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Abstract

Automatic face recognition has been an active research area for the last four

decades. This thesis explores innovative bio-inspired concepts aimed at improved

face recognition using surface normals. New directions in salient data represen-

tation are explored using data captured via a photometric stereo method from

the University of the West of England’s “Photoface” device. Accuracy assess-

ments demonstrate the advantage of the capture format and the synergy offered

by near infrared light sources in achieving more accurate results than under con-

ventional visible light. Two 3D face databases have been created as part of the

thesis – the publicly available Photoface database which contains 3187 images of

453 subjects and the 3DE-VISIR dataset which contains 363 images of 115 peo-

ple with different expressions captured simultaneously under near infrared and

visible light. The Photoface database is believed to be the first to capture natu-

ralistic 3D face models. Subsets of these databases are then used to show the

results of experiments inspired by the human visual system. Experimental results

show that optimal recognition rates are achieved using surprisingly low resolution

of only 10×10 pixels on surface normal data, which corresponds to the spatial

frequency range of optimal human performance. Motivated by the observed in-

crease in recognition speed and accuracy that occurs in humans when faces

are caricatured, novel interpretations of caricaturing using outlying data and pixel

locations with high variance show that performance remains disproportionately

high when up to 90% of the data has been discarded. These direct methods of

dimensionality reduction have useful implications for the storage and processing

requirements for commercial face recognition systems. The novel variance ap-

proach is extended to recognise positive expressions with 90% accuracy which

has useful implications for human-computer interaction as well as ensuring that a

subject has the correct expression prior to recognition. Furthermore, the subject

recognition rate is improved by removing those pixels which encode expression.
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Finally, preliminary work into feature detection on surface normals by extending

Haar-like features is presented which is also shown to be useful for correcting

the pose of the head as part of a fully operational device. The system operates

with an accuracy of 98.65% at a false acceptance rate of only 0.01 on front fac-

ing heads with neutral expressions. The work has shown how new avenues of

enquiry inspired by our observation of the human visual system can offer useful

advantages towards achieving more robust autonomous computer-based facial

recognition.
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Chapter 1

Introduction

It is the common wonder of all men, how among so many millions

of faces, there should be none alike.

Thomas Browne, Religio Medici

Humans see faces in just about everything. Two eyes, a nose and a mouth in

near identical configuration and yet we are able to distinguish between thousands

and readily recognise familiar faces in an instant.

Automated face recognition has been the subject of considerable research ef-

fort for four decades. It offers many perceived security benefits and as a biometric

does not require such levels of cooperation as iris recognition nor physical contact

that is necessary for most fingerprint readers. We as humans believe we are very

good at it – it is arguably a primary mechanism for recognising people. Holding a

BSc in Psychology and an MSc in Computer science it offers a fascinating area

of study for the author.

Face recognition and pattern recognition in general can be split into two dis-

crete areas of research: feature extraction and classification. The first concerns

itself with extracting the important information from a raw signal leaving obfuscat-

ing information behind and the latter finds ways of reliably labelling the features.

Even though both have been areas of research for many decades they are still
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rich subject areas. This work focuses on the former and attempts to use psycho-

logically inspired ideas to improve upon existing research on 3D face recognition,

ultimately leading to the proposal of a system which performs landmark localisa-

tion, feature extraction and recognition automatically using surface normal data

generated from a 3D Photometric stereo (PS) capture device. The device was

developed prior to the start of this project and while its operation is described in

some detail, the design and construction of the device itself is not part of this

Ph.D..

At the beginning of this Ph.D. a colleague questioned why I would choose

automated face recognition as a research topic as it is already saturated with

research, and it is often stated that simple face recognition is a solved problem.

While there is undoubtedly a level of truth to these statements the author does

not wholly agree with them. It is very hard to find novel areas of research in an

area with such a seemingly simple purpose but in this thesis I have attempted to

explore under-represented areas such as caricaturing and low resolution imagery

to enhance face recognition. Countering the argument that the face recognition

is a solved problem, one only has to look at the recently released work by some

of the best known names in the area on an old dataset as proof that it is by no

means solved (even in the simplest of cases – expressionless and frontal) [151].

Here Phillips et al. use the Face Recognition Grand Challenge (FRGC) database

to create a new set of test faces that have been shown to be difficult to recognise

by the best algorithms.

Face recognition as a technology has the possibility of becoming ubiquitous

in the near future as long as the public are aware of its pitfalls in return for the

convenience it offers. Already in the latest version of the Google Android TM

operating system, ‘Ice Cream Sandwich’, an option which allows a device to be

unlocked via face recognition has been included. At the time of writing, Google

have not explicitly confirmed whether or not it can be spoofed into false verification

by using a photograph, only stating “Give us some credit!”. Even though research
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into automated face recognition is in its fifth decade, it is still current, and this is

what makes it such an appealing research topic.

Another aspect of faces which makes them an intriguing study subject are the

idiosyncrasies associated with human processing. They all (usually) are in a very

similar configuration; having two eyes above a nose above a mouth and yet we

can make judgements about a person in an instant based on very superficial dif-

ferences. Even though the variations in these configurations are slight, we have

no problems instantaneously recognising familiar faces even after long periods or

when the appearance has altered through spectacles or facial hair. The human

ability to recognise familiar faces is remarkable under normal conditions although

we tend to overestimate our ability with unfamiliar faces [83] which can have seri-

ous consequences in police line-ups. We also recognise familiar faces which have

been cartooned or caricatured better than veridical images. However if faces are

inverted either in orientation or in contrast polarity our ability to process them is

extremely diminished. Damage to a small area of the brain (Fusiform face area

(FFA)) can lead to a condition where the person is unable to recognise faces

at all, but recognition of other objects remains intact (prosopagnosia). The fact

that a process so inherent in human nature is still so poorly understood makes

it a fascinating area to study and it may be that as we learn more of the human

processes we can use them to augment automatic systems.

While automated 2D face recognition has been studied for decades, using

3D scans is a far more recent topic due to the availability of suitable scanning de-

vices. As well as providing 3D morphology of the face 3D scans help to overcome

the problems of pose and illumination that have been found in 2D recognition.

Throughout this thesis I refer to the surface normal data captured using PS as

3D data. I am aware that the data is not truly 3D as we do not capture the full

3D shape, only the part facing the camera, but the alternative 2.5D is clumsy and

slightly ambiguous and does nothing to aid in the readability of the manuscript.

With over 40 years of research, the variety of approaches is vast and many
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build on the successes of previous attempts. This often means that methods be-

come more and more specific and complex to cater for special cases. This is

how science works and I am in no way criticizing it. Working towards a Ph.D.

gives one the unique opportunity to explore areas which perhaps have been ne-

glected or overlooked or come at the problem with a different viewpoint and the

novel methods presented here reflect this rather than extend specific aspects of

previous successes (of which there are many!). Discussing this with a colleague I

was pointed towards a paper which takes a similar standpoint, and very success-

fully demonstrates that for texture classification simple measures of intensity in a

number small patches gives better performance than using filter banks [185].

The journey of work in this Ph.D. has not only allowed me study a fascinating

subject area for three years, but has also allowed me to travel and meet with highly

respected scholars in the area. I hope that the reader enjoys and is stimulated by

the findings reported here as much as I have been.

Contributions

The major original contributions of this project are:

1. The use of Near Infrared (NIR) light sources provide a more accurate PS

reconstruction than visible light sources

2. Providing a publicly available database and detailed metadata of 3187 ses-

sions of 453 subjects

3. That Low resolution images (10×10 px) give the best rates of recognition for

our dataset of frontal, expressionless faces contained in our 3D database

using raw surface normals. Similarly low resolutions are also optimal for 2D

images.

4. The finding that pixel locations with statistically outlying values, or high vari-
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ance rates contain disproportionately high amounts of discriminatory infor-

mation which is useful for face recognition

5. Presenting a variance based approach which is used to identify pixel lo-

cations which encode expressions. Removing pixels at these locations is

shown to improve face recognition performance.

6. A proposed fully automatic face recognition system incorporating all of the

above findings with a empirically determined threshold allowing a 98.65%

accuracy at a False Acceptance Rate of 0.01.

Applications

Apart from the academic interest in understanding face recognition and devel-

oping robust algorithms there are many real-world applications of the technol-

ogy. The advantages of face recognition being used as a biometric over other

commonly used methods such as iris recognition or fingerprints are that it re-

quires significantly less cooperation and, in comparison to fingerprint biometrics,

no physical contact is required. The applications can broadly be categorised into

physical security, computer security, surveillance and the computer game indus-

try.

Physical security is perhaps the most obvious application. Within this cate-

gory, face recognition can be used to control access to buildings and access to

secure areas within buildings instead of using cards and combination codes which

can be forgotten or copied. Already in use in certain airports, passport verification

using face recognition is used at border control and extending this to 3D is likely

to bring additional robustness.

Instead of using passwords for computer access, face recognition can be

used. As mentioned earlier, Google are incorporating it into their Android smart-

phone operating system. It is useful when users cannot touch a keypad for ex-
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ample in industrial environments. Additionally it could serve as an extra level of

security at a document level such that a screen becomes obscured if an unau-

thenticated person appears in view of the monitor. 3D systems offer the advan-

tage of being harder to spoof – a 2D recognition system can often be fooled by a

photograph – but it is far harder to create an accurate 3D mask of an individual.

An attacker would be more likely find a simpler weakness to exploit.

It is harder to incorporate 3D face recognition into surveillance due to the fact

that some cooperation is required to capture a 3D scan. Theoretically though, a

long range NIR PS system could be used to capture the images and then used

to covertly monitor and flag persons on a watch list e.g. at football games during

entry to a stadium.

Computer games are already using face recognition in the form Microsoft’s

KinectTM 3D camera to recognise individual players. Another use more suited to

the high resolution PS 3D capture would be for incorporating an accurate 3D face

of a player into the game.

There is also interest from advertising companies for tailoring advertisements

to the demographic of a person e.g. a male teenager would likely be interested in

computer games and music, therefore display this kind of marketing material. If a

database of regular shoppers and shopping habits (from receipts) could be built

up, a far more accurate system could be capable of matching products and offers

to individuals. While such concepts challenge notions of privacy and data pro-

tection, they also challenge the common idea that marketing and advertising are

mere nuisances as they could become more of a service if they actually provided

accurate, relevant and useful information.

There are undoubtedly many more such applications, but these give an idea

of the diversity of applications and benefits of using 3D face recognition. The

work presented here lends itself well to biometric uses for security purposes. It

is probably best suited to commercial systems for verification and authentication

in SME sized companies with up to a few hundred employees for authentication
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purposes, or verification systems for granting access to restricted areas.

Thesis Outline

The literature review in the next chapter aims to provide the context of this work

from an historical as well as state-of-the-art point of view. 2D and 3D automated

methods are covered, followed by an overview of certain aspects of human pro-

cessing of faces and the visual system as a whole. Then a critique of the currently

available face databases follows in order to highlight the contributions of the ones

produced during this Ph.D., before methods of 3D acquisition are compared and

contrasted.

Chapter 3 assesses the accuracy of the Photoface PS capture device using

visible and NIR light sources by comparison with those captured using the com-

mercially available 3dMD system. It shows that using NIR light sources is slightly

more accurate than visible light, probably due to skin reflectance being more Lam-

bertian under NIR. The overall errors of the PS reconstructions are sufficiently low

and are judged to suitable for face recognition.

Once the suitability of the data has been demonstrated, Chapter 4 introduces

the two databases which have been developed and used for experiments in this

thesis together with baseline results using some common data representations

and algorithms. This allows us to select the raw surface normals as a suit-

able representation which offers very good recognition performance without the

need for the additional processing required for other representations. One of

the databases (the Photoface Database) is now publicly available to other re-

searchers on request.

Chapters 5 and 6 introduce direct methods of dimensionality reduction. The

experimental results show that the recognition rate is unaffected when the images

are resized to as little as 10×10 px which seems counter-intuitive but, interest-

ingly, is comparable to spatial frequencies favoured by humans in face recognition

7



studies. Chapter 6 implements a percentile based theory to find support for Un-

nikrishnan’s [182] hypothesis that the outlying percentiles contain more discrim-

inatory information than central percentiles. The basis for this work comes from

the fact that humans can recognise face caricatures as quickly or often faster than

veridical images. The percentile approach is extended to finding pixel locations

which vary the most and using these for recognition. It is shown that by only using

the 10% most varying pixels locations, and discarding the rest, that recognition

rates decrease by a disproportionate amount which is taken as indication of the

discriminatory power of this direct method. It may be possible to incorporate these

findings into a weighting system for different parts of the face make recognition

more robust to expression.

A likely shortcoming of the variance approach is that it will fail in the case of

data containing expressions. This is examined in Chapter 7 where it is shown

that the most varying pixel locations encode expression and that by removing

them, subject recognition rates can be improved. Although the data are limited,

the results also show that it is easiest to discriminate positive expressions from

neutral or negative expressions (with a 90% accuracy).

In attempting to define an operational system, the final experimental chap-

ter investigates two areas which are still absent. The databases used in this

research have all been manually labelled to allow accurate alignment. An auto-

mated system would be required to automatically extract the features and align

them. Inspired by the work of Viola and Jones [187] on using Haar-like features,

new features are investigated for use with surface normal components to locate

the lateral canthi (the outer corner of the eye where the upper and lower eyelids

meet) and nose tip. Additionally the threshold required for a verification rate of

98.65% with only one false positive in every 100 trials is determined empirically.

The concluding chapter brings the major findings of the work in this thesis

together and discusses their implications in terms of face recognition applications

as a whole as well as the limitations specific to this project and those pertaining
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to biometrics in general.
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Chapter 2

Literature Review

Face recognition is one of the most active research areas in machine vision.

After over 40 years of study into the problem, great progress has been made but

a universally accurate computer based system is still elusive. Unless affected

by prosopagnosia (also known as face blindness), humans are able to recognise

familiar faces effortlessly with great accuracy from a very early age [45]. Most

computer based systems are not based on any biologically plausible model of the

Human Visual System (HVS) – this is not a criticism as the processes involved

are poorly understood, but it is a possible reason for the disparity in performance.

There have been improvements in our understanding of the HVS in recent years

and it may be possible to adapt some of these in order to improve face recognition

rates.

It is not only of academic interest; accurate automated face recognition is also

of potentially great commercial value in security areas such as access to build-

ings, border control and surveillance. The vast majority of this research has used

2D data because until recently the use of 3D data for this task was prohibitively

expensive or of poor quality. However it is now both affordable and available in

the form of Photometric stereo (PS), and the use of 3D potentially overcomes

illumination and pose problems associated with 2D recognition.

The University of the West of England, Bristol has developed PhotoFace, a
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four source PS face capture device capable of generating 3D models of faces. It

is expected that by utilising the surface normals inherent to this methodology to-

gether with information known about the HVS and higher level processes involved

in recognition, that novel methods which aid recognition will be found.

This literature review will therefore review the history and current state of re-

search into 2D and 3D face recognition. An overview of 3D acquisition techniques

will then be given, showing that PS is a particularly valid technology for this pro-

cess. The key properties of the HVS and the higher level processes involved in

human face recognition will then be presented, with particular attention to those

that may lend themselves well to the problem but appear not to have been fully

explored in the literature.

2.1 Automatic Face Recognition

This section outlines some of the most successful approaches and directions of

research in both 2D and 3D automatic face recognition together with their limita-

tions.

2.1.1 Early Methods

The first research into computer based face recognition began in the 1960s in

which a simple system was developed by Bledsoe based on 20 manually ex-

tracted measurements of facial features from photographs [25]. A database of

these measurements was then used to return the closest matching records given

another set of (manually extracted) measurements of a person. The system

worked to a limited extent but recognition accuracy depended greatly on the pose

of the subject. To overcome this problem, Bledsoe normalized the photographs

by building up a 3D model of an average head in order to carry out accurate trans-

formations. Using a 3D model in a similar way has been used successfully to limit
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the affects of pose in recent research [24], [12], which will be discussed more fully

in Section 2.1.3.

The work of Kelly [105] helped Kanade [100] to produce the first automatic

face recognition system. The device extracted feature points using edge detection

and the geometric measurements of these features (16 parameters – 11 distance

ratios and a combination of angles and curvatures) for recognition. The system

correctly identified 15 out 20 people, marking the ‘... first success of machine

identification of human-face photographs’ [100].

A milestone in the history of facial recognition took place with the introduction

of eigenfaces [181] which was inspired by the earlier work of Sirovich and Kirby

[168]. Instead of treating the task as a geometric problem and measuring dis-

tances between fiducial features, Turk and Pentland represented the problem as

one of statistical variance motivated by information theory. The underlying the-

ory behind this concept is that, given sufficient images of faces, Principal Com-

ponents Analysis (PCA) is performed and the dimensions containing the major

variations between the images are extracted. If the images are then projected

into the new eigenspace composed of the eigenvectors with the most significant

eigenvalues, they ideally form clusters for each individual (alternatively the mean

face image for an individual can be used). If a probe image of an individual is

projected into the eigenspace, then it is possible to see which cluster it is nearest

to (e.g. by Nearest Neighbour classification), and for that image to be classified

as a particular person.

The eigenface approach means that once the images are normalized and

registered, fiducial points are not required for recognition. However it is very

sensitive to illumination and pose. Using a database of 2500 face images of 16

individuals, correct recognition rates of 64% to 100% were reported under various

conditions [181].

PCA is the most commonly used technique in face recognition literature from

its first application in eigenfaces [181] to its use in many more recent papers as a
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baseline performance measure [15], [28], [74], [37], [134], [155]. [103]. It has also

been generalized to Principle Geodesic Analysis (PGA) allowing shape analysis

for 3D data [170].

However, the method is not without its limitations. When new faces are needed

to be identified, they must be added to the initial training set and PCA run over the

entire set of images in order to generate a new face space. Illumination and pose

have a great effect on the images themselves and thus on the statistical results.

Variations in illumination have been found to correspond to the three eigenvectors

which have the largest eigenvalues. Disposing of these helps reduce the effect of

illumination [17], but as these contain the most variation, they also discard plenty

of information which may have been useful in face discrimination. Even if the

images are normalized to reduce the effects of scale and orientation, they intro-

duce artefacts of the scaling or transformation process e.g. scaling is the same

as changing a camera’s focal length not the camera’s position [180]. Having to

choose how many eigenvectors to use is another weakness – too many, and

there is the risk that there will be too much noise and that computation will be

more intense, too few, and the face space will be too small and faces of different

individuals will be too close together for discrimination. Using PCA for face recog-

nition also suffers from an own-race effect whereby it is better at discriminating

faces from other races [67], contrary to human face recognition which displays

the other race effect [124].

With the success of this milestone into using statistical methods, more recent

advances in 2D and 3D face recognition will now be discussed.

2.1.2 2D Face Recognition

The vast majority of research into face recognition has focused on 2D images.

This is due to the fact that 2D images (e.g. photographs) are more readily avail-

able and easier to obtain than 3D data of faces. Key research in this area is doc-
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umented here, together with some promising recent directions. The main focus

of this thesis is 3D face recognition, but it is important to understand the historical

importance of the research in terms of 3D developments and also the limitations

of using 2D information, some of which can be overcome using 3D data.

Continuing in the success of using statistical tools for face recognition and in

an attempt to overcome some of the shortcomings of using PCA, Belhumeur et

al. [17] developed what they termed Fisherfaces. This technique uses a derivative

of Linear Discriminants Analysis (LDA) called Fisher’s Linear Discriminant (FLD)

which although similar to PCA explicitly attempts to find the dimensions which

limit the intra-class scatter and maximise the inter-class scatter rather than find-

ing the dimensions along which most variation occurs. In this case the classes

correspond to different people and since the data set for face recognition is al-

ready labelled it makes sense to use it in order to reduce the problem space.

To test the efficacy of their approach two databases were used – one con-

structed by the Harvard Robotics Laboratory which contained images with well

constrained illumination variations and the publicly available Yale Face B database.

Under the most extreme illumination, the Fisherface technique performed at an

error rate of 4% compared to 42% for the eigenface technique and in those im-

ages with different facial expressions and illumination the error rate is as low as

0.6% compared to 19.5% for eigenfaces.

LDA is similar to PCA in that it transforms the data onto another coordinate

system to describe variance. The main difference comes from the fact that no

assumptions for the data are necessary for PCA (known as unsupervised), LDA

requires that the data be separated into classes (supervised). This is why it is

so attractive (and successful) when applied to face recognition, as the classes

correspond to different people.

A graph showing how the two methods treat the same data differently can be

seen in Figure 2.1 (reproduced from [17]) which plots the data onto the principal

dimension in PCA and LDA space. In the example given, it can be seen that LDA
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has separated the two classes more successfully than PCA.

Figure 2.1: A comparison of principal component analysis (PCA) and Fisher’s
linear discriminant (FLD) for a two class problem where data for each class lies
near a linear subspace. Reproduced from [17]. While both methods have reduced
the dimensionality of the data to one, the FLD projection clearly demonstrates a
linear separation between the two classes (in this case at the origin) while the
PCA has not.

There are many papers which compare the effectiveness of eigenfaces to

Fisherfaces e.g. [17, 127, 162], and although the assumption is that because it

deals with classes it should lead to better performance on face recognition tasks,

this has been shown to not always be the case i.e. with small training sets [127],

known as the small sample size problem.

The Fisherface technique provided error rates so low that one might think

that the problem of face recognition had effectively been solved. However, this

view was not confirmed by a comparison of eigenfaces, Fisherfaces and FaceIT

(a commercial system based on Local Feature Analysis) using data from three

publicly available databases was performed by Gross et al. [80]. The databases

contain far more variation in terms of illumination, pose (viewpoint), expression,

ageing and occlusion. They concluded that although recognition algorithms were

robust against illumination and to a certain extent expression (except for extremes

such as a scream), significant decreases in performance are caused by pose,
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ageing and occlusion. Throughout the tests, the FaceIt systems performs best,

followed by Fisherfaces and then eigenfaces. All techniques showed a marked

deterioration when the pose was greater than 32 ◦ from full frontal, when parts of

the face were occluded, and when images from the AR database were taken two

weeks apart. Interestingly they also report on a gender effect where better results

are consistently achieved by all algorithms for recognising women.

Another statistical tool which has been used for face recognition is Indepen-

dent Components Analysis (ICA). Bartlett et al. compared ICA against PCA as a

benchmark on a subset of the Facial Recognition Technology (FERET) database

and found it to be statistically better under certain conditions [15]. They used two

architectures for implementing ICA and boosted performance by using a com-

bined classifier recording a maximum recognition rate of 91% (compared with

85% using PCA). While PCA seeks to separate correlations in the data, ICA seeks

to recover statistically independent sources of variations via non-orthogonal trans-

forms (see Fig. 2.2). It has been used successfully in the cocktail party phe-

nomenon, whereby individual conversations can be separated out from the ambi-

ent noise. The two architectures used in [15] arise as the first treats images as

random variables and pixels as outcomes and the second treats pixels as the ran-

dom variables and images as outcomes. The architectures produce very different

outcomes – the first produces spatially localized images (i.e. mouth, eye, nose

regions) and the second produce non-localized images (more like eigenfaces),

and lead to better performance on identification and expression classification re-

spectively [57].

More detail and analysis of these statistical methods can be found in Sec-

tion 4.4. Now some commonly used non-statistical methods will be reviewed.

A Gabor filter is a sinusoid windowed with a Gaussian. As such, when con-

volved with fiducial features or the face as a whole they can provide a compressed

representation of the information in what is termed Gabor space. The HVS has

been shown to have primitive cortical regions sensitive to specific spatial fre-
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Figure 2.2: Example 2D data and co-ordinates found via PCA and ICA. The data
points (black spots) are best represented along non-orthogonal axes. Applying
PCA would have results similar to the plot on the left while ICA (right) would be
able to select non-orthogonal axes thereby representing the data more accurately.

quency and orientations [95] and that these can be modelled using 2D Gabor

functions [50]. Using Gabor filters could therefore be said to have a neurological

basis when used in face recognition to extract salient features from the image of

a face.

Manjunath et al. [126] discovered that the features highlighted by the Gabor

filters often corresponded to features such as the nose and eyes. The feature

vectors and spatial locations for each feature are used to build up a topological

graph for each face. The graphs are then used to carry out the recognition which

was reported to be with an accuracy of 86% for the correct person to be returned

and 94% for the person to be in the top three candidate matches on a database

of 300 images of 86 persons. Their approach to pose and illumination issues was

to capture images of people under as many conditions as possible.

An extension to using Gabor filters is to use Gabor jets which are a stack of

Gabor filters of differing orientations, frequencies and scales. They are used in

successful techniques pioneered in Dynamic Link Architecture (DLA) [110] and

Elastic Bunch Graph Matching [191]. The Gabor jets are applied to fiducial points

on a face such as the corners of the eyes and the mouth for three pose images

(full frontal, half-profile and profile) to create a Face Bunch Graph. A face can

then be compared to any other using a similarity metric that takes into account

the appearance and spatial configuration of the fiducial features. Performance

using data from the FERET database was 98% using full frontal images, and 57%
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for half-profile images. This novel technique demonstrated robust recognition for

pose up to a 22 ◦ angle and differences in facial expression. The success of such

algorithms is cited in Shen and Bai’s 2006 review of Gabor wavelets [163], in

which algorithms using Gabor wavelets came top in the FERET tests [148], and

held the top two positions in the Face Authentication Test 2004 [129].

A different approach is used by Cootes et al. in the development of Active

Shape Model (ASM) [42] and Active Appearance Model (AAM) [41]. The impetus

for this research was to be able to parameterise how the shape of objects can

change between examples and as such it has been found to be a robust metric

in face recognition research as well. Fiducial features are marked on images of

many examples of the object in question (in the case of [42] the objects were

resistors, hands and heart scans). The positions between these markers vary,

and these variations are analysed via PCA in order to provide information about

how the shape of a particular object can change between examples. Once these

variations are learned, it is possible to use the model in order to find examples

of the objects in previously unseen images. An AAM extends on this to include

the variation parameters of greyscale or texture information. Using this approach

in face recognition Edwards et al. [59] achived an accuracy rate of 88% on 200

images of 20 individuals.

AAMs have also been used to match and remove expressions from face im-

ages to create neutral expression images which are then used for recognition.

Lee and Kim [112] used 1280 face images of 80 subjects with four facial expres-

sions in the frontal pose under four moderate illuminations, and compared per-

formance of unprocessed images to those that had been transformed to a neu-

tral expression using Nearest Neighbour, Linear Discriminant Analysis + Near-

est Neighbour and Generalized Discriminant Analysis + Nearest Neighbour. The

highest recognition rate reported for images that had been transformed to neutral

expressions 96.7% compared to the highest for unprocessed images of 79.2%.

The idea that a neutral expression results in better recognition seems intuitive.
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However, research on the Face Recognition Grand Challenge (FRGC) questions

this and has found that better results occur when the subject smiles, at least when

a single face image is enrolled [21].

All of the above research has focused on using faces captured in visible light.

As has been shown in numerous studies, variations in ambient lighting produces

significant degradation in recognition performance [206]. Apart from those ap-

proaches above which aim to minimize this problem, using light outside of the

visible spectrum has also been researched. Thermal infrared (thermal IR) has

been used in facial recognition systems with some success especially as using

thermal IR is robust against ambient illumination, some disguises and is useful for

face detection and ensuring that a subject is alive. However, the affordability of

sensors, its inherent inability to cope with spectacles (glass is opaque to thermal

IR) [166] and its sensitivity to the changes in the thermal appearance of a face

e.g. after exercise or due to fever means that it currently does not offer a viable

solution on its own. However, there has been some success of combining the

benefits of thermal IR with visible light techniques [171].

Near Infrared (NIR) has the potential to overcome the problems associated

with visible and thermal IR face recognition: it is more robust against illumination

variations, is useful for face detection [56], sensing equipment is far cheaper and

it is not sensitive to changes in facial appearance caused by heat. NIR is useful

for face detection for two reasons: the bright eye effect [137] allows the eyes to

be localized and skin reflectance properties at just above and below 1.4 microns

allows face regions to be clearly highlighted [56]. This phenomenology also has

the potential to make a system more robust to disguise. At least three fully au-

tomated (face detection, feature extraction and recognition) NIR face recognition

systems are present in the literature ([211, 204, 120]) and all report high recogni-

tion rates 99.7%, 79.6%, 86.8% respectively (and even higher if manual interven-

tion is involved). The algorithms employed to perform the recognition itself vary

(e.g. Discrete Cosine Transform (DCT) with Support Vector Machine (SVM), Lo-
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cal Binary Patterns (LBP) and then adaboost classifiers, LDA with SVM) but the

high accuracy, especially with manual intervention, indicate how robust NIR is for

face recognition, although applications will be limited to controlled environments

(near an NIR source).

An emerging area in 2D face recognition research has been to use the the-

ory of sparse representation and compressed sensing [193]. Although at present

the research has been limited to full frontal face images, the results are impres-

sive, especially those concerning the resiliency against disguise and occlusion

whereby 100% recognition rate is recorded when the 30% of the face is occluded

and still achieving a rate of 65.3% when half of the face is occluded. On ex-

perimentation with natural occlusions e.g. sunglasses and scarves the rates are

somewhat lower but still far better than competing algorithms such as PCA. By

adding a simple partitioning algorithm, accuracy on the scarf occlusion which

covers about 40% of the face is raised to 93.5%.

This technique has some parallels with HVS processes although this is not

mentioned as a motivation. The visual cortex has been shown to be organised

in such a way so that visual perceptions are a result of sparse representation of

visual patterns [141]. What this means is that although a very large number of

neurons are fed the visual signal, very few respond to it, but those few that do are

sufficient for an accurate representation from which perception and recognition

can occur. In the same way, when a human sees a face, they don’t compare it to

every face they have seen before (as a computer would in a database), but based

on all the faces they have seen before, the brain is able to produce a response

which gives rise to recognition.

Chapter 6 introduces two methods of dimension reduction which could be

seen as a form of compressive sensing. They show that certain pixel locations

contain proportionately more discriminatory information. In finding these loca-

tions, the other pixels can either be discarded or ignored - a method of extracting

the important from the background information has been found, resulting in a
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relatively sparse representation from direct methods.

2.1.2.1 Limitations of 2D Approaches

The previous section, while certainly not exhaustive, demonstrates there have

been many successful developments in the field of 2D face recognition. However,

a lack of standardised measurements means that it is hard to compare the effi-

cacy of one study to another. Differently sized datasets, different levels of difficulty

of the datasets, different experimental methodologies (including statistical analy-

sis) all make it extremely difficult to compare performance of different approaches

accurately.

The US Government has been instrumental in attempting to set up stan-

dardised empirical testing environments for facial recognition applications and

methodologies for assessing performance. Starting with the FERET program

[148] which ran from 1993 to 1997 and provided a large set of face data (14,126

images from 1,199 subjects) and continuing to the FRGC and the Face Recog-

nition Vendor’s Test (FRVT) which last ran in 2006 [149]. Databases are publicly

available from these programs, the use of which are encouraged in current re-

search.

Regardless of the limitations contained in the research methodologies, the

problems which still present problems to 2D face recognition systems are:

• Illumination

• Pose

• Expression

• Occlusion

• Ageing

In the next section, 3D recognition approaches are reviewed. 3D inherently

allows pose correction and should be illumination invariant
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2.1.3 3D Face Recognition

A key advantage of using 3D data is that proper morphology analysis is possible

instead of what amounts to texture analysis from 2D data. Subsequently, a great

deal of research into 3D face recognition uses the surface curvatures or contours

to aid recognition. It is worth noting that although it is often stated that the use

of 3D models for recognition are robust against illumination, this assumption is

not entirely accurate. While the model itself will be illumination invariant, artefacts

can be introduced at the acquisition stage.

One of the first papers on 3D face recognition was by Lee and Milios [113] in

which convex features of the range imaged face e.g. cheeks, eyebrows, forehead,

chin, are segmented and represented by an Extended Gaussian Image (EGI).

The EGI represents surface normal information mapped onto a unit sphere. A

weight is associated with each point representing the total area of surfaces with

that vector. Recognition occurs by the use of a graph matching algorithm on cor-

relations between EGIs. An interesting aspect of this paper is that they suggest

that the convex regions of a face are less susceptible to changes caused by ex-

pressions. The results are promising, although a very small sample size is used.

Using the EGI for face recognition was pioneering and was extended by Tanaka

et al. [175].

Gordon investigated supplementing frontal views with profile views to extract

pseudo 3D features [75]. Using a simple feature weighting and correlation sys-

tem, it was found that adding profile information significantly increased recognition

performance and, if manual intervention was permitted on marking the features,

an accuracy of 98% was achieved. Gordon also investigated using depth and cur-

vature information for face recognition [76] of range images stating that ’curvature

descriptors: (1) have the potential for higher accuracy in describing surface-based

events, (2) are better suited to describe properties of the face in areas such as the

cheeks, forehead, and chin, and (3) are viewpoint invariant’. Range images were
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segmented by the sign of the Gaussian and the mean curvature to produce a set

of features from which additional descriptors were drawn. The vector of these

descriptors places a given face in the space of all possible faces – so a simple

cluster analysis is used for recognition. Using the optimal feature set, which was

determined experimentally, 100% recognition accuracy is reported for a relatively

small 24 cases.

Extracting feature sets composed of the curvature of the face at different seg-

ments is a common method of reducing the dimensionality of the data; its dis-

criminatory properties are still the focus of more recent papers e.g. [136], [116].

Colbry and Stockman introduce the 3DID system [37] which uses the Root

Mean Squared (RMS) error returned from using Iterative Closest Point (ICP)

matching to measure the difference between a probe head and each head in

a gallery. They discovered that there is a threshold that below which the RMS

error indicates that the faces belong to the same person, and above which they

belong to different persons. It also handles pose variations of 30 ◦ of yaw and 15 ◦

of roll and pitch. Initial anchor point detection is performed using shape index on

models captured by a laser scanner. Shape index defines the curvature of a sur-

face in terms of an index ranging from -1 to 1 where -1 is a spherical cup and +1

is a spherical cap and 0 is a saddle point. The paper supplements their own data

capture with data from the FRVT and compares performance of the proposed

algorithms with PCA as a baseline using presenting results in the same way as

the FRVT. However, they make the point that their approach only works well for

neutral expressions with frontal poses. The repeated use of the computationally

expensive ICP algorithm also limits the real world applicability of the system.

Bardsley et al. [12] overcome the computational inefficiencies of Colbry and

Stockman’s approach by registering the probe head against an average head

(instead of against every head in the gallery) using ICP and take the average

point-to-plane error as the recognition metric. They report an accuracy of 98.2%

on 58 subjects with relatively unconstrained poses and expressions. They also
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propose a novel correspondence measure when resolving stereo images – Gabor

wavelets, which they show to be valid by comparison with two other techniques

using the commercial 3DMD [3] capture system as ground truth. They suggest

that future work should look into using 3D Gabor wavelets as a recognition metric.

One method of tackling pose differences between gallery and probe images

in 2D recognition is to store images of the same head in a variety of poses ([22,

70]). An alternative is to use what is known as a 3D Morphable Model (3DMM)

[24] to generate synthesised views of the face from different viewpoints. Using a

generic 3D model of a head, it is possible to morph the model so that it produces

a close approximation to that represented by a 2D image. This may then be

rotated to generate novel images of that face; 2D images of which are used in

recognition i.e. rotate the head to a frontal position before comparing with other

faces in the database. This morphable model technique is used with ten face

recognition algorithms in the FRVT and it was found that it significantly improved

the performances of non-frontal views [152]. Additionally using a 3D model of a

head offers robustness against illumination variations as any illumination can be

simulated on the model.

The 3DMM can also be used for direct 3D comparison rather than 2D synthetic

image generation and subsequent recognition [24]. In the same way as discussed

in the previous paragraph, a generic 3D morphable head comprising of 100 3D

scans is used to generate an accurate 3D model of a head from one or more

2D images by iteratively comparing an image generated by the model to the 2D

image and gradually changing the model until it matches the image. After fitting

the model, coefficients describing the way in which the shape and texture of the

generic model was altered to match the probe face are stored. All gallery images

are also analysed in the same way and the coefficients stored. The probe face

model’s coefficients are then compared to the coefficients of those models in the

gallery – the nearest neighbour being the match. Very high recognition accuracy

was achieved on the FERET database averaging 95.9% across all pose variations
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up to an estimated 38.9 ◦ which demonstrates the robustness of this approach to

pose variations.

Bronstein et al. [28] have developed an expression invariant representation

of a 3D model called a canonical representation in which the 3D face captured

via photometric stereo is treated as a deformable object in Riemannian geom-

etry. The geodesic measurements are much less sensitive to expression than

Euclidean measurements and facial expressions can be modelled as isometries

(geodesic distances are preserved) of a neutral expression. An example of what

this means can be seen in Figure 2.3. The technique has (at least) two interesting

features: (1) no surface reconstruction of surface normals is required, the canon-

ical form can be generated directly from the surface metric (or surface normals)

and (2) they claim that the system can distinguish between twin brothers (the au-

thors). However, the performance of this method has not been tested against any

common dataset and the claim of being expression invariant is probably limited

to cases where the mouth is not ajar and where the elastic properties of the skin

are not shown.

Figure 2.3: Isometric representations are useful as they preserve geodesic dis-
tances. (a) shows isometric transformations of a hand and their equivalents in
Bronstein et al. ’s canonical form (b). Note the Euclidean distance between thumb
and forefinger is very different in (a) but identical in (b). reproduced from [28]

100% accuracy is reported for rank-1 matches of a probe face (with a variety of

expressions) to a gallery of 65 templates of 30 subjects with neutral expressions,

and the approach is shown to outperform classic surface matching (based on

high order moments rather than ICP for simplicity) and classical 2D eigenface

approaches [28].
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Another approach is to use the 3D data to generate a 2D depth map and apply

classical classification techniques. The motivation for this is that the depth infor-

mation will be illumination invariant and pose correction can be performed before

generation leading to more reliable data than the 2D texture information. In part of

their paper, Chang et al. [33] compare intensity versus depth 2D images using a

standard PCA algorithm and report better performance on the depth maps. Chen

et al. used three different classifiers to assess the viability of wavelet transforms

on depth maps and found a 5% performance increase over 2D images alone [34].

Pan et al. sought to limit the affect of pose variance by parameterizing the 3D face

into an isomorphic 2D circle and then remapping the depth map accordingly, so

that intrinsic geometric properties were kept [144]. Using the FRGC database,

they report rank-1 accuracy at 95%, 4% higher than a baseline PCA comparison.

An extension of purely 3D recognition methods is to combine both morpholog-

ical information from 3D with texture information from 2D. On the FRGC dataset,

Mian et al. [131] reported the best results using such a fusion technique together

with a hybrid (statistical and feature) classifier. Chang et al. [33] compare PCA

recognition levels on 2D, 3D depth maps and combined 2D and 3D depth maps

and report that 3D outperforms 2D data and again that combined data outper-

forms either 2D or 3D alone. Further support comes from Hüsken et al. [96] who

also performed matching experiments on FRGC data. An interesting finding of

this paper, that is in contradiction to Chang et al. , is that recognition on 2D data

outperforms 3D data. Their explanation for this anomaly is that their Hierarchical

Graph Matching based technique fully exploits the information in 2D, while other

approaches do not.

Similar to the analysis of 2D algorithms carried out by Gross et al. [80], Gökberk

et al. [73] implemented some popular shape-based representations of the pub-

licly available 3DRMA database: ICP-based point cloud representation, surface

normal-based representation, profile-based representation, and depth image. Sur-

face normals are shown to provide the best recognition results both in terms of
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direct surface normal comparison and via LDA, which they say ‘is valuable since

many of the previously proposed 3D face recognition systems make use of point

cloud features’.

Even though 3D face recognition has received far less attention than 2D face

recognition, there are a large and ever increasing number of approaches. Typ-

ical 2D methods are often applied to the problem e.g. PCA, LDA, Gabor filters,

and exclusively 3D approaches e.g. ICP, canonical forms, curvature, shape index

and depth maps offer new ways of approaching the problem. 3D data certainly

seems to offer the promised robustness to illumination, and certain methods pro-

vide additional robustness to expression and to pose. In almost all cases when

performance on 3D data is compared to performance on 2D data, performance

on 3D data is better. Ageing and occlusion are two areas which to date have

received little or no attention in the literature due to difficulties in capturing the

required data or defining useful occlusions.

2.1.3.1 Limitations of 3D Approaches

While similar problems concerning methodology highlighted with 2D recognition

research exist for 3D work, again the research submitted which uses the FRGCv2.0

has done a great deal to address this. Additionally while 3D can certainly help

solve problems with pose and illumination, it does little to solve the remaining

issues of expression, occlusion or ageing.

Another limitation is that because most 3D experiments rely on data from a

laser scanner, the individual is not in a natural environment. They will be in a

laboratory setting, sitting very still and will probably have been told to pose in a

certain way. Face recognition needs to be able to work in natural conditions as

this is where the commercial interest lies. As explained in Section 2.6, this is

one of the motivations of this thesis. Therefore, any method that increases the

practical and ecological validity of the research is very important. Along with this

and the cost of the scanners, what is needed is a fast, cheap and unobtrusive
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capture device in a suitable environmental so that the advantages of 3D can be

realised.

2.2 The Human Visual System and Face Recogni-

tion

James Reason famously described humans as “furious pattern matchers” [153]

and our visual system has evolved to exploit these patterns in everything we see.

A quick Google search reveals plenty of anecdotes in which people report seeing

faces in objects where they exist only by chance (e.g. clouds, toast, fruit and veg-

etables). This is known as pareidolia, and has been exploited by artists such as

Giuseppe Arcimboldo who constructed faces out of fruit and flower arrangements

in the 16th century. Humans are also able to identify that a drawing represents

a face given the most simple configuration of stimulus (e.g. an arrangement of

three blocks into the positions of the eyes and mouth surrounded by an oval) and

that this stimulus arrangement is preferential over an inverted version to newborn

babies [77]. It is clear that humans are gifted at face processing and over recent

decades evidence of brain regions that specifically process face type stimuli has

been found. Are there certain properties which we can tease out of the evidence

which can motivate and improve the performance of automated face recognition

systems?

The HVS starts with light entering the eye and being detected by light sensitive

cells (the rods and cones) in the retina. The output of these cells is collated by

retinal ganglion cells, which play an important part in encoding spatial frequency

of the stimulus. The signal is then propagated via the optic nerve to the striate

cortex of the occipital lobe which is located at the posterior of the brain. From
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here the signal moves through the extrastriate cortex and then is analysed by

various regions of the brain. It is believed that the processing of the signal goes

from simpler properties (e.g. colour, edges and orientation in the retina and stri-

ate cortex) through more complex properties (e.g. geometric shapes, motion and

attentional selection in the extrastriate cortex) before higher level functions such

as object recognition takes place in the temporal lobe. Broadly speaking there are

two paths; the dorsal path is concerned with ”where/how” type processing involv-

ing spatial locations and motion, and the ventral path is concerned with ”what”

type processing associated with object recognition.

Nobel prizewinning scientists Hubel and Wiesel [95] suggested that the stri-

ate cortex is organised in hypercolumns which fire preferentially when presented

stimuli at particular orientations and are a topographic representation of the retina

(i.e. areas which are close together in the retina are also close in the striate cor-

tex). Combining the functionality of the retinal ganglion cells and the hypercolumn

cells of the striate cortex leads to similar processing to a Fourier transform as the

input signals get converted into spatial frequency and orientation.

There is still much uncertainty about the exact roles and processes involved

in the HVS, even in the early stage processes up to and including the striate cor-

tex. Arguably, these are still far better understood than the regions which follow

in the extrastriate region. Nonetheless areas in the temporal lobe (more specifi-

cally Fusiform face area (FFA) in the fusiform gyrus) have been found to respond

to faces preferentially over other classes of objects e.g. houses and hands us-

ing functional Magnetic Resonance Imaging [102]. Further evidence comes from

neuropsychological studies in which patients show a separation in face and ob-

ject processing due to some neurological impairment. Moscovitch et al. presented

their findings on Patient CK whose object recognition was severely impaired, but

his face processing was intact [138]. Interestingly, he failed to recognise the con-

stituent vegetables in Arcimboldo’s paintings mentioned earlier but could see the

faces!
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Prosopagnosics demonstrate the opposite symptoms of Patient CK in that

they are unable to recognise faces but perform at a normal level in object recog-

nition for other classes. This is again more evidence of the special role that face

processing has been granted in our visual systems. In contrast to the normal

population, prosopagnosics do not exhibit the characteristic decrease in recog-

nition performance when faces are inverted and the explanation offered for this

is that they have come to rely on the non-face recognition system (i.e. to recog-

nise other objects such as buildings) which has been shown not to be affected by

these changes, but also does not process faces as well as the specifically tuned

FFA [61].

While many earlier automated recognition systems relied on measuring the

distance between fiducial features, evidence from human studies point to the fact

that statistical techniques which deal with the face as a whole may be a more

accurate model. Evidence that humans process faces holistically comes from the

fact that when presented with face parts in their usual positions or in a scrambled

order, the ability to identify a particular part is better when the faces are presented

with features in their usual positions [176]. Furthermore, when two familiar faces

are divided in half, and then combined so that the top and bottom halves are mis-

aligned, the ability of a subject to recognise the two individual improves over when

they are aligned [198]. This is interpreted as showing that when the composite

halves are aligned, the face is convincing enough to interfere with the recognition

process needed to identify the two individuals. Perhaps the most famous exper-

iment demonstrating holistic face processing in humans (as well as the special

processing that is invoked by an upright face) is the Thatcher illusion first pub-

lished in a refreshingly short paper [177]. The eyes and mouth of a familiar face

are inverted but when the face is presented inverted, it is not immediately obvious

to the viewer that anything is amiss. However when the face is then presented

the correct orientation, the effect is grotesque and the inverted features are obvi-

ous. The same features are present under both inverted and normal features, but
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whether or not the inverted features are immediately apparent or not depends on

the orientation of the face as a whole (Fig. 2.4).

Figure 2.4: The original image demonstrating the Thatcher Illusion with interac-
tive labelling included (reproduced from [177]). Both images look similar when
presented upside down (Figure 1.), but it becomes grotesquely obvious that the
eyes and mouth have been inverted when the face is upright (Figure 2.).

Caricaturing is another somewhat unexpected feature of the HVS. Tradition-

ally, caricaturing is the process of exaggerating features that deviate from a norm

for the purposes of cartooning an individual. Many examples can be found on a

daily basis in any broadsheet paper where politicians are satirically lampooned.

Often these types of politically motivated caricatures allude to non-physical char-

acteristics of the individual as well as the purely physical. In terms of research into

caricaturing, the purer physical renderings are used. The earliest research into

the curious property of caricaturing on human face recognition was performed by

Rhodes et al. [154] in which faces were both caricatured and anti-caricatured by

using an automatic caricature generator. A line drawing of an individual is repre-

sented by 37 lines (made up of 169 points). The difference between these and

a norm are then extended or reduced to render a caricature or anti-caricature.

Rhodes et al. reported that caricatures were recognised faster than veridical line
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drawings which in turn were recognised more quickly than anti-caricatures.

This finding has been repeated many times since ([128, 114]) in photographs

[18] and video [66]. Caricaturing has also been extended into 3D [52, 143]. While

caricaturing improves face recognition in humans there has been little reported

investigation into its effects in automated systems. Zou et al. [212] suggest using

3D caricaturing on a morphable model to improve recognition on 2D photographs

although no empirical results are reported. Wang et al. [188] develop a system for

matching artistic sketches to photographs by converting photographs to sketches

computationally. Nejati & Sim [139] show that caricaturing a photograph of a face

leads to best recognition rate for a given probe sketch (although the recognition

rate is only 28% at best).

An inherent difficulty with applying caricaturing in the traditional sense is that

a good caricature is created by a talented artist. Different artists will create car-

icatures which vary wildly from one another depending on the artists own style.

Attempts at automating this have met with varying success from Brennan’s pi-

oneering 2D line caricature system which generated reasonably human-like car-

toons to Deffenbacher et al. ’s grotesque appearing 3D models (this description is

not meant to belittle their work – the generated 3D models were very impressive

but the caricature effect tended to age and distort the individual in unconvinc-

ing ways). Another approach relies on image statistics rather than the features

themselves. Sirovich and Kirby [168] refer to caricatures in their seminal paper

which directly inspired the more familiar eigenfaces work by Turk and Pentland

[181]. They define one of the initial steps of PCA, the subtraction of the pop-

ulation mean from the individual images to leave the residual differences as a

caricature, and state that:

It seems reasonable to assume that an efficient procedure for rec-

ognizing and storing pictures concentrates on departures from the

mean.

32



Unnikrishnan [182] defines a different statistical method of caricaturing for the

purposes of recognition and introduces the idea of using just the most outlying

data. He presents the problem in terms of only using features which differentiate

an individual from the norm. More specifically using only the 10% of data which

deviates from the norm specified by the 5th and 95th percentile values, but offers

no empirical evidence for his hypothesis. He clearly illustrates his ideas by exam-

ple and then applies the interpretation to existing research. Chapter 6 adapts his

ideas to the use on surface normals with encouraging results.

Sinha et al. [167] present a compelling overview of face recognition in humans,

summarising the idiosyncrasies (such as caricaturing effects, inverted faces, con-

trast polarity inversion) in a way which is hoped is of use to computer vision re-

searchers. Amongst the 19 findings reported, they highlight one which is intu-

itively at odds with automated face recognition. It has been reported that humans

are good at recognising faces at low resolutions, even to as low as 7×10 pixels. If

this finding can be generalised to automated face recognition, then it represents

a direct way to reduce the dimensionality of the face so potentially increasing

computational efficiency and reducing hardware costs. Most work into resolution

effects in face recognition concern themselves with increasing the resolution of

low quality images e.g. from CCTV video capture (either by hallucinating addi-

tional pixels from individual images or by extracting data from multiple frames).

It should be stressed that low quality does not exclusively mean low resolution,

compression artefacts are often present as well. In terms of the affects of reduc-

ing resolution on automated systems there has been little comparative work in 2D

(isolated results can be found in [31]) and only one study in 3D [33]. Intuitively

in computational pattern recognition, it seems odd to bluntly remove data that

could aid in discrimination, but human studies reveal that low frequency data has

a different role in face recognition to high frequency data [159, 43], and that high

frequency images (drawings) are insufficient on their own for accurate recognition
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[51]. It has been suggested that this represents two modes of sequential face

processing, a more general face localization and early recognition process using

the low frequencies followed by use of the higher frequencies for more detailed

analysis. Recently, fMRI data has confirmed that the frequencies are processed

temporally from coarse-to-fine frequencies [72]. Parker and Costen [145] provide

an interesting critique of findings before running their own experiments in which

they conclude that middle frequencies provide the best information to humans

with performance declining as the frequency bands are moved lower or higher.

There is some conflict across the experimental findings but this is likely due

to the different stimuli used and what is recorded rather than a real effect. An

interesting study comparing the different processing associated with different fre-

quencies shows that high and low frequencies may play different roles in face pro-

cessing. Schyns and Oliva [158] showed that different frequencies code different

properties of a face by superimposing a high frequency angry male face over a

low frequency female face. There was no frequency bias for gender selection,

but asked to judge the expressiveness of the face, the high frequency face dom-

inated, but when asked what the particular expression was, the low frequency

face dominated. There is sufficient evidence to suggest that lower frequencies

play an important role in human face recognition and that this could provide an

effective means of data reduction as reducing resolution effectively smooths the

image, removing higher frequencies. This is examined in detail in Chapter 5.

Perhaps the best known model in the psychology literature of human face pro-

cessing is by Bruce and Young [30]. Although the model has been adapted since

it first appeared it defines two stages: the first is recognition which is a sequential

process involving perceptual (visual) input which is compared with stored faces

via face recognition units which in turn trigger semantic processing (e.g. what

sort of job they do) and person identity nodes to recall information about the

person and then finally (if sufficient activation has been achieved) the name re-

trieval stage. The second stage which proceeds independently of recognition,
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is the extraction of other information from the face e.g. expression. While this

model and its revisions have firm groundings on experimental evidence and pro-

vide a testable framework for cognitive psychologists, they provide little concrete

specification for a computational implementation. For example, how faces are

compared in the first stage (using Face Recognition Units) is not specified. It is

therefore very difficult, if not impossible, to incorporate what this model tells us

about human vision into an automated system.

Another aspect which is seemingly impossible to incorporate into an auto-

mated system involves the distinction between familiar and unfamiliar face pro-

cessing. We tend to think of ourselves as being very capable of recognising

faces, even if friends have aged, grown beards, are wearing glasses or are dis-

guised in fancy dress, we can still usually recognise their face easily. Although

our ability to process unknown faces in terms of gender, expression, age etc. at

a glance is remarkable, our ability to recognise unfamiliar faces is surprisingly

poor (at least under experimental conditions). One such situation where a person

must rely on their memory of an unfamiliar face is in an identity parade. Bruce et

al. [29] presented subjects with a probe face image together with a gallery of ten

possible matches. The subject had to select the match for the probe (or say that

it was not present). Error rates were around 30% when the probe was absent

from the gallery in half the trials and 20% when the probe was always present.

Given that the probe and gallery images were presented together and were taken

in similar lighting and poses, this represents a large weakness in the human face

recognition process for unfamiliar faces. While the distinction between familiar

and unfamiliar faces is irrelevant for a computer (unless we can actually model

what it means to be a familiar face), caution should be taken when considering

the HVS to be the perfect model to base an automatic face recognition system

on, although incorporating certain aspects can be beneficial as we will see in the

next section.
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2.3 Bio-inspired Face Recognition/Vision Systems

The HVS is an extremely complex system but research highlighted above has

allowed researchers to model the various aspects and apply them successfully

to a range of computer vision tasks. This section describes some of the most

relevant research in this area.

Perhaps the most influential finding comes from modelling the early stages

of the visual process. Combining the functionality of the striate cortex hyper-

columns with the retinal ganglion cells which encode spatial frequency, Daugman

[50] realised that their responses could accurately be mimicked by a bank of Ga-

bor filters. The power of using such features for face recognition has already been

discussed in Section 2.1.2 and they are still an active area of research with recent

extensions into 3D [194].

As stated previously, Gabor filters represent a sinusoid windowed by a Gaus-

sian function and performing a convolution over an image with banks of filters can

be computationally intensive. A far simpler alternative exists – a bank of Haar-like

features. The Haar wavelet is a square wave with no Gaussian function. By using

a set of four such Haar-like features, Viola and Jones [187] were able to develop a

system to rapidly detect faces in an image by using the integral image represen-

tation and by boosting the simple features in order to form a cascade of feature

detectors. The learned cascade of Haar-like features are tuned to respond to

regions of the image which have combinations of frequencies and orientations to

provide a similar outcome to a Gabor filter bank. This is achieved by moving the

features across the integral image at a range of resolutions (thus mimicking the

spatial resolution) and due to the horizontal, vertical and diagonal patterns of the

features, a range of orientations, albeit limited, are represented.

Another paper which models the early stages of the visual system is [53] which

used facial texture and colour codes modelled on retinal, lateral geniculate nu-
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cleus and striate cortex and reported state-of-the-art improvements.

Convolutional neural networks have been used for object recognition [160]

and very successfully in digit recognition [111] and also for face verification [35].

Loosely interpreting the simple and complex cells in the striate cortex [94], the

convolutional network consists of alternating sub-sampling and convolutional lay-

ers which gives the system some robustness to scale, orientation and noise. Us-

ing back-propagation the most useful features are extracted from the input image

before being fed into a more conventional feed-forward classifier network.

Inevitably, perhaps the best known approach to face recognition, eigenfaces,

has also been compared with the mechanisms behind human face recognition.

However, although correlations were found to exist between human distinctive-

ness ratings and PCA eigenvalues, it seems an unlikely model [84, 83] and Dai-

ley et al. suggest that a Multi-Dimensional Scaling (MDS) model is more accurate

[47].

Burton et al. [32] use PCA as a pre-process to an implementation of a face

recognition model evolved from Bruce and Young’s work [30]. While the imple-

mentation is unrealistic in certain respects (e.g. in terms of how semantic infor-

mation about the faces is set up) the results are promising, and it represents an

interesting attempt at making cognitive models into concrete implementations.

Mimicking the HVS is an active topic of research. A recent paper [44] modelled

the striate cortex using two previously developed models to classify the Labelled

Faces in the Wild database [93] and report state-of-the-art recognition perfor-

mance.

Improving our knowledge of understanding how the human brain processes

3D shape information is still the focus of cutting edge research as demonstrated

by the recent grant awarded to Yale University [189] with an aim of providing

models for computer vision and graphics as well as strategies for rehabilitation

of patients with visual deficits. The research will cover processing of the striate,

extrastriate and temporal regions of the brain – areas that we have seen to be
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important to face processing.

This highlights an important reason for research in human/biologically moti-

vated approaches. Apart from the hope of improving existing algorithms a com-

puter vision scientist may also be able to feedback knowledge of the results of

implementations to the psychological and biological scientists.

To date there has been little work in applying what is understood about HVS

to 3D models, and to this author’s knowledge, none on surface normal represen-

tations.

This is by no means an exhaustive treatment of face recognition research

but demonstrates the wealth of approaches and highlights the areas which are

of importance for this thesis. 3D data is preferable to 2D, surface normals are

a good representation of such data for face recognition and the HVS appears to

offer some useful features and processes that might be beneficial to an automated

system.

There now follows a review on publicly available databases which are used for

testing algorithms and providing a means for comparison.

2.4 Databases

The purpose of a database of faces is to assess how accurate a recognition algo-

rithm is and therefore it logically makes sense to make it as realistic as possible

in terms of the eventual deployment environment of a system.

Face recognition researchers have been collecting databases of face images

for several decades now [119, Chapter 13]. While some databases can be re-

garded as superior to others, each of them are designed to test different aspects

of recognition and have their own strengths and weaknesses. One of the largest

databases available is the FERET database [150]. This has a total of 1199 sub-

jects with up to 20 poses, two expressions and two light source directions. The

FERET database was originally acquired using a 35mm camera. Others concen-
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trate more on varying the capture conditions such as pose and illumination con-

trast e.g. the widely used CMU PIE database [165] or the Harvard RL database

[82]. Another popular database collected for the purpose of face verification under

well-controlled conditions is the XM2VTS database [130].

The PIE database is one of the most extensively researched. This is due to

the fact that the faces are captured under highly controlled conditions involving 13

cameras and 21 light sources. The Yale B database [70] offers similar advantages

to the PIE databases except with an even larger number of lighting conditions (64)

using nine poses. However, the Yale B database includes just ten subjects. The

original Yale database [17] was designed to consider facial expressions, with six

types being imaged for 15 subjects. Finally, the extended Yale B database was

published which contains 28 subjects with 9 different poses and 64 illumination

conditions [115].

Even though the PIE [165], Yale [70] and extended Yale [115] databases pro-

vide facial samples taken under different illumination directions they contain very

few subjects. More recently, the CMU Multi-PIE database [79] has been con-

structed with the aim of extending the image sets to include a larger number of

subjects (337) and to capture faces taken in four different recording sessions.

This database was recorded under controlled laboratory conditions, as with the

others mentioned above. In contrast another trend in face recognition is totally

unconstrained face matching and a database for this task called Labelled Faces

in the Wild has been recently collected [93].

The recent trend in face recognition research has been to incorporate three-

dimensional information into the recognition process has naturally led to the col-

lection of databases with 3D facial samples. This was the motivation for the

FRGC2.0 database [147], which consists of a multi-partition 2D and 3D database

including a validation set of 4007 scans of 466 subjects. A Minolta Vivid 900/910

series laser range finder was used for data capture.

Up until this project, no large scale PS database was publicly available. Al-

39



though the Multi-PIE allows 3D reconstruction via PS, the images are captured

under very controlled conditions. The Photoface database (generated for this

thesis) is captured in a realistic workplace with no supervision and also provides

detailed metadata for each captured session. More information on this database

is provided in Section 4.1 In order to collect the images for a database, a suitable

capture device must be used. The next section provides details on face 2D and

3D capture technologies used in face recognition.

2.5 2D and 3D Capture Techniques

This section outlines the most common methods for capturing 2D and 3D faces.

Different approaches have associated advantages and disadvantages which are

discussed below.

2.5.1 Light Sources

2.5.1.1 Visible Light

The most common way of capturing an image of a face is via visible light which

lies in the 0.4-0.7 micron wavelength region of the electromagnetic spectrum.

Although the cost of cameras sensitive to this bandwidth is low (and falling) there

are numerous issues with using visible light; the main one that is repeatedly raised

being illumination variations. Use of visible light is also susceptible to disguise

e.g. make-up or prosthetics (which will have been made to be as inconspicuous

as possible under normal lighting).

Visible light is most commonly used in 2D recognition experiments i.e. pho-

tographs but is also used for PS, stereo and structured light reconstructions of 3D

faces.
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2.5.1.2 Thermal and Near Infrared (NIR)

Infrared light has a wavelength of between 700nm and 1mm, and is commonly

divided up into bands. Thermal infrared corresponds to the mid-wave infrared

MWIR and long-wave infrared LWIR bands (approximately 3-5 microns and 8-14

microns respectively). The human body and face emits radiation in both of these

bands, although LWIR is more commonly used for face recognition as a great

deal of MWIR is absorbed by the atmosphere. Thermal radiation has the poten-

tial benefit for use in face recognition in that it is entirely illumination independent

i.e. the body emits the radiation rather than reflects it. This means that it can be

used just as successfully in brightly lit and dark environments. It can also detect

the presence of prosthetics e.g. a false nose, as the thermal signature for the face

will be altered significantly. Amongst its drawbacks however are that the sensors

are extremely expensive, glasses are opaque to thermal IR and variations in am-

bient or body temperature significantly alter the thermal signature [107] i.e. from

exercise or fever.

The near range of infrared light is often termed the reflected IR band as it

contains no information about that thermal properties of materials and comprises

the NIR and short-wave infrared (SWIR) wavelengths (approx 0.7-1 micron and

1-2.4 microns respectively). Most face recognition experiments use the NIR band

as its proximity to the visual spectrum means that it is likely to behave in a similar

manner on skin, and that silicon sensors that are sensitive to NIR are widely

available and reasonably priced. It also has the benefit of being more robust to

ambient illumination variations than visible light and the NIR lighting source is

largely covert to a human observer.

As mentioned in Section 2.1.2, NIR has useful properties for face detection

(the bright eye effect [137]) and skin reflectance to NIR rapidly diminishes at 1.4

microns [56]. NIR based face recognition has been shown to be a valid approach

by means of three fully automated systems ([211, 204, 120]). It does however
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suffer from the same pose limitations as to visible light when used for 2D recog-

nition, but its use in 3D recognition has not been researched. Chapter 3 looks at

this further by using NIR light sources for PS.

2.5.2 Existing 3D Capture Techniques

2.5.2.1 3D Laser Scanners

The most common method of 3D acquisition are laser scanners. While these sys-

tems are commonly considerably more expensive than the other systems men-

tioned in this section, this is the capture format used in the FRGCv2.0 database.

Using a Minolta Vivid 900/910 Series sensor [1], one 3D image consisting of a

range and a texture image is captured for each session. The acquisition itself is

via laser stripe and triangulation. Three pieces of information allow the corners

of the triangle to be fully determined, and the depth calculated: the distance be-

tween the laser projector and sensor, the angle at which the laser is shone and

the position of the laser in the camera’s field of view. The benefit of laser scans

is that they offer extremely high accuracy; the disadvantage of using them is that

range data is typically captured in about 2.5 seconds [26] and the texture image

is captured after the range data. This means that discrepancies due to movement

are common. There can also be considerable artefacts present (e.g. caused by

specularities) in the reconstructions which present as spikes and holes on the

surface, so before any recognition can be attempted, these must be removed via

some form of preprocessing.

2.5.2.2 Stereo

Perhaps the most well known method of 3D capture is to use two images of an

object or scene taken from slightly different viewpoints. By analysing the disparity

between the objects in the two pictures, the relative depth can be calculated.

Stereograms, which enjoyed immense popularity in Victorian times, presented
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images taken in this way to each eye – the brain then performed the necessary

computations to allow the scene to be seen in 3D. Calculating the disparity is not

so straightforward for a computer. The correspondence problem is well known

in the machine vision literature and refers to the difficulty in locating matching

points in the two images. To simplify this, commercial systems commonly project

a known pattern onto the objects during capture to allow easier point matching.

Indeed, the second most commonly used method for 3D face capture is via

such a method, known as a projected pattern stereo device. An example of a

system that employs this method is the 3dMD device [3]. The advantages of

such systems are high accuracy (reported as <0.2mm) and fast acquisition times

(1.5ms) which freeze motion. However, the processing time is approximately 90s

to reconstruct a face on a modern desktop computer. This type of system is

also expensive, requires a time consuming calibration procedure, and omits fine

details such as wrinkles and pores as well as struggling with hair.

2.5.2.3 Structured Light

A third way to capture 3D information uses the deformations in a projected pat-

tern to estimate the surface shape. This is known as structured light (or light

coding) capture, and typically horizontal lines are projected onto an object. It

has famously been used recently in Microsoft’s Kinect accessory which uses a

projection of NIR dots instead of stripes to allow real time 3D capture, albeit at

a relatively low resolution of 640×480 pixels with a depth resolution of only “a

few centimetres” [164]. A higher resolution device using projected stripes was re-

cently developed by a European Project (3D Face [2]) for use in automated border

control. It captures a 3D model and a 2D texture image in 0.2s at an impressive

depth resolution of 0.1mm and point spacing of 0.5mm and can also be used for

video capture at 20 frames per second [190]. While the Kinect is low-cost (around

GBP100), the captured depth map is too noisy for face recognition. Unless some-

one is moving very fast, the device used by the 3D Face project, provides very
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good accuracy but although not stated in the project details, is likely to be very

expensive.

2.5.2.4 Time of Flight

Time of flight systems operate by measuring or inferring the distance that a beam

of reflected light has travelled. Two approaches can be adopted: intensity modu-

lation or optical shutter, with the former being the most common. The interested

reader can find more information on the approaches in [106]. They have the ben-

efit of being fast with little processing power required so are well suited to real

time applications. They are also generally robust to environmental illumination

changes as they project their own light source (often in NIR). However they are

costly, and to date have a low spatial resolution (e.g. current time-of-flight cam-

eras have a maximum of 64 × 48 to 204 px [106]) and depth resolution is only

sub-centimetre at optimal ranges. Additionally the data that is captured tends to

be noisy.

2.5.2.5 Shape from Shading (Photoclinometry)

Shape-from-Shading (SFS) uses shading from an individual image in order to es-

timate the surface orientation and was first researched by Horn for his Ph.D thesis

[90]. It is a popular area of research due to its obvious applications and capture

simplicity – the goal is to recreate an accurate 3D model from a 2D photograph

and so removes the need for expensive and/or complex capture devices. An in-

herent difficulty in using a single image is that it is extremely difficult to separate

the gradient from colour or texture information, therefore there will always be an

ambiguity present as to whether an intensity gradient is due to a slope or some

colour, pattern change or shadowing.

The Bas-Relief ambiguity as described by Belhumeur [16] also poses a prob-

lem. Examples of bas-relief can be found in many stone wall carvings and the
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technique is used for representing heads on coins. It is a means of tricking the

eye into seeing a 3D representation from a far flatter relief by representing the

lower levels of relief as being more extreme than they are to heighten the shad-

ing. They produce the appearance of an accurate 3D model when viewed from

the correct angle, but the true (flatter) representation becomes clear as the view-

ing angle moves. Presented with a bas-relief viewed from the correct angle, a

SFS algorithm will likely construct a 3D model similar to that which a human per-

ceives rather than the veridical, flattened relief.

Another motivation for believing that SFS can provide accurate 3D models

from photographs is that the HVS must incorporate some sort of mechanism for

interpreting 2D shading in terms of 3D shape. This is not to say that humans em-

ploy similar algorithm to computation SFS e.g. they neither require the assump-

tion that the object has Lambertian reflectance nor need to know the direction of

a light source [132], but it is evidence that useful 3D models can be created from

2D images. The likelihood that humans employ some sort of SFS type processing

is supported by the unresolvable ambiguity of a concave surface lit from above or

a convex surface lit from below – either way, we still perceive a tangible 3D object

from shading. The fact that make-up is used to trick human perception of faces is

additional evidence of SFS’s importance.

With particular reference to face processing, shading information is also used

as shown by the almost complete disruption to recognition when contrast polarity

is reversed i.e. recognising a face in a negative is extremely hard [68, 98]. The

reason for this is not entirely clear unless the shading information is viewed as

being extremely important. All of the fiducial features are in their proper places,

the ratios between them maintained, the spatial frequencies are preserved but the

shading information has been completely reversed. We are still able to recognise

the object as a face correctly, but the ability to identify the face is decreased. This

does not occur with other types of objects [173] lending support to the theory that

humans perform SFS-like processing when recognising faces.
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SFS could be said to be the holy grail of 3D capture – the ability to reconstruct

accurate and high resolution 3D models from affordable and off-the-shelf cam-

eras. However, due to the problems with ambiguities, its accuracy and reliability

still have some way to go. The use of a single image means the problem is under-

constrained without simplifying assumptions i.e. there is not enough information

in a single image.

2.5.2.6 Photometric Stereo (PS)

PS is an enhanced SFS method which aims to resolve the ambiguities associated

with the traditional SFS approach which uses one image to estimate 3D shape

by separating the 3D morphology from the 2D texture. It constructs a 3D form

from three or more images of the same object each lit from a different and known

direction and estimating surface normals at each pixel coordinate [192]. A thor-

ough mathematical description of PS is given in Section 3.1 but a schematic can

be seen in Fig. 2.5.

Figure 2.5: An example three-light PS system (from [169]).

Integration by a method such as Frankot and Chellappa method [64] across

the resultant surface normals can then be used to reconstruct the surface.

Georghiades extended PS beyond Lambertian surfaces to incorporate the

Torrance and Sparrow model of reflectance [179] and created very accurate re-
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constructions [69]. However, a large number of images were required for the

reconstruction which significantly increases the surface computation and image

acquisition times. Sun et al. [174] use five lights to handle shadows and spec-

ularities on non-Lambertian surfaces and show that a minimum of six lights are

required in order fully realise any convex surface using photometric stereo. Using

20 images of a face, Ghosh et al. [71] build up a very detailed model of the skin’s

reflectance taking into account specular reflection and single, shallow and deep

scattering. However, the images are captured over “a few seconds” which makes

this approach unsuitable for practical applications. Also, their method would add

a large amount of complexity for relatively little gain as skin follows Lambert’s Law

reasonably well, as the results of this chapter demonstrate.

Of the vast amount of research into automatic face recognition during the last

two decades [205], relatively little work has involved PS. Kee et al. [104] investi-

gate the use of 3-source PS under dark room conditions. They were able to deter-

mine the optimal light source arrangement and demonstrate a working recognition

system. Zhou, Chellappa and Jacobs apply rank, integrability and symmetry con-

straints to adapt PS to face-specific applications [208]. Zhou et al. extended a PS

approach to unknown light sources [207]. Georghiades, Belhumeur and Krieg-

man show how reconstructions from PS can be used to form a generative model

to synthesise images under novel pose and illumination [70].

Comparing point clouds, shape index, depth maps, profiles and surface nor-

mals in terms of face recognition performance, Gökberk et al. [73] concluded that

surface normals provide the best features for face recognition. It is surprising

therefore, that so few applications to date utilise PS, which inherently generates

surface normals. The reason for this is likely to be that the availability and afford-

ability of cameras with high enough frame rates and sensitivity for PS have only

reached the market in recent years. Such cameras are necessary in commercial

and industrial applications to effectively freeze the motion of the person if they are

moving by capturing several images in a short burst.
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The novel PS databases produced as part of this Ph.D. are therefore particu-

larly useful to the research community as they are the first large scale collections

of faces captured using PS. Uniquely, they facilitate face recognition research in

a number of different modalities: 3D faces, surface normal representations, 2D

faces using albedo images and 2D faces from different illuminations (four illumi-

nations are used for each session to estimate the surface normals). The reasons

for no substantial PS face database existing prior to this Ph.D. are likely due a lack

of awareness of PS relative to other more commonly used 3D capture techniques

combined with the necessary hardware only becoming affordable in recent years.

PS offers similar advantages to the standard SFS approach of high resolution

and potentially fast capture using an off the shelf camera and overcomes the

ambiguities associated with determining shading from texture and bas-reliefs. It

is affordable and the fact that surface normals are an inherent product lends itself

well for use in face recognition as some authors have found them to be the best

data representation [73] in comparison with other commonly used formats. In the

next chapter the accuracy of the captured 3D face models by PS is determined

empirically in order to assess their suitability for practical face recognition.

2.5.3 Comparison of Capture Techniques

Table 2.1 shows a qualitative comparison of the different capture techniques. It

should be stressed that the ratings are those of the author and are not the result

of empirical work.

2.6 Thesis Context

This concludes the literature review which has provided an overview of important

research in the face recognition literature for 2D and 3D data, some of the better

understood aspects of the HVS which may be incorporated into an automated
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system and technologies used in the capture of 2D and 3D faces. As a result of

this literature review certain areas suggest promising avenues of research which

will form the basis of the contributions of this thesis. These are summarised below

given in the context of the literature which motivates them.

• Section 2.1.3 states that Gökberk et al. [73] have found that surface normals

provide the best representation for face recognition. Surface normals are an

inherent product of photometric stereo. Therefore there is a need to test that

the Photoface device is accurate enough and that surface normals captured

in this way are suitable for face recognition (Gökberk et al. generated theirs

by differentiating a surface). These are two of the aims of Chapter 3.

• Section 2.5.1.2 discussed some of the uses for NIR which has also been

used in a variety of other biometric applications (iris and vein recognition),

but to date it has not been used for photometric stereo face capture. Chap-

ter 3 also explores this and suggests that the improved Lambertian re-

flectance of skin under NIR is a result of increased sub-surface scattering.

• Section 2.2 covered research showing that humans are excellent at recog-

nising familiar faces and can do so from an early age. Humans have spe-

cific brain regions which are specialised for processing faces. Therefore the

question arises whether incorporating aspects of the HVS into automatic

face recognition can yield improvements. Two areas which would appear

to lend themselves well to being incorporated are low resolution/low spatial

frequency capture and caricaturing which may allow us to capture only the

most important information of a face. Both provide a direct means of dimen-

sionality reduction which means reduced computation and storage needs,

and thus reduced cost. Unnikrishnan [182] has suggested a method of car-

icaturing which may be adapted to use on surface normal data. Chapters 5

and 6 explore these aspects and show that the face can be resized to as little

as 10×10 px without seeing an decrease in recognition performance, and
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that outlying pixels selected according to Unnikrishnan’s hypothesis contain

disproportionately high levels of discriminatory information.

• As stated in the limitations of 3D recognition (Section 2.1.3.1), along with

occlusion and ageing, expression remains one of the problems affecting

3D recognition. The problem of expression is investigated through the use

of novel photometric stereo database (3DE-VISIR) and Chapter 7 shows

Happy expressions can be distinguished from other types accurately and

goes on to use the variance and resolution findings of previous chapters to

show that the most expression variant pixels can be removed to improve the

recognition robustness.

• There currently exists no commercially available PS automated face recog-

nition system in the world. The above findings represent a significant con-

tribution to a fully developed system but Chapter 8 identifies that automatic

alignment and thresholding for validation are two areas required in a com-

plete system. One of the most successful methods of face detection is the

rapid cascade of boosted features developed by Viola and Jones [187] as

discussed in Section 2.3. The features for this are 2D, so in Chapter 8 a

proposed extension of these Haar-like features is developed specifically for

surface normal feature detection to allow automatic alignment. Additionally

a threshold is determined using the Photoface database, allowing recogni-

tion performance of 98.65% accuracy at a False Acceptance Rate of 0.01.

In this way the two identified deficiencies of the system are addressed.
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Chapter 3

The Accuracy and Suitability of

Photometric Stereo for Face

Recognition

As stated in the literature review of the previous chapter, surface normals repre-

sent a good (if not the best according to [73]) representation for face recognition.

This chapter introduces the Photoface device which was developed prior to the

commencement of this Ph.D. and was funded by an EPSRC grant (EP/E028659/1)

in collaboration with Imperial College London, the Home Office Scientific Devel-

opment Branch and General Dynamics Ltd.. The project delivered Photoface,

a four-source photometric stereo capture system, specifically designed for face

capture. This Ph.D. uses data captured by the device and the purpose of this

chapter is to assess its capture accuracy as well as to see if NIR light sources

offer any significant benefit to the original rig. For clarity, it is should be stated

that it is only the hardware that is not a part of this Ph.D.. Much of this chapter

has been published in the Computer Vision and Image Understanding journal [85]

which also contains additional research into optimising which light sources should

be used to mitigate shadowing.

This chapter makes significant contributions to 3D face capture and process-
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ing by presenting a novel PS hardware device and a detailed set of experiments

to assess the accuracy and practicality of the device. Additionally it is shown for

the first time that faces can be accurately reconstructed using NIR light. This of-

fers several benefits to existing methods including exploiting skin phenomenology,

creating a more covert capture system and making the system less intrusive. Ex-

tensive experimental results of these proposed advances are presented, including

an analysis of skin reflectance qualities under NIR and visible light in terms of the

Lambertian assumption.

In summary, the contributions of this chapter are threefold:

1. The introduction to and explanation of 3D data capture hardware suitable

for practical face recognition environments.

2. Detailed experiments to test the accuracy of the device on a variety of faces

under visible and NIR light sources in terms of ground truth reconstructions

and the Lambertian assumption.

3. Detailed experiments to assess the validity of the Lambertian assumption

and a test to determine any possible improvements that may be possible

using the Oren-Nayar reflectance model [142].

A thorough description of PS is given next followed by the method section

which details the operation of the Photoface device. The results section follows

which provides examples and accuracy measurements of the basic reconstruc-

tions followed by a more in-depth analysis of the reflectance properties of skin

under visible and NIR light. The chapter then concludes that the device produces

data that are suitable for face recognition and that NIR used as a light source is

more accurate than visible light.
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3.1 Photometric Stereo

A key assumption of PS is that the surface reflectance obeys Lambert’s Law: that

light is reflected by a surface equally in every direction. While skin is not perfectly

Lambertian, it is a close enough approximation as will be shown in due course.

We can state that:

E = ρL cos θ (3.1)

where E is the emittance (reflected power per unit area) from the surface, ρ the

albedo (ratio of reflected to incident irradiance at normal incidence), L is the irra-

diance (incident power per unit area) and θ is the angle between the light source

vector and the surface normal. For a surface z = f(x, y), the surface normal, n,

can be written:

n =

[
∂z

∂x
,
∂z

∂y
,−1

]T
= [p, q,−1]T (3.2)

If the light source vector is denoted ns = [ps, qs,−1]T , then we can write

n.ns = pps + qqs + 1 =
√
p2 + q2 + 1

√
p2s + q2s + 1 cosθ (3.3)

Substituting Eqn. 3.1 and Eqn. 3.3 gives:

E = ρL
pps + qqs + 1√

p2 + q2 + 1
√
p2s + q2s + 1

(3.4)

Which is often represented in Computer Vision as:

I = ρ
pps + qqs + 1

√
p2 + q2 + 1

√
p2s + q2s + 1

2 (3.5)

where I is the measured pixel intensity. Here, a linear camera response is as-

sumed and the incident light irradiance and camera response constant have been

‘absorbed’ into the albedo. For an 8-bit image, this means that both ρ and I fall
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into the interval [0,255]. Typically, it is assumed that the light source vector ns is

known, meaning that from a single pixel measurement, I, we have one equation

with three unknowns (i.e. p, q and ρ).

Usually, PS represents Lambert’s Law as a vector equation so that:

I = ρs.N = ρ



sx

sy

sz




T 

Nx

Ny

Nz


 (3.6)

Where N is the unit surface normal (as opposed to n which is the surface deriva-

tives representation). A three source PS can then be written in a matrix equation:



s1x s

1
y s

1
z

s2x s
2
y s

2
z

s3x s
3
y s

3
z




−1 

I1

I2

I3


 = ρ



Nx

Ny

Nz


 =



mx

my

mz


 (3.7)

Performing substitutions in the above equations for the three unknowns in Eqn. 3.5

results in the following solutions:

p = −mx

mz

, q = −my

mz

, ρ =
√
m2

x +m2
y +m2

z (3.8)

The intensity values and light source positions are known, and from these the

albedo and surface normal components can be calculated by solving Eqn. (3.8).

The resultant dense field of surface normals can then integrated to form height

maps using the well-known Frankot and Chellappa method [64].

Figure 3.1 shows four raw images of an individual captured by the Photoface

device (described in Section 3.2.1) operating with the visible light sources. The

person was slowly (≈1m/s) but casually walking through the device. Each image

has pixel dimensions of 500×400 and there are typically just a few pixel lengths

misalignment between the first and last images. The face detection method of

Lienhart and Maydt [121] is used to extract the face from the background of the

image.
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a b

Figure 3.1: Examples of photometric stereo inputs and output. (a) Four raw dif-
ferently illuminated images. (b) Reconstructions using standard PS.

The four intensity images are processed using a MATLAB R© implementation

of a standard PS method [63, §5.4]. In our case of using four light sources in-

stead of three, the system is overdetermined (i.e. there are more equations than

unknowns). Our implementation uses the method of least squares to provide an

approximate solution. For the system Ax = b, the least squares approximation is

given by x = (ATA)−1AT b.

For accurate reconstructions from PS, the following are assumed:

1. The object’s surface reflection is Lambertian. This means that light hitting a

point on the surface will be scattered equally in every direction. In reality a

human face is not a Lambertian surface but is close enough under normal

conditions to be a good approximation.

2. Light sources and viewing point are distant from the object. If this is not true

then the incidence and reflectance angles from the same light source at two

distant points on the surface will not be the same. The further the sources

and camera are from the object the smaller these differences become.

3. The light source is a collimated point source. Collimated light has rays which

are almost parallel meaning that the light disperses minimally with distance.

This combined with a point source means that the direction of the light hitting

the object can be specified very accurately. In reality there will be some

divergence of the rays, but the truer this assumption is in practice, the better
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the results.

4. There are no cast shadows nor inter-reflections.

The first assumption is an important one and increasing how Lambertian a

surface is will lead to better surface normal estimation. It is possible that using

NIR instead of visible light would increase how Lambertian the skin is, as more is

likely to be absorbed and the scatter made more diffuse. Grease or sweat on the

skin will decrease how Lambertian the reflectance of the face is and increase the

likeliness of specularities (highlights) appearing on the captured images. Along

with these, cast shadows (e.g. from the nose) are potential problems with using

PS for 3D face capture. There are many pieces of research which aim to mitigate

these problems e.g. [172, 13, 170, 88, 39, 104, 70] but for the purposes of this

research a “pure” PS approach is adopted as cast shadows are minimal and skin

is unlikely to be sweaty in the environment the data was obtained.

The acquisition of multiple images of the same object under different lighting

conditions can be done in one of two ways: temporal or spectral multiplexing.

Temporal multiplexing captures the images in a timed sequence, as the different

light sources are switched on and off. Obviously if the duration between images

is too large and the image is not static then the reconstruction will not be accurate

as the images will be significantly different. One method to overcome this is to

use different frequencies of light at the point sources and capture these at the

same time either by splitting the light via a prism onto sensors with different sen-

sitivities, or by using specific band filters in front of the sensors. For the purposes

of this research the former is used, as the total capture time is ≈15ms, the mo-

tion is effectively frozen so it offers the same functionality as spectral multiplexing

without the additional complexities. The specifics of the actual device used can

be found in Section 3.2.1.

The majority of past work on PS has been conducted using visible illumina-

tion. Studies into the optical properties of skin have shown it to be increasingly
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reflective in the NIR light band up to wavelengths of about 1.1µm [9]. This sug-

gests that NIR, which is more covert and less intrusive, is a viable alternative to

visible light. Furthermore, NIR can be used as a replacement for visible light be-

cause its proximity to the visual spectrum means that it is likely to behave in a

similar manner on skin. It might be expected that some fine surface detail would

be lost due to sub-surface scattering as reported by Zivanov et al. [210], but this

is unlikely to affect overall face shape estimation. In addition to this work, infrared

light has been used previously in 2D face recognition to control for ambient illumi-

nation [118, 107] and to aid eye detection algorithms using the “bright eye” effect

[137]. NIR has also been used for biometrics outside of face recognition. It is fre-

quently used for iris recognition as it has the benefit over visible light of recovering

the details of darkly pigmented iris’ [49]. Also, because it penetrates skin more

than visible light and it is readily absorbed by dexoxygenated haemoglobin, it can

be used to enhance vascular structures which can then be used as a biometric

e.g. recognition via vein pattern in hands and fingers [133].

3.2 Methods and Data

This section first outlines the overall PS image acquisition hardware, before mov-

ing on to describe the reconstruction process. The differences between the use

of visible and NIR light sources are also discussed.

3.2.1 Hardware

This section details the acquisition device hardware. Although not a novel con-

tribution of the thesis, it is worthwhile to describe the hardware in some detail as

it was used to capture the data used throughout. The device, shown in Fig. 3.2,

is designed for practical 3D face geometry capture and recognition. The pres-

ence of an individual is detected by an ultrasound proximity sensor placed before
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Figure 3.2: The Photoface photometric stereo capture device. Enlarged areas
from top to bottom: NIR light source, a visible light source and an ultrasound
trigger. The camera can be seen on the back panel above the monitor display.

the archway. This can be seen in Fig. 3.2 on the horizontal beam towards the

left-hand side of the photograph. The sensor triggers a sequence of high speed

synchronised frame grabbing and light source switching.

The aim is then to capture five images at a high frame rate: one control im-

age with only ambient illumination and four images illuminated by the main light

sources in sequence. Either one image per visible light is captured, or one image

per NIR source. Note that the ambient lighting is uncontrolled (for the experiments

presented in this thesis, overhead fluorescent lights are present). The four visible
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light sources are low-cost Jessops M100 flashguns (colour temperature 5600K),

while the NIR lights are stripped down X-vision VIS080IR lensed 7-LED clusters,

which emit light at ≈850nm. The light sources are located approximately 75cm

from the head of the subject at evenly spaced angles. The camera is 2m away

from the head.

It was found experimentally that for people walking through the device, a mini-

mum frame rate of approximately 150fps was necessary to avoid significant move-

ment between frames. The device currently operates at 200fps, and it should be

noted that it is only operating for the period required to capture the five images.

That is, the device is left idle until it is triggered. A monitor is included on the back

panel to show the reconstructed face or to display other information.

For visible light, the following sequence of events takes place to capture the

five images as an individual passes through the device.

1. Await signal from ultrasound sensor.

2. Send trigger to camera.

3. Await integration enabled signal from camera.

4. Discharge first flashgun.

5. Await end of integration enabled signal.

6. Repeat from step 2 for the remaining light sources.

7. Capture control image with ambient lighting only.

All interfacing code is written in NI LabVIEWTM. The ultrasonic sensor is a

highly directional Baumer proximity switch. When its beam is broken within a

distance of 70cm, it transmits a signal to an NI PCI-7811 DIO card fitted to a

computer. When this signal is received, a trigger is sent to the camera. This is a

Basler 504kc camera with a 55mm, f5.6 Sigma lens. As with many silicon-based
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CCD sensors, the Basler chip is responsive to both visible and NIR irradiance.

The trigger is transmitted to the camera from a frame grabber via Camera Link R©.

The frame grabber is an NI PCIe-1429, which communicates with the DIO card

via a RTSI bus for triggering purposes.

To ensure that the signal has reached the camera, and that the camera has

commenced frame capture (i.e. is integrating), a second connection from the cam-

era to the DIO card as added. This connection is TTL-high while the camera is

integrating. When the computer receives this signal, the first light source is to

be immediately illuminated. A flashgun is discharged by making a short circuit

between its input pins. This is achieved here by sending a short pulse from the

DIO card to the input pins via a phototransistor opto-isolator IC. This electrically

isolates the sensitive DIO card from the high voltages of the flashgun terminals.

Finally, the DIO card awaits the falling edge of the camera integration enabled

signal before moving on to the next light source.

For NIR light, a slightly different procedure is adopted whereby synchronous

TTL signals are sent to the camera and LEDs. This is because the LEDs can be

illuminated for the duration of the camera exposure, while the flashguns only last

for a small fraction of the exposure. The NIR LEDs are powered independently

from the DIO card and interfaced via a simple transistor circuit. As the LEDs are

illuminated for only 5ms, it is possible to overpower them, in order to increase

their brightness without causing damage. Therefore, 20V is applied across the

LEDs, compared to the recommended 12V.

3.2.2 Visible and NIR Comparison

One possibly negative aspect of the visible light set-up is that the firing of flash-

guns is obvious to the subject and possibly intrusive to any surrounding people.

Another possible advantage of NIR is that there may be additional subcutaneous

or vascular structures present in the raw images taken under NIR light which may
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be used to aid recognition. Unfortunately, such features were not visible in the

wavelength band considered in this paper, but this could be an area to study in

future work. NIR light is also more covert for a face recognition environment and

subjects are less inclined to “pose” for the camera, meaning that more neutral

expressions are likely. Finally, it is worth noting the advantage that many CMOS

camera sensors are inherently more sensitive to NIR light.

There is also no colour information captured under the NIR arrangement, in

contrast to the visible light set-up. However this is of no consequence to these

experiments, as PS relates to monochromatic pixel intensities. If a hybrid system

were to be developed for recognition purposes, which combined texture informa-

tion with PS information, then using the visible lights sources may be necessary.

One disadvantage of NIR illumination is the relative difficulty in obtaining the

necessary brightness for the required short exposure times. While the flashguns

were easily bright enough with an exposure time of 1ms, an exposure of 5ms

was needed for the NIR LEDs (i.e. the maximum possible exposure for the given

frame rate). Although this was adequate for these experiments, the LED lenses

employed provided a narrow divergence angle, meaning that the face had to be

more precisely positioned to obtain full illumination. For the visible light sources,

the images were bright enough even for large diversion angles, removing the

need for accurate positioning of apparatus and allowing subjects to pass through

the archway without having to consider their exact location with respect to the

camera.

To account for ambient illumination, the control image is subtracted from the

other four images. These images are then normalised in terms of intensity before

reconstruction takes place. This was done by linearly scaling the greylevels of

each image so that the mean intensity was equal for each image. A detailed

comparison of the resulting reconstructions is presented in Section 3.3.
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3.3 Results

3.3.1 Basic Reconstructions

Figure 3.3 shows a series of reconstructions from the method described in Sec-

tion 3.2 using visible light. The device was placed at the entrance to a workplace

to ensure casual (and thus realistic) usage. The general 3D structures of the

faces have clearly been well estimated. Note, however, that the spectacles of

one of the subjects have been “blended” into the face. This is a combined conse-

quence of the rim of the spectacles being highly specular and the surface being

non-integrable for this region of the image [64]. Although, ideally the shape of the

spectacles would be estimated accurately, the blending effect can potentially be

beneficial to face recognition algorithms because it means that such details have

a lesser impact on the overall reconstruction. A set of images and reconstructions

using both visible and NIR light sources can be seen in Fig. 3.4. It is clear that

NIR is also capable of providing good estimates of the 3D geometry of the face.

The accuracy of the face reconstructions against ground truth data are now

compared. To do this, eight different faces were scanned using a commercial

3dMD projected pattern range finder [3]. The 3dMD models were rescaled so

that the distance between tear ducts was the same as in the visible PS recon-

struction. All reconstructions are then cropped to 160×200px regions centred

on the nose tip that encompass the eyebrows and mouth. Part of the forehead is

omitted by this choice of cropping region as it is frequently occluded by hair and is

therefore deemed unreliable for face recognition. An example of the face regions

used for comparison can be seen in Fig. 3.5, which also shows a ground truth

reconstruction acquired using a 3dMD scanner [3]. The face regions from visible

and NIR light sources are then aligned to ground truth using the ICP algorithm

[19]1.
1MATLAB R©implementation by Ajmal Saeed Mian (ajmal@csse.uwa.edu.au), Computer Sci-

ence, The University of Western Australia.
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Figure 3.3: Estimated geometry of three different subjects using visible light
sources.
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Figure 3.4: Example raw images and reconstructions using visible (top) and NIR
light sources for four subjects. For these experiments only, the subjects were
asked to rest their chin on a support in order to ensure that all subjects are com-
pared to each other in fair conditions. Note that hair is well recovered (other
methods e.g. 3dMD tend to reconstruct hair poorly).
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Figure 3.5: 3D Reconstructions for one subject from a 3dMD scanner (left) which
is used as ground truth, PS using visible light sources (middle), and PS using NIR
sources (right).

Individual RMS errors on surfaces and `2-norm errors on surface normals be-

tween the reconstructions and ground truth are displayed in Fig. 3.6. The eight

subjects consist of 6 males and 2 females and a mixture of Caucasian and Asian

ethnicities. The variations in residual errors and `2-norm distances between visi-

ble and NIR reconstructions are significant according to paired t-tests (p = 0.05).

This demonstrates that PS using NIR as a light source is a perfectly valid ap-

proach and leads to more accurate reconstructions.
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Figure 3.6: RMS (left) and `2-norm (right) errors between Ground Truth (GT) and
visible PS and NIR PS for each subject. NB the order of subjects is arbitrary,
i.e. there is no significance to the pattern that can be inferred from the `2-norm
errors figure.
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In order to get an indication of the regions where the greatest differences occur

between ground truth and PS reconstructions, the residuals and `2-norm errors at

each pixel are plotted in Fig. 3.7. Typically, the largest variations occur in regions

with the highest curvatures, such as eye sockets, nose tips and the sides of the

nose.

Figure 3.7: Representative examples of the residuals and the `2-norm errors at
each pixel. Left to right: residuals for visible and NIR respectively, `2-norm er-
rors for visible and NIR respectively. Lighter areas represent larger errors. The
largest RMS errors appear around the nose which is near a discontinuity which
the integration algorithm cannot cope with well. The `2-norm errors are highest
around non-Lambertian surfaces such as eyes and lips and the shadowed area
under the nose.

In attempting to produce the most accurate reconstructions possible via PS, it

was found that the estimated surface normals could be enhanced by using nor-

mals acquired by re-differentiating the reconstructed height map estimate. It is

unclear as to why this should be the case but preliminary analysis indicates that

the reason may be due to the imposition of integrability constraints and the fitting

of limited basis functions in the Fourier domain [64], as required by the adopted

integration method. These factors may cause errant normals to be “smoothed
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out” leading to a more accurate reconstruction. However, if this method of im-

proving reconstructions is used, a second integration step would be needed thus

removing one of the benefits of PS for face recognition: that the surface normals

(and hence distinctive differential surface features) are recovered directly. More

research is required into this area in order to confirm that the improvements are

down to integrability constraints and if so, whether these constraints can be en-

forced without resorting to a full integration method such as that of Frankot and

Chellappa. Using the Fisherface algorithm it was found the more accurate re-

constructions produced using this method did not lead to any improvement in

recognition accuracy, presumably because the effects were so small.

3.3.2 Reflectance Analysis

A reason for better reconstructions using NIR is that skin reflection is more Lam-

bertian than under visible light. To confirm this, graphs of I/ρ against θ, the angle

between the light source and the normal vector, have been plotted. For a purely

Lambertian surface, the relationship between the two should follow a cosine law.

The results can be seen in Fig. 3.8. To generate the graph, values of I, ρ and θ

were estimated for each pixel of each image for each of eight faces. The angle θ

is calculated for each point of the face from the 3dMD scan data and the known

light source vectors. The average values of I/ρ are used for each 1◦ increment in

θ. The line at θ = 60◦ indicates a reasonable cut-off point after which data points

become too sparse to be significant. The RMS difference between the measured

curves and the cosine curve in the range of 0 ≤ θ ≤ 60 is 0.04 (s.d. 0.11) for NIR

light and 0.06 (s.d. 0.12) for visible. For completeness, the RMS difference across

the whole curve is 0.11 (s.d. =0.13) for NIR light and 0.17 (s.d. =0.12) for visible.

The figure demonstrates that skin under NIR light is marginally more Lambertian

than under visible light. It should be noted that the standard deviation across the

whole range of θ remains approximately the same.

68



0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ

I
/
ρ

 

 

σ

Visible
NIR
Lambertian
Oren−Nayar

Figure 3.8: Plot showing that skin reflectance under NIR is more Lambertian.
Mean I/ρ values averaged over 8 subjects against θ (the orientation of the skin
at a pixel). To the right of the vertical line at θ = 60◦, data were too sparse to
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visible and NIR light sources). The Oren-Nayer plot is provided as an alternative
reflection model to Lambert’s Law and is discussed further in Section 3.3.3.

69



0
20

40
60

80
0

0.
2

0.
4

0.
6

0.
81

θ

I/ρ

0
20

40
60

80
0

0.
2

0.
4

0.
6

0.
81

θ

I/ρ
0

20
40

60
80

0

0.
2

0.
4

0.
6

0.
81

θ

I/ρ

0
20

40
60

80
0

0.
2

0.
4

0.
6

0.
81

θ
I/ρ

Fi
gu

re
3.

9:
R

efl
ec

ta
nc

e
of

sk
in

fro
m

in
di

vi
du

al
lig

ht
so

ur
ce

s.
I
/ρ

va
lu

es
fro

m
in

di
vi

du
al

lig
ht

so
ur

ce
s

pl
ot

te
d

ag
ai

ns
tθ

fo
r

th
e

fir
st

tw
o

re
co

ns
tr

uc
tio

ns
sh

ow
n

in
Fi

g.
3.

4.
Th

e
to

p
ro

w
sh

ow
s

re
su

lts
fo

rS
ub

je
ct

1
un

de
rv

is
ib

le
(le

ft)
an

d
N

IR
(r

ig
ht

)l
ig

ht
so

ur
ce

s,
an

d
th

e
bo

tto
m

ro
w

sh
ow

s
re

su
lts

fo
r

S
ub

je
ct

2
un

de
r

vi
si

bl
e

(le
ft)

an
d

N
IR

(r
ig

ht
).

Th
e

lig
ht

so
ur

ce
s

ar
e

la
be

lle
d

cl
oc

kw
is

e
fro

m
th

e
bo

tto
m

-le
ft

in
Fi

g.
3.

2.

70



Although the data suffers from significant noise levels (as indicated by a stan-

dard deviation exceeding 10% of the range for both conditions), the NIR condi-

tion has a lower RMS error and is therefore closer to the Lambertian curve than

for visible light. This difference is significant given the large numbers of pixels

and subjects used in the trials. This represents an average pixel intensity error

of 10 grey levels for NIR and 15 for visible light across the image, assuming a

maximum of 256 grey level intensities. This supports the hypothesis that skin is

more Lambertian under NIR illumination. This result is likely related to the fact

that NIR light penetrates the skin further than visible light [65], which facilitates

a more uniform scattering than surface reflection. Note however, that neither the

Lambertian model nor the Oren-Nayar model (see below) take account of inter-

nal scattering or Fresnel effects. The results in Section 3.3.1 demonstrate that the

more Lambertian behaviour associated with NIR light also leads to more accurate

reconstructions.

A more detailed analysis for two subjects is shown in Fig. 3.9 and Table 3.1.

What can be noted immediately is the similarity across the plots. There are small

differences in I/ρ caused by different light sources but this appears to have little

negative impact on the reconstructions and is likely to be due to environmental

effects. The figure suggests that PS using both visible and NIR is robust to dif-

ferent skin types and light intensities. A more thorough analysis of the effects of

gender and race on reflectance properties could be the subject of future work.

Visible NIR
RMS, θ ≤ 60◦ RMS, overall RMS, θ ≤ 60◦ RMS, overall

All Faces 0.06, (σ = 0.11) 0.16 (σ = 0.12) 0.04 (σ = 0.12) 0.11 (σ = 0.13)
Subject 1 0.07, (σ = 0.09) 0.16 (σ = 0.18) 0.05 (σ = 0.12) 0.10 (σ = 0.22)
Subject 2 0.07, (σ = 0.10) 0.17 (σ = 0.18) 0.04 (σ = 0.13) 0.12 (σ = 0.21)

Table 3.1: The results show consistency across different subjects and different
types of light source. The RMS collective error across all eight reconstructions
and for the first two reconstructions shown in Fig. 3.4 separately. The standard
deviations are shown in brackets.
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3.3.3 Comparison to the Oren-Nayar Model

A comparison is given of the recorded reflection measurements to the Oren-Nayar

reflectance model [142], as shown in Fig. 3.8. The Oren-Nayar model represents

the reflecting surface as an array of V-shaped groves of random orientation, com-

monly called “microfacets”. The distribution of microfacet orientations is charac-

terised by a roughness parameter and each facet is assumed to act as perfect

Lambertian reflector. This model is able to account for the common feature of

limb-brightening and is itself based on the earlier Torrance-Sparrow model [179]

where each microfacet is assumed to be mirror-like.

The Oren-Nayar model was chosen as a comparator, as skin is not a smooth

surface (especially on older people) and the model has been shown previously to

be successful on a range of materials of varying degrees of roughness [142]. It

is not the case that the microscopic structure of skin closely matches the Oren-

Nayar model, but it is used here for demonstrating how alternate methods for

reflection may improve the framework in future work. Investigating the various de-

grees of freedom of the Bidirectional Reflectance Distribution Functions (BRDFs)

is also reserved for future work. Furthermore, there are additional models for skin

reflectance which take account of a huge range of physical phenomena [55, 117],

but these are out of the scope of this thesis.

The Oren-Nayar curve in Fig. 3.8 represents an example intensity profile for

reference with a roughness parameter of 0.2. This value for this parameter was

chosen, not because of any research suggesting that it would model the subjects’

skin most accurately, but because the generated curve is similar to the observed

data and offers an alternative to Lambert’s law. Clearly, this model fits the mea-

sured reflectance data significantly more accurately than the Lambertian curve,

suggesting that the model could be incorporated into the method in the future.

This will however, add significant complexity and computation time to the algo-

rithm. This is because a minimisation method must be implemented in order to
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recover all the model parameters and to accommodate the increased number of

angular degrees of freedom in the model.

3.4 Discussion

Photoface is capable of good quality reconstructions with reasonably small errors

compared with ground truth. Ground truth in these experiments was a 3D cap-

ture using the commercial 3dMD system which reproduces large scale geometry

excellently, but is not capable of reproducing the fine details of the face. Some of

errors may therefore not actually be present but occur when the finer details which

have been captured by PS are compared to the 3dMD capture where they are not

present. It is not an ideal ground truth but it does allow a consistent approach to

quantifying the accuracy of the reconstructions. Using visible light sources results

in a 15 pixel RMS error and using NIR gave a slightly better 10 pixel RMS error

and it is suggested that this could be attributable to greater sub-surface scattering

of the higher penetrating NIR light.

The results presented in Section 3.3.1 demonstrate that PS is an effective

method for producing 3D facial reconstructions in terms of quality. This method

also requires a relatively short computation time. Using the device with stan-

dard PS, LabVIEWTM interfacing, non-optimised MATLAB R©processing and a typ-

ical modern PC, the time between device trigger and the reconstructed height

map was approximately eight seconds. The construction of the hardware also

lends itself well to relatively unobtrusive data capture with a minimum amount of

effort from the subject. Of particular interest are the following points:

1. The PS technique offers a valid alternative to existing, more expensive and

processor intensive, 3D face capture methods.

2. The PS technique is robust to common facial features such as spectacles,

makeup and facial hair (see also [10]).
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3. NIR light sources produce reconstructions that are more accurate than visi-

ble light sources.

In terms of assessing the suitability of the Photoface device, the system offers

several benefits over commonly used existing laser triangulation and projected

pattern 3D shape capture devices:

1. It is significantly cheaper to construct.

2. Acquisition time is shorter than laser triangulation systems.

3. Data processing time is shorter than projected pattern systems.

4. The method is robust to typical ambient illumination conditions.

5. It is very robust against accidental collisions (because it is tolerant to errors

in the light source vectors).

6. Very fine details of the face can be reconstructed.

7. Calibration is very quick and simple and only needs to be performed after

the initial light source positioning.

8. Although the Photoface system cannot reconstruct hair with high levels

of accuracy, it can at least provide some details of its overall shape (see

Fig. 3.3, for example). In contrast, laser triangulation and projected pattern

systems usually fail completely with hair.

At present, the 3D reconstructions are not yet as accurate as those from pro-

jected pattern range finders. The reconstructions tend to be flatter than their real-

world counterparts, with most protrusions understated. They do however provide

extremely fine detail of a face such as wrinkles and pores. Even though the re-

constructions suffer from a flattening of the features, they would still appear to be
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viable for recognition purposes (each reconstruction is clearly of a distinct iden-

tity) and the additional fine details could potentially be used as supplementary

information to aid recognition.

The reconstructions under NIR were shown to be more accurate than those

under visible light, but provided no additional 2D texture information. They also

diminish the need for flashing lights, making the system less intrusive compared

to visible light.

Zivanov et al. [210] offer an alternative argument to ours, stating that shorter

wavelength light gives better results. Their justification is that shorter wavelengths

undergo less internal scattering and thus provide a crisper, more defined recon-

struction. It would appear therefore that a compromise must be reached in decid-

ing between fine detail (using Zivanov’s short wavelength suggestion) and overall

geometry and covertness (using the NIR method). If fine surface textures such

as wrinkles and pores are of interest, then using shorter wavelength light would

be most beneficial. However, for a covert system where fine details are of less

importance than general shape, then NIR offers the best solution.

It is clear that the face reconstructions are of different individuals just from the

naked eye and the low pixel inaccuracies are a good indication of the suitability

of this device for face recognition. Subsequent chapters provide further evidence

that Photoface is good for recognition and not just reconstruction. In order to be

confident of any recognition results there needs to be a suitably large dataset.

In the next chapter the publicly availably Photoface database is introduced to-

gether with baseline recognition performance results on the data using common

algorithms and representations.
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Chapter 4

Photometric Stereo Databases and

Baseline Experiments

The previous chapter demonstrated the suitability of the Photoface device for face

recognition in terms of its capture accuracy. This chapter goes on to describe the

creation of two databases, one large scale using visible light sources in rela-

tively unconstrained conditions and another smaller database which additionally

includes using NIR light sources to capture a range of expressions.

In order to compare algorithms it is necessary to perform some baseline ex-

periments on data that could be described as standards. This also provides an

additional mechanism to assess the suitability of photometric stereo data. Stan-

dard 2D techniques are used and extended for use on 3D data (Eigenfaces,

Fisherfaces), along with an examination of the effects of different representations

e.g. shape index, depth map, albedo etc. on recognition performance.

The contributions of this chapter are:

1. The Photoface database, a publicly available PS database with rich meta-

data for each session and a Query Tool application for straightforward ex-

traction of datasets.

2. The 3D Expression-VISible and near-InfraRed database (3DE-VISIR) con-
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sisting of three expressions per subject captured using visible and NIR light

sources.

3. Baseline experiments on Photoface data using five commonly used data

representations and three algorithms showing the suitability of the data for

recognition.

4.1 The Photoface Database

There are many existing face databases which can be used for face recognition

research. The majority are 2D but there are an increasing number of 3D datasets

(including one consisting solely of identical twins [186] and even 4D (3D surface

video). Major databases and their key properties are given in Section 4.3. Here, a

novel 3D database is presented which is the largest captured in terms of subjects

and sessions using PS. Additionally the capture is relatively unconstrained (cer-

tainly in comparison with other 3D face databases): the Photoface device was left

unattended in a workplace corridor and employees walked through it. This is a

very useful feature and is unique to the Photoface database as it allows recog-

nition algorithms to be tested on more naturally captured data. The database is

freely available to the research community [199].

4.1.1 Collection and statistics

The Photoface database consists of 3187 captured sessions of 453 subjects. The

data was collected from the offices of General Dynamics and from the DuPont

Building of the University of the West of England. The majority of the data

was collected from General Dynamics in two recording periods of approximately

6 months each, separated by approximately one year (1764 sessions between

February 2008 - June 2008, 603 sessions between June 2009 - October 2009).

The Photoface device was located in an unsupervised corridor and subjects were
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Figure 4.1: A session captured by Photoface consisting of four differently illumi-
nated photographs. The faces are detected using a MATLAB R©implementation of
the Viola And Jones face detection cascade and cropped to around 550×750 px.

free to choose whether or not to pass through it. The only incentive was that

a reconstruction of their face was displayed immediately after capture. A more

detailed breakdown of the captured session statistics can be seen in Table 4.1.

Each captured session consists of four differently illuminated images of the

subject as they pass casually through the Photoface device. A publicly available

MATLAB R©implementation [108] of the well known Viola and Jones [187] face de-

tection algorithm is used to extract faces from the photographs which are then

saved to disk as bitmaps. The size of captured photograph varies from session

to session depending on various factors such as the size of the face but are typ-

ically about 550px × 700px. Each session is saved in a directory named with a

time stamp in the format <YYYY-MM-DD_HH-MM-SS>.An example session can

be seen in Fig. 4.1.

Consent from the subjects to publish their images for research purposes (e.g. in

journal or conference articles) was only granted explicitly by some subjects, oth-

ers preferred not to give this consent but were happy to have their images used

as data for research. Those that gave permissions are found in the subject range

between 1001 and 1222, those that did not are found in the subject range be-

tween 2001 and 2231. The End User Licence Agreement that researchers must

sign before getting access to the Photoface database, clearly states this and no

images may be published from the range above 2001.
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Once the capture period was over, the sessions were manually sorted into

subject directories. Some sessions were discarded for various reasons e.g. false

trigger, subject walking backwards through the device, subject holding a piece of

paper with a face drawn onto it in front of his own face etc. Each session directory

contains:

• four photographs

• a file that codes the capture location

• a file containing light source directions (these vary slightly between capture

locations)

• two files of metadata: one containing the coordinates of 11 fiducial features

and the other containing various other information such as gender, facial

hair, pose, quality of capture. More about this can be found in Section 4.1.2.

Of the subjects, 381 subjects and 2891 sessions are male and 72 subjects

and 296 sessions are female. Fig. 4.2 shows the number of sessions per subject

– 157 subjects used the device only once, but 131 have used the device five times

or more and 70 used the device at least 10 times.

Some examples of the captured sessions can be seen in Fig. 4.3.

4.1.2 Metadata and The Photoface Query Tool application

In order to align the images or to assess the accuracy of any landmark detection

algorithms and to be able to extract subsets with certain properties it is necessary

to manually annotate the data. For the Photoface data, two sets of metadata were

created:

1. x and y coordinates of 11 fiducial features as shown in Fig. 4.4

2. Subject and session information: gender, facial hair, whether the subject is

wearing glasses, the expression (positive, neutral or negative), occlusions
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Figure 4.2: Photoface session distribution. The number of sessions per subject in
the Photoface database. Each bar represents the number of subjects that used
the device a certain number of times e.g. the first bar shows that 157 subjects
only used the device once. To improve readability, six outliers have been omitted
who used the device more than 60 times, the maximum of which visited it 290
occasions.

(e.g. a mobile phone, hair), pose (1-5 where 1 is frontal and 5 is extreme

pitch, roll or yaw e.g. profile, quality (blurry capture, under exposed), other

(eyes closed and mouth ajar).

To facilitate the marking of these features, two applications were written in

MATLAB R©. The first is for marking the fiducial features of each session, the

other allows the secondary metadata (gender, occlusions etc. ) to be recorded.

To reduce the effects of extreme illumination present in individual photographs,

the maximum value for each pixel location of the four captures of each session

was calculated. This helped minimise errors by eliminating dark regions in the

captured images. In cases where subjects have moved very quickly through the

device, and there is disparity between the images, and thus blur in the image

used for marking fiducial features, an estimate of the position is provided. There

are few such captures and the disparity is minor. If one wished to improve on
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Figure 4.4: Manually marked fiducial points. 1) Left Lateral Canthus, 2) Left
Medial Canthus, 3) Nasion, 4) Right Medial Canthus, 5) Right Lateral Canthus, 6)
Left Nose, 7) Nose tip, 8) Right Nose, 9) Left Lip, 10) Right Lip, 11) Chin pogonion.

this an alignment algorithm could be employed to correct the differences caused

by motion. However this is non-trivial in the case of PS as disparities caused by

the motion will most likely be along the focal plane. Great care was taken to min-

imise inaccuracies, however due to the subjective nature of certain fiducial points

(e.g. the exact tip of a nose) and the repetitiveness of the task, certain errors will

be present in the database. The author encourages researchers who find such

errors to inform the author so that the database can be updated. To reduce the

errors in the first instance, it would have been useful to employ a number of others

to mark the positions and take a median of the results. Unfortunately due to time

constraints, this was not done. In cases where a fiducial point was occluded or

out of frame, the relevant fiducial position is recorded as the top left hand corner

of the image. When these values are loaded into the database, they are given a

value of -1 to show that they are invalid. Screenshots of the two applications can

be seen in Fig. 4.5.
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Figure 4.5: Screenshots of the applications for marking fiducial features (top) and
additional metadata (bottom)
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Figure 4.6: Screenshots of the Photoface Query Tool. The screen on the left
allows selection of certain parameters and the matching records are shown in the
screen on the right.

Both sets of metadata are stored in the session folder. Once all sessions had

been processed, all the metadata was collated into one file stored in the root of

the database. This was then converted to a set of Structured Query Language

(SQL) statements for importing into a database. Storing the metadata on a SQL

database allows efficient interrogation of the data. PostgreSQL was chosen for

the database implementation as it is open source and free for non-commercial

use and a proven technology used by Yahoo, Skype and the International Space

Station.

The database can be queried in the usual way via SQL, but in order to fa-

cilitate searching a GUI based MATLAB R©application was developed, called the

Photoface Query Tool. This allows the metadata to be searched and results to

saved to a comma-separated-value file which can then be loaded into MS Excel

if any tweaks are required or used directly to load specific subsets of data e.g. all

frontal images of males wearing spectacles. Screenshots of the application can

be seen in Fig. 4.6.

The Photoface database and Photoface Query Tool have been made available

to research community and were presented to the community at the Computer

Vision and Pattern Recognition 2011 conference [199].
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4.2 The 3D Expression - VISible and InfraRed (3DE-

VISIR) Database

In addition to the Photoface database which contains relatively unconstrained

sessions, a second database was also captured: the 3DE-VISIR database. This

database contains 363 sessions of 115 people captured in five periods under

more constrained conditions than the Photoface database. The novelty of this

database is that:

1. For each capture there is one session captured using near NIR and another

using visible light. These are captured in rapid succession, effectively freez-

ing any motion making comparison between the lighting modes possible.

2. The aim was that for each subject there are at least three captures of differ-

ent expressions, positive, negative and neutral.

As demonstrated in Chapter 3, NIR gives more accurate reconstructions than

visible and is less intrusive. It was therefore logical to capture subjects using NIR

as well as visible light. For practical reasons we were unable to catch multiple

expressions per session in every case. The relatively ambiguous classifications

of the expressions (positive, negative and neutral) were deliberately chosen as

it was found that prompting a subject to look sad or miserable, or happy led to

unrealistic and forced expressions which rarely looked like a typical sad or happy

face. Positive and negative classes allow the subject a wider range and it is likely

that they felt less judged on their attempt, resulting in a more natural expression.

Inevitably the positive class of expressions contains almost exclusively smiles,

while the negative contains mostly frowns but in some cases a scream or an

angry face resulted.

Because the NIR lights are very directional, the subjects were made to rest

their chin on a tripod to ensure that they were positioned correctly within the light

sources.
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In total there are 363 sessions of 115 people of which there are 100 subjects

for which at least 3 expressions were captured in 322 sessions under both visible

and NIR light. Of those 100 subjects there are 44 females and 56 males.

Although written consent has been given by all subjects involved, the database

has not yet been made publicly available due to time constraints.

Examples of raw captures and resultant 3D surface under visible and NIR light

can be seen in Fig. 4.7

4.3 Comparison with Existing 3D Databases

Table 4.2 compares the Photoface database and 3DE-VISIR database with the

most commonly cited (publicly) available databases. In terms of subject/session

numbers ours are clearly comparable, with the Photoface database being amongst

the largest. The CMU Multi-PIE is a very comprehensive database in terms of

pose, illumination and expression which can be used to generate 3D surface

models via PS as the lighting angles are known, but it contrasts with the Photo-

face database in terms of it being highly constrained. Indeed, Burton et al. [97]

stress this very point, stating that while the use of common datasets is important

for benchmarking algorithm performance, they do not necessarily give a good

indication of the likely performance in the real world. They state that the within-

person variability will be less when the photographs are posed. The novelty of

the Photoface database comes from the relatively unconstrained capture envi-

ronment. While the 3DE-VISIR database is not the largest database it is the only

to offer direct comparison of 3D faces and expressions captured under NIR and

visible light.
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4.4 Baseline Methods

In the previous section, the databases which have been created as part of this

project were described. In this section, the recognition accuracy on the databases

is measured using some common methods. To date there has been very lit-

tle published research using PS generated faces so here experiments are per-

formed on some different data representations using a variety of common tech-

niques. These not only serve to justify the use of the Photoface database and

3DE-VISIR database databases, but also as a benchmark results against which

novel approaches can be compared to in later chapters. It also proves that the

performance of algorithms, as generally reported in the literature, is similar on

this dataset. Detailed descriptions of the algorithms are now provided (a glossary

of symbols can be found in Glossary of Symbols at the end of this thesis) before

the results of applying the methods to Photoface database are given.

4.4.1 Principle Components Analysis (PCA) & eigenfaces

PCA was invented by Karl Pearson [146] in 1901 and is also known as the

Karhunen-Loeve transform. As stated previously, PCA defines the dimensions

along which the most variation in data occurs. It is an orthogonal linear transform

which takes a set of possibly correlated variables and transforms them into un-

correlated variables; those with the lowest eigenvalues (a measure of how much

variance they account for) can then be discarded. This highlights a very important

property of PCA and a reason for its popularity in image processing: dimension-

ality reduction.

Use in face recognition

The idea of using PCA to describe faces came from Sirovich and Kirby [168].

They were able to show that a 128×128 px grayscale image (so 214 dimensional

90



vector) could be characterised by 40 coefficients to within 3% error. These co-

efficients are weights given to linear combinations of basis images (eigenfaces)

which provide a description of the original face. These basis images are are

linearly independent of one another (i.e. none can be formed from a linear com-

bination of the others) but are sufficient to represent every face in the given face

space. As an analogy, if we imagine that there is a recipe for each face, then the

ingredients are the eigenfaces and the quantity of each ingredient is the coeffi-

cient. Given a set of M images x(a, b) where the dimensionality N= a × b, the

ensemble of images can be represented as an N×M matrix when the rows of

each image are concatenated and transposed to form a vector. The covariance

matrix C would normally be an N×N matrix. The key contribution of their paper

was to realise that if the number of images M was less than the dimensionality of

C then C is singular (or non-invertable) and cannot be of order greater than M .

This simplifies the subsequent eigen-decomposition greatly as the dimensionality

of C becomes M×M .

The basic steps of PCA are outlined next. Let X be a matrix representation of

a set of face images:

X = [x1,x2,x3 . . . xm] (4.1)

where X is of dimension N×M where N is the number of pixels in an image

and M is the number of images and x1...m are vector representations of the (2D)

photographs. Because we are interested in modelling the variation, let A be a

matrix of the difference between each image and the mean image u (the average

intensity at each pixel across all images, so u will be the same size as x)

A = [x1 − u,x2 − u,x3 − u . . . xm − u]
= [x′1,x

′
2,x
′
3 . . . x

′
m] (4.2)
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The principal components are the eigenvectors ei of the covariance matrix C:

C =
M∑

i=1

x′ix
′T
i = AAT (4.3)

AAT leads to the N×N problem, but it can be seen that the eigenvectors of AAT

are equivalent to the eigenvectors of ATA pre-multiplied by A:

ATAe = λe
AATAe = λAe Premultiply by A
C(Ae) = λ(Ae) C = AAT (Eqn. (4.3))

(4.4)

where e are the eigenvectors and λ the eigenvalues of ATA

The eigenvectors are then sorted in descending order of their corresponding

eigenvalues; the larger the eigenvalue, the more variance is described by the

eigenvector. Typically, one is only interested in the eigenvectors which capture

between 80%-90% of variance cumulatively – the others can be discarded. For

the results reported in Section 4.4 the number of components is chosen which

accounts for 85% of variance. Belhumeur et al. [17] confirm a finding by Sirovich

and Kirby that recognition performance levels off at about 45 components. The

number of eigenvectors kept will be referred to as P .

This has described how to find the principle components or face space de-

scribing the data. The next step is to use these for the purposes of recognition. A

face image can be projected into this face space by the simple operation

ωp = eT
p (x− u) (4.5)

where p is 1 . . .P and represents the set of operations for each selected eigenvec-

tor resulting in a P -dimensional vector Ω = [ω1,ω2, . . .ωp]. If we plot all the Ω vec-
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tors into this space, clustering should occur around identities e.g. the eigenspace

representation of different faces of the same person should lead to a cluster of

points. Alternatively, the mean of these clusters can be used to represent a per-

son (also known as a prototype). The recognition method used by Turk and Pent-

land [181] is to project a new face into the eigenspace and see which of these

k cluster means it is closest to in a Euclidean sense by choosing the lowest εk:

εk = ‖(Ω−Ωk)‖2

4.4.2 Fisher’s Linear Discriminant (FLD) & Fisherfaces

FLD is named after Robert Fisher who developed the technique for taxonomic

classification in 1936 [62]. The key aspect to this technique is that it uses labelled

data and seeks to minimise intra-class scatter and maximise inter-class scatter

(rather than merely maximising total scatter as PCA does). In PCA, it is expected

that clusters in the face space are formed for images of the same person. The

concept of clusters is important in FLD, and ideally the cluster for a given label (or

class) is compact (small intra-class scatter) and distant from other clusters (large

inter-class scatter). This lends itself well to face recognition as faces are labelled

as being that of a certain person.

Use in face recognition

Belhumeur et al. [17] exploit the observation that:

‘...for a Lambertian surface without shadowing, the images of a

particular face lie in a 3D linear subspace of the high dimensional

image space.’

This observation suggests that linear methods are appropriate for the prob-

lem and because the data is labelled, a class-specific method such as FLD is

applicable. Where symbols have already been defined, the same notation will

apply.
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The total scatter is the sum of the inter-class (B - between) and intra-class (W

- within) scatter:

ST = SB + SW (4.6)

The intra-class scatter matrix SW is defined as:

SW =
c∑

i=1

∑

xj∈Ki

(xj − ui)(xj − ui)
T (4.7)

The inter-class scatter matrix SB is defined as:

SB =
c∑

i=1

Bi(ui − u)(ui − u)T (4.8)

where c is the number of labels, or in this case, identities, ui is the mean image for

a class i and Bi is the number of samples in class i and K is the set of all classes.

The Bi term in (4.8) is often referred to as 1/Bi. However when Eqn. (4.8) is

substituted into Eqn. (4.6) together with the covariance matrix definition of ST and

worked through to give SW , the inverse term is cancelled out (for more information

see [58]). The goal is to find the projection Wopt which maximises the inter-class

measure SB while minimising the intra-class measure SW , e.g. to create tight

clusters of data with the same label. The way Belhumeur et al. do this is via the

determinants of the scatter matrices:

Wopt = argmax
W

∣∣WTSBW
∣∣

∣∣WTSWW
∣∣ (4.9)

= [e1,e2 . . . eP ] (4.10)

where ei are the generalized eigenvectors of SB and SW corresponding to the P

largest generalized eigenvalues λi. The form of the generalized eigenvalue prob-

lem is (note the addition of matrix G compared with the standard eigen-problem
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Fe=λe):

Fe = λGe (4.11)

Substituting into Eqn. (4.11) and rearranging allows the problem to be solved in

the standard eigenproblem way (as long as the SW matrix is non-singular):

SBei = λiSWei (4.12)

S−1W SBei = λiei (4.13)

A major assumption here is that SW is nonsingular. However, when N>>c

which is the case when used for face recognition (i.e. the number of pixels is far

greater than the number of identities), the likelihood of the matrix being singular

is extremely high (especially given the nature of images – the faces mean that

there is very likely to be high correlation). To get around this Belhumeur et al. use

PCA on the image set as a means of reducing the dimensionality first before

projecting into FLD space. It is this additional step which allows them to identify

their approach as Fisherfaces.

In their paper, Belhumeur et al. compare performance of PCA (eigenfaces)

and FLD (Fisherfaces) and report far better results for Fisherfaces under varying

illumination and expression (error rates half that of any other method and a third

of eigenface). Interestingly they confirm a hypothesis that the first three principle

components (which describe the most variation) are a direct result of illumination,

and that by removing them, the projections will be more illumination invariant

leading to a 10% increase in performance.
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4.4.3 Independant Components Analysis (ICA)

ICA is a generalisation of PCA which is not forced to describe the variance along

orthogonal axes and is sensitive to higher order image statistics. The most fre-

quently cited use of the technique is to separate mixed signals, an example of

which is the ’Cocktail Party Problem’ where it can be used to separate individual

speech signals from the general hubbub in the room.

Use in face recognition

ICA was first used for face recognition in [15] in which Bartlett et al. compared

performance with PCA. If the assumption that a face is composed of many inde-

pendent signals is correct, then ICA should provide excellent performance. How-

ever when comparisons between PCA, FLD and ICA are performed, the results

are often ambiguous with different algorithms performing differently on particular

data ([15, 57, 162]). Generally however, ICA provides better performance than

PCA or FLD, but it does so at the cost of computational intensity.

In Eqn. (4.14) x is the face image which is assumed to consist of a set of

separable signals (s) multiplied by some mixing matrix (D).

x = Ds (4.14)

ICA attempts to estimate what those separable signals are assuming that the

mixing matrix D is invertible to a separating matrix V:

v = Wx = VDs (4.15)

Finding the separating matrix V is computationally expensive as it results from a

function to maximize the independence of the resulting matrix v which can only

be solved iteratively.

Two architectures are referred to when ICA is applied to faces. The first as-
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sumes that face images are a linear combination of basis images combined by

an unknown mixing matrix. Face images are variables and pixel intensities are

observations. A face can be represented as a vector of coefficients of the basis

images. In the second architecture, the pixels are the variables and the faces are

the observations and instead of finding independent basis images, this architec-

ture seeks statistically independent coefficients for the input data. Architecture I

produces spatially localised basis images which clearly represent a certain facial

feature e.g. nose, left and right eyebrows, lips, whereas Architecture II leads to

more global descriptions which resemble eigenfaces.

Of the three papers mentioned above all report the different architectures per-

form differently depending on the data, but [57] and [162] both report Architecture

II tends to outperform Architecture I.

Unlike the eigenface and Fisherface code, the ICA code used in this thesis

was not developed by the author but was made publicly available by [14].

4.4.4 Pearson’s Moment Correlation Coefficient (PMCC)

Pearson’s product-moment correlation coefficient (PMCC) provides a measure

of how correlated two sets of variables are from -1 (negatively correlated) to +1

(positively correlated) with 0 representing no correlation between the variables. It

is the covariance of the samples divided by their standard deviations as shown in

Eqn 4.16.

ρ =

∑M
i=1

∑M
j=1 (xi − ui) (xj − uj)√∑M

i=1 (xi − ui)
2
√∑M

j=1 (xj − uj)
2

(4.16)

It is not commonly used as a classifier in the face recognition literature so

cannot be considered a benchmark method in the same way as eigenfaces, Fish-

erfaces or ICA. It is however used throughout this thesis and for this reason its

performance is included in the results section for comparison with other methods.

Empirically it was found to produce similar results to the Fisherface algorithm but
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is approximately eight times faster.

One apparent reason why it is not used in the literature is because although

the Rank-1 recognition rate (i.e. selecting the closest gallery image to the probe)

is excellent, it produces a very poor Receiver Operating Characteristic (ROC) as

can be seen in the penultimate chapter (Fig. 8.10).

4.5 Data Representation

The above recognition methods have been applied to a range of modalities as

there are a variety of data representations that can be used for face recognition.

This section briefly describes the five representations extracted from the data for

the benchmark tests presented here: texture, surface normals, depth map, shape

index and Local Binary Patterns (LBP). Texture and depth map are chosen as

they represent the most common 2D and 3D data representations, surface nor-

mals are chosen as they are intrinsic to PS and have been found to be the best

representation for face recognition and LBP and shape index are also effective

representations for face recognition [8, 73]. In each case the 2D matrix (or ma-

trices in the case of surface normals) of data are reshaped into a vector for each

session.

4.5.1 Texture (2D)

Texture, when used in the face recognition (and more broadly in computer vi-

sion) literature, refers to the pixel intensities of an image. Essentially it is a 2D

monochrome representation similar to a black and white photograph. The exper-

iments in this chapter use the estimated albedo at each pixel location which is

calculated by the PS equation and represents the intensity of the object indepen-

dent of any shading caused by 3D shape or illumination variation. Examples of

albedo images can be seen in Fig. 4.8.
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Figure 4.8: Examples of cropped 2D texture images (albedo).

4.5.2 Surface normals

The surface normals are an intrinsic output of photometric stereo. At each pixel,

the x, y and z components are estimated which can be visualized as a needle

map. The vectors of components at each pixel are normalized to unit magnitude.

In this way the z-component is made redundant as it can always be calculated

from the remaining x and y components. In these experiments, the vector of y-

components is concatenated onto the vector of x-components. An example of

surface normal data for one subject can be seen in Fig. 4.9.

Different representations of the surface normals were also investigated as

shown in Table. 4.3. The raw format as described above provides the highest

performance and is used throughout the thesis.

4.5.3 Depth map

The depth map is a 2D representation of a 3D surface. Pixels with a high in-

tensity are closer to the camera than those with a low intensity. The depth map
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a b c

Figure 4.9: Surface normal representations. (a) Surface normal x-components.
(b) Surface normal y-components. (c) A representation of the surface normals as
a needle map.

`1-norm `2-norm `∞-norm Raw

% Correct 93 92.7 93 97.7

Table 4.3: Recognition performance using different norm-based representations
on 1000 frontal expressionless sessions of 61 subjects classified with the Fisher-
face algorithm. For comparison the results using PMCC are very similar (93.2%,
94.9%, 93.2%, 96.8%).

is generated from integrating across the surface normals, in this case using the

Frankot-Chellappa [64] algorithm, an example of which can be seen in Fig. 4.10.

4.5.4 Shape index

The shape index is a 2D representation of the curvature of a 3D surface. The

shape index describes regions of a surface ranging from spherical cup (-1) to

spherical cap (+1) with saddle at 0. A plane is undefined. A useful property of the

shape index representation is that curvature is pose invariant. It is a seemingly

under explored representation in the face recognition literature although Gökberk

et al. [73] show it to outperform PCA and LDA of depth maps while performing

worse than point cloud or surface normal representations and Colbry et al. [38]

use it successfully for fiducial feature detection.

The shape index is calculated from the surface normals by where x, y, z are

the components at each pixel location as in Eqn. 4.17.
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a b

Figure 4.10: (a) An example of a surface generated by integrating across the
normals and (b) the depth map.
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4.5.5 Local Binary Patterns (LBP)

LBP were first used for face recognition by Ahonen et al. [7]. The approach seeks

to recode a pixel in terms of the relative intensity of surrounding pixels – if a

pixel has a higher intensity it is coded with a “1”, if it is lower it is coded with a

“0”. This then gives a binary string of eight digits (one for each surrounding pixel)

which can be converted to a decimal value which ranges from 0-255. Alternatively

an extra step can be added which classifies the binary pattern as being either

uniform or non-uniform. A uniform pattern is classified as one that has less than

three bitwise transitions from 0-1 or vice versa. Ojala et al. [140] found that 90%

of textures were made up of uniform LBP and for 8 bits there are 58 uniform

patterns. Patterns with more than two transitions are termed as non-uniform and

do not represent a robust feature. Those pixels with a non-uniform pattern are all

coded with the same value. A diagram of the process can be seen in Fig. 4.12
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Figure 4.11: Examples of shape index representations of four subjects. White is
+1 (cap), black is -1 (cup).
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and examples can be seen in Fig. 4.13.

There are many extensions to LBP such as the recent Multi-scale Extended

LBP implementation which outperformed state-of-the-art approaches [92] and al-

though it is one of the simplest methods, it has shown itself to be a very powerful

tool for face recognition and texture classification in general as it is invariant to

monotonic illumination changes and computationally efficient.

The most commonly used version is implemented as a benchmark here: clas-

sifying each pixel from 0-58 based on which uniform pattern the binary value

given by the eight surrounding pixels belongs to, and one bin for all non-uniform

patterns. The LBP’s are created using the x and y-components of the surface

normals.

Figure 4.12: An illustration of the LBP process (reproduced from [7]). The pixel
values are thresholded against the central pixel, and the resultant pattern is con-
verted to binary, which in turn may then be converted to decimal.

4.5.6 Image Preprocessing

Data is cropped for the benchmark experiments as follows: the median anterior

canthi and nose tip across all sessions are used for alignment via linear trans-

forms. The aligned images are then cropped into a square region as shown in

Fig. 4.14 to preserve main features of the face (eyes, nose, mouth), and exclude

the forehead and chin regions which can frequently be occluded by hair.

In order to remove any artefacts from the Photoface database which are caused

by the flashguns having different brightness, the greyscale intensity of the images

is normalised. This is achieved by making the mean of each image the same
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Figure 4.13: The top row shows an example of applying the LBP process to x and
y components to give a 255 level LBP image. The bottom row shows the same
results but with the commonly used 58 level image which employs the notion of
uniform and non-uniform binary patterns.
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Figure 4.14: The cropped region of a face. The distance between the anterior
canthi (d) is used to calculate the cropped region.
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as the mean of all session images. Other normalisation techniques such as his-

togram equalisation, contrast limited adaptive histogram equalisation and linearly

increasing the range of intensity values to a maximum 0-255 were investigated in

terms of their effect on recognition performance, but no improvement in recogni-

tion performance was found.

The 2D images in the Photoface database are the estimated albedo images

which are also aligned and cropped in the same way as the 3D data. Due to mem-

ory limitations, both the 2D and 3D data are then resized to 80×80 px and are

reshaped into a 6400-dimension and a 12800-dimension (x and y components of

the surface normals are concatenated) vector respectively.

The data consists of 1000 sessions of 61 frontally facing subjects with neutral

expression. These 61 subjects were selected as they had six or more sessions

(e.g. sufficient to train on). The number of sessions per subject varies from six to

70 with the distribution shown in Fig. 4.15. A listing of the exact sessions used

can be found in Appendix C, and is available electronically from the author. This

is a subset of the whole Photoface database whose distribution can be seen in

Fig. 4.2.

4.5.7 Experimental Paradigm

The method used to test recognition accuracy is the leave-one-out paradigm.

This dictates that every session is used as a probe against a gallery of all other

sessions once. There are therefore 999 classifications per session of which the

percentage correctly identified is shown. The benefits of using the leave-one-out

paradigm are that all sessions are used for probe and gallery images making it

a far more efficient paradigm than using a static probe and gallery data partition.

It is however far more computationally intensive as a new subspace must be

calculated for each trial.

Combining the already computationally intensive Independent Components
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Figure 4.15: Distribution of sessions per subject for the 1000 session dataset -
for example the first bar represents the fact that 13 subjects have six sessions.

Analysis with the leave-one-out paradigm would take an excessive length of time

and therefore a more conventional data partition paradigm was used, in which

the first session of each subject formed the probe partition and the rest were

used as the gallery partition. This results in 61 classifications being performed –

some reliability of the tests is sacrificed in order to perform them in a reasonable

time. The Fisherface algorithm takes approximately twice as long as the eigen-

face algorithm due to the additional matrix inversion step to solve the general

eigenproblem, but a standard desktop computer can process the 999 sessions

in just over four hours. Once the face space has been calculated, the difference

in classification times is negligible as this only involves calculating the Euclidean

distance between vectors.

4.6 Results

Results for benchmarks can be seen in Table 4.4. In common with findings in

the literature, it shows better performance of Fisherfaces over eigenfaces on the
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first 3 rows for 2D and 3D data. For texture and depth maps the improvement

is large. Why there is a decrease in performance for shape index and LBP is

unclear, but it would seem that not all representations benefit from discriminant

analysis. The different architectures of ICA do not appear to confer any signifi-

cant advantage over one another: Architecture I gives better performance for 2D

texture, but worse results for depth map and surface normals, and they give the

same performance for shape index and LBP. The very best performance is given

by ICA on the shape index representation (98.36% for both architectures). How-

ever, some caution should be exercised with regards to the ICA results because

of the far smaller number of comparisons being performed (61 vs 1000) due to

time constraints. Running the ICA tests on shape index take about 100s which

includes one calculation of the ICA subspace and then 61 nearest neighbour clas-

sifications. In comparison, running the Fisherface algorithm on surface normals

takes around 800s to generate the Fisherface subspace and a nearest neighbour

classification 1000 times. ICA is obviously a powerful tool, but for the purposes of

this research is too slow to be used for dimensionality reduction.

If overall means are compared, using PMCC as a classifier outperforms the

common benchmarks and is also the fastest algorithm. This is a surprising result

as it is not used commonly in the literature. The reason behind this (as noted

previously) is likely due to the fact that it cannot be used with any sort of threshold

validation. However as a general measure of how similar two sessions of data are,

it provides a very useful tool.

If ICA is taken out of the comparison for the above reasons, then raw surface

normals provide a good representation in terms of eigenface and Fisherface per-

formance combined with the fact that no additional processing is required. As

a whole, Table 4.4 shows how the choice of data representation and analysis

method can impact the recognition performance very clearly and one must be

wary of statements that often appear in the literature regarding generalisations

on methods e.g. “Fisherfaces are better than eigenfaces”.

108



4.7 Discussion

This chapter has described two databases which have been produced as part of

this project. The Photoface database is one of the largest 3D databases currently

available to the global research community. It is unique in that it is the first large

scale PS database captured in unconstrained conditions in a realistic environ-

ment and it allows 2D, 3D and fusion approaches to be tested. With the bundled

Photoface Query Tool application, it is simple to extract certain types of data,

thereby making it an attractive addition to the existing available face databases.

The smaller 3DE-VISIR database is unique in that it captures visible and NIR im-

ages of the subject under a variety of facial expressions. This database is used

for experiments in classifying expressions in Chapter 7.

The last chapter demonstrated that the Photoface device was capable of ac-

curate 3D capture and this chapter has shown that the data are suitable for face

recognition in a range of representations and algorithms.

These methods are slow and intensive. Are there ways to improve the perfor-

mance? The next two chapters look at methods that reduce the dimensionality

of the data by direct and computationally efficient methods. Both take inspiration

from the idiosyncrasies of the human visual system. The first looks at the effect

of image resolution based on the fact that humans can recognise familiar faces

at low resolutions (7 ×10px [167]) and the second takes the idea that caricatures

may represent how humans store and/or retrieve faces and implements the idea

using a percentile and a variance based approach.
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Chapter 5

Human Inspired Low Resolution

Face Recognition

Baseline results were presented in the previous chapter with a recognition rate

of 97.7% recorded using the Fisherfaces algorithm on 1000 sessions of 61 people

using a raw surface normal representation. This chapter presents findings with

regards to reducing the amount of data by downscaling the images. The purpose

of this to explore how different resolutions affect face recognition performance

– if it is possible to reduce the amount of data in a direct way without greatly

decreasing the recognition performance then this represents an efficient way to

improve processing time and storage needs which in turn decreases cost and

increases practicality. Along with computational and storage efficiency, another

motivation is that it has been shown that humans can recognise low resolution

faces of familiar people with a high degree of accuracy. There is an evolutional

advantage to this ability in that it could aid in friend–or–foe type decision making

when attempting to classify people in the distance. The further away that this

can be judged, the longer the person has to raise an alarm or otherwise prepare.

Another reason is that the structure of the face is made up of relatively large

structures (nose, eyes and lips) which are configured in such a way that should
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be robust to reasonably large reductions in resolution. This is true of faces in

general, and the risk in overly reducing the resolution is that the information that

allows discrimination between individuals will be lost. This chapter examines the

effects of reducing the resolution on 2D and 3D data on recognition performance.

The main contribution of this chapter is to show that the recognition rate found

in the previous chapter remains constant when the resolution is reduced to only

10×10 px for 3D surface normal data, and this is proven on both the Photoface

database as well as a subset of the FRGC database. 2D data can also withstand

considerable reduction in size to 15×15 px without seeing the recognition rate

fall.

5.1 Introduction

One obvious method of reducing the amount of data is to downscale the images.

A great deal of research has gone into increasing the resolution of poor quality

images (super-resolution [11, 195], hallucinating [209]) by combining images or

using statistical techniques to reproduce a more accurate representation of a face

(e.g. from CCTV footage). By contrast, little research attempts to directly investi-

gate resolution as a function of recognition rates on 3D data. Toderici et al. state

that there is little to be gained from using high resolution images [178], Boom et

al. state that the optimum face size is 32 × 32 px for registration and recognition

[27], a view which is reinforced by a more recent study by Lui et al. who state that

optimum face size lies between 32 and 64 pixels [123] for statistically based tech-

niques, but that modern approaches can benefit from higher resolution. Czyz and

Vandendorpe find that there is little effect of reducing resolution down to 16×16 px

using LDA [46]. These experiments have used 2D images. Chang et al. use both

2D and 3D data and conclude that there is little effect of decreasing resolution

down to 25% on 2D data and 50% on 3D of the original size (130×150px) [33]

using PCA. The research suggests that relatively low resolutions give optimum
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recognition (for the given recognition algorithms). These findings are conducive

to the fact that the same appears to be true of human recognition [167], but there

is little exploration or exhaustive work on the effect of resolution. With the obvi-

ous benefits associated with using less data, this chapter determines an optimum

size for cropped faces in terms of face recognition performance. An explanation

for the optimum size is then offered in terms of it preserving low spatial frequen-

cies, backed by further experiments.

5.2 Methods and Data

This section details the datasets, preprocessing steps, and methods used in the

experiments contained in this and the next chapter. In order to prove the validity

of any findings the experiments are performed on the Photoface database as well

as the well known FRGCv2.0 dataset. This allows comparison of the algorithms

using the benchmark FRGC database and the richer feature set (higher resolution

with direct calculation of surface normals) of the new Photoface database.

5.2.1 Data and Image Preprocessing

If techniques are only applied to the Photoface database, there is the danger that

any reported results may only be applicable to that data and that any proposed

general findings will not apply to other face recognition databases. Therefore the

experiments in this and the following chapter, are performed on both Photoface

and FRGCv2.0 data. A subset of each database is used which consists of 10

sessions each of 40 subjects. These numbers were chosen as 10 sessions pro-

vides a representative sample size, and there are only 40 subjects in the Photo-

face database with 10 or more expressionless frontal sessions. The FRGCv2.0

database categorises the emotion type of each scan. Those with the emotion

type of ’BlankStare’ have been selected from the database which is equivalent

112



to an expressionless face. The first 40 subjects with 10 or more sessions in the

FRGCv2.0 database categorised as ’BlankStare’ were used to keep the datasets

the same size. A listing of the exact sessions used can be found in Appendices D

and E, and are available electronically from the author.

The FRGCv2.0 dataset comes in point cloud format which is converted to a

mesh via uniform sampling across facets. Spikes are removed by median smooth-

ing (a 12×12 px sized filter gave the best recognition performance) and holes

filled by interpolation. Normals are then estimated by differentiating the surface.

The depth map images are all normalized to have a minimum value of 0.

Data is cropped for both databases as follows: the median anterior canthi

and nose tip across all sessions are used for alignment via linear transforms; the

aligned images are then cropped into a square region in the same way as for

the benchmarking experiments in Chapter 4 as shown in Fig. 4.14 to preserve

main features of the face (eyes, nose, mouth), and exclude the forehead and chin

regions which can frequently be occluded by hair.

Our 2D experiments are based on data as follows: the accompanying colour

image for each FRGCv2.0 scan is converted to greyscale, aligned and cropped in

the same way as the 3D scan. The 2D images in the Photoface database are the

estimated albedo images which are also aligned and cropped in the same way as

the 3D data. Due to memory limitations, both the 2D and 3D data are then resized

to 80× 80 px and are reshaped into a 6400-dimension and a 12800-dimension (x

and y components of the surface normals are concatenated) vector respectively.

5.2.2 Image Resizing

The effect of different resizing techniques on linear subsampling are investigated

in terms of their effect on recognition as a function of resolution. Resizing is per-

formed via the MATLAB R©imresize() function using the default bicubic kernel

type and with antialiasing enabled, as these settings were found to provide the
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best performance.

Examples of faces at the different resolutions that are tested can be seen in

Fig. 5.1.

Figure 5.1: Examples of albedo faces at 5, 10, 15, 20, 40 and 80px resolutions

5.2.3 Experimental Paradigm

Again the leave-one-out paradigm is employed. This dictates that every session is

used as a probe against a gallery of all other sessions once. There are therefore

399 classifications per condition of which the percentage correctly identified is

shown.

As the focus of this research is more concerned with feature extraction effi-

ciency, the actual choice of classifier is not as important. Therefore PMCC is

used as a similarity measurement between a probe vector and the gallery vec-

tors. The gallery session with the highest coefficient is regarded as a match.

Experimentally, it was found that PMCC gives similar performance on baseline

conditions to the Fisherface algorithm but is approximately eight times faster.

5.3 Results

The effect of image resolution on 2D and 3D recognition performance is shown

in Fig. 5.2 with accompanying numeric data in Table 5.1. This clearly shows

that reducing the resolution down to as little as 10×10 px does not affect the

recognition performance on both 3D datasets. The same pattern appears in the

2D databases – the resolution can be reduced to 15×15 px before recognition

performance degrades. In either case, these figures are lower than often reported
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in the literature and certainly appears contrary to the notion that high resolution

imagery is required for good face recognition.

For clarity, it is worth reiterating what was stated in the introductory chapter

with regards to what is meant by ’3D’. Unless otherwise stated, ’3D’ in these

experiments refers to surface normal vector representations.

5 10 15 20 40 80
80

85

90

95

100

Width/Height (pixels)

%
 C

o
rr

e
c
t

 

 
Photoface 3D

FRGC 3D

Photoface 2D

FRGC 2D

Figure 5.2: Performance of 2D (grey scale images from FRGC/albedo images
from Photoface) and 3D (surface normal from both databases) face recognition
on Photoface and FRGC data. No degradation in performance is produced even
when resolutions are reduced to as little as 10×10 px for 3D data and 15×15 px
for 2D data.

Data
Resolution 5 10 15 20 40 80

Photoface 3D 96.25 98.25 98.25 98 98 98.25
FRGC 3D 91.25 94.75 94.75 94.75 92.5 90.25
Photoface 2D 88 97.25 98.25 98.5 98.25 98
FRGC 2D 88 97.25 98.25 98.5 98.25 98

Table 5.1: Table of results corresponding to Fig. 5.2. 3D results are for surface
normal representations and Photoface 2D refers to results for albedo images and
FRGC 2D refers to results for grey scale FRGC data.

For completeness, it should be noted that the following methods of resizing

were also applied, but led to very little difference in performance compared with

the baseline performances in Fig. 5.2 of 91.75% for FRGC and 97.3% for Photo-

face data:
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1. resize depth map and recompute normals for FRGC (83.75%)

2. ensure unit length of normal vectors after resizing operation for Photoface

(97.1%)

3. resize gradient fields (tilt and slant – ∂z
∂x

, ∂z
∂y

) and recompute normals (97%)

4. resize (raw) images and then perform PS to estimate normals (97%)

The trend is clearly shown that low resolution imagery is not detrimental to

face recognition. It occurs in both datasets so there is no reason to believe that

this is due to something unique in the Photoface database and occurs for both 2D

and 3D images. In order to ensure that the effect is not related to using PMCC

results for Photoface database are shown in Table 5.2 using Fisherfaces over the

optimal range for 3D data – in this instance across the full set of 1000 sessions

and 61 subjects. This confirms the previous finding that reducing resolution to

around 10×10 px produces no degradation in recognition rate (the best result is

100% using Fisherfaces at 7×7 px).

5.4 Discussion

It would appear that face recognition on surface normal and 2D data can occur at

very low resolutions which is consistent with human findings but not with previous

research in the sense that a 10×10 px representation is very much smaller than

reported in the literature.

By downsampling the images, data is discarded and only the dominant struc-

tures will remain. These structures will likely coincide with low frequency data

while the high frequency data will be lost due to smoothing effects. It has long

been known that low spatial frequencies play a role in human face recognition

[206] so this is next investigated to see whether this is the cause of the improved

recognition rates by comparing various methods. These methods are (examples

of which can be seen in Fig. 5.3):
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1. mean filter: block sizes of 1, 3, 5, 10, 15 and 20 pixels

2. low pass filtering: increasing cut-off radii in the Fourier domain to include

frequencies of 1, 2, 3, 4, 5 to 40 px radius (0.0125 Cycles Per Pixel (cpp),

0.0250, 0.0375, 0.05, 0.0625 to 0.5 cpp in increments of 0.0625 cpp). This

allows us to see the effect of adding increasingly higher frequencies to the

images.

3. high-pass filtering: the reverse of the above to see the effect of removing

lower frequencies from the image.

4. resizing the low resolution image back to its original size to ensure that the

recognition is a real function of spatial frequency rather than image size per

se.

The results are shown in Fig. 5.3. The graph of mean filtering indicates an op-

timal point where high frequencies are removed before the face is over smoothed

and performance decreases. Interestingly the low-pass results show that the ad-

dition of high frequency data leads to poorer performance, and the high-pass re-

sults show that high frequency data on its own, is insufficient for good recognition

performance. Fig. 5.4 compares the best results obtained using each method,

demonstrating that resizing the image leads to the best performance with the

low-pass filter coming second. While all of the proposed comparisons lead to

better performance than that of the control, none lead to better performance than

the resizing of the image to 10×10 px. This has the benefits of being a direct

method compared to better known wavelet approaches/FFT methods of extract-

ing frequency bands and also leads to a smaller representation which may have

implications for storage and will certainly improve processing efficiency.

The examples shown in Fig. 5.5 represent the processed y-component data

which gives the best recognition performance for the different methods. There

is sufficient similarity between the first three to suggest that it is the low spatial
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Manipulation Examples

 

 

Mean smoothing 

Low-pass

 

 

Fourier space 

 

 

y-component 

High Pass

 

 

Fourier space 

 

 

y-component 

Table 5.3: Examples of smoothing using a mean filter of different block sizes at 1,
5, 20 px, low-pass filtering using FFT at 10, 20 and 30 px radius, and high-pass
filtering at 10, 20 and 30 px radius on y-components.
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frequency data which leads to improved face recognition performance and that

by resizing the image effectively preserves the information contained in these

frequencies with the additional benefit of reduced dimensionality. The fourth ex-

ample (high pass) contains the higher spatial frequencies as well as the lower

and as such does not perform as well as the others which have only the lower

spatial frequencies.

Figure 5.5: An example processed image for each method with the parameter
which gave the optimum recognition result. From left to right – resizing the 10×10
image back to 80×80, mean filtering, low-pass filter, high-pass filter. Note that the
low-pass filter looks the most similar to the resized image (the third image com-
pared with the first); the low pass filtering also produced the closest recognition
performance to image resizing suggesting that the low spatial frequencies play an
important role and may provide an explanation as to why image resizing works so
well.

Dakin et al. [48] present a novel representation of faces based around the

concept of a bar code which they suggest explains some of the idiosyncrasies

of human face recognition (such as spatial and contrast polarity inversion) by

offering a theory of low-level vision. Using Gabor filters in the Fourier domain, they

extracted the low-level horizontal features from 2D face photographs. The outputs

are similar to those found in this chapter. They then go on to produce a 1D bar

code representation through the vertical mid-line of the face which they propose

tolerant to certain degradations (scale, distortion and noise) giving comparisons

with the HVS. They don’t test the method empirically and testing this and an

extension incorporating the above work on 3D using surface normals could be an

area for further research.

It is interesting that the psychophysical experiments into face recognition have

often shown the lower spatial frequencies play a more important role in face
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recognition than the higher frequencies (see Section. 2.2), but to date there has

been little research into whether this effect can be exploited by automated sys-

tems. This chapter has demonstrated the effect on two datasets of 2D and 3D

data and is backed by psychophysical findings that humans use the lower spa-

tial frequencies for face recognition. This has implications for all face recognition

systems, although it is unclear whether it would be true of very large databases

(although this is arguably true of all face recognition systems to date) where it

may be necessary to incorporate some slightly higher frequency data to boost

the discriminability of the data. Anecdotally this is the sort of information which

humans may use to distinguish between identical twins. While the overall geom-

etry of the faces will be close to identical, small scale features amongst the twins

will be different e.g. moles, wrinkles, scars and these allow for discrimination.

The earliest psychophysical experiments suggested an optimum resolution of

2.5 cycles per face [86] and a more recent experiment suggested that between

5 and 11 cycles per face give the best human performance [145]. This com-

pares favourably with the frequency of 0.0625 cpp or 5 cycles per face found in

this research. Given that the data used in these experiments is tightly cropped

compared with the psychophysical stimuli, the experiments performed here fit

reasonably well with the findings in humans. Performance for their experiments

dropped off after 11 cycles per face which corresponds with the region around

0.1375 cpp or an 11px radius in the high-pass filter results and again matches

with findings here with a sharp drop at 10px radius.

If it is possible to automatically recognise low resolution images accurately

then this could have applications for CCTV footage. However, along with the

low resolution properties common to CCTV footage, there are also commonly

other artefacts due to compression and poor illumination which would need ad-

dressing. However the common assumption that one needs to build up a high

resolution face image in some way would not be necessary. For static PS face
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capture devices such as Photoface, this chapter has shown that employing very

low resolutions (of the order of 10×10 px) enables optimal recognition rates and

as such offers an efficient way to reduce the dimensionality by exploiting low

spatial frequency data. The fact that the spatial frequencies involved at these

resolutions are in the same range as those used by humans indicates that using

findings about the HVS is beneficial. This notion is explored further in the next

chapter in which two methods of dimensionality reduction inspired by caricaturing

based outlying data values or by selecting pixel locations with high variance are

presented.
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Chapter 6

Caricature Inspired Variance and

Percentile Based Dimensionality

Reduction

The previous chapter found a successful method of dimensionality reduction

by lowering the resolution to 10×10 px without introducing a corresponding drop

in recognition rate. Interestingly this corresponds to a spatial frequency in the op-

timal range at which it is suggested that humans recognise faces. The motivation

for this chapter comes from the observation that humans are able to recognise

a caricatured face as well or better than a veridical image [154]. It is suggested

that this tells us that humans somehow use a caricatured representation of faces

either for retrieval or storage (or both) [128]. If only the caricatured regions of

a face (e.g. those that deviate sufficiently from the norm) need to be processed

then this has useful implications for data reduction. In this thesis, promising re-

sults into using caricaturing initially came from combining low resolution imagery

with exaggerating a normal using the method described in [125]. If the 5% of

pixels which deviate most from the norm are exaggerated in this way, recognition

performance is 96.6% – a 0.2% improvement over baseline. This is a promis-
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ing finding which also justifies further exploration of using caricatures to improve

automatic face recognition.

This chapter presents two direct methods inspired by caricatures and imple-

mented using a more statistical approach hypothesized by Unnikrishnan [182]

using percentile and variance based techniques.

6.1 Introduction

Ultimately, dimension reduction techniques based on a percentile and variance

based inclusion principle (to exclude 90% of the data) are compared with a base-

line condition containing all pixels. In doing so, a disproportionately small drop

in performance is seen. The use of these direct techniques as preliminary step

to reduce the search space of potential matches is explored, which can then be

analysed using a more rigorous but time consuming algorithm.

In this chapter, the following contributions for both the FRGCv2.0 database

[147] and the Photoface database are demonstrated:

1. Empirical support for a pixel-based interpretation of Unnikrishnan’s hypoth-

esis that outlying data contains disproportionately more discriminatory in-

formation than other data.

2. The exclusive use of just 10% of the data (chosen to be those pixel locations

with the greatest variance) is sufficient to maintain recognition rates to within

10% of those rates that include all of the data.

3. By combining the resolution findings from the previous chapter with variance

based pixel selection, a recognition accuracy of 96.25% for 40 subjects us-

ing only 61 dimensions (pixels) is achieved. This compares to 98% when

the full 80×80 px resolution is used on all data.

4. The combination of methods allows for efficient search space reduction as
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a preliminary step to before a more intensive and accurate method is used

(Elastic Graph Matching in this case).

Caricaturing essentially enhances those facial features that are unusual or

deviate sufficiently from the norm. It has been shown that humans are better

able to recognise a caricature than they are the veridical image [128, 154]. This

finding is interesting as caricaturing is adding distortion or noise to an image.

However this noise aids human recognition and this, in turn, provides insights

into the storage or retrieval mechanism used by the human brain.

Unnikrishnan [182] conceptualises an approach similar to face caricatures for

human recognition. In this approach, only those features which deviate from the

norm by more than a threshold are used to uniquely describe a face. Unnikrish-

nan suggests using those features whose deviations lie below the 5th percentile

and above the 95th percentile, thereby discarding 90% of the data. Unnikrish-

nan provides no empirical evidence in support of his hypothesis, so this theory

is experimentally tested. This is done in two ways: the first directly tests his

theory, finding the thresholds for each pixel which represent the 5th and 95th per-

centile values and only including those pixels in each scan which lie outside them

(outliers). The second is loosely based on Unnikrishnan’s idea, and looks at

the variance across the whole database to calculate the pixel locations with the

largest variance. Only the pixels at these locations are then used for recognition.

It should be noted that the experiments here test a pixel-based interpretation of

Unnikrishnan’s hypothesis rather than the actual one which he published which

relied on higher level features such as nose length or hair colour.

It is envisaged that this approach could be best used as a first step in the

recognition process to reduce the search space of possible matches before more

intensive and time consuming algorithms are employed. It is obviously important

for the proposed algorithm to be sufficiently accurate not to exclude matching

sessions; if this is not the case the secondary algorithm will clearly be unable to
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find the match. The effectiveness of this approach is demonstrated in combination

with a variant of Elastic Graph Matching (EGM) with morphological features [201,

202, 200].

6.2 Methods and Data

The analysis is performed on the same dataset as in the previous chapter in

Section 5.2.1. Briefly this consists of 40 subjects with 10 sessions each, with

neutral expression captured using Photoface and an equivalent subset from the

FRGCv2.0 dataset.

6.2.1 Calculating outliers and variance

The thresholds for each pixel location are calculated which represent the 5th and

95th percentile values. Of interest is the norm across the whole dataset for each

pixel location rather than the norm for each image. For the 2D images, per-

centile values are calculated for the greyscale intensity value for each pixel loca-

tion. There are 400 sessions, so there are 400 values for each pixel from which

the percentile thresholds are calculated. The same process is performed for 3D

surface normal data, giving x and y surface normal component thresholds for

each pixel. Pixels which have a value between the 5th and 95th percentile are

discarded, leaving only the 10% outlying data. This shall be referred to as the

“percentile inclusion criterion”.

Examples can be seen in Fig. 6.1. An important assumption is made when

performing recognition using these representations that very similar (ideally iden-

tical) groups of pixels will be selected for the same person across different ses-

sions. This appears to be a reasonable assumption providing the sessions are

aligned sufficiently well. The vector size remains unchanged using the ?percentile

inclusion criterion? as the vector size for those pixels which are included can be
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Figure 6.1: Examples of the y-components of the surface normals that have val-
ues outside the 5th and 95th percentiles for four subjects. A sparse representation
of features is generated.

different for different subjects and even sessions. The recognition algorithms em-

ployed here require the vectors to be of equal size and it is therefore not possible

to remove them, it is only possible to zero them. This is discussed further and

alternatives are presented in Section 6.4.

The above method extracts the least common data from each session and that

is what is used for recognition. Alternatively, the variance at each pixel location

can be used as a measure of discriminatory power. If a pixel shows a large vari-

ance across the dataset, then this might make it useful for recognition (assuming

that variance within the class or subject is small). Therefore the standard devia-

tion of each pixel is calculated over all the sessions. Whether or not a particular

pixel location is used in recognition depends on whether or not the variance is

above a pre-determined threshold. Examples of the use of different thresholds

are shown in Fig. 6.2. This is referred to as the “variance inclusion criterion”.

Figure 6.2: Examples of the regions which remain for x (top row) and y-
components (bottom row) as the threshold variance is increased from left to right.
White regions are retained and black regions are discarded.
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6.2.2 Recognition algorithm

Again the same recognition algorithm (PMCC) as outlined in Section 5.2.3 is used

for these experiments.

6.3 Results

6.3.1 Dimensionality reduction via the percentile inclusion cri-

terion

Unnikrishnan’s theory states that reliable performance should result from using

only the data which lies outside the 5th and 95th percentiles [182]. Table. 6.1

shows recognition rates on 2D and 3D data using both all data and the outliers

only. Note in particular that, for the 3D surface normal data, the rates drop by

under 10% when using outlier data only. This effect seems limited to the surface

normal data and is not seen in either the 2D or depth map data. Also included

are results from a fusion technique using the Photoface surface normal data com-

bined with the albedo image. There is a small decrease in baseline performance

and using only the outlying data leads to a severe decrease of about 34%.

Baseline Outliers Diff

2D FRGC 90 73.75 16.26
Photoface 98 64 34

3D
FRGC Surface normals 90.25 84.25 6

FRGC Depth map 71.5 23.25 48.25
Photoface 98.25 89.25 9

Fusion Photoface 2D + 3D 97 63.25 33.75

Table 6.1: Percentile inclusion criterion results. Baseline (all pixels) versus out-
lier (10% of pixels) performance (% correct). The surface normal results (which
show the effect best) are highlighted. Proportionately less performance is lost
compared to the number of pixels for the 3D data. The effect is not present for
the 2D data.

Fig. 6.3 shows a plot of recognition rate as a function of which percentile range

is used for recognition on 3D Photoface and FRGC data. It should be noted that
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similar patterns of results were found for all datasets (2D, 3D and FRGC). As pre-

dicted, the figure shows that the best recognition performance is obtained using

the most outlying percentiles. As expected also, the recognition rate reduces as

the percentile ranges used tend toward the inliers. However, for the most inlying

data of all (i.e. percentiles 45–55), there is an unexpected increase in perfor-

mance. Contrary to Unnikrishnan’s theory, this implies that there is discriminative

data that is useful for face recognition in the most common data as well as the

most outlying.
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Figure 6.3: Recognition performance using pairs of percentile ranges for 3D data
with PMCC. As predicted by Unnikrishnan, the outlying percentiles give the best
performance. The rise in performance near the central percentiles however, is
unpredicted and unexplained.

In a related experiment, single 5% ranges of data were used for recognition

(i.e. [0th − 5th], [5th − 10th] etc. ) as shown in Fig. 6.4. It can be seen that the

increase in recognition performance for the most inlying data is not replicated im-

plying that it is the combination of the ranges which leads to the increase around

the 45th − 55th percentiles. This difference indicates that there is an interdepen-

dence between the two percentile ranges.

However, performance increases by combining ranges are not always ob-

served. For example, the 25 − 30th and 70 − 75th percentiles for the FRGCv2.0
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data individually give a performance around the 50% mark in Fig. 6.4 , but when

combined, the performance drops to around 40% in Fig. 6.3.

The reason for the decrease in performance is unclear, and a fuller compari-

son of the additive effect of different percentile regions on the Photoface dataset

can be seen in Fig. 6.5 which shows the results of a large variety of range combi-

nations. This figure shows a turquoise region with a red border. The turquoise re-

gion indicates relatively poor performance and highlights those percentiles which

appear not have any useful discriminatory data (or at least data which should not

be combined with other percentile data). The red areas show good performance

– the top right (or bottom left) corner shows the performance corresponding to

outliers as suggested by Unnikrishnan, but what can also be seen is that combin-

ing the two percentiles ranges at either end of the scale (eg 0− 5th and 5− 10th,

or 90 − 95th and 95 − 100th) also results in very good performance. This clearly

shows the interdependence between the two ranges of percentiles, although the

underlying factor(s) is unknown. It would be useful to explore this relationship

further, perhaps by exhaustively combining different length ranges, and perhaps

even different numbers of discrete ranges.
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Figure 6.4: As Unnikrishnan’s theory would predict, FRGC and Photoface data
show a marked symmetry across ranges of percentiles, without the rise in per-
formance across central ranges which occurs with pairs of percentile ranges.
Recognition is performed using PMCC.
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6.3.2 Dimensionality reduction via the variance inclusion cri-

terion

One problem with the above method is that the outlying points tend to be scattered

across different parts of the images, making inter- and intra-comparisons between

individuals somewhat unstructured. For the next method therefore, the same pixel

locations are used for all images. Instead of using the percentiles as an inclusion

criterion, the variance of a particular pixel across all subjects as explained in

Sec. 6.2.1 is used.

Fig. 6.6 shows plots combining the number of pixels which remain as those

with least variance (bar plot) are removed against the recognition performance

(line plot). It is apparent that close to optimal performance can be achieved while

losing a large proportion of the pixels. Approximately 75% of the least varying

pixels can be discarded and a corresponding drop of less than 10% in recog-

nition performance is observed on the FRGC data. Indeed, for Photoface data

specifically, only lose a few percent are lost.
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Figure 6.6: Variance inclusion criterion results. Recognition (line plot) as a func-
tion of retained pixels (bar chart) using PMCC. The pattern is shown in both sets
of data (FRGC on the top row and Photoface on the bottom). 2D (grayscale for
FRGC and albedo for Photoface) on the left, and surface normal data is shown
on the right. The fact that there is not a linear relationship between the number of
pixels and the recognition performance indicates that we are selectively retaining
pixels with more discriminatory power.
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When only 10% of pixels are retained by discarding the data that varies the

least, reasonably high recognition rates are maintained for both the percentile and

variance inclusion criteria e.g. 89% and 92% for the Photoface dataset. How-

ever the processing time for the percentile based method is far greater: 800s

compared to 100s to calculate the outliers/most varying pixels and perform 400

classifications. In a practical setting the processing time is far less as there is no

requirement to calculate the outliers/most varying pixels for each classification;

they can be calculated offline.

Percentiles Variance
FRGC 84.25% ≈ 79%
Photoface 89% ≈ 92%
Processing time 800.64s 180.95s

Table 6.2: A comparison of recognition performance using percentiles and vari-
ance methods to select the most discriminatory 10% of the data. The processing
time includes the calculation of the outliers/most varying pixels and 400 classifi-
cations

The processing time improvement for the variance approach is due to having

decreased the vector size by 90%. This compares to 973.09s for the equivalent

Fisherface analysis which provides an accuracy of 99.5% so both methods offer

considerable time savings at a small cost to accuracy.

By combining the resolution findings of Chapter 5 (using a low resolution of

10×10 px) with the variance method above, comparable recognition performance

to an 80×80 px image can be achieved using only 64 pixels for FRGC data and 61

pixels for Photoface data. Recognition rates of 87.75% and 96.25% are recorded

(a loss of only 7% and 2% respectively from resizing the images to 10×10 px

as shown in Table 5.1). The processing time is also reduced to 10.5s for vari-

ance analysis and 400 classifications. The same analysis using the Fisherface

algorithm takes 118s and achieves a comparable rate of 89.25% on the FRGC

data.
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6.3.3 Using Variance Inclusion to reduce search space

The two proposed methods show that data can be selected which contains dis-

proportionately more discriminatory data than that which is discarded. Both give

similar performance, but the variance-based approach has the additional bene-

fit of being faster. The use of the variance inclusion criterion as a precursor to a

more intensive recognition algorithm (Elastic Graph Matching (EGM)) as a means

of reducing the search space is explored next.

EGM is a well known technique in face recognition with proven performance

[148] which comes at the expense of complexity. One of the best known imple-

mentations is the Elastic Bunch Graph Map [191] where faces are represented

as a graph of nodes. Each node is situated on a fiducial feature and consists of a

number of Gabor coefficients at different orientations and scales. The Gabor co-

efficients and the distance vectors between nodes are used as biometrics. Here,

a version of EGM that incorporates morphological features instead of Gabor filters

is employed1, full details of which can be found in [201, 202, 200]. First the images

are resized to 10×10 px, and the variance inclusion criterion is used to reduce the

size to 20% of the original resulting in 18 dimensions. Then PMCC is employed,

of which the n closest matches are chosen and are then each compared to the

probe using EGM. The method is applied to a subset of the Photoface Database

consisting of 1000 frontal sessions of 61 subjects with no expression. The results

are shown in Table 6.3.

Each EGM comparison takes about 1.5 seconds so the total time to compare

one probe to all 939 gallery sessions is 1.5×939 = 1409s or just under 25 minutes.

The time saved in reducing the number of comparisons is therefore important and

the time is reduced to about 2.5 minutes by only performing EGM comparisons

against the top 100 matches.

Alternatively the number of pixels which are retained during the variance anal-
1binaries supplied by the author S. Zafeiriou, Imperial College London.
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Method Surface Normals Depth Map Approx. Proc. time
Proposed alg. (18px) 85.4% 44.3% 0.12s
Proposed alg. (18px) + EGM (n = 100) 95.08% 91.8% 150s
Proposed alg. (18px) + EGM (n = 10) 91.8% 73.74% 15s
Proposed alg. (61px) + EGM (n = 10) 95.08% 95.08% 15s
EGM 100% 100% 1409s

Table 6.3: Recognition performance on surface normals and depth maps using
resizing to 10×10 px and applying the variance inclusion criterion to reduce the
search space before using EGM. By using EGM it is possible to dramatically in-
crease the performance of the proposed algorithm while minimizing and increase
in processing time as a result of using a more intensive algorithm. The Approx
Proc. time provides the time for one probe to be recognized. The dataset was
1000 frontal expressionless Photoface sessions.

ysis can be increased to a similar amount that gave good performance in the

previous section (i.e. 61px). By doing this performance when n = 10 is at a par

with performance when n = 100 with 20% of pixels retained.

By examining the rank-n performance plots (Fig. 6.7) it is possible to get an

indication of a suitable number of dimensions and the approximate number of

candidates to select for the subsequent EGM step. It is clear that 18px is too few

as 100% accuracy is not achieved even at rank-200 performance, which would

mean that the correct gallery image would not be selected amongst the set used

by EGM. However the performance using 61px is 100% at rank-100 which sug-

gests that these would be suitable parameters. The EGM algorithm would only

have to run a tenth of the number of comparisons and still achieve 100% accu-

racy.

6.4 Discussion

The results show that using direct techniques based on using outlying data or

the most varying pixel locations are effective at reducing the dimensionality of

the data without a corresponding drop in recognition performance. Here, the

resolution effects explored in the previous chapter are combined with the variance

inclusion criterion.

Computationally efficient methods using variance analysis and image resiz-
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this is too small a number of dimensions. However at 61px, 100% accuracy is
achieved at rank-100, suggesting that this might be a suitable number of dimen-
sions to use to effectively reduce the search space needed by the computationally
intensive EGM algorithm.

ing have been shown to be powerful means of reducing data but maintaining

discriminatory information. Table 6.4 compares the commonly used dimension

reduction techniques (eigenfaces and Fisherfaces) with the proposed variance

and percentile inclusion criterion techniques at different resolutions in terms of

classification accuracy and processing time. For convenience these results have

also been plotted (see Fig. 6.8). All experiments were carried out in MATLAB R©on

a Quad Core 2.5GHz Intel PC with 2GB ram running Windows XP. Only one per-

centile inclusion criterion result has been included as performance (especially

processing time) was not at the same level as other conditions.

The number of components which are used for eigenfaces depends on the

specific test as follows: 61 components (61PCA, row 6 of Table 6.4) were chosen

for a direct comparison with the 61 variables of the variance inclusion criterion

which gave good performance in Fig. 6.6. 15 components (15PCA condition, rows

7, 10 & 14) were chosen arbitrarily as an extra step after the variance inclusion

criterion for its low dimensionality and relatively good performance. For other

tests using eigenfaces, the number of components are chosen which describe
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85% of the variance. Some entries in the “No. Dimensions” column have (10%)

shown next to them. This is a reminder that only 10% of the data remains after

applying the variance inclusion criterion. Finally some of the rows contain a “→”

symbol representing a combination of processes e.g. Variance Inclusion followed

by Fisherface.

Generally resizing the image to 10×10 pixels gives a clear processing time

advantage with little or no compromise on accuracy. Without additional dimen-

sionality reduction, a recognition rate of 98.25% (row 1) is achieved. The dimen-

sionality can be reduced by a further 66% and only 2.5% performance is lost by

additionally using the variance inclusion criterion to select 61 pixel locations (row

3). This appears to give the best compromise in terms of the number of dimen-

sions, processing time and accuracy. The Fisherface algorithm gives excellent

performance (10×10 Fisherface gives 100% accuracy, row 12) but at the cost of

increased processing time.

These results only apply to the simplest case in face recognition – the frontal,

expressionless face. The variance inclusion algorithm would be unlikely to pro-

duce similarly good results if expressions were present in the dataset, as these

are likely to produce areas of high variance which will not be discriminatory.

Nonetheless these could be used for the purposes of expression analysis instead

of recognition or alternatively areas which change greatly with expression could

be omitted from the variance inclusion criterion.

It should be noted that although the outliers method reduces the amount of

data used for classification, it does so by a sparse representation rather than by

discarding the data. This means that the actual image dimensions are not re-

duced, but methods such as run length encoding could be used for compression,

or methods that rely on sparse representations could be employed for recogni-

tion. Alternatively, one could provide the x and y coordinates of each non-zero

pixel in addition to the pixel value as the feature vector, and discard all zero data.

The variance approach does not suffer from this drawback, as the same pixel lo-
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cations are used for each image, and so the vector for each image represents the

same parts of the face.

It is clear that effective dimensionality reduction can be achieved via more

direct, psychologically inspired models in contrast to conventional mathematical

tools such as PCA. Processing speed is also drastically increased – if the Fish-

erface algorithm is used on 80×80 px images, it takes 973.09s. Using 10×10 px

images, processing time drops to only 13.02s using the proposed variance inclu-

sion method to extract 61 pixel locations with only a 3.75% drop in performance.

Additionally, the effectiveness of combining the resizing and variance inclusion

criterion approach with more computationally intensive and accurate algorithms,

namely EGM, is demonstrated. Processing time can be reduced greatly with only

a small cost to accuracy.

In summary, a number of important findings have been presented regarding

the effects of resolution and the use of different inclusion criteria on face recogni-

tion performance. The findings have implications on real-world applications in that

they point to computationally attractive means of reducing the dimensionality of

the data. Empirical support of Unnikrishnan’s hypothesis [182] regarding the use

of outlying percentile ranges is provided on both the FRGCv2.0 database as well

as the Photoface database although the results suggest that there are complex

interactions between different percentile ranges rather than just the outlying 10%

per se (Fig. 6.5). One of the most promising results comes from combining the

resolution effects explored in the previous chapter from 80×80 pixels to 10×10

pixels and applying the variance based inclusion approach yielding an accuracy

of 95.75% using just 61 dimensions and the fact that this heuristic was inspired

by the human process of caricaturing. Using this combination of techniques, pro-

cessing speeds can also be increased tenfold over the conventional Fisherface

algorithm. Additionally it has been shown that these methods can be used as a

preliminary step to effectively reduce the search space in a large database before

employing a more intensive algorithm.
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Using a direct variance analysis approach identifies pixel locations which con-

tain disproportionately large amounts of discriminatory information for face recog-

nition. The data used for this analysis had neutral expressions and, as noted

earlier in the discussion, expressions will lead to large amounts of variance, po-

tentially confounding the system. In the next chapter the 3DE-VISIR database

which contains three expressions for each subject is used to show that it is pos-

sible to improve face recognition performance by removing those pixel locations

which vary most between certain expressions.
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Chapter 7

Classification of Expression using

the Variance Inclusion Criterion

The two previous chapters have explored using direct statistical methods to

downsample the image or to identify either outliers or pixels which show high

variation as a means of dimensionality reduction. Performance using a variance

based approach paired with image downsampling is comparable to more inten-

sive methods for the purposes of face recognition. This chapter concerns itself

with two aspects of expression – its classification and its removal to improve face

recognition performance.

7.1 Introduction

In this chapter, ways of incorporating the variance based approach into expres-

sion processing are explored. A commonly cited problem in face recognition is

expression, and using the variance approach will almost certainly fail on faces

with different expressions to those on which the variance analysis is performed.

This is because the variance inclusion criterion relies on the assumption that high

variance at certain pixel locations is caused by differences between subjects and
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not by within-subject variations. Expressions cause large scale within-subject

variations and this chapter looks at the differences in performing variance analy-

ses on different face expressions and how these might affect face recognition.

Also, this chapter extends the use of variance information to simple expres-

sion classification. The applications for expression recognition are not so imme-

diately apparent as for face recognition. It is nonetheless a fast growing area of

research interest, the outcomes of which will likely impact future systems. Sug-

gested uses are systems that are able to modify the feedback depending on a

subject’s expression which might be useful in video tutoring, or detecting deceit

during interviews/interrogations and in human-machine interaction. With an in-

creasingly aged population, robots to perform care duties could also benefit from

being able to classify expressions in order to gauge an expected response better.

Current research is also looking at expression recognition for helping those with

developmental disorders such as autism to improve their expressions through an

interactive game called SmileMaze [36]. This system uses the Facial Action Cod-

ing System (FACS) which is an attempt to quantify aspects of an expression. The

system is able to automatically score a face in terms of FACS and then use this

to estimate the expression. If the smile generates a sufficiently high action unit

score, an obstacle is removed from the maze and the subject progresses.

A different possible use for an expression classification system would be as a

pre-capture step in order to screen the probe subject and ensure that their facial

expression matches whatever the system expects. Beveridge et al. found that,

contrary to most experimental data, smiling faces lead to better recognition than

neutral [21], so it may be useful to be able to recognise that a subject is smiling

before a probe image is used for recognition.

Similar to face recognition, expression recognition research broadly falls into

the same two categories, feature-based and statistical approaches. In the same

way, feature based methods analyse fiducial features, the locations and ratios

of landmarks to classify expressions (the above automated FACS coding system
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is an example of this), and statistical techniques such as PCA, FLD and ICA

are used to model the way in which the global appearance of a face varies with

expressions.

Again, in common with face recognition research, one of the most commonly

used and reliable feature representations is to use Gabor filters [203, 54] and

in turn this has motivated research into using the functionally similar but more

efficient Local Binary Patterns (LBP) to improve expression classification [161].

There are also temporal approaches which measure the onset, apex and offset

phases used by FACS of an expression in order to perform classification using

the optimal fiducial feature displacement for the expression [183]. Optical flow

has also been used to quantify temporal differences between frames in face ex-

pression recognition [60].

Expression classification is a research area in its infancy compared with face

recognition. The Cohn-Kanade Action Unit Coded Facial Expression Database

[101] is perhaps the most commonly used dataset (recently updated to CK+ [122])

due to its rich metadata which codes all the action units of each face. However,

as stated by Valstar et al. , researchers often use different parts of the database

with different training and evaluation protocols. This year Valstar et al. ran the

first Facial Expression Recognition and Analysis Challenge (FERA) which uses

its own database and standardises an evaluation methodology [184]. It will be

interesting to see whether this challenge is adopted as successfully and whether

the technology advances as quickly in this area as it did with the FRGCv2.0 chal-

lenge.

Little research exists into using 3D data for expression recognition, probably

due to the lack of availability of 3D and 4D databases until recently (BU-3DFE

[197] and BU-4DFE [196]). The first comparison of 2D versus 3D data for expres-

sion classification showed that 3D provided better results for detecting action units

for classification [157] except for some action units in the upper face. They also

state that a neutral expression is useful for improving classification to provide a
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difference image for 3D data. Kakadiaris et al. report extremely good results (over

95% accuracy) on the FRGCv2.0 subset of expression data using an Annotated

Face Model (AFM) [99]. A variant on this approach also scored very well on a

new dataset involving identical twins [186] .

As with face recognition approaches, the methods used are often complex and

computationally intensive. This chapter explores whether the variance and reso-

lution based approaches explored in the previous chapters can be employed for

expression classification and whether this in turn can be used to improve recog-

nition rates. The main contributions of this chapter are a demonstration of the

3DE-VISIR database as an effective database for expression analysis (with 90%

accuracy in classifying a postive expression from others), evidence that high vari-

ance pixel locations on the face encode more expression information than identity

recognition information and that by removing these pixels, recognition rates can

be increased by just under 5%.

7.2 Methods and Data

The data used in this chapter comes from the 3DE-VISIR database and consists

of 80 subjects and 644 sessions in total captured using visible light and NIR light

source PS with three expressions (positive, negative and neutral – see Sec. 4.2

for more details). While this is a far smaller dataset than the Photoface database

it contains controlled capture of different expressions. The faces are cropped

tightly for reasons outlined in 5.2.1 and examples can be seen in Fig. 7.1.

Three expressions are captured for each subject and classification accuracy is

assessed. For this classification, the Fisherface algorithm is chosen which treats

the different expressions as different classes. Whether visible, NIR or combined

light source data provides best performance is investigated. It might be expected

for algorithms to perform the best on the combined dataset as it doubles the num-

ber of samples per condition, which has been shown to improve the performance
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Figure 7.1: Examples of two subjects from the 3DE-VISIR showing typical ex-
pressions of the cropped data. Left to right, Positive, Neutral and Negative.

Figure 7.2: Example showing the face symmetry altering with the Negative ex-
pression. The jaw has moved the left.

of the Fisherface algorithm. By chance alone a 33.3% accuracy would be ex-

pected. A number of pairwise tests are then performed to explore whether any

expression is more easily identifiable than the others. Again the leave-one-out

paradigm is used to maximise the number of trials.

As expression is likely to account for a great deal of variance in pixel values,

can this be used as useful information for expression classification and inversely,

to aid identity recognition? Experiments performed here test this hypothesis by

using the variance inclusion criterion.

Finally the resolution effects that were found to aid face recognition at low

resolution rates are explored to see whether they can aid expression recognition

in a similar way as is suggested by research into the HVS.
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7.3 Results

Table 7.1 contains results for expression classification using combined light source

data and visible and NIR data. As expected, combining the datasets provides the

best results which is likely due to Fisherfaces being better able to discriminate

given more data. The combined results show correct classification of the three

expressions 63.75% of the time. The best performances are distinguishing be-

tween a Positive and a Neutral face (88.03%) and a Positive face from a Negative

face at (87.5%). It also shows that it is not possible to reliably distinguish be-

tween negative and neutral faces (50.75% is only just above chance of 50%).

This is likely due to the frown (the commonest Negative expression) being far

more similar to the Neutral face than the Positive expression. Therefore the Neg-

ative and Neutral faces are combined into the Other class and results show that

the Positive faces can successfully be separated from these Other expressions

reliably (90.51%).

Light
Expression +ive,-ive,Neu +ive,-ive +ive,Neu +ive,-ive +ive,Other

Vis+NIR 63.75 87.5 88.03 53.75 90.51
Vis 61.02 83.60 87.32 56.91 87.12
NIR 57.97 85.71 82.16 47.87 86.44

Table 7.1: Fisherface classification results for Positive (+ive), Negative (-ive) and
Neutral (Neu) faces for Visible, NIR and combined light source data. By chance
alone, 33% accuracy for the first column and 50% for the other columns would
be expected. Positive expressions are most distinguishable. The expression cat-
egory Other combines Negative and Neutral data and gives the highest classifi-
cation performance when distinguishing from Happy expressions.

These levels of correct classification (except for the Neutral and Negative con-

dition) show that there is reliable discriminatory data. If it is assumed that this

comes from areas of highest variance, can the variance inclusion principle be

used (which is successful for subject recognition), in the same way on expression

classification? For example, is it true to say that pixel locations with the highest

variance are the most discriminative in expression classification? Furthermore,
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if it is possible to identify regions/pixels which vary greatly with expression these

can be removed and then the remaining (expression invariant) pixels can be used

for identification.

Fig. 7.3 shows the standard deviations of the pixel locations for different ex-

pressions and the dataset as a whole (i.e. all expressions) together with thresh-

olded variance masks. These are generated in the same way as described in

Section 6.2.1 and shown in Fig. 6.2. Visually comparing the figures, of most inter-

est is the row containing the results for the Positive data (containing images with

the red border). The standard deviation map for the x-components (first column,

top row) highlights the cheek areas while the y-components (first column, bot-

tom row) clearly show an upwardly bowed mouth area (this is also present in the

corresponding Negative expression map, but is less pronounced). These areas

correspond with the typical changes that occur with a smiling mouth – the cheeks

bunch as the lips are extended laterally and raised at the edges.

7.3.1 Expression Classification using Variance Inclusion Cri-

terion

In order to test whether the variance inclusion principle can be used successfully

for expression classification it is necessary to identify which pixel locations with a

high variance are caused by different expressions rather than different identities.

As the Positive expressions gave the most reliable performance, the variance

inclusion principle is employed in an attempt to distinguish between a Positive

expression and the Neutral subset. To do this, the pixel locations with the highest

variance must be found in the Positive and Neutral subsets and then use the

difference between these as the mask. The standard deviation σ of each dataset

is used to provide a map of variance d as shown in Eqn. 7.1.

d = ||σpositive − σall| − |σneutral − σall|| (7.1)

150



E
xp

r.
σ

Th
re

sh
ol

de
d

va
ria

nc
e

m
as

ks

A
ll

x y

Po
si

tiv
e

x y

N
eu

tra
l

x y

N
eg

at
iv

e

x y

Fi
gu

re
7.

3:
S

ta
nd

ar
d

de
vi

at
io

n
(σ

)
m

ap
s

an
d

th
re

sh
ol

de
d

va
ria

nc
e

m
as

ks
ac

ro
ss

fo
ur

di
ffe

re
nt

ex
pr

es
si

on
s

fo
r
x

-c
om

po
ne

nt
(to

p
ro

w
of

ea
ch

ex
pr

es
si

on
)

an
d
y
-c

om
po

ne
nt

(b
ot

to
m

ro
w

of
ea

ch
ex

pr
es

si
on

s)
.

Th
e

fir
st

(c
ol

ou
re

d)
im

ag
e

in
ea

ch
ro

w
sh

ow
s

th
e

st
an

da
rd

de
vi

at
io

n
fo

r
ea

ch
pi

xe
l,

th
e

ne
xt

ei
gh

ti
m

ag
es

sh
ow

th
e

re
su

lts
of

th
re

sh
ol

di
ng

at
eq

ua
li

nt
er

va
ls

be
tw

ee
n

th
e

m
in

im
um

an
d

m
ax

im
um

st
an

da
rd

de
vi

at
io

n.
Th

os
e

im
ag

es
in

re
d

bo
xe

s
in

di
ca

te
th

e
re

co
gn

iz
ab

le
as

pe
ct

s
of

a
sm

ili
ng

fa
ce

–
th

e
ch

ee
ks

bu
nc

h
(s

ho
w

n
in

th
e
y
-c

om
po

ne
nt

)a
s

th
e

lip
s

ar
e

ex
te

nd
ed

la
te

ra
lly

an
d

ra
is

ed
at

th
e

ed
ge

s
(s

ho
w

n
m

os
tly

in
th

e
x

-c
om

po
ne

nt
).

151



An example of the map can be see in Fig 7.4(a).

(a) (b)

Figure 7.4: a) The difference in variance between Positive and Neutral faces for
x-components (left) and y-components (right). b) The results of applying a mask
to surface normals. The darkest blue regions are removed from the faces before
comparison. The mask is produced by thresholding (a) to produce something
similar to those masks shown in Fig. 7.3.

Applying a threshold to the difference images provides a mask which is applied

to the probe and gallery images to remove the pixels which contain the most

expression variant information. An example of the mask applied to a face can be

seen in Fig 7.4(b) where the dark blue areas correspond to the largest difference

in variance between the Positive and Neutral faces and are removed from the

faces before comparison.

Expr. Px/Rec. Px Expression Correct Recognition Correct

12800/12800 88.03 61.74
3200/9600 84.51 63.62
6400/6400 86.85 65.26
9600/3200 87.32 64.32

Table 7.2: Percentage accuracy at classifying between Positive and Neutral ex-
pressions using the variance inclusion criterion to determine the most useful pixel
locations together with subject recognition based on the remaining pixels. There
are 12800 pixels in the raw image data. The reader may be wondering why the
recognition rates are so low – likely causes include small sample size and facial
expressions.

Table 7.2 compares three threshold values with the baseline Positive/Neutral

expression classification and subject recognition. The first column provides the

number of pixels on which classification/recognition occurs, and the second and

third columns respectively provide the percentage of expressions and subjects

correctly classified. It can be seen that for the expression classification the base-
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line performance is not improved upon (88.03%), but that the number of pixels

used in the analysis can be reduced with only a relatively small reduction in per-

formance. This is likely an indication that the selected pixel locations encode

expression data to a larger extent than the discarded pixels. Instead of using

the pixels that code expression for expression classification, the inverse of the

mask can be used for face recognition. The assumption is that the pixels which

remain after the expression variant pixels have been removed encode the identity

of the person. The third column shows the results of this, and there is almost a

4% increase in performance when those half of the pixel locations that show the

highest variance are removed.

In summary by using the pixel locations which vary the most between Positive

and Neutral expressions, just over half of the pixels can be removed and only a

couple of percent in expression recognition accuracy is lost, and that by using the

inverse of these pixel locations, the subject recognition accuracy is improved by

just under 4%.

7.3.2 Resolution Effects on Expression Classification

Reducing the resolution down to 10×10 px was found to increase the recognition

accuracy in Chapter 5. Here, the effects of resolution on expression recognition

accuracy are tested. Research into the HVS has suggested that lower spatial

frequencies code the expression of a face as well as the identity [158] so it might

be expected that lower resolutions are also beneficial for automated expression

recognition.

As shown in Fig. 7.5, the size which gives the best performance in terms of

recognition rate on the 3DE-VISIR database is 38×38 px (50.85%) but because

the graph peak is small, the recognition rate remains steady down to resolutions

as low as 20×20 where there is only 1% decrease. This is still larger than that for

the FRGCv2.0 or Photoface database datasets. The reason for this is unknown,
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Figure 7.5: Recognition performance on the 3DE-VISIR dataset at different reso-
lutions. Again recognition performance is not affected by low resolutions.

but is likely due in some way to the variety in expressions. Next, the optimum size

for expression classification for the same categories as in Table 7.1 is explored,

the results of which can be seen in Table 7.3 and Fig. 7.6. These show that

the best (or close to) expression classification rates occur at low resolutions of

10×10 pixels. An unexpected finding is that the rate drops to a minimum at about

15×15 pixels before rising again to near optimal performance at 40×40 pixels.

These are interesting findings, but need validation on a larger dataset before any

firm conclusions can be drawn from them.

Expression
Resolution 5 10 15 20 40 80

+ive,-ive,Neu 68.31 69.66 58.98 58.47 68.31 70.85
+ive,-ive 88.89 87.30 70.90 86.24 88.36 89.15
+ive,Neu 87.09 86.85 65.49 81.92 87.56 88.03
-ive,Neu 64.36 61.45 60.11 62.50 65.43 64.63
+ive,Others 88.47 91.19 81.70 76.78 89.15 90.51

Table 7.3: Percentage accuracy at classifying expressions at different resolution.
These are the data for Fig. 7.6.

7.4 Discussion

This chapter has explored whether direct methods (resizing and variance based

selection) which were found to improve recognition rates in previous chapters,
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Figure 7.6: Expression classification performance on the 3DE-VISIR dataset at
different resolutions. Again in line with human findings, low resolutions do not hin-
der expression classification. The reason for the consistent drop in performance
around the 15×15 px resolution is unknown.

could also be used to classify expressions and furthermore to provide some level

of expression invariance.

The ability to classify an expression as Positive versus any other expression is

by far the most reliable (around 90%). This is interesting and a potentially useful

finding if a recognition system requires smiling rather than neutral faces.

The results also provide some evidence that the pixel locations whose values

vary the most between expressions are those that code the expression informa-

tion, and that the inverse pixel locations code identity, and that an improvement

in recognition rate shows some expression invariance of these pixel locations. By

removing the pixels which vary the most with expression the subject recognition

rate can be improved slightly. Instead of removing the pixels, it might be interest-

ing to replace them with the mean value of that pixel across all captured sessions

- in this way we might expect the expression to become more neutral.

Agreeing with findings in Chapter 5, expression classification appears to not

be adversely affected by very low resolutions (typically only about a percent in

performance is lost in resizing from 80×80 px to 10×10 px). However, there is
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a dip in performance across all conditions (except the Neutral versus Negative

expressions) at 15×15 pixels. The reason for this unclear. Again it is interesting

that these findings are similar to those found in psychological studies [158] – that

lower spatial frequencies code expression.

There are limitations to the experiments here in that they use a database which

contains only three expressions, and those three are captured under constrained

conditions meaning that the expressions are likely to be forced. It would be inter-

esting to apply the technique to a larger and more unconstrained database of 3D

surface normal data, but to date none exists so this would be interesting future

work.

The final chapter looks at how the findings here and in previous chapters can

be combined into a fully developed face recognition system.
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Chapter 8

A Proposed Fully Automatic Face

Recognition System

The previous chapters have tested how accurate PS is for face capture, developed

methods of dimensionality reduction which are inspired by the HVS and attempted

to use these findings to improve robustness to expression. These are all important

findings which contribute toward a fully automated face recognition system. Even

though taken together, these findings represent a sizeable amount of work toward

a fully automated system, it seems natural to identify the areas which are still

missing and make some preliminary investigations into them. It is suggested

that automated feature detection to allow for automated alignment and defining a

threshold to allow unknown subjects to be rejected need to be found. Here, all the

work of previous chapters are brought together into a fully implemented system

and some of the wider implications to face recognition are discussed. Fig. 8.1

shows the steps required to capture and recognise a face. Those steps in green

represent two areas which are missing from the system as discussed so far, and

this chapter goes some way to address them.

For the most part the pipeline is self-explanatory, although a few points need

some expansion. For example, in the second and third processes, expression

classification and roll correction are mentioned. The purpose of the expression
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Figure 8.1: A pipeline of a developed system. Those in green represent the two
areas addressed in this chapter, while red boxes highlight contributions made in
this Ph.D..

classification at this point is to reject and retake the capture if they do not have

the required expression. There is currently no pose estimation system, but one

would be required in the same way to ensure that the subject is frontal with min-

imal pitch. Because the face is captured in 3D there is the opportunity to correct

for minor pose deviations (as long as no part of the face is obscured by another).

However to do so would require surface generation, rotation correction and then

conversion back into surface normals – additional processing which is undesir-

able. An alternative to this would be to employ a rejection mechanism whereby

instead of the computer making the required corrections, the user can simply be

prompted to make them before walking through the device again. The fifth box,

“Expression Classification” would come into play if such a rejection mechanism

was not employed in order to remove the most expression variant pixels to boost

the recognition performance as shown in Chapter 7.

This thesis has focussed on methods of reducing dimensionality through di-

rect methods which in some ways have been inspired by the HVS – reducing

the resolution and selecting pixel location with high variance or outlying values.

Throughout the experiments, a simple true positive (the number of correctly iden-

tified individuals) recognition rate has been used to assess the efficacy of the

proposed methods. However it tells us nothing about the number of individu-
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als who are incorrectly classified as another i.e. “Bob” is recognised as “Alice”.

This is arguably the worst case scenario for an automated recognition system –

granting access to an individual who should be denied. Conversely, incorrectly

denying access to an individual would pose more of an inconvenience than a se-

curity issue, as secondary methods such as keys or passwords could be used.

In order for a face recognition system to be able to perform such functions it is

necessary to define a threshold distance which will reject a probe image if it is

not within a certain threshold of a gallery image. If this threshold is too lenient

then the false positive rate will be unacceptably high (and unauthorised individu-

als could be granted access), if it is too strict then the true positive rate will be too

low (and authorised individuals will be rejected). Such a threshold is empirically

determined later in the chapter.

The tightly cropped face images used in the experiments throughout the the-

sis provided high recognition rates and it would seem advantageous to keep to

this format. In order to crop the images, certain fiducial features are used to

scale and align the images (for more information see Section 5.2.1). The fiducial

features are all manually labelled on the data which is necessary for experimen-

tal purposes but is impractical for a deployed system. We therefore need some

way of automating this process. There are many landmark detectors in the lit-

erature e.g. eyes, nose, nasion etc. but here we look at using an extension of

Haar-like features for detection of landmarks on surface normal representations.

First we explore using the standard Haar-like features that Viola and Jones used

in their seminal paper [187] to detect the lateral canthus and then look to extend

a Haar-like feature for direct detection of spherical caps and cups through surface

normal analysis in order to detect the nose tip, nasion and interior canthi areas.

As a consequence of this process, we show that a clear horizontal pattern of the

face presents itself which has the potential to correct roll pose.
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8.1 Introduction

Viola and Jones [187] presented a novel face detection method which worked via

a boosted cascade of Haar-like features. These features are shown in Fig. 8.2.

Each of these features are positioned exhaustively over the image and at each

position, the sum of pixel intensities within the white areas are subtracted from

the sum of the pixel intensities in the black areas. The features are then resized

and reapplied to the image to build up a large set of features (about 45,000 which

is in contrast to the 180,000 stated in the paper 1. To speed the calculation Viola

and Jones used what they termed the integral image in which each pixel’s value is

the sum of all those to the left and above its location. Therefore instead of calcu-

lating the sum of all the individual pixels in each area of the Haar-like feature, any

rectangular area can be computed in four array references, and the difference

between two rectangular areas can be calculated in just eight. They then use

the Adaboost algorithm for selecting the best features and to train the classifier

over a large training set of positive and negative examples (about 10,000 of each

at 24×24 pixels). This is very time consuming but needs to only be performed

once. Empirically they then determine which combinations of these features pro-

vide the best performance in their cascade. The benefit of the cascade is that

the descending classifiers eliminate many negative examples without the need

of further processing at each stage. They report excellent results on their 38-

level cascade of classifiers which is made up of 6061 features which is capable

of processing a 384×288 pixel image in just 0.067 seconds.

Due to their reported performance on 2D photographs, the Haar-like features

would seem an ideal candidate to extend for use in this system. Additionally the

Haar-like features are likely to give similar, albeit simplified, results to more com-

plex Gabor filter type processing which have been shown to be very effective for

automated systems but also model the HVS. Vertical and horizontal edges, verti-
1In personal correspondence, one of the authors (Mike Jones) responded that this was due to

them only analysing every other pixel.
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Figure 8.2: Representative examples of the Haar-like features used by Viola and
Jones, reproduced from [187]. These are windowed over an image, and the sum
difference between the pixels under the shaded and the unshaded regions are
calculated for different scales of the features to produce weak classifiers for a
face. Adaboost is then used to select the best performing weak classifiers and
these are combined into a cascade which enables rapid real-time face detection.

cal lines and diagonal lines will be detected by the features shown in Fig. 8.2. The

resizing of the features means that different scales are detected. Firstly, detection

of the lateral canthi in the surface normals is attempted using the same features

as those used by Viola and Jones with promising results, although computational

time was found to be prohibitive. Then a new feature (inspired by the Haar-like

features but tuned to work on surface normal data), containing three square ar-

eas (Fig. 8.4) is used in order to detect spherical caps and cups e.g. the nose and

interior canthi regions.

Once suitable fiducial features have been identified it is possible to align and

scale the image as required and for the recognition algorithm to be run. Regard-

less of the algorithm run, some sort of comparison between probe and gallery

images must occur which results in a similarity score. In previous chapters the

highest correlation score using PMCC or the lowest Euclidean distance using the

Fisherface algorithm have been used to return what is known as the Rank-1 result
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– the top result is the correct one. It is common in the literature to report other

rank scores e.g. Rank-3, Rank-5, Rank-10 in which the correct subject is returned

in the top three, five and ten matches.

A stricter measure which would be more suited to a real-world deployment

would be the use of thresholding on the distance measures to accept or reject

probes. For example, the FRVT2006 tests set performance goals of 0.1% FAR

(which equates to one person falsely being identified in 1000 trials) and a verifica-

tion rate of 98%. A simple and commonly used method to compare performance

is to use the Equal Error Rate (EER) which is the point at which False Accept Rate

(FAR) and False reject rate (FRR) are equal – the lower the EER the better the

performance of the system. In order to inform the decision on a suitable thresh-

old the FRR or True Accept Rate (TAR) versus FAR can be plotted to generate

a ROC. The compromise between a system that is overly selective and falsely

rejects probes and one which misidentifies probes can then be visualised and a

threshold which provides the desired level of performance can be chosen.

8.2 Methods and Data

The initial experiments described here look at detecting the left exterior lateral

canthus using Haar-like features. Essentially, this applies the Viola and Jones

[187] method to surface normal components. The features were applied sepa-

rately to the x and y-components of 300 images of the left exterior lateral canthus

(positive) and 600 images of parts of the face other than the left exterior lateral

canthus (negative) training examples. The training images were 24×24px in size.

Haar-like features were moved across the image in turn and the resultant score is

calculated and stored for each. In-keeping with the original work, every other pixel

was skipped in order to increase efficiency. After this had been performed with all

of the Haar-like features, at all scales, at all locations the features are ordered by
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score. Without calculating the cascade the 100 top performing were run against

the surface normal components of an unseen image to give the result shown in

Fig. 8.3. For comparison the features were also run against a grey scale albedo

image having been trained on the same numbers of positive and negative albedo

examples.

Figure 8.3: Landmark feature detection using Haar-like features from the method
of Viola and Jones. Highest scores for the albedo image (left) and y-component
(right) using the 100 top performing features. The top score for the albedo is
located very close to the actual left lateral canthus (red square), but there are
many false hits for the surface normal data (the blue square indicates the closest
match).

While this appears to work well for the albedo image, and highlights the correct

region in the image of y-components, there are also a great deal of false positives.

This may be caused by too small a number of training examples. While this is an

indication of the possible usefulness of using the technique developed by Viola

and Jones, the Haar-like features are designed for use with intensity images /

photographs rather than surface normals. Therefore, experiments follow that look

at creating a new Haar-like feature which extends those in Fig. 8.2 for detecting

spherical caps and cups.

The nose tip is the feature targeted for extracting as it is a useful marker given
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its central location in the face. The nose tip can broadly be thought of as a spher-

ical cap shape, which lends itself well to detection via a two-stage Haar-like de-

tector – one on the x-components and one on the y-components of the surface

normals. Due to the symmetrical nature of the spherical dome of the nose tip, it

is also rotationally invariant. Fig. 8.4 shows the nose tip as an enlarged region –

what can clearly be seen is the ridge structure travelling vertically and horizontally

in x and y-components respectively (the green pixels). Therefore an extension of

the Haar-like feature shown on the far right of Fig. 8.4 is applied, which is de-

signed to respond optimally to this ridge. By rotating it 90 degrees it should then

respond well to the y-components. Each of the differently coloured blocks contain

a matrix of either -1, 0 or +1 as indicated on the diagram of 10 × 10 px. This

feature is moved across the surface normal components, the difference between

the -1 and +1 blocks calculated and then the results for the x and y-components

are multiplied together. The results of this procedure can be seen in Fig. 8.5 of

the results section.

-1 +10

a b

Figure 8.4: (a) illustrates the enlarged nose tip showing the x and y-components
respectively, and (b) is the proposed basic filter for surface normals inspired by
the Haar-like features used by Viola and Jones.

With regards to selecting a suitable threshold the next section presents ROC

curves comparing the performance using PMCC and Fisherface on 10×10 px

images.
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8.3 Results

This section presents preliminary work into using surface normals for landmark

detection and empirically deciding on a suitable threshold for the given database.

8.3.1 Feature Detection

x-component y-component x′ y′ x′ × y′

Figure 8.5: Results of applying the extended Haar-like feature to surface normals
of two subjects. The first two columns show the raw surface normals, the next
two columns show the result of applying the filter, and the final column shows the
result of multiplying the third and fourth columns.

It is clear that for these two subjects the nose tip area is highlighted well (red

regions). The interior canthi are also well highlighted (the tearduct region) and the

nasion is lowlighted clearly for the first subject and a little less so for the second

subject even though he is wearing glasses (blue regions).

The nose tip region has been effectively localized using this simple filter on

the surface normals. This region can then be used to mask the z-component

from which the maximum value can be extracted which then corresponds to the

nose tip (assuming the face is frontal). See Fig. 8.6. If the face is not entirely

frontal, then instead of using the z-component, the shape index for that region

could be calculated and the value closest to 1 (spherical cap) could be used.

Additionally, the nasion appears to be have a large negative value, and by simply

165



choosing the lowest value, an estimation of its position is also provided. Using

the approximate position of the nasion, it is then possible to make an informed

estimate of the interior canthi position by excluding the region below the nasion

region from the search space assuming that the canthi correspond to the maxima

either side of the canthi.

Figure 8.6: Estimation of the nose tip from combining the results from filtering to
localize a region from which the maximum z-component value is chosen (top),
and the less reliable nasion and interior lateral canthi estimation (bottom).

The ability to highlight the nose tip region has been attempted on over 300 raw

captures from the Photoface device. The majority are frontal facing although there

are many that are looking slightly to the side. Additionally in certain cases the

Viola and Jones algorithm which detects the face before cropping the raw image

(part of the Photoface capture system) has failed leading to an image consisting

mainly of background. Even under these circumstances the proposed algorithm

performs well. It is robust to roll and pitch but less so to extremes of yaw.
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Figure 8.7: 100 examples of how the algorithm highlights the nose tip region.

An interesting outcome of applying the filter to the y-components in Fig. 8.5 is

that the horizontal structure of the face is accentuated into something somewhat

resembling a bar-code. Bar-codes were found to be a useful representation by

Dakin & Watt [48]. The claims made in their paper are not explored further here,

but not only does this seem a simpler method for bar-code generation, but also

what seems obvious is that the bars should lend themselves well to roll pose

correction by looking for symmetry. The results of a naive approach are shown

in Fig. 8.8 demonstrating the efficacy of this simple approach. This could be

extended to use more advanced techniques such as a radon transform which
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would give the angle along which the maximum energy occurs, the inverse of

which would correct the image.

a b c d

Figure 8.8: The nose tip region is highlighted (a) and used to mark the middle
of the face along which the symmetry across the vertical axis of (b) is tested at
different rotations. The rotation with the least amount of difference between the
two sides is then applied to the original image (c) resulting in the roll corrected
result shown in (d).

A benefit of this approach to roll correction is its robustness compared to using

a feature based method such as the axis between the eyes or along nose which

will give unexpected results if the subject has eyes which are not horizontally

aligned or if the nose is crooked. Using the symmetry across the whole face

makes it unlikely to fail as long as the roughly horizontal structure of the face

is preserved. It is also likely to be robust to rotational variance as the lateral

banding will be preserved if the head rotates in any direction. Results of applying

this method to the bar-code like representation can be seen in Fig. 8.9 which

shows that the lowest asymmetry occurs at about 4◦, which when the opposite

rotation is applied to the original image (Fig. 8.8.c) the resulting image is corrected

(Fig. 8.8.d). Performing the same algorithm on the albedo image did not work –

the most symmetrical rotation was reported to be that of the original image as can

be seen in which also shows that this method does not work on the raw normals

themselves.

Although inspired by the work of Viola and Jones on Haar-like filters, the actual

filter investigated here is similar to the features extracted by Microsoft’s Kinect

system for pose estimation [164]. Whereas the Kinect’s features are pixel based,
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Figure 8.9: Plot (a) shows asymmetry (measured as the difference between the
left hand side and right hand side of the face about the nose) as a function of
rotation angle for the bar-code representation (as shown in Fig. 8.8.b), the raw y-
component and albedo image for comparison. Plot (b) shows an enlarged range
of 0-8 degrees of (a) and clearly shows that the bar-code format is the only repre-
sentation which gives the correct pose correction angle – a normalized difference
of 0 at 4◦. A lower normalized difference corresponds to low asymmetry (which is
expected when a face is upright).

the filter presented here is region based and combines some knowledge of the

feature it is optimised for (e.g. a ridge). The Kinect uses training to organise the

features into the most discriminatory, and indeed this may be a useful approach

in future work for discovering new Haar-like features.

8.3.2 Threshold Selection

The two areas identified that have not been covered in this thesis were feature de-

tection and threshold selection. The previous section covered feature detection,

and this section covers threshold selection.

Two ROC curves can be seen in Fig. 8.10, one showing the results for adjust-

ing the threshold using Fisherfaces, the other adjusting the threshold for PMCC.

From the shape of the graphs it an be concluded that PMCC is unsuitable for use

in a automated recognition system as there is no suitable compromise when the

TAR is high and the FAR is low. Although it gives Rank-1 performance that is ap-

proximately equal to Fisherface, it is not suitable for applications where a verifica-
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tion is required as the FAR rises at approximately the same rate as the TAR mean-

ing that there is no acceptable compromise at which a threshold can be used. The

Fisherface results on the other hand show very good results: a 98.65% recogni-

tion rate at FAR=0.01 at a threshold distance of 0.3896 (EER=0.0117, threshold

of 0.3866). The FAR=0.01 rate means that for every 100 verifications only one

false positive will occur and 98.65% of positives will be correctly identified. At a

stricter level of FAR=0.001 (or one false verification in every 1000 comparisons)

the recognition rate is 95.04%.
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Figure 8.10: ROC curves for Fisherfaces (left) and PMCC (right) for 1000 ses-
sions at 10×10 px. The linear nature of PMCC makes it unsuitable for deploy-
ment in any real world system, but its performance makes it a suitable for choice
for algorithm performance testing.

8.4 Discussion

Presented in this chapter are two preliminary investigations into two of the final

major parts of an operational 3D photometric stereo recognition system. The

possibilities of using extended Haar-like features for both landmark detection and

roll correction are demonstrated, as well as empirically defining a threshold for

Fisherface recognition. The threshold is probably only applicable to this particular

dataset but the calculation for a different dataset would be the same.

Outside the scope of this project and concerning the Photoface device itself
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are issues involved with its use in the environment. For the majority of users

the device will function well as long as they pass through in alignment with the

camera. If they do not, then the light source angles will alter and lead to poor

surface normal estimations. Therefore an improvement could be made which in-

volves detecting the coordinates of the face and adjusting the light source vectors

accordingly to improve the accuracy of the PS reconstruction. In the current sys-

tem the light source unit vectors are calculated from a point at the centre of the

camera’s field of view and this is used for all reconstructions regardless of where

the face is actually located. For this reason, the light source unit vectors are less

accurate if the person walking through the device does not locate their face near

the centre of the camera’s field of view. The exact error caused by this inaccu-

racy is unknown, but amending the light source angles on a per person basis will

improve the surface normal estimates. It is unfortunate that this shortcoming only

came to light after the collection of the Photoface database, as it would have been

straightforward to have stored the position of the clipped face in the whole image.

Future work can learn from this and include the data.

Another issue concerning the device is how it deals with extremely tall or short

people, or wheelchair bound persons which would probably trigger the device

correctly, but the location of the face could be outside of the field of view of the

camera. Two possible solutions for this are (1) to use two cameras and trigger

sensors at different heights or (2) to increase the field of view of the camera. The

first solution would work by using the most suitable camera depending on which

sensor had been triggered e.g. if only the lower sensor was triggered, then the

lower camera would be used. While this is a straightforward solution it would

increase the cost of the equipment considerably as the camera is the most ex-

pensive piece of apparatus. Increasing the field of view is also straightforward

and would provide an adequate solution so long as wide-angle lens distortions

did not become evident and that the face remains large enough on the image to

provide discriminating information for the later recognition process.
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Currently the system is only designed to cope with one face in the captured

image. If there are two or more, then only the first that is found by the face

detection algorithm will be processed. If there are multiple heads it is very likely

that they will obstruct the light sources and introduce shadowing which will have

an adverse effect on PS. Therefore an additional step should be introduced to

ensure that only one head is present in the field of view.

The last process in the pipeline diagram shown in Fig. 8.1 is for the verifica-

tion step. It states that if the distance between the probe and gallery is within

an acceptable threshold then the identity can be verified, and if it is not then the

probe must be rejected or the option given to enrol the probe subject onto the

system. When a subject is enrolled for the first time, a number of sessions must

be captured if the Fisherface algorithm is to be used (interestingly, through ex-

perimentation on the Photoface surface normal data it has been found that the

small sample size problem is not so apparent as it is when using conventional

2D data), so five captures would be sufficient. It is important that the expression

of the subject in each captured session used for enrolment is the same. As it is

possible to correctly identify a positive expression with reasonably high accuracy,

and the fact that there is some research supporting its use for enrolment [21], a

smile is probably a suitable choice. Once the captures are completed, the face

space will need to be recalculated and the coefficients for each session stored

in the database. There is some risk that with a sufficient number of enrolments,

the threshold value will shift such that an unacceptable number of false positives

occur. It would therefore be necessary to run a suite of tests to build up the ROC

and check that the threshold falls within a certain distance of the existing one, or

indeed replace it.

If the expression classification system is employed to reject captures that do

not match the expected expression, then people with facial paralysis might be

excluded from the system. For example, if the system expects a smiling face

to enrol a subject, a person suffering from facial paralysis may not be able to
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generate the symmetrical smile that the system has been trained to respond to.

Obviously this relates to the training data employed, so either there would need

to be examples of expressions from those with facial paralysis or an alternative

mode of enrolment could be devised for those who are unable to produce expres-

sions close enough to those expected by the system. Indeed any norm-based

system (of which Fisherface is one) would likely fail on abnormal faces caused by

injuries or syndromes, and it is unknown how the Viola and Jones face detection

cascade would function, but one would expect it to also fail in extreme cases.

There are other operational caveats which would also need to be addressed.

People’s appearance alters with time, either gradually though ageing, or through

sudden changes such as facial hair, sunglasses, spectacles, wounds, bruising

and swelling or hairstyles. In the case of ageing, re-enrolment could occur once

a year, or alternatively on a successful verification the captured image could be

used to update that subject’s sessions. In either case, the face space would need

to be recalculated and all enrolled subjects’ coefficients updated. For the other

cases, there is no readily available solution; these are truly difficult problems. At-

tempts to deal with the occlusion type problems include using patch or region

based approaches and have proven to be effective [193], but to date little or per-

haps no work has focused on dealing with injuries such as bruising or swelling.

Facial hair such as moustaches are seen by humans as being distinguishing fea-

tures, but are treated as quite the opposite by machine vision systems, and facial

hair invariant representations are sought. Other distinguishing features which are

useful for humans are scars and moles on the face, which fit in well with Unnikr-

ishnan’s [182] idea. Due to the rarity of such features though (which is also their

defining feature!) research into these is considerably more difficult. Burton et

al. demonstrated that a more accurate representation of a subject may improve

recognition accuracy by using an image made by averaging many different pho-

tographs of the subject [97]. This would then allow some robustness to different

lighting. What they also suggest is using PCA to model the intra-subject variance
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along with this central tendency in order to represent the dimensions along which

a subject can look different on separate occasions.

There are also some issues concerning the level of cooperation required by

the subject which would affect how well an automated face recognition system

works. While the overall design of the Photoface device means that the level of

cooperation required is minimal i.e. walking through the archway while looking at

the camera, a higher level of cooperation is required for the actual algorithm to

function correctly. If the subject has an incentive to pass the verification (for ex-

ample to gain entry to their home, computer or smart-phone) then they are likely

to be as cooperative as possible and all should work as intended. However, in

situations where being recognised is a disadvantage, minor changes to expres-

sion, pose and appearance via glasses or make-up would prevent verification to

the benefit of the individual. Indeed automated systems are unlikely to be able

to cope with all the varieties of variance for the foreseeable future and so are

particularly unsuited to situations where subject cooperation is likely to be limited

in any way. However for those that have an incentive to be authenticated, then

such systems should work well with 3D data providing an additional level of secu-

rity over 2D which can be tricked into authenticating a photograph of an enrolled

individual.

Being able to incorporate some sort of label for faces that provides a descrip-

tion e.g. spikey face, looks a bit like celebrity ’X’ etc. would also prove very useful

for police work. Kumar et al. [109] have recently researched this and developed a

system that can automatically add metadata to images such as gender, age, jaw

shape and nose size which can then be used at least to narrow down a search

or even uniquely identify an individual in a way which is arguably more intuitively

human. This sort of metadata could be employed by Photoface in deployments

where recognition is required using far larger databases in exactly this sort of way

– as a preliminary step to reduce the search space.

This chapter has looked at automatic feature detection using Haar-like fea-
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tures on surface normals and has empirically determined a threshold which can

achieve a high verification rate with a low false positive rate. It has also proposed

a method for roll correction that uses features extracted from the y-component

of the surface normals based on the horizontal structure and symmetrical nature

of the face. Proposals to overcome some limitations in the Photoface device are

given and some wider aspects of face recognition are discussed; of which more

consideration will be given in the next chapter. It brings to an end the experimen-

tal chapters of this thesis, and in the next and final chapter the major findings and

implications of the thesis as a whole are summarised.
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Chapter 9

Conclusions, Limitations and

Future Work

This thesis has examined face recognition using surface normals captured via

PS and focussed on methods of dimensionality reduction which are inspired by

the HVS. As part of this, two databases with metadata have been created, one

of which has been made available to the research community. This thesis has

shown that PS lends itself well to face recognition and a future device would ben-

efit from using NIR light sources as these provide a more accurate reconstruction.

Recognition rates are not decreased when resolution is decreased to as little as

10×10 px for the raw surface normal data. The reason for this is likely that the spa-

tial frequencies which code the major structural features are preserved and some

evidence exists that these frequencies are important in human face recognition.

The low resolution is beneficial both for storage and processing requirements.

Unusual, or outlying pixel values contain disproportionately more discriminatory

information than more common values as do pixel locations in the face which

have the highest variance. This lends itself well to the concept of caricaturing

a face. Problems with this approach arise when the data contains expressions,

as the expressions themselves (rather than the subject identity) are responsible

for the largest variance. By using the variance approach to locate and exclude
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the pixels which vary the most for a given expression in the database population,

recognition rates can be improved. The original Haar-like features as used by

Viola & Jones are unlikely to be optimal for surface normal data, but it may be

possible to design new ones which work well such as the one presented to locate

the nose tip. Additionally a straightforward method of roll correction is suggested

which used the symmetry of the output of the new feature.

For reference these are summarised in Section 9.

Summary of Contributions

This section briefly outlines the major novel findings and contributions of this the-

sis by chapter.

• Chapter 3 showed that the Photoface device captures accurate surface

normal data of faces by comparing captured sessions with a ground truth

model. It was also shown that using NIR light sources is slightly more ac-

curate than using visible light sources and this it was suggested that this

finding can explained in terms increased sub-surface scatter of NIR.

• Chapter 4 introduces two novel databases created as part of thesis, one

of which is now publicly available to the research community. The Photo-

face database is the largest publicly available PS database of faces and

is unique in that it was captured under relatively unconstrained conditions.

Benchmarking experiments are then performed on a subset of frontal ex-

pressionless sessions both to prove that the data is suitable for face recog-

nition and to provide performance against which algorithms in later chapters

can be compared.

• Humans are excellent at recognising familiar faces and areas of the hu-

man brain appear to be dedicated to processing faces. Chapters 5 and 6

investigate two idiosyncrasies of human face recognition in an attempt to
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incorporate them into an automated system. It is shown that recognition

performance is robust to reducing the resolution of the images to as little as

10×10 px on both the Photoface and FRGCv2.0 (the most commonly used

in the literature) 3D databases. Taking caricaturing as inspiration, Chapter 6

uses a percentile based and a variance based method to select pixel loca-

tions which are shown to contain proportionately more discriminatory infor-

mation. Removing up to 90% of the data leads to recognition performance

being affected by less than 10%. These findings have important implica-

tions for automated systems as they offer direct methods of dimensionality

reduction which means improved efficiency through reduced computation

and storage needs. In turn this likely means reduced cost.

• Expression is commonly cited as a confounding factor to 3D face recogni-

tion. Chapter 7 explores expression classification on the novel 3DE-VISIR

database and finds that Happy expressions are the most reliable to classify

(up to 90% accuracy), and that this performance remains when resolution is

lowered to 10×10 px. Being able to classify expressions is useful in Human

Computer Interaction (HCI) applications, but it has also been suggested to

be useful for recognition as smiling faces have been demonstrated to be

easier to recognise. Additionally this chapter showed that by applying the

variance based approach in the previous chapter, pixel locations which en-

code expression can be identified and, in turn removed in order to (mod-

estly) boost subject recognition performance.

• Chapter 8 brings the findings of the previous chapters together and identifies

two areas which would need to be developed as part of fully automated PS

face recognition system: automatic face alignment and defining a thresh-

old so that imposters can be rejected. It builds upon the work of Viola and

Jones into using a rapid cascade of Haar-like features to propose and test

an extension of these features to one specifically designed for surface nor-
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mals to detect caps/cups so that the nose-tip and nasion can be localised.

This in turn was found to generate a bar-code representation which lends

itself well explaining a number of findings relating to human face recognition

as well as providing a simple means of roll correction. Finally through the

use of ROC curves a threshold is determined which allows the system to

perform at over 98% accuracy at a FAR=0.01.

Limitations and Future Work

The findings of this thesis are useful contributions to face recognition. The Photo-

face device is a convenient and relatively cheap 3D capture device and the recog-

nition efficiency can be improved by simply resizing the surface normal estimates.

Biometrics are likely to be used increasingly as methods become more reliable,

affordable and perhaps most importantly, public acceptance grows as the con-

venience offered becomes apparent. Although 3D face recognition overcomes

many problems with 2D (or can theoretically do so) it is likely not the panacea

to biometric security. While it is the most convenient amongst the commonest

methods (iris, retina, palmprint, fingerprint) it is also undoubtedly the easiest to

break. While facial appearance for the most part does not change quickly, a dis-

guise can be produced to prevent the system from recognising an individual either

temporarily through cosmetics or permanently through plastic surgery, arguably

making the system unsuitable for watchlist checking scenarios. For this reason,

face recognition is better suited to a verification scenario (e.g. “I say I am ’X’. Am

I”?) as opposed to a recognition or surveillance scenario. Perhaps if combined

with other modalities a more robust system could be developed.

A major problem for most 2D systems is that they can be fooled by a photo-

graph of an enrolled individual. One solution to overcome this would be to require

a video sequence of the face in motion (perhaps speaking a phrase) but even

then it could get fooled by a video on a screen. This isn’t likely to be such a
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problem with 3D face recognition and if it were to additionally include some sort

of motion capture it would represent a very unique feature of 3D which makes

it almost unbeatable in theory – fake 3D models of realistically moving (elastic)

faces are not readily available. Arguably the best currently available are those

created by Hollywood or Hiroshi Ishiguro’s Gemini robot. Going to those lengths

to compromise a system is very unlikely; there will almost certainly be a simpler

alternative.

When capturing the face, Photoface currently relies on visible light sources

and the Lambertian assumption. As part of this thesis it was shown that skin

reflectance is more Lambertian under NIR. Future work will therefore focus on

converting the Photoface device to work with NIR lamps and is in fact the fo-

cus of the EPSRC funded Photoskin project which additionally aims to overcome

the simplifying assumption that skin is Lambertian by generating a “per session”

reflectance model which will improve reconstruction accuracy further.

Preprocessing the faces crops and aligns them with a baseline set of coordi-

nates via an affine transform. The reason for this to ensure that the major features

of the face are in approximately the same place for each capture so that any fol-

lowing statistical analysis will not be drawn into irrelevant areas of variance (e.g. if

the landmarks were not aligned then this would be a major source of variance,

and if the faces were not closely cropped, background regions would come into

play). While the effect of these is not shown by the work in this thesis (and the

cropped and aligned data is shown to give good results), it is likely that some

useful, discriminatory data especially for unusual features e.g. a long nose, or

close-knit eyes will be lost. Future work should concentrate on testing the effects

of different alignment algorithms in order to see how large these effects are.

Although 3D capture is often stated to overcome the problems of pose with

2D face recognition, it is not so straightforward with PS capture. The fact that

there is only one camera means that a full 3D rendering of the object as whole is

not created, only the surface(s) that face the camera (and therefore as stated in
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the introductory chapter it is technically not 3D but 2.5D). This limits the amount

of pose correction available but for reasonable small deviations from frontal this

should be acceptable. However for wider deviations, occlusions and foreshort-

ening will come into effect meaning that there will be far less data from which to

reconstruct the surface before attempting pose correction. For example if a face

is presented at a 3/4 or portrait pose, the nose will occlude a region of cheek and

little of that side of the face will be visible. If a face is presented with a high pitch

angle (e.g. the nose is pointing upwards) then there will be very little of the face

surface available to reconstruct the surface with. With a full 3D system, neither

of these situations would cause so much of a problem because the scan would

capture the entire object (although pose alignment is still not entirely trivial even

in full 3D). In order to overcome the problem with a 2.5D system, one could either

employ a pre-capture step to ensure that the subject is in a suitable pose, or in

the case of a face being presented in 3/4 pose, perhaps exploit the symmetry of

the face to hallucinate any missing or occluded data.

The previous chapter presented some preliminary work into automated feature

detection. The nose tip detector appears to work well but further research is

required to locate other features which are also required for alignment or pose

correction such as the lateral canthi, nasion etc. Perhaps if NIR light sources

were used for PS, the raw images could be used for eye-detection owing to the

bright-eye effect where the pupil is highly reflective to NIR.

One of the very first steps in the current pipeline employs the face detection

cascade of Viola and Jones. If this fails, then no face recognition will occur. A

Masters student recently showed that by combining cosmetics and hair styling to

disrupt key areas corresponding to features used by the cascade, he was able

to prevent a face being detected [87]. While not inconspicuous as they currently

stand and therefore likely to attract greater attention, they do highlight a simple

method to defeat a complex technology.

Two of the contributions of this Ph.D. are reducing dimensionality using direct
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methods of resolution reduction and variance analysis. Both of these methods

individually show the importance of a holistic representation for recognition (as

opposed to parts/features in isolation). Further work to find whether there are

better pixel locations than those suggested by the variance or percentile based

approaches could be employed e.g. by using a simulated annealing approach to

stochastically locate such features. It would be satisfying to find a better way

of combining the two approaches but the reduced resolution produces such an

effective reduction that further processing with the variance inclusion criterion are

far less powerful. Nonetheless, both approaches deliver real effects, indicating

that following a human approach in this instance pays off. It would be interesting

to see whether the effects are limited to faces or whether they generalise to other

object categories.

The use of low resolution images is useful for both storage and processing

efficiency and the fact that raw surface normals are employed and shown to be

the best representation for recognition means that no additional processing is

required for surface estimation. Unlike most 2D systems, Photoface cannot be

fooled by a photograph or make-up unless prosthetics are employed to change

the actual 3D shape. Future work could look at ways to ensure that the presented

surface is that of a living person, perhaps using thermal infrared.

The system has been shown to work well under near ideal situations in a

real-world environment (neutral expressions and front facing) for 61 individuals.

Importantly it has demonstrated that the system works on data that has been cap-

tured while the subject uses it realistically and “casually”. This number is in the

employee range of many SMEs. The limits of face recognition algorithms are gen-

erally unknown but this is an area which would be very beneficial to industry and

governments. Data collection on this sort of scale would be logistically difficult so

it may be better to create synthetic faces using modelling software (e.g. FaceGen

Modeller [4], or MakeHuman [5]) to increase the gallery size. Alternatively, if one

has the finances and inclination, the data could be manually collected. India has
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started enrolling every one of its 1.2 billion population into the Unique Identifica-

tion Authority of India (UIDAI) program which assigns each individual a unique

number and records their irises, ten fingerprints and a photograph of their face.

They expect to have 600 million people enrolled by 2014 [6].

This thesis has almost exclusively relied on statistical methods for face recog-

nition. Sirovich & Kirby’s realisation that the N×N problem could be presented as

M×M made possible the multitude of work that followed in this area. However,

if the numbers of subjects enrolled is sufficiently large so that M >> N, then the

original N×N problem becomes a M×M problem, and the likelihood of the ma-

trix being non-invertible is large. As they stand, their use must be restricted to

databases where M << N.

Biometrics and face recognition in particular have many benefits and we are

likely to see them being used more and more as the convenience they offer be-

come apparent to the public, and used more in office settings as the cost de-

creases. This thesis has investigated 3D face recognition from PS, presenting

two novel methods of dimensionality reduction, a novel method of improving ro-

bustness to expression variance and making available the largest PS annotated

face database as well as showing that PS using NIR is more accurate for face re-

construction than visible light. In the well studied area of face recognition, these

represent useful contributions that have a direct impact with regards to implemen-

tations and suggest many areas for future research.
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Glossary

3DE-VISIR database

A set of 363 faces belonging to 115 individuals captured using near-infrared

and visible light photometric stereo at UWE with 3 captures within each

session of positive, neutral and negative emotions.

3D Morphable Model

A 3D model of the face created by Blanz and Vetter [23] which is parame-

terizes the variations of faces. This allows for synthesis of realistic 3D face

models from 2D photographs.

Active Appearance Model

An extension to the ASM which also models and parameterizes changes in

an object’s texture.

Active Shape Model

A statistical model which parameterizes shape variations so that the model

can accurately be fitted to a novel image to extract the object boundaries.

Annotated Face Model

A method by Kakadiaris et al. [99] which aligns and deforms a 3D model

onto an annotated 3D face to aid segmentation as a preprocessing step.

Discrete Cosine Transform

The discrete cosine transform is a means of representing a given signal as

the sum of cosine functions at different frequencies. It is commonly used

209



for compression of media (e.g. jpeg for images) and is similar to the Fourier

Transform.

Dynamic Link Architecture

An extension to neural networks that used the results of convolving Gabor

wavelets over images as inputs before using Elastic Graph Matching for

recognition..

Eigenface

The “Eigenface” approach was invented by Turk and Pentland [181] and

refers to the PCA components describing the most variant dimensions, which

when reshaped into a 2D image, resemble a face.

Elastic Graph Matching

One of the most successful techniques used in face recognition that deforms

a grid so that the nodes fall into correspondence with facial landmarks, the

coefficients of which can be used as features for recognition.

Equal Error Rate

The position on a ROC curve where the FAR and FRR are the same. Ideally

this should be a low value, and it is useful for comparing algorithm perfor-

mance.

Extended Gaussian Image

A data representation invented by Horn [91] which maps surface normals

on a unit sphere, the area that is taken up on the sphere’s surface is propor-

tional to the number of normals pointing in that direction.

Face Recognition Grand Challenge

A series of biometric grand challenges that followed the FRVT challenge

running from 2002-2006 and superseded by the Multiple Biometrics Evalua-

tion. Funded by the American National Institute of Science and Technology,
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it provides what is arguably the de-facto database in 3D face recognition..

Face Recognition Vendor’s Test

Preceded the FRGC and provided a large scale objective comparison of

face recognition technologies against 2D faces, running from 2000-2006.

Facial Action Coding System

A system that objectively quantifies facial expressions.

False Accept Rate

The number of trials in which an unknown probe is incorrectly identified

expressed as a percentage or ratio of the total number of trials..

False Reject Rate

The number of trials in which a known probe is not recognised expressed

as a percentage or ratio of the total number of trials. This is the same as

1-TAR.

Facial Recognition Technology

A program setup by the US Department of Defense counterdrug Technol-

ogy program with an accompanying database of faces which are used for

evaluating the effectiveness of algorithms..

Fisher’s Linear Discriminant

Fisher’s Linear Discriminant is an example of LDA with the assumption that

the covariance in each and every group is uniform..

Fisherface

The Fisherface approach to face recognition was first performed by Bel-

heumeur et al. [17] and combines FLD with PCA in order to reduce the

dimensionality before solving the generalized eigenproblem..

Fusiform face area

An area in the temporal lobe of the brain which fires preferentially for face
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stimuli and damage to which causes Prosopagnosia (face blindness).

Human Computer Interaction

An area of research that aims to improve the interface(s) between humans

and machines..

Human Visual System

A term to describe all aspects of human vision from the low level functions

within the retina to higher level feature understanding in the cortex..

Independent Components Analysis

Similar to PCA but not restricted to describing variation along orthogonal

dimensions.

Iterative Closest Point

An algorithm for aligning two roughly aligned 3D surfaces such that the RMS

between them is minimized..

Linear Discriminants Analysis

Linear Discriminants Analysis (of which Fisher’s Linear Discriminant is a

commonly used example) is a statistical tool which is used to maximise the

separation of different groups of labelled data while minimising the separa-

tion with each group. This is primarily used improve classification by making

more distinct clusters of groups..

Local Binary Patterns

A simple convolution that is sensitive to certain primitives such as edges

and lines and has been found to be an effective representation for face

recognition..

`p-norm

A distance measure in p-space. The familiar euclidean distance is the `2-
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norm, the Manhattan distance (so called because of the block-by-block taxi-

cab type constraint) is the `2-norm. The Chebyshev distance or `inf norm is

the greatest distance between points along any dimension.

Multi-Dimensional Scaling

Is primarily a data mapping tool commonly used in psychological experi-

ments for assessing subject judgements. It preserves the ratio of distances

of the differences between observations so that the layout of the data re-

mains the same after transformation.

Near Infrared

A wavelength of light just outside the visible range above the red part of the

visible spectrum. More specifically it refers to a wavelength in the region of

850nm for the purposes of this thesis.

Pearson’s product-moment correlation coefficient

A measure of correlation between two variables ranging between -1 and +1,

where -1 indicates a negative correlation, 0 indicates no correlation, and

+1 indicates a positive correlation. In this thesis it is used as a Rank-1

classifier with classification performance similar to the Fisherface algorithm,

but about 10 times faster. However it is found to be unsuitable for use in a

face recognition system due to an almost linear ROC graph..

Photoface database

A publicly available database of 3187 faces belonging to 453 individuals

captured using photometric stereo in an unconstrained office corridor..

Photometric stereo

Invented by Woodham [192], photometric stereo is a method of estimating

the surface orientation using multiple illuminations of an object from a single

viewpoint..
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Principal Components Analysis

Principal Components Analysis is a statistical tool commonly used for di-

mension reduction in computer vision applications. It redefines the data

in terms of accounted variance along orthogonal principle components or

dimensions and is the basis of the popular eigenfaces approach for face

recognition..

Receiver Operating Characteristic

A plot of FAR against FRR which can be used to calculate the EER and the

TAR as a certain FAR.

Root Mean Squared

Is a measure of the magnitude of variation between two quantities. The

RMS error is used to quantify the difference between surface reconstruc-

tions in this thesis.

Shape-from-Shading

Refers to the technique of estimating the 3D shape of an object from a 2D

image. Photometric stereo is a type of shape from shading where certain

associated ambiguities are removed (e.g. by separating texture from gradi-

ent) through multiple illumination sources.

Support Vector Machine

The support vector machine is a supervised learning technique used to con-

struct the hyperplane which maximally separates two classes of data. It has

been extended to non-linear via kernel functions and multi-class to perform

classifications of more than two classes..

True Accept Rate

Also known as the verification rate, this is the number of trials in which a

probe is correctly identified expressed as a percentage or ratio of the total

number of trials..
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Acronyms

3DE-VISIR

3D Expression-VISible and near-InfraRed database.

3DMM

3D Morphable Model.

AAM

Active Appearance Model.

AFM

Annotated Face Model.

ASM

Active Shape Model.

DCT

Discrete Cosine Transform.

DLA

Dynamic Link Architecture.

EER

Equal Error Rate.

EGI

Extended Gaussian Image.

EGM

Elastic Graph Matching.

FACS

Facial Action Coding System.
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FAR

False Accept Rate.

FERET

Facial Recognition Technology.

FFA

Fusiform face area.

FLD

Fisher’s Linear Discriminant.

FRGC

Face Recognition Grand Challenge.

FRR

False Reject Rate.

FRVT

Face Recognition Vendor’s Test.

HCI

Human Computer Interaction.

HVS

Human Visual System.

ICA

Independent Components Analysis.

ICP

Iterative Closest Point.

LBP

Local Binary Patterns.
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LDA

Linear Discriminants Analysis.

MDS

Multi-Dimensional Scaling.

NIR

Near Infrared.

PCA

Principal Components Analysis.

PMCC

Pearson’s product-moment correlation coefficient.

PS

Photometric stereo.

RMS

Root Mean Squared.

ROC

Receiver Operating Characteristic.

SFS

Shape-from-Shading.

SVM

Support Vector Machine.

TAR

True Accept Rate.
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Glossary of Symbols

A

Matrix of the difference between each image and the mean image (X-u).

Bi

Number of samples in class i.

c

Number of classes or labels.

C

Covariance matrix of image data.

D

Mixing matrix in ICA.

e

Eigenvector.

ε

Euclidean distance.

I1...3

Three images taken under different illumination.

Ki

Specifies a particular class Ki.

λ

Eigenvalue.

M

Number of images.
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N

Number of pixels/dimensions per image.

nx, ny, nz

Surface normal components.

Ω

Face space projection.

ω

Face space projection.

P

Number of eigenvectors used to represent face space.

ρ

Surface albedo.

S1...3

Three light source vectors.

s

Independently separable variables in ICA.

SB

Between/inter-class scatter matrix.

ST

Total scatter matrix.

SW

Within/intra-class scatter matrix.

u

Mean intensity value for each pixel across all images (N×M ).
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v

Estimate of actual s signals.

V

Separating matrix (inverse of D).

W

Linear transformation matrix.

X

Matrix of image data (N×M ).

x

A matrix of pixel intensities (a photograph/image).
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Appendix A

Selected publications

The appendix contains copies of selected journal and conference papers which

have been produced as part of this Ph.D.. Each is prefaced with a short introduc-

tory paragraph regarding its significance.
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A.1 3D face reconstructions from photometric stereo

using near infrared and visible light

The first appendix was published in Computer Vision and Image Understanding

in August 2010. It provides details of the Photoface 3D capture device which was

developed prior to the start of this Ph.D. This author’s contribution was writing the

software to perform the necessary image processing and analysis for assessing

the accuracy of the device compared with 3dMD reconstructions and performing

reflectance analysis.
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a b s t r a c t

This paper seeks to advance the state-of-the-art in 3D face capture and processing via novel Photometric
Stereo (PS) hardware and algorithms. The first contribution is a new high-speed 3D data capture system,
which is capable of acquiring four raw images in approximately 20 ms. The results presented in this paper
demonstrate the feasibility of deploying the device in commercial settings. We show how the device can
operate with either visible light or near infrared (NIR) light. The NIR light sources offer the advantages of
being less intrusive and more covert than most existing face recognition methods allow. Furthermore, our
experiments show that the accuracy of the reconstructions is also better using NIR light. The paper also
presents a modified four-source PS algorithm which enhances the surface normal estimates by assigning
a likelihood measure for each pixel being in a shadowed region. This likelihood measure is determined by
the discrepancies between measured pixel brightnesses and expected values. Where the likelihood of
shadow is high, then one light source is omitted from the computation for that pixel, otherwise a
weighted combination of pixels is used to determine the surface normal. This means that the precise sha-
dow boundary is not required by our method. The results section of the paper provides a detailed analysis
of the methods presented and a comparison to ground truth. We also analyse the reflectance properties of
a small number of skin samples to test the validity of the Lambertian model and point towards potential
improvements to our method using the Oren–Nayar model.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Face recognition is now one of the most active areas of com-
puter vision research. A wide range of different approaches have
been proposed for the detection, processing, analysis and recogni-
tion of faces within images [1]. A recent trend has been to incorpo-
rate 3D information to aid recognition [2]. Unlike for 2D methods,
the process of data capture is a complex procedure for 3D methods
and may involve expensive and bulky hardware with computation-
ally intensive algorithms.

In this paper, we make significant contributions to 3D face cap-
ture and processing by presenting a novel Photometric Stereo (PS)
hardware device, a new PS algorithm for mitigating the effects of
shadows within images, and a detailed set of experiments to assess
the accuracy and practicality of the device. The new variation of PS
estimates a field of surface normals by selecting the optimal com-
bination of light sources to reduce the effects of shadow without
requiring knowledge of the exact shadow boundaries. This is dem-
onstrated on a novel high-speed practical 3D facial geometry

capture device. We have also been successful at facial PS using near
infrared (NIR) light. This offers several benefits to existing methods
including exploiting skin phenomenology, creating a more covert
capture system and making the system less intrusive. Extensive
experimental results of these proposed advances are presented,
including an analysis of skin reflectance qualities under NIR and
visible light in terms of the Lambertian assumption.

In summary, the contributions of this paper are fourfold:

1. The development of 3D data capture hardware suitable for
practical face recognition environments.

2. The development of a new algorithm for choosing the optimal
light source configuration for each pixel in order to reduce the
effects of shadows.

3. Detailed experiments to test the accuracy of the device on a
variety of faces under visible and NIR light sources in terms of
ground truth reconstructions and the Lambertian assumption.

4. Detailed experiments to assess the validity of the Lambertian
assumption and a test to determine any possible improvements
that may be possible using the Oren–Nayar reflectance model [3].

The remainder of this section provides an overview of related
work and outlines the contributions to the state-of-the-art. Section
2 presents details of the hardware arrangement and image

1077-3142/$ - see front matter � 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.cviu.2010.03.001
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acquisition process and our method to mitigate the effects of shad-
ows. Detailed experimental results are then provided in Section 3.
The implications and potential limitations of the work are dis-
cussed in Section 4.

1.1. Related work

The use of 3D information for face recognition has been attract-
ing increasing attention in recent years [2,4,5]. This is due to the
ability to overcome certain limitations associated with 2D recogni-
tion, e.g. problems of illumination and pose variance. Methods
using 3D specific information also allow for representations which
offer robustness to facial expression. Such methods include the 3D
morphable model of Blanz and Vetter [6] and the geodesic repre-
sentations of Bronstein et al. [7] and Mpiperis et al. [8]. Frequently,
research which directly compares 2D and 3D recognition reports
improved success rates for 3D recognition and that the best results
occur when 2D and 3D information is fused [2]. As demand for
practical face recognition systems is likely to increase, it is impor-
tant that the most accurate methods are used and that the acqui-
sition devices are both practical and affordable. There are a
number of existing ways to capture and reconstruct 3D face infor-
mation and the benefits and limitations of the most common ap-
proaches will now be discussed with the aim of putting our
device into context.

Structured light scanning is perhaps the best known approach
to generating 3D models of faces. This was used for generating
the morphable head model in [6] and also for all the 3D faces used
in the FRGC2.0 dataset [9], currently the largest publicly available
3D face database. For face capture, this technique works by scan-
ning the object with a horizontal plane of laser light, capturing
the line of light on a sensor and then calculating the location of
each point via triangulation. The technique provides potentially
very accurate scans; the Minolta Vivid 910 device [10] used for
the FRGC2.0 dataset has a quoted accuracy of ±0.10 mm. However,
these devices take about 2.5 s to capture the data, during which
time the subject could move, thus distorting the reconstruction.
It therefore requires a great deal of cooperation from the subject.
They are also sensitive to high levels of ambient illumination. For
these reasons, and the fact that they are financially costly, laser
scanners are currently not suitable for many practical applications.
The speed of acquisition can be improved by using striped patterns
projected across the whole surface instead of using a scanning line.
Distortions in this pattern can then used to calculate the 3D geom-
etry of the surface [11], however accuracy is likely to be compro-
mised and calibration can be time consuming.

The commercially available 3dMD system [12], which is used in
this paper to acquire ground truth models, is an example of a pro-
jected pattern range finder. This device uses a number cameras to
take images of an object from different positions. It uses a pro-
jected pattern to solve the correspondence problem between the
images. The benefits of this system are its high accuracy (reported
as <0.2 mm) and the speed of image acquisition (1.5 ms). However,
the processing time is approximately 90 s for a face. This type of
system is also expensive and requires a time consuming calibration
procedure.

Shape-from-shading (SFS) is a technique for estimating 3D
geometry from a single image [13]. Gradients of the surface are
estimated from the patterns of intensity changes in an image.
However the problem is ill-posed, meaning that there is no guaran-
tee of a unique solution for a given image [14]. The main advantage
of SFS is that it does not require any specialist capture apparatus
such as laser scanners or projected pattern devices; merely a single
ordinary camera. For this reason, finding solutions for the SFS prob-
lem are attractive to researchers. One way of overcoming the ill
posed problem of SFS is to photograph the object multiple times

under different illumination. This technique is known as Photo-
metric Stereo (PS) and was first devised by Woodham [15] who
showed that for any Lambertian surface, three differently illumi-
nated images are sufficient to remove the ambiguity associated
with a single image. Further details of this method will be given
in Section 2.3.

A unique surface normal can be estimated by using three PS
images provided that none of the light sources cast a shadow
and the surface is Lambertian. In the case of a human face, shadows
are frequently cast by features such as the nose. Indeed overcom-
ing the detrimental effects of shadow on PS has been the subject
of a number of papers. Smith and Hancock [16] use a statistical
model to recover geometry in the presence of shadows. Hernández
et al. [17] use two images where shadow is not present to estimate
the value of the third where the shadow is present via integration.
Coleman and Jain [18] use four light sources to over-determine the
surface orientation. If a shadow is present in one image, it can sim-
ply be discarded. Similarly, Solomon and Ikeuchi [19] use four
sources, but determine shadows and specularities by consider-
ations of anomalies in albedo estimates that cannot be statistically
attributed to camera noise. Barsky and Petrou [20] suggest a simi-
lar alternative solution to highlights and shadows by using a four
source coloured light PS technique.

Georghiades extended PS beyond Lambertian surfaces to incor-
porate the Torrance and Sparrow model of reflectance [21] and cre-
ated very accurate reconstructions [22]. However, a large number
of images were required for the reconstruction which significantly
increases surface computation and image acquisition time. Sun
et al. [23] use five lights to handle shadows and specularities on
non-Lambertian surfaces and show that a minimum of six lights
are required in order fully realise any convex surface using photo-
metric stereo. Using 20 images of a face, Ghosh et al. [24] build up a
very detailed model of the skin’s reflectance taking into account
specular reflection and single, shallow and deep scattering. How-
ever, the images are captured over ‘‘a few seconds” which makes
this approach unsuitable for our needs (i.e. practical applications).
Also, their method would add a large amount of complexity for rel-
atively little gain as skin follows Lambert’s Law reasonably well (as
shown in this paper for example).

Of the vast amount of research into automatic face recognition
during the last two decades [1], relatively little work has involved
PS. Kee et al. investigate the use of 3-source PS under dark room
conditions [25]. They were able to determine the optimal light
source arrangement and demonstrate a working recognition sys-
tem. Zhou, Chellappa and Jacobs apply rank, integrability and sym-
metry constraints to adapt PS to face-specific applications [26].
Zhou et al. extended a PS approach to unknown light sources
[27]. Georghiades et al. show how reconstructions from PS can
be used to form a generative model to synthesise images under no-
vel pose and illumination [28].

Comparing point clouds, the shape index, depth maps, profiles
and surface normals in terms of face recognition performance,
Gökberk et al. [5] concluded that surface normals provide the best
features for face recognition. It is surprising therefore, that so few
applications to date utilise PS, which inherently generates surface
normals. The reason for this is likely to be that the availability
and affordability of cameras with high enough frame rates, sensi-
tivity and synchronisation capabilities for PS have only recently
reached the market. Such cameras are necessary in commercial
and industrial applications to effectively freeze the motion of the
person while they may be moving by capturing several images in
a short burst.

The majority of past work on PS has been conducted using vis-
ible illumination. As explained above, we also consider NIR light in
this paper. Studies into the optical properties of skin have shown it
to be increasingly reflective in the NIR light band up to wave-
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lengths of about 1.1 lm [29]. This suggests that NIR, which is more
covert and less intrusive, is a viable alternative to visible light. Fur-
thermore, NIR can be used as a replacement for visible light be-
cause its proximity to the visual spectrum means that it is likely
to behave in a similar manner on skin. We might expect some fine
surface detail to be lost due to sub-surface scattering as reported
by Zivanov et al. [30], but this is unlikely to affect overall face
shape estimation. In addition to our work, infrared light has been
used previously in 2D face recognition to mitigate the negative im-
pact of ambient illumination [31,32] and to aid eye detection algo-
rithms using the ‘‘bright eye” effect [33].

1.2. Contributions

The contributions of this paper to the state-of-the-art in 3D face
capture and processing are via a novel system of hardware and
algorithms. The new PS-based 3D face shape capture device is suit-
able for practical recognition environments and consists of four
illumination sources placed evenly around a high-speed camera,
as shown in Fig. 1. Individuals walk through the archway towards
the camera located on the back panel and exit through the side.
Compared to existing technologies, our device is cheap to build
and involves exceptionally short image capture and processing
times. The device is also able to operate at high resolution, is robust
to ambient illumination and requires only minimal calibration. All
images are captured in approximately 20 ms, resulting in only very
small misalignment between frames. This allows subjects to be im-
aged as they casually walk through the archway.

We have tested our device using both visible and NIR illumina-
tion sources and found the latter to yield more accurate recon-
structions when compared with ground truth. To the best of our
knowledge, no published research has looked at using NIR light
sources in PS for the purpose of face recognition. These consider-
ations make our method attractive for use in many commercial
and industrial settings such as at entrances to high security areas,
airport check-in and border control.

For the main algorithmic contribution of this paper, we show
how the effects of shadow can be mitigated using a related ap-
proach to that of Solomon and Ikeuchi [19] and Barsky and Petrou
[20]. The method relies on estimating the likelihood of each pixel

being in shadow and weights the contributions of the light sources
in the PS computation accordingly. One advantage of our method is
that neither the exact shadow boundary nor the camera noise
parameters are required.

The final contribution of the paper is a detailed analysis of the
quality of reconstructions and the nature of the skin reflectance
properties. The device is tested on a variety of subjects and the
RMS height errors and ‘2-norm errors are presented. Ground truth
data is supplied by a 3dMD scanner. A quantitative analysis on the
validity of the Lambertian assumption on skin reflectance is then
presented. The extent of the discrepancies between the measured
skin reflectance and Lambert’s Law are demonstrated graphically
and shown to be relatively minor for non-grazing angles. Lastly,
we show that skin is more Lambertian under NIR illumination,
solidifying our earlier claims about the feasibility of NIR as an
alternative to visible light. This reflectance analysis also demon-
strates the possibilities of improving the reconstructions by incor-
porating the Oren–Nayar reflectance model into the method.

2. Method

This section first outlines the overall PS image acquisition hard-
ware, before moving on to describe the reconstruction process. We
also discuss the differences between our use of visible and NIR
light sources. The problem of shadowing is then addressed, by pre-
senting a new PS method to automatically select the optimal light
source configuration.

2.1. Hardware

This section details the acquisition device hardware. The device,
shown in Fig. 1, is designed for practical 3D face geometry capture
and recognition. The presence of an individual is detected by an
ultrasound proximity sensor placed before the archway. This can
be seen in Fig. 1 on the horizontal beam towards the left-hand side
of the photograph. The sensor triggers a sequence of high speed
synchronised frame grabbing and light source switching.

The aim is then to capture five images at a high frame rate: four
images illuminated by the main light sources in sequence and an
additional control image with only ambient illumination. Either
one image per visible light is captured, or one image per NIR
source. Note that the ambient lighting is uncontrolled (for the
experiments presented in this paper, overhead fluorescent lights
are present). The four visible light sources are low-cost Jessops
M100 flashguns (colour temperature 5600 K), while the NIR lights
are stripped down X-vision VIS080IR lensed 7-LED clusters, which
emit light at �850 nm.

It was found experimentally that for people walking through
the device, a minimum frame rate of approximately 150 fps was
necessary to avoid significant movement between frames. The de-
vice currently operates at 200 fps, and it should be noted that it is
only operating for the period required to capture the five images.
That is, the device is left idle until it is triggered. A monitor is in-
cluded on the back panel to show the reconstructed face or to dis-
play other information.

For visible light, the following sequence of events takes place to
capture the five images as an individual passes through the device.

1. Await signal from ultrasound sensor.
2. Send trigger to camera.
3. Await integration enabled signal from camera.
4. Discharge first flashgun.
5. Await end of integration enabled signal.
6. Repeat from step 2 for the remaining light sources.
7. Capture control image with ambient lighting only.

Fig. 1. The geometry capture device. Enlarged areas from top to bottom: a NIR light
source, a visible light source and an ultrasound trigger. The camera can be seen on
the back panel.
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All interfacing code is written in NI LabVIEW. The ultrasound
sensor is a highly directional Baumer proximity switch. When its
beam is broken within a distance of 70 cm, it transmits a signal
to an NI PCI-7811 DIO card fitted to a computer. When this signal
is received, a trigger is sent to the camera. This is a Basler 504 kc
camera with a 55 mm, f5.6 Sigma lens, placed 2 m from the subject.
As with many silicon-based sensors, the Basler chip is responsive
to both visible and NIR irradiance. The trigger is transmitted to
the camera from a frame grabber via Camera Link�. The frame
grabber is an NI PCIe-1429, which communicates with the DIO card
via a RTSI bus for triggering purposes.

To ensure that the signal has reached the camera, and that the
camera has commenced frame capture (i.e. is integrating), a second
connection from the camera to the DIO card as added. This connec-
tion is TTL-high while the camera is integrating. When the
computer receives this signal, the first light source is to be imme-
diately illuminated. A flashgun is discharged by making a short cir-
cuit between its input pins. This is achieved here by sending a short
pulse from the DIO card to the input pins via a phototransistor
opto-isolator IC. This electrically isolates the sensitive DIO card
from the high voltages of the flashgun terminals. Finally, the DIO
card awaits the falling edge of the camera integration enabled sig-
nal before moving on to the next light source.

For NIR light, a slightly different procedure is adopted whereby
synchronous TTL signals are sent to the camera and LEDs. This is
because the LEDs can be illuminated for the duration of the camera
exposure, while the flashguns only last for a small fraction of the
exposure. The NIR LEDs are powered independently from the DIO
card and interfaced via a simple transistor circuit. As the LEDs
are illuminated for only 5 ms, it is possible to overpower them,
in order to increase their brightness without causing damage. We
therefore apply 20 V across the LEDs, compared to the recom-
mended 12 V.

2.2. Visible and NIR comparison

One possibly negative aspect of the visible light set-up is that
the firing of flashguns is obvious to the subject and possibly intru-
sive to any surrounding people. A possible advantage of NIR is that
there may be additional subcutaneous or vascular structures pres-
ent in the raw images taken under NIR light which may be used to
aid recognition. Unfortunately, we found that such features were
not visible in the wavelength band considered in this paper, but
we aim to study this further in future work. NIR light is also more
covert for a face recognition environment and subjects are less in-
clined to ‘‘pose” for the camera, meaning that more neutral expres-
sions are likely. Finally, it is worth noting the advantage that many
camera sensors are inherently more sensitive to NIR light.

One disadvantage of NIR illumination is the relative difficulty in
obtaining the necessary brightness for the required short exposure
times. While the flashguns were easily bright enough with an
exposure time of 1 ms, an exposure of 5 ms was needed for the
NIR LEDs (i.e. the maximum possible exposure for the given frame
rate). Although this was adequate for our experiments, we had to

use LED lenses that provided a narrow divergence angle, meaning
that the face had to be more precisely positioned to obtain full illu-
mination. For the visible light sources, the images were bright en-
ough even for large diversion angles, removing the need for
accurate positioning of apparatus and allowing subjects to pass
through the archway without having to consider their exact loca-
tion with respect to the camera.

To account for ambient illumination, the control image is sub-
tracted from the other four images. These images are then norma-
lised in terms of intensity before reconstruction takes place. This
was done by linearly scaling the greylevels of each image so that
the mean intensity was equal for each image. A detailed compari-
son of the resulting reconstructions is presented in Section 3.2.

2.3. Photometric stereo

Fig. 2 shows an example of four raw images of an individual
using our prototype operating with the visible light sources. The
person was slowly (�1 m/s) but casually walking through the de-
vice. Each image has pixel dimensions of 500 � 400 and there are
typically just a few pixel lengths misalignment between the first
and last images. The face detection method of Lienhart and Maydt
[34] is used to extract the face from the background of the image.

The four intensity images are processed using a MATLAB imple-
mentation of a standard PS method [35, Section 5.4]. Denote the
general operation of PS by

fnig ¼ PðfI1;ig; fI2;ig; . . . ; L1; L2; . . .Þ ð1Þ

where {ni; i = 1, . . . ,N} is the resulting set of surface normals, N is the
total number of pixels, {Ik,i; i = 1, . . . ,N} is the set of intensities for
image k, and Lj is the jth light source vector. For the bulk of this pa-
per, we use four light sources, resulting in set of surface normals

fnig ¼ PðfI1;ig; fI2;ig; fI3;ig; fI4;ig; L1; L2; L3; L4Þ ð2Þ

The general equation for PS using four sources for pixel i is

I1;i

I2;i

I3;i

I4;i

2
6664

3
7775 ¼ qi

LT
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LT
2

LT
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LT
4

2
66664

3
77775ni ð3Þ

where qi is the reflectance albedo. The intensity values and light
source positions are known, and from these the albedo and surface
normal components can be calculated by solving (3). The resultant
dense field of surface normals are then integrated to form height
maps using the well-known Frankot and Chellappa method [36].
Fig. 2 shows the resultant reconstruction.

2.4. Optimising light sources

In many cases of PS usage, it is desirable to use all available light
sources in the reconstruction in order to maximise robustness.
However, where one or more sources do not illuminate the entire
surface due to a self/cast shadow, it becomes disadvantageous to

Fig. 2. Left: four raw images. Right: reconstructions using standard PS (Eq. (3)), and the optimal source algorithm (Section 2.4).
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use all the sources. In the case of a face, this is most likely to hap-
pen around the nose and outer edges of the cheeks, as shown in
Fig. 2. In cases where the light source zenith angles (the angles be-
tween the viewpoint vector and the light source vectors) are small
and the face is looking directly towards the camera, shadows tend
not to be too problematic. When this is not the case, then more of
the face is in shadow and the reconstructions become distorted. In
such cases, it becomes beneficial to omit one or more sources from
the PS computation at certain pixels. Assume for now that the faces
are frontal, but that the light sources are repositioned to the arch-
way (see Fig. 1) to increase the size of the shadows.

For this paper, we assume that no points on the face are shad-
owed by more than one source. In other words, each pixel is visible
to at least three sources. In practice, a few areas to the sides of the
nose and the extreme edges of the cheeks are sometimes shad-
owed by two sources, but we found that these areas get smoothed
over by the subsequent surface integration and therefore have lit-
tle bearing on the overall reconstructions. Ideally, we would like to
determine which points are visible to which sources and only use
these lights in the PS computation. However, performing this task
precisely is difficult [20] and the resulting fields of surface normals
tend to exhibit discontinuities around the estimated shadow
boundaries. We therefore propose to adopt the following surface
normal for an arbitrary pixel i:

nopt;iðeiÞ ¼ ein3;i þ ð1� eiÞni ð4Þ

where e is a measure of the likelihood of a pixel being in shadow
and n3 is the surface normal estimated from the optimal three light
sources. Where e = 0, the pixel is definitely not in shadow and all
four light sources are used. Where e = 1, the pixel definitely in sha-
dow and only three sources are used. For intermediate values of e, a
mixture of n and n3 are used. This has the dual effect that the sha-
dow boundary does not need to be known precisely and that the
discontinuities mentioned above become smoothed out.

Methods are therefore needed to determine n3 (i.e. which are
the best three light sources to use) and e for each pixel. For the for-
mer of these, it is adequate to simply use the three light sources
that cause the brightest pixel for each point.

Each pixel has four measured intensities, one for each light
source. Let us call the brightest intensity Ia, with corresponding
light source vector La. We shall call the second brightest pixel Ib

and so on. We can therefore write our estimates of n3 as

fn3g ¼ PðfIag; fIbg; fIcg; La; Lb; LcÞ ð5Þ

where we are omitting the index suffix, i, for the sake of simplifying
the notation.

We know that for a pixel which is in a self shadow, the angle be-
tween Ld and the surface normal is greater than 90�. We can there-
fore define a self shadow condition as follows:

arccosðLd � n3ÞP 90� ð6Þ

where this condition is satisfied, we know that the fourth light
source is of no use and so we set e = 1. Where the condition is not
met, then cast shadows may or may not be present.

To obtain a suitable value of e for pixels that do not satisfy con-
dition (6), we compare the value of Id to the value that which we
would expect to measure in the absence of a cast shadow. Call this
value Iex. It is possible to estimate this quantity using a combina-
tion of n3, Ld, the albedo found from the brightest three pixels (call
this q3), and Lambert’s Law:

Iex ¼ q3Ld � n3 ð7Þ

For areas potentially in cast shadow from one source, we use
the ratio between Id and Iex to determine e. For areas deep in cast
shadow, the expectation is that Id� Iex. For these regions we
would like e � 1, while for pixels away from shadow, we have
Id � Iex, so we require e � 0. Combining this logic with condition
(6) we arrive at our final definition of e:

e ¼
1 arccos Ld � n3ð ÞP 90�

max 1� Id
Iex
;0

� �
otherwise

(
ð8Þ

where the ‘‘max” is required to deal with points that are not in sha-
dow, but where Id happens to be slightly greater than Iex.

Fig. 2 shows the surface reconstructions resulting from both
standard PS and using the method presented here. The new meth-
od was able to more accurately recover the regions of the face that
are in shadow. This is especially true for areas of large surface ze-
nith angle, such as the sides of the nose and outer edges of the face.
The method proposed here is also able to restore a greater defini-
tion in the fine details of the face. Note however, that the method
breaks down slightly near the far edges of the cheek, where the re-
gion is shadowed by two light sources. The result is that disconti-
nuities in the reconstructed height appear in such regions. Further
analysis of the method will be presented in Section 3.2, which also
includes a comparison with the Solomon and Ikeuchi method [19].

3. Results

3.1. Basic reconstructions

Fig. 3 shows a series of reconstructions from the method de-
scribed in Section 2 using visible light. The device was placed at
the entrance to a workplace to ensure casual (and thus realistic)
usage. The general 3D structures of the faces have clearly been well
estimated. Note however, that the spectacles of one of the subjects
have been ‘‘blended” into the face. This is a combined consequence
of the rim of the spectacles being highly specular and the surface
being non-integrable for this region of the image [36]. Although,
we would ideally be able to estimate the shape of the spectacles
accurately, the blending effect can potentially be beneficial to face
recognition algorithms because it means that such details have a
lesser impact on the overall reconstruction. A set of images and
reconstructions using both visible and NIR light sources can be
seen in Fig. 4. It is clear that NIR is also capable of providing good
estimates of the 3D geometry of the face.

We now compare the accuracy of the face reconstructions
against ground truth data. To do this, we scanned eight different
faces using a commercial 3dMD projected pattern range finder

Fig. 3. Estimated geometry of three different subjects using visible light sources.
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[12]. The 3dMD models were rescaled so that the distance between
tear ducts was the same as in the visible PS reconstruction. All
reconstructions were then cropped to 160 � 200 px regions cen-
tred on the nose tip that encompass the eyebrows and mouth. Part
of the forehead is omitted by this choice of cropping region as it is
frequently occluded by hair and is therefore deemed unreliable for
face recognition. An example of the face regions used for compar-
ison can be seen in Fig. 5, which also shows a ground truth recon-
struction acquired using a 3dMD scanner. The face regions from
visible and NIR light sources are then aligned to ground truth using
the Iterative Closest Point (ICP) algorithm [37].

Individual RMS and ‘2-norm error results between the recon-
structions and ground truth are displayed in Fig. 6. The eight sub-
jects consist of 6 males and 2 females and a mixture of Caucasian

and Asian ethnicities. The variations in residual errors and ‘2-norm
distances between visible and NIR reconstructions are significant
according to paired t-tests (p = 0.05). This demonstrates that PS
using NIR as a light source is a perfectly valid approach and leads
to more accurate reconstructions.

In order to get an indication of the regions where the greatest
differences occur between ground truth and PS reconstructions,
the residuals and ‘2-norm errors at each pixel are plotted in
Fig. 7. Typically, the largest variations occur in regions with the
highest curvatures, such as eye sockets, nose tips and the sides of
the nose.

In attempting to produce the most accurate reconstructions
possible via PS, it was found that the estimated surface normals
could be enhanced by using normals acquired by re-differentiating
the reconstructed height map estimate. It is unclear as to why this
should be the case but preliminary analysis indicates that the rea-
son may be due to the imposition of integrability constraints and
the fitting of limited basis functions in the Fourier domain [36],
as required by our adopted integration method. These factors
may cause errant normals to be ‘‘smoothed out” leading to a more
accurate reconstruction. However, if this method of improving
reconstructions is used, a second integration step would be needed
thus removing one of the benefits of PS for face recognition: that
the surface normals (and hence distinctive differential surface fea-
tures) are recovered directly. More research is required into this
area in order to confirm that the improvements result from the im-
posed integrability constraints.

Fig. 4. Example raw images and reconstructions using visible (top) and NIR light sources for four subjects. For these experiments only, the subjects were asked to rest their
chin on a support in order to ensure that all subjects are compared to each other in fair conditions.

Fig. 5. 3D reconstructions for one subject from a 3dMD scanner (left) which is used
as ground truth, PS using visible light sources (middle), and PS using NIR sources
(right).
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Fig. 6. RMS (left) and ‘2-norm (right) errors between Ground Truth (GT) and visible PS and NIR PS for each subject. NB: The order of subjects is arbitrary, i.e. there is no
significance to the pattern that can be inferred from the ‘2-norm errors figure.
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3.2. Mitigating shadow effects

To demonstrate the improvements in surface normal estimates
using the novel technique described in Section 2.4, we have man-
ually selected a square region of the image that contains a strong
shadow. Fig. 8 illustrates the surface normals of this region esti-
mated by various methods. Two improvements of the proposed
method compared to standard PS are noteworthy. Firstly, slightly
finer details of the face are estimated using the new method. Sec-
ondly, the area immediately to the left of the nose is badly corrupt
in the standard PS estimate, whereas the shadow is barely notice-
able for the new method. To quantify the improvement, the ‘2-
norm error was calculated between the two estimates and ground
truth. Using standard PS for the region in Fig. 8, the ‘2-norm error
was 0.32, while for the new method, the error dropped to 0.30. The
difference in error between methods for the entire face is negligi-
ble as most regions are not in strong shadows.

Although the difference in ‘2-norm error is very small, this
could be significant in certain applications as the nose and sur-
rounding regions of the face offer useful biometrics. This area is
seldom occluded by headgear/spectacles, varies considerably be-
tween individuals [38] and is relatively invariant to expression.
Interestingly also, psychological research has shown that the nose
is a preferred fixation point for humans attempting face recogni-
tion [39]. We should point out however, that although the surface
normals and depth are improved through our method, the discon-
tinuities in surface orientation at two-source shadow boundaries
may cause reduced Sobolev-norm errors in some cases. In future
work, we hope to reduce Sobolev-norm errors by treating two-
source shadowed regions in a different manner to one-source
shadowed regions.

For comparison, we have also implemented the Solomon and
Ikeuchi PS method [19]. Their method is similar to ours in that
combinations of three light sources are used to address shadow-
ing/specularity issues. Where the albedo estimates from each com-
bination of sources differs by an amount related to the standard
deviation of camera noise at each pixel, ri, it is assumed that a sha-
dow or specularity is present. For simplicity here, we assumed that
ri is constant for all i and estimated the camera noise from 100
images of a planar white surface at close range. The ‘2-norm error

for the region in Fig. 8 was 0.29 using the calculated value of
ri = 0.54" i. Therefore, our method is comparable to the Solomon
and Ikeuchi method in terms of accuracy. However, our method
does not require camera noise information in order to attain opti-
mum quality.

The method described in this section can enhance PS shape esti-
mates for images that contain shadows. This means that PS can be
used for facial reconstruction with somewhat arbitrarily positioned
light sources. For the sake of simplicity, we will assume that the
sources are positioned as in Fig. 1 for the rest of the paper and con-
duct the remainder of our analysis work using standard PS.

3.3. Reflectance analysis

To determine whether Lambert’s law is obeyed more strictly
under NIR light than visible, we have plotted graphs of I/q against
h, the angle between the light source and the normal vector. For a
purely Lambertian surface, the relationship between the two
should follow a cosine law. The results can be seen in Fig. 9. To gen-
erate the graph, values of I, q and h were estimated for each pixel of
each image for each of eight faces. The angle h is calculated for each
point of the face from the 3dMD scan data and the known light
source vectors. The average values of I/q are used for each 1� incre-
ment in h. The line at h = 60� indicates a reasonable cut-off point
after which data points become too sparse to be significant. The
RMS difference between the measured curves and the cosine curve
in the range of 0 6 h 6 60 is 0.04 (s.d. 0.11) for NIR light and 0.06
(s.d. 0.12) for visible. For completeness, the RMS difference across
the whole curve is 0.11 (s.d. = 0.13) for NIR light and 0.17 (s.d. =
0.12) for visible. The figure demonstrates that skin under NIR light
is marginally more Lambertian than under visible light.

Although the data suffers from significant noise levels (as indi-
cated by a standard deviation exceeding 10% of the range for both
conditions), the NIR condition has a lower RMS error and is there-
fore closer to the Lambertian curve than for visible light. This dif-
ference is significant given the large numbers of pixels and
subjects used in the trials. This represents an average pixel inten-
sity error of 10 greylevels for NIR and 15 for visible light across
the image, assuming a maximum of 256 grey level intensities. This
supports the hypothesis that skin is more Lambertian under NIR

Fig. 7. Representative examples of the residuals and the ‘2-norm errors at each pixel. Left to right: residuals for visible and NIR respectively, ‘2-norm errors for visible and NIR
respectively. Lighter areas represent larger errors.

Fig. 8. Image of the vertical component of the surface normal (lighter areas indicate more downward pointing normals) for a region of a face in shadow. From left: estimates
using standard four-source PS, using the proposed new algorithm, using the Solomon and Ikeuchi method, using the 3dMD scanner.
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illumination. We believe that this result is related to the fact that
NIR light penetrates more deeply into the skin than visible light
[40], which facilitates a more uniform scattering than surface
reflection. Note however, that neither the Lambertian model nor
the Oren–Nayar model (see below) take account of internal scatter-
ing or Fresnel effects. The results in Section 3.1 demonstrate that
the more Lambertian behaviour associated with NIR light also
leads to more accurate reconstructions.

A more detailed analysis for two individual subjects is shown in
Fig. 10 and Table 1. What can be noted immediately is the similar-
ity across the plots. There are small differences in I/q caused by dif-
ferent light sources but this appears to have little negative impact
on the reconstructions and is likely to be due to environmental ef-
fects. The figure suggests that PS using both visible and NIR is ro-
bust to different skin types and light intensities. A more
thorough analysis of the effects of gender and race on reflectance
properties will be the subject of future work.

3.3.1. Comparison to the Oren–Nayar model
We have also compared our reflection measurements to the

Oren–Nayar reflectance model [3], as shown in Fig. 9. The Oren–
Nayar model represents the reflecting surface as an array of
V-shaped groves of random orientation, commonly called ‘‘micro-
facets”. The distribution of microfacet orientations is characterised
by a roughness parameter and each facet is assumed to act as per-
fect Lambertian reflector. This model is able to account for the

common feature of limb-brightening and is itself based on the
earlier Torrance–Sparrow model [41] where each microfacet is as-
sumed to be mirror-like.

We have chosen to use the Oren–Nayar model as skin is not a
smooth surface (especially on older people) and the model has
been shown previously to be successful on a range of materials
of varying degrees of roughness [3]. We do not believe that the
microscopic structure of skin closely matches the Oren–Nayar
model, but are merely demonstrating how alternate methods for
reflection may improve our framework in future work. Investigat-
ing the various degrees of freedom of the BRDFs is also reserved for
future work. Furthermore, there are additional models for skin
reflectance which take account of a huge range of physical phe-
nomena [42,43], but these are out of the scope of this paper.

The Oren–Nayar curve in Fig. 9 represents an example intensity
profile for reference with a roughness parameter of 0.2. Clearly,
this model fits the measured reflectance data significantly more
accurately than the Lambertian curve, suggesting that the model
could be incorporated into the method in the future. This will how-
ever, add significant complexity and computation time to the
algorithm. This is because a minimisation method must be imple-
mented in order to recover all the model parameters and to accom-
modate the increased number of angular degrees of freedom in the
model.

4. Discussion

The results presented in Section 3 demonstrate that PS is an
effective method for producing 3D facial reconstructions in terms
of quality. Our method also requires a relatively short computation
time. Using the device with standard PS, LabVIEW interfacing, Mat-
Lab processing and a typical modern PC, the time between device
trigger and the reconstructed height map was approximately 4 s.
Use of the optimised light source algorithm adds a further 3 s of
computation time. The construction of the hardware also lends it-
self well to relatively unobtrusive data capture with a minimum
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Fig. 9. Mean I/q values averaged over eight subjects against h. To the right of the
vertical line at h = 60�, data were too sparse to be of significance. For reference one
standard deviation is shown to give an indication of spread.

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Fig. 10. I/q values from individual light sources plotted against h for the first two reconstructions shown in Fig. 4. Left to right: Subject 1 under visible, Subject 1 under NIR,
Subject 2 under visible, Subject 2 under NIR. The light sources are labelled clockwise from the bottom-left in Fig. 1.

Table 1
The RMS collective error across all eight reconstructions and for the first two
reconstructions shown in Fig. 4 separately. The standard deviations are shown in
brackets.

Visible NIR

RMS, h 6 60� RMS, overall RMS, h 6 60� RMS, overall

All faces 0.06 (r = 0.11) 0.16 (r = 0.12) 0.04 (r = 0.12) 0.11 (r = 0.13)
Subject 1 0.07 (r = 0.09) 0.16 (r = 0.18) 0.05 (r = 0.12) 0.10 (r = 0.22)
Subject 2 0.07 (r = 0.10) 0.17 (r = 0.18) 0.04 (r = 0.13) 0.12 (r = 0.21)
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amount of effort from the subject. Of particular interest are the fol-
lowing points:

1. The PS technique offers a valid alternative to existing, more
expensive and processor intensive, 3D face capture methods.

2. The PS technique is robust to common facial features such as
spectacles, makeup and facial hair (see also [44]).

3. NIR light sources produce reconstructions that are more accu-
rate than visible light sources.

4. The optimised light source method described in Section 2.4 per-
mits arbitrary light source arrangements and the presence of
shadows.

Our system offers several benefits over commonly used existing
laser triangulation and projected pattern 3D shape capture
devices:

1. It is significantly cheaper to construct.
2. Acquisition time is shorter than laser triangulation systems.
3. Data processing time is shorter than projected pattern systems.
4. The method is robust to typical ambient illumination conditions.
5. It is very robust against accidental collisions (because it is toler-

ant to errors in the light source vectors).
6. Very fine details of the face can be reconstructed.
7. Calibration is very quick and simple and only needs to be per-

formed after the initial light source positioning.
8. Due to the optimised light source method, the light sources can

be positioned conveniently for different physical environments.
9. Although our system cannot reconstruct hair with high levels of

accuracy, it can at least provide some details of its overall shape
(see Fig. 3, for example). In contrast, laser triangulation and pro-
jected pattern systems usually fail completely with hair.

At present, the 3D reconstructions are not yet as accurate as those
from projected pattern range finders. The reconstructions tend to be
flatter than their real-world counterparts, with most protrusions
understated. They do however provide extremely fine detail of a face
such as wrinkles and pores. Even though the reconstructions suffer
from a flattening of the features, they would still appear to be viable
for recognition purposes (each reconstruction is clearly of a distinct
identity) and the additional fine details could potentially be used as
supplementary information to aid recognition.

The reconstructions under NIR were shown to be more accurate
than those under visible light, but provided no additional 2D tex-
ture information. They also diminish the need for flashing lights,
making the system less intrusive compared to visible light.

Zivanov et al. [30] offer an alternative argument to ours, stating
that shorter wavelength light gives better results. Their justifica-
tion is that shorter wavelengths undergo less internal scattering
and thus provide a crisper, more defined reconstruction. It would
appear therefore that a compromise must be reached in deciding
between fine detail (using Zivanov’s short wavelength suggestion)
and overall geometry and covertness (using our NIR method).

4.1. Limitations and future research

One current limitation of the hardware described in this paper
is that it does not cope with large deviations of peoples’ height. Ex-
tremely tall or short people, or wheelchair bound persons would
probably trigger the device correctly, but the location of the face
could be outside of the field of view of the camera. Two possible
solutions for this are (1) to use two cameras and trigger sensors
at different heights or (2) to increase the field of view of the cam-
era. The first solution would work by using the most suitable cam-
era depending on which sensor had been triggered. While this is a
straightforward solution it would increase the cost of the equip-

ment considerably as the camera is the most expensive piece of
apparatus. Increasing the field of view is also straightforward and
would provide an adequate solution so long as wide-angle lens dis-
tortions did not become evident and that the face remains large en-
ough on the image to provide discriminating information for the
later recognition process.

Another improvement which could be made involves detecting
the coordinates of the face and adjusting the light source vectors
accordingly to improve the accuracy of the PS reconstruction. In
the current system the light source unit vectors are calculated from
a point at the centre of the camera’s field of view and this is used
for all reconstructions regardless of where the face is actually lo-
cated. For this reason, the light source unit vectors are less accurate
if the person walking through the device does not locate their face
near the centre of the camera’s field of view. The exact error caused
by this inaccuracy is unknown, but amending the light source an-
gles on a per person basis will improve the surface normal
estimates.

5. Conclusion

This paper has brought together a number of advances in state-
of-the-art 3D capture and processing technology. We have pre-
sented an algorithm for selecting the optimal light sources used
for PS reconstruction which has the advantage over similar algo-
rithms of not requiring knowledge of the exact shadow boundary.

The novel 3D facial geometry capture device has proved to be
capable of reconstructing 3D models of faces under realistic work-
place conditions using both visible and NIR light sources. It is
cheaper, more robust and requires less calibration than alternative
3D acquisition devices. Although its reconstructions are less accu-
rate than those of the state-of-the-art commercial 3dMD system,
they are suitable for face recognition, which will be the focus of
further study. The paper has also shown how human skin is more
Lambertian under NIR light which is offered as an explanation for
the associated improved accuracy of the reconstructions. A de-
tailed error analysis for these results was also presented.
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[5] B. Gökberk, M.O. _Irfanoğlu, L. Akarun, 3D shape-based face representation and
feature extraction for face recognition, Image Vis. Comput. 24 (8) (2006) 857–
869.

[6] V. Blanz, T. Vetter, Face recognition based on fitting a 3D morphable model,
IEEE Trans. Pattern Anal. Mach. Intell. (2003) 1063–1074.

[7] A.M. Bronstein, M.M. Bronstein, R. Kimmel, Three-dimensional face
recognition, Int. J. Comput. Vis. (2005) 5–30.

[8] I. Mpiperis, S. Malassiotis, M.G. Strintzis, 3-D face recognition with the
geodesic polar representation, IEEE Trans. Inform. Forensic Security (2007)
537–547.

[9] P.J. Phillips, P.J. Flynn, T. Scruggs, K.W. Bowyer, J. Chang, K. Hoffman, J.
Marques, J. Min, W. Worek, Overview of the face recognition grand challenge,
in: Proceedings of the CVPR, vol. 1, 2005.

950 M.F. Hansen et al. / Computer Vision and Image Understanding 114 (2010) 942–951



[10] <www.konicaminolta.com/sensingusa/products/3d/non-contact/vivid910>
(accessed 31.03.10).

[11] F. Chen, G.M. Brown, M. Song, Overview of three-dimensional shape
measurement using optical methods, Opt. Eng. 39 (2000) 10.

[12] <www.3dmd.com/3dmdface.html> (accessed 31.03.10).
[13] B.K.P. Horn, Shape from shading: a method for obtaining the shape of a smooth

opaque object from one view, Ph.D. thesis, MIT, 1970.
[14] P.N. Belhumeur, D.J. Kriegman, A.L. Yuille, The bas-relief ambiguity, Int. J.

Comput. Vis. 35 (1999) 33–44.
[15] R.J. Woodham, Photometric method for determining surface orientation from

multiple images, Opt. Eng. 19 (1) (1980) 139–144.
[16] W. Smith, E. Hancock, Facial shape-from-shading and recognition using

principal geodesic analysis and robust statistics, Int. J. Comput. Vis. 76
(2008) 71–91.

[17] C. Hernández, G. Vogiatzis, R. Cipolla, Shadows in three-source photometric
stereo, in: Proceedings of the ECCV, 2008, pp. 290–303.

[18] E.N. Coleman, R. Jain, Obtaining 3-dimensional shape of textured and specular
surfaces using four-source photometry, Comput. Vis. Image Process. (1982)
309–328.

[19] F. Solomon, K. Ikeuchi, Extracting the shape and roughness of specular lobe
objects using four light photometric stereo, IEEE Trans. Pattern Anal. Mach.
Intell. 18 (1996) 449–454.

[20] S. Barsky, M. Petrou, The 4-source photometric stereo technique for three-
dimensional surfaces in the presence of highlights and shadows, IEEE Trans.
Pattern Anal. Mach. Intell. 25 (2003) 1239–1252.

[21] K.E. Torrance, E.M. Sparrow, Theory for off-specular reflection from roughened
surfaces, J. Opt. Soc. Am. A 57 (9) (1967) 1105–1112.

[22] A.S. Georghiades, Recovering 3-D shape and reflectance from a small number
of photographs, in: Proceedings on Eurographics Workshop on Rendering,
Eurographics Association, Leuven, Belgium, 2003, pp. 230–240.

[23] J. Sun, M. Smith, L. Smith, S. Midha, J. Bamber, Object surface recovery using a
multi-light photometric stereo technique for non-Lambertian surfaces subject
to shadows and specularities, Image Vis. Comput. 25 (7) (2007) 1050–1057.

[24] A. Ghosh, T. Hawkins, P. Peers, S. Frederiksen, P. Debevec, Practical modeling
and acquisition of layered facial reflectance, in: International Conference on
Computer Graphics and Interactive Techniques, 2008.

[25] S.C. Kee, K.M. Lee, S.U. Lee, Illumination invariant face recognition using
photometric stereo, IEICE Trans. Inf. Syst. E Ser. D 83 (7) (2000) 1466–1474.

[26] S.K. Zhou, R. Chellappa, D.W. Jacobs, Characterization of human faces under
illumination variations using rank, integrability, and symmetry constraints,
Proc. ECCV (2004) 588–601.

[27] S.K. Zhou, G. Aggarwal, R. Chellappa, D.W. Jacobs, Appearance characterization
of linear Lambertian objects, generalized photometric stereo, and

illumination-invariant face recognition, IEEE Trans. Pattern Anal. Mach.
Intell. 29 (2) (2007) 230–245.

[28] A.S. Georghiades, P.N. Belhumeur, D.J. Kriegman, From few to many:
illumination cone models for face recognition under variable lighting and
pose, IEEE Trans. Pattern Anal. Mach. Intell. (2001) 643–660.

[29] R.R. Anderson, J.A. Parrish, The optics of human skin, J. Invest. Dermatol. 77 (1)
(1981) 13–19.

[30] J. Zivanov, P. Paysan, T. Vetter, Facial normal map capture using four lights – an
effective and inexpensive method of capturing the fine scale detail of human
faces using four point lights, in: GRAPP, 2009, pp. 13–20.

[31] S.Z. Li, R.F. Chu, S.C. Liao, L. Zhang, Illumination invariant face recognition
using near-infrared images, IEEE Trans. Pattern Anal. Mach. Intell. (2007) 627–
639.

[32] S.G. Kong, J. Heo, B.R. Abidi, J. Paik, M.A. Abidi, Recent advances in visual and
infrared face recognition – a review, Comput. Vis. Image Und. 97 (1) (2005)
103–135.

[33] C.H. Morimoto, D. Koons, A. Amir, M. Flickner, Pupil detection and tracking
using multiple light sources, Image Vis. Comput. 18 (4) (2000) 331–335.

[34] R. Lienhart, J. Maydt, An extended set of haar-like features for rapid object
detection, in: IEEE ICIP, vol. 1, 2002, pp. 900–903.

[35] D.A. Forsyth, J. Ponce, Computer Vision: A Modern Approach, Prentice Hall
Professional Technical Reference, 2002.

[36] R.T. Frankot, R. Chellappa, A method for enforcing integrability in shape from
shading algorithms, IEEE Trans. Pattern Anal. Mach. Intell. 10 (4) (1988) 439–
451.

[37] P.J. Besl, H.D. McKay, A method for registration of 3-D shapes, IEEE Trans.
Pattern Anal. Mach. Intell. 14 (2) (1992) 239–256.

[38] A. Moorhouse, A.N. Evans, G.A. Atkinson, J. Sun, M.L. Smith, The nose on your
face may not be so plain: using the nose as a biometric, in: International
Conference on Imaging for Crime Detection and Prevention, 2009.

[39] J.H.W. Hsaio, G. Cottrell, Two fixations suffice in face recognition, Psychol. Sci.
19 (2008) 998–1006.

[40] C. Fredembach, N. Barbuscia, S. Süsstrunk, Combining visible and near-infrared
images for realistic skin smoothing, in: Proceedings of the IS&T/SID Color
Imaging Conference, 2009.

[41] K. Torrance, M. Sparrow, Theory for off-specular reflection from roughened
surfaces, J. Opt. Soc. Am. 57 (1967) 1105–1114.

[42] C. Donner, H.W. Jensen, Light diffusion in multi-layered translucent materials,
ACM Trans. Graph. 24 (2005) 1032–1039.

[43] L. Li, C.S. Ng, Rendering human skin using a multi-layer reflection model, Int. J.
Math. Comput. Simul. 3 (2009) 44–53.

[44] G. Atkinson, M. Smith, Facial feature extraction and change analysis using
photometric stereo, in: Proceedings of the IbPRIA, 2009, pp. 96–103.

M.F. Hansen et al. / Computer Vision and Image Understanding 114 (2010) 942–951 951



A.2 Computationally efficient bio-inspired dimension

reduction for 3D faces

This poster was presented after being selected as one of ten candidates for the

Doctorial Consortium of the Automated Face and Gesture Recognition confer-

ence held in Santa Barbara, USA in March 2011. This competitive process at-

tracted funding of $1500 to cover travel and accommodation. The British Ma-

chine Vision Association also provided additional funding through a travel bursary

available to postgraduate students. This was a phenomenal experience whereby

members of the Doctorial Consortium were assigned mentors during their stay.

These were world class researchers who were able to provide critical review of

one’s work, general career advice, and a means of introduction to other leaders

in the field. In this author’s case, Prof. Kevin Bowyer from University of Notre

Dame, USA was assigned. Kevin Boywer is perhaps best known for his contri-

butions to the ubiquitous FERET and FRGC face databases, and has been in

contact numerous times since leading to collaborative work on his latest project

on recognising identical twins, which can be seen in the next section.
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A.3 Twins 3D Face Recognition Challenge

This paper was presented at the International Joint Conference on Biometrics

held in Washington, USA in 2011 which is a special combination of two major

biometrics research conference traditions, the International Conference on Bio-

metrics (ICB) and the Biometrics Theory, Application and Systems (BTAS) con-

ference. This author was invited to collaborate after discussing work with Prof.

Kevin Bowyer at the earlier Automated Face and Gesture Recognition confer-

ence. The paper was well received, and there is likely to be further collaboration

opportunities.
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Twins 3D Face Recognition Challenge

Vipin Vijayan 1, Kevin Bowyer 1, Patrick Flynn 1, Di Huang 2, Liming Chen 2,
Mark Hansen 3, Omar Ocegueda 4, Shishir Shah 4, Ioannis Kakadiaris 4

Abstract

The best performance in 3D face recognition algorithms
has become high enough in large datasets like FRGC v2 [1]
that it is difficult to achieve further significant increases in
recognition performance. The 3D TEC dataset is a more
challenging dataset which consists of 3D scans of 107 pairs
of twins taken in a single session, with each subject hav-
ing a scan of a neutral expression and a smiling expression.
The combination of factors related to the facial similarity of
identical twins and the variation in facial expression makes
this a challenging dataset. We conduct four experiments us-
ing state of the art face recognition algorithms and present
the results. Our results indicate that 3D face recognition of
identical twins in the presence of varying facial expressions
is far from a solved problem.

1. Introduction
Distinguishing between faces of identical twins is gen-

erally considered to be a difficult problem. In this paper,
we conduct a study on the performance of state of the art
3D face recognition algorithms on a large set of identi-
cal twins using the 3D Twins Expression Challenge (“3D
TEC”) dataset. The dataset contains 107 pairs of identical
twins and is the largest dataset of 3D scans of twins known
to the authors.

Recently, there have been some twins studies in biomet-
rics research. Phillips et al. [2] assessed the performance of
three of the top algorithms submitted to the Multiple Bio-
metric Evaluation (MBE) 2010 Still Face Track [3] on a
dataset of twins acquired at Twins Days [4] in 2009 and
2010. They examined the performance using images ac-
quired on the same day, and also using images acquired a
year apart (i.e., where the face images acquired in the first
year are gallery images and the face images acquired in the
second year are probe images). They also examined the per-
formance with varying illumination conditions and expres-

1Deparment of Computer Science and Engineering, University of Notre
Dame. 384 Fitzpatrick Hall, Notre Dame, IN 46556, USA.
{vvijayan, kwb, flynn}@nd.edu

2Université de Lyon, CNRS, Ecole Centrale Lyon, LIRIS UMR 5205,
69134, Ecully, France.

3Machine Vision Lab, DuPont Building, Bristol Institute of Technol-
ogy, University of the West of England, Frenchay Campus, Coldharbour
Lane, Bristol BS16 1QY, UK.

4Department of Computer Science, University of Houston. 4800 Cal-
houn Road, Houston, TX 77004, USA.

sions. They found that results ranged from approximately
2.5% Equal Error Rate (EER) for images acquired on the
same day with controlled lighting and neutral expressions,
to approximately 21% EER for gallery and probe images
acquired in different years and with different lighting con-
ditions.

Sun et al. [5] conducted a study on multiple biometric
traits of twins. They found no significant difference in per-
formance when using non-twins compared to using twins
for their iris biometric system. For their fingerprint bio-
metric system, they observed that performance when us-
ing non-twins was slightly better than using twins. In ad-
dition, their face biometric system could distinguish non-
twins much better than twins.

It is already known that iris texture is different enough
between identical twins that it can be used to distinguish
between them. Hollingsworth et al. [6] examined whether
iris textures from a pair of identical twins are similar enough
that they can be classified by humans as being from twins.
They conducted a human classification study and found that
people can classify two irises as being from the same pair of
twins with 81% accuracy when only the ring of iris texture
was shown to them.

Jain et al. [7] conducted a twins study using fingerprints.
They found that identical twins tend to share the same
fingerprint class (fingerprints are classified into whorls,
right/left loops, arches, etc.) but their fingerprint minutiae
were different. They concluded that identical twins can be
distinguished using a minutiae based automatic fingerprint
system with slightly lower performance compared to dis-
tinguishing random persons. They also hypothesized that
the difference in performance is because the minutiae based
system may depend on fingerprint class.

To date, there have been no studies conducted in 3D face
recognition that focused mainly on twins. Bronstein et al.
[8] tested the performance of their 3D face recognition algo-
rithm on a dataset of 93 adults and 64 children which con-
tained one pair of twins, and stated that “our methods make
no mistakes in distinguishing between Alex and Mike”.

2. The Dataset

The Twins Days 2010 dataset was acquired at the Twins
Days Festival in Twinsburg, Ohio [4]. Phillips et al. [2] pro-
vides more details about the overall dataset. It contains 266
subject sessions, with the 3D scans in the dataset containing
two scans taken using a range scanner: one with a neutral



Figure 1: Images of two twins taken in a single session. The top row shows the images obtained from one twin and the bottom row, the
other twin. The left two images on each row shows the 3D and texture images taken of the neutral expression and the right two shows the
smiling. (The texture images were brightened to increase visibility in this figure.)

expression and another with a smiling expression. There
were 106 sets of identical twins, one set of triplets, and the
rest were non-twins. Three pairs of twins came in for two
recording sessions and the other twins only had a single ses-
sion. The twins in the database only declared themselves to
be identical twins. No tests were done to prove this.

The experiments in this paper use the “3D TEC” subset
of the Twins Days dataset, which consists of 3D face scans
of 107 pairs of twins (two of the triplets were included as
the 107th set of twins), and where only the first session for
each person was used. To our knowledge, this is the only
dataset of 3D face scans in existence that has more than a
single pair of twins. For information on obtaining the 3D
TEC dataset, see [9].

The scans were taken using a Minolta VIVID 910 3D
scanner [10] in a controlled light setting, with the subjects
posing in front of a black background. For each pair of
twins, their neutral and smile images were taken in a 5 to
10 minute window of time.

The Minolta scanner takes a texture image and a range
image of 480×640 resolution. The telephoto lens of the Mi-
nolta scanner was used since it gives a more detailed scan.
The distance of the scanner from the subject was approx-
imately 1.2 m. A scan using the telephoto lens contains
70,000 to 195,000 points for the Twins 2010 dataset, with
an average of 135,000 points.

3. Algorithms

We describe the four algorithms employed in this study.
Table 1 shows the performance of these algorithms on the
FRGC v2 dataset.

3.1. Algorithm 1

Algorithm 1, described in McKeon [11] has a number
of optimizations over Faltemier et al. which include (i) the
symmetric use of the two point clouds and doing score fu-
sion on the results, (ii) score normalization of the match
scores, and (iii) weighting the scores for the regions. Fal-
temier et al. [12] performed Iterative Closest Point (ICP) us-
ing an ensemble of 38 spherical regions and fused the match
scores of each region to calculate the final match score.

Algorithm 1 is not an exact replica of the algorithm
in McKeon [11]. The major difference is the preprocess-
ing step where first roughly align the face using the rough
symmetry plane estimation method described in Spreeuw-
ers [13], and then finely align the image to a reference face
using ICP.

We have two point clouds, a probe image p and a gallery
image g. Each region in the ensemble is created by selecting
a point in p at a certain offset from the origin, and then
intersecting a sphere around the selected point with the face.
For Algorithm 1, the nose-tip is set as the origin.

The match scores are calculated by applying ICP to each
region in order to calculate the region’s final alignment er-
ror from the gallery image. The scores are then fused
by weighting and then adding each of the regions scores.
A modification of Sequential Forward Search (SFS) [14],
called SFS Weighted (SFSW) is used to find the region
ensemble with the best performance. SFSW is a greedy
algorithm and works as follows. Begin with a sequence
S = {(β1, R1), (β2, R2), ...(βn, Rn)} where Ri are the
match scores for the region, and βi are integer weights, ini-
tialized to 0, associated with each region. The fused match



score from S would be ESFSW =
∑n

i=1 βiRi. For each
iteration, find the region Rk that when its weight, βk, is
incremented gives the maximum TAR at 0.1% FAR using
ESFSW as the match score. Then S is modified by incre-
menting the weight, βk. This is repeated n times.

Let E(p1, p2) = ESFSW (p1, p2), be the match score of
point clouds p1 and p2. The ICP algorithm is not symmet-
ric, which means that E(p1, p2) 6= E(p2, p1) for almost
all cases. The two scores are fused using the minimum
rule: Emin(p1, p2) = min(E(p1, p2), E(p2, p1)), which
provides better performance.

The match scores are then normalized in two ways. First,
the match scores are normalized such that the normalized
score is

Epkn(p, gk) =
Emin(p, gk)∑N

j=1,j 6=k
Emin(gj ,gk)

N−1
(1)

where p is a probe image, gk are the gallery images, and N
is the number of gallery images.

Then we perform min-max normalization over the result-
ing match score from the first normalization, Epkn, so that
the final match score is

Eminmax(p, gk) =
Epkn(p, gk)−min(Vp)

max(Vp)−min(Vp)
(2)

where Vp = [Epkn(p, g1), Epkn(p, g2), ..., Epkn(p, gN )].
Algorithm 1 uses Emin along with score normalization

and SFSW (ESFSW ) with only the regions calculated by
setting the nose-tip as the origin.

3.2. Algorithm 2

Algorithm 2 consists of two main steps: intermediate fa-
cial representation and Scale Invariant Feature Transform
(SIFT) based local matching.

Currently, local feature extraction mostly operates di-
rectly on smooth facial range images, and it hence leads
to limited number of local features or ones with low dis-
criminative power. To solve this problem, intermediate fa-
cial representation is used to highlight local shape changes
of 3D facial surfaces in order to improve their distinctive-
ness. In this paper, we evaluated three types of intermediate
facial maps: Shape Index [15], extended Local Binary Pat-
terns [16] as well as Perceived Facial Images [17]. Figure 2
shows examples of these facial maps. The three types of
facial maps are described below.

Shape Index (SI) [15] was first proposed to describe
shape attributes. For each vertex p of a 3D facial surface,
its SI value can be calculated using

S(p) =
1

2
− 1

π
arctan

k1(p) + k2(p)

k1(p)− k2(p)
(3)

where k1 and k2 are the maximum and minimum principal
curvatures respectively. Based on the SI values of all the

Figure 2: Some examples of intermediate facial representation.
The first row contains (a) original RGB image; (b) grayscale tex-
ture image; (c) original range image; (d) SI map; (e)-(h) eLBP
maps of different layers. The second row contains eight PFIs of
quantized orientations of facial range image. The third row con-
tains eight PFIs of quantized orientations of facial texture image.

vertices, we can produce the SI map of a given facial sur-
face.

In the Extended Local Binary Pattern (eLBP) [16] ap-
proach, a set of multi-scale eLBP maps are generated to
represent a given facial range image. eLBP maps consist of
four layers. Layer 1 is LBP, which encodes the gray value
differences between neighboring pixels into a binary pat-
tern. eLBP also considers their exact value differences and
encodes this information into Layers 2 to 4. The eLBP maps
are generated by regarding the eLBP codes of each pixel as
intensity values. As the neighborhood size of the given pixel
changes, multi-scale eLBP maps are formed.

Perceived Facial Image (PFI) [17] aims at simulating the
complex neuron response using a convolution of gradients
in various orientations within a pre-defined circular neigh-
borhood. Given an input facial image I , a certain number
of gradient maps L1, L2,. . . , Lo, one for each quantized di-
rection o, are first computed. Each gradient map describes
gradient norms of the original image in an orientation o at
every pixel. We then simulate the response of complex neu-
rons by convolving its gradient maps with a Gaussian kernel
G, and the standard deviation of G is proportional to the ra-
dius value of the given neighborhood area R.

ρRo = GR ∗ Lo (4)

The purpose of the Gaussian convolution is to allow the gra-
dients to shift in a neighborhood without abrupt changes. At
a certain pixel location (x, y), we collect all the values of the
convolved gradient maps at that location and form the vec-
tor ρR(x, y), which a response value of complex neurons
for each orientation o.

ρR(x, y) =
[
ρR1 (x, y), · · · , ρRO(x, y)

]t
(5)

The vector ρR(x, y) is further normalized to a unit norm
vector ρR(x, y), which is called response vector. This, a
new Perceived Facial Image (PFI), Jo, is achieved using



complex neurons for each orientation o defined as

Jo(x, y) = ρR
o
(x, y) (6)

After the three types of intermediate facial representa-
tions are computed, a SIFT-based matching process [18] is
used to find robust keypoints from the facial representations.
It is expected to associate many more keypoints between
facial maps of the same subject than those of different sub-
jects. Furthermore, since SIFT has good tolerance to mod-
erate pose variations and all the data in the 3D TEC dataset
are nearly frontal scans, we did not perform any registration
in preprocessing. All parameter settings of intermediate fa-
cial representations are presented in detail in [15, 16, 17].

In addition, SI maps and eLBP maps are mainly pro-
posed for 3D facial range images, while PFIs can be either
applied to facial range or texture images as done in Huang
et al. [17] for 3D face recognition using shape and texture.
Therefore, in this paper, we also tested the performance
based on 2D PFIs with SIFT matching for comparison.

3.3. Algorithm 3

Algorithm 3 converts the 3D image to a surface normal
representation, then discards data with less discriminatory
power and resizes the image. It then matches the images
using Euclidean distance of the variance of the remaning
surface normals.

Surface normals have been shown to lend themselves
well to face recognition tasks [19]. We convert the depth
maps of 3D images to surface normal representations, ap-
plying median smoothing and hole filling to reduce noise.

Unnikrishnan [20] conceptualised an approach similar to
face caricatures for human recognition. In this approach,
only those features which deviate from the norm by more
than a threshold are used to uniquely describe a face. Un-
nikrishnan suggested using features whose deviations lie
below the 5th percentile and above the 95th percentile,
thereby discarding 90% of the data. In a similar vein, the
algorithm that we present here is based on what we call the
“Variance Inclusion Criterion”. We can use the surface nor-
mal variance at each pixel location as a measure of discrim-
inatory power. If a pixel shows a large variance across the
dataset, then it can be used for recognition (assuming that
variance within the class or subject is small). Therefore, the
standard deviation of each pixel is calculated over all the
images in the gallery. Whether or not a particular pixel lo-
cation is used in recognition depends on whether or not the
variance is above a pre-determined threshold.

Another key step of this algorithm is resizing the im-
age. Sinha et al. [21] summarised a number of findings
indicating that humans can recognise familiar faces from
very low resolution images. We resize the surface normal
maps to 10× 10 pixels before applying the Variance Inclu-
sion Criterion to get the number of pixels used for recog-

nition down to just over 60 pixels. The reason for choos-
ing this value is due to experimentation on frontal and neu-
tral expression subsets of the FRGC v2 and Photoface [22]
datasets. In these experiments it was found that when re-
taining only 64 pixels for FRGC v2 data and 61 pixels for
Photoface data, rank-one recognition rates of 87.75% and
96.25% were achieved respectively (a loss of only 7% and
2% from the baseline). This is taken as an indication that
the high variance pixel locations contain disproportionately
more discriminatory information than low variance pixel lo-
cations.

Because of the two expressions used between gallery and
probe images in the 3D TEC dataset, it was felt that the most
variance would occur around the mouth region and bottom
half of the face. Therefore we only performed the variance
analysis on the top half of the face.

Additional pre-processing is performed by aligning all
the images to the median left and right lateral canthus and
nose tip coordinates for the dataset. A tight crop around the
facial features is then applied to remove areas in a straight-
forward way that can be occluded by hair. Euclidean dis-
tance is used for classification.

It is envisaged that this algorithm be used as a means of
pruning the search space due to its computational efficiency
before applying more rigorous algorithms.

3.4. Algorithm 4

The UR3D algorithm proposed by Kakadiaris et al. [23]
consists of three main steps: (i) the 3D facial meshes
are aligned to a common reference Annotated Face Model
(AFM), (ii) the AFM is deformed to fit the aligned data, and
(iii) the 3D fitted mesh is represented as a three-channel im-
age using the global UV-parametrization of the AFM. The
benefit of representing the 3D mesh as a multi-channel im-
age is that standard image processing techniques can be
applied directly to the images. In this approach, the full
Walsh wavelet packet decomposition is extracted from each
band of the geometry and normal images and a subset of
the wavelet coefficients are selected as the signature of the
mesh. The signature can be compared directly using a
weighted L1 norm. Recently, Ocegueda et al. [24] pre-
sented an extension to UR3D that consists of a feature se-
lection step that reduces the number of wavelet coefficients
retained for recognition, followed by a projection of the sig-
natures to a subspace generated using Linear Discriminant
Analysis (LDA). The feature selection step was necessary
because the high dimensionality of the standard UR3D sig-
nature made it infeasible to apply standard algorithms for
LDA. However, by using the algorithm proposed by Yu and
Yang [25], we can directly apply LDA to the original UR3D
metric. We found that applying LDA to the original signa-
ture yields slightly better results. We will use this varia-
tion of the UR3D algorithm in our experiments. We used



the frontal, non-occluded facial meshes from the Bospho-
rus dataset developed by Savran et al. [26] as training set
for LDA.

Algorithm Rank 1 RR VR (ROC III)
Alg. 1 98.0% 98.8%
Alg. 2 (SI) 91.8% 85.8%
Alg. 2 (eLBP) 97.2% 95.0%
Alg. 2 (Range PFI) 95.5% 90.4%
Alg. 2 (Text. PFI) 95.9%
Alg. 3 97.0% 97.0%
Alg. 4 87.8%

Table 1: Rank-one recognition rates and verification rates (TAR at
0.1% FAR) of the algorithms on the FRGC v2 dataset. For recog-
nition, the earliest image acquired of each subject is in the gallery
set and the rest of the images are probes. For the ROC III verifica-
tion experiment, the gallery set contains the images acquired in the
first semester and the probe set contains the images in the second
semester.

4. Experimental Design
We arbitrarily label one person in each pair of twins as

Twin A and the other as Twin B and perform four exper-
iments with the different gallery and probe sets shown in
Table 2.

No. Gallery Probe
I A Smile, B Smile A Neutral, B Neutral
II A Neutral, B Neutral A Smile, B Smile
III A Smile, B Neutral A Neutral, B Smile
IV A Neutral, B Smile A Smile, B Neutral

Table 2: List of experiments performed.

Experiment I has all of the images with a smiling expres-
sion in the gallery and the images with a neutral expression
as the probe. Experiment II reverses these roles. This mod-
els a scenario where the gallery has one expression and the
probe has another expression. In the verification scenario,
both the match and non-match pairs of gallery and probe
images will have different expressions. In the identifica-
tion scenario, theoretically the main challenge would be to
distinguish between the probe’s image in the gallery and
his/her twin’s image in the gallery since they look similar.

Experiment III has Twin A smiling and Twin B neutral
in the gallery with Twin A neutral and Twin B smiling as
the probe. Experiment IV reverses these roles. This models
a worst case scenario in which the system does not con-
trol for the expressions of the subject in a gallery set of
twins. In the verification scenario, the match pairs would
have opposite expressions like in Experiments I and II but
the non-match pairs which are twins would have the same

expression. In the identification scenario, theoretically the
main challenge would be to distinguish between the probe’s
image and his/her twin’s image in the gallery. This is more
difficult than Experiments I and II since the probe’s expres-
sion is different from his/her image in the gallery but is the
same as his/her twin’s image in the gallery.

5. Results and Discussion

We evaluate performance using the following character-
istics: True Accept Rate at 0.1% False Accept Rate (TAR
at 0.1% FAR), Equal Error Rate, and Rank 1 Recognition
Rate. Receiver Operating Characteristic (ROC) curves is
also used for some of the algorithms to show their perfor-
mance.

Figure 3: ROC curves of the four experiments for Algorithm 1.
TAR at 0.1% FAR could not be calculated because of the normal-
ization techniques used in the algorithm.
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Figure 4: Verification performance of Algorithm 3.

In the first two of our four experiments, all subjects are
enrolled with a 3D face scan that has one expression, and
all recognition attempts are made with the other expression.



Figure 5: Verification performance of the extended UR3D algo-
rithm.

Algorithm True Accept Rate
I II III IV

Alg.1 99.1% 97.7%
Alg.2 (SI) 91.1% 89.7% 83.2% 81.8%
Alg.2 (eLBP) 94.4% 95.3% 79.0% 78.0%
Alg.2 (Range PFI) 93.5% 94.4% 68.7% 69.2%
Alg.2 (Text. PFI) 96.7% 96.7% 93.0% 93.5%
Alg.3 38.1% 41.0% 31.4% 34.1%
Alg.4 98.1% 98.1% 95.8% 95.8%

Table 3: TAR at 0.1% FAR of the algorithms.

Algorithm Equal Error Rate
I II III IV

Alg.1 0.2% 0.5% 1.1% 0.9%
Alg.2 (SI) 2.7% 3.7% 4.2% 4.5%
Alg.2 (eLBP) 3.7% 3.3% 4.2% 4.2%
Alg. 2 (Range PFI) 4.1% 2.8% 4.7% 4.6%
Alg.2 (Text. PFI) 2.7% 2.8% 3.3% 2.8%
Alg.3 11.6% 11.8% 12.0% 12.2%
Alg.4 0.8% 0.8% 0.8% 0.8%

Table 4: Equal Error Rate of the different algorithms.

Algorithm Rank 1 Recognition Rate
I II III IV

Alg.1 94.4% 93.5% 72.4% 72.9%
Alg.2 (SI) 92.1% 93.0% 83.2% 83.2%
Alg.2 (eLBP) 91.1% 93.5% 77.1% 78.5%
Alg.2 (Range PFI) 91.6% 93.9% 68.7% 71.0%
Alg.2 (Text. PFI) 95.8% 96.3% 91.6% 92.1%
Alg.3 62.6% 63.6% 54.2% 59.4%
Alg.4 98.1% 98.1% 91.6% 93.5%

Table 5: Rank-one recognition rates.

Thus, the difference in expression between enrollment and
recognition is the same for all subjects. In these two exper-

iments, we find that 3D face recognition accuracy for twins
exceeds 90% for most of the algorithms. In the last two of
the four experiments, the facial expression differs between
the twins’ enrollment images and also between their images
for recognition. In these experiments, 3D face recognition
accuracy ranges from the upper 60% to the lower 80%, ex-
cept for Algorithm 2 (Texture PFI) which makes use of the
texture information, and Algorithm 4. An exception is Al-
gorithm 3, which showed reasonable performance on the
FRGC v2 and Photoface [22] datasets but vastly degrades
in performance on the 3D TEC dataset.

Why do some algorithms perform very well on this
dataset while others don’t? Algorithm 3, for example, dis-
cards a large amount of data by resizing and uses thresh-
olded Euclidean distance which is a fairly simple classifica-
tion method. Algorithm 1 on the other hand discards almost
no data; it matches using the original point cloud that was
scanned after some standard processing. The results also
show a stark difference in the performances in Experiments
I and II compared to III and IV for some of the algorithms.
This demonstrates how good the algorithm is when dealing
with different expressions.

The 3D TEC dataset contains only “same session” data,
meaning that there is essentially no time lapse between the
image used for enrollment and the image used for recogni-
tion. Therefore, any performance estimates from this data
are biased to exceed those that can be expected in any prac-
tical application.

6. Conclusion
3D face recognition continues to be an active research

area. We have presented results of different state of the art
algorithms on a dataset representing 107 pairs of identical
twins with varying facial expressions, the 3D Twins Expres-
sion Challenge (“3D TEC”) dataset. These algorithms have
previously been reported to achieve good performance on
the FRGC v2 dataset, which has become a de facto standard
dataset for evaluating 3D face recognition. However, we ob-
serve lower performance on the 3D TEC dataset. The com-
bination of factors related to the facial similarity of identical
twins and the variation in facial expression makes for an ex-
tremely challenging problem.

The 3D TEC Challenge is smaller and therefore compu-
tationally simpler than the FRGC v2 Challenge. It combines
a focus on fine discrimination between faces and handling
varying expression. There have been claims in the litera-
ture of 3D face recognition algorithms that can distinguish
between identical twins. To our knowledge, this is the first
time that experimental results have been reported for 3D
face recognition involving more than a single pair of identi-
cal twins. The results demonstrate that 3D face recognition
of identical twins in the presence of varying facial expres-
sions remains an open problem.
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tion for 2D and 3D face recognition
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ences and to network with other researchers at a similar stage of their career.
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Abstract

We present a number of related novel methods for reducing the dimensionality of
data for the purposes of 2D and 3D face recognition. Results from psychology show
that humans are capable of very good recognition of low resolution images and carica-
tures. These findings have inspired our experiments into methods of effective dimension
reduction. For experimentation we use a subset of the benchmark FRGCv2.0 database
as well as our own photometric stereo “Photoface” database. Our approaches look at the
effects of image resizing, and inclusion of pixels based on percentiles and variance. Via
the best combination of these techniques we represent a 3D image using only 61 vari-
ables and achieve 95.75% recognition performance (only a 2.25% decrease from using
all pixels). These variables are extracted using computationally efficient techniques in-
stead of more intensive methods employed by Eigenface and Fisherface techniques and
can additionally reduce processing time tenfold.

1 Introduction

Automatic face recognition has been an active area of research for over four decades and
a key part of this research is understanding how different data representations affect recog-
nition rates and efficiency. Digital images of faces have a very high data dimensionality:
a 200× 200px image defines a point in a 40000-dimensional space, making computation a
slow and resource hungry process. This is compounded when faces images are extended into
3D models. Reducing the dimensionality of the data without discarding the discriminatory
information is the aim of this research. If a face can effectively be reduced down from many
thousands of dimensions of raw data to a few tens of dimensions as in this paper, then storage
needs become far less and processing becomes far faster. This has obvious applications for
industrial and commercial implementations.

In this paper, we prove the following contributions for both the FRGCv2.0 database [11]
and our own photometric stereo database [22] captured using the “Photoface” device [6]:

c© 2011. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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1. Optimal recognition results for close-cropped faces are obtained when the resolution
is reduced to a mere 10x10 pixels.

2. The exclusive use of just 10% of the data (chosen to be those pixel locations with the
greatest variance) is sufficient to maintain recognition rates to within 10% of those
rates that include all of the data.

3. When combining the above two contributions we perform recognition at an accuracy
of 96.25% for 40 subjects using only 61 dimensions (pixels). This compares to 98%
when the full 80x80 resolution is used on all data.

Ultimately we aim to compare dimension reduction techniques based on a percentile and
variance based inclusion principle (to exclude 90% of the data) with a baseline condition
containing all pixels.

Our own database, Photoface, provides over 3000 sessions of 457 individuals, and scans
are captured using photometric stereo [17] which results in estimated surface normals at each
pixel. Full details of the actual device used can be found in [6] and an example of a scan can
be seen in Fig. 1. The FRGCv2.0 database, which we also use in this paper, does not provide
the surface normals. They can be calculated by numerically differentiating the point cloud
data. We also include experiments on the depth map images to rule out any errors introduced
by differentiation.

Figure 1: Examples of FRGCv2.0 (left) and Photoface
(right) 3D scans. NB They are not of the same person.

Using 3D data for face recog-
nition allows for pose and illumi-
nation correction which are two
commonly cited problems with
conventional 2D images. Better
recognition rates have also been
reported using 3D over 2D data
[4], although this is not always
replicated [7]. One reason for this
may be the representation of the
3D data used in the analysis. Gök-
berk et al. [5] performed recogni-
tion experiments using numerous 3D representations. They concluded that ‘. . . surface nor-
mals are better descriptors than the 3D coordinates of the facial points.’ This is at odds with
most research which uses the 3D point coordinates as a starting point. Surface normals are
used in the experiments performed in this paper for this reason.

There are many mathematical techniques for dimensionality reduction, and in particu-
lar the Eigenface [15] and Fisherface [2] (based on Principle Components Analysis (PCA)
and Fisher’s Linear Discriminant (FLD) respectively) techniques are commonly used in face
recognition. With an added dimension, 3D face models potentially compound the problem
for large data storage. Recent techniques such as sparse representation (such as non-negative
matrix factorization) and manifold learning (such as local linear embedding [8]) show that ef-
fective methods of dimension reduction are a key topic. Methods that can reduce the amount
of data without discarding discriminatory information are essential for faster processing and
optimal solutions. There have been many attempts in the literature to extend and generalise
PCA, FLD and other methods [19, 20, 21] in order to improve robustness to pose, illumi-
nation, etc, typically at the expense of computational efficiency. The main contribution of
this paper by contrast, is to show that for the constrained case of frontal 2.5D data, then the
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efficiency can be improved even compared to PCA by using more direct analysis without the
need to project into a new subspace.

Caricaturing essentially enhances those facial features that are unusual or deviate suffi-
ciently from the norm. It has been shown that humans are better able to recognise a caricature
than they are the veridical image [10, 12]. This finding is interesting as caricaturing is simply
distorting or adding noise to an image. However this noise aids human recognition and this,
in turn, provides insights into the storage or retrieval mechanism used by the human brain.

Unnikrishnan [16] conceptualises an approach similar to face caricatures for human
recognition. In this approach, only those features which deviate from the norm by more
than a threshold are used to uniquely describe a face. Unnikrishnan suggests using those
features whose deviations lie below the 5th percentile and above the 95th percentile, thereby
discarding 90% of the data. Unnikrishnan provides no empirical evidence in support of his
hypothesis, so an aim of this paper is to test the theory experimentally. We do this in two
ways: the first directly tests his theory, finding the thresholds for each pixel which represent
the 5th and 95th percentile values and only including those pixels in each scan which lie out-
side them (outliers). The second is loosely based on Unnikrishnan’s idea, and looks at the
variance across the whole database to calculate the pixel locations with the largest variance.
Only the pixels at these locations are then used for recognition.

An obvious method of reducing the amount of data is to downscale the images. A
great deal of research has gone into increasing the resolution of poor quality images (super-
resolution [1, 18], hallucinating [23]) by combining images or using statistical techniques to
reproduce a more accurate representation of a face (e.g. from CCTV footage). By contrast,
little research attempts to directly investigate resolution as a function of recognition rates
on 3D data. Toderici et al. state that there is little to be gained from using high resolution
images [14], Boom et al. state that the optimum face size is 32×32 px for registration and
recognition [3], a view which is reinforced by a more recent study by Lui et al. who state
that optimum face size lies between 32 and 64 pixels [9]. These experiments have used 2D
images. Chang et al. use both 2D and 3D data and conclude that there is little effect of
decreasing resolution up to 25% on 2D data and 50% on 3D [4] using PCA. In summary,
the research suggests that relatively low resolutions give optimum recognition (for the given
recognition algorithms). These findings are conducive to the fact that the same appears to be
true of human recognition [13].

2 Methods and data
This section details the datasets, preprocessing steps, and the methods used in the experi-
ments.

2.1 Data and preprocessing
Experiments were performed on 10 sessions of 40 subjects facing frontally without expres-
sion on the FRGCv2.0 and our own photometric stereo database. 2D and 3D data are used
in separate experiments.

The FRGCv2.0 dataset comes in point cloud format which is converted to a mesh via
uniform sampling across facets. Noise is removed by median smoothing and holes filled
by interpolation. Normals are then estimated by differentiating the surface. The depth map
images are all normalized to have a minimum value of 0.
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Figure 2: The cropped re-
gion of a face. The distance
between the anterior canthi
(d) is used to calculate the
cropped region.

Data is cropped for both databases as follows: the median
anterior canthi and nose tip across all sessions are used for
alignment via linear transforms. The aligned images are then
cropped into a square region as shown in Fig. 2 to preserve
main features of the face (eyes, nose, mouth), and exclude the
forehead and chin regions which can frequently be occluded
by hair.

Our 2D experiments are based on data as follows: the ac-
companying colour image for each FRGCv2.0 scan is con-
verted to greyscale, aligned and cropped in the same way as
the 3D scan. The 2D images in the Photoface database are the
estimated albedo images which are also aligned and cropped
in the same way as the 3D data. Due to memory limitations,
both the 2D and 3D data are then resized to 80×80 px and are

reshaped into a 6400-dimension and a 12800-dimension (x and y components of the surface
normals are concatenated) vector respectively.

2.2 Calculating outliers and variance
The thresholds for each pixel are calculated which represent the 5th and 95th percentile val-
ues. We are interested in the norm across the whole dataset for each pixel location rather
than the norm for each image. For the 2D images, percentile values are calculated for the
greyscale intensity value for each pixel location. There are 400 sessions, so there are 400
values for each pixel from which we calculate the percentile thresholds. The same process is
performed for 3D surface normal data, giving x and y surface normal component thresholds
for each pixel. Pixels which have a value between the 5th and 95th percentile are discarded,
leaving only the 10% outlying data. We shall refer to this as the “percentile inclusion crite-
rion”. Examples can be seen in Fig. 3.

Figure 3: Examples of the y-components of the surface normals
that have values outside the 5th and 95th percentiles for four sub-
jects which are used for recognition.

The above method
extracts the least com-
mon data from each ses-
sion and that is what
is used for recognition.
Alternately, we can use
the greyscale variance at
each pixel location as a
measure of discrimina-
tory power. If a pixel

shows a large variance across the dataset, then this might make it useful for recognition (as-
suming that variance within the class or subject is small). Therefore the standard deviation
of each pixel is calculated over all the sessions. Whether or not a particular pixel location
is used in recognition depends on whether or not the variance is above a pre-determined
threshold. Examples of the use of different thresholds are shown in Fig. 4. We refer to this
as the “variance inclusion criterion”.

2.3 Image resizing
The effect of different resizing techniques on linear subsampling are investigated in terms of
their effect on recognition as a function of resolution. Resizing is performed via the Matlab
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Figure 4: Examples of the regions which remain for x (top row) and y-components (bottom
row) as the threshold variance is increased from left to right. White regions are retained and
black regions are discarded.

imresize() function using the deafult bicubic kernal type and with antialiasing on, as
these settings were found to provide the best performance.

2.4 Recognition algorithm

Our experiments used to test recognition accuracy employ the leave-one-out paradigm. This
dictates that every session is used as a probe against a gallery of all other sessions once. There
are therefore 400 classifications per condition of which the percentage correctly identified is
shown.

As the purpose of this research is feature extraction efficiency, the actual choice of classi-
fier is not so important. We therefore implement Pearson product-moment correlation coef-
ficient (PMCC) as a similarity measurement between a probe vector and the gallery vectors.
The gallery session with the highest coefficient is regarded as a match. Experimentally, we
found that PMCC gives similar performance on baseline conditions to the Fisherface algo-
rithm but is approximately eight times faster.

3 Results

3.1 Dimensionality reduction via the percentile inclusion criterion

Unnikrishnan’s theory states that we should expect reliable performance using only the data
which lies outside the 5th and 95th percentiles [16]. Table. 1 shows recognition rates on 2D
and 3D data using both all data and the outliers only. Note in particular that, for the 3D
surface normal data, the rates drop by under 10% when using outlier data only. This effect
seems limited to the surface normal data and is not seen in either the 2D or depth map data.
We have included results from a fusion technique using the Photoface surface normal data
combined with the albedo image. There is a small decrease in baseline performance and
using only the outlying data leads to a severe decrease of about 34%.

Baseline (All pixels) Outliers (10% of pixels)

2D FRGC 90 73.75
Photoface 98 64

3D
FRGC Surface normals 90.25 84.25

FRGC Depth map 71.5 23.25
Photoface 98.25 89.25

Fusion Photoface 2D + 3D 97 63.25
Table 1: Baseline versus outlier performance (% correct).
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Fig. 5 shows a plot of recognition rate as a function of which percentile range is used
for recognition on 3D Photoface data. It should be noted that similar patterns of results
were found for all datasets (2D, 3D and FRGC). As predicted, the figure shows that the best
recognition performance is obtained using the most outlying percentiles. As expected also,
the recognition rate reduces as the percentile ranges used tend toward the inliers. However,
for the most inlying data of all (i.e. percentiles 45–55) we find a significant increase in
performance. Contrary to Unnikrishnan’s theory, this implies that there is discriminative
data that is useful for face recognition in the most common data as well as the most outlying.
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Figure 5: Recognition performance using pairs of percentile ranges for 3D data.

In a related experiment, we used single 5% ranges of data for recognition (i.e. [0th−
5th], [5th−10th] etc.) as shown in Fig. 6. Note that the increase in recognition performance
for the most inlying data is not replicated. The slightly lower performance compared with
Fig. 5 is because only 5% of the data is used instead of 10%.

Performance increases by combining ranges are not always observed. Consider, for ex-
ample, the 25−30th and 70−75th percentiles for the FRGCv2.0 data. Individually the two
percentiles give a performance around the 50% mark in Fig. 6, but when combined, the
performance drops to around 40% in Fig. 5.
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3.2 Dimensionality reduction via the variance inclusion criterion
One problem with the above method is that the outlying points tend to be scattered across
different parts of the images, making inter- and intra-comparisons between individuals some-
what unstructured. For the next method therefore, we use the same pixel locations in our
recognition test for all images. Instead of using the percentiles defined within a single im-
age as an inclusion criterion, we use the variance of a particular pixel across all subjects as
explained in Sec. 2.2.

Fig. 7 shows plots combining the number of pixels which remain as we remove those with
least variance (bar plot) against the recognition performance (line plot). It is apparent that
we can achieve close to optimal performance while losing a large proportion of the pixels.
We can discard approximately 75% of the least varying pixels and observe a corresponding
drop of less than 10% in recognition performance on the FRGC data. Indeed, for Photoface
data specifically, we only lose a few percent.

2D 3D

FRGC

30 40 50 60 70 80
0

1000

2000

3000

4000

5000

6000

7000

Variance Threshold

P
ix

e
ls

%
 C

o
rr

e
c
t

40

50

60

70

80

90

0.1 0.2 0.3 0.4 0.5
0

2000

4000

6000

8000

10000

12000

14000

Variance Threshold

P
ix

e
ls

%
 C

o
rr

e
c
t

20

30

40

50

60

70

80

90

100

Photoface

20 25 30 35 40 45
0

1000

2000

3000

4000

5000

6000

7000

Variance Threshold

P
ix

e
ls

%
 C

o
rr

e
c
t

65

70

75

80

85

90

95

100

0.05 0.1 0.15 0.2 0.25 0.3
0

2000

4000

6000

8000

10000

12000

14000

Variance Threshold

P
ix

e
ls

%
 C

o
rr

e
c
t

70

75

80

85

90

95

100

Figure 7: Recognition (line) as a function of retained pixels (bar chart). The pattern is shown
in both sets of data (FRGC on the top row and Photoface on the bottom). 2D (grayscale for
FRGC and albedo for Photoface) on the left, and surface normal data is shown on the right.

Table 2 shows a performance comparison of the two types of inclusion criteria when only
10% of pixels are retained. It is clear that by discarding the data that varies the least, we can
maintain reasonably high recognition rates.

Percentiles Variance
FRGC 84.25% ≈ 79%
Photoface 89% ≈ 92%
Processing time 800.64s 180.95s

Table 2: A comparison of recognition performance using percentiles and variance methods to
select the most discriminatory 10% of the data. The processing time includes the calculation
of the outliers/most varying pixels and 400 classifications

The processing time improvement for the variance approach is due to having decreased
the vector size by 90 %. This compares to 973.09s for the equivalent Fisherface analysis
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which provides an accuracy of 99.5% so both methods offer considerable time savings at a
small cost to accuracy.

3.3 Optimisation of Image resolution
Finally the effect of image resolution on 3D recognition performance is shown in Fig. 8. This
clearly shows that a resolution of 10×10 px provides optimal or close to optimal recognition
performance (the result for 40×40 px is 0.25% higher for FRGC) on both 3D datasets. The
same pattern appears in the 2D Photoface database, but there is a small decrease of just
under 3% for the 2D FRGC data. Nonetheless, if we take the 10× 10 px as an optiumum
size, this figure is lower than often reported in the literature. This may be because the data
used in these experiments is already highly cropped, and other research may be using other
metrics such as the distance across the uncropped head. Although not shown in the figure,
not antialiasing the resampled images led to poorer performance in all cases.
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Figure 8: The effect of resolution on 3D recognition performance. Recognition rates for
10×10 px are 94.75% for FRGC data and 98.25% for Photoface data.

Combining the optimal resolution of 10×10 px with the variance method above we can
achieve virtually the same recognition performance as an 80× 80 px image but using only
64 pixels for FRGC data and 61 pixels for Photoface data. Recognition rates of 87.75% and
96.25% are recorded (a loss of only 7% and 2% respectively). The processing time is also
reduced to 10.5s for variance analysis and 400 classifications. The same analysis using the
Fisherface algorithm takes 118s and achieves a comparable rate of 89.25%.

4 Discussion
This paper describes methods to effectively reduce data dimensions while maintaining recog-
nition performance. Computationally efficient methods using variance analysis and image
resizing have been shown to be powerful means of reducing data but maintaining discrimina-
tory information. Table 3 compares commonly used dimension reduction techniques of PCA
and Fisherface with our variance and percentile inclusion criterion techniques at different
resolutions in terms of classification accuracy and processing time. All experiments were
carried out in Matlab on a Quad Core 2.5GHz Intel PC with 2GB ram running Windows XP.
Only one percentile inclusion criterion result has been included as performance (especially
processing time) was not at the same level as other conditions.

The number of components which are used for PCA depends on the specific test as
follows: 61 components (61PCA, row 6 of Table 3) were chosen for a direct comparison
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Res. (px) Data Reduction Classifier No. Dimensions % Correct Proc. time(s)
1. 10x10 None PMCC 200 98.25 12.02
2. 10x10 VI PMCC 19 (10%) 82.75 12.52
3. 10x10 VI PMCC 61 95.75 13.02
4. 10x10 PCA Euc. dist. 21 94.5 92.47
5. 10x10 PCA PMCC 21 92.25 97.16
6. 10x10 61PCA Euc. dist. 61 96.25% 102.91
7. 10x10 VI→ 15PCA PMCC 61→ 15 89.75 128.54
8. 10x10 VI→ FF Euc. dist. 19→ 19 90.5 129.74
9. 80x80 None PMCC 12800 98.25 129.86
10. 10x10 VI→ 15PCA PMCC 19 (10%)→ 15 79 132.56
11. 10x10 VI→ FF Euc. dist. 61→ 39 99 134.69
12. 10x10 FF Euc. dist. 39 100 144.25
13. 80x80 VI PMCC 1235 (10%) 92.25 180.95
14. 80x80 VI→ 15PCA PMCC 1235 (10%)→ 15 85.25 331.40
15. 80x80 VI→ FF Euc. dist. 1235 (10%)→ 39 90.75 549.25
16. 80x80 PCA Euc. dist. 61 96.75 573.52
17. 80x80 PI PMCC 12800 89 800.64
18. 80x80 FF Euc. dist. 39 99.5 973.09

Table 3: A comparison of our variance (VI) and percentile (PI) inclusion techniques with
PCA and Fisherface (FF) algorithms sorted by processing time.

with the 61 variables of the variance inclusion criterion which gave good performance in
Fig. 7. 15 components (15PCA condition, rows 7, 10 & 14) were chosen arbitrarily as
an extra step after the variance inclusion criterion for its low dimensionality and relatively
good performance. For other tests using PCA, the number of components are chosen which
describe 85% of the variance. Some entries in the “No. Dimensions” column have (10%)
shown next to them. This is a reminder that only 10% of the data remains after applying the
variance inclusion criterion. Finally some of the rows contain a “→” symbol representing a
combination of processes eg Variance Inclusion followed by Fisherface.

Generally resizing the image to 10x10 pixels gives a clear processing time advantage
with little or no compromise on accuracy. Without additional dimensionality reduction we
achieve a recognition rate of 98.25% (row 1). We are able to reduce the dimensionality by
a further 2

3 and only lose 2.5% performance by additionally using the variance inclusion
criterion to select 61 pixel locations (row 3). This appears to give the best compromise in
terms of the number of dimensions, processing time and accuracy . The Fisherface algorithm
gives excellent performance (10x10 Fisherface gives 100% accuracy, row 12) but at the cost
of processing time.

These results only apply to the simplest case in face recognition – the frontal, expres-
sionless face. The variance inclusion algorithm would be unlikely to produce similarly good
results if expressions were present in the dataset, as these are likely to produce areas of high
variance which will not be discriminatory. Nonetheless these could be used for the purposes
of expression analysis instead of recognition or alternatively areas which change greatly with
expression could be omitted from the variance inclusion criterion.

It is clear that effective dimensionality reduction can be achieved via more direct, psy-
chologically inspired models in contrast to conventional mathematical tools such as PCA.
Processing speed is also drastically increased – if we perform recognition by the Fisherface
algorithm on 80×80 pixel images, it takes 973.09s. Using 10×10 pixel images, processing
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time drops to only 13.02s using our proposed variance inclusion method to extract 61 pixel
locations with only a 3.75% drop in performance.

5 Conclusion

We have presented a number of important findings that affect face recognition performance
regarding the effects of optimum image size and the use of different variance measures to
select discriminatory data. The findings have implications on real-world applications in that
they point to computationally attractive means of reducing the dimensionality of the data.
Empirical support of Unnikrishnan’s hypothesis [16] regarding the use of outlying percentile
ranges is provided on both the FRGCv2.0 database as well as our own photometric stereo
face database. One of the most promising results comes from resizing the original 3D data
from 80x80 pixels to 10x10 pixels and applying the variance based inclusion approach yield-
ing an accuracy of 95.75% using just 61 dimensions and the fact that this heuristic was
inspired by the human process of caricaturing. Using this combination of techniques, pro-
cessing speeds can be also be increased tenfold over the conventional Fisherface algorithm.

References
[1] Simon Baker and Takeo Kanade. Limits on Super-Resolution and how to break them.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(9):1167–1183,
2002. ISSN 0162-8828. doi: http://doi.ieeecomputersociety.org/10.1109/TPAMI.2002.
1033210.

[2] P.N. Belhumeur, J.P. Hespanha, and D.J. Kriegman. Eigenfaces vs. fisherfaces: recog-
nition using class specific linear projection. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 19(7):711–720, 1997. ISSN 0162-8828.

[3] B. J. Boom, G. M. Beumer, L. J. Spreeuwers, and R. N. J. Veldhuis. The effect of
image resolution on the performance of a face recognition system. In 9th International
Conference on Control, Automation, Robotics and Vision, 2006. ICARCV’06, page 1–6,
2006.

[4] K. Chang, K. Bowyer, and P. Flynn. Face recognition using 2D and 3D facial data. In
ACM Workshop on Multimodal User Authentication, pages 25–32, 2003.

[5] B. Gökberk, M. O. İrfanoğlu, and L. Akarun. 3D shape-based face representation and
feature extraction for face recognition. Image and Vision Computing, 24(8):857–869,
2006.

[6] Mark F. Hansen, Gary A. Atkinson, Lyndon N. Smith, and Melvyn L. Smith. 3D face
reconstructions from photometric stereo using near infrared and visible light. Computer
Vision and Image Understanding, 114(8):942–951, August 2010. ISSN 1077-3142.

[7] M. Hüsken, M. Brauckmann, S. Gehlen, and C. Von der Malsburg. Strategies and
benefits of fusion of 2D and 3D face recognition. In IEEE workshop on face recognition
grand challenge experiments, page 174, 2005.



HANSEN, ATKINSON, SMITH, SMITH: DIMENSIONALITY REDUCTION FOR FACES 11

[8] B. Li, C. H Zheng, and D. S Huang. Locally linear discriminant embedding: An
efficient method for face recognition. Pattern Recognition, 41(12):3813–3821, 2008.
ISSN 0031-3203.

[9] Y. M Lui, D. Bolme, B. A Draper, J. R Beveridge, G. Givens, and P. J Phillips. A meta-
analysis of face recognition covariates. In Proceedings of the 3rd IEEE international
conference on Biometrics: Theory, applications and systems, page 139–146, 2009.

[10] R. Mauro and M. Kubovy. Caricature and face recognition. Memory & Cognition, 20
(4):433–440, 1992.

[11] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang, K. Hoffman, J. Marques,
J. Min, and W. Worek. Overview of the face recognition grand challenge. In Proc.
CVPR, volume 1, 2005.

[12] G. Rhodes, S. Brennan, and S. Carey. Identification and ratings of caricatures: Im-
plications for mental representations of faces. Cognitive Psychology, 19(4):473–497,
1987.

[13] Pawan Sinha, Benjamin Balas, Yuri Ostrovsky, and Richard Russell. Face recogni-
tion by humans: Nineteen results all computer vision researchers should know about.
Proceedings of the IEEE, 94(11):1948–1962, November 2006. ISSN 0018-9219.

[14] George Toderici, Sean O’Malley, George Passalis, Theoharis Theoharis, and Ioannis
Kakadiaris. Ethnicity- and gender-based subject retrieval using 3-D Face-Recognition
techniques. International Journal of Computer Vision, 89(2):382–391, 2010. doi: 10.
1007/s11263-009-0300-7.

[15] M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuro-
science, 3(1):71–86, 1991.

[16] M.K. Unnikrishnan. How is the individuality of a face recognized? Journal
of Theoretical Biology, 261(3):469–474, December 2009. ISSN 0022-5193. doi:
16/j.jtbi.2009.08.011.

[17] R. J. Woodham. Photometric method for determining surface orientation from multiple
images. Opt. Eng., 19(1):139–144, 1980.

[18] J. Yang, J. Wright, T. S Huang, and Y. Ma. Image super-resolution via sparse repre-
sentation. Image Processing, IEEE Transactions on, 19(11):2861–2873, 2010. ISSN
1057-7149.

[19] Jian Yang, David Zhang, Alejandro F. Frangi, and Jing-yu Yang. Two-Dimensional
PCA: a new approach to Appearance-Based face representation and recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(1):131–137,
2004. ISSN 0162-8828. doi: http://doi.ieeecomputersociety.org/10.1109/TPAMI.2004.
10004.

[20] M. H Yang. Kernel eigenfaces vs. kernel fisherfaces: Face recognition using kernel
methods. In fgr, page 0215, 2002.

[21] J. Ye, R. Janardan, Q. Li, et al. Two-dimensional linear discriminant analysis. Advances
in Neural Information Processing Systems, 17:1569–1576, 2004.



12 HANSEN, ATKINSON, SMITH, SMITH: DIMENSIONALITY REDUCTION FOR FACES

[22] Stefanos Zafeiriou, Mark F. Hansen, Gary A. Atkinson, V. Argyriou, Maria Petrou,
M.L. Smith, and L.N. Smith. The PhotoFace database. In Proc. Biometrics Workshop
of Computer Vision and Pattern Recognition, pages 161–168, Colorado Springs, USA,
2011. IEEE.

[23] Y. Zhuang, J. Zhang, and F. Wu. Hallucinating faces: LPH super-resolution and neigh-
bor reconstruction for residue compensation. Pattern Recognition, 40(11):3178–3194,
2007. ISSN 0031-3203.



A.5 The Photoface Database

This paper was presented at the Computer Vision and Pattern Recognition Bio-

metrics Workshop, Colorado, USA in June 2011. It presents a preliminary version

of the database together with some recognition analysis. This conference was se-

lected to announce the public availability of the database as it is a well respected

conference with a large international attendence.
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Abstract

In this paper we present a new database suitable for both
2D and 3D face recognition based on photometric stereo,
the so-called Photoface database. The Photoface database
was collected using a custom-made four-source photomet-
ric stereo device that could be easily deployed in commer-
cial settings. Unlike other publicly available databases the
level of cooperation between subjects and the capture mech-
anism was minimal. The proposed device may also be used,
to capture 3D expressive faces. Apart from the description
of the device and the Photoface database, we present ex-
periments from baseline face recognition and verification
algorithms using albedo, normals and the recovered depth
maps. Finally, we have conducted experiments in order to
demonstrate how different methods in the pipeline of photo-
metric stereo (i.e. normal field computation and depth map
reconstruction methods) affect recognition/verification per-
formance.

1. Introduction

Face recognition researchers have been collecting
databases of face images for several decades now [15,

∗This work was supported by the EPSRC project EP/E028659/1 Face
Recognition using Photometric Stereo. This work has been conducted
while Stefanos Zafeiriou was with Department of Electrical and Electronic
Engineering, Imperial College London

Chapter 13]. While some databases can be regarded as su-
perior to others, each of them is designed to test different as-
pects of recognition and have their own strengths and weak-
nesses. One of the largest databases available is the FERET
database [17]. This has a total of 1199 subjects with up to
20 poses, two expressions and two light source directions.
The FERET database was originally acquired using a 35mm
camera. Others on the other hand, for example the widely
used CMU PIE database [19] or the Harvard RL database
[11], concentrate more on varying the capture conditions
such as pose and illumination.

The PIE database is one of the most extensively re-
searched. This is due to the fact that the faces are captured
under highly controlled conditions involving 13 cameras
and 21 light sources. The Yale B database [8] offers similar
advantages to the PIE database except with an even larger
number of lighting conditions (64), but just using ten sub-
jects. Nine poses were considered per subject. The original
Yale database [4] was designed to consider facial expres-
sions, with six types being imaged for 15 subjects. Finally,
the extended Yale B database was published. It contains 28
subjects with 9 different poses and 64 illumination condi-
tions [14].

Even though the PIE [19], Yale [8] and extended Yale
[14] databases provide facial samples taken under differ-
ent illumination directions, they contain very few persons.
More recently, the CMU Multi-PIE database [10] has been
constructed with the aim of extending the image sets to in-
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clude a larger number of subjects (337) and to capture faces
taken in four different recording sessions. This database
was recorded under controlled laboratory conditions, as
with the others mentioned above.

Recent trends in face recognition research to incorporate
three-dimensional information into the recognition process
lead to the collection of databases with 3D facial samples.
This trend is due to the fact that a large number of view-
ing conditions adversely affect the 2D appearance of a face
image but not the 3D appearance. This was the motivation
for the FRGC2.0 database [16], which consists of a multi-
partition 2D and 3D database including a validation set of
4007 scans of 466 subjects. A Minolta Vivid 900/910 series
laser range finder [24] was used for data capture.

This paper describes the construction of a new type of
database of faces to aid research into face recognition. As
explained, there is a growing number of related databases
available for public research use. Each of these is de-
signed to test different aspects of recognition, such as ex-
pression or illumination invariance. These databases have
been built under meticulously designed and calibrated phys-
ical arrangements. The purpose of the new database de-
scribed in this paper, however, is to capture a large num-
ber of faces in a more industrial setting. Most existing 3D
capture devices (e.g. [23, 24]) are both financially and com-
putationally expensive which can be highly inhibiting for
commercial application. By contrast, we use a four-source
high-speed capture arrangement, which permits the use of
photometric stereo methods [22] to recover the 3D informa-
tion with minimal computational expense. Furthermore, the
device is significantly financially cheaper than most other
3D capture mechanisms.

Two important features of the database are that (1) the
level of cooperation between subjects and the capture mech-
anism is minimal, and that (2) the capture process was car-
ried out in a realistic commercial setting. For this reason,
we placed the device near the entrance of a busy workplace
and gave all of the volunteer subjects the sole instruction to
“walk through the archway”. This arrangement accurately
simulates one of the ultimate goals for access-control face
recognition, where there is no interaction required between
the subjects and the technology. The database therefore
offers an ideal testbed for face recognition algorithms de-
signed for real world applications. As photometric stereo
can be applied to the four images to calculate the 3D struc-
ture of the face, the database also allows for both 2D, 3D
and hybrid algorithms to be evaluated.

In addition to describing the device and the database, we
also present baseline experiments on the Photoface database
applying baseline face recognition/verification techniques
on albedo, depth and normal images. The focus of the con-
ducted experiments is neither to compare various 2D/3D
face recognition and verification methods nor to demon-

strate that fusion of information of 3D and 2D data in-
crease the recognition performance [5],[9]. The aim of the
experiments conducted in this paper is: 1) to demonstrate
how different methods in the pipeline of photometric stereo
(i.e. normal field computation and depth map reconstruction
methods) affect recognition/verification performance, and
2) to verify that a similar conclusion to [5] can be drawn
for the modalities derived from photometric stereo meth-
ods. We applied three different photometric stereo meth-
ods in order to compute the normal field and the albedo
image and five different integration methods that compute
the height map from the normal field. To the best of the au-
thors’ knowledge this is the first experiment on a real-world
photometric stereo database which also explores the effect
of the use of different methods in the processing pipeline.
In summary, the contributions of this paper are:

• The presentation of the first realistic commercial ac-
quisition arrangement for the collection of 2D/3D fa-
cial samples using Photometric Stereo (PS).

• The presentation of the first facial image database col-
lected under such a setting.

• The demonstration of how different methods in the
pipeline of PS affect recognition/verification perfor-
mance via a detailed set of recognition/verification ex-
periments using a range of algorithms.

2. Capturing Device and Database Collection
The Photoface database was collected using a custom-

made four-source PS device. Unlike previous constructions,
our aim was to capture the data using a hardware that could
be easily deployed in commercial settings. The setup is as
follows: individuals walk through the archway towards the
camera located on the back panel and exit through the side
(Fig. 1). This arrangement makes the device suitable for
usage at building entrances, high security areas, airports etc.
The presence of an individual is detected by an ultrasound
proximity sensor placed before the archway. This can be
seen in Fig. 1 on the horizontal beam towards the left-hand
side of it.

The hardware equipment used to create the entire system
was the following:

• Camera: Basler 504kc with Camera Link interface op-
erating at 200fps, 1ms exposure time, placed approxi-
mately at a distance of 2m from the head of the subject.

• Lens: 55mm, f5.6 Sigma lens.

• Light sources: low cost Jessops M100 flashguns, ap-
proximately at a distance of 75cm from the head of the
subject.
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Figure 1. The image capturing device. One of the light sources and
an ultrasound trigger are shown on the left. The camera is located
at the back panel.

• Device trigger: Baumer highly directional ultrasound
proximity switch. Range 70cm.

• Hardware IO card (for receiving and distributing trig-
gers): NI PCI-7811 DIO.

• Frame grabber: NI PCIe-1429.

• Interfacing code: NI LabVIEW (the reconstruction and
recognition algorithms were written in MATLAB).

The device also contains a monitor (as can be seen in Fig. 1)
that provides instructions and indicates whether or not an
individual was recognised, in the case of a recognition sce-
nario, or whether an identity claim was accepted or rejected,
in the case of a verification scenario.

The device captures one image of the face for each light
source in a total of approximately 20ms. This time, also
chosen for our experiments, was regarded as an adequately
short period of time in which the inter-frame motion is no
greater than a few pixels. The only case in which the perfor-
mance of the system is expected to deteriorate significantly,
is when a person runs passing through the device, due to the
large inter-frame motion observed. For each person passing
through the device, the following sequence of events takes
place to capture the four images:

1. Await signal from ultrasound sensor.

2. Send trigger to camera.

3. Await integration enabled signal from camera.

4. Discharge first flashgun.

5. Await end of integration enabled signal.

6. Repeat from step 2 for the remaining light sources.

Figure 2. Four raw input images.

Figure 2 shows an example of four raw images of an in-
dividual (the resolution of the captured images were 1280×
1024).

The capturing device was placed at the entrance of a busy
workplace for a period of four months. Volunteer employ-
ees casually passed through the booth at regular intervals
throughout this period. No instructions were given, other
than to instructing them to walk through the archway look-
ing at the camera or monitor. Thus, the volunteers typically
passed through the device on their way in and out of the
building. This arrangement is of great importance as:

1. It means that the capturing conditions were realistic for
a real-world example. This is in contrast with exist-
ing face databases such as the widely used CMU-PIE
database [10] or the FRGC database [16].

2. The whole setup was non-invasive, thus being suitable
for any recognition algorithms developed for immedi-
ate commercial use.

3. Statistics of the Database
The Photoface database was collected in a period of four

months (February 2008 to June 2008). It consists of a total
of 1,839 sessions of 261 subjects and a total of 7,356 im-
ages. Some individuals used the device only once, while
some others walked through it more than 20 times. The
majority of people in the database are men (227 men over
34 women). The vast majority of the individuals are Cau-
casians (257 persons). Since there was no supervision, most
of the captured faces in the database display an expres-
sion (for example more than 600 smiles and more than 200
surprises, open mouth, scream like expression etc. were
recorded).

98 people walked through the device only once. For 126
of the 163 subjects that used the device more than once, the
sessions were collected over a period of more than a week’s
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Figure 3. Four raw input images.

interval. For the majority of those (90 people), this interval
was greater than one month. A histogram corresponding to
the number of subject recordings by the device is depicted
in Figure 3.

4. Photometric Stereo (PS) and Surface Recon-
struction Methods

In this Section we summarise the standard PS method
[6, §5.4], which we implemented using both three and four
light sources. For these experiments we used an implemen-
tation of the standard PS method of Woodham [22]. We
have mainly concentrated on a four-source version of the
technique, although we have also compared our results with
methods using three light sources. For the latter, we omit-
ted the upper-right source in Fig. 1 from the computation.
In order to do so, we examined a few reconstructions us-
ing various combinations of sources, resulting in the con-
clusion that deleting this specific light source was the most
safe choice, as the performance was neither enhanced nor
decreased, in comparison with the removal of one of the
remaining three sources.

The standard PS method we used, assumes three or more
greyscale images of a Lambertian object and constructs the
following matrix equation from Lambert’s Law for each
pixel x = [x, y]:

[I1(x) I2(x) · · · IN (x)]
T

= ρ(x)
[
lT1 lT2 · · · lTN

]T
n(x)

(1)
where Im(x) is themth measured pixel brightness, lm is the
mth light source vector, N is the number of light sources,
ρ(x) is the reflectance albedo and n(x) is the surface unit
normal. Examples of the raw images under 4-lights can be
seen in Figure 2. The intensity values and light source posi-
tions are known a-priori and from these the albedo and sur-
face normal components can be calculated by solving (1).
(example of the computed albedo and surface using the 4-

lights PS are shown in Figures 4 In our experiments, apart
from the above mentioned PS method, we also applied the
PS method proposed in [3].

In the following, we briefly review the problem of re-
constructing a surface from the surface normals. In order
to compute the shape of the surface, we need to obtain
the depth map. This suggests representing the surface as
(x, f(x)), so that the normal is a function of x:

ñ(x) =
1√

1 + ∂f
∂x

2
+ ∂f

∂y

2

(
−∂f
∂x
,−∂f

∂y
, 1

)T
(2)

To recover the depth map, we need to determine f(x) from
the computed values of the unit normal.

Let us assume that the computed value of the unit normal
at some point x is n(x) = [a(x), b(x), c(x)], as calculated
by (1). Then

∂f

∂x
=
a(x)

c(x)

∂f

∂y
=
b(x)

c(x)
. (3)

Here, we also perform another check on the data set. Let
the images P(x) = [a(x)c(x) ] and Q(x) = [ b(x)c(x) ]. Because

∂2f

∂x∂y
=

∂2f

∂y∂x
(4)

we expect

A(x) ≡ ∂ (P(x))

∂y
− ∂ (Q(x))

∂x
(5)

to be small (close to zero) at each point x.
Assuming that the partial derivatives satisfy the above

condition, we can reconstruct the surface up to some con-
stant error in depth. The partial derivatives give the change
in surface height with a small step in either the x or the y di-
rection. This means that we can get the surface by summing
these changes in height along some path. In particular, we
have

f(x) =

∮

C

(
∂f

∂x
,
∂f

∂y

)
· ~dl + c (6)

where C is a curve starting at some fixed point and ending
at x, ~dl is the infinitesimal element along the curve and c
is a constant of integration, which represents the unknown
height of the surface at the starting point. All methods pro-
posed for surface reconstruction solve the above problem
with similar results. In our experiments we applied the sur-
face reconstructions described in [7, 20, 8, 1, 2]. A recent
discussion regarding the accuracy of different algorithms
for face reconstruction from normals can be found [12].
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Figure 4. The reconstructed surface with the computed albedo.

5. Face recognition/verification using Albedo
and Depth Images

In this Section we outline the baseline methods used for
feature extraction from albedo and depth images for face
recognition and verification. The family of methods that
we applied extract features using linear projections (also re-
ferred to as subspace methods). This family includes Princi-
pal Component Analysis (PCA) (the so-called Eigenfaces),
Nonnegative Matrix Factorization (NMF) etc. In our exper-
iments NMF [13] produced the best recognition and verifi-
cation results. In subspace methods, like NMF, the facial
images are lexicographically scanned in order to form vec-
tors Let M be the number of samples in the image database
U = {u1,u2, ..,uM}where ui ∈ <n is a database’s image.
A linear transformation of the original n-dimensional space
onto a subspace with m-dimensions (m � n) is a matrix
WT ∈ <m×n. The new feature vectors yk ∈ <m are given
by:

yk = WT (uk − ū), k ∈ {1, 2, . . . ,M} (7)

where ū ∈ <n is the mean image of all samples. Classi-
fication is performed using a simple distance measure and
a nearest neighbour classifier using the normalized correla-
tion.

5.1. Face Recognition using Normalfaces

In this paper we use a face recognition method based
on the orientation of the normals. The baseline method is
a very easy to implement method that is based on a novel
representation of faces, the so-called Normalfaces. For an
image I using the computed P and Q from PS we compute:

Φ(x) = atan
Q(x)

P(x)
(8)

which is an image that contains the normal orientations. We
measure the orientations in the interval ∈ [−π2 , π2 ]. For two

images Φ1(x) and Φ2(x) we use the following dissimilarity
measure:

d(Φ1(x),Φ2(x)) = 1− 1

NMπ

N×M∑

i=1

|Φ1(xi)−Φ2(xi)|.

(9)
The above dissimilarity measure is then used in order to ex-
tract features using metric multidimensional scaling. Clas-
sification is performed using the normalized correlation in
the new space.

6. Baseline Experiments
6.1. Recognition Experiments

We used the subset of images taken with more than a
week’s interval (126 people). For the majority of them (90
people) the interval was greater than one month. We as-
sessed the recognition performance of all three modalities
(i.e., albedo image, normals and height maps). Moreover,
we experimented using fusing strategies. For the experi-
ments presented here we tested using two setups:

• In the first one, a very challenging experimental pro-
cedure was followed, exploiting only one grayscale
albedo image, the surface normals derived from the
application of PS, and the depth image derived from
the integration of the normal field. Similarly, one
grayscale albedo image, one set of normals and a
height map was used for testing. Most of the train-
ing and testing images display a different facial expres-
sion. One sample face recognition is among the most
challenging face recognition scenarios with various ap-
plications [21]. In [17], a face recognition scenario
was designed based only on one sample per person for
training. Similar recognition/verification experiments
were also described for the FRGC database [16]. A
similar scenario was tested in [5].

• In the second, two samples for training and one for
testing were used. In our database we have 96 persons
with three or more samples per person. The testing
image for all 96 subjects was the same one used in the
one sample experimental setup. This realization was
implemented in order to test whether or not recognition
using two samples of the same modality is better than
fusing information across different modalities.

6.1.1 Face recognition from Albedo Images

Four source, three source and ray trace-based PS methods
were employed for albedo computation. These methods
are abbreviated as 4L-PS, 3L-PS and RAY-PS, respectively.
The recognition rates using one albedo image for training
and one for testing for all the tested PS methods are de-
picted in Figure 5 (a). As it can be seen the recognition rate

165136



is affected by the PS method applied and noticeably better
recognition performance is achieved by PS methods that use
all four illuminants. The best recognition rate was equal to
78%.

For the case of the two samples experiment, we used a
decision fusion strategy similar to [5]. That is, we com-
bined the matching scores for each person across the two
samples of 2D albedo images and ranked the subjects based
on the combined scores. Scores from each modality are lin-
early normalized to the range of [0, 100] before combining.
We explored various confidence-weighted versions of the
sum, product and minimum rules. Among the fusion rules
that we tested, the sum rule provided the best performance
overall. The recognition rates for the two samples exper-
iments is depicted in Figure 5 (b). As it can be seen, the
use of more than two samples increases the recognition per-
formance. Moreover, the methods which use all four illu-
minants achieved better recognition rates than those using
only three. The best recognition rate was equal to 85%.

It is worth noting here that when using only the 96 per-
sons of the second experiment in the first experiment the
recognition rate was also about 78%, as well.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Experiments using, (a) one albedo image for training
and one for testing; (b) two albedo images for training and one
for testing; (c) one depth image for training and one for testing;
(d) two depth images for training and one for testing; (e) one Nor-
malface for training and one for testing; (f) two Normalfaces for
training and one for testing .

6.1.2 Face recognition from Depth and Normalface
Images

We applied five different methods for surface reconstruc-
tion from the normal field. For the reconstruction methods

we use the following abbreviations: 1) ‘at’ for the method
in [1] 2) ‘dctFC’ for the DCT Frankot-Chellappa method
[8], 3) ‘FC’ for the original Frank-Chellappa method [7], 4)
‘ls’ for the least square solution of the poison equation [20]
and 5) ‘me’ for the reconstruction based on M-estimator [2].
The recognition rates for the one sample experiment and for
all reconstruction and PS methods are plotted in Figure 5
(c). The best recognition result it was equal to 74%. As can
be seen, PS and reconstruction methods greatly affect the
recognition performance. More precisely, four source PS
methods always achieve better recognition results. More-
over, the depth maps that were produced by dctFC con-
stantly outperformed the performance of the depth maps
produced by all other reconstruction methods.

Experiments using two samples for training and one
sample for testing were conducted in a similar manner as
the ones for the albedo images. These results are depicted
in Figures 5 (d). The best recognition result was equal to
86%.

The experiments using NormalFace for all tested PS
methods are depicted in Figures 5 (e) and 5 (f) for one sam-
ple and two samples recognition, respectively.

6.1.3 Fusion 2D and 3D

Multimodal decision fusion is performed by combining the
match scores for each person across the modalities of 2D
albedo and depth image and ranking the subjects based on
the combined scores in a similar manner as in the two sam-
ples experiments. The sum rule provided the best perfor-
mance. We performed fusion only on depth images derived
from the DCT-FC method. Fusion of intensity and geom-
etry information was conducted only on the subset of per-
sons that have more than 2 samples available in order to be
directly comparable with the single modality two samples
experiments. The recognition results from multimodal fu-
sion using various PS methods are summarized in Figure 6
(a). The best recognition result was equal to 85%.

A summary of the best recognition results for the single
modalities and multimodal fusion is given in Tables 1 and
2.

(a) (b)

Figure 6. Multimodal fusion results (a) for recognition, (b) for
verification.
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6.2. Verification Experiments

A person verification system should decide whether an
identity claim is valid or not. The performance of face ver-
ification systems is measured in terms of the False Rejec-
tion Rate (FRR) achieved at a fixed False Acceptance Rate
(FAR) [26, 25]. There is a trade-off between FAR and FRR.
This trade-off between the FAR and FRR can create a Re-
ceiver Operating Characteristic (ROC) curve, where FRR is
plotted as a function of FAR. The performance of a verifica-
tion system is often quoted by a particular operating point
of the ROC curve where FAR=FRR. This operating point
is called Equal Error Rate (EER). The performance of the
algorithms is quoted for the Equal Error Rate (EER) which
is the scalar figure of merit that is often used to judge the
performance of a verification algorithm. Verification exper-
iments were conducted in the same database as well. The
verification protocol was similar to the one defined in the
FERET verification protocol in [18]. The probe (or client
set) was defined by the 126 persons as in the recognition
experiments. The first image is used for training while the
second is used for testing client claims. The remaining 135
people in the database, with one image per person, are con-
sidered to be impostors.

In the second experiment we used two images from the
96 subjects for training while the third is used for testing
client claims. The other 135 persons were used for impostor
claims.

6.2.1 Face Verification using Albedo, Depth and Nor-
malface Images

The EERs for various PS methods for the one sample exper-
iment are depicted in Figure 7 (a). The verification results
for the two samples experiment and for various PS methods
are depicted in Figure 7 (b).

The EERs for various PS and surface reconstruction
methods for the one sample experiment are depicted in Fig-
ure 7 (c). The verification results for the two samples exper-
iment and for various PS and surface reconstruction meth-
ods are depicted in Figure 7 (d).

The EERs for various PS methods for the one sample
experiment are depicted in Figure 7 (e). The verification
results for the two samples experiment and for various PS
methods are depicted in Figure 7 (f).

6.2.2 Multimodal Fusion

Multimodal decision fusion was performed exactly as in
the recognition experiments case, by combining the match
scores for each person across the modalities of the 2D
albedo image and depth map and ranking the subjects based
on the combined scores. The fusion results for verification
using various PS methods are summarized in Figure 6 (b).

Table 1. A summary of the best percentage of recognition (PR)
for all the conducted experiments across different modalities.

Perc. of Recognition (PR%)
One Sample Two Samples

Albedo Depth Normal Albedo Depth Normal
78 74 78 85 86 86

Table 2. A summary of the best PR for fusion across different
samples and modalities.

Perc. of Recognition (PR%)
Sample Fusion Modality Fusion

Albedo Depth Normal Albedo + Depth
85 86 86 85

Table 3. A summary of the best percentage of EER for all the
conducted experiments across different modalities.

Verification (EER%)
One sample Two samples

Albedo Depth Normal Albedo Depth Normal
7.4 10.5 9.1 5.2 5.7 5.2

A summary of the best verification results for the single
modalitities and multimodal fusion is given in Tables 3 and
4.

(a) (b)

(c) (d)

(e) (f)

Figure 7. Verification experiments (a) using one albedo image for
training; (b) using two albedo images for training; (c) using one
depth image for training; (d) using two depth images for training;
(e) using one Normalface image for training; (f) using two Nor-
malfaces for training.
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Table 4. A summary of the best percentage of EER for fusion
across different samples and modalities.

Verification (EER%)
Sample Fusion Modality Fusion

Albedo Depth Normal Albedo + Depth
5.2 5.7 5.2 5.2

7. Discussion and Concluding Remarks
In this paper, we presented a new database collected

using a real life commercial setting based on photometric
stereo. We presented the first experiments which demon-
strate how different methods in the pipeline of photomet-
ric stereo affect the recognition performance and concluded
the following: (1) Four source photometric stereo methods
produce facial samples (albedo, normals) that achieve con-
stantly better recognition and verification performance re-
gardless of the reconstruction method applied. (2) The re-
construction methods greatly affect the recognition and ver-
ification performance. The method which constantly pro-
duces the best recognition/verification performance proved
to be the one proposed in [8].

Moreover, we have verified most of the findings of [5]:
(1) In most cases the best recognition and verification re-
sults of recovered albedo, normals and the reconstructed
depth maps achieve approximately the same results, in some
cases the recovered albedo produces better results. (2) Fu-
sion of albedo and reconstructed surfaces produce signifi-
cantly better results than using only the albedo or the depth
images. (3) Fusion of two albedo images in the same way
that we fused the results of albedo and depth map gave ap-
proximately the same recognition and verification results.
Details on how the database can be provided to researchers
are provided in http://Photoface.iti.gr/ or
http://www.uwe.ac.uk/research/Photoface.
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Appendix B

Additional publications

Three conference papers produced as part of this thesis are included on the

following pages.
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Abstract
A major consideration in state-of-the-art face recognition systems is the amount of data that is required to represent

a face. Even a small (64 × 64) photograph of a face has 212 dimensions in which a face may sit. When large (> 1MB)
photographs of faces are used, this represents a very large (and practically intractable) space and ways of reducing
dimensionality without losing discriminatory information are needed for storing data for recognition. The eigenface
technique, which is based upon Principal Components Analysis (PCA), is a well established dimension reduction
method in face recognition research but does not have any biological basis. Humans excel at familiar face recognition
and this paper attempts to show that modelling a biologically plausible process is a valid alternative approach to using
eigenfaces for dimension reduction. Using a biologically inspired method to extract the certain facial discriminatory
information which mirrors some of the idiosyncrasies of the human visual system, we show that recognition rates
remain high despite 90% of the raw data being discarded.

Keywords: 3D face recognition, surface normals, biometrics, dimension reduction, caricature

1. Introduction

Face recognition has been an area of intense research for over forty years and, although significant progress has
been made, a number of major challenges remain. Much of the research focuses on face recognition using 2D images
which has highlighted some universal problems that affect recognition accuracy. Two of these problems, pose and
illumination variance, can be compensated for using 3D models rather than 2D photographs. Because of this, and the
increased availability of 3D capture devices, 3D face recognition has become an active research area over the past
decade.

A primary goal of automatic face recognition is to reproduce the phenomenal ability of human face discrimination.
Certain approaches have modelled features of the Human Visual System (HVS) with great effect e.g. the use of Gabor
filters in [1], but most approaches tend to use more traditional pattern recognition and classification techniques. The
reason for this is arguably two-fold: 1) the processes underlying human face recognition are still poorly understood
and 2) good results are achieved using classical pattern recognition approaches.

The motivation for this work therefore comes from attempting to improve aspects of automatic face recognition
by incorporating features of the HVS. In particular we look at dimension reduction and present a method based upon
the idea of caricaturing that was theorised by Unnikrishnan [2]. By only using facial data which falls outside the
5th and 95th percentiles for a given face database (i.e. 90% is discarded) we show that recognition rates only show a
proportionally small decrease thus lending support to Unnikrishnan’s hypothesis.

Email address: mark.hansen@uwe.ac.uk (Mark F. Hansen)



M.F. Hansen and G.A. Atkinson / Procedia Computer Science 00 (2010) 1–9 2

1.1. Related work

Early research into automatic face recognition focused on describing a face in terms of absolute or ratios of dis-
tances between features [3, 4, 5]. Information theory inspired a new statistical approach termed eigenfaces by which
Principal Components Analysis (PCA) is used to describe a face in terms of a linear combination of coefficients [6].
Recognition is is then performed using the smallest Euclidean distance between the coefficients of a probe image and
the mean coefficients for each identity within the gallery. This approach has the advantage of not needing to mark
and measure fiducial features on the faces as was necessary with the earlier approaches. The Fisherface technique
[7] incorporates class information (in this case the identities of the photographs) in order to find a better dimensional
representation which maximises the clustering of the classes, making discrimination easier. Both eigenfaces and Fish-
erfaces are commonly used in state-of-the-art research as they represent acknowledged benchmarks, with Fisherfaces
providing better recognition performance as long as there are sufficient training examples [8]. For this reason, the
Fisherfaces technique is adopted for use in this paper.

A different and biologically motivated approach comes from using Gabor filters [1, 9, 10]. The Gabor filter [11] is
fundamentally a sine wave windowed by a Gaussian. By varying the orientation and frequency of these waves, filter
banks which mimic functionality of an area in the primary visual cortex (area V1) are created [12, 13]. In the approach
used by Wiskott et al. [10], it is not necessary to mark out fiducial features, as an elastic bunch graph map (EBGM)
finds the features most similar to those in its database automatically. Testament to the benefits of using biologically
inspired Gabor filters comes from the FERET [14] evaluation and FVC2004 [15] face recognition tests, in which the
top performing algorithms used Gabor filters for feature extraction.

The main drawback of implementing Gabor filters is that they are computationally intensive. More efficient
alternatives are Local Binary Patterns (LBP) which approximate the Gabor function. This approach is most commonly
associated with face detection e.g. [16] but it has also been used successfully for face [17] and even expression
recognition [18].

The approximation of area V1 functionality by Gabor filters represents the reproduction of a low-level process.
While face recognition undoubtably relies on this, it is not something uniquely associated with it. A number of high-
level features which are directly involved with human face recognition can be found in [19] including caricaturing.
Caricaturing can be defined as the exaggeration of features away from the average e.g. if someone has a larger than
average nose, the caricature would exaggerate the nose to make it even larger. Caricaturing essentially enhances those
facial features that are unusual or deviate sufficiently from the norm. It has been shown that humans are better able to
recognise a caricature than they are the veridical image [20, 21]. This finding is interesting as caricaturing is simply
distorting or adding noise to an image, but this noise aids human recognition and this, in turn, provides insights into
the storage or retrieval mechanism used by the human brain.

Unnikrishnan [2] conceptualises an approach similar to face caricatures, whereby only those features which de-
viate from the norm by more than a threshold are used to uniquely describe face. Unnikrishnan suggests using those
metrics whose deviations lie below the 5th percentile and above the 95th percentile, thereby discarding 90% of the data.
Apart from dimension reduction, an interesting feature of this approach is that because it is norm-based, faces from
under-represented groups (in our case ethnicity and gender) will possess features not present in the average popula-
tion. These features are distinguishing to that group leading to a clustering of minority groups making discrimination
for difficult. This is analagous to a well documented feature in human face recognition known as the own-race effect
[22] by which discrimination of faces from races other than the subject’s own is diminished. No empirical support for
Unnikrishnan’s hypothesis is given in [2], so the aim of this paper is to test the presented theory.

Most face recognition experiments in the research literature are carried out using 2D photographs, but it has
been shown that 3D models lead to improved recognition rates because illumination and pose can be compensated
for [23], although this finding is not always replicated [24]. The database used for the experiments in this paper
consists of surface normal data captured using the PhotoFace device (Fig. 1). PhotoFace is a 3D photometric stereo
capture system which was placed in a workplace corridor for six months and left to capture unconstrained images of
employees walking through the device (for more details, the interested reader is referred to [25]). Photometric stereo
is a technique of illuminating an object from multiple directions and using the known positions of illuminants and
pixel intensity to estimate surface orientation [26]. Surface normal data is particularly well suited to face recognition
as shown by Gökberk in his meta-analysis [27] on the effect of different data representations for face recognition. He
concluded that “. . . surface normals are better descriptors than the 3D coordinates of the facial points.”.
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Figure 1: The PhotoFace capture device. The insets show a flashgun light source and the ultrasound trigger, which detects the presence of a person
using the device.

If Unnikrishnan’s hypothesis is correct (and also applicable to surface normal data) we can expect to see little
effect on recognition results when only the outlying 10% of data is used. Also, if Unnikrishnan’s hypothesis reflects
a real process in the HVS, then we should expect it to exhibit some of the idiosyncracies of human face recognition
abilities. As mentioned above, one such phenomenon is the own-race effect, and we test whether recognition is worse
for a subject from a minority race than the norm. This is also extended to what we term the own-sex effect by which we
might expect worse recognition on the gender which is under-represented. (NB There is no evidence for the own-sex
effect in human recognition, probably because exposure to one sex over another to the same levels as to generate the
own-race effect is not feasible).

1.2. Contributions

The contributions of this paper are four-fold:

• We show that discarding 90% of facial data by only keeping the outlying 10% just leads to a 24% drop in
recognition performance on 3D surface normal data.

• The drop in performance using 2D data, on the other hand, is much greater (a drop of 43%).

• This provides empirical support for Unnikrishnan’s hypothesis concerning the important discriminatory prop-
erties of outliers.

• We find no evidence to support Unnikrishnan’s assumption that using outlying data reflects a process in the
HVS in terms of own-race/sex effect (although further experiments are required).

• We show that 3D surface normal data gives better recognition performance than 2D photographs on a database
of images captured in an unconstrained “real world” environment.

2. Data and Methodology

The data used for our experiments consists of 61 subjects with at least six sessions each (that is six sets of pho-
tometric stereo images per subject). All images were taken in a frontal pose with neutral expression. The maximum
number of sessions per subject is 70, the mean number of sessions per subject is 16 with a mode of 7. Of the 61



M.F. Hansen and G.A. Atkinson / Procedia Computer Science 00 (2010) 1–9 4

Figure 2: Four differently illuminated images, the needle map of surface normals and the integrated surface

subjects, only two are female, and only one is not caucasian - these are the subjects whose sessions are used for ex-
ploring the own-race/sex effect. There are a total of 1000 sessions. Four images are captured per session with different
illuminants in ≈20ms. This effectively freezes the subject’s motion. For these experiments, visible light flashguns are
used (colour temperature ≈5600K). A standard photometric stereo technique [28, Section 5.4] is then used to estimate
the surface normals at each pixel. Although not used in this paper, the normals can be integrated to form a surface via,
for example, the well known Frankot-Chellappa method [29]. An example set of images can be seen in Fig. 2.

The centre of the eyes and nasion are manually labelled on each image. The images are then scaled and aligned to
one another. Fig. 3 shows how the face region is cropped based around the distance between the centres of the eyes.
This results in a close crop around the eyes nose and mouth, and excludes areas such as the chin and forehead which
can frequently be covered with hair and are therefore unreliable features for recognition. Due to memory limitations
the images are then scaled down to 80 × 80px.

In order to remove any artefacts which are caused by the flashguns having different brightness, the greyscale
intensity of the images is normalised. This is achieved by making the mean of each image the same as the mean of all
session images. Other normalisation techniques such as histogram equalisation, contrast limited adaptive histogram
equalisation and increasing the range of intensity values to a maximum 0-255 were investigated in terms of their effect
on recognition performance, but none offered any improvement.

The images that we use for 2D recognition are generated by taking the mean of each pixel of the four differently
lit images. This reduces any confounding influence of illumination variance that may be present if only one lighting
condition were used e.g. extreme lighting and cast shadows. Each mean image is reshaped into a vector and these
vectors are added into a matrix such that columns represent sessions and rows represent greyscale intensities at a
particular pixel. As each mean image is 80 × 80px, the dimension of the matrix used for percentile calculation and
subsequent recognition is 6400 × 1000.

For the 3D surface normal data, only the x and y components of the normals are used, as there is redundancy in
the z component. When calculating percentiles and performing recognition using the Fisherface technique, the x and
y components of each session are reshaped and then concatenated into a single vector. In the same way as for the 2D
mean images, these vectors are added into a matrix such that columns represent sessions and rows represent x and y
components at a particular pixel. As there are 80× 80 values for both the x and y component, each session is therefore
represented by a vector 6400 × 2 = 12800 in length. The dimensions of the matrix are therefore 12800 × 1000.

In order to work out which data in each image falls in the outlying 10% of the data, we first need to calculate the
thresholds for each pixel which represent the 5th and 95th percentile values. This is a norm-based approach, and we
are interested in the norm across the whole dataset for each pixel rather than the norm for each image. For the 2D
photographs, percentile values are calculated for the greyscale intensity value for each pixel. There are 1000 sessions,
so there are 1000 values for each pixel from which we calculate the 5th and 95th percentile values. Once reshaped into
the original dimensions, this results in two 80 × 80 matrices (one for the 5th and one for 95th percentile), examples of
which can be seen in Fig. 4. In the same way, for 3D surface normal data, percentile values are calculated for x and y
surface normal component values for each pixel. Once these thresholds have been calculated, all pixels which have a
value between the 5th and 95th percentile are discarded, leaving only the 10% outlying data.

The method used to test recognition accuracy is the leave-one-out paradigm. This dictates that every session is
used as a probe against a gallery of all other sessions once. There are therefore 1000 classifications per condition of
which the percentage correctly identified is shown.

The Fisherface technique [7] is used for subspace representation and simple pairwise Euclidean distance compar-
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Figure 3: Cropping the face images based on the inter-eye distance. The distance between the eye centres is denoted by d.
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Figure 4: Images of 5th, 50th and 95th percentile values (respectively) for 2D photographs (top row) and 3D surface normals (bottom row). The
normals have been integrated here via the Frankot-Chellapa method to form a surface (for illustrative purposes only). In the 2D images, there is a
general trend from dark to light as would be expected, but both sets of images also show different identities for each percentile which do not match
any individual in the database.

ison between class means and the probe image is used for recognition. This particular method has been chosen as it is
well known in the literature, is proven to be effective, it is a linear technique and it is computationally efficient. While
there are better algorithms available, absolute performance is not what we require for these experiments; we need to
measure relative performance between conditions – a task which the Fisherface technique is well suited to.

3. Results

Example data for two subjects can be seen in Fig. 5. 2D examples are shown in the eight images on the left, and 3D
examples are shown on the right. The 3D examples only show y-component data to simplify visualisation – it should
be noted that the experiments are also performed on the x-components. Each row represents data for one subject. The
first two images on each row of the groups show examples of aligned and cropped greyscale intensity images (2D
photographs) and raw y-component surface normals. The next two images show the corresponding outlying data of
the first two images (i.e. those pixels with a value whose deviation lies below the 5th or above the 95th percentile).
There is visibly more consistency between the outlying 3D data than the 2D data, especially for the first subject.
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Base rate Outliers
2D photographs 91.2 30.2
3D surface normals 97.5 73.5

Table 1: Recognition rates (%) on 2D photographs and 3D surface normal data. The base rate column shows recognition rates for the raw data,
and the outliers column shows recognition rates on the outlying 10% of data (data whose deviation lies below the 5th percentile and above the 95th

percentile).

Base rate Outliers
2D own-race 100 50
3D own-race 100 75
2D own-sex 97.62 50
3D own-sex 97.61 88.1

Table 2: Recognition rates (%) for subjects using a single race/sex subset of the data.

Table 1 shows the baseline recognition rates for 2D and 3D data, as well as the rates using only the most outlying
10% of data. The table can be summarised as follows:

1. 3D surface normal data gives better recognition rates than 2D photographs (97.5% vs 91.2%)
2. Far better recognition is seen on the 3D outlying data than the 2D outlying data (73.5% vs 30.2%).
3. The decrease in performance when only the outlying 10% of data is used is only 24% on the 3D data which is

disproportional to the 90% of data which has been discarded.

Table 2 is designed to investigate the own-race and own-sex effect. It is clear from the table however, that neither
the own-race nor the own-sex effect are being exhibited as the performance drop of the outlying data is less than that
across the whole group (as seen in Table 1). Caution should be exercised in any interpretation of these results as the
number of sessions available for ethnic minority/female subjects is very small (one subjects with 16 sessions and two
subjects with 42 sessions respectively). These results are discussed further in Section 4.

It is possible that Unnikrishnan’s assumption that the most outlying data provides the most discriminatory infor-
mation is inaccurate as no empirical evidence is offered. However, these experiments do suggest that more information
is generally contained in the outlying data than the rest of the data. It may be that there are other bands of percentiles
which provide better recognition. This was investigated by measuring the recognition rate using different bands of
percentiles e.g. [10-15, 90-95], [15-20, 85-90] etc. which account for 10% of the data. Fig. 6 shows a plot of the
recognition rate against these bands and provides support for Unnikrishnan in that the most outlying 10% of the data
gives the best recognition performance. Interestingly, after a decrease in performance, there is a rise as we near the
50th percentile. The reason for this pattern is unknown, but will be explored in further research.

Figure 5: Examples of data from two sessions of two subjects. 2D data is shown on the left and one component (the y-component) of the 3D data on
the right. Within each group the first two columns show examples of the baseline condition (all data), and the last two columns show the outlying
data which falls outside the 5th and 95th percentile values.

4. Discussion

The results show that recognition rates of over 90% are achieved on the frontal, neutral expression data from the
PhotoFace database, with surface normal data providing the highest level of discrimination (97.5%). By applying
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Figure 6: Recognition accuracy as a function of percentile band. Each tick on the x-axis shows the (upper, lower) limits of the 10% percentile band
e.g. (0-5, 95-100), (5-10, 90-95) etc. This shows that the best recognition performance is given by the most outlying data that is less than the 5th

percentile and greater than the 95th percentile.

Unnikrishnan’s theory that most discriminating data can be found in the outlying 5% percentile ranges, we have
tested recognition rates after discarding 90% of the data. There is a decrease in recognition performance but it
is not proportional to the amount of data that has been discarded e.g. 90% of data has been removed without an
accompanying 90% decrease in recognition performance. In the case of the surface normal tests this is a 24% decrease
in performance and for the 2D data, a 61% decrease. What we can infer is that there is more reliable discriminatory
information in the 3D outliers than in the mass of the data. By looking at the examples of outlying data in Fig. 5
however, it seems unlikely that this discriminatory information is the same as that used to aid human recognition.
Although features do indeed appear to be picked out (e.g. the broad nose in the first subject), there is no obviously
discernable pattern in the images which one could liken to a caricature (which Unnikrishnan likens his approach to),
and for the second subject there is little similarity between the 3D outlying data images. Arguably, one could say that
the subject shown on the bottom has distinctive eyebrows and that this is highlighted in the second 2D outlier image,
but no such feature is highlighted on the first 2D outlier image.

While using the outlying data does not lead to improved recognition rates, it does offer a relatively simple way
of reducing the amount of data without losing the same amount of discrimination. It could also provide a rough (but
relatively accurate) metric as to where the face may lie in face-space, which can then be searched more exhaustively to
provide an accurate match. This has implications in real world recognition systems, where the numbers of identities
which may be stored in a central database could be in the millions (or even billions). If we have a quick, low
computation key by which we can reduce the search space then we can use more thorough recognition algorithms on
this subset only. Attempting to use complex recognition algorithms across a very large database would cripple even
the most advanced systems currently available.

We did not see any evidence of the own-race or own-sex effect. Where we might have expected a far greater
performance decrease in the outlying data condition according to Unnikrishnan’s hypothesis, we actually have a far
smaller one. This implies that these under-represented samples are actually more readily discriminated between. In
the case of the own-race test, a problem arises in that there is only one subject available to test against. This means that
instead of not being able to tell subjects from the same race apart it actually becomes easier as one can say this person
is not of the majority race, and therefore it is that one particular person. However as there are three subjects (≈ 5%
of the sample population) for the own-sex effect there is likely be a different reason for the improved performance
on the outlying data compared with the whole dataset results. One possible reason could be that they are sufficiently
different from the rest of the sample population. This would mean that they form a discrete subspace within the total
subspace away from the general population and still provide sufficient between-class scatter amongst themselves to
accurately enable recognition. An analysis of the Fisherface subspace would provide evidence for this and will likely
be the subject of further work. As mentioned previously, caution must be exercised in drawing any conclusions from
this data due to the very small number of samples. Future work will attempt to verify these results using a larger
number of samples.



M.F. Hansen and G.A. Atkinson / Procedia Computer Science 00 (2010) 1–9 8

Limitations and future research

• The images were reduced to 80x80 pixels in order to be able to run the experiments on a standard desktop
computer (Quadcore 2.5GHz, 2GB RAM, Windows XP SP3). Although good recognition rates are achieved at
this resolution, the full size images are likely to offer better data.

• Currently, the images are aligned manually by selecting three points on the face. This task is time consuming
and requires vigilance. It is likely that some data will not be aligned perfectly with the rest due to small human
errors. This process would be ideally automated using feature detection techniques such as Gabor filters. Ideally
any alignment algorithm would also need to take into account 3D rotations.

• Future work will look into whether humans group similar looking faces together in face space. It would be
interesting to code the data by hand to group individuals who look similar to one another and see whether these
groupings are represented by the outlier face space. It would then be possible to see whether humans group
similar looking people together based on their most unusual features and to give support to norm-based face
processing when people make similarity judgements.

• This paper looks primarily at outlying data (deviation from the norm less than the 5th percentile and more than
the 95th percentile) as suggested by Unnikrishnan. We also see how the amount of discriminatory information
in other ranges differs (Fig. 6). Further work is required to see whether better recognition could be achieved
by using the percentile values which provide the best performance individually and combining the data i.e. are
there certain super-percentiles which contain more discriminatory information than others?

• Investigate why the discriminatory information dips towards the 25th/75th percentile as shown in Fig. 6 before
rising again.

5. Conclusion

This paper has provided evidence that outlying data contains disproportionately more discriminatory information
which is useful for face recognition. Discarding 90% of the data typically results in only a 24% decrease in recognition
performance on 3D surface normal data. This lends direct support to Unnikrishnan’s [2] hypothesis, but it is unlikely
that this particular implementation reflects any particular process of the HVS as images of the outliers are not easily
recognisable by humans and no own-race or own-sex effects were observed (although alternative explanations are
explored). Additionally we show that 3D surface normal data leads to better recognition than 2D photographs. Future
work will look into the suborganisation of face space to see whether there are discrete subspaces for under-represented
groups.
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Abstract

This paper is concerned with the acquisition of model data for automatic 3D face recognition applications. As 3D
methods become progressively more popular in face recognition research, the need for fast and accurate data capture
has become crucial. This paper is motivated by this need and offers three primary contributions. Firstly, the paper
demonstrates that four-source photometric stereo offers a potential means for data capture that is computationally
and financially viable and easily deployable in commercial settings. We have shown that both visible light and less
intrusive near infrared light is suitable for facial illumination. The second contribution is a detailed set of experimental
results that compare the accuracy of the device to ground truth, which was captured using a commercial projected
pattern range finder. Importantly, we show that not only is near infrared light a valid alternative to the more commonly
exploited visible light, but that it actually gives more accurate reconstructions. Finally, we assess the validity of the
Lambertian assumption on skin reflectance data and show that better results may be obtained by incorporating more
advanced reflectance functions, such as the Oren-Nayar model.

Keywords: 3D reconstruction, face recognition, photometric stereo

1. Introduction

The variability of face images with lighting and pose result in one of the most significant pitfalls of current 2D
face recognition methods. This is the prime motivation for the move of recent years to incorporate 3D information
[1]. The 3D shape of a face is completely invariant to the illumination distribution and pose changes can more readily
be corrected for if the 3D structure of the face is known.

One problem with 3D face recognition however, is the difficulty of acquiring the necessary 3D face models in order
to perform the actual recognition. This problem is the motivation for our work. The paper aims to use a relatively
inexpensive and easily deployable system to capture 3D face geometries and assess the accuracy of reconstructions
for face recognition. The device uses four-source photometric stereo (PS) synchronised at high-speed to a camera and
triggered by an ultrasound proximity sensor [2]. We apply our experiments using both visible-light flash-gun sources
and the more covert near-infrared (NIR) LED cluster sources. The results in this paper make the system attractive for
use in many commercial and industrial settings such as at entrances to high security areas, airport check-in and border
control.

Email address: gary.atkinson@uwe.ac.uk (Gary A. Atkinson)
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1.1. Related Work

The use of 3D information for face recognition has been attracting increasing attention in recent years [1, 3,
4]. Popular methods include the 3D morphable model of Blanz and Vetter [5] and the geodesic representations of
Bronstein et al. [6] and Mpiperis et al. [7]. Research that directly compares 2D and 3D recognition frequently reports
improved success rates for 3D recognition and that the best results occur when 2D and 3D information is fused [1].
As demand for practical face recognition systems is likely to increase, it is important that the most accurate methods
are used and that the acquisition devices are both practical and affordable. There are a number of existing ways to
capture and reconstruct 3D face information and the benefits and limitations of the most common approaches will
now be discussed with the aim of putting our device into context.

Structured light scanning is perhaps the best known approach to generating 3D models of faces. This was used
for generating the morphable head model in [5] and also for all the 3D faces used in the renowned FRGC2.0 dataset
[8]. The Minolta Vivid 910 device [9] used for FRGC2.0 has a quoted accuracy of ±0.10mm. However, these devices
take about 2.5s to capture the data, during which time the subject could move, thus distorting the reconstruction and
are sensitive to high levels of ambient illumination. A much faster alternative is to project patterns across the entire
face, as in the 3dMD system [10], which is used in this paper to acquire ground truth models. This device uses
a number cameras to take images of an object from different positions and uses the projected patterns to solve the
correspondence problem between the images. The benefits of this system are its high accuracy (reported as <0.2mm)
and the speed of image acquisition (1.5ms). However, the processing time is much longer, the system is expensive
and it requires a time consuming calibration procedure.

A much cheaper method to acquire the 3D shape of a face is to use shape-from-shading (SFS) where the naturally
occuring intensity patterns of a face are used to extract the 3D geometry from a single image [11]. However the
problem is ill-posed, meaning that there is no guarantee of a unique solution for a given image [12]. Smith and
Hancock [13] use a statistical model in the SFS paradigm to recover geometry. An alternative is to photograph the
object multiple times under different illumination. This technique is known as Photometric Stereo (PS) and was
first devised by Woodham [14] who showed that for any Lambertian surface, three differently illuminated images
are sufficient to remove the ambiguity associated with a single image. Several researchers have attempted to address
issues of shadows, specularities and non-Lambertian reflectance with PS [15, 16, 17, 18, 19, 20].

Of the vast amount of research into automatic face recognition during the last two decades [21], relatively little
work has involved PS. Kee et al. investigate the use of 3-source PS under dark room conditions [22]. They were able
to determine the optimal light source arrangement and demonstrate a working recognition system. Zhou, Chellappa
and Jacobs apply rank, integrability and symmetry constraints to adapt PS to face-specific applications [23]. Zhou et
al. extended a PS approach to unknown light sources [24]. Georghiades et al. show how reconstructions from PS can
be used to form a generative model to synthesise images under novel pose and illumination [25].

Comparing point clouds, the shape index, depth maps, profiles and surface normals in terms of face recognition
performance, Gökberk et al. [4] concluded that surface normals provide the best features for face recognition. It is
surprising therefore, that so few applications to date utilise PS, which inherently generates surface normals.

1.2. Contributions

The first contribution of this paper is a qualitative demonstration of the capabilities of our PS-based face scanner.
The device, shown in Fig. 1, is suitable for practical recognition environments and consists of four illumination
sources placed evenly around a high-speed camera. Subjects walk through the archway towards the camera located
on the back panel and exit through the side. Compared to existing technologies, our device is cheap to build and
involves exceptionally short image capture and processing times. The device is also able to operate at high resolution,
is robust to ambient illumination and requires only minimal calibration. All images are captured in approximately
20ms, resulting in only very small misalignment between frames. This allows subjects to be imaged as they casually
walk through the archway. We have tested our device using both visible and NIR illumination sources.

The second contribution is a thorough analysis of the accuracy of the device using both visible and NIR illumina-
tion. We found that the latter yields more accurate reconstructions when compared with ground truth. To the best of
our knowledge, no published research has looked at using NIR light sources in PS for the purpose of face recognition.
All ground truth experiments are based on models generated by a commercial 3dMD scanner [10] and are presented
using RMS height errors and `2-norm errors.



G. A. Atkinson et al. / Procedia Computer Science 00 (2010) 1–9 3

Figure 1: The geometry capture device. Enlarged areas from top to bottom: a NIR light source, a visible light source and the ultrasound proximity
trigger. The camera can be seen on the back panel.

The final contribution is a quantitative analysis of the validity of the Lambertian assumption on skin reflectance.
The extent of the discrepancies between the measured skin reflectance and Lambert’s Law are demonstrated graph-
ically and shown to be relatively minor for non-grazing angles. We also show that skin is more Lambertian under
NIR illumination. Lastly, the reflectance analysis demonstrates the possibilities of improving the reconstructions by
incorporating the Oren-Nayar reflectance model into the method.

2. Data capture

Figure 1 shows a photograph of the device that we have constructed for data acquisition. The person walks towards
camera on the back panel from the left. An ultrasound proximity switch detects the presence of the individual and
triggers the acquisition procedure. Four images are captured using the high speed camera on the back panel with the
face illuminated by four light sources in sequence. Our rig allows either Jessops 100M visible-light flashguns to be
used (colour temperature 5600K) or stripped down NIR X-vision VIS080IR lensed 7-LED clusters (≈ 850nm).

It is generally expected that the face will be moving at the time of acquisition. For this reason, it is necessary to use
a high speed camera to rapidly acquire the images as the light sources change before significant motion is possible.
We therefore use a Basler A504kc 1280×1024 pixel camera operating at 200 fps. It was found experimentally that this
was the frame rate necessary to avoid significant face movement between images. The light sources are synchronised
to the camera frames using FPGA interfacing [2]. All interfacing and synchronisation is programmed in LabVIEW
(although the image processing and shape estimation are performed in MATLAB). The sensor used to initiate the
entire process is a highly directional Baumer ultrasound proximity switch.

Four greyscale images are captured by the camera with each corresponding to one of the four visible or NIR
light sources. The regions containing the actual face are extracted from the background using the method described
by Lienhart and Maydt [26]. We then estimate of the field of surface normals using a standard photometric stereo
technique and assuming known light source directions [27, §5.4]. Finally, we integrate these surface normals using
the well-established Frankot-Chellappa method [28] to recover the height map estimate. Figure 2 shows an example
of four raw images and the resultant height estimate. For each test presented in this paper, we either use the four
visible light sources or the four NIR sources.

One disadvantage of the visible light set-up is that the firing of flashguns is obvious to the subject and possibly
intrusive to any surrounding people. NIR light by contrast, is more covert for a face recognition environment and
subjects are less inclined to “pose” for the camera, meaning that more neutral expressions are likely. It is also worth
noting the advantage that many camera sensors are inherently more sensitive to NIR light. One disadvantage of NIR
illumination is the relative difficulty in obtaining the necessary brightness for the required short exposure times. While
the flashguns were easily bright enough with an exposure time of 1ms, an exposure of 5ms was needed for the NIR
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Figure 2: Example of four raw images and the resultant surface reconstruction.

Figure 3: Example raw images and reconstructions using visible (top) and NIR light sources for four subjects. For these experiments only, the
subjects were asked to rest their chin on a support in order to ensure that all subjects are compared to each other in fair conditions.

LEDs (i.e. the maximum possible exposure for the given frame rate). Although this was adequate for our experiments,
we had to use LED lenses that provided a narrow divergence angle, meaning that the face had to be more precisely
positioned to obtain full illumination. For the visible light sources, the images were bright enough even for large
diversion angles, removing the need for accurate positioning of apparatus and allowing subjects to pass through the
archway without having to consider their exact location with respect to the camera.

To account for ambient illumination, a control image is taken after the final light source and subtracted from the
other four images. The resultant images are then normalised in terms of intensity before reconstruction takes place.
This is done by linearly scaling the greylevels of each image so that the mean intensity was equal for each image.

3. Reconstruction Analysis

Figure 3 shows a set of reconstructions using visible and NIR light. The general 3D structures of the faces
have clearly been well estimated qualitatively. In order to quantitatively assess the accuracy of the reconstructions,
we scanned eight different faces using a commercial 3dMD projected pattern range finder [10]. The 3dMD models
were rescaled so that the distance between tear ducts was the same as in the corresponding PS reconstruction. All
reconstructions were then cropped to 160×200px regions centred on the nose tip that encompass the eyebrows and
mouth. Part of the forehead is omitted by this choice of cropping region as it is frequently occluded by hair and is
therefore deemed unreliable for face recognition. An example of the face regions used for comparison can be seen in
Fig. 4, which also shows a ground truth reconstruction acquired using a 3dMD scanner. The face regions from visible
and NIR light sources are then aligned to ground truth using the Iterative Closest Point (ICP) algorithm [29].

Individual RMS and `2-norm error results between the reconstructions and ground truth are displayed in Fig. 5.
The eight subjects consist of 6 males and 2 females and a mixture of Caucasian and Asian ethnicities. The variations
in residual errors and `2-norm distances between visible and NIR reconstructions are significant according to paired
t-tests (p = 0.05). This demonstrates that PS using NIR as a light source is a perfectly valid approach and leads to
more accurate reconstructions.

In order to obtain an indication of the regions where the greatest differences occur between ground truth and PS
reconstructions, the residuals and `2-norm errors at each pixel are plotted in Fig. 6. Typically, the largest variations
occur in regions with the highest curvatures, such as eye sockets, nose tips and the sides of the nose.
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Figure 4: 3D Reconstructions for one subject from a 3dMD scanner (left) which is used as ground truth, PS using visible light sources (middle),
and PS using NIR sources (right).
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Figure 5: RMS (left) and `2-norm errors between Ground Truth (GT) and visible PS and NIR PS for each subject. The order of subjects is arbitrary.

Figure 6: Representative examples of the residuals and the `2-norm errors at each pixel. Left to right: residuals for visible and NIR respectively,
`2-norm errors for visible and NIR respectively. Lighter areas represent larger errors.
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Figure 7: Mean I/ρ values averaged over 8 subjects against θ. To the right of the vertical line at θ = 60◦, data were too sparse to be of significance.
For reference, one standard deviation is shown to give an indication of spread.

In attempting to produce the most accurate reconstructions possible via PS, it was found that the estimated surface
normals could be enhanced by using normals acquired by re-differentiating the reconstructed height map estimate.
It is unclear as to why this should be the case but preliminary analysis indicates that the reason may be due to the
imposition of integrability constraints and the fitting of limited basis functions in the Fourier domain [30], as required
by our adopted integration method. These factors may cause errant normals to be “smoothed out” leading to a more
accurate reconstruction. However, if this method of improving reconstructions is used, a second integration step would
be needed thus removing one of the benefits of PS for face recognition: that the surface normals (and hence distinctive
differential surface features) are recovered directly. More research is required into this area in order to confirm that
the improvements result from the imposed integrability constraints.

4. Reflectance Analysis

To determine whether Lambert’s law is obeyed more strictly under NIR light than visible light, we have plotted
graphs of I/ρ against the angle between the light source and the normal vector, θ. For a purely Lambertian surface,
the relationship between the two should follow a cosine law. The results can be seen in Fig. 7. To generate the graph,
values of I, ρ and θ were estimated for each pixel of each image for each of eight faces. The angle θ is calculated for
each point of the face from the 3dMD scan data and the known light source vectors. The average values of I/ρ are
used for each 1◦ increment in θ. The line at θ = 60◦ indicates a reasonable cut-off point after which data points become
too sparse to be significant. The RMS difference between the measured curves and the cosine curve in the range of
0 ≤ θ ≤ 60 is 0.04 (s.d. 0.11) for NIR light and 0.06 (s.d. 0.12) for visible. For completeness, the RMS difference
across the whole curve is 0.11 (s.d. =0.13) for NIR light and 0.17 (s.d. =0.12) for visible. The figure demonstrates
that skin under NIR light is marginally more Lambertian than under visible light.

Although the data suffers from significant noise levels, the NIR condition has a lower RMS error and is therefore
closer to the Lambertian curve than for visible light. This difference is significant given the large numbers of pixels
and subjects used in the trials. This represents an average pixel intensity error of 10 greylevels for NIR and 15
for visible light across the image, assuming a maximum of 256 grey level intensities. We believe that this result
is related to the fact that NIR light penetrates more deeply into the skin than visible light [31], which facilitates a
more uniform scattering than surface reflection. Note however, that neither the Lambertian model nor the Oren-Nayar
model (see below) take account of internal scattering or Fresnel effects. The results above demonstrate that the more
Lambertian behaviour associated with NIR light also leads to more accurate reconstructions. A more detailed analysis
for two individual subjects is shown in Fig. 8 and Table 1. There are small differences in the I/ρ curves caused by
different light sources but this appears to have little negative impact on the reconstructions and is likely to be due to
environmental effects.
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Figure 8: I/ρ values from individual light sources plotted against θ for the first two reconstructions shown in Fig. 3. Left to right: Subject 1 under
visible, Subject 1 under NIR, Subject 2 under visible, Subject 2 under NIR. The light sources are labelled clockwise from the bottom-left in Fig. 1.

Visible NIR
RMS, θ ≤ 60◦ RMS, overall RMS, θ ≤ 60◦ RMS, overall

All Faces 0.06, (σ = 0.11) 0.16 (σ = 0.12) 0.04 (σ = 0.12) 0.11 (σ = 0.13)
Subject 1 0.07, (σ = 0.09) 0.16 (σ = 0.18) 0.05 (σ = 0.12) 0.10 (σ = 0.22)
Subject 2 0.07, (σ = 0.10) 0.17 (σ = 0.18) 0.04 (σ = 0.13) 0.12 (σ = 0.21)

Table 1: The RMS collective error across all eight reconstructions and for the first two reconstructions shown in Fig. 3 separately. The standard
deviations are shown in brackets.

Comparison to the Oren-Nayar model

We have also compared our reflection measurements to the Oren-Nayar reflectance model [32], as shown in
Fig. 7. The Oren-Nayar model represents the reflecting surface as an array of V-shaped groves of random orientation,
commonly called “microfacets”. The distribution of microfacet orientations is characterised by a roughness parameter
and each facet is assumed to act as perfect Lambertian reflector. This model is able to account for the common feature
of limb-brightening and is itself based on the earlier Torrance-Sparrow model [33] where each microfacet is assumed
to be mirror-like.

We have chosen to use the Oren-Nayar model as skin is not a smooth surface and it has been shown previously to
be successful on a range of materials of varying degrees of roughness [32]. We do not believe that the microscopic
structure of skin closely matches the Oren-Nayar model, but are merely demonstrating how alternate methods for
reflection may improve our framework in future work. Investigating the various degrees of freedom of the BRDFs is
also reserved for future work. Furthermore, there are additional models for skin reflectance which take account of a
huge range of physical phenomena [34, 35], but these are out of the scope of this paper.

The Oren-Nayar curve in Fig. 7 represents an example intensity profile for reference with a roughness parameter
of 0.2. Clearly, this model fits the measured reflectance data significantly more accurately than the Lambertian curve,
suggesting that the model could be incorporated into the method in the future. This will however, add significant
complexity and computation time to the algorithm. This is because a minimisation method must be implemented in
order to recover all the model parameters and to accommodate the increased number of angular degrees of freedom in
the model.

5. Discussion

The results presented in this paper demonstrate that PS is an effective method for producing 3D facial recon-
structions for automatic recognition. Using the device with a standard PS algorithm, LabVIEW interfacing, MatLab
processing and a typical modern PC, the time between device trigger and the reconstructed height map was approx-
imately four seconds. The construction of the hardware also lends itself well to relatively unobtrusive data capture
with a minimum amount of effort from the subject.

Our system offers several benefits over commonly used existing laser triangulation and projected pattern 3D shape
capture devices:

1. It is significantly cheaper to construct.
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2. Acquisition time is shorter than laser triangulation systems.
3. Data processing time is shorter than projected pattern systems.
4. The method is robust to typical ambient illumination conditions.
5. It is very robust against accidental collisions (because it is tolerant to errors in the light source vectors).
6. Very fine details of the face can be reconstructed.
7. Calibration is very quick and simple and only needs to be performed after the initial light source positioning.
8. Although our system cannot reconstruct hair with high levels of accuracy, it can at least provide some details of

its overall shape (see Fig. 3, for example). In contrast, laser triangulation and projected pattern systems usually
fail completely with hair.

At present, the 3D reconstructions are not yet as accurate as those from projected pattern range finders. They
do however provide extremely fine detail of a face such as wrinkles and pores. The reconstructions under NIR were
shown to be more accurate than those under visible light and diminish the need for flashing lights, making the system
less intrusive compared to visible light. Zivanov et al. [36] offer an alternative argument to ours, stating that shorter
wavelength light gives better results. Their justification is that shorter wavelengths undergo less internal scattering
and thus provide a crisper, more defined reconstruction. It would appear therefore that a compromise must be reached
in deciding between fine detail (using Zivanov’s short wavelength suggestion) and overall geometry and covertness
(using our NIR method).

One current limitation of the hardware described in this paper is that it does not cope with large deviations of
peoples’ height. Extremely tall or short people, or wheelchair bound persons would probably trigger the device
correctly, but the location of the face could be outside of the field of view of the camera. Two possible solutions
for this are (1) to use two cameras and trigger sensors at different heights or (2) to increase the field of view of the
camera. Another improvement which could be made involves detecting the coordinates of the face and adjusting the
light source vectors accordingly to improve the accuracy of the PS reconstruction. In the current system, the light
source unit vectors are calculated from a point at the centre of the camera’s field of view and this is used for all
reconstructions regardless of where the face is actually located. For this reason, the light source unit vectors are less
accurate if the person walking through the device does not locate their face near the centre of the camera’s field of
view. The exact error caused by this inaccuracy is unknown, but amending the light source angles on a per person
basis will improve the surface normal estimates.
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Abstract

This research is motivated by the need for face recognition in uncontrolled environments. In other words, we are
interested in face recognition arrangements whereby the users do not need to interact with the recognition technology.
The contribution of this paper is to perform a range of recognition experiments on face image data as people casually
enter a building, without any instructions about expression. Specifically, we capture four images per session in rapid
succession (all within 20ms). The four images are synchronised to different light sources to enable photometric stereo
processing to estimate albedo images, surface normals and depth maps. Additional capture sessions then take place
over periods of many weeks. Our recognition experiments are on each of the three modalities as well as a fusion
technique for the albedo and depth. Using a variety of photometric stereo methods, surface integration methods (to
recover depth) and recognition algorithms such as principal component analysis and nonnegative matrix factorisation,
we acquire a maximum recognition rate of 86% for 96 subjects.

Keywords: 3D face recognition, photometric stereo

1. Introduction

In recent years, face recognition [1] has undergone two major developments. First, a few basic systems have
become commercialised. These are typically 2D systems that require close co-operation with the users and assume
fixed pose, expression and lighting. Second, and partly in an attempt to relax these assumptions, researchers have
began incorporating 3D information into the recognition process [2]. This paper aims to assist in both of these
developments by presenting 3D face recognition experiments in uncontrolled conditions.

The paper applies a range of existing face recognition algorithms to data captured using a photometric stereo (PS)
[3] device placed at the entrance of a busy workplace. The device that we adopted [4] captures four images of each
subject per session and reconstructs the 3D geometry of their face using several different algorithms. The device works
by detecting the presence of an individual with an ultrasound switch and using this to trigger a high speed (200fps)
camera to acquire the raw images. The camera is hardware connected to four different flashgun light sources, which
are positioned around an archway, through which the subjects pass as they enter their offices. The physical location of
the device meant that we were able to test the algorithms on more challenging situations than the current commercial
systems allow. This is because the data for the experiments were captured as subjects “casually” pass through the
archway rather than having to make a specific effort to co-operate with the system. This arrangement accurately
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simulates one of the ultimate goals for access-control face recognition, where there is no interaction required between
the subjects and the technology.

A comparative study of 3D face recognition/verification methods was recently published in [5], where the authors
implemented a large inventory of 3D recognition methods and tested them on various representations of facial ge-
ometry (i.e. depth images, curves and normal fields). Moreover, the authors applied various fusion strategies to the
results of 3D face recognition methods. A recent study on the fusion of information of intensity and depth images
was presented in [6]. In that paper the authors demonstrated that: 1) the recognition results of intensity and depth
images are approximately the same, 2) fusion of intensity and depth information produce considerably better results
than using only one modality (i.e, only intensity images or only depth maps).

The experiments in this paper are based on each of the albedo images (2D), the recovered 3D depth and normal
images [2],[5]. In summary, the contributions of this paper are 1) it demonstrates how different methods in the pipeline
of PS affect the recognition rate, and 2) it verifies that a similar conclusion to [6] can be drawn for the modalities
derived from PS methods. We applied three different PS methods in order to compute the normal field and the albedo
image and five different integration methods that compute the height map from the normal field.

2. Photometric Stereo and Surface Reconstruction

All of our experiments are performed on PS data acquired using the capture device described in [4]. This section
of the paper summarises the standard PS method [7, §5.4], which we implemented using both three and four sources.
We used an implementation of the PS method of Woodham [3] and have mainly concentrated on a four-source version
of the technique, although we have also compared our results with those of methods using three sources.

Standard PS involves imaging an object using three or more light source directions and assumes that the surface
reflectance follows Lambert’s law. The following matrix equation is then constructed from the captured greyscale
images using Lambert’s law for each pixel x = [x, y]:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I1 (x)
I2 (x)
...

IN (x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ρ (x)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

LT
1

LT
2
...

LT
N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
n (x) (1)

where Ii(x) is the ith measured pixel brightness, Li is the ith light source vector, N is the number of light sources,
ρ(x) is the reflectance albedo and n(x) is the unit surface normal. The light source positions are calculated once by
measuring the highlights on a specular sphere. The albedos and surface normal components can then be calculated
by solving (1) using these known light source vectors and the measured intensity values. In addition to this basic PS
method, we also applied the PS method proposed in [8] that aims to address the negative impacts of shadows and
specularities.

We next describe the problem of reconstructing a surface (x, f (x)) from the surface normals estimated from PS.
The normals can be expressed in terms of surface gradients using

ñ(x) =
1√

1 +
(
∂ f
∂x

)2
+

(
∂ f
∂y

)2

(
−∂ f
∂x
,−∂ f
∂y
, 1

)T

(2)

Let the computed value of the unit normal at some point x be n(x) = [a(x), b(x), c(x)], as calculated by (1). We can
then say that

∂ f
∂x
=

a(x)
c(x)

∂ f
∂y
=

b(x)
c(x)
. (3)

Here, we also perform another check on the data set. Let the images P(x) = [ a(x)
c(x) ] and Q(x) = [ b(x)

c(x) ]. If the surface
is integrable, we can say that

∂2 f
∂x∂y

=
∂2 f
∂y∂x

(4)
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and, therefore

A(x) ≡ ∂ (P(x))
∂y

− ∂ (Q(x))
∂x

(5)

must be close to zero at each point x.
Assuming that the partial derivatives satisfy condition (5), we can reconstruct the surface up to some constant error

in depth. The partial derivatives give the change in surface height with a small step in either the x or the y direction.
This means that we can get the surface by summing these changes in height along some path. In particular, we have

f (x) =
∮

C

(
∂ f
∂x
,
∂ f
∂y

)
· dl + c (6)

where C is a curve starting at some fixed point and ending at x, dl is the infinitesimal element along the curve and
c is a constant of integration, which represents the unknown height of the surface at the starting point. Choosing the
correct integration path and enforcing condition (4) is not a trivial task. In our experiments we applied the surface
reconstructions proposed in [9, 10, 11, 12, 13].

3. Face recognition using Albedo and Depth Images

Using the methods outlined in the previous section, we have at our disposal a range of modalities in which to apply
recognition algorithms: raw images, albedo images, surface normals and depth maps. In this section we outline a range
of methods used for feature extraction from albedo and depth images for face recognition. We have chosen to apply a
family of methods that aim at extracting features using linear projections (also referred to as subspace methods). This
family includes, for example, Principal Component Analysis (PCA) and Nonnegative Matrix Factorization (NMF). In
our experiments, NMF [14] produced the best recognition result. In subspace methods such as NMF, the facial images
are lexicographically scanned in order to form feature vectors.

Let m be the number of samples in the image database U = {u1,u2, ..,um} where ui ∈ �n is a database image.
A linear transformation of the original n-dimensional space onto a subspace with m dimensions (m << n) is a matrix
WT ∈ �m×n. The new feature vectors yk ∈ �m are given by:

yk =WT (uk − ū), k ∈ {1, 2, . . . ,m} (7)

where ū ∈ �n is the mean image of all samples. Classification is performed using a simple distance measure and a
nearest neighbour classifier using the normalized correlation.

In this paper we also adopt a specific method for recognition that uses the orientation of the normals, as this is
particularly well suited to our available data. The method is simple to implement and is based on a novel representation
of faces, the so-called NormalFaces. Using P and Q calculated using PS from image u we proceed to compute

Φ(x) = atan
Q(x)
P(x)

(8)

which is an image that contains the normal orientations. The orientations are measured in the interval [− π2 , π2 ]. For
two normal images Φ1(x) and Φ2(x) we then use the following dissimilarity measure:

d(Φ1(x),Φ2(x)) = 1 − 1
mnπ

mn∑

i=1

|Φ1(xi) −Φ2(xi)|. (9)

This measure is then used to extract features using pseudo-Euclidean embedding as described in [15] and classification
is performed using the normalized correlation in the new space.
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4. Recognition Experiments

Our experiments are performed on subjects’ face images that have been captured with more than a week’s interval
for 126 people. For the majority of images (90 people in total) the interval was greater than one month. The database
contains 96 persons with three or more images per person. For the experiments presented here, we tested using three
scenarios: (a) using a single training image, (b) using two training images, and (c) using a multi-modal approach. For
the second scenario, the testing image for all 96 subjects was the same one used for the first scenario. This realization
was implemented in order to test whether or not recognition using two samples of the same modality is better than
fusing information across different modalities. The first of these scenarios is a particularly challenging experimental
procedure, especially since most of the training and testing images display a different facial expression.

4.1. Face recognition from Albedo Images

Four source, three source and ray trace-based PS methods were employed for albedo computation. These methods
are abbreviated as 4L-PS, 3L-PS and RAY-PS, respectively. The recognition rates using one albedo image for training
and one for testing for all the tested PS methods are shown in Figure 1(a). As it can be seen, the recognition rate is
affected by the PS method applied and noticeably better recognition performance is achieved by PS methods that use
all four illuminants. The best recognition rate was 78%.

For the case of the two sample experiment we used a decision fusion strategy similar to [16]. That is, we combined
the match scores for each person across the two samples of 2D albedo images and ranked the subjects based on the
combined scores. Scores from each modality are linearly normalized to the range of [0, 100] before combining. We
explored various confidence-weighted versions of the sum, product and minimum rules. Among the fusion rules that
we tested, the sum rule provided the best performance overall. The recognition rates for the two sample experiments
are shown in Figure 1(b). As it can be seen, the use of more than two samples increases the recognition performance.
Moreover, the methods which use all four illuminants achieved better recognition rates than those using only three.
The best recognition rate was 85%.

4.2. Face recognition from Depth and NormalFace Images

We applied five different methods for surface reconstruction from the normal field. For the reconstruction methods
we use the following abbreviations: 1) ‘at’ for the method in [12], which enforces condition (4) with a linear system
of equations over the image, 2) dctFC for the DCT Frankot-Chellappa method [11], 3) FC for the original Frank-
Chellappa method [9], 4) ‘ls’ for the least square solution of the Poison equation [17] and 5) ‘me’ for the reconstruction
based on M-estimator [13]. The recognition rates for the one sample experiment and for all reconstruction and
PS methods are plotted in Figure 1(c). The best recognition result obtained was 74%. As it can be seen, PS and
reconstruction methods greatly affect the recognition performance. More precisely, four source PS methods always
achieve better recognition results. Moreover, the depth maps that were produced by dctFC constantly outperformed
the performance of the depth maps produced by all other reconstruction methods.

Experiments using two samples for training and one sample for testing were conducted in a similar manner. The
results of these experiments are shown in Figure 1(d). The best recognition result was 86%. Finally, the results of the
experiments using NormalFace for all tested PS methods are shown in Figures 1(e) and 1(f) for one sample and two
sample recognition, respectively.

4.3. Fusion 2D and 3D

Multimodal decision fusion is performed by combining the match scores for each person across the modalities
of 2D albedo and depth image and ranking the subjects based on the combined scores in a similar manner as in the
two sample experiments. The sum rule provided the best performance. We performed fusion only on depth images
derived from the DCT-FC method. Fusion of intensity and geometry information was conducted only on the subset
of persons that have more than 2 samples available in order to be directly comparable with the single modality two
sample experiments. The recognition results from multimodal fusion using various PS methods are summarized in
Figure 2. The best recognition result was 85%. A summary of the best recognition results for the various modalities
and multimodal fusion is given in Table 1.
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Figure 1: Experiments using, (a) one albedo image for training and one for testing; (b) two albedo images for training and one for testing; (c) one
depth image for training and one for testing; (d) two depth images for training and one for testing; (e) one NormalFace for training and one for
testing; (f) two NormalFaces for training and one for testing
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Figure 2: Multimodal fusion results for recognition.

5. Conclusions

In this paper, we presented face recognition results based on PS data captured in a real life commercial setting. We
presented experiments which demonstrate how different methods in the pipeline of PS affect the recognition perfor-
mance and concluded that four-source PS methods produce facial samples (albedo, normals) that achieve constantly
high performance regardless of the reconstruction method applied. However, we also showed that the reconstruction
methods greatly affect the recognition rates.

This paper also verified most of the findings of [16]. Specifically, in most cases, the best recognition results
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Table 1: A summary of the best percentage of recognition for all the conducted experiments across different modalities.
One Sample Two Samples Modality Fusion

Albedo Depth Normal Albedo Depth Normal Albedo + Depth
78 74 78 85 86 86 85

of recovered albedo, normals and the reconstructed depth maps achieve approximately the same results, while in
some cases the recovered albedo produces better results. The fusion of albedo and reconstructed surfaces produce
significantly better results than using only the albedo or the depth images. Fusion of two albedo images in the same
way that we fused the results of albedo and depth map gave approximately the same recognition results. The best
recognition rate that we obtained was approximately 86%.
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Appendix C

Photoface - 61 subjects, 1000

Sessions

These are the sessions used throughout the thesis when 1000 sessions are re-

ferred to. An electronic copy is available from the author.

1001\2008-03-01 07-58-49 1001\2008-03-02 11-25-38 1001\2008-03-20 15-10-39

1001\2008-04-05 11-22-53 1001\2008-04-19 08-34-45 1001\2008-05-14 11-01-27

1001\2009-06-26 14-48-20 1001\2009-07-09 13-25-40 1001\2009-07-10 15-03-01

1001\2009-07-28 15-19-04 1002\2008-02-25 17-34-06 1002\2008-03-28 14-11-04

1002\2008-04-01 18-52-11 1002\2008-04-01 18-54-30 1002\2009-07-08 08-18-43

1002\2009-07-30 14-57-27 1002\2009-08-17 16-00-09 1002\2009-08-26 10-33-57

1002\2009-08-27 08-20-34 1002\2009-08-27 16-41-09 1003\2008-02-18 17-40-16

1003\2008-02-18 17-40-29 1003\2008-02-22 16-42-59 1003\2008-02-22 16-43-26

1003\2008-02-25 17-24-07 1003\2008-03-04 17-36-56 1003\2008-03-07 11-25-56

1003\2008-03-12 17-50-55 1003\2008-03-31 17-11-17 1003\2008-04-02 17-27-25

1003\2008-04-22 16-39-32 1003\2008-05-20 17-51-27 1003\2008-05-28 17-29-57

1003\2008-06-10 17-22-02 1003\2008-06-19 17-05-00 1003\2009-07-08 17-16-59

1003\2009-07-24 16-05-35 1003\2009-10-07 15-44-24 1003\2009-10-23 15-36-47

1004\2008-02-21 11-07-38 1004\2008-02-21 11-08-02 1004\2008-02-21 11-39-28

1004\2008-02-21 13-38-47 1004\2008-02-21 14-07-06 1004\2008-02-21 17-12-02

1004\2008-02-21 18-11-37 1004\2008-02-25 17-33-16 1004\2008-03-05 12-23-16

1004\2008-03-05 12-45-05 1007\2008-03-28 15-28-02 1007\2008-03-28 15-28-34

1007\2008-04-21 11-28-50 1007\2008-05-28 10-11-10 1007\2009-02-26 10-47-19

1007\2009-06-25 13-56-34 1007\2009-07-14 14-35-14 1007\2009-07-17 10-13-25

1007\2009-07-20 14-17-31 1007\2009-07-22 15-06-41 1007\2009-07-28 13-55-55
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1007\2009-07-31 11-24-16 1007\2009-08-13 11-26-19 1007\2009-08-13 11-28-37

1007\2009-08-13 11-29-47 1007\2009-08-13 11-56-03 1007\2009-08-17 09-35-28

1007\2009-08-17 13-40-48 1007\2009-08-18 16-19-44 1007\2009-08-19 14-14-32

1007\2009-08-20 07-43-54 1007\2009-08-20 17-11-11 1007\2009-08-21 17-36-03

1007\2009-08-24 15-44-30 1007\2009-08-26 14-57-02 1007\2009-08-27 14-51-34

1007\2009-09-01 10-20-10 1007\2009-09-04 09-33-18 1007\2009-09-08 08-43-25

1007\2009-09-08 08-44-52 1007\2009-09-08 13-12-31 1007\2009-09-14 08-49-24

1007\2009-09-14 16-58-11 1007\2009-09-18 16-28-36 1007\2009-09-28 13-24-48

1007\2009-10-02 16-07-57 1007\2009-10-06 17-08-32 1007\2009-10-08 07-02-38

1007\2009-10-15 17-44-04 1007\2009-10-22 15-30-01 1008\2008-02-18 13-42-16

1008\2008-02-22 13-53-10 1008\2008-04-14 08-30-11 1008\2008-04-15 11-17-30

1008\2008-04-16 16-46-12 1008\2008-04-18 13-43-00 1008\2008-05-29 08-15-48

1008\2008-06-18 16-48-33 1008\2009-06-26 15-45-00 1008\2009-07-02 09-52-00

1008\2009-07-09 17-13-23 1008\2009-07-13 12-32-38 1008\2009-07-20 13-58-12

1008\2009-07-23 08-09-50 1008\2009-07-24 11-17-46 1008\2009-08-18 12-35-35

1008\2009-08-24 08-24-10 1008\2009-09-01 12-39-24 1008\2009-09-01 12-40-13

1008\2009-09-03 16-24-10 1008\2009-09-14 10-58-44 1008\2009-09-17 16-43-43

1008\2009-09-23 08-07-50 1008\2009-09-25 08-27-19 1008\2009-10-09 08-27-55

1008\2009-10-12 08-28-42 1009\2008-02-18 08-50-39 1009\2008-02-18 11-10-59

1009\2008-02-19 08-54-56 1009\2008-02-21 10-13-44 1009\2008-02-29 08-39-56

1009\2008-02-29 13-49-12 1009\2008-03-12 12-02-37 1009\2008-03-13 14-44-23

1009\2008-03-17 14-15-57 1009\2008-04-22 09-06-04 1009\2009-06-26 14-20-48

1009\2009-06-30 14-55-41 1009\2009-07-07 14-29-51 1009\2009-07-08 14-19-18

1009\2009-07-09 09-26-58 1009\2009-07-13 12-39-01 1009\2009-08-19 14-05-50

1009\2009-09-11 10-59-32 1009\2009-09-23 08-34-34 1009\2009-09-30 08-30-21

1009\2009-10-23 09-07-09 1010\2009-07-08 20-24-55 1010\2009-07-23 18-22-42

1010\2009-07-23 18-56-20 1010\2009-08-04 19-05-32 1010\2009-08-20 19-39-40

1010\2009-09-11 17-30-34 1010\2009-09-29 18-53-13 1010\2009-10-24 14-55-27

1012\2008-02-18 06-46-13 1012\2008-02-19 17-24-46 1012\2008-02-19 17-25-08

1012\2008-02-22 07-39-59 1012\2008-02-22 07-40-08 1012\2008-02-22 07-40-19

1012\2008-02-22 17-02-36 1012\2008-02-22 17-02-47 1012\2008-02-22 17-02-58

1012\2008-02-22 17-03-10 1012\2008-02-29 06-27-29 1012\2008-02-29 17-41-40

1012\2008-03-03 07-51-58 1012\2008-03-04 10-30-22 1012\2008-03-06 16-13-55

1012\2008-03-08 11-10-42 1012\2008-03-08 15-43-08 1012\2008-03-08 15-43-24

1012\2008-03-08 15-43-40 1012\2008-03-09 08-18-42 1012\2008-03-09 14-26-14

1012\2008-03-27 10-23-04 1012\2008-04-04 20-13-14 1012\2008-04-04 20-13-26

1012\2008-04-04 20-13-37 1012\2008-04-10 11-34-07 1012\2008-04-23 16-45-59

1012\2008-04-23 16-46-14 1012\2008-04-23 16-46-28 1012\2008-05-10 09-38-18
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1012\2008-05-11 08-19-02 1012\2008-05-11 15-40-22 1012\2008-05-12 15-35-46

1012\2008-05-12 19-19-17 1012\2008-05-13 15-19-52 1012\2008-05-14 15-18-40

1012\2008-05-14 16-44-37 1012\2008-05-14 17-07-25 1012\2008-05-14 20-48-04

1012\2008-05-15 16-47-47 1012\2008-05-16 16-52-30 1012\2008-05-16 19-36-47

1012\2008-05-19 07-02-58 1012\2008-05-22 12-07-22 1012\2008-05-22 13-59-58

1012\2008-05-29 21-16-41 1012\2008-06-02 16-00-56 1012\2008-06-03 07-00-06

1012\2008-06-06 11-49-50 1012\2008-06-12 07-49-50 1012\2008-06-12 13-26-44

1012\2008-06-18 12-34-12 1012\2008-06-20 07-19-55 1012\2008-06-25 17-46-20

1012\2008-06-27 17-43-58 1012\2008-06-29 12-03-09 1012\2009-06-25 16-36-34

1012\2009-06-26 18-20-06 1012\2009-06-30 07-31-26 1012\2009-07-08 21-52-08

1012\2009-07-14 07-04-13 1012\2009-07-22 14-43-01 1012\2009-07-23 18-48-50

1012\2009-07-23 18-59-12 1012\2009-08-06 16-01-34 1012\2009-08-13 07-02-34

1012\2009-09-09 13-16-13 1012\2009-09-10 19-07-09 1012\2009-10-01 20-18-46

1012\2009-10-14 20-57-47 1013\2008-02-25 14-50-46 1013\2008-02-29 09-11-20

1013\2008-02-29 10-46-05 1013\2008-03-03 09-29-39 1013\2008-03-03 15-30-23

1013\2008-03-10 08-46-05 1013\2008-03-11 07-57-36 1013\2008-03-13 09-04-05

1013\2008-03-18 09-59-14 1013\2008-03-27 15-22-28 1013\2008-03-28 10-43-50

1013\2008-05-12 15-03-32 1013\2008-05-14 09-51-58 1013\2008-05-19 08-28-00

1013\2008-05-19 11-26-44 1013\2008-05-20 15-29-42 1013\2008-05-28 08-27-27

1013\2008-05-28 11-41-51 1013\2008-05-28 12-07-58 1013\2008-05-29 08-07-48

1013\2008-05-29 09-06-51 1013\2008-05-29 10-07-55 1013\2008-06-02 11-06-49

1013\2008-06-02 14-56-34 1013\2008-06-03 08-33-09 1013\2008-06-04 07-51-58

1013\2008-06-04 16-37-07 1013\2008-06-05 08-02-09 1013\2008-06-06 13-22-02

1013\2008-06-09 09-55-04 1013\2008-06-09 14-53-39 1013\2008-06-10 16-19-40

1013\2008-06-11 09-12-11 1013\2008-06-17 09-09-14 1013\2008-06-18 10-45-04

1013\2008-06-19 08-15-24 1013\2008-06-20 08-25-49 1013\2008-06-23 08-17-21

1013\2008-06-26 10-13-23 1013\2009-07-01 09-23-18 1013\2009-07-07 12-27-27

1013\2009-07-09 10-22-07 1013\2009-07-17 12-27-06 1013\2009-07-21 14-54-55

1013\2009-07-22 14-57-41 1013\2009-07-28 15-31-10 1013\2009-08-03 10-54-34

1013\2009-09-03 10-18-53 1013\2009-09-28 10-25-38 1013\2009-10-15 07-02-32

1013\2009-10-22 10-35-12 1014\2008-02-19 09-05-27 1014\2008-02-19 16-45-02

1014\2008-02-20 17-14-18 1014\2008-02-21 16-56-08 1014\2008-02-22 17-33-58

1014\2008-02-25 12-36-10 1014\2008-02-28 16-08-11 1014\2008-02-29 16-48-59

1014\2008-03-03 11-20-42 1014\2008-03-03 16-38-12 1014\2008-03-03 16-39-10

1014\2008-03-03 17-20-56 1014\2008-03-04 17-15-05 1014\2008-03-05 12-50-38

1014\2008-03-11 16-32-37 1014\2008-04-11 14-37-01 1014\2008-04-11 16-17-40

1014\2008-04-15 17-13-27 1014\2008-04-16 17-53-09 1014\2008-05-09 16-17-10

1014\2008-05-09 16-48-08 1014\2008-05-28 15-37-14 1014\2008-06-16 11-57-06
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1014\2008-06-16 11-57-15 1014\2008-06-17 17-14-24 1014\2009-06-26 15-11-07

1014\2009-06-30 08-34-24 1014\2009-07-02 16-36-59 1014\2009-07-09 16-41-58

1022\2008-02-29 08-33-54 1022\2008-02-29 12-27-23 1022\2008-02-29 12-27-38

1022\2008-04-22 10-46-57 1022\2008-04-23 10-20-28 1022\2008-04-23 12-08-34

1022\2008-04-23 15-05-30 1022\2008-04-24 10-12-45 1022\2008-04-25 09-41-49

1022\2008-05-22 10-23-44 1022\2008-05-23 10-10-35 1022\2008-06-20 12-16-43

1022\2009-06-29 11-53-08 1022\2009-06-29 12-13-03 1024\2008-02-21 08-11-44

1024\2008-03-04 17-02-18 1024\2008-03-05 17-29-19 1024\2008-03-19 18-30-44

1024\2008-04-21 16-01-42 1024\2008-04-28 18-50-17 1024\2009-07-30 08-17-52

1024\2009-08-20 16-16-29 1024\2009-09-11 14-54-11 1024\2009-10-06 10-09-47

1025\2008-02-15 17-23-58 1025\2008-02-15 18-37-13 1025\2008-02-15 20-40-13

1025\2008-02-17 14-37-02 1025\2008-02-25 17-08-28 1025\2008-02-28 17-09-26

1025\2008-02-29 18-03-54 1025\2008-03-06 19-40-01 1025\2008-03-07 20-11-51

1025\2008-03-07 20-50-03 1025\2008-03-11 21-01-00 1025\2008-03-16 09-13-06

1025\2008-04-08 20-56-04 1025\2008-04-23 07-57-53 1025\2008-05-09 20-59-58

1025\2008-05-14 09-26-43 1025\2008-05-19 20-51-01 1025\2008-05-25 14-44-52

1025\2008-05-29 12-49-01 1025\2008-06-14 09-33-00 1025\2009-06-29 18-42-23

1025\2009-07-09 07-17-01 1025\2009-07-18 09-25-49 1025\2009-08-14 16-12-59

1027\2008-02-21 11-58-26 1027\2008-02-21 13-44-09 1027\2008-03-14 10-27-02

1027\2008-03-19 11-14-54 1027\2009-06-29 17-06-25 1027\2009-06-29 17-18-54

1027\2009-07-22 08-26-01 1027\2009-08-04 11-02-23 1027\2009-08-05 15-26-13

1028\2008-02-19 12-00-35 1028\2008-02-22 15-44-02 1028\2008-06-02 08-01-02

1028\2008-06-03 08-11-18 1028\2008-06-04 07-57-15 1028\2009-06-29 16-51-57

1028\2009-06-30 14-37-46 1028\2009-07-02 16-53-46 1028\2009-07-03 14-27-19

1028\2009-07-08 16-28-24 1028\2009-07-18 14-36-39 1032\2008-02-29 12-54-29

1032\2008-05-16 12-48-49 1032\2009-07-02 18-10-33 1032\2008-03-04 11-09-36

1032\2008-05-23 15-53-35 1032\2009-09-30 16-04-03 1032\2008-06-04 16-09-25

1032\2009-09-30 17-33-13 1032\2008-04-29 16-15-00 1032\2008-06-05 13-19-07

1032\2009-09-30 17-33-45 1033\2008-03-19 11-15-47 1033\2008-03-20 15-11-36

1033\2008-03-20 15-12-44 1033\2008-04-09 17-48-48 1033\2008-06-19 11-32-22

1033\2009-07-14 18-15-16 1033\2009-07-17 12-19-16 1037\2008-02-22 12-36-03

1037\2008-02-26 10-46-47 1037\2008-03-18 10-50-58 1037\2008-04-07 15-21-11

1037\2008-04-22 12-39-48 1037\2009-06-25 13-46-31 1037\2009-07-01 15-14-16

1037\2009-07-01 15-14-46 1038\2008-02-23 11-34-55 1038\2008-02-23 13-39-59

1038\2008-02-24 09-22-37 1038\2008-02-24 09-22-50 1038\2008-02-29 08-54-47

1038\2009-07-10 12-19-31 1038\2009-07-21 12-21-23 1038\2009-09-17 13-11-57

1040\2008-04-01 18-20-43 1040\2008-04-01 18-21-57 1040\2008-04-01 18-22-42

1040\2008-04-01 18-24-45 1040\2008-04-02 09-31-07 1040\2009-08-28 11-26-32
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1042\2008-02-20 12-59-58 1042\2008-02-20 15-27-22 1042\2008-02-20 15-27-31

1042\2008-02-20 15-27-38 1042\2008-02-20 17-12-12 1042\2008-02-20 17-12-30

1042\2008-02-21 17-10-04 1042\2008-02-22 11-03-39 1042\2008-02-22 12-06-16

1042\2008-02-22 12-06-36 1042\2008-02-22 12-06-57 1042\2008-02-26 12-52-40

1042\2008-02-28 17-18-18 1042\2008-02-28 17-18-29 1042\2008-02-29 08-35-37

1042\2008-03-03 13-15-44 1042\2008-03-05 12-33-24 1042\2008-03-06 12-28-59

1042\2008-03-06 12-29-37 1042\2008-03-07 12-00-06 1042\2008-03-11 17-24-05

1042\2008-03-25 12-12-19 1042\2008-04-14 17-39-16 1042\2008-04-15 17-14-45

1042\2008-04-16 09-13-43 1042\2008-05-19 10-47-01 1042\2008-05-19 10-47-27

1042\2008-05-19 10-47-32 1042\2008-05-27 12-18-00 1042\2008-05-27 12-18-05

1042\2008-05-28 18-40-44 1042\2008-05-29 09-52-06 1042\2008-06-03 08-58-08

1042\2008-06-03 08-58-26 1042\2008-06-04 09-20-27 1042\2008-06-12 17-21-01

1042\2008-06-13 12-36-22 1042\2008-06-26 08-27-26 1042\2008-06-27 16-08-22

1042\2008-06-30 12-03-34 1042\2009-06-26 16-09-32 1042\2009-07-14 16-12-36

1043\2008-02-15 15-52-05 1043\2008-02-18 07-55-00 1043\2008-02-18 07-55-19

1043\2008-02-18 09-47-05 1043\2008-02-18 10-55-10 1043\2008-02-19 14-25-45

1043\2008-02-19 16-03-27 1043\2008-02-20 09-18-54 1043\2008-02-20 14-52-56

1043\2008-02-22 07-53-50 1043\2008-02-22 11-59-00 1043\2008-02-25 15-00-22

1043\2008-02-26 09-03-51 1043\2008-03-03 10-44-45 1043\2008-03-04 13-49-23

1043\2008-03-11 15-00-19 1043\2008-03-17 12-51-11 1043\2008-03-20 14-46-13

1043\2008-03-26 13-30-23 1043\2008-05-12 11-11-43 1043\2008-05-12 11-12-00

1043\2008-05-15 14-14-39 1043\2008-05-19 09-38-34 1043\2008-05-22 16-24-15

1043\2008-05-30 13-30-52 1043\2008-06-05 12-52-00 1043\2008-06-06 11-16-07

1043\2008-06-10 15-23-59 1043\2009-06-26 11-56-47 1043\2009-06-29 15-42-35

1043\2009-06-30 14-09-38 1043\2009-06-30 15-38-32 1043\2009-07-02 16-11-57

1043\2009-07-07 13-56-07 1043\2009-07-09 09-52-51 1043\2009-07-31 12-29-36

1044\2009-07-07 15-43-30 1044\2009-07-09 13-44-47 1044\2009-07-13 14-03-41

1044\2009-07-28 13-56-39 1044\2009-07-30 14-40-53 1044\2009-07-31 12-40-28

1044\2009-08-14 12-59-46 1044\2009-08-18 17-01-40 1044\2009-09-02 10-02-52

1047\2008-02-18 17-35-15 1047\2008-02-21 18-07-01 1047\2008-02-28 18-12-43

1047\2008-03-25 16-35-53 1047\2008-03-26 17-34-16 1047\2008-04-14 17-52-56

1047\2008-04-16 17-20-57 1047\2008-04-21 18-04-43 1047\2008-04-21 18-04-43

1047\2009-06-29 12-29-47 1047\2009-07-02 11-19-21 1047\2009-07-03 16-11-35

1047\2009-07-13 15-33-30 1047\2009-07-24 14-50-27 1047\2009-08-12 15-27-04

1050\2007-12-03 19-18-23 1050\2007-12-03 19-18-51 1050\2007-12-04 08-55-53

1050\2007-12-04 08-58-36 1050\2007-12-04 08-58-57 1050\2007-12-04 08-59-22

1050\2007-12-04 09-00-00 1050\2007-12-04 09-09-23 1050\2007-12-04 09-21-11

1050\2007-12-04 09-25-45 1050\2007-12-04 09-35-03 1050\2007-12-04 09-36-40
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1050\2007-12-04 09-38-47 1050\2007-12-04 10-08-09 1050\2007-12-04 10-22-02

1050\2007-12-04 10-52-25 1050\2007-12-04 10-54-15 1050\2007-12-04 11-12-42

1050\2007-12-04 11-42-52 1050\2007-12-04 11-44-14 1050\2007-12-04 11-58-35

1050\2007-12-04 12-08-01 1050\2007-12-04 13-06-56 1050\2007-12-04 13-07-40

1050\2007-12-04 13-09-03 1050\2007-12-04 13-22-12 1050\2007-12-04 13-22-56

1050\2007-12-04 13-24-15 1050\2007-12-04 13-25-51 1050\2007-12-04 13-27-06

1050\2007-12-04 13-33-22 1050\2007-12-04 13-33-41 1050\2007-12-04 13-35-33

1050\2007-12-04 13-35-48 1050\2007-12-04 14-49-42 1050\2007-12-04 14-50-50

1050\2007-12-04 18-06-57 1050\2007-12-05 09-10-34 1050\2007-12-05 09-17-29

1050\2007-12-05 09-17-48 1050\2007-12-05 09-22-04 1050\2007-12-05 09-23-57

1050\2007-12-05 09-24-05 1050\2007-12-05 09-28-11 1050\2007-12-05 09-53-18

1050\2007-12-05 10-07-29 1050\2007-12-05 10-07-47 1050\2007-12-05 10-21-00

1050\2007-12-05 10-48-21 1050\2007-12-05 11-18-47 1050\2007-12-05 13-05-46

1050\2007-12-05 13-06-14 1050\2007-12-05 13-56-47 1050\2007-12-05 14-18-18

1051\2008-04-03 13-29-30 1051\2008-04-16 18-10-55 1051\2008-04-18 15-02-56

1051\2008-05-15 13-05-18 1051\2009-08-18 08-22-13 1051\2009-10-16 16-21-30

1051\2009-10-21 18-21-53 1066\2008-02-18 13-55-25 1066\2008-02-20 07-37-12

1066\2008-02-21 11-05-40 1066\2008-03-05 10-26-09 1066\2008-03-06 07-35-35

1066\2008-03-13 07-17-53 1067\2008-02-18 08-51-34 1067\2008-02-18 08-51-46

1067\2008-02-18 17-08-36 1067\2008-02-20 09-54-32 1067\2008-02-20 17-24-09

1067\2008-02-21 17-44-49 1067\2008-02-22 16-52-11 1067\2008-02-28 17-18-04

1067\2009-06-25 17-39-19 1067\2009-06-25 13-02-21 1074\2008-02-19 17-38-09

1074\2008-03-04 19-07-21 1074\2008-03-04 19-09-36 1074\2008-03-11 18-30-45

1074\2008-03-13 13-37-12 1074\2008-03-13 13-37-24 1074\2008-03-13 13-37-35

1074\2008-03-13 13-37-47 1074\2008-03-13 18-43-23 1074\2008-03-14 17-22-58

1074\2008-04-08 18-50-41 1074\2008-06-03 20-07-28 1074\2009-06-30 19-26-57

1074\2009-08-20 17-22-24 1075\2008-02-15 15-41-14 1075\2008-02-20 13-06-34

1075\2008-02-21 17-57-51 1075\2008-02-28 17-36-25 1075\2008-02-28 17-37-10

1075\2008-03-10 12-54-50 1075\2008-03-14 11-36-40 1075\2008-03-17 14-36-37

1075\2008-03-17 14-36-54 1075\2008-03-26 13-06-08 1075\2008-04-01 18-45-27

1075\2008-04-03 17-50-00 1075\2008-04-03 19-19-47 1075\2008-04-04 13-02-38

1075\2008-04-07 19-02-24 1075\2008-04-08 12-40-01 1075\2008-04-08 19-00-21

1075\2008-04-09 18-59-45 1075\2008-04-10 10-47-11 1075\2008-04-10 13-16-20

1075\2008-04-15 10-06-53 1075\2008-04-16 18-09-44 1075\2008-04-21 18-56-19

1075\2008-04-23 18-58-53 1075\2008-04-25 13-42-55 1075\2008-04-28 19-31-12

1075\2008-05-09 13-11-59 1075\2008-05-12 18-45-29 1075\2008-05-14 18-53-40

1075\2008-05-15 11-29-59 1075\2008-05-15 15-36-06 1075\2008-05-16 16-15-29

1075\2008-05-16 16-15-44 1075\2008-05-29 16-29-53 1075\2008-06-03 18-52-51

295



1075\2008-06-05 17-28-10 1075\2009-08-28 15-11-09 1080\2008-03-06 10-38-23

1080\2008-03-19 09-04-14 1080\2008-03-28 08-47-26 1080\2008-04-21 07-34-05

1080\2008-05-09 13-35-49 1080\2009-07-22 12-51-22 1080\2009-10-15 08-57-37

1085\2008-02-20 16-19-11 1085\2008-02-22 11-06-12 1085\2008-02-22 11-06-30

1085\2008-02-22 12-18-32 1085\2008-02-22 14-44-32 1085\2008-02-22 16-49-47

1085\2008-02-25 11-33-49 1085\2008-02-25 14-30-34 1085\2008-02-29 10-15-34

1085\2008-03-03 12-13-24 1085\2008-03-03 16-48-48 1085\2008-03-04 11-40-57

1085\2008-03-04 16-44-26 1085\2008-03-04 19-03-34 1085\2008-03-11 13-09-37

1085\2008-03-12 15-39-24 1085\2008-03-13 13-52-21 1085\2008-03-14 10-09-27

1085\2008-03-14 10-09-46 1085\2008-03-18 14-37-18 1085\2008-03-18 16-52-14

1085\2008-03-19 11-28-34 1085\2008-04-07 11-38-32 1085\2008-04-08 15-08-58

1091\2008-02-19 10-09-41 1091\2008-02-19 10-11-09 1091\2008-02-19 10-11-20

1091\2008-02-19 10-11-38 1091\2008-04-21 17-47-00 1091\2009-06-29 11-12-38

1119\2008-02-29 10-16-20 1119\2008-03-05 14-06-19 1119\2008-03-11 15-09-00

1119\2008-03-11 16-17-55 1119\2008-04-08 17-15-47 1119\2008-05-29 16-49-20

1119\2009-06-29 12-28-13 1132\2008-03-31 16-27-46 1132\2008-03-31 16-28-28

1132\2008-03-31 16-29-45 1132\2008-03-31 16-30-01 1132\2008-04-03 18-43-37

1132\2008-04-03 18-45-19 1132\2008-04-03 19-59-34 1132\2008-04-09 20-07-22

1132\2008-04-09 20-15-32 1132\2008-04-21 20-01-48 1132\2008-05-12 20-23-30

1132\2008-05-13 18-55-10 1132\2008-05-14 20-00-35 1132\2008-05-15 19-54-15

1132\2008-05-23 19-37-02 1132\2008-05-28 20-05-20 1151\2008-02-18 10-59-51

1151\2008-02-18 17-33-08 1151\2008-02-19 10-42-34 1151\2008-02-19 14-10-03

1151\2008-02-19 14-10-15 1151\2008-02-20 09-07-06 1151\2008-02-22 13-15-04

1151\2008-02-22 14-42-03 1151\2008-04-04 13-40-12 1151\2008-05-16 16-27-17

1173\2007-12-04 11-55-10 1173\2007-12-04 13-08-20 1173\2007-12-04 13-57-47

1173\2007-12-04 13-58-14 1173\2007-12-04 17-53-11 1173\2007-12-04 17-57-37

1173\2007-12-05 13-06-49 1173\2007-12-05 20-34-11 1173\2007-12-06 17-16-06

1173\2007-12-06 20-22-00 1173\2007-12-06 20-22-07 1173\2007-12-07 13-42-55

1173\2007-12-11 15-34-13 1173\2007-12-11 15-34-29 1173\2007-12-12 15-42-24

1174\2007-12-04 17-50-47 1174\2007-12-04 17-50-54 1174\2007-12-04 17-52-56

1174\2007-12-05 11-02-06 1174\2007-12-05 14-37-51 1174\2007-12-05 14-38-17

1174\2007-12-05 14-38-48 1174\2007-12-05 18-30-09 1174\2007-12-07 11-55-54

1174\2007-12-11 19-50-38 1174\2007-12-12 17-23-00 1183\2009-03-31 10-42-53

1183\2009-03-31 10-43-30 1183\2009-03-31 10-46-23 1183\2009-03-31 10-46-42

1183\2009-03-31 10-47-01 1183\2009-03-31 10-49-23 1186\2007-12-04 17-45-44

1186\2007-12-05 11-15-41 1186\2007-12-06 12-19-10 1186\2007-12-06 16-34-53

1186\2007-12-06 16-37-56 1186\2007-12-06 16-42-11 1186\2007-12-11 11-30-50

1186\2007-12-12 16-43-30 1192\2007-12-06 11-38-22 1192\2007-12-06 11-55-00
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1192\2007-12-06 17-00-44 1192\2007-12-07 13-54-56 1192\2007-12-11 12-32-50

1192\2007-12-12 15-24-54 1201\2007-12-04 09-22-52 1201\2007-12-04 11-10-55

1201\2007-12-04 11-12-10 1201\2007-12-04 15-24-45 1201\2007-12-05 11-36-01

1201\2007-12-05 14-09-43 1201\2007-12-07 16-26-45 1201\2007-12-07 16-26-58

1201\2007-12-07 16-27-15 1201\2007-12-11 14-48-03 1201\2007-12-11 14-53-48

1201\2007-12-11 14-56-57 1201\2007-12-11 15-00-56 1201\2007-12-11 15-01-24

1201\2007-12-11 15-01-41 1201\2007-12-13 11-49-45 1212\2008-11-19 15-03-26

1212\2009-06-25 12-35-27 1212\2009-06-25 12-35-51 1212\2009-07-07 12-05-52

1212\2009-07-07 12-17-00 1212\2009-07-07 12-17-27 1212\2009-09-04 15-24-00

1213\2007-12-03 19-17-54 1213\2007-12-04 08-56-04 1213\2007-12-04 09-45-01

1213\2007-12-04 09-45-16 1213\2007-12-04 09-45-29 1213\2007-12-04 12-32-56

1213\2007-12-04 16-43-24 1213\2007-12-04 16-50-20 1213\2007-12-04 16-50-33

1213\2007-12-05 09-31-38 1213\2007-12-05 10-02-33 1213\2007-12-05 15-59-30

1213\2007-12-07 13-24-01 1213\2007-12-07 14-58-56 1217\2007-12-04 09-20-33

1217\2007-12-04 09-23-03 1217\2007-12-04 09-30-09 1217\2007-12-04 09-30-22

1217\2007-12-04 09-30-47 1217\2007-12-04 10-37-52 1217\2007-12-04 13-46-32

1217\2007-12-04 13-59-43 1217\2007-12-04 16-18-19 1217\2007-12-04 17-32-29

1217\2007-12-04 18-06-05 1217\2007-12-05 17-11-20 1217\2007-12-05 18-10-27

1217\2007-12-06 11-28-14 1217\2007-12-06 12-44-32 1217\2007-12-06 13-03-01

1217\2007-12-06 14-30-44 1217\2007-12-06 16-07-59 1217\2007-12-06 16-11-22

1217\2007-12-07 09-20-58 1217\2007-12-07 15-50-08 1217\2007-12-10 16-53-49

1217\2007-12-10 18-06-35 1217\2007-12-11 09-50-16 1217\2007-12-11 12-41-26

1217\2007-12-12 13-49-27 1217\2007-12-12 15-02-49 1217\2007-12-13 12-57-03

1220\2007-12-04 10-19-31 1220\2007-12-04 14-10-45 1220\2007-12-04 18-04-01

1220\2007-12-05 09-48-20 1220\2007-12-05 09-48-32 1220\2007-12-05 09-48-43

1220\2007-12-05 10-49-57 1220\2007-12-05 10-50-35 1220\2007-12-06 16-10-04

1220\2007-12-06 17-21-55 1220\2007-12-07 10-53-34 1220\2007-12-07 11-23-52

1220\2007-12-07 12-53-13 1220\2007-12-11 12-28-01 1220\2007-12-11 12-28-09

1220\2007-12-11 14-12-55 1220\2007-12-11 17-15-46 1220\2007-12-12 10-07-23

1220\2007-12-12 16-32-26 1220\2007-12-13 12-48-15 2001\2008-02-18 11-00-29

2001\2008-02-19 11-31-48 2001\2008-02-19 12-53-11 2001\2008-02-19 14-02-34

2001\2008-02-20 15-55-13 2001\2008-02-25 11-57-05 2001\2008-03-04 13-02-53

2001\2008-03-05 16-41-36 2001\2008-03-05 17-23-17 2001\2008-03-12 16-58-43

2001\2008-03-13 13-28-51 2001\2008-03-14 10-57-39 2001\2008-03-18 09-57-38

2001\2008-03-18 10-49-30 2002\2008-02-19 15-20-58 2002\2008-02-19 15-58-06

2002\2008-02-20 09-36-31 2002\2008-02-20 11-20-24 2002\2008-02-20 16-39-01

2002\2008-02-21 09-37-09 2002\2008-02-21 10-44-32 2002\2008-02-21 14-15-22

2002\2008-02-26 08-40-14 2002\2008-03-17 10-01-11 2002\2008-03-17 13-41-17
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2004\2008-02-19 17-41-10 2004\2008-02-21 18-10-25 2004\2008-02-25 17-39-07

2004\2008-03-14 18-06-00 2004\2008-03-14 18-06-19 2004\2008-03-17 08-41-19

2004\2008-03-18 08-46-57 2004\2008-03-19 14-42-13 2004\2008-03-19 14-42-29

2004\2008-03-19 18-11-31 2004\2008-03-20 08-18-03 2004\2008-03-20 17-15-17

2004\2008-03-26 16-41-07 2004\2008-03-26 18-38-11 2004\2008-04-02 16-59-06

2004\2008-04-04 10-43-23 2004\2008-04-11 18-04-43 2004\2008-04-11 18-04-56

2004\2008-04-24 17-52-21 2005\2008-02-19 12-34-11 2005\2008-02-19 12-34-23

2005\2008-02-19 12-35-12 2005\2008-02-19 12-35-34 2005\2008-02-19 12-35-49

2005\2008-02-19 12-36-06 2005\2008-02-19 12-36-34 2005\2008-02-19 12-36-47

2005\2008-02-19 12-36-59 2005\2008-02-19 12-37-18 2006\2008-02-18 12-32-23

2006\2008-02-19 16-52-17 2006\2008-02-22 07-36-44 2006\2008-02-26 10-27-30

2006\2008-03-03 12-09-02 2006\2008-03-04 16-50-47 2006\2008-03-12 16-45-08

2006\2008-03-18 07-35-44 2006\2008-05-22 13-51-28 2006\2008-05-30 07-39-31

2006\2008-06-03 15-44-48 2006\2008-06-10 14-40-00 2006\2008-06-10 16-13-25

2011\2008-03-28 13-18-47 2011\2008-04-08 18-33-30 2011\2008-04-08 18-33-44

2011\2008-04-08 18-33-58 2011\2008-04-09 16-51-33 2011\2008-04-09 18-10-30

2011\2008-04-11 11-35-31 2011\2008-04-14 17-56-23 2011\2008-04-15 17-39-52

2011\2008-04-16 18-03-14 2011\2008-04-17 15-39-07 2011\2008-04-17 17-43-39

2011\2008-04-23 17-01-45 2011\2008-04-30 17-39-10 2011\2008-05-09 14-43-25

2011\2008-05-13 13-21-01 2011\2008-05-27 10-43-21 2011\2008-05-27 17-34-55

2011\2008-06-02 17-17-16 2011\2008-06-09 12-29-49 2011\2008-06-10 13-18-26

2012\2008-02-21 15-23-56 2012\2008-03-18 11-15-12 2012\2008-04-01 17-15-51

2012\2008-04-17 11-31-22 2012\2008-04-17 17-16-15 2012\2008-04-22 17-13-04

2012\2008-05-19 11-09-44 2012\2008-06-11 09-54-42 2012\2008-06-27 09-59-27

2014\2008-03-27 07-36-57 2014\2008-04-30 07-34-16 2014\2008-04-30 07-34-35

2014\2008-05-01 07-18-04 2014\2008-05-16 07-21-24 2014\2008-05-16 07-21-35

2014\2008-05-16 07-21-46 2015\2008-02-20 11-38-23 2015\2008-02-22 10-29-21

2015\2008-02-25 09-20-11 2015\2008-02-28 17-07-06 2015\2008-03-07 11-33-36

2015\2008-03-11 09-56-17 2015\2008-03-31 14-36-32 2023\2008-03-05 17-09-51

2023\2008-03-12 17-13-06 2023\2008-03-13 17-06-56 2023\2008-03-14 17-00-24

2023\2008-03-17 17-06-41 2023\2008-03-19 17-03-41 2023\2008-03-20 16-12-58

2023\2008-03-28 16-34-05 2023\2008-03-31 17-08-18 2023\2008-04-07 17-08-11

2023\2008-04-08 17-09-39 2023\2008-04-11 16-36-01 2023\2008-04-18 16-31-13

2023\2008-04-23 17-06-29 2023\2008-05-13 16-08-39 2026\2008-02-18 17-52-39

2026\2008-02-28 15-07-02 2026\2008-02-28 15-38-17 2026\2008-02-28 15-39-08

2026\2008-05-18 13-11-39 2026\2008-05-18 13-11-45 2026\2008-05-18 13-11-54

2026\2008-05-18 15-50-08 2028\2008-02-21 17-29-09 2028\2008-02-25 17-00-47

2028\2008-02-28 17-17-33 2028\2008-03-03 13-14-12 2028\2008-03-06 17-24-53
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2028\2008-03-07 16-49-23 2028\2008-03-18 13-27-07 2028\2008-04-11 16-42-29

2028\2008-04-23 16-45-15 2028\2008-05-20 17-37-31 2064\2007-12-04 09-37-23

2064\2007-12-04 12-06-58 2064\2007-12-04 15-20-26 2064\2007-12-05 13-42-35

2064\2007-12-05 13-43-26 2064\2007-12-05 17-31-10 2064\2007-12-06 12-32-13

2064\2007-12-07 11-12-45 2064\2007-12-10 17-42-25 2064\2008-05-16 11-06-33

2064\2008-05-16 11-07-20 2064\2008-05-16 11-10-13 2064\2008-05-16 11-13-41

2064\2008-05-16 11-17-22 2064\2008-05-16 11-21-54 2064\2008-05-16 11-34-25

2188\2007-12-06 00-15-02 2188\2007-12-06 00-15-35 2188\2007-12-06 03-55-25

2188\2007-12-06 03-56-14 2188\2007-12-06 03-56-43 2188\2007-12-06 03-57-46
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Appendix D

Photoface - 40 subjects, 400

Sessions

These are the sessions used throughout the thesis when 400 sessions of Photo-

face data are referred to. An electronic copy is available from the author.

1001\2008-03-01 07-58-49 1001\2008-03-02 11-25-38 1001\2008-03-20 15-10-39

1001\2008-04-05 11-22-53 1001\2008-04-19 08-34-45 1001\2008-05-14 11-01-27

1001\2009-06-26 14-48-20 1001\2009-07-09 13-25-40 1001\2009-07-10 15-03-01

1001\2009-07-28 15-19-04 1002\2008-02-25 17-34-06 1002\2008-03-28 14-11-04

1002\2008-04-01 18-52-11 1002\2008-04-01 18-54-30 1002\2009-07-08 08-18-43

1002\2009-07-30 14-57-27 1002\2009-08-17 16-00-09 1002\2009-08-26 10-33-57

1002\2009-08-27 08-20-34 1002\2009-08-27 16-41-09 1003\2008-02-18 17-40-16

1003\2008-02-18 17-40-29 1003\2008-02-22 16-42-59 1003\2008-02-22 16-43-26

1003\2008-02-25 17-24-07 1003\2008-03-04 17-36-56 1003\2008-03-07 11-25-56

1003\2008-03-12 17-50-55 1003\2008-03-31 17-11-17 1003\2008-04-02 17-27-25

1004\2008-02-21 11-07-38 1004\2008-02-21 11-08-02 1004\2008-02-21 11-39-28

1004\2008-02-21 13-38-47 1004\2008-02-21 14-07-06 1004\2008-02-21 17-12-02

1004\2008-02-21 18-11-37 1004\2008-02-25 17-33-16 1004\2008-03-05 12-23-16

1004\2008-03-05 12-45-05 1007\2008-03-28 15-28-02 1007\2008-03-28 15-28-34

1007\2008-04-21 11-28-50 1007\2008-05-28 10-11-10 1007\2009-02-26 10-47-19

1007\2009-06-25 13-56-34 1007\2009-07-14 14-35-14 1007\2009-07-17 10-13-25

1007\2009-07-20 14-17-31 1007\2009-07-22 15-06-41 1008\2008-02-18 13-42-16

1008\2008-02-22 13-53-10 1008\2008-04-14 08-30-11 1008\2008-04-15 11-17-30

1008\2008-04-16 16-46-12 1008\2008-04-18 13-43-00 1008\2008-05-29 08-15-48

1008\2008-06-18 16-48-33 1008\2009-06-26 15-45-00 1008\2009-07-02 09-52-00
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1009\2008-02-18 08-50-39 1009\2008-02-18 11-10-59 1009\2008-02-19 08-54-56

1009\2008-02-21 10-13-44 1009\2008-02-29 08-39-56 1009\2008-02-29 13-49-12

1009\2008-03-12 12-02-37 1009\2008-03-13 14-44-23 1009\2008-03-17 14-15-57

1009\2008-04-22 09-06-04 1012\2008-02-18 06-46-13 1012\2008-02-19 17-24-46

1012\2008-02-19 17-25-08 1012\2008-02-22 07-39-59 1012\2008-02-22 07-40-08

1012\2008-02-22 07-40-19 1012\2008-02-22 17-02-36 1012\2008-02-22 17-02-47

1012\2008-02-22 17-02-58 1012\2008-02-22 17-03-10 1013\2008-02-25 14-50-46

1013\2008-02-29 09-11-20 1013\2008-02-29 10-46-05 1013\2008-03-03 09-29-39

1013\2008-03-03 15-30-23 1013\2008-03-10 08-46-05 1013\2008-03-11 07-57-36

1013\2008-03-13 09-04-05 1013\2008-03-18 09-59-14 1013\2008-03-27 15-22-28

1014\2008-02-19 09-05-27 1014\2008-02-19 16-45-02 1014\2008-02-20 17-14-18

1014\2008-02-21 16-56-08 1014\2008-02-22 17-33-58 1014\2008-02-25 12-36-10

1014\2008-02-28 16-08-11 1014\2008-02-29 16-48-59 1014\2008-03-03 11-20-42

1014\2008-03-03 16-38-12 1022\2008-02-29 08-33-54 1022\2008-02-29 12-27-23

1022\2008-02-29 12-27-38 1022\2008-04-22 10-46-57 1022\2008-04-23 10-20-28

1022\2008-04-23 12-08-34 1022\2008-04-23 15-05-30 1022\2008-04-24 10-12-45

1022\2008-04-25 09-41-49 1022\2008-05-22 10-23-44 1024\2008-02-21 08-11-44

1024\2008-03-04 17-02-18 1024\2008-03-05 17-29-19 1024\2008-03-19 18-30-44

1024\2008-04-21 16-01-42 1024\2008-04-28 18-50-17 1024\2009-07-30 08-17-52

1024\2009-08-20 16-16-29 1024\2009-09-11 14-54-11 1024\2009-10-06 10-09-47

1025\2008-02-15 17-23-58 1025\2008-02-15 18-37-13 1025\2008-02-15 20-40-13

1025\2008-02-17 14-37-02 1025\2008-02-25 17-08-28 1025\2008-02-28 17-09-26

1025\2008-02-29 18-03-54 1025\2008-03-06 19-40-01 1025\2008-03-07 20-11-51

1025\2008-03-07 20-50-03 1028\2008-02-19 12-00-35 1028\2008-02-22 15-44-02

1028\2008-06-02 08-01-02 1028\2008-06-03 08-11-18 1028\2008-06-04 07-57-15

1028\2009-06-29 16-51-57 1028\2009-06-30 14-37-46 1028\2009-07-02 16-53-46

1028\2009-07-03 14-27-19 1028\2009-07-08 16-28-24 1032\2008-02-29 12-54-29

1032\2008-05-16 12-48-49 1032\2009-07-02 18-10-33 1032\2008-03-04 11-09-36

1032\2008-05-23 15-53-35 1032\2009-09-30 16-04-03 1032\2008-06-04 16-09-25

1032\2009-09-30 17-33-13 1032\2008-04-29 16-15-00 1032\2008-06-05 13-19-07

1042\2008-02-20 12-59-58 1042\2008-02-20 15-27-22 1042\2008-02-20 15-27-31

1042\2008-02-20 15-27-38 1042\2008-02-20 17-12-12 1042\2008-02-20 17-12-30

1042\2008-02-21 17-10-04 1042\2008-02-22 11-03-39 1042\2008-02-22 12-06-16

1042\2008-02-22 12-06-36 1043\2008-02-15 15-52-05 1043\2008-02-18 07-55-00

1043\2008-02-18 07-55-19 1043\2008-02-18 09-47-05 1043\2008-02-18 10-55-10

1043\2008-02-19 14-25-45 1043\2008-02-19 16-03-27 1043\2008-02-20 09-18-54

1043\2008-02-20 14-52-56 1043\2008-02-22 07-53-50 1047\2008-02-18 17-35-15

1047\2008-02-21 18-07-01 1047\2008-02-28 18-12-43 1047\2008-03-25 16-35-53
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1047\2008-03-26 17-34-16 1047\2008-04-14 17-52-56 1047\2008-04-16 17-20-57

1047\2008-04-21 18-04-43 1047\2008-04-21 18-04-43 1047\2009-06-29 12-29-47

1050\2007-12-03 19-18-23 1050\2007-12-03 19-18-51 1050\2007-12-04 08-55-53

1050\2007-12-04 08-58-36 1050\2007-12-04 08-58-57 1050\2007-12-04 08-59-22

1050\2007-12-04 09-00-00 1050\2007-12-04 09-09-23 1050\2007-12-04 09-21-11

1050\2007-12-04 09-25-45 1067\2008-02-18 08-51-34 1067\2008-02-18 08-51-46

1067\2008-02-18 17-08-36 1067\2008-02-20 09-54-32 1067\2008-02-20 17-24-09

1067\2008-02-21 17-44-49 1067\2008-02-22 16-52-11 1067\2008-02-28 17-18-04

1067\2009-06-25 13-02-21 1067\2009-06-25 17-39-19 1074\2008-02-19 17-38-09

1074\2008-03-04 19-07-21 1074\2008-03-04 19-09-36 1074\2008-03-11 18-30-45

1074\2008-03-13 13-37-12 1074\2008-03-13 13-37-24 1074\2008-03-13 13-37-35

1074\2008-03-13 13-37-47 1074\2008-03-13 18-43-23 1074\2008-03-14 17-22-58

1075\2008-02-15 15-41-14 1075\2008-02-20 13-06-34 1075\2008-02-21 17-57-51

1075\2008-02-28 17-36-25 1075\2008-02-28 17-37-10 1075\2008-03-10 12-54-50

1075\2008-03-14 11-36-40 1075\2008-03-17 14-36-37 1075\2008-03-17 14-36-54

1075\2008-03-26 13-06-08 1085\2008-02-20 16-19-11 1085\2008-02-22 11-06-12

1085\2008-02-22 11-06-30 1085\2008-02-22 12-18-32 1085\2008-02-22 14-44-32

1085\2008-02-22 16-49-47 1085\2008-02-25 11-33-49 1085\2008-02-25 14-30-34

1085\2008-02-29 10-15-34 1085\2008-03-03 12-13-24 1132\2008-03-31 16-27-46

1132\2008-03-31 16-28-28 1132\2008-03-31 16-29-45 1132\2008-03-31 16-30-01

1132\2008-04-03 18-43-37 1132\2008-04-03 18-45-19 1132\2008-04-03 19-59-34

1132\2008-04-09 20-07-22 1132\2008-04-09 20-15-32 1132\2008-04-21 20-01-48

1151\2008-02-18 10-59-51 1151\2008-02-18 17-33-08 1151\2008-02-19 10-42-34

1151\2008-02-19 14-10-03 1151\2008-02-19 14-10-15 1151\2008-02-20 09-07-06

1151\2008-02-22 13-15-04 1151\2008-02-22 14-42-03 1151\2008-04-04 13-40-12

1151\2008-05-16 16-27-17 1173\2007-12-04 11-55-10 1173\2007-12-04 13-08-20

1173\2007-12-04 13-57-47 1173\2007-12-04 13-58-14 1173\2007-12-04 17-53-11

1173\2007-12-04 17-57-37 1173\2007-12-05 13-06-49 1173\2007-12-05 20-34-11

1173\2007-12-06 17-16-06 1173\2007-12-06 20-22-00 1174\2007-12-04 17-50-47

1174\2007-12-04 17-50-54 1174\2007-12-04 17-52-56 1174\2007-12-05 11-02-06

1174\2007-12-05 14-37-51 1174\2007-12-05 14-38-17 1174\2007-12-05 14-38-48

1174\2007-12-05 18-30-09 1174\2007-12-07 11-55-54 1174\2007-12-11 19-50-38

1201\2007-12-04 09-22-52 1201\2007-12-04 11-10-55 1201\2007-12-04 11-12-10

1201\2007-12-04 15-24-45 1201\2007-12-05 11-36-01 1201\2007-12-05 14-09-43

1201\2007-12-07 16-26-45 1201\2007-12-07 16-26-58 1201\2007-12-07 16-27-15

1201\2007-12-11 14-48-03 1213\2007-12-03 19-17-54 1213\2007-12-04 08-56-04

1213\2007-12-04 09-45-01 1213\2007-12-04 09-45-16 1213\2007-12-04 09-45-29

1213\2007-12-04 12-32-56 1213\2007-12-04 16-43-24 1213\2007-12-04 16-50-20
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1213\2007-12-04 16-50-33 1213\2007-12-05 09-31-38 1217\2007-12-04 09-20-33

1217\2007-12-04 09-23-03 1217\2007-12-04 09-30-09 1217\2007-12-04 09-30-22

1217\2007-12-04 09-30-47 1217\2007-12-04 10-37-52 1217\2007-12-04 13-46-32

1217\2007-12-04 13-59-43 1217\2007-12-04 16-18-19 1217\2007-12-04 17-32-29

1220\2007-12-04 10-19-31 1220\2007-12-04 14-10-45 1220\2007-12-04 18-04-01

1220\2007-12-05 09-48-20 1220\2007-12-05 09-48-32 1220\2007-12-05 09-48-43

1220\2007-12-05 10-49-57 1220\2007-12-05 10-50-35 1220\2007-12-06 16-10-04

1220\2007-12-06 17-21-55 2001\2008-02-18 11-00-29 2001\2008-02-19 11-31-48

2001\2008-02-19 12-53-11 2001\2008-02-19 14-02-34 2001\2008-02-20 15-55-13

2001\2008-02-25 11-57-05 2001\2008-03-04 13-02-53 2001\2008-03-05 16-41-36

2001\2008-03-05 17-23-17 2001\2008-03-12 16-58-43 2002\2008-02-19 15-20-58

2002\2008-02-19 15-58-06 2002\2008-02-20 09-36-31 2002\2008-02-20 11-20-24

2002\2008-02-20 16-39-01 2002\2008-02-21 09-37-09 2002\2008-02-21 10-44-32

2002\2008-02-21 14-15-22 2002\2008-02-26 08-40-14 2002\2008-03-17 10-01-11

2004\2008-02-19 17-41-10 2004\2008-02-21 18-10-25 2004\2008-02-25 17-39-07

2004\2008-03-14 18-06-00 2004\2008-03-14 18-06-19 2004\2008-03-17 08-41-19

2004\2008-03-18 08-46-57 2004\2008-03-19 14-42-13 2004\2008-03-19 14-42-29

2004\2008-03-19 18-11-31 2005\2008-02-19 12-34-11 2005\2008-02-19 12-34-23

2005\2008-02-19 12-35-12 2005\2008-02-19 12-35-34 2005\2008-02-19 12-35-49

2005\2008-02-19 12-36-06 2005\2008-02-19 12-36-34 2005\2008-02-19 12-36-47

2005\2008-02-19 12-36-59 2005\2008-02-19 12-37-18 2006\2008-02-18 12-32-23

2006\2008-02-19 16-52-17 2006\2008-02-22 07-36-44 2006\2008-02-26 10-27-30

2006\2008-03-03 12-09-02 2006\2008-03-04 16-50-47 2006\2008-03-12 16-45-08

2006\2008-03-18 07-35-44 2006\2008-05-22 13-51-28 2006\2008-05-30 07-39-31

2011\2008-03-28 13-18-47 2011\2008-04-08 18-33-30 2011\2008-04-08 18-33-44

2011\2008-04-08 18-33-58 2011\2008-04-09 16-51-33 2011\2008-04-09 18-10-30

2011\2008-04-11 11-35-31 2011\2008-04-14 17-56-23 2011\2008-04-15 17-39-52

2011\2008-04-16 18-03-14 2023\2008-03-05 17-09-51 2023\2008-03-12 17-13-06

2023\2008-03-13 17-06-56 2023\2008-03-14 17-00-24 2023\2008-03-17 17-06-41

2023\2008-03-19 17-03-41 2023\2008-03-20 16-12-58 2023\2008-03-28 16-34-05

2023\2008-03-31 17-08-18 2023\2008-04-07 17-08-11 2028\2008-02-21 17-29-09

2028\2008-02-25 17-00-47 2028\2008-02-28 17-17-33 2028\2008-03-03 13-14-12

2028\2008-03-06 17-24-53 2028\2008-03-07 16-49-23 2028\2008-03-18 13-27-07

2028\2008-04-11 16-42-29 2028\2008-04-23 16-45-15 2028\2008-05-20 17-37-31

2064\2007-12-04 09-37-23 2064\2007-12-04 12-06-58 2064\2007-12-04 15-20-26

2064\2007-12-05 13-42-35 2064\2007-12-05 13-43-26 2064\2007-12-05 17-31-10

2064\2007-12-06 12-32-13 2064\2007-12-07 11-12-45 2064\2007-12-10 17-42-25

2064\2008-05-16 11-06-33
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Appendix E

FRGCV2.0 - 40 subjects, 400

Sessions

These are the sessions used throughout the thesis when 400 sessions of FRGCv2.0

data are referred to. An electronic copy is available from the author.

Spring2003range\02463d452 Spring2003range\02463d454 Spring2003range\02463d456

Spring2003range\02463d458 Spring2003range\02463d460 Spring2003range\02463d462

Spring2003range\02463d464 Spring2003range\02463d466 Fall2003range\02463d546

Fall2003range\02463d548 Spring2003range\04202d344 Spring2003range\04202d346

Spring2003range\04202d348 Spring2003range\04202d350 Spring2003range\04202d352

Spring2003range\04202d354 Spring2003range\04202d356 Spring2003range\04202d358

Fall2003range\04202d438 Fall2003range\04202d440 Spring2003range\04203d340

Spring2003range\04203d342 Spring2003range\04203d344 Spring2003range\04203d346

Spring2003range\04203d348 Spring2003range\04203d350 Spring2003range\04203d352

Spring2003range\04203d354 Fall2003range\04203d436 Fall2003range\04203d438

Spring2003range\04217d331 Spring2003range\04217d333 Spring2003range\04217d335

Spring2003range\04217d337 Fall2003range\04217d399 Fall2003range\04217d401

Fall2003range\04217d403 Fall2003range\04217d405 Spring2004range\04217d455

Spring2004range\04217d457 Spring2003range\04221d343 Spring2003range\04221d345

Spring2003range\04221d347 Spring2003range\04221d349 Fall2003range\04221d429

Fall2003range\04221d431 Fall2003range\04221d433 Fall2003range\04221d435

Fall2003range\04221d437 Spring2004range\04221d541 Spring2003range\04222d345

Spring2003range\04222d347 Spring2003range\04222d349 Spring2003range\04222d351

Spring2003range\04222d353 Spring2003range\04222d355 Spring2003range\04222d357

Spring2003range\04222d359 Fall2003range\04222d391 Fall2003range\04222d393

Spring2003range\04225d207 Spring2003range\04225d209 Spring2003range\04225d211

Fall2003range\04225d291 Fall2003range\04225d293 Fall2003range\04225d295

Fall2003range\04225d297 Fall2003range\04225d299 Spring2004range\04225d396
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Spring2004range\04225d398 Spring2003range\04233d308 Spring2003range\04233d310

Spring2003range\04233d312 Spring2003range\04233d314 Spring2003range\04233d316

Spring2003range\04233d318 Spring2003range\04233d320 Fall2003range\04233d390

Fall2003range\04233d392 Fall2003range\04233d394 Spring2003range\04239d302

Spring2003range\04239d304 Spring2003range\04239d306 Spring2003range\04239d308

Spring2003range\04239d310 Fall2003range\04239d378 Fall2003range\04239d380

Fall2003range\04239d382 Spring2004range\04239d480 Spring2004range\04239d482

Spring2003range\04265d211 Spring2003range\04265d213 Fall2003range\04265d261

Fall2003range\04265d263 Fall2003range\04265d265 Fall2003range\04265d267

Spring2004range\04265d337 Spring2004range\04265d339 Spring2004range\04265d345

Spring2004range\04265d347 Spring2003range\04286d184 Spring2003range\04286d186

Spring2003range\04286d188 Spring2003range\04286d190 Spring2003range\04286d192

Spring2003range\04286d194 Fall2003range\04286d263 Fall2003range\04286d265

Fall2003range\04286d267 Spring2004range\04286d367 Spring2003range\04288d180

Spring2003range\04288d182 Spring2003range\04288d184 Spring2003range\04288d186

Spring2003range\04288d188 Spring2003range\04288d190 Fall2003range\04288d252

Fall2003range\04288d254 Fall2003range\04288d256 Fall2003range\04288d258

Spring2003range\04297d208 Spring2003range\04297d210 Spring2003range\04297d212

Spring2003range\04297d214 Spring2003range\04297d216 Spring2003range\04297d218

Fall2003range\04297d261 Fall2003range\04297d263 Fall2003range\04297d265

Spring2004range\04297d305 Spring2003range\04301d156 Spring2003range\04301d158

Spring2003range\04301d160 Fall2003range\04301d240 Fall2003range\04301d242

Fall2003range\04301d244 Fall2003range\04301d246 Fall2003range\04301d248

Spring2004range\04301d349 Spring2004range\04301d357 Spring2003range\04309d83

Spring2003range\04309d85 Spring2003range\04309d87 Fall2003range\04309d161

Fall2003range\04309d163 Fall2003range\04309d165 Fall2003range\04309d167

Spring2004range\04309d245 Spring2004range\04309d247 Spring2004range\04309d251

Spring2003range\04311d174 Spring2003range\04311d176 Spring2003range\04311d178

Spring2003range\04311d180 Spring2003range\04311d182 Fall2003range\04311d226

Fall2003range\04311d228 Fall2003range\04311d230 Fall2003range\04311d232

Spring2004range\04311d280 Spring2003range\04319d120 Spring2003range\04319d122

Spring2003range\04319d124 Fall2003range\04319d186 Fall2003range\04319d188

Fall2003range\04319d190 Fall2003range\04319d192 Spring2004range\04319d264

Spring2004range\04319d266 Spring2004range\04319d268 Spring2003range\04320d198

Spring2003range\04320d200 Spring2003range\04320d202 Spring2003range\04320d204

Spring2003range\04320d206 Spring2003range\04320d208 Fall2003range\04320d270

Fall2003range\04320d272 Fall2003range\04320d274 Spring2004range\04320d340

Spring2003range\04324d203 Spring2003range\04324d205 Spring2003range\04324d207

Spring2003range\04324d209 Spring2003range\04324d211 Spring2003range\04324d213

Fall2003range\04324d276 Fall2003range\04324d278 Fall2003range\04324d280

Fall2003range\04324d282 Spring2003range\04327d216 Spring2003range\04327d218

Spring2003range\04327d220 Spring2003range\04327d222 Fall2003range\04327d290

Fall2003range\04327d292 Fall2003range\04327d294 Fall2003range\04327d296
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Spring2004range\04327d392 Spring2004range\04327d394 Spring2003range\04334d214

Spring2003range\04334d216 Spring2003range\04334d218 Spring2003range\04334d220

Fall2003range\04334d300 Fall2003range\04334d302 Fall2003range\04334d304

Fall2003range\04334d306 Fall2003range\04334d308 Spring2004range\04334d410

Spring2003range\04336d207 Spring2003range\04336d209 Spring2003range\04336d211

Fall2003range\04336d291 Fall2003range\04336d293 Fall2003range\04336d295

Fall2003range\04336d297 Fall2003range\04336d299 Spring2004range\04336d393

Spring2004range\04336d395 Spring2003range\04343d230 Spring2003range\04343d232

Spring2003range\04343d234 Spring2003range\04343d236 Spring2003range\04343d238

Fall2003range\04343d319 Fall2003range\04343d321 Fall2003range\04343d323

Fall2003range\04343d325 Fall2003range\04343d327 Spring2003range\04344d201

Spring2003range\04344d203 Spring2003range\04344d205 Spring2003range\04344d207

Fall2003range\04344d245 Fall2003range\04344d247 Spring2004range\04344d335

Spring2004range\04344d337 Spring2004range\04344d339 Spring2004range\04344d349

Spring2003range\04347d207 Spring2003range\04347d209 Spring2003range\04347d211

Spring2003range\04347d213 Spring2003range\04347d215 Fall2003range\04347d289

Fall2003range\04347d291 Fall2003range\04347d293 Fall2003range\04347d295

Fall2003range\04347d297 Spring2003range\04349d224 Spring2003range\04349d226

Spring2003range\04349d228 Spring2003range\04349d230 Spring2003range\04349d232

Fall2003range\04349d312 Fall2003range\04349d314 Fall2003range\04349d316

Fall2003range\04349d318 Fall2003range\04349d320 Spring2003range\04350d191

Spring2003range\04350d193 Spring2003range\04350d195 Spring2003range\04350d197

Spring2003range\04350d199 Spring2003range\04350d201 Fall2003range\04350d258

Fall2003range\04350d260 Fall2003range\04350d262 Fall2003range\04350d264

Spring2003range\04370d155 Spring2003range\04370d157 Spring2003range\04370d159

Spring2003range\04370d161 Fall2003range\04370d223 Fall2003range\04370d225

Fall2003range\04370d227 Fall2003range\04370d229 Spring2004range\04370d295

Spring2004range\04370d297 Spring2003range\04372d194 Spring2003range\04372d196

Spring2003range\04372d198 Spring2003range\04372d200 Spring2003range\04372d202

Fall2003range\04372d269 Fall2003range\04372d271 Fall2003range\04372d273

Fall2003range\04372d275 Spring2004range\04372d331 Spring2003range\04379d192

Spring2003range\04379d194 Spring2003range\04379d196 Spring2003range\04379d198

Spring2003range\04379d200 Fall2003range\04379d280 Fall2003range\04379d282

Fall2003range\04379d284 Fall2003range\04379d286 Fall2003range\04379d288

Spring2003range\04385d237 Spring2003range\04385d239 Spring2003range\04385d241

Spring2003range\04385d243 Spring2003range\04385d245 Spring2003range\04385d247

Spring2003range\04385d249 Fall2003range\04385d323 Fall2003range\04385d325

Fall2003range\04385d327 Spring2003range\04387d241 Spring2003range\04387d243

Spring2003range\04387d245 Spring2003range\04387d247 Spring2003range\04387d249

Spring2003range\04387d251 Spring2003range\04387d253 Spring2003range\04387d255

Fall2003range\04387d322 Fall2003range\04387d324 Spring2003range\04388d189

Spring2003range\04388d191 Spring2003range\04388d193 Spring2003range\04388d195

Spring2003range\04388d197 Spring2003range\04388d199 Spring2003range\04388d201
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Spring2003range\04388d203 Fall2003range\04388d283 Fall2003range\04388d285

Spring2003range\04394d227 Fall2003range\04394d295 Fall2003range\04394d297

Fall2003range\04394d299 Fall2003range\04394d301 Spring2004range\04394d395

Spring2004range\04394d397 Spring2004range\04394d399 Spring2004range\04394d401

Spring2004range\04394d411 Spring2003range\04397d246 Spring2003range\04397d248

Spring2003range\04397d250 Fall2003range\04397d332 Fall2003range\04397d334

Fall2003range\04397d336 Fall2003range\04397d338 Fall2003range\04397d340

Spring2004range\04397d444 Spring2004range\04397d446 Spring2003range\04400d216

Spring2003range\04400d218 Spring2003range\04400d220 Spring2003range\04400d222

Spring2003range\04400d224 Spring2003range\04400d226 Fall2003range\04400d294

Fall2003range\04400d296 Fall2003range\04400d298 Fall2003range\04400d300

Spring2003range\04408d190 Spring2003range\04408d192 Spring2003range\04408d194

Spring2003range\04408d196 Spring2003range\04408d198 Fall2003range\04408d266

Fall2003range\04408d268 Fall2003range\04408d270 Fall2003range\04408d272

Spring2004range\04408d360 Spring2003range\04418d203 Spring2003range\04418d205

Spring2003range\04418d207 Spring2003range\04418d209 Spring2003range\04418d211

Fall2003range\04418d285 Fall2003range\04418d287 Fall2003range\04418d289

Fall2003range\04418d291 Fall2003range\04418d293 Spring2003range\04419d174

Spring2003range\04419d176 Spring2003range\04419d178 Spring2003range\04419d180

Spring2003range\04419d182 Fall2003range\04419d250 Fall2003range\04419d252

Fall2003range\04419d254 Fall2003range\04419d256 Spring2004range\04419d318

Spring2003range\04427d174 Spring2003range\04427d176 Spring2003range\04427d178

Spring2003range\04427d180 Spring2003range\04427d182 Spring2003range\04427d184

Fall2003range\04427d264 Fall2003range\04427d266 Fall2003range\04427d268

Fall2003range\04427d270
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