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Summary

The proliferation of digital cameras in commodity consumer devices, and the social trend
for casually capturing and sharing media, has led to an explosive growth in personal
visual media collections. However this wealth of digital material is infrequently accessed
beyond the point of initial capture or sharing, and often lies dormant gathering digital
dust in the media repository. This thesis proposes novel Computer Vision and Computer
Graphics techniques to release the value in personal media collections - investigating
new ways to stylise and present images and video in such collections.

First, personal visual media tends to be shot casually in varied and challenging capture
conditions by amateur operators. This necessitates some interactive manipulation prior
to presentation. This thesis contributes a novel solution for editing such amateur home
video into succinct clips of this nature, using a parse-tree representation of the video
editing process. We also enable interactive manipulation of still images through a novel
object segmentation algorithm dubbed TouchCut which enables object selection with a
single touch and is intended for direct media manipulation on commodity media capture
devices such as touch-screen digital cameras.

Second, there is an interaction barrier to digital media. The casual nature of personal
media encourages the capture of significantly larger collections than traditional media.
This thesis explores the application of artistic stylisation to create digital ambient
displays (DADs) of personal media in the style of cartoons, paintings and paper-cut out.
Underpinning this contribution are two new algorithms for video segmentation that
enforce temporal coherences within the stylised video. Furthermore, we explore how
structuring the media collection hierarchically within the DAD can promote interest
and engagement with the collection.

Third, personal media collections often contains images of friends or family members.
The artistic stylisation of such content using existing approaches rarely results in
acceptable output. We propose a novel example-based approach to portrait stylisation
driven by a high level model of facial structure that gives rise to improved aesthetics
and enables the example-based rendering of a diverse range of portrait styles.
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Chapter 1

Introduction

In recent years we have witnessed the explosive growth of consumer imaging devices.

Vast personal archives of images and video are being amassed through the casual capture

of imagery on cameras, phones and other commodity devices. These digital media

collections are intrinsically more accessible than physical archives - for example, a box

of old photos in the attic. Yet, beyond the time of capture or initial sharing, content

often lies infrequently accessed gathering digital dust in media repositories. This is

unfortunate as such media collections often capture memories of friends, family and

past experiences that hold significant value to us, but from which we are isolated by

technological barriers. The proliferation of this wealth of under-used visual content

motivates new techniques to browse and visualise large personal media collections.

A significant step to increasing the impact of personal visual media collections is to

ensure they contain interesting and aesthetically compelling content. Personal media

is typically captured by amateurs possessing varying levels of aesthetic skill, requiring

substantial manipulation to be comparable - in terms of aesthetics and succinctness -

with professional work. There is a need to automatically structure the presentation of

these media collections, as well as enhance the composition and appearance of individual

collections items (images and videos) to enhance their aesthetic value. Recently, new

forms of ambient display have begun to emerge around shared living spaces in the

home. From digital photo frames to wall-scale large displays, these displays offer the

opportunity to present media in an unobtrusive yet engaging manner analogous to

5



6 Chapter 1. Introduction

hanging a physical photograph or painting on a wall. Such displays present both an

opportunity and a challenge to devise intelligent ways to present digital media collections.

This thesis thus proposes a solution for large personal media collections in the form of

Digital Ambient Displays (DADs); always-on displays for living spaces that enable users

to effortlessly visualize and rediscover their media collections.

A central theme of this thesis is the enhancement of the presentation of personal media

collections - composition and appearance of individual media items and the structuring

of whole media collections. Automatic video editing transforms raw video footage

into salient and aesthetically pleasing video clips; these short, visually interesting

clips form the atomic unit of stylisation and composition; robust video segmentation

algorithm stably segments the visual structure in a scene which enables the coherent

video stylisation and composition; portrait rendering enhances the aesthetics and impact

of the stylisation of visual content containing faces.

1.1 Contributions of this Thesis

This thesis contributes several new Computer Vision (CV) and Computer Graphics (CG)

techniques to enhance the presentation of personal visual media collections. Specifically,

we develop new algorithms to parse representations of visual structure from users’ images

and videos (contributing to CV) and render i.e. present that content in stylised or more

succinct forms (contributing to CG). Several representations are proposed at various

levels of abstraction tailored to the requirements of the rendering technique developed.

The rendering techniques focused upon in this thesis are Non-Photorealistic, and aim to

transform 2D content into synthetic artwork. Non-Photorealistic Rendering (NPR) is

a mature sub-discipline within CG, established in the early nineties [79]; a discipline

that has diversified to the extent that expressive rendering for the purposes of art

and aesthetics is now often referred to independently as Artistic Rendering (AR)

to distinguish from the broader definition of NPR. AR offers many advantages over

photorealistic rendering, including its ability to manipulate media to stylise presentation,

clarify shape, abstract away detail and focus attention. Over the years AR algorithms

have begun to evolve from simple processes relying on low-level analysis, typically
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(a)

(b)

(c)

Figure 1.1: Previewing some of the results of our algorithms: (a) Our video segmentation

algorithm produces spatio-temporal coherent representation of sequence which facilitates

production of (b) high quality video stylisation. (c) This parsed visual structure from

sequence also facilitates video temporal composition adding aesthetic to personal media

collections.
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driven by image filtering, towards sophisticated processes measuring relative scene

importance and analysing scene structure. A core contribution of this thesis is to

develop novel algorithms for extracting and representing visual structure at different

levels of abstraction to drive AR. Centred upon this theme the thesis explores three

core hypotheses (H1-3), namely that:

• H1. Improving the stability of the structure extracted from video sequences

beyond the state of the art enhances the temporal coherence of artistic renderings.

• H2. Structured presentation and visual stylisation of content in personal media

collections enhances user engagement with that content.

• H3. New approaches for parsing visual structure can unlock new forms of

stylisation so diversifying AR.

In investigating these hypothesis the thesis focuses on two currently under-researched

topics within AR.

First, the stylisation and abstraction of video; arguably the most under-exploited form

of personal media since it cannot be printed or displayed effectively in a static form.

Artistic stylisation of video remains a challenging and open problem within AR. Many

video AR approaches adopt a stroke based rendering (SBR) paradigm [92]; placing

a multitude of rendering marks (i.e. strokes) upon the video canvas that must move

coherently over time. The rendering marks are said to be temporally coherent when

their movement matches that of the underlying video content and any flickering is

absent. Unfortunately temporal coherence remains elusive since moving these marks

over time coherently requires robust estimation of the dynamics of the underlying scene

structure. This argument motivates the extraction of our structure representations

from video. In addition to the stylisation of video we also explore the problem of

temporally manipulating video for interest, through salience-driven editing and the

temporal composition of video clips into sequences.

Second, the thesis addresses the stylisation of people, in particular portraits, which are

frequently encountered in personal media collections yet which general AR algorithms

perform particularly poorly on. It has long been suspected that the human ability to
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Figure 1.2: Based on a novel composition of higher-level features, our portrait painting

algorithm is able to learn the brush and shading styles given a training pair.

recognise faces is hard-wired into our physiology, and a significant portion of visual

brain function is dedicated to this task [195]. This may go some way to explain our

sensitivity to violations in the natural structure of faces that often occurs when general

AR algorithms are applied to portraits (often leading to blurring or distortion of facial

features).

To support our general aim of AR driven by representations of visual structure, and to

verify hypotheses H1-3, we have developed several novel algorithms which operate at

different levels of abstraction and render a wide range of expressive styles on images

and video, namely:

1. an algorithm to edit raw home movie footage into salient, aesthetically pleasing

video clips. (Ch. 3, published as [223])

2. a fast interactive object segmentation algorithm driven by single finger touch for

image and video. (Ch. 4, published as [222])

3. two algorithms based on multi-label graph cut for segmenting video into temporally

coherent region maps. (Ch. 5 and 6, published as [220] and [216] respectively)
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4. an algorithm to both stylise video into cartoons and paintings. (Ch. 5, published

as [219] and [218])

5. an algorithm to automatically structure the media collection into a hierarchical

representation based on visual content and semantics, facilitating intelligent media

browsing in a coarse-to-fine manner, driven by user attention level. (Ch. 5,

published as [218])

6. an algorithm to interpret human facial features which drives a user trainable

algorithm for stylising photographs into portrait paintings. (Ch. 7)

The representations of visual structure parsed by our algorithms vary in their level of

abstraction according to the rendering application, and are arranged in this thesis from

low-level (Part II) to high-level (Part IV). We first describe our salience-driven algorithm

for automatic video editing in Ch. 3 using heuristics driven by low-level measures derived

from video content. The TouchCut image segmentation system integrates both low-

and mid-level models of colour, texture and geometry in order to perform single-touch

image segmentation in Ch. 4. Ch. 5 and 6 drive video stylisation algorithms using

mid-level representations of video parsed from footage via our novel video segmentation

algorithms. Ch. 7 for the first time introduces a stroke-based rendering algorithm for

portraits using a high level structural model of the face fitted to photographs using an

Active Shape Model (ASM) [48].

1.2 Application Domain

Our motivation is to produce a series of encompassing frameworks, capable of manip-

ulating, visualising and stylising images and video sequences with a high degree of

automation - whilst retaining user creativity in the process through high level control

and parameterisation. Applications of this work lie most clearly within the creative

industries, e.g. film special effects, animation and games, and in domestic software for

the digital manipulation of media. For example, users might wish to create portraiture

in a particular style from their own photographs (Ch. 7) or create an animated painting
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from their video (Chapters 5-6), yet lack the artistic training or the spare time to be

able to perform this task. The systems we propose enable users to express their artistic

requirements at a high level whilst providing the low-level automation that enables

experimentation with different settings and eliminates the requirement for specialist

training to produce artwork.

The algorithmic contributions presented in this thesis span both CG and CV, echoing the

multi-disciplinary nature of AR and suggesting further applications for our algorithms

designed to parse visual structure from images and video.

For example, consider the TouchCut segmentation algorithm developed in Ch. 4. This

new approach to visual object cut-out using a single ‘touch’(2D coordinate) interaction

provides a practical solution for image and video segmentation on emerging tablet and

touch-screen devices. The TouchCut object selection mechanism has the potential to

enable on-device editing of content for tracking, object replacement, or as we show in

Ch. 4, the application of visual effects through stylisation. The video segmentation

algorithms of Chapters 5 and 6 suggest a similar potential for broader impact. Our

approach to video segmentation is sufficiently robust to deal with challenging motion

and occlusion conditions. These algorithms not only facilitate the production of stylised

animation from home movies, but also serve as an enabling tool for other computer vision

applications such as video object retrieval and tracking. The ability to create robust

and coherent video mattes could also benefit content post-production and rotoscoping

in the creative industries, where such operations are still performed with a high degree

of manual interaction.

1.3 Measuring Success

As any field matures, benchmarks and best practice methodologies emerge for the

comparative evaluation of novel contributions that seek to improve upon existing

techniques. In this thesis we use a variety of qualitative and quantitative methods to

assess the efficacy of our algorithms. Image and video segmentation are two firmly

established CV topics with several methodologies for evaluating accuracy in the literature.

Over recent years the Berkeley Methodology has emerged as one of the most commonly
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cited benchmark for the evaluation of image segmentation algorithms, presenting both

a dataset and quantitative metric (Berkeley F-measure) for this purpose. We adopt

this metric both for image segmentation, and also to evaluate the accuracy of video

segmentation on a per frame basis. For the latter we have developed our own dataset 1

and ground truth segmentation, since video with ground truth mark-up is largely absent

in the literature and in any case commonly used videos (the garden, Foreman, etc.) are

not representative of the personal video footage we seek to process.

A good video segmentation should not only exhibit quantifiable accuracy but also

produce regions whose shape and neighbourhood topology evolve smoothly over time

(i.e. with temporal coherence) whilst tracking the underlying video content. This is

especially important as we use video segmentation to drive artistic stylisation of video

where flicker can cause distraction and reduce the quality of animation. Assessing the

temporal coherence of a segmentation (or a resulting rendering) remains a subjective

task within the literature. Although the measurement of flicker might be quantifiable

by a video-derived measure, such measures raise similar objections to the use of, say,

PSNR for image comparison; they can often contradict human perception. Quantifying

flicker is not an accepted practise in video segmentation or AR evaluation, rather we

adopt a more qualitative and subjective side-by-side comparison of approaches to assess

the relative presence of flicker in two videos.

AR is now well established, with many techniques proposed in the early 1990s and 2000s

that broke ground implementing a wide range of artistic styles. As new AR techniques

are proposed it becomes incumbent upon researchers to demonstrate improvement

over the state of the art. Yet, objectively assessing the relative aesthetic merit of

two renderings seems impossible for humans to agree on let alone encode within an

algorithmic measure. Rather, a subjective comparison is typically used in AR to

determine the relative aesthetic quality of two renderings, and we follow this process in

our comparative evaluation on the basis that this is established practice within the field.

By contrast, it is easier to demonstrate breadth and capability of style; for example a

system such as that of Ch. 7 where we demonstrate a trainable rendering system that

1http://personal.ee.surrey.ac.uk/Personal/Tinghuai.Wang/TMM2011.html

http://personal.ee.surrey.ac.uk/Personal/Tinghuai.Wang/TMM2011.html
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encompasses several styles. In such cases the variation in style within the generated

renderings is prima facie evidence of the versatility of the system.

1.4 Structure of the Thesis

We now outline the structure of the thesis, summarising the principal contributions

made in the subsequent chapters, and how they contribute to our core argument for

structured representation and stylisation of visual media.

Part I — Introduction

Chapter 2 — Literature Review

A comprehensive literature survey of related work is presented in this chapter, forming

observations on trends and identifying gaps in the literature.

Part II — Image and Video Manipulation

Chapter 3 — An Evolutionary Approach to Automatic Video Editing

We propose a novel algorithm for transforming raw home movie footage into concise,

temporally salient video. We interpret the sequence of editing operations applied to

footage as a novel structured representation, i.e. ‘program’, comprising cutting, panning

and zooming constructs. We develop a Genetic Programming (GP) framework for

representing and evolving such programs. Under this framework, the search for an

aesthetically pleasing video edit becomes a search for the optimal genetic program. Our

aesthetic criterion promotes the inclusion of people in shots, whilst penalising rapid

shot changes or shot changes in the presence of camera motion. We demonstrate that

our structured representation of editing operations driven by salience measure bridges

the gap between low-level visual feature and high-level video editing grammar.
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Chapter 4 — TouchCut: Fast Object Segmentation using Single-Touch

Interaction

We present TouchCut; a robust and efficient algorithm for segmenting image and video

sequences with minimal user interaction. Our algorithm requires only a single finger

touch to identify the object of interest in the image or first frame of video. Our approach

is based on a level set framework, with an appearance model fusing edge, region texture

and geometric information sampled local to the touched point. We first present our

image segmentation solution, then extend this framework to progressive (per-frame)

video segmentation, encouraging temporal coherence by incorporating motion estimation

and a shape prior learned from previous frames. This new approach to visual object

cut-out provides a practical solution for image and video segmentation on compact touch

screen devices, facilitating spatially localized media manipulation. TouchCut extracts

a stable structure from video sequence which facilitates a wide range of higher-level

applications. We describe such a case study, enabling users to selectively stylise video

objects to create a hand-painted effect. TouchCut serves our argument that extracting

a stable representation of visual structure from video sequences enhances the temporal

coherence of the resulting artistic renderings.

Part III — Video Stylisation

Chapter 5 — Stylised Ambient Displays of Visual Media Collections

We develop a system to breathe life into home digital media collections, drawing upon

artistic stylisation to create a “Digital Ambient Display” that automatically selects,

stylises and transitions between digital contents in a semantically meaningful sequence.

We present a novel algorithm based on multi-label graph cut for segmenting video

into temporally coherent region maps. These maps are used to both stylise video

into cartoons and paintings, and measure visual similarity between frames for smooth

sequence transitions. The system automatically structures the media collection into a

hierarchical representation based on visual content and semantics. Graph optimization

is applied to adaptively sequence content for display in a coarse-to-fine manner, driven
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by user attention level (detected in real-time by a webcam). Our system is deployed on

embedded hardware in the form of a compact digital photo frame. We demonstrate that

the improved stability of the structure extracted from video sequences enhances the

temporal coherence of artistic renderings. We evaluate our media sequencing algorithm

via a small-scale user study, indicating that our structured presentations and artistic

stylisation convey a more compelling media consumption experience than simple linear

‘slide-shows’ and significantly improved user engagement.

Chapter 6 — Probabilistic Motion Diffusion of Labeling Priors for

Coherent Video Segmentation

A robust algorithm for temporally coherent video segmentation is proposed in this

chapter. Our approach is driven by multi-label graph cut applied to successive frames,

fusing information from the current frame with an appearance model and labelling priors

propagated forwarded from past frames. We propagate using a novel motion diffusion

model, producing a per-pixel motion distribution that mitigates against cumulative

estimation errors inherent in systems adopting ‘hard’ decisions on pixel motion at

each frame. Further, we encourage spatial coherence by imposing label consistency

constraints within image regions (super-pixels) obtained via a bank of unsupervised

frame segmentations, such as mean-shift. We demonstrate quantitative improvements

in accuracy over state-of-the-art methods on a variety of sequences exhibiting clutter

and agile motion, adopting the Berkeley methodology for our comparative evaluation.

The improved stability of the parsed visual structure from video sequences potentially

enhances the temporal coherence of the resulting artistic renderings.

Part IV — Portrait Stylisation

Chapter 7 — Digital Raphael: Learnable Stroke Models for Example-

based Portrait Painting

We introduce the Digital Raphael; a novel algorithm for stylising photographs into

portrait paintings comprised of curved brush strokes. Rather than drawing upon a
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prescribed set of heuristics to place strokes, our system learns a flexible model of artistic

style by analyzing training data from a human artist. Given a training pair — a

source image and painting of that image — a model of style is learned by observing the

geometry and tone of brush strokes local to image features. The feature composition

process is driven by a Markov Random Field model to force the spatial coherence and

structural context of the feature set. Style models local to facial features are learned

using a semantic segmentation of the input face image, driven by a combination of an

Active Shape Model and Graph-cut. We evaluate style transfer between a variety of

training and test images, demonstrating a wide gamut of learned brush and shading

styles using minimal training data. This work shows that a high-level domain specific

structure enables highly aesthetic quality renderings, and ability to learn and reproduce

a wide gamut of styles.

Part V — Conclusions

Chapter 8 — Conclusions and Further Work

We summarise the contributions of the thesis in this chapter, and discuss how the

results of the algorithms we have developed support our central argument for structured

representation and stylisation in visual media. We suggest possible avenues for the

future development.



Chapter 2

Literature Review

The structured representation and stylisation of visual media have been extensively

studied in computer vision and graphics community. In this chapter we present a

comprehensive literature survey of related work, forming observations on trends and

identifying gaps in the literature. We explain the relevance of our research within the

context of the reviewed literature.

2.1 Introduction

The work present in this thesis innovates in a range of topics within CV and CG. This

literature review does not make attempt to give a complete and thorough survey to each

area, but provides the technical background for the subsequent chapters by introducing

notation and reviewing key techniques.

Sec. 2.2 introduces previous work in video editing and composition, which has gained

momentum recently to add aesthetic to personal media collections. Sec. 2.3 aims to

give a brief overview of image and video segmentation techniques in the literature. We

broadly divide image segmentation into unsupervised and interactive approaches based

on whether human intervention is involved. Video segmentation is discussed according

to whether video data is processed as 3D volume or on a per frame basis. Recent systems

involving human interaction are also reviewed. We introduce previous approaches to

17
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hierarchical structuring of media collection which is the key to interactively navigating

collections in Sec. 2.4. Sec. 2.5 gives a broad overview of artistic rendering techniques

to abstract and stylise visual data for the purposes of art and aesthetics. We focus

our review upon the problem of stroke placement and anisotropic filtering, i.e. the

areas this thesis innovate in, which can further be divided into the following categories

based on the driving mechanisms: stroke-based techniques, region-based techniques,

example-based techniques, image processing and filtering, video stylisation, and portrait

painting.

2.2 Video Editing and Composition

Automated video editing is closely related to research on video summarisation, which

has gained momentum in recent years. Many such algorithms rely on shot detection

to extract representative key-frames from video [153]. Such techniques are well suited

to movies exhibiting frequent cuts between shots, but are ill-suited to home videos

(typically captured as a single lengthy shot). An alternative is [54] who model video as

a trajectory through a high-dimensional appearance space, cutting key frames at points

of high curvature.

Techniques that summarise video into shorter videos by ‘cutting’ frames have been

proposed. Lienhart defines a visual quality metric, creating an automatic digest of

home videos by selecting portions of video with good quality and inserting transition

effects [133]. Girgensohn et al.’s semi-automatic “Hitchcock” system [67, 66] is similar

to [133], but defines quality in terms of camera stability; we incorporate a similar cue in

our work in Ch. 3 to incorporate ‘cutting’ operation in order to enhance the interest

or aesthetic appeal of video. Simakov et al. [193] propose a bi-directional similarity

measure to summarise images or video. Hua et al. propose an automatic video editing

system that seeks to cut video to synchronise motion in selected sub-shots with music

tempos [99]. Attention models for video summarization were studied in [142, 148],

integrating visual, auditory, and linguistic cues. However, the gap between high-level

video editing operations and low-level visual feature has not been investigated in these

approaches which makes them impractical for personal media archives.
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Most recently researchers have looked beyond cutting, to the framing of video content (e.g.

zooming/cropping). Al-Hames et al. controlled multiple cameras to select and zoom-in

on meeting participants to “direct” a live video stream of a meeting [4]. Hospedales and

Williams recently explored Bayesian networks to learn director preferences for similar

real-time editing of streamed video [97]. Such techniques necessarily make temporally

local editing decisions. In Ch. 3 we present a Genetic Programming (GP) approach

which performs global optimization over all frames of a pre-captured video.

Video temporal composition concerns the temporal sequencing and transitioning of clips

in order to synthesize a new video. Video temporal composition was first proposed by

Schodl et al. [185], within the scope of a single video and based upon visual similarity only.

Much as motion graphs [111] construct a directed graph that encapsulates connections

among motion capture fragments, so the Video Textures of Schodl et al. create a graph

of video fragments that may be walked in perpetuity to create a temporal composition.

Our proposed approach in Ch. 5 to composition borrows from the graph representations

of [185, 111], but using a hierarchical representation, comprising multiple videos, and

measuring similarity both visually and semantically.

2.3 Image and Video Segmentation

In computer vision, segmentation refers to the process of partitioning a digital image

into multiple segments, i.e. superpixels, such that pixels in the same segment share

certain visual characteristics. Image segmentation is typically used to locate objects and

boundaries in images which naturally parses the image into a structured representation

of the scene. Video segmentation aims to partition pixels into spatio-temporal groups

exhibiting coherence and consistency in both appearance and motion.

Segmentation remains a long-standing fundamental and inherently challenging computer

vision problem. This section is aimed to capture general trend in this field via a

comprehensive review of previous work.
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Figure 2.1: Mean shift image segmentation (right) on hand image (left) [45]. This

algorithm performs density estimation in Luv space of colour image.

2.3.1 Image Segmentation

There has been a tremendous research effort for the past four decades dedicated

to improving the robustness and efficiency of image segmentation, which can not

fully be covered by this review. Image segmentation can further be partitioned into

two categories: unsupervised, or automatic segmentation; and interactive, or semi-

automated segmentation. Though this thesis contributes primarily to the former

category, unsupervised segmentation is still strongly relevant and is briefly reviewed

in this section. Refer to [157, 63] for some comprehensive surveys of unsupervised

segmentation.

Unsupervised Approaches to Image Segmentation

Various methods [15, 52, 122, 158, 214] have been proposed adopting stochastic models

to solving the unsupervised segmentation problem. For example, Belongie et al. [15]

present a “blobworld” representation which provides a transformation from the raw pixel

data to a small set of image regions using the Expectation-Maximization (EM) algorithm

on combined color and texture features. Delignon et al. [52] address the generalized

mixture estimation problem by defining a mixture and proposing its estimation based

on Stochastic EM (SEM); it is then applied to the problem of unsupervised Bayesian

image segmentation in a “local” and “global” way. Langan et al. [122] model an image
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as a doubly stochastic field in which the state or region map and the intensity data are

each modeled as random fields. As a result of using a stochastic model based approach

to image segmentation, the log-likelihood of the observed intensity image and estimated

state map may be calculated. Panjwani and Healey [158] introduce an unsupervised

segmentation algorithm using a Markov random field model with an efficient maximum

pseudo likelihood scheme for estimating model parameters from image regions. Wang

[214] proposes a hierarchical approach which at each step minimizes a cost function on

the space of partitions with connected components of a graph.

Nonparametric density estimation approaches normally begin at each pixel and estimate

the local density of similar pixels. As a general nonparametric density estimator, mean

shift is a classical pattern recognition procedure proposed by Fukunage and Hostetler

[65], and its efficacy on low-level vision tasks such as segmentation has been extensively

exploited. Comaniciu and Meer [45] utilise it for continuity preserving filtering and

image segmentation (shown in Fig. 2.1). Its properties were reviewed and its convergence

on lattices was proven. Wang et al. [212] present an anisotropic kernel mean shift in

which the shape, scale, and orientation of the kernels adapt to the local structure of the

image or video. Paris and Durand [162] introduce the use of Morse theory to interpret

mean shift as a topological decomposition of the feature space into density modes, and

design an algorithm to compute mean-shift segmentations of images and videos based

on the watershed technique.

Region growing approaches have also attracted the attention of segmentation research

[186, 56, 95]. Shafarenko et al. [186] adapt the watershed transform to the LUV gradient

of images with small color saliency, proposing a bottom-up segmentation algorithm

that takes into consideration both color and texture properties of the image. Deng

and Manjunath [56] propose to use the quantised image to compute an edge indicator

and then apply region-growing method to segment the image. Hill et al. [95] introduce

the concept of texture gradient and have used it to produce an effective watershed

segmentation technique for natural images based on intensity and texture boundaries.

They also implement a marker selection algorithm to counteract the problem of over-

segmentation. Arbelaez et al. [7] propose a contour detector which combines multiple

local cues into a optimisation framework based on spectral clustering and use the



22 Chapter 2. Literature Review

Figure 2.2: Interactive image segmentation driven by a bounding box using GrabCut

[178]. GrabCut performs iterative graph-cut optimisation which reduces considerably

the amount of user interaction needed to complete a segmentation task.

Oriented Watershed Transform (OWT) to producing a set of initial regions from contour

detector output.

Rather than focusing on local features and their consistencies in the image data, graph

partitioning approaches [188, 143, 60] aim to extract a global impression of an image.

Shi and Malik [188] propose a novel global criterion, the normalized cut, for segmenting

the graph. The normalized cut criterion measures both the total dissimilarity between

the different groups as well as the total similarity within the groups. Malik et al. [143]

propose an algorithm for partitioning grayscale images into disjoint regions of coherent

brightness and texture, using the spectral graph theoretic framework of normalized cuts.

Felzenszwalb and Huttenlocher [60] develop an efficient segmentation algorithm based

on a predicate which measures the evidence for a boundary between two regions using

a graph-based representation of the image, which produces segmentations that satisfy

global properties. Tolliver and Miller [202] introduce a family of spectral partitioning

methods in which edge separators of a graph are produced by iteratively reweighting

the edges until the graph disconnects into the prescribed number of components.
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Interactive Approaches to Image Segmentation

Over the past decade a number of successful interactive approaches have emerged,

enabling the user to seed or ‘scribble’ on part of the desired object and background to

initialize the segmentation [22, 139, 74, 11, 126, 194, 107, 169, 179]. This approach is

intuitive and generally tolerant of low accuracy user input, though requires the user

to trace a contour contacting multiple points in the image. Drawing a bounding box

[178, 126] to constrain the spatial extent of object is simpler in many cases, taking two

mouse clicks to specify the box (shown in Fig. 2.2). Yet scribble-based corrections are

often needed to refine the results as the bounding box may not provide sufficiently tight

capture for some object shapes.

An important class of seeded segmentation algorithm are those performing a graph-cut

optimization, after Boykov and Jolly [22] who address object segmentation in images

via max-flow/min-cut energy minimization. Typical energy functionals balance the

probability of pixels belonging to the foreground/background with spatial coherence

constraints expressed via edge contrast. The user-specified scribbles serve as hard

constraints and also provide statistical information. This region-edge combination is

very effective in improving segmentations based on edge or region alone. However, there

is an inherent shrinking bias of graph cut towards shorter paths, i.e. small segments

as the optimization sums over the boundaries of segmented regions. By contrast, level

set based methods include a length-based “ballooning” term which encourages a larger

object segment. Most graph-cut based approaches [109] for otherwise avoiding the

shrinking bias in graph-cut and similar approaches involve variations on normalizing

the cost of the cut by the size of the resulting object(s). Alternatively, a subspace of

solutions may be explored by varying the relative weighting of the boundary and region

terms [110]. Beyond [178], Rother et al. [179] make modifications to GrabCut to deal

with large images and semi-transparency for practical applications.

Many methods [11, 171, 78] driven by scribbles selectively fill the desired region by

expanding from the interior of the selected object outwards and do not explicitly

consider the object boundary. This makes them advantageous for segmenting objects

with complex topologies, whilst they may suffer from a bias that favors shorter paths
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from the seeds. Another drawback of these methods is that they may fail to accurately

identify the real object boundaries due to the lack of an explicit presentation of edge

contrast. Grady [74] proposes to use random walks for soft image segmentation with

explicit edge weights, where each pixel is assigned the label with maximal probability

that a random walker reaches it when starting from the corresponding scribbles. This

method may be mathematically considered as a relaxation of the binary values of the

potential function in graph cuts to avoid the shrinking bias or “small cut”.

Efforts to combine the complementary strengths and weaknesses of seed-expansion and

graph-cut approaches have been made. Sinop and Grady [196] show that graph-cuts,

random-walkers [74] and a method similar in principle to geodesic segmentation [11] can

be placed in a common framework. Price et al. [169] combines geodesic-distance region

information with explicit edge information in a graph-cut optimization framework, which

has the ability of seed-expansion approaches to fill contiguous, coherent regions without

regard to boundary length with the ability of edge-based segmentation to accurately

localize boundaries.

Our work is most closely related to prior image segmentation approaches using level

set methods [230], which neatly enable the minimization of energy functionals such as

those proposed by Mumford-Shah [152] or Zhu-Yuille [233]. One application of level set

methods to image segmentation has been the edge-based active contour model [31, 105],

which depends on image gradient and therefore is a rather local approach sensitive to

noise. More robust approaches that encode region information have been proposed

later in [159, 32]. Chan and Vese [32] propose the approach of active contours without

edges by assuming the intensity distributions in different partitions to be Gaussian

distributions with different variances. Heiler et al. [87] adopt Laplace distributions for

natural image segmentation. Non-parametric methods have also been proposed to model

the intensity distributions [88, 106, 28]. These Non-parametric methods all assume that

pixels belonging to one region all share the same probability distribution and thus can

not handle the inhomogeneity of the sought regions. Recent works [27, 123, 129] have

been proposed to incorporate local intensity statistics instead of modeling the intensity

distribution globally for each region. Higher level prior knowledge such as geometric

shape priors has been introduced to level set framework [180, 26, 49].
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One of the appealing advantages of level set methods is that they can neatly enable

flexible forms of energy functionals. However, they are prone to getting stuck in a local

minimum frequently caused by the sensitive edge-based term. Early approaches to edge

detection aim at identifying the presence of a boundary through local measurements,

such as Sobel operator [59] and Canny detector [30]. Recent local approaches incorporate

color and texture information, either taking advantage of learning techniques for cue

combination [145, 58] or observing the local distribution of quantized color class labels

without estimating a specific model for a texture region [56]. In Ch. 4 we propose a

robust and efficient algorithm for segmenting image and video sequences with minimal

user interaction, adopting the seed-expansion approach driven by a level set framework.

2.3.2 Video Segmentation

Video segmentation has received considerable attention in recent years, with the ma-

jority of research effort categorized into automatic methods following two fundamental

strategies; spatio-temporal (3D) analysis and frame-to-frame segmentation (2D + t).

Recently, interactive approaches to video segmentation have also been investigated

which is briefly reviewed in this section.

Spatio-temporal Approaches (3D) to Video Segmentation

Methods in the first category tackle video segmentation as a spatio-temporal (x,y,t)

clustering problem. For example, Dementhon [53] proposes a spatio-temporal approach

in which hierarchical mean shift clustering is applied to pixels of 3D space-time video

stack, which are mapped to 7-dimensional feature points, i.e., three colour components

and 4 motion components derived from inter-frame flow estimates. However, the

differences in the spatial and temporal resolution of video and the isotropy of mean

shift kernels can result in spurious regions manifesting local movement in the footage.

Anisotropic [212] and causal spatio-temporal kernels [161] have also been explored

to refine mean-shift approaches to space-time segmentation. We compare our video

segmentation algorithms proposed in Ch. 5 and 6 against [161] as a state-of-the-art

benchmark. Shi and Malik [187] propose a pairwise graph based model to describe the
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spatio-temporal relations in the 3D video data and have employed the spectral clustering

analysis to solve the video segmentation problem. Ristivojevic and Konrad [175] derive

active surfaces through the space-time volume, which compete iteratively to delineate

object boundaries. Greenspan et al. [75] present an approach to extracting coherent

space-time regions in feature space via GMM unsupervised clustering. Grundmann et al.

[76] present an efficient and scalable approach to spatio-temporal segmentation of long

video sequences using a hierarchical graph-based algorithm, combining a volumetric

over-segmentation with a hierarchical re-segmentation. However, these approaches

usually become computationally infeasible for pixel counts in even moderate size videos,

and often under-segment small or fast moving objects that form disconnected space-time

volumes.

Frame-to-frame Approaches (2D + t) to Video Segmentation

The second category of approach segments 2D frames independently, and then creates

associations between regions over time to identify and prune sporadic regions [151, 44]

[25]. Moscheni et al. [151] process two consecutive frames at a time by iteratively

merging over-segmented regions together based on their mutual spatio-temporal similar-

ity. Collomosse et al. [44] create spatio-temporal volumes from video by associating

2D segmentations over time and fitting stroke surfaces to voxel objects. Brendel and

Todorovic [25] adopt a region-tracking approach in which similar regions are transitively

matched and clustered across the video and temporal coherence is forced by incorporat-

ing contour cues to allow splitting and merging of regions. These methods are inspired

from the observation that pixels constituting a particular segment often belong to the

same object or may share common appearance properties. Furthermore, it becomes

much more efficient as inference only needs to be performed over a small number of

segments rather than all the pixels. Although the stability is improved in these methods,

lack of temporal information from adjacent frames during over-segmentation may cause

jitter across frames and the temporal coherence is not ensured; the poor repeatability

of 2D segmentation algorithms between similar frames, causing variations in the shape

and photometric properties of regions.
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Falling in the second category, this thesis proposes two video segmentation algorithms

to apply multi-label graph cut on successive frames, in which the segmentation of each

frame is driven by motion flow propagated labeling priors and incrementally updated

data model estimated from the past frames to improve the temporal coherence. The

flow-propagated labels in the first algorithm are assumed to be hard constraints i.e.

perfect estimates (Ch. 5). The second algorithm follows a flow-propagation strategy,

but adopts ‘soft’ constraints on motion propagated priors (Ch. 6).

In addition to motion propagation, the algorithm of Ch. 6 utilizes conceptually higher

level soft constraints defined via multiple unsupervised over-segmentations of the video

frame. This approach has also been widely adopted for image segmentation [84, 172, 6]

using a single over-segmentation. In contrast to these that use multiple super-pixels as a

hard constraint (i.e. assuming that all pixels constituting a particular region belong to

the same label), more recent work integrates a higher-order region consistency potential

with conventional unary and pairwise constraints by using CRFs in a soft framework

[108, 107]). We adapt the latter approach in our video framework, but differentiate

ourselves in several ways. First, we adopt over-segmented super-pixels from multiple

unsupervised segmentation algorithms rather than a single segmentation algorithm —

after [96, 181, 125] but using the soft framework of [108, 107]. Second, rather than

computing a penalty via the number of pixels in the super-pixel not taking the dominant

label, our method considers the region consistency potential as an even softer constraint

which is similar to the data prior present in pairwise CRFs [22, 163], and thus can be

solved efficiently. Third, to the best of our knowledge, we are the first to apply higher-

order spatial constraints to address the video segmentation problem. This is interesting

because the temporal incoherence of the per-frame segmentations is nevertheless shown

to improve the spatial and temporal coherence of our video segmentation.

Interactive Approaches to Video Segmentation

Interactive video object segmentation systems have also been proposed in recent years.

Various directions have been investigated such as tracking region boundaries over time

[2, 167], extending 2D segmentation to 3D video volumes [132, 211, 10, 11], and applying
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graph cut segmentation on successive frames driven by motion flow [13, 12]. Agarwala et

al. [2] propose a rotoscoping system combining computer-vision-based tracking with user

interaction, by solving a spacetime optimisation problem for time-varying curve shapes.

Price et al. [167] present a method for interactively segmenting video sequences by

propagating multiple cues from one frame to another, which are automatically weighted

according to their predicted importance on the specific video sequence being segmented,

and are further weighted based on learning from user corrections. Li et al. [132] apply a

3D graph cut based segmentation approach on the spatialtemporal video volume. Wang

et al. [211] extend the mean shift algorithm in [45] (see Sec. 2.3.1) to 3D to address

the spatio-temporal video segmentation. Armstrong et al. [10] treat interactive video

cutout as a global optimization problem, segmenting and rendering complex surfaces

from 3D image volumes at interactive (sub-second) rates using a cascading graph cut

(CGC). Bai and Sapiro [11] propose an interactive framework for soft segmentation and

matting of natural images and videos, based on the optimal, linear time, computation of

weighted geodesic distances to the user-provided scribbles, from which the whole data

is automatically segmented. Bai et al. [13] use a set of propagated local classifiers along

the boundary to drive the local graph-cut segmentation. This method is improved in Bai

et al. [12] by introducing a new color model, which incorporates motion estimation into

color modeling in a probabilistic framework, and adaptively changes model parameters

to match the local properties of the motion.

2.4 Hierarchical Structuring of Media Collections

Hierarchical structuring of media collection is common to many contemporary approaches

for interactively navigating collections. For example, Krishnamachari et al. form tree

structures from an image collection, imposing a coarse to fine representation of image

content within clusters and enabling the users to navigate up and down the tree levels

via representative images from each cluster. This approach was later adopted in [35, 70].

In [35], a fast search algorithm and a fast-sparse clustering method are proposed for

building hierarchical tree structures from large image collections. Goldberger et al.

[70] combine discrete and continuous image models with information-theoretic based
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criteria for unsupervised hierarchical clustering. Images are clustered such that the

mutual information between the clusters and the image content is maximally preserved.

Our approach to structuring collections combines a hierarchical clustering similar to

[114, 35, 70] with graph optimization approach [111] to navigate and visualize large

media collections. The resulting system differs from existing hierarchical clustering

approaches in several ways.

We introduce a novel approach to the hierarchical structuring of media collections in Ch.

5. Rather than exploiting low level visual features in the clustering, we incorporate both

high-level semantic similarity when constructing top levels of the tree, and global image

feature descriptors via a Bag of visual words (BoW) framework [197] for constructing

lower levels of the tree. Consequently, this tree structure not only enables a global

semantic summary of the collection, but also encodes visual similarities at various levels.

Furthermore, in our system each node in the hierarchy encodes a directed graph that

encapsulates connections among the digital items assigned to that node, rather than an

unstructured subset of media as typified by previous work.

2.5 Artistic Rendering of Images and Video

The field of non-photorealistic rendering (NPR) has expanded into a vibrant area of

research covering a wide range of expressive rendering styles for the visual communication:

exploded diagrams [131], false color [166, 173], and artistic styles such as painterly

rendering [20, 228]. This section presents a comprehensive review of the latter category

of artistic rendering (AR); specifically techniques focusing on artistic stylisation of

two-dimensional visual content, i.e. image and video.

The vast majority of early AR techniques addressed the digital simulation of physical

materials used by artists, from simple simulations of hairy brushes [200] to full multi-

layered models of pigment diffusion and bi-directional transfer between brush and

canvas [50]. In this thesis we focus only on the problem of brush stroke placement and

anisotropic filtering that conveys the impression of stroke placement.
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2.5.1 Stroke-based Renderings

A significant number of AR algorithms operate by placing strokes on a virtual canvas,

where they are composited to form a rendering. These approaches are referred to as

stroke-based rendering (SBR). Within SBR, we partition algorithms into semi-automatic,

i.e. user-assisted, and automatic processes. The former typically pre-dates the latter,

pointing to a trend toward automation.

Semi-automatic Approaches

Haeberli [79] proposed a semi-automatic system which permits a user to rapidly generate

impressionist style paintings by creating brush strokes. The system automates the

selection of stroke color, and for non-circular brush strokes can also decide stroke

orientation by painting strokes orthogonal to the intensity gradient in the source image.

The system relies upon the user to determine the order and scale of strokes. The size

and sequencing of stroke overpainting is crucial to producing results with an acceptable

aesthetic and without the loss of salient detail. Haeberli formalises the concept of a

painting as an ordered list of brush strokes - each with associated attributes: location,

size, colour, orientation, shape. Virtually all modern AR techniques make use of this

paradigm in their generation and representation of paintings. For example, Curtis

et al. [50] use a similar approach to create water colour effects.

Later, semi-automatic systems adopt an image segmentation approach to painting [183,

14]. Both algorithms operate by segmenting the source image at various scales (coarse

to fine), to form a similar hierarchical representation of regions in the image to that of

a low-pass pyramid. An image region in the output may then be rendered at scales,

proportional to the depth to which the scale-space hierarchy is traversed. This tree

depth is specified interactively by the user. Santella and DeCarlo [183] use gaze trackers

to directly harness the perceptual measures inherent in the human visual system to

control the scale, whilst Bangham et al. [14] place a cross shaped mask at a user specified

location in the image and the hierarchy depth is proportional to distance from this

mask.



2.5. Artistic Rendering of Images and Video 31

Fully Automatic Approach

The earliest fully automatic AR algorithm is described by Haggerty [80], which at-

tempts to automate Haeblerli’s pipeline using pseudo-random stroke size and painting

order. However this method often over-paints salient features with nearby large strokes

generated in non-salient regions.

Litwinowicz [136] proposes the first automatic painting algorithm which places rectan-

gular brush strokes at regular intervals on the canvas while retaining a pseudo-random

fashion. Strokes are oriented using Sobel gradients after [79, 80]. Strokes crossing strong

edges in the source image are clipped to preserve the edge details. This algorithm

applies thin-plate splines to interpolate stroke orientation within flat, near textureless

regions. Hays and Essa [82] adopted similar approaches for interpolation in their video

painting algorithm. Intensity variance [205] and chromatic variance [189] have also been

used to drive the stroke placement.

Hertzmann [89] (shown in Fig. 2.3) was the first to use curved brush strokes of

multiple sizes rather than constant-sized rectangular strokes to increase the aesthetic

of painting. The algorithms starts by generating a Gaussian pyramid of the source

image corresponding to a series of layers in the painting. Starting with a rough sketch

drawn with a large brush, the canvas is painted over with progressively smaller brushes,

but only in areas where the sketch differs from the blurred source image. Thus, visual

emphasis in the painting corresponds roughly to the spatial energy present in the source

image. The algorithm can produce painting with long, curved brush strokes, aligned to

normals of image gradients.

There has been a tremendous effort to develop AR algorithms [39, 41, 191] using fully

automated measure of salience beyond the semi-automatic approach proposed by Decarlo

and Santella [183]. Collomosse and Hall [39] were the first to adopt such an approach,

using statistical analysis to determine the importance or salience of pixels within the

original image. Stroke attributes are derived from salience and gradient information in

the image, producing an aesthetically pleasing painting whilst mitigating against loss of

detail. Collomosse and Hall [41] further employed a genetic algorithm (GA) to search

the space of possible paintings for a given image, so approaching an ‘optimal’ artwork
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Figure 2.3: Incremental painting in Hertzmann’s coarse to fine approach, images

reproduced from [89]. Observe that large coarse strokes often remain visible in flatter

areas, e.g. non-salient texture on the shirt, whereas fine strokes appear around edge

detail, e.g. salient detail on the hands.

in which salient detail is conserved and non-salient detail is attenuated. Shugrina

et al. [191] described an interactive system, in which the stroke placement is influenced

by even higher-level contextual parameters, i.e. emotion.

2.5.2 Region-based Techniques

Santella and DeCarlo [183] were among the first to apply image segmentation in AR

to form a hierarchical representation of an image using a variant of mean-shift [46].

Driven by eye-tracking data this approach can perform highly abstract renderings by

descending the hierarchy.

Gooch et al. [72] propose an image-space painterly technique using curved brush strokes.

The algorithm initially segments the input image with flood filling to compute brush

stroke paths. Curved strokes are then fitted to the medial axis of each homogeneous

region. However, we observe that the formation of intensity homogeneous regions is

sensitive to image noise or textures, and so causes the system to tend toward photorealism

in most real images.
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Collomosse and Hall [40] use higher-level salient features identified within a set of two-

dimensional images as compositional elements to produce a Cubist style painting with

minimal user interaction. Song et al. [198] classify regions into one of several canonical

shapes and fit regions with those shapes to create a simplified shape rendering. Region

deformation was also employed to warp regions into superquadric shapes reminiscent of

Cubist renderings [40].

Zeng et al. [228] propose region-based painterly rendering system which classifies texture

within regions to drive the type of stroke used. Using the same brush stroke model

from [228], Zhao and Zhu [231] propose a region-based painterly rendering system, which

decomposes an image into a hierarchy of its constituent regions and augments painterly

rendering with perceptual ambiguity computation and control for the simulation of

abstract paintings.

2.5.3 Example-based Techniques

In contrast to heuristic approaches, example-based rendering (EBR) algorithms harness

machine learning to model the stylisation process — typically by densely sampling

corresponding patches in a source and stylised training image pair (A and A′ respectively).

Stylization of a target image B proceeds by matching patches on an approximate nearest

neighbor (ANN) basis with those sampled from A during training [93]. The corresponding

patch from A′ is then composited into stylised version of B, to create mapping B 7→ B′

said to be analogous to A 7→ A′.

An extension of image analogies incorporates edge orientation to influence patch

choice [124], proposing a texture transfer algorithm which modifies the target im-

age replacing the high frequency information with the example source image. To ensure

that the texture directions conform to the target image, they propose to evaluate

of the neighborhood similarity that takes the gradient direction into account. Free-

man et al. [62] propose an example-based method for translating line drawings into

different styles by fitting each line as a linear combination of similar lines in a training

set, and interpolate between the corresponding training examples in the output style.

Kalogerakis et al. [102] propose to generate predictive models for synthesizing detailed
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line illustrations from examples.

2.5.4 Image Processing and Filtering

Image processing filters have recently shown their value in AR. Winnemöller et al. [226]

propose a method to abstract image using a bilateral filter and difference of Gaussians

(DoG) filter, attenuating detail in low-contrast regions while preserving sharp edges. It

applies smooth quantisation of the luminance channel in CIELab space to achieve a

strong cartoon-like effect. Rosin and Lai [177] use a combination of refined lines and

blocks, as well as a small number of tones, to produce AR with sufficient elements from

the original image. Kyprianidis et al. [115, 120] propose the anisotropic Kuwahara filter

to abstract image resulting in sharper edges and the enhancement of anisotropic image

features such as hair or fur. Kang and Lee [103] were the first to apply shock filtering

for AR. Kyprianidis and Kang [119] present an approach based on adaptive line integral

convolution in combination with directional shock filtering. The smoothing process

regularizes directional image features while the shock filter provides a sharpening effect,

both of which are guided by a flow field derived from the structure tensor. In Ch. 7

we compute the orientation field of non-facial area in portrait rendering based on the

eigenvalues of the structure tensor inspired by [117, 119].

2.5.5 Video Stylisation

Video stylisation was first addressed by Litwinowicz [136], who produces painterly video

by pushing brush strokes from frame to frame in the direction of optical flow motion

vectors. This approach was later extended by Hayes and Essa [83] who similarly move

strokes but within independent motion layers. Complementary work by Hertzmann [94]

use differences between consecutive frames of video, painting over areas of the new

frame that differ significantly from the previous frame. While these methods can

produce impressive painterly video, the errors in the estimated per-pixel motion field

can quickly accumulate and propagate to subsequent frames, resulting in increasing

temporal incoherence. This can lead to a distraction scintillation or “flicker” when

strokes of the stylised output no longer match object motion [149].
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(a) (b)

(c) (d)

(e) (f)

Figure 2.4: Key video stylisation techniques in the literature: (a) Litwinowicz [136]

and (b) Hertzmann [94] produce painterly video by pushing brush strokes from frame

to frame in the direction of optical flow motion vectors; (c) Collomosse et al. [44]

and (d) Wang et al. [213] create spatio-temporal volumes to improve coherence; (e)

Lin et al. [134] and, recently, (f) O’Donovan and Hertzmann [156] interactively segment

video into layers, each of which is populated with strokes.
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More recently, image segmentation techniques have been applied to yield mid-level

models of scene structure [213, 38] that can be rendered in artistic styles (Figure 2.4).

By extending the mean-shift based stylisation approach of [51] on images, Collomosse et

al. [44] create spatio-temporal volumes from video by associating 2D segmentations over

time and fitting stroke surfaces to voxel objects. Although this geometric smoothing

improves stability, temporal coherence is not ensured because the region map for each

frame is formed independently without knowledge of the adjacent frames. Furthermore,

association is confounded by the poor repeatability of 2D segmentation algorithms

between similar frames, causing variations in the shape and photometric properties of

regions that require manual correction. Wang et al. [213] also transform video into

spatio-temporal volumes by clustering space-time pixels using a mean-shift operator.

However, this approach becomes computationally infeasible for pixel counts in even

moderate size videos, and often under-segments small or fast moving objects that form

disconnected volumes. This also requires manual correction and frequent grouping of

space-time volumes.

Semi-automated video painting systems have recently been developed and can be consid-

ered to be advanced rotoscoping tools, permitting both high-level control over groupings

of strokes whilst also allowing fine-grain modification of stroke detail. Lin et al. [134]

and, recently, O’Donovan and Hertzmann [156] developed systems that enable video

to be interactively segmented into layers, each of which is populated with strokes. As

with Agarwala et al. [2], stroke positions deform with the supporting layer and may

be dampened to reduce flicker. In the system of Kagaya et al. [101], the video is first

segmented into spatio-temporal coherent regions. Users can assign style and orientation

parameters as key frames to these regions to be then interpolated over space-time.

Image processing and filtering approach has also been applied to create painterly

animation from video. Winnemoeller et al. [226] present a method to abstract video

using a bilateral filter, attenuating detail in low-contrast regions while preserving sharp

edges. Anisotropic filtering was also proposed in [115, 120] using the Kuwahara filter.

Such approaches do not seek to parse a description of scene structure, making them

useful for scenes that are difficult to segment, but limited to a characteristic soft-shaded

artistic style.
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2.5.6 Portrait Rendering

AR for portraiture distinguishes itself from general purpose AR algorithms in that

the human visual system has a strong cognitive prior for portraits, and is particularly

sensitive to distortion or loss of detail around facial features [146]. Yet such artifacts are

frequently observed when applying general purpose AR algorithms to photographs of

faces. High quality rendering of faces is important, as many usage scenarios for artistic

stylisation focus upon movie post-production effects, or consumer media collections,

which predominantly contain images of people.

Prior literature dedicated to the painterly rendering of portraits is sparse. DiPaola [57]

attempts to map the knowledge domain of the human portrait painter. However, this

preliminary work places emphasis on methodology rather than delivering a concrete

rendering system. Zhao and Zhu [232] are arguably closest to the work we present in Ch.

7, presenting an “example-based” method to paint portraits. As with our algorithm,

strokes are captured during training from a human artist. However to create a new

image [232], the training strokes are simply warped from the training face to the new

face, using a triangular mesh established over facial features. The system does not learn

a model of the painting process, and so can not generalize beyond its training data to

produce new paintings. This leads to noticeable repeatability when producing several

portraits, as the same captured strokes are output each time. By adopting a warping,

rather than rendering, strategy the approach can also distort strokes, and cannot adapt

stroke geometry and tone to image content, e.g. to emphasize shadow or highlights as

we do. A further limitation is the lack of any process for rendering hair.

Portrait rendering techniques for other artistic styles have also been investigated, ranging

from face sketch synthesis [33, 224, 229], paper-cut [150], caricatures [203, 204, 73, 155],

to cartoon face [34, 37]. Chen et al. [33] propose an example-based portrait sketching

approach which decomposes the face into blocks of semantic components and also

includes a sub-system for hair rendering of specific hair styles. Wang and Tang [224]

synthesize face sketch from photo by dividing the face region into overlapping patches

and using a MRF model to optimise the selection of sketch patches from a training set

which contains photo-sketch pairs. Zhang [229] propose a MRF based algorithm for
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synthesizing a face sketch from a photo taken under a different lighting condition and

in a different pose than the training set, taking advantage of shape priors and patch

descriptors specific to facial components. Rendering artistic paper-cut of human portraits

is investigated in [150], which uses precollected representative paper-cut templates to

synthesize the final paper-cut image by matching them with the bottom-up proposals.

Gooch et al. [73] propose to create black-and-white illustrations from photographs of

human faces using thresholding strategy. Chen et al. [34] propose an example-based

system to generate cartoon face from photo based on an inhomogeneous MRF model.

The key in portrait stylisation is to protect the facial structure from distortion which

consequently preserves the identity of face. People generally prefer to keep their identity

recognisable in the stylised portrait as this is part of the interest in personal media

collections. Measuring the quality of artistic abstraction using the recognition of face

identity has been investigated in [73, 226], which assessed the recognition time of

familiar faces presented as abstract images and photographs. We present a trainable

portrait rendering algorithm which enables the user to choose the level of abstraction

for rendering without loss of details of facial features.

2.6 Observations and Summary

From the survey, we form some observations on trends and gaps in the literature.

The majority of previous algorithms for video editing/summarisation focus on forming

an attention model from low-level features. However, the gap between the low-level

feature and high-level editing operations is not well addressed. Previous work primarily

focused on correlating low-level features with interests or salience within video sequences

without explicitly defining editing operations. Yet a structured representation of editing

is desirable to account for the low-level measure of interests, which would enable domestic

users to effortlessly manipulate their home videos to enhance the aesthetic value and

interests. Without extracting the representation of visual structures from video, the

previous video temporal composition algorithms mainly formed the sequencing and

transitioning based on similarity matching of low-level features which often causes

mismatch upon sequencing and limits the expressive forms of transitioning.
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Early image segmentation algorithms primarily adopted stochastic models or density

estimation drawn upon raw pixel data. Later, the robustness of image segmentation

was improved by combining multiple local cues into a global optimisation framework.

Rather than focusing on local features and their consistencies in the image data, graph

partitioning approaches follow global criterion to partition images into coherent regions

while measuring the evidence of boundary, which produce segmentations that satisfy

global constraints. The development of video segmentation follows the similar trend of

image segmentation, but has been distinguished by the utilisation of motion information

in similar optimisation formulas. The extension of the 2D image segmentation [45] to

a space-time video cube may be performed by adding an additional time dimension

to a feature space incorporating spatial and pixel feature. However, such 2D to 3D

extensions usually become computationally infeasible due to the large volume of video

data. Frame-to-frame (2D + t) approach is appealing in terms of efficiency to segment

long videos, however the lack of temporal information during segmentation may cause

jitter across frames and the temporal coherence is not ensured; the poor repeatability

of 2D segmentation algorithms between similar frames causes variations in the shape

and photometric properties of regions.

We have presented a comprehensive survey of artistic rendering. We observe that the

early algorithms focused on the SBR paradigm with increasing levels of automation

and sophistication in stroke placement and driven by low-level image processing (typi-

cally the Sobel operator). As the early convergence of computer graphics and image

processing developed, AR was advanced by more sophisticated image analysis offered by

contemporary computer vision algorithms (e.g. segmentation, optical flow). AR systems

incorporated even higher-level contextual parameters, i.e. human vision and emotion, to

parse image or drive stylisation. Later the composition of higher-level features naturally

fused visual feature and human semantics to produce more perceptual interpretation of

images. A consequence of the increasingly sophisticated interpretation or structured

representation of the image was a divergence from SBR to alternative forms of rendering

primitives, such as the use of regions, which in turn unlocked greater diversity in the

gamut of styles available to AR.

In parallel with the trend toward more sophisticated scene analysis, AR benefited
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from the emerging popularity of edge-preserving filtering in computer graphics. Edge-

preserving filtering approach is limited to painterly, cartoon and sketchy styles due to

the lack of high-level image interpretation. Yet, its capability of real-time processing

on GPU hardware makes it a practical solution for video stylisation and sequence

(e.g. water, smoke or fur) that is otherwise challenging to parse using segmentation

algorithms.
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Chapter 3

An Evolutionary Approach to

Automatic Video Editing

In this chapter we present an algorithm for automatic video editing; bridging the gap

between low-level feature and high-level video editing operations. We develop a novel

parse-tree representation for automatic video editing, and an optimisation algorithm

to edit raw video footage into salient, aesthetically pleasing clips by identifying the

optimal sequence of edit operations. Our salience-driven heuristic approach is driven by

low-level measures derived from video content and define rules of video editing derived

from common practice. The goal is to enhance the aesthetic value and succinctness of

raw medium items within personal media collections.

3.1 Introduction

Amateur home videos often contain lurching pans as the camera operator switches

subject, and subjects often suffer from poor framing. This can lead to videos that are

not enjoyable to watch, despite the periods of interest within them. We present an

algorithm to transform such videos into a bridged versions, through a sequence of video

editing operations.

We are concerned with three types of editing operation:

43
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• Zoom – frames are spatially cropped to focus attention.

• Cut – frames are removed to shorten the video (i.e. a temporal cropping is

performed)

• Pan – the camera view-port moves to follow a subject.

These operations may be applied to source video, with appropriate parameters and in a

specific sequence, to produce an edited video. We interpret this sequence of operations

as a program, and state finding the “best” program under some aesthetic criterion

(Sec. 3.3) to be equivalent to finding an optimal edit sequence for a particular home

video. We contribute both a novel representation for such programs, and a novel method

for searching the space of programs using a Genetic Programming (GP) framework.

GP is an evolutionary optimization method [113]. Similar to the more common Genetic

Algorithm (GA), GP creates a population of putative solutions (individuals) and

“breeds” the best individuals together to produce successively improved generations of

solutions [69]. With GP, however, the solutions are parse trees (programs) rather than

points in a fixed-dimensional search space and thus GP works well in discrete spaces

with discontinuities. GP is well suited to the problem of video editing, since the number

and order of editing operations may vary greatly between video sequences. Furthermore,

evolutionary algorithms such as GP are well suited to large search spaces in which the

combination of distinct yet locally optimal solutions (e.g. partial video edits) are likely

to yield globally preferable solutions. To the best of our knowledge, GP has not been

previously applied to the automated editing of home videos.

Section 3.2 outlines our GP representation of an edit sequence. Our optimization process

and aesthetic measure are described in Section 3.3. We present and discuss the results

of applying our algorithm to representative home videos in Section 3.4, concluding in

Section 3.5.

3.2 Representation of Video Edits

We represent an editing sequence as a program, specifically as a parse tree in which

nodes act as operators that either manipulate or combine video fragments to form the
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(a) cutting; the “split”, “take” (detail omitted)

and “discard” operators are used to create an

edited video comprising frames 1,2,4,5.

(b) pan/zoom; the “take” operator specifies a

start and end crop window for each video frag-

ment. When fragments are concatenated, inter-

polation of window parameters is performed by

“split”.

Figure 3.1: The proposed parse-tree representation for video editing.

output clip. In this section we develop our tree representation.

3.2.1 Cutting

We begin by considering the basic cut operation, in which frames are removed from

a video sequence in order to enhance its interest or aesthetic appeal. Under our tree

representation, non-terminal nodes in the tree act as “split” operators that divide a

video fragment into two sub-parts, passing the resulting fragments to their children.

The point of division is governed by an operand on the node [0,1] representing the

normalised length of the input video fragment. Thus split has three children; a child

constant node specifying the real-valued division point, and two child operator nodes.

Video fragments may be divided recursively by further non-terminal split nodes. Terminal

nodes may then either “discard” a fragment, or “take” it i.e. incorporate it in the output

sequence.

The final edited video sequence is obtained via in-order traversal of the parse tree,

appending video fragments as take nodes are encountered. We find linked lists of frames

to be an appropriate data structure for managing fragments.

The split, take and discard operators form a basic editing system with cutting function-
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ality. Fig. 3.1a provides an illustrative example of a terminal set comprising split, take

and discard operators. It is easy to argue the sufficiency of this representation. Taking

an unedited sequence of arbitrary length we can, by creating a tree comprising the right

arrangement of split nodes, split the sequence into its individual constituent frames. We

can then create any possible output sequence by applying take and discard operators.

3.2.2 Combined Panning and Zooming

In addition to cutting (temporal cropping) we enable a degree of freedom in the framing

of video content through a spatial cropping mechanism. The effect of the cropping

mechanism is to define a window around a portion of the frame, and then to scale

that region to full frame size when outputting the edited video. When the window is

appropriately positioned, this has the effect of “zooming” in on interesting content (e.g.

a person) and so improving the framing of the scene.

We implement this operation by modifying the take terminal operator defined above.

By specifying the cropping window as operand on the take node, we are able to specify

the region of interest for cropping over each video fragment incorporated into the final

edited video. Absence of cropping becomes a degenerate case; the crop window is simply

positioned over the entire frame. To avoid visual artifacts we constrain the aspect ratio

of the window to match the frame. The window’s position is thus defined by operand

[x, y, σ]; centre (x, y) and a uniform scale factor σ. Specifying the cropping window

geometry in this manner also reduces our search space.

Although camera pans are technically achievable by splitting video into individual

frames, and carefully specifying crop windows, this is not practically achievable by

our GP optimization. Instead, we explicitly incorporate camera “panning” through

an extension of the cropping mechanism. We extend the take operator again, to now

have two operands: a crop window at the starting frame, and a crop window at the

ending frame of the fragment. When outputting the final editing video, the window

parameters are linearly interpolated between the start and end frames of each video

fragment. Cropping thus becomes a degenerate case of panning, where the start and

end cropping windows are identical. The take terminal node thus has six constant
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node operands [xs, ys, σs, xe, ye, σe], where subscripts s and e indicate start and end

frame respectively. As with the division point on the split non-terminal operator, these

parameters are represented by normalised constant terminal nodes. Parameters (x, y)

are normalised to frame width and height, while σ is normalised to range from half

frame size (0) to full frame size (1). Figure 3.1b gives an illustrative example.

3.2.3 Concatenation of Video Fragments

Optimizations frequently result in parse trees that split video into many small fragments,

with similar but slightly different cropping windows. This can result in a distracting

flicker and instability in the final video. To mitigate against this, we perform some

interpolation on window parameters when video fragments are concatenated by the split

non-terminal operator.

Suppose two fragments F1, F2, of durations t1, t2, and with window parameters

ω1 = [xs, ys, σs, xe, ye, σe] and ω2 = [us, vs, τs, ue, ve, τe] are to be concatenated. A

straightforward approach is to replace the end and start windows of F1 and F2 respec-

tively with an interpolated window ωI :

ωI =
t1

t1 + t2
(ω2 − ω1) +

t2
t1 + t2

ω2. (3.1)

However, when a substantial discard has been made between fragments, it may be more

appropriate to permit a discontinuity in the window geometry i.e. leaving ω1 and ω2

unmodified.

Our solution is to update the windows using a weight derived from the temporal distance

d between the start and end of F2 and F1 respectively:

ω1 ← ω1 + e−kd(ωI − ω1)

ω2 ← ω2 + e−kd(ωI − ω2) (3.2)

where k = 0.5 provides interpolation over cuts up to d ≤ 10 frames (i.e. ∼ 1
2 second

duration).
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3.3 Genetic Search for an Optimal Video Edit

We first describe the fitness function by which we measure the aesthetics of a video edit,

and then provide the specifics of our GP optimization process.

3.3.1 Fitness of a Video Edit

Our fitness measure for a putative video edit seeks to estimate both the level of interest,

and the aesthetics of the edited output video.

Our fitness function incorporates two terms for measuring interest; the total captured

interest and the average interest captured over selected frames. The first term promotes

completeness of interests selected from the raw video footage, while the second term

promotes removal of “interest sparse” frames to produce feature rich video. The second

term also encourages subjects of interest to be framed such that they occupy most of the

scene. With respect to aesthetics, Arijon [8] notes that frequent short-term cuts within

a sequence are unpleasant for the viewer. In some situations such cuts are appropriate,

e.g. fast action shots, but these are too specific for general home video editing. Scene

and camera motion should also be minimal at the points where shot boundaries are

introduced. To incorporate these preferences, we introduce penalty terms for short cut

sequences or cuts made in the presence of large-scale motion.

In line with these heuristics, we specify the following fitness function over all frames

{E1, E2, ..., EN} included in the edited video:

F(E) =
PSC

N

N∑
i=1

[CI(Ei) ·
(
w1 +

w2

N

)
· e−γM(Ei)] (3.3)

where CI(.) is a normalised operator evaluating the captured interest within a frame

(subsection 3.3.1). M(.) is a sum of the optical flow vector magnitudes within a frame

(Figure 3.3, right). SC(.) is a count of the number of short fragments within the

edited sequence (below 1
2 second), and constitutes a penalty term on short clips when

0 ≤ P < 1. The first term PSC

N penalises frequent cuts on the video which would lead to

the rapid shot changes; it decreases significantly with the increasing number of cutting

operations. The second term CI(Ei) ·
(
w1 + w2

N

)
promotes both the completeness of
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Figure 3.2: Schematic of the GP optimization algorithm.
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Figure 3.3: Video meta-data is extracted as a pre-process; we measure interest through

detection of people (left), and inter-frame motion via optical flow (right). Result V 4

(Sec. 3.4.2)

interests captured and the average density of interests; this linear combination form

gives user the flexibility to adjust. The third term e−γM(Ei) penalises shot changes in

the presence of strong scene or camera motion. The pairs of parameters P, γ and w1, w2

are weights on the aesthetics and interest terms respectively, and may be adjusted to

user preference. The latter weights are empirically selected to find the trade-off between

the completeness and richness of captured interests. We give typical values with results

in Section 3.4.

Captured Interest

Home video is predominantly used to capture life events, and people (e.g. friends and

family) are frequently the objects of interest in such footage. In our system we correlate

interest with the presence of people in a shot. Specifically, the greater the viewing area

occupied by images of people, the more “interesting” and thus optimal our video is

deemed to be. Person detection can be achieved in a number of ways, such as human

face detection [209] and upper-body detection [61]. We opt for the latter, since face

detection systems tend to perform poorly over the wide variations in pose, scale and

lighting typical in home movies. Figure 3.3 (left) shows application of a popular cascade

based person detector [61] to typical source footage. We obtain our value for CI(.) by

averaging the probabilities of pixels belonging to a person over the cropped window
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within the editing frame.

More sophisticated definitions of interest exist — for example considering temporal [154]

and auditory [142] cues, or even models of linguistic semantics [148]. Although other

normalised measures might be substituted, we find our measure suitable for the domain

of home video. Our method also has the advantage that CI(.) and M(.) may be

efficiently pre-computed by finding bounding regions for people in each frame of video,

and intersecting those polygons with the cropping window to obtain the area of overlap

during optimization. However we emphasise that our technical contribution is not in the

interest measure per se, but rather in demonstrating the feasibility of a GP framework

for identifying optimal video edits.

3.3.2 GP Optimization

Ideally a GP operator set should fulfill three criteria identified in [165]. First, any

operator should return a value on any input, called evaluation safety. Second, the

operator set should be sufficient; it should have enough expressive power to generate

any possible solution to the problem. Third, the operators should be type consistent,

i.e., return values of the same type so as they can be freely interchangeable in breeding.

Criteria one and two are satisfied (Section 3.2) however our constant terminal nodes

return a different type (<) to that of the non-constant terminal and non-terminal nodes

(video). This breaks the third condition of “type unity”. Koza et al. suggest use of a

constrained semantic structure in such cases; effectively performing separate cross-over

and mutation for constant and non-constant nodes [112]. We follow this strategy in

subsection 3.3.2.

An overview of the optimization is shown as a flowchart in Fig. 3.2. We begin by

randomly generating a large set of programs (or “individuals”, collectively referred to

as the “population”). Each individual represents a putative solution, in the form of

our edit tree representation (Section 3.2). GP is an iterative process, in which pairs

of individuals are selected from each generation stochastically — with a bias to fitness

— and combined via a breeding process of “cross-over” and “mutation” to create a

population for the next generation. Thus at each iteration, the fitness of all individuals
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Figure 3.4: Illustrating the breeding process. GP crossover; parent trees are traversed

depth-first. Corresponding nodes and their subtrees may be exchanged. Constant node

operands are carried with their operators. GP mutation; non-constant nodes and their

subtrees are replaced, with low probability. The value of constant nodes are subjected

to mild Gaussian noise.

in the population must be evaluated using eq. (3.3) to enable fitness-proportionate

selection. Optimization can be halted when maximum fitness within the population

shows negligible improvement over several successive generations.

Initialization

Individuals within the first generation are initialised independently and randomly. In

our experiments we use a generation size of 500. An individual’s parse tree is constructed

recursively by picking a node from the set of possible operators {take, discard, split}.

Operators requiring constant operands will have appropriate child nodes created. In

the case of a non-terminal operator being picked, further operators must be generated

for the remaining child operands. The process recurses in a depth first manner until a

terminal operator is generated. When choosing an operator for a non-constant node,

the decision on type of node is made stochastically according to depth of recursion.

Non-terminal nodes are less likely to be generated at deeper points on the tree. When

generating a constant node, a value is picked uniformly at random, in range [0, 1] as all

operands are normalised by design (Section 3.2).
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Elitism

At each iteration, the top ∼ 1% fittest individuals pass through directly to the next

generation. To maintain population diversity, ∼ 5% of the next generation is reinitialised

at random. The remainder of the next generation is bred from the current, using the

processes of cross-over and mutation.

Cross-over

Cross-over is the mechanism by which elements of parent individuals are mixed to

produce offsprings for the next generation. In GP this is achieved by constructing two

new parse trees using portions of the parent parse trees.

Given two parents A and B we create two new individuals N1 and N2, initially by

duplicating A and B. We then traverse N1 in a depth-first manner, simultaneously

traversing N2 to create a one-one correspondence between nodes in N1 and N2. Where

such a correspondence is possible (i.e. moves are possible from a parent node to a

child node in both trees), we may swap the node and subtree below it in N1 with the

corresponding node and its subtree in N2. The swap is made with probability 0.2 in

our experiments. Figure 3.4 illustrates the process.

As our representation lacks type unity, evaluation problems will be encountered if

constant nodes are substituted with non-constant nodes during swapping. Thus when a

child node is swapped, its constant nodes are carried from the source to the destination

tree in situ (as if logically part of the child node). Any non-constant operands are then

recursively descended and swapped stochastically as before.

Mutation introduces diversity into the population, enabling exploration of the solution

space. Again, due to the lack of type unity we must mutate constant and non-constant

nodes using a separate mechanism. In the case of constant nodes, we iterate through

nodes in N1 and N2 adding Gaussian noise to the real value assigned to each constant

node encountered. The mean of the noise is the node’s pre-mutation value, with a small

standard deviation (0.5) in our experiments. In the case of non-constant nodes, we

iterate through nodes in N1 and N2, and will generate an entirely new subtree for a
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node (using the method of subsection 3.3.2). Figure 3.4 illustrates this process. The

probability of making such a mutation is 0.1 for all our experiments.

3.4 Results and Discussion

To evaluate the video editing system, we captured home videos covering a variety of

events. Here we present the results of five videos (V 1 − V 5). In V 1, V 2 we disabled

our zooming/panning mechanism to show the effects of the cutting operator alone. In

V 3− V 5 the full system is evaluated.

3.4.1 Cutting Only

Figure 3.5 depicts frames from our source videos, regularly sampled along a time-line

running left-right. The presence of blue below the time-line indicates detection of

interests (people), and red indicates portions of the source video time-line that were

selected and concatenated to create the edited output.

The V 1 and V 2 source footage depicts family members at the park. In V 1 the cameraman

periodically becomes distracted and points the camera at the floor or at uninteresting

objects. The system has identified contiguous blocks of interest in the video, and

cut three sections of the source time-line for concatenation into the final edited video.

Virtually all of the interest is captured in a minimal number of cuts. In V 2 cuts have

been made not only to maximise the density of interest in the clip, but also to prohibit

rapid cutting in frames where detection of people is intermittent. This is frequently

the case using [61] when people’s backs are turned to the camera, or are of small scale.

For these results, system parameters were set such that the ratio w1 : w2 was 1 : 10,

P = 0.99, and γ = 10−5. Figures 3.6,3.7 show convergence with negligible change in

population fitness or diversity after ∼ 20 iterations.

3.4.2 Cutting, Zooming and Panning

For videos V 3− V 5 we re-enabled the zooming/panning mechanism to run the system

with full functionality. Figure 3.5 shows the cuts made in the source video to isolate
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Figure 3.5: Evaluating our system over videos (V 1− V 5), from top to bottom. For V 1

and V 2 we disabled zooming/panning. A time-line (in frames) runs from left to right,

annotated in blue to show presence of interest, and in red to show segments of video

selected for output by our editing process. Frames have been sampled from the source

video at regular intervals; the blue box indicates the areas of interest detected. In the

case of V 3− V 5 the red box shows the cropping window.
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Figure 3.6: Optimization results for videos V 1− V 5, plotting maximum fitness in each

generation.

Figure 3.7: Optimization results for videos V 1−V 5, plotting standard deviation (fitness

diversity) for each generation.
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“interesting” parts of the time-line. Again, source video frames exhibiting a negligible or

intermittent response from the interest detector have been cut. Figure 3.5 also shows the

position of the cropping window (red box) within frames. Footage within the window

is scaled to create the rendered output footage shown in Figure 3.8. In the cases of

V 3 and V 4, a crop window is created around the main subject which pans to follow

the movement of the subject in the video. In the case of V 5 a cropping window is also

introduced to zoom in and improve framing of the subject; however since the camera is

already panning to follow the subject, no additional panning is introduced. For these

results, system parameters were set as in subsection 3.4.1, but with ratio w1 : w2 set

to 1 : 100. Figures 3.6, 3.7 again show quick convergence, with negligible change in

population fitness or diversity after ∼ 50 iterations. For our experiments we ran the

optimizations up to 1500 generations (300 are shown).

3.5 Conclusion and Future Work

We have presented a novel tree representation for home video editing to bridge the gap

between the low-level feature and high-level editing operations, suitable for use in a

Genetic Programming (GP) optimization framework. Our representation incorporates

cutting, zooming and panning operations. Uniquely, we search for a globally optimal

video edit using GP, maximising both aesthetics and interest within the final clip. Our

measures for aesthetics are grounded in common directing practice, and our measure

for interest is based on the presence of people; the most common subject of interest for

home videos.

We have demonstrated the efficacy of our approach over some representative examples

of home video footage. Our system quickly converges to an acceptable edit sequence,

requiring ∼ 50 generations / minute of source video. To capture the subjectivity of

video aesthetic, our fitness function is governed by user parameters weighting desire for

objects of interest against frequency of cuts, and motion. The short optimization times

enable user experimentation to taste.

Our algorithm has focused on GP optimization as a means for generating edit decisions.

It has not explored the visual rendering of those edits. Transition effects might be
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Figure 3.8: Final edited clip results from footage V 3 − V 5. Upper strip: Blue box

indicates interest detection, red box indicates cropping window. Lower strip: Footage is

rendered from within the red window to output the final clip.

introduced e.g. cross-fades when cutting. Future work may explore alternative cropping

operators, for example seam-carving, to accommodate multiple disjoint regions of interest

within a frame.

Although our fitness measure lacks the sophistication of [142, 148], we find it suitable

for demonstrating value in our GP editing framework, and for the purposes of general

home video editing. Extensions to this measure are a possible route for future work.

A higher level temporal constraint (e.g. preferring alternating cuts between subjects

during dialogue) might further enhance the aesthetic terms within fitness function.
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However, within a subject domain as broad as home video, care should be taken to draw

a sensible compromise between the complexity of editing heuristics and the generality

of footage that may be processed.
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Chapter 4

TouchCut: Fast Object

Segmentation using Single-Touch

Interaction

In this chapter we investigate a mid-level representation of visual media; region-based

representation driven by image and video segmentation. We first propose a fast interac-

tive object segmentation algorithm driven by minimum user intervention for image and

video. We then describe a case study enabling users to selectively stylize video objects

to create a hand-painted effect, using the parsed region representation. This algorithm

supports our claim that stable representation of visual structure enables localised media

manipulation and enhances the temporal coherence of expressive styles of visual media.

4.1 Introduction

The segmentation of objects from cluttered natural images remains a fundamental and

inherently challenging Computer Vision problem. The task is generally regarded as

under-constrained since, in the absence of high level scene understanding, there can

be more than one interpretation of pixels comprising the desired object of interest

or ‘foreground’ object. The past decade has seen a trend toward better constraining

61
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the segmentation task through: i) the development and increased reliance on global

optimization methods; and ii) the combination of high-level prior scene understanding

via user interaction with low-level cues such as colour and edges observed in the image.

A key challenge of interactive segmentation is to maximize the use of user provided

prior information whilst minimizing user intervention. Although recent years have

delivered significant advances, a considerable amount of user intervention is still required

to achieve a satisfactory segmentation. Typically this involves the user indicating

positive and negative class examples of pixels or regions. Often such indications requires

correction either automatically to boost discrimination between by the positive or

negative classes [170], or by the user iteratively working with the system to supply

additional constraints [147]. Regardless of the interaction modality, the goal of any

interactive image segmentation is to minimize the amount of effort to cut out a desired

object while accurately selecting objects of interest.

To address this problem, we contribute an efficient algorithm for object segmentation

driven by minimal user effort — a single touch. In contrast to previous interaction

modes, ranging from roughly marking the desired boundary [68, 18, 210] to loosely

drawing scribbles labeling the desired object and the background [22, 74, 11], to placing a

bounding box around the desired object [178, 127], our system requires only a single (x, y)

coordinate from the user offering an intuitive and maximally “economical” interaction

method. Our method has clear applications on emerging touch-screen tablet, mobile

and pervasive devices, the form factor of which devices may be inconvenient for fine-

motor interaction. Further, in some use cases (e.g. deployment in high throughput,

or multi-tasking situations such as driving) the high cognitive load required to trace

outlines or regions may also be undesirable.

The core technical contribution of this thesis is a new model for object segmentation

that fuses edge, region, and geometric cues within a level set [230] framework. In

contrast to previous expanding contour approaches relying on intensity gradient, our

proposed model incorporates a probabilistic estimate of edge location derived from a

novel dominant colour extraction scheme. This scheme offers improved robustness when

filling colour or texture coherent regions, leading to more accurate localization of the
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desired object’s boundary. We also fuse this boundary information with a region-based

maximum a posteriori (MAP) criterion designed to promote colour similarity with pixels

local to the touched foreground point. The robustness of this region-based criterion is

further enhanced by a consistency constraint enforcing uniformity of deviation from the

foreground colour model, learned from the touched foreground region. This approach to

colour consistency, combined with a novel per-pixel adaptive weighting scheme, mitigates

the tendency for contour expansion to skip the real boundary when colour models of

the foreground and background are indistinct. Finally, our proposed model also utilizes

the geometric cue implied in single-touch input, that users typically touch an image in

close vicinity to the geometric center of the desired object.

All together, our edge-region-geometry model provides a robust and flexible description

of the interactive object segmentation problem, leveraging the flexibility of level set

methods to promote accurate boundary placement and strong region connectivity while

requiring minimum user interaction. Using an incrementally built foreground colour

model, our framework also extends to address the temporally coherent video object

segmentation problem, creating regions whose shape and neighborhood topology evolve

smoothly over time whilst tracking the underlying video content. A motion estimation

enabled shape prior is further introduced into the video adaptation to preserve temporal

coherence when the foreground and background colour distributions are indistinct.

We briefly revisit level set methods in Sec. 4.2. We then describe the proposed framework

for interactive object segmentation on still images (Sec. 4.3), explaining each of the

energy terms comprising the proposed energy functional. We extend our system on

still images to video sequences in Sec. 4.4, presenting an application of our proposed

algorithm to tablet-based video manipulation. We present a comparative evaluation

with previous work in Sec. 4.5 on both a qualitative and quantitative basis, concluding

in Sec. 4.6.

4.2 Level Set Revisited

The basic idea of active contour models implemented via level set methods is that a

contour C in a domain Ω can be represented by the zero level set of a higher level



64 Chapter 4. TouchCut: Fast Object Segmentation using Single-Touch Interaction

embedding function φ: Ω → <. Evolving the contour C is achieved by evolving the

embedding function φ which is defined as the signed distance function with φ > 0 inside

the contour, φ < 0 outside the contour and |∇φ| = 1 almost everywhere.

The evolution of the level set function φ is governed by a partial differential equation

(PDE). The PDE can be directly derived from a certain energy functional E(φ) on the

space of level set functions. Subsequently one can derive the Euler-Lagrange equation

which minimizes E(φ):
∂φ

∂t
= −∂E(φ)

∂φ
(4.1)

These methods are known as variational level set methods [230]. This formulation

enables direct incorporation of statistical prior information into the design of E(φ) in

the segmentation framework. Thus the segmentation boundary C is derived by obtaining

the best φ at the zero level as

C = {x ∈ Ω | φ(x) = 0} (4.2)

4.3 Segmentation Framework of Still Images

Under the level set paradigm, we propose a new energy functional taking account of

probabilistic edge map, colour distribution of foreground and background in an adaptive

manner as well as the geometric cue implied by user touch:

E(φ) = Ee(φ) + Ea(φ) + Eb(φ) + Eu(φ) + Eg(φ) + Ed(φ) (4.3)

where Ee(φ) is the edge probability term, Ea(φ) is the ballooning term, Eb(φ) is the

Bayes statistical error term based on colour distributions, Eu(φ) is the foreground

consistency term, Eg(φ) is the geometric cue term, and Ed(φ) indicates the distance

regularization term to ensure the stable evolution of the level set function by penalizing

the deviation of the level set function from a signed distance function. These terms

can be categorized as: edge based energy, statistical prior energy, geometry energy and

distance regularization energy. Fig. 4.1 presents an overview of the proposed system,

where the dashed lines indicate these four energy categories. Each individual energy

term is detailed in the following subsections, and we also illustrate the importance
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Figure 4.1: System overview. Dominant colour extraction is performed on the input

image for calculating the edge probability map (first row). Foreground/background

colour model is estimated based on user input and the image border respectively (second

row). The energy function incorporates the various energy terms. The evolution of the

embedding function φ is specified by the energy function (right column). The zero level

contour converges to the object boundary to generate the segmentation (bottom right).

of each by disabling various terms to qualitatively demonstrate their contribution to

segmentation performance.

4.3.1 Edge Based Energy

Classical snakes and active contour models [31] typically use an edge detector to halt the

evolution of the curve on the boundary of the desired object. The gradient based edge

detector inherently captures high frequency information but not necessarily the real

boundary of the desired object. Moreover, it is also sensitive to noise. The edge-based

active contour model is thus not applicable to most natural images especially texture

rich or noisy data.

In order to describe the edge probability of colour-texture homogeneous region in

natural images, we propose an approach inspired by JSEG [56], which calculates an edge
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indicator by observing the local distribution of colour class labels without estimating a

specific model for a texture region. In our proposed method, the colour class labels are

generated by extracting the dominant colour modes and assigning each pixel with the

label of according colour mode.

Extracting Dominant Colours

A dominant colour (DC) is defined as a set of similar colours, of which the corresponding

pixels occupy a relatively large proportion in (a specific region of) an image. There

have been many approaches proposed to address the DC extraction problem. Splitting

based colour quantisation approaches such as median cut [86] do not consider the colour

distribution or the quantisation error. Lin and Zhang [135] extract coarse DCs by

considering each local maximum and its neighborhood within a diameter-fixed sphere

in the HSV colour space as a possible DC. Wang et al. [215] adopt EM algorithm to

estimate the GMMs of the input colours. However, it is difficult to properly set the

number of the Gaussians. The Generalized Lloyd Algorithm (GLA) is adopted to divide

the input colours into clusters in [55, 56]. Because the GLA aims at minimizing the

global quantization distortion, the colour ranges with high frequency are apt to be

over-divided, and those with low frequency are apt to be under-divided. The Mean

Shift algorithm is adopted to identify the dominant colours in [45]. However, it suffers

from scale problem which makes it difficult to adaptively make a good trade-off between

precision, robustness and roughness in the colour histogram. To address these problems,

we propose a novel non-parametric DC extraction algorithm which considers both colour

distribution and colour similarity, to better explore the inherent characteristics of DC.

The proposed algorithm 1 is performed on the histogram in a 64×64×64 CIE Lab colour

space. We choose CIE Lab colour space because it is designed closely matching human

perception and is more perceptually uniform. The key procedure of this algorithm is

shown in Fig. 4.2.

The first step finds all the local maximums in the histogram and assigns a unique label

to each of them. A histogram bin x, is a local maximum if the following condition, where

1The code is from Sony China Research Laboratory
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H(·) denotes the histogram value, and N(·) denotes the 6-connection neighborhood, is

satisfied,

H(x) ≥ H(y),∀y ∈ N(x). (4.4)

In case that neighboring peak bins have different labels, their labels are unified.

In the second step, the input colours are clustered via iteratively spreading the labels

of all the peaks and regarding the bins with the same label as one cluster. The label

spreading process is iteratively performed until every bin x with H(x) > 0 is labeled.

In each iteration, bin x, which has not been labeled, may inherit the label of bin y, if

H(x) ≤ H(y), y ∈ N(x). As the labels of different peaks are spread simultaneously, the

label of the peak that is closer to the bin is likely to arrive first. This scheme seeks the

shortest ascending route to a local maximum. If multiple labels arrive at x in the same

iteration, then x is labeled as the same as the neighboring bin with the larger histogram

value. Thus, this scheme seeks the shortest ascending route to a local maximum for

each bin; it considers both color distribution and color similarity, whilst other local

distribution based approaches only considers color similarity [135] or color distribution

[45].

A bin x is defined as a joint Jt(·, ·) of two adjacent clusters Ωi and Ωj if the following is

satisfied

x ∈ Ωi, ∃y | (y ∈ Ωj) ∧ [y ∈ N(x)] ∧ [H(y) ≥ H(x)],

and thus x ∈ Jt(Ωi,Ωj). The connection value vc(·, ·) of these two adjacent clusters can

be defined as

Vc(Ωi,Ωj) = max[H(x) | x ∈ Jt(Ωi,Ωj)]

After the second step, all the colours are clustered. However, colour histograms, especially

the high-resolution ones, are not smooth which normally leads to many local peaks. To

make the algorithm robust to roughness of the histogram, some of the adjacent clusters

should be properly merged. Considering the peaks as islets in a lake, some of small

islets will be connected to form larger islets as the water level in the lake decreases. To

this end, all the histogram values are first sorted in descending order. Then we scan

the sorted values one by one to simulate the water level decreasing. We only consider
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merging the connected clusters during the scanning. The dominant mean colour Cm(·)

of each cluster Ωi is updated as the water level h decreases as

Cm(Ωi, h) =

∑
x ·H(x)∑
H(x)

| (x ∈ Ωi) ∧ [H(x) ≥ h]

where x indicates both the bin and the colour vector. Only the bins which are above the

water level h contribute to the dominant mean colour of their cluster. When the water

level h reaches the joint of two adjacent clusters, they can be merged if the following

two conditions are satisfied

||Cm(Ωi, h)− Cm(Ωj , h)|| ≤ Td,

Vc(Ωi,Ωj) ≥ Tp ·min{max[H(x) | x ∈ Ωi],max[H(y) | y ∈ Ωj ]},

where the threshold Td indicates a colour difference that is distinctly visible to human

eyes (suggested as 0.07) and Tp ∈ [0.5, 0.75]. The conditions constrain that two clusters

can be merged only if their dominant mean colours are similar enough and their

connection value is not too small compared to their peak values.

Compared with the agglomerative algorithm used in [55, 56], which only considers

colour similarity, the proposed cluster merging scheme also considers colour distribution.

When two clusters are merged, their connection relationships with other clusters will be

inherited by the new cluster, so that the new cluster may be further merged with the

adjacent clusters. As all the connection values are scanned, all the adjacent clusters

will be considered for merging. Thus this step is finished when the iteration is over.

The average processing time on VGA (640× 480) image is less than 60 ms (Intel Core2

CPU 2.1 GHz, single thread) which makes it a very efficient and robust algorithm for

our application.

Edge Indicator and Energy

Suppose Z is the set of all N pixels in a dominant colour mode map. Let z = (x, y), z ∈ Z.

Z is classified into C DC modes. The means of Z and class Zi (i ∈ C) in Z are

m =
1

N

∑
z∈Z

z.

mi =
1

Ni

∑
z∈Zi

z.
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Figure 4.2: Key procedures of the proposed dominant colour extraction algorithm

Figure 4.3: Comparisons of edge map by Sobel operator and the proposed edge proba-

bility: (1) Source image (2) Edge map by Sobel operator (3) Edge probability map by

our approach (4) Segmentation with only the edge energy based on Sobel operator (5)

Segmentation with only the edge energy based on proposed edge probability.

respectively. Let

ST =
∑
z∈Z
||z −m||2

SW =

C∑
i=1

Si =

C∑
i=1

∑
z∈Zi

||z −mi||2

be the variance of pixels in Z and the total variance of pixels belonging to the same DC

mode. The edge indicator is defined as

J = (ST − SW )/SW .

The value of J is large near the boundaries of colour-texture homogeneous region and

small in region interiors, and thus can serve as edge “probability” while suppressing

high frequency information and noise as opposed to traditional edge detectors.

Ee incorporates the edge indicator J and is defined similarly as the geodesic model [31]

Ee = ωe

∫
Ω
gδ(φ)|∇φ|dx (4.5)
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where g = 1
1+cJ , ωe is the coefficient which is specified in Table 4.1, c is a constant, H

is the Heaviside function and δ is the Dirac delta function.

We define the ballooning term as

Ea = ωb

∫
Ω
gH(φ)dx (4.6)

which computes a weighted area of the region Ω+
φ , {x : φ(x) > 0}. This energy is

introduced to speed up the motion of the zero level contour in the evolution process

when the initial contour is not placed in the vicinity of the desired object boundary.

The ballooning of the zero level contour is inhabited near the boundaries where J takes

larger values.

A comparison of the Sobel edge map and the proposed edge probability is shown in Fig.

4.3. The awareness of local colour distribution avoids the converge of zero level contour

stuck in a local minimum frequently caused by the traditional local edge detectors and

facilitates the segmentation of natural image.

4.3.2 Statistical Prior Energy

An optimal partition P(Ω) of the image plane Ω can be computed by maximizing the a

posterior probability p(P(Ω)|I) for the given image I [160]. Applying Bayes’ rule, it

can be expressed as

p(P(Ω)|I) ∝ p(I|P(Ω))p(P(Ω)).

p(P(Ω)) allows to introduce prior knowledge such as geometric priors to cope with

missing low-level information. Under the given prior, optimal two-region partition is

achieved by maximizing

p(I|P(Ω)) = p(I|Ω+)p(I|Ω−). (4.7)

where Ω+ and Ω− represent the regions inside and outside the contour respectively.

Maximization of (4.7) is equivalent to minimizing its negative logarithm, we define Eb(φ)

as

Eb(φ) = −ωb[log p(I|Ω+) + log p(I|Ω−)]. (4.8)
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We assume that the image I in each region is characterized by the individual pixel

values at different locations x and the pixel values are i.i.d. Let φ(x) > 0 if x ∈ Ω+ and

φ(x) < 0 if x ∈ Ω−. We reduce (4.8) to

Eb(φ) = −ωb
∫

Ω
(H(φ) log p(I(x)|θ+) +

(1−H(φ)) log p(I(x)|θ−))dx. (4.9)

where θ+ and θ− represent the foreground and background colour model respectively

and ωb is the coefficient specified in Table 4.1.

The foreground and background colour model are represented by Gaussian Mixture

Model (GMM) as

p(I(x)|θi) =

Ki∑
k=1

wikN (I(x);µik,Σik),

with parameters wik, µik and Σik representing the weight, the mean and the covariance of

the kth component. The parameters of all GMMs (θi = {wik, µik,Σik, i = 1, . . . , L, k =

1, . . . ,Ki}) are learned from observations of pixels; specifically the pixels in the user-

specified area are assumed to be foreground and the border of the image is assumed to

be the background. The second row in Fig. 4.1 visualizes the process of estimating the

foreground and background colour model.

The user-touched area is usually a part of the desired object, and thus the foreground

colour model has higher confidence than the background colour model, especially

when the desired object intersects the border of the image. We propose a foreground

consistency term to enforce the minimization of foreground statistical error as

Eu(φ) =
ωu
∫

ΩH(φ)(1− p(I(x)|θ+))dx∫
ΩH(φ)dx

. (4.10)

This energy term computes the averaged classification error 1− p(I(x)|θ+) inside the

zero level contour regardless of the accuracy of the background colour model. Fig. 4.5

gives examples where the background colour model is confused with the foreground

whilst the foreground consistency term ensures the contour evolution proceeds as long

as the foreground statistical error inside the contour is minimized.

Fig. 4.4 presents segmentation results by disabling the statistical prior energy and

edge based energy respectively. Based on edge information alone, the system fails
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Figure 4.4: Contribution of edge based energy and statistical prior energy: (1) Source

image (2) Segmentation by full system (3) Segmentation by disabling statistical prior

energy (4) Segmentation by disabling edge based energy.

Figure 4.5: Contribution of foreground consistency term: (1) Segmentation by full

system (2) Segmentation by disabling foreground consistency term.

to converge to the correct object boundary without considering the global colour

distribution. Disabling the edge based energy leads to unsmooth segmentation caused

by the statistical prior error. Combining these two achieves robust segmentation in the

presence of inaccurate edge information or colour modeling.

4.3.3 Geometry Energy

People tend to select the geometrical center when they are indicating the object of

interest. Although not a precise measurement, such a geometrical constraint provides a

weak cue for the contour evolution process. We propose a central symmetry term to
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Figure 4.6: Contribution of geometry energy: (1) Segmentation by full system (2)

Segmentation by disabling geometry energy.

reflect this geometrical constraint, by computing the spatial deviation of the geometrical

center of zero level contour from the user-input point as

Eg(φ) = ωg|
∫

Ω
H(φ)(x− x)dx∫

Ω
H(φ)dx

| (4.11)

where x represents the user-input point. The closer the user-input point is to the

geometrical center, the smaller this term would be. As the desired object could have

very complex shape, this term is regarded as a relatively weak indication of the desired

object’s geometry. Fig. 4.6 shows an example of the situations where this higher level

knowledge is explored to guide the contour evolution to segment the whole object of

interest which can not be achieved by low level colour and edge information.

4.3.4 Distance Regularization

The proposed model incorporates the distance regularization term present in [130] to

ensure stable evolution of the level set function, by penalizing the deviation of the level
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set function from a signed distance function. This deviation is characterized by the

following integral

Ed(φ) = ωd

∫
Ω
P(|∇φ|)dx (4.12)

where P(s) is a double-well potential function defined as

P(s) =

 1
(2π)2

(1− cos(2πs)), if s ≤ 1

1
2(s− 1)2, if s ≥ 1.

This potential function maintains the signed distance property |∇φ| = 1 only in a vicinity

of the zero level contour to ensure accurate computation for curve evolution, while keeps

the embedding function φ as a constant with |∇φ| = 0 at locations far away from the

zero level contour to smooth the embedding function. The distance regularization effect

eliminates the need for reinitialization and thereby avoids its induced numerical errors.

4.3.5 Adaptive Weighting

Minimizing the proposed energy functional (4.3) with constant coefficients usually gives

good segmentations. However, when the foreground and background distribution is not

distinct, the Bayes error term would be non-discriminative and the contour evolution

process would not converge to the desired object boundaries. In this case, the weight of

Bayes’ error term should be relatively small to increase the influence of other reliable

terms. We expect it to be adaptively tuned based on the colour modeling error on a per

image basis. To this end, we estimate the misclassifying error in foreground/background

seeds based on the posterior probability

η =
1

|Ω+|
∑

x∈Ω+

p(I(x)|θ−) +
1

|Ω−|
∑

x∈Ω−

p(I(x)|θ+) (4.13)

and define coefficient ωb = max{ωb(1− η), 0}. When the misclassifying error η is close

to zero, the weight approaches ωb. When the colour models are indistinct, ωb approaches

0.
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Figure 4.7: Contour evolution process: The initial contour and the zero level contours

(green curve) after 100, 200, 400 iterations respectively

4.3.6 Numerical Approximation and Implementation

We use the standard gradient descent method to minimize the energy functional (4.3)

∂φ

∂t
= −∂Ee(φ)

∂φ
− ∂Eb(φ)

∂φ
− ∂Eu(φ)

∂φ

−∂Eg(φ)

∂φ
− ∂Ea(φ)

∂φ
− ∂Ed(φ)

∂φ
(4.14)

where the gradient flows are deducted as follows:

∂Ee(φ)

∂φ
= ωeδ(φ)div(g

∇φ
|∇φ|

)

∂Eb(φ)

∂φ
= ωbδ(φ) log

p(I(x)|θ+)

p(I(x)|θ−)

∂Eu(φ)

∂φ
= ωuδ(φ)[

(1− p(I(x)|θ+))

(
∫

ΩH(φ)dx)2

−
∫

Ω(1− p(I(x)|θ+))H(φ)dx

(
∫

ΩH(φ)dx)2
]

∂Eg(φ)

∂φ
= ωgδ(φ)

|(x− x)−
∫

Ω(x− x)H(φ)dx|
(
∫

ΩH(φ)dx)2

∂Ea(φ)

∂φ
= ωagδ(φ)

∂Ed(φ)

∂φ
= ωddiv(

P ′(|∇φ|)
|∇φ|

∇φ)

To discretize the equations, we use a finite differences scheme. Considering the 2D case

with a time dependent embedding function φ(x, y, t), the spatial derivatives ∂φ/∂x and

∂φ/∂y are approximated by the central difference, where the space steps are fixed as

Ωix = Ωiy = 1. The temporal partial derivative ∂φ/∂t is approximated by the forward

difference. We discretize embedding function φ(x, y, t) as φki,j , where (i, j) is the spatial

index and k is the temporal index. The level set evolution equation (4.1) is discretized
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as (φk+1
i,j − φki,j)/Ωit = F (φki,j) where F (φki,j) approximates the right hand side in (4.1).

The level set evolution is then expressed as an iteration process

φk+1
i,j = φki,j + ΩitF (φki,j), k = 0, 1, 2, . . . (4.15)

In the implementation, the Heaviside function H is approximated by a smooth function

defined by

Hε(x) =


1
2(1 + x

ε + 1
π sin(πxε ), |x| ≤ ε

1, x > ε

0, x < −ε.

and the Dirac delta function δ is approximated by

δε(x) =

 1
2ε(1 + cos(πxε )), |x| ≤ ε

0, |x| > ε.
(4.16)

As the Dirac delta function and the Heaviside function multiply the entire image plane

in (4.14), only the φ values in the vicinity of the zero crossing points need to be updated.

This is the central idea of the narrow band methods [1]. The computational cost

of a level set method can be substantially reduced by confining the computation to

a narrow band around the zero level set contour. For our proposed formulation, as

re-initialization is not needed due to the incorporation of distance regularization term

Ed [130], the narrow band implementation is simple and straightforward. Our narrow

band implementation allows the use of a large time step in the finite difference scheme

to greatly reduce the iterations as long as the choice of the time step 4t satisfies the

Courant-Friedrichs-Lewy (CFL) condition ωd4t < (1/4) for numerical stability.

We adopt the narrow band method [1] to substantially reduce the computational cost of

level set method by confining the computation to a narrow band around the zero level

set contour. The narrow band scheme is implemented in the following major steps:

1. Compute the narrow band Bk =
⋃

(i,j)∈C0
Ni,j , where Ck is the set of zero crossing

points of φk and Ni,j is a 3× 3 neighborhood system centered at each point (i, j).

If either φi−1,jφi+1,j ≤ 0 or φi,j−1φi,j+1 ≤ 0, point (i, j) is regarded as a zero

crossing point. ∀(i, j) ∈ Bk and (i, j) /∈ Bk−1, set φki,j = 2 if φk−1
i,j > 0, or else set

φki,j = −2 if φk−1
i,j < 0.
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Table 4.1: Parameters settings in the energy function

ωe ωb ωu ωg ωa ωd σ ε K

6 1 10 5 -4 0.04 -24 -1.5 400

2. Update the embedding function φk+1
i,j = φki,j + ΩitF (φki,j) on the narrow band Bk.

3. If k exceeds a predefined maximum number of iterations K, the evolution process

is halted. Otherwise, go to (1).

In our prototype, we use a mouse click and a fixed brush size σ to simulate the finger

touch of the user. The embedding function φ is initialized by extracting the contour of

the user input brush stroke. The embedding function is assigned as 2 inside the contour

and −2 outside the contour. We empirically choose the parameters in the formulation

which are listed in Table 4.1. Fig. 4.7 illustrates the evolution process of the zero level

contour which clearly indicates the speed of convergence.

4.4 Extension to Video Object Segmentation

The proposed TouchCut framework enables fast object segmentation with accurate

boundary placement and strong region connectivity on still images. In this section, we

extend TouchCut framework to video object segmentation. As one of the potential

applications enabled by the proposed system, we stylize video objects or background

into paintings based on the temporally coherent object/background region map.

After acquiring the object segmentation on the initial frame, TouchCut is performed

on successive video frames using both photometric properties of the current frame and

prior information propagated forward from previous frames. This information consists

of:

i. an incrementally built GMM encoding the colour distribution of foreground/background

over past frames;

ii. an initial contour for level set evolution;
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iii. an estimated foreground object mask.

The image data labeled by the binary segmentation mask on previously segmented frames

underpins accurate colour distribution of foreground and background region respectively

when the luminance variation on successive frames is minor. In practice, to cope with

variations in luminance often present in the sequence and cumulative segmentation

error near boundary, the proportion of samples Sl,t−td ∈ [0, 1] (td > 0), l ∈ lf , lb drawn

from all foreground (lf ) and background (lb) pixels from historical frame It−td decreases

exponentially as the temporal distance td from the current frame It increases

Sl,t−td ∝ e
−t2d/σ

2
td , (4.17)

where σtd is determined by the level of luminance variance. Smaller σtd is selected when

luminance variance is large, contributing more recent data to the GMM, otherwise the

historical data contributes more to increase robustness.

We employ optical flow to create a per-pixel propagation of the foreground mask from

frame It−1 to create an estimated mask on frame It which is used as the shape prior φ̃

which takes the value of the initial embedding function. We propose a shape energy term

measuring the shape dissimilarity of two shapes represented by the embedding functions

φ and φ̃, which is commonly computing the area of the set symmetric difference

Es(φ) = ωs

∫
Ω

(H(φ)−H(φ̃))2dx (4.18)

ωs is inversely proportional to the alignment error in the scope of the foreground object

Ωf

ωs ∝ 1/

√√√√ 1

|Ωf |
∑
x∈Ωf

||It−1(x)− I ′t(x)||2. (4.19)

where I
′
t is the warped colour image from frame It−1 to It by the optical flow. Accurate

alignment generally indicates reliable motion estimation and such shape priors thus

contribute more to the contour evolution.

Applying the standard gradient descent method to minimize the shape energy term, we

deduct the gradient flow of shape energy as

∂Es(φ)

∂φ
= 2ωsδ(φ)(H(φ)−H(φ̃)). (4.20)
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The initial contour of TouchCut on current frame It is acquired by computing the

deviation of the initial contour φ0
0 on the first frame from the geometrical center g0

0.

Let the center of φ0
0 be b0, and the center bt of the initial contour on It is estimated as

bt = gt0 + b0−g0
0. The geometrical center on frame It, g

t
0 is estimated from the estimated

foreground mask. We use a circle centered at bt with a radius rc as the initial contour

on frame It. rc is two times as large as the maximum distance from the contour to the

touch point on the initial frame.

Due to the inherent error of optical flow, the new initial contour might be slightly

drifting from the desired object, i.e. part of the area inside the initial contour might

be the background. The robust formulation based on colour and shape priors push

the contour evolution, minimizing the pixel classification error inside and outside the

contour, while satisfying other criteria defined in the energy function, to achieve accurate

and temporally coherent segmentation.

4.5 Experiments and Comparisons

We have applied the proposed algorithm on a dataset consisting of the combined

Berkeley BSDS300 dataset [144], and image dataset accompanying GrabCut [178]. We

also demonstrate the application of TouchCut to video sequences exhibiting clutter

and agile motion. We assess segmentation performance both qualitatively through

visual comparison to prior work, and quantitatively based on a manual ground truth

segmentation. We indicate relative performance to the state of the art for both image

and video comparisons.

4.5.1 Segmentation of Still Images

Fig. 4.8 presents a qualitative comparison of the proposed method with standard graph

cut (middle) [22] and GrabCut (right) [178]. In the case of Graph cut, we adapted such

the modeling of colour distributions to exactly that of the proposed approach to make a

fair comparison — i.e. to solely evaluate performance of the single touch segmentation
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Figure 4.8: Comparison of proposed method (left) with graph cut (middle) and GrabCut

(right). The contour of segmented object is shown in green.
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paradigm. Specifically, the foreground colour was modeled from the pixels in the

user-touch area while the background colour was modeled by taking pixels from the

border of the image. With significantly less user input, our method gives satisfactory

segmentation even when the foreground and background colours lack distinction (first

row) or regions exhibit complex topology (second row). Graph cut fails to separate

the objects exhibiting a similar colour to the desired object, whilst our approach fills

the desired region by expanding from the interior of the selected object outwards and

explicitly considers the object boundary and geometric properties. GrabCut presents

better spatial constraints than graph cut, benefiting from the bounding box while failed

to exclude noisy extraneous regions (e.g. the varying levels of luminance underneath the

tiger) which do not appear outside the bounding box. The latter method also suffers

from “short-cutting” regions (e.g. the elephant’s legs and trunk).

For our objective comparison, we adopt the Berkeley Segmentation Benchmark [144]

to quantify segmentation accuracy against a manual specified ground-truth. This

benchmark considers two aspects of segmentation performance. Precision measures the

fraction of true positives in the contours produced by a segmentation algorithm. Recall

indicates the fraction of ground truth boundaries detected in the segmentation. The

global F-measure, defined as the harmonic mean of precision and recall, provides a useful

summary score for the segmentation algorithm [144]. Averaging across the dataset our

proposed method receives a F-measure of 0.765 which outperforms the adapted graph

cut (F-measure 0.538) and GrabCut (F-measure 0.697) despite interaction being limited

to just a single touch.

Fig. 4.9 presents further segmentation results 1. The first row shows the results on

highly-textured images. The edge probability map enables the contour evolution over

colour-texture homogeneous regions without being stopped at local minimum. The

second row shows the segmentation results of images with indistinct foreground and

background colours. In this case, the colour modeling error is large which adaptively

results in a small weight on colour based term Eb. On the other hand, the foreground

consistency term Eu enforces the region inside the zero level contour to be coherent in

1More results can be viewed online at: http://personal.ee.surrey.ac.uk/Personal/Tinghuai.

Wang/CVIU2011

http://personal.ee.surrey.ac.uk/Personal/Tinghuai.Wang/CVIU2011
http://personal.ee.surrey.ac.uk/Personal/Tinghuai.Wang/CVIU2011
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Figure 4.9: Representative segmentation results from our dataset, discussed within

Subsec.4.5.1

the sense of colour distribution regardless the background colour distribution. Such

a constraint significantly imposes the stability of the contour evolution process in the

case of indistinct colour distributions. The third row contains segmentation results

to deal with objects with complex shape. By leveraging the strength of the implicit

contour representation in level set methods, our system is robust in coping with complex

topologies without exhibiting short-cutting problem which is common in graph-cut based

systems. The system is able to cope with weak boundaries and complex foregrounds

and backgrounds, to extract meaningful objects in most cases.

For all image results the running time on a Core2 2.1 GHz PC is constant ∼ 0.4 second

per VGA image (640× 480). More representative segmentation results are presented in

Fig. 4.10.
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Figure 4.10: Additional representative segmentation results from our combined

BSDS300 and GrabCut dataset.

4.5.2 Segmentation of Video Sequences

We quantitatively test TouchCut on three videos and ground-truth for the primary

foreground object present in [36] and [206]. The videos tested exhibit various challenging

conditions such as foreground and background colour overlap, luminance variation, shape
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Figure 4.11: Qualitative segmentation results on BIRDFALL (row 1), PARACHUTE

(row 2) and GIRL (row 3) respectively. 4.5.2.

deformation and camera motion. We compare against two state-of-the-art approaches:

another level set based tracking approach by Chockalingham et al. [36] and the ‘motion

coherent segmentation’ method of Tsai et al. [206]. These methods require human

labeling of the object boundary (contour) in the first frame, whilst TouchCut requires

minimal user intervention to guide the segmentation of whole video via a single touch

on the first frame. The segmentation accuracy is quantified as the average per-frame

pixel error rate, ε(S) = |XOR(S,GT )|
F , where S is the segmentation, GT is the ground-

truth segmentation and F is the total number of frames. As shown in Table 4.5.2,

our method outperforms the approaches present in [36] and [206] on two of the three

videos (PARACHUTE, BIRDFALL), and produces the second best result on the GIRL

video. Our higher error rate on GIRL is caused by the inaccurate optical flow motion

estimations and indistinct colour of foreground and background, which is reasonable

since the object exhibits large appearance variation, considering TouchCut does not



4.5. Experiments and Comparisons 85

Figure 4.12: Illustrating the importance of the shape prior for Video TouchCut. Compar-

ison of the full TouchCut with a baseline that does not incorporate a shape prior. Shape

energy improves segmentation quality (normalized pixel error rate on BIRDFALL).

either explicitly employ global optimizations to enforce motion coherence across frames

as in [206] and or manually bootstrapping the first frame. Further, TouchCut requires

only a single touch to bootstrap the entire video segmentation — and we believe these

comparative results to be very encouraging. Further qualitative segmentation results

are shown in Fig. 4.11.

We study the impact of the proposed shape prior underpinning our video segmentation,

comparing against a baseline implementation that does not incorporate the shape prior,

but otherwise follows the same pipeline as our full method. Fig. 4.12 shows the results.

The shape energy significantly improves segmentation accuracy, quantified against a

manual ground truth.
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TouchCut [206] [36]

BIRDFALL 0.003 (248) 0.003 (252) 0.005 (454)

PARACHUTE 0.002 (228) 0.002 (235) 0.004 (502)

GIRL 0.012 (1691) 0.009 (1304) 0.012 (1755)

Table 4.2: Video segmentation error expressed as the average fraction of mis-segmented

pixels (false positive plus false negative) per frame. Absolute number of mis-segmented

pixels in parentheses (averaged per frame).

4.5.3 Application to Video Stylization

Temporally coherent segmentation of video forms a stable representation of visual

structure in the scene which enables other computer vision and graphics applications.

We demonstrate an application of TouchCut system on videos to create stylized region-

based effects such as painterly rendering. We incorporate a framework of automatic

non-photorealistic rendering by Kyprianidis and Döllner [118] to facilitate the domestic

user to create artistic stylizations on either the desired object or the background scene.

As qualitative evaluation, we apply our segmentation algorithm to several video sequences

exhibiting both slow moving and agile motion — summarized in Table 4.3. Fig. 4.13

presents the segmentation results applying TouchCut to these five video sequences and

the foreground object or background painterly stylization effects. Our segmentation

algorithm ensures the foreground and background regions deform in a coherent manner.

In Fig. 4.13(a) there is significant agile motion in “YUNAKIM” – Yuna swings and

suffers frequent inter-occlusion over duration of the clip. Despite the adoption of a

Sequence Motion # of Frames

YUNAKIM (Fig. 4.13(a)) Agile 225

BOY (Fig. 4.13(b)) Slow 190

BEACH (Fig. 4.14(a)) Medium 300

LION (Fig. 4.14(b)) Slow 201

WALK (Fig. 4.14(c)) Medium 200

Table 4.3: Summary of video sequences used in our qualitative evaluation, annotated as

to motion and number of frames present.
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(a) Representative frames from “YUNAKIM” sequence

(b) Representative frames from “BOY” sequence

Figure 4.13: Segmentation results applying TouchCut to video sequences and fore-

ground object stylization effects (source in top row, foreground object cut-out in

middle row, painterly rendering on foreground object in bottom row). Please refer

to http://personal.ee.surrey.ac.uk/Personal/Tinghuai.Wang/CVIU2011 for

these and further results.

forward propagation (2D+t) strategy over several hundred frames of video there is no

significant degradation. With an incrementally learned GMM colour model, TouchCut

is able to deal with the strong luminance variation on the boy’s face (“BEACH”) and

produce stable segmentations with temporal coherence present in Fig. 4.14(a). Similar

situation can be observed in “WALK” sequence, where both strong luminance variation

and agile motion are present. As an application of TouchCut, the domestic user can
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choose either the foreground or background to create special effects, i.e. painterly

stylization, with single finger touch on the first frame as shown in Fig. 4.13 (foreground

object stylized) and Fig. 4.14(c) (background stylized). Drawing upon the coherent

video segmentation by TouchCut, the stylized videos create either a painting object in

a realistic scene or a realistic object in an unrealistic scene with painting style. Other

special effects would be creating a new movie with the selected object in a totally

different scene or emphasizing the desired object by blurring the background.

4.6 Conclusion

We have presented a single-touch object segmentation system using level set methods.

The core contribution is an edge-region-geometry based segmentation model to robustly

tackle the interactive object segmentation problem — encoding boundary probabilities

of colour-texture homogeneous regions, and the statistical and geometric priors inferred

from the user input. Our edge model gives a robust description of the coherent colour-

texture region, which mitigates against the contour becoming stuck in local minima in

the presence of noisy data. This frequently occurs in prior approaches, where traditional

intensity gradient-based edge maps are used. Edge information alone only provides local

information to drive contour evolution towards potential object boundary. Augmenting

this model with colour information from user input introduced a global term, balancing

the a posterior probabilities of region models inside and outside the putative object

contour.

By leveraging the flexibility of level set methods in energy minimization, our system

achieved promising results in various natural images with complex scenes and objects.

We also demonstrated that TouchCut can be extended to segment video sequences

into temporally coherent foreground and background region maps. This gives rise to

potential applications to video special effects (e.g. artistic stylization) with minimal user

intervention, that may be suited to consumer touch-screen video cameras. Coherence was

promoted through an incrementally learned colour model, providing robustness against

drift of the contour otherwise caused by motion estimation error. The introduction

of a shape prior into the motion estimation framework was shown to deliver a further
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significant enhancement to coherence, especially when the foreground and background

colour distribution became indistinct.

4.7 Future Work

TouchCut still experiences difficulties in separating the desired object from the adjacent

background in the presence of highly similar colours. This remains an open question in

the image segmentation community in the absence of other higher level semantic priors,

e.g. shape, or other forms of global measurement. One interesting direction for future

work would be to improve the background colour modeling by measuring the salience of

different dominant colour modes. Another direction of future work with respect to the

video extension might include detecting occlusion boundaries discovered from motion

disparity in the scene, and using these to compensate for any ambiguity in appearance

between the foreground and background.

Future applications of TouchCut fall within our original project motivation, to develop

an image and video object segmentation algorithm with minimal user intervention

suitable for emerging tablet and touch-screen devices. These applications could span

embedded object extraction and tracking, intelligent focus, and video stylization [42, 219]

on these devices.
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(a) Representative frames from “BEACH” sequence

(b) Representative frames from “LION” sequence

(c) Representative frames from “WALK” sequence

Figure 4.14: Additional segmentation results applying TouchCut to video sequences

and using the matte to create foreground (a and b) or background (c) object stylization

effects (source in top row, foreground object cut-out in middle row, painterly rendering

on foreground/background object in bottom row).
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Chapter 5

Stylized Ambient Displays of

Visual Media Collections

In this chapter we build structured representations for visual media collections, specif-

ically from low level content parsing and understanding, to intelligent browsing and

composition of visual media. We first present a novel video segmentation algorithm

which performs a multi-label graph cut on successive video frames to parse the video

into coherent spatial segments. This stable representation of visual structure facilitates

both the coherent artistic stylisation and region correspondence between frames. The

latter enables aesthetically pleasing composition of different video clips. A hierarchical

representation for media collection is proposed to present a coarse-to-fine structuring of

media items using graph optimisation. These representations of structure at different

levels of abstraction underpin a system to automatically select, stylise and transition

between digital contents. This chapter supports our claim that the improved stability

of the structure extracted from video sequences enhances the temporal coherence of

artistic renderings, broadening the gamut of potential expressive styles and enhancing

the user engagement of visual media consumption.

93
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Figure 5.1: The Digital Ambient Display (DAD) selects, stylizes and transitions be-

tween home digital media items (photos and videos) according to semantic and visual

similarity. The paths through the media collection are passively influenced by user

interest measurement (gaze detection).

5.1 Introduction

The proliferation of video and image data in digital form creates demand for an

effective means to browse large volumes of digital media in a structured, accessible and

intuitive manner. This chapter proposes a novel approach to the consumption of home

digital media collections, centred upon ambient experiences. Ambient experiences are

distinguished from compelling or intense experiences in that they are able to co-exist

harmoniously with other activities such as conversations, shared meals and so forth. An

ambient experience does not demand the full attention of the user but is able to play

out in a pleasing, unobtrusive way such that fresh and interesting content is available

in the attention spaces of everyday life. We seek to emulate, for digital media, the

serendipitous process of rediscovery often experienced whilst browsing physical media

archives (e.g. a box of photos in the attic) that can trigger enjoyable reminiscence over

past memories and events.

Although considerable research has been devoted to direct interactive approaches for

browsing digital media collections, there is little previous work addressing the problem of

displaying digital content in an ambient manner. Typical approaches to browsing small

or medium scale photo sets project thumbnails onto either a planar or a spherical surface,

so that images that are visually similar are located in close proximity in the visualization

[47, 85, 184, 176]. Large photo sets are often handled by clustering content into subsets,

sometimes arranged hierarchically for visualization and manual navigation [114, 35, 70].

With the expected proliferation of large format video displays around the home, recent



5.1. Introduction 95

work explores the specific domain of household digital media interaction [9, 227]. Yet,

the ambient dissemination of home visual media, and the associated issues of interaction

in an ambient context, remain sparsely researched.

5.1.1 Digital Ambient Display (DAD) concept

The Digital Ambient Display (DAD) is an always-on display for living spaces that enables

users to effortlessly visualize and rediscover their personal digital media collections.

DADs address the paradoxical requirement of an autonomous technology to passively

disseminate media collections, that also enables minimal interaction to actively navigate

routes through content that may trigger interest and user reminiscence. By transitioning

between selected media items, the DAD passively presents a global summary visualizing

the essential structure of the collection. This results in an evolving temporal composition

of media, the sequencing of which considers both media semantics and visual appearance,

as well as adaptively responding to user attention (sensed via gaze detection). Rather

than simply stitching digital content together, we harness artistic stylization to depict

image and video in a more abstract sense. In contrast to photorealism, which often

proves distracting in the ambient setting (e.g. a television in the corner of a café), artistic

stylization provides an aesthetically pleasing and unobtrusive means of disseminating

content in the ambient setting; creating a flowing, temporal composition that conveys

the essence of users’ experiences through an artistic representation of their digital media

collection (Figure 5.1).

Creating a DAD requires that the media be automatically parsed into an structured

representation that enables semantically meaningful routes to be navigated through the

collection. This process is dependent on meta-data tags user-assigned to each media

item. Furthermore, the visual content within individual media items must be also be

parsed into a mid-level visual scene representation that enables both:

1. Artistic rendering of media into aesthetically pleasing forms

2. Generation of appropriate transition effects and sequencing decisions, to create an

appealing temporal composition.
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Figure 5.2: System overview. User media (photos, videos) are hierarchically clustered

according to content semantics and appearance. The sequencing of displayed content is

driven both by this automated clustering, and via passive measurement of user attention.

Videos and photos are segmented into region maps encoding visual structure. These

region maps drive the artistic stylization and transition processes on the display.

While artistic rendering of images is much explored, temporally coherent stylization of

video is still a challenging task which requires a stable and consistent description of the

scene structures. Following [51, 44] we identify a color region segmentation as being

an appropriate “mid-level” scene abstraction, and in Section 5.4 contribute a novel

algorithm for segmenting video frames into a deforming set of temporally coherent regions.

We demonstrate how these regions may be stylized via either shading or stroke-based

rendering, to produce coherent cartoon and painterly video styles (Section 5.4.5). We

describe our hierarchical approach to structuring the media collection in Section 5.3, and

describe how content is sequenced at run-time using that representation in Section 5.5.

Qualitative evaluations of segmentation coherence, and a quantitative user evaluation

of the DAD, are presented in Section 5.6.

5.2 System Overview

The Digital Ambient Display (DAD) visualizes home media collections comprising

photos and videos. Videos are ingested as short, visually interesting clips that form the

atomic unit of composition. Obtaining such clips differs from classical shot detection
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as raw home footage tends to consist of a few lengthy shots. The automatic editing

algorithm proposed in Ch. 3 performs this pre-processing. The ingested media collection

is clustered into a hierarchical representation according to semantic content (derived

from keyword meta-data tags attached to the photo or video), and visual similarity

(computed from the photo, or a representative video frame — typically mid-sequence).

The automated clustering and related pre-processing are described in Section 5.3.

At run-time the DAD creates a temporal composition from a subset of media items

from the structured collection, creating a media sequence that flows smoothly with

respect to both scene appearance and semantics. For example, the DAD might select a

clip or image of the family in the garden, and follow this with a family clip or image in

semantically similar alternate environment such as a park. To promote user interest

in the display, media choice is also governed by the level of user attention; passively

measured using gaze detection. Persistent attention will guide the temporal composition

toward semantically similar content to that which attracted the user’s gaze. This

real-time sequencing process is described in Section 5.5.

Presentation of video in the DAD is underpinned by a novel algorithm for segmenting

video frames into temporally coherent colored regions (sub-secs. 5.4.1-5.4.3). These

region maps form a stable representation of visual structure in the scene that is used

both to drive artistic rendering algorithms for stylization (sub-Sec. 5.4.5), and to perform

matching of scene elements between frames in order to generate animated clip transitions

(sub-Sec. 5.5.2). Photographs are similarly segmented into colored regions, and for

convenience are treated as single-frame videos within our framework. Figure 5.2 provides

an overview of the complete DAD system.

5.3 Structuring the Media Collection

We represent the media collection as a hierarchy of pointers to media items. Each node

in the tree represents a subset of the media collection sharing a common semantic theme

or visual appearance.
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5.3.1 Hierarchical Clustering

Our top-down approach recursively splits the collection, applying unsupervised clustering

to each node using the Affinity Propagation (AP) algorithm [64]. In contrast to k-means

clustering, which iteratively refines an initial randomly-chosen set of exemplars, AP

simultaneously considers all data points within a node as potential exemplars and

iteratively exchanges messages between data points until a high-quality set of exemplars

and corresponding clusters gradually emerges. AP requires only a measure of similarity

between items, rather than a feature vector, and does not require prior knowledge of

the dataset such as the number of clusters present and representatives for the different

clusters.

Clustering proceeds in two phases. The initial phase constructs higher levels of the

tree using a measure of semantic similarity (sub-Sec. 5.3.2) that exploits user-provided

tags on media items. AP is applied recursively to each node until no further division

occurs (i.e. no semantic differentiation can be made between media items at a particular

node). The second phase of our process then constructs lower levels of the tree from

the leaf nodes of the first phase, using AP to cluster items based on a measure of visual

similarity (sub-Sec. 5.3.3). Higher levels of the tree thus provide semantic summaries of

the media reflecting the diversity of the visual content in the dataset. Clusters at lower

levels contain predominantly visually similar images at various levels of detail (Figure

5.3).

5.3.2 Semantic Similarity

To compute the semantic similarity (Ss) of a pair of media items, we measure their tag

co-occurrence. Given a vocabulary V = {w1, . . . , wK} of K keywords present within all

user-provided tags, the similarity of a pair of keywords is computed using asymmetric

co-occurrence [192], indicating the probability of wi appearing in a tag set given the

presence of wj :

p(wi|wj) =
|wi ∩ wj |
|wj |

(5.1)
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Figure 5.3: The structuring process starts with the whole dataset corresponding to

the root node of the tree and continues splitting until all the leaf nodes cannot be

further split by recursively applying unsupervised clustering. Higher levels of the tree

are clustered based on semantic (keyword) similarity, while lower levels are constructed

based on visual similarity.

where |wi ∩ wj | denotes the number of media items tagged with both keywords wi and

wj , while |wj | is the number of items tagged with keyword wj .

Following [192], we compute the asymmetric similarity between two sets of tags contain-

ing multiple keywords T 1 = {w1
1, w

1
2, . . . , w

1
N} and T 2 = {w2

1, w
2
2, . . . , w

2
M} corresponding

to media items I1 and I2 as:

Ss(I2|I1) =

∑N
n=1

∑M
m=1 p(w

2
m|w1

n)

M ·N
. (5.2)

5.3.3 Visual Similarity

We adopt a Content-Based Image Retrieval (CBIR) approach to compute the visual

similarity (Sv) of two media items. Given a set of media items at a particular node, we

adopt a bag of visual words (BoW) framework to create codebook of visual words from

discriminative features (descriptors) local to visual keypoints detected within each item.

Scale-invariant keypoints are obtained with the Harris-Laplace point detector [207]

and then are described using the SIFT descriptor. Harris-SIFT from all images and
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Figure 5.4: Content stylization is underpinned by a graph-cut based segmentation of

photos and video frames. In the case of video, region maps from previous frames act as a

prior on the graph-cut of successive frames. The skeleton of each region in the previous

frame is propagated to the next frame using optical flow, along with an associated

GMM colour model, to form as constraints on the graph-cut. New regions are detected

via non-conformity with the propagated colour models. The resulting region maps are

smoothed via spatio-temporal low-pass filtering (after [44]).

key-frames extracted from video clips are clustered to form a BoW codebook via k-means

clustering. A frequency histogram HI is constructed for each I, indicating the visual

words present within that media item. Visual similarity is then computed by measuring

the histogram intersections of media pairs:

S(H1, H2) =
k∑
i=1

k∑
j=1

ωij ·min(H1(i), H2(j)),

ωij = 1− |H1(i)−H2(j)|. (5.3)

where H(i) indicates the ith bin of the histogram, H(i) the normalized visual word

corresponding to the ith bin. .

5.4 Video Stylization

We next describe a coherent video segmentation algorithm which performs a multi-label

graph cut on successive video frames, using both photometric properties of the current
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frame and prior information propagated forward from previous frames. This information

comprises:

1. an incrementally built Gaussian Mixture Model (GMM) encoding the color distri-

bution of each region over past frames;

2. a subset of pixel-to-region labels from the previous frame.

We check for region under-segmentation (e.g. the appearance of new objects, or objects

emerging from occlusion) by comparing the historic and updated GMM color models

for each region, and introducing new labels into that region if the color model appears

to be temporally inconsistent. The region map of the first frame is boot-strapped using

mean-shift segmentation [45], and may optionally be modified by the user for aesthetics

e.g. to abstract away background detail by merging regions. Figure 5.4 gives an overview

of the segmentation algorithm.

We first describe our video segmentation algorithm (sub-Secs 5.4.1-5.4.3) and then

describe how the coherent region maps are applied to stylize video (sub-Secs 5.4.4-5.4.5)

and create the animations used to transition between successive clips in the DAD

sequence.

5.4.1 Multi-label Graph Cut

We formulate segmentation as the problem of assigning region labels existing in frame

It−1 to each pixel p ∈ P in frame It(p); i.e. seeking the best mapping l : P → L where

L = (l(1), . . . , l(p), . . . , l(|P|)) is the set assignments of labels li, i = {1...L}, and P is

an 8-connected lattice of pixels.

A subset of L are carried forward from the region map at t−1, via a propagation process

described shortly (sub-Sec. 5.4.2). This prior labeling of pixels (O ⊆ P) forms a hard

constraint on the assignments of remaining pixels in It, which are labeled to minimize

a global energy function encouraging both temporal consistency of color distribution

between frames, and spatial homogeneity of contrast within each frame. This is captured

by the data and pairwise terms of the Gibbs energy function:

E(L,Θ,P) = U(L,Θ,P) + V (L,P). (5.4)



102 Chapter 5. Stylized Ambient Displays of Visual Media Collections

The data term U(.) exploits the fact that different color homogeneous regions tend to

follow different color distributions. This encourages assignment of pixels to the labeled

region following the most similar color model (we write the parameters of such models

Θ). The data term is defined as:

U(L,Θ,P) =
∑
p∈P
−logPg(It(p)|l(p);Θ).

Pg(I(p)|l(p) = li;Θ) =

Ki∑
k=1

wikN (I(p);µik,Σik). (5.5)

i.e. the data model of the ith label li is represented by a mixture of Gaussians (GMM),

with parameters wik, µik and Σik representing the weight, the mean and the covariance of

the kth component. The parameters of all GMMs (Θ = {wik, µik,Σik, i = 1, . . . , L, k =

1, . . . ,Ki}) are learned from historical observations of each region’s color distribution

(sub-Sec. 5.4.2).

The contrast term V (.) encourages coherence in region labeling and discontinuities to

occur at high contrast locations, which is computed using RGB color distance following

previous graph cut based methods:

V (L,P) = γ
∑

(m,n)∈N

[l(m) 6= l(n)]e−β||I(m)−I(n)||2 . (5.6)

where N is the set of pairs of 8-connected neighboring pixels in P. β is chosen to be

contrast adaptive as in [21]:

β =
1

2
〈||I(m)− I(n))||2〉−1. (5.7)

Constant γ is a versatile setting for a variety of images [18], and is set empirically to

obtain satisfactory segmentation.

Motivated by the data term in [21] we enforce hard constraints on the motion propagated

prior labels assigned to label li, by setting the data term of p ∈ O to be:

Up:{p∈O} =

 0 if l(p) = li;

∞ if l(p) 6= li.
(5.8)

Optimizing (5.4) to yield an appropriate assignment of labels to pixels is NP-hard, but

an approximate solution can be computed by treating the optimization as a multi-label
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Figure 5.5: Prior propagation: (Top-left) Video frame It−1; (Top-right) region labeling

of It−1 following multi-label graph cut; (Bot.-left) region labels warped according to

per-pixel motion flow field I
′
t−1 → It — for example, note the shift of the boy’s left

glove. (Bot.-right) Thinning yields prior labels for the segmentation of It.

graph cut and solving this using the expansion move algorithm of [24]. An α-expansion

iteration is a change of labeling such that p either retains its current value or takes the

new label lα. The expansion move proceeds by cycling the set of labels and performing

an α-expansion iteration for each label until (5.4) cannot be decreased [24]. Each

α-expansion iteration can be solved exactly by performing a single graph-cut using the

min-cut/max-flow as described in [23]. Convergence to a strong local optimum is usually

achieved in 3-4 cycles of iterations over our label set. We improve the computation and

memory efficiency of each iteration by dynamically reusing the flow at each iteration of

the min-cut/max-flow algorithm (after [5]). This results in a speed-up of an order of

two.
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5.4.2 Region Propagation

The segmentation of It described in sub-Sec 5.4.1 is dependent on the information

propagated from the previous frame at t− 1; specifically: i) the color models for regions

Θ; ii) the set of pixels O ⊆ P and their corresponding label assignments at t− 1. We

now explain the propagation process in detail.

Our approach is to estimate the motion of pixels in frame It−1, and translate those

pixels and their respective label assignments from the previous frame to the current

frame (It). Motion is estimated using a model of rigid motion plus deformation.

We first estimate a global affine transform between successive frames It−1 and It, using a

RANSAC search based on SIFT features [141] matched between the frames. Performing

an affine warp on It and the corresponding region map compensates for large rigid (e.g.

camera) motion, resulting in a new image I
′
t−1. Local deformations are captured by

estimating smoothed optical flow [17] between I
′
t−1 and It, independently within each

region. Note that we do not assume or require accurate motion estimation at this stage.

Figure 5.5 (bot.-left) provides an example region map from the BOY sequence t− 1

warped according to motion field I
′
t−1 → It.

We select a subset of the motion propagated pixels (written O), and their corresponding

region assignments, as prior labels to influence the segmentation of It. To mitigate the

impact of imprecise motion estimation, we form O by sampling from a morphologically

thinned skeleton of the motion propagated regions (Figure 5.5, bot.-right). This approach

is inspired by the “scribbles” used in the interactive Grab-Cut system of [18], but note

that we perform an automatic and multi-region (as opposed to binary) labeling. The

skeleton emphasizes geometrical and topological properties of the motion propagated

region map, such as its connectivity, topology, length, direction, and width. To further

deal with the uncertainties in positions which are closer to the estimated region boundary,

we use only the skeletons whose distance to the boundary exceeds a pre-set confidence.

Figure 5.5 illustrates the complete process, which we find to be tolerant to moderate

misalignments caused by inaccurate motion estimation.

We build a GMM color model for each region li, sampling the historical colors of labeled

pixels over recent frames. To cope with variations in luminance often present in the
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Figure 5.6: A GMM color model of each region is built incrementally over time, with

contributions biased toward more recent observations. If the GMM of a region abruptly

changes color distribution (χ2 metric) then the region is re-segmented (sub-Sec 5.4.3).

sequence, the proportion of samples Sli,t−d ∈ [0, 1] (d > 0) drawn from all li-labeled

pixels from historical frame It−d decreases exponentially as the temporal distance d

from the current frame It increases (Figure 5.6):

Sl,t−d ∝ e−d
2/σ2

d . (5.9)

Our system selects a smaller σd when luminance variance is large, contributing more

recent data to the GMM, otherwise the historical data contributes more to increase

robustness.

5.4.3 Refining Region Labels

The method of sub-Sec. 5.4.1 labels It with some or all of the region labels in use

in the region map at t − 1. However, new objects may appear in the sequence over

time It due to occlusion effects of objects moving into shot. This is most apparent in

clips such as DRAMA (Fig 5.14). These objects may warrant introduction of a new

region label, should they differ in color from existing regions. In such a situation, pixels

comprising the object are erroneously labeled from the existing label set by the graph

cut optimization, which in turn perturbs the color distribution of the region. We can
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detect this by measuring the χ2 distance (as defined in [81]) between the GMM of a

region at time t and the historical GMM built over time (Figure 5.6).

For successive frames, we keep two sets of color models for each label l in frame It

being processed: (1) Historical color models associated with each label Mh
l:{l∈L} :=

Gl(It−4, It−3) and (2) an updated color model Mu
l:{l∈L} := Gl(It). We set a guard

interval of two frames between those two models to detect a significant change. If the

χ2 distance between these two models exceeds a threshold, new objects are deemed

present.

To build color models for the new objects we extract the dominant modes of colors within

the region. We apply mean-shift to perform unsupervised clustering on the spatial-color

modes (XY+RGB) of pixels in the region. This yields a localized segmentation of

pixels in the region. We extend our label set to accommodate each new region arising

from the mean-shift segmentation, and for each new region also compute GMM color

models and region skeletons as in sub-Sec. 5.4.2. Re-applying the graph cut optimization

locally within the region, using these new labels and constraints, yields an improved

segmentation for It that is carried to successive frames.

5.4.4 Smoothing and Filtering

Our segmentation algorithm produces stable region maps, but due to visual ambiguities

in poor contrast areas, the location of region boundaries tend to oscillate in position by

a few pixels. We can attenuate this effect by performing spatio-temporal smoothing.

Specifically, by coherently labeling regions in adjacent frames, we have formed a set of

space-time volumes. Applying a fine scale (3×3×3) Gaussian filter removes boundary

noise. We avoid removing detail by only filtering volumes above a certain size.

We inspect the duration dl,k of the disconnected video objects k (k = 1 . . .Kobjl) with

the same label l, in a time window of 24 frames (1 second). If the duration of any of

these disconnected video object within this time window is shorter than a length

Dl:{l∈L} = min{ max
k∈{1...Kobjl}

dl,k, τr}. (5.10)
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Figure 5.7: Above: co-labeled regions are smoothed in space-time to remove any

spurious regions. Below: Brush strokes are painted on a stable reference frame, created

by corresponding co-labeled regions in adjacent frames and interpolating a dense motion

field.

this video object is removed. τr is set to be six frames (about 1/4 second). The effect

of this process is that the spurious volumes due to false segmentation and short-lived

objects are removed, as shown in Figure 5.7. The “holes” left by filtering and smoothing

are filled by extrapolating region labels from immediate space-time neighbors on a

nearest-neighbor basis.
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5.4.5 Stroke Placement and Shading

Our video segmentation algorithm ensures regions not only deform in a coherent manner,

but are also labeled consistently between frames. This space-time description of scene

structure may be rendered in a variety of artistic styles; here we give an example of one

shading and one stroke based style.

Cartooning

Superimposing black edges over regions shaded with their mean pixel color can produce

coherent cartoon effects (Figure 5.11). In our cartoon examples, a mask of inter-

region boundaries is produced for each frame. We identify “junction” points on region

boundaries by identifying 3× 3 pixel windows containing > 2 region labels - and remove

the corresponding boundary fragments from the mask. This results in a series of

connected pixel chains that we transform into β-spline strokes by sampling knots at

equi-distant intervals. The strokes are rendered as dark brush strokes, with thickness

proportional to stroke length (after [213]) tapering toward the stroke ends. We render

frames independently without further post-processing; this is both for simplicity and to

demonstrate the temporal coherence of our segmentation output.

We can also exploit the temporally corresponded region labeling to differentially render

regions of interest. For instance, users are particularly sensitive to over-abstraction

of detail in faces; commonly present in home video footage. We run human face

detection [209] over frames to identify labeled regions likely to contain faces. Internal

detail in these regions may be restored by blending in a posterized image of underlying

video footage, and detail further enhanced by subtracting a Laplacian of Gaussian (LoG)

filtered image from the result.

Painterly Rendering

Alternatively we can paint β-spline brush strokes inside regions, coherently deform-

ing those splines by warping their control points to match the motion of the region

boundary (similar to the manually bootstraped rotoscoping system of [2]). Boundary
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correspondences are computed between temporally adjacent, co-labeled regions using

Shape Contexts [16]. The set of N corresponded boundary locations {< c1
t−1, c

1
t >,<

c2
t−1, c

2
t >, ..., < cNt−1, c

N
t >} is used to derive the motion vector for a control point p at

time t as:

p =
1

N

N∑
i=1

ω(p, cit)|cit − cit−1|. (5.11)

where ω(.) is a Gaussian weighted function of the shortest distance between two points

within the region (see Figure 5.7, below), and p is one of the control points of brush

stroke. Our coherent segmentation promotes smooth deformation of region shape, and

so flicker-free motion of brush strokes.

We paint the β-spline strokes within a region using Hertzmann’s bi-directional stroke

growth algorithm [90]. In the original algorithm, strokes are grown from random seed

points using the orientation of an intensity gradient field computed from the underlying

image. However, computing such orientation directly from video footage typically

promotes incoherence. Instead, we interpolate an orientation field from the shape of the

region. Orientations are locally obtained at points of correspondence on the boundary

θ[x, y] 7→ atan(ci−1
t − cit). We define a dense orientation field ΘΩ over all coordinates

within the region Ω ∈ <2, minimizing:

argmin
Θ

∫ ∫
Ω

(5Θ− θ)2 s.t. Θ|δΩ = θ|δΩ. (5.12)

i.e. 4Θ = 0 over Ω s.t. Θ|δΩ = θ|δΩ for which a discrete solution was presented in [164]

solving Poisson’s equation with Dirichlet boundary conditions. Examples of painterly

output are given in Figure 5.8.
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Figure 5.8: Examples of coherent painterly renderings produced from the BOY, KITE,

PICNIC and DANCE videos (top to bottom).
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5.5 Content Sequencing

Finally, we explain the algorithms for sequencing stylized content to create the temporal

composition of media items from the user’s collection, and for creating the animated

transitions between displayed media items.

5.5.1 Temporal Composition

We desire the DAD to autonomously transition between a sparse yet diverse sample

of user content to present a summary of the collection. This is achieved using the

hierarchical representation of the media collection constructed during pre-processing

(Section 5.3).

Recall each node in our representation encodes a cluster of similar media; defined using

either a semantic similarity measure (toward the root) or a visual similarity measure

(toward the leaves). For each node in the hierarchy, similarities between all media items

within the cluster are computed (Section 5.3.1), to be form a new graph of media items

— with edge weights indicating the (dis-)similarity of a pair of items. Computing the

shortest Hamilton cycle within this graph creates a non-repetitive set of transitions

maximizing the similarity between successive media items and thus the coherence of

the sequence. Although a precise solution maps to the classical NP-hard ”traveling

salesman problem” (TSP), an approximate solution can be found quickly using heuristic

search methods. We adopt a Genetic Algorithm (GA) based solution [69]. In practice

TSP paths for each cluster are also computed during pre-processing.

The DAD is equipped with a camera and a face detection technology [209] to detect

user gaze (attention) directed towards the display (Figure 5.12). Sequencing proceeds

in one of two modes, depending on whether user attention is present or not.

When attention is not present, the intention is to create a succinct and diverse summary

of the collection. The intention is to speculatively display content that might catch a

passing user’s interest. Clusters in the first level of the tree represent coarse semantic

categories across the whole collection. Displaying a sample of media from each cluster

in turn yields a high-level summary of the collection. However, rather than present a
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random succession of media, we desire a degree of temporal coherence in our choice of

media to create compelling paths through the collection — to tell a ”story” through

visual media, with the aim of prompting user reminiscence. Although TSP paths within

a cluster offer coherence for intra-cluster transitions, they do not offer inter-cluster

coherence. We address the latter by identifying a ”semantic route” between media

items (A,B) in different clusters. This is achieved by taking the union of media clusters

containing A and B, and computing a (dis-)similarity graph as before. Dijsktra’s

algorithm yields a shortest path between A and B, encoding the ”semantic route”; the

most coherent sequence of media items to transition between A and B (Figure 5.9).

When attention is present, we do not permit jumps between siblings, but instead permit

transitions to the parent or children of the current cluster. These transitions represent

‘generalization’ or ‘drilling down’ into a media topic, respectively. Suppose we have

detected user interest in a media item A. We stochastically choose to either remain on

the TSP path containing A in the current cluster, or to transition to a child cluster

also containing A (i.e. begin transitioning along the TSP path in that cluster). For

our experiments the probability of continuing on the current path, or ‘drilling down’ is

even. When interest in the display abates, we transition back ‘up’ the tree in a similar

manner; with even choice between continuing on the TSP path or jumping to the parent

TSP path. To ensure smooth transitions when transitioning up and down the tree, the

semantic route mechanism is again used to create an interim sequence between source

and destination media items.

5.5.2 Rendering Transitions

Having established a sequencing mechanism during visualization, we animate the

transition between stylized media items according to the scene structure (region map).

We first establish a mapping between each region Rjt−1 and Rit corresponding, respectively,

to the final and initial frames of the two clips (recall that images are accommodated in

our framework as single frame videos). The region mapping is created a greedy manner,
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Figure 5.9: Transitions are made across top-level clusters by sequencing display of

content along ‘semantic route’ between a source and destination media item (depicted

as large red nodes). The semantic route is the shortest path computed across the graph;

here nodes part of that route are shaded red, otherwise green.

iteratively pairing off regions that minimize:

argmin
{i,j}

[
w1 w2 w3

]
C(Rjt−1, R

i
t)

A(Rjt−1, R
i
t)

S(Rjt−1, R
i
t)

 (5.13)

where the normalized functions: C(.) indicates mean color similarity; A(.) indicates

relative area; S(.) indicates shape similarity in terms of region compactness, which is

the ratio between perimeter and area. We bias weights ω1−3 empirically to 0.5, 0.4,

0.1. The greedy assignment continues until (5.13) falls below a threshold. Unassigned

regions in the mapping are animated to “disappear” (shrink to a point at the centroid)

or “appear” (grow from the centroid); whereas regions mapped between frames are

animated to morph into one another.

Regions are morphed using simple linear blending. Each region is vectorized into a

polygon and a series of regularly spaced control vertices established on the boundary.
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Figure 5.10: Frames from the transition animation between two clips.

A correspondence is established between vertices of Rjt−1 and Rit to minimize distance

between corresponded vertices. The position of control vertices are linearly blended

over time (typically 1
4 second) to animate the region from one shape to another. Region

color is similarly blended. Although more complex vertex correspondence approaches

were investigated [16], these lacked stability when presented with moderate changes in

region shape. The resulting transitions are shown in Figure 5.10.

5.6 Results and User Study

We present a qualitative comparison of the proposed video segmentation algorithm with

two existing techniques [45, 161] and present a gallery of stills from videos stylized into

cartoons and paintings. We also present a small-scale study exploring user engagement

with the DAD.
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Figure 5.11: A collage of stylized frames sampled from the user video collection studied

in this thesis.

5.6.1 Video Segmentation and Stylization

To demonstrate the advantages of the proposed multi-label video segmentation algorithm,

we compare the approach proposed in Section 5.4 to two leading segmentation methods

for per-frame [45] and spatio-temporal [161] segmentation (Figure 5.13). We observe

the region boundaries in the proposed method to exhibit improved stability over time.

Figure 5.14 indicates the region maps produced by the segmentation algorithm over

four video sequences. We test our algorithm on fast moving footage containing small

objects (“BEAR” from [44]). Unlike previous work, fine scale features (e.g. the bear’s

eyes and nose) are retained. Similarly, “DANCE” demonstrates the ability to cope with

fast motion and partial occlusions. “DRAMA” shows correct handling of regions that

disappear and appear within sequences, the latter detected by changes in the region color

distribution and addressed as out-lined in sub-Sec 5.4.3. The “KITE” sequences shows

the aesthetic ability to selectively abstract detail (trees) from the stylized video, when

interactively removed by the user in the initial frame. In all cases our segmentations

appear flicker-free; some flicker is occasionally present the bottom-left of clips due to

the frame identifier which could be manually abstracted away by modifying the initial

frame in a similar way.

We demonstrate the video stylization and transition animations using a collection of 23

videos. Figure 5.11 shows representative frames of the stylized footage in both cartoon

and painterly styles; 6 minutes of the perpetual animated display is also included in

the supplementary material. An example transition animation given in Figure 5.10.
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The resulting clip transition animations match large, similarly colored regions between

frames producing a pleasing smooth transition effect evident throughout the DAD

sequence.

Following coherent segmentation, Figs. 5.8 shows frames of painterly renderings over

four video sequences in natural scenes. The smooth deformation of regions enables

stable and flicker-free motion of brush strokes, which produces an aesthetically pleasing

painterly effect over the input video sequences.

5.6.2 Study of User Engagement

We evaluated the efficacy of our content sequencing algorithm (Section 5.5.1) in a small-

scale user study. Our hypothesis was that the DAD media sequencing algorithm would

prove more engaging for users than simple random slideshows, as typified by existing

commercial digital photo frames. We tested the algorithm with and without adaptation

to user interest. We measured user engagement using the DAD’s gaze detection; counting

the proportion of displayed media items that attracted user attention. In this evaluation

we used photographic media only, rendered in a painterly style (Section 5.4.5). We

eschewed video content to potential bias introduced by movement which can act as a

strong attractor of attention. Transition animations were also disabled.

Experimental Setup

The media collection comprised 600 user-tagged Flickr images of eighteen landmarks

in London, licensed under the Creative Commons. We de-noised the associated tags

by stripping numeric tags, any punctuation and commonly used Flickr tags that do

not relate to content e.g. camera model. The semantic relevance between the tags was

pre-computed, and images analyzed to form a BoW code-book with 4000 visual words.

The study comprised ten participants between the ages of 20-40, of mixed gender, with

varying levels of technical expertise. The DAD device was positioned within proximity

to the participant in their everyday working environment, e.g. on their desks. The

camera and face detector were calibrated to record an attention event when the user’s

head is oriented towards the DAD display.
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Figure 5.12: One of three identical DAD devices used in the experiment. The DAD

adapts in real time to display interesting contents at various levels of detail in response

to user attention level.

Protocol

The experiment comparatively evaluates three operational modes of the DAD device:

• Random and passive display (RP): the DAD randomly selects non-repetitive

images from the dataset to display.

• Structured and passive display (SP): the DAD displays images in the proposed

approach without responding to user attention.

• Structured and adaptive display (SA): the DAD displays images in the proposed

approach.

Participants might be involved in parallel activities while seated during the experiments

and only pay extended attention to the screen when attracted by the content. In order to
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Table 5.1: Proportion of images attracting user attention out of total displayed images

in each scheme

User #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

RP 0.047 0.113 0.140 0.105 0.075 0.135 0.085 0.037 0.030 0.143

SP 0.085 0.178 0.203 0.078 0.130 0.177 0.148 0.083 0.095 0.238

SA 0.108 0.233 0.175 0.102 0.178 0.200 0.180 0.125 0.127 0.225

mitigate the effect of short term memory of the image collection we shuffle the order in

which the three modes are evaluated by each user. Furthermore, during the evaluation,

the participants were unaware of the nature of the three modes or the interactive nature

of mode SA. All user attention events during the three presentations for each user are

recorded in the background for analysis. The experiment of each presentation lasts one

hour which is empirically determined considering the size of the image collection.

Experimental Results and Feedback

Attention events recorded by the DAD for the three operational modes are given in

Table 5.1. The table records the proportion of images that attracted user attention out

of the total images displayed for each mode. A paired t-test between pairings of modes

indicate strong statistical significance between each mode of operation (Table 5.2). This

suggests a qualitative improvement in level of user engagement using our structured

sequencing approach, versus a random slideshow. Improvement is also observed with

user adaptive sequencing (SA) over non-adaptive (SP). Quantifying this improvement

by averaging across the users the SA mode we record ∼ 17% more attended images

then the SP scheme, which in turn recorded ∼55% more attended images than the RP

scheme. Data on how user attention was distributed across the semantic clusters in

the SA case shows large differences between the clusters, consistent with the adaption

strategy adopted i.e. the participant’s initial interest in a specific category is detected

and draws more images from that category that serve to maintain that interest. We thus

conclude that out proposed approach offers an engaging means to display the contents

of a large media collection with minimal user interaction.
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Table 5.2: Significance of results (paired t-test)

t-test Means Std. Devs. p-value

RP/SP 0.0910 / 0.1417 0.0431 / 0.0565 0.0007

RP/SA 0.0910 / 0.1653 0.0431 / 0.0474 0.0001

SA/SP 0.1653 / 0.1417 0.0474 / 0.0565 0.0184

During a questionnaire based de-brief, user feedback on the DAD was broadly positive,

both in terms of the aesthetics of the painterly rendering and the DAD system. Partici-

pants feel engaged with the system, remarking on the structured and adaptive manner

of presentation. 80% of the participants find that the DAD displays more images of

interest in our proposed approach (SA) than in the other two approaches and regard it

as a useful means to display their own digital media collections. 70% of the participants

deem that our proposed approach (SA) presents an effective global summary of the

structure of the collection. 60% of the participants would consider presenting their own

digital media collections in a similar painting style, with the remainder concerned about

the recognition of faces in the stylized content. 60% of participants would like to be able

to take over control of the presentation. Suggested controls are: (1) Ban or skip a specific

category (2) Hold on the content being displayed (3) Alternative artistic rendering

styles (4) Indication of user attention being detected. All participants are satisfied with

the hardware specifications of the DAD device, such as the appearance, screen size,

screen brightness, and speed. Participants filled in the subjective questionnaire without

knowing the DAD mode they were commenting on.

5.7 Conclusion

We have presented a Digital Ambient Display (DAD) that harnesses artistic stylization to

create an abstraction of user’s experiences through their home digital media collections.

The DAD automatically selects, stylizes and transitions between media contents enabling

users to passively or actively consume their digital media collections and rediscover past

memories.
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We contributed a novel algorithm for coherent video segmentation based on multi-label

graph cut, and applied this algorithm to stylized animation in the DAD. By parsing

the video into coherent spatial segments, we are able to represent scene structure.

This representation allows us to establish correspondence between frames, enabling the

coherent stylization of video objects with both shading and painterly effects. The latter

was possible by painting brush strokes on a smoothly deforming reference frame defined

by the regions. We are also able to create aesthetically pleasing transition effects between

different video clips using region correspondence. Video segmentation could be further

enhanced by exploring the backward propagation of region labels to further improve

coherence of segmentation. We would also like to improve the painterly rendering by

differentiating between region motion caused by occlusion vs. object deformation, to

more closely align the movement of painted strokes to the perceived structure in the

scene.

A further contribution of the thesis is a novel approach to structuring and navigating

visual media collections. We described an algorithm for adaptively sequencing media

items using graph optimization in a coarse-to-fine manner driven by user attention. By

recursively clustering media items into a hierarchy, we were able to plan routes within

clusters to display content of a common theme. We were also able to plan routes between

clusters to summarise media within the collection. We deployed our system on dedicated

hardware and undertook a small-scale user trial to validate the our content sequencing

algorithm, which was shown to be more engaging than random photo slideshows.

In future work we would like to offer more control to the user over presentation. An

improved interface might enable users to ban or skip specific categories they are less

interested in, and hold on interesting contents for closer inspection. In addition to global

visual similarity of media items it might be interesting to harness recent developments

in image cosegmentation [100, 85] to enable users to explore ‘similar content’ within

a region of interest indicated by touching a particular area on the display. In the

subsequent chapter, we refine the hard constraints on segmentation proposed in this

chapter to develop a more robust segmentation scheme.
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Figure 5.13: Comparing the accuracy and coherence of our segmentation algorithm on

the BOY sequence, to ‘synergistic’ mean-shift + edge (Comaniciu, 2002) and a state of

the art spatio-temporal method (Paris, 2008). Boundaries are less prone to variation in

shape and topology.

Figure 5.14: Illustrating the coherent region maps produced by our segmentation method.

Top: BEAR and DANCE contain small regions moving quickly over time. Bottom:

The DRAMA sequence shows correct handling of of regions appearance. The KITE

sequence indicates how background detail may (optionally) be abstracted by modifying

the initial frame segmentation to merge unwanted detailed regions.
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Chapter 6

Probabilistic Motion Diffusion of

Labelling Priors for Coherent

Video Segmentation

In this chapter we advance the video segmentation algorithm proposed in Chapter 5 by

improving the motion propagation model and spatial coherence; estimating the flow via

a novel probabilistic motion diffusion model, and combining the per-frame estimates

of super-pixel boundaries. This algorithm significantly improves the spatial-temporal

coherence and robustness on sequences including these exhibiting clutter and agile

motion.

6.1 Introduction

Video segmentation aims to partition pixels into spatio-temporal groups exhibiting

coherence and consistency in both appearance and motion. Stable and accurate video

segmentation is fundamental to many multimedia tasks, such as video summarisation [71],

content based retrieval [43], matteing [3] and video stylisation [219].

A key challenge is the production of temporally coherent segmentations; regions whose

shape and neighbourhood topology evolve smoothly over time whilst tracking the under-

123
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lying video content. Although recent years have delivered significant advances, coherent

segmentation remains challenging for real-world video of even moderate complexity.

Changes in illumination, viewpoint, and occlusion relationships introduce ambiguities

that in turn induce instability in boundaries and the potential for localized under-

or over-segmentation. Temporal correlation between consecutive frames via motion

estimation (e.g. optical flow) can alleviate these difficulties, however inter-frame motion

estimation is often inaccurate introducing further ambiguity to the process. Given the

approximate nature of boundary and motion estimation, it is natural to formulate these

motion ambiguities in a probabilistic framework.

This thesis contributes a novel video segmentation algorithm, in which the segmentation

of each frame is guided by motion-flow propagated label priors from previous frames,

where flow is estimated via a new probabilistic motion diffusion model. Our approach

builds upon the success of multi-label graph-cut approaches to image and video seg-

mentation. The core novel contributions are our motion propagation model, and the

combination of this propagated prior information with per-frame estimates of super-pixel

boundaries; a growing trend in the image segmentation literature [84, 172, 6, 108, 107].

In contrast to previous techniques based on flow vectors, our diffusion model produces

a new probabilistic motion estimate modelling the distribution of motion vectors for

each pixel. This distribution guides the diffusion of information from pixel labelling

in prior frames, to influence segmentation of the current frame. To decide the seg-

mentation of a given frame, we incorporate not only motion propagated soft labelling

constraints at the pixel-level but also propose a soft higher-order constraint by imposing

label consistency within image regions (super-pixels [45, 174]) obtained via several

unsupervised segmentations of the frame (e.g. mean-shift). These resemble the form

of unary potentials commonly used in pairwise conditional random fields (CRFs) for

different image labelling problems [22, 163]. This formulation enables the use of powerful

graph cut based move making algorithms for performing inference in the framework.

By enforcing labelling consistency in this way, we show inaccuracies in boundaries

and region over-segmentation to be alleviated. We quantify this improvement through

comparison to three state of the art methods; a spatio-temporal method [161] and a

“hard” CRF-based motion propagation method that relies upon a single flow vector for
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each pixel rather than our novel “soft” motion diffusion, and recent graph based video

segmentation method based on dense optical flow propagation [76].

We describe our proposed video segmentation algorithm in Section 6.2, presenting

the motion diffusion model for propagation of labelling priors in Section 6.3 and

describing the supporting energy terms for the CRF in Section 6.4. We evaluate

our approach over several challenging video clips exhibiting clutter and agile motion,

adopting the methodology of the Berkeley Segmentation Benchmark [144] to provide a

quantitative comparative evaluation to state-of-the-art techniques (Section 6.5). We

show our approach to be quantitatively closer to manually annotated ground-truth

segmentations of our footage, and release these results at http://personal.ee.surrey.

ac.uk/Personal/Tinghuai.Wang/TMM2011.

6.2 Preliminaries

Consider a discrete random field consisting of an undirected graph G = (V, E) without

loop edges, a finite set L = {l1, l2, . . . , lL} of labels, and a probability distribution P

on the space X of label assignments. x ∈ X is a map that assigns to each vertex v a

label xv in L. Let Nv denote the set of neighbours {u ∈ V|(u, v) ∈ E} of vertex v. A

clique c is a set of vertices in G in which every vertex has an edge to every other vertex.

A random field is said to be Markov if and only if it satisfies the relation property:

P (x) > 0 ∀x ∈ L, and the Markovian property:

P (xv|xV\v) = P (xv|xNv). (6.1)

This property states that the assignment of a label to a vertex is conditionally dependent

on the assignment to other vertices only through its neighbours.

An energy function E : L → R maps any labelling x ∈ L to a real number E(x) called

its energy. Energy functions are formed as the negative logarithm of the posterior

probability distribution of the label assignment. Minimising the energy function is

equivalent to maximise the posterior probability. The maximum a posteriori probability

(MAP) x∗ of a random field is defined as

x∗ = argminx∈LE(x). (6.2)

http://personal.ee.surrey.ac.uk/Personal/Tinghuai.Wang/TMM2011
http://personal.ee.surrey.ac.uk/Personal/Tinghuai.Wang/TMM2011
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Figure 6.1: Illustration of our motion diffusion process over two frames of “YUNAKIM”.

A subset of pixels On(t− s) from each region Ωn(t− s) in each frame It−s is propagated

to frame It based on motion estimation and diffused to its close vicinity following a

Gaussian distribution. Labelling prior probability p(zt|ln) is formulated as the merged

diffusion probability from previous frame It−s by weight wt−s.

The posterior distribution over the labellings of the conditional random field is a Gibbs

distribution and the corresponding Gibbs energy is given by

E(x) =
∑
c∈C

ψc(xc). (6.3)

where C is the set of all cliques [121], and ψc(xc) is known as the potential function of

the clique c and xc = {xi, i ∈ c}.

6.2.1 Segmentation Framework

We formulate video segmentation as a pixel-labelling problem of assigning each pixel

i ∈ V in frame It with a value from the existing label set L in frame It−1, as in Sec. 5.4.

After a propagation process (described in Sec. 6.3) which carries forward a subset of L

from the region map at t− 1, each pixel in frame It bears a set of prior probabilities

of observing a pixel propagated from different label regions in frame It−1. The prior

labelling probabilities of pixels form a soft constraint on the assignments of pixels in

It, which are labelled to minimize a global energy function. This energy function is

adapted from the Gibbs energy function typically used in computer vision and consists

of unary, pairwise and higher order cliques as:
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E(x) =
∑
i∈V

ψi(xi) +
∑

i∈V,j∈Ni

ψij(xi, xj) +
∑
i∈V

∑
c∈S

ψc(xi). (6.4)

where V corresponds to the set of all pixels in frame It, S represents the set of super-

pixels from over-segmentations (sub-Sec. 6.4.3). This energy function encourages both

temporal consistency of appearance between frames, and spatial homogeneity of contrast

within each frame. Moreover, it incorporates a third potential partly enforcing the label

consistency inside the regions generated by unsupervised image segmentation algorithms.

We describe in detail how each of these potentials are defined, and the optimization of

(Eq. 6.4) in Sec. 6.4, but first describe the process by which labels are propagated over

time in our framework.

6.3 Label Diffusion for Coherent Segmentation

We introduce a motion diffusion model which combines motion estimates made over

several time intervals (frames) under a probabilistic framework, and accounts for the

estimation errors by adaptively refining the internal parameters of this framework. The

purpose of the motion diffusion model is to propagate forward the labels of past frames —

so forming a distribution of priors for segmentation of the current frame. We bootstrap

the first frame of segmentation using mean-shift [45], with a bias to over-segmentation

that is resolved via merging of regions due to their similar appearance in subsequent

frames.

6.3.1 Single-Frame Motion Diffusion

We first compute the SIFT flow [138] from frame It−1 to It. We choose SIFT flow as it

is more robust than optical flow in case of large displacement or appearance variation

between adjacent frames. The SIFT flow consists of matching densely sampled SIFT

features between the two images, while preserving spatial discontinuities. The use of

SIFT features allows robust matching across different scene/object appearances and the

discontinuity-preserving spatial model allows matching of objects located at different
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parts of the scene. Although there some discontinuities in the flow field caused by

matching errors, we do not assume or require accurate motion estimation at this stage.

Indeed our motion diffusion framework is proposed on the assumption that there will

be inaccuracies.

Let Ωn be a region of interest in frame It−1 labelled as ln. Propagating the whole

region to the successive frame It by SIFT flow often involves erroneous estimation,

especially in positions close to boundary. We only select a subset of pixels On ⊂ Ωn for

propagation (Fig. 6.1). To account for the impact from imprecise motion estimation

close to boundary, we form On by sampling from a morphologically dilated skeleton of

each region. The skeleton preserves geometrical and topological properties of the region.

To further deal with the uncertainties in positions which are close to the region boundary,

we use only the skeletons whose distance to the boundary exceeds a confidence, measured

by a distance transform. A skeleton based propagation scheme was first proposed in

[220] for similar reasons. However rather than propagating each label using just one flow

vector from a single frame [167, 220], our approach diffuses labels across a distribution

of directions (derived from multiple frames, subsec. 6.3.2) as we now explain.

On contains pixels J t−1
k (k = 1, 2, 3, · · · , |On|), where |On| is the cardinality of On.

The position of each pixel is denoted as zt−1
k . For each pixel J t−1

k ∈ On we predict its

position ztk in frame It based on the motion vector from SIFT flow. As a perfect motion

estimation is not available, the proposed model only assumes the motion estimation to

be probabilistic. The diffusion process diffuses the propagated subset of pixels to close

vicinity, treating the predicted position as the center of a Gaussian distribution,

p(zt|J t−1
k ) =

1√
2πσk

exp(−
||zt − ztk||2

2σ2
k

). (6.5)

where zt is a position in frame It. The variance σk reflects the error in motion estimation

which is adaptively set for each pixel J t−1
k . For motion estimation which is likely to

contain large prediction errors, we set σk to large values.

Although Gaussian diffusion is frequently used to model uncertainty in tracking it has

been explored only recently in the context of interactive video segmentation, for binary

matteing [12]. The key to the robustness of our new multi-label diffusion approach is to

propagate only a subset of pixels in regions to account for the imprecise motion estimates
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close to boundaries typically observed during our early experiments. Furthermore, using

local motion coherence to encode the motion estimation error (as opposed to a global

measurement of motion alignment error [12]) accommodates the per-pixel local motion

estimation errors (σk) that can not necessarily be reflected by a global measurement or

single propagation.

We now explain how to determine σk. The error in estimating the motion of a region

of interest often causes discontinuities in the flow field. Such discontinuities are often

referred to as motion non-coherence. A small portion of an moving object with rigid

shape in a sequence often exhibits coherent motions. We correlate the prediction error

with local motion non-coherence. For each pixel J t−1
k , we consider the motion vectors

in a 5× 5 window centred at J t−1
k . All motion vectors within this window are firstly

quantized as N angles 2π
N ,

4π
N , · · · 2π. A quantized motion vector histogram ht−1

k is

computed across the local motion vectors. We define a motion coherence factor M t−1
k

by measuring the entropy of ht−1
k ,

M t−1
k = min{1, log(N)

−
∑N

i=1H
t−1
k (i)log(Ht−1

k (i))
}. (6.6)

where

Ht−1
k (i) =

ht−1
k (i)∑N

i=1 h
t−1
k (i)

. (6.7)

In information theory, entropy is a measure of the uncertainty associated with a random

variable. Higher entropy of ht−1
k indicates lower local motion coherence in the window,

and thus smaller M t−1
k . σk is computed as

σk = θγ exp(θµM
t−1
k ). (6.8)

where θγ and θµ are constant parameters.

The probability of observing a pixel propagated from On (labelled as ln) at location zt

on frame It is

pt−1(zt|On) =

|On|∑
k=1

p(J t−1
k )p(zt|J t−1

k ). (6.9)

where p(J t−1
k ) = 1/|On|, assuming equal priors for every pixel in On. As motions of

ln-labelled pixels are predicted based on On, pt−1(zt|On) can be approximated as the

labelling prior probability of label ln at pixel zt, i.e. pt−1(zt|ln).
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6.3.2 Multi-Frame Motion Diffusion

We build a single-frame probabilistic motion diffusion model in Section 6.3.1 taking into

account the estimation errors. As we later show, our diffusion model greatly enhances

the coherence of skeleton based motion propagation [220] during occlusion and rapid

movement. However, gross SIFT matching errors occasionally occur and may result in

amplified errors in the propagation process.

To mitigate gross prediction errors, we adopt a multi-frame fusion scheme. We perform

single-frame diffusion process on multiple successive frames It−T , It−T+1, · · · It−1

in the sequence to acquire multiple diffusion probabilities pt−T (zt|ln), pt−T+1(zt|ln),

· · · pt−1(zt|ln) and p1(zt|ln) regarding label li. Merging multiple frames’ diffusion

probabilities we have

p(zt|ln) =

T∑
s=1

wt−sp
t−s(zt|ln). (6.10)

where each frame contributes to the final fusion with weight w (
∑T

s=1wt−s = 1), which

is inversely proportional to the alignment error in the scope of the region of interest Ωn

on each frame

wt−s = 1/

√
1

|Ωn|
∑
z∈Ωn

||It−s(z)− I
′
t−s(z)||2. (6.11)

where I
′
t−s is the warped colour image from frame It to It−s by the SIFT flow. Accurate

alignment generally indicates reliable SIFT flow and such frames thus contribute more

to the probability fusion.

p(zt|ln) reveals the likelihood of the pixel at zt being assigned with label li propagated

from previous frame in the sequence. This probabilitiy is encoded directly in the unary

term of our energy function (Eq. 6.4), which comprises a sum of appearance and

labelling potentials (described in Sec. 6.4, Eq. 6.12).

6.3.3 Incrementally Updated Colour Model

As we explain shortly (Sec. 6.4), the segmentation of It is dependent on the unary term

of (6.4) comprising a per label appearance model built incrementally over time. A
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component of this model is a Gaussian Mixture Model (GMM), the parameters of which

are written Θncol for each label ln, and which is initially built by sampling ln-labelled

pixels in starting key-frame I1. We sample in the RGB colour space following the

previous graph cut based methods. To avoid possible sampling errors caused by the

imperfect region boundaries, we only use pixels whose spatial distance to the region

boundary is larger than a confidence distance (3 pixels in our system) as the training

data for the GMMs. As the colour distribution is normally simple in each appearance

homogeneous region, the number of components in each GMM is set to 3.

To cope with luminance variations in the sequence, we update the colour model to

achieve good segmentation by sampling the historical colours of labelled pixels over

recent frames similarly as in Sec. 5.4.2 of Ch. 5.

6.3.4 Label Management

If a region labelled n in It deviates significantly from its corresponding historic ap-

pearance model (determined via a threshold on the χ2 distance between Θncol at time t

and t− 1), then it is likely that the labelling is in error. Given that pixels matching

the appearance of labels in the set are likely to be assigned correctly, we assume that

significant changes are due to appearance of a new semantic region in the sequence. We

therefore run our bootstrap procedure (e.g. mean-shift) over pixels putatively labelled n

to create a new set of labels that are merged into L. The frame It is then re-segmented

using the enriched label set. Any superfluous region labels generated by this process

are immediately merged into other similar labels measuring the distance between the

GMM colour models via the graph-cut labelling process.

The related problem of label deletion is accommodated naturally within our framework

as, depending on the pixel data, the multi-label graph cut may not assign a propagated

label to the current frame.

6.3.5 Smoothing and Filtering

Due to visual ambiguities in low contrast areas, some pixels might be mis-labelled which

results in unsatisfactory temporal coherence. We improve the temporal coherence by
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(a) (6, 8) (b) (6, 10) (c) (6, 12)

(d) (6, 14) (e) 200 super-pixels (f) 500 super-pixels

Figure 6.2: Illustrating the multiple over-segmentations used to promote label consistency

via the super-pixel potential in our energy term (Eq. 6.4), as governed by parameters

documented in Sec.6.5.1. (a)-(d) are generated by mean shift segmentation algorithm

with different parameters (hs, hr); (e)-(f) are generated by Super-pixel with particular

number of super-pixels.

performing spatio-temporal smoothing operation introduced in Sec. 5.4.

6.4 Definition of Energy Potentials

We now describe how the diffused labelling priors are integrated into the unary, pair-wise

and super-pixel consistency terms as defined respectively in (Eq. 6.4). We illustrate

the importance of each in Fig. 6.4 where various terms are disabled to qualitatively

demonstrate their contribution to segmentation coherence.

6.4.1 Appearance Model

The unary term ψi(xi) exploits the fact that different appearance homogeneous regions

tend to follow different appearance models. This encourages assignment of pixels to the
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label following the most similar appearance model (we write the parameters of such

models Θ). The unary term is defined as the negative logarithm of the likelihood of a

label being assigned to pixel i. It can be computed from the appearance model for each

label. To provide more discriminative power for accurate segmentation, the unary term

incorporates colour and texture features as well as prior labelling probabilities. The

unary term is defined as

ψi(xi) = θcolψcol(xi) + θtexψtex(xi) + θlabψlab(xi). (6.12)

where θcol, θtex and θlab are weights of colour potential ψcol(xi), texture potential ψtex(xi)

and prior labelling potential ψlab(xi) respectively.

Colour Potential

Colour potential is defined as:

ψcol(xi) = −logPg(It(i)|xi;Θcol).

Pg(It(i)|xi = ln;Θcol) =

Kn∑
k=1

wnkN (It(i);µnk,Σnk).

(6.13)

i.e. the colour model of the nth label ln is represented by a mixture of Gaussians (GMM),

with parameters wnk, µnk and Σnk representing the weight, the mean and the covariance

of the kth component. The parameters of all GMMs (Θcol = {wnk, µnk,Σnk, n =

1, . . . , |L|, k = 1, . . . ,Kn}) are learned from historical observations of each region’s

colour distribution (sub-Sec. 6.3.3).

Texture Potential

Colour potential alone is not very discriminative and we incorporate texture potential

to achieve more accurate segmentation. To this end, we adopt textons [128] which

have been proven effective in categorizing materials [208] and generic object classes

[225, 108, 190].

For extracting texton histograms, we use a filter bank made of 36 bar and edge filters,

1 Laplacian of Gaussian (LoG) and 1 Gaussian filter. The 36 bar and edge filters (6
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(a) (b) (c)

Figure 6.3: Segmentation of the “MONKEYBAR” video with and without the super-

pixel consistency term. (a) Original frame; (b) Segmentation obtained with super-pixel

potential present in Eq. 6.4 exhibits improved boundary stability when propagated over

time, despite computing each frame’s super-pixels being computed independently; (c)

Segmentation obtained without the super-pixel constraint, differences highlighted in

ellipses.

orientations and 3 scales for each) are applied to the L channel only, producing 36 filter

responses. The Gaussian filter is applied to each CIELab channel, thus producing 3

filter responses. The LoG is also applied to the L channel only, thus producing 1 filter

response. We quantize filter responses to 200 textons by running K-means clustering

and each pixel in It is assigned to the nearest cluster center to generate the texton map

Tt. We define texture potential as:

ψtex(xi) = −logPg(Tt(i)|xi;Θtex).

Pg(Tt(i)|xi = ln;Θtex) = Hn(Tt(i)). (6.14)

The texture model Θtex of the nth label ln is represented by a discrete probability model

given the normalized texton histogram Hn learned from the textons map in the starting

key-frame.

Labelling Potential

The labelling prior potential exploits the fact that pixels with a higher probability

propagated from particular labelled region tend to have consistent label assignment.

Unlike other interactive or automatic segmentation algorithms which use the labelling
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prior as a hard constraint, we incorporate labelling prior as a soft constraint which is

inferred from a probabilistic motion estimation framework which inherently takes into

account the motion estimation errors. The labelling potential ψlab(xi) = p(i|xi) maps

directly to p(zt|ln) derived for each pixel, given a label, as defined in sub-Sec. 6.3.2,

where p(i|xi) is the probability that label xi is propagated to pixel i.

6.4.2 Encouraging Spatial Coherence

The pairwise term encourages coherence in region labelling and discontinuities to occur

at high contrast locations, which is computed using RGB colour distance as in Grab-Cut

(a) No Pairwise term (b) No Superpixel or Pairwise

(c) Only Meanshift Superpixel (d) Only NCuts Superpixel

Figure 6.4: Illustrating the influence of the unary, pairwise and super-pixel (Spix)

terms on segmentation coherence (“MONKEYBAR” sequence). Notable differences to

proposed approach (Fig. 6.3b) highlighted in ellipses.
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[178]:

ψij(xi, xj) =

 0 if xi = xj ,

θλe
−θβ ||It(i)−It(j)||2 if xi 6= xj ,

where θβ is chosen to be contrast adaptive [21]:

θβ =
1

2
〈||It(i)− It(j)||2〉−1. (6.15)

where 〈·〉 denotes expectation over an image sample.

6.4.3 Super-pixel Consistency Term

The super-pixel consistency term encourages the pixels belonging to a super-pixel to be

assigned with the same label. We define this spatially ‘higher order’ term as:

ψc(xi) =

 0 if i /∈ c,
θc
|c|
∑

j∈c ψj(xi) if i ∈ c,
(6.16)

after [108], where θc is the parameter weighting the label consistency partly enforced

by super-pixel c, and |c| is the cardinality of super-pixel c. The expression
∑

j∈c ψj(xi)

gives the label consistency cost, i.e. the cost if all pixels constituting super-pixel c are

labelled as xi (pixel i). ψc(xi) is thus defined as the weighted average unary potential

of pixels in super-pixel c against label xi. The indication is that an optimal label

assignment to pixel i should also fit all pixels in super-pixel c as long as c has good

homogeneity of visual appearance.

In practice, due to the non-homogeneity of visual appearance and parameter settings,

the shapes of super-pixels may not always be consistent with the real object boundaries

in only one over-segmentation or one unsupervised segmentation algorithm. Some super-

pixels may quite often contain pixels belonging to multiple labels and will encourage

an incorrect labelling. Therefore, following [181], multiple segmentations resulted from

with different parameter sets of different unsupervised segmentation algorithms [45, 174]

per frame are generated, so that although some super-pixels may fail to agree with

object boundaries, the others would be good super-pixels that correspond to coherent

boundaries. Different unsupervised segmentation algorithms promote differently featured

homogeneous regions. Mean shift segmentation [45] generates regions with homogeneous
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colours, whereas Super-pixel [174] produces segmentations incorporating various Gestalt

cues, i.e. contour, texture, brightness and good continuation.

Each super-pixel partly enforces the label consistency of regions with a weight. We

correlate the weight with the quality of super-pixel from the over-segmentations. We

adopt the super-pixel quality measure presented in [107], using the variance of unary

potentials of all constituent pixels of a super-pixel as:

σc = exp(− θs
|c|
∑
j∈c

(ψj(xi)−
∑

j∈c ψj(xi)

|c|
)2). (6.17)

and θc is defined as the normalized σc:

θc =
σc∑
c∈S σc

. (6.18)

As opposed to other segmentation algorithms which use the hard label consistency in

regions assuming that all pixels constituting a particular region are assigned with the

same label, we use it as a soft label consistency constraint, similar to the Robust Pn

model and non-parametric approaches of [108, 107]. Unlike the Robust Pn model which

is based on the number of pixels in the super-pixel not taking the dominant label, we

use the spatial constraint imposed by each super-pixel as soft constraint and naturally

incorporate it to the unary term, and thus simplify the optimization without explicitly

performing higher-order optimization (see 6.4.4).

6.4.4 Optimization

Although the proposed energy function Eq. 6.4 takes the similar form of the Robust

Pn model in [108], the super-pixel consistency term is not based on the count of the

number of labelled pixels within a single super-pixel. Rather, we define a soft constraint

to reflect the label consistency enforced by different over-segmentations. We define this

as the weighted average unary potential of pixels in each super-pixel. This definition

is convenient as this spatially ‘higher order’ term does not take multiple numbers of

variables in the clique, and so can effectively be further merged to unary term and the

energy function Eq. 6.4 can be simplified to:
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E(x) =
∑
i∈V

(ψi(xi) +
θc
|c|
∑
j∈c

ψj(xi)) +
∑

i∈V,j∈Ni

ψij(xi, xj). (6.19)

As the pairwise potentials of the energy function Eq. 6.19 is of the form of a Potts

model it can be minimised using the α-expansion and αβ-swap algorithms [24]. An

α-expansion iteration is a change of labelling such that p either retains its current value

or takes the new label lα. The expansion move proceeds by cycling the set of labels and

performing an α-expansion iteration for each label until (6.4) cannot be decreased [24].

Each α-expansion iteration can be solved exactly by performing a single graph-cut using

the min-cut/max-flow [23]. Convergence to a strong local optimum is usually achieved

in 3-4 cycles of iterations over our label set. We use Alahari et al.’s [5] technique to

improve the computation and memory efficiency of each iteration by reusing the flow at

each iteration of the min-cut/max-flow algorithm, resulting in a two-fold speed-up.

6.5 Experiments and Comparisons

We apply our segmentation algorithm to several video clips exhibiting both slow moving

and agile motion, and also a variety of occlusion conditions (no occlusion, self-occlusion,

inter-object occlusion) — summarized in Table 6.1. We assess segmentation performance

on both a subjective qualitative and objective quantitative basis; the latter using the

methodology of the Berkeley Segmentation benchmark [144].

6.5.1 Parameter Settings

We first explain the parameter settings in unsupervised segmentation algorithms, i.e.

mean shift and Super-pixel, that form the basis for the third term (the higher order

constraint) in our optimization. There are two key parameters in mean shift algorithm;

bandwidth in the spatial domain (hs), and the range domain (hr). A set of regions

with various granulations are generated by varying hs and hr. As segmentations do

not change dramatically with varying hs on our NTSC resolution video frames we

obtain 4 over-segmentations with parameters (hs, hr) = {(6, 8), (6, 10), (6, 12), (6, 14)}.
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Clip Motion Occlusion

BOY (Fig. 6.5) Slow None

DANCE (Fig. 6.5) Agile Light

MONKEYBAR (Fig. 6.5) Agile Heavy

GARDEN (Fig. 6.9) Slow Light

WALKDOG (Fig. 6.10) Slow Heavy

YUNAKIM (Fig. 6.10) Agile Heavy

SKATEBOARD (Fig. 6.10) Fast Light

COWGIRL (Fig. 6.10) Slow Light

BASEBALL (Fig. 6.10) Fast Heavy

Table 6.1: Summary of video clips used in our evaluation, annotated as to motion and

occlusion conditions present.

Super-pixel generates a large number of small nearly-uniform regions which has been

shown to retain salient structure in real images. The only parameter in Super-pixel is

the number of super-pixels or regions to be generated. We generate two sets of regions

using Super-pixel with 200 and 500 super-pixels respectively. An example of multiple

over-segmentations is shown in Fig. 6.2. Weighting parameters θcol, θtex and θlab of

colour potential ψcol(xi), texture potential ψtex(xi) and prior labelling potential ψlab(xi)

are chosen empirically, and we set θcol = 0.31, θtex = 0.56 and θlab = 0.13 respectively.

θλ is set empirically to be 3 to obtain satisfactory segmentation. Other parameter

settings are θs = 0.5, θγ = 6, θµ = 2.

6.5.2 Objective Evaluation

We first present the comparative objective evaluation of the proposed algorithm against

two state-of-the-art video segmentation algorithms: Multi-label Propagation (MLP)

[220], and spatial-temporal mean shift (STMS) [161]. These algorithms respectively

represent an example of a 2D+t and 3D (spatio-temporal) video segmentation algorithm.

We additionally compare against a state of the art hierarchical graph based (HGB)
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approach due to Grundmann et al. [76]1.

Benchmark

For objective evaluation, we adopt the Berkeley Segmentation Benchmark [144] to

evaluate segmentation against manual ground-truth. This boundary-based evaluation

methodology has become a standard benchmark. This framework considers two aspects

of segmentation performance. Precision measures the fraction of true positives in the

contours produced by a segmentation algorithm. Recall indicates the fraction of ground

truth boundaries detected in the segmentation. The global F-measure, defined as

the harmonic mean of precision and recall, provides a useful summary score for the

segmentation algorithm.

Ground Truth

In order to obtain a reliable estimate of segmentation accuracy under [144] we require

ground truth region boundaries. We therefore hand labelled individual frames, seeking to

preserve fine object boundaries present. Generating manual ground truth segmentations

of all the frames of tested videos is very time consuming. Given the frame rate of 24 fps,

we opted to hand label the ground truth every 10 frames, and made a second separate

manual inspection visually verifying the boundary accuracy.

1Obtained via http://neumann.cc.gt.atl.ga.us/segmentation/

http://neumann.cc.gt.atl.ga.us/segmentation/
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(a) Comparative evaluation over “BOY” sequence

(b) Comparative evaluation over “MONKEYBAR” sequence [212]

Figure 6.5: Comparing the accuracy and coherence of the proposed approach to MLP,

STMS and HGB. Boundaries are less prone to variation in shape and topology. Sequences

presented as follows: source (1st row); proposed approach (2nd row); MLP (3rd row);

STMS (4th row); HGB (5th row).
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(a) Comparative evaluation over “DANCE” sequence

(b) Close-ups of successes vs. inaccuracies

Figure 6.6: (a) Comparing the accuracy and coherence of the proposed approach to

MLP, STMS and HGB (continued). Inset (b). 4 × 4: Improved performance of the

proposed method vs. state of the art on face and hands in “MONKEYBAR”. 2 × 1

Failures cases of the proposed approach, although outperforming compared methods

some mislabelling of the hair in “MONKEYBAR” and loss of spatial coherence on hat

in “DANCE” can be observed. In both cases these can be attributed to colour texture

similarity in the presence of erratic motion.
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Results

Figs. 6.7(a)-6.7(c) present the comparison between the proposed method and the MLP,

STMS and HGB algorithms over clips “BOY” (192 frames), “DANCE” (62 frames) and

“MONKEYBAR” (300 frames). According to the normalized F-measure with respect

to manual ground-truth boundaries, our algorithm consistently outperforms the CRF

based MLP algorithm, the graph-based HGB and the spatio-temporal STMS approach

across the full duration of the clips. Incorporating labelling prior probability as well as

the super-pixel consistency potential in (Eq. 6.4) has significantly increased the accuracy

and coherence of segmented region boundaries.

Fig. 6.7(a) and 6.7(b) compare our proposed approach to MLP on clips “BOY” and

“DANCE” [220]. We observe the region boundaries from our proposed method to exhibit

improved stability and accuracy over time over STMS, HGB, and MLP according to

the F-measure with respect to manual ground-truth boundaries. Adopting motion cues

as a hard constraint in the CRF framework of the MLP algorithm cumulatively leads to

mis-labellings close to boundaries; the non-discriminative colour model in MLP further

deteriorates the segmentation quality in areas with low contrast or similar colour but

different texture properties.

In Fig. 6.7(c) there is significant agile motion in “MONKEYBAR” — the girl twists

and suffers frequent inter-occlusion over duration of the clip. Despite the adoption of

a forward propagation (2D+t) strategy over several hundred frames of video there is

no significant degradation of F-measure over time; the degradation is comparable to

STMS (a spatio-temporal approach). The hard assignment propagation strategy of

MLP leads to merging of regions, especially in the wake of moving limbs such as the

legs (c.f. Fig. 6.9) resulting in a lower F-measure. We observe the HGB algorithm

(also based on a form of hard assignment dense flow propagation) to fragment regions

signficantly as the sequence progresses, whereas our approach does not, leading that

method to produce consistently lower F-measure scores 6.7(c).
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(a) Comparative F-measure for “BOY” over time

(b) Comparative F-measure for “DANCE” over time

(c) Comparative F-measure for “MONKEYBAR” over time

Figure 6.7: Evaluation of video segmentation algorithms against manual ground-truth on

the Berkeley Segmentation Benchmark. Our proposed algorithm outperforms Multi-label

Propagation (MLP) proposed in Sec. 5.4, Grundmann et al. [76], and spatial-temporal

mean shift (STMS) [161] according to their F-measure (harmonic mean of precision and

recall) with respect to manual ground-truth.
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Figure 6.8: Additional qualitative comparison of performance on frames 1 and 30 of the

“GARDEN” sequence. Order left-right, then top-bottom: Original; Proposed approach;

[104]; [25]; [108]; [76].

6.5.3 Subjective Evaluation

We also demonstrate segmentation results on eight video clips. Each region is shaded

with the mean colour of pixels in each labelled region on the starting key frame to

evaluate longterm coherence and boundary consistency. Fig. 6.5 and 6.6 make qualitative

comparison of the segmentation results of our proposed algorithm, MLP, HGB and

STMS on clips “BOY”, “DANCE” and “MONKEYBAR”. We observe that the relative

coherence and boundary accuracy match the objective evaluations in Sec. 6.5.2; for

example see the zoomed inset (b). The ability to cope with fast motion and occlusions
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are significantly improved in the proposed segmentation algorithm over the state-of-the-

art. A couple of failure cases are also indicated in Fig. 6.6b, in particular the body of

the child (“MONKEYBAR”) and the hand/hat of the dancer (“DANCE”) are shown to

deform unnaturually when undergoing erratic motion over background of similar colour

and or texture.

An additional qualitative comparison on the “GARDEN” sequence is provided in

Fig. 6.8, comparing against a further MRF/CRF based method [108], HBG [76] and

another recently proposed video segmentation algorithm due to Brendel et al. [25]. Our

method performs comparably to HBG on this sequence (though see other qualitative

comparisons, Fig. 6.5) and retains a smaller number of coherent regions vs. [25, 108].

Fig. 6.9 directly compares our probabilistic diffusion (‘soft’) approach to motion prop-

agation, with the hard-assignment strategy of [220]. The experiment is facilitated by

temporarily modifying our approach to work with colour appearance only (no textons)

and omitting the super-pixel term during optimization. The benefits of the probabilistic

approach are observed on the feet of the child; hard assignment causes incorrect pixel

assignments to cumulatively trail the feet over time. Although soft assignment alone

causes minor loss of spatial coherence, this is avoided in our proposed system through

incorporation of the super-pixel constraint to produce results such as those of Fig. 6.5(b).

Fig. 6.10 shows the remaining five segmentation results on clips “YUNAKIM” (560

frames), “COWGIRL” (224 frames), “BASEBALL” (171 frames), “SKATEBOARD”

(146 frames), and “WALKDOG” (300 frames). Our segmentation algorithm exhibits

consistent region identity and stable boundaries under conditions such as fast motion,

low contrast, ambiguous colour, non-rigid shape, occlusions. Object boundaries are

accurately preserved with colour and texture homogeneous regions grouped to ensure

temporal and spatial coherence.

6.6 Conclusion

In this chapter, we presented a novel algorithm for video segmentation driven by multi-

label graph-cut. Our core contribution was a multi-frame probabilistic motion diffusion
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Figure 6.9: Comparison of motion propagation strategy; soft (proposed) vs. hard (Sec.

5.4) assignment. Textons and the super-pixel term are disabled to enable comparison

between motion propagation strategies of Sec. 5.4 (row 2) and our approach (row

3); zoomed in sections of third frame sample (row 4). Note the cumulative errors of

hard assignment incorrectly smear the feet (orange label) into elongated region over

time (highlighted), where the region is correctly segmented using our proposed motion

diffusion approach.

model to incorporate labelling priors from previous frames to influence the segmentation

in new frame. Uniquely this diffusion model propagated a per-pixel distribution of

labelling priors forward based on the probability distribution of motion vectors for

that pixel. Motion flow estimation remains a challenging open problem in Computer

Vision, and our approach mitigates against inaccuracy in such estimates via this “soft”

propagation strategy. This was shown to improve temporal coherence over similar hard-

assignment strategies [220], graph based schemes based on flow propagation [76] and

spatio-temporal segmentation [161]. We combined this motion framework with a spatially
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‘higher order’ constraint additionally imposing the soft label consistency constraint across

image regions (super-pixels) obtained via various unsupervised segmentations — as is

now common in image segmentation. By enforcing labelling consistency, both the spatial

coherence and boundary accuracy of the segmentation was enhanced (demonstrated

via comparison to a manually labelled ground truth). We demonstrated our algorithm

on a variety of sequences exhibit both simple and challenging motion and occlusion

conditions.

A current bottleneck in our system is the SIFT-flow estimation, which can take around 10

seconds in total to compute the flow between historic frames at the currently processed

frame. Were our algorithm to be used for real-time segmentation, an alternative and

perhaps less accurate optical flow method could be trivially substituted.

One interesting direction for future work would be to explore the possibility of propaga-

tion labelling priors both forward and backward in the sequence. This could provide an

additional temporal constraint with the potential to further enhance temporal coherence.

Currently our motion diffusion is Gaussian, and possibly some form of anisotropic

diffusion in the direction of motion could further enhance motion coherence. However

we do not believe such extensions are necessary to show the value of our motion diffusion

model and segmentation framework which in their current form already exhibit improved

accuracy on state of the art approaches under the Berkeley F-measure. Furthermore,

the dependency on data from only previous time-steps preserves the future possibility

of applying an optimized version of our algorithm to online (incrementally streamed)

video data. Although our run-time complexity is currently tens of seconds per frame,

GPU implementations of the bottle-neck in our system (α-expansion) are available.

These future applications are in line with our original project motivations which are

to to develop a coherent video object segmentation algorithm for multimedia graphics

applications such as video stylisation [219].
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(a) Representative frames from “YUNAKIM” segmentation

(b) Representative frames from “COWGIRL” segmentation

(c) Representative frames from “BASEBALL” segmentation

(d) Representative frames from “SKATEBOARD” segmentation

(e) Representative frames from “WALKDOG” segmentation

Figure 6.10: Additional segmentation results applying our approach to NTSC

video sequences (source in top row, our result in bottom row). Please refer

to http://personal.ee.surrey.ac.uk/Personal/Tinghuai.Wang/TMM2011 for

these and further results.
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Chapter 7

Digital Raphael: Learnable

Stroke Models for Example-based

Portrait Painting

In this chapter we address the stylization of people, in particular portraits, which are

frequently encountered in personal media collections yet which general AR algorithms

perform particularly poorly on. The difficulty in rendering portraits is due to our strong

cognitive prior to the structure of human face. A portrait rendering algorithm should

account for facial structure to avoid any distortion or loss of detail of facial feature; it also

should be able to learn how artists depict the structure with brush strokes and colour.

We present a novel representation to interpret human facial features which drives a user

trainable algorithm for stylizing photographs into portrait paintings. This composed

facial feature representation not only accounts for global structure and higher-level

semantics but also encodes local context and low-level visual feature, enabling a wide

variety of artistic styles to be encapsulated in one system.

7.1 Introduction

The stylization of photographs into high quality digital paintings remains a challenging

problem in computer graphics. In recent years, sophisticated painterly rendering

153
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algorithms have been proposed that rely increasingly upon computer vision to interpret

visual structure and drive the rendering process [228]. Although such algorithms generate

a pleasing aesthetic for many image classes e.g. scenic shots, they typically perform

poorly on portraits. The human visual system has a strong cognitive prior for portraits,

and is particularly sensitive to distortion or loss of detail around facial features [146]. Yet

such artifacts are frequently observed when applying general purpose painterly rendering

algorithms to photographs of faces. High quality rendering of faces is important, as

many usage scenarios for artistic stylization focus upon movie post-production effects,

or consumer media collections, which predominantly contain images of people.

This chapter contributes a new stroke-based rendering (SBR) algorithm for stylizing

photographs of faces into portrait paintings. SBR algorithms create paintings by

compositing a sequence of curved spline strokes on a 2D canvas. In contrast to SBR

algorithms that encode various rendering heuristics to target a particular artistic

style [228, 89], our algorithm learns the style of a human artist by example. Given a

photograph, and an ordered list of strokes (and related attributes) captured from a

training session in which an artist paints that photograph, we are able to learn the

artist’s style and render previously unseen photographs of faces into portraits with a

similar aesthetic (Fig. 7.1).

Our algorithm is aligned with Image Analogies [93] and derivative techniques [124] that

learn stroke models of image filters from a pair of unfiltered and filtered greyscale images.

Such systems are able to learn filters, including edge preserving filters reminiscent of a

painterly effect, by sampling pairs of corresponding patches from the two images. The

learned filter is applied by looking up patches from the new image. Our approach differs

as we train at the level of the stroke, learning how the placement and appearance of

each brush stroke is modulated according to underlying features in the training image.

Image features are composed using a Markov Random Field (MRF) model to warrant

both the spatial coherence and structural awareness of feature for stroke learning and

rendering. As such, our approach is specialized to the task of painting, enabling a wide

variety of artistic styles. We specialize further to portraits by learning stroke models

independently within semantic regions of the face, identified using an Active Shape

Model (ASM) and Graph Cut. To the best our knowledge our system is the first to
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Figure 7.1: Overview of the Digital Raphael system. Stroke properties are learned from

a training pair; a source photograph and an artist generated painting. The learned style

model can be applied to new photographs to produce portraits in similar styles.

explore painterly stylization by example at the level of the stroke.

7.2 Facial Feature Extraction

Portraiture demands a careful composition of facial features (e.g. eyes, mouth) each

differing in depiction style. In Sec. 7.3 we describe how models of stroke appearance are

learned independently for each region corresponding to a facial feature in the training

image. These models are used to drive the rendering process in (Sec. 7.4) within each

region of the target image. For both training and rendering, we therefore perform

segmentation on the input photograph to parse semantic regions corresponding to facial

features and so label each pixel. In addition to this high level label assignment, we

extract mid-level and low-level information to guide the learning process using texture

and intensity information respectively. Each pixel of the image is therefore assigned

a tuple {R,W,L} reflecting the local semantic feature, texture, and luminance. In

addition we compute an orientation field Θ from edges and salient facial features.
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Figure 7.2: Feature extraction, from left to right: (a) Semantic regions formed from the

landmarks of ASM; (b) Refined regions using Graph-Cut; (c) Interpolated orientation

field in facial area.

7.2.1 Semantic Segmentation (R)

We begin by fitting an Active Shape Model (ASM) [48] to the input image, comprising

landmarks local to the eyes, eyebrows, nose, mouth and outline of the facial region.

Polygons connecting these landmarks form rough contours of a subset of semantic

facial regions (Fig. 7.2(a)) which we use as a basis for deriving a more complete facial

representation.

Although the optimized ASM yields a reasonable approximation to feature positions,

the model is insufficiently flexible to accurately reflect the shape of each facial feature.

We therefore extract a spatial and color prior from the ASM regions to drive a Graph

Cut segmentation local to the bounding box of each feature [22]. This refinement is

performed for the mouth, eyes and eyebrows — where precision is particularly important

in a portrait. The foreground and background color models are each represented by a

Gaussian Mixture Model (GMM). The foreground model is learned from pixels within

the feature being refined; these pixels are also used as the initial foreground labels. The

background model is assumed to be a model of skin tone, and is bootstrapped from the

nose region.

Regions of greater shape diversity such as the forehead, ears and neck can not be

represented in the ASM and are addressed using a further segmentation over the entire

image. Skin areas acquired from the ASM are labeled as foreground and used to
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train a foreground color GMM; pixels on image borders are labeled as background

and used to train a background GMM. After applying Graph-Cut, pixels classified as

foreground but exterior to the ASM facial area are labeled as the forehead, ears and

neck respectively according to their spatial relationship. The remaining pixels (hair,

clothes and background) are treated as one region. Thus the portrait is finally parsed

into six regions r ∈ R (Fig. 7.2(b)).

7.2.2 Codebooking Visual Structure (W)

Artists paint different types of image feature differently; for example long thin strokes

along edges. Rather than prescribe such heuristics, we establish a basis upon which to

learn this behavior by assigning each pixel a label reflecting the local image structure it

contributes to. We densely sample a SIFT descriptor [140] at each pixel to characterize

this contextual information. Dense SIFT has previously demonstrated its discriminative

power in face recognition [137]. A dictionary of 20 visual words is built by running

k-means over all descriptors sampled in the training image. Each descriptor is assigned

a unique word w ∈ W in the dictionary. The dictionary is preserved for later use when

rendering a new image, as dense SIFT features from that new image must be assigned

to codewords in the same dictionary in order to create a basis for comparison with the

training data. Note that we use considerably fewer visual codewords than that of large

image database applications [182]. Accurate matching of codewords is not required (or

desirable) given potential variation between portrait images, and a compact codebook

also produces larger spatially coherent regions.

Descriptor-codeword assignment on a nearest-neighbor basis normally produces noisy

and spatially uncoherent regions in the facial area due to the high similarity of SIFT

features over skin (Fig. 7.3(a)). We adopt a Markov Random Field (MRF) model

to optimise the labeling f which assigns codeword w ∈ W to each pixel with SIFT

descriptor s ∈ S. Let S̃ ⊆ S be the set of corresponding SIFT descriptors of the

codebook. We assume that the codewords should vary smoothly almost everywhere but

may change dramatically at some places where the local structure varies. The energy of
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labeling is given by

E(f) =
∑
i∈I

Di(wi) +
∑

i∈I,j∈Ni

Vi,j(wi, wj)

where Ni denotes the set of four-connected neighbours of pixel i. Di(wi) is the cost

of assigning codeword wi to pixel i, which provides the local evidence of the labeling.

Vi,j(wi, wj) is the cost of assigning codewords wi and wj to two neighboring pixels, which

measures the neighbouring compatibility. Finding a labeling with minimum energy

corresponds to the MAP estimation problem for an appropriately defined MRF.

Local Evidence

The goal of the local evidence term is to find a codeword wi (SIFT descriptor s̃i) in

the codebook which is the nearest neighbour to the local descriptor si in feature space.

We define the local evidence term as the truncated Euclidean distance between local

descriptor and the descriptor of codeword,

Di(wi) = min(µ||si − s̃i||, τ),

where µ (0.01 in our system) is the rate of increase in the cost, and τ (100 in our system)

controls when the cost stops increasing.

Neighbouring Compatibility

The neighbouring compatibility term aims to make the neighboring estimated codeword

map smooth whilst discontinuous at places where the local structure varies dramatically.

In our model it is defined as the truncated Euclidean distance between the descriptors

of neighbouring pixels in feature space,

Vi,j(wi, wj) = min(µ||si − sj ||, τ).

Belief Propagation

We use the max-product belief propagation (BP) [201] for performing inference on the

Markov Random Field, which works by passing messages around the graph defined by
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Figure 7.3: Codeword map formed by (a) hard quantisation of dense SIFT features

and (b) proposed method using the Markov Random Field model.

the four-connected image grid. BP is an approximate optimisation while in most cases

this relaxed solution is good enough for the MRF inference. Each message is a vector of

dimension given by the number of possible labels.

Let M t
ij be the message that pixel i sends to a neighbouring pixel j at time t, and at

each iteration new messages are computed as

M t
ij(wj) = min

wi
(Di(wi) + Vi,j(wi, wj) +

∑
k∈Ni\j

M t−1
ki (wi))

where Ni \ j denotes the neighbours of i other than j. After T iterations a belief vector

is computed for each pixel,

ej(wj) = Dj(wj) +
∑
i∈Nj

MT
ij (wj).

Finally, the codeword w∗j which minimises ej(wj) individually at each pixel is chosen after

10 iterations. Fig. 7.3(b) illustrates the codeword map formed by our proposed method,

which exhibits significantly improved coherence compared with the hard quantisation

on a nearest-neighbor basis (Fig. 7.3(a)).
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7.2.3 Orientation (Θ)

Stroke direction, and the use of light and shadow are critical components of portraiture.

However image phenomena such as intensity level and orientation that typically correlate

to these stroke attributes are not well represented byW , due to the affine and illumination

invariance of SIFT. As with subsec. 7.2.2 we desire spatial coherence of the low-level

properties, to facilitate coherent variation of rendering parameters.

Orientation with the Facial Regions

We create an edge map M(x, y) = {0, 1} consisting of the contour of semantic facial

regions and salient edges from Sobel operator, from which we interpolate an orientation

field. Given this edge map, we compute a sparse field from the gradient of edge pixels

θ[x, y] 7→ atan
(
δM
δx /

δM
δy

)
,∀x,yM(x, y) = 1. We define a dense orientation field ΘΩ−

over all coordinates within the facial region Ω−, minimizing:

argmin
Θ

∫ ∫
Ω−

(5Θ− v)
2
s.t. Θ|δΩ− = θ|δΩ− . (7.1)

i.e. 4Θ = 0 over Ω− s.t. ΘδΩ− = θ|δΩ− for which a discrete solution was presented

by Perez et al. [164] solving Poisson’s equation with Dirichlet boundary conditions.

v represents the first order derivative of θ. Fig.7.2(c) shows the smooth interpolated

orientation field in facial area, where the orientation field strongly correlates to the

facial structure.

Orientation within the Non-facial Region

The texture of importance in the non-facial area in portrait rendering is the hair.

Estimating the local orientation based on the eigenvalues of the structure tensor has

been proven effective in modelling anisotropic textures [117]. We compute an orientation

field ΘΩ+ over all coordinates exterior to the facial region including the hair using the

structure tensor. Suppose f ∈ R3 denotes the image, we first compute the structure

tensor at a given point at (i, j) ∈ ΘΩ+ as

gi,j =

 ∂f
∂x ·

∂f
∂x

∂f
∂x ·

∂f
∂y

∂f
∂x ·

∂f
∂y

∂f
∂y ·

∂f
∂y

 (7.2)
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Figure 7.4: Luminance quantisation map formed by (a) hard quantisation of intensity

and (b) proposed method using the Markov Random Field model.

The structure tensor at a given point measures the squared rate of change in R3 and the

minimum rate of change is attained along the eigenvector vi,j of the minor eigenvalue of

gi,j . To compute ΘΩ+ , the vector field formed by assigning vi,j to each point (i, j) is

further smoothed by a 5× 5 Gaussian kernel.

7.2.4 Intensity (L)

We represent intensity level by quantising the luminance channel into 8 bins, assigning

the bin number l ∈ L to each pixel. Due to the variation of lighting over face, hard

quantisation may produce spatially noisy distribution of quantised levels (Fig.7.4(a)).

We propose to optimise the quantisation of the luminance channel using the Markov

Random Field model to account for both the local smoothness of quantisation level and

the local evidence of intensity. Furthermore, we encode the local structure information

to promote discontinuities at places where the SIFT feature changes dramatically.

To this end, we formulate intensity quantisation as a pixel-labeling problem of assigning

each pixel i ∈ I with a value from the existing label set, i.e. the quantisation level, L.

Let V be the set of intensity values in the luminance channel, and Ṽ ⊆ V be the set

of intensity values in edges from hard quantisation. We assume that the quantisation
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level should vary smoothly almost everywhere but may change dramatically at some

places where the intensity and local structure vary significantly. The energy of labeling

is given by

E(f) =
∑
i∈I

Di(li) +
∑

i∈I,j∈Ni

Vi,j(li, lj)

Di(li) is the cost of assigning quantisation level li to pixel i, which provides the local

evidence of the labeling. Vi,j(li, lj) is the cost of assigning quantisation levels li and

lj to two neighboring pixels, which measures the neighbouring compatibility. The

inference of MRF is performed by Belief Propagation [201]. Fig.7.4(b) demonstrates the

intensity map formed by our proposed quantisation method, which exhibits improved

structure-aware smoothness comparing with the hard quantisation (Fig.7.4(a)).

Local Evidence

The cost of assigning a particular quantised intensity for a pixel is based on the difference

between that intensity and the observed value,

Di(li) = min(||vi − ṽi||, λ),

where λ (100 in our system) influences the point at which the cost stops increasing.

Neighbouring Compatibility

The artist might depict different local structures with similar illumination as totally

different styles. We encode local structure information when deciding the luminance

quantisation. To promote the discontinuities at places where the local structure changes

dramatically, we define the neighbouring compatibility term to account for both the

luminance smoothness and the SIFT feature variation,

Vi,j(wi, wj) = min(||vi − vj ||, λ) + min(µ||si − sj ||, τ).

7.3 Learning Stroke Style

Our painterly rendering algorithm (Sec. 7.4) adopts the Stroke based Rendering (SBR)

paradigm originally outlined by Haeberli [79]. A sequence of curved spline brush strokes
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are composited on a canvas to create a painting. Each stroke is represented using an

Catmull-Rom (interpolating) piecewise cubic spline, comprising n control points c1...n.

Stroke properties such as geometry (i.e. stroke length and position), as well as stroke

thickness and color, are determined using information sampled local to c1...n in the

image.

Our training process operates by observing these properties in strokes within manually

created training paintings. The system learns the mapping of these properties to pixel

derived information within the training photograph (such as color, Θ) local to each

stroke’s control points c1...n. i.e. we observe the stroke property set P given features F

present in the image local to these points. The mapping is learned by modelling the

distribution p(F|P) independently for each facial region (R). The rendering process

then estimates the stroke parameters P given features F observed in a new image via:

p(P|F) ∝ p(F|P)p(P) (7.3)

where we assume all stroke properties are equally likely (uniform prior). p(F|P) is

learned independently for each W or W ×L pair as we now describe.

7.3.1 Color Transfer Model

Particular features or visual structures may cause an artist to shift toward particular

shades or hues; for example, complementary pairs of colors are often used by artists

to emphasize light and shadow. We learn a color transfer function Fc : {R,W,L} 7→

{∆a,∆b} for each three-tuple, where {∆a,∆b} indicates the deviation of training stroke

color from the training source image in the a and b channels of CIELab space. By

learning for each three-tuple we sample a color transfer model for various illumination

levels of each category of visual artifact (W) — which are in turn, learned independently

for each region (R).

For a given tuple we learn the transfer function as follows. Our system accumulates

the color deviation {∆aci ,∆bci} in the a and b channels of stroke color at each control

point ci from the underlying image to the tuple entry {rci , wci , lci}. Color deviation

of each tuple entry is averaged after the painting is finished to form a 2D vector
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(a) (b)

Figure 7.5: Learning stroke orientation. (a) strokes in the direction of intensity gradient,

trained by Fig.7.11(e). (b) scribbled strokes in Fig.7.11(f) cause diverse, swirling

orientations.

{∆a(r,w,l),∆b(r,w,l)}, which encodes how the painter uses color to account for different

semantic facial regions, local structures and luminance variations. In total |R×W ×L|

color transfer vectors may be generated. Due to the large tuple-space the color transfer

functions are represented sparsely and interpolated at run-time (subsec. 7.4.4).

7.3.2 Stroke Orientation Model

We model the orientation deviation of strokes using field Θ (subsec. 7.2.3). Portraits

of a specific style exhibit characteristic patterns of stroke orientations local to visual

structure. As with color (subsec. 7.3.1) we learn orientation as a transfer function, here

encoding deviation between Θ and stroke orientation.

We compute the local stroke orientation at control point ci using the coordinates of two

consecutive points as θ[ci] 7→ atan(ci−1 − ci). Thus the deviation of stroke orientation

from underlying orientation is computed as θ[ci]−ΘΩ[ci], observations of which are per

tuple entry {rci , wci}. Note we use a two-tuple rather than a three-tuple because the

orientation model is mainly influenced by the perceptual structure R and local context

W and assumed invariant to intensity change L. Once strokes in the training process

have been accumulated, the expectation µ and standard deviation σ of orientation

deviations are computed for each tuple entry yielding a Gaussian model N o
(r,w)(µ, σ

2).

Up to |R ×W| models are learned.
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7.3.3 Stroke Density Model

The density of painted strokes can vary according to the visual salience of depicted

features, and their appearance. We learn a model of stroke density as the probability

that a given point is seeding a stroke, subject to the semantic facial region and local

structure.

We linearly interpolate the sequence of control points to extract a set of consecutive

points {p0, p1, . . . , pN}. Each point pi corresponds to a tuple entry {r, w}; a count O(r,w)

is maintained for each tuple. The count is normalized by area on a per region basis, i.e.

over all W for a given R. A set of |R ×W| stroke density probabilities are obtained.

7.3.4 Stroke Thickness and Length Models

We accumulate the thickness of strokes, creating a count on each tuple entry {r, w}

corresponding to the classification of the control point ci. For example control point,

the count is incremented by the ratio of the stroke thickness to the width of the face,

to account for the scale variation of facial area. An identical procedure is undertaken

to record stroke length. Stroke thickness counts are normalized by stroke length to

prevent bias from over-long strokes. After the painting is finished, we calculate the

expectation µ and standard deviation σ of stroke thickness per tuple entry to form a

Gaussian model N s
(r,w)(µ, σ

2). A Gaussian model N l
(r,w)(µ, σ

2) is similarly learned for

stroke length. Up to |R ×W| stroke thickness and length models are generated.

7.4 Portrait Rendering

We present a novel digital portrait rendering system in this section which driven by the

models of stroke properties learned in Sec. 7.3. Given a source portrait photograph to

render, we perform identical preprocessing to the learning process — parsing a per-pixel

three-tuple labelling {R,W,L} and extracting a composite orientation field ΘΩ. We

take a “single” layer approach to painterly rendering, as learning the order of training

strokes is neither feasible nor necessary — our models learned local to structure feature
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naturally encode the stroke properties adopted by artist to depict salient feature or flat

texture at various levels.

7.4.1 Seeding of Stroke Positions

Curve strokes are ‘grown’ bi-directionally from a number of seed locations, in an iterative

process (subsec. 7.4.2). The layout of seed positions follows the stroke density model

P d(R,W) learned in Sec. 7.3.3. Given a point ci and the associated tuple entry {rci , wci},

the probability that a stroke seed is generated at point ci is P d(rci ,wci )
. The main

advantage of our method is that it strongly correlates to the stroke density pattern in

the training painting with regard to generic facial and local structures. This approach

to stroke spatial layout enables a variety of artistic styles and abstraction levels using

different numbers of strokes.

7.4.2 Stroke Evolution

Each stroke is grown bi-directionally from a seed control point c0, with two additional

control points being placed a short ‘hop’ distance away — the direction of the hop is

determined by vectors with orientation θ[c0] and θ[c0] + π, after [89]. Orientation θ[c0]

is computed based on sampling from the learned orientation model N o
(rc0 ,wc0 )(µ, σ

2)

trained in Sec. 7.2.3. {rc0 , wc0} is the tuple entry associated with c0 in the parsed

face representation. We use a truncated Gaussian N o
(rc0 ,wc0 )(µ, σ

2, a = −σ, b = σ). The

maximum length lmax of the current stroke initiated from c0 is generated from the

truncated Gaussian N l
(r0,w0)(µ, σ

2, a = −σ, b = σ) learned in Sec.7.3. The thickness is

similarly sampled from truncated Gaussian N s
(r0,w0)(µ, σ

2, a = −σ, b = σ). Note the

orientation of each stroke fragment is updated on each new control point ci following

N o
(rci ,wci )

(µ, σ2, a = −σ, b = σ) whilst the maximum length and size of the stroke are

fixed once the initial control point is determined.

The stroke grows from the initial seed c0 to point c−1 and c1 along θ[c0] and θ[c0] + π

respectively with a minimum length of Lmin (2 pixels in the system); this process iterates

until any of the following criteria are violated. Growth halts if the new control point

belongs to a different semantic region than c0, or if the curvature change between a pair
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of consecutive stroke fragments is larger than a threshold Ta. If the color difference (in

CIELab space) between the pixel at the new control point to the pixel at ci is larger

than a threshold Tc then growth halts. We use thresholds of Tc = 20 and Ta = π
2

determined empirically.

Each region is painted independently in order of area (largest first). Strokes are rendered

using bump-mapping to enhance their painted appearance [91].

7.4.3 Stroke Color Transfer

After all the control points of a new stroke are generated, the associated code word w̃c0

with the highest occurrence, and thus the tuple entry (rc0 , w̃c0) can be found to impose

the structure constraint to partially determine the stroke color. However, the stroke

color is strongly influenced by the low-level image data. Similar to the training process

of Sec. 7.3, we quantize the averaged L channel of all the control points in CIELab

space as l̃c0 . All together, we identify the tuple entry {rc0 , w̃c0 , l̃c0} to index the color

deviation model learned from Sec. 7.3.1.

Given the associated tuple entry {rc0 , w̃c0 , l̃c0}, the color deviation model of the current

stroke is a 2D vector {∆a(rc0 ,w̃c0 ,l̃c0 ),∆b(rc0 ,w̃c0 ,l̃c0 )}. Let L̄c0 , āc0 , and b̄c0 be the average

Lab channels over the control points respectively, the color Cs : {L̃c0 , ãc0 , b̃c0} of the

stroke which originates from c0 is:

L̃c0 = L̄c0 (7.4)

ãc0 = āc0 + ∆a(rc0 ,w̃c0
,l̃c0 ) (7.5)

b̃c0 = b̄c0 + ∆b(rc0 ,w̃c0
,l̃c0 ). (7.6)

After the color transfer, Cs is converted to RGB space and the values clamped.

7.4.4 Null Models

The sparseness of the training data can result in no model being recorded for particular

tuple (null model). Tuples coded to null models may be encountered during rendering,

and it is necessary to perform a lookup to identify the closest tuple with a model. This
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Figure 7.6: A snapshot of the user interface to capture brush strokes of artist, which

consists of canvas (left), adjustable colour picker (top-right), colour palette (middle-right)

and brush size (bottom-right).

also promotes spatially coherent appearance. For color transfer we must find the nearest

tuple in {R ×W ×L} space; for the remainder of the properties in {R ×W} space.

Prior to rendering, we pre-compute the nearest neighbor assignments for codewords

W independently within each facial region R. A matrix of distances between the

cluster centers used to generate codebook W is computed to form an undirected graph.

Distances incorporating a codeword for which no tuple has been learned for the particular

region are zeroed. Having computed the matrix, the nearest D non-null models for each

codeword can be computed efficiently at runtime by examining the D smallest values in

the matrix for a given codeword (achieved by sorting each row of the matrix). Given a

tuple (r, w) with null model encountered during painting, we consult this list to look-up

nearby non-null models in the tuple space and average their Gaussian parameters. In

practice, setting D = 1 is sufficient to ensure good coherence.

In the case of color transfer, we must lookup based on L for a given null tuple. This

adds another layer of search to the process. We first find the nearest codeword using

the matrix, specifically the (r, w) for which any models (r, w,L) have been sampled.



7.5. Results and Discussion 169

Figure 7.7: Portrait rendering result of our proposed algorithm (left), result of Hertz-

mann’s multi-layer algorithm with brush radii R = {16, 8, 4} (middle) and R = {8, 4, 2}

(right). Zoom to 400% to view details.

Figure 7.8: Comparison of the rendered portraits of source image (left) between our

algorithm using hard quantized (middle) codeword and intensity features, and our

proposed MRF approach (right). Zoom to 400% to view details.

With (r, w) fixed we identify the D closest non-null models and average their vector

displacements in the color space.

7.5 Results and Discussion

We evaluate the Digital Raphael system, demonstrating improved preservation of salient

features over the state of the art [89, 232] and the broad gamut of styles achievable. Our

system is trained using a single photograph/painting pair. Brush strokes are captured

using a bespoke user interface resembling a basic Photoshop-like painting environment
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Figure 7.9: Comparison of the rendered portraits between our painting algorithm (left)

and Zhao and Zhu [232] (middle and right) which warps pre-painted artist strokes to

new faces. Zoom to 400% to view details.

with stroke color and size selection. A snapshot of the user interface is shown in Fig. 7.6.

Strokes are painted on top of the original training photograph to provide a point of

reference. The system also generates a color palette incorporating dominant colors in

the photograph, and their complementary colors, by clustering RGB pixel values.

7.5.1 Comparison with Baseline Methods

We first compare our rendering algorithm with the general purpose multi-layer multi-

scale painterly rendering algorithm by Hertzmann [89], commonly used as a baseline for

painterly stylization. Fig. 7.7 provides a visual comparison, showing that this generic

painting method either destroys important facial details through blurring or over-paint

Fig. 7.7 (middle) or produces photorealistic renderings without insufficient painterly

effect Fig. 7.7 (right) that tend back towards photorealism. Despite the multi-resolution

approach taken in [89] to capture structure of different scales, the lack of higher-level

semantic structure and stroke properties that adapt to local features causes loss of

salient detail. The training image for our rendering is given in Fig. 7.11e, and is a very

rough user depiction of the face using broad colored strokes. Even with such minimal,

coarse training data our specialized portrait algorithm is able to produce high quality

renderings that stylish salient facial details without loss of clarity.

Fig. 7.9 compares our results with Zhao and Zhu [232] where artist strokes are reproduced
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Figure 7.10: Portrait renderings by the proposed algorithm. Zoom to 400% to view

details.

‘verbatim’ and warped to fit the face. This stroke-warping approach relies upon on a

global facial model but, as the stroke positions are prescribed rather than algorithmically

generated, they are unable to depict visual structures such as shadows or wrinkles.

Detail in regions such as the eyes distinguishes our system’s capability to adapt to

delicate facial features. The phenomenon of “ghost teeth”[232] on the lips in Fig. 7.9

(right) is similarly caused by re-using captured strokes rather generating them. By

contrast the result from our system (learned from 7.13e, with teeth) successfully depicts

the delicate in eyes but also deals with changes in geometry, transferring the smiling face
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(a) (b)

(c) (d)

Figure 7.11: Training paintings of four styles: (a) Blobby strokes; (b) Medium strokes;

(c) Long strokes; (d) Warm color. See corresponding renderings in Fig. 7.12.

with teeth to faces with no teeth showing. Note [232] also does not provide a solution

to render hair, as we do, and paints this as a post-process.

7.5.2 Evaluation of MRF Style Coherence

Under our proposed learning and rendering framework, we evaluate the benefit of our

MRF based feature composition which enforces spatial coherence in codeword (W) and

intensity (L). Optimizing these fields to enforce spatial coherence directly influences the

coherence of P . A simpler alternative is simply to perform quantization of SIFT features

according to the learned codebook, with no spatial coherence constraint under an

MRF. Fig. 7.8 (middle) shows that the labels obtained using such quantization feature

introduces spatial incoherence in the rendered style, whilst our MRF based approach

(Fig. 7.8, right) to feature composition exhibits significantly improved aesthetics driven

by the improved smoothness in variation of stroke parameters.
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(a) (b)

(c) (d)

Figure 7.12: Portrait renderings using models learned from Fig. 7.11 (a) Blobby strokes;

(b) Medium strokes; (c) Long strokes; (d) Warm color. Zoom to 400% to view details.

7.5.3 Style Repeatability and Diversity

By sampling models of stroke properties sourced from artists, our system is able to

render a diverse range of painting styles unavailable to prior work. In order to evaluate

these learning capabilities we asked a group of 10 people with varying levels of artistic

experience, from professionally trained artists to amateurs, to produce various styles of

portraits using our system. Fig. 7.11 shows representative training portraits covering

four styles. We present two training paintings per style to verify the style consistency

of learned models. The corresponding rendering results are in Fig. 7.12. Fig. 7.13

shows additional training portraits of six styles to further demonstrate the ability of our

algorithm to learn a diverse range of styles and Fig. 7.14 presents the corresponding

rendering results.

Fig. 7.11(a) and Fig. 7.12(a) show a couple of training examples and rendering results

respectively demonstrating a painting style using thick, short strokes as color blobs to

increase the abstract level, where the stroke length and thickness are correctly learned
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with regard to different local context without destroying the details. Fig. 7.11(b) uses

medium size strokes to depict fine details of portrait, for instance the curly hair in Fig.

7.12(b). The long hair in Fig. 7.12(c) is featured by the learned long strokes from Fig.

7.11(c). Fig. 7.11(d) trains a style characterized by warm colors. The rendered result is

in Fig. 7.12(d). The rendering results from every two training paintings of the same

style exhibit similar stroke properties which demonstrate the style consistency during

learning.

In contrast to Fig. 7.11(d), Fig. 7.13(a) and Fig. 7.14(a) use cold color to render the

shade areas. Fig. 7.13(b) and Fig. 7.14(b) adopts a similar way to emphasis the shade

areas; darker areas are painted with a purple tint and the relatively lighter areas are

painted with the complementary color of orange. Only shadows with similar visual

structure to the training image are painted in complementary color.

Fig. 7.14(c) demonstrates the ability to learn Pointillist rendering from training painting

Fig. 7.13(c) using small, distinct strokes of pure color. We use pairs of colors for

light/shade areas to train – orange/blue on facial area, and green/yellow for non-facial

areas. Fig. 7.14(c) shows that the color transfer algorithm can preserve coherent color

contrasts around local structures to create aesthetically pleasing effects even when very

short strokes are used. Training Fig. 7.13(d) causes thick strokes with medium length

to increase the abstract level in Fig. 7.14(d). Fig. 7.13(e) uses natural color and fine

strokes to depict human portrait (Fig. 7.14(e)). Fig. 7.13(f) trains hair texture using

long strokes which results in Fig. 7.14(f), benefiting from the tensor based orientation

field.

Fig. 7.15 shows the rendering results on selected test images using models learned from

the same images. The purpose of this experiment is to demonstrate that a painting used

to train a system may be approximately reproduced from the learned style parameters.

The rendering results exhibit similar styles, e.g. color tones, stroke orientation, thickness,

and length, with the corresponding training paintings shown in Figs. 7.11(c) and 7.13(e).

For example, the horizontal strokes on the the girl’s cheek (Fig. 7.15(c)) in Fig. 7.15(a)

have similar styles in Fig. 7.11(c); the style to depict the shade areas of hair and

skin, even the eyelash (Fig. 7.15(d)) in Fig. 7.15(b), exhibits high similarity with the
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corresponding training painting Fig. 7.13(e). However note that we are not trying to

reconstruct the training painting exactly, which is only possible by simply warping the

training strokes as Zhao and Zhu [232] did — rather we are seeking similarity at a

higher conceptual level, aiming to reconstruct the visual style of the training image.

Fig. 7.13 and Fig. 7.14 provide further examples of trained and reproduced styles. The

variation of stroke orientation, thickness, length and color across the rendering results

distinguishes each of the styles.

7.5.4 Learning with Sparse Training Data

As a final experiment we demonstrate that our algorithm is able to effectively learn

certain styles of painting even when only limited training data is available. This may be

the case in amateur paintings or where the user indicates only a few examples of style

style per facial feature. The corresponding rendering results are shown in Fig. 7.17,

where the learned stroke density is artificially scaled up for aesthetics, i.e. to deliver a

full painting given the sparsity of strokes in the partial training example. Here the style

variation within a facial feature is rather uniform, given the sparsity of training data.

Nevertheless different stroke styles (round swirls, versus long curves) are learned and

extrapolated over the image.

7.6 Conclusion

We have presented a user trainable algorithm for stylizing photographs into portrait

paintings. This challenging Computer Graphics problem is addressed using Computer

Vision to learn a flexible stroke model of artistic style by analyzing the global and

local geometry as well as tone of brush strokes placed local to image features. Our

facial feature representation (Sec. 7.2) which not only accounts for global structure

and higher-level semantics but also encodes local context and low-level visual structure,

enabling a wide variety of artistic styles to be encapsulated in one system. Further, our

system is able to generalize from minimalist training data consisting of few strokes, to

produce high quality paintings from data generated by users without extensive artistic
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training. Portraiture has previously proven to be a challenging domain for painterly

rendering algorithms. Our solution is also able to depict faces without the loss of

salient detail exhibited by more general painterly methods [89] and without relying on

a pre-painted arrangement of strokes to warp over the face [232]. Rather, we compute

the position of strokes as a function of image content.

In this chapter, we have demonstrated that modeling a visual structure of human facial

features enabled portrait painting. This representation of visual structure underpinned

domain specific models which drive effective per-part learning of how artists paint and

thus provide more precise control over the portrait rendering without introducing any

distortion or loss of details of facial feature. In future work, we would like to improve

the accuracy of facial region parsing by introducing the 3D morphable model [19] which

is capable to reconstruct 3D facial geometry from single image. Stroke style models

learned based on 3D meshes may capture more accurate facial geometry, which conveys

strong impression of 3D structures and enables pose-invariant portrait painting. The

latter may serve the purpose of synthesising painterly facial animation or producing

high quality painterly animation from video containing face.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.13: Additional training paintings of various styles: (a) Cold color; (b) Shading

using complementary color; (c) Short strokes; (d) Thick, long strokes; (e) Natural color;

(f) Long strokes for hair. See corresponding renderings in Fig. 7.14.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.14: Portrait renderings using models learned from Fig. 7.13 (a) Cold color;

(b) Shading using complementary color; (c) Short strokes; (e) Thick, long strokes; (d)

Natural color; (f) Long strokes for hair. Zoom to 400% to view details.
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(a) (b)

(c) (d)

Figure 7.15: Portrait renderings of testing images using models learned from the same

images (a) Long strokes from Fig. 7.11(c); (b) Natural color from Fig. 7.13(e); (c)

Zoomed in section in (a) and the corresponding section in training painting Fig. 7.11(c)

(d) Zoomed in section in (b) and the corresponding section in training painting Fig.

7.13(e). Zoom to 400% to view details.
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(a) (b)

Figure 7.16: Partial training paintings taken from the process producing Fig. 7.11(a).

Zoom to 400% to view details.

(a) (b)

Figure 7.17: Portrait renderings using models learned from partial training paintings

Fig. 7.16. Stroke densities are scaled up to approximate a full painting learning in facial

area. Zoom to 400% to view details.
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Chapter 8

Conclusions and Further Work

In this chapter we summarise the contributions of the thesis, and discuss how the

results of the algorithms we have developed support our central argument for the use of

representation of visual structure in the stylisation and presentation of visual media.

We suggest possible avenues for the future development of our work.

8.1 Summary of Contributions

This thesis addressed the problem of structured representation and stylisation for visual

media collection; proposing algorithms for structurally representing, analysing and

stylising the visual content. We performed a comprehensive review of related work

and argued that the structured representation proves beneficial in terms of improving

the understanding of visual media, and broadening the gamut of potential expressive

styles. To support this argument we developed several novel algorithms which operate

at different level of representations and render a wide range of expressive styles on image

and video.

We now examine the algorithms developed in this thesis, and conclude as to how their

results contributed to our central argument for structured representation and stylisation

in visual media. Specifically we identify the improvements gained in each of the following

areas.

183
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8.1.1 Automatic Video Editing

In Chapter 3 we described a novel tree representation to bridge the gap between the

low-level feature and high-level video editing operations, suitable for use in a Genetic

Programming (GP) optimization framework. Our structured representation incorporates

cutting, zooming and panning operations, which uniquely facilitates the search for a

globally optimal video edit using GP, maximising both aesthetics and interest within

the final clip. Our measures for aesthetics are grounded in common directing practice,

and our measure for interest is based on the presence of people; the most common

subject of interest for home videos. To capture the subjectivity of video aesthetic, our

fitness function is governed by user parameters weighting desire for objects of interest

against frequency of cuts, and motion. This system proved to be efficient over some

representative examples of home video footage. The short optimization times enable

user experimentation to taste. Our approach of video editing via defining a structured

representation of editing operations increases the aesthetic value and interest in medium

items, which supports our hypothesis in Sec. 1.1

• H2. Structured presentation and visual stylization of content in personal media

collections enhances user engagement with that content.

8.1.2 Interactive Object Segmentation

In Chapter 4 we presented an object segmentation system driven by single finger touch

using level set methods which integrates both low- and mid-level models of colour, texture

and geometry. The core contribution is an edge-region-geometry based segmentation

model to robustly tackle the interactive object segmentation problem — encoding

boundary probabilities of color-texture homogeneous regions, and the statistical and

geometric priors inferred from the user input. The proposed edge model observes the

local colour distribution and thus provides robust description of the coherent colour-

texture region which mitigates against the contour becoming stuck in local minima in

the presence of noisy data. Colour information from user input augments this model,

balancing the a posterior probabilities of region models inside and outside the putative
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object contour. We also demonstrated that our algorithm can be extended to segment

video sequences into temporally coherent foreground and background region maps.

We introduced a motion estimation enabled shape prior into the video adaptation to

preserve temporal coherence when the foreground and background color distributions

are indistinct. This gives rise to potential applications to video special effects (e.g.

artistic stylization) with minimal user intervention, that may be suited to consumer

touch-screen video cameras. This supports our argument that stable structures extracted

from visual media facilitate the spatially localized media manipulation. A comprehensive

comparison with previous techniques was presented, demonstrating the effectiveness of

the proposed system at achieving high quality results, as well as the robustness of the

system against limited inputs. This supports our hypothesis

• H1. Improving the stability of the structure extracted from video sequences

beyond the state of the art enhances the temporal coherence of artistic renderings.

8.1.3 Video Segmentation

In Chapter 5 and Chapter 6 we presented two video segmentation algorithms to apply

multi-label graph cut on successive frames, in which the segmentation of each frame

is driven by motion flow propagated labelling priors and incrementally updated data

model estimated from the past frames to improve the temporal coherence. The flow-

propagated labels in the first algorithm are assumed to be hard constraints i.e. perfect

estimates. The second algorithm also follows a flow-propagation strategy, but adopts

‘soft’ constraints on motion propagated priors.

Our core contribution in the latter was a multi-frame probabilistic motion diffusion model

to incorporate labelling priors from previous frames to influence the segmentation in

new frame. Uniquely this diffusion model propagated a per-pixel distribution of labelling

priors forward based on the probability distribution of motion vectors for that pixel.

Motion flow estimation remains a challenging open problem in Computer Vision, and

our approach mitigates against inaccuracy in such estimates via this “soft” propagation

strategy. This was shown to improve temporal coherence over hard-assignment strategies
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in our first algorithm, graph based schemes based on flow propagation [76] and spatio-

temporal segmentation [161].

We combined this motion framework with a spatially ‘higher order’ constraint addition-

ally imposing the soft label consistency constraint across image regions (super-pixels)

obtained via various unsupervised segmentations — as is now common in image seg-

mentation. By enforcing labelling consistence, both the spatial coherence and boundary

accuracy of the segmentation was enhanced (demonstrated via comparison to a manually

labelled ground truth).

Our novel video segmentation algorithms drive video stylization algorithms using mid-

level representations of video parsed from footage. This representation allows us to

establish correspondence between frames, enabling the coherent stylization of video

objects with both shading and painterly effects, which proves our first hypothesis in

Sec. 1.1

• H1. Improving the stability of the structure extracted from video sequences

beyond the state of the art enhances the temporal coherence of artistic renderings.

8.1.4 Digital Ambient Displays of Visual Media Collections

In Chapter 5 we presented the Digital Ambient Display (DAD) that harnesses artistic

stylization to create an abstraction of user’s experiences through their home digital

media collections. The DAD applies the proposed video segmentation algorithm to

stylized animation. The scene structure is stably represented by parsing the video into

coherent spatial segments. This representation not only enables the coherent video

stylization, but also creating aesthetically pleasing video composition and transition

effects between different video clips using region correspondence. This supports our

hypotheses

• H1. Improving the stability of the structure extracted from video sequences

beyond the state of the art enhances the temporal coherence of artistic renderings.

• H3. New approaches for parsing visual structure can unlock new forms of

stylization so diversifying AR.
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A further contribution of the thesis is a novel approach to structuring and navigating

visual media collections. We described an algorithm for adaptively sequencing media

items using graph optimization in a coarse-to-fine manner driven by user attention.

By recursively clustering media items into a hierarchy, we were able to plan routes

within clusters to display content of a common theme. We were also able to plan routes

between clusters to summarise media within the collection. We deployed our system on

dedicated hardware and undertook a small-scale user trial to validate the our content

sequencing algorithm based on structured representation, which was shown to be more

engaging than random photo slideshows, which supports our hypothesis

• H2. Structured presentation and visual stylization of content in personal media

collections enhances user engagement with that content.

8.1.5 Portrait Painting

In Chapter 7 we have presented a user trainable algorithm for stylizing portrait pho-

tographs into paintings. Portraiture has previously proven to be a challenging domain

for painterly rendering algorithms. This challenging Computer Graphics problem is

addressed using Computer Vision to form a structured representation of facial feature

and learn a flexible non-parametric model of artistic style by analyzing the global and

local geometry as well as tone of brush strokes placed local to image features. Our

structured facial feature representation which not only accounts for global structure

and higher-level semantics but also encodes local context and low-level visual structure,

enabling a wide variety of artistic styles to be encapsulated in one system. This supports

our hypothesis

• H3. New approaches for parsing visual structure can unlock new forms of

stylization so diversifying AR.

Further, our system is able to generalize from minimal training data consisting of

few strokes, to produce high quality paintings from data generated by users without

extensive artistic training.
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8.2 Future Work

The techniques proposed in this thesis have raised a number of interesting possibilities

for future work. Many of these have already been discussed in the conclusion section of

the relevant chapters as they address specific incremental improvements which could be

made to particular algorithms. In this section we highlight the more general directions

which appear to hold the greatest potential.

Video segmentation is an under-constrained task, and there are generally two methods

of introducing sufficient constraints to make the problem tractable; prescribed user

heuristics and interaction. Heuristics refer to loosely applicable strategies or rules to

control problem solving, and are assumed to be qualitatively applicable over all classes

of footage processed. Interaction enables, by controls, constraints special to the piece of

footage being processed. In this thesis, we have defined a variety of heuristics to underpin

video segmentation, e.g. the propagation of motion and appearance priors enables the

consistency and coherence of frame-by-frame segmentation. However, the task is still

under-constrained since, in the absence of high level scene understanding, there can be

more than one interpretation of pixels comprising the desired object of interest. The

past decade has seen a trend toward better constraining the video segmentation task

through the combination of high-level prior scene understanding via user interaction

with low-level cues such as color, edges and motion observed in the sequence, sacrificing

some level of automations. A balance between heuristics and interactions is one of

the possible directions of our future work on video segmentation, which still remains

limit in the specialism of temporal constraints interactions. For instance, our video

segmentation algorithms might be driven by a scribble drawn by the user to indicate the

rough trajectory of object movement to enhance the heuristics of motion propagation

defined in the system. Such a motion scribble driven approach to video segmentation

can be further enhanced by incorporating “occlusion boundaries” [199] discovered from

motion disparity in the scene, and using these to compensate for any ambiguity in

appearance between regions.

In Ch. 5 we have presented a novel hierarchical presentation for structuring media

collections which facilitates the adaptive coarse-to-fine sequencing of media items driven
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by user attention. In our proof-of-concept system, we assumed there was only one single

context in the media collections, e.g. “a trip to London”. However, there might be

more than one context in real world domestic media collections, in which case we would

need to virtually structure the media collection into multiple but possibly overlapping

hierarchies. We would like to investigate how these hierarchies may further constitute a

graph consisting of nodes and edges, where nodes are hierarchies and edges measure the

level of overlapping between hierarchies. A random walk over the graph sequences the

media items belonging to single or multiple contexts.

We have proposed an approach to stylising portrait photographs into paintings in Chapter

7; we trained at the level of the stroke, learning how the placement and appearance of

each brush stroke is modulated according to underlying features in the training image.

Although integrating the evidence from depth cues to form a consolidated model of the

visual world comes naturally to us, depth information has not played a major role in

artistic rendering (though some progress has begun to be made [29]). We can speculate

that exploiting the depth information from 3D geometry would significantly improve

the robustness of learning portrait painting. Stroke style models learned based on 3D

meshes may capture more accurate facial geometry, which conveys strong impression of

3D structures and enables pose-invariant portrait painting, without suffering from the

visual ambiguities in 2D imagery. Learning portrait paintings from 3D geometry would

open the door to synthesising portrait painterly animation or producing high quality

painterly animation from video containing faces. General video stylisation algorithms

perform particularly poorly on faces, which forms a barrier for domestic user to enhance

the aesthetic value of their medium collection with expressive presentation forms. This

would be another interesting question to be addressed in our future work. By building

correspondence of 3D geometry between successive frames, stroke models learned taking

advantage of depth information would generate stably morphing brush strokes exhibiting

strong temporal coherence.

Throughout this thesis we have developed image and video segmentation algorithms

for monocular view besides our portrait painting algorithm. Due to the increasing

amount of stereoscopic 3D data now being produced, there have been segmentation

algorithms to handle the multiple view data [168, 77]. Our monocular solutions can
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easily be extended to multiple view. Taking the video segmentation algorithm proposed

in Ch. 6 for example, we can introduce inter- and intra-view spatial smoothness

constraint correlating the local spatial coherence among multiple views derived from

both object-like regions and dense feature matching. This approach would improve the

spatio-temporal coherence and preserve the multiple view consistency which might be a

solution for multiple view matting - a major application area for video segmentation,

e.g in the creative industries.
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