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Abstract

One of the central problems in computer vision is the interpretation of the
content of a single image. A particularly interesting example of this is the
extraction of the underlying 3D structure apparent in an image, which is
especially challenging due to the ambiguity introduced by having no depth
information. Nevertheless, knowledge of the regular and predictable nature of
the 3D world imposes constraints upon images, which can be used to recover
basic structural information.

Our work is inspired by the human visual system, which appears to have
little difficulty in interpreting complex scenes from only a single viewpoint.
Humans are thought to rely heavily on learned prior knowledge for this. As
such we take a machine learning approach, to learn the relationship between
appearance and scene structure from training examples.

This thesis investigates this challenging area by focusing on the task of plane
detection, which is important since planes are a ubiquitous feature of human-
made environments. We develop a new plane detection method, which works
by learning from labelled training data, and can find planes and estimate
their orientation. This is done from a single image, without relying on explicit
geometric information, nor requiring depth.

This is achieved by first introducing a method to identify whether an individ-
ual image region is planar or not, and if so to estimate its orientation with
respect to the camera. This is done by describing the image region using
basic feature descriptors, and classifying against training data. This forms
the core of our plane detector, since by applying it repeatedly to overlapping
image regions we can estimate plane likelihood across the image, which is
used to segment it into individual planar and non-planar regions. We evalu-
ate both these algorithms against known ground truth, giving good results,
and compare to prior work.

We also demonstrate an application of this plane detection algorithm, show-
ing how it is useful for visual odometry (localisation of a camera in an un-
known environment). This is done by enhancing a planar visual odometry
system to detect planes from one frame, thus being able to quickly initialise
planes in appropriate locations, avoiding a search over the whole image. This
enables rapid extraction of structured maps while exploring, and may increase
accuracy over the baseline system.
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CHAPTER 1

Introduction

A key problem in computer vision is the processing, perception and understanding of

individual images. This is an area which includes heavily researched tasks such as object

recognition, image segmentation, face detection and text recognition, but can also involve

trying to interpret the underlying structure of the scene depicted by an image. This is a

particularly interesting and challenging problem, and includes tasks such as identifying

the 3D relationships of objects, gauging depth without parallax, segmenting an image

into structural regions, and even creating 3D models of a scene. However, in part due to

the difficulty and ill-posed nature of such tasks, it is an area which – compared to object

recognition, for example – has not been so widely studied.

One reason why perceiving structure from one image is difficult is that unlike many

tasks in image processing, it must deal with the fact that depth is ambiguous. Short of

using laser scanners, structured light or time-of-flight sensors, an individual image will

not record absolute depth; and with no parallax information (larger apparent motion

in the image for closer objects, in a moving camera or an image pair), it is impossible

to distinguish even relative depths. Furthermore, when relying on the ambiguous and

potentially low resolution pixel information, it remains difficult even to tell which regions

belong to continuous surfaces – an important problem in image segmentation – making

extraction of structure or surface information challenging.

1
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Nevertheless, recent work has shown that substantial progress can be made in perceiving

3D structure by exploiting various features of single images: they may be ambiguous, but

there is still sufficient information to begin perceiving the structures represented. This

involves making use of cues such as vanishing points and rectilinear structure, shading

and texture patterns, or relating appearance directly to structure.

Motivated by the initial success of such techniques, and driven by the potential benefits

that single-image perception will bring, this thesis focuses on investigating new methods

of interpreting the 3D structure of a single image. We believe this is a very interesting

task theoretically, since despite the considerable difficulties involved, some kinds of single

image structure perception do indeed seem to be possible. Recent developments in

this area also highlight that it is of great practical interest, with applications in 3D

reconstruction [66, 113], object recognition [65], wide-baseline matching [93], stereopsis

[111] and robot navigation [73, 92], amongst others.

Furthermore, this is an interesting topic because of its relationship to biological vision

systems, which as we discuss below seem to have little difficulty in interpreting complex

structure from single viewpoints. This is important, since it shows that a sufficiently

advanced algorithm can make good use of the very rich information available in an image;

and suggests that reliable and detailed perception from even a single image must be in

principle possible. The means by which biological systems are thought to do this even

hint at possible ways of solving the problem, and motivates striving for a more general

solution than existing methods. In particular, humans’ ability to take very limited

information, and by relating it to past visual experiences generate a seemingly complete

model of the real world, is something we believe we can learn much from, as we discuss

in depth below.

1.1 Perception of Single Images

In general, extracting the 3D structure from a 2D image is a very difficult problem,

because there is insufficient information recorded in an image. There is no way of re-

covering depth information directly from the image pixels, due to the nature of image

formation. Assuming a pin-hole camera model, all points along one ray from the cam-

era centre, toward some location in space, will be projected to the same image location

(Figure 1.1), which means that from the image there is no way to work backwards to

find where on that line the original point was.
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Figure 1.1: This illustrates the ambiguity of projecting 3D points to a 2D
image. The circle in the image plane shows the projection of the red sphere, but
any one of the spheres along the ray through the camera centre will project to
the same location. We have shown the image plane in front of the camera centre
for visual clarity.

Because of this there could potentially be an infinite number of different 3D scenes which

lead to the same 2D image. For example, a configuration of irregular quadrilaterals,

appropriately placed and shaded, may falsely give the appearance of a street scene or a

building façade, when viewed from a particular vantage point. At the extreme, one may

even be looking at a picture of a picture, and have no way of knowing that all depths

are in fact equal (this is resolved as soon as multi-view information becomes available).

However, while this argument seems to imply that any extraction of structure with-

out 3D information is not possible, it is evident that although any of a number of 3D

configurations are technically valid, some are much more likely than others. While we

cannot for definite say that we are looking at a building, say, as opposed to a contrived

collection of shapes which happen to give that appearance after projection, the former

interpretation is much more plausible. We illustrate this in Figure 1.2, where out of two

possible 3D configurations for a 2D image, one is much more realistic. Pictures, most

of the time, depict actual physical objects which obey physical laws, and tend to be

arranged in characteristic ways (especially if human-made).

This observation – that the real world is quite predictable and structured – is what

makes any kind of structure perception from a single image possible, by finding the most

plausible configuration of the world out of all possible alternatives [133], based on what

we can assume about the world in general. Thus the notion of prior knowledge, either

explicitly encoded or learned beforehand, becomes essential for making sense of otherwise

confusing image data.
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(a) (b) (c)

Figure 1.2: From even this very simple cartoon image of a house (a), it is
possible to recognise what it is, and from this imagine a likely 3D configuration
(b), despite the fact that, from a single image, the ambiguity of depth means
there are an infinite number of possible configurations, such as (c), which project
to an identical image. Such contrived collections of shapes are arguably much
less likely in the real world.

The different ways in which generic knowledge about the world is used leads to the various

computer vision approaches to detecting structure in single images. For example, parallel

world lines are imaged as lines which converge at a point in the image, and can be used

to recover the orientation of a plane; and the predictable deformation of texture due

to projection is enough to recover some of the viewing information. We go into more

detail about these possibilities in the following chapter, but for now it suffices to say

that, despite the difficulty of the problem, a number of attempts have been made toward

addressing it, with considerable success.

1.2 Motivation and Applications

The task of extracting structure from single images is interesting for several reasons.

As stated above, it is a difficult and ill-posed problem, since the information in one

image cannot resolve the issue of depths; and yet by exploiting low-level cues or learning

about characteristic structures, it is possible to recover some of this lost information.

It is also an interesting task to attempt since it has some biological relevance. Because

it is something humans have little difficulty with, this suggests ways of addressing the

problem, and gives us some baseline with which to ultimately compare. An algorithm

attempting to emulate the psychology of vision may also shed some light on unknown

details of how this is achieved, if it is sufficiently physiologically accurate, although this

is not a route we intend to investigate.
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From a practical point of view, the potential of being able to interpret single images would

have a number of interesting applications. For example, being able to perceive structure

in a single image would allow quick, approximate 3D reconstructions to be created, using

only one image as input [4, 66]. For some tasks, a more sophisticated understanding than

knowledge of the structures themselves would not be necessary — that is, the geometry

alone is sufficient. For example, reconstructing rough 3D models when limited data are

available (historical images, for example, or more prosaically to visualise holiday photos),

or to extend the range and coverage of multi-view reconstructions [113].

Alternatively, a deeper understanding of the visual elements would make possible a va-

riety of interesting applications. For example, perception of the underlying structural

elements or their relationships would be useful in reconstructing 3D models where in-

sufficient data are available to see the intersections of all surfaces or retrieve the depth

of all pixels [113]. It would also be useful for providing context for other tasks, such as

object recognition, acting as a prior on likely object location in the image [65].

Knowledge of structure would also be very useful to tasks such as mapping and robot

navigation. Usually, when exploring a new and unknown environment, all that can be

sensed is the location of individual points from different positions, from which a 3D

point cloud can be derived. If however there was a way of gleaning knowledge of the

structure apparent in the image, this could be used to more quickly create a map of

the environment, and build a richer representation. Indeed, knowledge of higher level

structure (obtained by means other than single-image perception) has been very useful in

simplifying map representations and reducing the computation burden of maintaining the

map [47, 88]. We speculate that being able to more quickly derive higher-level structures

would bring further benefits, in terms of scene representation and faster initialisation of

features. This is something we come back to in Chapter 7.

1.3 Human Vision

As discussed above, interpreting general structure from single images is a significant

challenge, and one which is currently far from being solved. On the other hand, we

argue that this must in principle be possible, due to the obvious success of human (and

other animal) vision systems. To a human observer, it appears immediately obvious when

viewing a scene (and crucially, even an image of the scene, void of stereo or parallax

cues) what it is, with an interpretation of the underlying structure good enough to make
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(a) (b) (c)

Figure 1.3: Examples of images which can be interpreted without difficulty by
a human, despite the complex shapes and clutter.

judgements about relative depths and spatial relationships [51]. Despite the complexity

of the task, this even appears subjectively to happen so fast as to be instantaneous [124],

and in reality cannot take much more than a fraction of a second.

The human vision system is remarkably adept at interpreting a wide range of types of

scene, and this does not appear to depend on calculation from any particular low-level

features, such as lines or gradients. While these might seem to be useful cues, humans

are quite capable of perceiving more complex scenes where such features are absent or

unreliable. Indeed, it is difficult to articulate precisely why one sees a scene as one does,

other than simply that it looks like what it is, or looks like something similar seen before.

This suggests that an important part of human vision may be the use of learned prior

experience to interpret new scenes, which is why complex scenes are so ‘obvious’ as to

what they contain.

For example, consider the image of Figure 1.3a. This is clearly a street scene, comprising

a ground plane with two opposing, parallel walls. The geometric structure is quite ap-

parent, in that there are a number of parallel lines (pointing toward a common vanishing

point near the centre of the image). It is plausible that this structure is what allows

the shape to be so easily perceived, and indeed this has been the foundation of many

geometry-based approaches to single-image perception [73, 93]. However, consider Fig-

ure 1.3b, which shows a similar configuration of streets and walls, and while it remains

obvious to a human what this is, there are considerably fewer converging lines, and the

walls show a more irregular appearance.
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(a) (b)

Figure 1.4: These images further highlight the powers of human perception.
The grassy ground scattered with leaves can easily be seen as sloping away from
the viewer; and the reflections in a river are seen to be of trees, despite the lack
of tree-like colour or texture.

A more extreme example is shown in Figure 1.3c, where the main structures are obscured

by balconies and other obtrusions, and people occlude the ground plane. This would be

difficult for any algorithm attempting to recover the scene structure based on explicit

geometric constructs, or for general image segmentation — and yet the human brain still

sees it with ease. This example in particular is suggestive that perception is a top-down

process of interpretation, rather than building up from low-level cues, and depends upon

a wealth of visual experience for it to make sense.

Finally, we demonstrate how humans can perceive structural content in images with

limited or distorted information. In Figure 1.4a, a grassy plane is shown, strewn with

fallen leaves. Despite the lack of any other objects for context or scaling, nor a uniform

size of leaves (and where cues from foreshortening of texture are quite weak), it is still

possible to see the relative orientation of the ground. Another interesting example where

the information available in the image itself is ambiguous is in Figure 1.4b, taken from

a picture of a riverside. One can see without much difficulty that this depicts trees

reflected in water. However, there is very little in the reflections corresponding to the

features generally indicative of trees. The branching structure is completely invisible,

the overall shape is not particularly tree like, and even the colour is not a reliable cue.

As before, this gives the impression that these objects and structures are perceptible by

virtue of prior experience with similar scenes, and knowing that trees reflected in water

tend to have this kind of distorted shape. The alternative, of recovering shapes from the

image, accounting for the distortion produced by the uneven reflections, and matching

them to some kind of tree prototype, seems rather unlikely (similar effects are discussed

in [51]).

Of course, despite these abilities, a human cannot guess reliable depth estimates nor
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report the precise orientation of surfaces in a scene. While they may have the impression

that they can visualise a full model of the scene, this is rarely the case, and much of the

actual details of structures remain hidden. Humans tend to be good at perceiving the

general layout of a scene and its content, without being able to describe its constituent

parts in detail (the number of branches on a tree or the relative distances of separated

objects, for example). Then again, the fact that such details are not even necessary

for a human to understand the gross layout is very interesting, hinting that the ability

to describe a scene in such detail is a step too far. This is an important point for

an algorithm attempting to follow the success of human vision since it suggests that

attempting to fully recover the scene structure or depth may not be necessary for a

number of tasks, and a limited perception ability can be sufficient.

These insights into the powers of human vision are what inspire us to take on the

challenge of using computer vision techniques to extract structure from single images,

and suggests that a learning-based approach is a good way to address this. In the

next section we take a deeper look at the details of human perception, focusing on how

learning and prior knowledge are thought to play a crucial role.

1.4 On the Psychology of Perception

Having described how the impressive feats of human perception inspire us to build a

learning-based system, we now consider how humans are believed to be achieve this.

The mechanics of human vision – the optics of the eye, the transmission of visual stimuli

to the brain, and so on – are of little interest here, being less germane to our discussion

than the interpretation of these signals once they arrive. In this section we give a brief

overview of current theories of human perception, focusing on how prior knowledge forms

a key part of the way humans so easily perceive the world.

An important figure in the psychology of human perception is James J. Gibson, whose

theory of how humans perceive pictures [50] focused on the idea that light rays emanating

from either a scene or a picture convey information about its contents, the interpretation

of which allows one to reconstruct what is being viewed. As such, vision can be considered

a process of picking up information about the world, and actively interpreting it, rather

than passive observation. This contrasted strongly with previous theories, which claimed

for example that the light rays emanating from a picture, if identical to those from a

real object, would give rise to the same perception.
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One aspect of his theory is that what humans internally perceive are perceptual and

temporal invariants [49], encompassing all views of an object, not just the face currently

visible. A consequence is that in order to perceive an object as a whole there must be

some model in the mind of what it is likely to look like, since from any particular view,

the information about an object is incomplete, and must be supplemented by already

acquired internal knowledge to make sense. Thus, vision is a process of applying stored

knowledge about the world, in order to make sense of partial information. This certainly

implies some kind of learning is necessary for the process, even in cases of totally novel

objects.

Similarly Ernst Gombrich, a contemporary of Gibson, likened an image to a trace left

behind by some object or event, that must be interpreted to recover its subject [51]. He

described this as requiring a “well stocked mind”, again clearly implying that learning

is important for perception. It follows that no picture can be properly interpreted on its

own, as being a collection of related 3D surfaces, without prior knowledge of how such

structures generally relate to each other, and how they are typically depicted in images.

For example, seeing an image of a building front as anything other than a jumble of

shapes is not possible without knowing what such shapes tend to represent.

These theories suggest that even though humans have the impression they perceive a

real and detailed description of the world, it is based on incomplete and inaccurate

information (due to occlusion, distance, limited acuity and simply being unable to see

everything at once), and prior beliefs will fill in the mental gaps. This inference and

synthesis is automatic and unconscious, and as Gombrich said, it is almost impossible to

see with an ‘innocent eye’, meaning perceive only what the eyes are receiving, without

colouring with subjective interpretations.

1.4.1 Hypotheses and Illusions

These ideas were developed further by Richard Gregory, reacting to what he perceived as

Gibson’s ignorance of the role of ‘perceptual intelligence’. This was defined as knowledge

applied to perception, as opposed to ‘conceptual intelligence’ (the knowledge of specific

facts). In this paradigm, perception is analogous to hypothesis generation [53], so that

vision can be considered a process of generating perceptual hypotheses (explanations of

the world derived from incomplete data received from the eyes), and comparing them to

reality. Recognition of objects and scenes equates to the formation of working hypotheses
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Figure 1.5: The hollow face illusion: even when this face mask is viewed from
behind (right) the human brain more easily interprets it as being convex. This
suggests that prior experience has a strong impact on perception (figure taken
from [54]).

about the world, when the information directly available is insufficient to give a complete

description.

This also explains why familiar, predictable objects are easier to see: the mind more

readily forms hypotheses to cover things about which it has more prior experience, and

requires more evidence to believe the validity of an unusual visual stimulus. One exam-

ple of this is the hollow face illusion [54], shown in Figure 1.5, where despite evidence

from motion and stereo cues, the hollow interior of a face mask is mistakenly perceived

as a convex shape. This happens because such a configuration agrees much better with

conventional experience — in everyday life, faces tend to be convex. Interestingly, the

illusion is much more pronounced when the face is the right way up, further supporting

the theory that it is its familiarity as a recognised object which leads to the misinterpre-

tation. This is a striking example of where the patterns and heuristics, learned in order

to quickly generate valid hypotheses, can sometimes lead one astray, when presented

with unusual data.

This is explored further by Gregory in his discussion of optical illusions [54], phenomena

which offer an interesting insight into human perception, and show that people are

easily fooled by unexpected stimuli. Not all optical illusions are of this type, for example

the Café wall illusion, which is due to neural signals becoming confused by adjacent

parallel lines [55]. But many are due to misapplication of general rules, presumably
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learned from experience. One such example is the Ames window illusion [54], where the

strong expectation for a window shape to be rectangular – when it is actually a skewed

quadrilateral – makes it appear to change direction as it rotates.

1.4.2 Human Vision Through Learning

These examples and others strongly suggest that there is an important contribution to

human vision from learned prior information, and that one’s previous experience with

the world is used to make sense of it. Humans cannot see without projecting outward

what they expect to see, in order to form hypotheses about the world. This allows quick

interpretation of scenes from incomplete and ambiguous data, but also leads to formation

of incorrect beliefs when presented with unusual stimuli. In turn this suggests that a

successful approach to interpreting information from single images would also benefit

from attempting to learn from past experiences, enabling fast hypothesis generation

from incomplete data — even if in doing so we are not directly emulating the details of

human vision. Indeed, as Gregory states in the introduction to [54], taking advantage

of prior knowledge should be crucial to machine vision, and the failure to recognise this

may account for the lack of progress to date (as of 1997).

With these insights in mind, we next introduce possibilities for perceiving structure in

single images by learning from prior experience. It is important to note, however, that

we are not claiming that the above overview is a comprehensive or complete description

of human vision. Nor do we claim any further biological relevance for our algorithm.

We do not attempt to model ocular or neurological function, but resort to typical image

processing and machine learning techniques; we merely assert that the potential learning-

based paradigm of human vision is a starting point for thinking of solutions to the

problem. Given the success of human vision at arbitrarily difficult tasks, an approach

in a similar vein, based on using machine learning to learn from prior visual experience,

appears to offer great promise.

1.5 Machine Learning for Image Interpretation

Learning from past experience therefore appears to be a promising and biologically plau-

sible means of interpreting novel images. The use of machine learning is further motivated
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by the difficulty of creating models manually for tasks this complex. As previous work

has shown (such as [73, 93, 107] as reviewed in Chapter 2), explicitly defining how visual

cues can be used to infer structure in general scenes is difficult. For example, shape

from texture methods make assumptions on the type of texture being viewed, and from

a statistical analysis of visible patterns attempt to directly calculate surface slant and

tilt [44, 133]. However, this means that they can work well only in a limited range of

scenarios.

Alternatively, when it is difficult to specify the details of the model, but we know what

form its inputs and outputs should take, it may be more straightforward to learn the

model. Indeed, this is a common approach to complex problems, where describing the

system fully is tedious or impossible. Almost all object recognition algorithms, for exam-

ple, are based on automatically learning what characterises certain objects [69], rather

than attempting to explicitly describe the features which can be used to identify and

distinguish them. We must proceed with caution, since this still supposes that the world

is well behaved, and we should accept that almost any algorithm (including sometimes

human vision, as discussed above) would be fooled by sufficiently complicated or con-

trived configurations of stimuli. Thus the desire to make use of heuristics and ever more

general assumptions is tempered by the need to deal with unusual situations.

We are also motivated by other recent works, which use machine learning to deduce

the 3D structure of images. This includes the work of Saxena et al. [113], who learn the

relationship between depth maps (gathered by a laser range sensor) and images, allowing

good pixel-wise depth maps to be estimated for new, previously unseen images. Another

example is Hoiem et al. [66], who use classification of image segments into geometric

classes, representing different types of structure and their orientation, to build simple

3D interpretations of images. Both these examples, which use quite different types of

scene structure, have very practical applications, suggesting that machine learning is a

realistic way to tackle the problem — and so next we investigate possible directions to

take, with regards what kind of structure perception we intend to achieve.

1.6 Directions

There are several possible ways in which we might explore the perception of structure

in a single image. As stated above, one of the primary difficulties of single image inter-

pretation is that no depth information is available. Once depth can be observed, it is
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then a fairly simple matter to create a 3D point cloud, from which other reconstruction

or segmentation algorithms can work [25, 32]. Therefore one of the most obvious ways

to approach single-image perception would be to try to recover the depth. Clearly this

cannot be done by geometric means, but as the work of Torralba and Oliva [127] and

Sudderth et al. [121] have shown, exploiting familiar objects, or configurations of scene

elements, can allow some rudimentary depth estimates to be recovered. This is related

to the discussion above, in that this relies on the knowledge that some relationships of

depths to image appearance are much more likely than others.

The most sophisticated algorithm to date for perceiving depth from a single image is by

Saxena et al. [113], where detailed depth maps can be extracted from images of general

outdoor scenes. This work has shown that very good depth estimates can be obtained in

the absence of any stereo or multi-view cues (and even used in conjunction with them for

better depth map generation). Since this work has succeeded in extracting rather good

depth maps, we leave the issue of depth detection, and consider other types of structure.

As we discussed in the context of human vision, it may not be necessary to know de-

tailed depth information in order to recover the shape, and this suggests that we could

attempt to recover the shape of general objects without needing to learn the relationship

with depth. Indeed, some progress has been made in this direction using shape from

shading and texture [41, 98, 122], in which the shape of even deformable objects can be

recovered from one image. However, this is a very difficult problem in general, due to

the complexities of shapes in the real world, and the fact that lighting and reflectance

introduce significant challenges — thus it may be difficult to extend to more general

situations.

A simplification of the above is to assume the world is composed of a range of simple

shapes – such as cubes and spheres – and attempt to recover them from images. This

is an interesting approach, since it relies on the fact that certain kinds of volumetric

primitive are likely to appear, and we can insert them into our model based on limited

data (i.e. it is not necessary to see all sides of a cuboid). This is the motivation for

early works such as Roberts’ ‘blocks world’ [109], in which primitive volumes are used to

approximate the structure of a scene; and a more recent development [56] based on first

estimating the scene layout [66] and fitting primitives using physical constraints. While

this approach limits the resulting model to only fairly simple volumetric primitives, many

human-made scenes do tend to consist of such shapes (especially at medium-sized scales),

and so a rough approximation to the scene is plausible.
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A rather different approach would be to attempt to segment the image, so that segments

correspond to the continuous parts of the scene, and by assigning each a semantic label

via classification, to begin to perceive the overall structure. Following such a segmenta-

tion, we could potentially combine the information from the entire image into a coherent

whole, using random fields for example. This bears some similarity to the work of [66], in

which the segments are assigned to geometric classes, which are sufficient to recover the

overall scene layout. A related idea is to associate elements detected across the image to

create a coherent whole using a grammar based interpretation [3, 74], in which the prior

information encoded in the grammatical rules enforces the overall structure.

The above possibilities offer potentially powerful ways to get structure from a single im-

age. For practical purposes, in order to make a start at extracting more basic structures,

we will consider a somewhat more restricted – though still very general – alternative,

based on two of the key ideas above. First, we might further simplify the volume primi-

tives concept to use a smaller class of more basic shapes, which should be easier to find

from a single image, at the same time as being able to represent a wider variety of types

of scene. The most basic primitive we could use like this are planes. Planar surfaces are

very common and so can compactly represent a diverse range of images. If we consider

human-made environments – arguably where the majority of computer vision algorithms

will see most use – these are often comprised of planar structures. The fact that planes

can compactly represent structure means they have seen much use in tasks such as 3D

reconstruction and robot navigation.

While shapes such as cubes and spheres may be distinctive due to their shape in an image,

the same cannot be said of planes. Planes project simply to a quadrilateral, assuming

there is no occlusion; and while quadrilateral shapes have been used to find planes [94]

this is limited to fairly simple environments with obvious line structure. It is here that the

second idea becomes relevant: that using classification of surfaces can inform us about

structure. Specifically, while the shape of planes may not be sufficiently informative, their

appearance is often distinctive, due to the way planar structures are constructed and

used. For example, building façades and walls have an easily recognisable appearance,

and this allows them to be quickly recognised by humans as being planar even if they

have no obvious outline. Moreover, the appearance of a plane is related to its orientation

with respect to the viewer. Its surface will appear different depending which way it is

facing, due to effects such as foreshortening and texture compression, which suggests we

should be able to exploit this in order to predict orientation.

For these reasons, planar structures appear to be a good place to begin in order to
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extract structure from a single image. Therefore, to investigate single-image perception

in a feasible manner, we look at the potential of recovering planar structures in images

of urban scenes, by learning from their appearance and how this relates to structure.

1.7 Plane Detection

Planes are important structures in computer vision, partly because they are amongst

the simplest possible objects and are easy to represent geometrically. A 3D plane needs

only four parameters to completely specify it, usually expressed as a normal vector in

R3 and a distance (plus a few more to describe spatial extent if appropriate). Because

of this, they are often easy to extract from data. Only three 3D points are required

to hypothesise a plane in a set of points [5], enabling planar structure recovery from

even reasonably sparse point clouds [46]. Alternatively, a minimum of only four point

correspondences between two images are required to create a homography [62], which

defines a planar relationship between two images, making plane detection possible from

pairs [42] or sequences [136] of images.

Planes are also important because they are ubiquitous in urban environments, making

up a significant portion of both indoor and outdoor urban scenes. Their status as one

of the most basic geometric primitives makes them a defining feature of human-made

environments, and therefore an efficient and compact way of representing structure,

giving realistic and semantically meaningful models while remaining simple. As such,

they have been shown to be very useful in tasks including wide baseline matching [73],

object recognition [65], 3D mesh reconstruction [25], robot navigation [47] and augmented

reality [16].

To investigate the potential of detecting and using planes from single image information,

we have developed an algorithm capable of detecting planar structures in single images,

and estimating their orientation with respect to the camera. This uses general feature

descriptors and standard methods for image representation, combined with a classifier

and regressor to learn from a large set of training data. One of the key points about

our method is that it does not depend upon any particular geometric or textural feature

(such as vanishing points and image gradients), and so is not constrained to a particular

type of scene. Rather, it exploits the fact that appearance of an image is related to scene

structure, and that learning from relevant cues in a set of training images can be used

to interpret new images. We show how this can be used in a variety of environments,
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and that it is useful for a visual odometry task.

The work can be divided into three main sections: developing the basic algorithm to

represent image regions, recognise planes and estimate orientation; using this for detect-

ing planes in an image, giving groupings of image points into planar and non-planar

regions; and an example application, showing how plane detection can provide useful

prior information for a plane-based visual mapping system.

1.8 Thesis Overview

After this introductory chapter concludes by summarising our main contributions, Chap-

ter 2 presents some background to this area and reviews related work, including details of

geometric, texture, and learning-based approaches to single image structure perception.

In Chapter 3 we introduce our method for plane recognition, which can identify planes

from non-planes and estimate their orientation, example results of which are shown in

Figure 1.6. This chapter describes how regions of an image are represented, using a

collection of feature descriptors and a visual bag of words model, enhanced with spatial

information. We gather and annotate a large training set of examples, and use this to

train a classifier, so that new image regions may be recognised as planar or not; then,

for those which are planar, their orientation can be estimated by training a regression

algorithm. The important point about this chapter is that it deals only with known,

pre-specified image regions. This algorithm cannot find planes in an image, but can

identify them assuming a region of interest has been defined.

Figure 1.6: Examples of our plane recognition algorithm, which for manually
delineated regions such as these, can identify whether they are planar or not,
and estimate their orientation with respect to the camera.
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Chapter 4 thoroughly evaluates the plane recognition algorithm, investigating the effects

of feature representation, vocabulary size, use of synthetic data, and other design choices

and parameters, by running cross-validation on our training set. We also experiment with

an alternative classification technique, leading to useful insights into how and why the

algorithm works. We evaluate the algorithm against an independent test set of images,

showing it can generalise to a new environment.

The plane recognition algorithm is adapted for use as part of a full plane detection

algorithm in Chapter 5, which is able to find the planes themselves, in a previously unseen

image; and for these detected planes, estimate their orientation. Since the boundaries

between planes are unknown, the plane recognition algorithm is applied repeatedly across

the image, to find the most likely locations of planes. This allows planar regions to be

segmented from each other, as well as separating planes with different orientations. The

result is an algorithm capable of detecting multiple planes from a single image, each with

an orientation estimate, using no multi-view or depth information nor explicit geometric

features: this is the primary novel contribution of this thesis. Example results can be

seen in Figure 1.7.

Figure 1.7: Examples of our plane detection algorithm, in a variety of environ-
ments, showing how it can find planes from amongst non-planes, and estimate
their orientation.

We then evaluate this detection algorithm in Chapter 6, showing the results of exper-

iments to investigate the effect of parameters such as the size of regions used for the

recognition step, or sensitivity of plane segmentation to different orientations. Such ex-

periments are used to select the optimal parameters, before again testing our algorithm

on an independent, ground-truth-labelled test set, showing good results for plane detec-

tion in urban environments. We also compare our algorithm to similar work, showing

side-by-side comparison for plane detection. Our method compares favourably, showing

superior performance in some situations and higher accuracy overall.

Finally, Chapter 7 presents an example application of the plane detection algorithm.
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Planar structures have been shown to be very useful in tasks such as simultaneous

localisation and mapping and visual odometry, for simplifying the map representation

and producing higher-level, easier to interpret scene representations [47, 89, 132]. We

show that our plane detector can be beneficial in a plane-based visual odometry task, by

giving prior information on the location and orientation of planes. This means planes may

be initialised quickly and accurately, before even the accumulation of parallax necessary

for multi-view methods. We show that this enables fast building of structured maps

of urban environments, and may improve the accuracy by reducing drift. We end with

Chapter 8, which concludes the thesis with a summary of the work and a discussion of

possible future directions.

1.9 Contributions

To summarise, these are the main contributions of this thesis:

• We introduce a method for determining whether individual regions of an image are

planar or not, according to their appearance (represented with a variety of basic

descriptors), based on learning from training data.

• We show that it is possible, for these planar regions, to estimate their 3D orientation

with respect to the viewer, based only on their appearance in one image.

• The plane recognition algorithm can be used as part of a plane detection algorithm,

which can recover the location and extent of planar structure in one image.

• This plane detection algorithm can estimate the orientation of (multiple) planes

in an image — showing that there is an important link between appearance and

structure, and that this is sufficient to recover the gross scene structures.

• We show that both these methods work well in a variety of scenes, and investigate

the effects of various parameters on the algorithms’ performance.

• Our method is shown to perform similarly to a state of the art method on our

dataset.

• We demonstrate an example application of this plane detection method, by apply-

ing it to monocular visual odometry, which as discussed above could benefit from

being able to quickly see structure without requiring parallax.



CHAPTER 2

Background

In this chapter we discuss related works on single image perception, focusing on those

which consider the problem of detecting planar structure, or estimating surface orien-

tations. These can be broadly divided into two main categories: firstly, those which

directly use the geometric or textural properties of the image to infer structure. These

may be further divided into those which calculate directly from visible geometric entities,

and those that use a statistical approach based on image features. Secondly, there exist

methods which use machine learning, to learn the relationship between appearance and

scene structure.

As we discussed in Chapter 1, even when only a single image is available it is usually

possible to infer something about the 3D structure it represents, by considering what is

most likely, given the information available. Various methods have been able to glean

information about surface orientation, relative depth, curvature or material properties,

for example, even though none of these are measurable from image pixels themselves.

This is due to a number of cues present in images, especially those of human-made,

regular environments, such as vanishing points, rectilinear structure, spectral properties,

colours and textures, lines and edges, gradient and shading, and previously learned

objects.

19
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The use of such cues amounts to deliberately using prior knowledge applied to the scene.

Here prior knowledge means information that is assumed to be true in general, and can

be used to extrapolate beyond what is directly observed. This can be contrasted with

specific scene knowledge [2, 102], which can also help to recover structure when limited

or incomplete observations are available. However, this is limited to working in specific

locations.

Over the following sections we review work on single image perception which makes

use of a variety of prior knowledge, represented in different ways and corresponding to

different types of assumption about the viewed scene. These are organised by the way

they make assumptions about the image, and which properties of 3D scenes and 2D

projections they exploit in order to achieve reconstruction or image understanding.

2.1 Vanishing Points

Vanishing points are defined as the points in the image where parallel lines appear to

meet. They lie on the plane at infinity, a special construct of projective space that is

invariant to translations of the camera, thus putting constraints on the geometry of the

scene. Vanishing points are especially useful in urban, human-made scenes, in which

pairs of parallel lines are ubiquitous, and this means that simple methods can often be

used to recover 3D information. A detailed explanation of vanishing points and the plane

at infinity can be found in chapters 3 and 6 of [62].

A powerful demonstration of how vanishing points and vanishing lines can be used is

by Criminisi et al. [26], who describe how the vanishing line of a plane and a vanishing

point in a single image can be used to make measurements of relative lengths and areas.

If just one absolute distance measurement is known, this can be used to calculate other

distances, which is useful in measuring the height of people for forensic investigations,

for example. As the authors state, such geometric configurations are readily available in

structured scenes, though they do not discuss how such information could be extracted

automatically.

Another example of using vanishing points, where they are automatically detected, is the

work of Košecká and Zhang [73], in which the dominant planar surfaces of a scene are

recovered, with the aim of using them to match between widely separated images. The

method is based on the assumption that there are three primary mutually orthogonal
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directions present in the scene, i.e. this is a ‘Manhattan-like’ environment, having a

ground plane and mutually perpendicular walls. Assuming that there are indeed three

dominant orientations, the task is thus to find the three vanishing points of the image.

This is done by using the intersections of detected line segments to vote for vanishing

points in a Hough accumulator. However, due to noise and clutter (lines which do not

correspond to any of the orientations), this is not straightforward. The solution is to use

expectation maximisation (EM) to simultaneously estimate the location of the vanishing

points in the image, and the probability of each line belonging to each vanishing point;

the assignment of lines to vanishing points updates the vanishing points’ positions, which

in turn alters the assignment, and this iterates until convergence. An example result,

where viable line segments are coloured according to their assigned vanishing direction,

is shown in Figure 2.1a.

To find actual rectangular surfaces from this, two pairs of lines, corresponding to two

different vanishing points, are used to hypothesise a rectangle (a quadrilateral in the

image). These are verified using the distribution of gradient orientations within the

image region, which should contain two separate dominant orientations. An example

of a set of 3D rectangles detected in one image is shown in Figure 2.1b. These can

subsequently be used for wide-baseline matching to another image.

(a) (b)

Figure 2.1: Illustration of the method of Košecká and Zhang [73], showing the
lines coloured by their assignment to the three orthogonal vanishing directions
(a), and a resulting set of planar rectangles found on an image (b). Images are
adapted from [73].

This method has shown promising results, in both indoor and outdoor scenes, and the

authors mention that it would be useful for robot navigation applications. Its main

downside, however, is that it is limited to scenes with this kind of dominant rectangular

structure. As such, planes which are perpendicular to the ground, but are oriented differ-

ently from the rest of the planes, would not be easily detected, and may cause problems

for the EM algorithm. Furthermore, the method relies on there being sufficiently many
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good lines which can be extracted and survive the clustering, which may not be the case

when there is background clutter or spurious edges produced by textured scenes.

A related method is presented by Mičuš́ık et al. [93], where line segments are used to

directly infer rectangular shapes, which in turn inform the structure of the scene. It

differs from [73] in that it avoids the high computational complexity of exhaustively

considering all line pairs to hypothesise rectangles. Rectangle detection is treated as a

labelling problem on the set of suitable lines, using a Markov random field. By using two

orthogonal directions at a time, labels are assigned to each line segment to indicate the

vanishing direction to which it points, and which part of a rectangle it is (for example

the left or right side); from this, individual rectangles can be effortlessly extracted.

These methods highlight an important issue when using vanishing points and other

monocular cues. While they are very useful for interpreting a single image, they can also

provide useful information when multiple images are present, by using single image cues

to help in wide-baseline matching for example. Similar conclusions are drawn in work

we review below [111], where a primarily single-image method is shown to be beneficial

for stereo vision by exploiting complementary information.

An alternative way of using vanishing points is to consider the effect that sets of con-

verging parallel lines will have on the spectral properties of the image. For example,

rather than detecting lines directly in the spatial domain, Ribeiro and Hancock [107]

use the power spectrum of the image, where spectra which are strongly peaked describe

a linear structure. From this, properties of the texture and the underlying surface can

be recovered, such as its orientation. In their later work [108], spectral moments of the

image’s Fourier transform are used to find vanishing lines via a Hough-like accumula-

tor. Such methods are dependent on the texture being isotropic and homogeneous, such

that any observed distortions are due to the effects of projection rather than the pat-

terns themselves. These restrictions are quite limiting, and so only a subset of scenes –

namely those with regular grid-like structures, such as brick walls and tiled roofs – are

appropriate for use with this method.

2.2 Shape from Texture

An alternative to using vanishing points, which has received much attention in the liter-

ature, is known as shape from texture (this is part of a loose collection of methods known
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collectively as ‘shape-from-X’, which includes recovery of 3D information from features

such as shading, defocus and zoom [35, 75, 116]). Such an approach is appealing, since

it makes use of quite different types of information from the rectangle-based methods

above. In those, texture is usually an inconvenience, whereas many real environments

have multiple textured surfaces, especially outdoors.

Early work on shape from texture was motivated by the insights of Gibson into human

vision [48], specifically that humans extract information about surface orientation from

apparent gradients. However, this model was not shown to be reliable for real textures

[133]; and due to making necessary assumptions about the homogeneity and isotropy

of texture (conditions that, while unrealistic, allow surface orientation to be computed

directly) methods developed based on these ideas fall short of being able to recover

structure from real images.

Work by Witkin [133] allows some of these assumptions to be relaxed in order to better

portray real-world scenes. Rather than requiring the textures to be homogeneous or

uniform, the only constraint is that the way in which textures appear non-uniform does

not mimic perspective projection — which is in general true, though of course there

will be exceptional cases. Witkin’s approach is based on the understanding that for one

image there will be a potentially infinite number of plausible reconstructions due to the

rules of projective geometry, and so the task is to find the ‘best’, or most likely, from

amongst all possible alternatives. This goal can be expressed in a maximum-likelihood

framework.

The method works by representing texture as a distribution of short line segments,

and assumes that for a general surface texture their orientations will be distributed

uniformly. When projected, however, the orientations will change, aligning with the

axis of tilt, so there is a direct relationship between the angular distribution of line

segments (which can be measured), and the slant and tilt of the image. An iterative

method is used to find the most likely surface orientation given the observed angles, in a

maximum likelihood approach. This is developed by G̊arding [44], who proposes a fast

and efficient one-step method to estimate the orientation directly from the observations,

with comparable results. An example of applying the latter method is shown in Figure

2.2, which illustrates the estimated orientation at the four image quadrants.

However, shape from texture techniques such as these again face the problem that tex-

tural cues can be ambiguous or misleading, and an incorrect slant and tilt would be

estimated for textures with persistent elongated features, for example rock fissures or
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Figure 2.2: An example result from the shape from texture algorithm of
G̊arding [44], applied to an image of an outdoor scene. Orientation is approxi-
mately recovered for the four quadrants of the image (there is no notion of plane
detection here, only slant/tilt estimation). The image was adapted from [44].

fence-posts. Moreover, while the accuracy of [44] was shown to be good for simulated

textures of known orientation, no ground truth was available for evaluation on real im-

ages. While the presented results are qualitatively good, it was not possible to accurately

assess its applicability to real images.

A further issue with shape from texture methods is that generally they deal only with

estimating the orientation of given regions (as in the image above), or even of the whole

image; the detection of appropriate planar surfaces, and their segmentation from non-

planar regions, is not addressed, to our knowledge.

2.3 Learning from Images

The approaches discussed above use a well defined geometric model, relating features of

appearance (vanishing points, texture, and so on) to 3D structure. They have proven

to be successful in cases where the model is valid – where such structure is visible and

the key assumptions hold – but are not applicable more generally. This is because it

is very difficult to explicitly specify a general model to interpret 3D scenes, and so a

natural alternative is to learn the model from known data. This leads us on to the next

important class of methods, to which ours belongs: those which use techniques from

machine learning to solve the problem of single-image perception.

An interesting approach is presented in a set of papers by Torralba and Oliva, where

general properties are extracted from images in order to describe various aspects of
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the scene [99, 100, 127, 128]. They introduce the concept of the ‘scene envelope’ [99],

which combines various descriptions of images, such as whether they are natural or

artificial locations, depict close or far structures, or are of indoor or outdoor scenes. By

estimating where along each of these axes an image falls a qualitative description can

be generated automatically (for example ‘Flat view of a man-made urban environment,

vertically structured’ [99]). This is achieved by representing each image by its 2D Fourier

transform, motivated by the tendency for the coarse spectral properties of the image to

depend upon the type and configuration of the scene. An indoor scene, for example,

will produce sharp vertical and horizontal features, which is evident when viewed in the

frequency domain.

This work is further developed for scene depth estimation [127], where the overall depth

of an image is predicted. This is based on an important observation, that while it is

possible for an object to be at any size and at any depth, there are certain characteristic

sizes for objects, which can be taken advantage of (a concept illustrated by Figure 2.3).

For example, buildings are much more likely to be large and distant than small and close

(as in a toy model); conversely something that looks like a desktop is very unlikely to be

scenery several kilometres away. Again, this relates to the key point that we desire the

most likely interpretation. Like the methods mentioned above, this method is based on

the frequency characteristics of the image. Image properties are represented using local

and global wavelet energy, with which depth is estimated by learning a parametric model

using expectation maximisation. While this is a very interesting approach to recovering

depth, the main downside is that it gives only the overall depth of the image. There is

no distinction between near or far objects within one image, so it cannot be used to infer

any detailed scene structure.

Figure 2.3: An illustration from Torralba and Oliva [127], making the point
that some objects tend to only appear at characteristic scales, which means they
can be used to recover approximate scene depth (image taken from [127]).
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2.3.1 Learning Depth Maps

A more sophisticated approach by Saxena et al. [113] estimates whole-image depth maps

for single images of general outdoor scenes. This is based on learning the relationship be-

tween image features and depth, using training sets consisting of images with associated

ground truth depth maps acquired using a custom built laser scanner unit. The cen-

tral premise is that by encoding image elements using a range of descriptors at multiple

scales, estimates of depth can be obtained.

In more detail, they first segment the image into superpixels (see Figure 2.4b), being local

homogeneous clusters of pixels, for which a battery of features are computed (includ-

ing local texture features and shape features). As well as using features from individual

superpixels, they combine features from neighbouring superpixels in order to encode con-

textual information, because the orientation or depth of individual locations is strongly

influenced by that of their surroundings. In addition to these features, they extract

features to represent edge information to estimate the location of occlusion boundaries.

These features allow them to estimate both relative and absolute depth, as well as local

orientation. The latter is useful in evaluating whether there should be a boundary

between adjacent superpixels. This is interesting, since it implies they are exploiting

planarity — indeed, they make the assumption that each superpixel can be considered

locally planar. This is a reasonable assumption when they are small. They justify this

by analogy with the meshes used in computer graphics, where complex shapes are built

from a tessellation of triangles. They explicitly build such meshes using the depth and

orientation estimates, an example of which is shown in Figure 2.4c.

(a) (b) (c)

Figure 2.4: The depth map estimation algorithm of Saxena et al. [113] takes
a single image (a) as input, and begins by segmenting to superpixels (b). By
estimating the orientation and depth of each locally planar facet, they produce
a 3D mesh representation (c). Images are taken from [113].
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Figure 2.5: This shows some typical outputs of depth maps (bottom row)
estimated by Saxena et al. [113] from single images (top row), where yellow is
the closest and cyan the farthest. These examples showcase the ability of the
algorithm to recover the overall structure of the scene with good accuracy (images
taken from Saxena et al. [113]).

Following the success of human vision, which easily integrates information from multiple

cues over the whole image, they attempt to relate information at one location to all other

locations. This is done by formulating the depth estimation problem in a probabilistic

model, using a Markov random field, with the aim of capturing connected, coplanar and

collinear structures, and to combine all the information to get a consistent overall depth

map. Example results of the algorithm are shown in Figure 2.5.

This has a number of interesting applications, such as using the resulting depth map

to create simple, partially realistic single-image reconstructions. These are sufficient to

create virtual fly-throughs, by using the connected mesh of locally planar regions, and

these can semi-realistically simulate a scene from a photograph from new angles. Such

reconstructions were shown to rival even those of Hoiem et al. [64] discussed below.

Interestingly, while estimating the orientation of the planar facets is a necessary step of

the algorithm, to relate the depth of adjacent segments, they do not actually produce a

set of planes. Instead they focus on polygonal mesh representations, and while it might

be possible to attempt to extract planar surfaces from such models, their results hint

that it would not be trivial to do so.

They also show that their depth estimates can be combined for creating multi-view re-

constructions from images which are normally too widely separated for this to be possible

(with too little overlap to allow reliable reconstruction using traditional structure-from-

motion, for example). In [111] this algorithm is also shown to be beneficial for stereo
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vision, as another means of estimating depth. This is interesting since even when two

images are available, from which depth can be calculated directly, a single-image depth

estimation still provides valuable additional information, by exploiting complementary

cues. A simplified version of the algorithm was even used to guide an autonomous vehicle

over unknown terrain [92]. These last two illustrate the value of using perception from

single images in multi-view scenarios, an idea we come back to in Chapter 7.

2.3.2 Geometric Classification

The work of Hoiem et al. [66] has the goal of interpreting the overall scene layout from a

single image. This is motivated by the observation that in a great many images, almost

all pixels correspond to either the ground, the sky, or some kind of upright surface, and

so if these three classes can be distinguished a large portion of images can be described

in terms of their rough geometry. This notion of ‘geometric classification’ is the core of

their method, in which regions of the image are assigned to one of three main classes

— namely support (ground), sky, and vertical, of which the latter is further subdivided

into left, right, and forward facing planes, or otherwise porous or solid.

While the method is not explicitly aimed at plane detection, it is an implicit part of

understanding the general structure of scenes, as the image is being effectively partitioned

into planar (ground, left, right, forward) and non-planar (sky, solid, porous) regions. It

is important to note, however, that plane orientation is limited by quantisation into four

discrete classes. No finer resolution on surface orientation can be obtained than ‘left’

and so on.

Classification is achieved using a large variety of features, including colour (summary

statistics and histograms), filter bank responses to represent texture, and image location.

Larger-scale features are also used, including line intersections, shape information (such

as area of segments), and even vanishing point information. These cues are used in the

various stages of classification, using boosted decision trees, where the logistic regression

version of Adaboost chosen for the weak learners is able to select the most informative

features from those available. This automatic selection out of all possible features is

one of the interesting properties of the method, in that it is not even necessary to tell

it what to learn from — although this is at the expense of extracting many potentially

redundant feature descriptors. The classifiers are trained on manually segmented training

data, where segments have been labelled with their true class.
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The central problem is that in an unknown image, it is not known how to group the

pixels, and so more complex features than simple local statistics cannot be extracted.

Thus features such as vanishing points cannot be included until initial segments have

been hypothesised, whose fidelity in turn depends upon such features. Their solution is

to gradually build up support, from the level of pixels to superpixels (over-segmented

image regions) to segments (groups of superpixels), which are combined in order to cre-

ate a putative segmentation of the image. An initial estimate of structure (a particular

grouping of superpixels) is used to extract features, which are then used in order to up-

date the classifications, to create a better representation of the structure and a coherent

labelling of all the superpixels.

The superpixels are found by using Felzenszwalb and Huttenlocher’s graph-cut segmen-

tation method [36] to separate the image into a number (usually around 500) of small,

approximately homogeneous regions, from which local features can be extracted. These

are the atomic elements, and are much more convenient to work with than pixels them-

selves. Segments are formed by grouping these superpixels together, combining infor-

mation probabilistically from multiple segmentations of different granularity (see Figure

2.6). Since it is not feasible to try all possible segmentations of superpixels, they sample

a smaller representative set.

(a) (b) (c) (d)

Figure 2.6: For some image (a), this shows the superpixels extracted (b),
and two segmentations at different granularities (c,d, with 15 and 80 segments
respectively). Images adapted from [66].

There are two main steps in evaluating whether a segment is good and should be retained.

First, they use a pairwise-likelihood classification on pairs of adjacent superpixels, which

after being trained on ground truth data is able to estimate the probability of them

having the same label. This provides evidence as to whether the two should belong in

the same eventual segment, or straddle a boundary. Next there is an estimate of segment

homogeneity, which is computed using all the superpixels assigned to a segment, and is in

turn used to estimate the likelihood of its label. To get the label likelihoods for individual

superpixels, they marginalise over all sampled segments in which the superpixel lies.



2.3 Learning from Images 30

They show how these likelihoods can be combined in various ways, from a single max-

margin estimate of labels, to more complex models involving a Markov random field or

simulated annealing. The final result is a segmentation of the image into homogeneously

labelled sets of superpixels, each with a classification to one of the three main labels,

and a sub-classification into the vertical sub-classes where appropriate. Some examples

from their results are shown in Figure 2.7.

Figure 2.7: Examples outputs of Hoiem et al. [66], for given input images. The
red, green and blue regions denote respectively vertical, ground and sky classes.
The vertical segments are labelled with symbols, showing the orientation (arrows)
or non-planar (circle and cross) subclass to which they are assigned. Images
adapted from [66].

The resulting coarse scene layout can help in a number of tasks. It can enable simple 3D

reconstruction of a scene from one image [64], termed a ‘pop-up’ representation, based on

folding the scene along what are estimated to be the ground-vertical intersections. Its use

in 3D reconstruction is taken further by Gupta and Efros [56], who use the scene layout

as the first step in a blocks-world-like approach to recovering volumetric descriptions of

outdoor scenes.

Scene layout estimation is also used as a cue for object recognition [65], because knowing

the general layout of a scene gives a helpful indication of where various objects are

most likely to appear, which saves time during detection. For example, detecting the

location and orientation of a road in a street scene helps predict the location and scale of

pedestrians (i.e. connected to the road and around two metres in height), thus discarding

a large range of useless search locations. This is interesting as it shows how prior scene

knowledge can be beneficial beyond reconstructing a scene model.

However, this method has a few shortcomings. Firstly from an algorithmic standpoint,

its sampling approach to finding the best segmentation is not deterministic, and so quite

different 3D structures will be obtained for arbitrarily similar images. The iterative

nature of the segmentation, in which the features are extracted from a structure estimate

which is not yet optimal, might also be problematic, for example falling into local minima

where the true segmentation cannot be found because the most appropriate cues cannot



2.4 Summary 31

be exploited.

In terms of scene understanding, there are a few more drawbacks. The method rests on

the not unreasonable assumption that the camera is level (i.e. there is no roll), which

for most photographs is true, although cannot be guaranteed in a robot navigation

application, for example (indeed, such images were manually removed from their dataset

before processing). Moreover, the horizon needs to be somewhere within the image,

which again may be rather limiting. While the assumptions it makes are much less

restrictive than those of, say, shape from texture, it is still limited in that the scene

needs to be well represented by the discrete set of classes available.

In terms of plane detection, the quantisation of orientation (left-facing, right-facing and

so on) is the biggest downside, since it limits its ability to distinguish planes from one

another if they are similar in orientation, and would give ambiguous results for planes

facing obliquely to the camera; as well as the obvious limit to accuracy attainable for

any individual plane. Thus while the algorithm shows impressive performance in a range

of images, extracting structure from arbitrarily placed cameras could be a problem.

Nevertheless, the fact that a coarse representation gives a very good sense of scene

structure, and is useful for the variety of tasks mentioned above, is reassuring, and paves

the way for other learning-based single-image perception techniques.

2.4 Summary

This chapter has reviewed a range of methods for extracting the structure from single

images, giving examples of methods using either direct calculation from image features or

inference via machine learning. While these have been successful to an extent, a number

of shortcomings remain. As we have discussed, those which rely on texture gradients

or vanishing points are not applicable to general scenes where such structures are not

present. Indeed, as Gregory [54] suggested, their shortcomings arise because they fail

to take into account the contribution of learned prior knowledge to vision, and thus are

unable to deal with novel or unexpected situations.

It is encouraging therefore that several methods using machine learning have been devel-

oped; however, these also have a few problems. Torralba and Oliva et al.’s work focuses

on global scene properties, which is a level of understanding too coarse for most inter-

esting applications. Saxena et al. successfully show that depth maps can be extracted
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from single images (so long as comprehensive and accurate ground truth is available for

training), then used to build rough 3D models. While this does reflect the underlying

scene structure, it does not explicitly find higher-level structures with which the scene

can be represented, nor determine what kind of structure the superpixels represent. We

emphasise that this work has made significant progress in terms of interpreting single

images, but must conclude that it does not wholly address the central issue with which

this thesis is concerned — namely, the interpretation and understanding of scenes from

one image. That is, they can estimate depth reliably, but do not distinguish different

types of scene element, nor divide structures as to their identity (the mesh represents

the whole scene, with no knowledge of planes or other objects). By contrast, the plane

detection algorithm we present distinguishes planar and non-planar regions, and though

it does not classify planes according to what they actually are, is a first step toward un-

derstanding the different structures that make up the scene, potentially enabling more

well-informed augmentation or interaction.

Hoiem et al. on the other hand focus almost exclusively on classifying parts of the

image into geometric classes, bridging the gap between semantic understanding and

3D reconstruction, and combining techniques from both machine learning and single

view metrology. However, because orientations are coarsely quantised it means that

the recovered 3D models lack specificity, being unable to distinguish similarly oriented

planes which fall into the same category; and any reconstruction is ultimately limited

to the fidelity of the initial superpixel extraction. This limitation is not only a practical

inconvenience, but suggests that the available prior knowledge contained in the training

set could be exploited more thoroughly. Moreover, their requirements that the camera

be roughly aligned with the ground plane, and the use of vanishing point information as

a cue, suggest they are not making use of fully general information. In particular, they

tend to need a fairly stable kind of environment, with a visible and horizontal ground

plane at the base of the image. While this is a common type of scene, what we are

aiming for is a more general treatment of prior information.

On the other hand, its ability to cope with cartoon images and even paintings show it is

much more flexible than typical single-image methods, being able to extract very general

cues which are much more than merely the presence of lines or shapes. This method,

more than any others, shows the potential of machine learning methods to make sense

of single images. In this thesis we attempt to further develop these ideas, to show how

planar structures can be extracted from single images.



CHAPTER 3

Plane Recognition

This chapter introduces our plane recognition algorithm, whose purpose is to determine

whether an image region is planar or not, and estimate its 3D orientation. As it stands,

this requires an appropriately delineated region of interest in the image to be given as

input, and does not deal with the issue of finding or segmenting such regions from the

whole image; however we stress that this technique, while limited, will form an essential

component of what is to come.

As we discussed in Chapter 2, many approaches to single image plane detection have

used geometric or textural cues, for example vanishing points [73] or the characteristic

deformation of textures [44]. We aim to go beyond these somewhat restrictive paradigms,

and develop an approach which aims to be more general, and is applicable to a wider

range of scenes. Our approach is inspired by the way humans appear to be able to

easily comprehend new scenes, by exploiting prior visual experiences [50, 51, 54, 101].

Therefore we take a machine learning approach, to learn the relationship between image

appearance and 3D scene structure, using a collection of manually labelled examples.

To be able to learn, our algorithm requires the collection and annotation of a large set

of training data; representation of training and test data in an appropriate manner; and

the training of classification and regression algorithms to predict class and orientation

33
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respectively for new regions. Over the course of this chapter we develop these concepts

in detail.

3.1 Overview

The objective of our plane recognition algorithm is as follows: for a given, pre-segmented

area of an image (generally referred to as the ‘image region’), to classify it as being planar

or non-planar, and if it is deemed to be planar, to estimate its orientation with respect

to the camera coordinate system. For now, we are assuming that an appropriate region

of the image is given as input.

The basic principle of our method is to learn the relationship between appearance and

structure in a single image. Thus, the assumption upon which the whole method is

founded is that there is a consistent relationship between how an image region looks

and its 3D geometry. While this statement may appear trivial, it is not necessarily true:

appearances can deceive, and the properties of surfaces may not be all they seem. Indeed,

exploiting the simplest of relationships (again, like vanishing points) between appearance

and structure in a direct manner is what can lead to the failure of existing methods, when

such assumptions are violated. However, we believe that in general image appearance is

a very useful cue to the identity and orientation of image regions, and we show that this

is sufficient and generally reliable as a means of predicting planar structure.

To do this, we gather a large set of training examples, manually annotated with their

class (it is to be understood that whenever we refer to ‘class’ and ‘classification’, it

is to the distinction of plane and non-plane, rather than material or object identity)

and their 3D orientation (expressed relative to the camera, since we do not have any

global coordinate frame, and represented as a normalised vector in R3, pointing toward

the viewer), where appropriate. These examples are represented using general features,

rather than task-specific entities such as vanishing points. Image regions are represented

using a collection of gradient orientation and colour descriptors, calculated about salient

points. These are combined into a bag of words representation, which is projected to a

low dimensional space by using a variant of latent semantic analysis, before enhancement

with spatial distribution information using ‘spatiograms’ [10]. With these data and the

regions’ given target labels, we train a classifier and regressor (often referred to as simply

‘the classifiers’). Using the same representation for new, previously unseen, test regions,

the classifiers are used to predict their class and orientation.
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In the following sections, we describe in detail each of these steps, with a discussion of

the methods involved. A full evaluation of the algorithm, with an investigation of the

various parameters and design choices, is presented in the next chapter.

3.2 Training Data

We gather a large set of example data, with which to train the classifiers. From the raw

image data we manually choose the most relevant image regions, and mark them up with

ground truth labels for class and orientation, then use these to synthetically generate

more data with geometric transformations.

3.2.1 Data Collection

Using a standard webcam (Unibrain Fire-i)1 connected to a laptop, we gathered video

sequences from outdoor urban scenes. These are of size 320×240 pixels, and are corrected

for radial distortion introduced by a wide-angle lens2. For development and validation

of the plane recognition algorithm, we collected two datasets, one taken in an area

surrounding the University of Bristol, for training and validating the algorithm; and

a second retained as an independent test set, taken in a similar but separate urban

location.

To create our training set, we select a subset of video frames, which show typical or

interesting planar and non-planar structures. In each, we manually mark up the region

of interest, by specifying points that form its convex hull. This means that we are using

training data corresponding to either purely planar or non-planar regions (there are no

mixed regions). This is the case for both training and testing data.

To train the classifiers (see Section 3.4), we need ground truth labels. Plane class is easy

to assign, by labelling each region as to whether it is planar or not. Specifying the true

orientation of planar regions is a little more complicated, since the actual orientation is of

course not calculable from the image itself, so instead we use an interactive method based

on vanishing points as illustrated in Figure 3.1 [26, 62]. Four points corresponding to the

1www.unibrain.com/products/fire-i-digital-camera/
2Using the Caltech calibration toolkit for Matlab, from www.vision.caltech.edu/bouguetj/calib doc
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n = KT l 

vanishing line 

vanishing points 

l = v1 x v2 

v1 

v2 

plane normal 

Figure 3.1: Illustration of how the ground truth orientation is obtained, using
manually selected corners of a planar rectangle.

corners of a rectangle lying on the plane in 3D are marked up by hand, and the pairs of

opposing edges are extended until they meet to give vanishing points in two orthogonal

directions. These are denoted v1 and v2, and are expressed in homogeneous coordinates

(i.e. extended to 3D vectors by appending a 1). Joining these two points in the image

by a line gives the vanishing line, which is represented by a 3-vector l = v1 × v2. The

plane which passes through the vanishing line and the camera centre is parallel to the

scene plane described by the rectangle, and its normal can be obtained from n = KTl,

where K is the 3 × 3 intrinsic camera calibration matrix [62] (and a superscripted ‘T’

denotes the matrix transpose) . Examples of training data, both planar, showing the

‘true’ orientation, and non-planar, are shown in Figure 3.2.

3.2.2 Reflection and Warping

In order to increase the size of our training set, we synthetically generate new training

examples. First, we reflect all the images about the vertical axis, since a reflection of an

image can be considered equally physically valid. This immediately doubles the size of

our training set, and also removes any bias for left or right facing regions.

We also generate examples of planes with different orientations, by simulating the view

as seen by a camera in different poses. This is done by considering the original image to

be viewed by a camera at location [I|0], where I is the 3×3 identity matrix (no rotation)

and 0 is the 3D zero vector (the origin); and then approximating the image seen from

a camera at a new viewpoint [R|t] (rotation matrix R and translation vector t with

respect to the original view) by deriving a planar homography relating the image of the
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(a) (b) (c) (d) (e)

Figure 3.2: Examples of our manually outlined and annotated training data,
showing examples of both planes (orange boundary, with orientation vectors)
and non-planes (cyan boundary).

plane in both views. The homography linking the two views is calculated by

H = R +
tnT

d
(3.1)

where n is the normal of the plane and d is the perpendicular distance to the plane

(all defined up to scale, which means without loss of generality we set d = 1). We use

this homography to warp the original image, to approximate the view from the new

viewpoint. To generate the pose [R|t] of the hypothetical camera, we use rotations of

angle θγ about the three coordinate axes γ ∈ {x, y, z}, each represented by a rotation

matrix Rγ, the product of which gives us the final rotation matrix

R = RxRyRz =

1 0 0

0 cos θx sin θx

0 sin θx cos θx


 cos θy 0 sin θy

0 1 0

− sin θy 0 cos θy


cos θz − sin θz 0

sin θz cos θz 0

0 0 1


(3.2)

We calculate the translation by t = −RD + D, where D is a unit vector in the direction

of the point on the plane around which to rotate (calculated as D = K−1m where m is

a 2D point on the plane, usually the centroid, expressed in homogeneous coordinates).

After warping the image, the normal vector for this warped plane is Rn.

To generate new [R|t] pairs we step through angles in x and y in increments of 15◦, up

to ±30◦ in both directions. While we could easily step in finer increments, or also apply

rotations about the z-axis (which amounts to rotating the image), this quickly makes
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(a) (b) (c) (d) (e)

Figure 3.3: Training data after warping using a homography to approximate
new viewpoints.

training sets too large to deal with. We also omit examples which are very distorted, by

checking whether the ratio of the eigenvalues of the resulting regions are within a certain

range, to ensure that the regions are not stretched too much. Warping is also applied to

the non-planar examples, but since these have no orientation specified, we use a normal

pointing toward the camera, to generate the homography, under the assumption that the

scene is approximately front-on. Warping these is not strictly necessary, but we do so to

increase the quantity of non-planar examples available, and to ensure that the number

of planar and non-planar examples remain comparable. Examples of warped images are

shown in Figure 3.3.

3.3 Image Representation

We describe the visual information in the image regions of interest using local image

descriptors. These represent the local gradient and colour properties, and are calculated

for patches about a set of salient points. This means each region is described by a large

and variable number of descriptors, using each individual point. In order to create more

concise descriptions of whole regions, we employ the visual bag of words model, which

represents the region according to a vocabulary; further reduction is achieved by discov-

ering a set of underlying latent topics, compressing the bag of words information to a

lower dimensional space. Finally we enhance the topic-based representation with spatial

distribution information, an important step since the spatial configuration of various

image features is relevant to identifying planes. This is done using spatial histograms,

or ‘spatiograms’. Each step is explained in more detail in the following sections.
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3.3.1 Salient Points

Only salient points are used, in order to reduce the amount of information we must deal

with, and to focus only on those areas of the image which contain features relevant to our

task. For example, it would be wasteful to represent image areas devoid of any texture

as these contribute very little to the interpretation of the scene.

Many alternatives exist for evaluating the saliency of points in an image. One popular

choice is the FAST detector [110], which detects corner-like features. We experimented

with this, and found it to produce not unreasonable results (see Section 4.1.2); however

this detects features at only a single scale, ignoring the fact that image features tend

to occur over a range of different scales [80]. Since generally there is no way to know a

priori at which scale features will occur, it is necessary to analyse features at all possible

scales [79].

To achieve this we use the difference of Gaussians detector to detect salient points, which

is well known as the first stage in computing the SIFT feature descriptor [81]. As well

as a 2D location for interest points, this gives the scale at which the feature is detected.

This is to be interpreted as the approximate size, in pixels, of the image content which

leads the point to be considered salient.

3.3.2 Features

Feature descriptors are created about each salient point in the image. The patch sizes

used for building the descriptors come from the points’ scales, since the scale values

represent the regions of the image around the points which are considered salient. The

basic features we use to describe the image regions capture both texture and colour

information, these being amongst the most important basic visual characteristics visible

in images.

Texture information is captured using histograms of local gradient orientation; such

descriptors have been successfully used in a number of applications, including object

recognition and pedestrian detection [28, 82]. However one important difference between

our descriptors and something like SIFT is that we do not aim to be invariant. While

robustness to various image transformations and deformations is beneficial for reliably

detecting objects, this would actually be a disadvantage to us. We are aiming to actually
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recover orientation, rather than be invariant to its effects, and so removing its effects

from the descriptor would be counter-productive.

To build the histograms, the local orientation at each pixel is obtained by convolving

the image with the mask [1, 0,−1] in the x and y directions separately, to approximate

the first derivatives of the image. This gives the gradient values Gx and Gy, for the

horizontal and vertical directions respectively, which can be used to obtain the angle θ

and magnitude m of the local gradient orientation:

θ = tan−1
(
Gy

Gx

)
m =

√
G2
x +G2

y

(3.3)

The gradient orientation and magnitude are calculated for each pixel within the image

patch in question, and gradient histograms are built by summing the magnitudes over

orientations, quantised into 12 bins covering the range [0, π). Our descriptors are actually

formed from four such histograms, one for each quadrant of the image patch, then

concatenated into one 48D descriptor vector. This is done in order to incorporate some

larger scale information, and we illustrate it in Figure 3.4. This construction is motivated

by histograms of oriented gradient (HOG) features [28], but omits the normalisation over

multiple block sizes, and has only four non-overlapping cells.

The importance of colour information for geometric classification was demonstrated by

Hoiem et al. [66], and is used here as it may disambiguate otherwise difficult examples,

such as rough walls and foliage. To encode colour, we use RGB histograms, which are

formed by concatenating intensity histograms built from each of the three colour channels

Feature descriptor:

Figure 3.4: An illustration showing how we create the quadrant-based gradient
histogram descriptor. An image patch is divided into quadrants, and a separate
orientation histogram created for each, which are concatenated.
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of the image, each with 20 bins, to form a 60D descriptor.

We use both types of feature together for plane classification; however, it is unlikely

that colour information would be beneficial for estimating orientation of planar surfaces.

Therefore, we use only gradient features for the orientation estimation step; the means

by which we use separate combinations of features for the two tasks is described below.

3.3.3 Bag of Words

Each image region has a pair of descriptors for every salient point, which may number

in the tens or hundreds, making it a rather rich but inefficient means of description.

Moreover, each region will have a different number of points, making comparison prob-

lematic. This is addressed by accumulating the information for whole regions in an

efficient manner using the bag of words model.

The bag of words model was originally developed in the text retrieval literature, where

documents are represented simply by relative counts of words occurring in them; this

somewhat näıve approach has achieved much success in tasks such as document classifi-

cation or retrieval [77, 115]. When applied to computer vision tasks, the main difference

that must be accounted for is that there is no immediately obvious analogue to words

in images, and so a set of ‘visual words’ are created. This is done by clustering a large

set of example feature vectors, in order to find a small number of well distributed points

in feature space (the cluster centres). Feature vectors are then described according to

their relationship to these points, by replacing the vectors by the ID of the word (clus-

ter centre) to which they are closest. Thus, rather than a large collection of descriptor

vectors, an image region can be represented simply as a histogram of word occurrences

over this vocabulary. This has been shown to be an effective way of representing large

amounts of visual information [134]. In what follows, we use ‘word’ (or ‘term’) to refer

to such a cluster centre, and ‘document’ is synonymous with image.

We create two separate codebooks (sets of clustered features), for gradient and colour.

These are formed by clustering a large set of features harvested from training images

using K-means, with K clusters. Clustering takes up to several minutes per codebook,

but must only be done once, prior to training (codebooks can be re-used for different

training sets, assuming there is not too much difference in the features used).

Word histograms are represented as K-dimensional vectors w, with elements denoted
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wk, for k = 1, . . . , K. Each histogram bin is wk = |Λk| where Λk is the set of points which

quantised to word k (i.e. wk is the count of occurrences of word k in the document). To

reduce the impact of commonly occurring words (words that appear in all documents

are not very informative), we apply term frequency–inverse document frequency (tf-idf)

weighting as described in [84]. We denote word vectors after weighting by w′, and when

we refer to word histograms hereafter we mean those weighted by tf-idf, unless otherwise

stated.

As discussed above, we use two different types of feature vector, of different dimension-

ality. As such we need to create separate codebooks for each, for which the clustering

and creation of histograms is independent. The result is that each training region has

two histograms of word counts, for its gradient and colour features.

3.3.4 Topics

The bag of words model, as it stands, has a few problems. Firstly, there is no association

between different words, so two words representing similar appearance would be deemed

as dissimilar as any other pair of words. Secondly, as the vocabularies become large, the

word histograms will become increasingly sparse, making comparison between regions

unreliable as the words they contain are less likely to coincide.

The answer again comes from the text retrieval literature, where similar problems (word

synonymy and high dimensionality) are prevalent. This idea is to make use of an under-

lying latent space amongst the words in a corpus, which can be thought of as representing

‘topics’, which should roughly correspond to a single semantic concept.

It is not realistic to expect each document to correspond to precisely one latent topic, and

so a document is represented by a distribution over topics. Since the number of topics

is generally much less than the number of words, this means topic analysis achieves

dimensionality reduction. Documents are represented as a weighted sum over topics,

instead of over words, and ideally synonyms are implicitly taken care of by being mapped

to the same semantic concept.

A variety of methods exist for discovering latent topics, which all take as input a ‘term-

document’ matrix. This is a matrix W = [w′0,w
′
1, . . . ,w

′
M ], where each column is the

weighted word vector for each of M documents, so each row corresponds to a word k.
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3.3.4.1 Latent Semantic Analysis

The simplest of these methods is known as latent semantic analysis (LSA) [30], which

discovers latent topics by factorising the term-document matrix W, using the singular

value decomposition (SVD), into W = UDVT. Here U is a K×K matrix, V is M×M ,

and D is the diagonal matrix of singular values. The reduced dimensionality form is

obtained by truncating the SVD, retaining only the top T singular values (where T is

the desired number of topics), so that W ≈ UtDtV
T
t , where Ut is K × T and Vt is

M × T . The rows of matrix Vt are the reduced dimensionality description – the topic

vectors tm – for each document m.

An advantage of LSA is that it is very simple to use, partly because topic vectors for

the image regions in the training set are extracted directly from Vt. Topic vectors

for new test image regions are calculated simply by projecting their word histograms

into the topic space, using tj = D−1
t UT

t w′j. However, LSA suffers from an important

problem, due to its use of SVD: the topic weights (i.e. the elements of the vectors tj)

may be negative. This makes interpretation of the topic representation difficult (what

does it mean for a document to have a negative amount of a certain topic?), but more

importantly the presence of negative weights will become a problem when we come to

take weighted means of points’ topics (see Section 3.3.5), where all topic weights would

need to be non-negative.

A later development called probabilistic latent semantic analysis (pLSA) [63] does pre-

serve the non-negativity of all components (because they are expressed as probabilities),

but its use of expectation maximisation to both find the factorisation, and get the topic

vectors for new data, is infeasibly slow for our purposes. Fortunately, a class of methods

known as non-negative matrix factorisation has been shown, under some conditions, to

be equivalent to pLSA [31, 45].

3.3.4.2 Non-negative Matrix Factorisation

As the name implies, non-negative matrix factorisation (NMF) [76] is a method for

factorising a matrix (in this case, the term-document matrix W) into two factor matrices,

with reduced dimensionality, where all the terms are positive or zero. The aim is to find

the best low-rank approximation W ≈ BT to the original matrix with non-negative

terms. If W is known to have only non-negative entries (as is the case here, since its
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entries are word counts) so will B and T. Here, T is T ×M and will contain the topic

vectors corresponding to the columns of W; and B can be interpreted as the basis of

the topic space (of size K × T , the number of words and topics respectively). There are

no closed form solutions to this problem, but Lee and Seung [76] describe an iterative

algorithm, which can be started from a random initialisation of the factors.

As with LSA, topic vectors for training regions are simply the columns of T. Unfor-

tunately, although we can re-arrange the above equation to obtain tj = B†w′j (where

B† is the Moore-Penrose pseudoinverse) to get a low-dimensional approximation for test

vectors w′j, there is no non-negativity constraint on B†. This means that the resulting

topic vectors tj too will contain negative elements, and so we have the same problem as

with LSA.

The problem arises from using the pseudoinverse. It is generally calculated using SVD,

which as we saw above does not maintain non-negativity. One way to ensure that the

inverse of B is non-negative is to make B orthogonal, since for a semi-orthogonal matrix

(non-square) its pseudoinverse is also its transpose. This leads us to the methods of

orthogonal non-negative matrix factorisation.

3.3.4.3 Orthogonal Non-negative Matrix Factorisation

The objective of orthogonal non-negative matrix factorisation (ONMF) [18] is to factorise

as above, with the added constraint that BTB = I. Left-multiplying W = BT by BT

we get BTW = BTBT = T, and so it is now valid to project a word vector w′j to

the topic space by tj = BTw′j, such that the topic vector contains only non-negative

elements. In practice, these factors are found by a slight modification of the method of

NMF [135], and so the algorithms used for ONMF are:

Bnt ←− Bnt
(WTT)nt

(BTWTB)nt
Ttm ←− Ttm

(BTW)tm
(BTBT)tm

(3.4)

The result is a factorisation algorithm which directly gives the topic vectors for each

training example used in creating the term-document matrix, and a fast linear method

for finding the topic vector of any new test word histogram, simply by multiplying with

the transpose of the topic basis matrix B.
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(a) The words in the
image, each with a
unique colour

(b) Points contribut-
ing to Topic 16

(c) Points contribut-
ing to Topic 5

Figure 3.5: For a given planar region (a), on which we have drawn coloured
points to indicate the different words, we can also show the weighting of these
points to different topics, namely Topics 16 (b) and 5 (c), corresponding to those
visualised below.

3.3.4.4 Topic Visualisation

So far, in considering the use of topics analysis, we have treated it simply as a means of

dimensionality reduction. However, just as topics should represent underlying semantic

topics in text documents, they should also represent similarities across our visual words.

Indeed, it is partly in order capture otherwise overlooked similarities between different

words that we have used topic analysis, and so it would interesting to check whether this

is actually the case.

First, consider the example plane region in Figure 3.5a, taken from our training set. In

the left image, we have shown all the words, each with a unique colour – showing no

particular structure. The two images to its right show only those points corresponding

to certain topics (Topic 16 and Topic 5, from a gradient-only space of 20 topics), via the

words that the features quantise to, where the opacity of the points represent the extent

to which the word contributes to that topic. It appears that words contributing to Topic

16 tend to occur on the tops and bottoms of windows, while those for Topic 5 lie within

the windows, suggesting that they may be picking out particular types of structure.

We expand upon this, by more directly demonstrating what the topics represent. Vi-

sualising words and topics can be rather difficult, since both exist in high dimensional

spaces, and because topics represent a distribution over all the words, not simply a re-

duced selection of important words. Nevertheless, it should be the case that the regions

which quantise to the words which contribute most strongly to a given topic will look

more similar to each other than other pairs of words.
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(a) Word 336 (b) Word 84 (c) Word 4

Figure 3.6: A selection of patches quantising to the top three words for Topic
16, demonstrating different kinds of horizontal edge.

(a) Word 376 (b) Word 141 (c) Word 51

Figure 3.7: Patches representing the top three words for Topic 5, which appear
to correspond to different kinds of grid pattern (or, with a combination of ver-
tical and horizontal edges; a few apparent outliers are shown toward the right,
although these retain a similar pattern of edges).

For the image region above, we looked at the histogram of topics, and found that the

two highest weighted were Topics 16 and 5 (those shown above). Rather than showing

these topic directly, we can find which words contribute most strongly to those topics.

For Topic 16, the highest weighted words (using the word-topic weights from B) were

336, 84 and 4; and for Topic 5, the words with the highest weights were 376, 141 and

51. Again, these numbers have little meaning on their own, being simply indices within

the unordered set of 400 gradient words we used.

We show example image patches for each of these words, for those two topics, in Figures

3.6 and 3.7. These patches were extracted from the images originally used to create

the codebooks (the patches are of different sizes due to the use of multi-scale salient

point detection, but have been resized for display). If the clustering has been performed

correctly there should be similarities between different examples of the same word; and

according to the idea behind latent topic analysis, we should also find that the words

assigned to the same topic are similar to each other.

This does indeed appear to be the case. The three words shown for Topic 16 represent

various types of horizontal features. Because we use gradient orientation histograms as

features, the position of these horizontal edges need not remain constant, nor the direc-

tion of intensity change. Similarly, Topic 5 appears to correspond to grid-like features,

such as window panes and tiles. The fact that these groups of words have been placed

together within topics suggests topic analysis is performing as desired, in that it is able

to link words with similar conceptual features which would usually – in a bag of words

model – be considered as different as any other pair of words. Not only does this grouping

suggest the correct words have been associated together, but it agrees with the location
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of the topics as visualised in Figure 3.5, which are concentrated on horizontal window

edges and grid-like window panes respectively.

We acknowledge that these few examples do not conclusively show that this happens

consistently, but emphasise that our method does not depend on it: it is sufficient that

ONMF performs dimensionality reduction in the usual sense of the word. Nevertheless,

it is reassuring to see such structure spontaneously emerge from ONMF, and for this to

be reflected in the topics found in a typical image from our training set.

3.3.4.5 Combining Features

The above discussion assumes there is only one set of words and documents, and does not

deal with our need to use different vocabularies for different tasks. Fortunately, ONMF

makes it easy to combine the information from gradient and colour words. This is done

by concatenating the two term-document matrices for the corpus, so that effectively

each document has a word vector of length 2K (assuming the two vocabularies have the

same number of words). This concatenated matrix is the input to ONMF, which means

the resulting topic space is over the joint distribution of gradient and colour words, so

should encode correlations between the two types of visual word. Generally we double

the number of topics, to ensure that using both together retains the details from either

used individually.

When regressing the orientation of planes, colour information is not needed. We run

ONMF again to create a second topic space, using a term-document matrix built only

from gradient words, and only using planar image regions. This means that there are two

topic spaces, a larger one containing gradient and colour information from all regions,

and a smaller one, of lower dimensionality, using only the gradient information from the

planar regions.

3.3.5 Spatiograms

The topic histograms defined above represent image regions compactly; however, we

found classification and regression accuracy to be somewhat disappointing using these

alone (see our experiments in Section 4.1.1). A feature of the underlying bag of words

model is that all spatial information is discarded. This also applies to the latent topic
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representation. Although this has not hampered performance in tasks such as object

recognition, for our application the relative spatial position of features are likely to be

important. For example, some basic visual primitives may imply a different orientation

depending on their relative position.

It is possible to include spatial information by representing pairwise co-occurrence of

words [9], by tiling overlapping windows [131], or by using the constellation or star models

[37, 38]. While the latter are effective, they are very computationally expensive, and scale

poorly in terms of the number of points and categories. Instead, we accomplish this by

using spatiograms. These are generalisations of histograms, able to include information

about higher-order moments. These were introduced by Birchfield and Rangarajan [10]

in order to improve the performance of histogram-based tracking, where regions with

different appearance but similar colours are too easily confused.

We use second-order spatiograms, which as well as the occurrence count of each bin, also

encode the mean and covariance of points contributing to that bin. These represent the

spatial distribution of topics (or words), and they replace the topic histograms above

(not the gradient or colour histogram descriptors). While spatiograms have been useful

for representing intensity, colour and terrain distribution information [10, 52, 83], to our

knowledge they have not previously been used with a bag of words model.

We first describe spatiograms over words, in order to introduce the idea. A word spa-

tiogram sword, over K words, is defined as a set of K triplets swordk = (hwordk ,µword
k ,Σword

k ),

where the histogram values hwordk = w′k are the elements of the word histogram as above,

and the mean and (unbiased) covariance are defined as

µword
k =

1

|Λk|
∑
i∈Λk

vi Σword
k =

1

|Λk| − 1

∑
i∈Λk

vki v
k
i

T
(3.5)

where vi is the 2D coordinate of point i and vki = vi − µword
k , and as above Λk is the

subset of points whose feature vectors quantise to word k.

To represent 2D point positions within spatiograms, we normalise them with respect

to the image region, leaving us with a set of points with zero mean, rather than being

coordinates in the image. This gives us a translation invariant region descriptor. Without

this normalisation, a similar patch appearing in different image locations would have
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a different spatiogram, and so would have a low similarity score, which may adversely

affect classification. The shift is achieved by replacing the vi in the equations above with

v∗i = vi − 1
N

∑N
i=1 vi. Note that by shifting the means, the covariances (and histogram

values) are unaffected.

The definition of word spatiograms is fairly straightforward, since every 2D point quan-

tises to exactly one word. Topics are not so simple, since each word has a distribution

over topics, and so each 2D point contributes some different amount to each topic. There-

fore, rather than simply a sum over a subset of points, the mean and covariance will be

a weighted mean and a weighted (unbiased) covariance over all the points, according to

their contribution to each topic. It is because of this calculation of weighted means that

the topic weights cannot be negative, as ensured by our use of ONMF, discussed above.

Rather than a sum over individual points, we can instead express topic spatiograms as

a sum over the words, since all points corresponding to the same word contribute the

same amount to their respective topics. The resulting topic spatiograms stopic, defined

over T topics, consist of T triplets stopict = (htopict ,µtopic
t ,Σtopic

t ). Here, the scalar elements

htopict are from the region’s topic vector as defined above, while the mean and covariance

are calculated using

µtopic
t =

1

αt

K∑
k=1

ηtkµ
word
k Σtopic

t =
αt

α2
t − βt

K∑
k=1

ηtk
|Λk|

∑
i∈Λk

vtiv
t
i
T

(3.6)

where vti = v∗i −µ
topic
t , αt =

∑K
k=1 ηtk, and βt =

∑K
k=1

η2tk
|Λk| . The weights ηtk are given by

ηtk = Btkw
′
k and reflect both the importance of word k through w′k and its contribution to

topic t via Btk (elements from the topic basis matrix). As in Section 3.3.4.5, we maintain

two spatiograms per (planar) image region, one for gradient and colour features, and one

for just gradient features. We illustrate the data represented by spatiograms in Figure

3.8, where we have shown an image region overlaid with some of the topics to which the

image features contribute (see Figure 3.5 above), as well as the mean and covariance for

the topics, which is encoded within the spatiogram.

To use the spatiograms for classification and regression, we use a similarity measure

proposed by Ò Conaire et al. [97]. This uses the Battacharyya coefficient to compare

spatiogram bins, and a measure of the overlap of Gaussian distributions to compare
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(a) (b) (c) (d)

Figure 3.8: An illustration of what is represented by topic spatiograms. The
points show the contribution of individual points to each topic (a,c), and the
spatiograms represent the distribution of these contributions (b,d), displayed
here as an ellipse showing the covariance, centred on the mean, for individual
topics.

their spatial distribution. For two spatiograms sA and sB of dimension D, this similarity

function is defined as

ρ(sA, sB) =
D∑
d=1

√
hAd h

B
d 8π|ΣA

d ΣB
d |

1
4N
(
µAd ;µBd , 2(ΣA

d + ΣB
d )
)

(3.7)

where N(x;µ,Σ) is a Gaussian with mean µ and covariance matrix Σ evaluated at x.

Following [97], we use a diagonal version of the covariance matrices since it simplifies the

calculation.

3.4 Classification

After compactly representing the image regions with spatiograms, they are used to train

a classifier. We use the relevance vector machine (RVM) [125], which is a sparse kernel

method, conceptually similar to the more well-known support vector machine (SVM). We

choose this classifier because of its sparse use of training data: once it has been trained,

only a small subset of the data need to be retained (fewer even than the SVM), making

classification very fast even for very large training sets. The RVM gives probabilistic

outputs, representing the posterior probability of belonging to either class.

3.4.1 Relevance Vector Machines

The basic model of the RVM is very similar to standard linear regression, in which the

output label y for some input vector x is modelled as a weighted linear combination of
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M fixed (potentially non-linear) basis functions [11]:

y(x) =
M∑
i=1

ωiφi(x) = ωTφ(x) (3.8)

where ω = (ωi, . . . , ωM)T is the vector of weights, for some number M of basis functions

φ(x) = (φi(x), . . . , φM(x))T. If we choose the basis functions such that they are given by

kernel functions, where there is one kernel function for each of the N training examples

(a similar structure to the SVM), (3.8) can be re-written:

y(x) =
N∑
n=1

ωmk(x,xn) + b (3.9)

where xn are the training data, for n = 1, . . . , N , and b is a bias parameter. The kernel

functions take two vectors as input and return some real number. This can be considered

as a dot product in some higher dimensional space — indeed, under certain conditions, a

kernel can be guaranteed to be equivalent to a dot product after some transformation of

the data. This mapping to a higher dimensional space is what gives kernel methods their

power, since the data may be more easily separable in another realm. Since the mapping

need never be calculated explicitly (it is only ever used within the kernel function), this

means the benefits of increased separability can be attained without the computational

effort of working in higher dimensions (this is known as the ‘kernel trick’ [11]).

Training the RVM is done via the kernel matrix K, where each element is the kernel

function between two vectors in the training set, Kij = k(xi,xj). The matrix is sym-

metric, which saves some time during computation, but calculating it is still quadratic

in the number of data. This becomes a problem when using such kernel methods on

very large datasets (the RVM training procedure is cubic, due to matrix inversions [11],

although iteratively adding relevance vectors can speed it up somewhat [126]).

While equation 3.9 is similar to standard linear regression, the important difference here

is that rather than having a single shared hyperparameter over all the weights, the RVM

introduces a separate Gaussian prior for each ωi controlled by a hyperparameter αi. Dur-

ing training, many of the αi tend towards infinity, meaning the posterior probability of

the associated weight is sharply peaked at zero — thus the corresponding basis functions
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are effectively removed from the model, leading to a significantly sparsified form.

The remaining set of training examples – the ‘relevance vectors’ – are sufficient for

prediction for new test data. These are analogous to the support vectors in the SVM,

though generally far fewer in number; indeed, in our experiments we observed an over

95% reduction in training data used, for both classification and regression. Only these

data (and their associated weights) need to be stored in order to use the classifier to

predict the target value of a new test datum x′. Classification is done through a new

kernel matrix K′ (here being a single column), whose elements are calculated as K′r =

k(xr,x
′) for R relevance vectors indexed r = 1, . . . , R. The prediction is then calculated

simply by matrix multiplication:

y(x′) = ωTK′ (3.10)

where ω is again the vector of weights. For regression problems, the target value is

simply y(x′); whereas for classification, this is transformed by a logistic sigmoid,

p(x′) = σ(y(x′)) = σ(ωTK′)

σ(x) = 1
1+exp(−x)

(3.11)

This maps the outputs to p(x′) ∈ (0, 1), which is interpreted as the probability of the

test datum belonging to the positive class. Thresholding this at 0.5 (equal probability

of either class) gives a binary classification. In our work we used the fast [126] ‘Sparse

Bayes’ implementation of the RVM made available by the authors3.

The above describes binary classification or single-variable regression in the standard

RVM. In order to regress multi-dimensional data – in our case the three components of the

normal vectors – we use the multi-variable RVM (MVRVM) developed by Thayananthan

et al. [123]; the training procedure is rather different from the above, but we omit details

here (see [11]). This regresses over each of the D output dimensions simultaneously,

using the same set of relevance vectors for each. Regression is achieved as in (3.10),

3www.vectoranomaly.com/downloads/downloads.htm
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but now the weights are a R × D matrix Ω, with a column for each dimension of the

target variable; and so y(x′) = ΩTK′. For this we adapted code available online4. For

both classification and regression, we can predict values for many data simultaneously if

necessary, simply by adding more columns to K′.

All that remains is to specify the form of kernel function we use. When using word

or topic histograms, we experimented with a variety of standard histogram similarity

measures, such as the Bhattacharyya coefficient and cosine similarity; for spatiograms,

we use various functions of equation 3.7. More details of the different functions can be

found in our experiments in Section 4.1.4.

3.5 Summary

This concludes our description of the plane recognition algorithm, for distinguishing

planes from non-planes in given image regions and estimating their orientation. To

summarise: we represent data for regions by detecting salient points, which are described

using gradient and colour features; these are gathered into a bag of words, reduced with

topic analysis, and enhanced with spatial information using spatiograms. These data

are used to train an RVM classifier and regressor. For a test region, once the spatiogram

has been calculated, the RVMs are used to classify it and, if deemed planar, to regress

its orientation.

However, it is important to realise that, as successful as this algorithm may be, it is

only able to estimate the planarity and orientation for a given region of the image. It

is not able to detect planes in a whole image, since there is no way of knowing where

the boundaries between regions are, and this is something we shall return to in Chapter

5. Before that, in the next chapter we present a thorough evaluation of this algorithm,

both in cross-validation, to investigate the effects of the details discussed above; and

an evaluation on an independent test set, showing that it can generalise well to novel

environments.

4mi.eng.cam.ac.uk/˜at315/MVRVM.htm



CHAPTER 4

Plane Recognition Experiments

In this chapter, we present experimental results for our plane recognition algorithm. We

show how the techniques described in the previous chapter affect recognition, for example

how the inclusion of spatial distribution information makes classification and regression

much more accurate, and the benefits of using larger amounts of training data. We

describe experiments on an independent set of data, demonstrating that our algorithm

works not only on our initial training and validation set, but also in a wider context;

and compare to an alternative classifier.

Our experiments on the plane recognition algorithm were conducted as follows: we began

with a set of training data (individual, manually segmented regions, not whole images),

which we represented using the steps discussed in Section 3.3. The resulting descriptions

of the training regions were used to train the RVM classifiers. Only at this point were

the test data introduced, so the creation of the latent space and the classifiers was

independent of the test data.

54
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4.1 Investigation of Parameters and Settings

For the first set of experiments, we used only our training set, collected from urban

locations at the University of Bristol and the surrounding area. This consisted of 556

image regions, each of which was labelled as described in Section 3.2; these were reflected

to create our basic dataset of 1112 regions. We also warped these regions, as described

in Section 3.2.2, to obtain a total of 7752 regions. The effect of using these extra regions

is discussed later.

All of these experiments used five-fold cross-validation on this training set — the train

and test folds were kept independent, the only association between them being that the

data came from the same physical locations, and that the features used to build the bag

of words codebooks could have overlapped both train and test sets. We also ensured

that warped versions of a region never appeared in the training set when the original

region was in the test set (since this would be a potentially unfairly easy test). All

of the results quoted below came from ten independent runs of cross-validation, from

which we calculated the mean and standard deviation, which are used to draw error bars.

The error bars on the graphs show one standard deviation either side of the mean, over

all the runs of cross-validation (i.e. it is the standard deviation of the means from the

multiple cross-validation runs, and not derived from the standard deviations of individual

cross-validations).

4.1.1 Vocabulary

The first experiment investigated the performance for different vocabulary sizes, for

different basic representations of the regions. The vocabulary size is the number of

clusters K used in the K-means algorithm, and by testing using different values for K

we could directly see what effect this had on plane recognition (instead of choosing the

best K according to the distortion measure [11], for example).

This experiment also compared four different representations of the data. First, we used

weighted word histograms as described in Section 3.3.3 — this representation does not

use the latent topics, nor use spatial information. We compared this to the basic topic

histogram representation, where the word vectors have been projected into the topic

space to reduce their dimensionality (refer to Section 3.3.4); in these experiments we

always used a latent space of 20 topics, but found performance to be robust to different
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values. Next we created spatiograms for both word and topic representations, using

equations 3.5 and 3.6.

The experiment was conducted as follows: for each different vocabulary size, we created

a new codebook by clustering gradient features harvested from a set of around 100

exemplary images. The same set of detected salient points and feature descriptors was

used each time (since these are not affected by the vocabulary size); and for each repeat

run of cross-validation the same vocabulary was used, to avoid the considerable time it

takes to re-run the clustering. This was done for each of the four region descriptions,

then the process was repeated for each of the vocabulary sizes. We used only gradient

features for this to simplify the experiment — so the discussion of combining vocabularies

(Section 3.3.4.5) is not relevant at this point. In this experiment (and those that follow),

we used only the original marked-up regions, and their reflections – totalling 1112 regions

– since warping was not yet confirmed to be useful, and to keep the experiment reasonably

fast. The kernels used for the RVMs were polynomial sums (see Section 4.1.4) of the

underlying similarity measure (Bhattacharyya for histograms and spatiogram similarity

[97] for spatiograms).
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Figure 4.1: Performance of plane classification and orientation estimation as
the size of the vocabulary was changed.

The results are shown in Figure 4.1, comparing performance for plane classification (a)

and orientation regression (b). It is clear that spatiograms outperformed histograms,

over all vocabulary sizes, for both error measures. Furthermore, using topics also tended

to increase performance compared to using words directly, especially as the vocabulary

size increased. As one would expect, there was little benefit in using topics when the

number of topics was approximately the same as the number of words, and when us-

ing small vocabularies, performance of word spatiograms was as good as using topic

spatiograms. However, since this relies on using a small vocabulary it would overly con-



4.1 Investigation of Parameters and Settings 57

strain the method (and generally larger vocabularies, up to an extent, give improved

results [68]); and best performance was only seen when using around 400 words, the

difference being much more pronounced for orientation estimation. This experiment

confirms the hypothesis advanced in Section 3.3 that using topic analysis plus spatial

representation is the best way, of those studied, for representing region information.

4.1.2 Saliency and Scale

In Section 3.3.1 we discussed the choice of saliency detector, and our decision to use a

multi-scale detector to make the best use of the information at multiple image scales.

We tested this with an experiment, comparing the performance of the plane recognition

algorithm when detecting points using either FAST [110] or the difference of Gaussians

(DoG) detector [81]. FAST gives points’ locations only, and so we tried a selection of

possible scales to create the descriptors. We did the same using DoG (i.e. ignoring the

scale value and using fixed patch sizes), to directly compare the type of saliency used.

Finally, we used the DoG scale information to choose the patch size, in order to create

descriptors to cover the whole area deemed to be salient.
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Figure 4.2: The effect of patch size on orientation accuracy, for different means
of saliency detection.

Our results are shown in Figure 4.2, for evaluation using the mean angular error of

orientation regression (we found that different saliency detectors made no significant

difference to classification accuracy). It can be seen that in general, DoG with fixed patch

sizes out-performed FAST, although at some scales the difference was not significant.
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This suggests that the blob-like features detected by DoG might be more appropriate

for our plane recognition task than the corner-like features found with FAST. The green

line shows the performance when using the scale chosen by DoG (thus the patch size

axis has no meaning, hence the straight line), which in most cases was clearly superior

to both FAST and DoG with fixed patch sizes.

We note that at a size of 15 pixels, a fixed patch size appeared to out-perform scale

selection, and it may be worth investigating further since this would save computational

effort. However, we do not feel this one result is enough yet to change our method, as

it may be an artefact of these data. We conclude that this experiment broadly supports

our reasons for using scale selection, rather than relying on any particular patch size;

especially given that we would not know the best scale to use with a particular dataset.

4.1.3 Feature Representation

The next experiment compared performance when using different underlying feature

representations, namely the gradient and colour features as described in Section 3.3.2.

In these experiments, we used a separate vocabulary for gradient and colour descriptors,

using K-means as before (having fixed the number of words, on the basis of the earlier

experiment, at 400 words for the gradient vocabulary, and choosing 300 for colour).

For either feature descriptor type used in isolation, the testing method was effectively

the same; when using both together, we combined the two feature representations by

concatenating their word histograms before running ONMF (words were re-numbered as

appropriate, so that word i in the colour space became word Kg + i in the concatenated

space, where Kg is the number of words in the gradient vocabulary). Since this used

around twice as much feature information, we doubled the number of topics to 40 for the

concatenated vocabularies, which we found to improve performance somewhat (simply

doubling the number of topics for either feature type in isolation showed little difference,

so any improvement will be due to the extra features).

These experiments were again conduced using ten runs of five-fold cross-validation, using

topic spatiograms, after showing them to be superior in the experiment above. We used

the non-warped set of 1112 regions, with the polynomial sum kernel (see below), and the

vocabularies were fixed throughout.

Table 4.1 shows the results, which rather interestingly indicate that using colour on its
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own gave superior performance to gradient information. This is somewhat surprising

given the importance of lines and textural patterns in identifying planar structure [44],

although as Hoiem et al. [66] discovered, colour is important for geometric classification.

It is also important to remember that we use spatiograms to represent the distribution

of colour words, not simply using the mean or histogram of regions’ colours directly.

Even so, our hypothesis that using both types of feature together is superior is verified,

since the concatenated gradient-and-colour descriptors performed better than either in

isolation, suggesting that the two are representing complementary information.

Gradient Colour Gradient&Colour
Classification Accuracy (%) 86.5 (1.8) 92.5 (0.5) 93.9 (2.8)

Orientation Error (deg) 13.1 (0.2) 28.4 (0.3) 17.9 (0.7)

Table 4.1: Comparison of average classification accuracy and orientation er-
ror when using gradient and colour features. Standard deviations are shown in
parentheses.

On the other hand, as we expected, colour descriptors fared much worse when estimating

orientation, and combining the two feature types offered no improvement. This stands

to reason, since the colour of a region – beyond some weak shading information, or the

identity of the surface – should not give any indication to its 3D orientation, whereas

texture will [107]. Adding colour information would only serve to confuse matters, and

so the best approach is simply to use only gradient information for orientation regression.

To summarise, the image representations we use, having verified this by experiment,

are computed as follows: gradient and colour features are created for all salient points

in all regions, which are used to create term-document matrices for the two vocabu-

laries. These are used to create a combined 40D topic space, encapsulating gradient

and colour information, and this forms the classification topic space. Then, a separate

term-document matrix is built using only planar regions, using only gradient features, to

create a second 20D gradient only topic space, to be used for regression. This means that

each region will have two spatiograms, one of 40 dimensions and one of 20 dimensions,

for classification and regression respectively.
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Data Name Function k(xi,xj) =

Histogram

Linear xT
i xj

Euclidean ‖xi − xj‖
Bhattacharyya

∑
d

√
xidxjd

Bhattacharyya Polynomial
∑Q

q=1

(∑
d

√
xidxjd

)q
Spatiogram

Spatiogram ρ(si, sj) (see (3.7) )

Gaussian exp(
−ρ(si,sj)p

2σ2 )

Polynomial
∑Q

q=1 ρ(si, sj)
q

Logistic 1
1+exp(−ρ(si,sj))

Weighted Polynomial
∑Q

q=1wdρ(si, sj)
q

Table 4.2: Description of the kernel functions used by the RVM, for histograms
and spatiograms.

4.1.4 Kernels

Next, we compared the performance of various RVM kernels, for both classification

and orientation estimation (this test continued to use only gradient features for ease of

interpreting the results). In this experiment, we compared kernels on both histograms

and spatiograms.

For histograms, we used various standard comparison functions, including Euclidean,

cosine, and Bhattacharyya distances, as well as simply the dot product (linear kernel).

For spatiograms, since they do not lie in a vector space, we could only use the spatiogram

similarity measure, denoted ρ, from equation 3.7 [97], and functions of it. Variations we

used include the original measure, the version with diagonalised covariance, a Gaussian

radial basis function, and polynomial functions of the spatiogram similarity. The latter

were chosen in order to increase the complexity of the higher dimensionality space and

strive for better separability. These functions are described in Table 4.2.

Figure 4.3 shows the results. It is clear that as above the spatiograms out-performed his-

tograms in all cases, though the difference is less pronounced for classification compared

to regression. Of the spatiogram kernels, the polynomial function showed superior per-

formance (altering the weights for each degree seemed to make no difference). Therefore

we chose the unweighted polynomial sum kernel for subsequent testing (and we set the

maximum power to Q = 4).

It is also interesting to compare this polynomial sum kernel to the equivalent polynomial

sum of the Bhattacharyya coefficient on histograms, which leads to substantially lower
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Figure 4.3: Comparison of different kernel functions, for histogram (first five)
and spatiogram (the others) region descriptions. Spatiograms always out-perform
histograms, with the polynomial sum kernels proving to be the best.

performance. This confirms that the superior performance is due to using spatiograms,

rather than the polynomial function or Bhattacharyya comparison of histogram bins;

while the polynomial function leads to increased performance compared to the regular

spatiogram similarity kernel.

4.1.5 Synthetic Data

In Section 3.2.2 we described how, from the initial marked-up training examples, we can

synthetically generate many more by reflecting and warping these, to approximate views

from different locations. We conducted an experiment to verify that this is actually ben-

eficial to the recognition algorithm (note that all the above experiments were using the

marked-up and reflected regions, but not the warped). This was done by again running

cross-validation, where the test set was kept fixed (comprising marked-up and reflected

regions as before), but for the training set we added progressively more synthetically

generated regions. The experiment started with a minimal set consisting of only the

marked-up regions, then added the reflected regions, followed by increasing quantities

of warped regions, and finally included warped and reflected regions. These were added

such that the number of data was increased in almost equal amounts each time.



4.1 Investigation of Parameters and Settings 62

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
75%

80%

85%

90%

95%

Training set size

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

 

 

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
12

13

14

15

16

Training set size

O
ri
e

n
ta

ti
o

n
 e

rr
o

r 
(d

e
g

re
e

s
)

 

 

(b)

Figure 4.4: The effect of adding progressively more synthetically generated
training data is to generally increase performance, although the gains diminish
as more is added. The best improvement is seen when adding reflected regions
(second data point).

The results of this experiment, on both classification and orientation performance, are

shown in Figure 4.4. As expected, adding more data was beneficial for both tasks.

However, while performance tended to increase as more training data were used, the

gains diminished until adding the final set of data made little difference. This could be

because we were only adding permutations of the already existing data, from which no

new information could be derived. It is also apparent that the biggest single increase was

achieved after adding the first set of synthetic data (second data point) which consisted

of the reflected regions. This seems reasonable, since of all the warped data this was the

most realistic (minimal geometric distortion) and similar to the test regions.

It seems that synthetically warping data was generally beneficial, and increased perfor-

mance on the validation set — but as most of the benefit came from reflected images this

calls into question how useful or relevant the synthetic warping actually was (especially

given there were a very large number of warped regions). This experiment confirmed

that using a larger amount of training data was an advantage, and that reflecting our

initial set was very helpful, but it may be that including more marked-up data, rather

than generating new synthetic regions, would be a better approach.

4.1.6 Spatiogram Analysis

It may be thought that part of the success of spatiograms comes from the way the test

regions have been manually segmented, with their shape often being indicative of their

actual orientation – for example the height of an upright planar region in the image
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Figure 4.5: Region shape, even without any visual features, is suggestive of the
orientation of manually segmented regions.

will often diminish as it recedes into the distance. Even without considering the actual

features in a region, the shape alone can give an indication of its likely orientation, and

such cues are sure to exist when boundaries are outlined by a human. We illustrate

this effect in Figure 4.5. This is significant, as unlike histograms, spatiograms use the

location of points, which implicitly encodes the region shape. This is a problem, since

in ‘real’ images, such boundary information would not be available; worse, it could bias

the classifier into an erroneous orientation simply due to the shape of the region.

To investigate how much of an effect this has on our results, an experiment was carried

out where all regions were reduced to being circular in shape (by finding the largest

circle which can fit inside the region). We would expect this to reduce performance

generally, since there was less information available to the classifier; however, we found

that spatiograms still significantly outperformed histograms for orientation regression,

as Table 4.3 shows. While circular regions gave worse performance, this was by a simi-

lar amount for both representations, and adding spatial information to circular regions

continued to boost accuracy. A similar pattern was seen for classification too, where the

region shape should not be such a significant cue. To summarise it seems that the region

shapes are not a particularly important consideration, confirming our earlier conclusions

that spatiograms contribute significantly to the performance of the plane recognition

algorithm.

Histograms Spatiograms Cut Hist. Cut Spat.
Class. Acc. (%) 77.3 (1.0) 87.9 (1.0) 75.3 (1.0) 84.4 (0.9)

Orient. Err. (deg) 24.9 (0.2) 13.3 (0.1) 26.6 (0.2) 17.0 (0.3)

Table 4.3: Comparison of performance for histograms and spatiograms on re-
gions cut to be uniformly circular, compared to the original shaped regions. Spa-
tiograms are still beneficial, showing this is not only due to the regions’ shapes
(standard deviation in parentheses).
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4.2 Overall Evaluation

Finally, using the experiments above, we decided upon the following as the best settings

to use for testing our algorithm:

• Difference of Gaussians saliency detection, to detect location and scale of salient

points.

• Gradient and colour features combined for classification, but gradient only for

regression.

• A vocabulary of size 400 and 300 for gradient and colour vocabularies respectively.

• Latent topic analysis, to reduce the dimensionality of words to 20-40 topics.

• Spatiograms as opposed to histograms, to encode spatial distribution information.

• Polynomial sum kernel of the spatiogram similarity measure within the RVM.

• Augmented training set with reflected and warped regions.
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Figure 4.6: Distribution of orientation errors for cross-validation, showing that
the majority of errors were below 15◦.

Using the above settings, we ran a final set of cross-validation runs on the full dataset,

with reflected and warped regions, comprising 7752 regions. We used the full set for

training but only the marked-up and reflected regions for testing. We observed a mean

classification accuracy of 95% (standard deviation σ = 0.49%) and a mean orientation

error of 12.3◦ (σ = 0.16◦), over the ten runs. To illustrate how the angular errors were

distributed, we show a histogram of orientation errors in Figure 4.6. Although some are

large, a significant number are under 15◦ (72%) and under 20◦ (84%). This is a very
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encouraging result, as even with a mean as low as 12.3◦, the errors are not normally

distributed, with an obvious tendency towards lower orientation errors.
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Figure 4.7: Distribution of errors for testing on independent data.

4.3 Independent Results and Examples

While the above experiments were useful, they were not a good test of the method’s

ability to generalise, since the training and test images, though never actually coinciding,

were taken from the same physical locations, and so there would inevitably be a degree

of overlap between them.

To test the recognition algorithm properly, we used a second dataset of images, gathered

from an independent urban location, ensuring the training and test sets were entirely

separate. This set consisted of 690 image regions, of an equal number of planes and

non-planes (we did not use any reflection or warping on this set), which were marked

up with ground truth class and orientation as before. Again, we emphasise these were

manually chosen regions of interest, not whole images. Ideally, the intention was to keep

this dataset entirely separate from the process of training and tuning the algorithm, and

to use it exactly once at the end, for the final validation. Due to the time-consuming

nature of acquiring new training data, this was not quite the case, and some of the data

would have been seen more than once, as follows. A subset of these data (538 regions)

were used to test an earlier version of the algorithm as described in [58] (without colour

features and using a different classifier). The dataset was expanded to ensure equal

balance between the classes, but the fact remains that most of the data have been used

once before. Furthermore, we needed to use this dataset once more to verify a claim

made about the vocabulary size: in section 4.1.1 we justified using a larger number of
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(a) error = 0.9◦ (b) error = 1.9◦ (c) error = 2.0◦

(d) error = 3.1◦ (e) error = 3.1◦ (f) error = 3.4◦*

(g) error = 10.4◦ (h) error = 10.6◦ (i) error = 10.7◦

(j) error = 11.0◦ (k) error = 11.7◦ (l) error = 11.7◦

(m) error = 27.9◦ (n) error = 30.2◦ (o) error = 30.7◦

(p) error = 31.8◦ (q) error = 33.2◦ (r) error = 45.4◦
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Figure 4.8: Example results, selected algorithmically as described in the text,
showing typical performance of plane recognition on the independent dataset.
The first six (a-f) are selected from the best of the results, the next six (g-l)
are from the middle, and the final six (m-r) are from the worst, according to the
orientation error. *Note that (f) was picked manually, because it is an important
illustrative example.

words partly by the fact that this should allow the algorithm to generalise better to

new data. A test (not described here) was done to see if this was true for our test set

(the result showed that using a small vocabulary without topic discovery was indeed

detrimental to performance, more so than implied by the proximity of the two curves

toward the left of Figure 4.1a). Other than these lapses, the independent dataset was

unseen with respect to the process of developing and honing our method.

The results we obtained for plane recognition were a mean classification accuracy of

91.6% and a mean orientation error of 14.5◦. We also show in Figure 4.7 a plot of the

orientation errors; this is to be compared to the results in Figure 4.6, and shows that

here too the spread of orientation errors is good, with the majority of regions being given

an accurate normal estimate. This suggests that the algorithm is capable of generalising

well to new environments, and supports our principal hypothesis that by learning from a

set of training images, it is possible to learn how appearance relates to 3D structure; and

that this can be applied to new images with good accuracy. We have not compared this

to other methods, due to the lack of appropriately similar work with which to compare

(though a comparative evaluation of the full plane detector is presented in Chapter 6) —

but we believe that these results represent a good level of accuracy, given the difficulty of

the task, and the fact that no geometric information about the orientation is available.

Figures 4.8 to 4.10 show typical example results of the algorithm, on this independent

training set. To avoid bias in choosing the results to show, the images were chosen as

follows. The correct classifications of planar regions (true positives) were sorted by their

orientation error. We took the best ten percent, the ten percent surrounding the median

value, and the worst ten percent, then chose randomly from those (six from each set)

– these are shown in Figure 4.8. The only exception to this is Figure 4.8f which we

picked manually from the best ten percent, because it is a useful illustrative example;

all the others were chosen algorithmically. This method was chosen to illustrate good,

typical, and failure cases of the algorithm, but does not reflect the actual distribution of

errors (c.f. Figure 4.7) which of course has more good than bad results. We then chose

randomly from the set of true negatives (i.e. correct identification of nonplanes), false
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.9: Correct classification of non-planes, in various situations (selected
randomly from the results).

negatives, and false positives, as shown in the subsequent images, again in order to avoid

biasing the results we display.

These results show the algorithm is able to work in a variety of different environments.

This includes those with typical Manhattan-like structure, for example 4.8a — but cru-

cially, also those with more irregular textures like Figure 4.8f. While the former may

well be assigned good orientation estimates by typical vanishing-point algorithms [73],

such techniques will not cope well with the more complicated images.

We also show examples of successful non-plane detection in Figure 4.9. These are mostly

composed of foliage and vehicles, but we also observed the algorithm correctly classifiying

people and water features.
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(a) False negative (b) False negative (c) False negative

(d) False positive (e) False positive (f) False positive

Figure 4.10: Some cases where the algorithm fails, showing false negatives (a-c)
and false positives (d-f) (these were chosen randomly from the results).

It is also interesting to consider cases where the algorithm performs poorly, examples of

which are shown in the lower third of Figure 4.8 and in Figure 4.10. The former shows

regions correctly classified as planes, but with a large error in the orientation estimate

(many of these are of ground planes dissimilar to the data used for training), while the

rectangular window on a plain wall in Figure 4.8p may not have sufficienly informative

visual information. The first row of Figure 4.10 shows missed planes; we speculate that

Figure 4.10c is misclassified due to the overlap of foliage into the region. The second

row shows false detections of planes, where Figure 4.10d may be confused by the strong

vertical lines, and Figure 4.10e has too little visual information to be much use. These

examples are interesting in that they hint at some shortcomings of the algorithm; but we

emphasise that such errors are not common, with the majority of regions being classified

correctly.

4.4 Comparison to Nearest Neighbour Classification

Relevance vector machines for classification and regression perform well, however it is

not straightforward to interpret the reasons why the RVMs behave as they do. That is,

we cannot easily learn from them which aspects of the data they are exploiting, or indeed
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if they are functioning as we believe they are. We investigated this by using a K-nearest

neighbour (KNN) classifier instead. This assigns a class using the modal class of the K

nearest neighbours, and the orientation as the mean of its neighbours’ orientations. By

looking at the regions the KNN deemed similar to each other, we can see why the given

classifications and orientations were assigned. Ultimately this should give some insight

into the means by which the RVM assigns labels.

The first step was to verify that the KNN and RVM gave similar results, otherwise it

would be perverse to claim one gives insight into the other. This was done by running a

cross-validation experiment with the KNN on varying amounts of training data. We used

the recognition algorithm in the same way as above, except for the final classification

step.
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Figure 4.11: Comparison of RVM and KNN, showing improved accuracy and
better scalability to larger training sets (at the expense of a slow training phase
for the RVM).
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The results, from ten runs of cross-validation, were a mean classification accuracy of

95.6% (σ = 0.49%) and an orientation error of 13.9◦ (σ = 0.16◦), neither of which

were substantially different from results with the RVM. As Figures 4.11a and 4.11b

show, performance for both algorithms improved with more training data, and was fairly

similar (although the RVM is generally better). Figure 4.11c compares classification

time, showing that the KNN was much slower and scaled poorly to larger training sets,

justifying our choice of the RVM. The main drawback of the RVM, on the other hand,

is its training time (the KNN requires no training). Figure 4.11d compares the setup

time (creation of training descriptors and training the classifiers if necessary) for both

algorithms, where the time taken for the RVM increased dramatically with training set

size.

We also tested the KNN version of the algorithm on our independent test set, and again

found similar performance: classification accuracy was 87.8%, while orientation error

increased to 18.3◦.

4.4.1 Examples

In this section we show example results from the independent test set, with the ground

truth and classification overlaid as before, accompanied by the nearest neighbours for

each (using K = 5 neighbours). Obviously, this set is no longer completely independent

or unseen, since it is the same as used above to test the method using the RVM; but no

changes were made based on those results before using the KNN.

As above, the examples we show here were not selected manually, but chosen randomly in

order to give a fair representation of the algorithm. This was done as above, i.e. taking

the best, middle, and worst ten percent of the results for true positive cases (Figure

4.12), and selecting randomly from each set. Examples of true negatives (Figure 4.13),

and false positives and negatives (Figure 4.14), are selected randomly.

These images illustrate that classification was achieved by finding other image regions

with similar structure. It is interesting to note that the neighbours found were not always

perceptually similar, for example Figures 4.12b and 4.12d. This is important, since while

an algorithm which matched only to visually similar regions would work to an extent, it

would fail when presented with different environments. Figure 4.13c, for example, shows

how non-planes can be correctly matched to similar non-planar regions in the training
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 4.12: Examples of plane classification and orientation when using a
K-nearest neighbour classifier, showing the input image overlaid with the classi-
fication and orientation (left), and the five nearest neighbours from the training
set. These show triplets of images selected randomly from the best (a-c), middle
(d-f), and worst (g-i) examples, for correct plane classification.
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(a)

(b)

(c)

Figure 4.13: Examples of correct identification of non-planar regions, using a
K-nearest neighbour classifier; these examples were chosen randomly from the
results.

set, but Figure 4.13b is also classified correctly, despite being visually different from its

neighbours.

It is interesting to note the role that the reflected and warped data play in classification

– in many situations several versions of the same original image are found as neighbours

(for example Figure 4.12e in particular). This stands to reason as they will be quite

close in feature space. On the other hand, the tendency to match to multiple versions of

the same image with different orientations can cause large errors, as in Figure 4.12g.

It is also instructive to look at examples where the KNN classifier performed poorly, since

now we can attempt to discover why. Figure 4.12i, for example, has a large orientation

error. By looking at the matched images, we can see that this is because it has matched

to vertical walls which share a similar pattern of lines tending toward a frontal vanishing

point, but whose orientation is not actually very similar. Misclassification of a wall occurs

in Figure 4.14a where a roughly textured wall was predominantly matched to foliage,

resulting in an incorrect non-planar classification (interestingly, there is a wall behind

the trees in the neighbouring training regions). Figure 4.14b was also wrongly classified,

perhaps due to the similarity between the ventilation grille and a fence. These two

examples are interesting since they highlight the fact that what is planar can sometimes

be rather ambiguous. Indeed, Figure 4.14c shows the side of a car being classified as

planar, which one could argue is actually correct.
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(a)

(b)

(c)

(d)

Figure 4.14: Examples of incorrect classification of regions, showing randomly
chosen examples of false negatives (a,b) and false positives (c,d).

4.4.2 Random Comparison

A further useful property of the KNN was that we could confirm that the low aver-

age orientation error we obtained was a true result, not an artefact of the data or test

procedure. It is conceivable that the recognition algorithm was simply exploiting some

property of the dataset, rather than actually using the features we extracted. For exam-

ple, if all the orientations were actually very similar, any form of regression would return

a low error. We refute this in Figure 4.15b, which shows the spread of orientation er-

rors obtained (in cross-validation) when using randomly chosen neighbours in the KNN,

instead of the spatiogram similarity. This means there was no image information being

used at all. Compared to results obtained using the KNN classifier (shown in Figure

4.15a), performance was clearly much worse. The histogram of results for the KNN also

shows similar performance to the RVM (Figure 4.6 above).

These experiments with the KNN were quite informative, since even an algorithm as

simple as the KNN classifier can effectively make use of the visual information available

in test data, in an intuitive and comprehensible way, to find structurally similar training

examples. The RVM and KNN exhibit broadly similar performance, though they work

by different mechanisms. It is reasonable, therefore, to consider the RVM as being a more

efficient way of approximating the same goal, that of choosing the regions in feature space

most appropriate for a given test datum [11]. The superior performance of the RVM at
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Figure 4.15: Comparison of the distribution of orientation errors (in cross-
validation), for K-nearest neighbour regression (a) and randomly chosen ‘neigh-
bours’ (b).

a lower computational cost (during testing), and more efficient handling of large training

sets, suggests it is a suitable choice of classifier.

4.5 Summary of Findings

In this chapter, we have shown experimental results for the plane recognition algorithm

introduced in Chapter 3. We investigated the effects of various parameters and imple-

mentation choices, and showed that the methods we chose to represent the image regions

were effective for doing plane classification, and out-performed the simpler alternatives.

We also showed that the algorithm generalises well to environments outside the training

set, being able to recognise and orient planar regions in a variety of scenes.

4.5.1 Future Work

There are a number of further developments of this algorithm which would be interesting

to consider, but fall outside the scope of this thesis. First, while we are using a saliency

detector which identifies scale, and using it to select the patch size for descriptor creation,

this is not fully exploiting scale information (rather, we are striving to be invariant to

it). However, the change in size of similar elements across a surface is an important

depth cue [43], and is something we might consider using — perhaps by augmenting

the spatiograms to represent this as well as 2D position. On the other hand, whether

the notion of image scale detected by the DoG detector has any relation to real-world

scale or depth is uncertain. Alternatively, investigation of other types of saliency may
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be fruitful.

We could also consider using different or additional feature descriptors. We have already

shown how multiple types of descriptor, each with their own vocabulary, can be combined

together using topics, and that these descriptors are suited to different tasks. We could

further expand this by using entirely different types of feature for the two tasks, for

example using sophisticated rotation and scale invariant descriptors for classification,

following approaches to object recognition [33, 70], and shape or line based [6] features

for orientation estimation.

4.5.2 Limitations

The system as described above has a number of limitations, which we briefly address

here. First of all, because it is based on a finite test set, it has a limited ability to deal

with new and exceptional images. We have endeavoured to learn generic features from

these, to be applicable in unfamiliar scenes, though this may break down for totally

new types of environment. Also, while we have avoided relying on any particular visual

characteristics, such as isotropic texture, the choices we have made are tailored to outdoor

locations, and we doubt whether it would perform well indoors where textured planar

surfaces are less prevalent.

The most important and obvious limitation is that it requires a pre-segmented region of

interest, both for training and testing, which means it requires human intervention to

specify the location. This was sufficient to answer an important question, namely, given

a region, can we identify it as a plane or not and estimate its orientation? However, the

algorithm would be of limited use in most real-world tasks, and we cannot simply apply

it to a whole image, unless we already know a plane is likely to fill the whole image.

The next step, therefore, is to place the plane recognition into a broader framework in

which it is useful for both finding and orienting planes. This is the focus of the following

chapter, in which we show how it is possible, with a few modifications, to use it as part

of a plane detection algorithm, which is able to find planes from anywhere within the

image, making it possible to use directly on previously unseen images.



CHAPTER 5

Plane Detection

This chapter introduces our novel plane detection method, which for a single image can

detect multiple planes, and predict their individual orientations. It is important to note

the difference between this and the plane recognition algorithm presented in Chapter 3,

which required the location of potential planar regions to be known already, limiting its

applicability in real-world scenarios.

5.1 Introduction

The recognition algorithm forms a core part of our plane detection method, where it is

applied at multiple locations, in order to find the most likely locations of planes. This

is sufficient to be able to segment planes from non-planes, and to separate planes from

each other according to their orientation. This continues with our aim of developing

a method to perceive structure in a manner inspired by human vision, since the plane

detection method extends the machine learning approach introduced in the recognition

method. Again this means we need a labelled training set of examples, though with

some key differences.

77
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5.1.1 Objective

First we more rigorously define our objective: in short, what we intend to achieve is the

detection of planes in a single image. More precisely, we intend to group the salient points

detected in an image into planar and non-planar regions, corresponding to locations of

actual planar and non-planar structures in the scene. The planar regions should then

be segmented into groups of points, having the same orientation, and corresponding

correctly to the planar surfaces in the scene. Each group will have an accurate estimate

of the 3D orientation with respect to the camera. This is to be done from a single image

of a general outdoor urban scene, without knowledge such as camera pose, physical

location or depth information, nor any other specific prior knowledge about the image.

This cannot rely upon specific features such as texture distortion or vanishing points.

While such methods have been successful in some situations (e.g. [13, 44, 73, 93]), they

are not applicable to more general real-world scenes. Instead, by learning the relationship

between image appearance and 3D structure, the intention is to roughly emulate how

humans perceive the world in terms of learned prior experience (although the means by

which we do this is not at all claimed to be biologically plausible). This task as we have

described it has not, to the best of our knowledge, been attempted before.

5.1.2 Discussion of Alternatives

Given that we have developed an algorithm capable of recognising planes and estimating

their orientation in a given region of an image (Chapter 3), a few possible methods

present themselves for using this to detect planes. Briefly, the alternatives are to sub-

divide the image, perhaps using standard image segmentation algorithms, to extract

candidate regions; to find planar regions in agglomerations of super-pixels; and to search

for the optimal grouping by growing, splitting and merging segmentations over the salient

points.

Amongst the simplest potential approaches is to provide pre-segmented regions on which

the plane recogniser can work, using a standard image segmentation algorithm. However,

image segmentation is in general a difficult and unsolved problem [36, 130], especially

when dealing with more complicated distinctions than merely colour or texture, and it

is unlikely that general algorithms would give a segmentation suitable for our purposes.

To illustrate the problem, Figure 5.1 shows typical results of applying Felzenszwalb and

Huttenlocher’s segmentation algorithm [36], with varying settings (controlling roughly
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Figure 5.1: This illustrates the problems with using appearance-based segmen-
tation to find regions to which plane recognition may be applied. Here we have
used Felzenszwalb and Huttenlocher’s algorithm [36], which uses colour informa-
tion in a graph-cut framework. While the image is broadly broken down into
regions corresponding to real structure, it is very difficult to find a granularity
(decreasing left to right) which does not merge spatially separate surfaces, while
not over-segmenting fine details.

the number of segments) to some of our test images. The resulting segments are either

too small to be used, or will be a merger of multiple planar regions, whose boundary is

effectively invisible (for example the merging of walls and sky caused by an over-exposed

image).

An even more basic approach would be simply to tile the image with rectangular blocks,

and run plane recognition on each, then join adjacent blocks with the same classifi-

cation/orientation. This does not depend on any segmentation algorithm to find the

boundaries, but will result in a very coarse, blocky segmentation. Choosing the right

block size would be problematic, since with blocks too large we gain little information

about the location or shape of surfaces, but too small and the recognition will perform

too poorly to be of any use (c.f. Chapter 3 and experiment 6.2.1). However, one could

allow the blocks to overlap, and while the overlapped sections are potentially ambiguous,

this could allow us to use sufficiently large regions while avoiding the blockiness — this

is something we come back to later.

Rather than use fixed size blocks, we could deliberately over-segment the image into so-

called ‘superpixels’, where reasonably small homogeneous regions are grouped together.

This allows images to be dealt with much more efficiently than using the pixels them-

selves. Individual superpixels would likely not be large enough to be classifiable on their

own, but ideally they would be merged into larger regions which conform to planar or
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non-planar surfaces. Indeed, this is rather similar to Hoiem et al. [66], who use seg-

ments formed of superpixels to segment the image into geometric classes. They use local

features such as filter responses and mean colour to represent individual superpixels,

which are very appropriate for grouping small regions (unlike our larger-scale classifica-

tion). Even so, finding the optimal grouping is prohibitively expensive. In our case we

would also have to ensure that there are always enough superpixels in a collection being

classified at any time, constraining the algorithm in the alterations it can make to the

segmentation.

Another alternative is to initialise a number of non-overlapping regions, formed from

adjacent sets of salient points rather than superpixels (an initial segmentation). Plane

recognition would be applied to each, followed by iterative update of the regions’ bound-

aries in order to search for the best possible segmentation. The regions could be merged

and split as necessary and the optimal configuration found using simulated annealing

[34], for example. Alternatively this could be implemented as region growing where a

smaller number of regions are initialised centred at salient points, and are grown by

adding nearby points if they increase the ability of the region to describe a plane; then

split apart if they become too large or fail to be classified confidently. The problem is

that while region growing has been successful for image segmentation [129], our situa-

tion differs in that the decision as to whether a point should belong to a plane is not

local — i.e. there is nothing about the point itself which indicates that it belongs to a

nearby region. Rather, it is only after including the point within a region to be classi-

fied that anything about its planar or non-plane status can be known. This is different

from segmenting according to colour, for instance, which can be measured at individual

locations.

These methods would need some rule for evaluating the segmentation, or deciding

whether regions should be merged or split, and unfortunately it is not clear how to

define which cost function we should be minimising (be it the energy in simulated an-

nealing or the region growing criterion). One candidate is the probability estimate given

by the RVM classifier, where at each step, the aim would be to maximise the overall

probability of all the classifications, treating the most confident configuration as the

best. The problem is that we cannot rely on the probability given by the RVM, partly

due to the interesting property of the RVM that the certainty of classification, while

generally sensible for validation data, actually tends to increase as the test data move

further away from the training data. This is an unfortunate consequence of enforcing

sparsity in the model [106], and cannot be easily resolved without harming the efficiency
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of the algorithm. Indeed, in some early experiments using region growing, we found that

classification certainty tended to increase with region size, so that the final result always

comprised a single large region no matter what the underlying geometry. This particu-

lar problem is specific to the RVM, although similar observations hold for classification

algorithms more generally — any machine learning method would be constrained by its

training data, and liable to make erroneous predictions outside this scope.

Bearing the above discussion in mind, what we desire is a method that does not rely

upon being able to classify or regress small regions (since our plane recogniser cannot

do this); avoids the need for any prior segmentation or region extraction (which cannot

be done reliably); does not rely on accurate probabilities from a classifier in its error

measure (which are hard to guarantee); and will not require exploration or optimisation

over a combinatorial search space. In the following, we present such a method, the

crucial factor being a step we call region sweeping, and use this to drive a segmentation

algorithm at the level of salient points.

5.2 Overview of the Method

This section gives a brief overview of the plane detection method, the details of which

are elaborated upon in the following sections, and images representing each of the steps

are shown in Figure 5.2. We begin by detecting salient points in the image as before,

and assigning each a pair of words based on gradient and colour features. Next we use a

process we call region sweeping, in which a region is centred at each salient point in turn,

to which we apply the plane recognition algorithm. This gives plane classification and

orientation estimation at a number of overlapping locations covering the whole image.

We use these to derive the ‘local plane estimate’ which is an estimate at each individual

salient point of its probability of belonging to a plane, and its orientation, as shown in

Figure 5.2b. These estimates of planarity and orientation at each point are derived from

all of the sweep regions in which the point lies.

While this appears to be a good approximation of the underlying planar structure, it is

not yet a plane detection, since we know nothing of individual planes’ locations. The

next step, therefore, is to segment these points into individual regions, using the local

plane estimates to judge which groups of points should belong together, as illustrated

in Figure 5.2c. The output of the segmentation is a set of individual planar and non-

planar segments, and the final step is to verify these, by applying the plane recognition
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(a) (b) (c) (d)

Figure 5.2: Example steps from plane detection: from the input image (a), we
sweep the plane recogniser over the image to obtain a pointwise estimate of plane
probability and orientation (b). This is segmented into distinct regions (c), from
which the final plane detections are derived (d).

algorithm once more, on these planar segments. The result, as shown in Figure 5.2d, is a

detection of the planar surfaces, comprised of groups of salient points, with an estimate

of their orientation, derived from their spatial adjacency and compatibility in terms of

planar characteristics.

5.3 Image Representation

The representation of images will closely follow the description in Section 3.3, except

that now we need to consider the entire image, as well as multiple overlapping regions.

Because regions overlap, feature vectors are shared between multiple regions.

We begin by detecting a set of salient points V = {v1, . . . ,vn} over the whole image,

using the difference of Gaussians (DoG) detector. For each point, we create a gradient

and colour descriptor. Assuming that we have already built bag of words vocabularies,

we quantise these to words, so that the image is represented by pairs of words (gradient

and colour) assigned to salient points (for more details, refer back to Section 3.3). The

further stages of representation – word/topic histograms and spatiograms – depend on

having regions, not individual points, and so are not applied yet. Conveniently, this set

of salient points and words can be used for any regions occurring in the image.



5.4 Region Sweeping 83

5.4 Region Sweeping

In order to find the most likely locations of planar structure, we apply a ‘region sweeping’

stage, using the set V of salient points. Region sweeping creates a set of approximately

circular overlapping regions R, by using each salient point vi in turn to create a ‘sweep

region’ Ri ∈ R, using the point as the centroid and including all other points within a

fixed radius κ. We define Ri as the set of all salient points within the radius from the

centroid: Ri = {vj|‖vj − vi‖ < κ, j = 1, . . . , n}. To speed up the process, we generally

use every fourth salient point only, rather than every point, as a centroid. Points are

processed in order from the top left corner, to ensure the subset we use is approximately

evenly distributed.

Topic spatiograms are created for each sweep region (see Section 3.3.5). Using these, the

plane recognition algorithm can be applied, resulting in an estimate of the probability

p(Ri) ∈ (0, 1) of belonging to the plane class, and an estimate of the orientation n(Ri) ∈
R3 (normal vector), for each sweep region Ri in isolation. The result – before any further

processing – can be see in in Figure 5.3, showing multiple overlapping regions R coloured

according to their probability of being planar, with the orientation estimate shown for

each planar region. These regions are classified and regressed using RVMs, the training

data for which is described in the next section.

(a) (b)

Figure 5.3: Input image (left) and the result of region sweeping (right) — this
shows the hull of each region, coloured according to its estimated probability of
being a plane (red is planar, blue is non-planar, and shades of purple in between),
and the regressed normal for plane regions (only a subset of the regions are shown
for clarity).

Note that the choice of region size is dictated by two competing factors. On one hand,

larger regions will give better recognition performance, but at the expense of obtaining

coarser-scale information from the image, blurring plane boundaries. Small regions would

be able to give precise and localised information, except that accuracy falls as region size
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(a) (b) (c) (d)

Figure 5.4: Examples of manually segmented ground truth data, used for train-
ing the classifiers, showing planes (red) with their orientation and non-planes
(blue).

decreases. Fortunately, due to the segmentation method we will introduce soon, this does

not mean our algorithm is incapable of resolving details smaller than the region size. We

investigate the implications of region size in our experiments presented in Section 6.2.1.

5.5 Ground Truth

Before discussing the next step in the detection algorithm, it is necessary to explain the

ground truth data. This is because it is crucial for training the recognition algorithm,

as well as validation of the detection algorithm (see Chapter 6).

Unlike in the previous chapters, these ground truth data will contain the location and

orientation of all planes in the image, not just a region of interest. We begin with a set of

images, selected from the training video sequences, and hand segment them into planar

and non-planar regions. We mark up the entire image, so that no areas are resigned to

being ambiguous. Plane orientations are specified using the interactive vanishing line

method as before (refer to Figure 3.1). Examples of such ground truth regions are shown

in Figure 5.4.

5.6 Training Data

In Section 3.2, we described how training data were collected by manually selecting and

annotating regions from frames from a video sequence. These regions are no longer

suitable, because the manually selected region boundaries are not at all like the shapes

obtained from region sweeping. As a consequence, classification performance suffers.
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Furthermore, we can no longer guarantee that all regions used for recognition will be

purely planar or non-planar, since they are not hand-picked but are extracted from

images about all salient points. Thus training regions which are cleanly segmented and

correspond entirely to one class (or orientation) are not representative of the test data.

5.6.1 Region Sweeping for Training Data

To obtain training data more appropriate to the plane detection task, we gather it using

the same method as we extract the sweep regions themselves (see above), but applied

instead to ground truth images described in the previous section. When creating regions

by grouping all salient points within a radius of the central salient point, we use only a

small subset of salient points in each image as centre points, so that we do not get an

unmanageably large quantity of data. Since these are ground truth labelled images, we

use the ground truth to assign the class and orientation labels to these extracted regions.

Inevitably some regions will lie over multiple ground truth segments, as would test data.

This is dealt with by assigning to each salient point the class of the ground truth region

in which it lies, then the training regions are labelled based on the modal class of their

salient points. The same is done for assigning orientation, except for using the geometric

median.

We also investigated making use of the estimated probability of each region being a

plane, which was calculated as the proportion of planar points in the region. The aim

would be to regress such a probability estimate for test regions, but experiments showed

no benefit in terms of the resulting accuracy, and so we use the method outlined above.

The downside to this approach is that regions whose true class is ambiguous (having for

example almost equal numbers of plane and non-plane points) will be forced into one

class or the other. However, this will be the same during testing, and so we consider it

sensible to leave these in the training set.

This method has the advantage that it allows a very large amount of training data to be

extracted with little effort, other than the initial marking up of ground truth. Indeed, this

is far more than we can deal with if we do not sparsify the sweeping process considerably.

As such it is not necessary to apply warping as well (Section 3.2.2), although we still

consider it beneficial to reflect all the ground truth images before extraction begins.
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5.6.1.1 Evaluation of Training Data

To verify that gathering an entirely new set of training regions is necessary, we col-

lected a test set of planar and non-planar regions by applying region sweeping to an

independent set of ground truth images (those which are later used to evaluate the full

algorithm). This produced a new set of 3841 approximately circular regions. When using

the plane recognition algorithm on these, using the original hand-segmented training set

from Chapter 4, the results were a classification accuracy of only 65.8%, and a mean

orientation error of 22◦, which would not be good enough for reliable plane segmentation

and detection. However, running the same test using the new sweeping-derived training

set described here increases classification accuracy to 84.6%, indicating that having an

appropriate training set is indeed important. We note with some concern that the mean

orientation error decreased only marginally to 21◦. Possibly this is because both training

and testing data now include regions containing a mixture of different planes, making it

more difficult to obtain good accuracy with respect to the ground truth.

5.7 Local Plane Estimate

After running region sweeping, as described in Section 5.4, and classifying these regions

with classifiers trained on the data just described, we have a set of overlapping regions

R covering the image. This gives us local estimates of what might be planar, but says

nothing about boundaries. Points in the image lying inside multiple regions have am-

biguous classification and orientations. We address this by considering the estimate given

to each region Ri containing that point as a vote for a particular class and orientation.

Intuitively, a point where all the regions in which it lies are planar is very likely to be

on a plane. Conversely a point where there is no consensus about its class is uncertain,

and may well be on the boundary between regions. This observation is a crucial factor

in finding the boundaries between planes and non-planes, and between different planes.

More formally, we use the result of region sweeping to estimate the probability of a

salient point belonging to a planar region, by sampling from all possible local regions it

could potentially be a part of, before any segmentation has been performed. For points

which are likely to be in planar regions, we also estimate their likely orientation, using

the normals of all the planar surfaces they could lie on. Each salient point vi lies within

multiple regions Ri ⊂ R, where Ri is defined as Ri = {Rk|vi ∈ Rk}; that is, the subset
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(a) (b)

Figure 5.5: Using the sweep regions (left), we obtain the local plane estimate,
which for each point, located at vi, assigns a probability qi of belonging to a
plane, and an orientation estimate mi (right). Probability is coloured from red
to blue (for degree of plane to non-plane), and orientation is shown with a normal
vector (only a subset of points are shown for clarity).

of regions Rk in which vi appears. Each point vi is given an estimate of its probability

of being on a plane, denoted qi, and of its normal vector mi, calculated as follows:

qi = ζ({p(Rk)|Rk ∈ Ri})
mi = ζG({n(Rk)|Rk ∈ Ri, p(Rk) > 0.5})

(5.1)

where ζ and ζG are functions calculating the median and geometric median in R3 re-

spectively. Note that mi is calculated using only regions whose probability of being a

plane is higher than for a non-plane. To clarify, equation 5.1 describes how the plane

probability and normal estimate for the point i come from the median of the regions

in Ri. We use the median rather than the mean since it is a more robust measure of

central tendency, to reduce the effect of outliers, which will inevitably occur when using

a non-perfect classifier. Figure 5.5 illustrates how the sweep regions lead to a pointwise

local plane estimate.

In order to improve the accuracy of the local plane estimate, we discard regions whose

classification certainty is below a threshold. The classification certainty is defined as the

probability of belonging to the class it has been assigned, and thus is p(Ri) and 1−p(Ri),

for planar and non-planar regions respectively. This discarding of classified regions is

justified by a cross-validation experiment (similar to those in Section 4.1). As shown

in Figure 5.6, as the threshold is increased, to omit the less certain classifications, the

mean classification accuracy increases. This is at the expense of decreasing the number

of regions which can be used. It is this thresholding for which having a confidence
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Figure 5.6: As the threshold on classifier certainty increases, less confident
regions are discarded, and so accuracy improves (a); however, the number of
regions remaining drops (b).

value for the classification, provided by the RVM, is very useful, and is an advantage

over having a hard classification. The effect of this is to remove the mid-range from

the spread of probabilities, after which the median is used to choose which of the sides

(closer to 0 or 1) is larger. This is equivalent to a voting scheme based on the most

confident classifications. However, our formulation can allow more flexibility if necessary,

for example using a different robust estimator.

Since there are usually a large number of overlapping regions available for each point,

the removal of a few is generally not a problem. In some cases, of course, points are

left without any regions that they lie inside (Ri = ∅), and so these points are left out

of subsequent calculations. Such points are in regions where the classifier cannot be

confident about classification, and so should play no part in segmentation.

The result is an estimate of planarity for each point, which we will refer to as the local

plane estimate — examples are shown in Figure 5.7. We have now obtained a represen-

tation of the image structure which did not require the imposition of any boundaries,

and circumvented the problem of being unable to classify arbitrarily small regions. It is

encouraging to note that at this stage, the underlying planar structure of the image is

visible, although as expected it is less well defined at plane boundaries, where orientation

appears to transition smoothly between surfaces.
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(a) (b) (c)

Figure 5.7: Examples of local plane estimates, for a variety of images; colour,
from red to blue, shows the estimated probability of belonging to a plane, and
the normal vector is the median of all planar regions in which the point lies.

5.8 Segmentation

Although the local plane estimate produced above is a convincing representation of the

underlying structure of the scene – showing where planes are likely to be, and their ap-

proximate orientation – this is not yet an actual plane detection. Firstly, plane bound-

aries remain unknown, since although we know the estimates at each point, it is not

known which points are connected to which other points on a common surface. Sec-

ondly, each pointwise local plane estimate is calculated from all possible surfaces on

which the point might lie. As such, this is not accurate, which is especially clear in Fig-

ure 5.7c where points near plane-plane boundaries take the mean of the two adjoining

faces.

This section describes how the local plane estimate is used to segment points from each

other to discover the underling planar structure of the scene, in terms of sets of connected,

coplanar points. This consists of segmenting planes from non-planes, deciding how many

planes there are and how they are oriented, then segmenting planes from each other.

5.8.1 Segmentation Overview

Our segmentation is performed in two separate steps. This is because we found it was

not straightforward to select a single criterion (edge weight, energy function, set of clique

potentials etc.) to satisfactorily express the desire to separate planes and non-planes,

while at the same time separating points according to their orientation. Therefore, we

first segment planar from non-planar regions, according to the probability of belonging
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to a plane given by the local plane estimate. Next, we consider only the resulting planar

regions, and segment them into distinct planes, according to their orientation estimate,

for which we need to determine how many planes there are. We do this by finding

the modes in the distribution of normals observed in the local plane estimate, which

represent the likely underlying planes. This is based on the quite reasonable assumption

that there are a finite number of planar surfaces which we need to find.

5.8.2 Graph Segmentation

We formulate the segmentation as finding the best partition of a graph, using a Markov

random field (MRF) framework. A MRF is chosen since it can well represent our task,

which is for each salient point, given its observation, to find its best ‘label’ (for plane

class and orientation), while taking into account the values of its neighbours. The values

of neighbouring points are important, since as with many physical systems we can make

the assumption of smoothness. This means we are assuming that points near each other

will generally (discontinuities aside) have similar values [78]. Without the smoothness

constraint, segmentation would amount simply to assigning each point to its nearest

class label, which would be trivial, but would not respect the continuity of surfaces.

Fortunately, optimisation of MRFs is a well-studied problem, and a number of efficient

algorithms exist.

First we build the graph to represent the 2D configuration of points in the image and their

neighbourhoods. We do this with a Delaunay triangulation of the salient points to form

the edges of the graph, using the efficient S-Hull implementation1 [118]. We modify the

standard triangulation, first by removing edges whose endpoints never appear in a sweep

region together. This is because for two points which are never actually used together

during the plane sweep recognition stage, there is no meaningful spatial link between

them, so there should be no edge. To obtain a graph with only local connectivity, we

impose a threshold on edge length (typically 50 pixels), to remove any undesired long-

range effects.

1The code is available at www.s-hull.org/
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5.8.3 Markov Random Field Overview

A MRF expresses a joint probability distribution on an undirected graph, in which

every node is conditionally independent of all other nodes, given its neighbours [78] (the

Markov property). This is a useful property, since it means that the global properties

of the graph can be specified by using only local interactions, if certain assumptions

are made. In general the specification of the joint probability of the field would be

intractable, were it not for a theorem due to Hammersley and Clifford [60] which states

that a MRF is equivalent to a Gibbs random field, which is a random field whose global

properties are described by a Gibbs distribution. This duality enables us to work with

the MRF in an efficient manner and to find optimal values, in terms of maximising the

probability.

If we define a MRF over a family of variables F = {F1, . . . , FN}, each taking the value

Fi = fi, then f = {f1, . . . , fN} denotes a particular realisation of F , where some f

describes the labels assigned to each node, and is called a configuration of the field. In

this context, the Gibbs distribution is expressed as

P (f) = Z−1 × e−U(f) (5.2)

where U(f) is the energy function, and for brevity we have omitted the temperature

parameter from the exponent. Z is the partition function:

Z =
∑
f∈F

e−U(f) (5.3)

which is required to ensure the distribution normalises to 1. Since this must be evaluated

over all possible configurations f (the space F) evaluating (5.2) is generally intractable.

However, since Z is the same for all f , it is not needed in order to find the optimal

configuration of the field — i.e. it is sufficient that P (f) ∝ e−U(f). The optimal config-

uration is the f which is most likely (given the observations and any priors), so the aim

is to find the f = f ∗ which maximises the probability P .

The energy function U(f) sums contributions from each of the neighbourhood sets of the

graph. Since the joint probability is inversely related to the energy function, minimising

the energy is equivalent to finding the MAP (maximum a-posteriori) configuration f ∗

of the field. Thus, finding the solution to a MAP-MRF is reduced to an optimisation

problem on U(f). This is generally written as a sum over clique potentials, U(f) =
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∑
c∈C Vc(f), where a clique is a set of nodes which are all connected to each other, and

Vc is the clique potential for clique c (in the set of all possible cliques C). In our case,

deal with up to second order cliques – that is, single nodes and pairs of nodes – so the

energy function can be expressed as:

U(f) =
∑
{i}∈C1

V1(fi) +
∑
{i,i′}∈C2

V2(fi, fi′) =
∑
i∈S

V1(fi) +
∑
i∈S

∑
i′∈Ni

V2(fi, fi′) (5.4)

where V1 and V2 are the first and second order clique potentials respectively. The left

hand equation expresses the energy as a sum over the two clique potentials, over the set of

all first order C1 (single nodes) and second order C2 (pairs connected by an edge) cliques;

the right hand side expresses this more naturally as a sum of potentials over nodes, and

a sum over all the neighbourhoods for all the nodes; S is the set of all nodes in the graph

and Ni ⊂ S denotes all the neighbours of node i. The two clique potentials take into

account respectively the dependence of the label on the observed value, at a single node,

and the interaction between pairs of labels at adjacent nodes (this is how smoothness

is controlled). In summary, it is this energy U(f), calculated using the variables fi of

the configuration f and the functions V1,2, which is to be minimised, in order to find the

best configuration f ∗ (and thus the optimal labels f ∗i for all the nodes).

We use iterative conditional modes (ICM) to optimise the MRF, which is a simple but

effective iterative algorithm developed by Besag [8]. The basic principle of ICM is to

set every node in turn to its optimal value, given the current value of its neighbours,

monotonically decreasing the total energy of the MRF. The updates will in turn alter

the optimal value for already visited nodes, so the process is repeated until convergence

(convergence to a (local) minimum can be proven, assuming sequential updates). ICM

is generally quite fast to converge, and although it may not be the most efficient opti-

misation algorithm, it is very simple to implement, and was found to be suitable for our

task.

5.8.4 Plane/Non-plane Segmentation

The first step is to segment planes from non-planes. We do this using a MRF as follows:

let p represent a configuration of the field, where each node pi ∈ {0, 1} represents the class
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of point i (1 and 0 being plane and non-plane, respectively). We then seek the optimal

configuration p∗, defined as p∗ = arg minpU(p), where U(p) represents the posterior

energy of the MRF:

U(p) =
∑
i∈S

V1(pi, qi) +
∑
i∈S

∑
j∈Ni

V2(pi, pj) (5.5)

Here, qi is the observation at point i, which is the estimated probability of this point

belonging to a plane, obtained as in equation 5.1. The set S contains all salient points

in the image (assuming they have been assigned a probability). The functions V1 and V2

are the single site and pair site clique potentials respectively, defined as

V1(pi, qi) = (pi − qi)2 V2(pi, pj) = δpi 6=pj (5.6)

where δpi 6=pj has value 0 iff pi and pj are equal, 1 otherwise. Here we express the function

V1 with two arguments, since it depends not only on the current value of the node but

also its oberved value. This function penalise deviation of the assigned value pi at a point

from its observed value qi, using a squared error, since we want the final configuration to

correspond as closely as possible to the local plane estimates. We desire pairs of adjacent

nodes to have the same class, to enforce smoothness where possible, so δ in function V2

returns a higher value (1) to penalise a difference in its arguments.

Each pi is initialised to the value in {0, 1} which is closest to qi (i.e. we threshold the

observations to obtain a plane/non-plane class) and optimise using ICM. We generally

find that this converges within a few iterations, since the initialisation is usually quite

good. It tends to smooth the edges of irregular regions and removes small isolated

segments. After this optimisation, each node is set to its most likely value (plane or not),

given the local plane estimate and a smoothness constraint imposed by its neighbours, so

that large neighbourhoods in the graph will correspond to the same class. The process

is illustrated with examples in Figure 5.8. Finally, segments are extracted by finding the

connected components corresponding to planes and non-planes, which now form distinct

regions (Figure 5.8d).
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(a) (b) (c) (d)

Figure 5.8: The process of segmenting planes from non-planes. Using the
probabilities estimated at each point from region sweeping (a), we initialise a
Markov random field (b); this is optimised using iterative conditional modes
(c), resulting in a clean segmentation into smooth disjoint regions of planes and
non-planes (red and blue respectively) (d).

5.8.5 Orientation Segmentation

Once planar regions have been separated from non-planar regions using the above MRF,

we are left with regions supposedly consisting only of planes. However, except in very

simple images, these will be made up of multiple planes, with different orientations. The

next step is to separate these planes from each other, using the estimated orientation mi

at each salient point.

This is done by optimising a second MRF, with the goal of finding the points belonging

to the same planar surfaces. This is defined on the subgraph of the above which con-

tains only points in planar segments. This graph may consist of multiple independent

connected components, but this makes no difference to the formulation of the MRF.

In contrast to the simplicity of the first MRF, which was a two-class problem, the values

we have for plane normals are effectively continuously valued variables in R3, where we

do not know the values of the true planes. Some brief experimentation suggested that

attempting to find an energy function which is able to not only segment the points,

but also find the correct number of planes, was far from straightforward. Generally, a

piecewise constant segmentation approach did enforce regions of constant orientation,

but typically far too many, forming banding effects (essentially discretising the normals

into too-fine graduations).

We take an alternative approach, by using mean shift to find the modes of the kernel

density estimate of the normals in the image. This is justified as follows: we assume

that in the image, there are a finite number of planar surfaces, each with a possibly

different orientation, to which all of the planar salient points belong. This implies that
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close to the observed normals, there are a certain number, as yet unknown, of actual

orientations, from which all these observations are derived. The task is to find these

underlying orientations, from the observed normals. Once we know the value of these,

the problem reduces to a discrete, multi-class MRF optimisation, which is easily solved

using ICM. The following sections introduce the necessary theory and explain how we

use this to find the plane orientations.

5.8.5.1 Orientation Distribution and the Kernel Density Estimate

Kernel density estimation is a method to recover the density of the distribution of a

collection of multivariate data. Conceptually this is similar to creating a histogram, in

order to obtain a non-parametric approximation of a distribution. However, histograms

are always limited by the quantisation into bins, introducing artefacts. Instead of as-

signing each datum to a bin, the kernel density estimate (KDE) places a kernel at every

datum, and sums the results to obtain an estimate of the density at any point in the

space, as we illustrate in Figure 5.9 with the example of a 1D Gaussian kernel.
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Figure 5.9: This illustrates the central principle behind the kernel density
estimate. For 1D data (the black diamonds), we estimate the probability density
by placing a kernel over each point (here it is a Gaussian with σ = 0.5), drawn
with dashed lines. The sum of all these kernels, shown by the thick red line, is
the KDE. Clusters of nearby points’ kernels sum together to give large peaks in
the density; outlying points give low probability maxima.



5.8 Segmentation 96

In general, the KDE function f̂ for multivariate data X = {x1, . . . ,xN}, evaluated at a

point y within the domain of X is defined as [23]

f̂(y) =
1

Nhd

N∑
i=1

K

(
y − xi
h

)
(5.7)

where K is the kernel function, h is the bandwidth parameter, and d is the number of

dimensions.

Following the derivation of Comaniciu and Meer [23], the kernel function is expressed in

terms of a profile function k, so that K(x) = ck(‖x‖2), where c is some constant. For a

Gaussian kernel, the profile function is

k(x) = exp(−1

2
x) (5.8)

which leads to an isotropic multivariate Gaussian kernel:

K(x) =
1

(2π)
d
2

exp

(
−1

2
‖x‖2

)
(5.9)

where the constant c became (2π)−
d
2 . Substituting the Gaussian kernel function (5.9)

into equation 5.7 yields the function for directly calculating the KDE at any point:

f̂(y) =
1

Nhd

N∑
i=1

1

(2π)
d
2

exp

(
−1

2

∥∥∥∥y − xi
h

∥∥∥∥2
)

(5.10)

which states that the estimate of the density at any point is proportional to the sum of

kernels placed at all the data, evaluated at that point, as the illustration above showed.

In our case, we use the KDE to recover the distribution of normals observed in the



5.8 Segmentation 97

image, based on the hypothesis that while the normals are smoothly varying due to the

region sweeping, they will cluster around the true plane orientations. In a two-plane

image, for example, two distinct modes should be apparent in the density estimate. The

values of these modes will then correspond to the normals around which the observations

are clustered, and which will be used to segment them. These normals become the

discrete set of class labels for the MRF. If we assume the data vary smoothly, and are

approximately normally distributed about the true normals, this justifies the use of a

Gaussian kernel function.

The normal vectors have so far been represented in R3, but can be more compactly

represented with spherical coordinates, using a pair of angles θ and φ. An important

issue when dealing with angular values is to avoid wrap-around-effects (angles of 350◦

and -10◦ are the same, for example). Conveniently, because we only represent angles

facing toward the camera (because we cannot see planes facing away), only half of the

space of all θ, φ is used (to be precise, the hemisphere θ ∈ [π
2
, 3π

2
] and φ ∈ [0, 2π]), and

so with careful choice of parameterisation, we can avoid any such wrapping effects, and

stay away from the ‘edge’ of the parameter space (and so our formulae below may appear

different from standard spherical coordinates). The transformation of a normal vector

n = (nx, ny, nz)
T to and from angular representation is therefore:

θ = tan−1(nx

nz
) nx = sin(θ) sin(φ)

φ = cos−1(ny

|n|) ny = cos(φ)

nz = cos(θ) sin(φ)

(5.11)

To use the KDE we need to set the value of the bandwidth parameter h. There are

various methods outlined in the literature for automatic bandwidth selection [22], or

even the use of varying bandwidths according to the data [24]. For convenience, we set

our bandwidth by observing the performance on training data, to a value of 0.2 radians

(see our experiments in Section 6.2.2) — though we acknowledge that more intelligent

selection or adaptation of the bandwidth would be a worthwhile area for exploration.
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(a) (b) (c) (d)

Figure 5.10: Visualisation of the kernel density estimate (KDE) for the dis-
tribution of normals in an image. The estimated normals from the local plane
estimate (a) are used to calculate a KDE with a Gaussian kernel. Plots (b) show
all the normals represented in θ, φ space, and in (c) the colour map of the KDE
(red denotes higher probability density). (d) shows a 3D representation, making
the structure of the density clearer.

5.8.5.2 KDE Visualisation

Because the kernel density estimates are calculated in the 2D space of angles, the process

is easy to understand and visualise. The density can be represented as a 2D image, with

the horizontal and vertical axes corresponding to the two angles, where the KDE at each

point is represented by the colour of the pixel. Since the 2D heat map is not particularly

easy to interpret, we can also show the KDE visualised as a 3D surface, where the axes

in the horizontal plane correspond to the angles and the height is the magnitude of the

density estimate at the point (the mesh is built simply by connecting points in a 4-way

grid).

In Figure 5.10 we show some examples, consisting of the local plane estimate (Section

5.7), showing all the normals in the image, plus the 2D and 3D representations of the

KDE. In each example, one can clearly see the peaks in the KDE corresponding to the

dominant planes in the scene, whose relative height (density estimate) roughly corre-

sponds to the size of the plane (i.e. the number of observations relating to it). An

important point about the KDE is that it requires no a priori knowledge of the number

of modes (in contrast to K-means, for example), and is entirely driven by the data. This
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gives us an elegant way of choosing the number of planes present in the image.

5.8.5.3 Mode Finding and Mean Shift

The above examples suggest that the KDE is a suitable way of describing the underlying

plane orientations, but does not yet give an easy way to actually find the values of these

modes. Sampling the space, at the resolution displayed above (the data are in a space

of 100 × 200 divisions in θ and φ), is rather time consuming since the KDE must be

evaluated at each point, and each evaluation of f̂ involves the summation of Gaussian

kernels centred at each of the N observations.

A better solution is to use mean shift [17], which is a method for finding the modes

of a multivariate distribution, and is intimately related to the KDE. The idea in mean

shift is to follow the direction of steepest ascent (the normalised gradient) in the KDE

until a stationary point is reached, i.e. a local maximum. By starting the search from

sufficiently many points in the domain, all modes can be recovered. In order to find the

modes, it is not actually necessary to calculate the KDE itself (neither over the whole

space as in the visualisations, nor even strictly at the points themselves, unless we wish

to recover the probabilities, which we do once after convergence), since the necessary

information is encoded implicitly by the gradient function.

The mean shift vector m(y) at some point y describes the magnitude and direction in

which to move from y toward the nearest mode. We omit a full derivation of how the

mean shift vector is obtained from the partial derivatives of the KDE equations — a

thorough exposition can be found in [23]. In general, the mean shift vector for a point

y is defined as:

m(y) =

∑N
i=1 xig(‖y−xi

h
‖2)∑N

i=1 g(‖y−xi

h
‖2)

− y = ḿ(y)− y (5.12)

where g(x) = −k′(x) is the negative derivative of the kernel profile described above,

and we have used ḿ(y) to conveniently denote the left hand term in the mean shift

expression. Since this is the direction in which the point y should be moved, the new

value for y, denoted y′, is simply y′ = y + ḿ(y)− y = ḿ(y), and so ḿ(·) is a function

updating the current point to its next value on its path to the mode. Using the Gaussian
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profile function k(x) = exp(−1
2
x), the function g(x) = −1

2
exp(−1

2
x), and by substituting

this into the above, we obtain

ḿ(y) =

∑N
i=1 xi exp(−1

2
‖y−xi

h
‖2)∑N

i=1 exp(−1
2
‖y−xi

h
‖2)

(5.13)

To run mean shift we use a set of points Y = {y1, . . . ,yN}, initialised by setting all

yi = xi, i.e. a copy of the original data. At each step, we update all the yi with

y′i = ḿ(yi), and iterate until convergence. Using separate variables x and y highlights

the fact that while it is the original data that we update and follow, the data X used for

calculating the vectors remain fixed (otherwise the KDE itself would alter as we attempt

to traverse it).

5.8.5.4 Accelerating Mean Shift

The mean shift process itself is time consuming, since it requires iteration for every one

of the data points, of which there are several hundred. This amounts to a significant

factor in the overall time for plane detection. Fortunately, we can make some alterations

to achieve significant speedups. This is because at each iteration of mean shift for a given

point, its next value y′ is determined entirely by its current value y (i.e. location in θ, φ

space) and the direction and magnitude of the gradient m(y). Furthermore, there is

no distinction between the points, which means once we know the trajectory of a given

point toward its mode, then all other points, which fall anywhere on that trajectory,

will behave the same. This means we can avoid re-computing trajectories which will

eventually converge, allowing us to significantly accelerate mean shift.

Two points’ trajectories may not coincide exactly, so we divide the space into a grid of

cells, their size being on the order of the kernel bandwidth. As soon as a point enters a

cell through which another point has passed (at any time during its motion), we remove

it, leaving just one point to be updated for that trajectory. Ideally, this will lead to

only one point per mode being updated by the end of the process, which means we are

still able to find the same modes, without the wasted computation of following every yi

which will terminate there.

This algorithm is based on the assumption that two points within the same cell will
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converge to the same mode, which is not always true, because points arbitrarily close to

a watershed between two modes’ basins of attraction will diverge. We found that if the

cell size is made smaller than the bandwidth, this does not appear to present a problem.

This fairly simple approach is sufficient for our needs, achieving a speedup of around

100× while giving almost identical results to full mean shift. The experiments described

in Section 6.2.2 provide evidence for this.

5.8.5.5 Segmentation

Finally, we use the modes given by mean shift as the discrete labels in the MRF (after

converting back to normals in R3). Mean shift can give us the identity of the mode to

which each point converges. Equivalently, we can initialise the nodes by setting their

initial label, denoted ni to be the one closest (measured by angle) to its observed value

(where the observed values of the nodes are the mi, from region sweeping).

The MRF optimisation can now proceed, using only the discrete labels provided by mean

shift. This guarantees it will output the number of different planes we have already

found to be in the image, and avoids searching over the continuum of normals. This

is formulated as optimisation of an energy function E(n), where n is a configuration

of normals n = {n1, . . . ,n|S′|} on the nodes in S ′ ⊂ S, the subset of points in the

graph which were segmented into planar regions. As before we desire to find the optimal

configuration n∗ = arg minnE(n), by minimising the energy E(n), expressed as a sum of

clique potentials:

E(n) =
∑
i∈S′

F1(ni,mi) +
∑
i∈S′

∑
j∈Ni

F2(ni,nj) (5.14)

where both clique potential functions F1 and F2 return the angle between two vectors in

R3, thus penalising deviation of labels from the observations, and neighbours from each

other. This is optimised using ICM, which converges to groups of spatially contiguous

points corresponding to the same normal. This is illustrated in Figure 5.11.
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(a) (b) (c) (d)

Figure 5.11: Segmentation of planes using their orientation. From the ini-
tial sweep estimate of orientation (a), we initialise a second MRF (b), where
each normal is coloured according to its orientation (see Figure 5.12), showing
smooth changes between points. After optimisation, the normals are now piece-
wise constant (c), and correspond to the two dominant planes in the scene. After
segmentation by finding connected components with the same normal, we obtain
an approximate plane detection, where the normals shown are simply the mean
of all salient points in the segments (d).

Figure 5.12: The colours which represent
different orientation vectors (the point in this
map to which a normal vector from the centre
of the image would project gives the colour it
is assigned).

5.8.6 Region Shape Verification

After running the two stages of segmentation, we are left with a set of non-planar seg-

ments (from the first stage), and a set of planar segments with orientation estimates,

from the second. Before using these to get the final plane detection, we discard inap-

propriate regions. First, any regions smaller than a certain size are discarded, since they

are not likely to contribute meaningfully to the final detection, nor be given reliable ori-

entation estimates in the next step. We apply a threshold to both the number of points

in the region, typically 30, and to the pixel area covered by the region, typically 4000

pixels. Second, we also remove excessively elongated regions, a fairly unusual shape for

planes, by calculating the Eigenvalues of the 2D points in a region, and discarding those

where the smaller value is less than a tenth of the larger.
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5.9 Re-classification

Figure 5.8d above shows the result of plane segmentation, a collection of disjoint groups

of points with normal estimates. However, these are not themselves the final plane

detection, since they have not actually been classified or regressed. These regions simply

have an average of the plane class and orientation of the points which lie within them,

which in turn are derived from all sweep regions in which they lie. This means the

estimates for these regions use data which extend well beyond their extent in the image.

We are now finally in a stage where we can run our original plane recognition algorithm

from Chapter 3 on appropriately segmented regions. We re-classify the planar segments,

to ensure that they are planar — generally they remain so, though often a few outliers

are discarded at this stage. We do not attempt to re-classify the non-planar segments,

because we have already removed them from consideration, and they were not part of

the orientation segmentation. For those which are classified as planes, we re-estimate

their orientation, so that the orientation estimate is derived from only the points inside

the region. In general we find that the re-estimated normals are not hugely different

from the means of the segments’ points. This is encouraging, since it suggests that using

the sweep estimates to segment planes from each other is a valid approach.

5.9.1 Training Data for Final Regions

The data we wish to classify here are rather different in shape from the training data.

This is because the training data were created by region sweeping, because we wished to

learn from regions of similar shape to those used during detection (Section 5.6). However,

the segments resulting from the MRF are often much more irregular, as well as being

different in shape and size from our original manually segmented regions. To address

this we introduce another set of training data, thereby creating a second pair of RVMs,

trained for this final task alone.

Appropriate training data are generated by applying the full plane detection algorithm

to our ground truth training images (Section 5.5), and using the resulting plane and

non-plane detections as training data. These should have similar shapes to detections

on test data. Of course, we can use the ground truth labels for these segments, so

the classification and orientation accuracy on the final segments is irrelevant. We also

enhanced this training set by including all marked-up regions from the ground truth
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images, whose shapes correspond to those of true planes and non-planes. We found that

replacing the final RVMs with these trained on better data increased the orientation

accuracy of the final result by several degrees on average (the segmentation itself, of

course, is completely unaffected by this).

We now have an algorithm whose final output is a grouping of the points of the image into

planar and non-planar regions, where the planar regions have a good estimate of their

orientation, provided by our original plane recognition algorithm trained on example

data.

5.10 Summary

This chapter has introduced a new algorithm to detect planes, and estimate their 3D

orientation, from a single image. This has two important components: first, a region

sweeping stage in which we repeatedly sample regions of the image with the plane recog-

nition algorithm from Chapter 3, in order to find the most likely locations of planes.

This allows us to calculate a ‘local plane estimate’ which gives an approximate plane

probability and orientation to all salient points. Second, we use this intermediate re-

sult within a two-stage Markov random field framework, to segment into planar and

non-planar regions, before running plane recognition again on these to obtain the final

classification and orientation.

Unlike existing methods, we do not rely upon rectilinear structure or vanishing points,

nor on specific types of texture distortion. This makes the method applicable to a

wider range of scenes. Furthermore, since we do not rely on any prior segmentation of

the image, the algorithm is not dependant on any underlying patterns or structure being

present, for example planar regions being demarcated by strong lines. Most importantly,

this algorithm requires only a single image as input, and does not need any cues from

stereo or multiple views, in contrast to most methods for plane detection. In the following

chapter, we evaluate the performance of the algorithm on various images, and investigate

the effects of the design decisions outlined above. We also compare the method to existing

work.



CHAPTER 6

Plane Detection Experiments

This chapter presents the results of experimental validation of our plane detection algo-

rithm. We discuss the effect of some of the parameters on plane detection, and describe

the experiments with which we chose the best settings, by using our training dataset. We

then show the results of our evaluation on an independent dataset. Finally, we describe

the comparison of our algorithm to a state of the art method for extracting scene layout,

with favourable results.

6.1 Experimental Setup

To evaluate the performance of the plane detection algorithm, we used the manually

segmented ground truth data described in Section 5.5. These were whole images hand-

segmented into planar and non-planar regions, and the planar regions were labelled with

an orientation. This means that every pixel in the image was included in the ground

truth, and there was no ambiguity. For regions which were genuinely ambiguous (such

as stairs and fences), we tried to give the semantically most sensible labels, and made

sure that we were consistent across training and test data.

105
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The key difference compared to the experiments in Chapter 4 is that we now have marked-

up detections, rather than class and orientation for individual planes. The difficulty is

to evaluate how well one segmentation of the image (our detection, which has sections

missing) corresponds to another (the ground truth). Comparing segmentations in general

is not easy (especially when there are multiple potentially ‘correct’ answers [130]). Our

approach is based on assessing the classification and orientation accuracies across all the

detected segments.

6.1.1 Evaluation Measures

We use two evaluation measures, for the classification accuracy and orientation error.

We cannot directly compare ground truth regions and detected regions, since there will

not be a direct correspondence. Instead, we perform the comparison via the set of salient

points, which is the level at which our detection and grouping actually operate.

We measure classification accuracy as the mean accuracy over all salient points (mean

over the image, or mean over all points in all images when describing a full set of tests).

That is, we take ground truth class of points as the assigned class of the labelled region

in which they fall, and the estimated class as the class of the detected plane of which it

forms a part.

We take a slightly different approach to evaluating orientation accuracy. While we could

have taken the mean orientation error over salient points, as above, this would not give a

true sense of how points are divided into planes, giving undue influence to large planes,

which contain more salient points. In keeping with the objective of evaluating the planes

themselves, rather than the points, we evaluate orientation accuracy as the orientation

error for whole regions. This is calculated by comparing to the true orientation of the

region, which is taken to be the mean orientation of its salient points, whose orientation

comes from the true region in which they lie. This means that if the detected plane

is entirely within one ground truth region, we are comparing to that region’s normal;

otherwise, we are comparing to the mean of those regions it covers, weighted by the

number of points from each region.
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6.2 Discussion of Parameters

Each of the components of the algorithm described in Chapter 5 will have some effect

on the performance of the plane detection algorithm. In this section, we show the

results of experiments conducted to investigate how performance changes for different

configurations of some important parameters. The results of these experiments were then

used to choose the best parameters to use in subsequent evaluation. These experiments

used our training set of ground truth data, comprised of 439 images.

6.2.1 Region Size

The first parameter we needed to set was the region size for sweeping (the process by

which we extract multiple overlapping regions from an image, described in Section 5.4).

This is both a part of the plane detection algorithm, and used to gather the training

data used for the plane recognition algorithm.

It was not immediately obvious what the best size would be as there is a trade-off

between the accuracy and the specificity of regions. We would generally expect larger

regions to perform better than smaller regions, since there is more visual information

available. However, using regions which are as large as possible was not advisable. This is

because these regions were not hand segmented, so larger regions would begin to overlap

adjacent true regions, which would have a different class or orientation. Thus we needed

to compromise between having large regions, and having ‘pure’ regions, by which we

mean those that lie within only one ground truth region.

To investigate region size, we first conducted an experiment where we stepped through

different sizes of region when using the plane recognition algorithm. We ran this ex-

periment using plane recognition, rather than plane detection, since it was simpler to

set up and gave a direct way of seeing how region size affected classification, without

considering other factors such as the segmentation.

Using each of the region sizes, we harvested training regions by sweeping over a large set

of fully labelled ground truth images (see Sections 5.4 and 5.5), where region size was

specified by the radius around the centre point within which neighbouring salient points

were included. We then fully trained the plane recognition algorithm, as described in

Chapter 3, and tested it using cross-validation.
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Figure 6.1: Using different region sizes (measured in pixels) when using sweep-
ing to get training data. These experiments are for plane recognition.

Figure 6.1 shows the results. Increasing the region size improved performance; yet con-

trary to expectation performance continued to rise even for very large regions, which

occupied a significant fraction of the whole image, mixing the different classes. This

is evident in Figures 6.1a and 6.1b, which show the mean classification accuracy and

orientation error respectively. Figure 6.1c confirms that as the radius was increased, the

actual area of regions did indeed get larger.

Nevertheless, using arbitrarily large regions is inadvisable. As Figure 6.1d shows, when

the regions were bigger, they were on average less ‘pure’, meaning they tended to overlap

multiple ground truth regions, mixing classes and orientations. We define purity as the

percentage of points in a sweep region which belong to the largest truth region falling

inside that sweep region. Thus, the trade-off is that as we use larger regions, we can

be less confident that they accurately represent single planar or non-planar regions,

potentially making the training set more difficult to learn from as appearance corresponds

less consistently to specific orientations.

We explain the continually increasing performance with Figure 6.1e, where we plot the

determinant of the covariance matrix formed from all the regions’ true orientations.
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As the regions got bigger, the covariance got smaller, which means the normals were

becoming more similar to each other. This suggests that as regions get larger, they will

tend to cover more nearby planes, averaging out the difference between them. As planar

regions approach the size of the image, the orientation is simply the mean orientation

over all points in the ground truth. For an image with multiple planes, these will likely

average out to an approximately frontal orientation. Thus we would expect to see less

overall variation in the normals, as indeed we did. The lower amount of variability in

turn makes these orientations easier to regress.

This experiment confirmed our suspicion that very small regions were not suitable for

classification, which supports the case for using our sweeping-based method rather than

over-segmentation (c.f. Section 5.1.2). The experiment also suggested that overly large

regions were not suitable either. Unfortunately since the performance measures kept on

rising, this experiment could not be used to determine which region size should be used,

and it was necessary to consider what effect the region size had on segmentation. As

such the following experiment was conducted to further investigate this issue.

6.2.1.1 Testing Region Size using Plane Detection

Since testing the recognition algorithm on its own was not a good way to find the opti-

mum region size for plane detection, we instead ran a test on the whole plane detection

algorithm, in cross-validation, for different region sizes. From this we could directly ob-

serve any effect of changing the region size on the results of the plane detection, rather

than relying on a proxy for how well it would perform. This experiment involved carry-

ing out all of the steps described in the previous chapter, repeatedly, for multiple sets of

truth regions with different sweep settings.

The experimental procedure consisted of k-fold cross-validation with n repeats, described

as follows. We looped over a set of region sizes, from a radius r of 20 pixels up to 100 in

increments of 10. For each, we ran k-fold cross-validation, where we divided the data into

k equal sets, and for each fold, used all but one to train the algorithm. This was done

by detecting salient points, creating and quantising features and so on, then running

region sweeping to extract training regions, with which we trained a pair of RVMs. It

was necessary to also gather regions for the final re-classification step, so we ran the

plane detection on these test images and retained the resulting detected regions (plus

the ground truth regions themselves), and trained a second pair of RVMs. Finally, we
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Figure 6.2: Changing the size of sweep regions (measured in pixels) for training
data used for plane detection. The error bars show one standard deviation either
side of the mean, calculated over twelve repeat runs.

used this plane detector on the images held out as test data for this fold, using a sweep

radius r, and stored the mean accuracy and orientation error compared to its ground

truth. We repeated all of this n times, and calculated the mean and standard deviation

of the results for each radius.

The results are shown in Figure 6.2, which graphs the classification accuracy and orien-

tation error, against sweep region radius. The graphs show the results from twelve runs

of five-fold cross-validation for each sweep size – the points are at the mean, and the

error bars show one standard deviation either side of the mean, over the twelve runs.

Even with this many runs, the results were somewhat erratic. This may have been due

to using only a quarter of the set of truth images we had available (115 regions were

used), and limiting the training stage to use a maximum of 1000 sweep regions for each

run, due to the large amount of time this took. As such the overall accuracy might have

been diminished, and the uncertainty shown by the error bars is so large that the best

parameters are hard to determine.

The results hint that the optimal sweep size for classification and regression may be

a little different, with the best classification accuracy occurring at small radii, while

orientation estimation seemed to improve up to a radius of around 90 pixels. If this

behaviour is real, we could in principle use two separate region sizes for the two tasks,

which would entail having two entirely different sets of training regions, not just different

descriptors, c.f. Section 3.3.4.5. However, since the results of this experiment are not

conclusive, we chose the simpler option of using the same radius for both; this experiment

does not dictate a clear value to use, so a radius of 70 pixels was chosen as a compromise.
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This value was used for the rest of the experiments in this chapter, unless otherwise

stated.

6.2.2 Kernel Bandwidth

We performed an experiment to determine the optimal kernel bandwidth for mean shift

(to find the modes of the kernel density estimate of all orientations in an image, as de-

scribed in Section 5.8.5.1). It would be possible to evaluate this as above, by running the

whole plane detection algorithm for a range of different bandwidth parameters. How-

ever, this would give an indirect measurement of the quality of the segmentation, since it

would measure the accuracy after having re-classified the detected regions, the result of

which would depend on all the stages of plane detection. To compare kernel bandwidths,

we needed only to determine the best granularity for splitting planes from each other,

given the local plane estimate. This was done by using just the local plane estimate,

calculated not from classification but from ground truth data, which was sufficient since

for ground truth images we know the true number of planes we should find.

The experiment was set up as follows: we calculated the local plane estimate, using region

sweeping, but rather than run full plane recognition we simply used the ground truth

data for each region. We processed overlapping regions as before, taking the median and

geometric median of classifications and orientations respectively. This gave us a local

plane estimate which was as good as possible, independent of the features or classifiers.

After segmenting the planes from non-planes (using the first MRF), we took all the

estimated normals from points in planar regions and ran mean shift to find the modes.

We were able to evaluate these modes without running the subsequent segmentation,

because ideally each true plane would correspond to one mode, and so we measured

the difference between the number of modes and the number of true planes (we counted

parallel planes as one, since their orientation does not distinguish them). This evaluation

did not consider whether the orientations for the modes returned by mean shift were

actually correct, but given that we were testing on a ground truth local plane estimate,

it should not be an issue.

Figure 6.3 shows the results. Clearly, very small bandwidths (corresponding to a very

rough density estimate) were poor, as they led to far too many plane orientations. Ac-

curacy improved until around 0.2, after which there was a very slow deterioration (pre-
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Figure 6.3: Results for evaluating bandwidth for mean shift, when finding the
modes within the local plane estimate.

sumably arbitrarily high bandwidths would increase the error as there would be always

one mode), and so we chose this as our bandwidth value for further experiments.

We also compared the full mean shift algorithm, in which all the data were iterated until

they reached their mode, with our accelerated version (Section 5.8.5.4). The results

confirm that this approximation does not increase the error. Figure 6.3a shows the

results of the two overlaid, with virtually no visible difference in either mean or standard

deviation. Figure 6.3b plots the average time per image for both methods. Clearly, our

accelerated version offered a huge improvement in speed, being on average 100 times

faster.

6.3 Evaluation on Independent Data

We proceeded to evaluate our algorithm on an independent dataset. For training, we

used the set of 439 ground-truth images from above, which were first reflected about the

vertical axis, to double the number of images from which training data was gathered.

From these we extracted around 10000 regions by sweeping, which were used to train

the full plane detector. Our independent dataset was taken from a different area of the

city, to ensure we had a proper test of the generalisation ability of the algorithm. This

consisted of 138 images, which were also given ground truth segmentations, and plane
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class and orientation labels. These exhibited of a variety of types of structure including

roads, buildings, vehicles and foliage. As in Chapter 4 the aim was for these to be

totally unseen image regions, though we must specify a few caveats. First, these data are

harvested from the same video sequences (but not the same frames) as the independent

dataset of Chapter 4, so the location is not wholly new (again, this location was never

used in training data). A subset of the data were used to evaluate the algorithm as

described in [57], so some of the images will have been seen before during testing (this is

the subset used in Section 6.4 below). We also used some of these images (because of the

ground truth labelling being available) in section 5.6.1.1, to show that extracting training

regions by sweeping was necessary when the test regions were similarly extracted. Other

than these exceptions, the training data described here are new and unseen during the

process of developing the algorithm.

6.3.1 Results and Examples

When running the evaluation on our test data, we obtained a mean classification accuracy

of 81%, which was calculated over all points, except those which were not used in any

regions. We obtained a mean orientation error of 17.4◦ (standard deviation 14.7◦). Note

that standard deviation was calculated over all the test images, not over multiple runs.

This is larger than the error of 14.5◦ obtained on basic plane recognition (Section 4.3),

but the task was very different, in that it first needed to find and segment appropriate

regions.

These results are a little worse (though within a few percent for both measures) than

we originally reported in [57]. However, those were obtained using a smaller set of test

images, which may have been less challenging.

To clarify what these results mean, we show a histogram of the orientation errors in

Figure 6.4. Comparing this to Figure 4.7 in Chapter 4 shows it to be only a little worse,

even though this is a much more difficult task, with a large majority of the orientation

errors remaining below 20◦. We believe that these results are very reasonable given the

difficulty of the task, in that these planes were not specified a priori but were segmented

automatically from whole images, without recourse to geometric information.

We now show example results from this experiment. First, in Figure 6.5, we show some

manually selected example results, to showcase some of the more interesting aspects of
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Figure 6.4: Distribution of orientation errors for regions detected in indepen-
dent set of test images.

the method. Then in order to show a fair an unbiased sample from our results, we choose

the example images to display in the following way. We sort all the results by the mean

orientation error on the detected planar surfaces (this is one of two possibilities, as we

could also use the classification accuracy over the salient points – the former was chosen

since we believe orientation accuracy is the more interesting criterion here). We then

take the best ten percent, the worst ten percent, and the ten percent surrounding the

median error; then chose six random images from these sets. This is in order to give a

fair sampling of the best cases, some typical results in the middle, and situations where

the algorithm performs poorly. The best, medium, and worst examples are shown in

Figures 6.6, 6.7 and 6.8 respectively.

Our algorithm is able to extract planar structures, and estimate their orientation, when

dominant, orthogonal structures with converging lines are apparent. Figures 6.6c and

6.7a, for example, show it can deal with situations typical for vanishing line based al-

gorithms. Crucially, we also show that the algorithm can find planes even when such

structure is not available, and where the image consists of rough textures, such as Figure

6.6e. This would be challenging for conventional methods, since there are not many

intersections between planes, and the tops of the walls are not actually horizontal. An-

other example is shown in Figure 6.5c, where the wall and floor have been separated

from each other.

Our method is also able to reliably distinguish planes from non-planes, one of the most

important features of the algorithm. For example, Figures 6.5a and 6.5d show a car and a

tree, respectively, are correctly separated from the surrounding planes before attempting

to estimate their orientations. This sets our approach apart from typical shape from

texture methods, which tends to assume that the input is a plane-like surface which
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.5: Examples of plane detection on our independent test set. These
images were hand-picked to show some interesting baheviour, rather than being
a representative sample from the results (see the next images). Columns are:
input image, ground truth, local plane estimate, plane detection result.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.6: Examples of plane detection on our independent test set. These are
randomly chosen from the best 10% of the examples, sorted by orientation error.
Columns are: input image, ground truth, local plane estimate, plane detection
result.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.7: Examples of plane detection on our independent test set. These
have been selected randomly from the 10% of examples around the median,
sorted by orientation error. Columns are: input image, ground truth, local plane
estimate, plane detection result.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.8: Examples of plane detection on our independent test set. These
have been selected randomly from the worst 10% of examples, sorted by orienta-
tion error. Columns are: input image, ground truth, local plane estimate, plane
detection result.
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Figure 6.9: An examples of plane detection on an image from our independent
test set, where two planes have been split into three, due to the algorithm being
unable to perceive the boundary between them. From top left: input image,
ground truth, local plane estimate, plane detection result.

needs its orientation estimated, without being able to report that it is not in fact planar.

These results also suggest that our algorithm is able to generalise quite well to new

environments. It does this by virtue of the way we have represented the training data

using quite general feature descriptors, which should encode the underlying relationships

between gradient or colour and structure, as opposed to using the appearance directly.

This is supported by Figure 6.7f for example, where the car park structure on the left is

correctly classified even though such structures are not represented in the training set.

However, we observe that in these images there are some missing planes. It is common

for our method to miss ground planes due to the lack of texture. This is because if there

are insufficient salient points, there will be no classification nor orientation assigned,

so major planar structures may be missed – for example in Figure 6.5e where there

are insufficient salient points on the ground to support a plane, despite the grid-like
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appearance; and in Figure 6.7b where the road is entirely featureless and thus no planes

(or indeed non-planes) can be found. On the other hand, in some cases, such as Figure

6.5b, the ground plane can be detected and given a plausible orientation, at least in the

region in which salient points exist.

6.3.2 Discussion of Failures

Our method fails in some situations, examples of which are shown in Figure 6.8, which

are sampled randomly from the worst 10% of the results by orientation error. Misclas-

sification during the sweeping stage causes problems, for example Figure 6.8b where the

tree was classified as being planar, which led to the plane region over-extending the wall.

Another example of a plane leaking beyond its true boundary is shown in Figure 6.8d,

where the orientation estimated for the ground and the vertical wall are unfortunately

quite similar, leading them to be grouped into the same segment. Misclassification also

causees problems in Figure 6.8e where a pedestrian has been partly classified as planar

(and the ground missed), though the region in question is rejected by the final classifi-

cation step.

A common problem is the inability to deal with small regions. This is due to the region-

based classifier, and how fine detail is obscured by the nature of our region-sweeping

stage. This is shown in Figure 6.5f for example, where rather complex configurations

of planes partially occluded by other planes are not perceived correctly. We observed

a tendency to over-segment, such as Figure 6.8c, where the ground plane has been

unnecessarily divided in two, due to a failure to merge the varying normals into one

segment. Conversely, the algorithm may fail to divide regions when it should, as we

pointed out above in Figures 6.8b and 6.8d, and also in Figure 6.5f where the whole

scene has been merged into one large plane. A related problem is the over-extension or

‘leaking’ of planes, as evinced by Figure 6.7b where the plane envelopes the pavement

as well as the wall. This is an example where the algorithm has failed to respect true

scene and image boundaries.

Finally we consider the interesting case of Figure 6.9 (enlarged to more clearly show

the variations in the local plane estimate, bottom left). As one might expect, the local

plane estimate shows how the normals at the points vary smoothly around the sharp

corner. Unfortunately, the MRF has segmented this into three rather than two segments,

effectively seeing the middle of the transition as a plane in its own right. Currently there
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is nothing in our algorithm to prevent this, if those normals are sufficiently numerous to

be another mode in the kernel density estimate. This is also an example where the final

classifier has assigned incorrect orientations to the three planes, perhaps caused by the

segmentation being incorrect.

These failures are the most common types of error we observe (though we emphasise

that, in accordance with Figure 6.4, the majority of orientations are good), and can

generally be explained given the way the algorithm works. They do, however, suggest

definite ways in which it could be improved, and hint at directions for future work.

6.4 Comparative Evaluation

As we discussed in Chapter 2, our algorithm is quite different from most existing meth-

ods. For example, algorithms that use information such as vanishing points to directly

estimate the scene geometry should perform better than ours when such features are

available, but are not applicable to the more general types of scene we encountered. As

such we omit a direct comparison with such methods, though we acknowledge that when

obvious vanishing point structure is visible, they will almost certainly perform better.

Shape from texture methods, on the other hand, may perform well in more general en-

vironments, but impose constraints of their own. As we mentioned in the background

chapter, these are not usually able to find the planes, and assume orientation is to be

estimated for the whole image, so a comparison is not well defined.

A good example of a single-image interpretation algorithm which can deal with similar

types of image to our work is the scene layout estimation of Hoiem et al. [66] (which

we will henceforth refer to as HSL). This uses a machine learning algorithm to segment

the image into geometric classes representing vertical, support surfaces, and sky, includ-

ing a discrete estimate of surface orientation, and has been used to create simple 3D

reconstructions, and as a prior for object recognition [65]. In the following, we explain

the relevant details of this algorithm and how it relates to our own, before showing the

results of using it for plane detection on our dataset.
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6.4.1 Description of HSL

We have already described the HSL algorithm in our background chapter — refer to

Section 2.3.2. Here we recap some of the more important aspects, as relevant to the

comparison. First, note that it uses superpixels, obtained by over-segmentation (based

on intensity and colour) as its atomic representation, rather than working with salient

points. While these superpixels give some sense of where image boundaries are, these

boundaries are only as accurate as the initial image segmentation.

Superpixels are grouped together by a multiple segmentation process. This uses classifiers

to decide whether two superpixels should be together; whether a segment is sufficiently

homogeneous in terms of its labelling; and to estimate the likelihood of a class label per

segment. By using cues extracted from the segments, using these to form segments, and

extracting larger-scale features from these, the algorithm can build up structure from

the level of superpixels to the level of segments. A variety of features such as colour,

texture, shape, line length, and vanishing point information are used for this.

The result is a set of image segments, each labelled with a geometric class, which rep-

resent geometric properties of image elements, as opposed to their identity or material.

The three main classes are ground, sky, and vertical surfaces, which should be able to

represent the majority of image segments. The vertical class is divided further into left,

right, and forward facing planes; and porous and solid non-planes. This allows the un-

derlying scene layout to be perceived, but offers no finer resolution on orientation than

these labels.

6.4.2 Repurposing for Plane Detection

Although HSL was developed for coarse scene layout estimation, and not for plane detec-

tion, there are some important similarities. By separating the sky from the other main

classes, and subdividing the vertical class into the planar and non-planar (porous and

solid) subclasses, this is effectively classifying regions into planar or non-planar classes.

Thus, HSL can be used as a form of plane detection, and so it was our intention to

evaluate how well it could do this — specifically, how well it could perform at our stated

task of grouping points into planar regions and estimating their orientation.

We ran the unmodified HSL algorithm on our dataset, then processed the output so that
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it represents plane detection. We considered the ground class, and the left, right, and

forward facing subclasses of the vertical class to be planar, and the rest (sky, porous,

and solid) to be non-planar. This corresponds to our separation of plane from non-

plane. Plane orientations come from the planar subclasses of the vertical segments, and

the support class. Re-drawing the output to show this is very interesting, as it shows

some shortcomings of the algorithm that are not obvious in the usual way the output is

drawn (e.g. in [64, 66]). As Figure 6.10 shows, regions which are correctly deemed to be

vertical, and usually drawn all in red, may contain a mixture of conflicting orientations,

and include non-planar sections.

For these experiments, we used code provided by the authors1. We made no changes to

adapt it to our dataset, and the fact that we did not retrain it using the same dataset

used for our detection algorithm (due to the difficulty of marking up the data in the

required manner) may cause some bias in our results. However the training data used

to train the provided classifiers (described in [66]) should be suitable, since the range of

image sizes covers the size we use, and the type of image are similar. The results we

obtained appear reasonable compared to published examples, suggesting the method is

able to deal sufficiently well with the data we collected.

To compare with our algorithm, we looked at the difference in classification and ori-

entation at each salient point in the image. This is because there was no easy way to

1Available at www.cs.uiuc.edu/homes/dhoiem/

(a) Input (b) Output drawn
similar to the original

(c) Drawn to show
plane detection

Figure 6.10: Re-purposing HSL[66] for plane detection: the original way to
draw the output (b) indicates the majority of classifications are correct (in-
deed, the whole surface is ‘vertical’); however when we draw to highlight planar
and non-planar regions and to distinguish orientations (c) (colours as in Fig-
ure 6.11) errors become apparent, including regions of non-planar classification
falling within walls.
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correspond the regions in HSL to either ours or the ground truth; and because com-

paring at every pixel does not make sense for our method, since unlike HSL we do not

segment using every pixel in the image. Salient points are not used as part of HSL,

but we assume that they are a sufficiently good sampling to represent the segmentation.

This comparison will thus focus on textured regions, where salient points lie, so if HSL

performs better in texture-less regions we cannot measure this; and we acknowledge that

comparing the algorithms only at the locations where ours outputs a value, rather than

all locations, is not necessarily a fair comparison.

For this comparison, we continued to use the percentage of points assigned to the correct

class as the measure of classification accuracy (as above), since this is well defined for

both methods. However, we needed to compare orientation differently, since our algo-

rithm assigns orientations to each plane as a normal vector in R3, whereas HSL can only

give coarser division into orientation classes. To do this we sacrificed the specificity of

our method, and quantised our orientation estimates into one of the four orientation

classes. This was done by finding which of the four canonical vectors, representing left,

right, upwards and forwards, were closest in angle to a given normal vector. Using this

quantisation, for both the ground truth and detected planes, orientation error was mea-

sured as a classification accuracy. This may introduce quantisation artefacts (arbitrarily

similar orientations near a quantisation boundary will be treated as different), but gave

us a fair comparison.

6.4.3 Results

This experiment was performed using a subset of 63 of our labelled ground truth data,

using plane detection trained on a subset of the training data described above (the initial

datasets for which we reported results in [57]). The detector was trained by the same

procedure as before, except that we used regions of radius 50 pixels. We do not imagine

this has a major impact on our conclusions, since the difference in performance between

the two radii according to Figure 6.2 was relatively minor.

The results are shown in Table 6.1. Our algorithm gave better results than HSL— which

stands to reason since our method is geared specifically toward plane detection, and uses

a training set gathered solely for this purpose.

Example results are shown in Figure 6.11 (see caption on facing page for explanation
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Ours HSL
Classification accuracy 84% 71%
Orientation accuracy 73% 68%

Table 6.1: Comparison of plane and quantised orientation classification accu-
racy between our method and Hoiem et al. [66] (HSL) for plane detection.

of colours). Note that these are illustrative examples hand-picked from the results, in

order to show the similarities and differences between the algorithms, as opposed to a

fully representative sample. The fifth column shows the typical output of HSL; as we

mentioned above, these segmentations appear accurate, but do not illustrate performance

of plane detection. The final column shows the same result when drawn to show plane

detection, which no longer appear so cleanly segmented, and numerous errors in plane

extent and surface orientation are visible. We draw the result of our method and the

ground truth in the same manner for comparison, as well as the input image and standard

output of our algorithm for reference.

6.4.4 Discussion

These images show some interesting similarities and differences between the two algo-

rithms. In many situations, they performed similarly, such as Figures 6.12a and 6.12b,

where in both images the main plane(s) were found and assigned a correct orientation

class. It is worth noting that in Figure 6.12b our method did not detect the ground

plane, due to the lack of texture and salient points, but this posed no problem for HSL.

This is partly down to the different features used (such as shape and colour saturation),

but also because image position is an explicit feature in HSL, meaning that pixels near

Figure 6.11: Illustrative examples, comparing our method to the surface layout
method of Hoiem et al. [66] (HSL). The columns are the input image, ground
truth, our method, our method quantised, original output of HSL, and HSL
drawn to show orientation classes. The original HSL outputs are drawn here as
in their own work, where green, red, and blue denote ground, vertical, and sky
classes respectively, and the symbols denote the vertical subclasses. The second,
fourth and sixth columns are drawn so that non-planar regions are shown in blue,
and left, right, frontal, and horizontal surfaces are drawn in yellow, red, brown
and green respectively, overlaid with appropriate arrows — thus illustrating the
orientation classes. Captions show classification accuracy for both methods, dis-
played as plane/non-plane classification and orientation classification accuracy,
respectively.
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(a) Ours: (99% , 91%) HSL: (95% , 92%)

(b) Ours: (84% , 96%) HSL: (81% , 100%)

(c) Ours: (85% , 93%) HSL: (75% , 20%)

(d) Ours: (94% , 100%) HSL: (53% , 28%)

(e) Ours: (98% , 97%) HSL: (99% , 68%)

(f) Ours: (98% , 29%) HSL: (41% , 71%)

(g) Ours: (100% , 59%) HSL: (73% , 99%)
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the bottom of the image are quite likely to be classified as ground. This can itself lead

to problems, as in Figure 6.12e where a slight change in intensity mid-way up a stone

wall misled HSL into extending the ground plane too far.

In other cases, our algorithm performed better, such as being able to disambiguate the

two planes in Figure 6.12c, by assigning them different orientations, whereas HSL merged

them together as a forward-facing plane. This failure of geometric classification to dis-

ambiguate surfaces suggests that being able to estimate actual orientations is beneficial.

Also, in Figure 6.12d our algorithm found the whole plane, and gave an orientation class

matching the ground truth; HSL missed half of the wall and assigned the ‘wrong’ ori-

entation. It could be argued that the true orientation for Figure 6.12d should not be

frontal (brown) but right (red). This ambiguity in orientation class caused by arbitrarily

angled planes is exactly the reason we require fine-grained plane orientation, rather than

geometric classification.

On the other hand, HSL clearly out-performed our method in Figure 6.12f by finding

some of the planes, whereas our method was confused by the multiple small surfaces. The

use of superpixels in HSL allows it to perceive smaller details than our sweeping approach,

as well as showing better adherence to strong edges, by cleanly segmenting the edges

of buildings (even if it does misclassify some). Figure 6.12g is another example where

directly seeing edges may help, since our algorithm failed to distinguish two orthogonal

planes, giving a nonsensical orientation for the whole image.

Despite the differences between the two algorithms – and the fact that HSL is not

designed specifically to detect planes – they both gave quite similar performance when

presented with the same data. Given that our algorithm was capable of producing

better results on our test data, and was superior in a number of cases, this suggests that

there is benefit in using our method, rather than simply re-purposing HSL for the task.

Furthermore, as the results have shown, there is a good reason for estimating continuous

orientation as opposed to discrete classes, since the latter can fail to disambiguate non-

coplanar structure. The ability to more accurately distinguish orientations could also be

useful in various applications, as we begin to investigate in the next chapter.
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6.5 Conclusion

In this chapter we have thoroughly evaluated our plane detector. We began by show-

ing, through cross-validation on training data, how its performance changed as various

parameters were altered. These experiments allowed us to select the best parameters

empirically, before applying it to real test data. We then demonstrated the algorithm

working on an independent and previously unseen dataset, captured in a different area

of the city (albeit with some fairly similar structures). The performance on these data

shows that our algorithm generalises well to new environments.

More generally, these results show that our initial objective, of developing a method using

machine learning to perceive structure in a single image, is achievable. We emphasise

what is being accomplished: the location of planar structures, with estimates of their

3D orientation with respect to the camera, are being found from only a single image,

using neither depth nor multi-view information, and without using geometric features

such as vanishing points or texture distortion, as in previous methods. While the results

we show here exhibit room for improvement, we believe they conclusively show that such

a method has promise, and that exploiting learned prior knowledge – inspired by, but

not necessarily emulating, human vision – is a worthwhile approach.

Despite the algorithm’s success, the experiments have exposed a few key limitations,

which we discuss in more detail here. First, due to the way we obtain the initial local

plane estimates via region sweeping, our method is not able to perceive very small

regions. While the MRF segmentation does in principle allow it to extract small segments

(certainly smaller than the 70 pixel radius segments used for the first stage), very small

planes are generally not detected because of the smoothly varying local plane estimate,

which comes from sampling the class and orientation estimates from overlapping regions.

This also means the algorithm is not perceptive of boundaries between regions, except

when there is a noticeable change in the orientation estimates. Of course, as we discussed

in Chapter 3, we would not want to rely on edge or boundary information, since this

may not always be present or reliable, but some awareness of it could be advantageous.

6.5.1 Saliency

The comparison with HSL has also highlighted another limitation, albeit one added

to the algorithm deliberately. Because we use only salient points, our plane detection
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(a) (b)

Figure 6.12: It is possible to create a denser local plane estimate, by using a
different set of points than the salient points used to create descriptors. In these
two examples, for the input image (top left) we create the local plane estimate
(top right) at the salient points as normal; we can also do this at a regular grid
(bottom left), or even at every pixel (bottom right), where the colours represent
orientation, as described in Figure 6.13. Grey means non-plane and black is
outside the swept regions. The two images show very different orientations,
and hence their colours are in different parts of the colour map. Note that no
segmentation has been performed yet.

Figure 6.13: The colours which represent
different orientation vectors (the point in this
map to which a normal vector from the centre
of the image would project gives the colour it
is assigned).

method does not deal with any regions in which there is no texture. This was done

in order to focus on ‘interesting’ regions, and to avoid wasting computational effort.

However, this means that comparatively blank parts of the image, which may still be

important structures, such as roads, are omitted.

We could possibly simply increase the density of the points, either by lowering the

saliency threshold, using a different measure of saliency, or even using a regular grid.

Such points may not be ideal for creating descriptors, but we can decouple the set of

points used for image representation and those used to build the local plane estimate.

Presently the two sets coincide primarily for convenience. It is possible to use one set

of salient points to build the word histograms and spatiogram descriptors, to describe

the sweeping regions, while sampling at another set of points to create the local plane

estimate (a point will lie inside multiple sweep regions, and can be assigned a class

probability and approximate normal, independently of whether it has associated feature
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Figure 6.14: When the image of the plane on the right is moved to the left of
the image, it appears to have a different orientation, due to the perspective at
which it is apparently being viewed.

vectors).

We experimented with this technique, to create dense local plane estimates over an entire

image (using every pixel, except for those outside any sweep region) as shown in Figure

6.12. This gives us a pixel-wise map of estimated orientation across a surface (although

as with the local plane estimate, it does not show where the actual planes are). In

principle, such a dense map would allow us to extend detection to non textured regions.

However, in these regions, there will have been insufficient sweep regions (because they

are still centred on salient points) to give a reliable and robust estimate, so accuracy may

suffer. The best combination of salient points and local plane estimate density would

require further work.

6.5.2 Translation Invariance

In Section 3.3.5 we described how we shift the points before creating spatiogram descrip-

tors, such that they have zero mean, giving us a translation invariant descriptor. While

this seems like a desirable characteristic, it has important implications, since in effect

we are saying that the position of a plane in the image is not relevant to its orientation.

However, on further consideration this does not seem to be true. If a plane is visible

in one part of an image, then the exact same pixels in another part of the image would

imply a different orientation — see for example Figure 6.14, where we have copied the

right half of the image onto the left half. Even though the two sides are identical, to an

observer they appear to have different orientations, with the right half appearing to be

more slanted away from the viewer. This is because, as a parallel plane moves across

one’s field of view, it should usually appear more or less foreshortened.

This has an important implication for our plane detector. Since this effect has not been
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accounted for, we have been implicitly assuming that the planes are sufficiently far from

the observer for this to not be relevant. Fortunately, since the planes are not generally

very close to the viewer (where such parallax effects are strongest), we do not envisage it

would cause a drastic difference. Indeed, in the image shown, despite moving the plane

to the other side of the image, the orientation change is fairly small. Nevertheless, we

also investigated how much of a difference a translation invariant representation has on

our results.

First, we compared the performance of the plane recognition algorithm, when using two

types of spatiogram. These were the translation invariant version as before (‘zero-mean’),

and an alternative where we use the original image point coordinates (‘absolute’). In

the latter, similar regions in different locations are described differently. This could in

fact be an advantage, as it implicitly uses image location itself as a feature, which Hoiem

et al. [66] found to be most effective. The experiment was carried out using a large set

of image regions, harvested from the ground truth images as described in the previous

chapter, and by running five runs of five-fold cross-validation. The results are shown in

Table 6.2.

Zero-mean Absolute position
Classification accuracy 83% (0.3%) 79% (1.0%)

Orientation error 23.0◦ (0.1◦) 23.1◦ (0.3◦)

Table 6.2: The difference between using zero-mean (translation invariant) and
absolute position within spatiograms, when running plane recognition.

Interestingly, the results using the absolute image coordinates were slightly worse, al-

though there was no drastic change. We speculate that competing factors were at work.

Non-invariant descriptors may give a better representation of image regions according

to their orientation, but at the cost of making similar appearance in different places

seem more different than it should be. We hypothesise that this would mean that more

training data are required to achieve the same goal, since there will be fewer potential

matches for a region at a given image location, though further experiments would be

needed to confirm this. This is more likely to be an issue for plane classification, since

unlike orientation estimation, image location should be irrelevant, which partly explains

the larger observed difference for this measure.

Despite our concerns, the experiment appears to suggests there is no benefit in adding

spatial location information (at least in the way we have done so), so the model of plane

recognition we have used is not invalidated. Nevertheless, so far we have considered only

plane recognition performance, which was sufficient to determine whether the two means
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of description behave similarly, but may miss some important effects. To address this,

we conducted a further experiment to visualise what the change in representation means

for plane detection. This was done by training a new plane detector, using the same

images as before but using the absolute position spatiograms, and applying both this

and the original to the artificial split plane from Figure 6.14.

(a) Local plane estimate (subset shown for clarity)

(b) Local plane estimate, orientation illustrated by
colour

(c) Plane detection result

Figure 6.15: An example of using the zero-mean (left) and absolute position
(right) spatiograms for plane detection. The first row shows the local plane esti-
mate, which is more clearly seen when represented as colours (b). The estimated
orientations are different when using absolute position, for identical image con-
tent, reflecting how it is perceived. Given the right mean shift bandwidth, this
means the two planes can actually be separated, when using MRF segmentation,
unlike when using our original translation invariant representation (c).

The results are shown in Figure 6.15, for the original zero-mean representation on the

left and the absolute position version on the right. The first row shows the local plane

estimates (LPE). Since this is difficult to interpret with so small an orientation change,
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we show the LPEs using coloured points in the second row, where the colours correspond

to orientation as before (Figure 6.13). This indicates that the orientations for the two

halves, in the zero-mean parameterisation, are basically identical. This is as expected,

since there is nothing to distinguish between the two halves of the image. When using

the absolute positions, on the other hand, the colours are different for the two halves

of the image. The effect is rather subtle, and may not be different enough to give

‘correct’ orientation for either side, but is sufficient to show that by incorporating image

location into the representation we can get different orientation values depending on a

plane’s location within the image. In fact, as the bottom row shows, this is enough of

a difference to be able to split the surface into two planes during MRF segmentation,

whereas the original zero-mean representation does not have enough difference between

halves. To do this it was necessary to lower the mean shift bandwidth (to 0.05, for both

versions), but crucially the halves cannot be split with any bandwidth using the original

parameterisation.

To conclude, while the zero-mean spatiogram representation may not be able to faithfully

represent differences in appearance caused by changes in orientation as we intended, the

alternative parametrisation using absolute position does not perform better. However,

since we have shown that an awareness of image location is able to tell the difference

between exactly the same image patterns when presented in different places – taking

advantage of location context – this would be another useful avenue of future work,

potentially able to increase the algorithm’s ability to discriminate between planes and

predict more accurately their orientation.

6.5.3 Future Work

We defer an in depth discussion of future work and applications, involving more drastic

changes to our method, to Chapter 8, but briefly mention some improvements that could

be made to the algorithm as it is.

There are two main reasons why our detector performs poorly, being either due to errors

in the local plane estimate (LPE), which in turn must cause the segmentation to fail (see

for example Figure 6.5f); or for the MRF segmentation to be unable to correctly extract

planes from a (potentially complicated) LPE. We consider these two issues in turn in

suggesting future work.



6.5 Conclusion 134

An inferior LPE is primarily caused by incorrect classification or regression. This means

that any method to accumulate the information at salient points will have difficulty.

We have gone some way to deal with erroneous classification when forming the LPE

by using a robust estimator (the median) to calculate plane probability and orientation

at salient points. We could further develop this by using more sophisticated robust

statistics, such as the Tukey biweight or other M-estimators [90]. Even assuming all

plane recognitions are correct, the problem remains that the LPE will be very smooth,

making small regions and fast changes invisible. One possible way forward would be

to derive separate estimates of the reliability of regions, before incorporating them into

the LPE. We might for example be able to classify whether a region is likely to belong

entirely to a single region, or be straddled across a surface boundary, and use this to

pre-filter what goes into building the LPE.

Next we consider methods to improve the segmentation of a given LPE, by using a more

sophisticated method of segmenting the MRF. So far we have only used the iterative

conditional modes algorithm to optimise the configuration over the field, chosen for its

computational simplicity, though other more complex methods may give us results closer

to what we desire. It would also be worthwhile to investigate the use of other energy

functions in the MRF, either by weighting the contribution differently for the single

and pair site clique potentials (with values learned from training data), or by including

higher-order cliques to model long-range dependencies.

Additionally, motivated by the under-segmentation and leaking of planes seen above,

we could attempt to incorporate edge information into our segmentation. As it stands,

segmentation in the MRF uses only the local plane estimates at each point, making

boundaries between planes hard to perceive, whereas if we can incorporate information

about edges it may improve plane segmentation. This could either be edge information

from the image itself, using an edge detector or gradient discontinuity information; or

derived from further classification, in which we attempt to classify whether pairs of points

or regions belong to the same or different planes. This could potentially be incorporated

into the same probabilistic framework, by using a MRF to deal with nodes representing

both the points and boundaries between regions [78]. Similar use of edge information

was shown to be beneficial by [67].

Given the strengths and weaknesses of our plane detector as compared to the work of

Hoiem et al. [67] (HSL), as illustrated by our results, it would be worthwhile to consider

combining them to create a hybrid system. It is unclear how our sweeping could be used

with their multiple-segmentation approach. On the other hand, it may be useful to use
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their algorithm to find coarse structure such as the ground plane – at which it excels,

especially in texture-free regions – and use this to guide our segmentation. One might

even consider using our plane recognition algorithm on groups of superpixels, once HSL

has joined them into putative clusters, rather than relying on geometric classification for

the final scene layout.



CHAPTER 7

Application to Visual Odometry

In this chapter, we demonstrate the use of our plane detection algorithm in a real-world

application, showing that it can be of practical use. We focus on the task of real-time

visual mapping, where we integrate the plane detector into an existing visual odometry

system which uses planes in order to quickly recover the structure of a scene. This work

was originally published in collaboration with José Mart́ınez-Carranza [59].

7.1 Introduction

In vision based mapping, whether for visual odometry (VO) or simultaneous localisation

and mapping (SLAM), early and fast instantiation of 3D features improves performance,

by increasing robustness and stability of pose tracking [19]. For example, careful selection

of feature combinations for initialisation can yield faster convergence of 3D estimates and

hence better mapping and localisation, as described in [61].

A powerful way of improving the initialisation of features is to make use of higher-

level structures, such as lines and planes, which has shown promise in terms of aiding

intelligent feature initialisation and measurement, thus increasing accuracy [47]. An

136
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important benefit of structure-based priors is that they can be used to quickly build

a more comprehensive map representation, which can be much more useful for human

understanding, interaction and augmentation [16]. This is in contrast to point clouds,

which are difficult to interpret without further post-processing.

This chapter introduces a new approach to speeding up map building, motivated by the

observation that if knowledge of objects or structural primitives is available, and a means

of detecting their presence from a single video frame, then it provides a quick way of

deriving strong priors for constructing the relevant portions of the map. At one extreme

this could involve instantaneous insertion of known 3D objects, derived, for example,

from scene specific CAD models [71, 104], or of navigation with a rough prior map

[102]. However, these limit mapping to previously-known scenes, and require the effort of

creating the models or maps. Rather, our interest is in the more general middle ground,

to consider whether knowledge of the appearance and geometry of generic primitive

classes can allow fast derivation of strong priors for directing feature initialisation.

We investigate this by using the algorithm we developed in the previous chapters, to fo-

cus specifically on map building with planar structure. This is an area which has received

considerable attention due to the ubiquity of planes in urban and indoor environments.

Previous approaches to exploiting planar structure in maps have included measuring lo-

cally planar patches [95], fitting planes to point clouds [47], and growing planes alongside

points [88, 89]. These methods are generally handicapped by having to allow sufficient

parallax (and hence time) for detecting planes in 3D, either by waiting for sufficient 3D

information to become available before fitting models, or by simultaneously estimating

planar structure while building the map. This is due to the fact that such methods are

not able to observe higher-level structures directly, and rely on being able to infer them

from measurements of the geometry of simpler (i.e. point) features.

This suggests that planar mapping would benefit from a method of obtaining structure

information more directly, and independently of the 3D mapping component. Such infor-

mation would be able to inform the map building and act as a prior on the location and

orientation of planes, and as a guide for the initialisation of planar structure even before

it becomes fully observable in a geometric sense. Indeed, this was nicely demonstrated

in the work of Castle et al. [14], in which specific planar objects with known geometry

were detected and inserted in the map, to quickly build a rich map representation; and

also by Flint et al. [40], who use the regular Manhattan-like structure of indoor scenes

to quickly build 3D models.
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Our work further develops such ideas, in order to derive strong priors for the location of

planar structure in general, without reference to specific planes, or being overly restricted

by the type of environment. This is achieved by combining our plane detection algorithm

with an extended Kalman filter (EKF) visual odometry (VO) system, by modifying the

plane growing method developed by Mart́ınez-Carranza and Calway [89]. Monocular

visual odometry, and the closely related problem of simultaneous localisation and map-

ping (SLAM), are interesting areas on which to focus since we believe they have the

most to gain from single-image perception, since depth, an important property of any

visual feature, is not directly observable from a monocular camera. A single image, as

we discussed in Chapter 1, is rich enough for a human to immediately get a sense of

scene structure; and yet currently much of this information is discarded, to focus only

on point features.

In the next section we discuss related work in the field of plane-based SLAM and VO,

followed by an overview of our hybrid detection-based method. This is followed by

a description of the baseline VO system we use in Section 7.3, and a more in-depth

discussion of how the two methods are brought together to form our combined plane

detection–visual odometry (PDVO) system in Section 7.4. Our results are presented

in Section 7.5, which show that the approach is capable of incorporating larger planar

structures into the map and at a faster rate than previously reported in [89] – averaging

around 60 fps – while still giving good pose trajectory estimates. This demonstrates the

potential of the approach both for the specific case of planar mapping, and more generally

the plausibility of using single image perception to introduce priors for map building.

Section 7.6 concludes, with a summary and some ideas for future work, including a

discussion of how our PDVO system might be extended to allow the detector to be

informed by the 3D map, with the potential of ultimately learning about structure from

the environment directly.

7.1.1 Related Work

The use of planes in monocular SLAM/VO has a long history, motivated by the ubiquity

of planar structure in human-made scenes. Planes are useful for mapping in a variety

of ways, from being a convenient assumption during measurement, to being an integral

part of an efficient state parameterisation.

Amongst the earliest to use planar features in visual SLAM were Molton et al. [95], who
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use locally planar patches rather than points as the basic feature representation, within

an EKF framework. Salient points can usually be considered locally planar, with some

orientation. After estimating this orientation, the image patch is warped in order to

account for distortion due to change in view, to allow better matching and tracking of

features by predicting their appearance. This results in maps consisting of many plane-

patch features, which as well as improving the localisation ability of the mobile camera,

give an improved interpretability of the resulting 3D map. However, the planar patches

remain independent, and are not joined together into higher-level, continuous surfaces.

A similar approach was developed by Pietzsch [103], in which the parameters of the

planar patches are included into the SLAM state (again using an EKF), rather than

being estimated separately. This work shows that even a single planar feature is sufficient

to accurately localise a moving camera, something which would require very many point

correspondences. Planes are measured using image alignment, which allows accurate

measurements to be made. However, including all pixels in the SLAM state incurs a

significant penalty in computational complexity, since updating the EKF is quadratic

in the number of features and cubic in the number of measurements (due to inversion

of the innovation matrix). Furthermore, no mechanism is described for the detection of

such planar features, relying instead upon manual initialisation.

More extensive use of image alignment for planar surfaces is made by Silveira et al. [117],

in which the whole SLAM problem is treated as optimisation, not only over camera and

scene parameters but also surface properties and illumination. The assumption that a

scene can be well approximated by a collection of planar surfaces can even apply to large

scale outdoor scenes, to the extent that this method is capable of localising a camera

while mapping a large, complex outdoor scene. Since the trajectories shown close no

loops it is difficult to evaluate the global accuracy of the method.

The above methods effectively use planar structures to either improve the appearance

of a map or to make better use of visual features; but planes can also help reduce the

complexity of the map representation. If many points lie on the same plane, they can

all be represented with a more compact representation (essentially by exploiting the

correlations between their states). A good example is by Gee et al. [47] who use planes

to collapse the state space in EKF SLAM. Planes are detected from a 3D map built

using regular point-based mapping, by applying RANSAC to the point cloud in order to

find coplanar collections in a manner similar to Bartoli [5]. Once such planes have been

found, they are inserted into the EKF to replace the point features, so that whole sections

of the map are represented by their relationship to the plane. This effectively achieves
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a reduction in state size, while maintaining a full map, at the same time as introducing

higher-level structures which may be used for augmentation [16]. Efficiency in terms

of the state size is important in EKF SLAM since the filter updates are quadratic in

the size of the state, therefore a reduction in state size has a big impact on increasing

computational efficiency, or allows larger environments to be mapped.

The disadvantage of [47] is that it requires a 3D point cloud in order to find the planes,

which must already have converged sufficiently (i.e. 3D points are well localised). This

means initialisation of planar surfaces can take some time, especially in larger environ-

ments. Thus while the detection of planar surfaces can be most useful once they have

been detected, the initial mapping itself derives no benefit from the planarity of the

scene. Furthermore, since the primary aim is to reduce the state size, it does not nec-

essarily follow that detected planes will correspond to true planes in the world. It is

possible for coplanar configurations of points within the cloud to be mistaken for planes,

especially in complex and cluttered scenes. This makes no difference to the state reduc-

tion ability, but means interpreting the features as belonging to true planes in the world

is problematic.

An alternative method of finding planes while performing visual SLAM, without relying

on converged coplanar points, was developed by Mart́ınez-Carranza and Calway [86],

based on the appearance of images in regions hypothesised to belong to planes. The

basis of the method is to use triplets of 3D points visible in the current image (obtained

by a Delaunay triangulation of the visible points) and test whether they might form a

plane, by determining if pixels inside the triangle obey a planar constraint across multiple

views. Adherence to this constraint disambiguates planar surfaces from other triplets of

points. Crucially, the method takes into account the uncertainty estimate maintained by

the EKF of the location of the camera and the 3D points, using a χ2 test to determine

whether there is sufficient evidence to reject the planar hypothesis; this is effectively

a variable threshold on the sensitivity of the planar constraint according to the filter

uncertainty. The method was shown to be successful in single-camera real-time SLAM,

and was used for making adaptive measurements of points on known planes to cope with

occlusion and enable tracking without increasing the state size [87].

Building on the above ideas is the inverse depth planar parameterisation (IDPP) [88],

which adapts the inverse depth representation [19] to planar features. Planes are detected

as the map is built, allowing planes to be initialised and represented compactly within

the filter, while their parameters (represented as an inverse depth and orientation with

respect to a reference camera) are optimised, based on a number of points estimated to
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belong to the plane. This was shown to be successful in a variety of settings, and easily

adapted for visual odometry [89]. We use this method for our plane detection enhanced

visual odometry application, and give further details in Section 7.3.

The above are good examples of how, by exploiting the existence of planar structures,

SLAM and VO can be enhanced. These concepts are taken further by Castle et al.

[14], who use the learned appearance of individual planar objects within an EKF SLAM

framework. This involves the recognition, in real-time, of a set of planar objects with

known appearance, thereby incorporating some very specific knowledge. These are in-

serted into the map once they are detected, using SIFT [81] descriptors to match to

the object prototype, and localised, by using corner points of the planar surfaces as

standard EKF map features. Placing the recognised objects into the map immediately

gives a more interpretable structure. More importantly, by using the known dimensions

of the learned objects, the absolute metric scale of the mapped scene can be recovered,

something which cannot be done with pure monocular SLAM. Other than the ease of

tracking objects in the map, it does not depend upon them being planar, and has been

extended to non-planar objects [21].

The main disadvantage to this is that it requires a pre-built database of the objects

of interest. Learning consists of recording SIFT features relating to each image, along

with its geometry and the image itself, in a database, which precludes automatic online

learning, and constrains the method to operate only within previously explored locations,

rather than being able to learn planar features in general or extracting them from new

environments. Nevertheless, the idea of recognising planes visually and inserting them

into the map is most appealing, as we discuss below.

An interesting application of higher level structures is demonstrated by Wangsiripitak

and Murray [132]. They reason about the visibility of point features, within a SLAM

system based on the parallel tracking and mapping (PTAM) of [72], and use this infor-

mation to more judiciously decide which points to measure. Usually a point-based map

is implicitly assumed to be transparent, so in principle points can be observed from any

pose, but in reality they will often be occluded by objects. To address this they use a

modified version of the plane recognition enhanced SLAM of [14] to recognise 3D objects

in the map, as well as automatically detecting planar structures from the point cloud.

These structures are used to determine the visibility of points, which is useful because

if a point is behind an occluding surface with respect to the camera, it should not be

measured. This increases the duration of successful tracking, by avoiding the risk of

erroneous matches and focusing on those points which are currently visible.
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Finally, the work of Flint et al. [40] is interesting in that it explores the use of seman-

tic geometric labels of planar surfaces within a SLAM system, in order to create more

comprehensible maps, based on the fact that many indoor environments obey the Man-

hattan world assumption. It also uses PTAM [72], where only a sparse point cloud is

initially available, but this is supplemented by using a vanishing-line method similar

to Košecká and Zhang [73], taking the lines detected in a scene and grouping them

according to which of the three vanishing directions they belong, if any. Because the

vanishing directions (in a world coordinate frame) remain fixed, they may be estimated

from multiple images, giving a much more robust and stable calculation. Once these

are known, surfaces are labelled according their orientation, introducing semantic labels

based on context (i.e. floor, wall, ceiling). The result is that quite accurate schematic

representations of 3D scenes, comprising the main environmental features, can be built

automatically, without relying on fitting planes directly to the point cloud. While the

dependence on multiple frames for the optimisation means this is fundamentally quite

different from our work, it is interesting to note how this assumption of orthogonal planes

is very powerful in creating clean and semantically meaningful descriptions, for simple

indoor scenes; though this is of course limited to places where at least two sets of surfaces

are mutually orthogonal.

7.2 Overview

We now proceed to give an overview of the plane detection–visual odometry (PDVO)

system we developed. This uses our detector to find planes and estimate their orienta-

tion, given only a single image from a moving monocular camera navigating an outdoor

environment. The mapping algorithm, which attempts to recover the camera trajectory

in real time by tracking points and planes, is based on the IDPP VO system [88]. Ordi-

narily this maps planes in the scene by growing them from initial seed points, but because

the location of planes is not known a priori, it is forced to attempt plane initialisation

at many image locations, and to grow them slowly and conservatively.

The novelty comes from the fact that using single image plane detection helps the VO

system to initialise planes quickly and reliably. By introducing planes using only one

frame, with an initial estimate of their image extent and 3D orientation, we can make

plane growing faster and more reliable. The result is that fewer planes are created,

covering more of the scene, while being restricted only to those areas in which planes
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are likely to occur, rather than attempted at every possible location. This means that,

unlike previous approaches, we need not wait for 3D data or multi-view constraints to

be available, but can directly use the information available in a single frame to guide

the initialisation and optimisation of scene features. Therefore plane detection is driv-

ing the mapping, rather than feeding off its results. This process allows planes to be

added quickly, but later updated as multi-view information becomes available, so that 3D

mapping can benefit from prior information but is not corrupted by incorrect estimates.

We also show that when these planes are added to the map, we can quickly build a rough

plane-based model of the scene, by leaving the detected and updated planes – which tend

to cover a reasonable about of the scene – in the map once they are no longer in view.

This results in a more visually appealing reconstruction, more easily interpretable by

humans.

In the next sections, we explain how the baseline VO system works, how we adapted

our plane detector to use with it, and how they are combined. The results we show in

Section 7.5 indicate that this is a promising approach, and while our evaluation is not

sufficient to show that it is necessarily more accurate than existing methods, our aim is

to demonstrate that using learned generic prior information is a valid and useful way of

building fast structure-driven maps in a real-time setting.

7.3 Visual Odometry System

This section describes the visual odometry system we used, which is based on the inverse

depth plane parameterisation (IDPP) [88]. This uses an extended Kalman filter (EKF)

SLAM engine ultimately based on [19, 29]. The distinction which makes this visual

odometry (VO), rather than full SLAM, is that features are removed from the state once

they are no longer observed, which means the estimation can progress indefinitely as

new environments are explored, at the cost of losing global consistency.

7.3.1 Unified Parameterisation

An important aspect of IDPP is that two different types of feature are used, namely

points and planes. All features are mapped using an inverse depth formulation [19], in
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which depth is represented by its inverse, allowing a well behaved distribution over depths

even for points effectively at infinity. This representation is extended to planar features,

in a unified framework, which allows both points and planes to be encoded in the same

efficient way. A general planar feature is described by its state vector mi = [ri,ωi,ni, ρi],

which represents the position and orientation (using exponential map representation) of

the camera, normal vector of the plane, and inverse depth respectively, giving a total of 10

dimensions. To represent points, the normal ni is omitted, leaving a 7D parameterisation.

This is further reduced to simply a 3D point for features which have converged to a good

estimate of depth.

Planes are defined as collections of observed point features which satisfy a planarity con-

straint, and are measured and updated by projecting these points into the current image,

using the recovered orientation estimate. Measurements are made using normalised cross

correlation of image patches, and like Molton et al. [95] patches can be warped according

to their planar orientation in order to improve matching. Using patch correlation is gen-

erally faster than using descriptor based methods [15]. Moreover, while such descriptors

are powerful due to being scale, rotation and view invariant, this means they will match

at a greater range of possible orientations. Cross correlation, on the other hand, will

only find a match with the correct warping. This means patches not actually on the

plane will fail to be matched, and thus discarded.

Further efficiency gains are achieved by sharing reference cameras between features (be

they points or planes) initialised in the same frame. This means that even though the

features have more dimensions than the 6D features of inverse depth points, the overall

state size is reduced both by sharing of reference cameras, and because coplanar points

are represented as part of the same planar feature. This leads to a large reduction in

state size when the scene is dominated by planes, and hence more efficient mapping, or

the ability to maintain a map of larger areas.

7.3.2 Keyframes

An important feature of IDPP is the use of keyframes. These are images retained when

new features are initialised, relating the initial camera view to the feature state, and

to which new observations must be matched for measurement. The pose of the camera

when the keyframe is taken is stored as a reference camera, associated with the image;

this is very convenient for plane detection, as will become apparent. Note that this use
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of keyframes is very different from keyframe-based bundle adjustment methods (such

as [72, 119]), where points are tracked between frames to localise the camera but only

measurements on keyframes themselves are used to update the map; whereas since IDPP

is based on a filter, all measurements in all frames are used to update the state recursively.

7.3.3 Undelayed Initialisation

An important difference compared to planar SLAM methods such as [47] is the undelayed

initialisation of planar features. As soon as a point is observed, being a candidate for a

new plane, it is added to the state and estimation of its location proceeds immediately

(this can happen even though the initial depth is unknown due to the inverse depth

representation). Immediately after initialisation, this initial ‘seed’ point can be grown

into a plane, by finding nearby salient points and testing whether they belong to a

plane with the same possible orientation. By this method, the algorithm simultaneously

estimates which points are part of the plane, while updating its orientation.

In more detail, plane growing starts with one initial seed point on the keyframe, and

assuming this is successfully matched, new points in the keyframe, within some maximum

distance of the original and chosen randomly, are added to the plane. If these are also

matched, a plane normal can be calculated from them, along with an estimate of its

uncertainty (done as part of the filter update, since the normal is part of the state). The

process continues, adding more points in the vicinity of the previous points, expanding in

a tree structure — but only from those points whose measurements show they are indeed

part of the same plane. Points which are not compatible are discarded, and it is this

which allows plane growing to fill out areas of the image whose geometry implies a plane

is present. Using such a geometric constraint does mean that planes will also be detected

from coincidentally coplanar points (assuming the patches can still be matched), or where

the points are so far away that no parallax is observed. Nevertheless, while these are

not actually planar, they are still beneficial in making measurements and collapsing the

state space, until an increase in error forces points to be discarded.

It should be emphasised that while planar feature initialisation is undelayed in terms

of the filtering, it is not the entire planar structure which is instantaneously available.

Rather, ‘undelayed’ refers to the fact that seed points can be updated and grown as

soon as they are added to the map. Planes take time to grow, and must be augmented

cautiously lest incorrect points be added, leading to an incorrect estimate of orientation,
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which can be hard to recover from. Such errors are liable to occur, and it is a delicate

matter to allow planes to grow sufficiently fast to be useful, and while they are still

visible, without introducing erroneous measurements into the filter.

7.3.4 Robust Estimation

Careful feature parameterisation and view-dependent warping, as discussed above, both

help to improve the efficiency and accuracy of the algorithm, but it would quickly be-

come over-confident and inconsistent if not for some robust outlier rejection. One way

this is done is by using the one-point RANSAC algorithm, first described in [114] and

implemented for visual odometry by Civera et al. [20]. RANSAC (RAndom SAmple

Consensus) [39] is a hypothesise-and-verify framework for robust model fitting and out-

lier rejection, where a random, minimal subset of measurements is taken, and used to

hypothesise a possible model for all the data points (for example, four point correspon-

dences in a pair of images to generate a homography). This is scored by the number

of inlier measurements, i.e. how consistent all the data are with this model. The most

consistent model is chosen, and only the inliers are used to calculate the final model.

The number of samples required for RANSAC to reliably find the correct model is a

function of the number of expected inliers and the number of measurements required to

form a minimal hypothesis. The key to one-point RANSAC is to reduce the number of

measurements needed as far as possible, to using only one, and to use prior information

about the scenario to complete the model. Therefore while a single measurement cannot

generate an instance of the model, it is sufficient to choose from a one-parameter family.

In IDPP, one-point RANSAC is used to test possible camera poses, to ensure that no

outlier measurements corrupt the current estimate. Instead of using the five point corre-

spondences typically needed to generate a camera pose, one-point RANSAC allows the

current state and its covariance to limit the range of most likely poses, meaning that

only a single point measurement is sufficient to hypothesise a new camera. Because the

minimal set is so much smaller, in order to get a high probability of finding the correct

pose only seven measurements are sufficient on average, making this significantly faster

than full RANSAC.

One-point RANSAC proceeds by selecting each point in turn, from the randomly chosen

set, and using it to perform a partial update on the EKF (to update the state but not the
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full covariance). Then the difference between the updated points and their measurements

(innovation) is used to find which are the inlier points, since after the update those

which have a high innovation are not consistent, and so are likely to be outliers. Once

the hypothesis with the highest number of low-innovation inlier measurements is found,

these are used to perform a full state update. However, it is possible that some of the

points rejected as outliers are actually correct (such as those recently initialised and not

converged, for example), so the final step is to rescue high-innovation liners, by finding

those points which still are consistent with the model, even if they are less certain.

However, as powerful as it is, one-point RANSAC is not sufficient to make the algorithm

fully robust. A further level of checking is added, in the form of a 3D consistency test (for

full details see [85]), allowing the extra information available from the 3D map to be used.

This is useful because often 2D points will seem to be consistent with their individual

covariance bounds, whereas they do not lie on the correct plane in 3D. The covariance

of the planar features in 3D is propagated to individual planar points, meaning points

not actually conforming to the plane can be removed. The 3D consistency check is more

selective, but more time consuming, than the 2D consistency check, so the 2D check is

run first for all points and the 3D check run afterwards to remove any remaining outliers.

7.3.5 Parameters

Amongst the parameters which control the operation of the plane growing algorithm is

the minimum distance between planar points, which determines from how far away new

points are added to the plane, measured in the keyframe (set to a value of 12 pixels).

A related parameter is the number of new points which are added to a plane at each

step (set to 3). Together these two parameters control the speed at which planes grow.

Finally, there is the maximum number of measurements (of either feature type) which

can be made in one frame, which increases map density to the detriment of frame rate

(set to 200).

7.3.6 Characteristics and Behaviour of IDPP

This plane parameterisaton was shown to be successful in detecting planes in cluttered

environments, such as an office. Moreover, due to the ability to quickly add relevant

measurements to a plane as they become available, it is able to deal smoothly with
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occlusion, so that while parts of a plane are occluded, other parts are measured. The

method was even shown to work in reasonably featureless indoor environments, by virtue

of picking up many more features than is possible with point-based SLAM.

The IDPP system, when being used as visual odometry, performs well in outdoor en-

vironments, and achieves comparable performance to [20] on the Rawseeds dataset1,

compared to ground truth GPS data, while running at a significantly faster frame-rate

[89]. Visual odometry discards the built map, so it can run indefinitely with constant pro-

cessing time; but even so, its accuracy is sufficient to almost close large loops (although

some scale drift is inevitable).

However, despite the benefits of the algorithm outlined above, there are a number of

disadvantages which must be considered. First, although initialisation is undelayed and

planar structures can be mapped immediately, it still takes time to build these up,

and gather sufficient measurements to determine that a plane does indeed exist. Often

collections of points can be measured as planes for some time before realising this is not

actually the case. At worst this risks introducing erroneous measurements, and at best

slows down execution as many false planes are attempted and discarded.

Successful plane growing also relies on having sufficient parallax, so if the camera is

stationary or performing pure rotational motion, there will be no way to recover planes

given any number of frames. Consequently, the accuracy of the resulting planes will

be a function of the distance the camera has translated and the distance to the plane.

As well as potentially introducing false planes, this could lead to incorrect orientations

being assigned, meaning the map does not correspond well to reality, but also making

it difficult for the planes to be corrected when reliable measurements are made, or to

continue growing.

One of the main implications of not knowing where planes are beforehand is that many

potential locations must be investigated. A large number of planar features must be

initialised and grown, which is rather computationally expensive. While this blind prob-

ing is ultimately effective, it risks many planes being grown over non-planar structures,

or for planes to overlap and compete for measurements, further slowing the process of

finding true planar structure. An ideal solution to this and the other problems, of course,

would be some way of knowing a priori which image regions correspond to planes.

1See www.rawseeds.org
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7.4 Plane Detection for Visual Odometry

Now that we have outlined the important details of the IDPP VO system we use as a

basis, and that the details of the plane detection algorithm are thoroughly explained

in Chapters 3 and 5, we proceed to describe how the two are combined, to produce a

plane-based visual odometry system that runs in real time.

7.4.1 Structural Priors

As we stated earlier, the function of our plane detection algorithm here is to provide a

prior location, and orientation, of planar structures in the image. That is, we do not rely

exclusively upon our detection algorithm, since it is prone to error, nor do we repeatedly

use it to refine the estimates of the planes as they are observed. This cleanly separates

the domain of the two algorithms: plane detection finds the location of the planes in the

image, and passes this information to the VO system, which then initialises planes and

continues to measure and map them as appropriate. Plane detection runs as described

previously, using only the information in a single colour image as input, independently

of any estimates present in the map.

One issue to consider is how the data are passed from the plane detector to IDPP.

Plane detection operates at the level of salient points (Section 3.3.1), but this is only

a limited sampling of the image; and while the VO also uses a set of salient point to

track and localise features, these are not necessarily the same points (in fact, we use the

difference of Gaussians detector, which picks blob-like salient regions at multiple scales,

while IDPP uses the corner-like features provided by FAST [110]). We bridge this gap

by modifying our algorithm to produce a mask as output, indicating which pixels belong

to which planes. This is by nature an approximation since we do not have pixel-level

information, but it is valid if we assume that planes are continuous between the salient

points assigned to them, and do not extend significantly beyond their planar points.

We create the mask using the Delaunay triangulation, which is already available having

created the graph for the Markov random field (Section 5.8.2), and assign pixels which

fall inside each triangle to have the same class (and orientation) as the three vertices,

for those triplets which are in the same segment. Pixels inside triangles whose vertices

belong to different segments, or those outside any triangles, are not assigned to a planar

region, and assumed non-planar (the non-planar regions are not important here)
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Figure 7.1: Examples of the masks we use to inform the visual odometry
system of plane detections. From the input image (left) we use a Delaunay
triangulation to create a mask, showing which pixels belong to planes, each with
a grey level mapping to an ID with which orientation is looked up (right). These
triangulations are similar to how the plane detection is usually displayed (centre).

The masks that result from this are vectorised to integer arrays, where all non-planar

pixels are set to 0, and pixels in a plane have a value corresponding to the plane’s ID

number, which is used to recover the plane normal from a list. We can also show these

masks as grey scale images, examples of which are in Figure 7.1, where for display pur-

poses IDs are mapped to visible grey levels. The approximated pixel-wise segmentation is

actually the same as the way we have illustrated the extent of planar regions in previous

chapters.

7.4.2 Plane Initialisation

When a keyframe is created by IDPP, instead of attempting to initialise planes at any

and all locations, the keyframe image is passed to the plane detector, and upon receipt of

the plane mask image, planar features are created. We initialise one IDPP planar feature

per detected plane, using the centroid of the region (specifically, the nearest FAST corner

to the centre of mass of the mask pixels) as the location of the seed point. To avoid over-

writing existing planes, we ensure that each centroid is above a minimum distance (set to

30 pixels) of any planar point in the keyframe, and discard the detected plane otherwise.

Where no planes are present (black areas of the mask), point features are initialised as
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normal, if necessary, to ensure there is sufficient coverage of the environment.

The estimated normal vector from the plane detector is used to initialise the normal in

the feature state. The aim is that this will be close to the true value, much more so than

the front-on orientation which must be assumed in the absence of any knowledge. This

allows faster convergence of the normal estimate, and avoids falling into local minima.

However, this must be initialised with sufficiently large uncertainty as while an initial

estimate is useful for initialisation, it cannot be relied upon to be accurate, and so it

must be able to be updated as more measurements are made without the filter becoming

inconsistent. Using these initial normals also helps ensure non-planar points are not used

for measurements, since as described above, their warped image will be less similar if

the correct normal is used.

7.4.3 Guided Plane Growing

It is important to note that we do not initialise the whole extent of the plane immediately,

spreading points over the mask region. This would risk introducing incorrect estimates

into the filter, caused by not having enough baseline to correct the normal estimate from

all the measurements. Such errors would be difficult to recover from and may corrupt

the map.

Instead, we use the regular plane growing algorithm to probe the extent of the plane,

but allow the growing to proceed faster than normal, by adding more new points per

frame. The number of new planar points added to a plane in each frame is increased to

10 (from 3 in IDPP), meaning we can exploit the prior knowledge of the plane location

and orientation to map planes quickly, but retain the ability to avoid regions which are

not actually coplanar. Furthermore, any points which do not conform to the planar

estimate are automatically pruned by the algorithm’s 3D consistency test (see Section

7.3.4 above), so minor errors in the plane detection stage (planes leaking into adjoining

areas, for example) do not cause problems in the map estimation.

The planes are not permitted to grow outside the bounds set by the plane detector,

which means the growing is automatically halted once the edge of the detected plane

has been reached (they cannot inadvertently envelop the whole image). No other planar

features are allowed than those detected. The result is a much smaller but more precise

set of planes, corresponding better to where they should be; and no wasted time in
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attempting to grow planes in regions which are not appropriate. This, combined with

the computational savings achieved by initialising with a good normal estimate, allows

for a substantial increase in frame rate.

What we are striving for, in effect, is a system whereby the strengths of both methods

are combined, in order to correct each others’ errors. The inability of IDPP to quickly

map out new planes is mitigated by using the prior information, and the potential for

detected planes to have inaccurate orientations is ameliorated by the iterative update

over subsequent frames.

7.4.4 Time and Threading

While our original implementation of the plane detector was reasonably fast, running

in one to two seconds per image, this was using un-optimised code. For application

in a real-time system, the fastest execution possible is desired. As such we parallelise

portions of our algorithm to decrease its execution time. The region sweeping stage is

ideal for splitting between simultaneous processes or threads, since each sweep region

is independent (indeed, it is basically a separate invocation of the plane recognition

algorithm). This means the creation of descriptors and classification of the regions can

be done separately for sets of regions, then combined together when creating the local

plane estimate.

While this is still not sufficient to run in real-time (the camera images are received at

a rate of 30Hz) it is not strictly necessary for our detector to run this fast (i.e. with

an execution time below 33ms, which may be possible but difficult to obtain). This is

because we can run the detector in the background, in a separate processor thread, and

return the result for use by the VO system when it has completed.

Since the plane detector is running in a separate thread, we take full advantage of this

by running it continuously. As soon as the plane detector has finished one frame, it will

move on to the next current image from the camera. This means the VO thread has a

constant stream of plane detections, as soon as they are available.

This is where the keyframes of the VO system are particularly convenient, since these

are retained even after the camera has moved on, and their associated camera poses are

maintained in the state. This means once the plane detector has finished, planes can

be related back to the keyframe on which they were detected, in order to grow them
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and update the reference camera. Updates to one keyframe, even in the ‘past’, can

be used to update the current map. The disadvantage is that updates resulting from

measuring planes arrive several frames late, although this will not be a problem under

the assumption that there are no drastic changes in camera pose in the interim, and

so long as the planes are still in view. The delay is more than compensated for by the

increased speed at which planes can grow and converge.

While one of the primary reasons to use only a single frame to detect planar structure

was to do this quickly, it appears we must still wait several frames for detections to

become available. One might argue that rather than wait for the single-frame estimate,

it would be simpler to take all the frames from a corresponding time period and apply

standard stereo or multi-view algorithms to recover planar structure. This is not an

appropriate alternative, and we refute it thus:

The problem with simply using all the images in a 20-30 frame window to recover 3D

information is that accuracy is very sensitive to the baseline. The camera would need

to move far enough, over a period of around one second, to perceive large differences

in depth, which is rather unlikely when the camera is moving at moderate speeds in an

urban scene. Indeed, this is the limitation which stops IDPP growing planes instanta-

neously. While one could, in principle, make use of information from all these frames,

it would not necessarily be of any benefit; indeed, the original IDPP algorithm, which

uses information from every frame, filtered by an EKF, would itself be one of the best

ways of doing this. In contrast, even if our plane detection allows 30 frames to pass by

unseen while detecting planes in just one of them, it does not matter even if all those

frames are the same.

A second reason is that the plane detection algorithm uses an entirely different kind

of visual cue. Even if some superior multi-view geometry algorithm could be used to

extract accurate planar orientation from such a narrow time window, this still uses only

the geometric information apparent from depth and parallax cues. On the other hand,

by exploiting the appearance information of the image, our algorithm is attempting to

interpret structure directly, based on learned prior knowledge. This is independent of 3D

information, and so is complementary to the kind of measurements made by IDPP. We

draw a parallel with the work of Saxena et al. [111], who show that estimating a depth

map from a single image helped to improve the results from a stereo camera system, by

combining the two complementary sources of information.
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7.4.5 Persistent Plane Map

One objective of our PDVO is to create a plane-based map of the scene. In general,

the accuracy of visual odometry is not good enough to create a persistent map, and the

quality and extent of planes created by IDPP is not sufficient for a 3D map display.

However, by using our plane detection, the planes tend to be larger, more accurate, and

better represent the true 3D scene structure, and we can be more confident about the

planes’ authenticity than with IDPP alone. This suggests an easy way to create maps

quickly, by simply leaving the mapped planes in the world, even after they are no longer

in view. Given that this is visual odometry, they are removed from the state, maintaining

constant-time operation, and so will not be re-estimated when they are again in view. We

find that the accuracy of their pose is sufficient to build such a 3D map, to immediately

give a good sense of the 3D structure of the world; note that this work is at a preliminary

stage, leading to quite rough 3D models.

7.5 Results

A number of experiments were carried out using videos of outdoor urban scenes. These

were recorded using a hand-held webcam running at 30Hz, of size 320× 240 pixels and

corrected for distortion caused by a wide-angle lens. Our intention was to investigate

what is possible when using learned planar priors, rather than to exhaustively evaluate

the difference between the two methods. As such, we tuned both methods to work as

well as possible by altering the number of new planar points that can be initialised at

each frame. For IDPP, this was set to 3, for conservative plane growing, while for PDVO

we used a value of 10, allowing planes to more rapidly fill the detected region, permissible

since it is less sensitive to how planes are grown into unknown image regions.

First we consider the implications of the delay in initialisation while waiting for the

plane detector to run, compared to the undelayed initialisation of (seeds of) planes by

IDPP. In Figure 7.2 we show the development of a keyframe over several frames after

initialisation in both methods. The first row shows the initial input image, and the

result of plane detection used to initialise planes in the PDVO system. Following this

are images showing the progression of plane estimation. It is clear that IDPP, in the left

column, quickly initialised many planes, at many image locations (some of which were

not at all planar), but these took some time to grow, and competed for measurements.
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Figure 7.2: Comparison of the initialisation of plane features using the original
IDPP method (left) and when augmenting it with plane detection (PDVO, right).
Images of the camera view after 2 (initialisation), 14 (detection ends), and 46
frames have elapsed are shown, demonstrating that although there is a delay of
many frames while the plane detector runs, the good initial estimate makes up
for this in terms of the number and quality of the resulting planes. The bottom
row shows planes in 3D at frame 46.



7.5 Results 156

When using plane detection (right column), a single plane was initialised at the centroid

of the detected region, and grew quickly. Even with a delay of around 14 frames before

the detector finished, the plane expanded rapidly, overtaking those initialised by IDPP in

number of measurements and image coverage. The bottom row shows 3D visualisations

of the planes, corresponding to the last camera frame shown; the many planes created by

IDPP had not yet attained good poses, while the plane initialised in PDVO already shows

appropriate orientation. Again, this difference was partly because only the one plane

was initialised, and because the plane prior allowed us to choose a less conservative rate

for plane growing, highlighting that fact that the two methods operate in very different

ways.

Figure 7.3: Some views of the Berkeley Square sequence, showing the original
IDPP (left) and our improved method (right). The top images show a top-down
view of the whole path, while the lower images show oblique views, illustrating
that the PDVO method produces less clutter and larger planes.

Next, we compared the two methods on a long video sequence, as the camera traversed

a large loop of approximately 300 metres — this was a square surrounded by houses,

with trees on the inside (the Berkeley Square sequence). 3D views resulting from the

two methods are compared in Figure 7.3; while both recovered an approximately correct
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Figure 7.4: Comparison on the Denmark Street sequence: IDPP (left) again
has more numerous and smaller planes than PDVO (right) (note that the grid
spacing is arbitrary and does not reflect actual scale).

trajectory (the true path was not actually square, but the ends should meet) and placed

planes parallel to the route along its length, it is clear in the PDVO method (right)

that there are fewer planes, which tend to be larger and less cluttered, giving a clearer

representation of the 3D environment. The oblique views underneath show this clearly,

where compared to PDVO, the planes mapped by IDPP are smaller, more irregular, and

with more varying orientations.

We also show results for another video sequence, taken in a residential area, surrounded

by planes on all sides (the Denmark Street sequence), shown in Figure 7.4. Again, the

map visualisation created using our method is more complete and clear than that with

the original IDPP, with fewer and larger planes. Examples of planes as seen from the

camera are shown in Figure 7.5, and further examples of plane detections acquired during

mapping are shown in Figure 7.6, showing our detection algorithm is quite capable of

operating in such an environment.

Method Total planes Points per plane Average area (pixels)
IDPP 205 17.9 521.0
PDVO 52 28.9 1254.4

Table 7.1: Comparison of summary statistics for the IDPP and PDVO methods,
on the Berkeley Square sequence.

Table 7.1 compares statistics calculated from mapping the Berkeley Square sequence, in

order to quantify the apparent reduction in clutter. These confirm our intuition that

when using plane priors, fewer planes will be initialised, by avoiding non-planar regions.

Furthermore, the planes resulting from PDVO are measurably larger, both in terms of

the average number of point measurements, and number of pixels covered.
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(a) (b) (c) (d)

Figure 7.5: Visual odometry as seen from the camera. For IDPP, many planes
are initialised on one surface (a), or on non-planar regions (b); whereas PDVO
has fewer, larger planes, being initialised only on regions classified as planes (c,d).

Figure 7.6: Examples of plane detection from the Berkeley Square sequence,
showing the area deemed to be planar and its orientation. Note the crucial
absence of detections on non-planar areas; and that multiple planes are detected,
being separated according to their orientation.

As we emphasised earlier, our intention is to show the potential for using the plane

detection method for fast map building, and not necessarily to produce a more accurate

visual odometry. However, it is interesting to analyse the accuracy of PDVO compared

to IDPP against the areas’ actual geography. Ground truth was not available, but the

trajectories can be manually aligned with a map, as shown in Figures 7.7 and 7.8 for the

Berkeley Square and Denmark Street sequences respectively. The latter is a compelling

example, suggesting that, under certain conditions, our method helps to ameliorate the

problem of scale drift (a well known problem for monocular visual odometry [119]); of

course, many more repeated runs would be needed to quantify this, but we consider

these initial tests to be good grounds for further investigation.

One of our main hypotheses was that by using strong structural priors, we can make

mapping faster by more carefully selecting where to initialise planes. Our experiments

confirmed this, according to Figure 7.9 where we compare the computation time (mea-

sured in frames per second) for both methods, on the Berkeley Square sequence. As

previously reported in [89], the IDPP system achieves a frame rate of between 18 and 23

fps (itself an improvement on similar methods running at 1 fps [20]), which is confirmed
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Figure 7.7: In lieu of ground truth data, the trajectories were manually overlaid
on a map for comparison, for the Berkeley Square sequence. The true trajectory
closes the loop, and while both methods show noticeable drift, the error for our
PDVO method (red) was an improvement on that of IDPP (blue).

Figure 7.8: A comparison of mapping ability of the two methods on the Den-
mark Street sequence, compared to a map. Again, both methods exhibit gradual
drift, but this is reduced by our PDVO method (red) compared to IDPP (blue).

by this experiment (blue curve). Our method clearly out-performed this, achieving both

a substantially higher average frame rate of 60 fps and being consistently faster through-

out the sequence (this times the VO threads, so does not include the time taken to run

the plane detector). We are not aware of existing visual odometry systems running at

such high frame rates for a similar level of accuracy, suggesting that our use of learned

structural knowledge is a definite advantage. Running at such high speeds is beneficial

since it means more measurements can be made for the same computational load, which

tends to increase accuracy [120], or frees computation time for global map correction

methods [119].
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Figure 7.9: Time (frames per second) for each of the methods (smoothed with
a width of 100 frames for clarity). The mean is also shown for both.

7.6 Conclusion

This chapter has described how we can use our plane detection algorithm as part of a

visual odometry system, being a good example of a real-world application. We achieved

this by modifying an existing plane-based visual odometry system to take planes from

our detector and use them to quickly initialise planar features in appropriate image

locations.

Part of the success of this approach was due to careful choice of the baseline VO system

we used. The IDPP visual odometry system is based on taking measurements from one

keyframe image, and growing planes from seed points, and these qualities make it ideal

for incorporating planar priors, by using them to specify where on the key frame a plane

should be initialised, and by having the confidence to grow these planes much faster.

Furthermore, this VO system can make use of the single image estimate of the plane

normal in a principled way, by using it to initialise the plane feature directly in the filter

state. This means that our estimated value can help with faster initialisation, without

having to wait for image measurements; but on the other hand reasonable errors in this

value will not cause problems since it will be updated as more multi-view information

becomes available.

However, there is no reason why this would be the only type of SLAM or VO system

able to benefit from having plane priors, and we could consider the use of methods based

on fitting planes to points [47] or based on bundle adjustment [132]. For example, we

might use RANSAC to find collections of coplanar points in a point cloud, and filter out

false planes using our plane detection algorithm, to detect planes both geometrically and

with some semantic guidance.

A key contribution of this chapter was to show that by exploiting general prior knowledge
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about the real world – encoded via training data – we can derive strong structural priors,

which are useful for fast initialisation of map features. Direct use of such general prior

information has not been done in this way before — the closest equivalents are Flint

et al. [40] who use assumptions on the orthogonality of indoor scenes to semantically

label planar surfaces, and Castle et al. [14] who use knowledge of specific planar objects

to enhance the map and recover absolute scale.

7.6.1 Fast Map Building

We also demonstrated that by detecting planes almost immediately from a single camera

frame, they can be inserted directly into the map, to quickly give a concise and meaning-

ful representation of the 3D structure, again due to having good priors. While planes are

added to the map as they are built in the regular VO system, of course, the difference

is that we have good reason to believe these planes will better reflect the actual scene

structure, as opposed to being planes grown from coincidental coplanar structure. This

was supported by our results, showing the detected planes to be fewer in number, larger

in size, and seeming to align better with the known scene layout.

It would be interesting to develop this further, toward producing fast and accurate plane-

based 3D models of outdoor environments as they are traversed. This could be used,

for example, to create quick visualisations of a scene, with textures on the planes taken

from the camera images. By giving a better sense of the scene structure such maps

would also be useful for robot navigation and path planning, being better able to avoid

vertical walls or traverse ground planes; or for human-robot interaction, making it easier

to communicate locations and instructions in terms of a common 3D map.

7.7 Future Work

This section discusses potential developments to this PDVO system, for further evalu-

ation and use as part of an online learning-system; discussion of future work in other

applications is deferred to Chapter 8.
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7.7.1 Comparison to Point-Based Mapping

One important area which requires further investigation is exactly why we see the per-

formance gains we do, in terms of frame-rate and accuracy. Our algorithm is able to

initialise planes in a more intelligent way, by only creating seed points in regions deemed

planar by our detector, which avoids the potential problems, and computational bur-

den, of growing planes in inappropriate places. However, it could be that some of the

benefits come simply from having fewer planes in total, for example if reducing the num-

ber of planes, irrespective of where they are created, is beneficial. If, hypothetically,

introducing planar structures inevitably leads to errors, then using fewer of them would

improve performance, calling into question to benefit of using single image plane detec-

tion. This could be investigated by comparing the plane detection enhanced version,

and the standard plane-growing version of IDPP, to a purely point-based system, to

evaluate the differences between them (note that the point features used in IDPP are

parameterised using the efficient, unified parameterisation, and so have advantages over

standard point-based systems).

We could also compare PDVO and a similar version which initialises the same number

of planes, but in random locations. We would expect, if the conclusions of this chapter

hold, that using the detected locations would be significantly better. Furthermore, the

IDPP method was itself originally compared to point-only mapping, both in simulation

and on real data, and found to be superior [85, 89]. This suggest it is likely that using

detected planes as opposed to a random subset would be beneficial, so we maintain our

assumption that plane detection provides benefit over only points.

7.7.2 Learning from Planes

Presently, the training data for PDVO comes from manually labelled training data, the

creation of which is a time consuming process. An alternative would be to use the IDPP

visual odometry system itself to detect planes, and use these as training data. Once

IDPP has been used to map an environment, the result is a map with planar structure,

with relates planes in the world to the keyframes from which they were observed. This

means the information available in the keyframes is fairly similar to the type of ground

truth data we have manually labelled, and so we could process these as described in

Section 5.4, to extract training regions by sweeping over the whole image. Not only

would this avoid manually annotating images, but would allow us to easily tailor the
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detector to new environments, by obtaining a training set more similar to the type of

scenery encountered.

There are a few issues to consider in pursuing this idea. Firstly, while keyframes are

ideal for recovering the identified planar structures, it is not clear at which point during

the planes’ evolution they should be used as training data. It would be prudent to wait

for planes to expand and to converge to a stable orientation, although planar points may

be removed as they go out of view or are occluded, so waiting too long would lead to

fewer or smaller planes. Points will also be removed from planes if they are later found

not to be co-planar, so taking the largest coverage of planes would also be inadvisable.

In addition to this, it would not be possible to know that regions without planes are

indeed non-planar, since the absence of planes might simply be due to having sufficiently

many measurements without initialising additional planes on the keyframe.

A further issue in using planes detected by IDPP – or indeed any geometric method –

is that these cannot be used to determine what a human would consider planar, but

only what the mapping algorithm considers to be planar. This may be useful, in terms

of giving a prior on the locations of the kind of plane that will be detected by the

mapping system; but it would no longer be encapsulating any human prior knowledge,

or any planar characteristics complementary to what geometric methods can see. This

is unfortunate, since it seems that a key benefit of PDVO is the ability to avoid planes

in inappropriate places, and to predict their extent in the image, something which is

difficult for IDPP.

The above idea can be extended further, by combining both training and detection (which

would both be autonomous) into an online system. The ideal would be a combined plane-

detection/plane-mapping visual odometry system that starts with no knowledge of planes

or the environment. As it maps planes using multi-view information, it would gradually

learn about their appearance. From this it would detect new planes from single images,

increasing the efficiency of detection as it learns more about its surroundings. In order to

achieve this it would be necessary to make some changes to the plane detection method,

primarily to make training feasible in an online system. Training the RVM would no

longer be practical, since this takes a large amount of time, and would require retention

of the whole training set (since the relevance vectors are liable to change as more data

become available). An alternative classifier would be necessary, for example random

forests [12] which would be easier to incrementally train as data become available.

This would be a very interesting way to develop the PDVO algorithm, since it would be
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a step toward creating a self-contained perceptual system, which explores its environ-

ment, learns from it, and uses this learned knowledge to aid further exploration. Again,

we make an analogy with the way humans perceive their environment, as discussed in

Chapter 1. Biological systems are capable of such learning, ultimately starting with no

prior information, which implies it may be possible to design a vision system to achieve

similar goals.

However, many challenges remain before developing such a system using the methods

described above. Because training data would come from plane growing, this could lead

to undesirable drift in what is considered a plane, if false planes are detected and used as

training examples. Alternatively, if few planes are detected, there would be insufficient

data to learn from, making the plane detector unable to help initialise new features.

As such, building an online learning system with the methods we have discussed here

remains a distant prospect requiring considerable further work.



CHAPTER 8

Conclusion

This thesis has investigated methods for finding structure in single images. This was

inspired by the process of human vision, specifically the way that humans are thought to

learn how to interpret complex scenes by virtue of their prior knowledge. As we discussed

in Chapter 1, learning from experience appears to play an important part in how humans

see the world — evinced be phenomena such as optical illusions. Since humans appear

capable of perceiving structure from both reality and in pictures, without necessarily

using stereo or parallax cues, this can provide useful insights into how computer vision

algorithms might approach such tasks.

This motivated us to take a machine learning approach to tackle the problem, where

rather than explicitly specify the model underlying single image perception, we learn

from training data. This is similar in spirit to a number of approaches to tasks such

as object recognition [37, 69], face verification [7], robotics [1], and so on. We are also

motivated by other recent work [66, 113], who have also used machine learning methods

for perceiving structure in single images; and driven by the range of possible applications

single-image perception would have.

Amongst the myriad possibilities for attempting single-image perception (such as re-

covering depth or estimating object shapes), we have begun by focusing on the task of
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plane detection. This was chosen because planes are amongst the simplest of geometric

objects, making them easy to incorporate into models of a scene, and can be described

with a small number of parameters. Furthermore, planes are ubiquitous in human-made

environments, so can be used to compactly represent many different indoor or urban

environments. The importance of this task is underlined by many recent works on plane

detection generally [5, 42], as well as attempts to extract planar structure in single im-

ages [73, 93]. However, as we described in Chapter 2, existing methods for single image

plane detection suffer shortcomings such as a dependence on certain types of feature, or

an inability to accurately predict orientation, so we believe our new method satisfies an

important need.

In order to begin the interpretation of planar scenes, we developed a method for recog-

nising planes in single images and estimating their orientation, which uses basic image

descriptors in a bag of words framework, enhanced with spatial information (Chapter

3). We use this representation to train classifiers which can then predict planarity and

orientation for new, previously unseen image regions. We believe this is a good approach

to the problem, since it avoids the use of extracting potentially difficult structures such

as vanishing points, which may not be appropriate in many situations.

Our experiments in Chapter 4 confirm the validity of such a learning based approach,

showing that it can deal with a variety of situations, including both regular Manhattan-

like scenes and more irregular collections of surfaces. We acknowledge that our method

may give orientation accuracies inferior to direct methods (using vanishing points, for

example) in the more regular scenes. However, we are not bound by their constraints,

and can predict orientation in the absence of any such regular structure. This chapter

also explored a number of design choices involved in creating the algorithm. This is

important, since it gives some insight into why the method achieves its results, and its

potential limitations.

This work was not in itself complete, since it required the correct part of the image to

be marked up. We addressed this in Chapter 5, where we demonstrated that this plane

recognition algorithm can be incorporated into a full plane detection system, based on

applying it multiple times over the image, in order to sample all possible locations of

planes. This allows us to estimate planarity at each point (the ‘local plane estimate’),

which gives sufficient cues to be able to segment planes from non-planes, and from each

other, implemented with a Markov random field (MRF).

We showed in Chapter 6 that this detection method is indeed capable of detecting planar
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structure in various situations, including street scenes with orthogonal or vanishing-point

structures, but also more general locations, without the kind of obvious planar structure

usually required for such tasks. We emphasise that our algorithm also deals with non-

planar regions, and can determine if there are not in fact any planes in the image.

These experiments confirm our initial hypothesis, that by learning about the relationship

between appearance and structure in single images, we can begin to perceive the structure

in previously unseen images, without needing multi-view cues or depth information.

Nevertheless, the task of perceiving structure generally is far from complete, in that we

have looked only at planar structures so far. Moving on to more complicated types of

scene would be an interesting avenue to explore in future, although potentially much

more challenging.

Chapter 7 showed how our plane detector can be applied in a real application. Here we

investigated its use for visual odometry (VO), a task where planes have been useful for

efficient state representation and recovering higher-level maps [46, 87]. We experimented

by modifying an existing visual odometry system [89] that can simultaneously grow

planes and estimate their orientation in the map, while using them to localise the camera.

We chose this system since it was clear that it would benefit from knowing the likely

locations of planes. We used our plane detector to find planes in a set of keyframes,

and from there initialise planar features in the map, using our estimated orientation as

a prior. This allowed planes to be initialised only in locations where they should be, to

grow quickly into their detected region and not exceed their bounds, and to be initialised

with an approximate orientation, which while not perfect was better than assuming the

planes face toward the camera. This increased the accuracy of the resulting maps, and

drastically increased the frame-rate over the baseline VO system, while also allowing fast

construction of plane-based maps, by retaining detected planes even after they had been

removed from the state.

8.1 Contributions

Here we briefly summarise the key contributions of this thesis:

• We described a method of compactly representing image regions, using a variety

of basic features in a bag of words framework, enhanced with spatial distribution

information.
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• Using this representation, we trained a classifier and regressor to predict the pla-

narity and orientation of new candidate regions, and showed that this is accurate

and performs well with a variety of image types.

• We developed this for use as part of a plane detection algorithm, which is able to

recover the location and extent of planar structure in one image, and give reliable

estimates of their 3D orientation.

• This method is novel, in that it is able to both detect planes, using general image

information – without relying either on depth information or specific geometric

cues – and is able to estimate continuous orientation (normal vector as opposed to

orientation class).

• We also compared our method to a state of the art method for extracting geo-

metric structure from a single image, and found it to compare well, with superior

performance on average on our test set according to the evaluation measures we

used.

• Finally, we demonstrated that single-image plane detection is useful in the context

of monocular visual odometry, by giving reliable priors on both the location and

orientation of planar structures, enabling faster and more accurate maps to be

constructed.

8.2 Discussion

Having outlined the primary contributions and achievements of this work, we now dis-

cuss some of the more problematic areas. One implicit limitation in our current plane

recognition algorithm is that it depends upon having a camera of known and constant

calibration. Images from different cameras with different parameters may look consider-

ably different, due to the effects of lens distortion or picture quality for example. This

would impact upon classification accuracy, but could be solved by increasing the quan-

tity of training data. However, while the calibration parameters do not appear in any

of our equations or image representations, they are required in order to relate the four

marked corners of the image to the ground truth normal (Section 3.2). This implies that

if an image exists with an identical quadrilateral shape, that comes from a camera with

different parameters, the true normal would actually be different, causing our algorithm

to give erroneous results. This limits our algorithm to images and videos taken with the
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same known camera (the results in this thesis were all obtained thus); and yet it would

clearly be beneficial to attempt to generalise our method, firstly to work with any given

camera matrix, and ultimately to be independent of calibration, to use images from a

more diverse range of sources. We envisage a system able to freely harvest images from

the internet, and intriguingly perhaps even from Google Street View1, which already

contains some orientation information.

As we discussed in Section 6.5.2, the model we have assumed in order to relate appear-

ance to structure might cause problems. Specifically, by using a translation invariant

descriptor (the spatiograms with zero-mean position), we are assuming that location in

the image is irrelevant for either plane classification or orientation. Not only does this

miss out on a potentially useful source of information, but is inaccurate, since experience

shows that an identical planar appearance seen in different image locations may imply a

different orientation. The brief experiments we conducted to investigate this fortunately

show that it is not a pressing issue. The difference in orientation as the plane moves

across an image is slight, and the results using both types of description showed broadly

similar performance. Nevertheless, it would be desirable to ensure the way we represent

appearance and orientation allows their true relationship to be expressed, and may lead

to better results.

We described in Chapter 5 how we use a two-step process for segmenting planes according

to class then orientation. We found this worked well in practice, but are aware that

the use of two stages, plus mean shift to discretise the orientations, might be an over-

complication. In principle it should be possible to perform the entire segmentation in

one step, simultaneously estimating class and orientation for plane segments, while also

finding the best set of orientations. This would perhaps be more efficient, or at least more

computationally elegant. Such a one-step segmentation could potentially be achieved by

treating it as a hierarchical segmentation problem on a MRF [78]; or by using a more

sophisticated model such as a conditional random field, where the best parameters to

use would be learned from labelled training data [105].

One significant problem which we observed (see for example the images in Chapter 6) is

the plane detector’s inability to adhere to the actual edges of planar surfaces. Frequently,

planes will not reach the edges of the regions, since they only exist where salient points

occur; but we also observe many cases where planes overlap the true boundaries and leak

into other areas. This is an important problem since for any kind of 3D reconstruction,

1www.maps.google.com
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or when using the planes to augment the image, this will lead to errors, making the

actual structure more difficult to interpret. As we have discussed, making use of edge

information, or explicitly classifying the boundaries, would be possible ways to mitigate

this. As it stands, the fact that planes can be detected in the right location with broadly

correct extent is encouraging, but expanding our algorithm to respect plane boundaries

would not only significantly improve the presentation of the results, but bolster the case

that learning from images can be more powerful than traditional techniques such as

explicit rectangle detection.

We also note that one of the criticisms we levelled at the work of Hoiem et al. [66] is

its dependence on scenes structured in a certain way — for example having a horizontal

ground plane and a visible horizon. Our method is not constrained thus, since it does

not explicitly require any such characteristics of its test images. Nevertheless, a useful

avenue of future research would be to more thoroughly investigate this, by evaluating

the performance of the algorithm on particularly unusual viewpoints (pointing upward

to a ceiling, for example), or of images arbitrarily rotated. In theory our method would

be able to cope with such situations (depending on the training data), and quantifying

this would further support the idea of extrapolating from training data to unexpected

scenarios.

We attempted to show in Chapter 7 how using the plane detector can improve monocular

visual odometry. Our results are suggestive that this is possible, but we acknowledge

that the experiments shown here are not rigorous enough to be certain of any increased

accuracy. Ideally, we should have run the point-based, IDPP, and enhanced PDVO ver-

sions of the algorithms in simulation, to determine error bounds and verify consistency

under carefully controlled conditions, before attempting to evaluate in a real-world sce-

nario. More rigorous outdoor testing is also required to validate our apparent increase

in trajectory accuracy over IDPP, using ground truth data if possible (using GPS, for

example).

8.3 Future Directions

The plane detection algorithm we developed was shown to work in various situations, and

to be useful in a real-world application. However, there are many avenues left unexplored,

both in terms of improvements to the algorithm itself, and further development of the

ideas to new situations. We have already described some modifications and extensions
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in earlier chapters; in this section we briefly outline some further interesting directions

this work could lead to.

8.3.1 Depth Estimation

To investigate the potential of using single images for structure perception, we have

focused on plane detection, but it would be interesting to investigate other tasks using

a similar approach. As we discussed in the introduction, another useful ability would

be depth perception — something which has important implications in many situations,

as evinced by the recent popularity of the Kinect sensor [96], which is able to sense

depths in indoor locations. We have so far ignored the implications of depth for our

plane detection, and assume either that it is not relevant (Chapter 5) or can be detected

by other means (Chapter 7)

Estimating accurate depth maps for the whole image is challenging, and has been ad-

mirably tackled by Saxena et al. [112]. This is rather different from the task we consid-

ered, having focused so far on region-based description, whereas depth maps require finer

grained perception. However, if we consider depth estimation for planes themselves, we

could use the results of our plane detection algorithm as a starting point for perceiv-

ing depth for large portions of the scene. Thus, we would not need to estimate depth

at individual pixels or superpixels, but by estimating a mean depth for a plane, could

approximately position it in 3D space; along with other such planes, in relation to each

other and to the camera, this would provide a rough but useful representation of the

scene, perhaps even suitable for simple 3D visualisation [64].

8.3.2 Boundaries

We discussed at the end of Chapter 6 ideas for using edge information to enhance plane

detection, in order to better perceive the boundaries between planar or non-planar re-

gions. One other way in which we might explore this is to use other cues as well, such

as segmentation information. Hoiem et al. [66] and Saxena et al. [113] used an over-

segmentation of the image to extract initial regions, for scene layout and depth map

estimation respectively; however, as we stated previously, we do not believe this would

be appropriate for creating regions for plane detection. On the other hand, we could

use the boundaries between segments as evidence for discontinuities between surfaces,
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essentially treating it as a kind of edge detection, where the edges have more global sig-

nificance and consistency. For example, Felzenszwalb and Huttenlocher’s segmentation

algorithm [36] tries to avoid splitting regions of homogeneous texture, while simply using

a Canny edge detector could fill such regions with edges.

8.3.3 Enhanced Visual Mapping

As described in Chapter 7, using plane detection can enhance visual odometry, by show-

ing it where planes should be initialised. Our implementation does not apply any consis-

tency between plane detections, however, and assumes each frame is independent. This

is a reasonable assumption when there is up to one second between frames, as the camera

is likely to have moved on in between; but as available computing power increases (or we

further optimise the detection algorithm), it may eventually be possible to apply plane

detection to every frame in real time.

In this situation it would be desirable to impose some kind of temporal consistency, to

use information across multiple images. This would not necessarily be stereo or multi-

view information of course — as we have emphasised before, the camera may well be

stationary or purely rotating between adjacent frames. We could, for example, use the

previous frame to guide detection of planes in the current, to ensure the layout is similar.

Without this, we would likely observe fairly large changes between frames, in orientation

and even in number and size of planes, since the MRF segmentation is begun anew each

time (plus the locations of salient points may shift dramatically). A principled way of

achieving this would be to extend the MRF to have temporal as well as spatial links, so

that points in two (or more) images are linked together in the graph, and segmentation

takes both into account. This could be applied to video sequences using a sliding window

approach, taking multiple frames at a time to build a graph across space and time.

If we can develop such an algorithm, to run in real time and give temporally consistent

results, this would have many benefits for our visual odometry application. Rather than

the plane detector running on whichever frame is next available – which might not be

the best frames to use – we could send requests to the plane detector at times deemed

necessary by the mapping system, in the knowledge that the result would be available

fast enough to make a decision regarding initialisation. Planes would either be initialised

immediately, or the plane detector be called again in a subsequent frame. Alternatively,

the decision to initialise planes could come from the detector. If it is executed for every
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incoming frame, we can decide only to initialise planar features in frames where they are

particularly large or have good shape characteristics, and keep detecting in every frame

to find the best opportunities.

8.3.4 Structure Mapping

Finally, we mention another potential approach to building maps using our plane detec-

tor, without being reliant on a pre-existing VO/SLAM system. If we can reliably detect

planes and their orientation in one image, then move the camera and detect planes again,

we could begin to attempt associating structures between frames. If the frames are close

together in time, it is likely we would be viewing the same set of planes. This could be

used to gauge depth (up to the unknown scale of the camera motion, as in monocular

SLAM), and by aligning the orientation of the separate planes, recover a rough estimate

of camera motion. We envisage a probabilistic approach where information from multiple

frames is combined to try to accurately infer structure from unreliable plane measure-

ments, while tracking the camera motion. This could be an interesting new approach to

plane-based mapping, since the planes are detected first then used to build the map, the

reverse of the standard approach.

We could also consider a more topological approach, in which the relationships between

planes (identity across frames, and locations within frames) is maintained in a graph

structure to build a semantic representation of the scene, without ever estimating lo-

cations in a global coordinate frame; this would be quite a different result from the

structure-enhanced maps discussed above, more like the relational maps produced by

FAB-MAP [27] and non-Euclidean relative bundle adjustment [91], and would be a very

interesting way to develop our single-image algorithm into a way of gaining a larger scale

semantic understanding of scenes as a whole.

8.4 Final Summary

To conclude, we briefly summarise what we have achieved in this thesis. We have in-

vestigated methods for single image perception, inspired by the learning-based process

of human vision, and focused on plane detection in order to develop our ideas. Our hy-

pothesis that a learning-based approach to perception can be successful was supported
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in that we developed a single-region recognition algorithm for planes, followed by a full

plane detection algorithm. We showed that this can be done with a significant relaxation

of the assumptions previously relied upon; we retain only the requirement that the test

images have appearance and structure reasonably similar to the training set. Therefore

we conclude that a method based on learning from training examples is a valid and suc-

cessful approach to understanding the content of images. Furthermore, we have shown

that such an algorithm can be useful in the context of exploring and mapping an un-

known outdoor environment, and able to extract a map of large-scale structures in real

time.

We believe our specific approach has the potential to be further developed, to perform

better using more visual information, and be adapted to cope with new tasks. There is

also much interesting work left to do in terms of using machine learning techniques to

perceive structure from single images, to move on from only finding and orienting planes

and to understand their 3D relationships or gauge their depth, for example. Ultimately

the goal would be to go beyond using only planar structures, and recover a more complex

understanding of the scene, pushing ever further the extent to which human-inspired

models of visual perception can be used to make sense of the 3D world.
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