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Abstract

Human action recognition, as one of the most important topics in computer vision,
has been extensively researched during the last decades; however, it is still regarded as
a challenging task especially in realistic scenarios. The difficulties mainly result from
the huge intra-class variation, background clutter, occlusions, illumination changes
and noise. In this thesis, we aim to enhance human action recognition by feature
extraction and representation using both holistic and local methods.

Specifically, we have first proposed three approaches for the holistic representa-
tion of actions. In the first approach, we explicitly extract the motion and structure
features from video sequences by converting the video representation into a 2D im-
age representation problem; In the second and third approaches, we treat the video
sequences as 3D volumes and propose to use spatio-temporal pyramid structures to
extract multi-scale global features. Gabor filters and steerable filters are extended to
the video domain for holistic representations, which have been demonstrated to be
successful for action recognition. With regards to local representations, we have first-
ly done a comprehensive evaluation on the local methods including the bag-of-words
(BoW) model, sparse coding, match kernels and classifiers based on image-to-class
(I2C) distances. Motivated by the findings from the evaluation, we have proposed
two distinctive algorithms for discriminative dimensionality reduction of local spatio-
temporal descriptors. The first algorithm is based on the image-to-class distances,
while the second explores the local Gaussians.

We have evaluated the proposed methods by conducting extensive experiments
on widely-used human action datasets including the KTH, the IXMAS, the UCF
Sports, the UCF YouTube and the HMDB51 datasets. Experimental results show
the effectiveness of our methods for action recognition.
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Chapter 1

Introduction

1.1 Human action recognition

Human action recognition and analysis [41], one of the most active topics in comput-

er vision, has drawn increasing attention and its applications can be found in video

surveillance, video annotation and retrieval, and human-computer interaction, etc.

The goal of action recognition is to automatically analyse ongoing activities from an

unknown video [2]. In the last a few decades, action recognition has been extensively

researched while there is still a long way to go for real applications. The challenges

of human action recognition come from difficulties such as great intra-class variance,

scaling, occlusion and clutter. Human action recognition has been extensively re-

searched through methods based on local and holistic representations.

1.1.1 Local representations

Methods based local representation, also known as local methods, encode a video

sequence as a collection of local spatio-temporal features (local descriptors). These

local descriptors are extracted from spatio-temporal interest points (STIPs) which

can be sparsely detected from video sequences by detectors [59, 25, 85]. In contrast

to holistic representations of human actions, local methods enjoy many advantages.

• Avoidance of some preliminary steps,e.g., background subtraction and target
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tracking required in holistic methods.

• Resistance to background variation and occlusions. However, local represen-

tations also have deficiencies, of which a key limitation is that it can be too local, as

it is not possible to capture adequate spatial and temporal information.

Local descriptors can also be obtained from trajectories. The early work by Johns-

son [51] indicates that it is sufficient to distinguish human actions by the tracking

of joint positions. One of the advantages of using trajectories is being discriminative

[51]. Nevertheless, the performance of trajectory-based methods depends on the qual-

ity of these trajectories, and in practice extracting trajectories from video sequences

would be computationally expensive.

To obtain the final representation of an action, the bag-of-words (BoW) model

has been widely used and has achieved good results in human action recognition

tasks. The BoW model is actually based on mapping local features of each video

sequence onto a pre-learned dictionary, which unavoidably introduces quantisation

errors during its creation. The errors would be propagated to the final representation

and harm the recognition performance. Additionally, the size of this dictionary needs

to be empirically determined, and codewords, i.e., the cluster centres, obtained by

k-means, gather around dense regions of local feature space, resulting in less effective

codewords of action primitives. Sparse representation has recently been introduced

for action representation based on local features [35].

1.1.2 Holistic representations

Methods based on holistic representation, called global methods, treat a video se-

quence as a whole rather than applying sparse sampling using STIP detectors or ex-

tracting trajectories. In holistic representations, spatio-temporal features are directly

learned from raw frames in video sequences. Holistic representations have recently

drawn increasing attention [47, 111, 71], because they are able to encode more visual

information by preserving spatial and temporal structures of actions occurring in a

video sequence.

However, holistic representations are highly sensitive to partial occlusions and
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background variations. Additionally, they often require pre-processing steps, such as

background subtraction, segmentation and tracking, which makes it computationally

expensive and even intractable in some realistic scenarios.

1.2 Literature review

In this section, we review related works in two aspects: spatio-temporal features and

human action representations.

1.2.1 Spatio-temporal features

Low-level features play a fundamental role in both local and holistic representations

of human actions. In the last decades, many spatio-temporal descriptors have been

proposed and shown to be effective for action recognition.

Histograms of optical flow (HOF) and histograms of oriented gradients (HOG)

are combined by Laptev et al. [61] as a descriptor, HOGHOF, which is demonstrated

to be better than either of HOG or HOF as a single descriptor.

The 3D gradient is directly extended from its counterpart in the 2D domain, and

a histogram of oriented 3D gradients (HOG3D) [54] as a descriptor has been applied

to many action recognition tasks. Similarly, the idea of the scale invariant feature

transform (SIFT) was extended to spatio-temporal video sequences as a 3D-SIFT

descriptor [99].

Inspired by the local binary patterns (LBP), Yeffet and Wolf [139] proposed a

global descriptor named local trinary patterns (LTP), which is successfully used for

action recognition.

A biologically inspired features based on Gabor filters were first exploited for

human action recognition by Jhuang et al. [46]. They introduced a biological model

of motion processing based on a hierarchical feed forward architecture [91]. The

model extends a neurobiological process of motion processing in the visual cortex

and considers space-time gradients based and optical flow based S1 units [46]. Their

work demonstrates the potential of biologically inspired features for human action

25



recognition. Based on the spatio-temporal features, a great number of local and

holistic approaches have been proposed for human action representations in the past

decades.

1.2.2 Local representations

In this section, we review state-of-the-art local methods for action recognition based

on spatio-temporal interest points and trajectories. In order to compensate for the loss

of structure in local representations, a lot of methods try to improve local represen-

tations by exploring spatio-temporal structural information [30], including context

information of each interest point [109, 123], relationships between/among spatio-

temporal interest points [32, 76, 123, 141] and neighbourhood-based features [57].

The relationship/co-occurrence among visual words in the BoW model and their se-

mantic meaning have also be explored to encode higher-level features [67, 145, 72, 128].

New local descriptors have also be developed [80, 62, 43] to improve the performance

of local methods. In addition, aiming to alleviate the quantisation errors in the BoW

model, sparse coding has also been introduced into action recognition to learn more

compact and richer representations of human actions [35]. In the following, we will

give a more detailed description of these methods.

Sun et al. [109] proposed to model the spatio-temporal context information in a

hierarchical way by exploiting three levels of context, i.e., point-level, intra-trajectory

and inter-trajectory context. In their work, trajectories are first extracted using a

Scale Invariant Feature Transform (SIFT). The point-level context is the average of

SIFT descriptors extracted at the salient points on the trajectory. Intra-trajectory

and inter-trajectory context is modelled by the transition matrix of a Markov process

and encoded as the trajectory transition and trajectory proximity descriptors.

In order to capture the most informative spatio-temporal relationship between lo-

cal descriptors, Kovashka and Grauman [57] proposed to learn a hierarchy of spatio-

temporal neighbourhood features. The main idea is to construct a higher-level vo-

cabulary from new features that consider the hierarchical neighbouring information

around each interest point.
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Matikainen et al. [76] proposed expressing pair-wise relationships between quan-

tised features by combining the power of discriminative representations with key

aspects of Naive Bayes. The relationship between local features is modelled as the

distribution of quantised location differences between each pair of interest points.

Two basic features namely STIP-HOG and quantised trajectories are considered.

Gaur et al. [30] modelled the activity in a video as a ”string of feature graphs”

(SFGs) by treating a video as a spatio-temporal collection of primitive features (e.g.,

STIP features). They divide the features into small temporal bins and represent the

video as a temporally ordered collection of such feature-bins, each bin consisting of

a graphical structure representing the spatial arrangement of the low-level features.

A video then becomes a string of such graphs and comparing two videos is to match

two strings of graphs.

Claiming that the higher-order semantic correlation between mid-level features

(e.g., from the BoW representation) is useful to fill the semantic gap, Lu et al. [72]

proposed novel spectral methods to learn latent semantics from abundant mid-level

features by spectral embedding with nonparametric graphs and hypergraphs. A new

semantics-aware representation (i.e., histogram of high-level features) is derived for

each video from the original BoW representation, and actions are classified by an

SVM with a histogram intersection kernel based on the new representation.

Wang et al. [123] presented a novel local representation by augmenting local fea-

tures with contextual features which capture the interactions between interest points.

Multi-scale channels of contextual features are computed and, for each channel, a reg-

ular grid is used to encode spatio-temporal information in the local neighbourhood

of an interest point. Multiple kernel learning is employed to integrate the contextual

features from different channels.

Aiming to encode rich temporal ordering and spatial geometry information of local

visual words, Zhang et al. [145] proposed modelling the mutual relationships among

visual words by a novel concept named the spatio-temporal phrase (ST phrase). A

ST phrase is defined as a combination of k words in a certain spatial and temporal

structure including their order and relative positions. A video is represented as a bag
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of ST phrases which is shown to be more informative than the BoW model.

In order to capture the geometrical distribution of interest points, Yuan et al.

[141] applied the 3D R transform on the interest points based on their 3D locations.

The 3D R transform is invariant to geometrical transformation and robust to noise.

(2D)2 PCA is then employed to reduce the dimensionality of the 2D feature matrix

from the 3D R transform, obtaining the so-called R features. To encode the appear-

ance features, they combined the R features with the BoW representation. Finally,

they proposed a context-aware fusion method to efficiently fuse these two features.

Specifically, one feature is used to compute the context of each video and the other

to calculate the context-aware kernel for action recognition.

In the BoW model, mid-level features are obtained by k-means clustering which

however is unable to capture the semantic relation between low-level features due

to only appearance similarity being used. Liu et al. [67] proposed using diffusion

maps to automatically learn a semantic visual vocabulary from abundant quantised

mid-level features. Each mid-level feature is represented by the vector of point-wise

mutual information (PMI). Diffusion maps can capture the local intrinsic geometric

relations between the mid-level feature points on the manifold.

With the argument that visual words from video sequences belonging to the same

class in the BoW model are correlated and jointly reflect a specific action type, Wang

et al., [128], by assuming that visual words share a common structure in a low-

level space, presented a framework named semi-supervised feature correlation mining

(SFCM) to exploit the shared structure. A discriminative and robust classifier for

action annotation is trained by taking into account the global and local structural

consistency.

Shapovalova et al. [103] proposed modelling a video using a global bag-of-words

histogram based on local features, combined with a bag-of-words histogram focused

latent regions-of-interest. The latent regions of interest are spatio-temporal sub-

regions of a video. The model parameters are learned by a similarity constrained

latent SVM in which the constraint is to enforce that the latent regions chosen across

all videos of a class are coherent.
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Instead of using hand-crafted features such as HOGHOF, HOG3D and MBH [123],

Le et al. [62] introduced an unsupervised deep learning algorithm, named Independent

Subspace Analysis (ISA), which learns spatiotemporal features of interest points from

unlabelled videos. Convolution and stacking are adopted in the deep learning model

to scale the algorithm to large images and learn hierarchical representations.

As indicated by Wang et al. [125], dense sampling tends to produce better results

than sparsely detected spatio-temporal interest points. Wang et al. [123] presented

an approach by dense trajectories. Points are densely sampled from each frame and

tracked based on displacement information from a dense optical flow field. A novel

descriptor based on motion boundary histograms was introduced in their work to

encode the trajectory information. The remarkable performance of dense trajectories

is largely due to the rich description of scene and contextual information of dense

sampling, and the robust extraction of motion information of trajectories.

Also based on dense trajectories, Jiang et al. [50] presented a new video represen-

tation that integrates trajectory descriptors with the pair-wise trajectory locations as

well as motion patterns. Global and local reference points are adopted to characterise

motion information with the aim to be robust to camera movements.

Motion is regarded as the most reliable source of information for human action

recognition, as it is related to the regions of interest. Jain et al. [43] introduced

the Divergence-Curl-Shear (DCS) descriptor to encode scalar first-order motion fea-

tures. These contain the motion divergence, curl and shear, which capture physical

properties of the flow pattern. To handle the noisy motion from background and the

unstable camera, an affine model is employed for motion compensation to improve

the quality of descriptors. Dense trajectories are also used and the Vector of Locally

Aggregated Descriptors (VLAD) is used for the final encoding of local features which

is shown to be better than a standard BoW model.

Although dense sampling shows increasing performance with the decrease of the

sampling step size, it does not scale well with a large number of local patches and be-

comes computationally intractable for large-scale video datasets. Vig et al. [121] pro-

posed selecting informative regions and descriptors by saliency-mapping algorithms.
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These regions are either used exclusively or given greater representational weights.

By using saliency-based pruning, up to 70% of descriptors can be discarded while

maintaining high performance on the Hollywood2 dataset.

Rather than using the BoW model, Guha and Kreidieh [35] introduced sparse

representations into the context of human action recognition in video. Over-complete

dictionaries are learned from a set of local spatio-temporal descriptors in the training

set. It is claimed that the obtained representation based on the dictionaries learned

by sparse coding is more compact compared with the BoW model involving clustering

and vector quantisation. Three options for dictionaries, i.e., shared, class-specific and

concatenated, were investigated.

1.2.3 Holistic representations

Holistic representations play an important role in human action recognition because

of their good ability to preserve the structural information of actions.

Bobick et al. [8] presented temporal templates through projecting frames onto a

single image, namely motion history image (MHI) and motion energy image (MEI).

MHI indicates how motion happens and MEI records where it is. This representa-

tion gives satisfactory performance under the circumstance where the background is

relatively static.

Efros [26] introduce a new motion descriptor based on smoothed and aggregated

optical flow measurements over a spatio-temporal volume centred on a moving figure,

and an associated similarity measure to be used in a nearest-neighbour framework.

To classify the action being performed by a human figure in a query sequence, they

retrieved nearest neighbour(s) from a database of stored, annotated video sequences.

Yilmaz and Shah [140] proposed modelling an action based on both the shape

and the motion of the performing object. A spatio-temporal volume (STV) is gener-

ated from a sequence of 2D contours with respect to time. STV is analysed by the

differential geometric surface properties to identify action descriptors capturing both

spatial and temporal information. Finally, they formulated the action recognition as

graph theoretical problem.
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Regarding human actions in video sequences as three-dimensional shapes induced

by the silhouettes in space-time volumes, Gorelick et al. [33] extracted spatio-

temporal features, e.g., local space-time saliency, action dynamics, shape structure

and orientation, based on the properties of Possion equation solutions.

Rodriguez et al. [92] introduced a template-based method in which a maximum

average correlation height (MACH) filter is generalised to analyse videos as 3D spatio-

temporal volumes in the frequency domain. MACH is capable of capturing intra-class

variability by synthesizing a single action MACH filter for a given action class.

Ali and Shah [3] proposed a set of kinematic features derived from optical flow for

holistic representation of actions. The set of kinematic features includes divergence,

vorticist, symmetric and antisymmetric flow fields, second and third principal invari-

ants of flow gradient and rate of strain tensor, and third principal invariant of rate

of rotation tensor. Each kinematic feature, when computed from the optical flow of

a sequence of images, gives rise to a spatiotemporal pattern.

Neural networks and deep learning algorithms are also exploited for learning

spatio-temporal global features for holistic representations. By extending restrict-

ed Boltzmann machines (RBMs) [39] to the spatio-temporal domain, Taylor et al.

[111] proposed a novel convolutional gated restricted Boatman machine (GRAM) for

learning spatio-temporal features. A probabilistic max pooling technique was adopted

into their model.

Similarly, Jr et al. [47] developed a 3D convolutional neural network (CNN) based

on a two-dimensional model for feature extraction. In a 3D CNN, motion information

in multiple adjacent frames is captured through performing convolutions over spatial

and temporal dimensions. However, similar to [111, 62], in this model the number of

parameters to be adjusted is very large, sometimes too large relative to the available

number of training samples, which unfortunately restricts its applicability.

Recently, Saraband and Cors [95] presented a high-level representation, i.e., action

bank, in which oriented energy features are used to generate action templates for bank

detectors and a spatiotemporal orientation decomposition is realised using broadly

tuned 3D Gaussian third derivative filters.
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1.3 Motivations

In this thesis, we aim to address action recognition by both holistic and local methods.

Most of the holistic methods borrow the ideas from the image domain which have

demonstrated to be effective in the video domain for action recognition. However,

the multi-scale analysis which plays a key role in image processing and analysis has

not been investigated in the video domain. To fill the gap, we adopt the multi-scale

analysis, i.e., the Gaussian/Laplacian pyramids into the video domain. Combining

with the orientation analysis, e.g., Gabor filters and steerable filters, we propose two

global descriptors for holistic action representations. The proposed holistic methods

are presented in Chapter 2, 3 and 4.

With regards to local methods, most of state-of-the-art methods remain in the

frameworks of the bag-of-words (BoW) model and the sparse coding (SC) algorithm,

without considering to improve local descriptors, e.g., histograms of three-dimensional

gradients (HOG3D) [54], the three-dimensional SIFT (SIFT3D) [99]. Based on the

findings in our evaluation work in Chapter 5, we go beyond the BoW and SC frame-

works and propose two dimensionality-reduction methods based on the image-to-class

(I2C) distances [9] and local Gaussians to improve the effectiveness of local descrip-

tors. The proposed local methods are presented in Chapter 6 and 7.

1.4 Datasets

In the past decade, many action datasets, including the Weighman, KTH, IXMAS,

UCF Sports, UCF-Youthes, Hollywood and HMDB51 dataset, have been released for

public use. We give detailed description of the datasets mainly used in this thesis.

The sample frames from these datasets are illustrated in Fig. 1-1.

1.4.1 The KTH dataset

KTH [98] is a commonly used benchmark action dataset with 599 video clips. Six

human action classes, including walking, jogging, running, boxing, hand waving and
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handicapping, are performed by 25 subjects in four different scenarios: outdoors (s1),

outdoors with scale variation (s2), outdoors with different clothes (s3) and indoors

with lighting variation (s4). In our holistic methods (Chapter 2, 3, and 4), we use

one cycle of the actions in each video clip with the bounding boxes obtained by the

work in [138]. The evaluation is based on the leave-one-sample (actor) validation

framework. In our local methods, we use the raw video sequences with four cycles.

We follow the original experimental setup in [98], i.e., divide the samples into a test

set (9 subjects: 2, 3, 5, 6, 7, 8, 9, 10, and 22) and a training set (the remaining 16

subjects).

1.4.2 The IXMAS dataset

IXMAS [130] contains 11 action classes. Each action is repeatedly executed three

times by ten actors and recorded by five cameras simultaneously. These actions

contain checking watch, crossing arms, scratching head, sitting down, getting up,

turning around, walking, waving, punching, kicking and picking up. We treat five

cameras separately, namely, training and testing are performed on single view. We

use the silhouettes released with the dataset and the same leave-one-out evaluation

scheme is adopted on this dataset [130].

1.4.3 The UCF Sports dataset

UCF Sports [92] is a collection of 150 broadcast sports videos of ten different types

of actions, including swinging, diving, kicking, weight-lifting, horse-riding, running,

skateboarding, swinging at the high bar, golf swinging and walking. The collection

represents a natural pool of actions featured in a wide range of scenes and viewpoints.

Due to the unequal numbers of sequences in each action category, we follow the

original setting in [92] and adopt five-fold cross-validation with one-fifth of the total

number of sequences in each category for testing.
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1.4.4 The UCF YouTube dataset

UCF YouTube [67] contains 11 action categories: basketball shooting, biking/cycling,

diving, golf swinging, horse back riding, soccer juggling, swinging, tennis swinging,

trampoline jumping, volleyball spiking, and walking with a dog. This dataset is chal-

lenging due to large variations in camera motion, object appearance and pose, object

scale, viewpoint, cluttered background and illumination conditions. The dataset con-

tains a total of 1168 sequences. We follow the original setup [67] using leave-one-out

cross validation for a pre-defined set of 25 folds.

1.4.5 The HMDB51 dataset

The Human Motion Database (HMDB51) [58] contains 51 distinct categories with at

least 101 clips in each for a total of 6766 video clips extracted from a wide range of

sources. The action categories can be grouped in five types: 1) General facial actions:

smile, laugh, chew, talk; 2) Facial actions with object manipulation: smoke, eat, drink;

3) General body movements: cartwheel, clap hands, climb, climb stairs, dive, fall on

the floor, backhand flip, handstand, jump, pull up, push up, run, sit down, sit up,

somersault, stand up, turn, walk, wave; 4) Body movements with object interaction:

brush hair, catch, draw sword, dribble, golf, hit something, kick ball, pick, pour, push

something, ride bike, ride horse, shoot ball, shoot bow, shoot gun, swing baseball bat,

sword exercise, throw; 5) Body movements for human interaction: fencing, hug, kick

someone, kiss, punch, shake hands, sword fight. We follow the experimental settings

using three training/test splits and report the average.

1.4.6 Thesis road map

The remainder of this thesis is organised as follows. Chapters 2, 3 and 4 present

three holistic methods. In Chapter 2, we describe the method of embedding motion

and structure features. In Chapter 3, the spatio-temporal Laplacian pyramid coding

(STLPC) is presented which extends the techniques including the multi-scale anal-

ysis (the Laplacian pyramid) and orientational analysis (Gabor filters) in the image
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Figure 1-1: Each row illustrates the sample frames respectively from the KTH, IX-
MAS, UCF Sports, UCF YouTube and HMDB51 datasets.

domain. In Chapter 4, we present a representation of spatio-temporal oriented ener-

gies, which is based on the 3D steerable filters. Chapters 5, 6, and 7 deal with local

methods. In Chapter 5, we have done a performance evaluation of local methods.

Based on the findings in Chapter 5, in Chapters 6 and 7, we propose two dimen-

sionality reduction techniques based on image-to-class distances and local Gaussians,

respectively. In Chapter 8, we summarise our work in this thesis and outline the most

important directions for future work.

35



36



Chapter 2

Motion and Structure Feature

Embedding

2.1 Introduction

Actions as spatio-temporal patterns in video sequences contain mainly motion and

structure information. Motion refers to the movement of actions while structures,

the poses of human body, and the relative positions among them. In this chapter, we

propose a unified framework to explicitly encode features of motion and structure of

an action, and embed them as a holistic representation.

2.1.1 Motivations

Representations based on detected spatio-temporal interest points are drawing much

attention [59], [25], [85], [133], [102]. Human action recognition systems based on the

bag of words (BoW) model have achieved good results in many tasks.

Nevertheless, this model also suffers some limitations, one of which is the inabil-

ity to capture adequate spatial and temporal structure information. Since the BoW

model is actually based on mapping local features of each video sequence onto a pre-

learned dictionary, it inevitably introduces information loss and errors during quan-

tisation of continuous distributions into bins; the errors would be propagated to the
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final representation and compromise the recognition performance. The effectiveness

of the codebook would be dependent on the clustering algorithm [36]. Additionally,

the size of the codebook needs to be empirically determined which is less flexible for

different tasks.

To alleviate the above-mentioned shortcomings, we propose a unified framework

for human action representation. Based on the fact that human actions mainly com-

prise motion and structure information [33, 8], we explicitly extract those features

from video sequences and integrate them into a holistic representation. Motion histo-

ry images (MHI) are used to extract motion information because of their effectiveness

of capturing action and computational efficiency [8]. The motivations for choosing

five planes to encode structure information lie in two aspects: (1) the three slices of

the three orthogonal planes (TOP) record the spatial and temporal structure infor-

mation simultaneously; (2) the starting and ending slices combined with the middle

slice in TOP could provide dynamic structure information about the action.

2.1.2 Overview

Our framework takes the following steps. Firstly, inspired by the work in [13], we

apply a preprocessing step, differencing adjacent frames, to the raw video sequence

and a 3D volume with difference of frames (DoF) is obtained. Consequently, the

action-related information is well preserved and background is largely suppressed.

Secondly, motion and structure information (Section 2.2) are separately extracted

in two feature channels. In the motion feature channel, one feature map, i.e., the

motion history image (MHI) is obtained which encodes the motion information. In

the structure feature channel, five feature maps are extracted from the DoF volume.

These five feature maps are the three orthogonal planes with the intersection point

falling on the centre of the volume and the starting and ending slices of the volume.

Thirdly, given the feature maps (5 structure planes + 1 motion template = 6

feature maps), each of which is actually an 2D image, a multi-scale analysis technique,

i.e., the Gaussian pyramid, is employed due to its success in image processing and

analysis [14]. A Gaussian pyramid (Section 2.3) is applied to each of the obtained
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Figure 2-1: Schematic overview of the feature extraction from a raw video sequence.

six feature maps, following which the centre-surround operation [107] is performed on

each level of the Gaussian pyramid resulting in a series of sub-band maps. Features

with different scales are segregated into different bands.

Subsequently, a two-stage feature extraction step [45] (Section 2.4), namely Gabor

filtering and max pooling, is used to select invariant features. Gabor filters are widely

used, a common choice of filter bank for the first stage in feature extraction [100],

and can capture edge and orientation information [46, 97, 107]. Feature pooling

techniques, e.g., the max pooling, have drawn more attention in low-level feature

extraction algorithms due to their invariance properties [46, 10, 47, 137, 63].

The obtained features are biologically inspired in that both Gabor filtering and

max pooling have biological mechanisms in common with the human visual system

[46], [107].

Finally, a dimensionality-reduction technique named discriminative locality align-

ment (DLA) [144] (Section 2.5) is used to embed the motion and structure features

into a low dimensionality space which leads to a more compact and discriminative rep-

resentation. We will show experimentally that DLA outperforms the state-of-the-art

reduction techniques.

Our feature extraction procedure is illustrated in Fig 2-1, in which the last three

blocks, i.e., Gaussian pyramid, centre-surround and feature extraction, depict the

processes on one feature map. The other five feature maps are identically processed.
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Figure 2-2: Examples of motion history images from the IXAMS dataset

2.1.3 Contributions

The main contributions of the proposed work fall in the following three aspects.

• A unified framework is proposed to integrate motion and structure information

for human action representation. The essential cues of actions are effectively captured.

• Multi-scale analysis techniques, i.e., the Gaussian pyramid and centre-surround

operation, are introduced for feature extraction in action representation. Effective

biologically-inspired features are extracted by Gabor filters and max pooling, obtain-

ing a more informative and discriminative representation.

2.2 Feature maps

In order to explicitly extract the motion and structure features from video sequences,

we take the advantages of the motion templates model, i.e., motion histogram image

(MHI) and the three orthogonal planes (TOP) used in dynamic texture analysis [149].

We encode the motion and structure information in a set of feature maps.
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2.2.1 Motion templates

Motion history images (MHI) proposed by Bobby et al. [8] are used to represent the

motions of an object in a video. All frames in the video sequence are projected onto

one image across the temporal axis and recent motion is emphasised more than that

happened in the past. Assume I(x, y, t) is an image sequence and let D(x, y, t) be

a binary image sequence indicating regions of motion, which can be obtained from

image differencing. The motion history image (MHI), Hτ (x, y, t), is used to represent

how the motion image is moving, and is obtained with a simple replacement and

decay operator:

Hτ (x, y, t) = { τ ifD(x,y,t)=1
max(0,Hτ (x,y,t−1)−1) otherwise (2.1)

where τ is the duration for defining the range of the motion. An example of MHI

from the IXMAS dataset is shown in Fig 2-2.

2.2.2 Structure planes

Three orthogonal planes (TOP), namely XI, XT and YET planes, are orthogonal

slices, of which the point of intersection falls on the centre of a DoF volume. Com-

bining the three orthogonal planes and the starting and ending slices of the DoF

volume, we obtain five structure planes. These planes contain both the spatial and

temporal structures of an action. The three X-Y planes give the dynamic structure

(three body poses) of the action, while X-T and Y-T planes record the temporal

structures. Therefore, these five planes contain structure information complementary

to each other. Fig 2-3 illustrates an example of structure planes.

2.3 Gaussian pyramid

The image pyramid is a data structure designed to support efficient scaled convolu-

tion through a reduced image representation. It consists of a sequence of copies of

an original image in which both sample density and resolution are decreased in reg-

ular steps. A pyramid is a multi-scale representation formed by a recursive method.
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Figure 2-3: An example of structure planes extracted from the volume of difference
of frames

Images are composed of features of many different sizes. Therefore, to encode the mo-

tion and structure information in the feature maps, a multi-scale analysis technique

needs to be used. The Gaussian pyramid is a widely used multi-scale representation

of images. By using the dyadic Gaussian pyramid convolved with each of the input

feature maps, a series of low-passed images are obtained. A main advantage with

the pyramid operation is that the image size decreases exponentially with the scale

level and hence also the amount of computations required to process the data. To be

precise, the levels of the pyramid are obtained recursively as follows:

Gl(i, j) =
∑
m

∑
n

w(m,n)Gl−1(2i + m, 2j + n) (2.2)

where l indexes the level of the pyramid and w(m,n) is the Gaussian weighted func-

tion.
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Figure 2-4: Illustration of the centre-Surround operation between Level 2 (centre)
and Level 5 (surround) of a pyramid.

2.3.1 Centre-surround mechanism

Centre-surround (CS) fields have long been identified in the human visual system

as having properties of edge enhancement that facilitate the detection, location, and

tracking of small objects. After the centre-surround operation, features with different

scales, such as edges and boundaries, are enhanced and segregated into a series of

sub-band images. Here, the centre-surround mechanism is performed between centre

levels (c = 2, 3, 4) and surround levels (i.e., s = c + d, with d = 3, 4) of the

obtained Gaussian pyramid. Thus six sub-band images are computed at levels of 2-5,

2-6, 3-6, 3-7, 4-7, and 4-8. Because scales are different between centre levels and

surround levels, images of surround levels are interpolated to the same size as the

corresponding centre levels, and then they are subtracted point-by-point from the

corresponding centre levels to generate the relevant sub-band images. Fig 2-4 gives

an example of the centre-surround operation.
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2.4 Feature extraction

As highlighted in [45], feature extraction using an architecture with two stages, namely

a filter bank and a feature pooling technique, performs better than that with a single

stage. In the light of [107, 46], we employ a two-stage approach for feature extraction:

1) applying a bank of 2D Gabor filters to each sub-band of the feature maps to

intensify the edge information at multiple orientations; and 2) performing a nonlinear

max pooling within each band of Gabor filters and over local neighbourhoods to

generate invariant features. Therefore, the extracted features are resistant to spatial

shifts and insensitive to noise.

Since Gabor filtering and max pooling both share biological mechanisms with the

human visual system, features extracted by the two-stage feature extraction module

are biologically inspired and share common mechanism with the human visual system

and therefore are more useful for recognition. Compared with the hierarchical model

in [46], which is expensively computed, our features are more efficient with a low

computational cost.

2.4.1 Gabor filtering

Gabor filters are widely used in visual recognition systems [46, 107, 100, 104], and

provide a useful and reasonably accurate description of most spatial aspects of simple

receptive fields. Due to their properties in common with mammalian cortical cells,

such as spatial localisation, orientation selectivity and spatial frequency characteri-

sation, Gabor filters are employed to extract orientation information. The 2D Gabor

mother function is defined as:

F (x, y) = e−
x20+γy20

2σ2 cos
2πx0

λ
(2.3)

where x0 = xcosθ+ysinθ, y0 = −xsinθ+ycosθ, the range decides the scales of Gabor

filters and θ determines orientations. Gabor filters with eight scales in a range from

7× 7 to 21× 21 pixels and four orientations: degrees of 0, 45, 90, and 135 are used.
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32 feature maps are obtained by convolving the initial input image with these Gabor

filters which contain the features with multi-orientation information.

2.4.2 Max pooling

Feature pooling is employed in many modern visual recognition algorithms from pool-

ing over image pixels [82, 107] to pooling across activations of local features on dic-

tionary in sparse coding [137]. It preserves task-related information while removing

irrelevant details. Pooling is used to achieve insensitivity to image transforms, more

compact representations, and better robustness to noise and clutter [11].

The MAX mechanism was exploited by Disencumber and Pogges [90] in a hierar-

chical model of object recognition. This max-like feature selection operation is a key

mechanism for object recognition in the cortex and provides a more robust response

in the case of recognition in clutter or with multiple stimuli in the receptive field [90].

It successfully achieves invariance to image-plane transforms such as translation and

scale. A max pooling operation is incorporated in the second stage of feature extrac-

tion. Pooling between scales of responses from each band of Gabor filters results in

invariance to a range of scales; pooling over local neighbours leads to local robustness

to position shifts and to possible localisation errors. The max pooling function can

be defined as:

h(x, y) = max(x,y)∈G(x,y)[g(i, j)] (2.4)

where g(i, j) is the response of the Gabor filters and G(x, y) denotes the neighbour-

hood (receptive field) of the pixel (x, y). The neighbourhood window of max pooling

is the average of the adjacent scales of Gabor filters. For instance, if two adjacent

scales are 7 and 9 respectively, the neighbourhood window is then 8× 8 .

2.5 Dimensionality reduction

Dimensionality reduction and feature selection have been an active research area in

pattern recognition such as face and human gait recognition [65], [37]. The extracted
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biologically-inspired features are high dimensional feature vectors so dimensionality

reduction is needed to find the intrinsic low-dimensional subspace.

2.5.1 Discriminative locality alignment

Discriminative locality alignment (DLA) proposed recently by Zhang et al. [144] is

chosen for the dimensionality reduction in this work because its advantages. It can

(1) deal with the nonlinearity of the measurement distribution by taking into account

the locality of measurements, (2) preserve the discriminative ability by considering

different classes in the neighbour measurements and (3) avoid the small sample-size

problem because it obviates the need to compute the inverse of a matrix. To be self-

contained, we give a brief introduction to discriminative locality alignment. More

details can be referred to [144].

Based on a framework named patch (A patch here refers a neighbourhood associ-

ated with a sample in the feature space) alignment, discriminative locality alignment

unifies spectral analysis-based dimensionality reduction algorithms. This framework

consists of two stages: part optimisation and whole alignment. For part optimisa-

tion, different algorithms have different optimisation criteria over patches, each of

which is built by one measurement associated with its related ones. For whole align-

ment, all part optimisation are integrated to form the final global coordinate for all

independent patches based on the alignment trick [148]. Global patches are usually

built for conventional linear algorithms, e.g., PCA and LDA, while local patches are

usually formed in manifold learning-based ones, e.g., LLE and LE. Two cases are

given in Fig 2-5. As shown in Fig 2-5 (a), global patches should be built based on

each measurement and all the others because measurements in this case are Gaussian

distributed. In Fig 2-5 (b), measurements are sampled at random from the S-curve

manifold embedded in a three-dimensional space. In this case, local patches should

be built based on a given measurement and its nearest neighbours to capture the local

geometry (locality).

More specifically, given a set of m-dimensional samples X = [x1, x2, ..., xN ], each of

the samples xi belongs to one of C classes. What we want to do is finding a mapping
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Figure 2-5: The framework of discriminative locality alignment [144].

matrix U to project X to Y = [y1, y2, ..., yN ] in lower dimensional space. For each

sample xi, the samples are divided into the same class with the same label information

as xi and different classes with different label information from xi. Then patches for

each sample xi are built according to the same class and different classes, denoted as

Xi = [xi, xi1 , ..., xik1 , xi, xi1 , ..., xik2
]. Each patch contains k1 + k2 + 1 samples, namely

neighbours from the same class and from different classes. Optimisation can be

imposed on those patches based on an objective function that minimises the distance

between samples in the same class and maximises the distance between samples from

different classes. The mapping matrix U is obtained based on the objective function.

We can get Y = [y1, y2, ..., yN ] in the lower dimensional space by projecting X on the

mapping matrix U .

2.6 Experiments and results

The proposed method is evaluated on the baseline KTH dataset, the multi-camera

IXMAS dataset, and the realistic UCF sports dataset. To comprehensively evaluate

the proposed framework, we will provide experimental results of the comparison with

the state-of-the-art methods and an analysis of the proposed method in the following

two subsections. All the results of other methods are obtained from the original

papers.
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2.6.1 Experimental settings

For the KTH dataset, we obtained the bounding boxes according to [138], to capture

the main motion area of each action. We adopt the leave-one-out cross validation,

i.e. videos of 24 subjects for training data and videos of the remaining one subject

for testing. For the IXMAS dataset, we used the silhouettes available for each video

sequence, we follow the validation settings, i.e., leave one person out, in the original

work [130]. For the UCF Sports dataset, we used the bounding boxes associated with

each frame supplied with the dataset.

A linear support vector machine (SVM) is employed for action classification.

We use the SVM implementation in the publicly available machine learning library

LIMBS [18]. The parameters of the linear SVM are kept as the default values

(σ = 1
num.offeatures

and C = 1) throughout the thesis. We conduct two types of

experiments, i.e., comparison and analysis, to verify the advantages of the proposed

framework.

2.6.2 Comparison with the state of the art

Each action in the KTH dataset is executed in four different scenarios; we perform our

method on four scenarios separately and also give the results of taking all scenarios at

once. Results of the proposed method on the KTH dataset and the comparison with

other descriptors are shown in Table 2.1 which indicates that the proposed method

achieves the best recognition rates among all the listed methods.

Specifically, our method achieves almost perfect accuracy in scenarios S1 and S4

and a relatively satisfactory result in scenario S2, which contains camera zooming.

Although in S3 actors are dressed in quite different clothes, it is still able to achieve

a high recognition rate. This suggests that our method is robust to scale variance

(S2) and insensitive to clothing variance of human subjects (S3). Note that in our

method the average accuracy of four scenarios is slightly higher than that of all

scenarios in one, which is theoretically reasonable because actions in all scenarios

have greater intra-class variations than those in each single scenario. The comparison
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Methods S1 S 2 S 3 S 4 Average All-in-one

Our method 98.7 88.1 94 94 93.5 93.3
HMAX [46] 96.0 86.1 89.8 94.8 91.7 -
Schindler et al. [97] 93.0 81.1 92.1 96.7 90.7 90.9
Yeffet et al. [139] - - - - - 90.1
Taylor et al. [111] - - - - - 90.0
Jr et al. [47] - - - - - 90.2

Table 2.1: Performance (recognition rate in percentage) comparison of different de-
scriptors on the KTH dataset. Scenaros 1, 2, 3 and 4 are four scenarios in the KTH
dataset. ’All in one’ is the accuracy of taking four scenarios in one. ’-’ means not
available (recognition rates in %).

Figure 2-6: The confusion matrix of the proposed method on the KTH dataset.
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Methods Camera 1 Camera 2 Camera 3 Camera 4 Camera 5

Our method 84.9 87.9 90.1 86.9 78.9
GMKL [135] 76.4 74.5 73.6 71.8 60.4
AFMKL [135] 81.9 80.1 77.1 77.6 73.4
Weinland et al.
[131]

84.7 85.8 87.9 88.5 72.6

Liu et al. [68] 76.7 73.3 72.1 73.1 -
Yan et al. [136] 72.0 53.0 68.1 63.0 -
Weinland et al.
[130]

65.4 70.0 54.5 66.0 33.6

Junejo et al [52] 76.4 77.6 73.6 68.8 66.1

Table 2.2: Comparison of performance on the IXMAS dataset.Camera 1, 2, 3, 4 and
5 are five cameras in the dataset. ’-’ means not available (recognition rates in %).

Figure 2-7: The confusion matrices of the proposed method on the IXMAS dataset.
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Method Accuracy

Our method 93.9
Yeffet et al. [139] 79.3
GMKL [135] 85.2
AFMKL [135] 91.3
Wang et al. [123] 88.2
Le et al. [62] 86.5
Weinland et al. [131] 90.1
Kovashka et al. [57] 87.3
Wang et al. [124] 85.6
Rodriguez et al. [92] 69.2

Table 2.3: Performance comparison of different methods on the UCF sports dataset
(recognition rates in %).

with previously proposed methods demonstrates that the proposed method produces

comparable results with state-of-the-art methods.

Fig 2-6 shows the confusion matrix of recognition results on the KTH dataset.

Interestingly, three actions including jogging, running and walking are confused with

each other. running is easy to be misclassified as jogging. This is reasonable because

these three actions share the same motion patterns in the KTH dataset, especially

between running and jogging.

On the multi-camera IXMAS dataset, the proposed method greatly outperforms

state-of-the-art methods in all five views, as shown in Table 2.2. Although silhouettes

are available for each action, some of them are not well extracted because of noise,

missing body parts and self occlusion, especially in camera 5. However, our method

achieves a quite good recognition rate in camera 5 in which actions are significantly

occluded and are difficult for most of the current methods.

The confusion matrices of recognition rates are illustrated in Fig 2-7. In all the

five cameras, wave and scratch are confused with each other, which is reasonable

because wave and scratch are actions with a lot of similar motion patterns and body

poses. Especially in camera 5 which has significant occlusions, the proposed method

can still successfully recognise five categories (11 categories in total) of actions.

The evaluation on the realistic UCF sports dataset is presented in Table 2.3. The
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Figure 2-8: The confusion matrix of the proposed method on the UCF sports dataset.

UCF sports dataset is regarded as one of the most challenging datasets for action

recognition. Actions in this dataset are all realistic and are performed in different

ways with large intra-class variability, which makes it hard for recognition. However,

the proposed method still outperforms the best published result - 91.3% - by over

2.6%.

Similarly, we plot the confusion matrix of the recognition rate on the UCF sports

dataset in Fig 2-8, in which we can see the proposed method can successfully recognise

most action categories except for Run-side. A possible explanation is that it has some

similar spatial-temporal appearance and motion patterns to Golf and Riding-Horse.

2.6.3 Analysis

As our framework integrates motion (MHI) and structure features (five structure

planes) as a holistic descriptor, we conduct experiments to evaluate their individual

contributions to the representation of actions. In addition, to validate the contribu-
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Features PCA LDA LPP NPE Isomap DLA

Scenarios 1
SP 96.7 93.3 88.7 94.0 96.7 97.3
MHI 77.8 68.7 78.7 69.3 72.7 79.3
SP+MHI 98.7 98.0 92.7 91.2 99.3 98.7

Scenarios 2
SP 80.0 79.3 80.7 78.7 81.3 81.3
MHI 61.3 56.0 62.7 54.7 61.3 62.0
SP+MHI 84.7 81.3 83.3 80.7 86.0 88.1

Scenarios 3
SP 92.5 91.2 88.4 91.2 91.9 94.0
MHI 76.0 64.9 74.4 64.9 76.0 76.0
SP+MHI 91.9 91.2 89.8 91.2 92.5 94.0

Scenarios 4
SP 94.0 90.0 91.3 90.0 94.0 94.0
MHI 83.0 72.0 83.2 66.7 83.0 83.0
SP+MHI 92.7 92.7 85.6 92.7 94.0 94.0

All in one
SP 90.6 88.9 86.1 89.1 92.8 91.6
MHI 76.1 69.4 72.6 64.6 62.4 76.2
SP+MHI 91.1 91.1 86.6 89.6 92.8 93.3

Table 2.4: The performance of the proposed framework with different features on the
KTH dataset, and the comparison of DLA with the state-of-the-art dimensionality
reduction techniques.

PCA LDA LPP NPE Isomap DLA

Camera 1
SP 79.8 80.0 68.6 80.9 81.0 81.0
MHI 77.0 69.1 68.8 69.4 77.3 77.8
SP+MHI 81.0 82.7 71.6 82.7 81.8 84.9

Camera 2
SP 84.4 83.6 73.3 83.6 85.0 85.3
MHI 79.8 78.0 71.3 77.4 78.9 78.9
SP+MHI 84.1 87.2 77.4 87.2 86.9 87.9

Camera 3
SP 81.4 85.1 78.3 84.2 85.6 85.6
MHI 84.0 82.9 71.9 82.3 84.5 84.9
SP+MHI 86.5 90.1 79.2 90.0 89.6 90.1

Camera 4
SP 79.1 81.4 71.4 78.6 81.1 81.4
MHI 80.2 76.6 73.2 78.6 81.8 81.8
SP+MHI 85.5 84.5 72.5 84.5 86.5 86.9

Camera 5
SP 76.8 71.8 66.5 71.2 76.1 75.8
MHI 68.3 60.9 61.5 60.8 69.7 69.5
SP+MHI 76.3 77.9 65.8 77.9 77.9 78.9

Table 2.5: The performance of the proposed framework with different features on the
IXMAS dataset, and the comparison of DLA with the state-of-the-art dimensionality
reduction techniques.
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tion of DLA to the overall performance of the proposed framework and its advantage

over other dimensionality reduction techniques, we compare it with many widely

used reduction methods including principal component analysis (PCA), linear dis-

criminative analysis (LDA), Locality Preserving Projections (LPP), Neighbourhood

Preserving Embedding (NPE) and Isomap. Table 2.4, Table 2.5 and Table 2.6 show

the comprehensive analysis of the proposed recognition framework and the compar-

isons with different dimensionality reduction techniques on the three datasets, i.e.,

KTH, IXMAS and UCF Sports (’SP’ denotes the structure planes and accuracies

are in percentages). PCA is employed as the first step in the DLA method to filter

the noise. To make fair comparisons, we keep the dimensions to be 100 (KTH), 200

(IXMAS) and 200 (UCF Sports) for all the reduction techniques except for LDA.

Features from structure planes can achieve satisfactory recognition rates on all the

three datasets. Features from the MHI exhibit comparable performance to those of

the structure planes on the IXMAS dataset, while not achieving high accuracies on the

UCF Sports dataset. This is reasonable, because in well-constrained circumstances,

e.g., in the IXMAS dataset, MHI is able to encode more accurate motion information,

and therefore can give better performance. In addition, the MHI contains only one

feature map while structure planes have five feature maps, which would encode more

information about an action. However, the combination of features on the structure

planes and the MHI can improve the overall performance and is better than either

of them, which proves that structure planes and the MHI provide complementary

information.

Additionally, as the obtained feature vectors are of high dimensionality, we per-

form DLA for more compact and discriminative representation. From the comparison

results in Table 2.4, Table 2.5 and Table 2.6, we can see DLA performs consistently

better than other dimensionality reduction techniques on all the three datasets, which

demonstrates that the use of DLA does improve the performance of the framework.

Furthermore, with the DLA reduction, we can see from the tables that the combina-

tion of structure planes and motion history image consistently outperforms either of

them. This again validates that structure planes and motion history image are com-

54



PCA LDA LPP NPE Isomap DLA

SP 91.8 91.2 88.3 91.9 91.8 92.4
MHI 49.6 44.0 52.9 42.6 54.5 53.2
SP+MHI 93.1 90.5 89.8 91.2 93.9 93.9

Table 2.6: The performance of the proposed framework with different features on the
UCF sports dataset, and the comparison of DLA with the state-of-the-art dimension-
ality reduction techniques.

plementary features and at the same time manifests that DLA can effectively embed

them into a unified and meaningful representation of human actions. Note that even

with PCA for dimensionality reduction, our method can still achieve competitive re-

sults compared with the state-of-the-art methods. From the experimental results, we

can safely draw the following conclusions:

• The structure planes and the motion history image provide complementary

information, and therefore the combination of them gives an informative and effective

representation of actions.

• The employed dimensionality reduction method, i.e., discriminative locality

alignment (DLA), is able to effectively embed the structure and motion features

into meaningful representations, and outperforms many widely used dimensionality

reduction techniques.

The reasons why our method can achieve better results lie in the following aspects:

• We explicitly model the motion and structure features by the motion templates

and structure planes, which encapsulate the main information of the action in a video

sequence.

• On top of the extracted feature maps, we use the biologically-inspired fea-

tures to better represent the information of motion and structure, which provides an

informative and invariant representation of actions.

• Last but not least, the powerful DLA reduction technique improves the per-

formance of our method compared with other dimensionality reduction approaches.
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2.7 Conclusion

In this chapter, we have presented a framework unifying motion and structure features

for human action recognition. By applying the motion template to the volume with

difference of frames (DoF), we encode the motion information into the motion feature

map, i.e., the motion history image (MHI), and structure feature maps are obtained

from the structure planes extracted form the DoF volume. Two dimensional Gaussian

pyramid and centre-surround operations are performed on each feature map, and

the feature maps are decomposed into sub-band images localised on multiple centre

spatial frequencies. Efficient, biologically-inspired features are then extracted through

a two-stage feature extraction step, namely Gabor filtering and max pooling.

Finally, the discriminative locality alignment (DLA) technique embeds the high-

dimensional features onto a low-dimensional manifold space which leads to a more dis-

criminative and compact representation of actions. Evaluations on three increasingly

difficult datasets, KTH, IXMAS and UCF Sports, demonstrate that the proposed

framework is a very promising global representation for human action recognition.
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Chapter 3

Spatio-Temporal Laplacian

Pyramid Coding

3.1 Introduction

In the video domain, many of algorithms actually borrow the ideas from the 2D image

domain on image/scene representation and classification. For instance, the three-

dimensional histogram of oriented gradients (HOG3D) and the three-dimensional

SIFT (SIFT3D) extended from their 2D counterparts have shown the effectiveness

for action recognition. Inspired by the success of multi-resolution analysis and the

biologically inspired features for action recognition in Chapter 2 and the work in

[46], in this chapter we propose a global descriptor, named spatio-temporal Laplacian

pyramid coding (STLPC), by extending the multi-scale analysis and biologically-

inspired features in the image domain.

3.1.1 Motivations

According to the scale-space theory [66], objects in the world, as meaningful entities,

only exist over certain ranges of scales. The multi-scale representation is of crucial

importance for describing unknown real-world signals and holds a basic and impor-

tant role in early vision. Human visual perception treats images on several levels
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of resolutions simultaneously. Spatio-temporal features in video analysis share some

important properties with those in the image domain. In this chapter, we aim to

describe video sequences by combing the multi-scale and orientation analysis, i.e.,

the spatio-temporal Laplacian pyramid and 3D Gabor filters, respectively.

The Laplacian pyramid provides a multi-resolution analysis, a scheme employed

by the human visual system [134] which has shown its effectiveness in image represen-

tation [14]. Through introducing the multi-resolution technique to video analysis and

action representation, the proposed STLPC algorithm can maximally extract struc-

tural and motion features with different scales, and therefore provides an informative

holistic representation which can overcome the aforementioned limitations of sparse

representations.

The Laplacian pyramid does not take account of orientation which carries impor-

tant information in video sequences with actions. Gabor filters are widely used for

feature extraction and can capture edge and orientation information in the image

domain. Similarly, 3D Gabor filters are able to extract spatio-temporal edge and

orientation features related to motion occurring in a video sequence.

Direct use of the outputs from the filtering as features is redundant for repre-

sentation, so feature pooling techniques are needed. Max pooling has drawn most

attention in low-level feature extraction algorithms. We introduce max pooling into

the spatio-temporal domain which can, to a large extent, cope with shortcomings,

such as spatio-temporal misalignment and inaccurate motion localisations existing in

traditional holistic representation methods. In addition, after max pooling, we can

obtain a compact representation.

3.1.2 Overview

A video sequence is considered as a spatio-temporal intensity volume from which mo-

tion cues of human actions are firstly extracted through differencing adjacent frames.

Backgrounds are simultaneously suppressed without suffering from expensive compu-

tations resulting from tracking or background subtraction.

We then construct a spatio-temporal Laplacian pyramid (STLP) (Section 3.2)
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Figure 3-1: Construction of spatio-temporal Gaussian pyramid and Laplacian pyra-
mid.

as follows. The obtained volumes with DOF are repeatedly filtered with Gaussian

weighting functions and subsampled to generate volumes with regularly reduced reso-

lutions. These comprise a series of low-pass filtered copies of original volumes, namely

a spatio-temporal Gaussian pyramid, in which the bandwidth decreases at one-octave

per step. To directly represent the volumes in terms of voxel intensity values, how-

ever, is inefficient due to the high correlation among these voxels. Therefore, the

smoothed 3D volumes are decomposed into a set of spatio-temporal band-pass fil-

tered volumes called a spatio-temporal Laplacian pyramid by differencing adjacent

levels of the Gaussian pyramid. Features with different sizes are appropriately lo-

calised at each level of the pyramid, as the band-pass filtered volume represents a

particular fineness of detail at each scale.

Subsequently, we apply a feature extraction step (Section 3.3). A bank of 3D

Gabor filters is then applied to the original volume and each level of the Laplacian

pyramid to enhance edge and orientation information. To extract invariant and dis-

criminative features, a nonlinear max pooling technique is performed within bands

of Gabor filters and over spatio-temporal neighbourhoods, resulting in robustness

to spatial and temporal shifts, partial occlusions and noise. Our feature extraction

process from a raw video sequence is illustrated in Fig. 3-1.

3.1.3 Contributions

We summarise the contributions of the work in this chapter as follows:

• We introduce the multi-resolution analysis techniques, i.e., the spatio-temporal
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Gaussian and Laplacian pyramids, for human action recognition and video analysis.

• Based on the spatio-temporal Laplacian pyramid, a novel descriptor is pro-

posed for the holistic representation of human actions.

• Gabor filters and max pooling are extended to the 3D video domain and are

successfully applied to spatio-temporal feature extraction in the holistic representa-

tion.

In contrast to traditional holistic methods which are heavily dependent on tracking

and spatial/temporal alignment algorithms, our method can, to a large extent, handle

misalignments and background variations. Moreover our method needs only coarse

rather than accurate bounding boxes, which are usually essential in common holistic

representation methods. These benefits result from our multi-scale representation,

i.e., the spatio-temporal Laplacian pyramid and the max pooling over spatio-temporal

neighbours.

3.2 Spatio-temporal Laplacian pyramid coding

A video sequence is viewed as a spatio-temporal intensity volume that contains all

structural and motion information of the action, including poses of human figures at

any time as well as the dynamic motion information.

The Laplacian pyramid, a multi-resolution analysis technique, decomposes spatio-

temporal volumes into different levels with a certain band of frequencies. Salient

features residing at different scales are segregated in each level of the pyramid and

extracted separately in the following feature extraction step. In contrast to three-

dimensional scale invariant feature transform (3D SIFT), in which convolutions are

applied spatially [99], our model performs convolutions spatio-temporally with 3D

Gaussian kernels. Each layer of the Laplacian pyramid is approximated by the dif-

ference of Gaussians.
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Figure 3-2: Construction of spatio-temporal Gaussian pyramid and Laplacian pyra-
mid.
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3.2.1 Spatio-temporal Gaussian pyramid

The first step in creating a Laplacian pyramid is to construct a series of low-pass

filtered 3D volumes - a spatio-temporal Gaussian pyramid. The filtering is performed

along spatial and temporal dimensions by a procedure equivalent to convolution with

local symmetric weighting functions, e.g., 3D Gaussian function, which is given as

follows:

w(x, y, t) =
1

(
√

2πσ)3
e−

x2+y2+t2

2σ2 (3.1)

The operation is a kind of multi-scale filtering. Gaussian is chosen as the smooth-

ing kernel because it has been proven to be the only kernel for which local maxima of

a signal increase and local minima decrease as the filter bandwidth increases [56, 66].

Given a 3D volume, it is viewed as the bottom or zero level of a Gaussian pyra-

mid. Higher levels of the Gaussian pyramid can be generated by convolving a 3D

Gaussian function with several copies of the original 3D volume with reduced resolu-

tions obtained by subsampling. Precisely, levels of a Gaussian pyramid are iteratively

obtained as follows:

gl(i, j, k) =
∑
x

∑
y

∑
t

w(x, y, t)gl−1(2i + x, 2j + y, 2k + t) (3.2)

where l indexes the levels of a Gaussian pyramid and (i, j, k) is the position of a voxel

in a 3D volume. The construction of a Gaussian pyramid is computationally efficient

because, with increasing levels, the size of the video volume decreases exponentially

and the number of required computations reduces as well. The constructed 4-level

Gaussian pyramid is shown in Fig 3-2 (b).

3.2.2 Spatio-temporal Laplacian pyramid

As different spatio-temporal features would be salient at different scales (resolution-

s) in the spatio-temporal space, we aim to extract them separately. The Laplacian
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pyramid is a technique for multi-resolution analysis. The construction of the Lapla-

cian pyramid is actually performing Laplacian operators on Gaussians with many

scales. As studied in [66], the scale-normalised Laplacian of Gaussian, σ2∇2G, can

be approximated by the difference of Gaussians.

To be self-contained, we provide the relationship between difference of Gaussians,

D and σ2∇2G by the heat diffusion equation according to [70]:

∂G

∂σ
= σ∇2G, (3.3)

where ∂G/∂σ can be approximated by the difference of nearby scales at kσ and σ.

Note that σ is equivalent to t in the heat kernel equation.

and, we have

σ∇2G =
∂G

∂σ
≈ G(x, y, kσ)−G(x, y, σ)

kσ − σ
. (3.4)

Therefore, we can see that Laplacian of Gaussian can be approximated by the

difference of Gaussians:

G(x, y, kσ)−G(x, y, σ) ≈ (k − 1)σ2∇2G. (3.5)

Having obtained the Gaussian pyramid of the original 3D volume, we expand each

level of the Gaussian pyramid into the same size as the bottom level, and represent

it as Gl. Now we can generate the Laplacian pyramid. The bottom level of the

Laplacian pyramid is obtained by subtracting the first level of the Gaussian pyramid

from the expanded version of the previous (bottom) level of the Gaussian pyramid.

The higher levels of the Laplacian pyramid are generated with a similar operation,

as follows:

Ll = Gl −Gl+1 (3.6)

Similarly, l indexes the levels of a Laplacian pyramid. Gl and Gl+1 are the expanded

versions of gl and gl+1. Fig 3-2 (c) shows an example of a three-level Laplacian
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pyramid. Obviously, features such as edges and corners are enhanced at each level of

the pyramid, and these features correspond to the areas of motion in the original video

sequence. In addition, these enhanced features are separately extracted at each level

of the pyramid with different resolutions. The example in Fig 3-2 (c) demonstrates

that the Laplacian pyramid is a particularly effective way to represent video sequences

spatially and temporally. Salient spatio-temporal features are enhanced for analysis

and representations based on the pyramid would be both compact and robust.

3.3 Feature extraction

Although the Laplacian pyramid provides an efficient multi-scale analysis, orientation

information has not been taken into account. While actions can be regarded as spatio-

temporal patterns in different orientations, we propose employing a bank of 3D Gabor

filters to extract the orientation information. We employ a two-stage approach for

spatio-temporal feature extraction.

• Spatio-temporally applying a bank of 3D Gabor filters to intensify the edge

information at multiple orientations.

• Performing a nonlinear max pooling within each band of 3D Gabor filters and

over spatio-temporal neighbourhoods to generate invariant features. Therefore, the

extracted features are resistant to spatial and temporal shifts and insensitive to noise.

More importantly, motion information encoded in multiple contiguous frames will be

exploited.

Our method differs from the C1 model by Jhuang et al. [46] in that filtering and

pooling are applied to both spatial and temporal dimensions.

3.3.1 3D Gabor filters

Gabor filters are widely used in visual recognition systems [46, 107], and provide a

useful and reasonably accurate description of most spatial aspects of simple receptive

fields. The Laplacian pyramid representation does not introduce any spatial orienta-

tion selectivity into the decomposition process. Gabor filters are employed to extract
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Bank 1 2
Filter Size 7 & 9 11 & 13

σ 2.8 & 3.6 4.5 & 5.4
λ 3.5 & 4.6 5.6 & 6.7
θ −π/4, 0, π/4
ω −π/4, 0, π/4

Table 3.1: Summary of parameters for Gabor filters used in our implementation.

orientational information due to their properties in common with mammalian cor-

tical cells, such as spatial localisation, orientation selectivity and spatial frequency

characterisation.

Inspired by [107, 84], our method uses three-dimensional Gabor filters to localise

salient features in spatio-temporal dimensions. In the 3D Gabor filter bank, 4 scales

in two bank with a total of 9 orientations are used. In a 3D space, the Gabor filter is

defined as:

G(x, y, t) = exp[−(
X2

2σx

+
Y 2

2σy

+
T 2

2σt

)]× cos(
2π

λx

X) cos(
2π

λy

Y ) (3.7)

where


X

Y

T

 =


1 0 0

0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)

 ×


cos(ω) 0 sin(ω)

0 1 0

− sin(ω) 0 cos(ω)




x

y

t



The parameters used in 3D Gabor filters are listed in Table 3.1. σ and λ are the

spatial and temporal scales, respectively, and similarly θ and ω refer to the spatial

and temporal orientations, respectively.
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3.3.2 Spatio-temporal max pooling

Similar to the feature extraction in Chapter 2, max pooling is extended into the spatio-

temporal domain and incorporated in the second stage of spatio-temporal feature

selection. More specifically, for the volumes from one bank of Gabor filters with 2

scales and 9 orientations, we first perform max pooling between the two volumes

with different scales and at the same orientation. After this first step of max pooling,

we have one volume at each orientation. We then pool the volumes over a local

neighbourhood, which is equivalent to applying a 3D max filter to the volumes. Fig. 3-

3 demonstrates the mechanism of max pooling in our method. On the left are the

two volumes of the outputs of Gabor filters in two adjacent scales and at the same

orientation. On the right, the first volume is the one pooled between the two scales

and the second volume is the one pooled over a local neighbourhood. Pooling between

scales of responses from each band of Gabor filters results in invariance to a range of

scales; pooling over spatio-temporal neighbours leads to local robustness to position

shifts and to possible localisation errors.

After max pooling, we need to flatten the volumes into final feature representa-

tions. To make a compact and invariant representation, similar to the Gist feature

extraction in scene recognition [42], averaging operations are applied in a fixed 4×4×4

grid of spatio-temporal sub-regions of the volumes from max pooling. The averaging

operation is commonly used for feature extraction [42, 104, 107]. The dimensionality

of the final feature vector before dimensionality reduction is (4×4×4 = 64)×N×L×O,

where N is the number filter banks, L is the number of levels of the Laplacian pyramid

and O is the number of orientations. If 2 banks of Gabor filters, 5 levels of the Lapla-

cian pyramid and 9 orientations are used, the dimensionality is 64×2×5×9 = 5760.

3.3.3 Discriminative locality alignment

The features are still in a high-dimensional space. Based on the work [151] in Chap-

ter 2, which has presented a comprehensive comparison of dimensionality reduction

techniques for action recognition, we also employ discriminative locality alignment
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Figure 3-3: On the left are the two volumes of outputs from Gabor filters with
adjacent scales at the same orientation. The first volume on the right is the volume
pooled between two scales and the second is the volume after pooling over local
neighbourhoods.

(DLA) [144] for dimensionality reduction to obtain compact and discriminative rep-

resentations.

3.4 Experiments and results

The proposed spatio-temporal Laplacian pyramid coding (STLPC) is evaluated on

the baseline KTH dataset, the multi-camera IXMAS dataset, the realistic UCF sports

dataset and the newly released HMDB51 dataset.

3.4.1 Experimental settings

To demonstrate its effectiveness and efficiency as a holistic descriptor, we compare it

with popular descriptors such as the 3D histogram of oriented gradients (HOG3D) [54]

and the 3D scale invariant feature transform (SIFT3D) [99]. To make the comparison

fair, we replace only our STLPC descriptor with HOG3D and SIFT3D with the rest

of the settings the same. All descriptors are used as holistic representations of human

actions. For both HOG3D and SIFT3D, the spatio-temporal volume containing the
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action is divided into equally-sized small cubes and the final descriptor vector is a

concatenation of descriptors calculated from all cubes. For HOG3D, we use 6 bins

for orientation quantisation. For SIFT3D, we follow the parameter settings in the

original paper [99] using 2×2×2 and 4×4×4 configurations of sub-histograms, and

8× 4 histograms to represent θ and ϕ. We follows the validation settings in Chapter

2. A linear support vector machine (SVM) is employed for action classification [18].

3.4.2 Comparison with the state of the art

For the KTH dataset in which the same action is executed in four different scenarios,

we perform our method on four scenarios separately and also give the results of taking

all scenarios in one.

Results of STLPC on the KTH dataset and the comparison with other descriptors

are shown in Table 3.2 and Table 3.3. The proposed STLPC algorithm achieves the

best recognition rates among all the listed methods. Our method achieves almost

perfect accuracy in Scenarios 1 and Scenario 4 and a relatively satisfactory result

in Scenario 2, which contains camera zooming. Although in Scenario 3 actors are

dressed in quite different clothes, STLPC is still able to achieve a high recognition

rate. This shows that STLPC is robust to scale variation (Scenario 2) and insensitive

to clothing variance of human subjects (Scenario 3). Note that in our method the

average accuracy of four scenarios is slightly higher than that of all scenarios in one,

which is theoretically reasonable because actions in all scenarios have greater intra-

class variations than those in each single scenario. In addition, the proposed STLPC

greatly outperforms the popular descriptors: HOG3D and SIFT3D. Table 3.2 reports

a longitudinal comparison with previously proposed methods, which demonstrates

that the proposed STLPC outperforms state-of-the-art methods.

On the multi-camera IXMAS dataset, STLPC greatly outperforms state-of-the-art

methods in all five views, as shown in Table 3.4. Although silhouettes are available for

each action, some of them are not well extracted because of noise, missing body parts

and self occlusions, especially in Camera 5. However, our method achieves a quite

good recognition rate in Camera 5 in which actions are significantly occluded and are
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Methods Scenario 1 Scenario 2 Scenario 3 Scenario 4 Average All in one
STLPC 98.7 88.0 96.7 98.7 95.5 95.0
AFMKL [135] 96.7 91.3 93.3 96.7 94.5 -
GKML [119] 96.0 86.0 90.7 94.0 91.7 -
HMAX [46] 96.0 86.1 89.8 94.8 91.7 -
HOG3D 97.3 80.7 93.3 95.9 91.8 91.5
SIFT3D 96.0 74.7 90.7 96.5 89.5 90.5

Table 3.2: Performance comparison of different descriptors on the KTH dataset.
’Average’ is the average accuracy of the four scenarios, and ’All in one’ is the accuracy
of taking four scenarios in one. ’-’ means not available (in percentages).

Methods Accuracy (%)
Dollár et al. [25] 81.2
Savarese et al. [96] 86.8
Niebels et al. [83] 81.5
Liu et al. [68] 94.2
Zhang et al. [146] 92.9
Liu et al. [67] 93.8
Wang et al. [123] 94.2
Zhang et al. [147] 93.5
STLPC 95.0

Table 3.3: A longitudinal performance comparison of different methods on the KTH
dataset. All the methods compared in the table used leave-one-out cross validation
(in percentages).

difficult for most of the current methods. We also apply either HOG3D or SIFT3D

as the holistic descriptor for comparison. The comparison with different methods is

reported in Table 3.4.

The evaluation on the realistic UCF sports dataset is presented in Table 3.5.

Actions in this dataset are all realistic and are performed in different ways with large

intra-class variability, which makes recognition hard. However, the proposed method

still produces an excellent result and outperforms the best published result - 91.3%

- by over 2%. In addition, our SPLPC descriptor consistently performs better than

both HOG3D and SIFT3D in this dataset. This result demonstrates that STLPC is

effective for recognizing realistic human actions.

Finally, the outcome on general body movements of the HMDB51 dataset is re-
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Methods Camera 1 Camera 2 Camera 3 Camera 4 Camera 5
STLPC 91.8 88.8 91.7 87.4 81.8
HOG3D 85.8 85.9 88.2 80.1 78.4
SIFT3D 81.9 81.9 84.2 82.0 70.4
GMKL [135] 76.4 74.5 73.6 71.8 60.4
AFMKL [135] 81.9 80.1 77.1 77.6 73.4
Weinland et al [131] 84.7 80.8 87.9 88.5 72.6
Liu et al. [68] 76.7 73.3 72.1 73.1 -
Yan et al. [136] 72.0 53.0 68.1 63.0 -
Weinland et al. [130] 65.4 70.0 54.5 66.0 33.6
Junejo et al. [52] 76.4 77.6 73.6 68.8 66.1

Table 3.4: Performance comparison of different methods in five cameras on the IX-
MAS dataset. ’-’ means not available.

ported in Table 3.8. The proposed STLPC algorithm achieves an average accuracy

of 37.3% using the three distinct training and testing splits, which demonstrates the

potential of STLPC for large scale realistic human action recognition. Moreover, the

bounding boxes for the HMDB51 dataset are quite coarse, and some are the same

sizes as the original video sequences. With the same experimental setting, STLPC

significantly outperforms the result -25.6%- reported in [150], where 3D steerable

filters are used for holistic action representation.

3.4.3 Laplacian pyramid

Our final descriptor is based on the combination of the original video sequence (called

the bottom level of the Laplacian pyramid) and higher levels of the Laplacian pyramid

of the video sequence. We evaluate the performance of the final descriptors with

different numbers of pyramid levels. The results are illustrated in Table 3.6, Table 3.7

and Table 3.8. ’#level’ denotes the number of the Laplacian pyramid levels. ’0’ means

the bottom level, namely the original video sequences.

From the Tables, we can see that combining the original video sequences with

higher levels of the Laplacian pyramid does make the descriptor more informative

and discriminative and therefore increases the performance of the recognition system.

The performance generally improves with the increase of the number of levels, the best
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Methods Accuracy (%)
STLPC 93.4
HOG3D 84.4
SIFT3D 77.3
Raptis et al. [123] 79.4
Wang et al. [123] 88.2
Yeffet et al. [139] 79.3
Raptis et al. [88] 79.4
GMKL [135] 85.2
AFMKL [135] 91.3
Le et al. [62] 86.5
Kovashka et al. [57] 87.3
Weinland et al. [131] 90.1
Wang et al. [124] 85.6
Rodriguez et al. [92] 69.2

Table 3.5: Performance comparison of different methods on the UCF Sports dataset.

recognition rates being achieved by the use of three levels of the Laplacian pyramid

across all datasets. It is demonstrated in this experiment that the Laplacian pyramid

can capture salient structural and motion information with multiple scales residing in

the raw video sequences. Therefore it provides an effective representation of human

action.

3.4.4 3D Gabor filtering

To validate the use of 3D Gabor filtering on the Laplacian pyramid, we have also

conducted experiments to evaluate the performance of the Laplacian pyramid and 3D

Gabor filtering, independently. For 3D Laplacian pyramid, the max pooling operation

is also applied on each level of the pyramid to obtain the descriptors. The comparison

results are illustrated in Table 3.9. Note that both the 3D Laplacian and 3D Laplacian

+ 3D Gabor use a three-level Laplacian pyramid. On the four datasets, the Laplacian

pyramid yields the worst recognition rates. The 3D Gabor filters perform much better

than the Laplacian pyramid. As expected, the combination of the Laplacian pyramid

with 3D Gabor filters (3D Laplacian + 3D Gabor) improves the performances of both

the 3D Laplacian and the 3D Gabor filters. The results have shown the effectiveness
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#level 0 1 2 3 4

KTH
DLA 93.3 94.2 94.3 95.0 94.8
PCA 92.3 93.8 94.2 94.3 93.7

UCF
DLA 92.5 93.4 93.9 93.4 93.9
PCA 89.7 92.0 91.9 91.3 91.3

Table 3.6: Performance of STLPC with different levels of the Laplacian pyramid and
different dimensionality reduction techniques on the KTH and UCF sports datasets.

#level 0 1 2 3 4

Cam1
DLA 89.9 90.6 89.0 91.8 90.5
PCA 83.4 85.1 85.6 87.1 88.1

Cam2
DLA 88.1 87.6 89.4 88.8 88.6
PCA 83.0 84.9 84.3 85.5 85.2

Cam3
DLA 90.1 91.7 91.5 91.7 91.1
PCA 87.7 89.0 89.4 89.6 89.1

Cam4
DLA 86.9 87.1 87.1 87.4 86.7
PCA 80.6 81.2 83.7 82.7 83.0

Cam5
DLA 80.4 80.6 80.6 81.8 80.9
PCA 73.5 77.8 78.8 79.1 78.5

Table 3.7: Performance of STLPC with different levels of the Laplacian pyramid and
different dimensionality reduction techniques on the IXMAS datasets.

of the 3D Gabor filters on the Laplacian pyramid.

3.4.5 Difference of Frames

Difference of Frames (DoF) is an important preprocessing step in the whole framework

of our method. To investigate the effect of DoF on the performance of our method, we

have performed extensive experiments to evaluate the contribution of DoF. Since for

the IXMAS dataset, silhouettes are used so no difference of frames is performed on this

dataset. We conducted the experiments on the KTH, UCF and HMDB51 datasets.

The results are reported in Table 3.10. Note that to make a fair comparison, we keep

all the settings exactly the same for experiments with DoF and without DoF.

As expected, we can see in Table 3.10 that the results with DoF are significantly

better than those without DoF on all three datasets. Looking into the results, we
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#level 0 1 2 3 4

S1
DLA 32.8 37.2 36.8 37.4 37.0
PCA 33.0 36.0 37.1 36.5 37.9

S2
DLA 33.0 35.8 37.4 40.9 35.3
PCA 32.1 36.7 36.7 39.1 33.2

S3
DLA 30.2 34.2 35.4 34.7 33.7
PCA 29.1 32.3 34.9 34.2 32.8

Average
DLA 32.0 35.7 36.5 37.3 35.3
PCA 31.4 35.0 36.2 34.6 34.6

Table 3.8: Recognition rates (%) on three training/testing splits (S1, S2 and S3) of a
subset (i.e. general body movements) of the HMBD51 dataset.

Features KTH IXMAS UCF HMDB51

3D Laplacian 89.5 79.0 71.7 15.1
3D Gabor 93.3 89.9 92.5 32.0

3D Laplacian + 3D Gabor 95.0 91.8 93.4 37.3

Table 3.9: The comparison of the 3D Laplacian, the 3D Gabor filters and the combi-
nation of them.

#level 0 1 2 3 4

KTH
DoF 93.3 94.2 94.3 95.0 94.8

No-DoF 90.9 91.2 91.6 91.5 91.3

UCF
DoF 92.5 93.4 93.9 93.4 93.9

No-DoF 77.8 79.3 79.9 79.1 81.2

HMDB51
DoF 32.0 35.7 36.5 37.3 35.3

No-DoF 25.0 27.9 28.9 26.8 27.1

Table 3.10: Performance of STLPC with and without DoF on the KTH, UCF Sports
and HMDB51 datasets.
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have found that, on the KTH dataset with relatively simple and clear backgrounds,

DoF improves the performance, but the improvements are less significant than on

the realistic UCF sports and HMDB51 datasets in which the backgrounds are very

complicated and cluttered. This is reasonable because, for realistic datasets such

as UCF sports and HMDB51, the backgrounds confuse the foreground actions while

DoF could effectively suppress the backgrounds.

3.4.6 Dimensionality reduction

Because the final descriptors obtained from the feature extraction steps are of high

dimensionality, we perform a dimensionality reduction technique named discrimina-

tive locality alignment (DLA) to make it compact and more discriminative. Note

that, in the DLA algorithm, principal component analysis (PCA) is first employed

for denoising, and we retain 98% of the energy (variance). To evaluate the contribu-

tion of DLA to our method, we perform PCA as a baseline for comparison and the

same 98% of energy is kept. The results are also shown in Table 3.6, Table 3.7 and

Table 3.8. Obviously, DLA outperforms PCA across all the four datasets significant-

ly. Note that, even with PCA, our method can still achieve satisfactory performance

and is superior to other methods which again implies that the Laplacian pyramid can

encode actions informatively and discriminatively.

3.5 Conclusion

In this chapter, we have introduced the spatio-temporal Gaussian/Laplacian pyramids

for multi-resolution video analysis and have proposed a novel global descriptor named

spatio-temporal Laplacian pyramid coding (STLPC) for the holistic representation of

human actions. In the pyramid model, a sequence with action is decomposed into a

series of band-pass filtered components, in which spatio-temporal salient features with

various sizes can be well localised and enhanced. Following the Laplacian pyramid, a

bank of 3D Gabor filters and max pooling are successively applied to extract discrim-

inative and invariant spatio-temporal features. Because convolving Gabor filtering
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and max pooling are all performed over spatial and temporal dimensions, motion and

structural information is well preserved in the representation.

In contrast to existing holistic representation methods, most of which depend

heavily on accurate and even carefully tuned tracking and localisation algorithms, the

proposed method can work well with coarse bounding boxes. The proposed method

provides an effective and efficient avenue for holistic human action representation.

Evaluations on four increasingly difficult datasets, KTH, IXMAS, UCF sports and

HMDB51, suggest that the proposed STLPC is a very promising global descriptor for

human action recognition.
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Chapter 4

Spatio-temporal Oriented Energies

4.1 Introduction

In Chapter 3, we have proposed a global descriptor, namely the spatio-temporal

Laplacian pyramid coding (SPLPC), for holistic representation of actions. STLPC

takes the advantages of both multi-resolution and orientational analysis due to the

use of Laplacian pyramid and Gabor filters. However, STLPC is relatively compu-

tationally expensive because of the 3D convolution in the 3D Gabor filtering. To be

more efficient, in this chapter we propose to apply the spatio-temporal steerable filter

for the multi-resolution and orientational analysis. Moreover, different from STLPC,

spatio-temporal oriented energies are computed for the holistic representation of ac-

tions.

4.1.1 Motivations

Low-level features serve as the basis of both mid-level [25, 61, 99, 54] and high-level

[95] representations of human actions. Features based on oriented gradients have

been widely and successfully extended from the image domain into video analysis

and action recognition [61, 99, 54]. Oriented filters play a key role in early vision and

in image processing [28, 105, 34]. Freeman and Adelson [28] proposed steerable filters

to synthesise filters of arbitrary orientations for linear combinations of basis filters.
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Steerable filters can efficiently perform multiple orientation analysis.

Inspired by the success of steerable filters in object classification [79] and video

analysis [132], we propose a novel, holistic representation based on the spatio-temporal

steerable pyramid (STSP).

A steerable pyramid [34] is non-orthogonal and over-complete, which shows the de-

sirable property of shift and rotation invariance. It is a transform that combines multi-

scale decomposition with differential measurements, capturing the oriented structures

in spatio-temporal volumes.

We adopt the second-order 3D Gaussian derivative as the steerable basis, which

is more efficient than higher orders, e.g. the third order, while preserving satisfactory

performance. In addition, to obtain robustness to scale variation, we apply the spatio-

temporal max pooling operation to the responses of adjacent scales of the steerable

filtering, which makes our method distinctive from the previous work [79, 132].

4.1.2 Overview

Given a 3D volume, which in our case can be the intensity volume, optical flow and

3D gradients of a video sequence, a spatio-temporal Laplacian pyramid structure is

first constructed. The volume is decomposed into a set of sub-band volumes which

can segregate and enhance spatio-temporal features residing in different scales.

To efficiently explore oriented patterns in video sequences, a bank of spatio-

temporal steerable filters with different scales is then applied to each level of the

obtained Laplacian pyramid. These filters are separable, steerable filters in three

dimensions (X-Y-T) and therefore can be computed efficiently (Section 4.3).

Motivated by the previous work [132], we employ a representation based on spatio-

temporal local energies which are calculated from the quadrature pairs of responses

of the filtering on voxels in each volume (Section 4.4).

Finally, a feature pooling operation, i.e., max pooling, is performed between ad-

jacent scales of the steerable filters and over local spatio-temporal neighbourhood-

s, which makes the final representation more robust and less sensitive to scaling

and shifts. In addition, features become more compact after the max pooling. The
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Figure 4-1: The flowchart of feature extraction.

flowchart of feature extraction is illustrated in Fig 4-1 (Section 4.4).

4.1.3 Contributions

The contributions of the proposed method can be summarised as follows:

• A new model based on spatio-temporal steerable pyramid is proposed for action

recognition.

• Local oriented energies as spatio-temporal features are first employed for holis-

tic representation of human actions.

• The max pooling operation is adopted into the spatio-temporal steerable pyra-

mid model, which makes features less sensitive to scaling and shifting obtaining a
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robust and compact representation.

4.2 Related work

In this section, we review the previous work that is closely related to our method in

this chapter, especially focusing on those using steerable filters for video analysis.

By applying the steerable filtered features, Wildes and Bergen [132] presented an

approach for qualitative spatio-temporal analysis using an oriented energy represen-

tation. This work is deemed as the representational substrate for indexing videos and

other spatio-temporal data.

Derpanis and Gryn [22] detailed the construction of three-dimensional separable

steerable filters, which extends the construction of two-dimensional separable steer-

able filters outlined in [28]. The separable and steerable implementations lead to

compact and efficient computation.

With the quadrature outputs of the steerable filters, local oriented energy rep-

resentations have been explored for spatio-temporal grouping [24], efficient action

spotting [23] and visual tracking [16].

Derpanis et al. [24] adopted an oriented energy representation for grouping raw

image data into a set of coherent spatio-temporal regions. This representation de-

scribes the presence of particular oriented spatio-temporal structures in a distributed

manner to capture multiple oriented structures at a given location. They further

designed a descriptor based on the oriented energy measurements for action spotting

[23].

Along the same line, Cannons et al. [16] proposed a pixel-wise spatio-temporal

oriented energy representation for visual tracking. The proposed representation is ex-

tremely rich, as it includes appearance and motion information as well as information

about how these descriptors are spatially arranged.

Recently, Saraband and Cors [95] presented a high-level representation, i.e., ac-

tion bank, for human action recognition in which oriented energy features are used

to generate action templates for bank detectors and a spatio-temporal orientation
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decomposition is realised using broadly tuned 3D Gaussian third derivative filters.

4.3 Spatio-temporal steerable pyramid

Similar to STLPC in Chapter 3, we view a video sequence as a spatio-temporal

intensity volume that contains all structural and motion information of the action,

including poses of the human figure at any time as well as the dynamic transitions

between the poses. Inspired by the success of spatio-temporal Laplacian pyramid

(STLP) in Chapter 3, we incorporate the STLP structure as the first step to construct

the global descriptor in this chapter. To efficiently explore the orientation features,

instead of using Gabor filters, we propose to apply the spatio-temporal steerable filters

on each level of the Laplacian pyramid, thus yielding the spatio-temporal steerable

pyramid (STSP).

4.3.1 Spatio-temporal steerable filtering

Local oriented structures are important for the representation of spatio-temporal data,

especially in motion analysis. From a purely geometric point of view, orientation

captures the local first-order correlation structure of a pattern [132]. Motion can be

perceived as patterns of appropriate spatio-temporal orientation. Spatio-temporal

oriented filters are suitable for analysis of motion because they are able to explore

orientation information both spatially and temporally.

A steerable filter [28] is an orientation-selective convolution kernel used for image

enhancement and feature extraction that can be expressed via a linear combination

of a small set of rotated versions of itself. For any spatio-temporal function f(x, y, t),

f θ(x, y, t) is f(x, y, t) rotated through an angle θ about the origin. This can be

formulated as follow:

f θ(x, y, t) =
M∑
j=1

kj(θ)f θj(x, y, t). (4.1)

We use the second-order derivative of Gaussian Gθ
2 with multiple scales as the steer-
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Figure 4-2: (a) and (b): The quadratic pair of the responses from the steerable filters
in three orientations; (c): The local energies of the quadratic pairs.
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able basis. Hθ
2 is its Hilbert transform. The quadrature pair allow for analysing

spectral strength independent of phase. They are widely used for motion, texture

and orientation analysis [1, 12, 38, 81]. To be computationally efficient, we adopt the

three-dimensional separable steerable filter [22]. Fig. 4-2 (a) and (b) illustrates the

examples of the quadratic pair of the responses from the steerable filters in three ori-

entations on the first level of the Laplacian pyramid. We can easily see that features

in different orientations are enhanced.

4.4 Feature extraction

Actions occurring in a video sequence are mainly composed of appearance and motion.

To explicitly exploit and capture them, we build the STSP descriptor on the low-level

features including the intensity, gradients and optical flow.

4.4.1 Low-level features

We applied STSP to the spatio-temporal volumes with intensity, gradients and optical

flow to extract the features, respectively.

Intensity To capture the appearance of actions, subtraction is performed be-

tween adjacent frames in each raw video sequence, obtaining a volume with differ-

ence of frames (DoF). The motion-related human body information is enhanced and

backgrounds are largely suppressed.

Gradients To extract local intensity changes, we have also applied STSP to

the 3D gradients of the volume with DoF. More specifically, for each voxel, we first

compute the gradients, Gx, Gy and Gt along X, Y and T , and then perform STSP

on two volumes: Gxt = Gt/(|Gx|+ 1) and Gyt = Gt/(|Gy|+ 1).

Optical flow With regards to motion, we use the Lucas-Kanade method [73] to

estimate the optical flow in horizontal and vertical directions, which is efficient to

compute. The volumes with DoF and optical flow will then be fed into the STSP.
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4.4.2 Local oriented energies

Actions can be regarded as spatio-temporal patterns with energies in different ori-

entations. In light of the previous work [132], to eliminate the phase variations, we

produce a measure of local energy E(x, y, t) within each scale and orientation.

Consider a point (x, y, t) in a video sequence. Its energy for a certain orientation

can be obtained by the following formula:

Eθ(x, y, t) = [Gθ
2 ∗ I(x, y, t)]2 + [Hθ

2 ∗ I(x, y, t)]2, (4.2)

where I(x, y, t) is a spatio-temporal volume.

The local energy is a motion measurement of phase independence. Since local

energies are calculated from the quadratic pair of the outputs of the steerable filtering,

motion patterns with multiple scales and orientations are efficiently captured. The

local oriented energy model provides a robust and efficient representation of actions.

The example of the local energies is shown in Fig. 4-2 (c), in which we can see that

motion-related features are highlighted and more invariant in the measurement of

local energies.

4.4.3 Feature pooling

Inspired by the success of max pooling techniques for spatio-temporal feature pooling

in Chapter 3, we also incorporate the spatio-temporal max pooling into STSP to

obtain insensitivity to image transforms, more compact representations, and better

robustness to clutter [11].

4.4.4 Dimensionality reduction

Based on the experimental results in Chapter 2 and Chapter 3, to obtain a more

compact representation, a dimensionality reduction technique named discriminative

locality analysis (DLA) [144] has be employed for feature reduction. Principal com-

ponent analysis (PCA) has also been used for comparison.
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#Level 0 1 2 3 4

Intensity 83.5% 86.0% 88.5% 89.3% 87.0%
DoF 87.5% 89.5% 91.3% 92.1% 91.5%

Optical Flow 87.6% 90.1% 91.0% 91.1% 91.1%
Gradients 90.8% 91.5% 92.1% 92.5% 92.3%

DoF + Optical Flow 90.0% 93.5% 93.3% 93.2% 93.5%
DoF + Gradients 90.0% 93.5% 94.1% 94.5% 94.3%

DoF + Optical flow + Gradients 91.0% 92.6% 93.8% 94.2% 94.0%

Table 4.1: Performance of STSP with different levels of the Laplacian pyramid on
KTH.

4.5 Experiments and results

We evaluate the proposed method, i.e., STSP, on the baseline KTH dataset, the UCF

Sports and the newly released HMDB51 dataset. In order to investigate the effect

of parameters of the model, we have done comprehensive experiments to evaluate

different numbers of levels of the pyramid, and the contribution of discriminative

locality alignment (DLA) has also been evaluated by the comparison with principal

component analysis (PCA). In addition, as the max pooling is integration component

of the model, we have also conducted experiments to explore the performance of max

pooling.

4.5.1 Experimental settings

We follow the validation settings in Chapter 3 on all the datasets. We have delib-

erately used very coarsely extracted bounding boxes or even no bounding boxes for

the HMDB51 dataset to demonstrate the effectiveness of our method in realistic s-

cenarios. With advanced person detection and tracking techniques, more accurate

bounding boxes are possible and will undoubtedly lead to even better performance of

the proposed STSP descriptor. A linear support vector machine (SVM) is used for

action classification [18].
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4.5.2 Parameter evaluation

The results on the KTH, UCF Sports and HMDB51 datasets are illustrated in Ta-

ble 4.1, Table 4.2 and Table 4.3. We can see from the tables that the recognition rates

increase with the increase of the level number of the pyramid for all the features and

their combinations, which shows the effectiveness of the Laplacian pyramid. Note that

the best results on KTH and UCF Sports occur with the three-level Laplacian pyra-

mid, while on HMDB51 they happen with the four-level Laplacian pyramid, which

implies that more information is needed to encode actions in this dataset because of

its complexity and large intra-class variations. Compared with the 3D Gabor filters,

3D steerable filters are computationally more efficient. For a video sequence, the run

time of 3D Gabor filters and steerable filters are 34.9s and 335.2s, respectively.

On the KTH dataset in Table 4.1, it can be seen that the use of DoF does improve

the performance, which demonstrates that DoF is capable of suppressing backgrounds

and validates the use of DoF.

In addition, it is obvious that feature combinations can significantly improve the

performance and the best results are achieved by DoF + Gradients. The combination

of DoF, gradients and optical flow has achieved better results than each single feature

while slightly lower than DoF + Gradients.

The results on UCF Sports shown in Table 4.2 are consistent to those on KTH,

namely DoF significantly improves the performance over intensity without DoF. S-

lightly different from those on KTH, the best results happen with the combination of

DoF, optical flow and gradients, which manifests the complementarity of these three

features. Also we can see that any combination of two features, i.e., DoF + Optical

Flow or DoF + Gradients, outperforms single features.

The results on the HMDB51 dataset are reported in Table 4.3. The HMDB51

dataset is regarded as a very challenging dataset with realistic actions. We use the

original video sequences without any bounding boxes to demonstrate the capability

of our method on totally unconstrained data. The trends of the performance on this

dataset are generally consistent with those on KTH. Multiple levels of the pyramid
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#Level 0 1 2 3 4

Intensity 63.6% 65.4% 66.3% 68.4% 67.1%
DoF 64.4% 74.1% 74.8% 73.6% 72.9%

Optical Flow 68.3% 73.8% 73.7% 73.6% 73.6%
Gradients 65.7% 69.0% 69.7% 69.7% 68.3%

DoF + Optical Flow 65.8% 76.0% 77.3% 76.7% 76.7%
DoF + Gradients 65.6% 76.6% 78.0% 78.0% 78.0%

DoF + Optical flow + Gradients 71.0% 79.4% 80.1% 80.7% 80.7%

Table 4.2: Performance of STSP with different levels of the Laplacian pyramid on
UCF Sports.

#Level 0 1 2 3 4

Intensity 18.3% 21.5% 22.5% 21.5% 21.2%
DoF 21.1% 24.1% 24.8% 25.0% 25.6%

Optical Flow 20.5% 23.1% 25.7% 28.1% 28.1%
Gradients 17.9% 19.2% 20.9% 20.5% 21.4%

DoF + Optical Flow 24.6% 27.2% 29.7% 31.0% 31.7%
DoF + Gradients 20.4% 24.4% 25.9% 27.0% 27.8%

DoF + Optical flow + Gradients 24.6% 27.1% 29.7% 31.0% 31.6%

Table 4.3: Performance of STSP with different levels of the Laplacian pyramid on
HMDB51.

increases the performance compared with a single level. Slightly different to KTH,

DoF appears to be more effective on HMDB51, which is reasonable because the back-

ground variations and clutter in the realistic dataset are more serious. In addition,

the best result -31.7%- is achieved by the combination of DoF and Optical Flow. The

result of the combination of DoF, Gradients and Optical Flow is comparable with

the best result by DoF + Optical Flow. As we can see from Fig. 4-5, the action-

s in this dataset are realistic and challenging with complex background variations,

while results on the HMDB51 dataset are encouraging in that no bounding boxes and

tracking are used in our method.

It would be interesting to look into the results. We plot the confusion matrix of

the results for each action category in Fig. 4-3 for the KTH dataset. The results are

achieved by the combination of DoF and Optical Flow. We can see from the confusion

matrix that STSP can successfully recognise Boxing, HandClappling, HandWaving
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Figure 4-3: The confusion matrix of the results on KTH.

and Walking, with recognition rates of 100%. The recognition errors mainly happen

on Jogging and Running which are difficult to distinguish even with the human eye.

This is reasonable as these two actions share many similar motion patterns, and are

almost the same sequence. Encouragingly, STSP can fully distinguish Walking from

Running and Jogging, both of which are quite similar to Walking and cause confusion

for recognition.

The confusion matrix for the UCF Sports dataset is plotted in Fig. 4-4. The

illustrated are the results of the combination of DoF, Optical Flow and Gradients.

STSP can successfully recognise the Kicking action with 100% recognition rate. The

action SkateBoarding-Front is severely confused with the action Golf. Looking into

these two actions, we find that they share similar appearances in many video samples.

For the HMDB51 dataset, the confusion matrix of the average recognition rates

over the three splits is plotted in Fig. 4-5. The results are achieved by the combination

of DoF and Gradients. In spite of the challenges in this dataset, STSP is still able to

recognise a few actions such as pullup, pushup and climb with relatively high accura-

cies, which demonstrates the potential of STSP for the recognition of unconstrained

realistic actions.
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Figure 4-4: The confusion matrix of the results on UCF Sports.

#level 0 1 2 3 4

KTH
Max Pooling 87.5% 89.5% 91.3% 92.1% 91.5%

Average Pooling 86.3% 88.5% 90.1% 89.6% 89.9%

UCF Sports
Max Pooling 64.4% 74.1% 74.8% 73.6% 72.9%

Average Pooling 66.9% 67.2% 70.1% 67.3% 68.6%

HMDB51
Max Pooling 21.1% 24.1% 24.8% 25.0% 25.6%

Average Pooling 20.9% 21.2% 22.9% 23.5% 23.7%

Table 4.4: Performance of STSP with and without max pooling on the KTH, UCF
Sports and HMDB51 datasets. Note that these results are obtained using DoF as the
input.

4.5.3 Feature pooling

To investigate the contribution of max pooling to the overall performance of our

method, we have conducted experiments to compare the results with and without

max pooling. Note that these experiments are carried on the features with DoF. The

results are shown in Table 4.4. As expected, the max pooling operation does improve

the performance on all the three datasets.

Interesting, the max pooling operation makes a more impact on the realistic

datasets, i.e., UCF Sports and HMDB51, than the KTH dataset.
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Figure 4-5: The confusion matrix of the results on HMDB51.
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#level 0 1 2 3 4

DLA 90.0% 93.5% 94.1% 94.5% 94.3%
PCA 88.8% 91.6% 92.3% 91.8% 91.8%

Table 4.5: Performance of STSP with different dimensionality reduction techniques
on the KTH dataset. The results are obtained by DoF + Gradients.

#level 0 1 2 3 4

DLA 71.0% 79.4% 80.1% 80.7% 80.7%
PCA 64.3% 67.5% 70.2% 70.2% 70.2%

Table 4.6: Performance of STSP with different dimensionality reduction techniques
on the UCF-Sports dataset. The results are obtained by DoF + Optical flow +
Gradients.

4.5.4 Dimensionality reduction

The results of using discriminant locality alignment (DLA) and principal component

analysis (PCA) for dimensionality reduction are shown in Table 4.5, Table 4.6 and

Table 4.7 for KTH, UCF Sports and HMDB51, respectively. We use the same settings

as in Chapter 3 that we keep 98% energy both for PCA and DLA.

On all three datasets, DLA consistently outperforms PCA with all levels of the

pyramid, which validates the use of DLA for dimensionality reduction in action recog-

nition. Interestingly, we can find in Table 4.5 and Table 4.7 that the performance

does not change significantly with different numbers of levels of the Laplacian pyramid

when PCA is used for feature reduction. With DLA, we find that the performance

increases with the increase of the level number of the Laplacian pyramid, which indi-

cates that DLA can effectively extract the discriminative information residing in each

level of the Laplacian pyramid.

4.5.5 Comparison with state of the art

In Table 4.8, we conduct the comparison of STSP with the state-of-the-art methods

on the KTH dataset. To make fair comparisons, we only compare with the published

results using holistic representations. STSP outperforms all the holistic methods
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#level 0 1 2 3 4

S1
DLA 26.7% 28.8% 32.5% 33.5% 33.7%
PCA 27.5% 28.1% 27.4% 27.7% 27.4%

S2
DLA 25.8% 28.3% 30.7% 32.3% 33.2%
PCA 23.9% 25.4% 24.4% 24.7% 24.9%

S3
DLA 21.4% 24.4% 25.8% 27.2% 28.1%
PCA 23.9% 24.3% 24.6% 24.9% 24.7%

Average
DLA 24.6% 27.2% 29.7% 31.0% 31.7%
PCA 25.1% 25.9% 25.4% 25.8% 25.7%

Table 4.7: Performance of STSP with different dimensionality reduction techniques
on the HMDB51 dataset. S1, S2 and S3 denote the three training/test splits.

Methods Accuracy

STSP 94.5
Jhuang et al. [46] 91.7

Schindler et al. [97] 90.9
Yeffet et al. [139] 90.1
Taylor et al. [111] 90.0

Jr et al. [47] 90.2

Table 4.8: A longitudinal performance comparison of different methods on the KTH
dataset.

listed in the table. Moreover, STSP works more efficiently than other methods such

as in [111, 47] in which deep learning, and convolutional neural networks are used,

respectively. The comparison with state-of-the-art results on the UCF Sports and

HMDB51 datasets are illustrated in Table 4.9 and Table 4.10.

Method Accuracy

STSP 80.7%
Yeffet et al. [139] 79.3%

Rodriguez et al. [92] 69.2%

Table 4.9: Performance comparison of different methods on the UCF Sports dataset.
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Method Accuracy

STSP 31.7%
Kuehne et al. [58] 22.8%

Saraband et al. [95] 26.9%
Orit et al. [55] 29.2%

Table 4.10: Performance comparison of different methods on the HMDB51 dataset.

4.6 Conclusion

In this chapter, we have introduced a compact and efficient holistic representation of

human actions. By decomposing a video sequence with a Laplacian pyramid, spatio-

temporal salient features with various sizes can be well localised and enhanced. Multi-

scale steerable filters can efficiently extract features in multiple scales and orientations.

The spatio-temporal max pooling operation makes features more compact but robust.

Extensive experiments have been conducted to investigate the influence of differ-

ent components and parameters, i.e., the difference of frames (DoF), the max pooling

operation and dimensionality reduction techniques. The results validate their effec-

tiveness.

In contrast to existing holistic representation methods, most of which depend

heavily on accurate and even carefully-tuned tracking and localisation algorithms,

the proposed method can work well with coarse or even no bounding boxes. Fur-

thermore, due to the use of three-dimensional separable steerable filters, the spatio-

temporal filtering can be efficiently performed. Evaluations on three increasingly

difficult datasets, i.e., KTH, UCF Sports and HMDB51, demonstrate that the pro-

posed STSP is a promising global descriptor for human action recognition.

4.7 Summary of holistic methods

Up until now, we have proposed three global descriptors for holistic representations

of human action. We summarise their performance in Table 4.11.

On the KTH dataset, the three descriptors produce comparable results. STLPC
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Methods KTH UCF Sports HMDB51
SP+MHI 93.5% 93.9% -
STLPC 95.0% 93.9% 37.3%
STSP 94.5% 80.7% 31.7%

Table 4.11: The summary of performance of holistic methods.

and STSP slightly outperform SP + MHI. Because both STLPC and STSP take a

video as a whole, all the cues of actions including structure and motion features are

well preserved and therefore they are more descriptive than SP + MHI.

On the UCF Sports dataset, SP + MHI produces comparable results with STLPC.

The reason is that this dataset contains sports actions with backgrounds closely re-

lated to the actions, so it could be meaningful by sparsely sampling few frames to

represent the video sequence. The appearance of actions in this dataest is more im-

portant than motion. This could also explain why SP performs much better than

MHI in this dataset. STSP can not yield comparable results with SP + MHI and

STLPC which could be due to that the computed optical flow and gradients are not

accurate and can not provide complementary information to DoF.

On the HMDB51 dataset (Note that this dataset released after our SP + MHI

method.), the performance of STSP is lower than STLPC which is consistent to the

results on the KTH dataset.
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Chapter 5

A Performance Evaluation on

Local Methods

5.1 Introduction

Local methods based on spatio-temporal local features have drawn increasing atten-

tion from researchers in visual recognition. In this chapter, we do a comprehensive

evaluation of local methods that have demonstrated to be effective and successful in

both image/object classification and action recognition.

5.1.1 Motivations

Local features have played an important role in visual recognition. Methods based

on local features, e.g., the bag-of-words (BoW) model and sparse coding, have shown

their effectiveness for image and object recognition in the past decades. Recently,

many new techniques, including the improvements to BoW and sparse coding as well

as the non-parametric naive Bayes nearest neighbour (NBNN) classifier, have been

proposed and advanced the state-of-the-art in the image domain.

However, in the video domain, the BoW model still dominates the action recogni-

tion field. It is unclear how effective the state-of-the-art techniques widely used in the

image domain would perform on action recognition. To fill this gap, we aim to imple-
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ment and provide a systematic study on these techniques for action recognition, and

compare their performance under a unified evaluation framework. Other techniques

such as match kernels, which have also demonstrated their potential in handling local

features, are also included for a comprehensive evaluation.

5.1.2 Contributions

The contributions of the work in this chapter lie in the following two aspects.

• We transfer some effective techniques including variants of the BoW model

and sparse coding (SC), the naive Bayes nearest neighbour (NBNN) classifier and

match kernels from the image domain to the video domain.

• We extensively evaluate the basic and widely used methods, i.e., BoW, SC,

NBNN and match kernels, for action recognition, which can be taken as a baseline

for the feature research.

5.2 Related work

Performance evaluations have gained increasing attention in computer vision with a

large number and variety of algorithms being developed. Plenty of evaluation and

analysis work has been conducted both in the image domain [79, 142, 17, 117, 20, 19]

and on action recognition [125, 101, 21, 110, 27].

A recent work [20] closely related to ours investigated the performance of unsuper-

vised feature learning algorithms with single-layer networks on image classification.

Surprisingly, the best performance from their evaluation is obtained by the BoW

model with the so-called triangle assignment coding. In addition, Chatifeld et al.

[19] presented a comprehensive evaluation and deep analysis of the feature encoding

methods within the BoW model for image classification.

Two important evaluation works on action recognition were conducted by Wang

et al. [125] and Shao and Mattivi [101]. They evaluated and compared the perfor-

mance of different detectors and descriptors as well as their combinations for action

recognition. However, both of them used only the standard BoW model for action
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representation with a support vector machine (SVM) classifier.

Campos et al. [21] have compared the BoW model with spatio-temporal shapes

(STS) for action recognition. Two versions of the BoW-based methods, namely

spatially-constrained BoW (SBoW) and local-BoW (LBoW), were considered. The

3-dimensional histogram of oriented gradients (HOG3D) [54] was employed as the

spatio-temporal descriptor.

Tamrakar et al. [110] evaluated low-level features and their combinations for

complex event detection. Extensive low-level features, including static visual features

and dynamic visual features, are adopted for comparison. Again, the BoW model has

been utilised as the final representation in their work.

Recently, Everts et al. [27] have done an evaluation on colour STIPs for hu-

man action recognition. By incorporating the chromatic representations into the

spatio-temporal domain, they reformulated the STIP detectors and descriptors for

multi-channel video representation, which are shown to outperform the intensity-

based counterparts.

The above evaluations were either in the image domain or centred on the BoW

model. In this chapter, we are focused on the evaluation of state-of-the-art techniques

on action recognition in the video domain.

5.3 Methods

In this section, we will review the coding methods of local feature to be evaluated in

this chapter.

5.3.1 The Bag-of-words (BoW) model

Local features in the training set are first clustered to create a codebook [120]. All

the video sequences are represented by coding local features with the visual words in

the pre-learned codebook. The coding methods to be used in the BoW model include

the hard assignment, the soft assignment [118], the triangle assignment [20] and the

localised soft assignment [69].
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Before describing the details of all the coding methods, we first define the notations

used in both the BoW model and sparse coding (SC). Let bi denote a visual word

or a basis vector, and BD×M denote a codebook or a set of basis vectors, where D

is the dimensionality of the local feature vectors and M is the number of codewords

or bases. x1, . . . ,xi, . . . ,xN are local features from a video sequence, ui ∈ RM is

the coding coefficient vector of xi based on the codebook or basis vectors. uij is the

coefficient associated with the word bj.

• Hard assignment coding

In the hard assignment coding, the coefficient of each local feature is determined

by assigning this feature xi to its nearest codeword in the codebook using a certain

distance metric. If the Euclidean distance is used, then

ui,j =

1 if j = arg minj=1,··· ,M ||xi − bj||22

0 otherwise.

(5.1)

• Soft assignment coding

In the soft assignment coding, The coefficient ui,j is the degree of membership of

a local feature xi to the jth codeword.

uij =
exp(−β||xi − bj||22)∑M
k=1 exp(−β||xi − bk||22)

(5.2)

where β is the smoothing factor controlling the softness of the assignment.

• Triangle assignment coding

The triangle assignment coding was proposed in [20]. The coding is defined by

the following activation function:

uij = max{0, µ(z)− zj} (5.3)

where zj = ||xi−bj||2 and µ(z) is the mean of elements of z. This activation function

forces the output to be 0 for any feature xi whose distance to the codeword bj is

larger than the average of all distances. As a result, roughly half of the weights will

be set to 0.
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• Localised soft assignment coding (LSC)

By combining the ideas of localisation and the soft assignment coding, Liu et al.

[69] proposed localised soft-assignment coding (LSC). The activation function takes

the form in Eq. (5.2), but with the locality constraint as follows:

d(xi,bj) =

d(xi,bj), if bj ∈ Nk(xi)

∞ otherwise.

, (5.4)

where d(xi,bj) = ||xi − bj||22, and Nk denotes the k-nearest neighbours of xi defined

by the distance d(xi,bj).

5.3.2 Sparse coding

In sparse coding (SC), a local feature is represented by a linear combination of a

sparse set of basis vectors. The coding coefficient is obtained by solving an l1-norm

regularised approximation problem [75]:

ui = arg min
u∈Rn

||xi −Bu||22 + λ||u||1, (5.5)

where λ controls the sparsity of the coefficients.

• Locality-constrained linear coding (LLC)

Instead of enforcing sparsity in SC, LLC [127] confines a local feature xi to be

coded by its local neighbours in the codebook. The locality constraint ensures that

similar patches would have similar codes. The coding coefficient is obtained by solving

the following optimisation problem:

ui = arg min
u∈Rn

||xi −Bu||22 + λ||di ⊙ u||22,

s.t. 1Tui = 1 (5.6)

where ⊙ denotes element-wise multiplication, and di ∈ RM is the locality adaptor

that gives different freedom for each basis vector proportional to its similarity to the

99



input descriptor xi. Specifically,

di = exp[−dist(xi,B)

σ
] (5.7)

where dist(xi,B) = [dist(xi,b1), ..., dist(xi,bM)]T , and dist(xi,bj) is the Euclidean

distance between xi and bj. σ is used for adjusting the weight decay speed for the

locality adaptor. As an approximation of LLC, one can simply use the k nearest

neighbours of xi as the local bases Bi, and solve a much smaller linear system.

5.3.3 Match kernels

Match kernels between sets of local features have long been exploited [122, 74]. The

kernel function is computed to measure the similarity between two images/video

sequences represented by sets of local feature vectors.

Given two feature sets, Fa = {x(a)
1 , . . . ,x

(a)
|Fa|} and Fb = {x(b)

1 , . . . ,x
(b)
|Fb|}, the

summation kernel is defined as:

KS(Fa,Fb) =
1

|Fa|
1

|Fb|

|Fa|∑
i=1

|Fb|∑
j=1

KF (x
(a)
i ,x

(b)
j ), (5.8)

where KF is the kernel of local features.

In [122], a kernel function (the max-sum kernel) for matching local features was

proposed:

KM(Fa,Fb) =
1

2

|Fa|∑
i=1

max
j=1,...,|Fb|

KF (x
(a)
i ,x

(b)
j )

+
1

2

|Fb|∑
j=1

max
i=1,...,|Fa|

KF (x
(b)
j ,x

(a)
i ) (5.9)

This match kernel has been used in object recognition [122] and action classifica-

tion [60]. Lyu et al. [74] has proven it to be a non-Mercer kernel, and proposed a

normalised sum-match kernel which satisfies the Mercer condition and is defined as
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follows:

KF(Fa,Fb) =
1

|Fa|
1

|Fb|

|Fa|∑
i=1

|Fb|∑
j=1

[KF (x
(a)
i ,x

(b)
j )]p, (5.10)

where p is the model parameter.

5.3.4 Naive Bayes nearest neighbour (NBNN)

Naive Bayes Nearest Neighbour (NBNN) is an approximation of the optimal MAP

(maximum a posteriori) Naive-Bayes classifier. Given an image Q represented as a

set of local features, x1, . . . ,xN , when the class prior p(C) is uniform, MAP becomes

the maximum likelihood (ML) classifier:

Ĉ = arg max
C

p(C|Q) = arg max
C

p(Q|C). (5.11)

With the Naive-Bayes assumption that x1, . . . ,xn are i.i.d. given its class C, we have

p(Q|C) = p(x1, . . . ,xn|C) =
n∏
i=i

p(xi|C) (5.12)

p(xi|C) is further approximated using the Parzen density estimation and when the

Parzen kernel keeps only the nearest neighbour and the same kernel bandwidth for

all the classes, the resulting classifier takes the following simple form:

c̄ = arg min
c

∑
x∈X

||x−NN c(x)||2, (5.13)

where
∑

x∈X ||x − NN c(x)||2 is the image-to-class (I2C) distance from the image X

to the class c, and NN c is the nearest neighbour of x in class c.

5.3.5 NBNN kernels

A kernelised version of NBNN has been introduced in [116], which is shown to be

complementary to the standard BoW model. The NBNN kernel takes advantage of
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the main idea in NBNN, by using the Image-to-Class distance. Instead of directly

classifying the image as the class with the minimum I2C distance, they concatenated

the I2C distances from all the classes as a vector, which can be regarded as a high-

level image representation. A linear support vector machine (SVM) is employed for

image classification. The success of the NBNN kernel is largely attributed to the

discriminative representation of an image by the I2C distances to its own class but

also to classes it does not belong to. This representation gains more discriminative

information in contrast to directly using the absolute I2C distance measurement. A

similar idea in [143] has been validated that it is the collaborative representation,

i.e., using samples from all classes to represent the query sample, that improves face

recognition rather than the l1-norm constraint.

The NBNN kernel is based on the normalised sum match kernel [74], and is for-

mulated as:

K(X, Y ) =
∑
c∈C

Kc(X,Y ) =
1

|X||Y |
∑
c∈C

∑
x∈X

∑
y∈Y

kc(x,y), (5.14)

where C = {c} and kc(x,y) is the local kernel between local features. In the NBNN

kernel, kc(x,y) is defined as:

kc(x,y) = ϕc(x)Tϕc(y) = f c(d1x, . . . , d
|C|
x )Tf c(d1y, . . . , d

|C|
y ) (5.15)

Two distance functions have been considered in the original work [116], namely,

f c
1(d1x, . . . , d

|C|
x ) = dcx (5.16)

and

f c
2(d1x, . . . , d

|C|
x ) = dcx − dĉx, (5.17)

where dĉx denotes the closest distance to all classes except for c.
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5.3.6 Local NBNN

McCann and Lowe [77] developed an improved version of NBNN, named local naive

Bayes nearest neighbour (LNBNN), which increases the classification accuracy and

scales better with a large number of classes. The motivation of local NBNN is from

the observation that only the classes represented in the local neighbourhood of a de-

scriptor contribute significantly and reliably to their posterior probability estimation.

Instead of finding the nearest neighbour in each of the classes, local NBNN finds in

the local neighbourhood k nearest neighbours which may only come from some of the

classes. The ”localised” idea is shared with LSC in the BoW model and LLC in SC.

5.4 Experiments and results

We have conducted the experiments on three widely-used datasets including the KTH,

UCF YouTube and HMDB51 datasets. We follow the validation settings that are

commonly used in most of the previous works [125].

5.4.1 Experimental settings

In this section, we give the implementation details of each method evaluated in our

experiments.

• Spatio-temporal local features

We employ the periodic detector proposed by Dollár at al. [25] to detect the

spatio-temporal interest points from the raw video sequences and follow the param-

eter settings in the evaluation work of [125]. As in [20], the three-dimensional his-

togram of oriented gradients (HOG3D) [54] is used to describe each STIP due to its

computational efficiency. The chosen detector and descriptor have shown outstanding

performance in [125, 101]. For BoW and SC, we randomly select 100000 local features

from the training set to learn codebooks and dictionaries.

The spatio-temporal pyramid matching (STPM) [68] can be easily embedded in

the methods to encode the structural information and presumably could improve the
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performance. As our focus is on the comparison between different methods rather

than the overall performance, and we argue that STPM would equally contribute to

each method, STPM is not used in our evaluation framework.

• Feature pooling

In BoW and SC, a final representation P ∈ RM of an action is obtained by pooling

over the coefficients [10]. With average pooling, the jth component of P is obtained

by pj =
∑N

i=1 uij/N . With max pooling, pj is obtained by pj = maxi uij, where

i = 1, 2, · · · , N .

• The BoW model

In the BoW model, the codebooks are created by the k-means clustering algorithm

provided in VLFeat toolbox [120]. In LSC, we follow the parameter settings in the

original work [69] with β set as 10.

• Sparse coding

For sparse coding, we use the open-source optimisation toolbox SPAMS (SPArse

Modelling Software) 1. The dictionary is learned by the algorithm in [75], and the

sparse codes are learned using orthogonal matching pursuit (OMP) [75]. The param-

eter λ in Eq. (5.5) is set 0.15. The number of non-zero coefficients is 10 in the OMP

algorithm. For LLC, we use the released code with the same parameter settings.

• Naive Bayes nearest neighbours (NBNN)

As NBNN is non-parametric, no parameter is required to be tuned, while for

the local NBNN classifier, the single parameter is the number of nearest neighbours

k. We have investigated the effect of k in our experiments. With regard to the

NBNN kernel, we have experimented with the distance function f c
2(d1x, . . . , d

|C|
x ) in

our implementation.

• Match kernels

For the match kernels, we use the linear kernel as the local kernel and the single

parameter p in Eq. (5.10) is set as 9 according to the original work [74]. We also use

the normalised kernel for building the SVM classifier: K(x, y)← K(x,y)√
K(x,x)

√
K(y,y)

.

• Action classification

1http://spams-devel.gforge.inria.fr/
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Methods KTH YouTube HMDB

BoW-Hard 87.9% 58.1% 20.0%
BoW-Soft-Average 85.4% 53.5% 19.6%

BoW-Soft-Max 89.2% 61.2% 24.0%
BoW-Triangle-Average 84.1% 52.5% 20.7%

BoW-Triangle-Max 89.8% 61.0% 25.1%
BoW-LSC 92.5% 59.4% 24.6%

SC-Average 91.0% 56.0% 23.3%
SC-Max 91.5% 59.4% 27.9%
SC-LLC 91.3% 56.2% 24.1%

NBNN 93.9% 57.8% 19.8%
NBNN Kernel 89.2% 62.4% 23.7%
Local NBNN 94.1% 60.1% 21.2%

Match Kernel 86.9% 54.5% 13.7%

Table 5.1: The performance of all methods on three datasets, i.e., KTH, UCF-
YouTube and HMDB51. Note that the results of the match kernel are obtained
by KF .

We use a support vector machine (SVM) [18] classifier for BoW, SC and the match

kernels. Note that a linear kernel instead of the χ2 kernel in [125] is used in BoW

and SC to make fair comparisons.

5.4.2 Results

All the final results on the three datasets are shown in Table 5.1. The size of

the codebook in BoW and the number of bases in SC are hard to pre-determine

while always affect the performance. Therefore, we have investigated the effects and

illustrated the results in Fig. 5-1, 5-2, 5-3, 5-4, 5-5 and 5-6.

On the KTH dataset The best result is 94.1% obtained by the local NBNN clas-

sifier, which is comparable to state-of-the-art results from more complicated methods.

The NBNN classifier achieves the second best result - 93.9%- which is slightly lower

than the local NBNN classifier. In addition, the NBNN kernel gives a result of 89.2%,

which is still better than the baseline hard assignment coding in BoW.

In the BoW model, LSC achieves an accuracy of 92.5% which is impressive con-

sidering its simplicity. The triangle assignment coding with max pooling is better

105



1000 1500 2000 2500 3000 3500 4000 4500 5000
80

82

84

86

88

90

92

The Performances of BoW and its variants on KTH

Codebook Size

A
cc

ur
ac

y 
(%

)

 

 

Hard
Soft−Average
Soft−Max
Triangle−Average
Triangle−Max
LSC

Figure 5-1: The performance of the BoW model and its variants on the KTH dataset.

than both the hard and soft assignment coding techniques, which is consistent with

the report in [20]. Note that our implementation of the baseline hard assignment

coding is lower than that in [125], which would be due to that a χ2 kernel is employed

in their work. The effects of codebooks’ sizes on the BoW model are illustrated in

Fig. 5-1. Most of the methods peak around 4000 codewords except for LSC which

keeps increasing up to 5000 codewords.

In addition, we find that SC-based methods yield relatively better results com-

pared with the BoW model. The ordinary SC with max pooling achieves even better

results than LLC. Both SC and LLC reach the best results with around 3072 bases as

shown in Fig. 5-4. Note that LLC with 100 nearest neighbours outperforms those with

5 and 50, and the trend is the same on the UCF-YouTube and HMDB51 datasets.

On the UCF-YouTube dataset The results on the UCF-YouTube dataset are

slightly different from those on the KTH dataset. The NBNN kernel produces the

best result of 62.4%. The soft assignment coding beats the triangle assignment with

max pooling and LSC, obtaining the best result of 61.2% within the BoW family.

In addition, SC with max pooling outperforms LLC obtaining an accuracy of

59.4% which is comparable with the best result. Note that the NBNN kernel classifier

outperforms NBNN on this dataset.
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Figure 5-2: The performance of the BoW model and its variants on the UCF-YouTube
dataset.
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Figure 5-3: The performance of the BoW model and its variants on the HMDB51
dataset.
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Figure 5-4: The performance of SC and its variants on the KTH dataset.
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Figure 5-5: The performance of SC and its variants on the UCF-YouTube dataset.
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Figure 5-6: The performance of SC and its variants on the HMDB51 dataset.

As shown in Fig. 5-2, the best results happen around 5000 codewords for almost

all the methods. As illustrated in Fig. 5-5, most of the best results for SC and LLC

occur with 4096 bases.

The performance of the match kernels is inferior in this dataset, producing a low

recognition rate of 54.5%.

On the HMDB51 dataset The results on the HMDB51 dataset are similar to

those on the UCF-YouTube dataset, however the best result-27.9%-is obtained by

SC with max pooling. Again, the triangle assignment coding with max pooling gives

the best result within the BoW model. LSC produces a comparable result of 24.6%

with the triangle assignment coding. The performance of the NBNN family is similar

to that on the UCF-YouTube dataset, where the NBNN kernel is better than either

NBNN and local NBNN. The reason would seem that these two datasets contain

realistic actions and the NBNN kernel is more robust than NBNN and local NBNN.

In Fig. 5-3, most of the methods under BoW increase with codewords from 1000

to 5000. In Fig. 5-6, both SC and LLC become stable with the number of bases after

2048 with the best results around 3072.

The match kernels fails to provide reasonable results on this dataset.
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5.4.3 Summary and discussion

The NBNN family produce impressive results on all the three datasets, with high-

est recognition rates by the local NBNN classifier on the KTH and UCF-YouTube

datasets. This is consistent with the results in image and object recognition [9, 116,

77]. However, we can see from Table 5.1 that the superiority of the NBNN fami-

ly becomes less significant on more realistic datasets, i.e., HMDB51, with a larger

number of action categories. This could be due to the assumption in NBNN that

the smoothing parameter, namely the Parzen kernel bandwidth σ, is common to all

categories does not fully hold for large category numbers.

We have also evaluated the performance of the local NBNN classifier with different

numbers of neighbours k in the local neighbourhood, which, however, only slightly

affects the performance with the k ranging from 5 to 30 in our experiments.

Although the bag-of-words (BoW) model has long been criticised for its quantisa-

tion errors, the newly proposed techniques such as the triangle assignment coding with

max pooling and the localised soft-assignment coding (LSC) significantly improve the

baseline hard assignment coding, and achieve the state-of-the-art performance, espe-

cially on the KTH dataset. This is mainly because that the information loss during

the feature quantisation has been compensated by the sophisticated coding techniques

and the powerful classifier, i.e., SVM.

To the best of our knowledge, this is the first time that sparse coding (SC) via

spatio-temporal local features is applied to action recognition. With both average

and max pooling, SC outperforms most of the BoW based methods, which indicates

its potential on action recognition. However, LLC does not outperform SC with max

pooling on the three datasets. This is inconsistent with the report on object recog-

nition in [127]. One reason could be that spatio-temporal features in video are much

noisier than 2D features, which makes the locality constraint in LLC insignificant.

In addition, we can find in Fig. 5-4, 5-5 and 5-6 that LLC can produce reasonable

results with more local neighbours k (over 100) than in the image domain (typically

k = 5), which could be due to the fact that spatio-temporal local features in the video
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domain lie in a higher dimensional space. Therefore, to encode a local feature, more

bases would be needed. We have also experimented with k ranging from 5 to 300.

The performance remains relatively stable after k = 100.

Note that for all the methods using feature pooling, max pooling is significant-

ly better than average pooling both in BoW and SC on the three datasets. This

behaviour is consistent with that in image classification [10].

Interestingly, the locality constraint and max pooling have been demonstrated to

be more effective in the BoW model, e.g., LSC significantly improves the performance

of BoW. Indeed, the local NBNN classifier can also be regarded as imposing the local-

ity constraint on the original NBNN with max pooling if the distance to a neighbour

is deemed as the inverse of similarity.

Finally, the recognition rates of the match kernels are relatively low but are com-

parable to some of the methods in the BoW model such as the hard assignment,

the soft and triangle assignments with average coding, especially on the KTH and

HMDB51 datasets. With regard to match kernels, we have also experimented the

max-sum kernel KM , however, it performs much worse than the normalised sum k-

ernel KF and even fails to produce reasonable results on the UCF-YouTube dataset.

This could be because it does not meet the Mercer condition and cannot guarantee

that the optimisation in SVM training is convex [17].

5.5 Conclusion

In this chapter, we have transferred the state-of-the-art techniques, which have been

widely used and shown effectiveness in the image domain, to action recognition. Ex-

tensive experiments have been conducted to systematically evaluate and compare

these techniques on three benchmark datasets: KTH, UCF-YouTube and HMDB51.

Moreover, we have also provided experimental and theoretical insights into the

performance of each method and drawn useful conclusions from findings in the ex-

periments. As many of the techniques are innovated in the image domain and have

not yet been applied to action recognition, our work can serve as guidance for future
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research in action recognition.
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Chapter 6

Discriminant Embedding via

Image-To-Class Distances

6.1 Introduction

In Chapter 5, we have done a comprehensive evaluation on local methods for human

action recognition. One of most interesting findings is that the image-to-class distance

based methods, i.e., naive Bayes nearest neighbour (NBNN), the NBNN kernel and

local NBNN, have shown good performance. In this chapter, based on the image-to-

class distances, we propose an algorithm for discriminative dimensionality reduction

of local feature descriptors.

6.1.1 Motivations

Local features play a key role in visual recognition, e.g., image classification and

action recognition. Classification based on local features is still a challenging task

due to the large intra-class variances and noisy local features. Widely-used local fea-

ture descriptors including SIFT [70], HOG3D [54] and HoG/HoF [61] have shown

their effectiveness in image and video domains. However, local features suffer from

deficiencies. On the one hand, due to background variation and clutter, local fea-

tures from backgrounds could be detected as motion-related features leading to less
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Figure 6-1: Matching by SURF between two images that belong to the same seman-
tic category. The illustrated matched points are those with distances less than a
threshold.

discriminative representation of human actions. In addition, similar local features

would be shared by different actions which will also make the representation less dis-

criminative. The discriminative ability of local features would greatly influence the

performance of later representation and classification. On the other hand, current

local feature descriptors, such as HOG3D, Cuboids and HOG/HOF, are always in

a space of hundreds even thousands of dimensions, which could be computationally

expensive and even intractable when the number of local features is huge.

The bag-of-words (BoW) model and sparse coding have been extensively exploited

to encode local features as a global representation. The fact is that even images

belonging to the same class would contain quite a large proportion of dissimilar local

features which enlarge the intra-class variance, and make directly comparing local

features in images not optimal for classification. Fig. 6-1 illustrates that the matched

points found by SURF [4] between two images belonging to the same car category

are all wrong.

Instead of directly comparing local features from different images, recently, a non-

parametric approach named naive Bayes nearest neighbour (NBNN) [9] was proposed

for image classification in which the image-to-class (I2C) distance is used. Being

conceptually simple, NBNN has achieved state-of-the-art performance comparable

with other sophisticated learning algorithms. The success of NBNN is credited to the

use of the I2C distance, which has been proven to be the optimal distance to use in
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image classification rather than the image-to-image (I2I) distance [9]. It is the I2C

distance that effectively deals with the huge intra-class variances of local features.

However, the performance of the I2C-based methods depends highly on the effec-

tiveness of local features because they essentially contribute to the calculation of the

I2C distance. The I2C-based methods will be computationally expensive or even in-

tractable with a huge number of local features, especially when the local features are

in a high-dimensional space. In addition, the discriminative ability of local features

will directly affect the performance of the I2C distance. For instance, local features

with noise or from a background would degrade the performance of I2C for classi-

fication. Therefore, finding a low-dimensional space to represent the local features

becomes very attractive.

Dimensionality reduction techniques such as principal component analysis (PCA)

can be used to project the features into a low-dimensional space, which has been

exploited in [25, 53] for image classification and action recognition. Unfortunately,

PCA is an unsupervised feature reduction method treating each local feature equally

without considering the label information of images and therefore suffers from being

less discriminative in the low-dimensional space. Unsupervised nonlinear dimension-

ality reduction (manifold learning) methods such as Locally Linear Embedding (LLE)

[93], ISOMAP [112] and Laplacian Eigenmap (LE) [6] suffer from a crucial limitation

that the embedding does not generalise well from training to test data due to the

out-of-sample problem. Moreover, similar to PCA, as unsupervised learning, their

discriminative ability is also limited without using class label information.

In addition, some local features could be visually similar or shared by images

in different classes, which is demonstrated in Fig. 6-2. Therefore, the use of con-

ventional discriminant dimensionality reduction techniques, e.g., linear discriminant

analysis (LDA), is suboptimal because LDA, when applied to local features, attempt-

s to minimise the within-class variance of different local features and maximise the

between-class variance of different local features together.

In this chapter, with the aim of improving the image-to-class distance based meth-

ods, we propose a novel dimensionality reduction method by incorporating the I2C
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Figure 6-2: Illustration of local patches from different image categories. The local
patches ’eyes’ from images in different categories can be similar and are close to each
other in the feature distribution, while the local patches such as ’eyes’, ’noses’ and
’ears’ are distinctive to each other even though they could be detected from the same
image categories.
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distance. The use of the I2C distance benefits in two aspects. On the one hand, local

features from one image are taken into consideration as a whole and class labels can

be directly used for supervised learning. This increases the discriminative capacity

of local features. On the other hand, it provides an intuitive and effective avenue

to couple the dimensionality reduction of local features with classification, which can

improve the performance of classification. In the low-dimensional space, local features

from each image are aligned according the I2C distances and the I2C distance to its

own class is minimised; the I2C distances to other classes are maximised.

6.1.2 Contributions

Our work contributes in the following aspects:

• A novel discriminative subspace learning algorithm based on the I2C distances

is proposed for the dimensionality reduction of local features;

• In the embedded low-dimensional space, I2C-based methods are speeded up,

scale well with a large numbers of local features and therefore become tractable in

real-world applications;

• We formulate the method as an eigenvector decomposition problem, which can

be more efficiently solved with a gradient descent algorithm.

6.2 Related work

In this section, we review the related work including the image-to-class distance based

methods and linear dimensionality reduction techniques.

6.2.1 Image-to-class based methods

The image-to-class (I2C) distance was first introduced by Bioman et al. [9] in the

naive Bayes nearest neighbour (NBNN) classifier. Based on the NBNN, several vari-

ants including the NBNN kernel, optimal NBNN and local NBNN have recently been

proposed to improve performance. In addition, a metric learning algorithm based
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on image-to-class distance has also been explored which is also closely related to our

method.

• Naive Bayes nearest neighbour (NBNN)

NBNN is a non-parametric algorithm for image classification based on local fea-

tures. With the naive Bayes assumption, NBNN is simple while in contrast to para-

metric learning algorithms, NBNN enjoys many attractive advantages. It requires no

training stage and can naturally deal with a huge number of classes. Due to the use of

the I2C distance calculated on original local features, NBNN can get rid of descriptor

quantisation errors. The core of NBNN is the approximation of the log-likelihood

of a local feature by the distance to its nearest neighbour, which brings about the

image-to-class (I2C) distance. Taking advantage of the I2C distance, several variants

of NBNN have been proposed in the past few years to improve the generalisation

ability of NBNN.

Under the NBNN framework, to improve the performance of the original NBN-

N, several variants have recently been proposed including optimal NBNN [5], the

NBNN kernel [116], local NBNN [77] and pooled NBNN [89] which have shown their

effectiveness for scene/image classification.

• Image-to-class distance metric learning

By combining distance metric learning with the I2C distance measurement, Wang

et al. [129] adopted the idea of a large margin from SVMs and proposed a method

named I2C distance metric learning (I2CDML) to learn a distance metric specific to

each class. They formulated a convex optimisation problem with the constraint that

the I2C distance of each training sample to the class to which it belongs should be less

than those to other classes by a large margin. However, as a conventional distance

metric learning algorithm, I2CDML suffers from a major drawback that the number

of parameters to be learned grows quadratically with the dimensionality of the data,

which tends to be intractable with high-dimensional data.
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6.2.2 Linear dimensionality reduction

In terms of linear dimensionality reduction, our method is closely related to classical

dimensionality reduction techniques, including principal component analysis (PCA),

linear discriminant analysis (LDA) and local discriminant embedding (LDE) [40]. We

will give brief descriptions of those dimensionality reduction techniques to show the

relationship with our method. Given a set of feature descriptors {xn} with high

dimensionality D, where n = 1, . . . , N , dimensionality reduction techniques aim to

find a projection to map the feature descriptors into a lower-dimensional space d.

• Principal component analysis

Principal component analysis (PCA) is an unsupervised learning algorithm which

is widely used for dimensionality reduction. Although there exist various dimension-

ality reduction algorithms, PCA is still the most popular and very effective linear

reduction technique. Without loss of generality, we can consider the projection w

onto a one-dimensional space, namely d = 1, where w is a D-dimensional vector.

Indeed, we are only interested in the direction induced by the projection w, so we

impose the constraint wTw = 1 on the projection vector w. Thereafter, the feature

descriptor xn can be projected onto a scalar value wTxn.

The variance of the feature descriptors in the projected space (one-dimensional

space) can be calculated by

1

N

N∑
n=1

{wTxn −wTx}2 = wTSw (6.1)

where x is the mean of the projected descriptors which is given by

x =
1

N

N∑
n=1

xn (6.2)

and S is the covariance matrix defined by

S =
1

N

N∑
n=1

(xn − x)(xn − x)T (6.3)
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To find the projection w, we maximise the variance of feature descriptors in the

projected space, namely,

w⋆ = max
w

wTSw, s.t. wTw = 1. (6.4)

We can solve the maximisation with the Lagrange multiplier method as

wTSw + λ(1−wTw) (6.5)

Setting the derivative of Eq. (6.5) with respect to w equal to 0, we have

Sw = λw, (6.6)

which is a standard eigen-decomposition problem and the variance is just one eigen-

value of S [7]. So the solution of Eq. (6.5) is the eigenvector of S corresponding to

the largest eigenvalue, which is also known as the first principal component.

If we want the dimensionality of the projected space to be d-dimensional, then

the linear projection is composed of d eigenvectors corresponding to the d largest

eigenvalues λ1, . . . , λd.

• Fisher discriminant analysis

Fisher discriminant analysis, also known as linear discriminant analysis (LDA), is

a well-known classification techniques. LDA is also widely used for supervised linear

dimensionality reduction. The primary purpose of LDA is to separate samples of

distinct groups which could be associated with their class labels.

With respect to dimensionality reduction, LDA aims to project data points into

a lower-dimensional space by taking into account the class labels of the data points.

In the projected lower-dimensional space, the between-class separability is maximised

while the with-class variability is minimised. The objective of LDA is to find a linear

projection that can maximises the ratio of between-class variance to the within-class

variance. Similar to the deduction in PCA, we consider a projection vector w to map

the data points xn onto scalar values wTxn. The objective function of LDA is to
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maximise the ratio, known as the Fisher criterion, and takes the form

w⋆ = arg max
w

wTSbw

wTSww
(6.7)

where Sb and Sw are the between- and within-class scatter matrices and are defined

as

Sb =
C∑
c=1

Nc(xc − x)(xc − x)T (6.8)

and

Sw =
C∑
c=1

Nc∑
i=1

(xc,i − xi)(xc,i − xi)
T , (6.9)

respectively, in which

xc =
1

Nc

Nc∑
i=1

xc,i (6.10)

and

x =
1

N

C∑
c=1

Ncxc =
1

N

C∑
c=1

Nc∑
i=1

xc,i (6.11)

As is known that the solution of Eq. (6.7) can be found by the following equation

Sbw
T = λSww

T (6.12)

If Sw is non-singular matrix and can be inverted, then the Fisher’s criterion is max-

imised when the projection w is the eigenvector of the S−1
w Sb associated with the

largest eigenvalue. Note that Sw is computed by pooling the estimates of the covari-

ance matrix of each class and each covariance matrix is of at most rank Nc− 1. Thus

the rank of Sw is at most N − C. In addition, Sb is estimated by C points there

will be at most C − 1 eigenvectors with non-zero, real eigenvalues, which means the

projected space is at most of C − 1 dimensions.

• Linear discriminant embedding

Dimensionality reduction for local feature descriptors have also been extensively

exploited, especially for the task of feature matching. Linear discriminant embedding

(LDE) is a non-parametric dimensionality reduction technique for image matching.
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LDE is supervised learning algorithm differently from LDA, the labelled training

samples S are set of matching/non-matching image patches

S = {pi,pj, lij}, (6.13)

where pi, pj are the input image patches, and lij is a label equal to 1 if pi, pj

constitute a match pair, and 0 otherwise. Similar to PCA and LDA, LDE aims to

find the linear projection w. The objective function can be

J1(w) =

∑
lij=0(xi − xj)

2∑
lij=1(xi − xj)2

(6.14)

which is the ratio of variance between the non-match and match differences along the

direction w, where x is the descriptor associated with an image patch p. w can be

found by solving the maximisation

w⋆ = arg max
w

J1(w) (6.15)

Eq. (6.14) can be rewritten in terms of covariance matrices as

J1(w) =
wTAw

wTBw
, (6.16)

where

A =
∑
lij=0

(xi − xj)
2 (6.17)

and

B =
∑
lij=1

(xi − xj)
2 (6.18)

The solution of Eq. (6.15) is the eigenvector associated with the largest eigenvalue of

the generalised eigensystem

Aw = λBw (6.19)
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In the original work, an alternative objective function is also considered

J2(w) =

∑
lij=1(w

Txi)
2∑

lij=1(w
Txi −wTxj)2

(6.20)

In practice, a regularised version of B is employed in Eq. (6.15).

In [78], Mikolajczyk and Matas independently proposed linear discriminant pro-

jections (LDP) for efficient matching of SIFT descriptors. However, LDP was proven

to be equivalent to LDE although different methods are used in LDE and LDP [15].

6.3 Embedding based on I2C Distances

We first revisit the image-to-class (I2C) distance based on which we describe our dis-

criminative embedding algorithm. The relationship of our method to other methods

[15, 40, 129] is also shown in this section.

6.3.1 Revisit of I2C Distance

The image-to-class (I2C) distance was first defined in the naive Bayes nearest neigh-

bour (NBNN) classifier. NBNN is an approximation of the optimal MAP naive-Bayes

classifier under some assumptions.

Given an image Q represented as a set of local features, x1, . . . ,xi, . . . ,xN , where

xi ∈ RD and D is the dimensionality of local features. Taking the assumption that

the class prior p(C) is uniform, MAP can be simplified as the maximum likelihood

(ML) classifier:

Ĉ = arg max
C

p(C|Q) = arg max
C

p(Q|C). (6.21)

Under the naive-Bayes assumption that x1, . . . ,xi, . . . ,xN are i.i.d. given the class

C, we have:

p(Q|C) = p(x1, . . . ,xN |C) =
N∏
i=i

p(xi|C), (6.22)
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where p(xi|C) can be approximated using the non-parametric Parzen density estima-

tion.

The Parzen likelihood estimation of the probability of x from class C is:

p̂(x|C) =
1

L

L∑
j=1

K(x− xC
j ), (6.23)

where L is the number of local features from class C.

By further assuming that the kernel bandwidths in the Parzen function are the

same for all the classes, the likelihood can be simplified using the nearest neighbour.

The summation of all the distances from the local features of an image to their

corresponding nearest neighbours in each class is defined as the Image-To-Class

(I2C) distance, which can be calculated by:

Dc
X =

∑
x∈X

||x−NN c(x)||2, (6.24)

where NN c is the nearest neighbour of x in class c. The resulting classifier takes the

form:

c̄ = arg min
c

Dc
X , (6.25)

6.3.2 Discriminative Embedding

Our task is to classify a collection of images {Xi}, each of which is represented by a

set of local features: {xi1, . . . ,xij, . . . ,ximi
}, where mi is the number of local features

from image Xi.

Given an image Xi, its I2C distance to class c is computed according to Eq. (6.24)

as:

Dc
Xi

=

mi∑
j=1

||xij − xc
ij)||2, (6.26)

where xc
ij is the nearest neighbour in class c.

After applying a linear projection w on the local features, the I2C distance be-
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comes:

D̂c
Xi

=

mi∑
j=1

||wTxij −wTxc
ij)||2

=

mi∑
j=1

(wTxij −wTxc
ij)

T(wTxij −wTxc
ij)

=

mi∑
j=1

(xij − xc
ij)

TwwT(xij − xc
ij) (6.27)

We introduce ∆Xic as an auxiliary matrix defined as:

∆Xic =



(xi1 − xc
i1)

T

. . .

(xij − xc
ij)

T

. . .

(ximi
− xc

imi
)T


(6.28)

Then D̂c
Xi

can be represented as:

D̂c
Xi

= wT∆XT
ic∆Xicw, (6.29)

Unlike the methods in [40, 15], our aim in the embedded space is to minimise

the I2C distances from images to the classes they belong to while simultaneously

maximizing the I2C distances to the classes they do not belong to. The objective

function we used takes the form as:

w∗= arg max
w

∑Ni

n=1

∑
iw

T∆XT
in∆Xinw∑

iw
T∆XT

iP∆XiPw

= arg max
w

wT(
∑Ni

n=1

∑
i ∆XT

in∆Xin)w

wT(
∑

i ∆XT
iP∆XiP )w

, (6.30)

where ∆XiP is the auxiliary matrix associated with the class that image Xi belongs
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to (positive class) and ∆Xin is of the negative class that image Xi does not belong

to. Note that, given a dataset, the number of negative classes Ni is the same for all

images in the dataset.

We can now seek an embedding w∗ to maximise the ratio in Eq. (6.30). The

above equation can be rewritten in terms of covariance matrices as:

w∗ = arg max
w

wTCNw

wTCPw
, (6.31)

where

CN =

Ni∑
n=1

∑
i

∆XT
in∆Xin, (6.32)

and

CP =
∑
i

∆XT
iP∆XiP , (6.33)

It can be seen that maximizing the objective function in Eq. (6.31) is a well-known

eigensystem problem:

CNw = λCPw (6.34)

The obtained embedding is formed by the k eigenvectors associated with the k

largest generalised eigenvalues λ. The whole procedure of the embedding is sum-

marised in Algorithm 1.

Algorithm 1 I2C Distance-based Discriminative Embedding (I2CDDE)

1. Calculate the local features {xij} for each image Xi in the training set.
2. Find the nearest neighbours of local features: {xij} in the positive class and
negative classes, respectively.
3. For image Xi, compute the auxiliary matrices: ∆Xin and ∆XiP using Eq.
(6.29).
4. Compute the positive and negative covariance matrices CP and CN .
5. Solve the generalised eigenvector decomposition problem in Eq. (6.34) to find
w∗.
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6.3.3 Neighbourhood Embedding

Due to the noisy local features, e.g., local features from backgrounds and shared by

similar actions, the image-to-class (I2C) distance using the nearest neighbour (NN)

would not be reliable. To make the I2C distance more robust and insensitive to

noisy features, we further improve the algorithm by incorporating locality (using K

nearest neighbours) in the objective function, which could, to some extent, preserve

the local structure of features in the reduced space. We will show experimentally that

this modification can improve the performance especially on more complex datasets,

e.g., HMDB51, in which the backgrounds are quite complicated and local features

are extremely noisy. With the neighbourhood embedding, the Dc
Xi

in Eq. (6.26) is

replaced by:

Dc
Xi,K

=
K∑
k=1

mi∑
j=1

||xij − xc
ij,k||2, (6.35)

where xc
ij,k is the k-th nearest neighbour of xc

ij in the c-th class and K is the number of

neighbours. The objective function in Eq. (6.30) needs also to be updated accordingly.

6.3.4 Relation to LDE

Our method is closely related to the linear discriminant projection (LDE) method

[40, 15], as both address the dimensionality reduction of local features. In LDE,

the objective function is to maximise the ratio of the variance of differently labelled

points (unmatched points) to that of identically-labelled points (matched points).

The matched and unmatched features vary with different applications. For instance,

in image/object classification, matched features could be the points on the objects

that are visually similar or that are from the same object category.

The main difference between our I2CDDE and LDE is the obtaining of the covari-

ance matrices. In LDE, the matrices are based on the pairwise descriptor differences

while I2CDDE employs the I2C distances. Specifically,

1) LDE deals with the relationship between local features rather than those be-

tween images, which does not secure the discriminative ability of local features for
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classification. In LDE, ground truth matching/non-matching pairs are needed in the

training stage, however these training pairs would be hard to obtain in practice for

action recognition. In I2CDDE, the training pairs are not required, which makes it

more flexible for classification.

2) I2CDDE treats local features from each image as a whole and copes with the

relationship between images and classes. By differentiating the I2C distances to the

same class and to different classes, I2CDDE makes the local features as a whole

discriminative on an image level and can naturally benefit classification.

6.3.5 Relation to I2CDML

In the Image-To-Class distance metric learning algorithm [129], the squared Euclidean

distance in Eq. (6.26) is replaced with the parametric Mahalanobis distance which is

to be learned. The I2C distance becomes:

Dc
Xi

=

mi∑
j=1

(xij − xc
ij)

TMc(xij − xc
ij), (6.36)

where Mc is the distance metric learned in [129].

As shown in [44], the Mahalanobis distance metric learning can be considered as

learning a linear transformation of the data and measuring the squared Euclidean

distance in the transformed space after applying the linear transformation. This can

be shown by factorizing the distance matrix Mc in Eq. (6.36) as: Mc = GGT, where

G is the linear transformation to be learned. The I2C distance in Eq. (6.36) becomes:

Dc
Xi

=

mi∑
j=1

(xij − xc
ij)

TGGT(xij − xc
ij) (6.37)

We can see that Eq. (6.37) is equivalent to Eq. (6.27) in terms of linear trans-

formations. The main differences between I2CDDE and I2CDML are summarised as

follows:

1) I2CDML adopts the large margin framework from SVMs in the objective func-

tion which is solved by gradient descent, while I2CDDE is formulated as an eigenvector
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decomposition problem.

2) In I2CDML, multiple distance metrics are learned for all the classes leading to a

high computational cost in the high-dimensional space, while I2CDDE learns a unified

linear projection, which alleviates the computational burden without compromising

the discriminative ability.

6.3.6 Computational complexity

A key deficiency in I2C-based methods is the heavy computational burden resulting

from the nearest neighbour search, which is extremely expensive especially when local

features are high-dimensional. I2CDDE can greatly reduce the computational cost

and at the same time even enhance the discriminative ability of local features.

At the test stage, the computational complexity in the original space isO(NMD2),

where N is the number of local features from a test sample, M is the total number

of local features in the training set and D is the dimensionality of local features in

the original space. After the embedding, the computational complexity is reduced to

O(NMd2), where d (d≪ D) is the dimensionality of local features in the embedded

space. Take the local descriptor in action recognition for instance. We use the HOG3D

descriptor. The dimensionality in the original space is 1000 while in the embedded

space it is only tens of dimensions. The computational complexity in the reduced

space is d2/D2 = 102/10002 = 1/10000 of that in the original space.

6.4 Experiments and results

We comprehensively evaluate I2CDDE for human action recognition on the bench-

mark KTH dataset, the realistic UCF YouTube and HMDB51 dataset for human

action recognition. We compare the performance of I2CDDE with PCA and LDA,

and also show the improvement of I2C-based methods including NBNN, local NBNN

and the NBNN kernel.
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(a) The performance on KTH.
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(b) The performance on UCF−YouTube.
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(c) The performance on HMDB51.

 

 

Figure 6-3: The performance of NBNN (circle), local NBNN (square) and the NBNN
kernel (diamond) with different dimensions on the three datasets. Blue and red lines
denote the performance before and after dimensionality reduction by I2CDDE.

6.4.1 Experimental settings

For action recognition, we utilise Dollár’s periodic detector [25] to detect spatio-

temporal interest points (STIPs). Three-dimensional histograms of oriented gradients

(HOG3D) [54], which are descriptive and relatively compact with 1000 dimensions,

are used for the description of STIPs. The code for detection and description of STIPs

is available online. The performance of action recognition with different dimensions

on the KTH and HMDB51 datasets is plotted in Fig. 6-3 and Fig. 6-4, respectively.

6.4.2 Results

The performance of I2CDDE for action recognition with different dimensions on the

KTH, UCF YouTube and HMDB51 datasets are plotted in Fig. 6-3 (a), (b) and

(c), respectively. On all the three datasets, we observe that the performance of

NBNN, local NBNN and the NBNN kernel has been dramatically improved. On the

KTH dataset, the increase on the NBNN kernel is more significant than NBNN and

local NBNN, while on the UCF YouTube and HMDB51 datasets, the improvement

over NBNN and local NBNN is much more remarkable than that over the NBNN

kernel. Note that the superior performance of I2CDDE can be achieved with the local

features of less than 60 dimensions, which manifests the effectiveness of I2CDDE for

dimensionality reduction of local features.

We have also investigated the effects of different numbers of nearest neighbours on

the performance of the neighbourhood embedding. The results on the three datasets
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Figure 6-4: The performance of I2CDDE with different numbers of nearest neighbours
on the KTH (the top row), UCF YouTube (the middle row) and HMDB51 (the
bottom row) datasets. Blue lines denote the performance of I2CDDE with the nearest
neighbour (1NN).
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Methods NBNN Local NBNN NBNN Kernel

No Reduction 16.4s 8.4s 22685.3s
Reduction 0.9s 0.6s 365.4s

Table 6.1: The run time before and after applying I2CDDE (d=30).

are shown in Fig. 6-4, from which we find that, on the KTH dataset, the performance

of the neighbourhood embedding is comparable with the baseline I2CDDE with the

nearest neighbour. On the realistic datasets including UCF YouTube and HMDB51,

the benefit of incorporating neighbourhood turns to be more significant, especially on

HMDB51. This is expected and reasonable because the KTH is relatively easy with

simple actions and clear backgrounds, while HMDB51 contains rather complicated

actions and clutters in background. Note that NBNN, local NBNN and the NBNN

kernel with neighbourhood embedding are all largely improved over the baseline with

the nearest neighbour.

6.4.3 Run Time

Since one of the key contributions of I2CDDE is to speed up the I2C-based methods

including NBNN, local NBNN and the NBNN kernel, we have compared the run time

(in seconds) to classify a test sample before and after using I2CDDE, which is shown

in Table 6.1. The I2C-based methods are much faster after dimensionality reduction.

The run time after reduction is calculated by setting reduced dimensionality as 30 for

each method and experiments are conducted on the KTH dataset.

6.4.4 Comparison with Other Dimension Reduction Tech-

niques

We have also compared I2CDDE with widely used linear dimensionality reduction

methods including PCA, LDA, LFDA, LPP and NPE, in Table 6.2. As expect-

ed, I2CDDE uniformly outperforms the compared methods. PCA, LPP and NPE

are unsupervised without using the label information and therefore tend to be less
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KTH HMDB51 YouTube

NBNN

I2CDDE 92.9 38.7 71.7
PCA 91.7 35.6 58.6
LDA 82.9 31.6 54.3
LFDA 86.6 29.6 63.1
LPP 92.8 34.4 56.8
NPE 91.9 34.8 55.6

Original 93.9 31.8 57.8

LNBNN

I2CDDE 93.5 38.2 73.9
PCA 91.8 35.7 58.7
LDA 83.3 31.4 56.5
LFDA 86.8 28.5 71.7
LPP 93.3 35.2 60.9
NPE 92.6 34.9 60.9

Original 94.1 33.1 60.1

NBNN Kernel

I2CDDE 92.0 30.2 60.9
PCA 89.8 25.8 53.6
LDA 18.3 13.1 23.9
LFDA 67.4 10.2 23.9
LPP 91.0 28.3 58.7
NPE 91.0 27.9 57.4

Original 89.2 29.8 62.4

Table 6.2: The comparison of I2CDDE with other reduction methods. Note that the
results listed in the table are the accuracies (%) achieved by the methods with 30
dimensions (except for LDA and LFDA).

discriminative for classification. LDA and LFDA discriminatively learn the projec-

tions by labelling the local features with the label of the image that it belongs to,

which, however, could mislead the classifier as discussed in Section 1. We can see that

for the NBNN kernel, they even fail to produce reasonable results for all the three

datasets. In I2CDDE, the I2C distance actually creates a bridge between the class

labels and local features (by using I2C distance), providing an effective and intuitive

way to impose discriminative information on local features, and therefore improve the

performance of classification.
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6.5 Conclusion

In this chapter,we have proposed a method named image-to-class distance-based em-

bedding (I2CDDE) for dimensionality reduction of local features. The experimental

results on the KTH, UCF YouTube and HMDB51 datasets have demonstrated that

I2CDDE can significantly improve the performance of previously proposed I2C-based

methods including NBNN, local NBNN and the NBNN kernel. More importantly,

I2CDDE speeds up these methods, which could boost I2C-based methods for large-

scale applications. In addition, I2CDDE uniformly outperforms the classical linear

dimensionality reduction techniques such as PCA, LDA, LFDA, LPP and NPE, which

further suggests the effectiveness of I2CDDE.
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Chapter 7

Locally Gaussian Embedding

7.1 Introduction

In Chapter 6, we have proposed a discriminative dimensionality reduction algorithm,

which is based on the image-to-class distances introduced in the naive Bayes nearest

neighbour classifier. The image-to-class distance is actually an approximation of the

log-likelihood of the local feature descriptor. However, the approximation does not

always perform well [5]. In this chapter, we start with investigating and analyzing

the theoretical foundation of NBNN. By explicitly modelling the likelihood via local

Gaussians, we propose a discriminative dimensionality reduction method for local

feature descriptors.

7.1.1 Motivations

NBNN is extremely simple both in theory and in practice. Given an image, one first

computes a set of local feature descriptors. Then, one searches for the class that

minimises the sum over all feature descriptors of distances to the respective nearest

neighbours belonging to that class. In spite of its simplicity and the complete absence

of a training phase, NBNN achieves surprisingly good results on standard benchmark

datasets such as Caltech101 for image classification [9], being competitive with the

state of the art.
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As shown by our evaluation work in Chapter 5, the Naive Bayes Nearest Neighbour

classifier (NBNN) has also demonstrated impressive performance on human action

recognition. The good performance of NBNN on both image/scene classification and

action recognition can be largely due to the following two reasons.

• The avoidance of a vector quantisation, which can largely preserve the effec-

tiveness of local feature descriptors.

• The use of the image-to-class distance rather than directly computing the

image-to-image distance, which can, to a large extent, tackle the intra-class variations.

The former avoids quantisation errors, which are especially effective for more

informative features found in less dense areas of a feature space [116]. The latter

enables a good generalisation beyond the provided labelled images. Indeed, when

evaluating a test image, NBNN combines a range of information from local feature

descriptors.

However, the NBNN framework also suffers from its own limitations.

• Extensive nearest neighbour searches are involved in the NBNN classifier. The

computational burden during testing is extremely high, especially when dense sam-

pling of local features is used, which often seems necessary to obtain good results.

Moreover, it even could be infeasible when the local features are high-dimensional.

The induced long testing time restricts the practical application of NBNN.

• Due to the use of image-to-class distances, similar densities are assumed in the

feature space for all classes, such that the same kernel bandwidth can be used for all

of them. In practice, however, this assumption is often violated, leading to a strong

bias towards one or a few classes.

These two points have been investigated by [5] and [129] respectively, both of

which introduce a learning phase on the training samples to tune the parameters. In

this chapter, we try to address the problems by a dimensionality-reduction algorithm

via a locally Gaussian embedding.
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7.1.2 Contributions

In Chapter 6, we have proposed a dimensionality reduction algorithm named I2CDDE

based on the image-to-class distances, which is also under the NBNN framework

and therefore is still restricted by the assumptions in NBNN. In this chapter, we

go beyond the NBNN framework and deal with the above two shortcomings by a

discriminative dimensionality reduction algorithm via locally Gaussian embedding

(LGE). Although both I2CDDE and LGE are dimensionality-reduction algorithms,

they are fundamentally different. In I2CDDE, the image-to-class distances are used

for the construction of the objective function while in LGE the objective function

is built on the maximum a posteriori (MAP) classifier. Our contributions in this

chapter can be summarised in two aspects:

• A discriminative dimensionality reduction algorithm is proposed to project

local features into a lower-dimensional space.

• Local Gaussians are incorporated to explicitly model the likelihood of local

feature descriptors for dimensionality reduction.

7.2 Related work

In this section, we review two pieces of work that are closely related to the proposed

algorithm in terms of improving the original NBNN [5] and dimensionality reduction

via local Gaussians [86].

7.2.1 Optimal Naive Bayes Nearest Neighbour

As mentioned above, the assumption underlying the original NBNN is too restrictive

and considerably degrades its generalisation ability. It has been observed by Behmo

et al. [5] that NBNN performs relatively well on certain datasets, but not on others.

They have also shown that this performance variability of NBNN could stem from

the assumption that the normalisation factor involved in the kernel estimator of the

conditional density of features is class-independent. The Parzen likelihood estimation
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of the probability of a local descriptor d from class c was given in Eq. (6.23) as:

p(d|c) =
1

L

L∑
j=1

K(d− dc
j), (7.1)

where L is the number of local feature descriptors from class c. If a Gaussian kernel

is used, we then have

p(d|c) =
1

L

L∑
j=1

exp(− 1

2σ2
||d− dc

j||2) (7.2)

Behmo et al. [5] incorporated a learning stage to select parameters in the original

NBNN by relaxing the restrictive assumption. In practice, the Parzen estimator does

not converge and there is little sense in keeping more than just the first term of the

sum. They modelled the likelihood of a feature descriptor d relative to an image class

c as

p(d|c) =
1

Zc
exp(− τ c(d)

2(σc)2
) (7.3)

where τ c(d) is the Euclidean distance of the descriptor d to the nearest neighbour

in the class c, and Zc is the normalisation factor and σc is the smoothing parameter

also called bandwidth, which is associated with class label c.

In the original NBNN, Zc and σc are assumed to be independent of image class

while in the optimal NBNN, an optimisation scheme is designed to find the optimal

values of the parameters Zc and σc by cross-validation.

7.2.2 Local discriminative Gaussians

Recently, Parrish and Gupta [86] proposed a dimensionality-reduction algorithm

based on a local discriminative Gaussian (LDG) criterion, which is a supervised di-

mensionality reduction technique for classification. The objective function used in

LDG is an approximation to the leave-one-out training error of a local quadratic

discriminant analysis classifier. LDG acts locally at each training sample with the

aim to project the samples into a lower-dimensional space where similar data can be
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discriminated from dissimilar data.

Given a set of labelled training data {(xi, yi)}ni=1 with xi ∈ Rd and yi ∈ {1, 2, . . . ,m}

being the ith feature vector and class label, respectively. The goal is to find a matrix

B ∈ Rd×l, l < d such that the reduced-dimensionality feature vectors {BTxi} can be

separated according to class. The separability is measured by the performance of a

generative classifier.

Ĉ = arg max
C

p(xi|C)p(C)

The leave-one-out cross-validation error of a maximum a posteriori (MAP) clas-

sifier acting on the mapped features measures the separation achieved by B:

N∑
i=1

I[p(BTxi|yi)p(yi) < max
j

p(BTxi|j)p(j)] (7.4)

where the indicator function I(.) is one if its argument is true and zero otherwise.

p(xi|yi) is the likelihood of xi given class yi, estimated from the other n− 1 training

sample pairs.

The objective function in Eq. (7.1) is difficult to minimise due to the discontinuity

of the indicator function. In order to arrive at a smooth, differentiable objective

function that approximates Eq. (7.1), a log is substituted for the indicator and a sum

for the max.

f(B)=
n∑

i=1

log(

∑m
j=1 p(BTxi|j)p(j)

p(BTxi|yi)p(yi)
) (7.5)

=
n∑

i=1

log(
m∑
j=1

p(BTxi|j)p(j))− log(p(BTxi|yi)p(yi)) (7.6)

Bounding Eq. (7.5) from below with Jensen’s inequality, replacing the first log term

in Eq. (7.6) with
m∑
j=1

p(j) log(p(BTxi|j)) (7.7)

The final objective function takes the form as:
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f(B) =
n∑

i=1

(
m∑
j=1

p(j) log(p(BTxi|j))− log(p(BTxi|yi)p(yi))) (7.8)

Imposing the constraint that BTB = I, (7.5) is simplified by making the covariance of

the Gaussians in the mapped space independent of B. p(xi|j) is assumed as Gaussian,

N (xi;µi,j; Σi,j). In addition, to reduce the model bias of assuming one Gaussian per

class, p(xi|j) is modelled as a locally Gaussian distribution[29].

The parameters of the Gaussian for point xi and class j are estimated by finding

the k nearest class j neighbours to training point xi by the Euclidean distance and

using these points to estimate the Gaussian’s maximum likelihood mean and covari-

ance. To reduce estimation variance, we model each covariance matrix as a scaled

identity σ2
i,jI, where I is the properly-sized identity matrix. Therefore,

p(BTxi|j) = N (BTxi;B
Tµi,j;B

TBσ2
i,j) (7.9)

The maximisation of the objective function in Eq. (7.6) is shown to be an eigen-

decomposition problem with a closed-form solution.

7.3 Embedding via local Gaussians

We aim to address the limitations of the original NBNN by proposing a discriminative

dimensionality reduction method via a locally Gaussian embedding.

• By reducing the dimensions of local feature descriptors, the computational

burden of nearest neighbour search is greatly alleviated.

• Through the modelling of likelihood of local feature descriptors as local Gaus-

sians, we naturally avoid the estimation of parameters.

Our method is closely related to LDG [86] in terms of dimensionality reduction

and local Gaussian modelling. However, our method is fundamentally distinguished

from LDG. Firstly, we address the dimensionality reduction of local descriptors of

images/videos while LDG deals with global descriptors. Secondly, the objective func-

tion used in our method is essentially different from the one used in LDG. In LDG,
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the objective function is based on the minimisation of the leave-one-out training er-

ror of a local quadratic discriminant analysis classifier. In our method, the objective

function is to maximise the likelihood of an image with respect to the class it belongs

to while minimizing the likelihood with respect to the classes it does not belong to.

7.3.1 Problem formulation

We first formulate our problem with the naive Bayes classifier and then provide the

solution by modelling the likelihood as a local Gaussian.

Given an image xi represented as a set of local features, {xi1, . . . ,xij, . . . ,ximi
},

where xij ∈ RD and D is the dimensionality of local features. The image xi can be

classified by the maximum-a-posteriori (MAP) classifier:

Ĉ = arg max
C

p(C|Xi), (7.10)

where the posterior can be calculated by the Bayes’ formula:

p(C|Xi) =
p(Xi|C)p(C)∑

c p(Xi|c)
. (7.11)

Taking the assumption that the class prior p(c) is uniform, MAP can be simplified as

the maximum likelihood (ML) classifier:

Ĉ = arg max
C

p(C|Xi) = arg max
C

p(Xi|C). (7.12)

We now have to deal with the local features from the image Xi. Under the naive-

Bayes assumption that xi1, . . . ,xij, . . . ,ximi
are i.i.d. given the class C, we have:

p(Xi|C) = p(xi1, . . . ,ximi
|C) =

mi∏
j=1

p(xij|C), (7.13)

Taking the log probability of the ML decision rule we arrive at:

Ĉ = arg max
C

log p(C|Xi) = arg max
C

mi∑
j=1

log p(xij|C). (7.14)
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We aim to find a linear projection w to map local features into a lower-dimensional

space. In the projected space, we expect to maximise the likelihood p(X̂i|yi) while at

the same time minimizing p(X̂i|c), c ̸= yi, where X̂i is the counterpart of Xi in the

projected space and yi is the class label associated with the image Xi.

Based on the intuitive idea, we can maximise the following objective function:

f(w) =

∑N
i= p(X̂i|yi)∑N

i=1

∑C
c=1,c ̸=yi

p(X̂i|c)
(7.15)

where N is the number of training samples. Taking into account Eq. (7.10) and

(7.11), we have

f(w) =

∑N
i=1

1
mi

∑mi

j=1 log p(wTxij|yi)∑N
i=1

∑C
c=1

1
mi

∑mi

j=1 log p(wTxij|c)
(7.16)

To solve this optimisation problem, we now have to estimate the likelihood probability

p(x|c).

7.3.2 Locally Gaussian embedding

Inspired by the work in [86], we model p(wTxij|c) as a local Gaussian, namely,

p(wTxij|c) = N (wTxij;w
Tµijc;w

TΣijcw) (7.17)

and the parameters of the Gaussian for xij and class c can be approximated by finding

the k nearest neighbours from class c.

By substituting Eq. (7.17) into Eq. (7.16), we can find the projection w⋆ by

maximizing f(w):

w⋆ = arg max
w

∑N
i=1

∑C
c=1

1
mi

∑mi

j=1
1

2σ2
ijc

∆T
ijcwwT∆ijc∑N

i=1
1
mi

∑mi

j=1
1

2σ2
ijyi

∆T
ijyi

wwT∆ijyi

(7.18)

s.t. wTw = 1, where ∆ij = µij − xij.
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The objective function can be solved with a single eigen-decomposition. Define

A =
N∑
i=1

1

mi

C∑
c=1

mi∑
j=1

1

σ2
ijc

∆ij∆
T
ijc, (7.19)

and

B =
N∑
i=1

1

mi

mi∑
j=1

1

σ2
ijyi

∆ijyi∆
T
ijyi

(7.20)

then Eq. (7.9) becomes:

w⋆ = arg max
w

wTAw

wTBw
(7.21)

s.t. wTw = 1.

Maximizing the objective function in Eq. (7.21) is a well-known eigensystem

problem:

Aw = λBw. (7.22)

The linear projection to be obtained is composed of the eigenvectors of B−1A asso-

ciated with the first d largest eigenvalues if we want the projected space to be of d

dimensions. The whole process of the algorithm is illustrated in Algorithm 2.

Algorithm 2 Locally Gaussian embedding

1. Calculate the local features {xij} for each video sequence Xi in the training set.
2. Find the k nearest neighbours of local feature descriptors: {xij} in each class.
3. For video Xi, calculate the parameters µij and σij of each local feature associated
with each class.
4. Compute the auxiliary matrices: A and B using Eq. (7.10) and (7.11).
5. Solve the generalised eigenvector decomposition problem in Eq. (7.13) to find
w∗.

7.4 Experiments and results

We evaluate LGE for human action recognition and conduct experiments on the

KTH and HMDB51 datasets. We compare the performance of LGE with principal

component analysis (PCA) and I2CDDE. As the number of nearest neighbours is the

only parameter of LGE, we have also investigated the effects of different values of k
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on the performance of LGE.

7.4.1 Experimental settings

Similar to the experimental settings in Chapter 6, we utilise Dollár’s periodic detec-

tor [25] to detect spatio-temporal interest points (STIPs) and the three-dimensional

histogram of oriented gradients (HOG3D) [54], which is descriptive and relatively

compact with 1000 dimensions, is used for the description of STIPs. For action

recognition, we directly use the maximum a posteriori (MAP) classifier in Eq. (7.14).

7.4.2 Results

Local Gaussians As our algorithm is built on the assumption that local feature

descriptors are from multi-modal Gaussian distributions, we would like to look into

the distributions of local feature descriptors. We plot the probability density of local

feature descriptors from the KTH dataset in Fig. 7-1, which show the descriptors

with one dimension (a) and two dimensions (b), respectively. It is clear to see that

the local feature descriptors are multi-modal Gaussian distributions.

Results on KTH The comparison results on the KTH dataset are shown in

Fig. 7-2. LGE outperforms PCA under all the dimensions and numbers of nearest

neighbours with significant margins. After 120 dimensions, both LGE and PCA can

produce relatively stable and satisfactory results. Note that both LGE achieves the

best results when 20 nearest neighbours are used for the estimation of parameters in

local Gaussians.

We have also compared with the algorithm I2CDDE proposed in Chapter 6. The

comparative results of LGE and I2CDDE with the NBNN, local NBNN and the NBNN

kernel classifiers are shown in Fig. 7-3. With the LGE dimensionality reduction, the

performance of NBNN, local NBNN and the NBNN kernel is also improved, especially

for the NBNN kernel compared with I2CDDE. With regards to NBNN and local

NBNN, LGE and I2CDDE produce comparable results on this dataset.

The comparison of the best results on the KTH dataset produced by the LGE,
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Figure 7-1: The illustration of the probability density of the local feature descriptors
with one dimension (a) and two dimensions (b). The local feature descriptors are
from the KTH dataset.
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Classifiers LGE I2CDDE PCA

MAP 93.5% 92.5% 90.6%
NBNN 94.2% 94.3% 92.9%

Local NBNN 94.4% 94.9% 93.2%
The NBNN kernel 93.5% 93.2% 89.3%

Table 7.1: The comparison of the best results given by LGE, I2CDDE and PCA with
different classifiers on the KTH dataset.

I2CDDE and PCA with different classifiers are summarised in Table 7.1. We can see

that LGE and I2CDDE achieve comparable results on this dataset and outperform

PCA consistently with different classifiers.

Results on HMDB51 The results on the HMDB51 dataset are shown in Fig. 7-3.

LGE consistently outperforms PCA with different numbers of nearest neighbours and

under different dimensions. Both LGE and PCA achieve relatively stable performance

after 50 dimensions. Compared with the results on KTH, the improvement of LGE

over PCA is less significant, which would be due to the much noisier local features in

the HMDB51 dataset.

Similarly, the comparison of LGE and I2CDDE with the NBNN, local NBNN and

NBNN kernel classifiers are illustrated in Fig. 7-5. LGE significantly outperforms

I2CDDE with NBNN, local NBNN and the NBNN kernel on the HMDB51 dataset,

which manifests that LGE is more robust than I2CDDE especially on realistic dataset-

s.

The comparison of the best results from LGE, I2CDDE and PCA with different

classifiers is also shown in Table 7.2. The results of LGE and I2CDDE with NBNN,

local NBNN and the NBNN kernel are comparable while LGE with the MAP classifier

produces the best results on this dataset. LGE and I2CDDE outperform PCA as well

in this dataset.

Note that we have experimented with the original local feature descriptors (with-

out applying dimensionality reduction) with the maximum a posteriori (MAP) clas-

sifier. The best results without dimensionality reduction (with different numbers of

nearest neighbours) on the KTH and HMDB51 datasets are 51.4% and 20.7%, re-
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Classifiers LGE I2CDDE PCA

MAP 40.8% 40.6% 38.7%
NBNN 36.4% 36.8% 33.5%

Local NBNN 37.3% 37.4% 34.4%
The NBNN kernel 31.3% 30.2% 27.9%

Table 7.2: The comparison of the best results given by LGE, I2CDDE and PCA with
different classifiers on the HMDB51 dataset.

spectively, which implies the effectiveness of the dimensionality reduction techniques.

7.5 Conclusions

In this chapter, we have proposed a discriminative dimensionality reduction algo-

rithm, named locally Gaussian embedding (LGE), for local features. With the sim-

ple maximum a posteriori (MAP) classifier, we have applied LGE for human action

recognition on the KTH and HMDB51 datasets. Experimental results show that

LGE outperforms PCA significantly, which validates the effectiveness of LGE and

also verifies the local Gaussian assumption of local feature descriptors. In addition,

the comparison between LGE and I2CDDE shows that LGE is more robust than

I2CDDE, which would be due to the explicitly modelling of the likelihood in LGE

rather the approximation using the image-to-class distances in I2CDDE.
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Figure 7-2: The performance comparison between LGE and PCA with different di-
mensions and numbers of nearest neighbours (knn) on the KTH dataset.
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Figure 7-3: The performance comparison of LGE and I2CDDE with NBNN, local
NBNN and the NBNN kernel classifiers on the KTH dataset. For LGE, we use knn
= 10 in this experiment.
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Figure 7-4: The performance comparison between LGE and PCA with different di-
mensions and numbers of nearest neighbours (knn) on the HMDB51 dataset. The
results are the average over three training/test splits.
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Figure 7-5: The performance comparison of LGE and I2CDDE with NBNN, local
NBNN and the NBNN kernel on the HMDB51 dataset. The results are the average
over three training/test splits. For LGE, we use knn = 30 in this experiment.
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Chapter 8

Conclusions and Future Work

In this concluding chapter we summarise the contributions of this thesis, and discuss

the important directions of future work.

8.1 Conclusions

The central task of the thesis is human action recognition. We have addressed this

problem from the perspective of feature learning for both holistic and local represen-

tations. We may carefully draw some conclusions from experimental results of our

work on widely used human action datasets.

• Although holistic representations have been regarded to be dependent on pre-

processing steps such as background subtraction and tracking, by simply employing

a frame differentiae operation, our methods can achieve comparable results with the

state of the art. The effectiveness of holistic methods is largely credited to the p-

reservation of structures of actions. With the advance of techniques such as visual

tracking, background subtraction and detection with which human figures in the video

sequence can be well captured, holistic methods can still find their applications. In

addition, feature learning techniques used in holistic representations can be easily

tuned for local feature description, which would enhance the importance of holistic

methods.

• Local methods have dominated action recognition since the introduction of the
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BoW model because of its theoretical simplicity and efficient implementation. Most

of the current local methods are based on the BoW model and its variants. The

success could be largely due to the use of powerful classifiers such as support vector

machines (SUMS). However, the vector quantisation and loss of structural informa-

tion would be the limitation of local methods based on the BoW model. Moreover,

the BoW model would also compromise the effectiveness of local feature descriptors

owing to quantisation. It has been shown in our evaluation work and dimensionality

reduction methods that local feature descriptors can achieve impressive and compa-

rable performance even with the simple NBNN and maximum a posteriori (MAP)

classifiers.

We have also seen that the potential of learning efficient local feature descriptors

has long been ignored for action recognition. From the findings of our evaluation

work on local methods, the nonparametric naive Bayes nearest neighbour classifier

(NBNN) and its variants including the NBNN kernels and the local NBNN, have

produced impressive results. Our work on dimensionality reduction of local features

have also indicated the importance of effectiveness and efficiency of local feature

descriptors.

8.1.1 Holistic representations

In holistic representations, we have proposed three global descriptors for action rep-

resentations.

• Motion and structure feature embedding

Based on the fact that motion and structure features are the main cues of an

action, we explicitly extract these features from video sequences by motion history

image (MHI) and structure planes, which are actually 2D images called feature maps.

Effective biologically-inspired features based on 2D Gabor filters and max pooling are

extracted from the feature maps and employed as the final holistic representation of

actions.

• Spatio-temporal Laplacian pyramid coding

We have extended the idea of Laplacian pyramid from the image domain to the
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spatio-temporal video domain and proposed a global descriptor based on spatio-

temporal Lapidarian pyramid coding. The spatio-temporal Laplacian pyramid as

a multiple resolution technique is firstly adopted into the video domain for human

action recognition. Furthermore, the idea of biologically-inspired features has also

been transferred for action representation by extending the Gabor filters and max

pooling to their 3D versions.

• Spatio-temporal oriented energies

Actions in video sequences can be viewed as oriented patterns in spatio-temporal

dimensions. To effectively capture the orientation information, we have proposed

combining the multiple resolution technique, spatio-temporal Laplacian pyramid and

the steerable filters. Another global descriptor based on spatio-temporal oriented

energies is obtained for the final representation of actions.

8.1.2 Local representations

In local representations, we have firstly done a comprehensive evaluation of local

methods for action recognition. Based on the findings of the evaluation, we have

proposed two dimensionality-reduction algorithms via image-to-class (I2C) distances

and local Gaussians.

• Performance evaluation of local methods

Our evaluation has provided an insight into the performance of local methods

based on spatio-temporal interest points. Those methods include feature-coding al-

gorithms both from the image and video domains, some of which were proposed for

image/scene classification while have not been applied to human action recognition.

We pull all those methods under common experimental settings and compare their

performance. Therefore, our evaluation work provides a guideline for the further work

on action recognition based on local features.

• Discriminant embedding via image-to-class distances

From the experimental results of the evaluation work, we found the methods

based image-to-class (I2C) distances, e.g., NBNN, NBNN kernels and local NBNN,

show promising results. However, one of the disadvantages of the I2C based methods
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is the computational burden due to the nearest-neighbour search of local features.

It tends to be impractical if there is a huge number of local features, e.g., dense

trajectories, especially when the local features are in a high-dimensional space. We

therefore propose a dimensionality-reduction algorithm for local features based on the

I2C distances. The criterion used is to minimise the I2C distances of local features

to their own classes while maximizing the I2C distances to classes they do not belong

to. The I2C distance based methods including NBNN, the NBNN kernel and local

NBNN are significantly improved after the embedding.

• Locally Gaussian Embedding

Inspired by the success of I2C embedding, we would like to look more deeply into

the algorithms based on I2C distances. The I2C distance is actually an approximation

of the conditional probabilities of local feature descriptors, which would not be robust

due to the existence of noisy local features. We try to avoid the approximation by

explicitly model the probability via local Gaussians. A novel discriminant embedding

algorithm has been proposed based on local Gaussians for dimensionality reduction

of local features. This embedding algorithm has demonstrated to be robust for action

recognition, especially on realistic datasets.

8.2 Future work

The directions of future work could be considered in learning of representations both

for local and holistic methods.

8.2.1 Holistic methods

The performance of the global descriptors proposed in Chapters 2, 3 and 4 suggests

the effectiveness of holistic representations for action recognition. Nevertheless, these

global descriptors are all hand-crafted and therefore not flexible. The good perfor-

mance could be due to the use of discriminative dimensionality-reduction techniques,

e.g., discriminant locality alignment (DLA), and powerful classifiers, e.g., support

vector machines (SVMs). Although machine learning algorithms including Restricted
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Boltzmann Machines (RBMs) [111] and 3D convolutional neural networks (3D CNN)

[47] have been exploited for learning spatio-temporal features for action recognition,

their performance is still unsatisfactory. A promising direction is to explore more

efficient and effective machine learning algorithms to learn spatio-temporal features

for holistic representations.

• Parameter learning

As shown in our holistic methods, the most important components in extracting

a global descriptor are filtering and pooling. However, the filter scales and sizes of

pooling regions are experimentally set which could be parameterised and learned by

learning algorithms [87, 48, 106, 49].

• Discriminative deep learning

The deep learning algorithms such as convolutional RBM and 3D CNN are all

unsupervised learning algorithms. However, it has been shown that discriminative

learning could improve the performance of deep-learning algorithms in the image do-

main [31]. Extending discriminative deep-learning algorithms into the video domain

for holistic representation of actions would also be an interesting direction.

8.2.2 Local methods

The performance of the dimensionality-reduction algorithms proposed in Chapters 6

and 7 suggests the potential of learning feature descriptors. Deep learning algorithms

have also been explored for local spatio-temporal feature learning based on stacked

independent analysis (ISA) [62]. The success of deep learning for action recognition

also indicates the importance and potential of feature learning. For local methods, two

possible directions including dimensionality reduction and local descriptor learning

could be considered.

• Dimensionality reduction of local feature descriptors

Inspired by the work of I2CDDE and LGE, it would be interesting to consider

proposing new algorithms for the dimensionality reduction of local feature descriptors

in the following possible directions.

Regularisation The first one is to extend the I2CDDE and LGE algorithms.
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As can be seen in our experiments that I2CDDE and LGE perform very well on the

KTH dataset which is relatively easy, while being sensitive to noisy local features in

realistic datasets such as the UCF YouTube and HMDB51 datasets. The extension

could be based on incorporating/integrating regularisation terms into the objective

functions of I2CDDE and LGE to make them more robust.

Criteria The second one is to construct novel objective functions for dimensionality-

reduction algorithms. The criteria in I2CDDE and LGE are based on the image-to-

class distances and likelihood of local feature descriptors, which, however, are restrict-

ed in the NBNN framework. Constructing more general objective functions based on

other criteria beyond the NBNN framework could be considered.

• Local feature descriptor learning

Descriptor learning has recently drawn increasing attention in computer vision.

Many machine learning techniques have been applied to learning descriptors in the

image domain for feature matching and image retrieval [40, 87, 94]. The following

two aspects could be considered for action recognition.

Discriminative descriptor learning From the results in Chapters 6 and 7,

we have learned that the reason that our proposed algorithms significantly outperform

PCA is the use of label information of samples. With respect to visual recognition,

discriminative information such label information can be incorporated into the feature

descriptor learning to improve the discriminative ability [108, 114].

Binary descriptor learning With the use of local features, we need local

feature descriptors to be not only accurate but also efficient. Binary descriptors

[126, 64, 115, 113] are of particular interest as they require far less storage capacity

and offer much faster search. With respect to video analysis, currently the widely

used descriptors including HOG/HOG and HOG3D are all hand-crafted and of high

dimension. It would be promising if descriptors are learned from raw video data.

Binary descriptors can be learned based on an intermediate representations such as

HOG3D or directly from the 3D cuboids detected from video sequences.
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[54] A. Kläser, M. Marsza lek, and C. Schmid. A spatio-temporal descriptor based on
3d-gradients. In British Machine Learning Conference, pages 995–1004, 2008.

[55] O. Kliper-Gross, T. Gurovich, Y.and Hassner, and L. Wolf. Motion interchange
patterns for action recognition in unconstrained videos. In European Conference
on Computer Vision, pages 256–269, 2012.

[56] J. Koenderink. The structure of images. Biological Cybernetics, 50(5):363–370,
1984.

[57] A. Kovashka and K. Grauman. Learning a hierarchy of discriminative space-
time neighborhood features for human action recognition. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 2046–2053, 2010.

[58] Hildegard Kuehne, Hueihan Jhuang, Est́ıbaliz Garrote, Tomaso Poggio, and
Thomas Serre. Hmdb: a large video database for human motion recognition. In
IEEE International Conference on Computer Vision, pages 2556–2563, 2011.

[59] I. Laptev. On space-time interest points. International Journal of Computer
Vision, 64(2-3):107–123, 2005.
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[131] D. Weinland, M. Özuysal, and P. Fua. Making action recognition robust to
occlusions and viewpoint changes. In European Conference on Computer Vision,
pages 635–648, 2010.

[132] R. Wildes and J. Bergen. Qualitative spatiotemporal analysis using an oriented
energy representation. European Conference on Computer Vision, pages 768–
784, 2000.

[133] G. Willems, T. Tuytelaars, and L. Van Gool. An efficient dense and scale-
invariant spatio-temporal interest point detector. In European Conference on
Computer Vision, pages 650–663. Springer, 2008.

[134] H. Wilson and J. Bergen. A four mechanisim model for threshold special vision.
Vision Research, pages 19–31, 1979.

[135] X. Wu, D. Xu, L. Duan, and J. Luo. Action recognition using context and
appearance distribution features. In IEEE Conference on Computer Vision
and Pattern Recognition, 2011.

[136] P. Yan, S. Khan, and M. Shah. Learning 4D action feature models for arbitrary
view action recognition. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–7, 2008.

[137] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching
using sparse coding for image classification. In IEEE International Conference
on Computer Vision and Pattern Recognition, pages 1794–1801, 2009.

[138] A. Yao, J. Gall, and L. Van Gool. A hough transform-based voting framework
for action recognition. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 2061–2068, 2010.

167



[139] L. Yeffet and L. Wolf. Local trinary patterns for human action recognition. In
IEEE International Conference on Computer Vision, pages 492–497, 2009.

[140] A. Yilmaz and M. Shah. Actions sketch: A novel action representation. In IEEE
Conference on Computer Vision and Pattern Recognition, volume 1, pages 984–
989, 2005.

[141] C. Yuan, X. Li, W. Hu, H. Ling, and S. Maybank. 3d r transform on spatio-
temporal interest points for action recognition. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 2013.

[142] J. Zhang, M. Marsza lek, S. Lazebnik, and C. Schmid. Local features and ker-
nels for classification of texture and object categories: A comprehensive study.
International Journal of Computer Vision, 73(2):213–238, 2007.

[143] L. Zhang, M. Yang, and X. Feng. Sparse representation or collaborative repre-
sentation: Which helps face recognition? In IEEE International Conference on
Computer Vision, pages 471–478, 2011.

[144] T. Zhang, D. Tao, X. Li, and J. Yang. Patch alignment for dimensionality reduc-
tion. IEEE Transactions on Knowledge and Data Engineering, 21(9):1299–1313,
2009.

[145] Y. Zhang, X. Liu, M-Ch. Chang, W Ge, and T. Chen. Spatio-temporal phrases
for activity recognition. In European Conference on Computer Vision, pages
707–721, 2012.

[146] Z. Zhang, Y. Hu, S. Chan, and L.T. Chia. Motion context: A new representation
for human action recognition. In European Conference on Computer Vision,
pages 817–829, 2008.

[147] Z. Zhang and D. Tao. Slow feature analysis for human action recognition. IEEE
Transactions on attern Analysis and Machine Intelligence, 34(3):436–450, 2012.

[148] Z. Zhang and H. Zha. Principal manifolds and nonlinear dimensionality re-
duction via tangent space alignment. Journal of Shanghai University (English
Edition), 8(4):406–424, 2004.

[149] G. Zhao and M. Pietikainen. Dynamic texture recognition using local bina-
ry patterns with an application to facial expressions. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 29(6):915–928, 2007.

[150] X. Zhen and L. Shao. Spatio-temporal steerable pyramid for human action
recognition. In IEEE International Conference on Automatic Face and Gesture
Recognition, pages 1–6, 2013.

[151] X. Zhen, L. Shao, D. Tao, and X. Li. Embedding motion and structure features
for action recognition. IEEE Transactions on Circuits and Systems for Video
Technology, 23(7):1182–1190, 2013.

168


