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Abstract

Medical imaging has seen a rapid development in its clinical use in assessment of

treatment outcome, disease monitoring and diagnosis over the last few decades.

Yet, the vast amount of available image data limits the practical use of this poten-

tially very valuable source of information for radiologists and physicians. There-

fore, the design of computer-aided medical image analysis is of great importance

to imaging in clinical practice. This thesis deals with the problem of deformable

image registration in the context of lung imaging, and addresses three of the

major challenges involved in this challenging application, namely: designing an

image similarity for multi-modal scans or scans of locally changing contrast, mod-

elling of complex lung motion, which includes sliding motion, and approximately

globally optimal mathematical optimisation to deal with large motion of small

anatomical features. The two most important contributions made in this thesis

are: the formulation of a multi-dimensional structural image representation, which

is independent of modality, robust to intensity distortions and very discriminative

for different image features, and a discrete optimisation framework, based on an

image-adaptive graph structure, which enables a very efficient optimisation of large

dense displacement spaces and deals well with sliding motion. The derived meth-

ods are applied to two different clinical applications in pulmonary image analysis:

motion correction for breathing-cycle computed tomography (CT) volumes, and

deformable multi-modal fusion of CT and magnetic resonance imaging chest scans.

The experimental validation demonstrates improved registration accuracy, a high

quality of the estimated deformations, and much lower computational complexity,

all compared to several state-of-the-art deformable registration techniques.
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Chapter 1

Introduction

The importance of medical imaging for diagnosis, monitoring and treatment of

disease has steadily risen over the last decades. The resolution, contrast and di-

mensionality of medical scans is constantly improving, but this comes at the cost

of an increasing the amount of data to be assessed by researchers and clinicians.

Especially for high-dimensional and multi-modal data, automated analysis tools

are required to extract the most useful information. Additionally, computerised

image analysis methods are more repeatable and not prone to intra- and inter--

observer inconsistencies, which makes them very suitable for deriving quantitative

measures. Image registration, the process of estimating a spatial transformation

relating corresponding anatomical and/or functional locations between scans, is

a versatile tool for several analysis tasks, including motion correction of 4D se-

quences, fusion of multi-modal scans, atlas-based segmentation and measuring

longitudinal change.

Figure 1.1 gives a graphical outline of the components of the deformable regis-

tration method presented in this thesis. A brief overview of the individual chapters
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Statistical 
similarity 
metrics 

(see Chapter 5) 

Deformation Fields 
→ Clinical Application 

(see Chapters 2 & 8) 

 and Validation  
(see Chapter 3) 

Optimisation 
(see Chapter 7) 

Regularisation 
(see Chapter 4) 

Image 
Acquisition 

(see Chapter 2) 

subject to 

Structural 
represen-

tation 
(see Chapter 6) 

computed tomography (CT) magnetic resonance imaging (MRI) 

Figure 1.1: Graphical outline of this thesis, which symbolises the different parts of
a registration framework (image similarity, regularisation and optimisation) within
the clinical context of medical image analysis (image acquisition and clinical ap-
plication).

is given below, along with the research contributions in this thesis.

Chapter 2 introduces two clinical applications of lung registration, deformable

multi-modal fusion and respiratory motion estimation, which are of particular in-

terest in this work. Thereafter, the challenges involved are discussed, which arise

due to imperfections in image acquisition, such as noise, artefacts and bias field, as

well as the complex motion of the underlying anatomy and physiology. These chal-

lenges are only partially resolved by state-of-the-art registration methods, which
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is why deformable image registration remains a very active research area.

Chapter 3 deals with the task of determining registration accuracy, which

is an important aspect for the development of medical image registration algo-

rithms and for comparison or benchmarking of different methods. In the absence

of ground truth information of the real motion, clinically relevant anatomical fea-

tures, e.g. landmarks, surfaces and volumetric segmentations are labelled manually

for a number of scans by clinical experts and used to evaluate automatic methods

in terms of accuracy. Other (complementary) metrics, which are used to assess and

compare different registration methods is the quality of the obtained deformation

fields, e.g. the complexity of deformations, singularities in the motion fields and

their inverse-consistency.

Chapter 4 describes concepts for the modelling of the complex respiratory

motion of the lungs, which consists of both smooth elastic-like deformations and

discontinuous sliding at the interface between the lungs and rib cage. Previous

work, on regularisation functionals, which enable directional-dependent smooth-

ing of the deformation fields, is presented. However, there are limitations of these

methods, e.g. the dependence on accurate segmentation of potential sliding inter-

faces. We present a novel approach using an image-derived minimum-spanning-tree

to connect control-points in a parametric transformation model, which results in

a simple, yet accurate model of lung motion [Heinrich et al., 2012d]. Addition-

ally, a modular method to obtain diffeomorphic and symmetric transformation is

presented, which can be used regardless of the employed optimisation strategy

and not only removes the potential bias of the choice of order of scans, but also

improves registration accuracy.

Chapter 5 discusses statistical forms of defining image similarity across scans.
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Similarity metrics are the main driving force of deformable registration. While

their definition is straightforward within the same modality, where intensity dif-

ferences can be directly evaluated, it remains a very challenging task across modal-

ities. A common approach to this problem, the maximisation of mutual informa-

tion (MI), aims at deriving a statistical relationship between intensity distributions

from multi-modal scans and to at minimising their joint entropy. However, since

this procedure is based on the assumption that a single global relationship be-

tween intensities exists, it will fail in the presence of image distortions or large

initial misalignment. A novel approach called textural mutual information is in-

troduced in Sec. 5.3 [Heinrich et al., 2012a], which incorporates spatial context

into the computation of mutual information in order to improve the robustness

and accuracy of multi-modal similarity measures.

Chapter 6 describes novel concepts for structural image representation. This

is a complementary approach to statistical similarity measures and has theoret-

ical and practical advantages over mutual information based methods in terms

of the arising optimisation problem, especially when dealing with highly complex

motion. The key idea is to find an alternative image representation, which is

independent of modalities and can therefore be compared across scans using in-

tensity differences. After discussion of a recent method, which uses a scalar valued

representation based on local entropy calculation, two novel approaches to multi-

dimensional structural image representation are introduced. The structure-tensor

based orientation measure in Sec. 6.3 uses local gradient orientation as a feature

[Heinrich et al., 2011c]. The main contribution in this chapter is the derivation

of the modality independent neighbourhood descriptors (MIND) [Heinrich et al.,

2012b]. MIND is derived from the idea of image self-similarity and enables the

17



construction of a highly discriminative image representation, and is shown to be

independent of modality and robust against image distortions and large initial

misalignments.

Chapter 7 deals with the challenges of the optimisation of the registration cost

functions based on the current approaches. The improvements of moving from lo-

cally defined gradient descent optimisation (demons approaches), over globally

regularised Gauss-Newton optimisation driven by local gradients, towards glob-

ally optimal graph-based discrete optimisation are discussed. A new highly effi-

cient graph-based registration approach is introduced, which employs very dense

sampling of possible displacements [Heinrich et al., 2012d]. Along with the in-

creased accuracy of the deformable registration of inhale-exhale CT lung scans,

the contributions made in this chapter also enable a greatly improved computa-

tional efficiency. This enables the exploration of higher-dimensional problems, in

which not only the geometric transformation parameters are estimated, but also

physiological parameters, e.g. lung ventilation (see Sec. 7.7) [Heinrich et al.,

2013a].

Chapter 8 presents experimental results for the discussed clinical applications

using two datasets, inhale-exhale CT scans and multi-modal MRI and CT volumes.

The findings are validated and evaluation with manually annotated anatomical

landmarks. The novel contributions made in this thesis are compared to state-of-

the-art methods in terms of registration accuracy.

Chapter 9 concludes this thesis with discussing the prospects and remaining

challenges of the field of medical image registration in general and gives potential

future directions for research in this area. A combination of discrete optimisation

and MIND is applied to near real-time deformable ultrasound-MRI registration for
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the use in image-guided neurosurgery. Sparse image representation have a great

potential for the use in high-resolution, multi-dimensional medical image analysis,

as they may provide a better trade-off between efficiency and accuracy. An ap-

proach to edge- and detail-preserving image representation for motion estimation

with discrete optimisation will be presented [Heinrich et al., 2013b]. Another appli-

cation for which discrete optimisation offers potential benefits is for segmentation

propagation. Here, the use of not only the most probable but the full distribution

of many possible transformations can be used to improve segmentation accuracy.
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Chapter 2

Motivation and challenges of

deformable lung registration

The aim of this chapter is to discuss the potentials, current limitations and chal-

lenges of deformable lung registration with respect to its clinical applications. It

provides a brief introduction to the acquisition of clinical lung scans, the general

framework and terminology used in the literature of deformable image registration,

and common applications to pulmonary image analysis.

This chapter will introduce some of the fundamental principles of medical image

acquisition and medical image analysis. The major applications and challenges for

clinical use of automated deformable motion estimation (or registration) of lung

scans will be discussed. Medical imaging entails the formation of images from the

inside of humans, primarily in a non-invasive way. It is one of the key contri-

butions to the enormous improvement of medical diagnosis and treatment during

the 20th century, because quantitative image analysis enables clinicians to make

more objective decisions. The benefits of medical imaging have driven the medical
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understanding of human anatomy, physiology and subsequently diseases to a new

level and therefore have made substantial improvements in treatment efficacy.

Tomography extends the use of medical imaging from planar 2-dimensional

images to volumetric 3D scans. It depends heavily on mathematical models and

computational algorithms for the reconstruction of a 3D image from several local

measurements or projections. Medical imaging modalities can be roughly divided

into ionising and non-ionising techniques. While ultrasound (US) and magnetic

resonance imaging (MRI) scans are non-ionising and considered to be harmless,

the radiation exposure of X-ray computed tomography (CT) or positron emission

tomography (PET) can be accumulate and potentially cause cell mutations. Nev-

ertheless, both CT and PET can provide valuable information (e.g. better spatial

resolution and metabolic information respectively) that is not available in MRI

and US. In this thesis the focus lies on structural images and dynamic sequences

of CT and MRI, which will be discussed in detail in Secs. 2.1.1 and 2.1.2.

The medical speciality radiology aims to extract clinically useful information

from these images. The main task is to detect and monitor abnormalities, such

as tumours, and make decisions regarding diagnosis and / or further treatment.

Real-time images can also directly guide a surgical intervention or image-guided

radiotherapy (IGRT). The increasing amount, improved detail and higher dimen-

sionality of available medical scans have led to the emergence of the field of med-

ical image analysis. The aim of analysis techniques is to provide the radiologist

with additional high-level information directly derived from the images. These high

throughput, repeatable, and accurate quantitative image-based measurements can

greatly assist the human observer. An explanation for the advantages of comput-

erised analysis is the steadily increasing processing power and the limited ability
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of humans to comprehensively assess three- or four-dimensional data. Example

applications of medical image analysis are the automatic delineation (image seg-

mentation) of organs or solid tumours, motion estimation and / or correction and

the detection of localised volume changes between two scans (image registration).

This thesis focusses on deformable registration of lung scans. A short introduc-

tion into the terminology of medical image registration is given in Sec. 2.2, more

detailed discussions will follow in Chapters 4 to 7. In Sec. 2.3 we discuss some

potential clinical applications, including deformable multi-modal fusion for diag-

nosis and treatment planning and lung ventilation estimation (with potential use

for assessment of breathing disorders). The major methodological challenges for

these tasks will be discussed in Sec. 2.4, motivating the novel contributions made

during this thesis in the following Chapters.

2.1 Medical image acquisition

2.1.1 X-ray computed tomography

Computer Tomography was introduced into clinical practice in the 1970s [Smith

and Webb, 2010, Chapter 2]. A CT scan is acquired by taking several X-ray pro-

jections of the patient while rotating the X-ray tube and the detector array around

him or her. The densities and attenuation coefficients of tissues are different, thus

when utilising a geometric reconstruction algorithm (commonly filtered backpro-

jection) a 3D reconstruction of the anatomical structures can be achieved. Modern

scanners can capture up to 16 slices (with thicknesses of less than 0.5 mm) simul-

taneously within half a second, making CT a very fast and very precise medical
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imaging technology. CT scans are routinely used for imaging the chest, the heart,

the abdomen and the pelvis. Advantages of CT compared to other modalities are

the speed of acquisition, which results in low per-scan costs, high spatial resolu-

tion, excellent dense tissue contrast, low distortion due to motion during the scan

and the direct usability of attenuation correction based on CT images in IGRT

and nuclear medicine image reconstruction. CT scans are expressed in Hounsfield

units (HU), which are independent of scanner manufacturer and imaging sequence,

making them a direct quantitative measurement. The drawbacks of CT scans are

the comparatively poor soft tissue contrast and the radiation exposure caused by

the X-rays, which can in high doses (e.g. accumulated by excessive repetitive

scans) cause DNA damage or induce cancer [Brenner and Hall, 2007].

Dynamic CT imaging

Dynamic or 4D CT is used to assess motion during the respiratory cycle. For

the planning of image-guided radiotherapy of lung cancer patients, motion esti-

mated from 4D-CT can be used to improve the margins of the gated radiation

[Weiss et al., 2007]. Spatio-temporal CT sequences are usually acquired during

free breathing in a scanner in cine-mode connected to a respiration-monitoring

system, which enables the reconstruction of discrete temporal frames. In Sec. 7.7

inhale and exhale pairs of 4D-CT sequences are used for lung ventilation estima-

tion. This regional functional assessment of lung functionality can be used both

for diagnostic tasks, e.g. for patients suffering from chronic obstructive pulmonary

disease (COPD) or asthma, and radiotherapy to define tumour margins, which

avoid radiation of well-functioning lung tissue.
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Figure 2.1: Two axial slices of 3D MRI (left) and CT (right) chest scans, showing
(1) left lung, (2) heart, (3) spine, (4) liver and (5) right lung.

2.1.2 Magnetic resonance imaging

Magnetic resonance imaging (MRI) was developed in the 1970s and uses non-

ionizing radio frequency (RF) signals to acquire images [Smith and Webb, 2010,

Chapter 5]. The main physical principle of MRI derives from the fact that the

magnetic moment (spin) of water (or lipid) protons can be aligned by an external

stationary magnetic field B0 in z-direction. Depending on the field strength the

protons precess at the Larmor frequency f = γB0/(2π), where γ is a constant

(gyromagnetic ratio). If an additional short RF pulse with exactly that frequency

is applied (orientated perpendicular to B0), the net magnetisation is flipped out

of alignment with the static field by a certain flip angle α. This results in a

time-varying magnetic flux, which induces a current in the receiver coil – the mea-

sured MR signal (dependent on the proton density). After the RF pulse has been

switched off, the magnetisation in z-direction slowly returns to the equilibrium

state with a (spin-lattice) relaxation time T1 and the magnetisation in x- and y-

direction returns to 0 with a smaller time constant (spin-spin) T2. The specific

chemical environment of the water protons leads to different relaxation times and
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can therefore yield excellent soft tissue contrast, which can be manipulated by

the flip angle and RF pulse strength. The spatial localisation of the MR signal

is determined by a frequency sampling strategy. In addition to the stationary

magnetic field, three gradient fields are applied, so that there is a spatially vary-

ing field strength distribution over the region of interest. Changing the applied

gradient fields over the course of acquisition can be regarded as sampling in the

frequency domain (so called ”k-space”), consequently an inverse Fourier transform

is sufficient to reconstruct the image. The advantages of MRI scans are the very

high soft tissue contrast (see Figure 2.1 (a)), the possibility of functional imaging

(diffusion, perfusion) and the acquisition is considered to be harmless. The draw-

backs are much longer scanning times (up to 15 minutes for typical sequences with

high spatial resolution), distortion due to inhomogeneities in the magnetic field

and image artefacts due to patient motion during the scanning period. In order

to avoid motion artefacts during acquisition, in particular for lung scans without

reparatory gating, the acquisition time has to be substantially reduced (to the

time of one breath-hold) causing a substantial deterioration of image quality and

scan resolution.

Dynamic contrast enhanced MRI

The recent development of dynamic MRI image sequences have had an great im-

pact in cancer imaging. In addition to the structural information dynamic se-

quences are often useful to achieve sufficient image contrast and more detailed

information about tumours and their microenvironment, in particular their vascu-

lar systems [OConnor et al., 2011]. Dynamic contrast enhanced (DCE) imaging

uses a baseline structural scan, followed by a time-series of scans acquired after in-
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jection of a contrast agent (CA), which allows to obtain a functional time-activity

curve for each voxel. The pharmacokinetics exhibited by these curves enable the

extraction of physiological parameters based on an approximated model function.

2.2 Medical image registration

Due to its great potential clinical benefits and remaining challenges, medical im-

age registration has become a large and active field of research, over the past

decades. An introduction can be found in [Hajnal et al., 2001], a comprehensive

review including recent methodological approaches in [Sotiras et al., 2013] and an

experimental comparison of pulmonary image registration methods in [Murphy

et al., 2011b]. The main mathematical and algorithmic challenges for deformable

registration are due to the problem being under-constrained, non-linear, and non-

convex. The terminology of image registration algorithms usually contain three

important aspects to model and solve the given problem:

• a transformation and/or regularisation model, which imposes a prior on per-

missible deformations based on a physically or mathematically motivated

model

• a similarity term, which measures the (dis)similarity of images during align-

ment based on their intensities, geometric features or higher-level information

(e.g. segmentation labels)

• an optimisation method to find a local (or global) minimum of an energy

function consisting of dissimilarity term and regularisation penalty.
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[Holden, 2008] presents an overview of commonly used transformation mod-

els for medical image registration. In Chapter 4, regularisation approaches from

the literature are reviewed and alternatives are proposed and discussed, which are

necessary in order to accurately model (and sufficiently constrain) the complex

respiratory motion. Finding a suitable similarity metric, that is discriminative

to different underlying anatomical structures and also robust to image intensity

and geometric distortions (caused by the different physical phenomena of medi-

cal image acquisition) is perhaps the most challenging problem of medical image

registration. In Chapters 5 and 6 novel approaches are introduced for statistical

and structural image similarity metrics, which address these challenges by incor-

porating spatial context into the formulation. Local gradient-based methods, such

as gradient descent, the conjugate gradient method, or Newton-like methods are

often used to optimise the energy function of a registration problem (an overview

of gradient-based optimisation for parametric medical image registration can be

found in [Klein et al., 2007]). Due to the non-convexity of the problem, most ap-

proaches only find local minima of the energy function, especially in the presence

of large motions. The limitations of available processing time makes a (global)

search over all possible local minima impractical. A new approach, which obtains

a computationally tractable, but still globally optimal solution of a registration

problem will be presented in Chapter 7 based on a graphical Markov random field

(MRF) model.
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2.3 Clinical applications

Two particular clinical applications are addressed in this thesis, deformable multi-

modal registration for image fusion and respiratory motion estimation. The current

challenges for deformable registration are highlighted in Sec. 2.4.

2.3.1 Deformable multi-modal registration for fusion

As mentioned in Sec. 2.1 there has been a great amount of development of new (and

improved) medical imaging modalities within recent years. For the clinical tasks

of diagnosis and monitoring of diseases, in particular tumours, multiple modalities

carry complementary relevant informations. As mentioned before, MRI excels in

soft tissue contrast and its variability to use different imaging sequences (T1, T2,

proton density, etc.). Yet, it lacks the high spatial (and temporal) resolution of

CT and its good contrast for dense tissue (bones, etc.). Contrarily, CT has a

poor soft tissue contrast. Multi-modal fusion, the combination of multiple modal-

ities based on multi-modal registration, therefore has potentially great clinical

impact. Manually aligning images for multi-modal fusion is very time-consuming,

not well repeatable, and may be less accurate in areas with low visible contrast.

Multi-modal registration can also be employed for the alignment of a high-quality

planning scan and a lower quality pre- or intra-operative scan for image-guided

interventions (surgery or radiotherapy). Here, a manual alignment is not feasible

due to the time-constraints, and often only a rough alignment based on external

markers is used, which could substantially reduce the treatment efficacy.
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2.3.2 Respiratory motion estimation

There are several clinically relevant applications for intra-patient respiratory mo-

tion estimation. First, for longitudinal monitoring of lung tumours or nodules

different breathing levels at the distinct imaging sessions need to be compensated

for to make an accurate visual or automatic comparison of the different time-

points [Staring et al., 2009b]. Lung ventilation or pulmonary function can be

estimated using deformable registration of two (or more) CT scans acquired at

different respiratory levels (usually within the same session) to assess and under-

stand breathing disorders, e.g. COPD, or in general for patients undergoing IGRT.

Registration of 4D-CT scans can also potentially be used to estimate a patient-

specific motion model to improve the dose-painting and thus treatment efficacy

of gated or intensity-modulated radiotherapy for lung cancer patients [Guerrero

et al., 2005] in order to obtain more accurate tumour margins and avoid radiation

of well-functioning lung tissue.

2.4 Challenges of lung registration

In the following, the main challenges for deformable registration of single- and

multi-modal lung scans are discussed. Non-rigid registration algorithms aim to

solve an ill-posed, non-convex optimisation problem with several million degrees of

freedom. There are four particular challenges in lung registration: large motions of

small features and sliding motions between organs, changing image contrast due to

compression (in CT), non-functional intensity mapping across different modalities

(here MRI and CT).
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2.4.1 Large motion of small features

Motion within the lungs can often be larger than the scale of the features (vessels

and airways), see Fig. 2.2 for a visualisation. This can and does cause a registra-

tion algorithm getting trapped in a local minimum, and may lead to an erroneous

registration. Local minima are frequently encountered in lung registration. Most

deformable registration algorithms (23 out of 24 algorithms in a recent compari-

son study on pulmonary CT registration [Murphy et al., 2011b]) use continuous

optimisation, which is particularly susceptible to local minima. Multi-resolution

schemes can help alleviate this non-convexity. However, this still requires the cor-

responding anatomical structures to be partially overlapping, which is not the case

for many features during breathing motions. In [Brox et al., 2008a] a hybrid ap-

proach consisting of both a local intensity-based and sparse descriptor matching

has been introduced within a variational framework. An alternative approach to

avoid local minima is the use of discrete optimisation, which is usually formulated

on a Markov random field (MRF). Discrete optimisation offers numerous advan-

tages, in particular greater control over the displacement space, to overcome these

limitations. However, the space L of possible displacements needs to be quantised,

leading to many more degrees of freedoms. A computationally very efficient ap-

proach for MRF-based deformable registration based on a minimum-spanning-tree

graph model and a stochastic dense displacement sampling is presented in Sec. 7.5.

2.4.2 Sliding motion at lung surfaces

Most registration algorithms include prior knowledge about the smoothness of de-

formations into the optimisation process to avoid physically implausible folding or
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gaps in the deformation field. The smoothness constraint typically assumes homo-

geneous motion and can be part of the transformation model or used as a penalty

(regularisation) term. This assumption is violated in the case of a sliding motion

between two objects (at their boundary), which naturally occurs during respira-

tion (a further detailed illustration of this will be shown in Fig. 4.1 in Chapter

4). A homogeneous smoothness prior at sliding surfaces causes the registration

to be inaccurate. Several authors address this problem by masking out the back-

ground objects that follow a different motion (e.g. a ”motion mask” is used in

[Vandemeulebroucke et al., 2012]). Two separate registrations are then performed

for the foreground and background objects. However, this requires an optimal

fusion of the two resulting motion fields. In [Schmidt-Richberg et al., 2012a], a

direction-dependent regularisation is proposed that is based on an automatically

detected mask. [Baluwala et al., 2013] decouple the tangential and normal compo-

nents of the force field within an elastic registration. In Sec. 4.1 more approaches

for discontinuity-preserving regularisation of the motion are reviewed. A regular-

isation penalty based on the modified Lp norm presented was proposed by us in

[Heinrich et al., 2010b] (see Sec. 4.1.2). In Sec. 4.3 a different graph structure,

namely an intensity-derived minimum-spanning-tree, is introduced which effec-

tively models sliding preserving motion.

2.4.3 Intensity variation due to lung compression

A local change in lung volume is expressed in CT scans as a relative difference

in the corresponding Hounsfield units within the breathing cycle. The change

in density (and image intensity) can be problematic for deformable registration
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if a one-to-one intensity mapping is assumed. Similarity metrics that assume a

globally linear relationship (e.g. cross-correlation) or statistical dependency (e.g.

mutual information), cannot resolve for the locally varying contrast. Recently,

so called mass-preserving similarity terms have been introduced by [Yin et al.,

2009] and [Gorbunova et al., 2012]. In Sec. 7.7 an alternative solution is proposed,

based on the discrete MRF-based registration framework presented in Sec. 7.5.

An additional fourth label dimension is introduced into the discrete label space,

which represents a local multiplicative intensity variation for each control point in

the graph. The advantage of this approach is that we can simultaneously estimate

a dense motion field and a regularised map of local density change. This directly

provides a ventilation image of the lung functionality.

2.4.4 Multi-modal image similarity for deformable regis-

tration

When considering scans from different modalities, the intensity variations are more

severe than for the aforementioned CT scans. There is usually no functional map-

ping between the intensities across modalities. Therefore statistical metrics, such

as mutual information (MI) [Maes et al., 1997] have been widely used for multi--

modal registration. However, the application of MI for non-rigid registration has

proven to be very difficult, for example several disadvantages (caused by interpo-

lation, initial misalignment, etc.) have been discussed in [Pluim et al., 2000] and

[Haber and Modersitzki, 2007]. In addition, locally varying intensity variations,

due to bias fields in MRI and lung compression in CT, violate the assumption of a

global statistical dependence and make the use of more sophisticated MI variants
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Figure 2.2: Illustration of some of the challenges of deformable lung registration.
Overlay of inhale (green) and exhale (magenta) phase of 4D-CT scan [Castillo
et al., 2009]. The motion of the diaphragm is roughly 20 mm in this case, which
is larger than the thickness of vessels within the lungs. The histograms of the HU
values of inhale (green) and exhale (magenta) scan are shown on the right. The
magnification of values between -1000 and -700 HU shows a shift of intensities
(≈30 HU) between breathing phases due to compression.

necessary. Few examples for deformable multi-modal registration can be found in

the literature: [Ou et al., 2011] present visual results for MRI to histology reg-

istration, [Loeckx et al., 2007] report improved volume overlap for the rectum in

CT/MRI registration, and [Rivaz and Collins, 2012] evaluate ultrasound to MRI

registration with manual landmarks. The work of [D’Agostino et al., 2003; Mellor

and Brady, 2005; Wachinger and Navab, 2012] aims at multi-modal deformable

registration, however, only presents results for synthetically deformed images. In
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Chapter 5 we address the unsolved challenges of multi-modal similarity by mak-

ing use of spatial context for the definition of image similarity. We present an

approach to include information of small image patches to formulate a textural

mutual information in Sec. 5.3 [Heinrich et al., 2012a]. Based on the concept of

image self-similarity we devise a new multi-dimensional image representation in

Sec. 6.4: the modality independent neighbourhood descriptors [Heinrich et al.,

2012b].
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Chapter 3

Validation of deformable image

registration

Evaluation of the quality of a registration algorithm on clinical data against a

ground truth metric is a very important step in developing new methodologies. The

objective of this chapter is to discuss metrics, which are suitable for the validation

of the deformable registration methods presented in this thesis. For pulmonary

image analysis anatomical or geometric landmarks are one of the most important

evaluation criteria.

The task of validation of deformable registration is far from being trivial and

several (sometimes controversial) evaluation criteria have been proposed in the

past. Evaluation of registration quality primarily has two different goals: assess-

ing the robustness and accuracy of a proposed method for a given clinical tasks,

and benchmarking of several methods in order to rank them. The former is ad-

dressed in almost every publication introducing a new clinical application of image
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registration. Benchmarking of different deformable registration methods has only

recently started: first, for the deformable inter-subject registration of brain MRI

scans by [Klein et al., 2009] and thereafter for intra-subject lung registration of

CT scans by [Murphy et al., 2011b]. In Sec. 3.2.1 we discuss a number of sur-

rogate metrics, clinically relevant image-derived metrics and higher-level clinical

metrics, which are frequently used for evaluation. Often, no clinically meaningful

ground truth is obtained and only surrogate metrics are used to validate a new

registration technique. Note that, using a mock registration tool, which exploits

the insensitivity of surrogate metrics, [Rohlfing, 2012] demonstrates why these

might lead to unreliable results and should therefore be avoided. The ability of

our presented new similarity metrics and image representations to robustly align

scans from different modalities is presented in Chapter 8 and compared to other

metrics.

This chapter is organised in the following way. First, the imaging data used in

this thesis is described in Sec. 3.1. Second, surrogate measures based on intensi-

ties and properties of deformations are discussed in Sec. 3.2.1 and 3.2.2. Third,

measures based on clinically relevant anatomical features, including landmarks,

volumetric, and surface segmentations are presented. For lung motion estima-

tion, a particular focus of validating registration methods lies on expert-annotated

anatomical landmarks. A disadvantage of the previous two groups of measures

is that they usually require a dense deformation field after registration. It is

therefore challenging to isolate the individual effects of different parts of the regis-

tration method (similarity term, transformation model, optimisation). In Sec. 3.3

we present an alternative evaluation procedure: regional landmark localisation,

which is used in Chapters 5 and 6 to evaluate different similarity metrics. Here,
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the similarity cost is only locally computed in order to localise a geometric or

anatomical landmark within a specific search region.

3.1 Description of imaging data

In this thesis three different datasets are used to evaluate the contributions pre-

sented in this thesis for the driving clinical applications of this work and compare

them to state-of-the-art methods. First, the visible human dataset (VHD) [Ack-

erman, 1998] will be used in Chapter 5 and 6 to study different similarity metrics.

This dataset1 consists of different MRI modalities (T1-, T2- and PD-weighted)

and scans were acquired post-mortem, which means that there is intrinsically no

motion present. Section 3.3 describes the experiments, which are performed to

compare different similarity metrics (using these scans). Second, a number of CT

scans with respiratory motion are used in Chapters 7, 5 and 6 to compare different

optimisation strategies and again similarity metrics. Estimating and compensating

for respiratory motion is an important area of research with applications in diagno-

sis (of lung functionality and breathing disorders) and image-guided radiotherapy.

The results for this dataset will be presented in Secs. 7.4, 7.6 and Chapter 8, and

compared against other state-of-the-art methods, which have been applied to the

same scans. Since these scans are from the same modality, the main focus is on

the use of transformation model, regularisation, and optimisation. Third, we used

volumetric images of eleven patients suffering from empyema, a lung disease, who

were scanned for diagnostic purposes by our collaborators with both MRI and CT.

Different scanning protocols were employed for these clinical datasets. The CT vol-

1The VHD is available from the National Library of Medicine with a licence agreement.
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umes include scans with contrast, without contrast, and a CTPA (CT Pulmonary

Angiogram) protocol. For the MRI scans, both T1-weighted and T2-weighted

FSE-XL sequences within a single breath-hold were employed. All patients suf-

fered from empyema, a lung disease characterised by infection of the pleura and

excess fluid within the pleural space. The extra fluid may progress into an abscess

and additionally, cause the adjacent lung to collapse and/or consolidate. Both

modalities are useful for detecting this pathology, but because the patients are

scanned in two different sessions and at different levels of breath-hold, there are

non-rigid deformations, which makes it difficult for the clinician to relate the scans.

The quality of the MRI scans is comparatively poor, due to motion artefacts, bias

fields and a slice thickness of around 8 mm.

3.2 Measures for evaluation of registration

The Retrospective Registration Evaluation Project (RREP) study [West et al.,

1997] is an important example of a gold-standard evaluation and benchmarking of

registration accuracy. A number of volumetric brain scans from different modalities

(CT, MRI and PET) from the same patient had to be rigidly registered. The

gold standard transformations were obtained by the organisers using implanted

fiducial markers and their appearance had been removed (or disguised) before

distributing the data. The accuracy in terms of target registration error (TRE)

was then evaluated for all algorithms in order to rank the participating algorithms.

For non-rigid deformations, which occur for example during respiratory motion

or longitudinal studies, no such gold standard exists and other measures for the

evaluation of registration accuracy have to be found.
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3.2.1 Surrogate measures for accuracy based on image in-

tensities

The simplest surrogate measure for registration accuracy is the image similarity

after registration. For single-modal registrations, the mean squared error (equiv-

alent to SSD) and for scans from different modalities or with changes in contrast,

mutual information are often used. However, these are also very popular similarity

metrics, which are widely used to drive the registration itself, so the results will

be biased. Additionally, over-fitting of the data (in principle aligning image noise)

would be favoured by these metrics, if no additional metric is used to ensure a cer-

tain smoothness of the obtained deformations. [Rohlfing, 2012] presents a slightly

ironic discussion of this issue. A completely useless registration tool (CURT) is

introduced, which merely sorts the intensities in the fixed and moving image and

derives a deformation field by assigning voxels across images based on their sort-

ing index. Even though this results in a meaningless transformation, it seemingly

outperforms state-of-the-art registration methods based on similarity-based surro-

gate metrics. Therefore, similarity-based metrics should be avoided for evaluating

registration accuracy. They might, however, be useful for choosing parameter

settings.

3.2.2 Surrogate metrics for quality of deformations

As discussed above, similarity-based agreement of images after alignment is a

necessary but not sufficient requirement for a successful registration. A second

category of surrogate metrics attempts to evaluate the quality of obtained trans-

formations. The inverse consistency error (ICE) introduced by [Christensen and
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Johnson, 2001] evaluates how much the result of a registration algorithm is affected

by the order of target and moving image (It and Im respectively). Given the for-

ward and backward transforms φF and φB with respective displacement fields uF

and uB the ICE and its mean ICE are defined as:

ICE = ||φF ◦ φB||2 and ICE(x) = ||uF (x) + uB(x + uF (x))||2 (3.1)

where ◦ indicates the composition of two transformations. The use of a symmetric

transformation approach can reduce inverse inconsistency. For many applications

(especially intra-patient registration) the physical plausibility of transformations

may be known a priori. Therefore the occurrence of singularities in the motion

field, which results in implausible folding, can be used to assess the quality of the

registration. The Jacobian Jac(u) of the transformation φ = Id+u (with identity

transform Id and displacement field u = [u, v, w]T ) was defined by e.g. [Rey et al.,

2002] as:

Jac(u) = det(Id +∇u) =

∣∣∣∣∣∣∣∣∣∣∣
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The Jacobian gives an intuitive measure of the local deformation properties. Vox-

els for which the Jacobian has a value greater than 1 are expanded, the ones for

which Jac < 1 contracted, and voxels for which Jac < 0 disappear (hence there is a

singularity in the motion field). The fraction of voxels with negative Jacobians is a

popular surrogate measure for registration quality, e.g. in [Murphy et al., 2011b].
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The Jacobian has also been widely used in clinical studies for neurodegenera-

tive diseases such as Alzheimer’s [Fox et al., 1996]: in tensor-based morphometry

(TBM) [Hua et al., 2008] the values are used as a feature for classification.

However, different registration algorithms with the same fraction (or complete

absence) of negative Jacobians can still exhibit a large variation in complexity or

smoothness in their resulting deformations. The weighting between the similarity

and regularisation term has to be usually set manually within the optimisation

framework of a method. In [Ou et al., 2012] the aggressiveness of different reg-

istration algorithms is measured using the maximum range of Jacobians. It is

found that most methods yield a better registration accuracy based on anatomi-

cal segmentations (see next section) when a lower regularisation weighting is used

(leading to a larger range of Jacobians). [Yeo et al., 2008] found a similar effect

for atlas-based segmentation, however in their work a variation over weighting

parameters gave an optimum value. Therefore a fair comparison across different

registration strategies should always include a quantitive measure of the complex-

ity of deformations. [Leow et al., 2007] suggests using the standard deviation (std)

of Jacobian values to measure the deformation complexity, where lower values cor-

respond to smoother transformations. Figure 3.1 shows the Jacobian maps of an

inhale-exhale lung registration using two different regularisation weightings. Al-

though both transformations are free from singularities, the second one shows a

substantially higher complexity in terms of std(Jac).
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Figure 3.1: Comparison of Jacobian maps for registrations with different com-
plexity. Expansion is indicated with bright, compression with dark colours. Left:
Overlay of coronal slice of reference exhale (magenta) and moving inhale (green)
image of 4D-CT sequence. Centre: Smoother transformation with std(Jac) = 0.10.
Right: More aggressive transformation with std(Jac) = 0.15. Both transforma-
tions have no singularities (i.e. Jac ≥ 0).

3.2.3 Clinically relevant image-derived measures

To overcome the problems related to surrogate measures, clinically relevant anatom-

ical measures have to be taken into account. Here, an anatomical feature is manu-

ally annotated in both scans. After registration, the manual annotations from the

moving image are transformed into the space of the fixed scan using the estimated

deformation field. The discrepancy between the automatically transferred and the

manually defined features is used as the registration error (or accuracy).

Comparing different volumetric labelings (segmentations) is commonly done

using the Dice coefficient κ, which yields 1 for perfect overlap and 0 for non-

overlapping structures. The NIREP dataset for evaluation of inter-subject brain

registration has been made publicly available by [Christensen et al., 2006]. It

uses 32 manually segmented small anatomical regions of MRI scans of 16 healthy

subjects. Similar datasets have been used in the study by [Klein et al., 2009], which

aimed at comparing and ranking different non-linear brain registration methods.

For thoracic CT registration the segmentation of the whole lungs is possible,

however due to the well-defined boundary most methods are able to align the
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lungs almost perfectly and there is almost no discrimination between different

algorithms. This can be seen in the results and conclusions of [Murphy et al.,

2011b]. In this case, the results are additionally skewed, because the lung segmen-

tations are provided with the data and have been used by most of the participants

in the study to drive the registration. For large objects the Dice coefficient is

not sufficiently sensitive. Manual or automatic segmentations of smaller anatom-

ical volumes within the lungs (fissures, lobes, and segments) is very challenging

([Van Rikxoort et al., 2009] reports an accuracy of 75%). The fissure alignment

error provides a reasonably good measure of registration [Murphy et al., 2011b].

Figure 3.2: Examples of anatomical measurements for lungs. Left: Automatically
segmented lung segments shown on axial CT slice from [Van Rikxoort et al., 2009].
Right: Semi-automatically detected landmarks on a maximum-intensity projection
(coronal) view of a thoracic CT scan from [Murphy et al., 2011b].

Based on the results of [Murphy et al., 2011b] and the discussion of [Rohlf-

ing, 2012], we can conclude that for the specific application of lung registration,

landmark-based validation offers the best opportunity for a robust comparison of

registration performance. The task of annotating landmarks in a pair of scans can

be divided into two steps: automatic landmark detection and manually establish-

ing a landmark correspondence [Murphy et al., 2011a]. The objective of the first
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step is to find a number of well-distributed locations, which are sufficiently distinc-

tive from their surroundings (i.e. landmarks), in order to be matched by a human

observer. We will later present a method of automatic landmark detection in Sec.

3.3.1. The second step requires the manual interaction of an (ideally trained)

observer in order to find the corresponding landmark in the second scan. For

intra-patient registration, we would expect each anatomical feature to be present

in both scans, but changes in the field of view or pathological changes might not

always guarantee correspondence. The task is very time-consuming especially for

multi-modal datasets, where the appearance of corresponding features may be very

different. For this reason [Murphy et al., 2011a] complemented this step with au-

tomatic landmark matching, using a thin-plate-spline (TPS) transformation based

on previous manual point matches and a local block-matching (with SSD similar-

ity). This enables the annotation software to automatically take over the manual

matching process after a number (usually >30) of good matches. A similar process

was described by [Castillo et al., 2009] in order to efficiently annotate very large

numbers (≥ 3000) of landmarks in thoracic 4D CT scans. Intra-observer differ-

ences for selecting landmarks in intra-patient CT scan pairs are usually less than

the image resolution (for 4D-CT scans the resolution is typically 1 × 1 × 2.5 mm

and intra-observer errors are ≈ 1mm). For multi-modal scan pairs (such as the

CT/MRI dataset we used) landmark detection and matching is more challenging.

Therefore, normally fewer landmark pairs can be reliably selected and the observer

error tends to be larger (for the MRI scans with resolution of 0.7 × 0.7 × 8 mm

this error was >5 mm). For the validation of registration methods using anno-

tated landmarks the target registration error (TRE) [Fitzpatrick et al., 1998] is

commonly used, which is the Euclidean distance between manually located cor-

44



responding point and automatically determined location (based on deformation

fields).

3.2.4 Higher-level clinical measures

If the application of deformable registration is to predict a certain medical con-

dition, e.g. differentiation between healthy and diseased subjects for neurode-

generative disorders, the outcome of a retrospective study of the prediction ac-

curacy can be used to implicitly evaluate the registration quality. In [Bhushan

et al., 2011], we compared the ability of different registration strategies to pre-

dict the treatment response of colorectal cancer patients. For this purpose, the

Kolmogorov-Smirnov distance of distributions of parameter-maps estimated from

dynamic contrast enhanced MRI sequences was used to predict the response of pa-

tients to radio-chemotherapy in the early stage of treatment. A better prediction

or classification does not necessarily imply greater registration accuracy. However,

usually the target of clinical applications is to derive clinically useful information

and not necessarily to achieve a perfect registration, thus higher-level measures

are often the best choice.

3.3 Evaluation using landmark localisation

Evaluating medical deformable multi-modal image registration in a controlled

manner is not trivial. As discussed above, finding and accurately marking cor-

responding anatomical landmarks across modalities is difficult even for a clinical

expert. Random deformation experiments, as are usually performed in the litera-

ture for multi-modal registration (e.g. in [D’Agostino et al., 2003; Glocker et al.,
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2008a; Mellor and Brady, 2005; Wachinger and Navab, 2012]), are not very realis-

tic. In order to perform a simulated deformation for multi-modal data, an aligned

scan pair must be available. Moreover, simulated deformations hardly ever cap-

ture the complexity and physical realism of patient motion (an exception would

be a phantom based on a number of scans acquired at different times). Few thor-

ough and principled comparisons of (multi-modal) image similarity in the medical

domain have been made to-date. To overcome the aforementioned challenges, we

propose a new approach to compare similarity metrics and evaluate their robust-

ness and accuracy: regional landmark localisation. For this purpose, we employ the

Visible Human dataset (VHD), see Fig. 3.3. Because the scans were taken post-

mortem, no motion is present and different modalities are intrinsically in perfect

alignment. We selected two MRI sequences, T1 and PD weighted volumes, as they

offer a sufficient amount of cross-modality variations. The images are up-sampled

from their original resolution of 1.875× 4× 1.875 mm to form isotropic voxels of

size 1.875 mm3.

A simple window-based similarity cost aggregation is used (which avoids the

differentiation of the similarity function and setting of a regularisation weighting)

to derive local similarity maps across modalities for a large number of automatically

detected landmarks. This will be explained in detail below (Sec. 3.3.1). In Sec.

3.3.2, we present our experimental setting to evaluate the robustness of different

similarity measures with respect to clinically relevant image distortions: Gaussian

noise and locally varying multiplicative bias fields. In [Hirschmüller and Scharstein,

2009] similar experiments have been performed to compare matching costs for the

application of stereo depth estimation under the influence of linear and non-linear

(but monotonic, so not multi-modal) grey-value transformations.
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Figure 3.3: Visible Human Dataset used for landmark localisation experiment.
The T1 and PD MRI scans, acquired post-mortem, are intrinsically aligned. A
representative subset of the 619 landmarks, which were found using the 3D Harris
corner detector, is plotted using red squares.

We have used a second dataset for evaluation: a pair of an inhale-exhale CT

lung scans [Castillo et al., 2009]. Here, the challenges are the locally varying

contrast, due to the change in density within the lungs during respiration, image

noise because the scans are acquired with low radiation dose, artefacts due to

the 4D reconstruction, and, importantly, local deformations. The localisation of

landmarks using only the window-based similarity cost is therefore too challenging

for simple metrics, such as SAD or SSD. For this reason, the dataset is also suitable

to evaluate multi-modal similarity measures. The resolution of these scans is

0.97× 0.97× 2.5 mm.
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3.3.1 Similarity-based landmark localisation

For evaluation purposes, we propose to measuring the ability of a similarity metric

(or image representation) to robustly and accurately define similarity across scans

in the presence of geometric and/or intensity distortions. First, we select a number

of anatomical landmarks or feature locations in one scan. In the case of the

VHD dataset, this is done automatically using the 3D Harris (or Förstner) corner

detector [Rohr, 1997] (see Fig. 3.3). Given the smoothed spatial image gradients

∇Iσ, we construct the matrix C = ∇Iσ∇ITσ for every voxel. A high ratio R

between its determinant and trace (see Eq. 3.3) indicates a point feature (ε is set

to 0.001).

R =
detC

traceC + ε
(3.3)

Using non-maximum suppression, we automatically select 619 well distributed

landmarks, with an example shown in Fig. 3.4. These landmarks are relatively

easy to locate, since they have strong gradient responses in all three dimensions.

For the second dataset, 300 corresponding landmarks, have been manually anno-

tated by [Castillo et al., 2009], at inner-lung features (e.g. vessel bifurcations) with

an intra-observer error of ≈ 1 mm.

After the definition of landmarks in the first scan, the similarity measure (which

is being evaluated) has to be computed within a search region extracted from the

second (multi-modal) scan. The size of the search region S is set to 32× 32× 32

mm for the first experiment (T1- and PD-MRI of Visible Human Dataset) and

24 × 24 × 62 mm for the second experiment (inhale and exhale phase of 4D-CT

scan) in order to cover the large respiratory motion. The window W for similarity

cost aggregation has an edge length of l = 11 voxels. For each displacement within
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Figure 3.4: Overview of the proposed landmark evaluation experiment. Left: For
each landmark a small feature cubic window (edge length l = 11 voxels) is ex-
tracted from the first scan (marked with red box). Centre: A larger search region
(capturing the corresponding landmark location) is defined within the second scan
(marked with blue box). Right: The similarity term (here SAD of MIND) is
computed for each location within the search region (sliding the window for ag-
gregation). High local similarity is displayed in red, low similarity in blue. The
optimal position is then selected and compared with the gold standard location
and used to evaluate the localisation accuracy.

the search region, the sum of all point-wise similarity costs for each of the l3 voxels

within the aggregation window is calculated. This forms an intrinsic regularisation

of the similarity map and is based on the assumption that neighbouring voxels

(within the small window) move together.

Subsequently, the location within S with the highest similarity (lowest similar-

ity cost) is selected. A subpixel optimum is found by fitting a quadratic function

to the neighbouring similarity values in each dimension. The Euclidean distance
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between the gold standard landmark displacement and the obtained subvoxel op-

timum of the similarity search is used as landmark localisation error (LLE) (see

Fig. 3.5).

landmark in 
inhale scan  

TRE: 0.45 mm 

initial position 
exhale scan  

located position 
in exhale scan 

TRE: 25.3 mm 

Figure 3.5: Example of landmark localisation in the inhale-exhale CT dataset.
Left: The manual landmark is shown on the axial slice of the inhale volume. Cen-
tre: The initial position within the search window in the exhale volume. Right:
The located position based on the optimum of the similarity map (c.f. Fig. 3.4
right). Note that the optimum lies in a different axial slice. The resulting land-
mark localisation error (LLE) is calculated with respect to the manually annotated
position of the corresponding landmark.

3.3.2 Evaluation of robustness against intensity distortions

To test the robustness of different approaches, we simulate realistic intensity dis-

tortions (which are common in clinical scans). First, we apply a non-uniform bias

field (multiplicative linear gradient from left to right) of varying strength to the

MRI-T1 scan. Figure 3.6 (top row) shows a coronal slice of the T1 scan with very

little, moderate, and a strong bias field. The strength is varied in 5 steps up to a

maximum amplitude of the multiplicative field of 2 (so that it is in the range of

[0, 2]). Robustness against bias fields plays an important role in image registration

of MRI scans and many approaches have been made to address this challenge.

[Ashburner and Friston, 2005] proposed a simultaneous image registration and
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Figure 3.6: Top row: Simulated intensity distortion of MRI-T1 scan using a mul-
tiplicative bias field (linear gradient). From left to right: Coronal slice with very
little, moderate (range [0.5, 1.5]) and strong bias field (range [0, 2]). Bottom row:
MRI-PD scan with additive Gaussian noise (intensity µ = 200). From left to right:
very little, moderate (σ = 15) and strong noise (σ = 30).

intensity correction method in order to deal with non-uniform bias fields in com-

bination with brain tissue segmentation. The coding complexity of the residual

image is minimised in [Myronenko and Song, 2010] to estimate a smooth intensity

correction field. Similarly, in [Modersitzki and Wirtz, 2006] a regularised correc-

tion function is employed in a variational optimisation framework to compensate

for inhomogeneous intensity mappings.

Directly removing or modelling the bias field within registration is challenging,

in particular for multi-modal scans, due to the often non-functional relationship

between image intensity distributions. The use of a similarity metric, which is

sufficiently insensitive to locally varying intensity inhomogeneities is therefore very
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useful. Another advantage, of avoiding an explicit model of the bias field, is the

simplicity and general applicability of such an approach.

Robustness of a method against Gaussian noise is an indicator that is commonly

used to test its usefulness in a real world scenario. Clinical scans are often acquired

with lower signal-to-noise (SNR) ratios than research scans, because it is desirable

to reduce both scan time for MRI and radiation exposure for CT. Figure 3.6

(bottom row) shows a coronal slice of a PD scan with no, moderate, and strong

additive Gaussian noise (a Gaussian noise distribution is close to the Rician noise,

which reflects the physical MRI acquisition). The strength is varied in 6 steps up

to a maximum variance of σ = 30 (the mean image intensity is 200).

The inhale-exhale CT dataset exhibits locally varying intensity distribution

due to lung compression. A local change in lung volume is expressed as a relative

difference in the corresponding Hounsfield values within the breathing cycle. Due

to the low-dose radiation setting employed in clinical 4D-CT sequences it also has

an intrinsically greater noise level than the VHD dataset. Therefore, no further

intensity distortions are applied to this dataset.

3.4 Summary

This chapter has presented different commonly used evaluation criteria for de-

formable registration. Measuring the target registration error for a (preferably

large and well distributed) number of manually annotated anatomical (or geomet-

ric) landmarks is the most suitable and widely used gold standard for pulmonary

registration methods.

The validation of deformable multi-modal registration is particularly difficult
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and little research has addressed this so far. In Sec. 3.3, we have presented a

new approach to evaluate and compare different multi-modal similarity measures

using landmark localisation experiments. An advantage of this procedure, which

will be used in Chapters 5 and 6, is that it can be performed independently of a

specific regularisation penalty, transformation model and optimisation technique

and is therefore ideally suitable to distinguish between of different ways of defining

multi-modal similarity.

Measures to assess the quality of the deformation fields (based on its Jaco-

bian and inverse constancy) of a registration algorithm have been presented. The

next chapter discusses in more detail the modelling of lung motion with specific

regularisation terms and transformation models.
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Chapter 4

Modelling of complex lung motion

The objective of this chapter is to discuss the suitability of current approaches to

regularisation and parameterisation for lung deformations, with particular focus

on sliding motion, and its implications for the optimisation of the resulting energy

functions. We demonstrate the limitations of robust norms for the regularisation

lung motion estimation. Instead, we propose the use of an image-derived minimum

spanning tree to form an efficient discontinuity preserving connectivity of control

points within the parametric grid. We present a simple and accurate approach

to ensure symmetric and diffeomorphic transformations for both continuous and

discrete optimisation methods.

A realistic mathematical model of the underlying physical motion is key to

any image registration method. For this reason, there should be a good balance

between how close a model is to the problem and its robustness against image

noise and artefacts. Furthermore, the numerical representation of a model and its

computational complexity need to be taken into consideration. The main chal-

lenge for the estimation of lung motion is the occurrence of sliding organ motion.
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While the motion can be assumed to be smooth within most organs and individual

lung lobes, there is sliding motion along surfaces, in particular the lung pleura.

Figure 4.1 illustrates the notion of sliding motion, due to respiratory motion, on an

example slice of a thoracic 4D CT scan (overlay of inhale and exhale phase). The

main anatomy of thorax, including lung fissures and diaphragm motion, is out-

lined. The main part of the lung motion (indicated by white arrows on right side)

is approximately parallel to the lung boundary, but with opposing directions for

structures within and outside of the lung (the rib cage moves only marginally dur-

ing this breathing cycle) causing discontinuities at the interfaces. A short overview

of variational approaches to regularise deformations will be presented in Sec. 4.1.

The standard approach of homogenous diffusion regularisation, which will be pre-

sented in Sec. 4.1.1, is not appropriate to model this motion. Three alternative

methods, which address the sliding motion: robust norms, direction-dependent

and image-adaptive regularisation will be discussed in the following.

Parameterisation, primarily using the concept of Free-form deformations (FFD)

[Rueckert et al., 1999], plays an important role in medical image registration. It

reduces the large number of degrees of freedom and at the same time imposes a

specific regularity on the deformations. A standard FFD transformation model

is usually unsuitable to deal with the complex sliding motion, as it enforces the

smoothness constraint across the motion boundary. A simple solution is to use

a segmentation mask and perform two separate registrations, treating the motion

inside and outside of the lungs independently [Wu et al., 2008]. However, this

requires very accurate segmentation, it is not trivial extendable to multi-organ

sliding motions and a combination of the two deformations might cause gaps or

overlap. In Sec. 4.3, we propose the use of an image-derived minimum-spanning-
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Figure 4.1: Illustration of sliding motion in coronal plane of thoracic CT scan
during respiration. Overlay of inhale and exhale phase of 4D-CT scan [Castillo
et al., 2009]. The anatomy, which plays a role in respiratory motion is depicted.
On the right, it can be seen that the motion inside the lung is mainly parallel to
the thoracic cage, while the ribs stay almost static, causing a discontinuity of the
motion field. The motion of the diaphragm is roughly 20 mm in this case (larger
than the thickness of vessels within the lungs).

tree (MST) for sliding-preserving parametric transformations. The MST removes

edges between control-points at locations of high image gradients (which are likely

to coincide with discontinuous motion).

For particular applications of image registration certain properties are desirable

for the estimated deformations. Usually, deformable registration is performed by

defining one scan as fixed, the other as moving image. Symmetric and inverse con-

sistent registration approaches remove the bias of choosing one or the other image

as the moving image. Diffeomorphic mappings ensure that the inverse transforma-

tion is invertible and free of singularities. We propose a novel, efficient approach

to obtain both transformations, which are both diffeomorphic and symmetric in

Sec. 4.4. It can be seen as a modular independent component, which is easy to

incorporated into almost any existing registration algorithm.
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4.1 Variational regularisation

Deformable image registration is an ill-posed, underdetermined problem and there-

fore requires some form of regularisation to obtain physically plausible motion es-

timates. Regularisation ensures a smooth deformation field in image areas with

low information content (e.g. homogeneous regions) by penalising the deviation of

the motion vectors of spatially close locations.

4.1.1 Linear or homogenous diffusion

Diffusion regularisation penalises the squared Euclidean norm of the deformation

field and has been used widely in image registration. In a variational method,

a global regularisation assumption can be incorporated using a combined energy

term. A general form of a non-parametric registration approach, which estimates

the transformation φ = Id + u (where Id : x→ x is the identity transform and u

a dense displacement field) between target image It and moving image Im, can be

formulated as the following optimisation problem:

φ∗ = argmin
φ

E(φ, It, Im) (4.1)

E(φ) =
∑
x∈Ω

S(It(x), Im(x + u))︸ ︷︷ ︸
dissimilarity term

+α
∑
y∈N

R(u(x),u(y))︸ ︷︷ ︸
regularisation term

(4.2)

where S describes the image dissimilarity and R is a penalty to ensure the regu-

larity of the transformation, which depends on the deviation of u within a neigh-

bourhood N .
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[Horn and Schunck, 1981] introduced the use of the squared Euclidean norm

of the gradient of the deformations as penalty function R. For a d dimensional

image the regularisation term, which is also known as diffusion regularisation, is

defined as:

R(u(x)) =
d∑
i=1

|∇ui(x)|2 = |∇u(x)|2 (4.3)

Another popular approach to diffusion regularised deformable registration is the

demons framework [Thirion, 1998]. Here the optimisation problem is decoupled

into two parts. First a force field is estimated aiming to minimise the sum of

squared differences (SSD) of image intensities. The regularisation is then per-

formed in a second step, where the force field is convolved with a Gaussian filter

kernel Gσ yielding the deformation field h = Gsigma ? u. The Gaussian filtering

can be seen as an approximation to the diffusion regularisation in Eq. 4.3. How-

ever, the decoupling of similarity computation and regularisation comes at the cost

of slower convergence and generally requires more iterations than the variational

approach discussed above.

4.1.2 Robust norms

To improve the performance of motion estimation at discontinuities, functionals

ρ(x) other than the squared error term in Eq. 4.3 have been proposed, which re-

duces the regularisation penalty for step changes in the motion field. The modulus

(L1 norm) ρ(x) = |x| would be an obvious choice, but because it is not differen-

tiable at the origin it cannot be directly used for continuous optimisation. Two

differentiable robust variants, namely the Charbonnier penalty ρ(x) =
√
x2 + ε2

[Charbonnier et al., 1994] and the Lorentzian ρ(x) = log(1 + x2

2σ2 ) are widely used
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(c.f. [Scharstein and Szeliski, 1996]).

In [Heinrich et al., 2010b], we have proposed the use of the modified Lp-norm

(or generalised Charbonnier penalty) ρ(x) = (x2 + ε2)
p
2 for deformable lung regis-

tration, in order to preserve sliding motion. A comparison of the aforementioned

robust penalties is shown in Fig. 4.2. Our experiments showed, that when using

a norm with p ≤ 1, a correctly estimated step change at the interface of lung and

rib cage (see magnitude of the deformations in Fig. 4.2, bottom right). However,

the remaining part of the motion field is not sufficiently smooth and unrealistic

discontinuities are visible in other areas as well.

One other problem of robust norms compared to diffusion regularisation is that

the penalty function is non-convex for p ≤ 1 (or for the Lorentzian). Therefore the

energy minimisation is hindered, a practical solution is to use a weighted average

of squared and robust penalty with gradually increasing weight of the non-convex

part (graduated non-convexity (GNC) [Blake and Zisserman, 1987]).

4.1.3 Direction-dependent diffusion regularisation

The robust norms discussed above, are entirely driven by the estimated deforma-

tions themselves. The basic intuition that motion discontinuities coincide with

changes in appearance is not explicitly modelled, which might lead to unrealistic

discontinuities (as seen in the example in Fig. 4.2). [Nagel and Enkelmann, 1986]

proposed an anisotropic image-driven regularisation weighting and [Zimmer et al.,

2011] used a joint image- and flow-driven approach.

[Schmidt-Richberg et al., 2012a] proposed an approach, which explicitly models

sliding motion. Prior knowledge is used to determine the locations where discon-
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with ε = 0.1 and σ = 0.5 used in registration experiment
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Figure 4.2: Influence of robust penalty functions on deformation fields using image
data from [Murphy et al., 2011b]. Sliding motion at the interface between lungs at
thoracic cage can be seen (see red box) using a regularisation norm with p = 0.7.
However, the motion within the lungs is unrealistic.

tinuous motion occurs. An anisotropic (direction-dependent) smoothing is only

used in close proximity to the sliding motion boundary. The diffusion regularisa-

tion of Eq. 4.3 is applied to a decoupled displacement vector field, in which the

perpendicular u⊥ and parallel u|| components of the motion (with respect to the

motion boundary) are separated. To achieve a smooth motion of u⊥ while pre-

serving discontinuities in u|| along sliding surfaces, the image domain Ω is divided
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into two parts: the inside and outside of the lungs Γ ⊂ Ω.

Locations where discontinuities may occur are explicitly defined by an auto-

matic or manual segmentation. To obtain a smooth solution of Eq. 4.3 for the

decoupled vector field, a spatial weighting function ω(x) is introduced based on

the distance δ(x) from the segmentation boundary. The direction-dependent reg-

ularisation (DDR) penalty RDDR is then defined as:

RDDR =
d∑
i=1

(

∫
Ω

ω|∇u⊥i |2 + (1− ω|∇u||i |2)dx

+

∫
Γ

ω|∇u||i |2dx +

∫
Ω/Γ

(ω|∇u||i |2)dx) (4.4)

It has been shown in [Schmidt-Richberg et al., 2012a] that a direction-dependent

regularisation approach yields higher registration accuracy than homogenous reg-

ularisation, in particular close to the sliding motion interface. Similar approaches

have been subsequently used for elastic [Baluwala et al., 2013], demons [Risser

et al., 2012b] and FFD registration models [Delmon et al., 2013].

4.1.4 Non-local regularisation

While the previously discussed approaches only consider the immediate neighbours

(six in 3D) of a voxel to be part of N for the regularisation energy, it may be bene-

ficial to include a larger, non-local neighbourhood to explicitly enforce smoothness

across larger objects. Current state-of-the-art optical flow estimation methods

often use non-local filtering of the motion field (as a post-processing) to ensure

both discontinuity preservation across object boundaries and smoothness within
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an object [Sun et al., 2010]. A common approach to non-local edge-preserving

filtering is the joint bilateral filter [Kopf et al., 2007]. The filtered motion u?i (x)

for dimension i of the vector field u(x) =
∑d

i ui(x) is expressed as a weighted

average within a large, non-local neighbourhood N :

u?i (x) =
∑
y∈N

w(x,y)ui(y) (4.5)

In contrast to linear translation invariant (LTI) filters (such as Gaussian filters),

the weights w are spatially varying and image-dependent. For the case of the

bilateral filter the weights for an image I are given by:

w(x,y) =
1

N
exp

(
−|x− y|2

σ2
s

)
exp

(
−|I(x)− I(y)|2

σ2
i

)
(4.6)

where N is a normalisation constant, σs a parameter to adjust the spatial weight-

ing, and σi a constant to weight the intensity similarity (in relation to the image

noise). Including the non-local weighting directly into the energy minimisation

is more difficult, most importantly because of the high computational complexity

[Krähenbühl and Koltun, 2012; Werlberger et al., 2010], which is linearly depen-

dent on the size of N . In [Heinrich et al., 2013b] (see Sec. 9.3.2), we have presented

an alternative approach to non-local regularisation using multiple layers of super-

voxels.

[Glocker et al., 2009] models non-local interactions by starting from a fully

connected graph and learning the co-dependencies of control points with a clus-

tering approach from training data. When applying these deformation priors for

the registration of unseen images, an improvement over the conventional local reg-
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ularisation was shown in particular for images with strong noise or artefacts. A

very efficient approach for inference in fully-connected conditional random fields

(CRF) has been recently proposed by [Krähenbühl and Koltun, 2011]. Their work

uses a filtering approach to obtain a very good approximation to non-local regu-

larisation, when restricting themselves to Gaussian pair-wise potentials. Improved

multi-class segmentation results have been presented, which indicate the benefit

of considering long-range connections.

4.2 Parameterisation of deformations

Instead of estimating a displacement vector for each voxel, non-rigid motion can

also be parameterised with a lower dimensional model. The Free-form deforma-

tion (FFD) model [Lee et al., 1997; Rueckert et al., 1999], which is based on cubic

B-spline basis function, is a popular choice, because it allows for a compact repre-

sentation of complex motion using a much lower number of control points (which

are uniformly spaced) than image voxels and intrinsically produces smooth and C2

continuous transformations. In contrast to thin-plate splines [Bookstein, 1989], B-

splines have a limited (local) support. The order of the employed B-spline basis

determines the number of local neighbours of each control point, which affect the

local transformation. Figure 4.3 shows the basis functions for B-splines of differ-

ent orders. Given the displacements d of all control points, the dense motion field

u(x) = (u, v, w) for a three-dimensional FFD at x = (x, y, z) can be found using:

u(x) =
3∑
i=0

3∑
j=0

3∑
k=0

Bi(u)Bj(v)Bk(w)dm+i,n+j,o+k, (4.7)
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where m = bx/δxc − 1, n = by/δyc − 1, o = bz/δzc − 1, u = x/δx − bx/δxc,

v = y/δy − by/δyc, and w = z/δz − bz/δzc. The lth basis function of the B-spline

is denoted as Bl, the control points spacings by δx, δy and δz. The values for Bl

are according to [Lee et al., 1997]: B0(u) = (1−u)3/6, B1(u) = (3u3− 6u2 + 4)/6,

B2(u) = (−3u3+3u2+3u+1)/6 and B3(u) = u3/6. For an improved computational

efficiency of B-spline interpolations (in order to map from image to control point

domain) the coefficients can be pre-computed and stored in a lookup table.
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Figure 4.3: Different orders b of (1D) B-spline basis functions

Regularisation of B-spline transformations can be performed by penalising their

bending energy [Rueckert et al., 1999]:

R =
(∂2u

∂x2

)2

+
(∂2u

∂y2

)2

+
(∂2u

∂z2

)2

+2

(( ∂2u

∂x∂y

)2

+
( ∂2u

∂x∂z

)2

+
( ∂2u

∂y∂z

)2
)

(4.8)

This is equivalent to a curvature regularisation and imposes no penalty for affine

transformations. Penalising the squared Euclidean norm of the first order deriva-

tives results in a diffusion regularisation similar to Eq. 4.3.
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4.3 Image-adaptive regularisation using trees

The previously described approaches for regularisation of the complex lung mo-

tion, have primarily focussed on decoupling regularisation along sliding surfaces

according to segmentation cues. Based on a parametric transformation model (as

described above), we propose a more elegant and simpler concept. We use a global

regularisation model (e.g. Eq. 4.3) with an image-adaptive weighting of the contri-

bution of each of the neighbouring control points (or voxels) within N . This idea,

which has been widely used in computer vision [Boykov et al., 2001], encourages

discontinuities only at locations with high intensity gradients without requiring an

explicit segmentation. We propose to extract a minimum spanning tree (MST),

based on intensity differences of neighbouring voxels. A weighting of 1 is given to

any neighbour whose edge is part of the MST, otherwise it is set to 0.

Figure 4.4: Concept of image-adaptive regularisation, demonstrated on coronal
CT slice of chest. Left: Equally spaced control points p ∈ P are shown with blue
circles. Influence regions η are limited by yellow lines. Edges in four-connected
graph are shown with blue lines. Right: Edges in minimum-spanning-tree (edge
weights are based on SAD of intensities in η) are shown with purple lines. There
are no edges and thus no regularisation across the sliding boundary between lungs
and rib cage. Note that in practice the spacing of control points is much smaller.

We adapt a parametric registration approach, because it forms an additional in-
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trinsic regularisation and is computationally more efficient. A number n of equally

spaced control points p ∈ P are defined with a grid-spacing of g forming a regular

grid with 6-connectivity (see Fig. 7.6 left). Each control point can be seen as a

vertex in an undirected graph, where its six neighbours q ∈ Np are connected by po-

tential edges e with corresponding edge weights w(p, q). In our approach, we define

the edge weights to be the sum of absolute differences (SAD) between the intensi-

ties I(x) of all voxels within the influence region η = {−g/2+1,−g/2+2, . . . , g/2}3

around a control point p (centred at xp) and the respective voxels for a neighbour-

ing control point q (centred at xq):

w(p, q) =
∑

∆x∈η

|I(xp + ∆x)− I(xq + ∆x)| (4.9)

To find the spanning-tree, which connects all the vertices (without loops) with

minimal total edge weight, we employ the greedy algorithm by [Prim, 1957] which

has O = n log(n) complexity. Any vertex can be chosen as the root node (this has

no effect on the MST formation). Starting from the root node, the tree is grown

by repeating the following four steps at each new vertex q∗ in the tree (see Fig.

4.5):

1. add new candidate edges (e ⊂ Nq∗) to priority queue

2. remove edges connecting two vertices, which are already both part of the

MST (i.e. forming a loop), from queue

3. select the candidate edge with lowest weight from priority queue

4. add the newly connected vertex to the tree
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Using a priority queue (a heap data-structure) to keep all candidate edges in order

is computationally more efficient than using an adjacency matrix.

… 

Figure 4.5: Example of Prim’s algorithm to find the minimum-spanning-tree
(MST). Vertices, which are already part of the MST are shaded in grey (oth-
ers in white). The candidate edges, which are sorted in a priority queue are shown
in red. The edge weight is depicted by the line width. An edge, which has been
selected as part of the MST is drawn in black. The images from left to right show
the evaluation of the tree until completion.

The resulting tree is well balanced, and, as a consequence, the maximum width

is approximately |P|/ log|P|. The output of Prim’s algorithm consists of a sorted

list of all nodes (with increasing tree depth) and the index of each node’s par-

ent. A similar approach has been used as image representation for finding stereo

correspondence by [Veksler, 2005], however in that case each node only repre-

sented a single pixel. This makes the approach almost unfeasible for 3D image

registration. [Lei and Yang, 2009] used an MST in conjunction with a mean-shift

over-segmentation for optical flow estimation. An example of an image-derived

MST is shown in Fig. 7.6 (right). It is visible that areas of large image gradients

(where sliding motion could be expected) are not connected, and therefore less

regularisation will be applied between these nodes.
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4.4 Symmetric and diffeomorphic transforms

As discussed in Sec. 3.2.2, it is desirable for a number of applications to impose

certain restrictions on the estimated deformations. Diffeomorphic transformations

avoid singularities in the deformation field, are invertible and ensure a one-to-

one mapping. Symmetric registration approaches reduce the inverse consistency

error (ICE, see Eq. 3.1 and [Christensen and Johnson, 2001]) and remove the

bias, which of two scans is chosen as the target image. There is a large number

of approaches, which use either soft constraints (as part of the registration cost)

or hard constraints to ensure a certain deformation quality. We present a novel

approach, in Sec. 4.4.1, to obtain symmetric and diffeomorphic transformations

for almost any registration using an efficient modular approach. Our approach

improves the flexibility and accuracy of symmetric-diffeomorphic approaches for

the large deformations that are common for lung motion.

[Rueckert et al., 2006] demonstrates the use of a hard constraint for B-spline

transformations, which can be used to guarantee diffeomorphic deformations, if

the maximum displacement of each control point is limited to ≈ 0.4 times the grid

spacing. This constraint was also later used by [Glocker et al., 2008a], we however

found that it is too restrictive for deformable lung registration, when sliding motion

is present. [Sotiras and Paragios, 2012] enforced symmetric transformations in a

discrete optimisation framework by defining the transformation grid (in a common

intermediate space between both images) and restricting the forward displacements

to be the opposite (negative) of backward displacements. However, this constraint

can only be easily enforced in a discrete optimisation framework and requires the

minimum displacement quantisation (without interpolation) to be 2 voxels.
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[Christensen and Johnson, 2001] presented a penalty term (soft constraint) to

avoid inverse inconsistency. [Avants et al., 2008] expanded on this idea and added

a symmetry constraint into the registration cost function. In [Rohlfing et al.,

2003] introduced an incompressibility constraint based on the Jacobian of the

deformation, which has been used in lung registration [Rühaak et al., 2011] to avoid

singularities. Another popular approach to obtain diffeomorphic transformations

is the scaling and squaring method [Arsigny et al., 2006]. It is based on the

fact that the composition of two diffeomorphic transformations will again yield

a diffeomorphic transformation. If the maximal displacement for every voxel is

less than 0.5 voxels, any deformation field is diffeomorphic. Therefore the initial

deformation u is divided by the power of two of a number N , such that

u0 = 2−N · u , ||u0|| < 0.5

This is called scaling. The diffeomorphic transformation û is then obtained by

N -times composing u0 with itself.

un = un−1 ◦ un−1 for n = {1, 2, . . . , N} (4.10)

This part, called squaring, yields û = uN after N steps.

4.4.1 Novel approach to symmetric and inverse-consistent

transformations

The disadvantages of the aforementioned approaches is that they are either to

restrictive for large lung motion or not applicable independently of the employed
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Figure 4.6: Inverse consistency error (ICE) in voxels of the described iterative
inversion method, applied to random displacement fields of different complex-
ity (without singularities, and µ(Jac) ≈ 1). For reasonably smooth fields (with
std(Jac)< 0.3) the error quickly converges to 0, only for the inversion of very
strong deformations a residual error remains.

transformation or optimisation technique. In contrast, our approach can be used

as a modular processing step in any registration method. We first estimate both

full transformations φF and φB independently. In order to calculate a valid in-

verse transformation the transformations have to be diffeomorphic. To avoid the

restrictions of a hard constraint, arbitrarily large displacements are allowed and a

diffeomorphic mapping is afterwards obtained by applying the scaling and squar-

ing method. We then use a fast iterative inversion method, as presented in [Chen

et al., 2007], to invert the half-length transformations φF (0.5)−1 and φB(0.5)−1.

Let u denote a given displacement field, e.g. φF (0.5). The displacement field of

its inverse transform u−1 will be estimated iteratively, starting from u−1
0 = 0, and
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updating:

u−1
n (x) = −u(x + u−1

n−1(x)) (4.11)

At convergence u−1
n approaches the true inverse u−1. Equation 4.11 can only

yield the inverse if the Jacobian of u is always positive. For a small number of

non-positive Jacobians this procedure will yield an approximate inverse. Fig. 4.6

shows the inverse consistency error ICE= ||u(x) + u−1(x + u)||2 obtained when

the above inversion method is applied to random displacement fields (using FFDs)

with increasing complexity. It can be seen that 5-10 iterations are usually sufficient

to obtain a very low residual ICE.

After obtaining the inverses, the two symmetric transformations are calculated

by composition: φFS = φF (0.5) ◦ φB(0.5)−1 and φBS = φB(0.5) ◦ φF (0.5)−1, which

ensures that these transformations are inverse consistent. We use this symmetric

approach in all deformable registration experiments and demonstrate its advan-

tages in Secs. 7.4 and 7.6 for continuous and discrete optimisation, respectively.

4.5 Summary

In this chapter, different approaches for regularisation and parameterisation of de-

formations were presented, which aim at modelling lung motion. The techniques

can be roughly divided into three groups depending on their motion model: piece-

wise constant, piece-wise smooth and globally smooth. Robust norms, such as the

Lp-norm (with p ≤ 1), the Lorentzian and the Pott’s model [Boykov et al., 2001],

fall in the first category and are widely used to estimate stereo correspondences and

optical flow, where strong discontinuities, occlusions and large areas of constant
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displacements are common. We have applied robust norms to lung registration

and found the results unconvincing, because too many unrealistic motion discon-

tinuities were found. Globally smooth models include: parametric spline transfor-

mations, diffusion regularisation and isotropic Gaussian smoothing (used in the

demons framework). They are most widely used in medical image registration,

because the majority of deformable organ motion is smooth. The second category,

piece-wise smooth motion, is the most applicable one for lung motion. Direction-

dependent regularisation has become very popular recently, however most of them

rely on accurate manual segmentations of the lungs and are not easily extend-

able to the sliding motion of multiple organs. We presented a new approach to

model piece-wise smooth motion for parametric graph-based transformations using

image-adaptive trees. This approach has also great benefits for discrete optimi-

sation, which will be discussed in Sec. 7.5. Non-local regularisation is another

relatively new way of modelling piece-wise smooth motion, which will be discussed

as an outlook in Sec. 9.3.2. A new approach using layers of supervoxels has

been very recently published in [Heinrich et al., 2013b]. Additionally, a novel

flexible approach to obtain invertible and symmetric transformations (which are

physically more plausible) is presented that overcomes some of the limitations of

previous techniques, which used hard constraints. The evaluation of our contribu-

tions will be presented in Chapter 7. The next chapters will describe an equally

important aspect of deformable lung registration, the definition of image similarity

across scans. Using a robust and discriminative similarity measure enables more

accurate correspondences and can therefore further aid in modelling lung motion.
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Chapter 5

Spatial context for statistical

similarity metrics

The objective of this chapter is to improve both the robustness and accuracy of sta-

tistical image similarity metrics for challenging registration tasks. We address this

problem by introducing the use of spatial contextual information into the calculation

of mutual information. Our new metric, textural mutual information, incorporates

spatial context by using all image intensity values within a small patch rather than

single intensities only. The dimensionality of this extremely large space of potential

image patches is reduced using cluster trees, which enables an efficient estimation

of the statistical distribution of textures.

The alignment of multi-modal images helps to relate clinically relevant infor-

mation that is often complementary across modalities. As discussed in Sec. 2.3,

multi-modal registration can be used, amongst other things, to fuse scans for

image-guided interventions, diagnostic tasks and the monitoring of disease treat-

ment. Here, the registration of CT and MRI is useful, as it can combine the good
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spatial resolution and dense tissue contrast of a CT with the better soft tissue

contrast of MRI. In image-guided radiotherapy, multi-modal registration can be

applied to compensate for a different patient positioning between a pre-treatment

(planning) scan and the intra-operative scan to achieve a more accurate delivery

of radiation dose. Figure 5.1 shows two example slices of an MRI and a CT scan.
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axial MRI and corresponding CT slice fused without registration

Figure 5.1: An example of two corresponding slices of CT and MRI scans from the
empyema dataset. The overlay (fusion) of both modalities without registration
demonstrates the misalignment and need for multi-modal registration.

The similarity between images is the main driving force for registration. There

are a number of challenges for particular applications, which have to be addressed

in order to design a suitable similarity metric. First of all, a metric needs to be

robust against noise or intensity distortions, for example MRI bias fields. In CT

lung imaging, a particular challenge is the locally changing intensity of the lung

parenchyma due to compression or expansion during respiration. Motion com-

pensation for images from dynamic sequences, such as dynamic contrast-enhanced

(dce) MRI or perfusion CT, require the similarity metric to be invariant to local

change in contrast, i.e. a functional intensity mapping. The relationship between

the intensities of images taken using different physical phenomena (e.g. computed

tomography (CT) and magnetic resonance imaging (MRI) as discussed in Sec. 2.1)

cannot be expressed, in general, in a functional way (see e.g. Fig. 5.1). Therefore
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statistical similarity metrics (or structural image representations) have been used

for the task of deformable multi-modal image registration [Andronache et al., 2008;

Loeckx et al., 2007; Rogelj et al., 2003].

Most image similarity metrics are intensity-based (iconic similarity). The other

group of approaches, geometric (or feature-based) methods, use only a sparse set

of salient points in each image and try to extract very rich descriptors, which can

be matched robustly across images. Examples of descriptors for feature-based ap-

proaches are the scale invariant feature transform (SIFT) [Lowe, 1999], gradient

location and orientation histograms (GLOH) [Mikolajczyk and Schmid, 2005] and

geometric moments invariants (GMI) [Shen and Davatzikos, 2002]. Spatial context

is usually employed to achieve high discrimination and better matching. These de-

scriptors may be invariant to some extent to changes of intensity (or illumination),

since they rely on image gradients, local orientations or tissue classifications, but

they have not been successfully applied to medical multi-modal registration, where

the intensity variations across modalities are more severe. One exception is the

use of Gabor wavelets by [Ou et al., 2011], where a particular subset of features

is selected by training for a specific registration task. Another disadvantage of

feature-based registration is that a dense deformation field can only be obtained

by using an interpolating transformation (e.g. thin-plate splines) between the

sparse point matches. This makes the resulting deformations highly dependent on

the characteristics of the underlying parametric transformation model and can be

problematic for many applications, e.g. when computing statistics on deformations

in population studies.

The key idea of the work presented in this and the next chapter is to incorpo-

rate spatial context in a dense (voxel-wise) manner into the calculation of image
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similarity. Dense image similarity, which is used in iconic registration approaches,

yields high accuracy and globally valid deformation fields. Spatial context, which

has so far been mainly used in geometric registration, improves the robustness of

correspondences across scans and is more discriminative for different image fea-

tures than simple image intensities alone.

Sec. 5.1 discusses different approaches to statistical (or information theoretic)

similarity metrics. The most commonly used metric, mutual information (MI), and

its point wise and hierarchical estimation are described in Sec. 5.2. Previous work

on incorporating a spatial variable into the computation of MI, namely conditional

mutual information [Loeckx et al., 2007], and its advantages in the presence of non-

uniform bias fields is discussed.

In Sec. 5.3 we derive a novel formulation of mutual information using textural

mutual information (TMI), which incorporates small image patches and increases

its robustness by making use of this spatial context. Our approach effectively per-

forms a dimensionality reduction of the large space of image patches using cluster

trees and generalises many recently proposed extensions to MI, e.g. regional, con-

ditional and higher-order, adaptive bin width and normalisation.

Section 5.4 presents experimental results for all discussed similarity metrics

using the landmark localisation experiment described in Sec. 3.3. First, the sensi-

tivity of localisation accuracy with respect to the choice of parameters is studied.

Then, the robustness of the metrics against common intensity distortions in med-

ical imaging (additive Gaussian noise and non-uniform multiplicative bias field) is

evaluated.

Figure 5.2 gives a visual categorisation of the presented methods in terms of

their underlying principles driving similarity: statistical, structural and contex-
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Figure 5.2: Categorisation of popular approaches for image similarity metrics. The
three corners represent the underlying principles used to derive image similarity
(statistical, structural and contextual information). Methods are positioned ac-
cording to what extent they rely on either of these principles. New approaches
proposed in this work are set in black font.

tual information. In the next chapter the use of structural image representations

are discussed, including two novel contributions by us (see Secs. 6.3 and 6.4):

the structure tensor orientation measure and the modality independent neighbour-

hood descriptor (MIND). Our contributions towards the field of similarity metric

all make use of additional contextual information to improve robustness (textural

mutual information for statistical metrics and MIND for structural image represen-

tations). As discussed above, the use of contextual information is closely related to

feature-based methods. Our contributions therefore help bridging the gap between

geometric and iconic image registration.
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5.1 Introduction to statistical similarity metrics

For monotonic intensity transformations, many approaches model a linear intensity

relationship. The normalised cross-correlation (NCC) or local cross-correlation

(LCC) [Avants et al., 2008] are examples of such metrics, which allow for an offset

(change of mean intensity) and gain (change of contrast) across image acquisition.

The NCC between target image It and moving image Im, is defined as:

NCC =

∑
x∈Ω(It(x)− It)(Im(x)− Im)√∑

x∈Ω(It(x)− It)2

√∑
x∈Ω(Im(x)− Im)2

(5.1)

where Ω is the image domain, and It and Im are the means of It and Im respectively.

The correlation ratio [Roche et al., 1998] generalises the cross-correlation from

linear to arbitrary functional relations. The dissimilarity between images It and

Im with intensities i ∈ I at a voxel x based on the correlation ratio η(It|Im) can

be written as:

CR(x) = 1− η(It(x)|Im(x)) =
1

σ2
It

∑
i∈I

pi(It(x))σ2
ic (5.2)

where σ2
It

is the variance of It, pi(Im) =
∑

i δ[Im(x)−i] is the marginal distribution

of Im and σ2
ic is the conditional variance of It and Im:

σic =
1

pi(Im)

∑
x

(It(x)− It)δ[Im(x)− i] (5.3)

The Kronecker delta (δ[Im(x)− i]) is often replaced by a Parzen window estimator
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[Viola and Wells III, 1997] with standard deviation σp:

1

σp
√

2π
exp

(
−(Im(x)− i)2

2σ2
p

)
(5.4)

Figure 5.3 shows a comparison of these two statistical metrics alongside with mu-

tual information. It can be seen that for the non-functional intensity mapping

(which is common e.g. between CT and MRI scans) in this example cannot be

adequately modelled by the cross-correlation or the correlation ratio.
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Figure 5.3: Visual comparison of statistical similarity metrics (adapted from [Her-
mosillo et al., 2002] Fig. 1). The joint distribution for an exemplary non-functional
intensity mapping across two modalities is shown (high and low probabilities are
indicated by black and white respectively). Cross-correlation assumes a linear
relationship between intensities, and the correlation ratio assumes a functional
relationship. They can therefore not sufficiently model this complex intensity
mapping. Registration methods based on MI tend to drive the joint distribution
towards cases with strong clusters (marked in yellow).

5.2 Mutual information

Mutual information (MI) is derived from information theory and measures the

statistical dependency of two random variables. It was first introduced to medical

image registration for the rigid alignment of multi-modal scans [Maes et al., 1997;
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Viola and Wells III, 1997]], and later used successfully in a variety of applications,

including deformable registration [Rueckert et al., 1999; Meyer et al., 1997]. It is

based on the assumption that a lower entropy of the joint intensity distribution

corresponds to a better alignment. Given the joint probability p(It(x), Im(x)) of a

voxel x with intensity It(x) in the target image and Im(x) in the moving image and

its two marginal intensity probabilities p(It(x)) and p(Im(x)), mutual information

is defined as the difference between the sum of marginal entropies H(It), H(Im)

and the joint entropy H(It, Im):

MI(It, Im) = H(It) +H(Im)−H(It, Im) (5.5)

= −
∑
x∈Ω

p(It(x), Im(x)) log
p(It(x), Im(x))

p(It(x))p(Im(x))

where Ω defines the image overlap domain.

[Studholme et al., 1999] introduced normalised mutual information (NMI),

which divides MI by the marginal entropy of the target image, in order to cope

with the effect of changing image overlap on MI.

An example of the joint distributions before and after maximisation of NMI,

using a pair of corresponding CT and MRI slices (see Fig. 5.1) is shown in Fig.

5.4. The joint distribution after alignment is less dispersive and exhibits one fewer

peak and therefore has a higher NMI.

5.2.1 Pointwise normalised mutual information

In [Hermosillo et al., 2002] and [Rogelj et al., 2003], variants of mutual information

to obtain a point-wise similarity metric have been proposed. For the implemen-

tation of NMI as a comparison method, the approach of [Rogelj et al., 2003] is
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Figure 5.4: Joint intensity distributions of MRI and CT images, shown in Fig.
5.1, demonstrating the concept of mutual information. The non-aligned image
pair shows one more peak (which results from a mixture of tissue classes, see
white circle), which is not visible in the registered image pair. The normalised
mutual information (NMI) is therefore increased.

used in this work. The joint and marginal histograms of two images It and Im are

obtained in a conventional manner. A Parzen window kernel is used to improve

the robustness of the joint histogram estimation. The local contribution NMI(x)

for each voxel can then be obtained using:

NMI(x) = − log

(
p(It(x), Im(x + u(x)))

p(It(x))p(Im(x + u(x)))
+ ε

)
1∑

Ω p(It(x)) log p(It(x))
(5.6)

The second term is as a constant, because it is dependent on the (fixed) target

image only. It is assumed that the images are (almost) in alignment and therefore

u(x) ≈ 0. Equation 5.6 can be efficiently represented as a look-up table to speed-

up each point-wise similarity evaluation.

Another simplification has been presented by [Kim et al., 2003] for robustly

finding stereo correspondences under (artificially) changing illumination. Using a

Taylor series expansion, they find the following simplified equation for each point-
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wise MI contribution:

MI(x) = − 1

n
log(p(It(x), Im(x + u(x))) ? σp + ε) (5.7)

where n is the number of pixels and σp the Parzen smoothing kernel. This formula-

tion ignores the marginal distributions. Thus for images with highly non-uniform

intensity distributions (e.g. with many background voxels) the MI calculation will

be adversely affected. We therefore employ Eq. 5.6 for our experiments. As noted

by [Hirschmüller and Scharstein, 2009] a small constant ε has to be added within

the logarithm of Eqs. 5.6 and 5.7 to avoid log(0), and we empirically set ε = 0.001.

For variational registration methods the derivative of the cost function with re-

spect to the transformation parameters needs to be evaluated. [Klein et al., 2005]

compared three different approaches to obtain these derivatives for MI: finite dif-

ferences (FD) [Kiefer and Wolfowitz, 1952], simultaneous perturbation (SP) [Spall,

1992] and the analytic solution (AS) for parametric transformations [Thévenaz and

Unser, 2000]. In this work, the best results are obtained with FD and AS: for non-

parametric registration methods the FD approach is most suitable. The gradient

of NMI for an arbitrary dimension x of the deformation field is obtained by:

δNMI

δx
≈ NMI(x + ∆x)− NMI(x−∆x)

2∆x
(5.8)

where ∆x is a small spatial step (usually |∆x| = 1 voxel) in direction of x.
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5.2.2 Hierarchical mutual information

Another challenge for the use of MI for deformable registration is the fact that the

joint intensity distributions depend on the alignment of the images, and therefore

larger deformations can make the initial estimates unreliable. [Kim et al., 2003]

address this problem by alternating between updating the displacement fields and

recalculating the joint histogram and thereby increasing the number of iterations

needed for the registration. [Hirschmüller and Scharstein, 2009] improve on this

idea by using a hierarchical MI estimation, in which the displacement vectors from

a lower resolution are used to initialise the MI calculation for the finest resolution.

In our Gauss-Newton registration framework this is implicitly included by using

a coarse-to-fine strategy. For the landmark localisation experiments, which are

used in this chapter, a dense displacement field is first obtained for volumes of half

the original resolution using the sliding window approach discussed in Sec. 3.3.1

(integral images, c.f. [Tapia, 2011], are used for an efficient implementation of the

window aggregation). The obtained displacements u(x) are then used to repeat

the calculation of the joint intensity distribution in Eq. 5.6, where corresponding

locations are now x in image It and x + u(x) in image Im.

Alternatively, a local joint histogram estimation could be used, which how-

ever would limit the number of samples and would require more sophisticated

histogram strategies like NP-windows [Dowson et al., 2008], which are computa-

tionally extremely demanding for 3D volumes. A more efficient computation for

this technique was recently presented by [Joshi et al., 2011].

83



5.2.3 Conditional mutual information

A number of disadvantages when using MI for deformable multi-modal registra-

tion have been analysed by [Loeckx et al., 2007], [Haber and Modersitzki, 2007],

and [Studholme et al., 2006]. They have often been attributed to the fact that MI

ignores the spatial neighbourhood of a particular voxel within one image and con-

sequently it does not use the context of spatial information shared across images.

In the presence of image intensity distortions, such as non-stationary bias fields in

MRI scans, this can deteriorate the quality of the alignment, especially in the case

of non-rigid registration where the geometric constraints of the transformation are

relaxed compared to global alignment.

One approach to overcome this problem is to include spatial information into

the joint and marginal histogram computation. In [Rueckert et al., 2000] a second-

order mutual information measure is defined, which extends the joint entropy es-

timation to the spatial neighbours of a voxel and therefore uses a 4D histogram,

where the third and forth dimensions define the probability of the spatial neigh-

bours of a voxel having a certain intensity pair. A problem that arises here is the

curse of dimensionality, meaning that a lot of samples are needed to populate the

higher-dimensional histogram. The authors therefore limit the number of intensity

bins to 16, which might again decrease the accuracy.

[Studholme et al., 2006] introduce a third channel into the joint histogram,

containing a spatial or regional label. A similar approach called conditional mutual

information (CMI), has been introduced by [Loeckx et al., 2007]. A third dimension

is added to the joint histogram and a second dimension is added to the marginals

representing the regional location of an intensity pair. The image is subdivided
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into a number of overlapping regions and each intensity pair only contributes to

its specific regional histograms. A number of anchor points are evenly distributed

on the image grid. Each voxel in a 3D volume is then attributed to its 8 nearest

anchor points, and its contribution to this regional label r(x) is weighted by the

reciprocal spatial distance between voxel and anchor point. CMI is then defined

as:

CMI(x) = −
∑
x∈Ω

w(r(x)) log

(
p(It(x), Im(x))

p(It(x))p(Im(x))

)
(5.9)

In [Loeckx et al., 2007] it was shown that this reduces the negative influence of

bias fields and yields a higher registration accuracy for a small number of real-

istic test cases. The drawbacks lie again in the difficulty of populating this 3D

histogram, and in the fact that corresponding anatomical structures, which are

spatially further apart, are not taken into account.

5.3 Textural mutual information

To address the previously discussed problems related to using mutual information

for deformable multi-modal registration, we have introduced a novel way of incor-

porating spatial context in [Heinrich et al., 2012a]. Textural mutual information

(TMI) is a new image similarity metric, which efficiently incorporates intensity

information from local neighbourhoods into the estimation of the joint histogram.

This is achieved by representing each voxel location by the most representative im-

age patch, where the dimensionality of the patch space is reduced using a cluster

tree and/or texton dictionary.

In [Russakoff et al., 2004] a regional implementation of MI based on small im-
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age patches has been introduced. The authors make the simplifying assumption

that the high-dimensional data are normally distributed and transform it into a

space where they are uncorrelated. This approach demonstrates increased robust-

ness, but is limited to rigid registration. In [Knops et al., 2006] non-equidistant

histogram binning was introduced using k-means clustering.

[Yi and Soatto, 2011], proposed, independently of us, a method which also

uses image patches to introduce spatial context into MI. They organise image

patches into orbits under the action of Euclidean transformations. However, their

approach is computationally complex and so far limited to rigid 3D or deformable

2D registrations.

For the following derivation and implementation of TMI, Fig. 5.5 provides an

overview of the steps. Some extensions, which have been proposed for mutual

information, such as optimal bin width selection [Knops et al., 2006], higher-order

MI [Rueckert et al., 2000], and conditional MI [Loeckx et al., 2007] (see Sec. 5.2.3)

can be generalised by the concept of textural mutual information.

5.3.1 Textons

Mutual information, as a multimodal similarity measure, is based on the assump-

tion that voxels of corresponding anatomical structures are represented by a com-

mon intensity pair. However, due to degradations of medical images this is not

fulfilled in real life. Imaging-related artefacts can cause a complex intensity distri-

bution within the same tissue. Textural mutual information is motivated by the

fact that although single intensities might provide only a limited representation of

the underlying anatomical structure, a patch including several neighbouring vox-
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(a) example axial slice of (b) Space partitioning using
3D CT lung scan vp-tree [Yianilos, 1993]

(c) Texton dictionary obtained (d) Clustered image
from (a) (leaf nodes of vp-tree) with random colour labels

Figure 5.5: Overview of our method (shown on an example CT slice (a)). A
representative texton dictionary (c) is learnt from the image using hierarchical
tree clustering (c). Each pixel is then assigned to the closest texton using nearest
neighbour search (pixels with the same colour belong to the same cluster (d)).

els can more effectively capture the texture and thus better describe the actual

situation.

Representing the images directly by their local patches would increase the di-

mensionality of their joint histogram. This is because the number of samples is

too low to populate such a high-dimensional histogram. Therefore, a lower dimen-

sional representation of the space of possible patches or texture representations

needs to be found.

Textural representation and classification has previously mainly employed the
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responses of high-level filter banks (e.g. Gabor filters [Ou et al., 2011]). A filter

bank approach has the advantages of representing a large support area while still

having a low-dimensional feature vector. However, the choice of filters is crucial

and has to be learnt for each specific image. In [Varma and Zisserman, 2003],

it is shown that an excellent representation of texture can be directly obtained

by using small image patches (as small as 3 × 3). In their application of texture

classification, so called textons are learnt based on segmented supervised training

data and clustered forming a texton dictionary. Another related approach was used

in [Deselaers and Ferrari, 2010] to define global self-similarity of object detection.

In the next section, we present our approach, which employs hierarchical tree

clustering to obtain a representative texton dictionary. In [Brox et al., 2008b]

a cluster tree is used to efficiently detect similar textures for image denoising.

Because the number of possible classes is relatively low in their work, a (non-

hierarchical) k-means clustering is employed. The principle of the clustering of

similar patches is illustrated in Figure 5.5.

5.3.2 Cluster trees

Finding similar patches using a tree structure has been extensively studied and

can be usually performed with O(n log n) complexity. We use the vantage-point

tree, which was introduced by Yianilos [Yianilos, 1993] and achieved the best

results in a recent comparison of clustering methods [Kumar et al., 2008] in terms

of computational complexity for both the clustering and the retrieval of image

patches. First, a pivot is chosen (an optimised pivot is selected using the element

that results in the largest spread for a random subset) and the distances to all
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remaining elements are calculated. The elements are then split into two equal--

sized branches based on the median distance. These steps are repeated recursively

until a fixed tree depth TD is reached. The number of leaf nodes is equivalent to

the bins b in the histogram and defined by b = 2TD+1.

The distance measure Dp(x1,x2) between two voxels x1 and x2 within the same

image I is chosen to be the sum of squared differences (SSD) of all voxels between

the two patches P of size (2p + 1)d (with image dimension d) centred at x1 and

x2. The spatial Euclidean distance ||·||2 can be added using a weighting term λ:

Dp(I,x1,x2) =

√∑
p∈P

(I(x1 + p)− I(x2 + p))2 + λ||x1 − x2||2 (5.10)

The median element within a leaf node is selected as a representative texton

and stored in the texton dictionary T . There are now two possibilities of finding

the nearest texton element for every voxel in the images in order to obtain the

texton labelling t(x) ∈ T :

• approximate labelling using the best-bin-first method

• exact labelling using nearest neighbour search in the metric space

The approximate labelling is readily available after the computation of the tree.

Each voxel will be labelled according to the leaf node it is located in. Since the vp-

tree does not guarantee a globally optimal labelling, in which each voxel is assigned

to the closest representative leaf node element (texton), there are possibly other

textons with smaller distance.

To obtain the exact labelling, a nearest neighbour search (NNS) has to be
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run for every patch (by backtracking through the tree). As Eq. 5.10 describes

a metric, the triangle inequality can used to accelerate the search for the closest

textons. For the NNS, we first calculate an exhaustive distance matrix D(ti, tj)

between all textons (the number of textons is a lot smaller than the number of

patches, therefore the computations for this step are negligible). For a given query

element q, we start from an arbitrary initial texton assignment t0 and calculate

the respective distance d(q, t0) and set dmin = d(q, t0). This forms an upper bound

on the patch distance and can be used to exclude all textons ti, for which the

following equation holds:

|D(ti, t0)− d(q, t0)| ≥ dmin (5.11)

Then, a new texton is chosen, its distance computed and more textons may be

discarded according to Eq. 5.11. If the new distance is smaller than dmin, the

upper bound is replaced by it and the current texton assignment is chosen as being

optimal. This procedure is repeated until all textons ti have been either compared

or excluded based on Eq. 5.11. On average the number of distance comparisons

can be reduced by more than an order of magnitude using this technique.

Additionally, the second closest textons may be found and included for the

calculation of the joint histogram (in conventional intensity histograms, a similar

approach is usually performed, using e.g. linear interpolation). It has to be noted

that the histogram obtained from the texton labels does not preserve any order-

ing (in contrast to an intensity histogram), and therefore techniques like Parzen

window estimation (smoothing of the histograms) cannot be employed.
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Cluster forest

One straightforward solution to deal with the problems arising from a non-optimal

tree clustering is to use a multiple cluster trees (i.e. a cluster forest) and assign

multiple labels to each voxel. This also is computationally more efficient than

performing the exact nearest neighbour search within one tree. A similar concept

has been used by [Kleinschmidt et al., 2008] to find the closest patches for denois-

ing. This approach is visualised in Fig. 5.6, where one element (depicted by a

red circle) is assigned to three different clusters. This idea could be potentially

M1

M2

T1

C1

C2

C3

T2 T3

!

!

Figure 3. Two possibilities to increase accuracy. Left: (a) Patches that are within τ distance of a decision boundary are
assigned to both sets. Right: (b) The union of near neighbors obtained from multiple trees are considered.

means of multiple randomized hash functions, the proba-
bility to find all points close to a query is increased. Upper
bounds for the probability to miss a relevant point can be
shown and it has been proven that this probability con-
verges to zero in the limit of an infinite amount of hash
functions.

Whereas LSH mainly builds upon the randomization
of hash functions, cluster forests focus more on capturing
the arrangement of the data. The randomization compo-
nent is provided by the initialization of cluster centers in
k-means. Since k-means only converges to the next lo-
cal minimum of the cost function that aims to minimize
the total distance of points to their assigned cluster cen-
ters, a randomized initialization leads to different clusters.
Especially at nodes close to the root it is very likely that
k-means clustering yields different optima, since there is
usually no natural separation of the data into two clusters.
At nodes close to the leafs, on the other hand, clusters in
the data become apparent and are captured by the cluster-
ing.

The idea of cluster forests is to exploit both the ran-
domization concept of locality sensitive hashing as well as
the cluster arrangement of a single cluster tree. While the
first leads to an increased accuracy when using more trees
due to the different positioning of decision boundaries at
lower levels of the tree, the latter ensures that high accu-
racies are already achieved for a relatively small number
of trees.

These properties are shown in Table 1 and Table 2.
Table 1 shows the percentage of correct nearest neighbors
returned by a cluster forest. Data points were 9×9 patches
from the Barbara test image shown in Figure 4. Also the
query points were chosen randomly from this image. For
not disturbing the statistics, the query point is always cor-
rectly found in a cluster tree, it was removed from the re-
turned set of near neighbors. With a single tree, the nearest
neighbor is only found in 65.3% of all cases. The percent-
age rises dramatically with the number of trees. With only
4 trees already more than 90% of all queries lead to the
correct result.

Trees k Barbara (no noise) Barbara (σ = 20)
1 1 65.3% 26.9%
2 1 81.5% 40.5%
4 1 93.2% 56.9%
8 1 97.4% 70.3%

16 1 97.6% 80.8%
1 10 53.8% 23.5%
2 10 73.9% 34.8%
4 10 87.0% 47.1%
8 10 93.4% 65.0%

16 10 95.7% 76.3%
1 100 42.4% 15.9%
2 100 59.5% 27.5%
4 100 77.2% 38.5%
8 100 86.2% 52.9%

16 100 91.5% 65.6%

Table 1. Average percentage of correct k-nearest neigh-
bors depending of the number of trees in the forest. 1000
samples were drawn from the respective images. The ac-
curacy grows rapidly with the number of trees.

Figure 5.6: Illustration of the concept of cluster forests by [Kleinschmidt et al.,
2008]. The search element © is assigned to three different clusters. This helps
alleviate problems caused by a non-optimal clustering and can therefore potentially
provide a better representation of each element.

further extended so that trees within the cluster forest represent different features

(e.g. different scales of patches and thereby enabling a simultaneous coarse and

fine registration).
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Local estimation of textural mutual information

For the local estimation of TMI, the local derivation of mutual information pre-

sented by [Rogelj et al., 2003] is used (see Sec. 5.2.1). The point-wise similarity

TMI(It, Im,x) between target image It and moving image Im can be defined by

the statistical dependency of their texton representations Tt and Tm. If a cluster

forest with F trees is employed, each voxel in image It has been assigned to F rep-

resentations T 1
t , T

2
t , . . . , T

F
t , and the point-wise TMI is obtained with a summation

over F :

TMI(It, Im,x) =
F∑
i=1

log

(
p (T it (x), T im(x))

p (T it (x)) p (T im(x))
+ ε

)
(5.12)

where ε is again a small constant to avoid log(0).

In the following section, the suitability of the textural mutual information as

multi-modal image similarity and its robustness to parameter choice and intensity

distortion is experimentally studied and compared to normalised and conditional

mutual information.

5.4 Experiments and results

In Sec. 3.3 the similarity-based landmark localisation experiment was described,

which is used here to study the ability of different metrics to measure similar-

ity across scans. In this experiment not a full deformable registration is per-

formed (which would make a direct comparison of similarity metrics challenging,

because transformation model and optimisation might influence the performance

of each metric differently). Each similarity metric is evaluated densely between

locations around a landmark in the target scan using a sliding window aggregation
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of point-wise similarities over a certain search region (in the moving scan). The

search region is chosen so that the gold standard location (determined by land-

mark correspondences) is captured. The position (displacement) for each metric

and landmark is determined by choosing the maximal similarity within the search

region, the discrepancy between gold standard location is defined as landmark lo-

calisation error (see Sec. 3.3.1). Two datasets are employed for this experiment,

one T1-weighted and one PD-weighted MRI chest scan from the Visible Human

Dataset (VHD) (which were acquired post-mortem and are intrinsically aligned)

and an inhale and exhale lung scan from a 4D-CT sequence.

First, the sensitivity of particular parameter choices for all similarity metrics is

tested. In Sec. 5.4.2 the robustness against intensity distortions is evaluated and

the metrics are compared among another. The particular challenges for VHD are

the non-functional mapping of intensity distributions across scans, and the addi-

tional intensity distortions, which were described in detail in Sec. 3.3.2. The land-

mark localisation in the 4D-CT dataset is difficult for three reasons: deformable

deformations, initial misalignment (on average 15 mm) and spatially varying con-

trast due to lung compression / expansion. Additionally there is an intra-observer

error for the manual landmark annotation of ≈ 1 mm [Castillo et al., 2009]. The

results are evaluated using the landmark localisation error averaged over 619 and

300 landmarks for the VHD and 4D-CT dataset respectively.

5.4.1 Parameter sensitivity

The choice of parameters plays an important role for the practical application of

image registration methods. Fewer parameters and less sensitivity to their setting

93



is favourable. In the following the number of histogram bins for all metrics and

the labelling approach and number of trees for TMI are studied.

Normalised mutual information

Figure 5.7 (a) shows the landmark localisation error for NMI for both datasets

used in our experiment. The standard deviation of the Parzen window kernel gσ

has been empirically chosen to σ = 0.75. The number of bins for the histogram

calculations is successively doubled from 8 to 512. Based on these experiments,

at least 64 histogram bins should be used (which is in agreement with published

algorithms, e.g. [Rueckert et al., 1999]). The hierarchical MI estimation improves

the results when the two scans are substantially misaligned (4D-CT dataset).

Conditional mutual information

Figure 5.7 (b) displays the localisation accuracy for CMI for the two datasets.

Roughly 503 voxels are used to form one spatial histogram bin (third histogram

dimension) yielding 32 bins for the VHD and 48 bins for the 4D-CT dataset. The

localisation error is slightly lower than for NMI, however hierarchical MI cannot be

directly employed, since the change of spatial histogram labels of displaced voxels

adversely affects the local CMI estimation.

Textural mutual information

The influence of the tree depth of TMI, which is directly related to the number of

histogram bins, on the landmark localisation accuracy is studied in Fig. 5.7 (c).

The weighting for the spatial distance in Eq. 5.10 is set to λ = 0. In a similar

way to the results obtained for NMI and CMI, a larger number of bins results in
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Figure 5.7: Parameter sensitivity of all presented methods. The Parzen smoothing
is set to σi = 0.75 in all cases. The number of spatial bins in CMI is set to 32
(VHD) or 48 (4D-CT). Landmark localisation error in mm for multi-modal MRI
(©) and 4D-CT dataset (� and � with hierarchical MI (HMI) estimation). The
localisation error is in general smaller when using more bins (which is equivalent to
a greater tree depth for TMI). The results for TMI using fewer bins are, however,
substantially better than for NMI or CMI. The use of the HMI estimation reduces
the error for the inhale-exhale CT dataset for both NMI and TMI substantially.
For TMI, the exact labelling strategy (see Sec. 5.3.2) and using multiple trees (see
Sec. 5.3.2) is in general better, yet these improvements are negligibly when HMI
estimation is used.
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higher accuracy. However, for a small number of bins (8, 16, 32) the results are

substantially better than for the two other state-of-the-art approaches. This can be

explained by the near optimal population of each histogram bin (since the number

of voxels within each leaf of the tree is the same). Therefore, the sensitivity to this

parameter setting is greatly reduced.

Figure 5.7 (d) shows the landmark localisation error for the 4D-CT dataset

with increasing number of trees. The trees use the same patch distance, but are

based on different randomly chosen subsets (samples) of all voxels/patches. In the

case where the hierarchical MI estimation is used (to reduce the influence of initial

misregistration to the estimation of the joint distribution) no benefit can be seen

by using multiple trees. Otherwise, a small improvement is achieved, suggesting

an improved robustness of this approach for scans with large deformations. The

use of approximate (best-bin-first) or exact (using Eq. 5.11) labelling has little

influence on the landmark localisation accuracy. We therefore conclude that the

time-consuming step of an exact nearest-neighbour search can be avoided for most

registrations tasks.

5.4.2 Robustness against intensity distortions

We now test the sensitivity of the different statistical similarity metrics in the

presence of intensity distortions. Figure 5.8 shows the cumulative distribution

of the localisation error for the inhale-exhale CT dataset for the three presented

MI formulations, SAD and the initial landmark distance. This is a particularly

challenging case with an average landmark displacement of 15 mm. The complex

intensity distortions due to the compression of lung tissue can not be adequately
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Figure 5.8: Cumulative error distribution for presented MI-based similarity met-
rics for the inhale-exhale CT dataset using the best individual settings for each
method. Textural MI yields the smallest average error and an improved robustness
(fewer large errors) against normalised and conditional MI (the improvements are
statistically significant with p = 0.029 and p = 0.006). SAD is not suitable for this
task, due to the intensity distortions between inhale and exhale scans.

modelled using SAD (localisation error 5.77 mm). The best settings for normalised

MI (128 bins, including HMI estimation), conditional MI (64 bins), and textural

MI (64 bins, including HMI estimation) have been used. While the correct location

(within an error of ≤1.5 mm) of the majority of landmarks can be recovered by

all methods, the inclusion of contextual information in TMI provides a greatly

improved robustness. Using TMI resulted in only 6.7 % of landmarks being located

more than one voxel (=2.85 mm) away from its gold standard position, while this

proportion is 14 % for CMI and 12 % for NMI.

To evaluate the robustness of the metrics against intensity distortions, first a

locally varying multiplicative bias field, and second, additive Gaussian noise, have

been applied to the VHD dataset as described in Sec. 3.3.2. Figure 5.9 demon-
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Figure 5.9: Landmark localisation error for VHD images with simulated intensity
distortions. A multiplicative bias field (linearly varying from left to right) strongly
affects the accuracy of NMI, while both other metrics are robust against it. All
metrics deal well with additive Gaussian noise.

strates the robustness of both conditional and textural MI to the bias field. The

localisation accuracy of normalised MI deteriorates substantially with increased

bias field, a behaviour that has been also shown by [Loeckx et al., 2007]. The

additional regional channel in CMI, and the use of contextual information (based

on image patches) in TMI, show a clear advantage over the traditional MI for-

mulation. All metrics are relatively insensitive to increased Gaussian noise (see

Fig. 5.9 right). TMI yields the lowest localisation error (0.59 mm) for the original

images, a two-fold improvement over NMI (1.26 mm).

5.5 Summary

In this chapter, the theoretical and practical implications of using statistical met-

rics, in particular mutual information (MI), to define similarity across multi-modal

scans, has been studied. Important extensions for the calculation of MI for de-

formable registration, point-wise and hierarchical estimation, were discussed. In
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Sec. 5.3, our contribution to the field: textual mutual information (TMI), was

presented and discussed. TMI efficiently incorporates spatial context by using a

clustering of images based on small patches of image intensities. Two state-of-the-

art metrics, normalised and conditional MI are used for comparison purposes. TMI

demonstrates significantly improved performance for the localisation of landmarks

in two challenging datasets compared to NMI and CMI. It is also less sensitive to

its internal parameter settings and more robust against intensity distortions (bias

fields and noise) than NMI.

While mutual information-based similarity metrics are theoretically well suited

to address non-functional intensity relations across images, they remain challenging

from an optimisation point of view. For deformable registration, local evaluations

of cost functions are necessary. Therefore, for a globally defined statistical metric,

approximations about the independence of the global joint statistics and local

deformations have to be made (see Secs. 5.2.1 and 5.2.2). This motivates the use

of a structural image representation, which is independent of the underlying image

acquisition and can be minimised with standard metrics such as sum of squared

differences (SSD). The concept of structural representations will be explained in

the next chapter and two novel formulations for multi-dimensional structural image

representations are proposed.
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Chapter 6

Multi-dimensional structural

image representation

The objective of this chapter is the introduction of novel multi-dimensional struc-

tural image representations for the use in deformable multi-modal registration. The

first contribution is the introduction of a new concept for representing local image

orientation through decomposing of the gradient structure tensors. The second

contribution is the modality independent neighbourhood descriptor (MIND). This

novel concept enables a representation of images using multi-dimensional descrip-

tors, which encapsulate the local image structure independently of contrast, noise

and modality. MIND can be minimised using sum of squared differences (SSD),

the most widely applicable similarity metric.

This chapter is closely linked with the previous one. The driving idea is again

to increase the use of contextual information to define image similarity in order to

improve the robustness and accuracy of correspondences across images, in particu-

lar for multi-modal scans. In contrast to the previous chapter, no global statistical
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relation between intensities across scans is necessary for structural image represen-

tations. Another advantage of the concept is that structural representations can

be used in deformable registration with efficient optimisation methods (see Chap-

ter 7) using any point-wise similarity metric, such as sum of absolute or squared

differences (SAD, SSD). While previously structural content had been represented

by only scalar values, we introduce two novel approaches to multi-dimensional

structural image representation, which efficiently capture contextual information

without relying on global statistical relations across images.

In Sec. 6.1 the concept of a structural image representation is introduced and an

overview of previous and novel approaches is given. Entropy images are discussed

in more detail in Sec. 6.2. We present a new approach to extract local image

orientation based on the structure tensor in Sec. 6.3, which successfully tackles the

challenges of gradient reversal and normalisation of orientation vectors. In Sec. 6.4

the modality independent neighbourhood descriptor (MIND) is introduced, which

is a multi-dimensional representation. We will show that, besides its robustness

against intensity distortions and noise, it is highly discriminative for different image

features. A further extension is proposed in Sec. 6.4.2, the self-similarity context

(SSC), which reduces the impact of localised image noise or artefacts and increases

the contextual information content.

Experimental results for the presented methods in this chapter will be evalu-

ated using the landmark localisation experiments presented in Sec. 3.3. For this

purpose, we will again employ two datasets: an inhale-exhale pair of a 4D-CT lung

sequence and an MRI-T1 and MRI-PD thorax scan of the visible human (VHD).
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6.1 Overview of structural image representations

Structural image representation for multi-modal registration aims to solve the

problem of defining a suitable mapping of intensities across modalities by trans-

forming the image intensities so that they are independent of the specific modality

and local contrast. The respective representations can then be compared across

images, using simple similarity metrics such as SAD or SSD. Ideally, the derived

representation should be highly discriminative for different anatomical or geomet-

ric features and be robust against noise.

Entropy is a general measure for information content. In [Penney et al., 1998]

the entropy of difference images has been applied to the registration of fluoroscopy

and CT images, since it is invariant to an intensity offset and more robust to noise

than direct differences. Local image entropy has been proposed by [Wachinger

and Navab, 2012] as a structural (scalar) image representation for multi-modal

registration (see Sec. 6.2), which can be minimised using SAD or SSD. Here,

each voxel is represented by its local entropy value, which is estimated based on

the intensity histogram within a small (weighted) neighbourhood. Higher entropy

can be found for a location at which there are intensity changes, and the value

should in principle be independent of the intensity differences and therefore image

contrast.

Assuming constant image gradients across acquisitions has been successfully

used to match images with slight changes in brightness [Brox et al., 2004]. For

multi-modal images, however, the strength of image gradients of corresponding fea-

tures is not constant and can point in opposite directions. [Mellor and Brady, 2005]

used the local phase, which can be extracted from the images using the monogenic
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signal, as an alternative image representation. An improvement of the robustness

of the registration has been found for MRI and ultrasound scans. However, in their

work mutual information was used between local phase images, which implies that

there was still no direct dependency between the representations across modalities.

The use of local orientation (assuming it can be reliably estimated) is also possi-

ble and has the attractive property of being very discriminative for the location

along image edges. [Pluim et al., 2000] successfully used the local orientation in

addition to mutual information for rigid registration, and showed that the number

of local minima during optimisation could be substantially reduced. [Haber and

Modersitzki, 2007] maximised the inner product of normalised image gradients for

deformable multi-modal registration. A problem arises when the orientations of

two corresponding locations are opposed to one another, and thus the normalised

gradients are reversed. We have addressed this issue in [Heinrich et al., 2011c] by

using an eigenvector analysis of the image structure tensor, which is invariant to

gradient reversal: called the structure tensor-based orientation measure (STORM),

which will be further described in Sec. 6.3. The STORM representations of the

images can then be compared across modalities using SAD or SSD.

[Zabih and Woodfill, 1994] presented two approaches (the rank filter and census

transform) to structural image representation, which are widely used for stereo or

optical flow computation of images with radiometric differences [Hirschmüller and

Scharstein, 2009]. The rank filter represents each voxel in the image by its rank

(ordering) within a local neighbourhood N and can be defined by I(x)rank =∑
y∈N H(I(x) − I(y)), where H(·) is the heaviside step function. Similarly, the

census transform defines a binary variable based on whether or not the intensity

of a voxel in N is greater than the central voxel’s intensity. Here, the spatial
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structure of the local neighbourhood is also stored, resulting in a bitwise vector

of length |N | for each voxel. The similarity across images is then defined as

the Hamming distance [Hamming, 1950] of all bitwise entries. It can be easily

shown that both transforms are invariant to order preserving changes in offset

(change of mean intensity) and gain (change of contrast) across images. The census

transform, which keeps the contextual information of the local neighbourhood,

has been shown in [Zabih and Woodfill, 1994] and [Hirschmüller and Scharstein,

2009] to outperform the rank filter and several other metrics, which are invariant

to monotonic greyscale mapping. Since the local ordering of intensities is not

preserved across modalities, it is however not applicable to define representations

for multi-modal images.

[Ojala et al., 2002] proposed a similar concept called, local binary patterns

(LBP), which also uses a pixel-wise comparator to extract a binary descriptor.

LBPs differ from the census transform in that only pixel locations on a circle

around the centre pixel are considered. Additionally, rotational invariance is

achieved by mapping all patterns, which are equal up to a (quantised) rotation, to

a common descriptor string. The descriptors are then often pooled spatially into

histograms. Further extensions to this concept utilise the uniformity of these cir-

cular (or spherical in 3D [Liao and Chung, 2009]) patterns as a texture descriptor.

BRIEF [Calonder et al., 2010] is another descriptor related to the census trans-

form, which deals well with monotonic greyscale mappings. Its main difference is

the spatial arrangement of the binary tests, which are not limited to centre-to-

neighbour comparisons, but randomly sampled (from e.g. a Gaussian distribution)

within the neighbourhood. Two approaches have been presented by [Calonder

et al., 2010] to obtain rotationally invariance. Binary Robust Invariant Scalable
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Keypoints (BRISK) [Leutenegger et al., 2011] further improve on the concept of

BRIEF by pre-scaling and pre-rotating a deterministic sampling pattern using

local gradient information and reducing the number of sampling locations.

In Sec. 6.4, we introduce a new concept based on the distance of small image

patches within a local neighbourhood. The modality independent neighbourhood

descriptor (MIND) is invariant to non-functional intensity mappings across images,

local changes in contrast, image noise and robust against geometric distortions.

It is is based on the principle of image self-similarity [Shechtman and Irani, 2007;

Buades et al., 2005]. Similarly to the previously introduced descriptors, the spatial

configuration of the local image structure is stored in a multidimensional vector,

making use of the contextual information. Instead of using only a binary represen-

tation, the distances between patches are represented by continuous (or quantised)

values. This makes MIND more sensitive to local orientation, and using patches

increases its robustness. By using a patch distance function, which depends on

squared differences MIND is not limited to monotonic greyscale mappings. The

MIND representation can be compared across modalities using SAD or SSD. While

MIND is based on local self-similarity, and therefore very much dependent on the

image patch around the voxel of interest. In Sec. 6.4.2, we introduce self-similarity

context (SSC), an extension to MIND. Similar to the concept of BRIEF [Calonder

et al., 2010], all pair-wise patch distances within a local neighbourhood are em-

ployed for SSC, thus reducing the impact of the central patch and increasing the

contextual information content.
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6.2 Entropy images

Local patch-based entropy images have been proposed by [Wachinger and Navab,

2012], which were minimised using SSD across modalities. In their experiments, a

similar registration accuracy, compared to mutual information for rigid multimodal

registration and some synthetic non-rigid experiments, is demonstrated. The basic

assumption that drives the registration, based on entropy images, is that intensity

changes occur at the same locations in different modalities. The Shannon entropy

E for a voxel x within a local neighbourhoodN in an image I containing intensities

of the range i ∈ I is defined as:

E(x) =
∑
x∈N

∑
i∈I

p(I(x) = i) log p(I(x) = i) (6.1)

where p(I(x) = i) is the probability of the occurrence of a certain intensity i ∈ I

based on a local histogram estimate. The histogram calculation can be weighted

based on the spatial distance of x within N . A patch histogram using a spatial

Gaussian weighting σs is defined as:

p(x, i) =
1

σs
√

2π

∑
y∈N

exp

(
−|x− y|2

2σ2
s

)
δ[I(y)− i] (6.2)

where δ[·] defines the Kronecker delta function. The well-known Parzen window

estimation with a standard deviation of σi can be obtained by replacing the delta

function in Eq. 6.2 with 1
σi
√

2π
exp

(
− (I(y)−i)2

2σ2
i

)
.

Examples of the entropy image representations for an example MRI and CT

slice are shown in Fig. 6.1, using a uniformly weighted patch of 7× 7 voxels. The

sensitivity to locally different noise can be clearly seen from this example.
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Axial MRI slice and its local entropy Axial CT slice and its local entropy

Figure 6.1: Entropy images for MRI and CT slices from Fig. 5.1, calculated
using a uniformly weighted patch of 7x7 voxels. This example demonstrates the
concept’s ability to transform image into a structural representation, but also its
susceptibility to noise (e.g. in the background of the MRI).

The intensity range I can either be set by a global or local normalisation.

According to [Wachinger and Navab, 2012], the number of intensity bins should be

sufficiently small to ensure a well populated local histogram, for the application of

entropy images for deformable registration. However, this reduces the sensitivity to

small intensity changes. A local intensity normalisation has been suggested. Since

the straightforward implementation of Eqs. 6.1 and 6.2 requires |N | computations

per voxel, this approach would be impractical for larger neighbourhoods. Integral

images can be used instead to reduce the computational complexity to 6|I| for a

uniform weighting within patches [Porikli, 2005].

A challenge for entropy images is a changing level of noise within and across

images, which influences the entropy calculation and might have a negative impact

on the registration.

6.3 Structure tensor gradient orientation

Boundaries between neighbouring tissues carry significant information in medical

images. The gradient of tissue boundaries might not have the same magnitude

107



for images of different modalities, but the orientation of the gradient should be

the same or flipped by 180◦. Here, we will present an approach for structural

image representation based on the principal orientation of the structure tensor of

image gradients, which is called structure tensor orientation measure (STORM).

STORM represents each voxel in the images with a vector of length d (image

dimension) and can be efficiently compared across images using SSD and SAD. It

can also intrinsically deal with the problem of gradient reversal for corresponding

structures in multi-modal images.

6.3.1 Gradient orientation

In [Pluim et al., 2000] gradient orientation (GO) was used to improve the MI

measurement for rigid image registration. It was shown that the use of this measure

can be formulated to obtain a convex optimisation problem. Their results showed

that GO, in contrast to MI, was able to find the same unique minima for a range

of random misalignments. The local gradient orientation can be directly estimated

from the spatial image gradients ∇I(x), where the normal direction n(I,x) is then

given by:

n(I,x) :=
∇I(x)

||∇I(x)|| (6.3)

As this measure is not well defined in homogeneous image regions and would be

too much affected by noise, [Haber and Modersitzki, 2007] addressed this problem

be substituting the denominator in Equation (6.3) with a robust norm:

||∇I(x)||ε :=
√
∇I(x)T∇I(x) + ε2 (6.4)
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using an automatic choice of the small constant ε based on the image noise level.

Defining the similarity S between target image It and moving image Im based

on their gradient orientation can be defined by the inner product of their corre-

sponding normals n(It) and n(Im):

S(It, Im,x) =
|∇It(x) · ∇Im(x)|
||∇It(x)|| · ||∇Im(x)|| = n(It) · n(Im) (6.5)

This will yield 1 for perfectly parallel normals (or same orientations) and −1 for

reversed gradients (orientations, which are flipped by π). To fully benefit from a

structural representation, it should be possible to use similarity metrics like SAD

and SSD. It can be easily shown that the SSD of the d-valued representation gives

an equivalent optimisation objective:

SSD(n(It),n(Im),x) =
d∑
i=1

(ni(It(x))− ni(Im(x)))2

=
d∑
i=1

ni(It(x))2

︸ ︷︷ ︸
=1

−2
d∑
i=1

ni(It(x))ni(Im(x)) +
d∑
i=1

ni(Im(x))2

︸ ︷︷ ︸
=1

(6.6)

= 2− 2 (n(It) · n(Im))

To address the problem of gradient reversal and in order to formulate a cost

function, which is well defined for small deviations around the minimum, [Pluim

et al., 2000] use a cosine function of the difference in orientation δ to define the

absolute gradient orientation (AGO) measure:

AGO(δ) = cos(2δ + 1)/2 = cos2(δ) (6.7)
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If the orientation is defined by its normal vector in both images n(I,x) and n(J,x),

this measure is simply given by the squared dot product of the unit normals.

The disadvantage of this metric is that it cannot be directly used in SSD based

optimisation methods. In the following section we will show how the principal

eigenvector of the structure tensor of image gradients can be used to address this

problem and find a structural image representation, which is invariant to gradient

reversal and can be minimised using SSD or SAD.

6.3.2 Orientation based on structure tensors

The structure tensor T, which is also called second-moment matrix [Koenderink

and Pont, 2003], is a matrix derived from the image gradients ∇I(x): T(x) =

∇I(x)∇I(x)T . Gradients of discrete images are usually obtained by using finite

differences, which can be efficiently done by a convolution with a five-point stencil:

∂I(x)

∂x
=
−I(x + 2ex) + 8I(x + ex)− 8I(x− ex) + I(x− 2ex)

12
(6.8)

where ex defines a unit step in the direction of x. To compensate for the influence of

noise on the gradient computation, the image gradients are then spatially smoothed

using Gaussian kernel σg.

We now show how the structure tensor can be used find the orientation of an

image I(x) within a small region N around x. The image gradient vector ∇I(x)

is defined to be of unit length. The unit normal vector n(x) of the image intensity

orientation can then be found where:

n(x)T∇I(x) = 1 (6.9)
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Equation 6.9 can be solved by the least-squares optimisation of E(n) [Derpanis,

2005] (using the notation Ix as an abbreviation for ∂I
∂x

etc.):

E(n) = max
||n||=1

∑
x∈N

(
nT∇I(x)

)2
= max
||n||=1

nT

(∑
x∈N

∇I(x)∇I(x)T

)
n

= max
||n||=1

nTTn with T =

∣∣∣∣∣∣∣∣∣∣
I2
x IxIy IxIz

IxIy I2
y IyIz

IxIz IyIz I2
z

∣∣∣∣∣∣∣∣∣∣
(6.10)

where the matrix T is the structure tensor of spatial image gradients obtained

using a smoothing kernel with σg to obtain the summation within N . Finding

the normal orientation in this energy maximisation is equivalent to the following

eigenvalue problem:

Tn = λn (6.11)

The solution of the maximisation problem, Equation (6.10), is the eigenvector

which corresponds to the largest eigenvalue. The obtained eigenvalues contain

additional information about the local image structure. A single dominant orien-

tation is present if λ1 � λ2, λ3, homogenous regions are characterised by λ1 ≈ λ2 ≈

λ3 ≈ 0. Using λ1 to weight the local influence of the similarity term (i.e. higher

weighting for more pronounced local orientation) could potentially be useful.

The eigenvector v = (v1, v2, v3)T , which corresponds to the largest eigenvalue

λ1 is used to extract the three-dimensional orientation described by the two angles

θ and ϕ:

r =
√
v2

1 + v2
2 + v2

3 , θ = cos−1
(v3

r

)
, ϕ = tan−1

(
v1

v2

)
(6.12)

The obtained orientation is defined up to a rotation of 180◦, because a reversal of
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the gradient between modalities is possible.

Substituting v(It,x) and v(Im,x) into Equation 6.6 yields the proposed simi-

larity term, STORM, for two images It and Im. The main contribution here lies in

the fact that we estimate the local orientation based on the structure tensor, and

not directly from the smoothed image intensity gradients as done e.g. in [De Nigris

et al., 2010] or [Pluim et al., 2000].

Figure 6.2: Estimation of local image orientation. Left: grayscale image of axial
slice of lung CT scan. Centre-left: Orientation based on image gradients. Centre-
right: Orientation based structure tensor. Right: Colour-coding for angles of the
orientation. The structure tensor estimate avoids the reversal of orientation for
small thin features (see white arrow).

Visual example of STORM

One advantage of using STORM compared to image gradient orientation is illus-

trated in Figure 6.2. Here, the estimation of the local orientation of an axial slice

of a lung CT scan is demonstrated. It can be seen that the eigenvector decom-

position of the structure tensor leads to more consistent orientation estimation

around small structures, such as the pulmonary vessels. The reversal of orienta-

tion estimates between positive and negative image gradients is avoided. Therefore

STORM can be directly used as a structural representation for multi-modal image

registration, using SAD or SSD as metric. STORM is comparatively simple to
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calculate and yields a vector of size d (image dimension) for each voxel.

While STORM offers theoretically a good structural representation for scans

independent of modality, the spatial contextual information is only weakly covered

by the orientation of image gradients. In the following, we will present a different

approach to multi-dimensional image representations based on the calculation of

patch-based self-similarities in a larger spatial region, which should be beneficial

(based on the findings of Chapter 5) for challenging multi-modal registration tasks.

6.4 Modality independent neighbourhood

descriptor (MIND)

In this section the modality independent neighbourhood descriptor (MIND) [Hein-

rich et al., 2012b] is presented and its use to define the similarity between two

images based on the SSD of their descriptors is demonstrated. First we motivate

the use of image self-similarity for the construction of an image descriptor. We

will then propose the definition of self-similarity by using a Gaussian-weighted

patch-distance and explain the spatial capture range of the descriptor.

Self-similarity

Our approach uses the principle of self-similarity, a concept which has first been

introduced in the domain of image denoising by [Buades et al., 2005]. The authors

make use of similar image patches across a noisy image to obtain a noise-free pixel,

which is computed as a weighted average of all other pixels in the image. The

weights w(i, j) used for the averaging are based on the sum of squared differences
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between the patch, which surrounds the pixel of interest, and all other patches in

the image I. The denoised pixels NL(i, I) are then calculated using the following

equation:

NL(i, I) =
∑
j∈Ω

w(i, j)I(j) (6.13)

where Ω is the image domain. The approach demonstrated a very good perfor-

mance for image denoising.

The use of patches to measure similarity based on the weights w(i, j) within the

same image can easily capture a variety of image features, because it treats regions,

edges, corners and textures in a unified way and is thus much more meaningful

than using single intensities. In subsequent work, this approach was simplified

to search for similar patches only within a local search region N (replacing Ω

in Eq. 6.13 by N defining the local neighbourhood, see [Coupé et al., 2006]).

Figure 6.3 gives an example of how well the self-similarity pattern can describe

the local structure around an image location. Mainly because of this property,

the concept has subsequently been used in a variety of applications. One example

is its application to object localisation by [Shechtman and Irani, 2007]. Here, a

correlation surface is extracted using colour patch distances and then stored in a

log-polar histogram, which can be matched across images using the L1 norm.

Motivation and Concept

Our aim is to find an image representation, which is independent of the modal-

ity, contrast and noise level of images from different acquisitions and at the same

time sensitive to different types of image features. Our approach is based on the

assumption that a local representation of image structure, which can be estimated
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MRI intensities with 
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Figure 6.3: Concept for the use of MIND as multi-modal similarity metric. MIND
is calculated in a dense manner in CT and MRI. Three example locations with
different image features: � homogenous intensities (liver), � corner points at one
vertebra and � image gradients at the boundary between fat and non-fat tissue.
The corresponding descriptors (in coloured boxes, high intensities correspond to
small patch distances) are independent of the respective modality and can be easily
compared using the L2 norm.

through the similarity of small image patches within one modality, is shared across

modalities. Many different features may be used to derive a similarity cost function

for image registration, such as corner points, edges, gradients, textures or intensity

values. Figure 6.3 shows some examples on two slices of a CT and MRI volume.

Using the SSD of the corresponding intensities between small image patches as

similarity metric is sensitive to all these different types of image features. How-

ever, the use of these patch distances is limited to single-modal images. In our

approach, a multi-dimensional image descriptor, which represents the distinctive

image structure in a local neighbourhood, is extracted based on patch distances
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for both modalities separately and afterwards compared using simple single-modal

similarity measures.

6.4.1 Derivation of MIND representations

MIND can be specified by a distance Dp, a variance estimate V and a spatial

search region R:

MIND(I,x, r) =
1

n
exp

(
−Dp(I,x,x + r)

V (I,x)

)
r ∈ R (6.14)

where n is a normalisation constant (so that the maximum value is 1) and r ∈ R

defines the search region. By using MIND, an image will be represented by a

vector of size |R| at each location x.

Patch-based distance

To evaluate Eq. 6.14 we need to define a distance measure between two voxels

within the same image. As discussed before, a straightforward choice of a distance

measure Dp(x1,x2) between two voxels x1 and x2 is the sum of squared differ-

ences (SSD) of all voxels between the two patches P of size (2p+ 1)d (with image

dimension d) centred at x1 and x2.

Dp(I,x1,x2) =
∑
p∈P

(I(x1 + p)− I(x2 + p))2 (6.15)

The distance value defined in Eq. 6.15 has to be calculated for all voxels x in the

image I and all search positions r ∈ R. The näıve solution (which is e.g. used in

[Coupé et al., 2006]) would require 3(2p+ 1)d operations per voxel and is therefore
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computationally very expensive.

We propose an alternative solution to calculate the exact patch-distance very

efficiently using a cubic convolution filter kernel of size (2p+1)d. First a copy of the

image I ′ is translated by r yielding I ′(r). Then the point-wise squared difference

between I and I ′(r) is calculated. Finally, these intermediate values are convolved

with the kernel C, which effectively substitutes the SSD summation in Eq. 6.15:

Dp(I,x,x + r) = C ? (I − I ′(r))2 (6.16)

This procedure is now repeated for all search positions r ∈ R. The solution of

Eq. 6.16 is equivalent to the one obtained using Eq. 6.15. Using this method it

is also easily possible to include a Gaussian weighting within the patches by using

a Gaussian kernel Cσ of size (2p + 1)d. The computational complexity per patch

distance calculation is therefore reduced from (2p+1)d to d(2p+1) for an arbitrary

separable kernel and 3d for a uniform patch weighting (and integral images for fast

filtering c.f. [Tapia, 2011]). A similar procedure has been proposed in the context

of windowed SSD aggregation by [Scharstein and Szeliski, 1996].

To obtain a normalisation in Eq. 6.14, one could simply divide each descriptor

by its maximum value. Here, another approach is used, where the minimal patch

distance is subtracted from Dp before inserting it into the exponential:

D∗p(I,x1,x2) = Dp(I,x1)− min
x2∈N

(Dp(I,x2)) (6.17)

Based on the assumption that at least one patch within N resembles the same

underlying structure (which is a fairly safe assumption, since anatomical structures
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are rarely confined to a single point in 3D medical images) the minimum patch-

distance in Eq. 6.17 is an estimate of the SSD of the additive image noise.

Variance measure for the Gaussian function

We want to obtain a high response for MIND for patches that are similar to

the patch around the voxel of interest, and a low response for everything that

is dissimilar. A Gaussian function (see Eq. 6.14) is used for this purpose. The

denominator V (I,x) in Eq. 6.14 is an estimation of the local variance. A smaller

value for V yields a sharply decaying function, and higher values indicate a broader

response. The parameter should be related to the amount of noise in the image.

The variance of the image noise can be estimated via pseudo-residuals ε calculated

using a six-neighbourhood N (see [Coupé et al., 2008]):

εi =

√
7

6

I(xi)−
1

6

∑
xj∈N

I(xj)

 (6.18)

ε is averaged over the whole image domain Ω to obtain a constant variance mea-

sure V (I,x) = 1
|Ω|
∑

i∈Ω ε
2
i . This, however, increases the sensitivity of the image

descriptors to spatially varying noise. Consequently, a locally varying function

is beneficial. Therefore, V (I,x) is determined by using the mean of the patch

distances themselves within the local neighbourhood n ∈ N :

V (I,x) =
1

|N |
∑
n∈N

Dp(I,x,x + n) (6.19)

Using this approach (Eq. 6.19), MIND can be automatically calculated without

the need for any additional parameters.
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Figure 6.4: Different sampling strategies of the search region: Left: six-
neighbourhood (6-NH). Right: dense sampling (26-NH). Red voxel is the voxel
of interest, grey voxels are being sampled within r ∈ R. The left and right column
show the 3D slice above and below the central voxel.

Example responses of the obtained descriptors for three different image features

for both CT and MRI are shown in Fig. 6.3 (second and third row on the right),

where a high intensity corresponds to a small patch distance. Fig. 6.3 demonstrates

how well descriptors represent these features, independent of modality.

Spatial search region

An important issue using MIND is the spatial extent of the search region (see

R in Eq. 6.14) over which the descriptor is calculated. In the original work of

[Buades et al., 2005], self-similarity was defined across the whole image domain,

thus coining the term: “non-local filtering”. In object detection, [Shechtman and

Irani, 2007] used a sparse ensemble of self-similarity descriptors calculated with

a search radius of 40 pixels, which was stored in a log-polar histogram. For the

use of MIND in image registration, however, a smaller search region was found

to be sufficient. We have defined two different types of spatial sampling for the

spatial search region R: dense sampling and a six-neighbourhood. Figure 6.4

illustrates these configurations, where the red voxel in the centre is the voxel

of interest, and all the grey voxels define R. The computational complexity is

directly proportional to the number of sampled displacements, and therefore the
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six-neighbourhood clearly offers the best time efficiency. The radius of the search

range can be increased to capture a larger neighbourhood. However, if the chosen

neighbourhood is too large, the resulting descriptor might be affected by non-rigid

deformations.

MIND is not invariant to rotations. While this would be a disadvantage for

feature-based registration approaches, for dense deformable registration the lo-

cal orientation helps to drive the alignment of edges. Note, that in practice the

MIND image representation can be efficiently re-computed at each iteration of the

registration.

6.4.2 Extension to the self-similarity context

The concept of self-similarity can be further extended to be based on spatial con-

textual information [Heinrich et al., 2013c]. Spatial context has been successfully

applied to object detection [Tu, 2008], [Heitz and Koller, 2008] and is also the main

driving force of pictorial structures [Felzenszwalb and Huttenlocher, 2005]. Here

our aim is not to find a good structural representation of the underlying shape, but

rather the context within its neighbourhood. An example of a patch configuration

for the proposed self-similarity context (SSC) is shown in Fig. 6.5. We make use

of the same images patches within the six-neighbourhood as before. However, now

the patch distances are not defined with respect to the central patch, but all other

patches within the neighbourhood. The advantage of this is that a noisy central

patch does not adversely affect the descriptor calculation. Since the number of

distance comparisons obviously increases quickly by including more patches, we

therefore restrict the number of patches involved to the six-neighbourhood and
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MIND SSC 

Figure 6.5: Concept of self-similarity context (SSC) compared to MIND with six-
neighbourhood (6-NH). The patch around the voxel of interest is shown in red, all
patches within its immediate 6-NH in grey. Left: All patch distances (shown with
blue lines) used for MIND within 6-NH take the centre patch into account. Right:
Geometrical and/or structural context can be better described by SSC using all
patch to patch distances, of which none is dependent on the central patch.

neglect the three largest spatial connections (left-most to right-most, etc.) so that

there are 12 distances (of which only half have to calculated, since each distance

is part of two descriptors within the whole image). All other steps described in

Secs. 6.4.1 and 6.4.1 to obtain the result of Eq. 6.14 are perfomed equivalently.

6.4.3 Multi-modal similarity metric using MIND

One motivation for the use of MIND is that it enables multi-modal images to be

aligned using a simple similarity metric across modalities. Once the descriptors are

extracted for both images, yielding a vector for each voxel, the similarity metric

between the two images can be chosen to be SAD or SSD between their corre-

sponding descriptors. Therefore efficient optimisation algorithms, which converge

rapidly, can be used without further modification. Using SAD as an example, the

similarity term S(x) of two images I and J at voxel x can be to be defined as the
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SAD between the descriptors:

S(x) =
1

|R|
∑
r∈R

|MIND(I,x, r)−MIND(J,x, r)| (6.20)

For the Gauss-Newton optimisation (see Chapter 7) used here, which minimises

the linearised error term in a least-square sense ([Madsen et al., 2004]), we simply

treat the MIND representation as a multi-channel image. The derivatives with

respect to deformations in the spatial directions are calculated for each element of

the descriptor individually. We will discuss this in more detail in the context of

the continuous optimisation for deformable registration used in Sec. 7.3.3.
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4/5 = 01111!
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binary MIND 
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00011011110000011111! 00111111110000101111!�!

00100100000000110000!

5 bit quantisation 

bit-wise exclusive or 

bit-count (Hamming weight) = 4 (divide by 20) equivalent to SAD 

Figure 6.6: Concept of using the Hamming distance to speed up similarity eval-
uations. Continuous valued descriptor entries (here: |R| = 4) are quantised to a
fixed number of bits and concatenated. The similarity of Eq. 6.20 can now be
evaluated using only one bitwise XOR and bit-count operation.

Eq. 6.20 requires |R| computations to evaluate the similarity at one voxel.

Some algorithms, especially the discrete optimisation framework presented in Chap-

ter 7 (or [Glocker et al., 2008a] and [Shekhovtsov et al., 2008]), as well as the land-

122



mark localisation experiments, use many cost function evaluations per voxel. In

order to speed up these computations the descriptor can be quantised to a vector

of only 64 bit, without significant loss of accuracy. The exact similarity evaluation

of Eq. 6.20 can then be obtained using the Hamming distance between two de-

scriptors using only one operation per voxel (a speed-up of |R|). A descriptor using

self-similarity context as the neighbourhood definition consists of 12 elements, for

which we use 5 bits per element, which translates into 6 different possible values

(note that we cannot use a quantisation of 25 because the Hamming weight only

counts the number of bits, which differ). Figure 6.6 illustrates the concept.

In the following section, the suitability of the two novel multi-dimensional struc-

tural image representations STORM and MIND for multi-modal image similarity

and their robustness to parameter choice and intensity distortion is experimen-

tally studied and compared to the state-of-the-art: entropy images [Wachinger

and Navab, 2012].

6.5 Experiments and results

The performance of the presented structural image representations is compared in

the following with the same experiments used in the previous chapter. Details of

this similarity-based landmark localisation are described in Sec. 3.3. As before, two

datasets as used: T1- and PD-MRI scans of Visible Human Dataset (VHD) and an

inhale-exhale lung CT scan pair. The image resolutions are 1.875× 1.875× 1.875

mm and 0.97×0.97×2.5 mm respectively. The initial average displacement for the

CT dataset is 15.0 mm (the intra-oberserver error for manual annotations, which

is the lower bound on localisation accuracy is ≈1 mm) [Castillo et al., 2009].
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6.5.1 Parameter sensitivity

In the following the sensitivity of all metrics with respect to the spatial Gaussian

smoothing σs is tested. Additionally, the influence of the number histogram bins

on the calculation of entropy images, and the neighbourhood layout for MIND are

evaluated.

Entropy images

Figure 6.7 (a,b) shows the results for using SAD of the entropy images for the two

experiments (landmark localisation in multi-modal MRI scans and inhale-exhale

CT). The number of bins and the spatial Gaussian smoothing with σs are varied

over a range of values. The size of the smoothing kernel is ρs = 2d3
2
σse + 1 and

the Parzen smoothing is set empirically to σi = 0.75. A local normalisation is

performed within a neighbourhood N of size ρ3
s. It can be seen that the Gaussian

smoothing kernel has a great influence on the results (values in the range of σs =

[0.5, 0.875] appear to be best), whereas the entropy calculation is fairly insensitive

to the number of bins.

Structure tensor orientation measure (STORM)

Figure 6.7 (c) shows the results for using SAD of STORM for the two experiments

(landmark localisation in multi-modal MRI scans and inhale-exhale CT). Only a

single parameter the Gaussian smoothing of gradients σg has to be chosen. The

size of the smoothing kernel is ρs = 2d3
2
σge+ 1. It can be seen that the results are

fairly sensitive to σg (values in the range of σg = [0.625, 1.5] appear to be best)

and the absolute landmark localisation accuracy is substantially better than using
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Figure 6.7: Landmark localisation error in mm for multi-modal MRI (©) and
4D-CT dataset (�). The size of smoothing kernel and neighbourhood for local
normalisation is ρs = 2d3

2
σse + 1. The Parzen smoothing is set to σi = 0.75 in

all cases. (a) The number of histogram bins has little influence on localisation
accuracy (using σs = 0.875). (b) The variation of the spatial Gaussian smoothing,
σs, shows a high sensitivity of entropy images to this parameter (using 16 bins).
The sensitivity to σs is low for STORM (c) and MIND (d). MIND achieves the
best results for the inhale-exhale CT dataset.
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entropy images (see Fig. 6.7 (b)).

Modality independent neighbourhood descriptor (MIND)

The influence of the Gaussian weighting parameter σs for the patch distance Eq.

6.15 for the two landmark localisation experiments is shown in Fig. 6.7 (d). It

can be seen that similarly good results are obtained for a large range of values for

σs > 0.5. Figure 6.8 (left) gives an overview of the landmark localisation error

for the inhale-exhale CT dataset for different neighbourhood configurations of

MIND compared to SSC. It can be seen that SSC is consistently better than using

either a six or 26 neighbourhood (6-NH, 26-NH). The influence of the Gaussian

weighting σs for the patch distance computation is also lower. SSC is also more

robust against additional Gaussian noise applied to the inhale-exhale CT scans as

shown in Fig. 6.8 (this experiment was not performed for the other methods). We

conclude that avoiding the central patch for self-similarity computations greatly

reduces the adverse affect of image noise. Therefore, SSC is better suited (than

MIND) for challenging modalities with strong noise. This is further demonstrated

for the registration of ultrasound to MRI in Sec. 9.3.1.

6.5.2 Robustness against intensity distortions

The presented structural image representations have been compared in terms

of landmark localisation error for the multi-modal VHD and inhale-exhale CT

datasets. As similarity metric, sum of absolute differences (SAD) is used through-

out the tests. Entropy images are simply represented by scalar values, STORM

with a vector of length 3, and MIND with a 64 bit integer (obtained from the
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Figure 6.8: Left: Results for the landmark localisation experiments for MIND with
different spatial search regions, using the inhale-exhale CT dataset. The consis-
tently best accuracy (over varying Gaussian weightings σs of the patch distances)
is obtained using SSC. Right: SSC is also more robust against additional Gaussian
noise applied to the inhale-exhale CT scans.

quantisation described above and compared by Hamming distances). Figure 6.9

shows the cumulative distribution of the localisation error for the inhale-exhale

CT dataset for SAD of the three representations, SAD of image intensities and the

initial landmark distance (average initial displacements are 15 mm).

All structural representations achieve better results than using SAD on the

original intensities, which yields an localisation error of 5.77 mm. MIND, using

the self-similarity context (SSC) neighbourhood, achieves the best results (1.29

mm), followed by STORM (1.76 mm) and entropy images (2.15 mm). We can

therefore conclude that the scalar entropy representation only, based on the local

information content (Shannon entropy), is not sufficiently discriminative to match

complex geometric features. Both MIND (implicitly) and STORM (explicitly)

make use of the local orientation, which indicates that this is one of the main

driving forces for multi-modal image matching.
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Figure 6.9: Cumulative error distribution for SAD of the various image representa-
tions for the inhale-exhale CT dataset. MIND (with SSC neighbourhood) achieves
the best results (with an accuracy close to the ground truth inter-observer error)
and an improved robustness (fewer large errors) compared to STORM and en-
tropy images (the improvements are statistically significant with p = 0.002 and
p = 0.033). STORM gets closest to the true landmark location for many land-
marks, but is less robust than MIND. SAD of intensities shows an significant error
for about a third of the landmarks.

MIND achieves the highest robustness and a localisation distance of more than

one voxel (=2.85 mm) from the ground truth position for only 4.7 % of landmarks,

while this ratio is 6.7 % for STORM and 9 % for entropy images. We conclude

that this improvement over STORM is mainly due to additional use of contex-

tual information (especially using SSC). The robustness of the representations is

further evaluated on the multi-modal VHD images against intensity distortions:

a locally varying multiplicative bias field and additive Gaussian noise (see Sec.

3.3.2). Figure 6.10 demonstrates the robustness of both MIND and STORM to

the additive noise. The localisation accuracy of entropy images deteriorates sub-
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Figure 6.10: Landmark localisation error for VHD images with simulated intensity
distortions. Entropy images are strongly affected by additive Gaussian noise, while
both STORM and MIND are very insensitive to image distortions (and achieve
substantially better results than the entropy representation for the original im-
ages). All metrics are nearly invariant to the multiplicative bias field (linearly
varying from left to right).

stantially with increased noise, confirming the intuitive concern that entropy is, by

definition highly dependent on the image SNR (in fact in [Tsai et al., 2008] entropy

was used to assess the quality of radiographs). A denoising of the images prior

to the entropy calculation might help, but would be less principled than STORM

or MIND, which can intrinsically deal with noise. All representations are nearly

unaffected by locally varying bias fields, which is a strong argument in favour of

using structural image representations, since it removes the need for an additional

treatment of intensity variations as discussed in Sec. 3.3.2.
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6.6 Discussion of multi-modal similarity metrics

and representations

In this and the previous chapter, we have presented a thorough analysis and ex-

perimental evaluation of three state-of-the-art multi-modal similarity metrics and

three novel contributions, which have been made during this thesis. The methods

are divided into two different groups: statistical similarity metrics and structural

image representations (optimised with SAD). Based on our experiments, the lat-

ter approach has advantages both in terms of generalisation to different optimisa-

tion strategies and in achieved accuracy, which has been evaluated using regional

landmark localisation on two challenging datasets (multi-modal MRI scans and

inhale-exhale CT scans) and with respect to additional intensity distortions.

Figure 6.11 shows a comparison of the best performing approaches from both

groups: conditional and textural mutual information (CMI, TMI), structure tensor

based orientation (STORM) and modality independent neighbourhood descriptors

(MIND) in terms of localisation accuracy. The two proposed methods, which

make additional use of contextual information (TMI and MIND) show improved

robustness and a reduction in the number of landmarks with large localisation

errors. Entropy images and normalised mutual information, despite achieving an

improvement compared to SAD of the original intensities (for the CT dataset),

have been shown to be inferior to the other methods. Especially the former with

respect to additive noise and the latter with respect to multiplicative bias fields.

Textural mutual information achieves the highest accuracy for the VHD dataset

(without additional intensity distortions) of 0.59 mm, closely followed by MIND

with 0.67 mm.
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Figure 6.11: Cumulative error distribution for best performing methods. Top:
MIND (with SSC neighbourhood) achieves the best results (1.29 mm) for the
inhale-exhale CT dataset. Bottom: TMI achieves a slightly higher accuracy (0.59
mm) for the multi-modal VHD images (without additional distortions).
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Efforts have been made to make the newly proposed methods both computa-

tionally very efficient, applicable to different optimisation methods, less dependent

on parameter settings and therefore user friendly. Using the self-similarity context

(SSC) neighbourhood for the MIND representation has been shown to be the best

approach based on these experiments, because it makes the most use of contextual

information and achieves both the highest robustness and accuracy. It has only

one free parameter to set (a wide range of values gives similarly good results c.f.

Fig. 6.8) and can be efficiently calculated with linear complexity (in ≈ 5 seconds

for the highest resolution of one of our test images). The use of quantised descrip-

tors and the Hamming distance (see Fig. 6.6) require no more operations (and no

additional memory) for the similarity cost evaluations than SAD or SSD (of scalar

intensities with double precision).

6.6.1 Outlook: Metric learning

In the previous two chapters, we have presented a number of current and novel

approaches to define a model of similarity across scans, with particular focus on

multi-modal data. Another area, which has currently gained a lot of interest in

research, is to learn a metric or model of similarity from training data. The concept

of textural mutual information (see Sec. 5.3) uses unsupervised learning to cluster

data points based on their relationships (pair-wise distances of some chosen metric)

without training data.

Choosing the right metric and the weighting of elements of feature vectors to

find correspondences across images is not a trivial task. Therefore, hand-crafting

these models might not be ideal for all applications. [Ou et al., 2011] trained the
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optimal weighting of a large number of Gabor wavelet features using aligned multi-

modal images. An improvement of the registration accuracy was found using only

a subset of elements of the original feature vectors. For more general clustering

applications a number of distance metric learning approaches have been presented

in the past. [Xing et al., 2002] use a supervised learning, where point pairs (x, y)

have been labelled as similar or dissimilar. The aim is to learn a distance metric

d(x, y) (of the family of Mahalanobis distances), which is defined by a positive

semi-definite matrix A:

d(x, y) = ||x− y||A =
√

(x− y)TA(x− y) (6.21)

A constraint is added to avoid the trivial solution of A = 0. When restricting A to

be diagonal, this problem is easy to solve and results in a similar weighting scheme

as used by [Ou et al., 2011]. Using a full matrix A also incorporates cross-element

distances and has been optimised by [Xing et al., 2002] using gradient descent

together with iterative projections. Note, that the this method does not explicitly

deal with multi-modal data since all data points are organised in the same space.

[Weinberger et al., 2005] notice that for many tasks a tight clustering of all

similar data points is less important than the discrimination between similar and

dissimilar ones. Their approach: large margin nearest neighbour (LMNN), which

is inspired by support vector machines (SVM) directly optimises the kNN clas-

sification performances. LMNN finds a matrix A, which maximises the margin

(also called hinge loss) of dissimilar data point clusters. This approach can be

implemented more efficiently than the one of [Xing et al., 2002] and an extension

has been proposed by [Weinberger and Saul, 2008], which can also adapt multiple,
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locally different metrics. A similar idea was used by [Tang et al., 2012], who learn

a locally varying weighting of different similarity metrics in order to best reflect

the complementary challenges of aligning different anatomies in medical scans. In

their experiments, a small improvement was found for the non-rigid registration

of lung and brain scans, when using a weighted combination of the metrics: cross-

correlation, local mutual information, intensity differences and differences of image

features (here vesselness filters).

While the previously discussed approaches, still rely on a pre-defined metric be-

tween different elements of the feature vectors (usually L1 or L2 norm), [Lee et al.,

2009] propose to directly learn a linear mapping over a certain feature represen-

tation of image patches using max margin structured prediction [Tsochantaridis

et al., 2005]. They applied this technique successfully to linear registration of

multi-modal brain scans with improved results compared to several mutual infor-

mation variants. [Bronstein et al., 2010] learn a dimensionality reduction based

on multi-modal training data, which embeds input data from two arbitrary spaces

into a Hamming space, where a simple metric (L1 norm) can correctly represent

the data similarity. Their approach, which can be also seen as a structural im-

age representation, extends the work of [Shakhnarovich et al., 2003] on parameter

(or similarity) sensitive hashing by learning two separate mappings (one for each

modality). The disadvantages of the former two approaches are that they requir-

ing well-aligned images from all modalities and a new similarity measure has to be

learnt for each possible combination of modalities. [Wachinger and Navab, 2012]

proposed an unsupervised learning of a low-dimensional embedding of the data

using Laplacian eigenmaps to find scalar structural representations, which show

promising results for 2D multi-modal images. This approach, however, comes at a
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very high computational cost.

When using local image descriptors, such as MIND (see Sec. 6.4) for registra-

tion, not only the weighting of different elements of a descriptor vector, but also

the spatial scale and location for calculating each entry can be learnt. [Simonyan

et al., 2012] learn the spatial pooling region of gradient orientation features by a

discriminative dimensionality reduction, which includes a sparsity constraint and

can be formulated as a convex optimisation problem. A similar idea has been used

by [Trzcinski et al., 2013] to learn pooling configurations for a binary descriptor

using a boosting framework.

After the discussion and evaluation of different regularisation and similarity

cost terms for deformable lung registration, the next chapter deals with the op-

timisation of these terms. The focus will lie on methods, which find good ap-

proximations to a global optimum of the cost function in tractable computation

time. A gradient-based Gauss-Newton optimisation framework will be presented,

which enables the minimisation of multi-dimensional image representations (such

as MIND). This is followed by a more flexible gradient-free approach using dis-

crete optimisation. A number of techniques are introduced to make this approach

computational very efficient, while preserving excellent accuracy.
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Chapter 7

Towards globally optimal energy

minimisation

The objective of this chapter is to develop new concepts in optimisation of de-

formable image registration that address a number of shortcomings of the existing

state-of-the-art. A focus lies on methods that are not only locally driven but able

to robustly find an approximately global optimum. The main contribution is a

new discrete optimisation framework that employs a dense sampling of displace-

ments, and an efficient inference of regularisation using a minimum-spanning-tree.

Mathematical and numerical optimisation are at the core of every deformable

image registration method. Registration methods consist in general of a transfor-

mation model, a registration term, a similarity term and an optimisation method.

In chapters 4-6, we have developed new concepts for similarity and regularisa-

tion. This chapter deals with new approaches for more efficient and accurate

optimisation. Optimisation for deformable registration is often ill-posed (or under-
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determined), non-convex and non-linear. In the past, most research in the domain

of medical image registration has focussed on the development of novel similarity

metrics and transformation models, while reverting to general-purpose optimi-

sation methods. The choice of the right optimisation framework is very much

dependent on the registration problem. While there are a number of more univer-

sally applicable optimisation methods, these are rarely the best choice in terms of

accuracy and computational complexity for a given medical application.

Iconic registration methods, employ the image intensity information densely,

and have a number of important advantages compared to geometric – feature

based approaches (they are less dependent on the employed transformation model).

We will therefore focus on optimisation for intensity-based registration between

target and moving image It and Im, which aims to estimate the best permissible

transformation φ∗:

φ∗ = argmin
φ

E(φ, It, Im) (7.1)

The energy term to be minimised, which consists of a similarity term S and a

regularisation penalty R, can be written as:

E(φ) = S(It, Im, φ) + αR(φ) (7.2)

where α is a scalar weighting between the two terms. The local transformation can

then be described by a dense displacement field u = (u, v, w)T and the identity

transform: φ =Id+u. In order to obtain smooth deformations and a well-posed op-

timisation problem, parametric models (which include linear transformations) re-

strict φ to follow a specified type of transformation (see Sec. 4.2). Non-parametric

registration methods mainly rely on penalising deviations in R, but may also
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impose further restrictions to obtain e.g. only diffeomorphic or symmetric trans-

formations (see Sec. 4.4). Finding the global optimum of Eq. 4.1.1 is usually

NP-hard and certain approximations and trade-offs have to be made to obtain a

tractable computational complexity.

7.1 Optimisation for lung registration

The main objective of this chapter is to propose new strategies to improve the

efficiency of the optimisation framework, and at the same time estimates a solution

that is as close as possible to the registration cost term defined by Eq. 7.2. In the

following, three major aspects of optimisation for deformable registration will be

discussed:

• Generalisation to different types of similarity metrics (e.g. statistical, point-

wise and multi-dimensional representations)

• Robustness to local minima in energy function

and avoidance of bias of initialisation


globally optimal

• Enforcing both local and global regularisation

and obtaining smooth, plausible deformations

The importance of these aspects is motivated by the challenges that are present

for the application of deformable lung registration in this thesis. The three major

challenges are: complex intensity mappings across scans (different modalities, see

discussion in Chapter 5) and within scans due to changing density, large motions

of small features leading to local minima and large initial misalignments, and

discontinuous sliding motion at the interface between lungs and rib cage (and
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other organs). A detailed discussion of these three challenges was presented in

Sec. 2.4.
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Figure 7.1: Comparison of continuous and discrete optimisation principles for a 1D
cost function. Continuous optimisation usually finds a local minimum with high-
accuracy within few cost function evaluations (©). Discrete optimisation requires
the parameter space to be finitely quantised (�), and it finds the approximate
global optimum (up to a quantisation error) and is therefore more robust against
a non-convex cost function and initialisation.

A demonstrative comparison between continuous and discrete optimisation and

their respective advantages and shortcomings is shown in Fig. 7.1. Gradient-based

methods are only guaranteed to find the global optimum of a convex cost function.

A typical registration cost function is highly non-convex and therefore only a local

minimum is guaranteed to be found, which might be far away from the global

optimum in some instances. Multi-resolution or multi-scale approaches can help

avoiding some of the local minima, but more complex motion consisting of both

coarse and fine scale deformations remains problematic. Both the similarity and

the regularisation term need to be differentiable. This most importantly limits the

choice of possible similarity metrics or requires approximations to the derivatives.

An overview of continuous optimisation methods for non-linear cost functions is

given in [Madsen et al., 2004].
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Simulated annealing [Kirkpatrick et al., 1983], is a combinatorial optimisation

technique, which can theoretically find the global optimum to many problems by

permitting the current parameter vector to escape out of local minima by accepting

worse intermediate solutions that have a higher energy with a certain probability

(determined by the annealing temperature). However, the high computational

complexity limits its use in practical applications.

Graph-based discrete optimisation overcomes some aspects of the two main

problems of continuous optimisation and therefore offers attractive properties for

deformable medical image registration. However, this comes at the cost of highly

increased computational complexity, because the space of deformations needs to be

discretised and therefore the number of degrees of freedom is drastically increased.

Consequently, suitable approximations have to be made so that the discrete opti-

misation problem becomes computationally tractable, while retaining its superior

robustness against local minima, and in order to make full use of the higher flexi-

bility of the search space and similarity metric.

The remainder of the chapter is organised as follows. In Sec. 7.2, we give a

short overview of standard continuous optimisation methods for deformable reg-

istration. For a more comprehensive recent survey see [Sotiras et al., 2013]. A

discussion of the popular and widely used demons framework and its extensions

for diffeomorphic mappings is presented in Sec. 7.2.1. We highlight some of their

shortcomings and motivate the use of a Gauss-Newton optimisation framework

(see Sec. 7.3), which has been employed in parts of this thesis. Extensions to

deal with multi-modal registration by using a multi-channel optimisation or pre--

conditioning (see Sec. 7.3.3), the use of Gauss-Newton for linear registration (see

Sec. 7.3.4), and an improved multi-resolution scheme (see Sec. 7.3.2) will be pre-
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sented. In Sec. 7.4, the convergence of these continuous optimisation methods is

experimentally compared for the registration of challenging inhale-exhale CT lung

scans (in terms of registration accuracy and deformation complexity).

In Sec. 7.5 a discrete optimisation framework for deformable registration us-

ing a graph-based model [Bishop et al., 2006, Chapter 8] is presented as a very

promising alternative to continuous optimisation. Less research has been directed

at the use of MRF-based deformable registration for medical applications so far,

mainly because of the large number of degrees of freedom involved. A range of

new approaches is developed in Secs. 7.5.2–7.5.4, which reduce the complexity of

the discrete optimisation problem with little sacrifice of robustness and accuracy

of the estimated deformations, including:

1. a stochastic approximation for the similarity cost term (similar to [Klein

et al., 2007] for continuous optimisation) with a dense spatial sampling

2. a simplified graph structure using an image-derived minimum-spanning-tree

(see also Sec. 4.3), for improved efficiency of inference of regularisation

3. a multi-scale refinement with subvoxel accuracy for efficient belief propaga-

tion based on lower envelope computations

4. and an additional processing step, which ensures diffeomorphic and symmet-

ric transformations (as discussed in Sec. 4.4.1)

The first two steps make use of a discrete, quantised displacement space L ⇒ Q,

while the third and fourth step allow us to estimate continuous valued deformations

u⇒ R. The benefits of each individual part of our approach are evaluated in terms

of registration accuracy for respiratory motion estimation in CT scans. The most
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important differences are compared to the discrete optimisation framework drop

[Glocker et al., 2008a].

A more comprehensive validation of the presented approaches for challenging

clinical registration tasks (including a direct comparison to other state-of-the-art

algorithms) will be left for Chapter 8.

7.2 Continuous optimisation for registration

Solving Eq. 7.2 requires a mathematical or numerical optimisation procedure. If

both similarity S and regularisation term R are analytically differentiable or a

derivative can be approximated numerically, the optimal transformation parame-

ters can be found by searching for the extremal point, where ∂E/∂u = 0. Since

the problem is non-linear, a linearisation has to be performed around the initial

transformation (assuming reasonably small deformations) and the solution is found

iteratively, following small steps in a search direction determined by the gradient

of the cost function. Methods such as gradient descent (or steepest descent), con-

jugate gradient descent and Newton-like approaches differ in the way the step size

is determined: explicit, semi-explicit or implicit (see [Zikic, 2011] for a more de-

tailed discussion). Setting the right step size is very difficult and either too low

convergence rates or unstable results are potentially problematic for the former

two approaches [Zikic et al., 2010b]. Newton-like approaches make a quadratic

approximation of the error term, which provides an automatic choice of the step

size and much faster convergence. The disadvantage is they can only be applied if

the energies can be stated as a least square problem (this is the case for SSD as

similarity metric and diffusion regularisation). [Klein et al., 2007] demonstrated
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the advantages of Newton-like methods over standard descent approaches (but also

found that for B-spline registration with mutual information, stochastic gradient

descent can be even more efficient). In Sec. 7.3 the choice of the Gauss-Newton

method is motivated, which has also been widely used in optical flow estimation

[Horn and Schunck, 1981], [Bruhn et al., 2005] and for spatial normalisation (inter-

patient brain registration) [Avants et al., 2008]. While Newton’s method is ap-

plicable for all twice-differentiable functions, many image registration approaches

can be formulated as non-linear least square problems. A comprehensive overview

of optimisation methods to solve these problems, including Levenberg-Marquart

[Ashburner et al., 2007] and Quasi-Newton can be found in [Madsen et al., 2004]

or [Boyd and Vandenberghe, 2004]. An alternative approach, which decouples the

optimisation of S and R, is the demons framework, which will be presented in the

next section.

7.2.1 Demons framework and diffemorphism

The demons framework was first presented by [Thirion, 1998] and later popularised

by its diffeomorphic [Vercauteren et al., 2009] and large-deformation [Beg et al.,

2005] extensions. It avoids the difficulties of directly optimising the regularised

cost function in Eq. 7.2. Instead, the optimisation is coarsely approximated and

decoupled by alternatively minimising the similarity metric and application of

Gaussian smoothing (as a substitute for the regularisation term). The so-called

demons forces are related to the Gauss-Newton optimisation of the un-regularised

registration cost, using a normalised SSD criterion [Pennec et al., 1999]. The
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update force field f given a previous or initial motion estimate u, is obtained by:

f =
(It − Im(u))∇Im(u)

||∇Im(u)||2 + (It − Im(x))2
(7.3)

A Gaussian smoothing is applied twice: to the update field (approximating fluid

regularisation) and the composition of the previous and the update field (similar to

diffusion regularisation). Unfortunately, the setting of the parameters (standard

deviation) of these two smoothing operations is far from trivial and the results are

very sensitive to this choice.

An alternative formulation that restricts the transformations to be diffeomor-

phic was presented by [Vercauteren et al., 2009]. In practice a very simple approx-

imation, the scaling-and-squaring approach (see Sec. 4.4, [Arsigny et al., 2006]),

is used to obtain a diffeomorphic mapping for almost any displacement field.

While being reasonably efficient and easy to implement, this framework lacks

most of the aforementioned desirable aspects of an optimisation framework. For

example, it cannot be directly generalised to similarity metrics other than SSD.

Although recently, efforts towards using other metrics have been made by [Zikic

et al., 2010b], [Modat et al., 2010] and [Risser et al., 2011b]. Relying solely on

local gradient information, it is susceptible to local minima and initial misalign-

ments. Global regularisation can only be approximated using Gaussian smoothing,

therefore it is in practice very difficult to obtain both globally and locally smooth

transformations (some improvements may be achieved using simultaneous multi--

scale smoothing c.f. [Risser et al., 2011a]).

To overcome these problems, we used a Gauss-Newton optimisation approach,

which includes a regularisation penalty and thus avoids the decoupling of the
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energy terms. It will be demonstrated in the Sec. 7.4 that the higher complexity

involved with solving the coupled registration cost (which results in a 3×3 matrix

inversion for each pixel) is offset by a much faster convergence, especially in areas

with little intensity information. Additionally, there are fewer parameters to set

and the sensitivity to their choice is in general lower.

7.3 Gauss-Newton optimisation

In order to explain the use of Gauss-Newton optimisation for registration, we first

consider the general case of a non-linear vector function f with R ⇒ Rd [Madsen

et al., 2004] (in our case d = 3 is the image dimension). The aim is to find the

optimal coordinates x∗, which minimise the least square error ||f(x)||2:

x∗ = argmin
x

1

2
||f(x)||2 =

1

2
f(x)T f(x) (7.4)

In order to efficiently solve the non-linear least square problem, we first need

to linearise f(x) using the first-order Taylor series approximation: f(x + h) ≈

f(x)+J(x)h, where J ∈ Rd is the Jacobian, a matrix containing first-order spatial

derivatives of f : Ji = ∂f
∂xi

for each voxel. We can now estimate the optimal

x∗ = x + u iteratively by solving for the Gauss-Newton update step hgn (see

[Madsen et al., 2004] for a full derivation):

(JTJ)hgn = −JT f (7.5)

The relation to Newton’s method (see e.g. [Boyd and Vandenberghe, 2004]) is that

the matrix of second derivatives (Hessian) is approximated by JTJ using first-order
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derivatives. The linearisation is accurate for small |h|. Therefore, the convergence

rate is quadratic when close to the final solution. This results in performance gains

of Newton-like methods (as shown e.g. in [Klein et al., 2007]) compared to first-

order descent methods, which have only a linear convergence rate. Using simple

descent methods might also lead to inaccurate registration results, if stopping

criteria cause the optimisation to finish before reaching the true minimum [Zikic

et al., 2010b]. It is worth noting that the efficient second order minimisation

(ESM), which claims to have quadratic convergence [Benhimane and Malis, 2004],

and which has been employed for deformable registration in [Wachinger and Navab,

2012], is closely related to the Gauss-Newton optimisation. It only differs in using a

symmetric formulation of the Jacobian: JESM = (J(x)+J(x + h))/2, and relates

to the symmetric formulation of the demons framework [Vercauteren et al., 2008].

In the following, the registration framework based on Gauss-Newton optimisa-

tion, which has been further developed in this work will be presented.

7.3.1 Diffusion-regularised deformable registration

For deformable registration, we aim to minimise the following cost function with

respect to the deformation field u = (u, v, w)T , consisting of a non-linear similarity

term S (dependent on u) and a diffusion regularisation term R(x) = ||∇u(x)||2:

argmin
u

(∑
x∈Ω

S(It(x), Im(x + u)) + α
∑
y∈N

R(u(x),u(y))

)
(7.6)

where Ω defines the image domain and N the chosen neighbourhood (here: von

Neumann neighbourhood). When using a quadratic similarity term, the objective

function to be minimised is of the form
∑

i f
2
i and we can apply the Gauss-Newton
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optimisation method. We simplify the notation to S = S (It(x), Im(x)) and ∇S =

(∂S
∂u
, ∂S
∂v
, ∂S
∂w

)T .

The linearisation of S(x) for the SSD as similarity criterion ||It(x)−Im(x + u)||2

is given by: S(x + u) ≈ (It(x) − Im(x + u)) + ∇STu. This is equivalent to

the brightness constancy assumption utilised in optical flow estimation [Horn and

Schunck, 1981], which has been first noted by [Zikic et al., 2010a].

The diffusion regularisation term R(x) = ||∇u(x)||2 is quadratic with respect

to u since the differential operator is linear. The Laplacian of u is defined as

∆u = ∇·(∇u). The resulting update step given an initial or previous deformation

field uprev becomes:

(
∇ST∇S + α∆

)
ugn = −(∇STS + α∆uprev) (7.7)

Equation 7.7 can be rewritten as a system of linear equations of the form Au = b.

It can be solved using the successive overrelaxation (SOR) method [Young, 1954],

which is a modification of the iterative Gauss-Seidel algorithm. It is computed by

sequentially updating the values of u with the iteration step:

u
(k+1)
i = (1− ω)u

(k)
i +

ω

Aii
(bi −

∑
j>i

Aiju
(k)
j −

∑
j<i

Aiju
(k+1)
j ) , i = 1, 2, 3. (7.8)

where k is the current number of iterations, Aij and bi the elements of A and

b, respectively, and ω ∈]0, 2[ is a relaxation parameter. First-order derivatives

of the point-wise similarity terms are calculated using finite differences [Kiefer

and Wolfowitz, 1952]. The partial derivative of S for each dimension xi of the
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deformation vector field is obtained by:

∂S
∂xi
≈ S(x + ei)− S(x− ei)

2
(7.9)

where ei is a unit step in direction of xi. For the case of SSD as similarity metric,

this simplifies to: ∂S
∂xi

= (J(x− ei)− J(x + ei))/2.

The Laplacian of the deformation field, ∆u, is approximated by the six direct

neighbours N of a voxel ∆ui = (
∑

j∈N uj)− 6ui. Note, that because ∆u depends

on the current values of uki in Eq. 7.8, it has to be re-calculated for each SOR

iteration. The relaxation parameter ω was set to 1.95 to achieve fast convergence.

In our experiments we found that a fixed number of 25 inner fixed-point iterations

was sufficient.

The final deformation field is calculated by the addition of the update steps

ugn. The parameter α balances the similarity term with the regulariser, which

is necessary to overcome the under-determination of the problem and ensures a

globally smooth motion estimation. The value of α has to be found empirically.

7.3.2 Coarse-to-fine image registration

As mentioned in the introduction and shown in Fig. 7.1, continuous optimisa-

tion can be susceptible to local minima (for non-convex cost functions), and in

particular it relies on a good initialisation. A common approach to improve the

performance of deformable registration is to use a coarse-to-fine image representa-

tion [Unser et al., 1993]. This can be achieved by using a multi-resolution strategy

and/or a parametric transformation model (such as B-spline transformations).

In a multi-resolution framework, image derivatives and deformation fields are
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initially estimated for downsampled versions of the images. The resulting defor-

mations are also applied to downsampled images for successive iterations. After

convergence of the Gauss-Newton optimisation at a low resolution, the deforma-

tions are upsampled to initialise the estimation of the deformation fields at the next

finer resolution. This can cause problems for small but often important anatomical

structures (e.g. vessels), which undergo a large deformation (or motion), because

the registration algorithm does not take them into account in lower resolutions.

A parametric transformation model (as discussed in Sec. 4.2) may be bene-

ficial, it however substantially increases the complexity of the similarity gradient

computation, because they have to be performed at the highest resolution (see

[Klein et al., 2007] for a thorough discussion of this problem). In the following,

it will be explained how the computation of the derivative of the similarity term

can be simplified for parametric models with similar accuracy and much lower

computational cost.

Assume, we are using a B-spline transformation model with a uniform control-

point spacing of g. Using a multi-resolution strategy with the same downsampling

factor of g, low resolution image representations are obtained by a filtering of

the original images with the B-spline function, followed by a subsampling with a

spacing of g. Afterwards, derivates are obtained by a finite differences approxi-

mation of Eq. 7.9 with a unit step size |e| = 1. For a parametric registration,

similarity derivatives are first calculated using the original image resolution but

only evaluated for a subset of control points (here the number of control points

is equivalent to the low-resolution image dimensions). Both, B-spline filtering

and derivative estimation are linear operators. Thus, for the specific choice of a

fixed step size of |e| = g for derivative approximations, the parametric scheme
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yields the exact same coarse scale derivatives for the similarity term as the multi-

resolution approach (which has a much lower computational cost, especially when

using multi-dimensional image representations). In contrast to a standard multi-

resolution scheme, the obtained deformations after each Gauss-Newton update

step (see Eq. 7.7) have to be upsampled and applied to the images at their orig-

inal resolution (which is slightly more complex). We refer to the this modified

approach as parametric in the experimental section 7.4.

7.3.3 Gauss-Newton for multi-modal registration

In general Eq. 7.9 can be applied to arbitrary quadratic point-wise similarity

metrics, if we assume their Jacobian is block-sparse (the similarity criterion is

only dependent on its immediate neighbours). Mutual information, unlike SSD or

NCC, is usually not minimised in a least-square sense, nevertheless [Wachinger and

Navab, 2009] show similarly good results for MI2 as a similarity metric. It might

however be useful in some cases to use a pre-conditioner to improve the stability

of the optimisation and avoid a diverging solution, especially in cases of complex

deformations and many local minima in the cost function. [Zikic et al., 2010b]

propose to use an approximate normalisation of the point-wise gradient vectors,

thus relying more on the direction of the derivatives than their amplitude. For

SSD-based similarity metrics this is not necessary, since here vectors are already

approximately normalised as discussed in Sec. 7.2.1.

Another possibility to use Gauss-Newton in multi-modal deformable registra-

tion is to use structural image representations as discussed in Chapter 6. If a scalar

representation such as entropy images is used, Gauss-Newton optimisation can be
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directly used with an SSD similarity of these structural representations. For multi-

dimensional image representations (e.g. MIND, see Sec. 6.4) with r channels, the

Jacobian J has to be represented as a matrix (Rr×3) and not as a vector (R1×3)

for each voxel. The dot products of partial derivatives (and function values) to

obtain the terms A = JTJ and b = −JT f in Eq. 7.3 therefore become products

of matrices (instead of vectors), involving a summation of partial derivatives over

all channels. The partial derivatives are obtained for each channel individually by

applying Eq. 7.9. In order to save memory the partial derivatives and function

values are computed on-the-fly and added to the matrix A and the vector b for

each voxel.

7.3.4 Rigid registration with Gauss-Newton optimisation

Rigid-body image registration aims to find the best transformation to align two

images while constraining the deformation to be parameterised by a rigid-body

(translation and rotation, 6 parameters). Extending this model to the more general

affine transformation, the transformed location x′ = (x′, y′, z′)T of a voxel x =

(x, y, z)T can be parameterised by q = (q1, . . . , q12):

u = x′ − x = q1x+ q2y + q3z + q10 − x (7.10)

v = y′ − y = q4x+ q5y + q6z + q11 − y

w = z′ − z = q7x+ q8y + q9z + q12 − z

where u = (u, v, w)T is the displacement of x. For a quadratic image similarity

function f2, the Gauss-Newton method can also be applied here. We again use a
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linear approximation of the error term:

f(x′) ≈ f(x) + JT (x)u (7.11)

where Jacobian J(x) is the derivative of the error term with respect to the trans-

formation. The iterative update step ugn is given by Eq. 7.3. We insert Eqs. 7.10

into Eq. 7.11 and differentiate with respect to q to calculate J(x). The advantage

of this method is that we can directly use the point-wise spatial derivatives of

the similarity term to obtain an affine transformation, so that structural image

representations have to be computed only once per iteration.

Parameterising a rigid-body transformation directly is not possible in a linear

way. Therefore, at each iteration the best affine matrix is first estimated and then

the best rigid-body transformation is found using the solution presented in [Arun

et al., 1987].

7.4 Evaluation of continuous optimisation

In order to evaluate the performance of the aforementioned continuous optimisa-

tion strategies, a number of registration experiments are performed with inhale-

exhale CT scan pairs. In this section, we used the two extreme breathing phases

of the most challenging cases (#7 and #8) of the DIR-Lab 4DCT dataset [Castillo

et al., 2009]. For each scan, 300 anatomical landmarks have been carefully anno-

tated by thoracic imaging experts. The average landmark error before registration

is 13.4 mm for these two scan pairs, the expert landmark annotation error ≈ 1

mm, and the scan resolution is 0.97× 0.97× 2.5 mm. An example of coronal and
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axial slices at the two extreme breathing phases is shown in Fig. 7.2 (top row).

axial slice coronal slice

b
ef

or
e

re
gi

st
ra

ti
on

G
N

w
it

h
M

IN
D

d
ef

or
m

at
io

n
fi
el

d
s

colour coding of

deformation vectors

Figure 7.2: Visual outcome of deformable registration for case #8 of DIR-lab
dataset. Top row shows overlay of inhale (green) and exhale (magenta) scan before
registration. Centre row demonstrates the accurate alignment after registration
using Gauss-Newton optimisation and MIND representations. Bottom row shows
the corresponding deformation fields.

SSD (of image intensities or MIND representations) is used as similarity metric,

and the smoothness of deformations is enforced by diffusion regularisation (see

Sec. 4.1.1), which is approximated using a Gaussian smoothing for the demons

framework. We compare five different approaches:
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1. symmetric diffeomorphic demons [Vercauteren et al., 2009] (see Sec. 7.2.1),

2. Gauss-Newton (GN) without symmetric constraints (see Sec. 7.3.1),

3. GN using a multi-resolution scheme (see Sec. 7.3.1),

4. GN using a parametric multi-scale approach (see Sec. 7.3.2), and

5. multi-channel parametric GN optimisation using MIND (see Sec. 7.3.3).

For all but the second method, the symmetric and inverse-consistent approach,

detailed in Sec. 4.4.1, is used. The resulting transformations show on average

a negligible inverse consistency error of less than 0.2 voxels, and the number of

negative Jacobians (singularities in the deformation field) is close to 0 (a fraction

of <10−5).

An iterative optimisation is performed using 10 iterations for each of four res-

olution levels (with subsampling factors of 8, 4, 2 and 1). We found that diffeo-

morphic demons had a substantially slower convergence, most likely because the

de-coupling of similarity minimisation and regularisation results in a suboptimal

optimisation overall. We therefore use twice as many iterations for the demons

framework. The regularisation parameters were chosen experimentally to obtain

the highest registration accuracy. For diffeomorphic demons a fluid-like Gaussian

smoothing with σfluid = 0.25 voxels and a diffusion filtering with σdiffusion = 1.0

showed the best performance. A step size of αstep =5 (see details in [Vercauteren

et al., 2009]) helped improve the speed of convergence. An advantage of the pre-

sented Gauss-Newton optimisation is that only a single parameter α (which weights

the regularisation) has to be set. We found that α =100 was best for SSD directly
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applied to intensities, and α =0.3 for the MIND representations (using the self-

similarity context as spatial search region see Sec. 6.4.2, and a patch-distance

parameter σ =0.75).

Figure 7.3 shows the evaluation of the different optimisation strategies in terms

of registration accuracy over the number of iterations and the distribution of the

final registration error. It can be seen that diffeomorphic demons (using twice

as many iterations) achieves worse results than our symmetric Gauss-Newton ap-

proach. A significant improvement can be found when using the symmetric com-

pared to the asymmetric approach. The parametric coarse-to-fine scheme achieves

slightly better results than a standard multi-resolution approach, because at each

iteration the deformation field is applied to the high resolution original images -

preserving the motion of smaller details. Using the multi-channel optimisation of

MIND representations results in a further significant improvement and the best

overall performance (at the cost of slightly higher computation time, see Fig. 7.4

(right)). Figure 7.4 shows the evaluation of the complexity of deformations in terms

of standard deviation of Jacobians during optimisation. Demons yield slightly less

complex transformations.

7.5 Efficient MRF-based discrete optimisation

As discussed in the introduction, continuous optimisation has a number of draw-

backs in particular when dealing with complex motion (i.e. respiratory lung mo-

tion), since it intrinsically relies on a convex cost function. This can be alleviated

using a multi-resolution or multi-scale (parametric) transformation model, but it is

still prone to local minima and there is no explicit control over the space of possi-
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Figure 7.3: Left: Evaluation of various continuous optimisation methods applied
to the deformable registration of inhale-exhale CT. Target registration error in mm
(averaged for cases 7 and 8) is plotted with respect to the iteration count (twice
as many for demons). Best results are obtained using a parametric coarse-to-fine
approach and a multi-channel optimisation of MIND representations. Right: The
distribution of the final registration error demonstrates improved robustness when
using a symmetric formulation.
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Figure 7.4: Left: Complexity of deformation for different optimisation strategies
(averaged for cases 7 and 8) in terms of standard deviation of Jacobians with
respect to the iteration count. Demons yield the smoothest transformations, but
cannot completely capture the complex motion, possibly due to the decoupling of
the regularisation. Right: Gauss-Newton has in general a lower computation time
than demons.
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ble displacements. A solution to this problem is to discretise (quantise) the search

space. Therefore, very large deformations and potential discontinuities in the mo-

tion field can be captured without applying a multi-resolution scheme, which may

result in loss of anatomical detail. Deformable registration using discrete optimi-

sation can be formulated as Markov Random Field (MRF) labelling. To model

a parametric image registration problem, a graph is defined, in which the nodes

p ∈ P correspond to control points in a transformation grid with a spatial location

of xp = {xp, yp, zp} (for non-parametric transformations, each node corresponds

to only one voxel). For each node, we define a set of labels fp ∈ L, which corre-

spond to a discrete displacement fp = up = {up, vp, zp}. The energy function to

be optimised consists of two terms: the data (also called unary) cost D and the

pair-wise regularisation cost R(fp, fq) for any node q, which is directly connected

(∈ N ) with p:

E(f) =
∑
p∈P

D(fp)︸ ︷︷ ︸
data term

+α
∑

(p,q)∈N

R(fp, fq)︸ ︷︷ ︸
regularisation term

(7.12)

The unary cost measures the similarity of the voxels around a control point p

in one image and the set of voxels in the second image around the control point

location, which is displaced by fp. It is independent of the displacements of its

neighbours. The pair-wise term enforces a globally smooth transformation by

penalising deviations of the displacements of neighbouring nodes. The weighting

parameter α sets the influence of the regularisation. For single-modal registration,

sum of absolute differences (SAD) of the intensities in the target image It and

the moving image Im can be used as similarity metric (note that SAD cannot

directly be used in continuous optimisation, because it is not differentiable). The
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deformation field is regularised using the squared differences of the displacements

of neighbouring control points, which approximates the diffusion regularisation

that we used before. The energy term for a labelling f then becomes:

E(f) =
∑
p∈P

|It(xp)− Im(xp + up)|+ α
∑

(p,q)∈N

||up − uq||2
||xp − xq||

(7.13)

The complexity of the optimisation problem is in the best case linearly depen-

dent on the number of nodes n times all possible displacements of the label space

L. Considering a typical 3D registration problem with n = 107 voxels and a max-

imum motion of 15 voxels in each direction, so that |L| ≈ 3 × 104, this problem

will be intractable both in terms of computation time and memory requirements.

In order to obtain both high registration accuracy and low computational com-

plexity, we use the following five steps in our MRF-based registration framework

[Heinrich et al., 2012d], which is called deeds (dense displacement sampling).

First, the transformations are parameterised using multiple levels of B-spline grids

with coarse-to-fine control point spacings. In contrast to most commonly used

approaches (with the exception of e.g. [Schnabel et al., 2001]), a constant com-

plexity is used for each level, in order to avoid errors at coarse scales, which cannot

be recovered at finer scales (see Sec. 7.5.1). In Sec. 7.5.2 a dense stochastic sam-

pling is introduced for the computation of the similarity term. This enables the

use of a very large search space |L| > 5 × 103, which deals well with complex

motion, while retaining good computational efficiency. Sec. 7.5.3 describes a dif-

ferent graph representation using an intensity-based minimum-spanning-tree. It

enables the modelling of sliding motion and offers attractive computational ad-

vantages for the inference of regularisation (using belief propagation) compared to
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7.5.1: MRF on regular 
grid of control points 

backward transform B 

Warp both volumes and 
repeat for finer level 

7.5.2: Calculate similarity-
term using dense sampling 

7.5.4: Infer regularisation 
using message-passing 

4.4: Enforce diffeomorphic 
and symmetric mapping  

4.3 / 7.5.3: Extract 
minimum-spanning-tree 

7.5.1. 7.5.2 4.3 / 
7.5.3 7.5.4 

Figure 7.5: Overview the MRF-based deformable registration approach deeds.
The flow-chart displays the algorithmic order of individual steps presented in this
section.

e.g. graph cuts (see Sec. 7.5.3). Sec. 7.5.4 presents an efficient computation of

pair-wise potentials for an incremental diffusion regularisation penalty (with sub-

pixel accuracy). The symmetric, diffeomorphic transformation model, described

in Sec. 4.4 is used again, to obtain deformations that are inverse consistent and

free from singularities . An overview of the resulting algorithm is shown in Fig.

7.5. An extension to our framework, which includes the simultaneous estimation

of lung ventilation is described in Sec. 7.7 and [Heinrich et al., 2013a].
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7.5.1 Parameterisation of grid and displacements

A hierarchical subdivision of the image domain into groups of voxels has been

proposed for discrete optimisation by [Felzenszwalb and Huttenlocher, 2006]. The

solution from a coarser scale is used to initialise the energy of nodes at subsequent

levels. However, the label-space is kept the same for all levels, resulting in too

many degrees of freedom (for a 3D registration) at the finest scale.

[Yang et al., 2010] proposed to discard labels with high cost (and thereby re-

ducing the label space) at each level so that the complexity stays constant. We

have adopted this constant-space approach for 3D medical registration in [Hein-

rich et al., 2011a] and achieved high registration accuracy. There are nevertheless

some drawbacks of the method. Selecting only a small number of potential dis-

placements in the coarse level can lead to a local optimum. We found that a simple

SAD criterion is not sufficient, even for single-modal problems, and more complex

metrics (NCC in these experiments) had to be employed. Furthermore, the initial

computation of the data cost is still linearly dependent on n and the largest label

space, which outweighs the performance improvements. The non-uniform reduc-

tion of label sets makes the optimisation problem harder and efficient optimisation

strategies (see Sec. 7.5.4) cannot be employed.

Another approach to reduce the complexity is a parameterisation of the trans-

formation. We avoid using a multi-resolution scheme (which was used for the con-

tinuous optimisation framework and may degrade the quality of the registration)

and adopt a multi-level B-spline scheme [Schnabel et al., 2001], with the difference

that we always employ the highest image resolution. For a given level, the image is

subdivided according to a 0th order B-spline grid into non-overlapping cubic groups
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of voxels (preserving the independence of the unary term for all nodes). The sim-

ilarity cost, which is incurred when translating a cube of voxels (or equivalently

move a control point in the B-spline grid) is aggregated voxel-wise as explained

in the next section (only a subsample of K voxels is used). Subsequently, the

regularisation term is calculated only for each control point.

Several subsequent levels with decreasing grid-spacing g are used, increasing the

number of nodes for each finer level. The maximum number of displacement steps

in the label space lmax is decreased correspondingly. The search space is defined

as L = d · {0,±1, . . . , lmax}3 voxels, where d is a discretisation step. Using this

refinement approach, both high spatial accuracy and low computational complexity

are achieved. By using same numbers for g and lmax for each level, the complexity

is kept constant for all levels, because the number of similarity computations is

∼ K · n/g3 · (2lmax + 1)3 ≈ 8Kn, thus is linear with the number of voxels.

For a finer level, the previous deformation field is obtained using the B-spline

interpolation for voxels between control points and used as the prior deformation.

We found that for estimating lung motion, a first order (linear) B-spline function

provided best results.

7.5.2 Dense stochastic sampling

In the previously proposed drop method [Glocker et al., 2008a] the complexity

(especially the memory requirements of the employed FastPD optimisation) of

the registration had to be reduced by using a sparse sampling of the deformation

space. Instead of densely sampling the deformations in all three dimensions, only

displacements along the three axes are considered. This may lead to a non-optimal
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registration and could severely reduce its accuracy. In [So et al., 2011] it has been

shown that this leads to similar problems, which are common for gradient-based

optimisation (local minima, bias of initialisation). Using a more efficient optimi-

sation strategy (as introduced in Sec. 7.5.3), the search space can be substantially

increased, so that a dense displacement sampling and small discretisation steps can

still be used. While the complexity of the smoothness calculations is reduced using

the parametric grid model, the number of similarity cost evaluations dependents

only on the number of voxels (and is independent of the number of grid nodes).

In the context of gradient-based image registration, the concept of stochastic op-

timisation has been introduced by [Klein et al., 2007]. When using a parametric

model, the similarity term for a certain control point displacement is aggregated

(summed) for all voxels within the influence range of the control point. Similar

to [Robbins and Monro, 1951], we can make a stochastic approximation to this

summation. Only a random subset K of all voxels is used for each control point.

This makes the similarity term computation many times more efficient with very

little sacrifice of registration accuracy.

7.5.3 Minimum-spanning-tree

Following the paradigm of pictorial structures [Felzenszwalb and Huttenlocher,

2005], we propose that medical images can be more efficiently treated using a

relaxed graph structure. Instead of connecting each node to its six immediate

neighbours, only the most relevant edges are considered, leading to a minimum

spanning tree (MST). The construction of the MST is described in detail in Sec. 4.3.

It can sufficiently reflect the underlying anatomical connectivity in a medical image
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root node 
normal node 
leaf node 

Figure 7.6: Example of minimum-spanning-tree (MST) of a 2D coronal slice of
a lung CT based on 8-connectedness (♦ root, © normal, and � leaf nodes). In
practice the tree is constructed in 3D (using 6-connectedness).

(see Fig. 7.6). Belief propagation on a tree (BP-T) enables us to find the global

optimum, without iterations, in only two passes [Felzenszwalb and Huttenlocher,

2005].

At each node p, the cost Cp of the best displacement can be found, given the

displacement fq of its parent q:

Cp(fq) = min
fp

(
D(fp) + αR(fp, fq) +

∑
c

Cc(fp)

)
(7.14)

where c are the children of p. The best displacement can be found by replacing

min with argmin in Eq. 7.14. For any leaf node, Eq. 7.14 can be evaluated directly

(since it has no children). Thereafter, the tree is traversed from its leaves to the

root node. It is worth noting that only costs Cp for the next tree level have to

be stored (only the argmin is needed to select the best displacement). Once the

root node is reached, the best labelling for all nodes can be selected in another
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pass through the tree (from root to leaves). Another advantage of using belief

propagation on a MST is that the exact marginal distributions for each node can

be directly obtained, which can be used to quantify the local uncertainty of the

registration.

Inference of regularisation

Apart from BP-T, a number of other methods can be used to solve the MRF

labelling: e.g. loopy belief propagation (LBP) [Felzenszwalb and Huttenlocher,

2006]; sequential tree-reweighted message passing (TRW-S) [Kolmogorov, 2006],

α-expansion moves graph cuts (α-GC) [Boykov and Kolmogorov, 2004]; and the

fast primal-dual strategy (FastPD) [Komodakis et al., 2008]. Graph cuts can

solve binary energy minimisation problems exactly by finding the minimum cut,

which separates a graph, in which each node is connected to its neighbours and

two additional nodes (source and sink). α-expansion moves are an extension of

graph cuts to solve multi-labelling problems. Even though they are guaranteed

to converge, they do not find the global optimum in most applications. Since

α-GC relies on the pair-wise potential to be a metric, the most commonly used

regularisation term, squared differences of displacements, cannot be used (only

the square root of this, the L2 norm, is a metric). FastPD shows an improved

performance compared to α-GC and relaxes the metric-requirement. However,

this comes at the cost of substantially increased memory requirements (FastPD

requires roughly 1000 bytes memory per degree of freedom, compared to 6 bytes

for α-GC or message passing approaches – e.g. BP-T).
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7.5.4 Incremental diffusion regularisation

Finding the minimum näıvely requires |L|2 calculations for the regularisation cost

per pair of nodes. In [Felzenszwalb and Huttenlocher, 2006] the min-convolution

technique is introduced, which reduces the complexity to |L| by employing a lower

envelope computation. For most commonly used (pair-wise) regularisation terms,

such as diffusion (squared difference of displacements) and total variation (absolute

difference) regularisation, this simplification is possible. Each label fp can be

represented by an upward facing parabola rooted at (fp, D
∗(fp)), where D∗(fp) =

D(fp) +
∑

cCc(fp). The minimisation in Eq. 7.14 is defined by the lower envelope

of these parabolas. In order to find this lower envelope in a single pass over all

labels, the intersection between the parabola of the current label and the right-

most parabola of the lower envelope needs to be calculated (see Fig. 7.7 for a

visualisation). This technique requires the label spaces L of both nodes to be

equivalent. We make an extension to this method, which enables the use of an

incremental regularisation in a multi-level scheme. If a previous deformation field

is known, we first warp the moving image towards the fixed image. Since the

regularisation cost depends only on the difference between two labelings, only the

(subpixel) offset ∆ = xp−xq, (p, q) ∈ N for each dimension between displacements

has to be considered. The lower envelope can be found in a similar way as in

[Felzenszwalb and Huttenlocher, 2006], however the coordinates of the intersections

s of the parabolas now depend on the offset ∆:

s =
(D∗(fq) + (fq + ∆)2))− (D∗(fp) + (fp + ∆)2))

2 · (fq − fp)
(7.15)
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Figure 7.7: Lower envelope computation for efficient belief propagation. Each
label is drawn with a coloured parabola with a minimum height of D∗(fp). Note
that the minima have a uniform offset (here ∆=0.35) from the integer position,
determined by the index of a label. The lower envelope is depicted by a bold, black
line and the sampling positions for Eq. 7.14 are indicated with squares.

7.6 Experiments using discrete optimisation

We use the same experiment as presented in Sec. 7.4, to evaluate the influence of

each of our contributions (presented in the previous sections) within our discrete

optimisation framework and quantify the registration accuracy. However, now

all 10 cases of inhale-exhale CT scans are employed. The first five cases have

been cropped (to include the thoracic cage) and resampled to form an in-plane

dimension of 256 × 256 by [Castillo et al., 2009]. We apply a similar cropping to

the remaining five datasets, but apply no resampling. Figure 7.10 (top left) shows

one scan pair of the dataset, with the inhale image shown in green and the exhale

image overlaid in magenta.

The challenges of the dataset require us to optimise over a large number of

degrees of freedom. Only the highest image resolution is used, but the number

of nodes is reduced by using a uniform grid of control points. Three levels with
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decreasing grid-spacing of g = {8, 6, 4} voxels are employed. This means that the

number of nodes is increased for each subsequent level. The number of labels is

correspondingly decreased, and the maximum search radius is set to lmax = {8, 6, 4}

steps. The search space is defined as L = d · {0,±1, . . . ,±lmax}3 voxels, where

d is a discretisation step, which is defined as {2.0, 1.0, 0.5} voxels for the three

levels. Sub-pixel displacements are achieved by upsampling the moving image

using trilinear interpolation.

For the similarity term, K = 64 random samples are used for each control point

p within the cubic region Rp = {−g/2+1,−g/2+2, . . . , g/2}3. The sampling loca-

tions are uniformly distributed within the local support region Rp of a node. The

same locations are used for all displacements xp for one node, but the sampling is

updated for every new node, to avoid a bias. Given a grid point spacing of 8 voxels,

the standard deterministic similarity cost computation would require 512 calcula-

tions per node, the stochastic approach therefore yields an 8-fold improvement in

computation time. By using the same numbers for g and lmax for each level the

complexity is kept constant for each level, the number of similarity computations

is ∼ K · n/g3 · (2lmax + 1)3 ≈ 8Kn, thus linear with the number of voxels. By

using the lower envelope technique discussed in Sec. 7.5.4 the complexity of the

regularisation term is also linear with n.

7.6.1 Influence of regularisation weighting α

In addition to the implicit regularisation of the parametric B-spline grid, the regu-

larisation terms R(fp, fq) in Eq. 7.13 is of importance. A higher value of α results in

a smoother deformation field. Figure 7.8 shows the resulting registration accuracy
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and the mean squared error (MSE) between the deformed moving and fixed image

with varying strength of the regularisation α for our proposed method. Interest-

ingly, the lowest MSE coincides with the lowest target registration (TRE), which

helps in selecting a suitable value for α. In order to compare different approaches,

they should generally have a similar complexity of the resulting transformations

(measured by std(J) as before).
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Figure 7.8: Influence of α on registration accuracy (averaged for all cases) and
mean squared error (MSE) is shown in the left plot.
The right plot shows the accuracy with increasing number K of stochastic samples.
The TRE does not improve substantially with more than 64 samples per control
point.

7.6.2 Evaluation of the influence of our contributions

The deformable registrations for all ten cases between maximum inhalation and

maximum exhalation are first performed using a symmetric transformation model,

the dense stochastic sampling approach and using deeds. This forms the baseline

for the subsequent experiments. An average registration accuracy of 1.52 mm,

with a smoothness of std(Jac)=0.109 is obtained for the baseline of our proposed

algorithm with a computation time of 2.04 minutes per case. Next, each individual

contribution of this work is tested separately and compared to the baseline, thereby
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Table 7.1: Results for individual contributions assessed using average target reg-
istration error (TRE in mm) for 3000 expert selected landmarks. A significant
(p < 0.05) improvement (lower median) compared to the baseline is indicated by
+, a higher error by - (non-significant results are in brackets). The computation
time (for optimisation and complete registration) per scan pair is given in minutes.
The optimal weighting for the regularisation α and the resulting complexity of the
deformations, evaluated using the standard deviation of the Jacobians, are given.

time (min)
α std(Jac)

TRE p-value
optim. total in mm

initial 8.46
axial 0.12 2.37 40 0.103 2.25 9·10−19 -

random tree 0.62 2.11 40 0.116 2.05 7·10−9 -
asymmetric 0.48 1.95 40 0.147 1.83 9·10−5 -
graph cut 17.8 19.3 5 0.118 1.73 0.152 (-)

non-stochastic 0.61 6.04 40 0.109 1.49 0.588 (+)
baseline 0.62 2.09 40 0.109 1.52

hyper-labels 4.57 7.97 40 0.099 1.43 0.017 +

only one element is changed each time. The optimal regularisation weighting α is

found for each method separately (as shown for the baseline in Fig. 7.8 left). All

deformations are free from singularities. The results are summarised in Table 7.1

and Fig. 7.9.

Axial sampling: First, the dense displacement sampling is replaced by the

sparse approach used in drop [Glocker et al., 2008a] (and similarly in [Lee et al.,

2008] and [Shekhovtsov et al., 2008]). Here only displacements along each of the

three axes are considered. This substantially reduces the size of the label space

from |L| = (2 lmax + 1)3 to |L| = 3 · 2lmax + 1. Following [Glocker et al., 2008a]

we introduce an iterative loop to partially compensate for the reduced degrees of

freedom. The accuracy of the registration experiments significantly deteriorates

(to 2.25 mm) compared to the baseline, confirming our previous assumption that

an axial sampling of the displacements results in many false local minima of the
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Figure 7.9: Cumulative distribution of target registration error in mm of each
method using 3000 manual expert landmarks. A significant improvement, using
the Wilcoxon rank-sum test, can be seen for the baseline approach compared to
asymmetric registration (p = 9 · 10−5), without using an image-adaptive MST
(p = 7 · 10−9) and axial sampling (p = 9 · 10−19). Hyper-labels are discussed in
Sec. 7.7

registration problem.

Random tree: As described in Sec. 7.5.3, we employ an image-derived MST,

which removes edges across locations with large intensity differences, which are

likely to coincide with sliding motion. To evaluate the suitability of this approach,

the alternative of choosing a random spanning tree is included for comparison. Us-

ing this graph significantly reduces the accuracy to 2.05 mm. Figure 7.10 demon-

strates that this is mainly due to the better preservation of sliding motion of our

image-adaptive approach.

Graph Cut: The BP-T optimisation is now replaced by α-expansion graph

cuts [Boykov et al., 2001]. FastPD is not suitable because of its larger memory
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before registration after registration random tree image-based MST

Figure 7.10: Example registration result of case 8. Top row shows the axial plane,
the bottom row the coronal plane. In columns from left to right is displayed:
Overlay of inhale (green) and exhale (magenta) phase before and after registration,
colour-coded deformation field using a random spanning tree and image-adaptive
MST respectively (the same colour coding as in Fig. 7.2 was used). The defor-
mation fields demonstrate: the sliding of the lungs is better preserved using the
MST. The outline of the thoracic cage is shown for visual guidance (dashed white
or black line).

demand. Since our preferred diffusion regularisation term (squared differences)

is not a metric and cannot not be optimised with α-GC, it is substituted with

the L2 norm (Euclidean distance) (see also discussion in Sec. 7.5.3). During the

multi-level registration, the regularisation can only be applied to the update of the

deformation field when using α-GC, and the computation time for the optimisation

is increased by a factor of over 30, demonstrating the improvements achieved by

the use of our MST-optimisation. The accuracy is also slightly decreased to a TRE

of 1.73 mm.

Asymmetric: In general, registration problems should be treated symmet-

rically to remove bias from the choice of fixed and moving image. The direct

comparison of an asymmetric registration to the baseline also shows a significant
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improvement in terms of registration accuracy for the symmetric approach. Due

to the fewer constraints, the smoothness of the obtained deformations are lower

compared to the symmetric approach.

Non-stochastic: As discussed in Sec. 7.5.2 the stochastic sampling approach

for the similarity terms yields a greatly reduced computation time. Figure 7.8

shows that the registration accuracy improves with an increasing number of sam-

ples, but converges at K ≈ 64. The TRE of the deterministic approach is only

slightly lower than the stochastic one and this change is not statistically significant.

7.7 Physiologically motivated image registration

In many applications of medical image registration, finding the transformation pa-

rameters is only an intermediate target. One may be interested in propagating

segmentation labels, estimating contrast uptake in dynamic sequences or generat-

ing a patient-specific (predictive) motion model. Parameters other than geomet-

ric displacements are of interest. We introduce hyper-labels into our registration

framework, for which a fourth (and possible higher) dimension is added to the label

space. This additional parameter may correspond to a non-uniform multiplicative

intensity variation (to estimate bias fields or pharmacokinetic parameters), a seg-

mentation label (c.f. [Mahapatra and Sun, 2012]) or a motion parameter (e.g. the

time phase-shift for a sinusoidal motion in 4D data). In this work, hyper-labels

are used to directly estimate the density change of lung tissue and therefore the

local lung ventilation.

Simultaneous image registration and intensity correction has been proposed to

deal with non-uniform bias fields in combination with brain tissue segmentation
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in [Ashburner and Friston, 2005]. The coding complexity of the residual image

is minimised in [Myronenko and Song, 2010] to estimate a smooth intensity cor-

rection field. Similarly, in [Modersitzki and Wirtz, 2006] a regularised correction

function is employed in a variational optimisation framework to compensate for

inhomogeneous intensity mappings. The disadvantage of such approaches is that

they all rely on continuous optimisation schemes and are readily trapped in lo-

cal minima. In contrast, our proposed hyper-label approach allows us to freely

define the range of possible intensity correction values. It can also make use of

the globally optimal regularisation, avoid local minima and is independent of the

initialisation.

Two different metrics have primarily been used so far to derive ventilation im-

ages from dynamic CT [Yamamoto et al., 2011a]: Hounsfield unit (HU) change

and Jacobian determinant of the deformations. Both methods were studied for

ventilation estimation in [Guerrero et al., 2005], [Castillo et al., 2010], and [Kabus

et al., 2008]. In [Yamamoto et al., 2011b] it was found that only the HU-based

ventilation estimate had a significant correlation with lung functionality of em-

physema patients. In most cases the ventilation estimation was performed in a

post-processing step after deformable registration. In [Yin et al., 2009] and [Gor-

bunova et al., 2012] the intensity change based on the Jacobian determinant is

included in the similarity metric during the registration (so called mass-preserving

registration). For MRF-based optimisation this would introduce an unwanted

dependency of the unary and pair-wise potentials, so we adapt the HU-based ap-

proach. According to [Yamamoto et al., 2011b] the fractional local change of lung
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volume ∆VHU is defined as:

∆VHU(xp) =
It(xp)− Im(xp + up)

Im(xp + up) + 1000
· VI(xp)vox , (7.16)

where It represents the exhale and Im the inhale scan, both measured in Hounsfield

units, and VI(p)
vox := 1 the exhale voxel volume, which is constant across the

image. To include this locally varying density correction function into our regis-

tration framework, we introduce a fourth variable ν to the label space L, so that

fp = {up, vp, wp, νp}. For each node, νp takes quantised values of local volume

change, and the smoothness of ν is ensured in the regularisation term. We sim-

plify Eq. 7.16 by adding 1000 HU (so that air has a value of 0) to both images.

This yields:

νp = ∆VHU(xp) =
It(xp)

Im(xp + up)
− 1

⇒ (1 + νp) · Im(xp + up) = It(xp) (7.17)

The unified energy term to be minimised is then:

E(f) =
∑
p∈P

|It(xp)− (1 + qp) · Im(xp + up)|+

α
∑

(p,q)∈N

||up − uq||2 + β(νp − νq)2

||xp − xq||
(7.18)

where β can be used to weight the influence of density change on the regularisation.

The BP-T optimisation can be applied as before, as well as the lower-envelope com-

putation, except this is now performed over a four-dimensional array of smoothness

terms. The ventilation image VHU is directly given by νp extracted from the given
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labelling f ∗p after optimising Eq. 7.18.

7.7.1 Experiments using hyper-labels

We studied the influence of the proposed hyper-labels for simultaneous registra-

tion and intensity correction using the same experimental setting as in Sec. 7.6.

Five quantised intensity correction labels are added to each geometric label, there-

fore this approach has a 5-fold increased complexity. The average TRE is further

(statistical significantly) reduced to 1.44 mm. Additionally, the obtained intensity

correction field can be directly used to quantify lung ventilation, an example for

which is shown in Fig. 7.11. This has several advantages over calculating the

ventilation as a post-processing step (c.f. [Castillo et al., 2010], [Kabus et al.,

2008]), as it is not directly affected by misalignments, avoids local minima dur-

ing registration and does not need a specific smoothing of the difference images

(c.f. [Yamamoto et al., 2011b]). The results in terms of registration accuracy can

be found in 7.9 and Table 7.1, a small improvement compared to the proposed

baseline approach can be seen. Yet, the main contribution of this approach is its

ability to simultaneously and directly estimate the ventilation of the lungs (and

therefore directly measure their physiological properties) as shown e.g. in Fig.

7.11. To further validate the ventilation estimation, an additional registration was

performed for the POPI-model [Vandemeulebroucke et al., 2007] (equivalent to

case 17 of [Murphy et al., 2011b], which provides manual segmentations) and the

total lung volume change was calculated by integrating all local ventilation values

inside the lungs. A good agreement between the Jacobian method (246.6 ml), our

hyper-label approach (246.1 ml), and manual segmentations (247.2 ml) was found.
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Figure 7.11: Comparison of lung ventilation for case #6 [Castillo et al., 2009]. The
local lung volume change is displayed as colour overlay (transparent for low values)
over greyscale intensities of the inhale scan, without using segmentation masks.
Our approach using simultaneous ventilation estimation with hyper-labels demon-
strates a much smoother map of lung functionality, than the two-step approach
using the Jacobian metric (Jac − 1 as used e.g. in [Yamamoto et al., 2011a]). It
can be seen that in this case the ventilation in the region around the tumour in
the left lower lobe is substantially reduced.

7.8 Summary

This chapter addressed the challenges of optimisation for deformable lung regis-

tration. The Gauss-Newton method, which is an efficient second-order continuous

optimisation technique, has been extended and specifically adapted for the use in

medical image registration. A new rigid-body registration method has been pre-

sented based on an affine parameterisation, which can be solved with the Gauss-

Newton using only the three spatial derivatives of the similarity term, and is
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followed by a least-square estimation of the best rigid-body transformation. A de-

formable registration framework with diffusion regularisation has been presented,

which includes an improved multi-scale approach and has been extended for the

use of multidimensional image representations (e.g. MIND as presented in Chap-

ter 6). This enables multi-modal deformable registration with fast convergence

and improves significantly improves the accuracy of intra-modal lung registration,

because it is more robust to locally varying contrast and more discriminative for

geometric features. Experimental results have shown the advantages of this glob-

ally regularised approach in terms of registration accuracy and computation time

compared to the demons framework, which relies on only local regularisation.

Continuous optimisation has some inherent limitations, especially with respect

to the optimality of the obtained solution, the choice of similarity metrics, and its

dependence on the initialisation. A comprehensive discrete optimisation frame-

work has been developed, which improves on the current state-of-the-art with a

number of technical contributions. A dense spatial sampling (deeds) of the simi-

larity metric is employed to avoid local minima and a bias to initial misalignment.

The high computational complexity of this step is offset by a stochastic sampling

of point-wise similarity terms within a parametric B-spline transformation model.

An image-derived minimum-spanning-tree (see also Sec. 4.3) is used as a relaxed

graph structure, which not only enables to find a global optimum in a single it-

eration of belief propagation, but has also been shown to deal intrinsically well

with the respiratory sliding motion of the lungs. The lower-envelope technique of

[Felzenszwalb and Huttenlocher, 2006] has been extended to enable a multi-scale

refinement with subvoxel accuracy. Finally, a simultaneous ventilation estimation

has been introduced for lung CT, which improves the registration accuracy and
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has immediate clinical value.

The use of our novel approach to obtain diffeomorphic and symmetric transfor-

mations (see Sec. 4.4.1) has been shown to give significantly improved registration

accuracy for both continuous and discrete optimisation, lower complexity of de-

formations and much reduced inverse inconsistency.

The next chapter presents a more thorough evaluation of our registration frame-

work for the deformable intra- and multi-modal registration of a larger number of

clinical thoracic scans and a comparison to other state-of-the-art methods.
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Chapter 8

Experimental evaluation on

clinical scans

The objective of this chapter is to experimentally evaluate the methodological con-

cepts introduced in this thesis. Deformable registration results are presented for

two challenging clinical pulmonary imaging data sets: inhale and exhale phases

of 4D-CT scans of ten cancer patients intended for radiotherapy planning; and

eleven diagnostic 3D MRI and CT chest scan pairs of patients with empyema.

The quantitative evaluation, for both cases, is based on manually selected anatom-

ical landmarks.

The preceding chapters have mainly focused on the methodological develop-

ment and analysis of new concepts for image similarity, modelling of deformations

for lung motion and numerical optimisation. In this chapter, a thorough experi-

mental evaluation is presented in order to demonstrate the suitability of the pro-

posed methods for practical clinical registration tasks and to compare them to
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state-of-the-art techniques. Evaluation on real clinical data is an important step

for the development of new medical image analysis techniques, because simulated

motion scenarios can hardly ever capture the true challenges of a real world prob-

lem. As discussed in Chapter 3, quantitative evaluation is difficult because the

same evaluation metrics are not comparable across different applications. This is

due to different magnitudes of motion, scan resolution and observer variability for

of manual ground truth annotations. Therefore, different registration algorithms

can only be compared when applied to the same dataset and using the same ground

truth annotations.

In the following sections, the comprehensive deformable registration framework,

which combines the various scientific contributions of this thesis is applied to two

clinical applications, quantitatively evaluated, and compared to the state-of-the-art

methods. In Section 8.1 the deformable motion between inhale and exhale phase of

4D-CT scans is estimated. Intensity-based similarity metrics (SAD and SSD) and

the use of MIND representations (see Chapter 6) are compared. Furthermore, the

performances of the presented Gauss-Newton and discrete optimisation framework

(see Chapter 7) are evaluated. Additionally, published results from other state-

of-the-art registration algorithms on the same dataset are included for a direct

comparison. Section 8.2 presents experiments for the deformable multi-modal

registration of CT and MRI chest scans of patients with empyema, a lung disease.

The registration results using statistical similarity metrics (presented in Chapter

5) or MIND representations are shown.
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8.1 Deformable registration of inhale-exhale CT

scans

In the previous chapter, a number of experiments were already presented for res-

piratory motion estimation of lung CT. Its potential uses include the following.

Atlas-based segmentation of the lungs and its lobes [Zhang et al., 2006], where

expert segmentations from a database are propagated to a new subject. Longi-

tudinal CT scans from the same patient can be used to monitor treatment or

disease progression, e.g. for lung nodules [Staring et al., 2009b]. 4DCT scans are

now widely used for motion estimation in radiotherapy planning to increase the

accuracy of radiation dose delivery [Weiss et al., 2007]. Deformable registration of

dynamic CT scans can also enable direct estimation of lung ventilation [Castillo

et al., 2010] to assess patients with breathing disorders or spare well-functioning

lung tissue from radiotherapy.

To evaluate and compare the findings of the previous chapter, we performed

deformable registration on ten cases of the DIR-Lab 4DCT dataset acquired at

inhale and exhale phase [Castillo et al., 2009]1. The patients were treated for

esophageal or lung cancer, and a breathing cycle CT scan of thorax and upper

abdomen was obtained, with slice thickness of 2.5 mm, and an in-plane resolu-

tion ranging from 0.97 to 1.16 mm. Since these 4DCT scans are already in rigid

alignment, no linear registration step was required. Particular challenges for the

deformable registration task are the changing contrast between tissue and air (be-

cause the gas density changes due to compression), discontinuous sliding motion

between lung lobes and the lung/rib cage interface, and large displacements of

1This dataset is freely available at http://www.dir-lab.com
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small features (lung vessels, airways). For each scan 300 anatomical landmarks

have been carefully annotated by thoracic imaging experts, with an intra-observer

error of ≈ 1 mm. For the most challenging case (#8), the average landmark error

before registration is 15 mm. The first five cases have been cropped (to include

the full thoracic cage) and resampled to form an in-plane dimension of 256× 256

by [Castillo et al., 2009] (yielding an in-plane resolution of ≈ 1.1 mm). We apply

a similar cropping to the remaining five datasets, but apply no resampling.

8.1.1 Comparison of optimisation strategies and image rep-

resentations

We compare the use of the continuous Gauss-Newton optimisation (with improved

the multi-resolution strategy as described in Sec. 7.3.2) and the discrete optimi-

sation using an MST (called deeds, see Sec. 7.5.3). Both strategies employ a

symmetric registration strategy as presented in Sec. 4.4. Additionally, we study

the influence of defining the similarity metric based on image intensities or MIND

representations. This leads to four different settings of our deformable registration

framework.

Discrete optimisation using MIND

Using MIND within a discrete optimisation framework enables the use of the more

efficient distance calculation using the Hamming distance, which was described in

Sec. 6.4.3. The spatial search region for MIND is defined using the self-similarity

context 6.4.2 (resulting in 12 values per voxel) for all following experiments (the

Gaussian weighting parameter for patch distances is set to σ = 0.75). Storing all
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Figure 8.1: Registration results for case #8 of CT dataset. The first row shows
the difference images between inhale and exhale scan before registration. A stan-
dard Gauss-Newton (GN) optimisation without symmetry constraint and SSD as
similarity metric was used for the results in the second row. In particular the
axial plane reveals many misaligned vessels and folding of the singularities in the
deformations. The third and fourth rows show our approach using MIND with
symmetric GN and deeds optimisation, respectively. Both methods demonstrate
an improved alignment of inner and outer lung structure. The sliding motion in
the sagittal plane is much better captured when using deeds compared to Gauss-
Newton optimisation.
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12 quantised descriptor values in a single 64-bit integer and calculating their L1

norm using the Hamming weight is faster than calculating the SAD of two (single)

intensity values in float precision.
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Figure 8.2: Comparison of target registration error (TRE) in mm (per case, initial
TRE is 8.5 mm) for lung CT registration between [Schmidt-Richberg et al., 2012a],
which achieve an accuracy of 2.13 mm, and the four different settings of our frame-
work. The average TRE is improved from 1.46 to 1.29 mm when using MIND in
the continuous optimisation framework. Our discrete optimisation method deeds
reduces the TRE to 1.26 mm for SAD and to 1.12 mm using MIND. The residual
error is lower than the image resolution and very close to the human observer
error. deeds is also substantially faster (about 10×) than all other methods.

State-of-the-art methods

To put the performance of our presented registration framework into context,

a comparison to state-of-the-art algorithms is performed on the same dataset.

[Schmidt-Richberg et al., 2012a] presented a variational lung registration method

with direction-dependent regularisation to cope with the effects of discontinuous

sliding motion (see Sec. 4.1.3), which has been evaluated by the authors on the

same 4DCT dataset. Figure 8.2 compares the average target registration error

(TRE) in mm (for each of the ten cases) between [Schmidt-Richberg et al., 2012a]
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Figure 8.3: Registration result for case #6 of CT dataset. The coronal plane is
shown along with vectors indicating the registration error (errors larger than the
voxel size are marked in red). The magnitude of the deformation fields is shown in
the second row. The sliding motion of the lungs is better preserved using deeds,
while the deformations estimated by gsyn are too smooth close to the thoracic
cage (segmentation shown for visual guidance with dashed white line).

and the four different settings of our framework. The same parameter settings

as described in the previous chapter were used. The best results are obtained

using the discrete optimisation framework with MIND representations, which has

a very low computation time of only 1.2 minutes for a full registration. The most

pronounced differences can be seen for case #8, which is the most challenging with

a large amount of sliding motion, where the discrete framework outperforms the

continuous optimisation. In general using MIND always improves the registration

accuracy compared to using the directly image intensities.

We performed additional registration experiments using the gsyn and drop
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methods. gsyn2 was presented by [Avants et al., 2008] and is a symmetric, diffeo-

morphic, demons-like algorithm, and was chosen, because it performed best in a

recent comparison study of pulmonary CT registration algorithms [Murphy et al.,

2011b]. The following parameters were carefully chosen to obtain the best registra-

tion accuracy with similarly complex transformations as the proposed approach: 4

resolution levels; similarity metric: normalised cross correlation (NCC) (radius of

2 voxels); Gaussian smoothing of σ=3 and 1 voxels for gradient and deformation

fields, respectively. In contrast to the results presented in [Murphy et al., 2011b]

the full volumetric scans were considered and no lung masks were used to remove

the outer lung information (and thereby invalidate the registration of locations

outside of the mask). In a second experiment, we generate lung segmentations for

all cases using thresholding and simple morphological operations and set the inten-

sities of the outside voxels to the maximum of the ones inside the masks. We again

optimised the smoothing parameters of gsyn for best registration accuracy, now

yielding a more aggressive setting of σ=3.5 and 0.375 voxels respectively. drop3

developed by [Glocker et al., 2008a], which is a discrete optimisation method using

a B-spline deformation grid. For drop the memory requirements (using 3.5 GB of

RAM) limit us to use a sparse sampling of L = 3 × {0,±1, . . . ,±10} (|L| = 61),

with a maximum range of 24 mm. As similarity metric, SAD is used. The regular-

isation parameter λ = 5 was empirically chosen (when intensities are in the range

[0, 255]). These settings are consistent with [Glocker et al., 2011], and no lung

masks where used for drop. For both methods, we used four resolution levels.

Our discrete optimisation framework deeds uses the parameters determined in

2gsyn is publicly available in the ANTS package http://www.picsl.upenn.edu/ANTS/
3drop is available for download at www.mrf-registration.net.
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Table 8.1: Results for deformable registration of inhale and exhale CT. Average
target registration error (TRE) for all 3000 expert selected landmarks (for all
10 cases) is given in mm. The complexity of the deformation fields (std(J)),
(maximum) degrees of freedom (d.o.f.), average computation time, and the p-
values of a Wilcoxon rank sum test compared to deeds with MIND are given
where available.

std(J) d.o.f. time
TRE

p-value
(in mm)

initial 8.46±6.6 0
drop 15.4×10−2 3.7×106 8 min 2.85±4.0 7.5×10−37

gsyn smooth 12.9×10−2 2.2×107 29 min 2.43±4.1 2.2×10−22

gsyn masked 20.9×10−2 2.2×107 21 min 1.57±2.1 4.2×10−10

FED* — — 15 min 1.55±1.1 —
GN+MIND 17.7×10−2 2.2×107 13 min 1.29±1.7 1.2×10−4

deeds+MIND 15.6×10−2 9.4×107 1.2 min 1.12±1.3
*FED (fast explicit diffusion) [Schmidt-Richberg, 2012b] is an improved version

of the direction-dependent regularisation method with better convergence.

the previous chapter: a maximum search range of lmax = 16 voxels (using a dense

stochastic sampling with K = 64, and a regularisation weighting of α = 50 for

SAD and α = 0.1 for MIND. In contrast, to the previous chapter and the results

reported in [Heinrich et al., 2013a], a fourth multi-scale level with a grid spacing

of 2 voxels is added, which further improved the accuracy.

Results

An average TRE of 1.12 mm was achieved using deeds+MIND, which is a signifi-

cant improvement over drop (TRE=2.85 mm), gsyn (TRE=2.43 mm) and gsyn

with lung masks (TRE=1.56 mm). Table 8.1 summarises the results and addition-

ally presents the complexity of deformations and computation times. deeds+MIND

achieves the a good deformation quality, a significantly higher registration accuracy

and is several times faster than all other methods. To facilitate further comparisons
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to the current state-of-the-art in lung image registration, we applied our approach

deeds+MIND to the EMPIRE10 challenge database Murphy et al. [2011b]. The

exact settings of these experiments can be found in [Heinrich et al., 2013d]. Our

algorithm, which is one of the very few that do not require a lung segmentation,

currently ranks seventh out of 33, with the second best average TRE of 0.627 mm

and the second lowest average fissure overlap error of 0.08%.

8.2 Deformable multi-modal registration of CT

and MRI scans

Deformable multi-modal registration is important for a range of clinical applica-

tions. In image-guided radiotherapy it can be used to automatically propagate

a manual segmentation of a tumour in a high-quality pre-treatment scan to a

lower quality intra-operative scan. A second application is the use of deformable

multi-modal registration to improve diagnostics tasks. Registered pairs of MRI

and CT scans provide a more comprehensive view of the pathology. Additionally

MRI scans can be aligned to a CT volume with a simultaneously acquired PET

scan. Deformable multi-modal registration poses a more challenging task, both

for registration algorithms and for validation. Finding corresponding anatomi-

cal landmarks is more difficult for the human observer, and usually much fewer

locations can be found for manual annotation.
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8.2.1 Chest CT and MRI of patients with empyema

We applied our proposed technique to a clinical dataset of eleven patients, which

were scanned with both CT and MRI. All patients suffered from empyema, a

lung disease characterised by an infection of the pleura and excess fluid within

the pleural space. The extra fluid may progress into an abscess and additionally,

cause the adjacent lung to collapse and/or consolidate. Both modalities are useful

for detecting this pathology, but because the patients are scanned in two different

sessions and at different levels of breath-hold, there are non-linear deformations,

which makes it difficult for the clinician to relate the scans. The quality of the

MRI scans is comparatively poor, due to motion artefacts, bias fields and a slice

thickness of around 8 mm.

We asked a clinical expert to select manual landmarks for all eleven cases. 12

corresponding landmarks were selected in all image pairs, containing both normal

anatomical locations and disease-specific places. It must be noted that some of

the landmarks are very challenging to locate, both due to low scan quality and

changes of the pathology in the diseased areas between scans. The intra-observer

error has been estimated to be 5.8 mm within the MRI and 3.0 mm within a CT

scan. Prior to registration, the volumes were resampled to an isotropic voxel-size

of 2 mm and manually cropped to contain roughly the same field of view (and

identical image dimensions).

Rigid-body registration

First, a rigid-body registration is performed for all scan pairs using the proposed

Gauss-Newton framework (see Sec. 7.3.4) with MIND. The resulting landmark er-
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ror is on average 9.3 mm, which is close to the error (7.1 mm) calculated for the

optimal rigid-body transformation using a least square fit to the manually anno-

tated landmark locations (this residual error reflects both non-rigid deformations

and the landmark selection error). The rigid-body transformations obtained using

MIND are used as initialisation of the subsequent deformable registration for all

experiments, except the discrete optimisation.

Deformable multi-modal registration

Two statistical similarity metrics: normalised mutual information (NMI) and tex-

tural MI (TMI) and MIND are studied for this deformable multi-model registra-

tion experiment. The same settings (4 resolution levels, 10 iterations per level) are

used for the Gauss-Newton optimisation framework (see Sec. 4.2). According to

the findings from Chapter 5 we use 256 and 512 histogram bins for NMI and TMI,

respectively. For TMI, using multiple trees showed a substantial improvement

in our tests (we chose F = 4 throughout the experiments). The regularisation

weighting was empirically chosen for best registration accuracy to α = 0.1 for

NMI and TMI, and α = 0.5 for MIND. The Gaussian smoothing parameter for

MIND was set to σ = 1.0. Additionally, the use of MIND in deeds was evaluated.

The same settings as above were applied. An advantage when using the discrete

framework is that no initial rigid registration is required, because of its globally

optimal energy minimisation.

Figure 8.4 shows the resulting TRE in mm for all 11 cases for the four different

experiments (the initial registration error is 13.5 mm). The obtained average TRE

is 8.9 mm for NMI, 8.3mm for TMI, 6.5 mm for MIND using Gauss-Newton, and 6.5

mm using discrete optimisation. deeds with MIND is the most robust setting, with
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Figure 8.4: Deformable multi-modal registration of 11 cases of CT/MRI scans
of empyema patients, evaluated with 12 expert landmarks per case. MIND with
discrete optimisation achieves a statistically significant (p <0.0336) better result
than normalised mutual information (NMI). The comparatively high residual error
is due to both low scan quality, (slice resolution is 8 mm) and the challenging
landmark selection for the clinical expert (intraobserver error is 5.8 mm)

no single failure case (a failure being an increased error after registration). The

average computation times per registration are 4.0 min for NMI, 24.4 min for TMI,

3.7 min for MIND and 2.1 min for deeds+MIND. Even though the error for MIND

is much higher than for the previous CT-to-CT registration, it is lower than the

spatial resolution of the MRI scans and close to the intra-observer error. A case-

by-case comparison of registration errors is shown in Fig. 8.4. Using a Wilcoxon

rank test, a statistically significant improvement of deeds+MIND compared to

NMI (p <0.0336) was found. The improvements from using TMI compared to NMI

are almost negligible when considering the much higher complexity. The Jacobian

values are all positive, thus no transformations contained any singularities. An

example registration outcome for MIND and NMI is shown in Figure 8.5.
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(a) CT scan of empyema patient with 4 relevant contour plots to guide the registration
results.

(b) MRI scan with identical CT contour plots before registration.

(c) Identical MRI scan with CT contour plots deformed according to deformable registra-
tion using NMI. The white arrows depict inaccurate registration close to one vertebrae,
the inner lung boundary and gas pocket in empyema.

(d) Identical MRI scan with CT contour plots deformed according to deformable registra-
tion using MIND and Gauss-Newton optimisation. A visually better alignment could be
achieved.

Figure 8.5: Deformable CT/MRI registration results for Case 11 of empyema
dataset. Left: axial, middle: sagittal and right: coronal plane. The third row
shows the registration outcome using NMI. A better alignment is obtained when
using MIND (forth row), here with Gauss-Newton optimisation.
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8.3 Summary

In this chapter a thorough experimental validation has been presented for the

methodologies developed in this thesis. The multidimensional structural image

representation MIND has been shown to outperform using intensities directly in

the context of single-modal respiratory CT registration. This confirms the findings

of Chapter 6, where MIND performed best for landmark localisation, because

of its ability to discriminate salient features and its invariance to locally (and

globally) different intensity mappings across scans (which also occur for intra-

modal lung CT registration due to lung compression). For deformable multi-

modal registration textural MI performs slightly better than normalised MI, yet

at the expense of much increased computation time. MIND achieves a further

improvement on this and can be easily used with discrete optimisation, because of

its point-wise representation.

The use of a minimum-spanning-tree (MST) and a dense stochastic sampling in

a discrete optimisation framework offers a number of advantages over the contin-

uous Gauss-Newton optimisation, in particular: more flexibility on the choice of a

similarity metric, an intuitively definable search space (both its range and quanti-

sation), and the avoidance of local minima and bias to initial misalignments, which

removes the need for multi-resolution schemes and in the presented experiments

the need for a rigid pre-registration step. Compared to other state-of-the-art reg-

istration frameworks [Avants et al., 2008; Glocker et al., 2008a; Schmidt-Richberg

et al., 2012a] it offers greatly reduced computational complexity (up to 20× faster

registration) while being more accurate. Especially the combination of MIND and

deeds offers a very good compromise between registration quality and computa-
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tional complexity and achieves a lower registration error than the scan resolution

close to intra-observer error for lung CT registration (without the need for manual

lung segmentations).

The next chapter concludes this thesis and gives an outlook to further research

directives and one additional application of our presented approaches: the de-

formable registration of intra-operative ultrasound to pre-treatment MRI brain

scans with a potential application to image-guided neurosurgery.
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Chapter 9

Conclusion and outlook

This thesis has presented a comprehensive framework for deformable registration of

pulmonary lung images. This framework combines a number of novel mathematical

formulations and computational solutions to deformable multi-modal registration,

registration-based ventilation estimation and improves on state-of-the-art single-

modal registration methods. The main contributions of this thesis are summarised

in the following two sections: multi-modal similarity through spatial context (Sec.

9.1) and a simplified graph-based optimisation for registration (Sec. 9.2). In the

following a number of promising future research directions are identified, which

are building up on the work in this thesis. First, the methods developed here

can be generalised for the use of other modalities and anatomical regions. In Sec.

9.3.1 a prototype for ultrasound to MR registration with application to image-

guided neurosurgery will be presented with preliminary results. Second, the use

of a graph-based optimisation framework offers the potential of representing the

images in a more adaptive and efficient way. In Sec. 9.3.2, we propose the use of a

parcellation of the image space into a number of overlapping layers of non-uniform
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supervoxels, which adhere to image boundaries. We show some initial results for

the use of supervoxels to estimate piece-wise smooth motion. Furthermore, the

concept would also be very applicable for e.g. registration-based segmentation.

Third, deformable registration is always bound to estimate displacements with a

limited certainty. The presented discrete optimisation framework can be directly

used to obtain an estimate of the probabilities of a dense space of potential dis-

placements. These can also be used to reduce the adverse effect of the quantisation

of deformations and improve the propagation of segmentation labels as shown in

Sec. 9.3.3.

9.1 Spatial context for robust similarity

Defining similarity for deformable registration of scans from different modalities

is a very challenging yet unsolved problem with many potential applications in

medical image analysis, foremost computer-assisted diagnosis and image-guided

interventions. Chapter 5 introduced textural mutual information (TMI), a new

concept for the incorporation of spatial context for statistical similarity metrics.

While TMI has been shown to be robust against certain intensity distortions, it is

computational demanding, has several free parameters to choose and the optimi-

sation of mutual information is challenging and has to be adapted specifically for

a given registration framework.

To overcome these problems, a new multi-dimensional image representation the

modality independent neighbourhood descriptor (MIND) was introduced in Chapter

6. MIND not only provides increased robustness against locally varying contrast,

noise and is very discriminative for important image features, it also enables an
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efficient solution to the estimation of dense deformation fields across scans for both

continuous, gradient-based and discrete, graph-based optimisation.

Chapter 8 demonstrated the suitability of this methodological developments

for clinical relevant challenging deformable registration problems, and a significant

improvement in terms of accuracy compared to conventional similarity metrics for

both multi-modal registration (of CT and MRI scans) and single-modal motion

estimation. Being able to obtain dense similarity maps across scans of different

modalities also offers a potential to improve the multi-modal fusion of the aligned

images. In [Heinrich et al., 2012c], some initial experiments were presented that

use a high-resolution CT scan as prior to guide the superresolution reconstruction

of a lower resolution MRI scan, which is being aligned simultaneously.

Some of the remaining challenges of the use of MIND is that the scale for the

self-similarity distances has to be chosen globally for each image, yet anatomical

structures are varying in size. Automatically detecting the best scale for each

location or employing multiple scales at once might therefore be beneficial. For

the use in linear or feature-based registration the dependency of MIND on the

local orientation could be a limitation and calculating descriptors for many differ-

ent (three-dimensional) rotation is computationally demanding. Thus an efficient

interpolation scheme for MIND representations would be useful in practice.

9.2 Efficient graph-based optimisation

Mathematical optimisation for deformable registration of medical volumetric scans

is a very challenging problem mainly due to the immense computational complex-

ity. Using ”off the shelf” optimisation methods can severely restrict the employed
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model of image similarity and geometric transformations and also lead to sub-

optimal solutions. Graph-based optimisation techniques, which use a discretised

space of permissible deformations, offer much more flexibility in the choice of the

registration cost function and provide certain guarantees on the optimality of the

solution. However, only few medical registration methods make full use of these

possibilities.

In Chapter 7.5 a number of improvements over the state-of-the-art of discrete

optimisation for deformable registration were introduced. Using an image-adaptive

minimum-spanning-tree (MST) as relaxed graph structure was shown to greatly

reduce the computational complexity. This enables the minimisation of larger

spaces of possible geometric displacements and the estimation of hyper-parameters

such as regional lung ventilation. Furthermore, it also provides for a much simpler

modelling of the complex respiratory motion, which contains both smooth and dis-

continuous deformations, than previous approaches. This has been demonstrated

in Secs. 7.6 and 8.1 for the registration of inhale-exhale CT scan pairs. The

registration accuracy has been shown to be significantly improved over state-of-

the-art methods with a reduction of computation time by more than one order of

magnitude. The MST representation may have limitations for some particular reg-

istration applications (where the locally reduced regularisation would have adverse

effects), however, the other concepts presented in Sec. 7.5 are generally applica-

ble to other MRF inference methods, such as sequential tree-reweighted message

passing (TRW-S) [Kolmogorov, 2006] and graph cut optimisation [Kolmogorov

and Rother, 2007; Komodakis et al., 2008].

The flexibility of graph-based optimisation can remove some of the restrictions

for the underlying registration model, and e.g. enable the use of sparse, non-
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uniform image representations and spatially varying interactions between nodes.

It also offers the potential of estimating the full marginal distribution over a dense

space of potential deformations, which opens new directions for methodological

developments and applications of medical image analysis as outlined in Sec. 9.3.3.

9.3 Outlook

Three key research directions have been identified, which could follow-up on the

methodological contributions of this thesis and will be described below:

• The generalisation of the concepts of MIND and deeds to other imaging

modalities and body organs, is proposed in Sec. 9.3.1 with initial experiments

for the registration of intra-operative ultrasound to MRI scans of the brain.

• A further development of the discrete optimisation framework to use sparse

supervoxel representations of images, which are edge- and detail-preserving.

Initial results for the estimation of piece-wise smooth motion (with sliding

boundaries) will be presented in Sec. 9.3.2 and [Heinrich et al., 2013b].

• Using the marginal distributions of the dense displacements space of deeds

to obtain local uncertainty estimates. This can be potentially used to im-

prove registration accuracy and to perform segmentation propagation, which

will be proposed in Sec. 9.3.3.

9.3.1 US-MRI registration for neurosurgery

Registration-based image-guidance is very useful in neurosurgery, where the brain

tissue exhibits non-linear deformations after opening the skull, which must be com-
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pensated to relate the intra-operative ultrasound to the pre-operative MRI scan

(which has higher scan quality and can give a better guidance). Image intensity

distortions across modalities and time constraints make this a very challenging

registration problem. We propose to apply quantised MIND or SSC image rep-

resentations (as described in Sec. 6.4) together with the deeds optimisation of

Sec. 7.5 to a set of 13 pairs of pre-operative MRI and pre-resection 3D ultrasound

(US) images of the Brain Images of Tumours for Evaluation (BITE) database

[Mercier et al., 2012]. [Rivaz and Collins, 2012] applied a multi-feature α mutual

information (α-MI) metric as presented by [Staring et al., 2009a] with a stochastic

gradient descent optimisation [Klein et al., 2007], and extend this framework using

a self-similarity weighting within the feature space, calling the new metric SeSaMI.

They achieve good registration results with an average TRE of 2.34 mm (see Fig.

9.2). However, this comes at the expense of very high computation times of 120

min (average per case).

Preliminary registration experiments have been carried out with our registra-

tion framework, a visual example of the registration outcome is shown in Fig. 9.1.

All resulting transformations are free from singularities with an average complex-

ity measured as standard deviation of the Jacobian of 0.08. The average target

registration error (TRE) before registration in our experiments is 6.82 mm. SSC

achieves the best overall registration accuracy of 2.12 mm (see Fig. 9.2) and the

lowest computation time (20 sec). The TRE is lower than using MIND with six

neighbours (2.45 mm), and mutual information (3.07 mm).

These experiments [Heinrich et al., 2013c] show promising results for generalisa-

tion the presented methods to different multi-modal registration applications. For

the use in image-guided interventions, which could involve the tracking of surgical
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Figure 9.1: Deformable MRI-US registration results of BITE dataset using SSC
and deeds. The intra-operative ultrasound scan is shown as false colour overlay
over the grayscale MRI intensities. An clearly improved alignment of ventricles
and solid tumour is visible.

instruments in intra-operative ultrasound, further improvements in computation

time would be necessary. A potential way of achieving real-time performance

would be a parallel implementation (on graphical processing units) of the regis-

tration framework. This is straightforward for the similarity term computations.

For the belief propagation, the messages of all nodes having the same depth in the

MST can be computed in parallel, which could decrease the computation time by

two orders of magnitude. Using sparse image representation will be discussed in

the next section as another way of improving computational efficiency.
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Figure 9.2: Deformable registration of 13 cases of MRI-US brain scans, eval-
uated with ≈27 expert landmarks per case. The registration error of SSC
(2.12±1.29 mm) is lower than that of MIND (2.45±1.44 mm) and mutual in-
formation (3.07±1.74 mm) within the same discrete optimisation framework. The
computation time per registration using SSC and the Hamming distance (≈20
sec per 3D pair) is more than twice as fast compared to MI and SSC without
quantisation.

9.3.2 Detail-preserving sparse image representations

Estimating a dense deformational field between three-dimensional images of high-

resolution requires the optimisation of a function with a large number of degrees of

freedom. Commonly used approaches, such as multi-resolution (discussed in Sec.

7.3.2) or B-spline transformation models (see Sec. 7.5.1) reduce the computational

complexity, but also reduce the registration accuracy, due to the loss of detail when

using homogeneous translation-invariant smoothing. Sparse image representations

can potentially offer a better trade-off between efficiency and accuracy. Graph-

based models intrinsically offer a representation for sparsely distributed control

points. The control points could be easily selected in an adaptive manner using e.g.

salient point detectors (see Sec. 3.3) or image-adaptive clusterings. Supervoxels

have been shown to yield excellent low-parametric image representations with little
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loss of image details and good recall of image boundaries (see Fig. 9.3 as an

example). We propose to use the SLIC supervoxel algorithm [Achanta et al., 2012],

to to create approximately equally-sized supervoxels , which are non-uniformly

shaped and adaptive to intensity boundaries.

axial slice of chest CT superpixel clustering mean intensity of clusters

Figure 9.3: Example of sparse image representation using only 250 superpixels is
able to preserve image edges and most small-scale structures.

In a graph-based registration framework not only the parameterisation of the

transformation model can be represented more efficiently using sparse control

points, but also the discretised search space can be reduced. A disadvantage

of supervoxels is the inconsistent clustering in homogeneous or gradually chang-

ing image regions. In the context of motion estimation [Zitnick and Kang, 2007]

this is a major limitation, because it is important which correspondence within a

homogeneous region is selected. We propose to use multiple layers of supervoxels

to obtain a piecewise smooth motion model for accurate deformable registration.

SLIC is run several times with slightly different initialisations. Image regions with

sufficient structural content (e.g. edges) are not affected by this disturbance and

the clustering is therefore very similar for all layers. Homogeneous or gradually

changing areas do not provide sufficient guidance for the supervoxel, resulting in

arbitrarily different clusters for each layer. This means that when a separate op-
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timisation is performed for each layer of supervoxels. The combination of these

transformation is a smooth average in homogeneous regions, but adheres to dis-

continuities at image boundaries, which enables a non-local weighting of spatial

image content, similar to approaches based on the joint bilateral filter [Kopf et al.,

2007] as discussed in Sec. 4.1.4.

Experiments for using supervoxel representations for CT lung motion estima-

tion as published in [Heinrich et al., 2013b] are presented below. The more chal-

lenging datasets #6-#10 of [Castillo et al., 2009] were used (see Sec. 8.1 for a

description of the data). Four different settings of our proposed supervoxel reg-

istration were tested. First, our method was applied using only a single layer of

supervoxels, similar to previous work on supervoxel matching [Lei and Yang, 2009;

Zitnick and Kang, 2007], which yielded unsatisfactory results, as only the outer

lung boundaries are aligned. Second, multiple layers were used, but almost no

image-adaptivity of the supervoxels was used resulting in a uniform clustering and

a target registration error (TRE) of 4.72±3.5 mm. Figure 9.4 demonstrates the

main problem of this approach, which is similar to a traditional coarse-scale image

representation. The motion field is smooth across the interface at which discon-

tinuous sliding motion occurs (see black arrows). Additionally small details (lung

vessels) are lost due to uniform smoothing, resulting in an inaccurate alignment of

them (see white circle). Third, multiple layers of image-adaptive supervoxels and

an image similarity, based on the absolute difference of the mean cluster intensity,

was used. This approach achieved a good alignment and a TRE of 2.87±1.9 mm.

Finally, the shape of the supervoxels (stored in a binary vector) was introduced as

additional similarity metric. Adding this structural image information, which is

closely related to the concept of textural MI (see Sec. 5.3), has clear advantages
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Figure 9.4: Example of deformable registration of an inhale-exhale CT scan pair.
Overlay before and after registration is shown in green (inhale phase) and magenta
(exhale phase). Uniform clustering approximates the traditional coarse-scale rep-
resentation. Our approach using layers of supervoxels outperforms this for the
matching of small vessels (see white circle) and the preservation of sliding motion
(see black arrows).

to match fine image details and further reduces the registration error to 1.94±1.3

mm. Figure 9.4 demonstrates the accurate alignment of our approach and the

well-preserved sliding motion at the surface of the thoracic cage.

The same concept can also be used for multi-modal registration, when only the

shape-based similarity metric is used. While being well-suited for motion estima-

tion, which exhibits discontinuities (such as the sliding motion of the lungs) the use

of supervoxels could have even more potential benefits for the use in registration-

based propagation, which is discussed in a different context in the next section.
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9.3.3 Marginal distributions for segmentation propagation

Most registration algorithms only estimate the most likely transformation between

images. This is sufficient for applications where motion should be estimated in or-

der to align scans or to detect motion abnormalities (e.g. in respiratory or cardiac

motion). In other applications of deformable registration, the dense deforma-

tion field is only used as a means to propagate a manual segmentation label or

estimate local volume shrinkage/expansion. Employing only the most probable

transformation to propagate segmentations is unfavourable because it ignores the

locally different probabilities for each individual label propagation. In [Glocker

et al., 2008b] the local covariance of the uncertainty of a graph-cut solution of

the registration is used to refine the displacement label space in subsequent itera-

tions, and improve the accuracy of the alignment (an approach to obtain the full

marginal distribution for graph-cut optimisation has been presented by [Kohli and

Torr, 2008]). [Simpson et al., 2011] used a covariance estimate of uncertainty of a

continuous-optimisation Bayesian registration framework to improve the propaga-

tion of segmentation labels.

The graph-based registration method presented in Sec. 7.5, which uses a

minimum-spanning-tree and belief propagation for inference, can be directly used

(with almost no additional computational cost) to estimate the exact min-marginal

energies of all possible displacements. The probability p(xi,ui) for each voxel i ∈ Ω

in the image and each displacement ui ∈ L can be obtained from the min-marginal

energies E(x,u) as described in [Kohli and Torr, 2008]:

p(xi,ui) = exp

(
− β · E(xi,ui)

std(E(xj,uj))

)
uj ∈ L and xj ∈ Ω (9.1)
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Figure 9.5: Left: Coronal slice of target MRI scan. Centre: Propagated segmen-
tation labels from atlas scan using proposed method. Right: Local certainty of
label propagation (high uncertainty indicated by dark colours). At interfaces be-
tween segmentations the uncertainty is highest. Here, the weights could be used
to estimate partial tissue volume.

Dividing each marginal energy by the standard deviation over all marginals com-

pensates for a global offset/scaling of E. β varies the spread of the probability

estimates, low values result in smoother distributions and high values in more nar-

row peaks. Finding the optimal segmentation label is now possible by summing

the probabilities for each possible segmentation label (from the atlas) and choosing

the arg max of all labels.

Initial results for the inter-patient propagation of manually segmented brain

structures using MRI scans are presented below. The LBPA40 dataset [Shattuck

et al., 2008] was used here, which includes MRI scans of 40 normal adults and

manual segmentations of 56 anatomical structures. Figure 9.5 shows an example

of the proposed segmentation propagation, together with the obtained uncertainty

map. Higher uncertainty is located at the boundaries of segmentation labels, which

is partly due to the partial volume effect. Segmentation accuracy is measured with

the DICE coefficient D (see Sec. 3.2.3). Figure 9.6 (left) shows the influence of

the β parameter of Eq. 9.1. It can be seen that too small values of β cause an

over-smoothing of the probability distributions and larger values are similar to the
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are obtained when using the full marginal distribution instead of selecting the
argmin. Using three atlases further improves the overlap by 4%.

classical approach. Using the proposed probabilistic label weighting scheme the

segmentation accuracy could be consistently improved by 2% to 72.0% (see Fig.

9.6 right), compared to the standard argmin approach (significant for 53/56 labels

(p < 0.05)). Further improvements can be achieved when using multiple atlases

for each label propagation (D= 75.9%, for three atlases) or by using a different

optimisation strategy, e.g. TRW-S [Kolmogorov, 2006].

9.4 Summary

This thesis has addressed some of the major challenges involved with deformable

image registration in the context of lung imaging. A novel multi-dimensional image

representation to define image similarity across scans of different modalities or with

locally changing contrast has been developed and thoroughly tested. Methodologi-
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cal and computational advances have been made to the optimisation of deformable

registration, which also enables an effective way of dealing with complex lung mo-

tion, which includes sliding motion and large displacements of small anatomical

structures.

For future work, it would be important to evaluate and validate the clinical im-

pact of this comprehensive registration framework for pulmonary image analysis.

The development of a prototype of an interactive software tool for the assessment

of multi-modal scans has been started for this purpose. A side-by-side view of

different scans gives clinicians the ability to view and perform different assess-

ment tasks (measuring pathology or propagating manual segmentations) in both

modalities simultaneously. The dense deformable motion estimation, which can

be performed using the presented framework with little computation time, could

then be used to establish anatomical correspondences and automatically select the

correct slice and location for a point of interest for the other scan.

Another opportunity to validate the clinical relevance of this work will be pos-

sible within an ongoing clinical trial of our collaborators in the Churchill Hospital

in Oxford. A very new imaging modality using hyper-polarised Xenon gas MRI

(Xe-MRI) scans has been introduced, which can directly measure the spatial dis-

tribution of lung ventilation. This could become an important diagnostic modality

for chronic obstructive pulmonary disease (COPD) or asthma patients. To assess

the correlation between the measurements of regional lung ventilation using Xe-

MRI and anatomical CT scans, multi-modal deformable registration is necessary.

Additionally, the CT-based ventilation estimation, which was developed in Sec.

7.7 could be clinically validated with the help of MRI-based ventilation maps.
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Heinrich, M. P., Jenkinson, M., Papiez, B.W., Brady, S. M. and Schnabel, J. A.
[2013c], Towards Real-time Multimodal Fusion for Image-Guided Interventions
using Self-Similarities, In: Medical Image Computing and Computer-Assisted
Intervention MICCAI’ 2013, Lecture Notes in Computer Science, Springer Berlin
/ Heidelberg.

A.1 Co-authored publications

Murphy, K., van Ginneken, B., Reinhardt, J., Kabus, S., Ding, K., Pluim, J., Hein-
rich, M. P., Jenkinson, M., Schnabel, J. A. and others [2011]., Evaluation of regis-
tration methods on thoracic CT: The EMPIRE10 challenge, IEEE Transactions
on Medical Imaging 30(11), 1901–1920.

Bhushan, M., Schnabel, J., Risser, L., Heinrich, M., Brady, J. and Jenkinson,
M. [2011], Motion correction and parameter estimation in dceMRI sequences:
application to colorectal cancer, in G. Fichtinger, A. Martel and T. Peters, eds,
Medical Image Computing and Computer-Assisted Intervention MICCAI 2011,
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Risser, L., Heinrich, M., Rueckert, D. and Schnabel, J. [2011b], Multi-modal diffeo-
morphic registration using mutual information: Application to the registration
of CT and MR pulmonary images, in Proc. of the Fourth international workshop
on pulmonary image analysis, MICCAI.

Risser, L., Heinrich, M., Matin, T. and Schnabel, J. [2012], Piecewise-diffeomorphic
registration of 3D CT/MR pulmonary images with sliding conditions, in IEEE
International Symposium on Biomedical Imaging, ISBI 2012 , pp. 1–4.

A.2 Awards and prizes

MICCAI Young Scientist Award (best paper/presentation) 2011 for: ’Non-
local shape descriptor: A new similarity metric for deformable multi-modal
registration’

Philips Healthcare Prize for best oral presentation at MIUA 2011 for: ’Non-
rigid image registration through efficient discrete optimization’
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