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Abstract

The objective of this work is object retrieval in large scale image datasets, where
the object is specified by an image query and retrieval should be immediate at run
time. Such a system has a wide variety of applications including object or location
recognition, video search, near duplicate detection and 3D reconstruction. The task
is very challenging because of large variations in the imaged object appearance due
to changes in lighting conditions, scale and viewpoint, as well as partial occlusions.

A starting point of established systems which tackle the same task is detec-
tion of viewpoint invariant features, which are then quantized into visual words
and efficient retrieval is performed using an inverted index. We make the follow-
ing three improvements to the standard framework: (i) a new method to compare
SIFT descriptors (RootSIFT) which yields superior performance without increas-
ing processing or storage requirements; (ii) a novel discriminative method for query
expansion; (iii) a new feature augmentation method.

Scaling up to searching millions of images involves either distributing storage and
computation across many computers, or employing very compact image represen-
tations on a single computer combined with memory-efficient approximate nearest
neighbour search (ANN). We take the latter approach and improve VLAD, a popu-
lar compact image descriptor, using: (i) a new normalization method to alleviate the
burstiness effect; (ii) vocabulary adaptation to reduce influence of using a bad visual
vocabulary; (iii) extraction of multiple VLADs for retrieval and localization of small
objects. We also propose a method, SCT, for extremely low bit-rate compression of
descriptor sets in order to reduce the memory footprint of ANN.

The problem of finding images of an object in an unannotated image corpus start-
ing from a textual query is also considered. Our approach is to first obtain multiple
images of the queried object using textual Google image search, and then use these
images to visually query the target database. We show that issuing multiple queries
significantly improves recall and enables the system to find quite challenging occur-
rences of the queried object.

Current retrieval techniques work only for objects which have a light coating
of texture, while failing completely for smooth (fairly textureless) objects best de-
scribed by shape. We present a scalable approach to smooth object retrieval and
illustrate it on sculptures. A smooth object is represented by its imaged shape using
a set of quantized semi-local boundary descriptors (a bag-of-boundaries); the repre-
sentation is suited to the standard visual word based object retrieval. Furthermore,
we describe a method for automatically determining the title and sculptor of an
imaged sculpture using the proposed smooth object retrieval system.
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Chapter 1

Introduction

1.1 Objectives and motivation

The objective of this thesis is to create systems capable of performing large scale im-

age search purely based on visual information. The search has to be fully automatic

and executed in near-real time when searching large scale databases containing mil-

lions of unannotated images. We focus on searching for particular object instances

such as landmarks, paintings, sculptures, logos, books covers, etc. Since objects can

be imaged from different viewpoints and at various scales, they typically occupy

only a part of an image; our goal is thus not to retrieve similar images or scenes, but

to search on the object level. Note that we do not consider classes of objects, such

as buildings in general, but we target specific objects, such as Buckingham Palace.

Such a large scale visual search system has a wide variety of applications, some of

which are listed next.

What is this? A user can take a photo with his mobile phone and ask the system
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for more information about the object in the photo. For example, a museum visitor

can obtain additional information about a piece of art, a buyer can look up the

prices for the imaged item at other shops, or an autonomous robot can determine

how to interact with the object. Google Goggle is an example of such a system.

Where am I? Geolocalization of an image can be performed via object retrieval, by

searching a large database of images which contain location information, for example

Google Street View images or images with GPS metadata. This is useful for devices

which don’t have GPS or GPS usage is expensive (e.g. due to large battery use), or

for improving the localization accuracy of a system which has consumer-grade GPS.

Furthermore, the system is, unlike GPS, capable of functioning indoors or even at

other planets.

Automatic annotation. Personal photos can be tagged automatically with objects

or places in order to facilitate easy search and navigation through ever increasing

personal photo collections. For example, one could easily find an answer to the

query “my photos of Christ Church” without having to remember the albums and

dates of all visits to that Oxford college.

Augmented reality. With upcoming products such as Google Glass, recognizing

objects in real time can be used to provide additional useful information to the user.

Video search. Huge amounts of video data are generated all the time making it

impossible to manually annotate all of it. A visual retrieval system is useful, for

example, to production teams of news programmes, as they can easily find clips or

images to reuse from their own archives.

Tool for other Computer Vision systems. There are a large number of Com-
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(a) query: Buckingham Palace

(b) query: The Scream

Figure 1.1: Searching BBC videos. Top results for on-the-fly visual search with
textual queries “Buckingham Palace” and “The Scream” (section 6) in a database
containing 125 days (3000 hours) of video footage. GUI created by Ken Chatfield.
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Figure 1.2: Vase copies. Automatically detected pairs of images of the same vase
which were erroneously assigned different vase IDs in the database meta-data.

puter Vision systems which benefit from visual retrieval. For example, automatic

3D reconstruction usually starts with visual clustering (via retrieval) of large image

sets, while inpainting and deblurring can be helped by retrieving images containing

the imaged objects.

1.1.1 Specific applications

In this section we describe a few specific applications of object retrieval, some of

which we worked on.

Video search. We are collaborating with BBC to provide them with video search

functionality. This is useful to, for example, their production teams – when creating

a reportage the production teams often buy stock photos or videos of a particular

object or place. Searching for objects inside the BBC video collection enables them

to reuse their own material instead. Figure 1.1 shows examples of this functionality.

Database consistency checking. A large image database can be checked for
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Figure 1.3: Searching printed illustrations. Top left image is the query, the
remaining images show the top retrieved results; regions of interest are overlaid in
yellow.

consistency by automatically clustering images of same objects and checking if the

clusters correspond to meta-data well. We performed this task on a database of an-

tique Greek vases for CLAROS, the project which collect art from six museums from

four European countries. Figure 1.2 shows some of the inconsistencies discovered by

our method.

Theft detection. Museums in badly developed or war torn countries are often

looted. A database of photos of items in endangered museums can be created and

visual search can be used to detect a stolen object.

Searching printed illustrations. Early printed books contain illustrations cre-

ated by stamping an inked wooden block onto paper. Visual search can be used to

retrieve other paper sheets containing the same illustrations, which provides useful

information to cataloguers, bibliographers and art historians. For example, the con-

dition of the woodblocks can be used to date the sheet relative to other sheets for
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which the date is known, or the identity of the printer, printing place or relation-

ships between printers can be determined. We have created such a visual retrieval

system1 which is actively used by art historians; example retrieval results are shown

in figure 1.3. See (Bergel et al., 2013) for more details about the project.

1.2 Challenges

There are many challenges in large scale object retrieval, here we list a few.

Robustness to changes in appearance. An object retrieval system has to be

able to retrieve images of the queried object despite large changes in the object’s

appearance. The change can be caused by varying lighting conditions, different

physical properties of the cameras used to capture the images, digital artifacts (e.g.

due to JPEG compression), etc. The object can be rotated, imaged from varying

viewpoints and it can appear at different scales. Furthermore, significant occlusions

or cropping should be handled, as well as background clutter. Some of these are

illustrated in figure 1.4. Changes to the object itself are possible, for example a

building façade can deteriorate with time. In the case of early printed books (see the

previous section), where “objects” of interest are illustrations created by stamping an

inked wooden block onto paper, each “object” has different appearance: the amount

of ink can vary, the woodblock can deteriorate, and the paper can be non-uniformly

deformed; see figure 1.5.

Handling various object types. Objects of interest are inherently visually dif-

ferent: some objects are best described in terms of their colour, others in terms of

1Available on the Bodleian library website at http://ballads.bodleian.ox.ac.uk/ .

http://ballads.bodleian.ox.ac.uk/
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Figure 1.4: Object retrieval challenges. Columns show various challenging situ-
ations for object retrieval, from left to right: changes in lighting and colour, scale,
viewpoint and cropping, occlusions, and background clutter.

their texture, while yet others are best defined by their shape. An ideal retrieval

system should be able to handle all types of objects.

Total recall. For some applications it is sufficient to retrieve only a single relevant

image to the query (e.g. to answer the “What is this?” question from the previous

section). However, in many cases it is required to return several, if not all, images

of the queried object; examples include accurate geolocalization, 3D reconstruction,
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Figure 1.5: Printed illustration changes. Early printing was performed by
stamping an inked wooden block onto paper. The two images show illustrations
created using the same woodblock at different points in time. The amount of ink
used is very different, and several wormholes developed before the printing of the
right illustration (manifested as small circular patches with no ink).

database consistency checking, etc. While it is often relatively easy to retrieve a

single correct image, the task of retrieving all relevant images, while maintaining

good precision (i.e. not returning many incorrect results) is considerably harder.

Speed and scalability. Retrieval in a dataset containing millions of images is

required to be performed in near-real time so that users can interactively browse

the dataset or search using images from their mobile phones. This is a difficult task

as it requires efficient recognition algorithms, as well as compact image represen-

tation since all required data should fit inside the computer’s RAM memory. This

is because data transfer rates are orders of magnitude slower for hard disks than

for RAM, thus making hard disk access infeasible for the near-real time operation

requirement.
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1.3 Contributions and thesis outline

In this section, we list some of the key contributions made in this thesis. Con-

tributions 1-3 (chapter 4) are improvements of bag-of-words based object retrieval,

although contribution 1 (RootSIFT) is generally applicable across Computer Vision.

In chapter 5, contributions 4-6, we propose improvements to compact image repre-

sentations, namely the VLAD (Jégou et al., 2010b) descriptor, used for very large

scale object retrieval, though applicable to classification tasks as well. Chapter 6

(contribution 7) presents a method to boost recall by making use of multiple query

images. Retrieval of smooth textureless objects, which are not handled well in cur-

rent systems, is discussed in chapter 7 (contributions 8 and 9). Finally, a method

for very efficient descriptor compression, useful for approximate nearest neighbour

search which is ubiquitous in object retrieval, is presented in chapter 8 (contribution

10). The ten key contributions of this thesis are discussed next.

1. RootSIFT. We introduce a new method to compare SIFT descriptors (Lowe,

2004) which yields superior performance without increasing processing or storage

requirements (section 4.2). SIFT can be effortlessly replaced by RootSIFT in all

Computer Vision systems.

2. Discriminative query expansion. Novel method for query expansion where

a richer model for the query is learnt discriminatively in a form suited to immediate

retrieval through efficient use of the inverted index (section 4.3). This is the first

time that discriminative learning methods have been employed in the area of large

scale retrieval.

3. Database-side feature augmentation. Turcot and Lowe (2009) propose
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a method which augments database images with visual information from related

images. We improve on it by taking into account the visibility of the augmenting

features in the augmented image (section 4.4).

4. Intra-normalization of VLAD descriptors. New normalization scheme

for VLAD that addresses the problem of burstiness (Jégou et al., 2009b), where a

few large components of the VLAD vector can adversely dominate the similarity

computed between VLADs (section 5.3). The new normalization is simple, and

always improves retrieval performance.

5. Vocabulary adaptation for VLAD descriptors. Retrieval performance

suffers in the case where the cluster centres used for VLAD are not consistent with

the dataset – for example they were obtained on a different dataset or because

new images have been added to the dataset. In section 5.2 we propose an efficient,

simple, method for improving VLAD descriptors via vocabulary adaptation, without

the need to store or recompute any local descriptors in the image database.

6. Extraction of multiple VLAD descriptors per image. In section 5.4

we improve retrieval performance for small objects by extracting multiple VLAD

descriptors per image. Furthermore, we propose a method of sub-VLAD localiza-

tion where the window corresponding to the object instance is estimated at a finer

resolution than the VLAD tiling.

7. Use of multiple query images. Current systems, for example Google Goggles,

concentrate on querying using a single view of an object, e.g. a photo a user takes

with his mobile phone, in order to answer the question “what is this?”. In chapter 6

we consider the somewhat converse problem of finding all images of an object given

that the user knows what he is looking for; so the input modality is text, not an
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image. Given a textual query (e.g. “coca cola bottle”), our approach is to first

obtain multiple images of the queried object using textual Google image search.

These images are then used to visually query the target database to discover images

containing the object of interest.

8. Bag-of-Boundaries. Standard retrieval systems are quite successful in recog-

nizing a wide variety of objects, however they all assume that objects have a light

coating of texture. In chapter 7 we describe a scalable approach to smooth object

retrieval by representing objects via a set of semi-local boundary descriptors.

9. Sculpture naming. In section 7.5 we describe a retrieval based method, namely

a combination of bag-of-words and bag-of-boundaries, for automatically determining

the title and sculptor of an imaged sculpture.

10. Set compression tree. We introduce a novel encoding method which is

able to accurately compress 1 million descriptors using only a few bits per descrip-

tor. The large compression rate is achieved by not compressing on a per-descriptor

basis, but instead by compressing the set of descriptors jointly. In chapter 8 we de-

scribe the encoding, decoding and use for nearest neighbour search, all of which are

quite straightforward to implement. The method, tested on standard benchmarks,

achieves superior performance to a number of state-of-the-art approaches.

1.4 Publications

Contributions 1–3 were presented in CVPR 2012 (Arandjelović and Zisserman,

2012a). Improvements to VLAD (contributions 4–6) were presented in CVPR 2013

(Arandjelović and Zisserman, 2013a). The work employing multiple query images
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(contribution 7) was presented in BMVC 2012 (Arandjelović and Zisserman, 2012c).

Smooth object retrieval work (contribution 8) was presented in ICCV 2011 (Arand-

jelović and Zisserman, 2011), while the sculpture naming work (contribution 9) was

presented and nominated for the best paper at ICMR 2012 (Arandjelović and Zis-

serman, 2012b). Set compression tree (contribution 10) was published as a technical

report in 2013 (Arandjelović and Zisserman, 2013b) and is under review for PAMI.

Other papers published during the course of this PhD include: (i) work on the

TRECVid project which uses contributions 1 and 7 – TRECVid 2011 (McGuinness

et al., 2011), TRECVid 2012 (Aly et al., 2012b), TRECVid 2013 (Aly et al., 2013)

and ICMR 2013 (McGuinness et al., 2013); (ii) work on visual retrieval systems

helpful to researchers in humanities (Bergel et al., 2013, Rahtz et al., 2011); (iii)

work on efficient epipolar geometry estimation used for spatial reranking, published

in BMVC 2010 (Arandjelović and Zisserman, 2010), but excluded from this thesis

due to lack of space.



Chapter 2

Literature Review

In this chapter we review development of large scale object retrieval. All methods

are required to provide good retrieval performance while executing queries in near

real-time. The demand for fast retrieval typically imposes that all data has to be

stored in RAM since hard disk access is too slow, which in turn restricts storage

requirements as RAM is a relatively scarce resource. The retrieval performance is

assessed in terms of precision and recall (section 3.2). Some approaches focus on

high precision, namely high quality of top retrieved results, while other aim at large

recall, i.e. retrieving all relevant results.

Section 2.1 provides an overview of methods which store some information for each

local image descriptor of every image in the database. These methods are capable

of searching a few million images on a single high-end computer in near real-time.

When scaling up to even larger databases, containing tens of millions or even

billions of images, one is left with two choices: (i) distribute the computation and

storage across many computers, thereby increasing the cost of the system, or (ii)
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stop storing data on a per-descriptor level and use a very compact global image

representation. Methods which employ the latter solution are reviewed in section 2.2.

2.1 Retrieval by matching local descriptors

The question that naturally arises in all areas of Computer Vision is how to represent

an image in a computer. The representation has to be robust to large changes in

imaging conditions, scale changes and differences in camera viewpoint, as well as

significant occlusion. It is beyond the scope of this thesis to review the large body

of work investigating various low-level image representations, so we choose only to

provide a very brief description of the standard techniques widely adopted by the

Computer Vision community.

In the presence of occlusion, background clutter and changes in scale and camera

viewpoint, two images containing the same object can contain large regions which

cannot be found in both images. The standard approach to account for this difficulty

is to extract many local patches from an image which are then used as a proxy for im-

age representation. This procedure relies on the assumption that two similar images

will share a significant amount of local patches which can be matched against each

other. The local patches are typically extracted in one of two ways: (i) on a dense

grid and at various scales (to provide scale invariance), or (ii) from regions obtained

from a detector, engineered to provide sparse regions focusing on “interesting” parts

of the image and ensuring scale invariance at the detection stage. The dense method

is not applicable for large scale retrieval when information is stored on a per-patch

level since it extracts orders of magnitude more patches than sparse methods; there-
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fore sparse patch extraction is used. Popular region detectors include Difference of

Gaussians, DoG (Lowe, 2004), Maximally Stable Extremal Regions, MSER (Matas

et al., 2002) and affine invariant detectors (Mikolajczyk and Schmid, 2004b, Schaf-

falitzky and Zisserman, 2002), as well as very fast detectors designed to be used

in real-time, like SURF (Bay et al., 2006), FAST (Rosten et al., 2010) and BRISK

(Leutenegger et al., 2011).

Deciding if two images contain the same object is based on how well the sets of

extracted image patches match. It is necessary to be able to quantify the simi-

larity between patches in order to measure the similarity between patch sets, and

this is done via computing similarities, e.g. scalar products of patch descriptors.

As raw pixel colour or intensity is clearly not robust to changes in imaging condi-

tions, the standard approach is to engineer descriptors that are by design robust to

such changes, as well as being discriminative enough to distinguish between different

patches. After the seminal work of Lowe (2004) which introduced the very effective

SIFT descriptor, local descriptors generally describe the spatial distribution of pixel

intensity gradients in a patch. Similar approaches include GLOH (Mikolajczyk and

Schmid, 2004a), SURF (Bay et al., 2006), DAISY (Tola et al., 2008), CONGAS

(Zheng et al., 2009), BRIEF (Calonder et al., 2010), as well as RootSIFT, our own

improvement of SIFT (see section 4.2). Histogram of Oriented Gradients, HOG

(Dalal and Triggs, 2005), also has a similar flavour but is mostly used in object

detection as a representation of an entire object or its part. Building on top of

gradient-based descriptors, a few works proposed learning discriminative local de-

scriptors (Brown et al., 2011, Lepetit et al., 2005, Philbin et al., 2010, Simonyan

et al., 2012).
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Given sets of local descriptors extracted from all database images and the query

image, large scale object retrieval reduces to efficient matching of the query descrip-

tor set to the database descriptor sets. The following sections provide an overview of

the choices for the similarity metric between the descriptor sets, as well as computa-

tionally and memory efficient algorithms which enable real-time ranking of database

images according to the chosen similarity. Section 2.1.1 presents an approach in-

spired by successes in large scale text retrieval, while methods in section 2.1.2 rank

images based on precise descriptor matching. In section 2.1.3 the spatial configu-

ration of local descriptors is exploited, while section 2.1.4 considers expanding the

descriptor sets with ones of related images.

2.1.1 Bag-of-Words: A text retrieval motivated approach

The first effective and scalable approaches to object retrieval, initiated by the “Video

Google” work of Sivic and Zisserman (2003), but still very popular, were inspired by

the success of text retrieval, where current web search engines, like Google and Bing,

are capable of instantly searching billions of web pages. This section discusses text

retrieval motivated methods for image search, starting with a brief introduction to

text retrieval, followed by its application to image search and further developments.

2.1.1.1 Text retrieval

A text document is represented in a computer using the vector space model (Salton

and McGill, 1986), also known as “bag-of-words”, BOW (Manning et al., 2008).

Namely, each document is regarded as an unordered collection (a “bag”) of words

and represented as Nw-dimensional histogram of word occurrences, where Nw is the
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number of words in a language. This scheme is called term frequency weighting as

the value of each histogram bin is equal to the number of times the word appears

in the document.

As some words, like the and and, naturally occur more often than others, they

are less informative than infrequent words. To account for the imbalanced word

frequencies, dimensions (i.e. words) in the vector space model are weighted based on

how informative they are. The commonly used weighting is the inverse document

frequency, where information is quantified as log ND

Ni

, where ND is the size of the

document corpus and Ni is the number of documents in which word i appears.

The overall bag-of-words representation is thus weighted by multiplying the term

frequency (tf) with the inverse document frequency (idf) giving rise to the tf-idf

weighting (Manning et al., 2008). Extremely frequent words, “stop words”, can be

removed entirely in order to reduce storage requirements and query time.

Similarity between documents is computed as the cosine similarity between their tf-

idf weighted bag-of-words representations, which naturally normalizes for document

length. Documents typically contain only a small subset of all available words in a

language, making the representation very sparse. For efficient storage and retrieval,

it is beneficial to precompute a data structure called the inverted index (Manning

et al., 2008), which contains a posting list for each word; a posting list records all

documents containing a particular word along with the respective term frequencies.

The list of documents which contain query words, and thus have a non-zero similarity

with the query, is quickly obtained by traversing the relevant posting lists, while

the similarities are efficiently computed by accumulating the products between the

normalized tf-idf weights of database documents and the query tf-idf.
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Figure 2.1: Visual words. Each block shows normalized patches assigned to the
same visual word. Taken from (Sivic and Zisserman, 2009).

2.1.1.2 Visual word based image retrieval

The work of Sivic and Zisserman (2003) is the first one to apply text retrieval ideas

to image search1. A major obstacle for applying text retrieval framework to image

retrieval is the fact that text documents are naturally broken into words, while no

such natural segmentation exists for images. However, as discussed earlier in this

chapter, a set of local descriptors can be extracted from an image. Sivic and Zis-

serman (2003) introduce the concept of “visual words” where local descriptors are

vector quantized into a predefined “visual vocabulary” obtained using k-means; ex-

amples of visual words are shown in figure 2.1. Images are represented with sparse,

tf-idf weighted, bag-of(-visual)-words histograms and object retrieval is performed

efficiently through the use of an inverted index. They demonstrate sub-second re-

trieval in a 4000 image database and a 10k visual vocabulary.

1More strictly, the paper was actually considering the problem of visual video search, however
the problem was cast as a visual image search problem by extracting one frame of a video per
second.
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Nister and Stewenius (2006) followed by Philbin et al. (2007) demonstrate that

using a large visual vocabulary is very beneficial for specific object retrieval as it

yields less false positive matches for a query descriptor than when using a small

vocabulary. Furthermore, a large vocabulary also improves the search speed as

the bag-of-words histograms become sparser. In contrast to a 10k vocabulary in

(Sivic and Zisserman, 2003), Nister and Stewenius (2006) and Philbin et al. (2007)

use a 1M-16M vocabulary. The computational complexity of k-means is O(NwNd),

where Nw and Nd are the sizes of the visual vocabulary and the training descriptor

set respectively; note that Nd ≥ Nw is required and thus the complexity is larger

than O(N2
w). Therefore, it is intractable to compute exact k-means for the vocab-

ulary sizes suggested by (Nister and Stewenius, 2006, Philbin et al., 2007). Nister

and Stewenius (2006) tackle this problem by building a vocabulary tree, which is

essentially a hierarchical k-means (HKM) algorithm, and demonstrate impressive

sub-second search in a 1M dataset of images. (Philbin et al., 2007) show that using

an approximate k-means (AKM) algorithm to build the vocabulary, namely k-means

with approximate nearest neighbour search by using randomized k-d trees, signifi-

cantly outperforms hierarchical k-means due to decreased quantization effects. The

complexity of both methods is O(Ndlog(Nw)) making them appropriate for building

large visual vocabularies.

2.1.1.3 Alleviating quantization problems

Increasing the vocabulary size increases the distinctiveness of a visual word but it

also decreases its repeatability, as slightly different descriptors can be assigned to

different visual words thus contributing zero votes to the similarity of the respective
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images. This is particularly the case when the vocabulary is created on an indepen-

dent dataset from the target one, causing a drop in performance observed in (Nister

and Stewenius, 2006, Philbin et al., 2008, Schindler et al., 2007). Schindler et al.

(2007) propose to always build the vocabulary on the target set and in fact construct

it from a subset of training descriptors which are found to be most informative. How-

ever, this approach does not solve the adverse quantization effects, nor is it always

applicable as image databases can grow with time thus requiring periodical rebuild-

ing of the vocabulary and re-indexing of the entire database. Philbin et al. (2008)

propose to “soft assign” each descriptor to multiple nearest visual words, as opposed

to a “hard assignment” to the nearest visual word, where the words are weighted

by how close they are to the descriptor. Though very effective, this method signifi-

cantly increases storage requirements and search time. Jégou et al. (2010a) propose

to instead just soft assign query descriptors thus not increasing storage requirements

at all compared to the hard assignment baseline, while increasing the search time

less than (Philbin et al., 2008). The method of Nister and Stewenius (2006) has

the flavour of soft assignment as it is capable of assigning non-zero weights to more

than one visual word, namely the words which have common ancestors in the vo-

cabulary tree with the query word. However, the weights are independent of their

closeness to the query descriptor. Torii et al. (2013) detect repeated patterns in an

image and propose to hard assign the member descriptors, as their number assures

fair assignment (“natural” soft assignment) into visual words representative of the

pattern; descriptors which are not part of any repeated structure are soft assigned

as in (Philbin et al., 2008).

Mikulik et al. (2010) and Makadia (2010) propose to learn similarities between

visual words. These methods automatically gather training data consisting of sets
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of matched descriptors in a large image database: Mikulik et al. (2010) mine the

database for similar descriptors which pass geometric verification (see section 2.1.3),

while Makadia (2010) track features in adjacent Google Street View images. Two

words are deemed similar if they often co-occur in the training set, signifying they

are often used to describe the same underlying physical data (i.e. they are “visual

synonyms”). The estimated similarities are then used at retrieval time by effectively

expanding the set of query words with their visually related words. This scheme does

not take into account the location of the descriptor inside a visual word Voronoi cell,

unlike in (Philbin et al., 2008), but it does alleviate quantization errors when similar

descriptors are assigned to different words. Note that Philbin et al. (2008) attempt

a related scheme where the set of words extracted from image patches is expanded

by words produced by jittering the patches, somewhat like ASIFT (Morel and Yu,

2009). However, their results are inferior probably due to the fact that the image

patches are artificially created while (Mikulik et al., 2010) and (Makadia, 2010) use

descriptors extracted from real physically observed patches. A related approach to

(Makadia, 2010, Mikulik et al., 2010) is the one of Bergamo et al. (2013), where

the training set of matching descriptors is obtained by structure from motion, and

the visual vocabulary is constructed to discriminate between various “classes” of

features via a random forest. This method lies in the middle of the spectrum of

approaches which identify that the original Euclidean distance used to compare local

descriptors might not be perfect. At one end of the spectrum, Mikulik et al. (2010)

and Makadia (2010) apply their methods after the fact, when a visual vocabulary

is already constructed. In the middle, Bergamo et al. (2013) modify vocabulary

building to group truly similar descriptors together. Finally, Philbin et al. (2010)

and Simonyan et al. (2012) try to learn better descriptors, for which the Euclidean
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Figure 2.2: Burstiness. Instances of the most bursty visual word of each image are
displayed. Taken from (Jégou et al., 2009b).

distance is more appropriate, before the vocabulary is built, thus not needing any

modification of the standard vocabulary construction nor post-processing.

Another direction for decreasing descriptor quantization effects relies on finer rep-

resentation of each original descriptor; methods following this strategy are reviewed

in section 2.1.2.

2.1.1.4 Modifying the image similarity metric

The commonly used tf-idf measure (Sivic and Zisserman, 2003) of image similar-

ity assumes that observed visual words in an image are independent of each other.

However, as pointed out by Jégou et al. (2009b), visual words often appear in bursts

– if a visual word appears in an image, it is more likely it will appear again; see fig-

ure 2.2. Thus, each instance of a particular word in an image adds progressively less

information, which should be accounted for in the representation of an image, and is

ignored by basic tf-idf weighting which assumes visual word instances are indepen-

dent. Jégou et al. (2009b) propose to discount the burstiness effect by square-rooting

the term frequency (tf) of each word2. Square-rooting can also be viewed as a first

2The actual discounting strategy also depends on the strength of the match which is measured
using Hamming embedding, discussed in section 2.1.2. For clarity, here we discuss only the method
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order approximation to the intersection kernel (Vedaldi and Zisserman, 2011), which

would measure the maximal possible number of word matches between two images.

For example, if two images contain 2 and 3 instances of a particular visual word, the

similarity contribution of the corresponding dimension in the BoW histogram would

be 2 ∗ 3 = 6 (discarding normalization and idf for clarity). The intersection kernel

would model the fact that the maximal possible number of matches is min(2, 3) = 2,

while the square-rooting yields a score of
√

2 ∗
√

3 = 2.45.

Doubek et al. (2010) show that burstiness or, more specifically, repeated patterns

can in fact be used to describe an image. They detect repeated patterns and create

a descriptor of the repeating element which is then used to retrieve similar images.

This is particularly useful for man-made objects like façades of modern buildings.

Furthermore, as discussed in section 2.1.1.3, repeated structures can be used as a

way to naturally soft assign descriptors to visual words (Torii et al., 2013).

Apart from the burstiness effect which considers cases when a particular visual

word is repeated in an image, the tf-idf word independence assumption is also inval-

idated when sets of words often appear together. The argument towards modifying

tf-idf similarity metric to account for co-occurring words is analogous to the one for

burstiness: given visual word A appears in an image, if visual word B frequently co-

occurs with A and is observed in the image, its information content is small. Chum

and Matas (2010b) propose a scalable method for discovering frequently co-occurring

visual words by using MinHash (Broder, 1997), and modifying the scoring function

to discount them. Cummins and Newman (2008) build a probabilistic model for

location recognition such that dependencies between visual words are accounted for

using the Chow Liu algorithm (Chow and Liu, 1968).

which does not use Hamming embedding.
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Jégou and Chum (2012) note that the tf-idf similarity of two images only takes into

account visual words which appear in both of them, while the information that the

both images do not contain some visual words is almost discarded. They propose to

modify the BoW vectors by deducting a fraction of their mean (the mean is taken

across the image corpus), which increases the similarity (scalar product between

BoW vectors) which contain co-missing words.

As discussed in section 2.1.1.1, the inverse document frequency (idf) for a visual

word i is computed as log ND

Ni

, where ND is the size of the document corpus and Ni

is the number of documents (images) in which word i appears. The computation of

Ni can be expressed as
∑

d Np
i,d where Ni,d is the number of times word i appears in

document d, and p = 0 (defining 00 = 0). Zheng et al. (2013) propose to use other

values of p as this can provide a finer measure of the information contained in each

word. For example, a word which appears in every image of the database 10 times

should have a smaller weight than a word which appears in every image once; under

the standard (p = 0) idf the two words have the same weight while this is not the

case with p > 0.

Jégou et al. (2007) and Qin et al. (2011) argue that the ranking of database images

should take into account the local density of BoW vectors in the tf-idf vector space.

For example, let us consider the case of querying with image Q and deciding how

to rank images A and B which are both equally distant from Q under the tf-idf

measure. If the local density of BoW vectors is large around A, meaning that many

database images are similar to it, while the density is small around B, it means

that it is “harder” to be similar to B than to A. Thus, it should be more significant

that B is similar to Q than that A is, and therefore B should be ranked before A,
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despite having equal tf-idf scores. Jégou et al. (2007) propose to adjust local distance

measures for each image such that the average distance to its local neighbours is

equal to a database-wide constant, thus normalizing local BoW density. In the above

example, distance between Q and B would be decreased relative to the distance

between Q and A. On the other hand, Qin et al. (2011) rank highly a “close” set of

images which is an expanded set of k-reciprocal nearest neighbours of the query; for

the above example it is likely that B would be in the close set while A would not as

Q would not be in the set of A’s k-nearest neighbours.

None of the methods reviewed so far take negative data into account, which can

be used to discriminate between good and bad retrievals. Our work in section 4.3 is

the first one to employ discriminative learning for object retrieval; next we describe

methods which have the same motivation. For location recognition, Gronat et al.

(2013) train a linear classifier for each image in the database in the manner of

Exemplar SVMs (Malisiewicz et al., 2011). To train a classifier for a single database

image, “hard negatives” are mined through the use of GPS information associated

with database images. Retrieval is then performed by ranking database images

based on the calibrated classification scores obtained by applying every classifier

to the query image. The paper reports 2 s query time for a database with 25k

images as all database classifiers are dense and thus brute force computation of

scalar products is required. However, it is easy to make the approach as scalable as

the standard bag-of-words retrieval system by using the dual form representation

of the SVM classifier and efficiently computing scalar products between the query

BoW and support vector BoWs, which are sparse, using an inverted index3. Cao and

Snavely (2013) apply a similar strategy to (Gronat et al., 2013), also for location

3The suggestion was made by this author
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Figure 2.3: Confusing regions. Examples of detected confusing regions by Knopp
et al. (2010).

recognition, where instead of GPS information they use an automatically created

image graph to discover “hard negatives”.

2.1.1.5 Feature selection

Some features are more confusing than others and identifying these can improve

retrieval performance, as well as reducing storage requirements if they are removed

from the index. Knopp et al. (2010) identify confusing image regions in every

database image and remove all features from it. For a database image, the con-

fusing regions are detected by querying with it and discovering spatially localized

groups of features which are responsible for a large number of false matches. Exam-

ples of detected confusing regions are shown in figure 2.3. The procedure assumes

availability of labelled training data, specifically the work uses GPS information like

in Gronat et al. (2013). Training a classifier which automatically weights individual

features according to their discriminative power can be viewed as “soft” feature se-

lection, and indeed the method of Gronat et al. (2013) (section 2.1.1.4) outperforms

(Knopp et al., 2010).

On the other hand, Turcot and Lowe (2009) propose to discover useful features

instead of confusing ones. A feature is deemed to be useful if it is matched with

high confidence (using spatial verification, section 2.1.3) to any other feature in the
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database; all non-useful features are removed. Although the method presents good

results on a standard retrieval benchmark, it suffers from inability to retrieve objects

which only appear in one or very few images in the database, as no relevant feature

will survive this overly aggressive removal strategy.

Kang et al. (2011) measure descriptor distinctiveness based on estimating the

local intrinsic descriptor dimensionality. A distinctive visual vocabulary is built by

assigning larger weights to distinctive features, and non-distinctive descriptors are

removed from the database and the query.

If the image database is actually constructed by sampling frames from videos,

features can be tracked across frames and those features which do not appear in

enough consecutive frames are deemed to be unstable and are not added to the

database (Sivic and Zisserman, 2003). The descriptors of stable features are averaged

to increase the signal to noise ratio.

2.1.1.6 Near duplicate image detection

It is often useful to discover near duplicate images in a large image corpus. For

example, it can be used for copyright infringement detection, reduction of storage

requirements by removing redundant information from the corpus, or diversification

of retrieval results making them more pleasing to a user. Experiments of Wang et al.

(2013) show that nearly 30% of images on the internet have duplicates.

Chum et al. (2007a) define near duplicate images as images which have many

common visual words. Images are thus represented as sets of visual words, i.e. word

counts are discarded, and the measure of image similarity is the Jaccard index:

the similarity of sets A1 and A2 is sim(A1, A2) = |A1∩A2|
|A1∪A2|

. Fast estimation of set



2.1 Retrieval by matching local descriptors 28

similarity is performed using MinHash (Broder, 1997). The algorithm computes

a “sketch” (n-tuple of hashes) for each image such that the probability of “sketch

collision” for two images, i.e. all hashes in the two sketches are identical, is equal

to sim(A1, A2)n. By generating several sketches per image and grouping together

images with a significant number of sketch collisions, accurate and efficient near

duplicate image detection can be performed. As an extension of this work, (Chum

et al., 2008) propose a way of incorporating the tf-idf weights in the MinHash algo-

rithm. A fast method of generating MinHash sketches by using the inverted index

is presented by Chum et al. (2008). Zhao et al. (2013b) propose to use, in addition

to sketch collisions, information about matching local descriptors to compute a finer

measure of image similarity, much like methods in section 2.1.2.

Approaches which use global image features exist (Liu and Rosenberg, 2008, Wang

et al., 2013) but are limited to detecting only almost exact duplicates, with no tol-

erance to cropping or rotation. Methods which employ compact image representa-

tions (reviewed in section 2.2) are also successfully used for near duplicate detection

(Douze et al., 2010, Li et al., 2008).

2.1.1.7 Pushing the boundaries of scalability

When discussing large scale retrieval it is important to ask the question – just how

scalable are bag-of-words based approaches? In our work we have successfully run a

BoW-based retrieval system on a single server which searches the entire dataset of

3.5 million images in less than a second (including spatial reranking, section 2.1.3).

Although this performance is quite impressive, the RAM and CPU requirements

scale linearly with the number of features in the database. For every feature in
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the dataset, the inverted index has to store the identifier of the image (imageID)

the feature was extracted from, encoded as a 32-bit number. For a database of 3M

images, assuming 1k visual words per image, just storing the bare inverted index

takes 12 GB of RAM. Thus, it is not possible to use the same BoW architecture in

order to search a 100 times larger dataset, as it is very expensive, if not impossible,

to have a single 1.2 TB RAM machine. In addition to the imageID, retrieval sys-

tems also typically store some additional information on a per-feature basis, most

commonly the geometry of the local feature (e.g. its location in the image, scale

or ellipse parameters if affine covariant detectors, like the ones of Mikolajczyk and

Schmid (2004b), are used) which is required for spatial reranking (section 2.1.3).

Again borrowing ideas from text retrieval, it is possible to compress the inverted

index (Zhang et al., 2008, Zobel and Moffat, 2006), for example by compressing

sorted imageIDs in posting lists using run-length coding; Jégou et al. (2009a) report

a four-fold reduction in index with this technique. Perďoch et al. (2009) present a

method for efficient lossy compression of local feature geometry, reporting a com-

pression ratio of four.

The retrieval process can be parallelized easily by distributing the storage of post-

ing lists across multiple machines. Stewenius et al. (2012) demonstrate an impressive

system capable of searching 94 billion images using a “large” (unspecified) number of

computers. The system scores images in less than 3 seconds, where the bottleneck,

which takes 2 s, is the transmission of relevant posting lists over the network.
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2.1.2 Accurate large-scale descriptor matching

As noted by work reviewed in section 2.1.1.3, for good retrieval performance it is

crucial to have a very large visual vocabulary (Nister and Stewenius, 2006, Philbin

et al., 2007), thus having a precise representation of the original descriptors which

enables high accuracy matching between query and database descriptors. However,

using a large vocabulary sacrifices recall of descriptors relevant to the query due to

quantization errors, which is often addressed by soft assignment of descriptors into

visual words (Jégou et al., 2010a, Makadia, 2010, Mikulik et al., 2010, Philbin et al.,

2008). This discussion suggests that the standard bag-of-words retrieval system

with a large visual vocabulary can be viewed in a different light – it is essentially

a system which performs approximate nearest neighbour (ANN) search for every

query descriptor. The ANN search strategy is to assign a query descriptor to the

nearest cluster (“visual word”) and deem all database descriptors which fall into the

same cluster as nearest neighbours of the query. There is no way of discriminating

between the retrieved descriptors as all the information that is kept about a descrip-

tor is the assigned visual word, or multiple words in the case of soft assignment, so

matches are just weighted using idf based on how uncommon they are. With these

observations in mind, a multitude of methods, which will be reviewed next, aim

at employing a better ANN search strategy in order to accurately match all query

descriptors against database descriptors, under the constraints of near real-time op-

eration and reasonable memory consumption. Note that all these methods consume

more memory than BoW-based methods as it is necessary for them to store at least

all the information BoW methods store (e.g. imageID and geometry information,

see section 2.1.1.7)
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Figure 2.4: Hamming embedding. Voronoi cells associated with each visual
word are shown in blue. The binary strings correspond to the Hamming embedding
associated with each subspace, the square and circles represent the query descriptor
and its nearest neighbours, respectively.

Lowe (2004) presented an early approach to object retrieval via accurate descrip-

tor matching. The work uses a k-d tree for ANN search for query descriptors and

demonstrates (for the time) impressive results on a database of 32 images contain-

ing 40k local descriptors. However, this approach is not scalable as it increases

memory usage by 128 bytes (size of the typical representation of a SIFT descriptor)

per local descriptor; just storing all descriptors in a database of 3 million images

would thus take 384 GB, compared to a total of 12 GB required by a BoW system

(section 2.1.1.7). If one is willing to use thousands of machines to store the required

data in RAM and respond to user queries, Aly et al. (2011) show a method of paral-

lelizing k-d tree construction and nearest neighbour search for querying in a dataset

of 100 million images on 2k computers.

Jégou et al. (2008) propose to use a similar architecture to BoW-based systems,

with the addition of a compact binary signature associated with every descriptor

in the posting list. This signature, termed Hamming embedding, is used to disam-
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biguate BoW matches by requiring that the Hamming distance between the query

and matched signatures is small enough. The signature is computed by performing

random orthogonal projections of the descriptor and encoding whether the projected

value is smaller or larger than the median for the corresponding visual word, thus

essentially describing which quadrant of visual word’s Voronoi cell the descriptor

falls in (figure 2.4). Hamming embedding in a typical setup only adds 8 bytes

per descriptor, while Hamming distance computation can be done very efficiently

with dedicated instructions on modern CPUs. This approach has been successfully

applied to an image localization task by Sattler et al. (2012).

The work of Jégou et al. (2011a) proposes a fast memory-efficient method for

ANN search similar to their preceding Hamming embedding (HE) work. The HE

binary signature is replaced with a compressed version of the descriptor using prod-

uct quantization (PQ), a state-of-the-art vector compression method. PQ com-

pression is performed by splitting vectors into chunks and vector quantizing each

chunk independently; Ge et al. (2013) and Norouzi and Fleet (2013) optimize the

PQ performance by pre-rotating vectors into a space where PQ is most effective.

ANN search is performed by exploring several nearest cluster centres to the query

descriptor, analogous to soft assignment into visual words, and computing the dis-

tance between the query descriptor and the compressed descriptors in each posting

list. Jégou et al. (2011b) apply this ANN search algorithm to object retrieval by

finding approximate k-nearest neighbours of query descriptors and having them vote

for their respective images; several promising scoring strategies based on estimates

of matched descriptor distances are investigated. The work also proposes the use

of k-reciprocal nearest neighbours for more precise descriptor matching in order to

account for varying density of the descriptor space, much like methods reviewed in
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section 2.1.1.4 (Jégou et al., 2007, Qin et al., 2011) but applied on local descriptors

and not BoW vectors. Qin et al. (2013) employ the same ANN search procedure but

matched features cast a probabilistic vote for the corresponding images, where the

probability that two features are correctly matched given their distance is estimated

from a training set of matching and non-matching descriptors.

An alternative ANN search method is proposed by Babenko and Lempitsky (2012),

where coarse clusters are defined by product quantization, instead of vector quantiza-

tion used by Jégou et al. (2011a). An efficient procedure for prioritized exploration

of the clusters is employed, followed by, like in (Jégou et al., 2011a), fine vector

comparison using product quantization.

Aly et al. (2012a) use a k-d tree to perform ANN search, but unlike (Lowe, 2004),

where all the original SIFT descriptors are kept, they only store compact descriptor

signatures, making the method scalable. Object recognition is performed by finding

the nearest neighbour of every query feature and voting for the corresponding images.

The method demonstrates good performance but, as it only fetches a single nearest

neighbour for each query descriptor, it is only useful for applications where one is

interested in the very top retrieval result, without attempting to retrieve all images

containing the queried object; an example of such an application is Google Goggles.

2.1.3 Enforcing spacial consistency

In both previous sections 2.1.2 and 2.1.1 we have purely been concentrating on

image representations and similarity measures which regard an image as a collection

of local descriptors, potentially quantized into visual words. However, an image is

not just an unordered set of patches, and, as noted in the original work introducing
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(a) Original image (b) Similarity (c) Affine (d) Projective (e) Non-rigid

Figure 2.5: Geometric transformations. (a) The original image. (b) Similarity
transformation (translation, rotation, isotropic scaling): relative orientations of lines
are unchanged, a square is imaged as a square. (c) Affine transformation (similarity
+ non-isotropic scaling and sheer): parallel lines remain parallel, square is imaged as
a parallelepiped. (d) Projective transformation (affine + perspective): straight lines
remain straight, square is imaged as a quadrilateral. (e) Non-rigid transformation:
free form transformation of the original image.

bag-of-visual-words (Sivic and Zisserman, 2003), making use of spatial information

can be very beneficial for improving retrieval performance. Note that in order to

be able to use spatial information, the retrieval system needs to store additional

data on a per-feature basis, namely the location of the feature in the image and

usually the scale or the shape of the local region; Perďoch et al. (2009) show how to

efficiently compress this information.

Retrieval quality can be improved by enforcing spatial consistency between the

query and a retrieved database image. Here we provide a brief overview of various

spacial relationships between images depicting the same object, full details are avail-

able in (Hartley and Zisserman, 2004). If the imaged object is rigid and planar, two

images of the object are related by a projective transformation (figures 2.5a-2.5d);

the hierarchy of projective transformations, starting from the simplest followed by

more expressive ones, is discussed next. Similarity transformation captures trans-

lation, rotation and isotropic scaling (figure 2.5b) and can be computed from two
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point correspondences. Affine transformation, which captures similarity, also allows

for non-isotropic scaling (figure 2.5c) and is fully specified with three point corre-

spondences. Finally, a general projective transformation also allows for perspective

effects (figure 2.5d) and can be computed from four point correspondences. Apart

from modelling relationship between images of planar objects, projective transfor-

mation also relates images of a rigid scene taken from the same point in space (i.e.

stationary camera allowed to rotate in 3D and zoom). Images of the same rigid

scene taken from different locations are related via epipolar geometry, which can be

computed from seven point correspondences. Finally, images of non-rigid objects

and scenes cannot be characterized with a single global relation, however in real-

ity it is often true that local spatial neighbourhoods are preserved across images

(figure 2.5e).

Spatial Reranking. The first set of methods propose to use a standard retrieval

algorithm, like for example BoW (Sivic and Zisserman, 2003) or BoW with Hamming

embedding (Jégou et al., 2008), and apply a relatively costly reranking step which

measures spatial consistency between the query and matched database features only

on top retrieved results; the length of this “short-list” is typically 200-1k images.

The aim of the spatial reranking is to reorder the short-list so that false matches

are moved to its end, thus improving (decreasing) the false positive rate.

The original BoW system by Sivic and Zisserman (2003) measures local spatial

consistency of matches between the query and a database image like in (Schmid

and Mohr, 1997, Zhang et al., 1995), namely neighbouring descriptor matches rein-

force each other by casting votes; matches with no vote are discarded and images

are reranked based on the number of surviving votes. The construction of feature
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(a) All visual word matches

(b) Spatially verified matches

Figure 2.6: Spatial verification. (left) The query image and region of interest are
shown on the left; (right) A retrieved database image.

neighbourhood is not scale invariant since it is defined as the nearest 15 features,

however in practice the method can handle scale changes due to the very loose re-

quirement that only one of the neighbourhood words needs to support a match. The

method can also handle non-rigid deformations, but the voting strategy can be too

strict as it penalizes even correctly matched descriptors which are scattered around

the image (i.e. local neighbourhood structure is lost) but still in a consistent spatial

arrangement with the query.

A rigid affine transformation is fitted very efficiently by Philbin et al. (2007) using

RANSAC (Fischler and Bolles, 1981), where only a single pair of matched visual

words is used to propose an affine transformation between the query and a database

image by exploiting the local shape of affine covariant regions (Mikolajczyk and
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Schmid, 2004b, Schaffalitzky and Zisserman, 2002) and assuming images are up-

right. In fact, the fitting of an affine transformation is so efficient that no random

sampling in RANSAC is needed (resulting in “NOSAC”) as all transformation pro-

posals can be explored. Reranking is based on the number of inliers with the best

affine transformation found by NOSAC, while Philbin et al. (2008) propose a soft

voting scheme when soft assignment into visual words is used. Results which have

more than a minimal number of inliers are deemed to have passed spatial verification.

Figure 2.6 shows an example of a spatially verified pair of images.

Tolias and Avrithis (2011) propose Hough Pyramid Matching for spatial reranking,

namely they efficiently group matches which yield consistent similarity transforma-

tions, where one pair of matched features proposes a similarity transformation. A

hierarchical structure is used to group matches thus resulting in an algorithm which

is only linear in the number of putative correspondences, unlike the quadratic com-

plexity of RANSAC used in (Philbin et al., 2007). The algorithm provides an order

of magnitude speedup over (Philbin et al., 2007) enabling reranking of a 10 times

larger short-list with the same time budget.

Finally, Stewenius et al. (2012) employ a distributed system with a large number

of machines to rank their entire 94 billion image dataset based on the number of

spatially consistent visual word matches with the query, thus effectively extending

the short-list for reranking to the entire dataset.

Spatial Ranking. Previously reviewed works concentrated on reranking a fixed

number of top results obtained with a standard retrieval method; the length of the

short-list is typically constant due to a a fixed upper limit on acceptable time a query

can take. Thus, as image databases increase in size spatial verification is expected
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to visit diminishing portions of the dataset, and therefore be decreasingly effective.

The next set of methods propose to incorporate spatial information at the original

ranking stage, thus alleviating this problem.

Jégou et al. (2008) propose to rank images based on weak geometric consistency

(WGC), namely, instead of accumulating tf-idf scores on an image level, they are ac-

cumulated in a Hough-like voting scheme in the space of similarity transformations

between the query and a database image. For memory and CPU efficiency, matched

descriptors vote independently for scale and rotation components of the transfor-

mation, thus only weak geometric consistency is enforced. As such, the method

still benefits from applying spatial reranking which measures spatial consistency of

matches more strictly.

Zhao et al. (2010), Zhang et al. (2011) and Shen et al. (2012a) assume the only

allowed transformation between a query and desired database images is translation

and thus perform Hough voting in the space of 2-D translations. Shen et al. (2012a)

propose to handle transformations which are more general than the overly simple

translation, specifically similarity transform is used, by querying with sets of trans-

formed query images. For example, to handle similarity transforms (i.e. translation,

scaling and rotation), the query ROI is scaled and rotated by various predefined

scales and rotations, and a separate query is issued for every transformed query

ROI. The method is thus much more computationally expensive than the baseline

BoW system or WGC, as typically 64 synthesized queries (when using 8 quantization

levels for scale and rotation each) need to be issued for every query. This method

is applied “in reverse” in a subsequent work (Shen et al., 2012b) to segment out the

query object. Namely, the authors consider a dataset of pre-segmented out objects
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(e.g. products on shopping websites) which at query time cast votes for the location

of the query ROI. The segmentation masks of a few top retrieved images are aggre-

gated and used to initialize GrabCut segmentation algorithm (Rother et al., 2004).

After the precise segmentation of the object is obtained, the query is re-issued to

improve retrieval quality.

Cao et al. (2010) propose to use spatial-bag-of-features where an image is encoded

as sets spatial histograms which capture the spatial ordering of visual words under

various linear and circular projections. The position of the bin with the largest

count is chosen as the origin in order to provide translation invariance, much like

the way rotation invariance is commonly ensured for local descriptors, e.g. SIFT

(Lowe, 2004). In the case when a large vocabulary is used, most of the spatial

histograms contain only one non-empty bin which is chosen as the first bin for

translation invariance. As all spatial information is lost in this scenario, it is not

clear how the method distinguishes itself from non-spatial BoW.

Other approaches (Chum et al., 2009, Jiang et al., 2012, Lee et al., 2010, Wang

et al., 2011, Wu et al., 2009, Zhang et al., 2010) focus on augmenting the local

descriptor with a description of the distribution of visual words in the spatial neigh-

bourhood. Retrieval is then performed by matching the augmented descriptors.

These methods are limited to detection of near duplicate images (section 2.1.1.6) as

they are typically sensitive to feature drop-outs and scale changes.

2.1.4 Query expansion and feature augmentation

Despite all techniques used to improve retrieval quality that have been reviewed

thus far, it is still unrealistic to expect even the most advanced algorithm to retrieve
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all images containing the query object. There are many causes for this: region

detection can fail or imprecisely localize the region, features can be missing from

the query or database images due to occlusions, patch description is imperfect,

descriptor matching is only approximate due to ANN search, information is lost in

descriptor quantization and compression, etc. The following set of methods rely

on the assumption that the query object appears in more than one database image,

which enables sharing of information across related images. The information sharing

can alleviate many of the aforementioned problems, for example, if an object is

partially occluded in one image it can borrow the occluded descriptors from another

image of the same object.

The first set of methods consider query expansion, a standard approach used to

boost text retrieval performance (Buckley et al., 1995, Salton and Buckley, 1999),

and adapt it to the visual search task. Query expansion is a form of blind relevance

feedback, where top spatially verified results (“expansion set”) are used to build a

richer model of the query object and reissue the improved query (Chum et al., 2007b);

see figure 2.7. It is essential that spatial verification is performed in order to obtain

only very confident matches to expand the query with, as if any false result is used it

is likely to cause topic drift – the inferred model can diverge from the original query.

Chum et al. (2007b) compare several query expansion methods, amongst others the

now standard average query expansion (AQE) which uses the average tf-idf vector

of the query and the expansion set to perform a new query. Other methods are also

proposed in the same work, as well as by Shen et al. (2012a), but they involve issuing

multiple additional queries, so AQE has become the de facto standard. Chum et al.

(2011) extend this work by performing automatic prevention of expansion failure

by examining the quality of the expansion set, as well automatically increasing the
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Figure 2.7: Query expansion. The image on the left shows the query while the
middle four images represent the top retrieved results using BoW. The images on
the right show correctly found results after average query expansion, which were not
found by the original BoW method. Taken from (Chum et al., 2007b).

query region of interest by inferring the relevant spatial context. Qin et al. (2011)

also use a form of query expansion where images which are not in the expansion set

(“close set”, see section 2.1.1.4) are reranked based on their minimal distance to the

set. Tolias and Jégou (2013) present a method which relies on precise matching of

query descriptors using Hamming Embedding (section 2.1.2) to form the expansion

set, replacing the commonly used, time consuming, spatial verification. This work

performs average query expansion on the level of local descriptors instead of the

tf-idf vectors used in the original scheme (Chum et al., 2007b).

The second set of methods consider database-side feature augmentation, namely,

instead of expanding the query they expand and make better models of the database

images. Turcot and Lowe (2009) automatically construct the image graph for the

database (Philbin and Zisserman, 2008), where nodes represent images, while edges

signify that images contain an object in common. The graph is then used to share

information across the nodes – the BoW vector for each image is augmented with

the visual word counts of all neighbouring images in the graph. The procedure
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does not increase storage cost, apart from having to store the image graph which is

negligible, as the augmentation does not need to be performed explicitly. Instead,

the tf-idf score of the augmented BoW vectors can be computed at run time as the

average score of neighbouring non-augmented BoW vectors. Schindler et al. (2007)

use a similar strategy for image localization where image scores are averaged across

a local neighbourhood, which is defined by physical distance.

Torii et al. (2011) propose a related method where points along image graph edges

are retrieved. Every point along an edge is assigned a BoW vector equal to an

affine combination of the end-nodes’ BoW vectors, based on the distances to the

end nodes. None of the point BoWs need to be stored explicitly as the point closest

to the query can be found at run time by scoring only the nodes (images) and

employing similar ideas to (Turcot and Lowe, 2009). The method is useful for image

localization where the database is geotagged and the image graph is constructed

from a 2-D map. The top retrieved point then corresponds to the best estimate of

the query image location.

2.2 Scaling Up: Very compact image representa-

tions

Retrieval approaches based on matching local descriptors (section 2.1) by definition

require some information to be stored on a per-feature level. As such, it is impossible

to apply the same techniques when scaling up to image corpora containing more than

tens of millions of images, without incurring a significant cost of distributing the

retrieval system across thousands of machines (section 2.1.1.7). This section reviews
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methods which discard feature-level information and instead use a very compact

global representation (description) of an entire image. Retrieval is performed by

searching the database of global image descriptors for the descriptor which is closest

to the global descriptor of the query. The search is performed either by a linear

scan through the dataset if this is plausible (e.g. Jégou and Chum (2012) show that

searching through 1 million 128-D descriptors can be done in 6 ms), or by memory-

efficient approximate nearest neighbour search (section 2.1.2). It should be noted

that spatial reranking (section 2.1.3) cannot be performed in this setting as shape

of local features is discarded along with all per-feature data, and thus it is only

possible to take the spatial layout of an image into account by incorporating it into

the global descriptor itself.

A popular global descriptor is GIST (Oliva and Torralba, 2001) where a single

SIFT-like descriptor is computed over the entire image. However, as demonstrated

by Douze et al. (2009), GIST is a rigid descriptor of the entire image and is thus

mostly applicable to near duplicate detection and not to object retrieval where

robustness to partial occlusion, scale changes, cropping and rotation is required.

Therefore, successful methods for object retrieval mainly focus on deriving global

descriptors from local descriptors, and we review these next.

Chum et al. (2007a, 2008), Jégou et al. (2009a) and Jégou and Chum (2012) start

from a BoW representation and try to compress it. Chum et al. (2007a) and Chum

et al. (2008) compute a compact image representation by applying the MinHash al-

gorithm on the BoW vectors (section 2.1.1.6), however this method only manages to

retrieve very similar BoWs thus making it is mostly applicable to near duplicate de-

tection. Jégou et al. (2009a) extract MiniBOFs by random aggregation of binarized
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BoW vectors. Jégou and Chum (2012) achieve impressive results by concatenating

multiple BoW representations followed by whitening and dimensionality reduction

with PCA. The multiple BoWs are obtained by using multiple visual vocabularies

(obtained by different random initializations of k-means) or vocabularies of different

sizes.

2.2.1 Aggregating descriptors

The bag-of-words encoding captures the distribution of local descriptors in the de-

scriptor space by recording their count in various areas of the space; the areas are

defined by clustering descriptors into visual words4. Methods reviewed in this sec-

tion store further information about the distribution of descriptors in the descriptor

space. This is typically done by aggregating descriptors assigned to same visual

words to obtain their means or other moments. The resulting global image descrip-

tor is dense, and can often be successfully compacted by performing dimensionality

reduction via PCA.

2.2.1.1 Fisher vectors

Perronnin and Dance (2007) employ the Fisher Vector (FV) encoding (Jaakkola and

Haussler, 1998) for a visual classification task. Local descriptors in an image are

assumed to be independent samples from a Gaussian Mixture Model (GMM). The

Fisher Vector is constructed by taking the gradient of their log-likelihood with re-

spect to the GMM parameters, namely the mixture weights, means and (diagonal)

4Due to the lack of a better expression, in this section we use the term “visual word” loosely to
denote an area of descriptor space.
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covariances. Perronnin and Dance (2007) further show that the derivative with re-

spect to the mixture weights resembles the BoW encoding as it counts the number

of descriptors softly assigned to each mixture component (resembling a visual word).

Computing the gradient with respect to each Gaussian mean corresponds to aggre-

gating all residuals (vector differences between descriptors and Gaussian means) for

descriptors assigned to the mixture component, downscaled by the variance of the

component. However, strictly speaking, all descriptor residuals affect all gradients

(i.e. there is no assignment to a mixture component), but are weighted by their

posterior probability of being generated by the respective components. The gradi-

ent with respect to the covariances captures the second moment of the descriptor

distribution in an analogous manner.

The Fisher Vector is finally computed as the whitened gradient vector, in order to

normalize the dynamic range of various dimensions. Perronnin et al. (2010c) note

that the derivatives with respect to the mixture weights do not add much information

and are thus discarded, making the final dimensionality of the FV equal to 2KD,

where D is the local descriptor dimensionality and K is the number of mixture

components (“visual words”).

For the same vector dimensionality, it was found that, for the image retrieval task,

the gradients with respect to the variances also do not provide much information

(Jégou et al., 2010b, Jégou et al., 2012): the FVs which record the gradients with

respect to means and variances (dimensionality: 2KD) perform similarly to the FVs

which record the gradients with respect to the means only, with a doubled number

of components K ′ = 2K (dimensionality: K ′D = 2KD). The resulting FV is quite

similar to super-vector encoding of Zhou et al. (2010).
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Perronnin et al. (2010c) provide further insights into FVs, showing that, under

some simplifying assumptions, the image-independent information (“background”

descriptors) is automatically discarded from the encoding thus keeping only the

image-specific information. Perronnin et al. (2010a) apply Fisher Vectors for large

scale image retrieval and make connections with the commonly used tf-idf weighting

(section 2.1.1.1) – the similarity of two FVs is proportional to the product of fre-

quencies of visual words in the two images, downweighted by the average frequency

of the word. Perronnin et al. (2010a) therefore apply power normalization in the

manner of Jégou et al. (2009b) (section 2.1.1.4) in order to discount the effect of

bursty features. Power normalization is computed by transforming each element

vi of the vector using the formula: sign(vi)|vi|α, followed by L2 normalization; a

commonly used value for α is 0.5 (Jégou et al., 2012, Perronnin et al., 2010c), also

referred to as signed square rooting (SSR).

2.2.1.2 Vector of locally aggregated descriptors (VLAD)

Jégou et al. (2010b) propose VLAD, a global image descriptor motivated by the

success of Fisher Vector encoding (section 2.2.1.1). It is computed by aggregating,

for each visual word, all residuals (vector differences between descriptors and cluster

centres) of descriptors assigned to the same visual word. VLAD can be seen as a

simplification of the FV encoding – instead of a GMM it uses a visual vocabulary

(built using k-means like for BoW), descriptors are hard-assigned to visual words

and there is no inverse weighting by covariances of each visual word. Due to its

simplicity and hard-assignment, VLAD is faster to compute than FV. As with FV

(the flavour which only records the first order statistics), the final dimensionality of
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a VLAD vector is KD, where K is the size of the visual vocabulary and D is the

dimensionality of the local descriptor.

In the original scheme of Jégou et al. (2010b) the VLAD vectors are L2 normalized.

Subsequently, signed square rooting (SSR) normalization was introduced (Jégou and

Chum, 2012, Jégou et al., 2012), following its use by Perronnin et al. (2010a) for

Fisher Vectors.

There have been several subsequent improvements to VLAD, including ours in

chapter 5, and we review them next. Many of these are also applicable to Fisher

Vectors due to their similarity with VLAD. Delhumeau et al. (2013) argue that all

residuals should contribute equally to VLAD, which is not the case in the original

scheme as descriptors closer to cluster centres have smaller residuals. Therefore,

Delhumeau et al. (2013) L2 normalize all residuals before they are aggregated. Chen

et al. (2011) argue that descriptors which are close to boundaries of visual words

are unlikely to be repeatable (i.e. a very similar descriptor is likely to be assigned

to a different word), and simply remove these “outliers”. They also investigate

different per-cluster residual aggregation methods, namely (the original) sum, mean

and median, and find that mean aggregation works the best.

Delhumeau et al. (2013) revisit power normalization – all other encoding steps

are invariant to rotation in the descriptor space, i.e. rotating SIFT descriptors prior

to vocabulary construction and VLAD encoding results in unchanged retrieval per-

formance, since the computed VLADs are just rotated versions of the “canonical”

ones. However, power normalization is not rotationally invariant and therefore Del-

humeau et al. (2013) investigate the optimal choice of the rotation. They argue

that the largest eigenvectors capture the main bursty patterns and therefore the
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rotation with PCA basis is expected to be a good choice. Furthermore, in order

to capture a large variety of bursty patterns, they propose to perform a different

rotation for every visual word. Thus, Delhumeau et al. (2013) rotate the residuals

inside each visual word according to the local PCA basis; the PCA for each visual

word is computed using all descriptors assigned to the visual word.

Delhumeau et al. (2013) and Zhao et al. (2013a) obtain a large boost in retrieval

performance by computing local descriptors densely. Furthermore, in order to cap-

ture some geometric information, Zhao et al. (2013a) pool local descriptors based

on their dominant orientation. A VLAD descriptor is computed for each quantized

dominant orientation (a typical number of quantization levels is 8), and the VLADs

are then concatenated to form Covariant-VLAD (CVLAD). Two CVLADs are com-

pared by searching over all possible relative rotations and picking the one which

yields the largest scalar product. The similarity computation can be sped up by

computing it in the frequency domain, like in (Revaud et al., 2013).

VLAD can be successfully compacted using PCA for dimensionality reduction,

in some cases PCA even increases retrieval performance (Jégou et al., 2012) as it

removes some of the noise from the data. Another very successful method of reduc-

ing the dimensionality of VLAD descriptors is the one of Jégou and Chum (2012)

– multiple VLAD vectors, computed using multiple visual vocabularies obtained

by different random initializations of k-means, are concatenated together, followed

by dimensionality reduction via PCA and whitening. Using multiple vocabularies

somewhat alleviates quantization effects and was successfully applied in the same

work on BoW vectors.



Chapter 3

Datasets and Evaluation

This chapter describes standard, community accepted methods for evaluating large

scale object retrieval, which are used throughout this thesis. Publicly available

datasets used for evaluation are described next, followed by the definition of the

evaluation metric.

3.1 Datasets

3.1.1 Oxford buildings

Introduced by Philbin et al. (2007), it consists of 5062 high-resolution images auto-

matically crawled from Flickr using queries such as “Oxford Christ Church”, “Ox-

ford Radcliffe Camera” and “Oxford”. Ground truth was obtained manually for 11

landmarks.

Images of a certain landmark are labelled as Good if it is clearly visible, OK if
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more than 25% is visible and Junk if less than 25% of the landmark is visible or the

image is severely distorted. Junk images are ignored for a particular query, i.e. they

are not considered to be positives or negatives and are effectively removed from the

list of retrieved images before computation of retrieval performance metrics.

There are 55 queries, 5 per landmark, where each query is defined in terms of a

query image and a bounding box. All of the queries are shown in figure 3.1.

It is quite a challenging dataset due to substantial variations in scale, viewpoint

and lighting conditions. The basic dataset, often referred to as Oxford 5k, is usually

appended with another 100k Flickr images to test large scale retrieval, thus forming

Oxford 105k dataset.

3.1.2 Paris buildings

Analogously to Oxford 5k, 6392 images of Paris were obtained from Flickr and 55

(5 for each of the 11 chosen landmarks) queries are used for evaluation (Philbin

et al., 2008). As it contains images of Paris it is considered to be an independent

dataset from Oxford 5k and thus commonly used to test effects of computing a visual

vocabulary from it while evaluating performance on Oxford 5k.

3.1.3 Holidays

Contains 1491 high-resolution images containing personal holiday photos with 500

queries containing only a few positive examples per query (Jégou et al., 2008). This

dataset is more targeted at large scale image retrieval rather than particular object

retrieval due to limited changes in viewpoint and scale, and queries are defined
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Figure 3.1: Oxford dataset. Landmarks and queries used for evaluation.
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Figure 3.2: Precision-recall (PR) curve. The blue line shows an ideal PR curve
with precision=1.0 at recall=1.0, meaning that all positives are retrieved and all
retrieved images are true positives. The red line shows a more realistic PR curve
where precision=1.0 up to recall of 0.5023, meaning that no false positives are en-
countered when 50% of all positives are retrieved. To achieve recall of 53% precision
is sacrificed with 35% of retrieved images being false positives.

only in terms of complete images and not specific image regions (objects). The

visual vocabulary is typically trained on an independent dataset, Flickr 60k. The

basic dataset is usually appended with another 1M Flickr images to test large scale

retrieval, forming the Holidays+Flickr1M dataset.

Note that the query image is ignored in retrieval results, unlike for Oxford and

Paris datasets where it is counted as a positive.

3.2 Evaluation procedure

Retrieval quality for a single query is measured in terms of precision-recall (PR)

curves (an example is shown in figure 3.2). Precision is defined as the proportion of

true positives in the retrieved images; recall is the ratio of retrieved true positives to
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the total number of positives for the query. In simple terms, precision measures the

purity of the retrieved list, while recall measures what fraction of the total number

of known positives is discovered.

Certain applications, like Google Goggles, which try to answer the question “what

is this?” are only interested in maximising precision as obtaining a single correct

result is sufficient to recognise the object. For such applications, a useful perfor-

mance measure for a single query is precision@R, i.e. the precision when R images

are retrieved (e.g. R = 1 in the extreme).

Large recall is also commonly required, for example 3D reconstruction requires a

large number of relevant images in order to build an accurate 3D model. Average

precision (Philbin et al., 2007) (AP) summarises the precision-recall curve, and thus

the precision vs recall trade-off, by measuring the area under the curve; AP of 1.0

represents the ideal case. The corresponding measure for a collection of queries is

the mean average precision (mAP).



Chapter 4

Improving Bag-of-Words Retrieval

We consider the problem of near-real time large scale particular object retrieval.

Many works have addressed this problem (section 2.1); the standard approach is

to represent an image using a bag-of-visual-words (BoW), and images are ranked

using term frequency inverse document frequency (tf-idf) computed efficiently via

an inverted index (section 2.1.1).

However, an object in a target image can fail to be retrieved for a number of rea-

sons using this standard pipeline, these include: feature detection drop-out; noisy

descriptors; inappropriate metrics for descriptor comparison; or loss due to descrip-

tor quantization. All of these failings have received attention over the past few years

and are addressed by methods reviewed in sections 2.1.1.3, 2.1.1.4, 2.1.2 and 2.1.4.

We make the following three novel contributions in this chapter:

1. RootSIFT: In section 4.2 we show that using a square root (Hellinger) kernel

instead of the standard Euclidean distance to measure the similarity between SIFT

descriptors leads to a dramatic performance boost in all stages of the pipeline. This
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change is simple to implement in just a few lines of code, and it does not require

any additional storage space as the conversion from SIFT to RootSIFT can be done

online.

2. Discriminative query expansion: Query expansion methods (section 2.1.4),

where BoW vectors from spatially verified regions are used to issue new queries,

address the problem of feature detection drop out in addition to quantization and

noise on the descriptor. Current methods for query expansion combine the BoW

vectors of the spatially verified results, e.g. by averaging. In section 4.3 we show that

using a linear SVM to discriminatively learn a weight vector for re-querying yields a

significant improvement over the standard average query expansion method (Chum

et al., 2007b), whilst maintaining immediate retrieval speeds through efficient use

of the inverted index.

3. Database-side feature augmentation: The principal limitation of query ex-

pansion is that it relies on the query to yield a sufficient number of high precision

results in the first place. Database-side feature augmentation (Turcot and Lowe,

2009) is a natural complement to query expansion where images in the database

are augmented offline with all features of images containing the same view of the

object. Though very powerful, this method suffers from not taking into account

the spatial configuration of augmenting features. In section 4.4 we show that if the

visibility of the augmenting features is taken into account (using spatial verification

by a homography) then this simple extension provides a significant improvement in

performance compared to the original method.

In each case these methods can substantially boost the retrieval performance, and

can simply be “plugged into” the standard object retrieval architecture of Philbin
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et al. (2007) (BoW, inverted index, tf-idf, spatial consistency re-ranking) without

increasing processing time. Indeed, RootSIFT and discriminative query expansion

do not even increase the storage requirements.

In sections 4.2–4.4 we describe each of these methods in detail and demonstrate

their performance gain using the method of Philbin et al. (2007) as a baseline on

the Oxford Buildings 5k and 105k image dataset benchmarks as a running example.

The methods are combined and compared to the state of the art in section 4.5.

We conclude with giving recommendations for the design of object retrieval systems

based on their performance, computational efficiency, storage requirements and ease

of implementation of the various methods.

4.1 Baseline retrieval system

We follow the standard BoW retrieval framework described in (Philbin et al., 2007).

We use affine-Hessian interest points (Mikolajczyk and Schmid, 2004b), a vocabulary

of 1M vision words obtained using approximate k-means, and spatial re-ranking of

the top 200 tf-idf results using an affine transformation. Our most recent implemen-

tation of the system achieves a mAP of 0.672 on the Oxford 5k dataset compared

to the original 0.657 of Philbin et al. (2007). This is the baseline system that we

will compare to as we introduce new methods in the sequel.

Our most recent implementation of the average query expansion method from

Chum et al. (2007b) (described in detail in section 4.3) achieves a mAP of 0.726 on

Oxford 105k compared to the original 0.711 (Chum et al., 2007b). Note, although

the original paper described several methods for query expansion (e.g. transitive
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closure, multiple image resolution), the average method has emerged as the standard

to compare to (Chum et al., 2011, Mikulik et al., 2010, Philbin et al., 2008) (it has

similar performance to the others, and is faster at run time as the other methods

involve issuing several new queries). Hence, we use it as our baseline for query

expansion in the subsequent comparisons.

For consistency reasons (using the same visual vocabulary, and various parameters

of spatial reranking and query expansion) we compare our improvements to our most

recent implementation of the baseline systems.

4.2 RootSIFT: Hellinger distance for SIFT

It is well known for areas such as texture classification and image categorization, that

using Euclidean distance to compare histograms often yields inferior performance

compared to using measures such as χ2 or Hellinger. SIFT was originally designed

to be used with Euclidean distance (Lowe, 2004), but since it is a histogram the

question naturally arises as to whether it would also benefit from using alternative

histogram distance measures. We show that using the Hellinger kernel does indeed

bring a great benefit.

In the following it will be helpful to make use of the standard connection between

distances (metrics) and kernels. Suppose x and y are n-vectors with unit Euclidean

norm (‖x‖2 = 1), then the Euclidean distance dE(x, y) between them is related to

their similarity (kernel) SE(x, y) as

dE(x, y)2 = ‖x− y‖2
2 = ‖x‖2

2 + ‖y‖2
2 − 2xTy = 2− 2SE(x, y)
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where SE(x, y) = xTy, and the last step follow from ‖x‖2
2 = ‖y‖2

2 = 1. We are

interested here in replacing the Euclidean similarity/kernel by the Hellinger kernel.

The Hellinger kernel, also known as the Bhattacharyya’s coefficient, for two L1

normalized histograms, x and y (i.e.
∑n

i xi = 1 and xi ≥ 0), is defined as:

H(x, y) =
n

∑

i=1

√
xiyi

SIFT vectors can be compared by a Hellinger kernel using a simple algebraic manipu-

lation in two steps: (i) L1 normalize the SIFT vector (originally it has unit L2 norm);

(ii) square root each element. It then follows that SE(
√

x,
√

y) =
√

x
T√

y = H(x, y),

and the resulting vectors are L2 normalized since SE(
√

x,
√

x) =
∑n

i xi = 1. We

thus define a new descriptor, which we term RootSIFT, which is an element wise

square root of the L1 normalized SIFT vectors. The key point is that comparing

RootSIFT descriptors using Euclidean distance is equivalent to using the Hellinger

kernel to compare the original SIFT vectors: dE(
√

x,
√

y)2 = 2− 2H(x, y).

RootSIFT is used in the specific object retrieval pipeline by simply replacing SIFT

by RootSIFT at every point. The fact that RootSIFT descriptors are compared us-

ing Euclidean distance means that every step can be effortlessly modified: k-means

can still be used to build the visual vocabulary (since it is based on Euclidean

distance), approximate nearest neighbour methods (essential for systems with very

large vocabularies) can still be used; as can soft assignment of descriptors to visual

words (Jégou et al., 2010a, Philbin et al., 2008), query expansion, and other ex-

tensions which only require Euclidean distance on SIFT (Jégou et al., 2008, 2010b,

Mikulik et al., 2010, Philbin et al., 2010).
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Retrieval Method
SIFT RootSIFT

Ox5k Ox105k Ox5k Ox105k
Philbin et al. (2007): tf-idf ranking 0.636 0.515 0.683 0.581
Philbin et al. (2007): tf-idf with spatial reranking 0.672 0.581 0.720 0.642
Chum et al. (2007b): average query expansion (AQE) 0.839 0.726 0.850 0.756
Turcot and Lowe (2009): database-side feature augmentation (AUG) 0.776 0.711 0.827 0.759
This chapter: discriminative query expansion (DQE) 0.847 0.752 0.861 0.781
This chapter: spatial database-side feature augmentation (SPAUG) 0.785 0.723 0.838 0.767
This chapter: SPAUG + DQE 0.844 0.795 0.881 0.823

Table 4.1: Retrieval performance (mAP) of various proposed methods. We
use our implementation of all listed methods (Chum et al., 2007b, Philbin et al.,
2007, Turcot and Lowe, 2009) in order to compare them consistently using the same
visual vocabularies and sets of parameters. RootSIFT significantly outperforms
SIFT for all investigated methods. The vocabularies are generated using the Oxford
5k descriptors and all methods apart from “tf-idf ranking” employ spatial reranking
of the top 200 results. Note that for AUG and SPAUG we recompute the idf as
described in section 4.4.

The dramatic improvement in performance is shown in table 4.1, where for each

step (e.g. adding query expansion, adding feature augmentation) using SIFT is com-

pared with using RootSIFT. For example, on Oxford 105k the baseline system (tf-

idf only) increases in performance from 0.515 to 0.581, and with spatial reranking

included the improvement is from 0.581 to 0.642. These improvements come at

virtually no additional cost, and no additional storage since SIFT can be converted

online to RootSIFT with a negligible processing overhead.

Discussion

The RootSIFT transformation can be thought of as an explicit feature map from

the original SIFT space to the RootSIFT space, such that performing the scalar

product (i.e. a linear kernel) in RootSIFT space is equivalent to computing the

Hellinger kernel in the original space. This approach has been explored in the

context of kernel maps for SVM classifiers by (Perronnin et al., 2010b, Vedaldi and

Zisserman, 2010). Explicit feature maps can be built for other additive kernels, such
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as χ2, but we find little difference in performance from that of the Hellinger kernel

when used in the specific object retrieval system.

The effect of the RootSIFT mapping is to reduce the larger bin values relative

to the smaller bin values. The Euclidean distance between the original SIFT vec-

tors can be dominated by these large values. After the mapping the distance is

more sensitive to the smaller bin values. The importance of this “variance stabi-

lizing transformation” has previously been noted by Winn et al. (2005) for texton

histograms.

Previous work has compared SIFT vectors with distances other than Euclidean,

but an explicit feature map was not employed and so the benefits of simply being

able to continue to use algorithms with Euclidean distance (e.g. k-means) were not

apparent. For example, Johnson (2010) uses Jeffrey’s divergence to compare SIFT

vectors concentrating on descriptor compression, Pele and Werman (2008) use a

variant of the Earth Mover’s Distance or a quadratic χ2 metric (Pele and Werman,

2010).

4.3 Discriminative query expansion

Query expansion can substantially improve the performance of retrieval systems.

The average query expansion method proceeds as follows: given a query region,

images are ranked using tf-idf scores and spatial verification is performed on a short

list of high ranked results, also providing the location (ROI) of the queried object

in the retrieved images. BoW vectors corresponding to words in these ROIs are

averaged together with the query BoW, and this resulting query expanded BoW
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vector is used to re-query the database.

In contrast we introduce here a discriminative approach to query expansion where

negative data is taken into account and a classifier trained. It proceeds as follows:

BoW vectors used to enrich the query are obtained in exactly the same way as for

average query expansion. These provide the positive training data, and images with

low tf-idf scores provide the negative training data. A linear SVM is trained using

these positive and negative BoW vectors to obtain a weight vector w. The learnt

weight vector is used to rank images by their distance from the decision boundary,

i.e. if the image is represented by the BoW vector x, then images are sorted on

the value wTx. Ranking images using the learnt weight vector w can be carried

out efficiently using the inverted index in much the same way as when computing

tf-idf scores – both operations are just scalar products between a vector and x. For

the tf-idf scoring in average query expansion the vector used is the average query

idf-weighted BoW vector, whilst for discriminative query expansion (DQE) it is the

learnt weight vector w.

Note, for DQE to be efficient it is essential that the weight vector is sparse. As

discussed below, by a careful choice of negative data the obtained weight vector is at

least as sparse as the one used in average query expansion. Thus, the method is at

least as computationally efficient as average query expansion with an insignificant

overhead of training a linear SVM. Figure 4.1 illustrates schematically how negative

data can benefit DQE over average query expansion.

Table 4.1 compares the DQE method to our implementation of the average query

expansion (AQE) of Chum et al. (2007b). It can be seen that DQE is consistently su-

perior to AQE. The performance gain is particularly evident with increasing dataset
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Q

AQE

DQE ranking

Figure 4.1: Discriminative query expansion (DQE). Illustration of the BoW
feature space. True positives are shown as green circles and true negatives as red
circles. Spatially verified images used to expand the query (i.e. “known” positives)
are shown with pluses inside, low ranking images (i.e. “known” negatives) with
minuses. Q and AQE denote the query and the average query expansion BoW
vectors, respectively. A tf-idf AQE ranking sorts images based on their distance to
the AQE vector, while DQE ranking sorts images by their signed distance from the
decision boundary. As illustrated here, DQE correctly ranks the two images with
unknown labels while AQE does not.

size – for Oxford 5k DQE outperforms AQE by 1% and 1.3% for SIFT and RootSIFT

respectively, while for Oxford 105k mAP improves by 3.6% and 3.3%.

Implementation details

The images used for negative data are the 200 with smallest non-zero tf-idf score

for the query. These images are very unlikely to contain any positive instances.

However, to avoid the weight vector becoming dense, the BoW vector corresponding

to each image is first truncated to only include words that appear in at least one

positive example. This is done to prevent many irrelevant negative words being

brought in by the large number of negative images, which would then make the 1

million dimensional (i.e. the size of the vocabulary) weight vector dense, rendering

re-querying inefficient. Other truncation or sparsity methods could be employed

here, but we have found this simple procedure quite adequate. With this procedure
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the weight vector is at least as sparse as the one used in average query expansion

as the set of considered words is identical. Note, all vectors are idf-weighted and

L2-normalized before training.

The classifier is a linear SVM trained with LIBSVM (Chang and Lin, 2011). The

choice of linear (rather than a non-linear kernel) is for efficiency in training, and to

have a linear weight vector for use with the inverted file. In training there is only one

parameter to be optimized, namely the C weighting of the SVM cost function. The

retrieval performance is very insensitive to this value – for RootSIFT and the Oxford

5k benchmark varying C between 0.001 and 1000 changed the mAP of 0.8608 by at

most 0.0015. We thus choose C = 1. The entire overhead of using DQE instead of

AQE (gathering negative training data and training the linear SVM) is 30 ms on

average on a 3 GHz single core machine.

Discussion

It is interesting to note that, unlike any object retrieval method proposed to date,

our method can actually benefit from adding more distractor images to the dataset

to make it “more confusing”. DQE could learn a better weight vector if the new

images are picked as negative examples, while for other methods the performance

would be expected to remain the same at best. As already noted, results in table 4.1

indeed show that the relative improvement of DQE compared to the average query

expansion increases with the number of distractors in the dataset.

Recent work (Chum et al., 2011, Knopp et al., 2010) has proposed methods for

identifying words that are confusing for a given query image, and thus should not

be used. In (Chum et al., 2011) these confusing words are then removed when

re-querying, though the actual “expansion” is still performed by simply averaging
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Figure 4.2: Image graph. Part of an image graph, nodes represent images while
edges signify that images contain a common object; objects are labelled A, B, C and
Q.

the BoW vectors and applying the tf-idf ranking scheme. The DQE goes further

in two respects: first it learns the weighting for the positive words (rather than

simply averaging), and second it has negative weights for confusing words (rather

than simply ignoring them).

4.4 Database-side feature augmentation

Turcot and Lowe (2009) use a matching graph to improve retrieval performance by

augmenting the BoW for each image with the visual word counts of all neighbouring

images in the graph. In a matching graph (Philbin and Zisserman, 2008) nodes

represent images, while edges signify that images contain an object in common

(figure 4.2). This approach is somewhat complementary to query expansion as it

tries to overcome the same problems as query expansion but on the dataset side,

namely feature detection drop outs, occlusion, noisy description and quantization
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Figure 4.3: Database-side for feature augmentation. Retrieval performance
of augmentation methods: the queried object is highlighted in yellow on the left-
most image. (a) tf-idf retrieval results when not using image graph information, a
challenging image is not retrieved; (b) retrieved images using the method of Turcot
and Lowe (2009) and graph shown in figure 4.2: recall is improved but precision
decreases as the false positive (highlighted in red) is augmented with all the visual
words of its highly ranked neighbouring image; (c) our method shows increased re-
call while maintaining high precision since images are only augmented with visual
words from relevant neighbouring regions.

errors.

The procedure of Turcot and Lowe (2009) could be thought of as query expanding

each image of the dataset, and replacing the original BoW vector of the image, by its

average query expanded version. However, rather than only augmenting the BoW

vector with spatially verified visual words, Turcot and Lowe (2009) augment the

BoW vector with all visual words from neighbouring images. This can be dangerous

because a significant number of augmenting visual words may not be visible in the

original image (because they are outside the image). The problem is very common

as unless two images are nearly identical, a large number of augmenting words will

indeed not be visible (figure 4.2). Instead, we augment using only words estimated

to be visible in the augmented image. This is simple to do, as an estimated homog-
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raphy between the two images is readily available from the spatial verification stage

of the matching graph construction. The benefit of spatial database-side feature

augmentation (SPAUG) is illustrated in figure 4.3.

Table 4.1 shows that SPAUG always significantly improves over the baseline. For

example, on Oxford 105k with RootSIFT, SPAUG achieves a mAP of 0.767 whereas

the baseline gets 0.642. It also consistently outperforms the original method (Turcot

and Lowe, 2009), which does not perform the visibility check by 1.0 or 1.7% (for

Oxford 5k or 105k respectively). These improvements are significant at these high

values of mAP. It is not shown in the table, but SPAUG gives an improvement (of

3.6 or 4.5% respectively) over the tf-idf baseline even before spatial re-ranking is

performed. This is important because the tf-idf ranking has to provide a sufficient

number of results in order for spatial re-ranking to be beneficial – if there are almost

no results then reranking achieves little.

Discussion

Although there is clearly a retrieval benefit in using the spatial homography, there

is a cost in terms of additional storage requirement. The original augmentation

method of Turcot and Lowe (2009) does not incur this cost as it does not need

to explicitly augment BoW vectors in advance of a search. Instead, at run time

the scalar product tf-idf score between the query and a dataset image is efficiently

computed using the inverted index as usual, and then it is augmented by simply

summing scores of neighbouring images (neighbouring according to the matching

graph). This is equivalent to augmenting the vectors before tf-idf scoring due the

distributivity of the scalar product. However, this is only possible because all vi-

sual words in neighbouring images are used for augmentation; our extension requires
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explicit augmentation as one image can contribute different words to different neigh-

bours according to the spatial overlap. This increases the storage requirement since

the inverted index grows, however it is worth it given the improvement in retrieval

performance. Note that for a particular BoW vector storage only increases when an

augmenting word does not already appear anywhere in the augmented image, as if

it does then only the count of that word needs to be incremented which does not

impact on the inverted index size.

The spatially verified augmentation adds 4.4 words on average per existing word

for the Oxford 105k dataset. This is 28% less than the original augmentation method

(Turcot and Lowe, 2009), and illustrates that the original approach indeed introduces

a large number of irrelevant and possibly detrimental visual words.

Implementation details

We use the approach of Philbin and Zisserman (2008) to construct a matching

graph of images in a dataset offline. Each image in the dataset is used as a query in

a standard particular object retrieval system of (Philbin et al., 2007) and an edge

is constructed to each spatially verified image. An alternative graph construction

method which employs hashing (Chum and Matas, 2010a) can be used for very

large scale datasets where querying using each image in turn is impractical. When

constructing the graph we do not include the query images used for evaluation of a

dataset in order to simulate a real-life scenario where query images are not known

at preprocessing time.

Since the augmenting words are considered to be equally important as the original

visual words extracted from an image, we additionally recompute the inverted docu-

ment frequency (idf) using the augmented dataset. Both the original augmentation
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SIFT RootSIFT
AUG variant Ox5k Ox105k Ox5k Ox105k
Orig. idf 0.712 0.662 0.780 0.709
Recomp. idf 0.734 0.673 0.785 0.720
Orig. idf + SR 0.755 0.708 0.820 0.752
Recomp. idf + SR 0.776 0.711 0.827 0.759

Table 4.2: Idf recomputation for database-side feature augmentation. Re-
trieval performance of our implementation of the Turcot and Lowe (2009) database-
side augmentation method (AUG) using just tf-idf or with spatial re-ranking (SR).
Recomputing the idf using the augmented dataset always improves performance.

method (Turcot and Lowe, 2009) and our extension benefit from idf recomputa-

tion, as shown in Table 4.2. As can be seen, recomputing idf values based on the

augmented dataset provides a gain in all cases with median mAP improvement of

1.2%.

4.5 Results and discussion

In this section we discuss and compare the three new methods to related work and

the state of the art. Comparing absolute performance to previous publications is

difficult as the results depend on a number of important implementation details

(even though the same benchmark image datasets are used). There factors include:

(i) the feature detector used; (ii) the size of the vocabulary; and (iii) whether the

vocabulary is learnt on the original dataset or another. For example, the substantial

mAP performance improvement in Perďoch et al. (2009) was principally due to using

a better implementation of the Hessian-affine feature detector. Hence we take these

factors into account in our comparison, using feature detectors provided by the

authors or learning the vocabulary on different datasets as appropriate.
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The methods are evaluated on the standard Oxford 5k and 105k, Paris 6k (sec-

tion 3.1) image datasets.

4.5.1 RootSIFT

We have tested RootSIFT over many retrieval methods, with and without spatial

reranking, query expansion, soft assignment and all the methods described in this

chapter. In every single case RootSIFT significantly outperforms the standard L2

distance for SIFT comparison; we only show a subset of these experiments in ta-

ble 4.1. Note that the simple tf-idf scheme with RootSIFT and without spatial

reranking outperforms tf-idf using SIFT with spatial reranking. Figure 4.4 shows

examples of matched image patches using SIFT and RootSIFT, demonstrating that

RootSIFT yields more complete matches enabling better object localization

RootSIFT may be thought of as a non-linear map on SIFT, and it is interesting to

compare its performance to the non-linear projection learnt by Philbin et al. (2010)

from SIFT space into a space where L2 distance is more appropriate. This projection

was modelled by a deep-belief network, and learnt discriminatively using training

data. RootSIFT equals or outperforms this method on the three datasets used in

(Philbin et al., 2010). The mAPs are (Philbin et al. (2010)/RootSIFT): 0.707/0.720

for Oxford 5k; 0.615/0.642 for Oxford 105k; and 0.689/0.689 for Paris 6k. Since

RootSIFT achieves superior results using a simple non-linear root transformation,

there is still more room for improvement by combining the root transformation with

learning; this was indeed achieved after the publication of this work by Simonyan

et al. (2013b).
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(a) SIFT (L2 distance): 10 matches

(b) RootSIFT: 26 matches

Figure 4.4: Comparing matches with SIFT and RootSIFT. Query image and
region are shown on the left, a matching result with the estimated corresponding
region of interest is shown on the right. RootSIFT yields more matches and the
object localization is better.

4.5.2 Final retrieval system

We combine all the proposed improvements into one system and evaluate its per-

formance. RootSIFT (section 4.2) is used to generate the visual vocabulary and

hard assign descriptors to visual words, images are augmented with visual words

of adjacent images in the image graph, but only with ones which back-project into

the image region, and the inverse document frequency (idf) is recomputed (SPAUG,

section 4.4). At query time we extract RootSIFT descriptors from the interest re-

gion, hard assign them to the closest visual word and use the resulting sparse BoW

representation to query the database. Fast spatial reranking is performed on the top

tf-idf results, and spatially verified results are used to train a linear SVM to learn
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Method F V SA Ox5k Ox105k Paris6k

a Philbin et al. (2008) M S 0.801 0.708 N/A
b Philbin et al. (2008) M S

√
0.825 0.718 N/A

c Qin et al. (2011) M S 0.814 0.767 0.803
d This chapter M S 0.881 0.823 0.850

e Philbin et al. (2008) M I 0.654 0.562 N/A
f Philbin et al. (2008) M I

√
0.719 0.605 N/A

g This chapter M I 0.714 0.602 0.660

h Perďoch et al. (2009) P I 0.784 0.728 N/A
i Perďoch et al. (2009) P I

√
0.822 0.772 N/A

j Mikulik et al. (2010) P ⋆
√

0.849 0.795 0.824
k Chum et al. (2011) P I 0.827 0.767 0.805
l This chapter P I 0.809 0.722 0.765

m Perďoch et al. (2009) P S 0.901 0.856 N/A
n Perďoch et al. (2009) P S

√
0.916 0.885 N/A

o This chapter P S 0.929 0.891 0.910

Table 4.3: Comparison of the combined method (section 4.5.2) with state-
of-the-art. F denotes the feature detector used: M for (Mikolajczyk and Schmid,
2004b) and P for (Perďoch et al., 2009). V signifies which dataset was used to
generate the visual vocabulary: S for same as test dataset (e.g. Oxford 5k for Oxford
5k and Oxford 105k tests), I for an independent dataset (e.g. Paris 6k for the Oxford
5k and Oxford 105k tests) and ⋆ for the case of (Mikulik et al., 2010) where they
learn word similarities based on mined SIFT correspondences in a 6M dataset. SA
marks whether soft assignment was used or not. Spatial reranking is performed
on the top 200 or 1000 tf-idf results for consistency with (Philbin et al., 2008) or
(Chum et al., 2011, Mikulik et al., 2010, Perďoch et al., 2009) respectively, which
use these parameter values. For (g) the baseline system does not produce a good
enough image graph so database-side feature augmentation is not used for this test.

weights for visual words which represent the query object. The learnt weights are

used to efficiently re-query the database and spatial reranking is performed again

(DQE, section 4.3).

Table 4.3 shows a comparison of this combined method with previous results. The

performance of the method is evaluated over three datasets, using two different

feature detectors (Mikolajczyk and Schmid (2004b) or Perďoch et al. (2009)), and
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learning the visual vocabulary from two different datasets (from Oxford 5k or Paris

6k).

First, (a–d), we report on using the Mikolajczyk and Schmid (2004b) feature de-

tector and a vocabulary generated from the test image dataset descriptors. Our

combined method sets the new state-of-the-art on all three datasets. The best re-

sult for each dataset reported in previous publications is improved on by 6.8%, 7.3%

and 5.9% for the Oxford 5k, 105k and Paris 6k datasets respectively. Note, these

superior results are achieved without using soft-assignment (as used by (b)), so there

are probably still improvements to be gained.

Second, (e–g), the vocabulary is now generated on an independent dataset. As

reported previously (Philbin et al., 2008), and evident here, this diminishes perfor-

mance. Despite this, the combined method exceeds the state of the art (e) without

soft-assignment by 9.2% and 7.1% (on Oxford 5k and 105k respectively), and almost

equals the state-of-the-art including soft assignment (f).

Third, (h–l), using the feature detector of Perďoch et al. (2009) boosts the perfor-

mance even when using an independent vocabulary. The combined method, (l), does

not top the results of (Chum et al., 2011, Mikulik et al., 2010, Perďoch et al., 2009),

(i–k), due to problems of replicating their average query expansion score (our imple-

mentation gets a 4% worse mAP, probably caused by different parameter settings

and heuristics). The performance on an independent vocabulary could be improved

by using more powerful methods to construct the image graph for SPAUG: currently,

it is computed without using DQE or soft-assignment. Another method which over-

comes this independent vocabulary problem is that of Mikulik et al. (2010), (j),

where a very large vocabulary is generated and similarities between the words are
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Figure 4.5: Retrieval performance of various methods. (left) The number
of queries that achieve a specific AP or higher. Tested on Oxford 105k with the
feature detector of Perďoch et al. (2009) and Oxford 5k vocabulary. (right) Two
badly performing queries for all methods.

learnt.

Finally, (m–o), use the Perďoch et al. (2009) feature detector and a vocabulary

generated from the test image dataset descriptors. The combined method sets the

new state-of-the-art for the standard Oxford 5k and 105k, and Paris 6k benchmarks,

achieving mAP scores of 0.929, 0.891 and 0.910 respectively.

Given this high performance, we can now ask “What is being missed?”. Figure 4.5

(left) shows the performance of various methods in terms of the number of queries

on Oxford 105k that achieve a specific average precision or above. The combined

method, (o), achieves an AP of 0.7 or higher for all but 3 (out of 55) queries. The

two worst performing queries for the combined, and all other methods, are shown in

figure 4.5 (right). The top one fails because the query object is quite small and the

lighting very bright, so there are not many distinctive features in the image. The

bottom one fails because the query object is imaged from an extreme viewpoint,
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whilst repetitive patterns yield some spatially verified false positives (e.g. on fence

railings). Thus, retrieval on this dataset is still not saturated.

4.6 Conclusions and recommendations for retrieval

system design

RootSIFT. Using RootSIFT instead of SIFT improved retrieval performance in ev-

ery single conducted experiment. We highly recommend it to be used as it provides

a performance boost at no cost – it is very easy to implement, does not increase stor-

age requirements as SIFT can be converted to RootSIFT on the fly with negligible

computational cost.

Note that RootSIFT is not specific to object retrieval – all systems which use SIFT

(e.g. image classification, object detection) could potentially benefit from switching

to RootSIFT and we encourage everyone to try it as the conversion is very simple

to implement.

Discriminative query expansion (DQE). DQE consistently outperforms aver-

age query expansion (AQE). It is as efficient as AQE since SVM training is negligible

and re-querying requires equal computational resources. Implementation complex-

ity is only slightly increased compared to AQE due to the additional training stage,

however this is insignificant as many SVM packages are publicly available. As there

are no arguments against DQE we recommend it to be used instead of AQE in all

situations.

To our knowledge this is the first time that discriminative learning methods have
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been employed in the area of large scale retrieval.

Database-side feature augmentation (AUG). AUG is a useful method of in-

creasing recall. It is not computationally demanding at runtime, but it does require

a lengthy preprocessing graph construction stage. We recommend it to be used as

it is a natural complement to query expansion. Our extension to the basic method

improves precision but increases storage requirements; this trade-off should be kept

in mind when deciding whether to use it or not.

Query descriptors soft assignment. Soft assignment of descriptors to visual

words alleviates the problems caused by descriptor quantization to some extent, but

in the original implementation of Philbin et al. (2008) soft-assignment was applied

to the database, thus leading to a large increase in storage requirements as the

BoW vectors representing the images are consequently more dense (than using hard

assignment). Instead, we recommend Jégou et al. (2010a) and Jain et al. (2011)’s

approach of only soft assigning the query descriptors (not the database images) thus

not changing the storage requirements and only marginally increasing the query

processing time.

4.7 Impact

The work described in this chapter was published in CVPR 2012, and for a bit more

than a year it has made significant impact in the Computer Vision community.

RootSIFT. As a result of its superiority, RootSIFT is rapidly replacing SIFT in

retrieval systems (Delhumeau et al., 2013, Fernando and Tuytelaars, 2013, Jégou and

Chum, 2012, Qin et al., 2013, Tolias and Jégou, 2013, Zhao et al., 2013a,b) as well
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as non-retrieval applications including classification (Garg et al., 2013, Juneja et al.,

2013, Krause et al., 2013), face recognition (Simonyan et al., 2013a), facial landmark

localization (Zhou et al., 2013), tracking (Prankl et al., 2013), event retrieval (Douze

et al., 2013, Revaud et al., 2013), localization (Torii et al., 2013) and 3D mapping

(Endres et al., 2013).

Discriminative query expansion (DQE). Our work is the first one to employ

discriminative learning for object retrieval; a few subsequent methods with the same

motivation are mentioned here. Chen et al. (2012) confirm that DQE outperforms

average query expansion and further improve on it by learning an ensemble of linear

SVMs in a boosting framework. Gronat et al. (2013) and Cao and Snavely (2013)

employ discriminative learning in location recognition (section 2.1.1.4). Douze et al.

(2013) consider event retrieval using VLAD descriptors and confirm that DQE is

superior to AQE in this case as well; they also propose another discriminative query

expansion scheme.



Chapter 5

Improving Compact Image

Representations

Like the previous chapter, the topic of this chapter is also large scale object retrieval.

The focus of this chapter, however, is towards very large scale retrieval where, due

to storage requirements, very compact image descriptors are required and no infor-

mation about the original local descriptors can be accessed directly at run time.

Section 2.2 reviews related work in this area.

We start from VLAD, the state-of-the art compact descriptor introduced by Jégou

et al. (2010b) for this purpose (section 2.2.1.2), and make three novel contributions:

1. Intra-normalization: We propose a new normalization scheme for VLAD that

addresses the problem of burstiness (Jégou et al., 2009b), where a few large compo-

nents of the VLAD vector can adversely dominate the similarity computed between

VLADs. The new normalization is simple, and always improves retrieval perfor-

mance.
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2. Multi-VLAD: We study the benefits of recording multiple VLADs for an image

and show that retrieval performance is improved for small objects (those that cover

only a small part of the image, or where there is a significant scale change from the

query image). Furthermore, we propose a method of sub-VLAD localization where

the window corresponding to the object instance is estimated at a finer resolution

than the VLAD tiling.

3. Vocabulary adaptation: We investigate the problem of vocabulary sensitivity,

where a vocabulary trained on one dataset, A, is used to represent another dataset

B, and the performance is inferior to using a vocabulary trained on B. We propose

an efficient, simple, method for improving VLAD descriptors via vocabulary adap-

tation, without the need to store or recompute any local descriptors in the image

database.

The first two contributions are targeted at improving VLAD performance. The

first improves retrieval in general, and the second partially overcomes an important

deficiency – that VLAD has inferior invariance to changes in scale (compared to a

BoW approach). The third contribution addresses a problem that arises in real-

world applications where, for example, image databases grow with time and the

original vocabulary is incapable of representing the additional images well.

In sections 5.2–5.4 we describe each of these methods in detail and demonstrate

their performance gain over earlier VLAD formulations, using the Oxford Buildings

5k and Holidays image dataset benchmarks as running examples. The methods

are combined and compared to the state-of-the-art for larger scale retrieval (Oxford

105k and Flickr1M) in section 5.5.
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5.1 VLAD review, datasets and baselines

We first briefly remind the reader of the original VLAD computation and subsequent

variations (a more detailed review is available in section 2.2.1.2), and then overview

the datasets that will be used for performance evaluation and those that will be

used for vocabulary building (obtaining the cluster centres required for VLAD com-

putation).

5.1.1 VLAD

VLAD is constructed as follows: regions are extracted from an image using an affine

invariant detector, and described using the 128-D SIFT descriptor. Each descriptor

is then assigned to the closest cluster of a vocabulary of size k (where k is typically

64 or 256, so that clusters are quite coarse). For each of the k clusters, the residuals

(vector differences between descriptors and cluster centres) are accumulated, and

the k 128-D sums of residuals are concatenated into a single k × 128 dimensional

descriptor; we refer to it as the unnormalized VLAD.

In the original scheme (Jégou et al., 2010b) the VLAD vectors are L2 normal-

ized. Subsequently, a signed square rooting (SSR) normalization was introduced

(Jégou and Chum, 2012, Jégou et al., 2012), following its use by Perronnin et al.

(2010a) for Fisher Vectors. To obtain the SSR normalized VLAD, each element

of an unnormalized VLAD is sign square rooted (i.e. an element xi is transformed

into sign(xi)
√

|xi|) and the transformed vector is L2 normalized. We will compare

with both of these normalizations in the sequel, and use them as baselines for our

approach.
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5.1.2 Benchmark datasets and evaluation procedure

The performance is measured on two standard and publicly available image re-

trieval benchmarks, Oxford buildings and Holidays (section 3.1). For both, a set

of predefined queries with hand-annotated ground truth is used, and the retrieval

performance is measured in terms of mean average precision (mAP, section 3.2).

We follow the standard experimental scenario of (Jégou and Chum, 2012) for all

benchmarks: for Oxford 5k and 105k the detector and SIFT descriptor are computed

as in (Perďoch et al., 2009); while for Holidays(+Flickr1M) the publicly available

SIFT descriptors are used.

Vocabulary sources. Three different datasets are used for vocabulary building

(i.e. clustering on SIFTs): (i) Paris 6k (section 3.1.2), which is often used as an

independent dataset from the Oxford buildings (Chum et al., 2011, Jégou and Chum,

2012, Philbin et al., 2008); (ii) Flickr60k (Jégou et al., 2008), which contains 60k

images downloaded from Flickr, and is used as an independent dataset from the

Holidays dataset (Jégou et al., 2008, 2009b, 2010b); and, (iii) ‘no-vocabulary’, which

simply uses the first k (where k is the vocabulary size) SIFT descriptors from the

Holidays dataset. As k is typically not larger than 256 whereas the smallest dataset

(Holidays) contains 1.7 million SIFT descriptors, this vocabulary can be considered

independent from all datasets.

5.2 Vocabulary adaptation

In this section we introduce cluster adaptation to improve retrieval performance for

the case where the cluster centres used for VLAD are not consistent with the dataset
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(a) (b) (c)

Figure 5.1: VLAD similarity measure under different clusterings. The
Voronoi cells illustrate the coarse clustering used to construct VLAD descriptors.
Red crosses and blue circles correspond to local descriptors extracted from two dif-
ferent images, while the red and blue arrows correspond to the sum of their residuals
(differences between descriptors and the cluster centre). Assume the clustering in
(a) is a good one (i.e. it is representative and consistent with the dataset descrip-
tors), while the one in (b) is not. By changing the clustering from (a) to (b), the sign
of the similarity between the two images (from the cosine of the angle between the
residuals) changes dramatically, from negative to positive. However, by performing
cluster centre adaptation the residuals are better estimated (c), thus inducing a bet-
ter estimate of the image similarity which is now consistent with the one induced
by the clustering in (a).

– for example they were obtained on a different dataset or because new data has

been added to the dataset. As described earlier (sections 2.2.1.2 and 5.1.1), VLAD is

constructed by aggregating differences between local descriptors and coarse cluster

centres, followed by L2 normalization. For the dataset used to learn the clusters

(by k-means) the centres are consistent in that the mean of all vectors assigned

to a cluster over the entire dataset is the cluster centre. For an individual VLAD

(from a single image) this is not the case, or course, and it is also not the case,

in general, for VLADs computed over a different dataset. As will be seen below

the inconsistency can severely impact performance. An ideal solution would be to

recluster on the current dataset, but this is costly and requires access to the original

SIFT descriptors. Instead, the method we propose alleviates the problem without

requiring reclustering.
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The similarity between VLAD descriptors is measured as the scalar product be-

tween them, and this decomposes as the sum of scalar products of aggregated resid-

uals for each coarse cluster independently. Consider a contribution to the similarity

for one particular coarse cluster k. We denote with x
(1)
k and x

(2)
k the set of all descrip-

tors in image 1 and 2, respectively, which get assigned to the same coarse cluster k.

The contribution to the overall similarity of the two VLAD vectors is then equal to:

1
C(1)

∑

i

(x(1)
k,i − µk)T 1

C(2)

∑

j

(x(2)
k,j − µk) (5.1)

where µk is the centroid of the cluster, and C(1) and C(2) are normalizing constants

which ensure all VLAD descriptors have unit norm. Thus, the similarity measure

induced by the VLAD descriptors is increased if the scalar product between the

residuals is positive, and decreased otherwise. For example, the sets of descriptors

illustrated in figure 5.1a are deemed to be very different (they are on opposite sides

of the cluster centre) thus giving a negative contribution to the similarity of the two

images.

It is clear that the VLAD similarity measure is strongly affected by the cluster

centre. For example, if a different centre is used (figure 5.1b), the two sets of

descriptors are now deemed to be similar thus yielding a positive contribution to

the similarity of the two images. Thus, a different clustering can yield a completely

different similarity value.

We now introduce cluster centre adaptation to improve residual estimates for an

inconsistent vocabulary, namely, using new adapted cluster centres µ̂k that are con-

sistent when computing residuals (equation (5.1)), instead of the original cluster

centres µk. The algorithm consists of two steps: (i) compute the adapted cluster
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(a) Oxford 5k benchmark (section 3.1.1)
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(b) Holidays benchmark (section 3.1.3)

Figure 5.2: Retrieval performance. Six methods are compared, namely: (i) baseline:
the standard VLAD, (ii) intra-normalization, innorm (section 5.3), (iii) centre adaptation,
adapt (section 5.2), (iv) adapt followed by innorm, (v) baseline: signed square rooting
SSR, (vi) aided baseline: adapt followed by SSR. Each result corresponds to the mean
result obtained from four different test runs (corresponding to four different clusterings),
while error bars correspond to one standard deviation. The results were generated using
RootSIFT (chapter 4.2) descriptors and vocabularies of size k = 256.

centres µ̂k as the mean of all local descriptors in the dataset which are assigned to

the same cluster k; (ii) recompute all VLAD descriptors by aggregating differences

between local descriptors and the adapted centres µ̂k. Note that step (ii) can be

performed without actually storing or recomputing all local descriptors as their as-

signment to clusters remains unchanged and thus it is sufficient only to store the

descriptor sums for every image and each cluster.

Figure 5.1c illustrates the improvement achieved with centre adaptation, as now

residuals, and thus similarity scores, are similar to the ones obtained using the

original clustering in figure 5.1a. Note that for an adapted clustering the cluster

centre is indeed equal to the mean of all the descriptors assigned to it from the

dataset. Thus, our cluster adaptation scheme has no effect on VLADs obtained

using consistent clusters, as desired.

To illustrate the power of the adaptation, a simple test is performed where the

Flickr60k vocabulary is used for the Oxford 5k dataset, and the difference between

the original vocabulary and the adapted one measured. The mean magnitude of the
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displacements between the k = 256 adapted and original cluster centres is 0.209,

which is very large keeping in mind that RootSIFT descriptors (chapter 4.2) them-

selves all have a unit magnitude. For comparison, when the Paris vocabulary is

used, the mean magnitude of the difference is only 0.022.

Results. Figure 5.2 shows the improvement in retrieval performance obtained when

using cluster centre adaptation (adapt) compared to the standard VLAD under

various dataset sources for the vocabulary. Center adaptation improves results in

all cases, especially when the vocabulary was computed on a vastly different image

database or not computed at all. For example, on Holidays with Paris vocabulary

the mAP increases by 9.7%, from 0.432 to 0.474; while for the no-vocabulary case,

the mAP improves by 34%, from 0.380 to 0.509. The improvement is smaller when

the Flickr60k vocabulary is used since the distribution of descriptors is more similar

to the ones from the Holidays dataset, but it still exists: 3.2% from 0.597 to 0.616.

The improvement trends are similar for the Oxford 5k benchmark as well.

Application in large scale retrieval. Consider the case of real-world large-scale

retrieval where images are added to the database with time. This is the case, for

example, with users uploading images to Flickr or Facebook, or Google indexing

images on new websites. In this scenario, one is forced to use a fixed precomputed

vocabulary since it is impractical (due to storage and processing requirements) to

recompute too frequently as the database grows, and reassign all descriptors to the

newly obtained clusters. In this case, it is quite likely that the obtained clusters are

inconsistent, thus inducing a bad VLAD similarity measure. Using cluster centre

adaptation fits this scenario perfectly as it provides a way of computing better

similarity estimates without the need to recompute or store all local descriptors, as
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descriptor assignment to clusters does not change.

5.3 Intra-normalization

In this section, it is shown that current methods for normalizing VLAD descriptors,

namely simple L2 normalization (Jégou et al., 2010b) and signed square rooting

(Perronnin et al., 2010a), are prone to putting too much weight on bursty visual

features, resulting in a suboptimal measure of image similarity. To alleviate this

problem, we propose a new method for VLAD normalization.

The problem of bursty visual elements was first noted in the bag-of-visual-words

(BoW) setting (Jégou et al., 2009b): a few artificially large components in the image

descriptor vector (for example resulting from a repeated structure in the image such

as a tiled floor) can strongly affect the measure of similarity between two images,

since the contribution of other important dimensions is hugely decreased. This

problem was alleviated by discounting large values by element-wise square rooting

the BoW vectors and re-normalizing them. In a similar manner VLADs are signed

square root (SSR) normalized (Jégou and Chum, 2012, Jégou et al., 2012). Figure 5.3

shows the effects these normalizations have on the average energy carried by each

dimension in a VLAD vector.

We propose here a new normalization, termed intra-normalization, where the sum

of residuals is L2 normalized within each VLAD block (i.e. sum of residuals within a

coarse cluster) independently. As in the original VLAD and SSR, this is followed by

L2 normalization of the entire vector. This way, regardless of the amount of bursty

image features their effect on VLAD similarity is localized to their coarse cluster,
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(a) Original VLAD normalization (L2)
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(b) Signed square rooting (SSR) followed by L2
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(c) Intra-normalization (innorm) followed by L2

Figure 5.3: The effect of various normalizing schemes for VLAD. The plots show
the standard deviation (i.e. energy) of the values for each dimension of VLAD across all
images in the Holidays dataset; the green lines delimit blocks of VLAD associated with
each cluster centre. It can be observed that the energy is strongly concentrated around
only a few components in the VLAD vector under the original L2 normalization scheme
(5.3a). These peaks strongly influence VLAD similarity scores, and SSR does indeed
manage to discount their effect (5.3b). However, even with SSR, it is clear that the same
few components are responsible for a significant amount of energy and are still likely to bias
similarity scores. (c) Intra-normalization completely alleviates this effect (see section 5.3).
The relative improvement in the retrieval performance (mAP) is 7.2% and 13.5% using
innorm compared to SSR and VLAD, respectively. All three experiments were performed
on Holidays with a vocabulary of size k = 64 (small so that the components are visible)
learnt on Paris with cluster centre adaptation.

and is of similar magnitude to all other contributions from other clusters. While

SSR reduces the burstiness effect, it is limited by the fact that it only discounts it.

In contrast, intra-normalization fully suppresses bursts, as witnessed in figure 5.3c

which shows absolutely no peaks in the energy spectrum.

Discussion. The geometric interpretation of intra-normalization is that the sim-

ilarity of two VLAD vectors depends on the angles between the residuals in cor-
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responding clusters. This follows from the scalar product of equation (5.1): since

the residuals are now L2 normalized the scalar product depends only on the co-

sine of the differences in angles of the residuals, not on their magnitudes. Chen

et al. (2011) have also proposed an alternative normalization where the per-cluster

mean of residuals is computed instead of the sum. The resulting representation

still depends on the magnitude of the residuals, which is strongly affected by the

size of the cluster, whereas in intra-normalization it does not. Note that all the

arguments made in favor of cluster centre adaptation (section 5.2) are unaffected by

intra-normalization. Specifically, only the values of C(1) and C(2) change in equa-

tion (5.1), and not the dependence of the VLAD similarity measure on the quality

of coarse clustering which is addressed by cluster centre adaptation.

Results. As shown in figure 5.2, intra-normalization (innorm) combined with centre

adaptation (adapt) always improves retrieval performance, and consistently outper-

forms other VLAD normalization schemes, namely the original VLAD with L2 nor-

malization and SSR. Center adaptation with intra-normalization (adapt+innorm)

significantly outperforms the next best method (which is adapt+SSR); the average

relative improvement on Oxford 5k and Holidays is 4.7% and 6.6%, respectively.

Compared to SSR without centre adaptation our improvements are even more evi-

dent: 35.5% and 27.2% on Oxford 5k and Holidays, respectively.

5.4 Multiple VLAD descriptors

In this section we investigate the benefits of tiling an image with VLADs, instead

of solely representing the image by a single VLAD. As before, our constraints are
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the memory footprint and that any performance gain should not involve returning

to the original SIFT descriptors for the image. We target objects that only cover

a small part of the image (VLAD is known to have inferior performance for these

compared to BoW), and describe first how to improve their retrieval, and second

how to predict their localization and scale (despite the fact that VLAD does not

store any spatial information).

The multiple VLAD descriptors (MultiVLAD) are extracted on a regular 3×3 grid

at three scales. 14 VLAD descriptors are extracted: nine (3× 3) at the finest scale,

four (2 × 2) at the medium scale (each tile is formed by 2 × 2 tiles from the finest

scale), and one covering the entire image. At run time, given a query image and

region of interest (ROI) covering the queried object, a single VLAD is computed

over the ROI and matched across database VLAD descriptors. An image in the

database is assigned a score equal to the maximum similarity between any of its

VLAD descriptors and the query.

As will be shown below, computing VLAD descriptors at fine scales enables re-

trieval of small objects, but at the cost of increased storage (memory) requirements.

However, with 20 bytes per image (Jégou et al., 2010b), 14 VLADs per image

amounts to 28 GB for a 100 million images, which is still a manageable amount

of data that can easily be stored in the main memory of a commodity server.

To assess the retrieval performance, additional ROI annotation is provided for the

Oxford 5k dataset, as the original only specifies ROIs for the query images. Objects

are deemed to be small if they occupy less than 300 × 300 pixels squared. Typical

images in Oxford 5k are 1024 × 768, thus the threshold corresponds to the object

occupying up to about 11% of an image. We measure the mean average precision
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for retrieving images containing these small objects using the standard Oxford 5k

queries.

We compare to two baselines a single 128-D VLAD per image, and also a 14×128 =

1792-D VLAD. The latter is included for a fair comparison since MultiVLAD re-

quires 14 times more storage. MultiVLAD achieves a mAP of 0.102, this outper-

forms the single 128-D VLAD descriptors, which only yield a mAP of 0.025, and also

the 1792-D VLAD which obtains a mAP of 0.073, i.e. a 39.7% improvement. Multi-

VLAD consistently outperforms the 1792-D VLAD for thresholds smaller than 4002,

and then is outperformed for objects occupying a significant portion of the image

(more than 20% of it).

Implementation details. The 3 × 3 grid is generated by splitting the horizontal

and vertical axes into three equal parts. To account for potential featureless regions

near image borders (e.g. the sky at the top of many images often contains no interest

point detections), we adjust the outer boundary of the grid to the smallest bounding

box which contains all interest points. All the multiple VLADs for an image can be

computed efficiently through the use of an integral image of unnormalized VLADs.

5.4.1 Fine object localization

Given similarity scores between a query ROI and all the VLADs contained in the

MultiVLAD of a result image, we show here how to obtain an estimate of the

corresponding location within the result image. To motivate the method, consider

figure 5.4 where, for each 200 × 200 subwindow of an image, VLAD similarities

(to the VLAD of the target ROI) are compared to overlap (with the target ROI).

The correlation is evident and we model this below using linear regression. The
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Figure 5.4: Variation of VLAD similarity with region overlaps. (b) The value
plotted at each point (x, y) corresponds to the VLAD similarity (scalar product between
two VLADs) between the VLAD of the region of interest (ROI) in (a) and the VLAD
extracted from the 200 × 200 pixel patch centred at (x, y). (c) The proportion of each
patch from (b) that is covered by the ROI from (a). (d) Residuals obtained by a linear
regression of (c) to (b). (e) A 1-D horizontal slice through the middle of (b) and (c). Note
that residuals in (d) and (e) are very small, thus VLAD similarities are very good linear
estimators of region overlap.

procedure is similar in spirit to the interpolation method of Torii et al. (2011) for

visual localization.

Implementation details. A similarity score vector s is computed between the

query ROI VLAD and the VLADs corresponding to the image tiles of the result

image’s MultiVLAD. We then seek an ROI in the result image whose overlap with

the image tiles matches these similarity scores under a linear scaling. Here, overlap

v(r) between an ROI r and an image tile is computed as the proportion of the image

tile which is covered by the ROI. The best ROI, rbest, is determined by minimizing

residuals as

rbest = argmin
r

min
λ
||λv(r)− s|| (5.2)

where any negative similarities are clipped to zero. This approach yields the ROI in

figure 5.5. Regressed overlap scores mimic the similarity scores very well, as shown

by small residuals in figure 5.4d and 5.4e.

Note that given overlap scores v(r), which are easily computed for any ROI r, the
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(a) (b) (c)

Figure 5.5: Fine object localization. (a) The similarity score between the query
VLAD and all of the multiple extracted VLADs for the image shown in (c), i.e.
s in the main text. (b) The overlap scores which approximate the real similarity
scores in (a) the best, i.e. λv(rbest) in the main text. (c) The resulting image with
estimated object position. The red dashed rectangle shows the tile corresponding
to the largest similarity score (top left tile at the finest scale), the yellow rectangle
shows the best estimate for the object location using our generative model.

inner minimization in (5.2) can be solved optimally using a closed form solution, as

it is a simple least squares problem: the value of λ which minimizes the expression

for a given r is λ = s
T

v(r)
v(r)T v(r)

.

To solve the full minimization problem we perform a brute force search in a dis-

cretized space of all possible rectangular ROIs. The discretized space is constructed

out of all rectangles whose corners coincide with a very fine (30 by 30) regular grid

overlaid on the image, i.e. there are 31 distinct values considered for each of x and y

coordinates. The number of all possible rectangles with non-zero area is
(

31
2

)2
which

amounts to 216k.

The search procedure is very efficient as least squares fitting is performed with

simple 14-D scalar product computations, and the entire process takes 14 ms per

image on a single core 3 GHz processor.
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Localization accuracy. To evaluate the localization quality the ground truth and

estimated object positions and scales are compared in terms of the overlap score

(i.e. the ratio between the intersection and union areas of the two ROIs), on the

Oxford 5k dataset. In an analogous manner to computing mean average precision

(mAP) scores for retrieval performance evaluation, for the purpose of localization

evaluation the average overlap score is computed for each query, and averaged across

queries to obtain the mean average overlap score.

For the region descriptors we use MultiVLAD descriptors with centre adaptation

and intra-normalization, with multiple vocabularies trained on Paris and projected

down to 128-D. This setup yields a mAP of 0.518 on Oxford 5k.

The fine localization method is compared to two baselines: greedy and whole image.

The whole image baseline returns the ROI placed over the entire image, thus always

falling back to the “safe choice” and producing a non-zero overlap score. For the

greedy baseline, the MultiVLAD retrieval system returns the most similar tile to the

query in terms of similarity of their VLAD descriptors.

The mean average overlap scores for the three systems are 0.342, 0.369 and 0.429

for the whole image, greedy and fine respectively; the fine method improves the two

baselines by 25% and 16%. Furthermore, we also measure the mean average number

of times that the centre of the estimated ROI is inside the ground truth ROI, and

the fine method again significantly outperforms others by achieving a score of 0.897,

which is a 28% and 8% improvement over whole image and greedy, respectively.

Figure 5.6 shows a qualitative comparison of fine and greedy localization.
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Figure 5.6: Fine versus greedy localization. Localized object: ground truth annota-
tion (green); greedy method (red dashed rectangles); best location using the fine method
of section 5.4.1 (yellow solid rectangles).

5.5 Results and discussion

In the following sections we compare our two improvements of the VLAD descriptor,

namely cluster centre adaptation and intra-normalization, with the state-of-the-art.

First, the retrieval performance of the full size VLAD descriptors is evaluated, fol-

lowed by tests on more compact descriptors obtained using dimensionality reduc-

tion, and then the variation in performance using vocabularies trained on different

datasets is evaluated. Finally, we report on large scale experiments with the small

descriptors. For all these tests we used RootSIFT descriptors clustered into k = 256

coarse clusters, and the vocabularies were trained on Paris and Flickr60k for Oxford

5k(+100k) and Holidays(+Flickr1M), respectively.

Full size VLAD descriptors. Table 5.1 shows the performance of our method

against the current state-of-the-art for descriptors of medium dimensionality (20k-D

to 30k-D). Cluster centre adaptation followed by intra-normalization outperforms
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Method Holidays Oxford 5k
BoW 200k-D (Jégou et al., 2012, Sivic and Zisserman, 2003) 0.540 0.364
BoW 20k-D (Jégou et al., 2012, Sivic and Zisserman, 2003) 0.452 0.354
Improved Fisher Vectors (Perronnin et al., 2010a) 0.626 0.418
VLAD (Jégou et al., 2010b) 0.526 -
VLAD+SSR (Jégou et al., 2012) 0.598 0.378
Improved det/desc: VLAD+SSR (Jégou et al., 2012) - 0.532
This chapter: adapt+innorm (mean) 0.646 0.555
This chapter: adapt+innorm (single best) 0.653 0.558

Table 5.1: Full size image descriptors (i.e. before dimensionality reduction):
comparison with state-of-the-art. Image descriptors of medium-dimensionality (20k-
D to 32k-D) are compared in terms of retrieval performance (mAP) on the Oxford 5k
and Holidays benchmarks. Reference results are obtained from the paper of Jégou et al.
(2012). For fair comparison, we also include our implementation of VLAD+SSR using
the detector (Perďoch et al., 2009) and descriptor (section 4.2) which give significant
improvements on the Oxford 5k benchmark. The mean results are averaged over four
different runs (corresponding to different random initializations of k-means for vocabulary
building), and the single best result is from the vocabulary with the highest mAP.

all previous methods. For the Holidays dataset we outperform the best method

(improved Fisher Vectors (Perronnin et al., 2010a)) by 3.2% on average and 4.3%

in the best case, and for Oxford 5k we achieve an improvement of 4.3% and 4.9% in

the average and best cases, respectively.

Small image descriptors (128-D). We employ the state-of-the-art method of

Jégou and Chum (2012) (Multivoc) which uses multiple vocabularies to obtain mul-

tiple VLAD (with SSR) descriptions of one image, and then perform dimensionality

reduction, using PCA, and whitening to produce very small image descriptors (128-

D). We mimic the experimental setup of Jégou and Chum (2012), and learn the

vocabulary and PCA on Paris 6k for the Oxford 5k tests. For the Holidays tests

they do not specify which set of 10k Flickr images are used for learning the PCA.

We use the last 10k images from the Flickr1M (Jégou et al., 2008) dataset.
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Method Holidays Oxford 5k
GIST (Jégou et al., 2012) 0.365 -
BoW (Jégou et al., 2012, Sivic and Zisserman, 2003) 0.452 0.194
Improved Fisher Vectors (Perronnin et al., 2010a) 0.565 0.301
VLAD (Jégou et al., 2010b) 0.510 -
VLAD+SSR (Jégou et al., 2012) 0.557 0.287
Multivoc-BoW (Jégou and Chum, 2012) 0.567 0.413
Multivoc-VLAD (Jégou and Chum, 2012) 0.614 -
Reimplemented Multivoc-VLAD (Jégou and Chum, 2012) 0.600 0.425
This chapter: adapt+innorm 0.625 0.448

Table 5.2: Low dimensional image descriptors: comparison with state-of-the-
art. 128-D dimensional image descriptors are compared in terms of retrieval performance
(mAP) on the Oxford 5k and Holidays benchmarks. Most results are obtained from the
paper of Jégou et al. (2012), apart from the recent multiple vocabulary (Multivoc) method
(Jégou and Chum, 2012). The authors of Multivoc do not report the performance of their
method using VLAD on Oxford 5k, so we report results of our reimplementation of their
method.

As can be seen from table 5.2, our methods outperform all current state-of-the-art

methods. For Oxford 5k the improvement is 5.4%, while for Holidays it is 1.8%.

Effect of using vocabularies trained on different datasets. In order to assess

how the retrieval performance varies when using different vocabularies, we measure

the proportion of the ideal mAP (i.e. when the vocabulary is built on the benchmark

dataset itself) achieved for each of the methods.

First, we report results on Oxford 5k using full size VLADs in table 5.3. The

baselines (VLAD and VLAD+SSR) perform very badly when an inappropriate

(Flickr60k) vocabulary is used achieving only 68% of the ideal performance for the

best baseline (VLAD+SSR). Using adapt+innorm, apart from improving mAP in

general for all vocabularies, brings this score up to 86%. A similar trend is observed

for the Holidays benchmark as well (see figure 5.2).
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Method \vocabulary Ox5k Paris Flickr60k
VLAD 0.519 0.508 (98%) 0.315 (61%)
VLAD+SSR 0.546 0.532 (97%) 0.374 (68%)
VLAD+adapt 0.519 0.516 (99%) 0.313 (60%)
VLAD+adapt+SSR 0.546 0.541 (99%) 0.439 (80%)
VLAD+adapt+innorm 0.555 0.555 (100%) 0.478 (86%)

Table 5.3: Effect of using different vocabularies for the Oxford 5k retrieval
performance. Column one is the ideal case where retrieval is assessed on the same
dataset as used to build the vocabulary. Full size VLAD descriptors are used. Results are
averaged over four different vocabularies for each of the tests. The proportion of the ideal
mAP (i.e. when the vocabulary is built on Oxford 5k itself) is given in brackets.

We next report results for 128-D descriptors where, again, in all cases Multivoc

(Jégou and Chum, 2012) is used with PCA to perform dimensionality reduction

and whitening. In addition to the residual problems caused by an inconsistent

vocabulary, there is also the extra problem that the PCA is learnt on a different

dataset. Using the Flickr60k vocabulary with adapt+innorm for Oxford 5k achieves

59% of the ideal performance, which is much worse than the 86% obtained with

full size vectors above. Despite the diminished performance, adapt+innorm still

outperforms the best baseline (VLAD+SSR) by 4%. A direction of future research

is to investigate how to alleviate the influence of the inappropriate PCA training

set, and improve the relative performance for small dimensional VLAD descriptors

as well.

Large scale retrieval. With datasets of up to 1 million images and compact

image descriptors (128-D) it is still possible to perform exhaustive nearest neighbour

search. For example, in (Jégou and Chum, 2012) exhaustive search is performed on

1 million 128-D dimensional vectors reporting 6 ms per query on a 12 core 3 GHz

machine. Scaling to more than 1 million images is certainly possible using efficient
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Method
Holidays Oxford

+ Flickr1M 105k
BoW (Jégou et al., 2012, Sivic and Zisserman, 2003) (200k-D) 0.315* -
VLAD (Jégou et al., 2010b) (8192-D) 0.320* -
VLAD (Jégou et al., 2010b) (8192-D ANN) 0.241 -
VLAD+SSR (Jégou et al., 2012) (96-D) 0.310* -
VLAD+SSR (Jégou et al., 2012) (8192-D ANN) 0.370 -
Reimplemented Multivoc-VLAD (Jégou and Chum, 2012) (128-D) 0.370 0.354
This paper: adapt+innorm (128-D) 0.378 0.374

Table 5.4: Large scale retrieval: comparison with state-of-the-art. Mean
average precision values estimated from graphs in corresponding papers are marked
with an asterisk (*). Methods which use approximate nearest neighbour search are
marked with ANN. The performance of the reimplemented Multivoc-VLAD method
(Jégou and Chum, 2012) is reported as the original paper does not state the mAP
for either of the datasets.

approximate nearest neighbour methods.

The same 128-D descriptors (adapt+innorm VLADs reduced to 128-D using Mul-

tivoc) are used as described above, results are reported in table 5.4. On Oxford 105k

we achieve a mAP of 0.374, which is a 5.6% improvement over the best baseline,

being (our reimplementation of) Multivoc VLAD+SSR. There are no previously

reported results on compact image descriptors for this dataset to compare to. On

Holidays+Flickr1M, adapt+innorm yields 0.378 compared to the 0.370 of Multivoc

VLAD+SSR; while the best previously reported mAP for this dataset is 0.370 (using

VLAD+SSR with full size VLAD and approximate nearest neighbour search (Jégou

et al., 2012)). Thus, we set the new state-of-the-art on both datasets here.
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5.6 Conclusions and recommendations

We have presented three methods which improve standard VLAD descriptors over

various aspects, namely cluster centre adaptation, intra-normalization and Multi-

VLAD.

Cluster centre adaptation is a useful method for large scale retrieval tasks where

image databases grow with time as content gets added. It somewhat alleviates

the influence of using a bad visual vocabulary, without the need of recomputing or

storing all local descriptors.

Intra-normalization was introduced in order to fully suppress bursty visual ele-

ments and provide a better measure of similarity between VLAD descriptors. It was

shown to be the best VLAD normalization scheme. However, we recommend intra-

normalization always be used in conjunction with a good visual vocabulary or with

centre adaptation (as intra-normalization is sometimes outperformed by SSR when

inconsistent clusters are used and no centre adaptation is performed). Although it

is outside the scope of this chapter, VLAD with intra-normalization also improves

image classification performance over the original VLAD formulation.

The two methods set a new state-of-the-art over all benchmarks investigated here:

Oxford 5k and Holidays for both mid-dimensional (20k-D to 30k-D) and small (128-

D) descriptors; and for Oxford 105k and Holidays+Flickr1M benchmarks for small

(128-D) descriptors.

Finally, we have also presented a MultiVLAD method for retrieving and localizing

objects that only extend over a small part of an image.
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5.7 Impact

The work described in this chapter was published in CVPR 2013. Intra-normalization

of VLAD vectors was developed concurrently by Tolias et al. (2013); the work was

published later in 2013.



Chapter 6

Using Multiple Query Images to

Boost Recall

The objective of this chapter is to retrieve all images containing a specific object in a

large scale image dataset. This is a problem that has seen much progress and success

over the last decade (chapters 2 and 4), with the caveat that the starting point for

the search has been a single query image of the specific object of interest. In this

work we make two changes to the standard approach: first, our starting point for

specifying the object is text, as we are interested in probing data sets to find known

objects; and second, and more importantly for the development of novel algorithms,

we search the dataset using multiple image queries and collate the results into a

single ranked list.

The limitation of current approaches used to boost recall, which are based on query

expansion (QE, section 2.1.4) within the data set, is that they rely on the query to

yield a sufficient number of high precision results in the first place. In more detail,
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in QE an initial query is issued, using only the query image, and confident matches,

obtained by spatial verification, are used to re-query. There are three problems with

this approach: firstly, it is impossible to gain from QE if the initial query fails.

Secondly, if the dataset does not contain many images of the queried object QE

cannot boost performance. Finally, it is not possible to obtain images from different

views of the object as these are never retrieved using the initial query, for example

querying using an image of a building façade will never yield results of its interior.

More generally current BoW retrieval systems miss images that differ too much

from the query in aspect (side vs front of a building), age (antiquarian photos may

be missed if too much has changed between the target image and query), weather

conditions, extreme scale changes, etc. Using multiple images of the object to query

the database naturally alleviates to some extent all of these problems.

One of the principal contributions of this chapter is an algorithm to overcome

these current shortcomings by combining multiple queries in a principled manner

(section 6.1). The other principal contribution is the implementation of a real time

demonstration system which generates query images automatically starting from

text using Google image search (section 6.2.3).

Related work. In content-based image retrieval (CBIR) for categories (but not for

specific objects) it is quite common to use a set of images to represent a query spec-

ified by text. A standard method is to obtain a set of images from a labelled corpus

corresponding to that query (Heller and Ghahramani, 2006) or training images from

a web search (Fergus et al., 2005, Torresani et al., 2010). Other standard approaches

in CBIR can also result in a set of images representing the query: in relevance feed-

back the user selects from a set of images proposed from the target corpus, e.g. in
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the PicHunter system (Cox et al., 2000); in query expansion the original text query

can be enhanced (e.g. by synonyms) and thereby result in multiple queries; one form

of query expansion is to simply issue new queries using high ranked images from an

initial search, a form of blind relevance feedback.

Many methods for combining (or fusing) ranked lists have been developed, these

can either use only the rank of the items in the list (e.g. Borda count by Aslam and

Montague (2001)), or the score as well if this is available (Shaw and Fox, 1994).

6.1 Retrieval using multiple query images

A question arises as to how to use multiple query images (the query set), as current

systems only issue a single query at a time. We propose five methods for doing this;

methods (i) and (ii) use the query set jointly to issue a single query, while methods

(iii)-(v) issue a query for each image in the query set and combine the retrieved

results. The five methods are described next.

6.1.1 Retrieval methods

(i) Average query (Joint-Avg). Similar to the average query expansion method

of Chum et al. (2007b), the bag-of-words representations of all images in the query

set are averaged together. The average BoW vector is used to query the database

by ranking images based on the tf-idf score.

(ii) SVM over all queries (Joint-SVM). Similar to the discriminative query

expansion method (section 4.3), a linear SVM is used to discriminatively learn a
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(a) Top 8 Google Image results for the textual query “Christ Church, Oxford”

(b) Top 40 retrieved results from the Oxford 5k dataset for the query “Christ Church,
Oxford”

Figure 6.1: Multiple query retrieval. Images downloaded from Google using the
“Christ Church, Oxford” textual query (a) are used to retrieve images of Christ
Church college in the Oxford Buildings dataset (b). All the top 40 results of (b) do
show various images of Christ Church (the dining hall, tourist entrance, cathedral
and Tom tower). This illustrates the benefit of issuing multiple queries in order to
retrieve all images of the queried object. Note that the noise in images retrieved
from Google (the second image in (a) shows a map of Oxford) did not affect retrieval.

weight vector for visual words online. The query set BoWs are used as positive

training data, and BoWs of a random set of 200 database images form the negative

training data. The weight vector is then used to efficiently rank all images in the

database.

(iii) Maximum of multiple queries (MQ-Max). A query is issued for each

BoW vector in the query set independently and retrieved ranked lists are combined

by scoring each image by the maximum of the individual scores obtained from each

query.
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(iv) Average of multiple queries (MQ-Avg). Similar to (iii) but the ranked

lists are combined by scoring each image by the average of the individual scores

obtained from each query.

(v) Exemplar SVM (MQ-ESVM). Originally used for classification (Malisiewicz

et al., 2011), this method trains a separate linear SVM for each positive example.

The score for each image is computed as the maximal score obtained from the SVMs.

6.1.2 Spatial reranking

Precision of a retrieval system can be improved by reranking images based on their

spatial consistency with the query (section 2.1.3). Since spatial consistency esti-

mation is computationally relatively costly, only a short-list of top ranked results is

reranked. We use the spatial reranking method of Philbin et al. (2007) which reranks

images based on the number of visual words consistent with an affine transformation

(inliers) between the query and the database image.

Here we explain how to perform spatial reranking when multiple queries are used.

For fair comparison of different methods it is important to fix the total number of

spatial transformation estimations, we fix it to R = 200 per image in the query set

of size N .

For methods Joint-Avg and Joint-SVM which perform a single query each, rerank-

ing is performed on the top R results. Images are ranked based on the average num-

ber of inliers across images in the query set. The number of spatial transformation

estimations is thus N ×R.

For methods MQ-Max, MQ-Avg and MQ-ESVM which issue N queries each,
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reranking is performed for each query independently before combining the retrieved

lists. For a particular query (one of N), reranking is done on the top R results using

only the queried image. The number of spatial transformation estimations is thus,

again, N ×R.

6.2 Implementation description

6.2.1 Standard BoW retrieval system

We have implemented the standard framework of Philbin et al. (2007) with some

recent improvements that are discussed next. RootSIFT (section 4.2) descriptors are

extracted from the affine-Hessian interest points, we use the recent implementation

of the affine-Hessian feature detector (Mikolajczyk and Schmid, 2004b) by Perďoch

et al. (2009) as it was shown to yield superior retrieval results. The descriptors

are quantized into 1M visual words obtained using approximate k-means. Given a

single query, the system ranks images based on the term frequency inverse document

frequency (tf-idf) score (Sivic and Zisserman, 2003). Spatial reranking is performed

on the top 200 tf-idf results using an affine transformation (Philbin et al., 2007) as

described above.

6.2.2 Implementation details for multiple query methods

Here we give implementation details for the proposed methods (section 6.1). For

the discriminative approaches (Joint-SVM and MQ-ESVM methods), the query set

forms the positive training examples, while the negative set comprises 200 random
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database images. For training of a linear SVM classifier we use LIBSVM (Chang

and Lin, 2011). The learnt weight vector is used to efficiently rank all images in

the database based on their signed distance from the decision boundary. This can

be done efficiently using the inverted index in the same way as when computing

the tf-idf score, as both operations correspond to computing the scalar product

between a weight vector and the BoW histograms of the database images. In order

for retrieval to be fast, the learnt weight vector should be sparse. To ensure this

we use the same approach as in (section 4.3), namely, the BoW vectors of negative

images are truncated (and renormalized) to only include words that appear in at

least one positive example.

For the MQ-ESVM case, as in (Malisiewicz et al., 2011), scores of individual SVMs

have to be calibrated so that they can be compared with each other. This is done

by fitting a sigmoid function to the output of each SVM individually (Platt, 1999),

to try to map scores to 0 and 1 for negatives and positives, respectively. For the

negative data required for calibration we use a set of 200 random images (different

from the one used in exemplar SVM training), while for calibration positives we use

the spatially verified positives for the given query. Note that it is not possible to

evaluate MQ-ESVM without spatial reranking, as spatial transformations need to

be estimated for the calibration procedure.

6.2.3 Building a real-time system

We have built a system which can respond to user text queries in real-time. After

a user enters the query text, a textual Google image search is performed using the

publicly available API provided by Google. Each of the top retrieved results, we use
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eight, is processed independently in a separate thread – the image is downloaded and

a bag-of-visual-words description is obtained as discussed in section 6.2.1. Then, the

processed query set is used to present the user with a ranked list of results obtained

by using one of the methods introduced in section 6.1. Note that the methods

which issue multiple queries and then merge the retrieved results (MQ-) can be

easily parallelized as each query can be executed in an independent thread.

The entire process from typing words to retrieving relevant images takes less than

10 seconds. The bottle-neck is the Google API call which can take up to 3 seconds,

along with downloading images from their locations on the internet. The actual

querying, once the query set BoWs are computed, takes a fraction of a second.

6.3 Evaluation and Results

In this section we assess the retrieval performance of our multiple query methods

by comparing them to a standard single query system, and compare them to each

other.

6.3.1 Datasets and evaluation procedure

The retrieval performance of proposed methods is evaluated using standard and

publicly available image and video datasets, we briefly describe them here.

Oxford Buildings. This dataset is described in section 3.1.1. It defines 55 queries

(consisting of an image and query region of interest) used for evaluation (5 for each

of the 11 chosen Oxford landmarks) and the retrieval performance is measured in
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terms of mean average precision (mAP). The standard evaluation protocol needs to

be modified for our task as it was originally set up to evaluate single-query methods.

We perform 11 queries, one per each predefined landmark; the performance is still

measured using mAP.

Our methods are evaluated in two modes of operation depending on the source of

the query set: one using the five predefined queries per landmark (Oxford queries,

OQ), and one using the top 8 Google image search results for the landmark names

(Google queries, GQ), chosen by the user to make sure the images contain the

object of interest. The images in the Oxford building dataset were obtained by

crawling Flickr, so we append a “-flickr” flag to the textual Google image search

in order to avoid downloading exactly the images from the Oxford dataset which

would artificially boost our performance.

TrecVid 2011. This dataset contains 211k keyframes extracted from 200 hours of

low resolution footage used in the TrecVid 2011 known-item search challenge Paul

et al. (2011) (the IACC.1.B dataset). As there is no ground truth available for this

dataset we only use it to assess the retrieval performance qualitatively.

6.3.2 Baselines

Due to the lack of multiple query methods, comparison is only possible to methods

which use a single image to query. For the Oxford queries (OQ) case the queries are

the 55 predefined ones for the dataset. The two proposed baselines use exactly the

same descriptors and vocabulary as our multiple query methods.

Single query. A natural baseline to compare to is the system of Philbin et al.
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(2007) with extensions of section 6.2.1. For the Google queries (GQ) case the query

is the top Google image result which contains the object of interest.

Best single query. The single query method is used to rank images using each

query from the query set (the same query sets are used as for our multiple query

methods) and the best performing query is kept. This method cannot be used in a

real-world system as it requires an oracle (i.e. looks up ground truth).

6.3.3 Results and discussion

Figure 6.2 shows a few examples of textual queries and the retrieved results. Note the

ability of the system to retrieve specific objects (e.g. the Tom Tower of Christ Church

college in figure 6.2a) as well as sets of relevant objects (e.g. different parts of Christ

Church college in figure 6.1) without explicitly determining the specific/general

mode of operation.

Table 6.1 shows the retrieval performance on the Oxford 105k dataset. It can be

seen that all the multiple query methods are superior to the “single query” baseline,

improving the performance by 29% and 52% for the Oxford queries and Google

queries (with spatial reranking), respectively. It is clear that using multiple queries

is indeed very beneficial as the best performance using Oxford queries (0.937) is

better than the best reported result using a single query (0.891 achieved in sec-

tion 4.5.2); it is even better than the state-of-the-art on a much easier Oxford 5k

dataset (section 4.5.2: 0.929). All the multiple query methods also beat the “best

single query” method which uses ground truth to determine which one of the images

from the query set is best to be used to issue a single-query.
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(a) Tom Tower, Christ Church, Oxford

(b) Bridge of Sighs, Oxford

(c) Ashmolean Museum, Oxford

(d) Magdalen College, Oxford

(e) Broad Street, Oxford

(f) Museum, Oxford

Figure 6.2: Query terms and top retrieved images from the Oxford 5k
dataset. The captions show the textual queries used to download images from
Google to form the query set. The top 8 images were used, without any user
feedback to select the relevant one; the results are generated with the MQ-Max
method. Specific (a-c) and broad (d-f, figure 6.1) queries are automatically handled
without special considerations; note that (a) is a more specific version of the query
in figure 6.1. (f) searching for “Museum, Oxford”, which is a broader query than
(c), yields in the top 16 results photos of three Oxford museums and a photo from
the interior of one of them.
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Google queries (GQ) Oxford queries (OQ)
Without SR With SR Without SR With SR

Single query 0.464 0.575 0.622 0.725
Best single query (“cheating”) 0.720 0.792 0.791 0.864
Joint-Avg 0.834 0.873 0.886 0.933
Joint-SVM 0.839 0.875 0.886 0.926
MQ-Max 0.746 0.850 0.826 0.929
MQ-Avg 0.834 0.868 0.888 0.937
MQ-ESVM N/A 0.846 N/A 0.922

Table 6.1: Retrieval performance (mAP) of the proposed methods on the
Oxford 105k dataset. SR stands for spatial reranking. The “Oxford queries”
(OQ) and “Google queries” (GQ) columns indicate the source of query images, the
former being the 5 predefined query images and the latter being the top 8 Google
images which contain the queried object. The details of the evaluation procedure,
baselines and proposed methods are given in sections 6.3.1, 6.3.2 and 6.1, respec-
tively. All proposed methods significantly outperform the “single query” baseline,
as well as the artificially boosted “best single query” baseline.

From the quantitative evaluation it is clear that multiple query methods are very

beneficial for achieving higher recall of images containing the queried object, however

it is not yet clear which of the five proposed methods should be used as all of

them perform very well on the Oxford 105k benchmark. Thus, we next analyse

the performance of various methods qualitatively on the TrecVid 2011 dataset, and

show three representative queries and their outputs in figure 6.3.

The clear winner is the MQ-Max method – this is because taking the maximal

score of the retrieved lists enables it to rank an image highly based on a strong

match with a single query image from the query set. The other two methods which

average the scores down-weight potential challenging examples even if they match

very well with one query image, thus only retrieving “canonical” views of an object.

For example, all methods work well for the “EA sports logo” query (figure 6.3a) and
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(a) EA sports logo (b) Presidential seal (c) Comedy central logo

Figure 6.3: Multiple query retrieval on TrecVid 2011 dataset. (a)-(c) show
three different textual queries and retrieval results. Within one example, each col-
umn shows a ranked list of images (sorted from top to bottom) for a particular
method. Left, middle and right columns show Joint-SVM, MQ-Avg and MQ-Max
methods, respectively. MQ-Max is clearly the superior method.

retrieve the common appearances of the object (represented in 7 out of 8 images in

the query set). However, only the MQ-Max method manages to find the extra two

“unusual” and challenging examples of the logo in silver on a black background.

It is also interesting to compare MQ-Avg with Joint-SVM in order to understand

whether it is better to issue multiple queries and then merge the resulting ranked lists

(the MQ- approaches), or to have a joint representation of the query set and perform

a single query (the Joint- approaches). Figure 6.3 shows that the “multiple queries”
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approach clearly performs better. The argument for this is similar to the arguments

we made in favour of the MQ-Max method, namely that it is beneficial to be able

find close matches to each individual query image. Furthermore, we believe that

the spatial reranking procedure (section 6.1.2) of the MQ- methods is more efficient

– estimation of a spatial transformation between a query image and a short-list

is conducted on the short-list obtained from the corresponding query image, while

for the Joint- methods, where only a single “global” short-list is available, many

attempts at spatial verification are wasted on using irrelevant query images. Another

positive aspect of the “multiple queries” methods is that they can be parallelized

very easily – each query is independent and can be handled in a separate parallel

thread.

We note that the discriminative methods perform slightly better than the corre-

sponding non-discriminative ones, i.e. Joint-SVM and MQ-ESVM outperform Joint-

Avg and MQ-Max, respectively. However, the difference in our examples was not

significant, so due to ease of implementation we recommend the use of the non-

discriminative methods.

Finally, taking all aspects into consideration, we conclude that the method of

choice for multiple query retrieval is MQ-Max, where each image from the query

set is queried on independently and max-pooling is applied to the retrieved sets of

results.
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6.4 Conclusions

We have investigated a number of methods for using multiple query images and find

that approaches that issue multiple independent queries and combine the results

outperform those that jointly model the query set and issue a single query. Of the

multiple independent query methods MQ-Max was found to perform best in terms

of retrieving the more unusual instances.

Also, we have built a system which can, in real-time, retrieve images containing a

specific object from a large image database starting from a text query. Using Google

image search (or Bing or Flickr image search etc) in this way to obtain sample query

images opens up a very flexible way to immediately explore unannotated image

datasets.

6.5 Impact

The work described in this chapter was published in BMVC 2012. Motivated by

our approach, Chen et al. (2012) and Fernando and Tuytelaars (2013) also propose

methods which use multiple query images for object retrieval. Fernando and Tuyte-

laars (2013) employ mining for representative visual patterns in the query image

set. Their results show that our work performs very well compared to their highly

complex method.



Chapter 7

Smooth Object Retrieval:

Sculptures

Recognizing specific objects, such as buildings, paintings, CD covers etc is to some

extent a solved problem – provided that they have a light coating of texture (sec-

tion 2.1). However, as has been noted for quite some time (Mikolajczyk et al.,

2005, Moreels and Perona, 2006), there are two classes of specific objects for which

current methods fail completely: wiry objects (Carmichael and Hebert, 2003) and

smooth (fairly textureless) objects (Neven, Google, 2011). This chapter addresses

the smooth object class.

Our goal in this chapter is to raise smooth objects to the first class status that

lightly textured specific objects have: to be able to recognize these objects under

change of lighting; and under change of scale and viewpoint; and to be able to build

scalable retrieval systems. In this work we consider smooth objects that are three

dimensional (3D), and will use sculptures as our illustration. We are interested in
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Figure 7.1: Smooth sculpture retrieval using a bag of boundaries (BoB).
Top row: (left) a sculpture by Henry Moore selected by a user-outlined query;
(middle) automatically segmented sculpture (section 7.1.1); (right) the boundary
and internal edges are represented using semi-local descriptors (section 7.1.2) and
indexed using a BoB (section 7.2). Bottom three rows: 18 of the retrieved images
in rank order (before any false positives) showing the BoB’s robustness to scale,
viewpoint, lighting, colour and material variations. Note, at least seven different
instances of the sculpture are retrieved, made out of at least three different materials.

matching objects of the same shape, and for sculptures, where the same form may

be produced multiple times, this means that two instances may have the same shape

but differ in size and even material. For example, Henry Moore routinely made the

same sculptural form in bronze and marble.

3D smooth objects also bring with them the additional issue that their boundaries

(internal and external) depend on viewpoint since they are defined by tangency with

the line of sight (Koenderink, 1990). This means that the imaged shape can vary

continuously with viewpoint, and we address this for the moment by a view based
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representation.

To this end we develop a new representation for smooth objects that encodes their

boundaries (internal and external) both locally and at multiple scales (section 7.1.2).

This representation is inspired by the shape context descriptors of Belongie and

Malik (2002) and also by the silhouette representation used by Agarwal and Triggs

(2006). We show that this representation is suitable for matching smooth 3D objects

over scale changes, and is tolerant to viewpoint change and segmentation failures.

However, the representation cannot be employed directly for objects in an image

due to the overwhelming number of edges and boundaries in the background (from

clutter, trees, people etc). Instead it is first necessary to improve the signal to noise

(where signal is the sculpture) by segmenting the image to isolate the sculpture

as foreground. We show that this can be accomplished quite successfully using a

combination of unsupervised segmentation into regions (Arbelaez et al., 2009) and

supervised classification of the regions (Hoiem et al., 2005) (section 7.1.1).

In section 7.2 we show that the boundary representation can be vector quantized

into a form suitable for large scale retrieval in a manner analogous to visual words

(section 2.1.1).

Related work

Early approaches to 2D object recognition focused on objects which were fairly

textureless (e.g. spanners). Recognition was based on shape, via explicit shape

matching (Grimson and Lozano-Pérez, 1987, Huttenlocher and Ullman, 1987) or

comparing geometric invariants (Rothwell et al., 1992). Many current approaches

that target smooth objects focus on fast detection by matching templates (Hinter-

stoisser et al., 2012, Hsiao and Hebert, 2013), edgelets (short straight edge segments)
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chains (Damen et al., 2012, Ferrari et al., 2006), or learnt shape models (Ferrari

et al., 2010). They require many training images for each object taken from differ-

ent viewpoints (e.g. Hinterstoisser et al. (2012) use 2000) and induce large storage

requirements. Therefore, these methods are not directly applicable to large scale re-

trieval. However, they can potentially be used as a post-processing step for removing

false matches, akin to spatial reranking (section 2.1.3).

Sculpture naming

In section 7.5 we describe a retrieval based method for automatically determining

the title and sculptor of an imaged sculpture. This is a useful problem to solve, but

also quite challenging given the variety in both form and material that sculptures

can take, and the similarity in both appearance and names that can occur.

Our approach is to first visually match the sculpture and then to name it by

harnessing the meta-data provided by Flickr users. To this end we make the follow-

ing three contributions: (i) we show that using two complementary visual retrieval

methods (one based on visual words, the other on boundaries) improves both re-

trieval and precision performance; (ii) we show that a simple voting scheme on the

tf-idf weighted meta-data can correctly hypothesize a sub-set of the sculpture name

(provided that the meta-data has first been suitably cleaned up and normalized);

and (iii) we show that Google image search can be used to query expand the name

sub-set, and thereby correctly determine the full name of the sculpture.
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7.1 Sculpture representation

In this section we describe the representation of the object boundary by a set of

semi-local descriptors. In order to obtain this representation from a (cluttered)

image it is first necessary to partition the image into sculpture and non-sculpture

regions. This segmentation has two benefits: it improves the signal to noise, and

also it provides an approximate scale for the descriptor computation. We begin with

the segmentation, and then develop the boundary representation in section 7.1.2.

7.1.1 Segmentation

The goal of the segmentation is to separate sculptures as foreground from the back-

ground. This is quite a challenging task since sculptures can be made from various

materials including bronze, marble and other stone, and plastics. Their surface can

be natural or finished in some way such as polishing (for stone) or buffered (for

bronze) or even a light texture (e.g. deliberate chisel textures). The colour can in-

clude white, brown, specular highlights (on bronze), and even green (for algae or

moss on outdoor installations). These must be distinguished from backgrounds that

can have quite similar appearances including textureless sky, pavements and walls.

To achieve this segmentation we employ a supervised classification approach, en-

gineering a feature vector that represents the appearance, shape and position of

sculptures (relative to the image boundary). The segmentation proceeds in three

steps: first, an over-segmentation of the image into regions (super-pixels); second,

each super-pixel is classified into foreground (sculpture) or background to give an

initial segmentation; and third, post-processing is used to filter out small connected
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(a) (b) (c) (d)

Figure 7.2: Automatic sculpture segmentation. (a) An image from the Sculp-
tures 6k test set. (b) Over-segmentation (Arbelaez et al., 2009). (c) Classifier
output, scaled for display. (d) Final segmentation.

Figure 7.3: Examples of automatic sculpture segmentation. Top row shows
images from the Sculptures 6k test set, bottom row shows the fully automatic seg-
mentation.

components and obtain the final segmentation. Figure 7.2 illustrates these steps.

Note, we do not attempt to group the super-pixels but simply classify them inde-

pendently. We now describe these steps in more detail.

1. Super-pixels. We use the method and code from Arbelaez et al. (2009) which

generates a hierarchy of regions based on the output of the gPb contour detector

(Maire et al., 2008). This provides a partition of the image into a set of closed

regions for any threshold. We use a threshold of 50 (out of 255) which yields about

58 super-pixels per image on average. A typical example of the super-pixels is shown

in figure 7.2b.

2. Classification. For training and testing of the super-pixel classifier, 300 ran-
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dom images are selected from the Sculptures 6k training set, and segmented into

super-pixels. The images are divided randomly into a training and validation set,

each containing 150 images. Each super-pixel is then manually labelled into one of

three classes: contained within a sculpture (positive example), not containing any

sculpture pixels (negative example), or containing both sculpture and non-sculpture

pixels (ignored completely). Small segments (less than 50 × 50 pixels) are also

ignored in order to emphasize the correct classification of large segments.

Each super-pixel is described by a 3208 dimensional feature vector. This represents

the appearance (colour, texture), shape and position of the segment (see below). A

linear SVM classifier is trained on the annotated super-pixels from the training

images, and its performance measured on the validation images. The histogram

parts of the feature vector are compared using a χ2 kernel, but using the efficient

linear approximation of Vedaldi and Zisserman (2010) enables a linear SVM to be

used for these as well. The linear SVM leads to both fast training and testing.

The feature vector consists of: (i) the median gradient magnitude – this feature is

typically very informative as its value is usually small for smooth object segments;

(ii) four binary features indicating whether the segment is touching one of the im-

age boundaries – in order to more easily distinguish sky, ceiling, wall and floor from

smooth sculptures; (iii) colour represented by vector-quantized (using k-means, dic-

tionary size 1600) HSV, and the mean HSV of the segment – this helps to identify

the materials that sculptures are made of; and (iv) a bag of SIFT (Lowe, 2004) vi-

sual words computed densely at multiple scales (dictionary size 1600, image patches

with sides of 16, 24, 32 and 40, spacing of 2 pixels) – used for texture description,

and also useful to identify sculpture material.



7.1 Sculpture representation 122

The super-pixel classifier has an accuracy of 96% on the training images, and 87%

on the validation images. This results in a segmentation overlap score (intersection

over union) of 0.78 on the training and 0.70 on the validation images.

3. Post-processing. The positive super-pixels are grouped using connected compo-

nents, and small connected components (less than 50× 50 pixels) of the foreground

are removed. This does not significantly change the mean overlap score, but it

removes many ‘floating’ and erroneous segments.

Examples of automatically segmented images are given in figure 7.3. These results

show quantitatively and qualitatively that the automatic segmentation succeeds in

its main objective of significantly increasing the signal (sculpture) to noise (other

clutter) ratio.

7.1.2 Boundary descriptor

We develop a new shape descriptor suited for smooth object representation. Con-

structing such a descriptor is a challenging task as it needs to represent shape rather

than texture or colour, be robust enough to handle lighting, scale and viewpoint

changes, but simultaneously discriminative enough to enable object recognition.

Additionally it should be extracted locally in order to be robust to occlusions and

segmentation failures.

For an object, two types of descriptors are computed by sampling the object bound-

aries (internal and external) at regular intervals in the manner of Belongie and Malik

(2002). They are (i) a HoG (Dalal and Triggs, 2005) descriptor, and (ii) a foreground

mask occupancy grid. The scale of the descriptor is determined from the scale of
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(a) (b) (c)

(d) (e) (f)

Figure 7.4: Boundary descriptor extraction. (a) original image; (b) automat-
ically segmented image (section 7.1.1) overlaid with the centres for the boundary
descriptors; (c) boundary image with three different scaled descriptors centred at
the same point; (d) support region for a single descriptor; (e) HOG descriptor for
the region in (d); (f) occupancy grid for the region in (d). See section 7.1.2 for
details.

the object. In order to represent the boundary information locally (e.g. the curva-

ture, junctions) and also the boundary context (e.g. the position and orientation of

boundaries on the other side of the object), the descriptors are computed at multiple

scales. We use HoG computed on the gPb image here (rather than shape-context or

SIFT for example) as we wish to represent both the position and orientation of the

boundaries, and also their magnitude. Figure 7.4 illustrates the entire descriptor

extraction process.

In order to extract this representation from an image, it is first segmented into
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foreground (sculpture) and background as described above in section 7.1.1; and

then the descriptor centres are obtained by sampling prominent foreground object

boundaries and internal gPb edges at uniform intervals. The multiple scales of the

descriptor are computed relative to the size of the foreground segmentation.

Implementation details

The first part of the descriptor uses 4× 4 HoG cells, each containing 8× 8 pixels

(i.e. gPb patches are scaled to 32 × 32 pixels for HoG computation) and contrast

insensitive spatial binning into 9 orientations, making the HoG part of the boundary

description 324 dimensional (9 blocks each with 2×2 cells with 9 orientations). The

HoG descriptor is L2 normalized in order to be able to compute similarities using

Euclidean distance.

The second part of the descriptor is a 4×4 occupancy grid, where the value of a cell

represents the proportion of pixels belonging to the foreground. The Hellinger kernel

is used to compute similarities between these descriptors, i.e. the 16 dimensional

descriptor is L1 normalized followed by square rooting each element thus producing

a L2 normalized vector; the similarities are then computed using Euclidean distance.

The two parts of the descriptor are simply concatenated together making a 340

dimensional L2 normalized vector (the L2 norm being equal to 2).

The descriptor centres are obtained by sampling prominent (stronger than 30 out

of 255) foreground object boundaries at uniform intervals. The interval lengths are

determined as the maximum of 10 pixels and 1/50 of the foreground object perimeter.

The descriptor scales are set to be 1, 4 and 16 times 1/10 of the foreground object

area. Note that even though the largest scale descriptor is 1.6 larger than the object

it does not in general cover the entire object as it is often computed at the external
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boundary, objects are usually elongated or not convex. The number of extracted

descriptors per image is 450 on average.

Descriptor properties and matching

As the descriptor operates purely on boundary and segmentation data it is fairly

unaffected by light, colour and texture changes. Scale invariance is obtained by

computing the descriptor at multiple scales relative to the size of the foreground

object they belong to. The descriptor is not rotation invariant but this can easily

be alleviated by orienting the patch according to the boundary curve tangent.

The descriptors are matched between images using Euclidean distance. Note, even

though three descriptors (at different scales) are computed at each of the sampled

boundary points, these descriptors are matched independently in the subsequent

processing – we do not explicitly enforce consistency between them. Figure 7.5

shows two examples of correctly matched sculptures, while figure 7.6 shows three

typical retrieval results. Apart from illustrating robustness to lighting, colour, tex-

ture and scale differences, they also show that the descriptor is quite insensitive

to significant viewpoint changes. There are three main reasons for this behaviour,

firstly, the description is semi-local and even under significant viewpoint change it

can be expected that some boundaries (and thus the descriptors) remain unchanged.

Secondly, even though the object silhouette can change drastically between views,

internal edges, which our method takes into account, can be unaffected. Finally,

HoG cells inherently allow for some deformation in the position and orientation of

boundaries.

The semi-local descriptors can be matched directly between object boundaries.

However, in the following section we describe how this set of descriptors is rep-
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Figure 7.5: Boundary descriptor matches. Three examples of correctly matched
sculptures using the semi-local boundary descriptor (section 7.1.2). Significant light-
ing, scale and viewpoint changes are handled well. Note that the images contain dif-
ferent sculpture instances but the shapes are identical and are successfully matched.
Matches shown are after spatial verification (section 7.2).

resented as a histogram (by vector quantization and counting) in the manner of

Agarwal and Triggs (2006).



7.2 Retrieval procedure 127

Figure 7.6: Viewpoint invariance. Each row shows one query (the left image),
and the other five images are samples from the retrieved results. These results
are typical, and demonstrate the viewpoint tolerance of the semi-local boundary
representation.

7.2 Retrieval procedure

Here we use the standard retrieval pipeline of Philbin et al. (2007), but instead

of representing the image as bag-of-visual-words (BoW) based on SIFT descrip-

tors (Lowe, 2004) computed at affine covariant regions (Mikolajczyk et al., 2005),

we develop a bag-of-boundaries (BoB) representation. For each image, boundary

descriptors are extracted as described in section 7.1.2 and vector quantized using

k-means; a histogram of these quantized descriptors (which we will also refer to as

‘words’) is then used to represent an image. Note, this is a bag representation as

no information about the spatial position of the descriptors is recorded in the his-

togram. A query BoB is compared to other BoBs in the dataset using the standard

tf-idf (section 2.1.1) measure. The tf-idf scores can be computed efficiently for each

image in the database using an inverted index, which enables real-time retrieval in

large databases.

As shown in (Philbin et al., 2007) spatial verification and re-ranking of the top
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tf-idf retrieved results can be done efficiently and proves to be useful as it improves

precision by ensuring spatial consistency between query and retrieved images. We

adopt the same model for the geometry relation, namely an affine transformation.

However, as the objects of interest are highly three-dimensional the affine model of

the transformation is only approximate here, so only a very loose affine homography

is fitted (i.e. large reprojection errors are tolerated) in order not to reject correct

matches. We follow the procedure of Philbin et al. (2007) of first using a single

(boundary) word match to determine a restricted affine transformation (in this case

translation and scaling only), followed by fitting a full affine transformation to the

inliers.

7.2.1 Implementation details

The BoB vocabulary is obtained from the Sculpture 6k test set descriptors. The

test set generates 1.4M descriptors, we chose the vocabulary size to be 10k.

We spatially verify the top 200 results using a loose affine homography, tolerating

reprojection errors of up to a 100 pixels. We also propose a new scoring system

where the score of the geometrically verified image for a given query is computed as

follows:

score = tf-idf + αn + β
n

nq

n

nr

(7.1)

where nq and nr are the number of words in the query and result images, respectively,

and n is the number of verified matches. The proposed score is a generalization of the

commonly used scoring scheme of (Philbin et al., 2007) which corresponds to α = 1

and β = 0. Our system accounts for the fact that images with many features are
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likely to have many spatially verified words and removes the bias from these images

by considering the number of matches relative to the total number of features in the

image.

7.3 Dataset and evaluation

Sculptures 6k: We have collected a new image dataset in order to evaluate per-

formance of smooth object retrieval methods. The dataset was obtained in a sim-

ilar manner to the widely used Oxford Buildings dataset (section 3.1.1): images

containing sculptures were automatically downloaded from Flickr1 using queries

such as “Henry Moore Reclining Figure”, “Henry Moore Kew Gardens” and “Rodin

Thinker”. The dataset has 6340 high resolution (1024× 768) images.

The dataset is split equally into a train and test set, each containing 3170 images.

For each set 10 different Henry Moore sculptures are chosen as query objects, and

for each of these objects 7 images and query regions are defined, thus providing 70

queries for performance evaluation purposes. None of the 10 training set sculptures

is present in the test set, whilst for the 10 test set sculptures mostly these are not

present in the training set though there are a few occurrences as some images contain

more than one sculpture (e.g. images taken in a museum). As well as the images

containing these 10 sculptures in each set there are many images containing other

sculptures or indeed no sculptures at all; figure 7.7 shows a random sample of the

images. These images act as distractors in retrieval. A sub-set of the test set queries

is shown in figure 7.8.

1http://www.flickr.com/

http://www.flickr.com/
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Figure 7.7: Random samples from the Sculptures test dataset. Note the
variety of sculptures. Many of the images do not contain a sculpture while some
contain people imitating the pose of a sculpture (e.g. bottom right image where a
man is impersonating Rodin’s Thinker).

Figure 7.8: Test dataset query images. 40 query images (out of 70) used for
evaluation in the Sculptures 6k test dataset. Each column shows 4 (out of 7) query
images for one sculpture. Note the large variations in scale, viewpoint, lighting,
material and background.

For each query we have manually compiled the ground truth dividing all images

into Positives, Negatives and Ignores: (i) Negative – No part of the queried sculpture

is present. (ii) Positive – More than 25% of the queried sculpture surface is visible.

(iii) Ignore – Less than 25% of the queried sculpture surface is visible, but the queried
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sculpture is present. Note that our definition of the same sculpture relationship

requires two sculptures to have identical shapes, however it does not require them

to be the same instances – they can be constructed of different materials, made

in different sizes and displayed at different locations. Sculptures are ‘highly’ three-

dimensional, unlike the building facades used in the Oxford Buildings dataset. For

this reason the ground truth matches are view specific and vary over the different

queries of the same sculpture. For example, it is unreasonable to expect to retrieve

an image of a sculpture given an image taken from its opposite side. For each query

the number of positive matches can vary from 5 to a maximum of 112, with a mean

of 53.4.

The Sculptures 6k dataset with all the images and ground truth is available online2.

Performance evaluation: As in the case of the Oxford Buildings dataset, retrieval

quality is evaluated using mean average precision (mAP) over all the queries. As in

the INRIA Holidays (section 3.1.3) evaluation, the query image is not counted as a

positive return (it is in the Oxford Buildings evaluation). In the mAP computation

Ignores are not counted as positive or negative.

7.4 Results

To evaluate the performance of smooth object retrieval methods we follow the pro-

cedure outlined in section 7.3. The mean average precision (mAP) is computed over

70 queries on the test dataset.

Due to the lack of smooth object retrieval systems we use the standard affine-

2http://www.robots.ox.ac.uk/~vgg/research/sculptures/

http://www.robots.ox.ac.uk/~vgg/research/sculptures/
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Method name Spat. rerank mAP A.q.t.

Baseline 1 (Philbin et al., 2007) 0.080 0.05 s
Baseline 1 (Philbin et al., 2007)

√
0.094 0.30 s

Baseline 2 (background removed) 0.081 0.03 s
Baseline 2 (background removed)

√
0.086 0.11 s

BoB without segmentation 0.253 0.01 s
BoB without segmentation

√
0.323 0.16 s

BoB with segmentation 0.454 0.01 s
BoB with segmentation

√
0.502 0.28 s

Table 7.1: Retrieval performance. Comparison of two baseline bag of visual
word methods (section 7.4) and the bag-of-boundaries (BoB) method (section 7.2).
Mean average precision (mAP) scores and average query times (A.q.t.) are shown.
The mAP scores correspond to the best choice of parameters (vocabulary size and
reranking parameters α, β) for each method individually.

Hessian/visual word system of Philbin et al. (2007) as a baseline (BL1). As a second

baseline (BL2), we discard all visual words on the background (i.e. visual words are

only included if their centres are in the automatically segmented foreground region).

This is in order to give a fair comparison against our boundary representation which

uses the foreground/background segmentation.

Retrieval performance

The mAP scores for the two baselines and our method are shown in table 7.1. As

expected, there is a complete failure of the two baselines for smooth object retrieval.

Note that BL2 perform slightly worse than BL1 (after spatial reranking with an

affine homography) – this is due to the fact that many true positives in BL1 are

actually obtained by matching the background of the sculpture installation instead of

the actual queried sculptures. Note that none of the methods which usually improve

retrieval performance can be hoped to help the two baselines: (i) query expansion

(section 2.1.4) is only possible when the initial method yields high precision results
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which is certainly not the case here, (ii) soft vector quantization and (iii) learning

a better vocabulary (section 2.1.1.3) both assume the descriptors to be appropriate

for the task in hand which we demonstrate is not the case.

Our bag-of-boundaries (BoB) method proves to be very suitable for the task of

smooth object retrieval, achieving more than a five fold increase in performance

(0.502) over the best baseline (BL1, 0.094). The importance of the segmentation is

shown by the ‘with and without’ comparison (i.e. in the ‘with’ case, only boundaries

on the foreground region are used). There is 55% gain in performance for BoB

when the foreground segmentation is used compared to using the entire image. On

the other hand, the without segmentation performance is still quite respectable and

demonstrates the robustness to background clutter. As would be expected, in some

of the cases where automatic segmentation fails and the sculpture is assigned to

background, the without case succeeds in retrieving the image. However, it is more

prone to background clutter and less resistant to scale change as there is no scheme

for automatic descriptor scale selection.

Examples of ranked retrieval results are given in figures 7.1, 7.6 and 7.9. They

illustrate the appropriateness of the BoB system for the smooth object retrieval

task as significant lighting, scale, viewpoint, colour and material differences are

successfully handled.

Table 7.1 also gives the retrieval speed, tested on a laptop with a 2.67 GHz core

i7 processor using only a single core. It can be seen that due to the inverted index

implementation, the BoB representation enables real time retrieval to the same

extent as visual words. The BoB representation is much sparser than the BoW (450

words per image for BoB compared to 2600 for BoW) making the entire storage
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Figure 7.9: Retrieval results. Each column shows one retrieval result, the query
image and ROI are shown in the first row, followed by the top 7 ranked retrieved
images.

requirements for the system (inverted and forward indexes) a mere 20 MBs (in the

BoW case this is 275 MBs). Our approach is thus much more scalable than the

existing BoW ones as the BoB representation of up to 5 million images can fit into

main memory on a system with 32 GB of RAM.

To further test the resistance to distractors, a larger scale retrieval test was per-

formed by adding all 5062 images from the Oxford Buildings dataset to the testset.
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The mAP performance only dropped to 0.451 (from 0.502) despite the variety of

images in the distractor dataset.

Due to the semi-local HoG boundary description (figure 7.4) and the BoB represen-

tation, the matching is capable of handling the significant segmentation failures that

are bound to happen in a fully automatic system. The semi-local property means

that a proportion of the HoG descriptors computed on the boundary will still be

valid (the proportion depending on the extent of the segmentation failure), and the

BoB representation enables matches for images where only a subset of the quantized

descriptors are in common. Thus, as can be seen in figure 7.10, retrieval can succeed

both in the cases of under-segmentation (where HoG descriptors will be missing)

and over-segmentation (where additional erroneous boundaries are generated).

Parameter and descriptor variation

The choice of descriptor scales is critical for retrieval performance as reducing the

areas by a factor of 4 reduces the mAP from 0.502 to 0.404. The problem with using

small descriptors is that they are too local thus mainly capturing the orientation

of a single edge, which without surrounding boundary information is completely

non-discriminative.

Not using descriptors centred on internal boundaries but keeping the internal

boundary information in the remaining descriptors reduces the mAP to 0.469, while

not taking internal boundaries into account at all decreases it further to 0.433. This

proves that using internal boundaries is very beneficial for shape representation.

The system is quite insensitive to the number of HoG and occupancy grid cells,

using a coarser grid (3×3) decreases the mAP from 0.502 to 0.485 while using a finer

one (6 × 6) increases it slightly to 0.509. The slight increase in performance when
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Figure 7.10: Robustness to segmentation failures. Two examples of correctly
matched sculptures despite significant segmentation failures. In each case the seg-
mentation is shown above the original image.

using a finer grid is not worth the large increase in descriptor dimensionality (from

340 to 936). Excluding the 16 dimensional occupancy grid part of the boundary

descriptor decreases the mAP from 0.502 to 0.485, so it provides good value for the

small descriptor dimensionality increase (from 324 to 340).

A main source of failure is due to the inevitable automatic segmentation mistakes,

it is most prominent when the sculpture pixels in the query image are assigned to

the background. This failure can be potentially alleviated by either segmenting the

query image online or keeping descriptors for multiple alternative segmentations.

The second failure mode is when all matched words occur spatially close to each

other thus only effectively representing one part of the object which is not necessarily

discriminative. A potential solution is to modify spatial verification to incorporate

the information about the spatial distribution of matches, but this must be traded

against robustness to occlusion and viewpoint change.

We investigate the effect of varying the reranking (section 7.2.1) parameter β for
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fixed α = 0 on the mAP scores. The performance increases monotonically with β

which effectively means the last portion of (7.1), which accounts for relative number

of matched words, should dominate the reranking, while the tf-idf scores should

be used for tie-breaking. Our reranking procedure, for the BoB method, always

outperforms the reference reranking method (Philbin et al., 2007) which uses just

the unnormalized number of inliers and tf-idf. When a 10 times smaller vocabulary

is used the benefits of the proposed reranking method are even more apparent (0.449

compared to 0.391) – words are less discriminative allowing the reference reranking

method to incorrectly verify images with many features more easily thus reducing

its precision.

7.5 Name that sculpture

The goal of this section is to automatically identify both the sculptor and the name

of the sculpture given an image of the sculpture, for example from a mobile phone.

This is a capability similar to that offered by Google Goggles, which can use a photo

to identify certain classes of objects, and thereby carry out a text based web search.

Being able to identify a sculpture is an extremely useful functionality: often sculp-

tures are not labelled in public places, or appear in other people’s photos without

labels, or appear in our own photos without labels (and we didn’t label at the time we

took them because we thought we would remember their names). Indeed there are

occasionally pleas on the web of the form “Can anyone help name this sculpture?”.

Identifying sculptures is also quite challenging. Although Google Goggles can

visually identify objects such as landmarks and some artwork, sculptures have eluded
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it to date (Neven, Google, 2011) because the visual search engine used for matching

cannot handle smooth objects.

We divide the problem of identifying a sculpture from a query image into two

stages: (i) visual matching to a large dataset of images of sculptures, and (ii) textual

labelling given a set of matching images with annotations. Figure 7.11 shows an

example. That we are able to match sculptures in images at all, for the first stage,

is a result of combining two complementary visual recognition methods. First, the

bag-of-boundaries method for recognizing 3D smooth objects from their outlines in

cluttered images (section 7.2). Second, we note that there is still a role for interest

point based visual matching as some sculptures do have texture or can be identified

from their surroundings (which are textured). Thus we also employ a classical visual

word based visual recognition system (section 2.1.1). The matching image set for the

query image is obtained from the sets each of the two recognition systems returns

(section 7.5.2).

The other ingredients required to complete the identification are a dataset of im-

ages to match the query image to, and annotation (of the sculptor and sculpture

name) for the images of this dataset. For the annotated dataset we take advantage

of the opportunity to harness the knowledge in social media sites such as Facebook

and Flickr. As is well known, such sites can provide millions of images with some

form of annotation in the form of tags and descriptions – though the annotation

can often be noisy and unreliable (Quack et al., 2008). The second stage of the

identification combines this meta-information associated with the matched image

set in order to propose the name of the sculptor and sculpture. The proposed sculp-

ture name is finally determined using a form of query expansion from Google image
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search.

The stages of the identification system are illustrated in figure 7.11. We describe

the dataset downloaded from Flickr in section 7.5.1, and the method of obtaining

the name from the meta-data and Google query expansion in section 7.5.3.

Others have used community photo collections to identify objects in images (Gam-

meter et al., 2009, Ivanov et al., 2010) and have dealt with the problems of noisy an-

notations (Jin et al., 2005, Wang et al., 2006). In particular, Gammeter et al. (2009)

auto-annotated images with landmarks such as “Arc de Triomphe” and “Statue of

Liberty” using a standard visual word matching engine. In (Gammeter et al., 2009),

two additional ideas were used to resolve noisy annotations: first, the GPS of the

image was used to filter results (both for the query and for the dataset); second,

annotations were verified using Wikipedia as an Oracle. Although we could make

use of GPS this has not turned out to be necessary as (i) sculptures are often suf-

ficiently distinctive without it, and (ii) sculptures are sometimes moved to different

locations (e.g. the human figures of Gormley’s “Event Horizon” or Louise Bourgeois’

“Maman”) and so using GPS might harm recognition performance. Similarly, using

Wikipedia to verify sculpture matches has not been found to be necessary, and also

at the moment Wikipedia only covers a fraction of the sculptures that we consider.

7.5.1 Sculpture naming dataset

The dataset provides both the library of sculpture images and the associated meta-

data for labelling the sculptor and sculpture. A list of prominent sculptors was

obtained from Wikipedia3 (as of 24th November 2011 this contained 616 names).

3http://en.wikipedia.org/wiki/List_of_sculptors

http://en.wikipedia.org/wiki/List_of_sculptors
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Perform Google Image Search

using the sculptor and keywords

Sculptor: Giambologna
Keywords: centaur hercules

Sculptor: Giambologna

Sculpture: Hercules and the Centaur Eurytion
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Figure 7.11: Sculptor and sculpture identification: on-line system overview.
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Figure 7.12: Random sample from the Sculptures 50k dataset.

This contains sculptors such as “Henry Moore”, “Auguste Rodin”, “Michelangelo”,

“Joan Miró”, and “Jacob Epstein”. Near duplicates were removed from the list

automatically by checking if the Wikipedia page for a pair of sculptor names redi-

rects to the same entry. Only Michelangelo was duplicated (as “Michelangelo” and

“Michelangelo Buonarroti”).

Flickr was queried using this list, leading to 50128 mostly high resolution (1024×

768) images. Figure 7.12 shows a random sample. For each of the images textual

meta data is kept as well. It is obtained by downloading the title, description and

tags assigned to the image by the Flickr user who uploaded it. The textual query

(i.e. sculptor name) used to retrieve an image is saved too. This forms the Sculptures

50k dataset used in this work.

Unlike the Sculptures 6k dataset (section 7.3) we did not bias this dataset towards

smooth textureless sculptures.
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7.5.2 Sculpture retrieval system

The first stage of the naming algorithm is to match the query image to those im-

ages in the Sculptures 50k that contain the same sculpture as the query. We briefly

describe here the two complementary visual retrieval engines that we have imple-

mented. In each case, a visual query is used as the input and the system returns

a ranked list of matched images from the dataset, where the ranking is based on

the number of spatial correspondences between the query and target image. The

outputs of these two systems are then combined.

Bag-of-visual-words (BoW). We use a standard BoW retrieval system described

in (Philbin et al., 2007) with affine-Hessian interest points (Mikolajczyk and Schmid,

2004b), RootSIFT descriptors (section 4.2), a vocabulary of 1M visual words ob-

tained using approximate k-means, and spatial re-ranking of the top 200 tf-idf results

using an affine transformation.

Bag-of-boundaries (BoB). We use the smooth object retrieval system described

in section 7.2.

Combining BoB with BoW. The two described methods are complementary,

BoW is well suited for retrieval of textured objects while BoB is adapted for smooth

textureless objects defined mainly by their shape. Often only one of the systems is

appropriate for a particular sculpture/query, but in a significant number of cases

both systems manage to retrieve correct results; each of the cases can be observed

in figure 7.14.

The two systems are combined by scoring each image by the maximum of the

individual scores obtained from the two systems. In the situation where one system
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is capable of handling the query and the other is not, the latter system assigns

low scores to all images while the former sets high scores to the relevant ones; the

max combination rule thus correctly retrieves the relevant images by trusting the

high scores of the former system. Note that our combination method merges the

results of the two systems softly, i.e. no hard decisions are made about which system

should be solely trusted for a particular query. This is because for some queries both

systems are capable of functioning correctly, and the union of their matching sets

(automatically obtained by the max combination method) is larger than any of the

individual matching sets. We have not found it necessary to calibrate the scores

obtained from the two systems.

The output of this stage is a matching image set which contains the highest ranked

images of the combined list with score above a threshold of nine. Each image has an

associated matching score and also the meta-data originally obtained from Flickr.

This choice of threshold retains only the most reliable matches to the query. If this

procedure yields no results, then the top match (highest ranked) is returned with

low confidence.

7.5.3 Sculptor and sculpture identification

The goal of this work is to create a system which can automatically determine the

sculptor and sculpture in a query photo. This is done by querying the Sculptures 50k

database with the image, as described in section 7.5.2, and processing the textual

meta information associated with the matching image set. Here we describe how to

obtain the sculptor and sculpture names from this set of meta data.
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7.5.3.1 Sculptor identification

It is simple to propose a candidate sculptor for each retrieved image: it is sufficient

just to look up the textual query (i.e. sculptor name, see section 7.5.1) which was

used to download that image from Flickr when the Sculptures 50k database was

harvested. Given this set of putative sculptors we propose and compare two simple

strategies to identify the actual sculptor of the query image: Winner-Takes-All and

Weighted Voting.

Winner-Takes-All (WTA). The top match (highest ranked) is kept as the correct

one and its sculptor identity is returned. Empirically, this scheme performs quite

well, however it does have two shortfalls: it is prone to label noise and retrieval

failure. In the label noise failure case the system cannot identify the sculptor cor-

rectly due to the mislabelled top match, which is a significant possibility when data

is obtained in an unconstrained fashion, in our case from Flickr user annotations.

Retrieval failure occurs if the top match is not actually of the same sculpture as the

query. Both of these can be overcome to some extent by the following scheme.

Weighted Voting (WV). The scores of the top four images in the matching set are

counted as weighted votes for the sculptor associated with that image; the sculptor

with the largest sum of votes is chosen. This method can sometimes overcome both

failure cases of the WTA scheme (label noise and retrieval failure) if the database

contains more than one image of the same sculpture and they are correctly retrieved.

As shown in section 7.5.4, this strategy outperforms Winner-Takes-All by 2%.
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7.5.3.2 Sculpture identification

Unlike identifying the sculptor, identifying the sculpture requires finding distinctive

words in the textual meta data associated with the matching image set. However,

this data is variable, unstructured and quite noisy as it is supplied by Flickr users so

it needs to be cleaned up and normalized. We first describe the filtering procedure

that is performed off-line for data clean-up, and then the on-line sculpture naming

applied to the matching image set.

1. Off-line: Meta data preprocessing. The data is cleaned up and normalized

by the following steps. First, to reduce the problem of having different languages in

the meta data, Microsoft’s automatic translation API is used to detect the language

and translate the text into English. This procedure overcomes sculptures being

named in different languages, e.g. Rodin’s “The Thinker” is also commonly referred

to as “Le Penseur” in (the original) French.

Second, characters such as ,;:_-&/\()@ are treated as spaces in order to sim-

plify word extraction and standardize the text. For example, Henry Moore’s sculp-

ture “Large Upright Internal External Form” contains the words “Internal Exter-

nal” which are also often found in variations such as “Internal-External” or “Inter-

nal/external”; all these cases are identical after the standardization step.

Only alphanumeric characters are kept and converted to lower case in order to

simplify word correspondence. Of these, only words longer than 2 and shorter than

15 are kept so that typos, abbreviations and invalid words are filtered out. Some

uninformative words are removed too, like “Wikipedia”, “Wiki”, “www”, “com”,

“jpg”, “img” etc. Also, only words which do not contain any digits are kept in order
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to filter out image file names often found in Flickr meta data, such as DSC12345,

IMG12345, P12345, as well as the dates the photos were taken.

Lastly, the name of the sculptor is removed from the meta data in order to enable

sculpture identification instead of just obtaining the sculptor name again.

2. On-line: sculpture naming. We start here with the meta-data associated with

the matching image set for the query image. Only the meta-data from the images

with the previously identified sculptor (section 7.5.3.1) is used in order to filter

out potentially falsely retrieved images (i.e. those images that were in the original

matching set, but do not contain the sculptor name selected by WTA or WV). There

are two steps: (i) first, keywords, often containing the name or a part of the name,

are identified, and second, the name is verified or corrected using Google by a form

of query expansion.

The sculpture name, or particular words which can be used to uniquely identify

the sculpture, are obtained by finding words which frequently occur in the titles

and descriptions of the matching set, but are distinctive at the same time (for

example typical stop-words such as “the” are common but not at all distinctive).

This is achieved by the standard term frequency inverse document frequency (tf-idf)

weighting, where each word is weighted by its frequency in the text and down-

weighted by the logarithm of the number of documents in the entire database which

contain it. We term the top scoring words keywords, and these identify the sculpture

and are most commonly part of its name. However, further processing is required

to obtain the full sculpture name from these keywords, for example it is required

to put the words in the right order, add non-distinctive words as many sculpture

names contain words like “the” and “and”, and correct possible mistakes.
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Google based query expansion. The top two scoring keywords from the pre-

vious step, along with the name of the sculptor are used to issue a textual query on

Google image search; the titles associated with the top Google image search results

are then processed, as described next, to obtain the full sculpture name. The proce-

dure is illustrated in figure 7.11, where the sculptor is identified as “Giambologna”

and the top two keywords as “centaur” and “hercules”, resulting in a Google image

search query “Giambologna” centaur hercules -flickr (“-flickr” is added to obtain re-

sults independent of the Sculptures 50k dataset which is entirely downloaded from

Flickr). The textual data associated with the top Google image search results is

mined to obtain the full sculpture name “Hercules and the Centaur Eurytion”.

The full sculpture name is obtained by “growing” the top scoring keyword using

the titles associated with the top 15 Google image search results obtained via the

Google API (note, only the titles from the Google image search API are used; the

images themselves are not processed). The name is “grown” as follows: firstly, it

is initialized to be the top keyword. Secondly, the name is iteratively expanded by

the word which directly precedes or succeeds it in the most number of titles. In our

running example (figure 7.11) the initial name is “centaur”, the word “the” directly

precedes it 8 times, “a”, “with” and “beating” once each, and it is succeeded by

“Nessus" trice and "Eurytion" twice; “the” thus has most support and is prefixed to

the name to form the new one: “the centaur”. Words are prefixed or appended to the

name one by one; growing stops once a proposed name does not exist in more than

one title, in order not to grow it to an entire title and overfit. The procedure yields

many benefits: the name length is automatically determined (otherwise one would

need to set a threshold on the tf-idf scores which is potentially hard to do), words

are put in the correct order, new non-distinctive words like “the” and “and” which
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Anish Kapoor Andy Scott de Saint Phalle Richard Serra Ron Mueck Barbara Hepworth Henry Moore Buonarroti Abakanowicz Henry Moore

Carpeaux Mark di Suvero Antonio Canova Hiram Powers Jules Dalou Giambologna Luigi Paolozzi Auguste Rodin Juan de Mesa Frederick Hart

Jacob Epstein Igor Mitoraj Jacob Epstein Paul Manship Andy Scott Henry Moore Alexander Calder Mark di Suvero Leonard Baskin Jeff Koons

Lorenzo Bernini Antonio Canova Henri Laurens Auguste Rodin Benvenuto Cellini Gustav Vigeland Eduardo Chillida Barbara Hepworth Praxiteles de Saint Phalle

Figure 7.13: Random sample of evaluation query images (40 out of 200) used for
evaluation, and sculptor names for each image (first names for some sculptors are
cropped for display).

have a low tf-idf score are automatically inserted to form a meaningful sequence of

words, etc.

7.5.4 Evaluation and results

The on-line system including all the stages takes only 0.8s from specifying the query

image to returning the sculptor and sculpture name on a standard multi-threaded

2.8 GHz workstation. The memory required to store the (non-compressed) files for

the retrieval system is 4.3 Gb. Of the run time, on average, 0.56s is used for visual

matching, 0.23s for calling the Google API, and 2ms for sculpture and sculptor

naming.

To evaluate the identification performance we have randomly selected 200 images

of various sculptures from the Sculptures 50k dataset. For each of these we have

manually confirmed that at least one more image of the same sculpture exists in

the database, as otherwise identification would be impossible. A sample of these is

shown in figure 7.13, illustrating the wide variety of sculpture images and sculptors
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Figure 7.14: Comparison of BoB and BoW methods for 21 (out of the
total of 200) evaluation query images. The numbers above each query image
are the number of positives retrieved before the first negative for each of the methods;
from left to right these are BoB, BoW and the combined method. A high number
corresponds to better performance and indicates both that the first mistake was low
ranked, and also that there are many examples of that sculpture in the 50k dataset.
Numbers shown in bold and larger font point out the better method to be used for
the given image (BoB or BoW).

used for evaluation.

The system can be evaluated at three levels: visual matching, sculptor naming

and sculpture naming, and we report on each of these in turn.

7.5.4.1 Visual matching

Visual retrieval failures happen due to well known problems like extreme light-

ing conditions, inability to handle wiry objects, large segmentation failures (BoB

method), interest point detector dropouts (BoW method), descriptor quantization

etc. Segmentation can fail when the sculpture is not isolated from the background

physically, for example draped with a sheet.

The visual matching is quantitatively evaluated here by reporting the proportion
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of queries for which the query sculpture appears in the top four retrieved results.

Note that we use the same definition of the “same sculpture” relationship as in

section 7.3, namely: the two sculptures are the same if they have identical shapes,

but they do not need to be the same instance, as the same sculpture can be produced

multiple times (and can be made in different sizes and from different materials).

The BoB and BoW methods successfully retrieve the correct sculpture within

the top four results 60.5% and 63.5% of the time, respectively, while the combined

method achieves 83.5%. The large performance boost obtained by combining the two

methods demonstrates that they capture complementary information. Figure 7.14

shows query images and performances of BoB, BoW and the combined method.

7.5.4.2 Sculptor identification

The performance measure for sculptor identification (section 7.5.3.1) is the propor-

tion of times the retrieved sculptor matches the sculptor of the query image. Recall

that images were downloaded from Flickr by issuing textual queries with sculptor

names, so the image-sculptor association is automatically available but potentially

noisy (i.e. may not be the true sculptor).

The Winner-Takes-All (WTA) scheme correctly identifies the sculptor 154 times,

i.e. achieves the score of 0.770, while Weighted Voting (WV) achieves 0.785, i.e. WV

succeeds 94% of the times that the visual matching is correct. Compared to WTA,

WV manages to overcome three retrieval failures and two noisy labellings, while

introducing one mistake and changing an accidental positive into a negative.

In the case of WV, the BoB and BoW methods achieve 0.550 and 0.635, respec-

tively, while the combined method achieves 0.785. If we instead imagine that there
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is an oracle that decides which retrieval method to trust to obtain the matching set

for each query image a performance of 0.835 is achievable.

7.5.4.3 Sculpture identification

It is harder to evaluate sculpture identification (section 7.5.3.2) as sculptures often

do not have distinctive names (e.g. many Henry Moore’s sculptures are known simply

as “Reclining Figure”), and query image descriptions are too noisy to be used as

ground truth (unlike the case of sculptor naming, there is not a simple image-

sculpture association available from the query used to download the data). As a

proxy for evaluating the obtained sculpture names we perform a textual Google

image search and check if an image of the queried sculpture is present in the top

15 results. We have manually done this evaluation for each of the 200 queries and

recorded the proportion of times a hit was obtained.

The Google image search query is formed by concatenating the sculptor name

(surrounded by citation marks), followed by the top two keywords obtained in the

procedure from section 7.5.3.2, appended by “-flickr” in order to make sure we do not

simply retrieve back images from our dataset as the text would certainly match. For

the example shown in figure 7.11, the system returns “Giambologna” as the sculptor

and the top words are “centaur” and “hercules”, then the Google image search query

used to evaluate these results is “Giambologna” centaur hercules -flickr. Note that

the query string is identical to the one used for query expansion. The obtained

search results (also shown in figure 7.11) contain many examples of the queried

sculpture thus confirming identification success.

The combined method achieves a sculpture identification score of 0.615. This
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Figure 7.15: Examples of sculpture naming evaluation. Illustrations are laid
out in three four-row blocks, each column in one block shows one example. For
each example the top row shows the query image highlighted in yellow, while the
remaining three rows show the top three Google image search results (section 7.5.4.2)
using the identified keywords as textual queries (section 7.5.3.2). A wide variety of
sculptures are correctly identified.

means that it succeeds 78% of the times that the sculptor identification is correct.

Unlike other Flickr annotations we have found the annotations of sculpture images

to be fairly reliable. For this reason, it has not been necessary to go to further

efforts in overcoming noisy annotations such as (Jin et al., 2005, Wang et al., 2006).

Qualitative examples in figure 7.15 demonstrate the effectiveness of our method.
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The meta data clean up and normalization step (section 7.5.3.2) is very important

since switching off the described preprocessing (while still using automatic trans-

lation and removing the sculptor name) causes the performance to drop by 19%,

to 0.500. Even when identification still succeeds, the proportion of correct images

retrieved in the top 15 Google image search results substantially decreases, the ob-

tained keywords are much noisier and full sculpture names are substantially worse.

Meaningful name extraction. The procedure used to obtain the full sculp-

ture name from identified keywords (section 7.5.3.2) has been found to work very

well. The keywords are successfully put in order, for example the top two keywords

“thinker the” are converted into “The Thinker”, as well as grown into a mean-

ingful sculpture name, for example the top two keywords “sons ugolino”, “vulture

strangling”, “call arms”, “lion lucerne’ and’ “rape sabine” are automatically and

correctly converted into “Ugolino and His Sons”, “Prometheus Strangling the Vul-

ture II”, “The Call to Arms”, “The Lion of Lucerne” and “The Rape of the Sabine

Women”, respectively.

The fact that only the top keyword is used for name growing also means that

mistakes from thresholding the keywords can be corrected. For example, the top

two keywords for Michelangelo’s “David” are “david” and “max”, where the latter

keyword is meaningless since the sculpture has a one-word title. The name growing

procedure starts from “david” and stops at the very beginning correctly yielding

“David”, as no expansion was found with sufficient support. Finally, it is worth

noting that the Google image search using an automatically generated textual query

can also flag a failure when the search yields very few or no results.

Actual outputs of the full system on a subset of the evaluation queries are shown



7.5 Name that sculpture 154

Michelangelo
David

Jacob Epstein
St Michael and the Devil Coventry Cathedral

Jacob Epstein
Rock Drill

Auguste Rodin 
The Thinker

Henry Moore
Large Upright Internal External Form

Claes Oldenburg
Spoonbridge and Cherry

Carl Milles 
Hand of God Sculpture

Henry Moore
Oval with Points

Antonio Canova
Cupid and Psyche

Anish Kapoor
Cloud Gate

Auguste Rodin
The Three Shades

Benvenuto Cellini
Perseus with the Head of Medusa

Figure 7.16: Sculpture naming examples. Automatically obtained sculptor and
sculpture name are shown above each evaluation query image.

in figures 7.11 and 7.16. The complete set of results over all 200 evaluation queries

are provided online4.

Failure analysis. Here we concentrate on problems related to sculpture naming

given successful visual retrieval and sculptor naming.

(i) Bad annotation: The top retrieved results contain false or irrelevant anno-

tation, or no annotation at all, rendering identification impossible.

4http://www.robots.ox.ac.uk/~vgg/research/sculptures/

http://www.robots.ox.ac.uk/~vgg/research/sculptures/
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(ii) Untitled sculpture: Many sculptures simply do not have names or they are

not commonly known. For example, many sculptures made by Henry Moore are

simply known as “Reclining figure”, so even though the system correctly identifies

these terms Google image search results are not guaranteed to show this particular

reclining figure.

(iii) Place domination: The textual description is dominated by the sculpture

location thus still potentially correctly specifying the sculpture but not providing a

useful name for it; examples include names of museums or sculpture parks. This

issue does not necessarily cause a failure since the information is often enough to

uniquely identify a sculpture, for example: the top two words found by our method

for Jacob Epstein’s “St Michael and the Devil” in Coventry are “coventry” and

“michael”, all top 15 results from Google image search show the same sculpture.

(iv) Rare words dominate: Sometimes rare words, such as spelling errors,

slang, unusual names etc, can dominate the results as they are deemed to be highly

informative. On the other hand, the sculpture “We will” by Richard Hunt fails to

be identified as both words are very common.

(v) Name lost in translation: In this case the name of the sculpture is most

widely known in its original form, thus performing Google image search for its En-

glish translation fails to retrieve relevant results, even though the sculpture identity

has been effectively correctly identified. In our 200 evaluation queries we haven’t

noticed catastrophic failures due to this problem, however it is possible it would

occasionally prevent identification. One example in which the interference is signifi-

cant, but not sufficient for identification to fail, is in the case of Joan Miró’s “Woman

and Bird” (original Catalan: “Dona i Ocell”); where the top two words are correctly
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identified as “woman” and “bird” yielding only 5 out of 15 correct top Google image

search results, while searching for the original words “dona” and “ocell” gives 14.

(vi) Translation mistakes: Automatic translation fails to detect the correct

language and/or to translate the text correctly into English. These are not neces-

sarily catastrophic and in many cases the correct answer was obtained despite these

failures (for example Rodin’s “Kiss” is identified as “Kiss” and, in (the original)

French, “Baiser”).

(vii) Finally, our choice of evaluation measure can sometimes be a source of false

negatives. For example, Gatzon Borglum’s monumental sculpture “Mount Rush-

more” is correctly identified by our method, but searching on Google images for

“Gatzon Borglum” mount rushmore mostly yields images of the sculptor with image

descriptions such as “Gatzon Borglum, the sculptor of Mount Rushmore”.

In the light of this failure analysis and the noisiness of Flickr annotations, the

achieved sculpture identification score of 0.615 demonstrates that the system really

performs quite well.

7.6 Conclusions and further work

We have succeeded in our aim of raising 3D smooth objects to a first class spe-

cific object. This required both segmentation (a discriminative representation of the

material appearance) and boundary representation. In doing this we have demon-

strated that HoG can also be used as a descriptor for specific object retrieval (given

suitably cleaned data), rather than solely as a descriptor where learning must be

used. We have also established that 3D sculptures (as an example of 3D smooth
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objects) can be successfully retrieved using only a bag of boundary representation

– without requiring any additional spatial information in the first instance.

We expect our framework to generalize to other classes of smooth objects, but

new classifiers need to be trained to segment particular classes, e.g. plastic bottles,

semi-transparent objects, etc.

Sculpture naming. Using this framework, we have demonstrated that sculptors

and, with somewhat less success, sculptures can be named given a query image of a

particular sculpture.

The next stage is to scale up the dataset further as having more examples of each

sculpture in the corpus will overcome many of the failure cases of the sculpture

naming. One avenue we are investigating is adding an authority score depending

on the origin of the photo and text, e.g. the meta-data could have more authority

if the photo is from Wikipedia rather than Google Image search or Flickr; or more

authority if sculptures match when contributed by several different Flickr sources.

7.7 Impact

The work on smooth object retrieval was published in ICCV 2011, while the sculp-

ture naming work was published in ICMR 2012 and was nominated for the best

paper prize. Motivated by our approach, Arandjelović (2012)5 also tackle the prob-

lem of recognizing smooth objects. They introduce a descriptor based on the local

profile of boundary normals’ directions; their descriptor achieves similar recogni-

5Note that the author of (Arandjelović, 2012) is not the same as the author of this thesis despite
the same last name. The two authors are brothers.
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tion performance to our boundary descriptor, while significant improvements are

achieved by combining the two.

Google Goggles is not able to recognize smooth objects (Neven, Google, 2011), and

thus Google is interested in the work presented in this chapter and have investigated

it thoroughly (Neven, Google, 2012). They were able to replicate our results, but

are interested in fine-grained recognition of general smooth objects (e.g. recognizing

cars) for which they were unable to perform automatic segmentation needed by our

approach.



Chapter 8

Extremely Low Bit-rate Nearest

Neighbour Search

The goal of this work is a data structure to support approximate nearest neighbour

search on very large scale sets of vector descriptors. The criteria we wish to optimize

are: (i) that the memory footprint of the representation should be very small (so

that it fits into main memory); and (ii) that the approximation of the original vectors

should be accurate.

We introduce a novel encoding method, named a Set Compression Tree (SCT),

that satisfies these criteria. It is able to accurately compress 1 million descriptors

using only a few bits per descriptor. The large compression rate is achieved by not

compressing on a per-descriptor basis, but instead by compressing the set of de-

scriptors jointly. We describe the encoding, decoding and use for nearest neighbour

search, all of which are quite straightforward to implement.

The method, tested on standard benchmarks (SIFT1M and 80 Million Tiny Im-
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ages), achieves superior performance to a number of state-of-the-art approaches,

including Product Quantization, Locality Sensitive Hashing, Spectral Hashing, and

Iterative Quantization. For example, SCT has a lower error using 5 bits than any of

the other approaches, even when they use 16 or more bits per descriptor. We also

include a comparison of all the above methods on the standard benchmarks.

8.1 Introduction

Nearest neighbour search is ubiquitous in computer vision with numerous applica-

tions across the field. With ever larger data sets generating millions or billions of

vector descriptors, two particular problems have become critical: (i) how to keep all

the original vectors in main memory, and (ii) how to obtain the nearest neighbours

of a query vector as fast as possible. Recently there have been two quite distinct

threads of work aimed at addressing problem (i), which both proceed by obtaining

a low dimensional representation of the original vectors, such that the distance be-

tween two low dimensional representations is a good approximation of the distance

between the original vectors. The consequence is that the low dimensional vectors

for the entire database then fit in main memory which in turn alleviates problem

(ii) as no (expensive) hard disk access is required.

One thread is the product quantization of Jégou et al. (2011a). This follows on

from earlier work on Hamming embedding (Jégou et al., 2008). Both were aimed at

obtaining a more accurate distance between SIFT (Lowe, 2004) vectors than that

obtained by straight forward k-means vector quantization of the entire vector and

representation as visual words (Sivic and Zisserman, 2003). Product quantization
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divides the vector into sub-vectors, and then vector quantizes each sub-vector (if

there are m sub-vectors each quantized independently into k cluster centres, then

there are km possible code words with m · log2(k) bits required to represent each

vector). It was originally applied to SIFT vector matching, but has since been em-

ployed in large scale category retrieval (Sánchez and Perronnin, 2011) and used with

inverted indexes for immediate retrieval (Babenko and Lempitsky, 2012, Rastegari

et al., 2011) (again addressing problem (ii)).

The second thread is the binary string representation of vectors used for retrieval

in the 80 Million tiny images series of papers (Gong and Lazebnik, 2011, Raginsky

and Lazebnik, 2009, Torralba et al., 2008, Weiss et al., 2008, 2012). Here the goal

is to represent the original vectors by short binary strings, such that the Hamming

distance between the binary representations approximates the distance between the

original vectors (or more accurately, that the ranking of Hamming distances equals

the ranking of distances between the original vectors).

Current methods achieve reasonable performance only when 16 or 32 or more bits

per descriptor are used, but none is capable of functioning at the extremely low

bit-rate regime which is certainly needed for huge scale datasets. In this chapter

we propose a Set Compression Tree (SCT) approach to lossy descriptor compression

that is capable of accurately representing vectors using only 4 to 7 bits per vector.

The key idea in SCT coding is not to store information directly on a per-descriptor

basis, but instead to store information jointly across sets of the descriptors in the

database. i.e. if the set of descriptors is {x1, x2, . . . , xn} then the compressed set

is com{x1, x2, . . . , xn} rather than {com(x1), com(x2), . . . , com(xn)}. Because the

code applies to a set of vectors, the number of bits required for each vector is far



8.1 Introduction 162

less. The coding is achieved through a simple and very fast scheme where the feature

space is partitioned into disjoint cells in a k-d tree like manner using binary splits,

such that each descriptor is uniquely associated with one cell and approximated by

the centroid of that cell. The SCT coding is explained in section 8.2, and compared

in section 8.3 to previous compression methods including: Product Quantization of

Jégou et al. (2011a), Locality Sensitive Hashing (Andoni and Indyk, 2008) (LSH),

Spectral Hashing of Weiss et al. (2008), SIK of Raginsky and Lazebnik (2009), and

Iterative Quantization (ITQ) of Gong and Lazebnik (2011). As will be seen, in all

cases SCT has superior performance at the very low bit end of the compression scale.

Such a low bit compression can find immediate application in multiple places,

and we mention two use cases here: the first is direct representation of descriptors.

These may be descriptors of local image regions (such as SIFT) or descriptors of

the entire image (such as GIST (Oliva and Torralba, 2001), PHOW (Bosch et al.,

2007), VLAD (Jégou et al., 2010b) etc). The second is in large scale object retrieval

systems, where descriptors are first quantized and an inverted index then used for

fast access, and the residual (the difference between the cluster centre and original

descriptor) is compressed for finer descriptor matching (Jégou et al., 2008, 2011a).

As far as we know there has been no scheme similar to SCT proposed before.

The closest work is Chandrasekhar et al. (2011), which, like SCT, exploits the fact

that descriptor ordering is not important. However, their method is aimed at lossless

compression for sets of binary vectors rather than the approximation for real vectors

targeted here. Note, k-d trees have long been employed for efficient and approximate

nearest neighbour algorithms (Amit and Geman, 1997, Muja and Lowe, 2009, Silpa-

Anan and Hartley, 2004). Our objective is very different though – we aim for
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compression, whereas previous uses have stored all the original vectors (leading

to an increase in storage requirements as the parameters of the tree must also be

stored).

8.2 Set Compression Tree (SCT) encoding

The objective of the Set Compression Tree (SCT) is to provide an extremely low

bit-rate lossy compression of a set of descriptors. It can be used for brute-force

nearest neighbour search by decompressing the descriptors from the SCT encoded

set one by one and comparing them to the query vector. Section 8.4 explains how

SCTs can be used for approximate nearest neighbour search.

Current methods for obtaining a compressed representation of descriptors all focus

on compressing each descriptor individually. For very low bit-rate scenarios this

approach is infeasible as many descriptors get assigned to the same value thus making

it impossible to discriminate between them. Nearest neighbour search in such a

system would have extremely low precision.

We instead focus on compressing all descriptors jointly such that the amortized

cost of storing a descriptor is extremely low. This is achieved by not storing any

information on a per-descriptor basis, but representing all descriptors together via

a single binary tree. All of the storage requirements for descriptor representation

are contained by the encoding of this binary tree. The compression method, i.e.

tree building and encoding is described here, followed by implementation details in

section 8.2.1.

The method proceeds by dividing the descriptor space by a sequence of binary
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(a) 1st step; code = C (b) 2nd step; code = C

1:C

2:C

3:F

(c) 3rd step; code = F

1:C

2:C

3:F

4:A
5:F

6:D

7:F

(d) Final tree

1:C

2:C

3:F

4:A
5:F

6:D

7:F

(e) Reconstruction

Symbol Code
Number
in child

1

Number
in child

2

A 0000 = 0 > 1
B 0001 > 1 = 0
C 01 > 1 > 1
D 0010 > 1 = 1
E 0011 = 1 > 1
F 1 = 1 = 1

(f) Split outcomes and codes

Final tree encoding: CCFAFDF Set tree encoding: 01 01 1 0000 1 0010 1
Bitrate: 15/7 = 2.14 bits per vector

Figure 8.1: SCT encoding. The aim is to encode the seven 2-D vectors (black
stars) by a sequence of binary partitions of the space (delimited by the outside
rectangle). In (a)-(e) the space splits are shown in blue, thicker lines correspond
to splits at levels closer to the root of the tree. (a)-(c) The first three steps in the
tree construction. The construction (i.e. splitting bounding spaces) stops once all
regions contain at most one descriptor; the final tree separating all seven vectors is
shown in (d). Next to each split its ordinal number in the sequence of splits is shown
together with the code recording the outcome of the split. (f) The list of possible
outcomes and their corresponding codes. For example, the second split (b) is shown
as 2:C, the table states that C means there is more than one vector in each of the
newly created cells. (e) the vectors are represented by the centroid (red circles) of
the final cells. Vector decompression is based solely on the tree, which is encoded by
the sequence of split outcomes (15 bits, i.e. 2.14 bits per vector), and the centroids
generate the reconstructed vectors.
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400 data points

(a)

SCT, 3.05 bit, MSE= 0.011

(b)

SCT, 3.05 bit, final cells

(c)

K−means clustering, 4 bit, MSE= 0.231

(d)

SCT, 4 bit, MSE= 0.005

(e)

SCT, 4 bit, final cells

(f)

Figure 8.2: Compression example. All plots show a 2-D feature space, 400 syn-
thetically generated 2-D points are shown in blue, green lines show the displacement
between the original point and the approximation, magenta lines depict cells (i.e.
uncertainties) associated with quantized descriptors. (a) The 400 points and the
16 GMM means (red circles) used to generate them. (d) Representing the data
with 4 bits per point by using the closest cluster centre (16 clusters, red circles, are
obtained through k-means); the errors (depicted by long green lines) are large. (b)
SCT encoding; with as little as 3.05 bits per point the errors are very small, with
MSE (mean squared error between the original and reconstructed points) being 21
times smaller than for k-means; (c) shows the cells associated with each point; the
point is finally represented by the centroid of the cell. (e) Tree encoding; at the
same bit-rate (4 bits per point) as the k-means method; MSE is 46 times smaller.
(f) shows the cells associated with each point.
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splits that are predetermined and independent of the data to be compressed. After

a number of divisions, a cell will only contain a single vector, and that vector is

represented by the centroid of the cell. The method is best explained through an

example, and Figure 8.1 shows the compression and encoding steps for the case of

seven descriptors in a 2D space. The resulting representation uses only 2.14 bits per

descriptor.

The key idea underpinning SCT encoding is that a single split contributes infor-

mation to many descriptors; for the example in figure 8.1(a) the first split, encoded

with two bits, halves the space for all seven descriptors, so for 0.29 bits per descrip-

tor their positional uncertainty is halved. If, instead, every descriptor is encoded

individually halving the feature space would cost 1 bit per descriptor.

To summarize the method, the encoding algorithm starts from a root bounding

space which contains all descriptors and proceeds by a sequence of binary space

partitions. A bounding space S is divided in a predefined manner independent of

the descriptors it contains, for example, an axis aligned split is chosen such that the

longest edge of the space is divided in half (the split sequence is explained in full in

section 8.2.1). The split of the space S partitions it into two spaces A and B (i.e.

such that A ∪B = S and A ∩B = ∅), then all that is recorded at each split is the

“outcome” of that split, i.e. information on the number of descriptors in A and B,

denoted as |A| and |B| respectively. All outcomes fall into six categories that are

recorded (figure 8.1(f)): (i) |A| = 0, |B| > 1, (ii) |A| > 1, |B| = 0, (iii) |A| > 1,

|B| > 1, (iv) |A| > 1, |B| = 1, (v) |A| = 1, |B| > 1, (vi) |A| = 1, |B| = 1. Note, a

space is split only if the number of elements |S| is larger than one. Consequently,

options {|A| = 0, |B| = 1} and {|A| = 1, |B| = 0} are not possible since, |S| > 1
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and A ∪B = S thus |A|+ |B| > 1.

After the encoding, the entire data set is simply represented by the sequence

of splits outcomes. This sequence is all that is required to reconstruct the space

partitions (and thereby the centroid of the cell which represents the original vector).

Decoding is analogous to the encoding procedure: the process starts from the root

bounding space retracing the same sequence of binary splits as the encoding. A

bounding space S is divided in the same predefined manner as used in the encoding

(e.g. by halving the longest edge) and the split outcome is obtained from the SCT.

If any of the children cells contains only a single descriptor, it is reconstructed using

the cell centroid. The splitting of remaining cells which are known to contain more

than one descriptor is continued in the same fashion, until none remains and the

whole set of descriptors will then have been decompressed.

Figure 8.2 illustrates the benefit of using the SCT representation. 400 2-D data

points are generated by sampling from a Gaussian mixture model with 16 Gaussian

components. Compressing this data with 4 bits per descriptor by approximating

a point with its closest cluster centre, out of 24 = 16 clusters, yields very large

quantization errors. The centres in this example are obtained using k-means (note

that at such a low bit-rate product quantization (Jégou et al., 2011a) degenerates to

simple k-means), but any division of the space into 16 regions is bound to do similarly

poorly. This is because on average 400/16 = 25 points are assigned the same 4-

bit code (corresponding to one region) and are thus completely indistinguishable

between each other. However, quantizing the points jointly by sharing information

between them performs very well, achieving a 21 times smaller mean squared error

than k-means with only 3.05 bits per descriptor.
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8.2.1 Implementation details

In this section technical details are discussed; they are sufficient to fully reproduce

the experiments. The summary of all the steps of the SCT algorithm is given in

figure 8.3.

In the case of nearest neighbour search there are three datasets involved: a training

set, the database to be encoded, and the query set. The query set contains all the

query vectors, and the database set contains the vectors on which nearest neighbour

search will be performed, i.e. it contains the vectors that should be compressed. The

training set is used to learn all the required parameters in an unsupervised way (for

example PCA) and, in general, should be distinct from the database to be encoded

in order to avoid implicitly storing database information in the learnt parameters.

For an extreme example, one could “compress” a database of 1 million vectors by

“learning” a 1 million dictionary identical to the database, and then representing

the database using 20-bits per vector word ID thus achieving perfect representation

at quite a low bitrate.

Requirements. An important requirement for SCT is that each component of the

vector has a lower and an upper bound. The requirement is not very restrictive as

this is the case with all commonly used descriptors, e.g. SIFT is bounded by 0 and

255 in each dimension.

Split choice. For a given cell, splits are determined in the following manner: The

dimension to be split is chosen to be the one with the largest difference between

the upper and lower bounds. It is straightforward to see that choosing to split

the cell across its largest extent minimizes the expected approximation error for
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(a) Training

1. Compute PCA, keep D principal components for the training set V

2. Use a random rotation matrix R (D ×D) to rotate the training set to get Ṽ

3. For each dimension i in [1, D]:

Store the distribution of values Ṽ at dimension i, and lower (Li) and upper (Ui) bounds

(b) Encoding

1. Rotate the D principal components of database descriptors by R

2. Create the root bounding space, bounded by [Li, Ui] for dimension i, and associate all database
descriptors with it

3. Find a bounding space S (depth-first) containing more than one descriptor; if none found go to step
(7)

4. Set d = arg maxi(u
S
i − lS

i ) and s = median({Ṽi,d|i : Ṽi,d ∈ [lS
i , uS

i ]})
5. Create cells AS and BS by splitting cell S at dimension d and position s, move each descriptor from

S into AS or BS depending on which space they are bounded by

6. Encode the split outcome, see figure 8.1(f), and go to step (3)

7. Compute optimal Huffman coding for the recorded frequency of split outcomes, store it using 18 bits
and re-encode the tree by replacing old codes with new, optimal ones

8. Refine final non-empty bounding spaces by splitting them additionally, using one bit per split

(c) Decoding

1. Create the current cell C bounded by [lC
i , uC

i ] = [Li, Ui] for dimension i. Set |C| to > 1

2. If |C| = 1, refine C by reading codes created in (b.8) and output its centroid rotated by R−1

3. If |C| ≤ 1, set C to be equal to its parent, go to step (2)

4. If this is the first time C is visited:

Create cells AC and BC by splitting dimension d at s, obtained in the same way as in (a.4)

Decode the split outcome and assign |AC | and |BC | to values 0, 1 or > 1 accordingly

5. If AC was not visited, set uC
d = s (i.e. C ← AC) and go to step (2)

6. If BC was not visited, set lC
d = s (i.e. C ← BC) and go to step (2)

7. If parent exists, set C to be equal to it and go to step (2), otherwise exit as all nodes have been visited

(d) Nearest neighbour search

1. Project the query descriptor to the D principal components to obtain q

2. Use (c) to decode the tree, at step (c.2) compare q with the outputted value

Figure 8.3: SCT algorithm summary. Lower and upper bounds for cell S in
dimension d are denoted as lS

d and dS
d , respectively. Training data is referred to

as V , the value of vector i at dimension d is Vi,d. Note that for nearest neighbour
search one would actually also rotate q in step (d.1) by R and modify step (c.2) not
to rotate the outputted centroid by R−1, thus improving the speed.
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a descriptor (for example, imagine a degenerate 2-D cell where the extent in the x

direction is long while the extent in the y direction is infinitesimal – splitting y would

not be beneficial). Experiments confirm that pseudo-randomly choosing splitting

dimensions (and recording the random seed in order to be able to reconstruct the

tree) yields an inferior MSE to our scheme. The order of the splits is determined by

always choosing the left child region first.

For a given cell and splitting dimension, the place of the split is determined with

the aim of balancing the tree; a balanced tree is likely to produce similar sized cells

for all descriptors thus resulting in similar magnitudes of reconstruction errors. The

split is chosen according to the median value of the training data in the splitting

dimension (clipped by the cell). Alternatively one can simply split the space in

half, however this choice could lead to an unbalanced tree depending on the data

distribution. A histogram for each component is retained to efficiently compute the

median.

In summary, only the following information is stored from the training data in

order to generate the split sequence: (i) upper and lower bounds for each dimension

(in order to create the first, root cell); (ii) a histogram of training data values for

each dimension (e.g. for SIFT, 128 histograms are stored).

Note, it is essential to have a cell splitting strategy that does not depend on the

data inside the cell (as above). Otherwise the sequence of splits needs also to be

stored, as one would do with a k-d tree, and this will incur a considerable storage

cost.

Optimal binary encoding. The six outcomes of splits are encoded using optimal

variable length binary codes. To achieve this tree encoding is performed in two
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stages. In the first stage splits are simply encoded using predefined suboptimal

binary codes. During this stage, occurrence counts for each of the six outcomes

are obtained. In the second stage, the tree is re-encoded by replacing the initial

suboptimal codes with optimal ones. Huffman coding (Huffman, 1952) is used to

obtain optimal variable length binary codes by utilizing the recorded frequency of

the six split outcomes. Storing the Huffman tree requires 18 bits in total and is

certainly worth the reduced storage requirement for the tree representation.

Finer representation. It is simple to obtain a finer representation of a descriptor

by increasing the bit-rate: the cell associated with it can be additionally split with

a rate of 1 bit per split, encoding on which side of the split the descriptor is. Based

on the desired bit-rate, the additional available bits can be equally distributed to

refine each of the final bounding spaces, however, it is better to bias the refinement

towards large bounding spaces (i.e. descriptors which have been represented poorly).

Dimensionality reduction. SCT encoding is not appropriate to use when the

dimensionality of the descriptor vector is large compared to log2N , where N is

the number of descriptors to be compressed. For example, compressing 1 million

descriptors is expected to yield a tree of depth 20 (log2(1M)), as it is approximately

balanced, meaning that at most 20 dimensions will be split in order to obtain a final

bounding space for each descriptor. Trying to compress 128-D SIFT descriptors

with 20 splits would result in large approximation errors as at least 108 dimensions

would remain unchanged and thus not convey any information about the value of

the descriptor in any of the 108 dimensions. For this reason it is recommended to

first perform dimensionality reduction on the data. We chose to zero-centre the

data followed by principal component analysis (PCA), keeping only D dominant
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directions. Since the variance of different components is not balanced we subject

the D-dimensional vectors to a random rotation (Gong and Lazebnik, 2011, Jégou

et al., 2010b), otherwise one would need to bias the choice of splitting directions

towards the components which carry more information.

Obtaining the ID corresponding to a vector. As decompressing the SCT per-

mutes input vectors according to the depth-first traversal of the tree, one might

wonder how can one preserve the identity of the decompressed vectors without stor-

ing additional (costly) information. For example, in an image retrieval system, a

retrieved feature vector (e.g. GIST (Oliva and Torralba, 2001), VLAD (Jégou et al.,

2010b)) must be associated with its original image.

Here we distinguish two cases based on the nearest neighbour search strategy: (a)

linear traversal, and (b) large scale retrieval using indexing.

In case (a), existing compression methods produce compressed vectors in the same

sequence as input vectors, by for example product quantizing each vector in turn, and

thus do not need to store any additional meta information to preserve the compressed

vector identity (the original order may simply be alphabetical from file names). For

example, returning the third compressed image descriptor means the system should

return the third image in the image database. Thus the correspondence between

compressed vector and original image is stored implicitly.

For SCT, the order of the reconstructed vectors depends on the order of the tree

traversal and not the original order, thus SCT seemingly requires extra information

to store the permutation of the vectors. However, this is not the case, for example

the original images can simply be permuted so that the ‘canonical ordering’ of the

images is the same as that of the decompression order.
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More practically, the correspondence between the reconstructed vector order num-

ber can be stored in a look up table (LUT) that maps from order number to identity

(e.g. its URL). All existing methods employ a LUT or some predefined ordering of

the data. For example, an image retrieval system which represents each image using

a single descriptor needs to be able to identify an image in some way from the re-

trieved descriptor. For images of Flickr or the web, a LUT is used to map between

feature descriptor and URL.

In case (b), large scale retrieval, the situation is different, as the data is typically

not traversed linearly. Instead, the dataset feature vectors may be grouped in some

fashion, for example by vector quantizing, or accessed via an inverted index (Sivic

and Zisserman, 2003) (an example is discussed in more detail in section 8.4). In such

cases an explicit LUT is required (e.g. between the entries of a posting list and the

URLs of the images). Again, this requirement applies to any compression method.

To summarise, in spite of permuting the order of the input vectors, the SCT is

capable of preserving vector identities without any additional storage requirements

over those of other compression methods.

8.3 Evaluation and results

In this section we compare the compression, accuracy and retrieval speed of SCT to

a number of other standard methods.
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8.3.1 Datasets and evaluation procedure

We evaluate the performance of the SCT on two standard datasets: (i) the SIFT1M

dataset of Jégou et al. (2011a), and (ii) the 580k GIST descriptors used by Gong

and Lazebnik (2011), which is a subset of the 80M Tiny Images dataset (Torralba

et al., 2008). For both we follow the standard evaluation procedure of the authors,

as summarized next.

1M SIFT descriptors (SIFT1M) (Jégou et al., 2011a). This dataset is com-

monly used for evaluating approximate nearest neighbour methods, with an em-

phasis on low bit-rate descriptor representations for image search, as it consists of

SIFT (Lowe, 2004) descriptors. It contains 10k query descriptors, 100k descriptors

used for training, and 1 million database descriptors. The descriptors are from the

Holidays dataset (section 3.1.3) and Flickr images. Search quality is evaluated as

the average recall of the first nearest neighbour at R retrievals (usually set to 100)

for each query, i.e. the proportion of query vectors for which the Euclidean nearest

neighbour using SIFT is ranked within the first R retrievals using the approximating

method.

580k Tiny Images (Tiny580k) (Gong and Lazebnik, 2011). This dataset

contains 580k images and is a subset of the Tiny Images dataset (Torralba et al.,

2008); the images are represented by 384-D GIST descriptors (Oliva and Torralba,

2001). It is randomly split into 1k query descriptors and 579k database descrip-

tors which are also used for training; performance is measured across five different

random splits of the data.

For this dataset the search performance is evaluated in three different ways, we
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will refer to them as mAP-50NN, AP-thres and mAP-thres. The first method (mAP-

50NN ), is based on the precision-recall curves proposed by the creators of the Tiny

Images dataset (Torralba et al., 2008). The 50 true nearest neighbours for each

query are labelled as positives, and the performance is evaluated as mean average

precision (mAP) across the queries.

The latter two criteria (AP-thres and mAP-thres) concentrate on measuring dis-

tance preservation from the original descriptor space (in this case GIST) to the new

space, thus measuring the effectiveness of hashing schemes to preserve neighbour-

hood relations. For these cases, a set of “good neighbours” is determined by choosing

a global distance threshold T (obtained by taking the mean distance to the 50th

nearest neighbour), and labelling a descriptor as a positive for a particular query if

its Euclidean distance from the query is lower than the threshold T . This method for

ground truth generation was proposed by Weiss et al. (2008) and adopted by (Gong

and Lazebnik, 2011, Raginsky and Lazebnik, 2009). However, there is a problem

with the associated performance evaluation method, which we refer to as AP-thres.

In this evaluation method there are Q queries, and an algorithm is evaluated over

all pairs of query-database points (i.e. there are Q×N ground truth pairs, where N

is the database size). All pairs are sorted based on their distance in the compressed

space, and the AP computed from the precision-recall curve.

The problem is that the test data is extremely unbalanced: 50% of the queries

have less than 22 positives, while 7% have more than 30k positives. This means

that as long as a system performs well on the 7% of the queries (i.e. these are

retrieved correctly and first) then it will reach a “good” AP value, regardless of

its poor performance on 93% of the queries. As will be seen in section 8.3.3 a
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compression algorithm that simply clusters the database descriptors into 16 clusters

using k-means (and so reduces the data to four bits) performs better under AP-thres

than all the other methods with 16 bits. As a consequence of this insensitivity, the

evaluation using AP-thres is quite misleading.

To account for this imbalance we propose to also measure performance in terms

of mean average precision (mAP), i.e. the mean of the average precision for each

query, and refer to this as mAP-thres.

In summary, the mAP-50NN criterion is the most useful one of the three when

evaluating image retrieval as it directly measures the ability of a system to return

relevant results for any query image.

8.3.2 Baselines

SCT is compared to several state-of-the-art methods at various bit-rates, we briefly

summarize them here.

(i) Product Quantization (PQ) (Jégou et al., 2011a): Each descriptor is split into m

parts and each part is vector quantized independently using k cluster centres, thus

having a m · log2(k) bit code per descriptor.

(ii) Locality Sensitive Hashing (LSH) (Andoni and Indyk, 2008): The code is com-

puted by taking the signs of descriptor projections onto random hyperplanes (nor-

mals are sampled from an isotropic Gaussian) with random offsets, the Hamming

distance between descriptors encoded in such a way is closely related to the cosine

similarity between the original vectors.

(iii) Shift Invariant Kernels (SIK) of Raginsky and Lazebnik (2009): The code is
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(c) Tiny 580k
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Figure 8.4: Comparison of SCT with state-of-the-art. Best viewed in colour;
note the log scale for mAPs in (b) and (c). The different curves associated with PQ
correspond to different numbers of sub-quantizers (from left to right: 1, 2, 4, 8),
the combinations of settings reproduce the ones used in the original paper (Jégou
et al., 2011a). SCT outperforms all methods at low bit-rates for both datasets
and all evaluation measures apart from AP-thres, where the test data is extremely
unbalanced and the measure inappropriate (see the discussion in section 8.3.1). SCT
continues to dominate all competing methods at higher bit-rates as well.

computed by taking the signs of random Fourier features with random offsets.

(iv) PCA with random rotation (RR) (Gong and Lazebnik, 2011, Jégou et al.,

2010b): Data is zero-centred and the most significant D principal components are

kept and randomly rotated. The D dimensional code is obtained by taking signs of

each dimension.

(v) Iterative quantization (ITQ) (Gong and Lazebnik, 2011): Gong and Lazebnik use

the RR method and then proceed to iteratively find the rotation which minimizes

quantization errors.

(vi) Spectral Hashing (SH) (Weiss et al., 2008): The coding scheme is obtained

deterministically by trying to ensure that similar training descriptors get hashed to

similar binary codes. This is a NP-hard problem so their approach is to solve a

relaxed optimization problem.
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Methods (ii)-(vi) rank descriptors based on their Hamming distance from the query

which is binarized in the same fashion. For product quantization (i) the asymmetric

distance computation method (Jégou et al., 2011a) is used since Jégou et al. report

it to be superior; the distance between the query and a database vector is approx-

imated by the distance between the raw (non-quantized) query and the quantized

representation of the database vector.

We use publicly available code for all of the baseline methods and replicate the

results in (Gong and Lazebnik, 2011, Jégou et al., 2011a), these two papers together

cover all the baseline methods.

8.3.3 Results and discussion

Figure 8.4 shows the comparison of SCT with the baseline methods. SCT clearly

outperforms all competing methods at very low bit-rates on both datasets and us-

ing all evaluation metrics. For example, on the SIFT 1M dataset SCT achieves a

recall@100 of 0.344 at 4.97 bits per descriptor, while the next best method, product

quantization, achieves 0.005 at 6 bits, i.e. 69 times worse. Even at 16 bits, i.e. 3.2

times larger, PQ only reaches 55% of SCT performance at 4.97 bits per descrip-

tor. The next best method after SCT is PQ, and PQ is then superior to all other

methods.

Despite the very low bit-rate, SCT by construction represents all database de-

scriptors distinctly, thus making it possible to distinguish between them and rank

them appropriately. In contrast, all other methods, by quantizing each descriptor

individually into a small number of bits, effectively identically represent a (possi-

bly very large) set of database descriptors, as previously illustrated in Figure 8.2.
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This means that, for example, using the Tiny 580k dataset and four bits per de-

scriptor, on average a descriptor has the same representation as another 36k ones;

it is impossible to rank the first 36k results for a given query, as any of the 36k

factorial permutations is equally likely under these representations. This argument

also shows that performance evaluation based on AP-thres is very misleading. For

example, PQ under AP-thres achieves an AP of 0.459 with 4 bits per descriptor.

The reason for such a “good” performance is the fact that the test data associated

with AP-thres is extremely unbalanced, as explained in section 8.3.1.

Figure 8.5 shows qualitative retrieval results on the Tiny 580k dataset. As expected

from the quantitative evaluation shown in figure 8.4, SCT performs much better than

the state-of-the-art methods while representing descriptors using three times fewer

number of bits.

Dimensionality reduction. Figure 8.6 shows the performance of SCT as a func-

tion of the number of principal components (PC) used and bit-rate. It can be seen

that, as expected, at extremely low bit-rates performance drops with increasing

number of PCs due to increasing approximation errors. However, increasing the

bit-rate by further splitting final bounding spaces makes it again appropriate to use

SCT with this larger number of PCs, which in turn improves the performance as

the underlying data is represented more accurately using more PCs.

For a given number of PCs, it is also important to note that the SCT performance

reaches the upper bound (i.e. the performance that is obtained by using raw de-

scriptors with the same number of PCs) at quite low bit-rates. For example this

point is reached at 32 bits per descriptor for 16 PCs, so only two bits per dimension

are sufficient to encode a value which would commonly be represented using 32 or
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Queries Queries

Raw GIST, 16 PCs Spectral Hashing (SH), 16 bits

Set Compression Tree (SCT), 5.35 bits Product Quantization (PQ), 16 bits

Set Compression Tree (SCT), 16 bits Iterative quantization (ITQ), 16 bits

Figure 8.5: Retrieval quality on Tiny 580k dataset. Best viewed in colour.
First row shows twelve example queries, each of the remaining six blocks show the
top five retrieved images for each of the queries. Set Compression Tree (SCT) at
only 5.35 bits per descriptor outperforms state-of-the-art methods, namely Spectral
Hashing, Product Quantization and Iterative Quantization, while using three times
less storage for descriptor representation. Using SCT with 16 bits per descriptor
further improves retrieval quality. Note that other methods are not capable of even
finding near-duplicate images at such low bit-rates.

64 bits (single or double floating point number).

Fast and low memory footprint of coding and decoding. All timings are

measured on a laptop using a single 2.66 GHz processor. The un-optimized pro-

gram compresses 1 million SIFT descriptors using 32 principal components in 14



8.4 Discussion and recommendations 181

seconds, while decompression and nearest neighbour search take 0.5 seconds. The

search time scales linearly with the number of database descriptors, searching 580k

GIST descriptors (again using 32 principal components) takes 0.26 seconds. In the

decoding stage not all of the cells need to be stored in memory at once – the tree

is traversed depth-first, so only a single cell representing the “current” node is kept

at any one time. Once a leaf node or a node with already visited children is en-

countered, the current bounding space is reverted to its parent’s bounding space.

For this to be possible only a small amount of additional information needs to be

maintained for each previous split in the current path from the root node, which is

quite short as for 1 million descriptors the depth of a balanced tree is equal to 20.

8.4 Discussion and recommendations

In this section we discuss the properties of SCT, its advantages and disadvantages

compared to other encoding methods, and three use cases for it.

Unique description. Every descriptor is assigned a unique bounding space, and

all bounding spaces are disjoint. This means that even in areas of high descriptor

density it is still possible to discriminate between descriptors, a characteristic which

does not exist in any of the competing methods. This could potentially be used

to disambiguate between descriptors using a second nearest neighbour test (Lowe,

2004).

Asymmetric in nature. As noted by Jégou et al. (2010b), it is beneficial not to

have to quantize query vectors when performing nearest neighbour search, as this

obviously discards relevant information. SCT is asymmetric at its core as query
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Figure 8.6: Influence of the number of principal components (PC) on SCT
performance with varying bit-rates. At extremely low bit-rates performance
drops with increasing number of PCs due to increasing approximation errors. How-
ever, increasing the bit-rate by further splitting final bounding spaces makes it again
appropriate to use SCT with this larger number of PCs, which in turn improves the
performance as the underlying data is represented more accurately using more PCs.
The performance for each scenario (number of PCs) saturates at “large” bit-rates,
each of the saturation levels has been verified to be equal to the actual performance
when using raw database descriptors with the same number of PCs. This shows that
SCT reaches maximal possible performance at what is actually quite a low bit-rate
(see figure 8.4(a)).

vectors are compared directly to the reconstructed database vectors.

Making the representation finer. As described in section 8.2.1, by increasing

the bit-rate: the cell associated with it can be additionally split with a rate of 1 bit

per split, encoding on which side of the split the descriptor is. Other schemes are

certainly possible, e.g. representing the residual (the difference between the original

descriptor and the reconstruction) with any of the other methods such as product

quantization, LSH or ITQ.

Small dimensionality requirement. As discussed in section 8.2.1, SCT is not

applicable when the number of splits per descriptor is smaller than the data dimen-
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sionality, since in this case many of the dimensions are not split thus causing large

approximation errors. To compress vectors of large dimensionality using the SCT

requires dimensionality reduction via PCA. Note that the requirement for “small”

descriptor dimensionality is not as limiting as it might seem as PCA is commonly

used for compacting descriptors such as VLAD (Jégou et al., 2010b) or even SIFT

(Sánchez and Perronnin, 2011). There are many cases where “small” descriptors are

used, e.g. Google’s CONGAS descriptors are 40-D (Zheng et al., 2009), Simonyan

et al. (2012) achieve impressive performance with 60-D, while Jégou and Chum

(2012) demonstrate very good performance when reducing 130k-D VLAD vectors

using PCA down to 128-D.

Furthermore, all baselines apart from PQ perform dimensionality reduction: RR

and ITQ start from PCA (bitrate equals the number of PCs), LSH and SIK use

random projections or Fourier features (bitrate equals the number of projections),

and SH learns the projections from training data (bitrate equals the number of

projections). Thus all methods apart from PQ actually suffer from a much worse

problem than SCT since, for example, for 8 bits ITQ is forced to use only 8 PCs.

Adding descriptors to the database. For applications where the image database

grows in time it is important to be able to add descriptors efficiently to the SCT.

Adding a single descriptor does not disturb the tree structure much (e.g. imagine the

example in figure 8.1 where a point is left out and added to the tree after the tree is

built) as the sequence of splits is independent of the compressed data. Thus, all the

split outcomes will remain the same (i.e. the tree does not need to be re-encoded)

apart from the split that creates the leaf node (cell) that contains the new descriptor.

By construction, if the cell is not empty then it contains exactly one descriptor and
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new splits are added in the same manner as when the original tree was built, i.e.

until a split is encountered which discriminates between the two descriptors, namely

the “old” and the “new” one. Thus, adding a descriptor to the SCT is very efficient

and only requires access to at most one original database descriptor (zero if the

relevant leaf cell is empty). Note that for the same operation none of the baselines

requires access to the original descriptors. However, this limitation is not significant

as the original descriptors do not need to be stored in RAM but can be stored on

disk.

Use cases. SCT has been demonstrated to perform well for the problem of large

scale image retrieval (section 8.3.3), searching a database of 580k images (represented

by GIST descriptors) in 0.26 seconds. Since query-time speed is linear in the number

of descriptors, with no changes to the system up to 7 million images can be searched

immediately (3 seconds per query) on a single core. SCT can easily be parallelized,

thus enabling 30 million images to be searched on a typical quad-core computer.

Note that storing 30 million descriptors at 6 bits per descriptor requires only 23

MB.

For larger scale databases with billions of images memory requirements would still

remain low, however processing power would be the limiting factor as a linear scan

through the data is infeasible. In this case one can, in the manner of Jégou et al.

(2008, 2011a), vector quantize the database descriptors coarsely and use SCT to

compress the residual. At search time the query descriptor is vector quantized and

only compared to database descriptors quantized to the cluster through the use of

an inverted index (Sivic and Zisserman, 2003), while the SCT encoded residual is

used for refining the matches. Searching 1 billion images quantized into 1k clusters
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would thus take about half a second using a single core processor (i.e. to decompress

a single cluster containing 1M descriptors).

The same system can be used for large scale object retrieval where database images

are typically represented using 1k local descriptors (e.g. SIFT (Lowe, 2004)). For

this use case a query image is also represented using 1k descriptors, thus the same

number of nearest neighbour searches would need to be issued. Searching 1 million

images by quantizing the 1 billion database descriptors into 100k clusters and using

4 processing cores would yield results in 1.25 seconds (i.e. to decompress 1k clusters

each containing 10k descriptors).

Summary. The Set Compression Tree (SCT) hugely outperforms all competing

methods at extremely low bit-rates, making it the only tool of choice for very large

scale retrieval purposes, where it is critical for fast retrieval that all the relevant

data fits in RAM.



Chapter 9

Conclusions

In this chapter we summarize the achievements of the work presented in this thesis

and discuss future research directions.

9.1 Achievements

In this thesis we have proposed several methods for improving large scale object

retrieval. In chapter 4 we have proposed three methods to improve bag-of-words

based retrieval methods, resulting in setting the state-of-the-art performance for all

considered datasets (Oxford 5k, Oxford 105k, Paris). These results have still not

been topped, though various other methods achieve competitive results under dif-

ferent setups (e.g. using independent vocabularies, additional training data or larger

storage requirements), including Mikulik et al. (2010) and Tolias and Jégou (2013).

Furthermore, in the same chapter we have introduced a new way of comparing the

SIFT descriptors (RootSIFT) which has proven useful in non-retrieval applications
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as well; section 4.7 discusses the impact of this work in more detail.

In chapter 5 we worked on improving compact image representations, used in

very large scale retrieval systems. In particular, we proposed improvements to the

VLAD descriptor which set the state-of-the-art retrieval performance for both mid-

dimensional (20k-D to 30k-D) and small (128-D) descriptors. Some of these results

have been topped by the more recent works of Zhao et al. (2013a) and Delhumeau

et al. (2013).

We also proposed to improve object retrieval by using multiple query images (chap-

ter 6) and achieved a substantial increase in recall via this approach. Furthermore,

we implemented a system capable of answering textual queries on-the-fly, which

downloads representative images from Google and uses them to visually query the

target image corpus. This is an important and useful search modality, as recognized

by the later work of Fernando and Tuytelaars (2013).

Smooth textureless objects have been ignored for quite some time in object re-

trieval, mainly because they are difficult to handle. In chapter 7 we have introduced

a bag-of-boundaries representation and demonstrated good retrieval performance in

a challenging dataset containing smooth sculptures. We have also combined the bag-

of-boundaries method with the traditional bag-of-words to visually search general

(i.e. not only smooth) sculptures. This system was used to automatically name the

imaged sculpture by exploiting Flickr meta-data associated with retrieved images.

Finally, in chapter 8 we have proposed a method, Set Compression Tree (SCT),

for compressing sets of descriptors, useful for large scale memory-efficient approx-

imate nearest neighbour search. The main novelty of SCT is that descriptors are

compressed jointly thus enabling sharing of information resulting in very large com-
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pression rates. Due to SCT’s impressive performance, we believe that we have

started a very promising line of research into joint descriptor compression.

9.2 Future work

This section discusses some potentially promising directions for future work, as well

as burning issues in large scale object retrieval for which we believe it is important for

researchers to solve. They are organized by relevant topics which loosely correspond

chapters in this thesis.

Matching descriptors

• It has long been noted that the bag-of-words based methods are quite sensitive

to the choice of a visual vocabulary (Philbin et al., 2008). Similar problems

occur in memory-efficient approximate nearest neighbour search (ANN) which

starts with vector quantization (Jégou et al., 2008, 2011a), namely, the ANN

search performance suffers if the quantization is learnt on an independent

image dataset. This behaviour is quite unsatisfactory as it means that search

quality worsens as images are added to the corpus, which is often the case in

real-life where the target image corpus grows with time (e.g. like it is the case

with Google, Facebook, Flickr, etc), unless the visual vocabulary is periodically

rebuilt and all database images are reindexed. We believe further research is

needed in order to find a way of constructing and using a single universal

vocabulary which would achieve close, or even better, performance compared

to the vocabulary built on the target dataset.
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• As discussed in section 2.1.2, large scale retrieval by performing approximate

nearest neighbour search for query descriptors is a promising research direc-

tion. Even though a few methods have been proposed (Jégou et al., 2008,

2011b, Qin et al., 2013), it is still an open question how exactly to use the

estimated descriptor distances to rank images.

• The work in this thesis has initiated the use of classification methods for large

scale object retrieval (section 4.3). Even though a few approaches with the

same motivation have appeared since (Cao and Snavely, 2013, Chen et al.,

2012, Gronat et al., 2013), we believe further investigation into discriminative

learning for instance retrieval is needed. Amongst others, it would be useful to

investigate the following two problems. Firstly, mining hard negatives is known

to be very beneficial for discriminative methods but it is not clear how to do it

automatically in an object retrieval scenario, where no labelled training data

is available (apart from using GPS information like in (Gronat et al., 2013)).

Secondly, all current approaches rely on the bag-of-words framework; it would

be interesting to investigate discriminative approaches for methods that rely

on accurate descriptor matching (section 2.1.2).

• Failures of traditional systems based on matching local descriptors are often

shocking to a human. It seems it should be “easy” to discover false positive

retrievals as the matching descriptors do not cover the entire object of interest

and there are many regions which do not match. However, in reality it is

quite hard to automatically estimate if two regions should not match, due

to imperfect feature detection and description, as well as potential partial

occlusions.
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• The problem of burstiness of visual features (Jégou et al., 2009b) has been

addressed in past by accounting for its effect when computing the similarity

of images without spatial reranking (section 2.1.1.4). We have noticed that

current spatial verification techniques are quite prone to errors when bursty

images are considered, falsely verifying a match purely due to the fact that

there are many putative feature correspondences thus making it likely to find

a geometric transformation which accidentally has sufficient support. Fur-

ther improvements of spatial verification are required in order to prevent false

matches for bursty images.

Multiple query images

• Though effective, our method for using multiple query images can be prone to

mistakes caused by outlier query images. Thus, it is likely that preprocessing

query images, in order to remove outlier images or features, would improve

the retrieval quality. Recent work by Fernando and Tuytelaars (2013) mines

representative patterns in query images in order to remove outlying features.

However, this is not an easy task as one has to be careful not to remove rare

but useful features and thus deteriorate recall; this is exactly what happened

in some of our early experiments on this topic.

Smooth object retrieval

• We focused our work on sculptures and relied on being able to perform au-

tomatic segmentation, though our method is somewhat robust to some seg-

mentation failures. However, having to perform automatic segmentation is
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unsatisfactory as no such step is required for the very successful retrieval of

textured objects. In order to truly bring smooth object to the same level as

textured objects, i.e. enable retrieval of any smooth object and not just partic-

ular classes of objects like sculptures, it seems necessary to abandon automatic

segmentation. It is not clear how to tackle this problem, but we insist it is

a very important problem to solve and ignoring it will damage the Computer

Vision community.

Set compression

• As demonstrated in this thesis, joint compression of vectors is a promising

research direction. We have applied our SCT algorithm on the problem of

memory-efficient approximate nearest neighbour search, however, we believe

many more uses exist. For example, extracting descriptors densely from an im-

age can yield hundreds of thousands of descriptors, thus requiring megabytes

of storage per image. SCT would enable compact storage of all dense descrip-

tors for a large image corpus, this could be useful in order to, for example,

preform dense 3D reconstruction.

• It should be possible to boost the performance of SCT by improving the way

additional bits are used to refine the descriptor estimates. The refinement is

done on a per-descriptor basis, so using a state-of-the-art method for compress-

ing individual descriptors (e.g. product quantization of Jégou et al. (2011a))

instead of our naive method is almost guaranteed to improve the compression

quality.
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