BibTeX entry
@PHDTHESIS{201203Marco_Paladini,
AUTHOR={Marco Paladini},
TITLE={Deformable and Articulated 3D Reconstruction from
monocular video sequences},
SCHOOL={University of London},
MONTH=Mar,
YEAR=2012,
URL={http://www.bmva.org/theses/2012/2012-paladini.pdf},
}
Abstract
This thesis addresses the problem of deformable and articulated structure from motion from monocular uncalibrated video sequences. Structure from motion is defined as the problem of recovering information about the 3D structure of scenes imaged by a camera in a video sequence. Our study aims at the challenging problem of non-rigid shapes (e.g. a beating heart or a smiling face). Non-rigid structures appear constantly in our everyday life, think of a bicep curling, a torso twisting or a smiling face. Our research seeks a general method to perform 3D shape recovery purely from data, without having to rely on a pre-computed model or training data. Open problems in the field are the difficulty of the non-linear estimation, the lack of a real-time system, large amounts of missing data in real-world video sequences, measurement noise and strong deformations. Solving these problems would take us far beyond the current state of the art in non-rigid structure from motion. This dissertation presents our contributions in the field of non-rigid structure from motion, detailing a novel algorithm that enforces the exact metric structure of the problem at each step of the minimisation by projecting the motion matrices onto the correct deformable or articulated metric motion manifolds respectively. An important advantage of this new algorithm is its ability to handle missing data which becomes crucial when dealing with real video sequences. We present a generic bilinear estimation framework, which improves convergence and makes use of the manifold constraints. Finally, we demonstrate a sequential, frame-by-frame estimation algorithm, which provides a 3D model and camera parameters for each video frame, while simultaneously building a model of object deformations.