 3D segmentation tasks [WH03, WKRH00]. Owing to its low runtime

and its fully-automated nature, the SymRG algorithm is an attractive option for

the segmentation of complex 3D imagery and is thus evaluated here. The reader

is referred to Appendix A.2.1 for a detailed description of the SymRG algorithm.

The 3D flood-fill region-growing method traverses a volume in a flood-fill man-

ner using a 3D spherical kernel of varying sizes. The seed-points and kernel dimen-

sions are determined automatically based on image content (e.g. local gradients),

while the kernel movement criteria for specific kernels are inferred from a set of

training examples. The algorithm is composed of five stages: 1) Definition of 3D

kernel; 2) Determination of movement criteria; 3) Seed initialisation; 4) Flood-fill

and 5) Merging. For a detailed description of each of the stages, the reader is
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Figure 7.5: Separation of single and multi-object segments using AQUA score [GSK+12]

.

referred to Appendix A.2.2.

As discussed in Section 3.5.3, the most widely adopted approach for the evalua-

tion of segmentation techniques is the comparison of algorithm-generated segmen-

tations to manually delineated ground-truth data using some similarity measure

[Zha96, NBVV00]. The manual delineation of volumetric data, however, is a labo-

rious task - particularly when the dataset is large and each data sample contains a

large number of objects (as is the case in this study). Consequently, due to the lack

of ground-truth data, the aforementioned segmentation techniques are evaluated

and compared predominantly in a qualitative manner. As suggested by Grady

et al. [GSK+12], an overall measure of segmentation quality for a given image

may be obtained by averaging the quality scores for each segmented object in that

image. It was noted earlier (Section 3.5.3) that this approach may fail in cases

where too few objects are segmented from an image. To address this shortcom-

ing, quantitative analysis is performed on a set of test images containing known

numbers of objects (no knowledge of the actual object boundaries are required)

allowing for the overall segmentation score for a given image to be computed as

the average RFS (of each segmented object) multiplied by the error in the number

of segmented objects:

RFSS =

(
1

NS

NS∑
i=1

RFSi

)
︸ ︷︷ ︸
Average RFS

×
∣∣∣∣1− |NT −NS|

NT

∣∣∣∣︸ ︷︷ ︸
Penalty Term (PT)

(7.13)

where NT is the true number of objects in the image; NS is the number of

segmented objects and RFSi is the quality score for the object i. Note that PT ∈
[0, 1) ∀NS ̸= NT and PT = 1 otherwise. All segmentations containing the incorrect
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Figure 7.6: ROC curve for leave-one-out cross validation testing of random forest
segmentation-quality measures. Conducted as a binary classification experiment - seg-
ments are classified as either single-object segments (positive class) or multi-object seg-
ments (negative class). The curves were generated by varying the discrimination thresh-
old on the classification posterior.

number of components will thus be penalised. It should be noted that the measure

in Equation 7.13 is likely to be biased in favour of the segmentation-refinement

methods (as both are inherently controlled by it). Finally, all evaluations are

performed with and without metal artefact reduction.

7.3.1 Segmentation Data

Various datasets were used in the experiments presented in this chapter. All images

are represented in Modified Hounsfield Units (MHU) and have voxel resolutions

of 1.56× 1.61× 5mm.

Quality measure evaluations: The GMM used in the AQUA model is built

using a training set composed of 80 manually cropped single-object segments. In

order to evaluate each of the quality measures (AQUA and random-forest based

models) a separate test set containing 194 manually-cropped single-object seg-

ments and 415 manually-cropped and algorithm-generated multi-object segments

has been created (e.g. Figure 7.1). Algorithm-generated multi-object segments are

obtained using the DEI procedure described in Section 7.2.1. The test samples

vary in size (depending on the object(s) in the scan).

The performance of the AQUA measure is evaluated by examining the his-

togram of AQUA scores for each of the samples in the test set. In order for the

AQUA measure to be successfully incorporated into the proposed segmentation

framework, it is required to provide a good separation between the good and bad

object segments in this histogram.

The performance of each of the random-forest-based scores is evaluated by a
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Descriptor AUC
Optimal Operating Point

(TPR, FPR)
42D [KSA+12] 0.971 (0.960, 0.098)
Zernike [NK04] 0.863 (0.862, 0.240)
HSI [DJ95] 0.901 (0.871, 0.160)
Shape [MFB10] 0.942 (0.800, 0.036)

Table 7.1: LOO cross validation results for random forest segmentation-quality mea-
sures: Area Under (ROC) Curves (AUC) and optimal operating points. Optimal op-
erating points were determined using equal costs for false-positive and false-negative
classifications.

Leave-One-Out (LOO) cross-validation procedure. Note that the process is consid-

ered a binary classification task where single-object segments represent the positive

class. Receiver Operating Characteristic (ROC) curves (computed by varying the

discrimination threshold on the forest posterior - Equation 7.6), the Area Under

the Curve (AUC) and the optimal (false-positive;true-positive) operating points

are computed to illustrate the performance of each of the descriptor types. Finally,

the histograms of RFS are generated for each method to illustrate the separation

of single and multi-object segments.

Segmentation evaluations: Qualitative analysis of the four segmentation

algorithms is performed using four, cluttered whole volume baggage-CT scans

obtained on the Reveal CT-80DR scanner (Figure 7.11 (a) - (d)). Quantitative

analysis of the four segmentation algorithms is performed using a set of 30 cropped

baggage-CT scans obtained on the Reveal CT-80DR scanner. Each of the volumes

in the set are cropped such that they contain a known number of objects. All

volumes are composed of 512 × 512 axial slices and the number of slices in each

volume ranges from 92 to 112. The random forests used to guide the segmentation

refinements in these experiments are built using a set of 80 manually-cropped

single-object segments (the same set used to build the GMM) and 80 manually-

cropped multi-object segments (a subset of the 415 multi-object test set mentioned

above).

7.4 Results

With reference to the notion of object-philosophy introduced in Section 7.1, a

‘segment-all’ approach (as opposed to ‘segment-threats’) was adopted in this study.

That is to say, all objects meeting specified criteria in a given volume were seg-

mented. In particular, all voxels with intensities lower than a predefined threshold

of 1000 MHU were considered to belong to the background and thus set to zero.

Additionally, the minimum permissible object volume was set to 50 cm3 (computed

based on the voxel resolution of the data). All objects in the final segmentation
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Figure 7.7: Separation of single and multi-object segments using random forest score
and 42D descriptor [KSA+12]

.

smaller than 50 cm3 were thus discarded (set to zero).

Hereafter, the four segmentation algorithms compared (Section 7.3) are de-

noted as follows: CCA - the connected component analysis-based segmentation re-

finement (Section 7.2.3); IDT - the isoperimetric distance tree refinement [GS06a,

Gra06] (Appendix A.1); SymRG - the symmetric region-growing algorithm [WH03]

(Appendix A.2.1) and FloodFill - the 3D flood-fill region-growing algorithm [WGW12]

(Appendix A.2.2).

7.4.1 Quality Measure Results

In order to evaluate the performance of the AQUA measure when applied to the

CT-80DR data, a GMM using 9 Gaussians and a full-rank covariance matrix (see

BIC results in Figure 7.4) was fitted over the PCA-reduced feature vectors of the

GMM training segments (Section 7.3.1). The number of PCA coefficients retained

was selected such that approximately 99% of the feature variance in the training

set was retained. The resulting AQUA scores for the 609 object test set (Section

7.3.1) are shown in Figure 7.5. Considerable overlap between the two object classes

(single and multi-object) is evident, such that no clear separation boundary can

be established. It is unlikely that this formulation of the AQUA measure will lead

to satisfactory segmentations using the current dataset.

In the evaluation of the random-forest-based quality measures, the forest pa-

rameters were fixed for all feature types. The number of tests performed for each

node split was set to 0.7DimF (where DimF is the dimensionality of the feature

vector under consideration) - this value was fixed for all nodes in a given for-

est; trees were grown to a maximum depth of D = 10, with a lower bound of

IGmin = 10−4 on the information gain and forests contained 30 trees (see Section
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Figure 7.8: Separation of single and multi-object segments using random forest score
and 3D Zernike descriptor [NK04]

.

3.3.2 for explanations of these parameters). It was found that using these settings

resulted in tree growth terminating prior to maximum depth and thus no tree

pruning was performed.

The ROC curves and corresponding AUC and optimal operating points for

the LOO evaluation of the random forest quality measures are shown in Figure

7.6 and Table 7.1 respectively. Additionally, the histogram analysis results for

each descriptor type are shown in Figures 7.7 - 7.10. Four descriptor types were

considered: the 42-dimensional segmentation-based descriptor of Kohlberger et al.

[KSA+12] (denoted 42D); the 3D Zernike descriptor [NK04] (denoted Zernike);

the histogram of shape-index [DJ95] (denoted HSI ) and the hybrid 3D shape

descriptor of Megherbi et al. [MFB10] (denoted Shape). Based on the results and

recommendations of Megherbi et al. [MFB10], the 3D Zernike descriptors were

generated using a maximal order of 20, yielding a 121-dimensional descriptor.

The HSI was computed using a bin-width of 0.005, resulting in a 200-dimensional

HSI descriptor. These settings resulted in a 321-dimensional combined 3D shape

descriptor.

The 42D descriptor yielded the best LOO cross-validation results (Figure 7.6

and Table 7.1) with an AUC = 0.971 and an optimal operating point on the ROC

curve of (0.098, 0.960) - significantly outperforming all 3 shape-based descrip-

tors. All four random-forest-based measures yielded superior separations of the

single and multi-object segments (Figures 7.7 - 7.10) compared to the GMM-based

AQUA results (Figure 7.5). The 42D descriptor, in particular, resulted in good

separation of the classes, despite the relatively high false-positive rate at its opti-

mal operating point (Table 7.1). It is also worth noting that the computation of the

42D descriptor [KSA+12] is considerably less computationally demanding than the
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Figure 7.9: Separation of single and multi-object segments using random forest score
and HSI descriptor [DJ95]

.

Zernike [NK04], HSI [DJ95] and 3D shape [MFB10] descriptors. Based on the re-

sults of this preliminary experimentation, the random forest measure using the 42D

descriptor was used in all subsequent evaluations. The optimal operating point for

the 42D descriptor occurred at a threshold of 0.73 (i.e. (v ∈ R42) = single-object

if p(c|v) > 0.73). This threshold was used for τRFS in the segmentation-refinement

procedure (Section 7.2.3).

7.4.2 Segmentation Results

The coarse segmentations were created using Nτ = 10 equally-spaced thresholds.

Image refinement using the method proposed in Section 7.2.3 was performed us-

ing an RFS threshold of τRFS = 0.73 and a hot-points threshold of τHP = 300

(chosen empirically). IDT [Gra06] was implemented using a lattice-connectivity

of 6 (Figure 7.2) and a hot-points threshold of τHP = 300. The optimal value

for the quality threshold τγ, used as a termination criterion in the recursive IDT

algorithm (Section 7.3) was determined empirically by visually comparing candi-

date segmentations. The flood-fill region-growing algorithm [WGW12] (Appendix

A.2.2) was performed using four spherical kernels with radii r = {1, 2, 3, 4}. The

movement polynomial was fitted over 70 training points obtained from 25 separate

scans. SymRG was implemented using the following symmetric function:

g(p, q) =

TRUE if|f(p)− f(q)| ≤ τc

FALSE otherwise
(7.14)

where f(p) and f(q) are the intensities of voxels p and q respectively and τc is
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Figure 7.10: Separation of single and multi-object segments using random forest score
and 3D shape descriptor [MFB10]

.

Figure 7.11: Volumetric visualisations of segmentation test images and corresponding
coarse segmentations: (a) - (d) Input baggage-CT scans used in qualitative evalua-
tion of segmentation algorithms. (e) - (h) Coarse image segmentation / foreground
determination using DEI thresholding and CCA (with MAR). Objects missed by coarse
segmentation have been indicated (circles and arrows).

a user-defined constant threshold.

Figures 7.11 (e) - (h) show the coarse segmentations produced by the DEI

thresholding process, which were used as input to the CCA and IDT segmentation-

refinement procedures. Metal artefact reduction was applied to the input images

prior to generating the coarse segmentations. As expected, several objects are

under-segmented (e.g. pliers and dumbbells in (a) and (e)). While the major-

ity of the objects appear to have been well segmented in all four examples, two

object types were commonly eliminated/missed by the coarse segmentations: 1)

small cylindrical objects (encircled in red in Figure 7.11 (a),(c),(d)) and 2) thin,

low-density magazines (indicated with arrows in Figure 7.11 (b) and (d)). The pa-

perback book in Figure 7.11 (c) was well segmented in (g) - indicating that it is not

the material characteristics alone of the magazines that resulted in their elimina-
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Figure 7.12: CCA segmentation (Section 7.2.3) results for test images in Figure 7.11
with MAR.

tion. A more likely cause is the positioning and geometry of the magazines: in both

scenarios, the magazines are lying flat against the bottom of the case/bag making

them difficult to distinguish (even for the human observer) from the actual bag (on

account of similar densities, their lack of bulk and noise). It is worth noting that

low-density objects and thin, sheet-like objects have been known to pose difficulties

for all previous baggage-segmentation algorithms [CMP13, WGW12, GSK+12].

The final segmentation results produced by each of the algorithms (with metal

artefact reduction) are shown in Figures 7.12 - 7.16. CCA (Figure 7.12) and IDT

(Figure 7.13) produced similar results as both algorithms rely on the same coarse

segmentations and RFS to determine which components require refinement. The

results thus differed only in those components which required refinement. In gen-

eral, IDT produced superior refinements. This is especially evident in the test

images (a) and (b). Considering, for example, the test image in Figure 7.12 (a)

(CCA) and Figure 7.13 (a) (IDT), where IDT produced superior partitions in

five hot-points regions. Figure 7.14 illustrates these regions in the original coarse

segmentations and shows the computed hot-points and the post-refinement RFS.

The object boundaries produced by IDT refinement are better defined in all five

cases, resulting in higher RFS (for the individual objects). Nonetheless, CCA

correctly split the coarse segmentations at all hot-points regions (with the excep-

tions of regions 3 and 4) and produced corresponding improvements in the RFS.

CCA refinements at regions 3 and 4 (Figure 7.14) were most likely rejected based
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Figure 7.13: IDT segmentation [Gra06] results for test images in Figure 7.11 with MAR.

Figure 7.14: Segmentation refinement using CCA (Section 7.2.3) and IDT [GSK+12]
techniques. Hot-points (red) and RFS indicated.

on the resulting components not meeting the minimum permissible object size.

As discussed in Section 7.2.3, the refinement procedure, in addition to splitting

merged objects, possesses denoising characteristics. This is illustrated in test im-

age (c): the coarse segmentation (Figure 7.11 (g)) exhibits what appears to be

noise/artefacts to the right of the sole of the shoe. This noise has been removed

in the corresponding regions in both CCA (Figure 7.12 (c)) and IDT (Figure 7.13

(c)) refinements.

The segmentations produced by SymRG (Figure 7.15) were noticeably poorer

compared to CCA and IDT. In particular, the results are characterised by under-

segmentations (indicated by solid circles) and missed segmentations - where object

regions have been incorrectly set as background (indicated by dotted circles). The

results suggest the necessity for post-segmentation splitting and merging opera-
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Figure 7.15: SymRG segmentation [WH03] results for test images in Figure 7.11 with
MAR. Examples of under-segmentations (solid circles) and incorrect background assign-
ments (dotted circles) indicated.

tions and explain the complexity in this regard of the segment-and-carve baggage-

segmentation algorithm of Song et al. [CMP13], which employs a total of 5 split-

ting and/or merging operations. As discussed in Section 3.5.2, refining the seg-

mentations in this way significantly expands the input parameter space and hence

the degree of user interaction. Accurate segmentations consequently depend on

careful parameter tuning and suffer from increased computational demand. It is

worth noting, however, that SymRG did capture several objects (or parts thereof)

which were missed by the DEI coarse segmentations (Figures 7.11) - notably, the

cylindrical structures in Figures 7.15 (a) (turquoise) and (c) (blue). Furthermore,

the segmentations of the regions corresponding to the hot-points labelled 3 and

4 in Figure 7.14, were more accurately segmented by SymRG compared to CCA

(Figure 7.12 (a)).

Similarly to SymRG, FloodFill [WGW12] (Figure 7.16) produced segmenta-

tions characterised by ill-defined object boundaries, under-segmentations (indi-

cated by solid circles) and missed segmentations (indicated by dotted circles).

The most evident shortcomings of the FloodFill approach, however, are the poorly-

defined object boundaries. This is particularly apparent for the handguns in Fig-

ures 7.16 (a) and (c) (compared to the equivalent CCA (Figure 7.12) and IDT

(Figure 7.13) segmentations). Similarly to the SymRG segmentation, the Flood-
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Figure 7.16: FloodFill segmentation [WGW12] results for test images in Figure 7.11
with MAR. Examples of under-segmentations (solid circles) and incorrect background
assignments (dotted circles) indicated.

Figure 7.17: Coarse DEI image segmentations of test images in Figure 7.11 without
MAR.

Fill segmentation of test image (a) captured objects which were missed by the

DEI coarse segmentations (and hence the CCA and IDT results). In general, the

segmentations produced by SymRG and FloodFill were of an inferior quality to

the corresponding CCA and IDT segmentations.

The equivalent results without the application of metal artefact reduction are

shown in Figures 7.17 - 7.21. Similarly to the observations made in Chapter 6, the

discriminative power of the coarse DEI segmentations (Figure 7.17) deteriorated

significantly when metal artefact reduction was not applied. As expected, CCA

(Figure 7.18) and IDT (Figure 7.19) segmentations suffered as a result. CCA

produced segmentations characterised by a considerably higher number of under-

segmentations (multiple objects labelled as a single object) and background noise

(compared to the corresponding results with MAR - Figure 7.12). The results sug-

gest that the high-frequency streaking artefacts result in the merging of nearby

objects, making object spitting by simple connected component analysis less ef-
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Figure 7.18: CCA segmentation (Section 7.2.3) results for test images in Figure 7.11
without MAR.

Method RFSS |NT −NS|
CCA (Section 7.2.3) 0.89± 0.05 0.53± 0.57
IDT [GSK+12] 0.94± 0.02 0.10± 0.31
SymRG [WH03] 0.51± 0.08 1.73± 1.14
FloodFill [WGW12] 0.57± 0.11 1.37± 1.25

Table 7.2: Quantitative results of four segmentation algorithms with MAR: total Ran-
dom Forest Score (Equation 7.13) and error in number of objects segmented. Results
averaged over 30 volumes containing known numbers of objects.

fective. Although IDT (Figure 7.19) was able to successfully split several fused

objects which CCA could not (e.g. pliers and dumbbell in test image (a)), the

segmentations are similarly corrupted by background noise and exhibit an increase

in the number of under-segmentations.

SymRG (Figure 7.20) and FloodFill (Figure 7.21) showed a similar decline

in performance in the absence of MAR. In addition to several cases of under-

segmentations and missed-segmentations, similar to those produced by CCA and

IDT, the SymRG and FloodFill segmentations are further characterised by several

examples of over-segmentations (e.g. dumbbell in Figures 7.20 and 7.21 (a) and

handgun in Figures 7.20 and 7.21 (c)).

The processing times of each of the segmentation techniques when applied to

the test images with and without MAR are shown in Figure 7.22. With the ex-

ception of the SymRG technique [WH03], all techniques exhibited an increase in
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Figure 7.19: IDT segmentation [Gra06] results for test images in Figure 7.11 without
MAR.

Method RFSS |NT −NS|
CCA (Section 7.2.3) 0.58± 0.09 1.80± 1.13
IDT [GSK+12] 0.69± 0.09 1.13± 0.78
SymRG [WH03] 0.39± 0.17 2.93± 1.31
FloodFill [WGW12] 0.41± 0.21 2.80± 2.33

Table 7.3: Quantitative results of four segmentation algorithms without MAR: total
Random Forest Score (Equation 7.13) and error in number of objects segmented. Results
averaged over 30 volumes containing known numbers of objects.

processing time when metal artefact reduction was not performed. The computa-

tional demand of SymRG is by nature dependent only on the dimensions of the

input image [WH03]. The resulting processing times were thus consistent (∼ 165s)

for the artefact-reduced and original volumes. CCA (Section 7.2.3) was the most

efficient of the four techniques when operating on the artefact-reduced images, with

processing times ranging from 94s to 155s. These times, however, increased by

approximately 90% when MAR was not performed, making it less efficient than

SymRG. The processing times of FloodFill [WGW12] varied significantly from

image-to-image (ranging from 249s to 548s for the artefact-reduced images) and

appear to be largely dependent on the complexity of the image. IDT [GSK+12]

was, as expected, the most computationally intensive and yielded consistently high

processing times (ranging from 352s to 1238s for the artefact-reduced volumes).

Both IDT and FloodFill exhibited significant increases in processing times when
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Figure 7.20: SymRG segmentation [WH03] results for test images in Figure 7.11 without
MAR.

applied to the original volumes, with times in excess of 20 minutes. Such high

processing times detract from the practical usability of these approaches (in their

current states), particularly in the security-screening domain, where the demands

on low processing times are paramount.

The quantitative results, with and without metal artefact reduction, are il-

lustrated in Figures 7.23 - 7.26 and summarised in Tables 7.2 - 7.3. Figure 7.23

shows the total segmentation RFS for the artefact-reduced test images computed

according to Equation 7.13. CCA (Section 7.2.3) and IDT [GSK+12] yielded sig-

nificantly higher segmentation scores compared to SymRG [WH03] and FloodFill

[WGW12] for all 30 test images. In particular, IDT produced on average the

highest quality segmentations (RFSS = 0.94), which may be attributed to both

the high quality of the individual components in each segmentation (as observed

in the qualitative results) as well as the high accuracy in the number of objects

segmented in each test image (an average error of only 0.1 - Table 7.2). Figure

7.24 shows that IDT segmented the correct number of objects in 27/30 images

and the remaining 3 images (test images 11,23,24) each contained a discrepancy

of only a single object. Although CCA produced the incorrect number of objects

in 15/30 test images (Figure 7.24), the discrepancies were low (≤ 2). Furthermore,

the mean segmentation quality remained high (RFSS = 0.89 - Table 7.2), indi-

cating that the segmentation quality of the individual objects in each image were
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Figure 7.21: FloodFill segmentation [WGW12] results for test images in Figure 7.11
without MAR.

high. SymRG and FloodFill performed significantly poorer with mean scores of

(RFSS = 0.51) and (RFSS = 0.57) respectively (Table 7.2) and the incorrect num-

ber of segmented objects in 26/30 images and 23/30 images respectively (Figure

7.24).

Figure 7.25 shows a decline in the segmentation quality for each method for all

30 images when metal artefact reduction was not applied. Figure 7.26 additionally

shows that the number of over and/or under-segmented images also increased for

all four methods (CCA = 27/30; IDT = 24/30; SymRG = 30/30; FloodFill =

25/30). The decline in performance was fairly consistent for all four techniques,

with IDT again producing on average the highest quality segmentations (RFSS =

0.69), followed by CCA (RFSS = 0.58), FloodFill (RFSS = 0.41) and SymRG

(RFSS = 0.39) (Table 7.3). The significant decline in performance, coupled with

the increase in processing time (Figure 7.22), demonstrates the detrimental effects

that image noise and artefacts have on the segmentation process and emphasises

the importance of an effective metal-artefact-reduction process.
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Figure 7.22: Segmentation processing times for test images in Figure 7.11 with and
without MAR.

Figure 7.23: Overall image-segmentation quality scores (Equation 7.13) for 30 artefact-
reduced test images containing known numbers of objects.
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Figure 7.24: Errors in numbers of objects segmented for 30 artefact-reduced test images
containing known numbers of objects.

Figure 7.25: Overall image-segmentation quality scores (Equation 7.13) for 30 test im-
ages without MAR.

Figure 7.26: Errors in numbers of objects segmented for 30 test images without MAR.
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7.5 Conclusion

This chapter has addressed the segmentation of unknown objects from low-resolution,

cluttered volumetric baggage-CT data. Based on the dual-energy techniques pre-

sented in Chapter 6, a novel materials-based segmentation technique has been

presented.

The proposed segmentation algorithm is composed of three stages: 1) coarse

segmentation; 2) segmentation quality evaluation and 3) segmentation refinement.

Coarse segmentations are generated using a characterisation of the chemical com-

position of an image (using the Dual-Energy Index (DEI) [Joh11]), simple thresh-

olding operations and connected component analysis. The quality of the individual

components of the coarse segmentations are evaluated using the Random Forest

Score (RFS) - which is trained to recognise high-quality (single-object) object

segments. Preliminary experimentation has demonstrated the superiority, in the

current context, of the RFS over the related generative Automated QUality As-

sessment (AQUA) measure [GSK+12]. Segmented objects are represented using

the descriptor described in [KSA+12] (Appendix B), which is shown to outperform

more complex 3D shape-based descriptors (the 3D Zernike descriptor [NK04], the

Histogram-of-Shape Index [DJ95] and a hybrid 3D shape descriptor [MFB10]).

Based on the RFS of a given coarse segmentation, low-quality individual object

segments are subjected to an object-partitioning operation which splits fused ob-

jects at automatically-detected regions using a simple connected component analy-

sis. A second segmentation-quality measure is presented for quantifying the quality

of a full segmentation (as opposed to individual object segments). The measure

only requires prior knowledge of the number of objects in a given image (as op-

posed to a fully-annotated reference image) to provide a measure of segmentation

quality.

Within the proposed framework, four novel contributions have been made:

1) a materials-based coarse segmentation technique; 2) a random-forest-based

model for measuring the quality of individual object segments; 3) a random-forest-

based model for measuring the quality of entire segmentations and 4) an efficient

segmentation-refinement procedure for splitting fused objects.

An experimental comparison between the proposed segmentation algorithm

(denoted CCA) and three state-of-the-art volumetric segmentation techniques

(the Isoperimetric Distance Tree (IDT) [GSK+12]; Symmetric Region Growing

(SymRG) [WH03] and 3D flood-fill region growing (FloodFill) [WGW12]) has

been performed using low-resolution, complex volumetric baggage-CT data (Sec-

tion 1.2). Qualitative performance analysis, using four realistic, cluttered baggage

scans, has demonstrated that IDT and CCA generate higher (visual) quality seg-

mentations relative to SymRG and FloodFill. Although IDT is shown to outper-

form CCA in partitioning fused objects in the DEI-generated coarse segmentations,
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it is characterised by high processing times and is significantly outperformed by

CCA in this regard. Low-density, sheet-like objects (e.g. magazines) are shown to

pose difficulties for all four methods (an observation which has been made in the

majority of related studies [CMP13, WGW12, GSK+12]).

A quantitative analysis, using the proposed Random Forest Score (RFS) for

image segmentations and a set of volumes containing known numbers of objects,

substantiates the observations made in the qualitative analysis. Particularly, IDT

and CCA consistently outperform SymRG and FloodFill in terms of segmentation

quality and in terms of segmentation accuracy (with reference to the number of

objects segmented from each image). Finally, the importance of MAR is demon-

strated by the significant decline in performance for all four segmentation tech-

niques, across all evaluation metrics (qualitative and quantitative) when MAR is

not applied.

The observations made in this chapter indicate that the proposed CCA seg-

mentation algorithm (Section 7.2.3) is well-suited to the task of volumetric image

segmentation - particularly in the baggage security-screening domain, where the

demands for low processing times are paramount. Chapter 8 investigates the in-

corporation of the proposed segmentation algorithm into a fully-automated 3D

object-classification framework.



Chapter 8

3D Object Classification

The current state-of-the-art in 3D object classification in low-quality, complex 3D

volumetric imagery [FBM12] relies on the manual segmentation of the input data,

incurs large computational overhead (in building the model) and suffers a decline

in performance in the presence of image noise and artefacts. Although the need for

manual segmentations have been eliminated in the fully-automated approach of

[FMMB13], the technique is computationally expensive and leads to false-positive

classification rates in excess of 15%.

Each of the aforementioned limitations have been addressed individually in

the preceding chapters of this work. In this chapter, the presented techniques

are combined to create an efficient, yet fully-automated framework for the clas-

sification of objects in complex, volumetric imagery (Figure 8.1). The resulting

framework is shown to improve on the current state-of-the-art [FBM12] by reduc-

ing the detrimental effects of image noise and artefacts (methods from Chapter 4);

automating the segmentation process (Chapters 6, 7); decreasing computational

cost and increasing classification accuracy (Chapter 5).

Portions of this chapter have been submitted for publication and are currently

under review [MB14c].

8.1 Methods

The object-classification framework proposed here is composed of three stages

(Figure 8.1): 1) noise and/or artefact reduction; 2) segmentation and 3) classifi-

cation.

8.1.1 Noise and Artefact Reduction

Flitton et al. [FBM10, FBM13, FBM12] cite image noise and artefacts as the

two major factors limiting the performance of object classification in complex vol-

umetric imagery. A comprehensive review and evaluation of noise and artefact

reduction in low-quality 3D baggage-security-CT imagery has been presented in
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Figure 8.1: Fully-automated object classification pipeline. Chapter contributions indi-
cated.

Chapters 3 and 4 (see also [MMFB13, MMFB12, MMvS+13, MMB+13]). Most

notably, it is shown that the superiority of the state-of-the-art techniques, from

the medical literature, over simpler techniques is reduced as a result of the com-

plexity and poor quality of the imagery considered in this work. It is thus not

obvious if the performance gains (if any) of such techniques merit their additional

computational overhead. In the development of the object-classification frame-

work presented here, the impact of four noise/artefact reduction techniques (of

varying complexities) are considered and compared: 1) simple intensity threshold-

ing; 2) Non-Local Means (NLM) filtering [BCM05a, BCM05b]; 3) MAR by linear

interpolation [KHE87] (denoted LIMar) and 4) distance-driven MAR [MMB+13]

(denoted DDMar). NLM filtering and MAR are applied on a per-slice basis. The

linear-complexity NLM implementation of Mahmoudi and Sapiro [MS05a] (Chap-

ter 4), is used to optimise computational efficiency and reduce processing times.

Denoising and MAR are considered pre-processing operations to be applied prior

to the chosen segmentation algorithm (Figure 8.1).

8.1.2 Segmentation

The current state-of-the-art in object classification in complex, volumetric-CT

imagery employs subvolumes generated by the manual isolation (i.e. segmentation)

of target objects [FBM13, FBM12]. The segmentation techniques presented in

Chapter 7 are considered here as a means of automating the generation of these

subvolumes.

In Chapter 5 of this work (as well as in the related literature [FBM13, FBM12]),

classification of objects in cluttered volumetric imagery was performed on manu-

ally generated subvolumes, containing at most a single object of interest. In view

of the high classification rates achieved using such volumes (> 98% - Chapter 5),

the output label maps generated using the segmentation method(s) presented in

Chapter 7, are used to create a set of single-object subvolumes for each given input

volume. These subvolumes are then passed to the chosen classifier. The subvol-

umes are generated as to represent those used in the experimentation presented
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Figure 8.2: Generation of single-object subvolumes for object classification.

in Chapter 5 and [FBM12].

In particular, for each labelled object in a given segmentation, a subvolume

is generated by computing the minimum bounding box encompassing that object

and then increasing the dimensions of the box by approximately 30mm (in all 3

dimensions) [FBM12]. The high correct classification rates presented in Section

5.2 of this work, were achieved without considering noise and/or artefact reduc-

tion. This suggests that the classification performance of the proposed approach

is robust to image noise and artefacts, provided a given subvolume is dominated

by a single object. The final subvolume used for classification is thus obtained

by extracting the entire region corresponding to the expanded bounding box from

the denoised volume (as opposed to setting the non-object (background) voxels to

zero in the subvolume). This strategy is adopted to ensure that contextual infor-

mation is not lost in the subsequent feature extraction and description process.

A segmentation composed of N labelled objects will thus result in N subvolumes

(each theoretically containing a single, distinct object). Figure 8.2 illustrates the

subvolume generation process for an input volume composed of two objects.

The experimental comparison of the four segmentation algorithms presented

in Chapter 7 (CCA - Section 7.2, IDT [GSK+12], SymRG [WH03], FloodFill

[WGW12]) indicated a clear superiority of the CCA and IDT segmentation tech-

niques over the SymRG and FloodFill techniques. Owing to its low processing

time, the CCA segmentation technique proposed in Chapter 7 is used here to

generate the subvolumes for object classification.

8.1.3 Classification

The codebook classification framework proposed in Chapter 5 is used to inde-

pendently classify each of the subvolumes comprising a given input volume. In

particular, object classification is accomplished via a Support Vector Machine

(SVM) classifier [Vap00] using a Radial Basis Function (RBF) kernel and oper-

ating on quantised feature vectors built using Extremely Randomised Clustering

(ERC) forests [MTJ07, MNJ08] and densely sampled, multi-scale Density His-
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togram (DH) descriptors [FBM13]. This classification framework produced the

optimal results in the experimental comparison presented in Section 5.2 (where it

was denoted Codebook4 - Table 5.3).

The class label of a given input volume, composed of N segmented objects (i.e.

N subvolumes) is computed as the logical ‘OR’ of the class labels of each of its

N constituent subvolumes. While the classification of each of the N subvolumes

is easily parallelised the processing time of a serial classification of a given N -

object input volume may be improved by only classifying the ith subvolume if the

(i − 1)th subvolume (where i = 2, . . . , N) has returned a negative class label (i.e.

classification is terminated as soon as a positive label is produced).

8.1.4 Test Data

Similarly to the frameworks presented in Chapter 5 and the baseline study of Flit-

ton et al. [FBM12], the classification of two independent object types (handguns

and bottles) is considered. Five separate datasets are used in this chapter. All

intensities are represented in MHU.

1. The dataset used to build the random forest model which guides object

partitioning. This set is composed of 80 manually-cropped single-object

segments and 80 manually-cropped multi-object segments of varying sizes.

2. The dataset used to train the SVM classifier for the handgun experiments

(Figure 8.3). This set is composed of 101 manually-cropped handgun (posi-

tive) subvolumes and 134 manually-cropped clutter (negative) subvolumes.

3. The dataset used to train the SVM classifier for the bottle experiments

(Figure 8.3). This set is composed of 88 manually-cropped bottle (positive)

subvolumes and 90 manually-cropped clutter (negative) subvolumes.

4. The test set used in the handgun experiments. This set is composed of 208

handgun-containing (positive) whole volumes and 150 handgun-free clutter

(negative) whole volumes (Figure 8.4).

5. The test set used in the bottle experiments. This set is composed of 146

bottle-containing (positive) whole volumes and 190 bottle-free clutter (neg-

ative) whole volumes (Figure 8.4).

Dataset (1) above is identical to that used to build the random forest models

in the experimentation presented in Chapter 7. In contrast to the experimentation

presented in Chapter 5 and [FBM12], the clutter subvolumes in sets (2) and (3)

have all been manually cropped to prevent the inclusion of meaningless subvolumes

(e.g. subvolumes containing no whole objects). The whole volumes comprising
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Figure 8.3: Examples of manually segmented training data. Handgun subvolumes are
created to contain a single handgun; bottle subvolumes a single bottle and clutter sub-
volumes a single whole object which is neither a handgun nor a bottle.

the test sets in (4) and (5) are used to evaluate the end-to-end performance of the

proposed classification algorithm.

All non-target objects are considered as clutter and are chosen to provide an

environment that is comparable to that encountered within the transport infras-

tructure. Typical clutter items include both low density items (e.g. clothing,

books etc.) and high density items (e.g. belt buckles, batteries, pliers, dumbbells

etc.). In the handgun classification experiments, bottles are considered as clutter

items and vice versa.

8.2 Results

Performance was quantified via traditional measures (true-positive rate, false-

positive rate, precision, accuracy and processing time). Processing times were

measured for all experiments performed on an Intel Core i5 machine running a

2.30GHz processor with 6GB of RAM.

The optimal algorithm parameters were determined independently for each ob-

ject class and then kept constant for every instance in that experiment (i.e. one

set of parameters used for the entire handgun experiment and another set for the

entire bottle experiment). The pre-processing parameters were determined using

a small set of validation volumes and several different sets of input parameters.

Those parameters that subsequently produced the most visually satisfying segmen-
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Figure 8.4: Example test volumes - target object indicated.

tations were chosen. The block-wise linear-time NLM implementation [MS05a]

was used to reduce the characteristically-high processing time of NLM filtering

[BCM05a, BCM05b]. Window sizes of 11 × 11 and 7 × 7 were used for gradient

and intensity similarity computations respectively. Due to the efficiency of the

random forest-based classification process and the relatively small dataset, the

optimal forest and SVM parameters were determined empirically via 5-fold cross-

validation performed over the entire dataset. The number of tests performed for

each node split in the random forest was set to |Tj| = 10 - this value was fixed

for all nodes. Trees were grown to a maximum depth of DT = 5, with a lower

bound of IGmin = 10−4 on the information gain (Section 3.3.2). It was found

that using these settings resulted in tree growth terminating prior to maximum

depth and thus no tree pruning was performed. The settings resulted in trees with

approximately 300 leaf nodes each. For a forest containing T = 5 trees, codebooks

therefore typically contained approximately 1500 codewords.

Tables 8.1 - 8.4 summarise the results of the classification experiments. Table

8.1 shows the confusion matrices obtained in the handgun classification exper-

iments for each of the four pre-processing methods tested (thresholding, NLM

filtering [BCM05b], LIMar [KHE87] and DDMar [MMB+13] (Section 4.2)). Pre-

processing by DDMar and NLM filtering yielded the optimal results, with only 7
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Clutter
(predicted)

Handgun
(predicted)

Clutter
(actual) 141 9

Handgun
(actual) 19 189

(a) Intensity thresholding.

Clutter
(predicted)

Handgun
(predicted)

Clutter
(actual) 148 2

Handgun
(actual) 7 201

(b) NLM filtering [BCM05a, BCM05b].

Clutter
(predicted)

Handgun
(predicted)

Clutter
(actual) 146 4

Handgun
(actual) 9 199

(c) Linear interpolation-based MAR [KHE87].

Clutter
(predicted)

Handgun
(predicted)

Clutter
(actual) 148 2

Handgun
(actual) 5 203

(d) Distance-driven MAR (Section 4.2).

Table 8.1: Handgun classification confusion matrices (208 handgun and 150 clutter
images)

and 9 incorrect classifications respectively. While LIMar (13 errors) outperformed

simple intensity thresholding (28 errors), the latter still performed surprisingly

well given its simplicity.

The results of the bottle classification experiments are shown in the confusion

matrices in Table 8.2. NLM filtering correctly classified all positive (bottle) in-

stances and resulted in only 4 false positives. DDMar again yielded high correct

classification rates (2 false negatives and 3 false positives). The superiority of NLM

filtering and DDMar over LIMar (19 errors) was more pronounced compared to the

handgun experiments. Intensity thresholding performed significantly poorer than

all three methods, with a particularly high false-negative rate (115/146 bottles

missed).

The aforementioned results are summarised in Table 8.3 which illustrates the
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Clutter
(predicted)

Bottle
(predicted)

Clutter
(actual) 183 7
Bottle
(actual) 115 31

(a) Intensity thresholding.

Clutter
(predicted)

Bottle
(predicted)

Clutter
(actual) 186 4
Bottle
(actual) 0 146

(b) NLM filtering [BCM05a, BCM05b].

Clutter
(predicted)

Bottle
(predicted)

Clutter
(actual) 187 3
Bottle
(actual) 16 130

(c) Linear interpolation-based MAR [KHE87].

Clutter
(predicted)

Bottle
(predicted)

Clutter
(actual) 187 3
Bottle
(actual) 2 144

(d) Distance-driven MAR (Section 4.2)

Table 8.2: Bottle classification confusion matrices (146 bottle and 190 clutter images)

True-Positive Rates (TPR), False-Positive Rates (FPR), precision and accuracy

for all of the experiments.

The mean, per-volume processing times for each of the four pre-processing

methods (averaged over both sets of experiments) are shown in Table 8.4. Sim-

ilarly to Chapter 5, the use of the average is justified by the fact that similar

volumes were used in both experiments (with only the target objects differing)

and thus processing times across the two experiments were relatively consistent.

As expected, simple intensity thresholding was performed with virtually no com-

putational overhead (0.23s per volume). As suggested by the experimentation in

Chapter 4, the processing times of the LIMar and DDMar (49.05s and 401.42s per

volume respectively) were higher than that of the NLM filter (34.01s per volume)

due to the computational expense associated with the Filtered Back-Projection

(FBP) reconstructions. DDMar was, on average, significantly more computa-
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Method Class TPR (%) FPR (%) Precision Accuracy
Intensity Handgun 90.87 6.0 0.955 0.922
threshold Bottle 21.23 3.68 0.816 0.637
NLM filter Handgun 96.63 1.33 0.990 0.975
[BCM05b] Bottle 100.0 2.11 0.973 0.988
LIMar Handgun 95.70 2.67 0.980 0.964
[KHE87] Bottle 89.04 1.58 0.977 0.944
DDMar Handgun 97.60 1.33 0.990 0.980
(Section 4.2) Bottle 98.63 1.58 0.980 0.985

Table 8.3: Overall classification performance for tested methods.

Avg. Processing Times (s/volume)
Method Denoising Segmentation Total
Intensity threshold 0.23 245.87 246.10
NLM filter [BCM05b] 34.01 127.31 161.32
LIMar [KHE87] 49.05 145.67 194.72
DDMar (Section 4.2) 401.42 129.44 530.86

Table 8.4: Mean per-volume processing times for stages of automated classification
(actual classification times negligible, thus not shown). Times have been averaged over
both experiments (handguns and bottles).

tionally demanding than the other three methods. For the reasons discussed in

Chapter 7, segmentation times were lower for volumes with higher signal-to-noise

ratios (i.e. better denoising/artefact reduction). The mean segmentation times

for the NLM pre-processed volumes (127.31s) and the LIMar and DDMar volumes

(145.67s and 129.44s respectively) were thus significantly lower than those of the

thresholded volumes (245.87s). Although the processing times associated with the

final stage of the proposed framework (random forest clustering and SVM classifi-

cation) are theoretically dependent on the number of objects segmented from the

original volume (i.e. number of subvolumes), the average times for all four meth-

ods were negligible (< 1.0s) relative to the pre-processing and segmentation stages

and are thus not shown in Table 8.4. The overall mean, per-volume processing

time was thus lowest for the NLM-filtered volumes (161.32s).

8.3 Discussion

The relatively high correct handgun classification rates obtained using simple in-

tensity thresholding may be attributed to the predominantly metallic nature of

the handguns in the dataset. Their correspondingly high atomic numbers lead to

significantly higher intensity values compared to the majority of other commonly

encountered, low-density items (e.g. clothing and books) as well as high-density

streaking artefacts. High-density, metallic items such as handguns, are thus fairly
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Figure 8.5: Threshold pre-processing examples. Top row: The handgun is correctly
classified as the high-density information is not eliminated by the threshold. Bottom
row: The bottle is misclassified as the threshold eliminates the empty (top) half of
bottle.

easily isolated, even in cluttered and noisy volumes, using only a single threshold

(a property which is exploited in most MAR techniques - see Chapter 4). The

obvious shortcoming of segmentations performed in this manner, however, is the

elimination of the majority of the contents of the scans. The top row of Figure

8.5 shows an example of a threshold which has been chosen such that the hand-

gun is successfully segmented from a cluttered bag. Note, however, that only the

high-density objects (the handgun, pliers and dumbbell) in the original scan are

accurately depicted in the segmentation map, while the majority of the remaining

items are eliminated. This limitation of pre-processing by thresholding is further

emphasised by the massive decline in performance when applied to the bottle

classification task (where the correct classification rate is significantly lower than

random guessing - Table 8.3). The bottom row in Figure 8.5 illustrates an exam-

ple of a bottle-containing volume which was incorrectly classified using intensity

thresholding. Note that only the liquid-containing region of the bottle is retained

in the segmentation while the remaining part of the bottle is eliminated by the

threshold. The corresponding subvolume bears little resemblance to a bottle and

is thus misclassified. Thresholding is thus only suitable when considering objects

with very high densities - it is important to emphasise that these densities need to

be higher than the high density noise/artefacts in the image. In the vast majority

of scenarios such an approach will not suffice (as illustrated by the poor perfor-

mance on the bottle dataset). At best, thresholding may be used as an initial

screening for high-density threats.

Perhaps the most important observation that can be made from the results in

Section 8.2, is the high-quality performance of the NLM filtering-based approach

relative to the two MAR-based approaches (both in terms of classification perfor-
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Figure 8.6: Comparison of DDMar and NLM pre-processed handgun segmentations
which led to correct classifications. Superior artefact removal by MAR shown in second
row. Although NLM leads to an under-segmentation of the handgun (third row, right
column), the error is small and a positive classification is still returned.

mance as well as processing time). The experimentation presented in Chapter 4

suggested that dedicated MAR techniques (such as those considered in this chap-

ter) outperform simple denoising filters (e.g. NLM filter) in the reduction of noise

and metal-streaking artefacts in low-quality, complex volumetric imagery. The

results in Section 8.2, however, bring into question the relevance of this superior

artefact reduction. Figure 8.6, for example, shows a handgun-containing volume

that was correctly classified by both the DDMar and NLM-filtering approaches.

The MAR volume, however, contains notably less streaking than the NLM vol-

ume (clearly visible in the final subvolumes) and leads to a handgun segmentation

that is superior to the under-segmented NLM handgun - both qualitatively as well

as quantitatively (as determined by a higher Random Forest Score (RFS) - see
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Figure 8.7: Under-segmentations (outlined regions) resulting from NLM filtering. Since
errors are small, classification is not affected.

Chapter 7). The key factor appears to be in the generation of the subsequent

subvolumes. Since the original (denoised) volume information is retained in these

subvolumes (as opposed to retaining only the foreground/object information) the

errors related to the incorrect labelling in the under-segmented object are largely

eliminated - note that both the MAR and NLM subvolumes contain the object

which was incorrectly labelled in the NLM segmentation. In Chapter 5 it was

shown that classification performance using randomised clustering forests is rel-

atively robust to background noise and clutter, provided the clutter objects are

small in relation to the target object (i.e. the target object forms the main part of

the subvolume). It is apparent (as illustrated by the additional examples in Fig-

ure 8.7), that for both the handgun and bottle datasets, the NLM segmentations

produced sufficiently small under-segmentations to allow for correct classifications.

This is an indication that the degree of artefact reduction offered by more complex

MAR techniques (which comes at a significant increase in computational cost -

Table 8.4) as well as very precise segmentations (such as those provided by the

computationally demanding IDT algorithm [Gra06]) are not necessary for the suc-

cessful classification of objects in complex volumetric imagery. This observation is

particularly encouraging in the context of security screening, where the demands

for high throughput are paramount [Sin03]. It is worth emphasising, however, that

some degree of denoising is still important, as illustrated by the comparatively poor

performance of simple intensity thresholding.

Considering the comparable classification performance of NLM and DDMar,

the fact that DDMar employs the NLM filter [MMB+13] and the comparatively
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Figure 8.8: Handgun false-positive examples caused by high-density objects.

poor performance of LIMar, suggests that the most beneficial component (in the

context of object classification) of the MAR approach is in fact the pre-filtering

and post-filtering using the NLM filter.

A more detailed analysis of the classification errors produced by the NLM,

LIMar and DDMar pre-processing techniques is important. Figures 8.8 - 8.10

show examples of misclassified handgun volumes for each of the three methods.

Figure 8.8 illustrates examples of two subvolumes that resulted in false-positive

handgun classifications. The most obvious trend (evident for all three pre-processing

techniques) is the presence of high-density objects. Beyond this, the subvolumes

bear little obvious resemblance to the handguns in the training set (e.g. Figure

8.3), making it difficult to determine, with any confidence, the root of the missed

classifications.

Further investigation of the results have indicated apparent trends in the char-

acteristics of the missed NLM and DDMar handguns (false negatives). In par-

ticular, the missed handguns contain relatively large low-density regions in their

grips/handles, resulting in over-segmentations of the handguns into separate han-

dle and barrel components. Examples of such handguns (together with their cor-

responding segmentation maps and relevant subvolumes) are shown in Figure 8.9

(a) and (b) for NLM and DDMar respectively. Interestingly, the handgun barrel

subvolumes that have led to false negatives are notably similar in appearance to

the false-positive generating subvolumes for all three methods (Figure 8.8) and

certainly bear resemblance to the whole gun subvolumes. This suggests that the
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Figure 8.9: NLM and DDMar handgun false-negative examples. Handguns (outlined)
are over-segmented into barrels and handles due to uncharacteristically low-density han-
dles. Resulting subvolumes classified as clutter.

false-positive and false-negative instances lie very close to the decision boundary

established by the classifier. It is likely that a larger and more diverse training

set and/or a finer tuning of the input parameters may alleviate these errors. Fur-

thermore, it is worth noting that the fact that handguns with these properties

(low-density handles) were included in the classification training data is imma-

terial, as the errors essentially occur in the segmentation phase of the pipeline.

This again highlights the challenge of defining a suitable ‘object philosophy’ in

the development of a segmentation algorithm [CMP13]. Hierarchical approaches

to segmentation, whereby the relation between the individual parts of compos-

ite objects are stored in tree-like structures, allow for multi-part objects to be

represented both by their constituent parts as well as single composite objects

[WGW12]. The incorporation of such techniques into the proposed framework is

likely to be beneficial in the aforementioned scenarios and is left as an area for

future work.

It has been found that the main cause of false-negative handgun classifications

for the LIMar method is an introduction of new streaking artefacts that arise from

the FBP reconstructions of linearly interpolated sinograms (see Chapters 3 and

4 for details on the mechanism of this phenomenon). The effective increase in

streaking in turn leads to under-segmentations (i.e. multiple objects segmented as

one). Two such examples are shown in Figure 8.10. In both cases, the subvolumes

containing the handguns also contain the majority of the large items present in the

original scans. While the NLM under-segmentations are typically small (Figure

8.7), the LIMar under-segmentations contain objects similar in size (or larger)



8.3 Discussion 213

Figure 8.10: LIMar handgun false-negative examples. New streaking introduced in MAR
procedure leads to over-segmentations of the handguns and hence incorrect classifica-
tions. Handguns outlined in inputs.

Figure 8.11: Bottle false-positive examples. Caused by objects with circular cross-
sections and similar densities to liquids.

than the target objects, leading to erroneous classifications.

Figures 8.11 - 8.13 show examples of misclassified bottle volumes for the NLM

filtering and two MAR-based pre-processing methods. The subvolumes that led to

false-positive classifications for all three pre-processing techniques are dominated

by objects with circular cross-sections and densities in the range of common liquids

(Figure 8.11). This is a similar observation to that made in Chapter 5. It is worth

noting that not all such objects resulted in false-positive classifications and the

reasons for these particular misclassifications are not clear.

NLM filtering returns a perfect classification of the positive (bottle-containing)

test volumes, while DDMar results in only two false negatives. A closer exami-

nation of these two cases has indicated that both false positives are caused by

half-filled bottles surrounded by high-density objects and hence corrupted (i.e.

intersected) by streaking artefacts. One of the two volumes is shown in Figure

8.12 in addition to the corresponding denoised volume, the segmentation map and

the subvolume for NLM filtering. Due to the presence of four high-density objects

in the input volume (indicated in Figure 8.12), the degree of streaking is severe,

making it challenging to distinguish the upper border of the bottle. The bottom

half of the bottle is more pronounced due to the presence of a higher-density liq-
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Figure 8.12: Comparison of DDMar (false negative) and NLM (true positive) bottle
segmentation/classification. DDMar removes greater degree of artefacts, eliminating
the empty region in the bottle and causing a misclassification.

uid (relative to the plastic of the bottle). While DDMar successfully removes the

artefacts, it also appears to have over-compensated and removed some degree of

important image information. Most importantly, the upper border of the bot-

tle is almost entirely eliminated. Consequently, only the liquid-containing region

of the bottle is segmented and represented in the corresponding subvolume. In

contrast, while NLM filtering removes considerably less streaking (as expected),

the entire bottle is retained. The resulting segmentation map, although including

background noise in the bottle region, captures all of the relevant information and

hence the subvolume is correctly classified. This again illustrates the point that

despite an under-segmentation of the bottle and surrounding noise, since the error

is relatively small, classification is not affected. It is worth noting that, in the

case of the MAR volume, the information related to the upper half of the bottle is

already eliminated prior to the segmentation (since it is the pre-processed volume

that is used in the generation of the subvolume). A possible solution may thus be

to use the original, unprocessed volume as the input to the subvolume generation.

The false negatives resulting from the LIMar pre-processed volumes again ap-

pear to stem from large under-segmentations, caused by the introduction of new

streaking artefacts in the MAR procedure. Figure 8.13 illustrates two such ex-

amples. In both instances the post-MAR volumes contain new streaking arte-

facts, leading to under-segmentations. The limitations of linear interpolation-

based MAR in the presence of multiple metal objects, which are already well

documented [MMvS+13], are further substantiated here.
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Figure 8.13: Example of LIMar false-negative classification of a bottle (outlined).

8.4 Conclusion

The limitations in the current state-of-the-art in 3D object classification within

complex volumetric imagery [FBM12] have been addressed by the development of

an efficient, fully-automated three-stage classification framework. The proposed

classification pipeline is constructed by combining the pre-processing, CCA seg-

mentation and random forest-based SVM classification techniques presented in the

preceding chapters of this work. Correct classification rates in excess of 97% with

false-positive rates of less than 2% are obtained for the classification of two object

classes (handguns and bottles) in low-quality, complex volumetric imagery.

An experimental comparison to investigate the impact on classification perfor-

mance of four denoising and/or Metal Artefact Reduction (MAR) techniques (in-

tensity thresholding, NLM filtering [BCM05a, BCM05b], LIMar [KHE87], DDMar

[MMB+13]), has demonstrated the superiority of the NLM filtering and DDMar

over LIMar and intensity thresholding techniques. Furthermore, NLM filtering

is shown to outperform both MAR-based approaches in terms of runtime. Con-

sidering the comparable classification performance obtained using the NLM and

DDMar pre-processed volumes, it is reasonable to conclude that the benefits of

superior artefact and noise reduction of the MAR process do not sufficiently justify

the large associated increase in processing time. These experimental results may

be considered a system-level quantitative evaluation of the denoising and artefact

reduction techniques.

Although it may be argued that the target objects considered in this study

are comparatively easy to classify (particularly the high-density handguns), the

currently available dataset has limited the study to these two classes. A seemingly

ubiquitous demand in the computer-vision community is for larger, more stan-

dardised datasets. Naturally, due to the sensitivity of the security data considered

in this study, the data gathering process is not straightforward. Nonetheless, the
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expansion of the current dataset (which is comparable to those used in the earlier

works of Flitton et al. [FBM12, FBM13]) and the inclusion of a broader range of

target classes is left as an area for future work.

The proposed classification framework has improved on the current state-of-

the-art [FBM12, FMMB13] in the following ways: 1) the effects of noise and

artefacts have been addressed by pre-filtering and metal artefact reduction; 2) the

previously manual generation of subvolumes has been automated by the devel-

opment of a dual-energy-based segmentation technique and 3) classification pro-

cessing time has been reduced by several orders of magnitude using randomised-

clustering forests. Furthermore, classification performance remains comparable to

that achieved by the semi-automated visual-cortex approach of [FBM12] and im-

proves upon the previous state-of-the-art in fully-automated object classification

[FMMB13].



Chapter 9

Conclusions

The automated analysis of low-resolution, complex 3D baggage-CT imagery has

been addressed through the development of techniques for image denoising, arte-

fact reduction, segmentation and classification. The outcome of this thesis has

been a novel, fully-automated framework for the classification of objects within

this domain.

This chapter presents an overview of the research conducted in this thesis (Sec-

tion 9.1), acknowledges concurrent and more recent studies in the wider research

community (Section 9.2), reviews the most important original contributions (Sec-

tion 9.3) and suggests avenues for future developments (Section 9.4).

9.1 Summary of Research

Three-dimensional X-ray Computed Tomography (CT), initially developed for use

in the medical-imaging domain, has fairly recently been incorporated into the

aviation security infrastructure in the form of sophisticated Explosives Detection

Systems (EDS). The objective of this thesis has been the development of a fully-

automated, yet computationally efficient 3D object-classification framework for

low-resolution, complex baggage-CT imagery. The development of this framework

is shown to rely on three components: 1) image quality improvement; 2) 3D

object segmentation and 3) 3D object classification. These three topics form the

foundation of the research conducted in this thesis.

Although prior work considering the application of computer-vision techniques

to 3D volumetric baggage-CT imagery is relatively limited, a vast resource of

related studies have been conducted in the medical domain. A review of these

related studies was presented in (Chapter 3) and led to several important observa-

tions which formed the bases of the novel techniques presented in the latter chap-

ters of this work. In particular, prior denoising and artefact-reduction techniques

were shown to be almost entirely limited to the medical domain. Furthermore,

the overwhelming trend observed in the medical literature was the exploitation
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of a priori knowledge related to the properties of the anatomical regions being

scanned (e.g. size, shape, density, spatial context etc.), allowing for the adjust-

ment algorithm parameters for specific anatomical regions or abnormalities. This

detracts from the suitability of these techniques in the security-screening domain,

where the imagery is of a poorer quality, is more cluttered and where no a pri-

ori information related to the objects being scanned exists. The unsupervised

segmentation of cluttered volumetric baggage-CT imagery has been considered

previously, but high-resolution medical-grade imagery with relatively low levels

of noise and metal-streaking artefacts were employed [CMP13]. The segmenta-

tion of low, anisotropic resolution volumetric imagery in the presence of multiple

metal objects had not been considered previously. Finally, the state-of-the-art in

3D object classification in baggage-CT imagery [FBM12] was shown to be com-

putationally demanding, sensitive to image noise and artefacts and dependent on

manual segmentations.

The reduction of noise and metal-streaking artefacts in the previously uncon-

sidered context of low-resolution, cluttered baggage-CT imagery was then ad-

dressed (Chapter 4). Two experimental comparisons were conducted, which con-

sidered both denoising as well as metal artefact-reduction. In contrast to the

majority of existing comparative studies, a broad range of techniques was consid-

ered and qualitative as well as quantitative performance analyses were performed.

The two most important observations were: 1) the notable declines in the perfor-

mance of the state-of-the-art medical MAR techniques when applied in imaging

domains where the generation of accurate priors is difficult and 2) a characteristic

blurring effect common to all sinogram-completion-based MAR approaches. Com-

parative studies of this nature had not previously been conducted (in either the

security-screening or medical-imaging domains) and represent notable contribu-

tions to knowledge. Additionally, a novel method for quantifying the performance

of denoising or MAR algorithms when applied to 3D imagery was presented. The

performance measure quantifies denoising performance based on the ratio of object

to noise 3D-SIFT interest points and provides an indication of the likely impact

of denoising or MAR on subsequent object recognition performance. Finally, a

novel sinogram-completion MAR technique was presented, designed particularly

for baggage-CT imagery containing multiple metal objects. The proposed method,

which employs a distance-driven weighting scheme to adjust the corrected voxel

intensities according to their locations relative to the metallic objects within the

scan, was shown to perform comparably to state-of-the-art medical MAR tech-

niques, particularly within the baggage-CT domain.

The feasibility of a codebook approach for 3D object classification in low-

resolution, cluttered baggage-CT imagery was then investigated (Chapter 5). To

this end, five codebook models were constructed using various combinations of
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sampling strategies, feature-encoding techniques and classifiers. A codebook model

constructed using an Extremely Randomised Clustering (ERC) forest [MTJ07] for

feature encoding, a dense-feature sampling strategy and an SVM classifier resulted

in improvements over the state-of-the-art 3D visual cortex model [FBM12] both

in terms of classification accuracy as well as processing time. High-speed feature-

encoding techniques had not been considered previously in this domain, thereby

preventing the incorporation of dense-feature sampling strategies.

An experimental investigation into the efficacy of Dual-Energy Computed To-

mography (DECT) techniques, when applied to low-resolution, cluttered baggage-

CT data, was then presented (Chapter 6). The discriminative capabilities of

the Dual-Energy Index (DEI) [Joh11] (previously unconsidered in the security-

screening domain) and the effective atomic number Zeff [WdB69] were qualita-

tively and quantitatively evaluated using five manually annotated object classes.

The DEI was shown to outperform the effective atomic number both in terms of

accuracy as well as discriminative power. The comparatively poor performance of

the Zeff measure was attributed to errors resulting from the approximations of the

scanner configuration and the use of simulated energy spectra. Crucially, high-

quality material discrimination was shown to be dependent on sufficient metal

artefact reduction. The observations made in this chapter laid the foundation for

the development of a novel materials-based segmentation technique.

A novel materials-based technique was proposed for the segmentation of un-

known objects from low-resolution, cluttered volumetric baggage-CT data (Chap-

ter 7). To this end, four novel contributions were made: 1) a materials-based coarse

segmentation technique; 2) a random-forest-based model for measuring the qual-

ity of individual object segments; 3) a random-forest-based model for measuring

the quality of entire segmentations and 4) a segmentation-refinement procedure

for splitting fused objects. Coarse segmentations are generated using a charac-

terisation of the chemical composition of an image (based on the DEI [Joh11]),

simple thresholding operations and connected component analysis. The quality

of the individual components of the coarse segmentations are then evaluated us-

ing the Random Forest Score (RFS) - which is trained to recognise single-object

segments. Based on the RFS of a given coarse segmentation, low-quality indi-

vidual object segments are subjected to an object-partitioning operation which

splits fused objects at automatically-detected regions using a simple connected

component analysis. A second segmentation-quality measure was presented for

quantifying the quality of a full segmentation. The measure only requires prior

knowledge of the number of objects in a given image. In a comparative evalua-

tion, the proposed segmentation method was shown to perform only marginally

worse than the state-of-the-art [GSK+12] in terms of segmentation quality (both

qualitatively as well as quantitatively) but at a reduction in computational cost.
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The importance of MAR was demonstrated by the decline in performance for all

segmentation techniques when MAR is not applied.

Finally a novel, fully-automated and efficient framework for 3D object clas-

sification within cluttered baggage-CT imagery was presented by combining the

pre-processing (denoising and MAR), segmentation and classification techniques

developed in the preceding chapters of this work (Chapter 8). Dedicated MAR

resulted in only marginal improvements in classification accuracy over simple Non-

Local Means (NLM) filtering [BCM05b] but at a significant increase in processing

time. It was concluded that the benefits of superior reduction of artefacts and noise

of dedicated MAR do not sufficiently justify the large associated increase in pro-

cessing time. The fully-automated classification framework presented represents

an extension to the current state-of-the-art [FBM12, FMMB13]. In particular,

classification performance in the presence of noise and artefacts was improved via

pre-filtering; the previously manual generation of subvolumes was automated by

the development of a dual-energy-based segmentation technique and classification

processing times were reduced using randomised-clustering forests.

9.2 Concurrent Work

Since the commencement of this research, concurrent work in the wider research

community has been conducted in related fields. Most relevant to this thesis are

the recent developments in MAR and tomographic-reconstruction for baggage-CT

data.

Metal artefact reduction in CT is an open problem and additions to the

state-of-the-art are frequent. Since the completion and publication of the novel

research presented in Chapters 3.2 and 4, a particularly relevant advancement in

metal artefact reduction designed specifically for baggage-CT imagery has been

presented by Karimi et al. [KCM13]. The proposed approach is the first of its

kind to employ a prior image in this domain. Prior-images are constructed as solu-

tions to constrained numerical optimisation problems. Particularly, a regularised

Weighted Least Squares (WLS) error is minimised, where the regularisation is per-

formed via the total variation norm. Artefact reduction is predominantly achieved

via the weighting scheme (which is chosen to de-emphasises metal) and the chosen

constraint (which exploits the fact that low-frequency metal artefacts are caused

by beam hardening and scattered radiation). To reduce computational overhead,

the size of the convex problem is decreased by solving for a smaller image. The

sinograms are filtered and downsampled in views and samples. The employment

of this so-called ‘miniature image’ is shown to lead to a reduction in reconstruc-

tion time by a factor of 163. Once the miniature image has been constructed, a

second miniature image is constructed in a similar manner but ignoring the afore-
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mentioned weights and constraints. This second image represents the original,

artefact-corrupted image in the same coordinate space as the first miniature im-

age. An artefact-only miniature image is then computed as the difference between

the two miniature images and upsampled to the original dimensions, yielding the

so-called prior image. The sinogram of this prior image is computed and used

to guide the replacement of the metal trace in the original corrupted sinogram

(using a standard interpolation-based approach). The technique is shown to out-

perform the linear-interpolation-based approach of Kalender et al. [KHE87] as

well as a more recent iterative projection replacement method [VS12] - partic-

ularly in terms of preservation of image details. As with all interpolation-based

approaches, some degree of blurring is observed. It is also worth noting that exper-

iments were performed using medical-grade imagery (obtained from the ALERT

initiative [CMP13]) which is not representative of that encountered in the aviation

security domain. Nonetheless, this study represents the current state-of-the-art in

sinogram-completion-based MAR in the baggage-CT domain and its incorporation

into the automated classification framework presented in this thesis is likely to be

beneficial and is left as an area for future work.

Tomographic reconstruction: The ALERT initiative [CMP13], which led to

the development of several dedicated baggage-CT segmentation algorithms (Sec-

tion 3.5) has recently released the results of a second phase of the initiative ad-

dressing the role of CT reconstruction in explosives detection [CKM]. Due to the

late release of this report (relative to the time frame of this thesis), the techniques

presented have not been included in this research. The most pertinent observations

of the initiative are discussed below.

In total nine independent medical research groups were tasked with developing

advanced reconstruction algorithms to improve image quality and explosives detec-

tion in baggage-CT imagery. Of these nine groups, eight used raw projection data

to directly develop reconstruction techniques, while the ninth group was tasked

with developing simulation tools to mitigate the computational expense of com-

plex reconstruction techniques. The initiative has led to the development of several

novel or modified reconstruction algorithms based on iterative-reconstruction tech-

niques, sinogram pre-processing; dual-energy techniques and modifications to the

FBP process. These methods (which employ both single-energy and dual-energy

techniques) are shown to offer varying degrees of improvements in image quality

(in terms of MAR and contrast enhancement). The degree of quality improve-

ment is shown to correlate with the complexity of the reconstruction technique

(i.e. better image quality comes at an increased computational expense). The

reconstruction techniques are further shown to benefit subsequent explosive de-

tection rates (according to a feature-based performance metric). This is largely

attributed to the associated reduction in streaking artefacts and the improvements
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in image contrast. Similarly to the earlier ALERT initiative [CMP13] and the re-

cent MAR study of Karimi et al. [KCM13], these studies employed medical-grade

CT imagery.

In conjunction with the ALERT initiative [CKM], Eger et al. [EIKP11, EDI+11]

have demonstrated improved explosives detection using machine learning tech-

niques based on Multi-Energy Computed Tomography (MECT). MECT is claimed

to provide superior characterisation of the chemical composition of the materials

in a scan relative to conventional DECT. Low-dimensional features are extracted

from the high-dimensional ‘Linear Attenuation Coefficient (LAC) vs. energy’

curves of materials and are shown to outperform the traditional photoelectric

and Compton coefficients in terms of discriminative capabilities. The studies sug-

gest improved detection performance relative to conventional dual-energy X-ray

systems [EIKP11, EDI+11].

While the detection of explosives was not considered in this thesis, the results of

the aforementioned CT reconstruction studies [CKM, EIKP11, EDI+11] indicate

potential benefits of incorporating such techniques into the CCA segmentation

framework presented in Section 7.2 of this work and this is again left as an area

for future work.

9.3 Review of Contributions

The most important original contributions of this thesis may be summarised as

follows:

� A novel interest-point-based quantitative performance measure is presented,

extending traditional denoising performance evaluation approaches by eval-

uating the potential benefits of denoising on the application of more complex

operations (e.g. 3D object classification) within the current imaging context

(published as [MMFB12]).

� A novel Metal Artefact Reduction (MAR) technique, designed specifically

for cluttered baggage-CT imagery containing multiple metal objects, is pre-

sented and shown to perform comparably to state-of-the-art medical tech-

niques when applied to cluttered baggage-CT imagery (published as [MMB+13]).

� A comprehensive comparative performance evaluation (which has not previ-

ously been considered in medical or non-medical CT domains) is conducted

for seven image denoising techniques and twelve artefact-reduction tech-

niques (published as [MMFB13, MMvS+13]).

� A novel dual-energy-based segmentation technique is presented and shown

to provide fast, high-quality segmentations of complex baggage-CT imagery.
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Within the proposed framework, four novel contributions are made: 1) a

materials-based coarse segmentation technique; 2) a random-forest-based

model for measuring the quality of individual object segments; 3) a random-

forest-based model for measuring the quality of entire segmentations and

4) an efficient segmentation-refinement procedure for splitting fused objects.

In a comparative performance evaluation, the proposed technique is shown

to perform comparably to the state-of-the-art [WGW12, Gra06, CMP13]

(submitted as [MB14b]).

� A codebook image classification model constructed using random-forest-

based feature encoding, a dense-feature sampling strategy and a Support

Vector Machine (SVM) classifier is presented and shown to outperform the

current state-of-the-art [FBM12] both in terms of accuracy as well as pro-

cessing time (submitted as [MBF14]).

� A novel, fully-automated and efficient framework for 3D object classifica-

tion within cluttered baggage-CT imagery is presented and shown to im-

prove on the current state-of-the-art [FBM12] by reducing the detrimental

effects of image noise and artefacts; by automating the segmentation pro-

cess; by improving accuracy and by reducing computational cost (submitted

as [MB14c]).

9.4 Future Work

The research presented in this thesis has led to the identification of several areas

where future developments are likely to be beneficial.

9.4.1 Image Quality Improvement

The overwhelming consensus in the literature is that iterative-reconstruction tech-

niques provide superior image quality to conventional FBP (particularly in terms

of artefact reduction). Furthermore, despite the broad range of existing metal-

artefact-reduction techniques, these perform comparatively poorly in the security-

screening domain (Section 4.4.2), an observation which has been substantiated by

the surprisingly small degree of improvement in classification performance pro-

duced by the dedicated baggage-CT MAR approach (Section 4.2) over NLM fil-

tering [BCM05b] (Section 8.2). These observations are an indication that future

baggage-CT systems will benefit from improved CT reconstruction (as opposed

to the development of further sinogram-completion-based MAR techniques). In

terms of baggage-CT image quality, the following areas are outlined as directions

for future work:
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� The development of iterative-reconstruction techniques suitable for the security-

screening domain, with a particular focus on minimising processing times.

� The observations presented in Section 4.5 of this work have indicated that the

current state-of-the-art medical MAR techniques benefit from the use of ac-

curate priors but typically require careful parameter tuning. An exhaustive

optimisation of the MAR parameter space and/or the development of tech-

niques to automatically determine optimal MAR algorithmic parameters are

thus recommended as areas for future work. Furthermore, the more recent

work of Karimi et al. [KCM13] (Section 9.2) has demonstrated that the de-

velopment of useful prior data is possible in the baggage-CT domain without

significant compromises in computational cost. These techniques were how-

ever, evaluated predominantly on medical-grade CT imagery, which is not

representative of the imagery encountered in the aviation security-screening

domain. An evaluation of their performance in the current imaging domain

is thus a necessary task.

� Further concurrent research discussed in Section 9.2 has revealed several

important advancements in CT reconstruction for baggage-CT imagery. Al-

though these advancements have led to improved image quality (particularly

in terms of artefact reduction and contrast enhancement), the degree of this

improvement has been shown to correlate with processing time (i.e. bet-

ter image quality at higher processing times). This observation has been

substantiated by the broader resource of iterative reconstruction-based lit-

erature. The demand for high throughput in security-screening settings has

been highlighted throughout this thesis. The importance of determining an

appropriate tradeoff between image quality and computational cost is thus

a vital factor in future developments in tomographic reconstruction.

9.4.2 Segmentation

The observations made in Chapter 7 have indicated that the proposed dual-energy-

based segmentation algorithm is potentially well-suited to the task of 3D object

segmentation within baggage imagery, particularly owing to its comparatively low

computational overhead. Nonetheless, several limitations in the current formula-

tion suggest the following areas would benefit from further development:

� The manner in which composite objects (composed of multiple parts) are

segmented is a source of ambiguity (e.g. over-segmentation of handguns

in barrel and handles). Hierarchical approaches to segmentation, whereby

the relation between the individual parts of composite objects are stored

in tree-like structures, allow for multi-part objects to be represented both
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by their constituent parts and as single composite objects [WGW12]. The

incorporation of such techniques into the proposed framework is likely to be

beneficial in the aforementioned scenarios.

� The proposed segmentation algorithm is based on the relatively crude mate-

rial representation offered by the Dual-Energy Index (DEI). Due to the lack

of accurate calibration data and the use of sub-optimal simulated data, an

accurate estimation of effective atomic number has not been possible in this

work. Calibration using at least some empirical data (e.g. actual scans of

materials with known properties and/or the measured energy spectra of the

scanner) is thus an important area for future work.

� The recent work of Eger et al. [EIKP11, EDI+11] has demonstrated the su-

perior performance of feature-based multi-energy CT (compared to conven-

tional DECT) in the materials-based discrimination of objects in baggage-

CT imagery. Since the segmentation algorithm proposed in Section 7.2 is

based on feature-based dual-energy techniques, it is likely that the incorpo-

ration of multi-energy CT techniques into this framework will lead to higher

quality segmentations.

� Harvey et al. (University of East Anglia) [CMP13] present a baggage-CT

segmentation algorithm based on multiscale sieves [BCPL96] (Section 3.5.2).

It is noted that the sieves segmentation algorithm segments all objects at all

scales, resulting in at least one channel always containing a segmentation of

an object. It is proposed [CMP13] that instead of merging all channels into

a single segmentation, a more intuitive approach would be to pass the chan-

nel images directly into some artificial intelligence system (e.g. a classifier,

object detector or salient region detector). This recommendation is in line

with the segmentation objectives considered in this thesis (i.e. to provide

subvolumes for classification). An evaluation of the feasibility of the sieves

segmentation algorithm is thus recommended as an area for future work.

9.4.3 Classification

Although improvements over the state-of-the-art in classification performance [FBM12]

have been demonstrated in Sections 5.2 and 8.2, due to limitations in the current

dataset, the classification tasks have been restricted to two object classes. In order

for a baggage-CT classification tool to be of value in industry a broad range of

threats must be detectable. The most important direction for future classification-

related work is thus an extension to multiclass problems. While it has been sug-

gested that the true benefits of random-forest-based classification [Cri11] have not

been exploited due to this restriction to two object classes, it is likely that such

techniques will be of increased value in multiclass problems.
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9.4.4 Data

Owing to the sensitivity of security data and the related challenges in data gather-

ing, a relatively limited dataset has been used throughout this study. Perhaps the

most important direction for future work is the expansion of the current dataset to

include a greater number of total images; to contain a broader range of target and

clutter items; to perform a more stringent documentation of the data-gathering

process (e.g. exact contents of bags; geometric properties; material properties

etc.) and to capture relevant calibration and spectral measurements. An ex-

panded dataset of this nature is likely to benefit all facets of future work.
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Appendix A

Segmentation Algorithms

A description of three segmentation techniques (and related theory) that have been

successfully incorporated into baggage-segmentation algorithms is presented.

A.1 The Isoperimetric Distance Tree Algorithm

The isoperimetric algorithm has demonstrated efficient and stable results in image-

segmentation problems [GS06a]. Grady [Gra06] demonstrates that the algorithm

may be applied in low-constant linear time by operating on a subgraph (termed the

distance tree) of the lattice graph representing a connected component. The re-

sulting Isoperimetric Distance Tree (IDT) algorithm for graph partitioning [Gra06]

has been successfully incorporated into a framework for the segmentation of 3D

CT-baggage imagery and large, medical volumes [GSK+12, Gra06].

A fundamental understanding of the concepts and terminology of graph-based

image processing theory is necessary for the understanding of the IDT algorithm.

A brief review of these concepts is provided here - for a more comprehensive

review of the mathematics of graph theory, the reader is referred to the literature

[BM76, Gib85, Big93, W+01].

A.1.1 Basic Graph Theory

Conceptually, a graph may be defined as a set of points (vertices or nodes) inter-

connected by a set of lines (edges). Formally, a graph G is defined by a non-empty

set of vertices V and an edge set E (disjoint from V ), such that G = (V,E). The

number of vertices, or order, of a graph may be denoted by Nv = |V | and the

number of edges, or size, as Ne = |E| ≤ N2
v , where |.| denotes cardinality. If two

vertices vi ∈ V and vj ∈ V are connected by an edge, that edge may be denoted

by eij ∈ E. A simple graph (Figure A.1 (a)) is one containing no loops (edges

connected at both ends to the same vertex) and only a single edge connecting any

two vertices.



260 Segmentation Algorithms

A weighted graph assigns a weighting to every edge in the graph, representing

the strength of affinity between the connected vertices (Figure A.1 (a)) Given

a graph G = (V,E), the weight of an edge spanning two vertices vi and vj is

denoted by w(vi, vj) or simply wij. If wij = 1, ∀eij ∈ E then the graph is said to

be unweighted. An edge-weight of wij = 0 implies that eij /∈ E.

If wij ̸= wji for a given edge eij, then that edge is said to be directed. A directed

graph, is one in which at least one edge is directed. An undirected graph contains

no directed edges - that is to say, wij = wji, ∀eij ∈ E. Unless specified otherwise,

all graphs (and associated terminology) considered hereafter are assumed to be

undirected, simple graphs (Figure A.1 (a)).

In the case of an undirected graph, a given edge eij is said to have two endpoints

vi and vj. Vertices vi and vj are said to be adjacent if ∃eij ∈ E, which is denoted

by vi ∼ vj. An edge eij is incident to the vertices vi and vj. A vertex which is not

incident to any edges is said to be isolated.

The degree of a vertex vi is denoted by d(vi) or di and is equal to the sum of the

weights of its incident edges: di =
∑

eij∈E wij. It follows that for an unweighted

graph the degree di is simply equal to the number of edges that connect to the

vertex vi. An undirected graph is said to be regular if each of its vertices has the

same degree. A regular graph with vertices of degree k is called a k-regular graph.

The graphG′ = (V ′, E ′) is called a subgraph of a graphG = (V,E) if: 1) V ′ ⊆ V

and 2) every edge ofG′ is also an edge ofG (i.e. E ′ = {eij ∈ E|vi ∈ V ′ and vj ∈ V ′}).
The subgraph G′ is a spanning subgraph of G if V ′ = V . G′ is said to span G.

A graph is said to be bipartite if the vertex set V may be partitioned into two

disjoint sets V1 ⊂ V and V2 ⊂ V where V1 ∩ V2 = ∅ and V1 ∪ V2 = V , such that no

two vertices within the same set are adjacent - that is to say, every edge connects

a vertex in V1 to a vertex in V2. Furthermore, if every vertex in V1 is connected to

every vertex in V2 the graph is said to be a complete bipartite graph. A complete

bipartite graph with |V1| = a and |V2| = b is denoted by Kab.

A fully-connected graph contains an edge spanning every pair of vertices - that

is to say: Ne = Nv.

The adjacency matrix is a symmetric |V | × |V | matrix given by (Figure A.2):

Aij =

wij if eij ∈ E

0 otherwise
(A.1)

The degree matrix is a |V | × |V | diagonal matrix containing the degree of each

vertex (Figure A.2):
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Dij =

di if i = j

0 otherwise
(A.2)

The Laplacian matrix is a |V | × |V | matrix containing both degree and adja-

cency information (Figure A.2):

Lij =


di if i = j

−wij if eij ∈ E

0 otherwise

(A.3)

L may be computed as the difference of the degree matrix and the adjacency

matrix: L = D − A.

A walk in the graph G = (V,E) is a finite sequence of alternating vertices

and edges of G, beginning at one vertex and ending at another. Every vertex

in the set is incident to both its preceding and its superseding edge in the set.

The walk from the initial vertex vi0 to the terminal vertex vik is denoted by:

π(vi0, vik) = (vi0, ej1, vi1, ej2, . . . , ejk, vik). The length of the walk is given by |π| =
k. If vi0 = vik, the walk is said to be closed, otherwise it is open. A walk is

permitted to contain multiple instances of the same vertices and/or edges.

A walk where every edge in the sequence is traversed only once is called a

trail. A closed trail is called a circuit and a circuit where all vertices are distinct

(excluding the initial and terminal vertices) is a cycle. An open trail where all

vertices are distinct is called a path (or simply an open walk) and a subpath is any

sequential subset of a path. A graph containing no cycles is said to be acyclic.

A tree is a connected acyclic simple graph. A forest is an acyclic simple graph

(i.e. the disjoint union of one or more disconnected trees). A spanning tree of

a graph G is a tree that is also a spanning subgraph of G (Figure A.1 (b) -

(d)). Only fully connected graphs have spanning trees - for a graph that is not

connected, a spanning forest is the maximal acyclic subgraph of that graph (i.e.

the graph consisting of a spanning tree in each connected component of the graph).

A Minimum (or shortest) Spanning Tree (MST) of a weighted, undirected graph is

a spanning tree for which the sum of its edge weights (the weight of the spanning

tree) is less than or equal to the weight of every other spanning tree (Figure A.1

(d)).

Images may be mapped onto graphs in a number of ways. In this work, ev-

ery voxel in a given volume represents a vertex of a graph (i.e. |V | equals the

number of voxels in the image) and edges join neighbouring voxels in n-connected

neighbourhood or lattice (Figure 7.2). Edge weights then define some measure
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Figure A.1: Graph with corresponding spanning trees.: (a) simple, undirected, weighted
graph with 5 vertices and 7 edges. Edge weights are indicated in red. (b) - (d) The three
spanning trees of the graph in (a) with total weights indicated. The minimum spanning
tree (d) has a weight of 23.

Figure A.2: The adjacency, degree and Laplacian matrices of the graph in Figure A.1
(a).

of similarity between neighbouring voxels (i.e. connected vertices). Edge weights

may be computed in a number of ways, depending on the similarity measure de-

sired (e.g. simple voxel intensity difference).

The partition of a graph G = (V,E) is defined as the assignment of every vertex

in V into two disjoint subsets V1 ⊆ V and V2 ⊆ V where V1∩V2 = ∅ and V1∪V2 = V

(Figure A.3). A p−way partition of a graph G = (V,E) is thus a mapping of the

vertex set of G into p disjoint subsets: P : V → [1, . . . , p]. The most promi-

nent graph partitioning methods in the image-segmentation literature have been

those based on the normalised cuts approach [SM00] (spectral graph theory) and

the max-flow/min-cut algorithm [BJ01]. Spectral graph-based approaches, how-

ever, rely on the computationally-intensive process of formulating and solving an

eigenvector problem [SM00], while max-flow/min-cut algorithms typically require

significant user interaction (e.g. setting of sinks/sources) [BJ01]. Consequently,

both spectral and min-cut partitioning approaches are computationally intensive

and have been predominantly limited to 2D segmentation problems [Gra06].

A significant reduction in processing time may be achieved by considering

minimal or maximal trees as the underlying graphs in the partitioning process
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Figure A.3: A two-way partition (graph-cut) resulting in two disjoint partitions A and
B. The edges removed by the cut are indicated in grey.

[Zah71, Urq82, MLC86]. A spanning tree of a given graph may be partitioned by

removing (or cutting) edges in the tree, resulting in a spanning forest composed of

a set of disjoint trees (each tree defining a particular partition) [MLC86, SM00].

The mapping of a given partition P back onto an image defines the resulting

segmentation. A simple way of performing this (reverse) mapping is to generate a

segmentation image wherein each pixel is assigned a constant value according to

the partition to which it belongs [MLC86]. Despite the improved efficiency of tree-

based partitioning methods, they are known to produce suboptimal segmentations

if the underlying graphs are weakly connected [Zah71].

A.1.2 The IDT Algorithm

Grady and Schwartz [GS06a] present an efficient and stable image-segmentation

algorithm motivated by the solution to the classical isoperimetric problem [Che70]:

finding the shape having the smallest perimeter for a fixed area [Gra06]. While

the solution in R2 is known to be the circle, on a discrete manifold (represented as

a graph) the solution is NP-Hard [GS06b]. Grady and Schwartz [GS06b] demon-

strate that an optimal approximation to the solution of the isoperimetric problem

for graphs may be found by finding a partition that minimises the so-called isoperi-

metric ratio (the ratio of the perimeter of a vertex set to the number of vertices

in the set). It is further demonstrated that high-quality segmentations (i.e. high-

volume regions with small boundaries) may be obtained by finding the partitions

for which this ratio is minimised [GS06a].

The original definition of the isoperimetric constant for an arbitrary, compact

manifold is given by [Che70]:

h = inf
S

|δS|
VolS

(A.4)
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where S is a region in the manifold; VolS ≤ 1
2
VolTotal is the volume of the

region S; δS is the perimeter of S and h is the infimum of the ratio over all

possible S. For a finite graph, the infimum in Equation A.4 becomes a minimum;

the region S represents a set of vertices S ⊆ V with a volume VolS = |S| ≤ 1
2
VolV

and the boundary (perimeter) of the vertex set S is defined by:

|δS| =
∑

eij∈δS

w(eij) (A.5)

where w(eij) represents the edge weights [GS06b]. The isoperimetric number

of a finite graph G = (V,E) is thus given by [GS06b]:

hG = min
S

|δS|
|S|

(A.6)

It may be further shown that the isoperimetric ratio of a given partition S ⊆ V

is given by [Gra06]:

hG(x) = min
x

xTLx

xT r
(A.7)

where xT r ≤ |V |; r is the vector of ones; L is the Laplacian matrix of G

(Equation A.3) and x is an indicator vector defining the vertex membership in S:

xi =

0 if vi ∈ S

1 if vi ∈ S
(A.8)

Therefore, by asserting the cardinality constraint xT r = k for some constant

k ≤ 1
2
VolV , relaxing the binary definition of x to include non-negative real numbers

and by introducing a Lagrange multiplier [Ber99] Λ, an optimal partition may be

found by minimising the function [GS06a]:

Q(x) = xTLx− Λ(xT r − k) (A.9)

Q(x) will be minimal at its stationary points as L is by definition positive

semi-definite [LG+12] and xT r >= 0. The stationary points of Q(x) are found by

differentiation with respect to x:
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dQ(x)

dx
= 2Lx− Λr (A.10)

The solution to the minimisation of Q(x) thus reduces to solving the linear

system:

2Lx = Λr (A.11)

One is thus left with a singular system of equations (since L is singular) which

may be converted to a non-singular system by assigning an arbitrary vertex vg to

S (i.e. setting xg = 0) [Gra06]:

L0x0 = r0 (A.12)

where L0 is computed by removing the gth row and column of L and (x0, r0)

are computed by removing the gth row of x and r respectively (a process termed

grounding - by way of a circuit analogy [GS06b]). The scalar multiplier 2 and the

Lagrange multiplier Λ may be ignored since only the relative values of the solution

to Equation A.11 are of interest [GS06b]. The solution to Equation A.12 (which

may be found using memory efficient methods such as conjugate gradients) is

non-negative real-valued for x0 which may by converted into an optimal partition

by finding a threshold τx (from n = |V | possible thresholds) that minimises the

isoperimetric ratio (Equation A.7). The thresholding is performed by placing

vertices with xi < τx into S, and those with xi > τx into S. During thresholding,

the denominator in Equation A.7 is set to xT r if xT r < n
2
and to (n − xT r)

otherwise. Grady and Schwartz prove that method ensures that the partition

results in a connected object and that the ground vertex serves as a specification

of the foreground, while the background is determined by the thresholding of x0

[GS06b, Gra06].

While the aforementioned isoperimetric partitioning produces efficient solu-

tions for 2D segmentation problems [GS06a], further optimisation is required when

considering volumetric imagery [Gra06]. To this end, Grady [Gra06] presents the

Isoperimetric Distance Tree (IDT) algorithm - whereby the standard lattice edge

set is replaced with a so-called distance tree.

A popular and efficient technique for solving systems of linear equations is

by the Cholesky decomposition, which is approximately twice as fast as the LU

decomposition for symmetric, positive definite systems [Kai80].The solution to the
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system of linear equations Ax = b may be found by first computing the Cholesky

decomposition: A = LL∗; solving Ly = b for y by forward substitution and then

solving Lx = y for x by backward substitution. If A is sparse (as is the case in

Equation A.12), the objective of a good Cholesky decomposition is to minimise

the fill-in of A. For a given symmetric ordering of linear equations, the fill-in of

the system matrix A is the number of entries which change from an initial zero to

a non-zero value after the decomposition. Determining an ordering that minimises

the fill-in can significantly improve the efficiency and stability [Ise09]. The perfect

ordering (or zero-fill ordering) is that for which every zero in A is retained [Ise09].

Such an ordering allows for a solution to the system of linear equations to be

found in two passes, with memory storage equal to n = |A|. Gremban [Gre96]

has shown that symmetric matrices that correspond to trees have orderings that

permit Cholesky decompositions with zero-fill. This is the predominant motivation

for employing the distance tree as the underlying structure in the isoperimetric

partitioning algorithm [Gra06].

The IDT algorithm is thus composed of the following steps [Gra06]:

1. Compute image mask.

2. Compute a distance map on the mask.

3. Determine ground-vertex.

4. Compute the maximal spanning tree (distance tree) on the lattice.

5. Compute the zero-fill ordering of the tree.

6. Solve for x0.

7. Select the threshold τxi
, i = 1, . . . , n minimising the isoperimetric ratio.

In this work, the image mask is computed using the methods described in

Section 7.2.1. The distance map on the mask is computed using the fast L1

Chamfer-based approximation to the Euclidean distance [RP66]. For every voxel

in the mask, the distance transform returns an integer value equal to its distance

from the set of zeros. The zeros thus remain unchanged, the ones neighbouring

the zeros remain unchanged; the ones neighbouring such ones become twos etc.

The transform operates in O(n).

The ground-vertex is selected as that which has the maximal weighted degree,

where the weight of the edge connecting vertices vi and vj is given by [Gra06]:

wij = D(vi) +D(vj) (A.13)

where D(vi) denotes the Chamfer distance map at vi. The maximal spanning

tree (spanning tree with maximal total weight) is computed using Kruskal’s algo-

rithm [Kru56]. Kruskal’s algorithm is, in fact, a technique for finding the minimum
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Input:
G = (V,E) input graph
W edge weight matrix
Tree T empty minimum spanning tree

for v ∈ V
makeSet(v) every edge is a separate component

end for

E = sort(E, W ) sort edges by ascending weight

for eij ∈ E
if findSet(vi) != findSet(vj) edge does not create a cycle
T.Add(eij) add edge to MST
Union(vi, vj) merge connected component
if T.NumEdges() == |V | − 1 tree complete
break terminate

end for

return T

Table A.1: Kruskal’s algorithm for finding the minimal spanning tree.

spanning tree (as opposed to the maximum). To ensure that the maximum span-

ning tree is found, the edge weights are thus negated. The maximal spanning tree

computed in this way is denoted the distance tree [Gra06]. For a graph G = (V,E),

Kruskal’s algorithm is performed as follows (pseudocode in Table A.1):

1. Begin with a graph consisting of only the vertices of G and no edges. This

is essentially a graph of n = |V | disjoint connected components, where each

vertex is a connected component.

2. Sort all edges of G in ascending order of weight.

3. Select the smallest edge. If it forms a cycle with the current spanning tree

then discard it, otherwise include it in the spanning tree.

4. Repeat step 3 until there are |V | − 1 edges in the spanning tree.

Grady [Gra06] presents a linear-time method for computing the zero-fill or-

dering. Initially, all vertices with unweighted degree of one (i.e. leaf vertices in

the distance tree) are eliminated. All vertices which then have updated degrees

of one are recursively eliminated until the selected ground node is reached (see

Table A.2). Once the ordering has been computed the system in Equation A.12

may be solved in two passes (see Table A.3): 1) a forward pass to modify the

right-hand side (i.e. elimination) and 2) a backward pass to compute the solution

[Gra06]. The final partition is determined by determining the threshold on the x0

that minimises the isoperimetric ratio.
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Input:
tree input tree (each node contains index of one

neighbour)
degree input degree matrix
ground selected ground vertex
ordering = zeros(n) initialisation of ordering

k = 0
degree[root]= 0 Fixed to avoid elimination of ground
ordering[n− 1] = ground

for v ∈ V
while degree[v] = 1
ordering[k] = v
degree[v] = degree[v] - 1
v = tree[v]
degree[v] = degree[v] - 1
k = k + 1

end while
k = k + 1

end for

return ordering

Table A.2: Method for computing zero-fill ordering [Gra06].

A.2 Segmentation by Region Growing

Region-growing techniques are amongst the most popular approaches to image

segmentation. Image segmentation by region-growing may be represented mathe-

matically as follows [WH03]:

S(I, RG(ψ),S) =
M⋃
i=1

Ri, where Ri ∩Rj = ∅ for i ̸= j (A.14)

where I is the input image; RG(ψ) denotes the region-growing algorithm; ψ

governs the growing and merging criteria, by specifying the properties that non-

seed points must have to be included in the evolving segmented regions as well

as the criteria for excluding certain image points from all regions of interest. S
represents the criteria for defining seed points, where a seed point is defined as one

that is known to belong to a particular region and specifies the location where the

growth of the region should begin. Alternatively, S may be transformed into an

explicit set of seed points A = a1, . . . , aM−1 ⊂ I, where each point ai in A is the

seed point for the corresponding region Ri. The region growth and merging criteria

ψ and the seed criteria S each consist of a predicate formed as a combination of
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Input:
ordering
diagonal (of L0)
r0
tree

1. Forward pass
k = 0
for each non-ground vertex
r0[tree[ordering[k]]] = r0[tree[ordering[k]]] + r0[ordering[k]] / f [ordering[k]]
f [tree[ordering[k]]] = f [tree[ordering[k]]] - 1/f [ordering[k]]
k = k + 1

end for

output[ordering[n− 1]] = r0[ordering[n− 1]]/f [ordering[n− 1]]

2. Backward pass
k = n− 2
for each non-ground vertex

output[ordering[k]] = output[tree[ordering[k]]] + r0[ordering[k]] / f [ordering[k]]
k = k − 1

end for

return output

Table A.3: Method for solving L0x0 = r0 [Gra06].

Boolean operations of various image feature measures. Several example binary

operations and corresponding region growth and region merging predicates are

shown in Table A.5. A voxel would by added to the current region if the predicate

PG were true. Similarly, two regions would be merged if predicate PM were true.

A particular region-growing segmentation is thus described in its entirety by the

pair ⟨RG(ψ),S⟩. Segmenting an image using ⟨RG(ψ),S⟩ involves the following

steps: 1) definition of the seed points for all regions {Ri, i = 1, . . . ,M − 1}; 2)
iterative application of region growing criteria ψ to each region; 3) termination

of region growth when the application of ψ results in no further changes to the

evolving image. The final, segmented image is then given by S(I, RG(ψ),S). The
process is illustrated in Figure A.4 (a).

The predominant focus of the majority of the region-growing literature has

been on developing novel growing and merging criteria [PBLL11, DXDL10, TTMG12,

PFPB10, ZY96], on incorporating image features into the algorithms [LW10,

GVR+10, DXDL10] and on improving computational efficiency [GMKP11, ZXLD11,

WRRB09]. The vast majority of region-growing techniques, however, are sensitive

to the selection of the region starting points (or seed points) as well as the order

in which the points in the image are examined. The growth of a region typically
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Figure A.4: Flows chart illustrating segmentation by region growing. (a) Conventional
region-growing process and (b) region-growing by SymRG [WH03] for input image I;
seed criteria S; region growing/merging criteria ψ. The final segmented image is given
by: S(I,RG(ψ),S) [WH03].

requires that only small changes in its properties (e.g. mean intensity, gradient

etc.) occur after adding new points to the region. Therefore, different starting

points for the regions lead to different values for the evolving region information

and ultimately to different segmentations. Typically, regions are required to be

initiated in relatively homogeneous regions within objects of interest (as opposed

to in background regions or near object edges) [WGW12]. Such starting points

are generally challenging to locate automatically (especially in highly cluttered

and complex images such as baggage-CT scans), making high-quality segmenta-

tions at least partially dependent on user input. Furthermore, since the nature of

region-growing techniques requires the continual evaluation of image points, com-

putational demands are typically high. This is especially prominent in 3D imagery

[TB94, HSKR96].

A.2.1 Symmetric Region Growing

Wan et al. [WH03] present a computationally efficient Symmetric Region-Growing

(SymRG) framework, whereby region-growing algorithms are made insensitive to

their starting conditions. Particularly, the quality of the segmentations of region-

growing algorithms that abide by the theoretical criteria of SymRG are insensitive

to the both the set of initial seed points as well as the order in which the image

points (pixels or voxels) are processed. It is worth noting, however, that it is

not claimed that SymRG produces superior quality segmentations (compared to

existing techniques), but rather that comparable segmentations may be obtained

without the requirement of manual/good algorithm initialisation. Mathematically,

the consequence of the SymRG framework may be represented by the following

theorem:
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S(I, RG(ψ), A) ≡ S(I, RG(ψ), B) (A.15)

where A and B represent two different sets of seed points. In order for Equation

A.15 to hold, it is necessary that the region growing criteria ψ be symmetric in

every aspect [WH03]. That is to say, assuming ψ is defined as the function g(p, q),

where the parameters p and q represent some information about the evolving

region (e.g. mean intensity, mean gradient etc.), then ψ is symmetric if and only

if the function g(p, q) is symmetric:

g(p, q) = g(q, p) ∀p, q ∈ I (A.16)

and the parameters p and q are independent of their previous states. Any region

growing algorithm RG(ψ) is then symmetric provided the above constraints on ψ

are met. The symmetry of a region-growing algorithm is in no way dependent

on the set of initial seed points A. In fact, the only impact that A has on the

segmentation result, is the number of resulting segmented regions. The task now is

to define a 3D SymRG framework. The algorithm is composed of two main stages:

1) 2D region growing on the individual slices of the CT volume and 2) region

merging between consecutive slices to construct complete regions. To accomplish

the task of constructing 3D regions, two issues regarding the merging of regions

need to be addressed. Firstly, a method for merging the regions in consecutive

slices is required and secondly, since 3D regions may span multiple slices, a method

for continuing the growth of a region across multiple slices is also required.

Merging between adjacent slices is accomplished via the use of two global

structures: a region table and an equivalence table [WH03]. The region table

stores the information on individual grown regions. Each entry in the table stores

the following information: [region ID; region bounding box; number of pixels in

region; number of 0-1 crossings; number of seeds for region; pointer to equivalence

table]. The equivalence table stores information on 3D regions after merging. The

table is incrementally adapted after two equivalent (i.e. homogeneous) regions have

merged. Each entry in the table represents a growing region and stores a linked-list

of the region IDs of the equivalent 2D regions constituting the 3D region as well

as accumulated region information gathered from the region table. Each entry in

the region table is linked to its corresponding equivalence table via a pointer. On

completion of the region-growing and merging process, the equivalence table is

taken to be the final region table (containing all information describing segmented

regions).
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Region growth (i.e. merging) across multiple slices is achieved via a region

labelling scheme. For example, once the region-growing algorithm has terminated

on the first slice (k = 0), every entry in the region table (i.e. every 2D region

in the first slice) is labelled as either: interesting, pending or background. In-

teresting regions contain seed points; pending regions contain no seed points but

contain points satisfying some loosened criteria and background regions contain

the remaining points. The region information for interesting and pending regions

is stored in the region table (and accessed in the merging process for the next

slice), while background regions play no further part in the region growing pro-

cess and are thus neglected. Furthermore, each entry in an equivalence table is

labelled as either active (involved in the merging process in the current slice) or

inactive (not involved in merging). If a 3D region (an equivalence table entry)

has been labelled as inactive after the merging process for the current slice (i.e.

its growth is complete), a decision is made on whether or not the region will form

part of the final segmentation. In particular, an inactive region is labelled as de-

sired if it meets the minimum requirements to be accepted as a final region and

as deletable if it does not. Once the final slice in the volume has been processed,

every entry in the equivalence table will be labelled as either desired or deletable.

All voxels in the deletable regions are considered background while the desired

regions are kept as the final 3D regions (or objects) in the segmented volume. The

complete 3D SymRG process is illustrated in Table A.4. Figure A.4 (b) illustrates

the basic flow of the SymRG segmentation procedure (compared to conventional

region-growing). Importantly, the SymRG seed criteria are not required until after

the regions have been grown, when they are used to label the final regions in the

segmentation. This is in contrast to conventional region-growing, that requires

a set of seed points (S) to initiate the growth. The final output of the SymRG

algorithm is an image in which each voxel stores the ID of its member region and

a region table containing all the relevant 3D region information.

The 3D SymRG algorithm makes use of the following functions:

� Construct1DRegions(j, ψ): Constructs 1D line segments on the jth row of

a 2D image by applying growing criteria ψ. The output is an updated region

table.

� Merge(n, k, ψ): Merges overlapping and similar (n− 1)-dimensional regions

in the kth and (k − 1)th (n− 1)-dimensional images using ψ. The output is

an updated equivalence table.

� LabelRegions(I,S): Assigns the final region labels in the image I to the

regions that contain seeds satisfying S. All other regions are labelled as

background. The output is an updated equivalence table containing the

final region labels.

A computationally efficient implementation of the SymRG algorithm can be
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Function: 3DSymRG(I, RG, ψ,S)
- Perform 2DSymRG(I0, RG, ψ,S)
For: slice Ik where k = 1, . . . , Nz − 1

- Perform 2DSymRG(Ik, RG, ψ,S)
- Perform Merge(3, k, ψ)

end For
- Perform LabelRegions(I,S)

Function: 2DSymRG(Ik, RG, ψ,S)
- Perform Construct1DRegions(0, ψ)
For: row j where j = 1 · · ·Ny − 1

- Perform Construct1DRegions(j, ψ)
- Perform Merge(2, j, ψ)

end For
- Perform LabelRegions(Ik,S)

Table A.4: The complete 3D SymRG algorithm for a volumetric image composed of Nz

axial slices.

obtained by creating a binary input image, where every voxel is labelled as ei-

ther foreground or background. This can be achieved via simple thresholding or a

more sophisticated approach, such as the combination of Metal Artefact Reduction

(MAR) and the Mumford-Shah functional as used by [GSK+12]. Passing a binary

input image to the SymRG algorithm and merely defining growing criteria that

assigns all object points to a valid region (where the only constraint on regions

is a minimum size), eliminates the need for seed criteria and reduces the segmen-

tation to a simple connected component labelling of the image. Segmentation

performed in this manner is completed in a single pass of the image. The symmet-

ric region growing algorithm presents a framework for computationally efficient

region-growing segmentations without a decline in segmentation quality. Consid-

ering its computational efficiency, the fact that it is fully automated (invariant to

algorithm initialisation) and the fact that the technique has been successfully ap-

plied to 3D medical-CT segmentation [WH03, WKRH00], the SymRG framework

is a potentially attractive option for baggage-CT segmentation.

A.2.2 3D Flood-Fill Region Growing

Wiley et al. [WGW12] present a 3D region-growing method based on the Strato-

van Tumbler medical-segmentation technology [Wil09]. Segmentation is achieved

irrespective of object shapes, topologies, and orientations. A 3D kernel traverses a

volume in a flood-fill manner provided the traversed voxels satisfy some predefined
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P0 =
{
I(x, y, k) ∈ [GseedMin, GseedMax]

}
(x, y, k) is a valid seed

P0 = {I(x, y, k) /∈ [GseedMin, GseedMax]} (x, y, k) is not a valid seed

P1 = {Ik(x′, y′) undefined} (x′, y′, k) has not been
examined yet

P2 = {I(x′, y′, k) ∈ [GseedMin, GseedMax]} neighbour (x′, y′, k) is a valid
seed

P3 = {I(x′, y′, k) ∈ [Gmin, Gmax]} neighbour (x′, y′, k) is in
allowed intensity range

P4 = {|I(x, y, k)− I(x′, y′, k)| ≤ Gtol} I(x′, y′, k) is close enough to
I(x, y, k) to be added to region

PG = P1 AND {(P0 AND (P2 OR (P3 region growing predicate
AND P4))) OR (P0 AND (P3 AND P4))

}
PM = [P0 AND (P2 OR P4)] OR [P0 AND P4] region merging predicate

Table A.5: Example Boolean rules and predicates controlling region growth and merging.
The uppercase symbol G represents image intensity.

criteria. In particular the algorithm is composed of five stages: 1) Definition of 3D

kernel; 2) Determination of movement criteria; 3) Seed initialisation; 4) Flood-fill

and 5) Splitting and merging.

Definition of 3D kernel: A spherical kernel is proposed, provided the size

of the kernel is smaller than the object being segmented but larger than any

expected holes in its boundary. The size of the kernel for a particular seed voxel is

determined automatically, based on the degree of clutter (quantified by the local

image gradient) in the vicinity of that voxel. Smaller kernels are used in highly

cluttered regions, while larger kernels are better suited to more homogeneous image

regions.

Determination of movement criteria: The movement of a kernel from

one voxel location to the next is controlled by the statistics of the voxels to be

traversed. Particularly, the kernel is moved to a new location provided that some

predefined criteria are met (e.g. the mean intensity of the voxels to be traversed are

greater than some threshold). The specific movement criteria for a given kernel size

are determined automatically using a training procedure. An initial bound on the

mean intensity computed from the kernel when placed at each seed point is defined

as: [0.98I, 1.02I] - where I is the mean intensity computed from the kernel. This
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While Queue not empty:

- Remove last queue entry
- Compute min,max,mean, std of voxel intensities
- Compare to movement criteria
If criteria met:

- Move kernel to new position
- Mark traversed voxels as ‘object’
- Add neighbours of new position to queue

Else

- Return to step 1.
end While

Table A.6: The flood-fill process.

threshold range is matured by manually improving errant segmentations, adding

each improvement to a central training file. A polynomial is fitted to the training

points and used to automatically determine the movement criteria at any voxel.

Seed initialisation: An ordering method for every voxel in a given volume

is presented. The automatic determination of seed point priority is enabled by:

running large kernel sizes first; running high intensity voxels first; starting in the

centre of objects as opposed to on the edges (determined by local image gradient)

and by increasing the priority of ‘thin’ objects. Once a seed point has been de-

termined, the neighbouring voxel coordinates and the direction of movement are

placed in a queue.

Flood-fill: The flood-process is driven by the aforementioned voxel queue.

A single flood-fill cycle terminates when its corresponding queue is empty - this

represents the segmentation of a single object. A new kernel is then initiated at

the next unsegmented seed point in the volume (determined by the aforementioned

ordering procedure) and the segmentation of the next object is commenced. The

flood fill procedure is described Table A.6.

Splitting and merging: The splitting and merging phase of the algorithm is

intended to deal with the ambiguities associated with the definition of an object

and in particular with the issue of compound objects (discussed in Section 7.1.

In fact, the authors claim that no dedicated ‘splitting’ step is required. Instead,

hierarchical trees are used to define the relation of the multiple components consti-

tuting a compound object (i.e. each compound object is represented both as a set

of individual parts and as a whole). In particular, objects are initially segmented

into multiple parts. The degree of overlap between each pair of delineated parts

is then examined. The parts are merged if they overlap by more than 10%. Once

the merging is complete a compound object is represented both as a whole as well
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as a set of parts (all the parts involved in the merge).

The algorithm is shown to produce high-quality segmentations for homoge-

neous objects and results in good separation of touching objects. Performance

deteriorates considerably for low contrast objects (< 800 MHU) and thin objects

(particularly for those touching other objects) and is shown to be sensitive to

common CT image artefacts. The authors also indicate that performance relies

on near isotropic voxel resolutions in all three dimensions.



Appendix B

Segmentation Descriptor

Kohlberger et al. [KSA+12] present a set of shape and appearance features falling

into one of five categories: 1) unweighted geometric features (quantifying the size

and regularity of the segmentation); 2) weighted geometric features (locally em-

phasising the geometric features when intensity values are similar to each other); 3)

intensity features (measuring absolute intensity and intensity distributions within

segmentations); 4) gradient features and 5) ratio features (computed as ratios of

previously computed features). In the original studies [GSK+12, KSA+12] it is

noted that several of the features have been inspired by metrics used in previous

segmentation-based literature. For example, the geometric features are employed

in several early segmentation studies [MS89]; the concept of weighted geometric

features was first proposed by Caselles et al. [CKS97] in their work on geodesic ac-

tive contours and several of the ratio features are variations of the cut-over-volume

ratio, which has been used extensively as an objective function in graph-cut based

segmentation algorithms [SM00, GS06a]. Feature weights are computed using the

Cauchy distribution function [JKK05]:

w(i, j) =
1

1 + β(
Ii−Ij

ρ
)2

(B.1)

Where Ii and Ij are the image intensities of neighbouring voxels vi and vj; β is

a constant that controls the sensitivity of the weight to the intensity difference and

the normalisation factor ρ = max(x,y)∈S || ▽ I(x, y)||1 is the maximum L1 norm of

all the intensity gradients within the segmentation mask, S ⊆ V . Furthermore,

w+(i, j) is defined as follows:

w+(i, j) =

w(i, j) if Ii > Ij

1 otherwise
(B.2)

Similarly, w−(i, j) = 1 if Ii > Ij and w−(i, j) = w(i, j) otherwise. Given these
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definitions, the following features are computed for a given segmentation mask

S ⊆ V .

Unweighted geometric features quantifying the size of the segmentation

mask: segment volume, defined as the number of voxels in the segment mask;

segment surface area, defined as the number of edges in the mask (those voxels

in the mask who have a neighbouring voxel that is not in the mask) and total

curvature of the segment mask, defined as the sum of the mean curvatures of the

surface of S:

Volume(S) = |S| (B.3)

Surface Area(S) =
∑

i,j:vi∈S,vj∈S

1 (B.4)

Total Curvature(S) =
∑

i,j:vi∈S,vj∈S

H(i, j) (B.5)

Weighted geometric features again quantify the size of the segmentation

mask, but are additionally emphasised or suppressed based on local intensity dif-

ferences (according to Equation B.1): the weighted volume, defined as the sum

over the weights of all the voxels in the segment S; the weighted cut, defined as the

sum over all the edge weights along the boundary of S; the weighted curvature,

defined as the sum of the mean curvatures weighted by the local edge weights; the

low-high and high-low weighted cuts along the boundary of S:

Weighted Volume(S) =
∑

i,j:vi,vj∈S

w(i, j) (B.6)

Weighted Cut(S) =
∑

i,j:vi∈S,vj∈S

w(i, j) (B.7)

Total Weighted Curvature(S) =
∑

i,j:vi∈S,vj∈S

w(i, j)H(i, j) (B.8)

Low-High Weighted Cut(S) =
∑

i,j:vi∈S,vj∈S

w+(i, j) (B.9)

High-Low Weighted Cut(S) =
∑

i,j:vi∈S,vj∈S

w(i, j) (B.10)

Intensity features include mean intensity of the voxels in the segmentation

mask; the median intensity of the voxels in the mask; the sum of the intensities

over the mask; the minimum and maximum intensities in the mask; the Inter-

Quartile Range (IQR) [JMF11] of the mask intensities, measuring the statistical
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dispersion of the intensities in the segmentation mask - particularly, half the dif-

ference between the first quartile (25th percentile) and the third quartile (75th

percentile values) and the standard deviation of the intensities in the mask:

Mean Intensity: µI =
1

|S|
∑
vi∈S

Ii (B.11)

Median Intensity(S) = median({Ii : vi ∈ S}) (B.12)

Total Intensity(S) =
∑
vi∈S

Ii (B.13)

Min Intensity(S) = min
vi∈S

Ii (B.14)

Max Intensity(S) = max
vi∈S

Ii (B.15)

Std Dev(S) =
1

|S| − 1

∑
vi∈S

(Ii − µI)
2 (B.16)

Gradient features include the sums of the L1 and L2 gradient norms; the

means of the L1 and L2 gradient norms; the median of the L1 gradient norms;

the minimum and maximum L1 gradient norms; the standard deviations of the L1

and L2 gradient norms and the IQR of the L1 gradient norms. In the following

formulations, all gradients are computed via central differences:

Total L1 Gradient Norm(S) =
∑
vi∈S

|| ▽ Ii||1 (B.17)

Total L2 Gradient Norm(S) =
∑
vi∈S

|| ▽ Ii||2 (B.18)

Mean L1 Gradient Norm: µg1 =
1

|S|
∑
vi∈S

|| ▽ Ii||1 (B.19)

Mean L2 Gradient Norm: µg2 =
1

|S|
∑
vi∈S

|| ▽ Ii||2 (B.20)

Median L1 Gradient Norm(S) = median({|| ▽ Ii||1 : vi ∈ S}) (B.21)

Min L1 Gradient Norm(S) = min
vi∈S

|| ▽ Ii||1 (B.22)
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Max L1 Gradient Norm(S) = max
vi∈S

|| ▽ Ii||1 (B.23)

Std Dev L1 Norm(S) =
1

|S| − 1

∑
vi∈S

(|| ▽ Ii||1 − µg1)
2 (B.24)

Std Dev L2 Norm(S) =
1

|S| − 1

∑
vi∈S

(|| ▽ Ii||2 − µg2)
2 (B.25)

Ratio features are defined as ratios of the previously computed features.

Particularly, the following ratios are computed: all four weighted and unweighted

combinations of cut divided by volume; all four combinations of low-high weighted

cut or high-low weighted cut divided by unweighted or weighted volume; weighted

cut divided by unweighted cut; all four combinations of low-high weighted cut or

high-low weighted cut divided by unweighted or weighted cut; total L2 gradient

norm divided by total L1 gradient norm; curvature divided by unweighted cut and

weighted curvature divided by unweighted cut.
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