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Abstract 

 

The last few years have seen the emergence of sophisticated computer vision 

systems that target complex real-world problems. Although several factors 

have contributed to this success, the ability to solve the image 

correspondence problem by utilizing local image features in the presence of 

various image transformations has made a major contribution. 

The trend of solving the image correspondence problem by a three-stage 

system that comprises detection, description, and matching is prevalent in 

most vision systems today. This thesis concentrates on improving the local 

feature detection part of this three-stage pipeline, generally targeting the 

image correspondence problem. 

The thesis presents offline and online performance metrics that reflect real-

world performance for local feature detectors and shows how they can be 

utilized for building more effective vision systems, confirming in a 

statistically meaningful way that these metrics work. 

It then shows how knowledge of individual feature detectors’ functions 

allows them to be combined and made into an integral part of a robust 

vision system. Several improvements to feature detectors’ performance in 

terms of matching accuracy and speed of execution are presented. 

Finally, the thesis demonstrates how resource-efficient architectures can be 

designed for local feature detection methods, especially for embedded vision 

applications. 
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1 Introduction 
 

The important thing is not to stop questioning. 

ALBERT EINSTEIN 

From automated panorama creation to the more exciting applications like 

image-based place recognition and modeling the world from internet photo 

collections, local invariant feature detection finds itself at the heart of many 

sophisticated vision systems today. Despite significant advances in the last 

decade or so, the quest for more robust feature detection methods continues 

so as to make vision systems more effective and reliable. This chapter takes 

a look at some of the current challenges in this domain to elucidate the 

motivation behind this work. The major contributions made by this thesis in 

an attempt to bridge these research gaps are also highlighted. A snapshot of 

each chapter is presented to illustrate the structure of the thesis. Finally, 

publications that were made during the course of this research are listed to 

end the chapter.  
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1.1 The Renaissance of Local Feature Detection 

Feature point detectors and descriptors are the most 

important recent advance in computer vision and graphics. 

1WILLIAM T. FREEMAN, MIT 

The brevity of the above statement is incredibly striking; William T. 

Freeman seems to have hit the nail on the head. Indeed, the ability to solve 

the image correspondence problem with reasonable accuracy by detecting, 

describing and matching local features under various geometric and 

photometric transformations, such as viewpoint changes and illumination 

variations, has revolutionized the entire field of computer vision over the 

past decade by enabling novel applications and sophisticated vision systems. 

While a large body of literature already exists regarding correspondence 

from local image features [1], this thesis represents an attempt to 

accentuate its importance by pushing the boundaries further.  

Local features have been around since the mid-1950s [2]. The initial 

era (1954-1998) saw the advent of some promising feature detectors, such as 

Moravec [3], Harris and Stephens (widely known as the Harris detector 

today) [4], Beaudet operators [5], Kitchen and Rosenfeld [6], Dreschler and 

Nagel [7], Forstner operators [8, 9] and SUSAN [10]. However, it was the 

emergence of the Scale Invariant Feature Transform (SIFT) [11, 12], a fast 

local invariant feature detector coupled with a highly distinctive descriptor 

for solving the image correspondence problem, that invigorated the interest 

of the vision community in local features. So massive has been the impact of 

SIFT that the next ten years saw a large number of techniques based on 

local invariant features being proposed [1, 13-25] utilizing the same basic 

framework. With more than 12300 citations on Google Scholar to date, SIFT 

has indubitably served as a stimulant for revival of local feature detection 

over the past decade.  

                                                           
1
 ‘Where Machine Vision Needs Help From Machine Learning’, Keynote speech at the 24

th
 Annual 

Conference on Learning Theory, Budapest, Hungary, July 9-11, 2011. 



1.1  THE RENAISSANCE OF LOCAL FEATURE DETECTION 3 
 

 
 

A reflection of the achievement of SIFT and its descendants is the 

huge number of applications and sophisticated vision systems that have 

been developed utilizing the platform provided by these techniques. 

Automatic panorama creation [26, 27], wide baseline matching for stereo 

pairs [14, 28], object recognition [11], image retrieval from large databases 

[29], object retrieval in video [30], image-based place recognition [31], object 

categorization [32-35], symmetry detection [36], robot localization [37], shot 

location [38], texture recognition [39, 40], hand gesture recognition [41] and 

modeling the world from internet photo collections [42] are some of the 

application areas in which local invariant features have been utilized 

successfully. 

Robust algorithms for all the three stages, namely detection, 

description and matching, are fundamental to the success of any system 

aiming to solve the image correspondence problem utilizing local features. 

Although these steps are not completely independent and essentially 

constitute a pipelined system where the output of one stage serves as the 

input for the other (see Figure 1-1), it is generally assumed in the literature 

that these stages are independent. This assumption helps to avoid a 

complicated system where it becomes hard to separate the effect of the 

different stages. The same approach is followed in this thesis. While 

generally targeting the image correspondence problem, this thesis mainly 

concentrates on the detection step for improving the effectiveness and 

reliability of the three-stage system shown in Figure 1-1. For feature 

description and matching, the author employs the SIFT descriptor [11, 12] 

and the Nearest Neighbor matching scheme [12] respectively throughout 

this thesis unless stated otherwise.  

 

  Figure 1-1: A simplified block diagram of an image matching system based on local 

features     
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1.2 Challenges 

While it is true that great strides have been made in the field of local 

invariant feature detection during the last few years, there are still many 

avenues that need to be pursued and remain challenging for vision 

researchers. Here, those open research issues are mentioned which provide 

the impetus for the work presented in this thesis:  

1) Accuracy. An important driving factor in this research domain is the 

improvement of the accuracy of the image matching system. True 

matched points increase the accuracy of the system whereas false 

matched points have a negative effect on it. Although all three stages 

shown in Figure 1-1 are important in this regard, the role of feature 

detection is critical for being the initial step. How to select adequate 

suitable features that can provide sufficient true matches, ideally 

with no false matches, to maximize the accuracy of the system still 

remains an open question [1].  

2) Reliable performance indicators. Vision-based systems usually 

operate in complex and unknown environments across a range of 

different applications. It is a challenging task to predict the 

performance of such a system without prior knowledge of imaging 

conditions. The metrics which are currently available to gauge the 

performance of feature detectors do not always reflect actual 

performance [1]. Offline indicators which would provide accurate and 

reliable insight into the behavior of a feature detector and the system 

as a whole, before deployment in the actual environment, would be of 

great value.  

3) Complementarity of feature detectors. To tackle the uncertainty of 

image content, running multiple feature detectors simultaneously for 

solving complex vision problems is an emerging trend [1, 30, 43, 44]. 

However, it has detrimental effects on overall computation time due 



1.2  CHALLENGES 5 
 

 
 

to the increasing amount of data that need to be processed, and 

usually provides an overcomplete representation of an image rather 

than a compact one. Moreover, combining multiple detectors may 

have adverse effects on their combined performance, in some cases 

even making it lower than what can be achieved by a single detector 

[39, 45]. It is therefore desirable to explore and define different 

complementarity measures that identify detector combinations 

capable of achieving better performance than the individual detectors. 

Another requirement is to define a generic framework that can decide 

automatically when to employ multiple feature detectors in parallel 

and when to operate in single detector mode depending upon the 

image content. Such a framework would be really useful for time-

critical applications.   

4) Online performance analysis. Existing performance measures for local 

feature detectors allow only offline assessment due to their 

requirement for ground truth data and high computation cost [19, 46]. 

As mentioned earlier, the environments in which the vision systems 

are deployed are usually unknown and complex. A feature detector 

that can gauge its own performance and take appropriate actions 

online to maximize its effectiveness would be valuable. It would allow 

the feature detector to adapt to the nature of the imagery it is 

processing. Performance metrics that can be computed quickly are 

therefore required to achieve the goal of online performance analysis. 

5) Evaluation frameworks and datasets. Indubitably, the availability of 

a wide variety of local invariant feature detectors today has rendered 

the task of evaluating them an important issue in vision research [47, 

48]. Unbiased dataset collection and careful design of algorithm 

evaluation protocols are critical for finding the strengths and 

weaknesses of competing techniques accurately [49]. From a vision 

systems design perspective, evaluation frameworks that allow 
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identification of statistically significant performance differences 

between feature detectors would be valuable. Similarly, datasets that 

would permit cross-dataset generalization of results would be really 

useful. 

6) Real-time systems. Generally, image processing and computer vision 

algorithms are computation- and data-intensive in nature. The same 

applies to local invariant feature detectors. Many state-of-the-art 

feature detection techniques require prohibitively long processing 

times, ranging from a few seconds to a few minutes, making them 

unsuitable for real-time applications on commodity hardware. As 

local feature detection has reached some level of maturity now, the 

next challenge is to explore methods to reduce this computation and 

design optimized algorithms that allow feature detectors to achieve 

real-time performance.  

7) Embedded Vision Systems. We are in the midst of an imaging 

revolution. Inexpensive digital cameras have made the spectrum of 

embedded vision applications broader and broader. Cell phones and 

robots are the most common platforms for such vision-based systems. 

As embedded systems generally have strict constraints on power 

consumption, memory size, chip area and weight, it is a challenging 

task to run computation-intensive feature detection algorithms on 

such systems. Progress needs to be made both at hardware and 

software levels to allow state-of-the-art feature detectors to be 

employed in embedded vision applications.  

8) Parallel algorithms. Due to the advent of multi-core architectures, 

parallel algorithms are becoming more important than ever before. It 

is no surprise that most existing feature detection algorithms are 

serial in nature. Deigning parallel algorithms for feature detection 

would help in achieving the goal of real-time processing. Moreover, 

such algorithms would be useful for hardware acceleration. 
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1.3 Thesis Contributions 

The contributions made during the course of this research are outlined 

below.  

 Improved repeatability measures are proposed for performance 

characterization of local feature detectors which correlate much better 

with the true performance of feature detectors than the original 

repeatability metric [15, 46]. Evaluation results based on the 

proposed measures are presented for eleven state-of-the-art local 

feature detectors utilizing the widely-used Oxford datasets [50]. 

 In an effort to make the improved repeatability measures useful from 

a systems design viewpoint, a novel generic framework is presented 

which estimates the upper and lower bounds of detector performance 

and finds statistically-significant performance differences between 

detectors as a function of image transformation amount by 

introducing a new variant of McNemar’s test [51, 52]. The novel 

concept of segmenting the performance of feature detectors into 

operating and guarantee regions is also presented.  

 Three new image databases are proposed for JPEG compression (7546 

images with 539 different scenes), blur (5390 images with 539 

different scenes) and uniform illumination changes (7546 images with 

539 different scenes). Employing these databases, the utility of the 

above-mentioned generic framework is demonstrated by presenting 

results for several state-of-the-art detectors under JPEG compression, 

blur and uniform illumination changes. These results provide new 

insights into the behavior of feature detectors under these image 

transformations. 

 To improve the performance of feature detectors in the presence of 

uniform light variations, the inclusion of a simple pre-processing step 

as part of any feature detection scheme is proposed. Results are 
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presented for several state-of-the-art detectors that confirm the utility 

of the proposed method.  

 For carrying out an online performance analysis of a local feature 

detector, a method is presented which is based on the spatial 

distribution of its detected features. Utilizing this technique, results 

are presented for several state-of-the-art local feature detectors for 

the widely-used Oxford datasets [50]. Four new image datasets 

(Campus-1, Campus-2, Snow and Indoor) of more than 100 images 

each are also presented which are employed to find statistically- 

significant performance differences between different detectors.  

 A method is proposed for performing an online complementarity 

analysis of local feature detectors based on the spatial distribution of 

their detected features. Utilizing Campus-1, Campus-2, Snow and 

Indoor datasets, pairs and triplets of detectors are identified that 

provide good performance in terms of spatial distribution of feature 

points. 

 For combining feature detectors intelligently in vision applications 

that require reasonable distribution of feature points, a novel 

prediction-based framework is proposed. Based on the image content, 

it decides automatically when to employ multiple feature detectors 

and when to operate in single detector mode. 

 An algorithm is presented for the selection of scale-space octaves for 

the Speeded-Up Robust Features (SURF) technique. This algorithm 

outperforms non-uniformly sampled SURF variants (with 2, 3 and 4 

octaves) in terms of both matching performance and computation.  

 To compute integral image in hardware with low computational 

resources, a parallel algorithm is proposed which processes two rows 

of an input image simultaneously.  
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 With the objective of speeding up the computation of integral image 

more in hardware, another parallel algorithm is presented that 

processes four rows of an input image simultaneously and consumes 

low computational resources. 

 An efficient design strategy is proposed that reduces the internal 

memory requirements of a parallel integral image computation 

engine.  

 To reduce the memory requirements significantly for the storage of 

integral image, an algorithm is presented that works even if the size 

of the filter to be computed (using an integral image) is almost equal 

to the size of the input image.  

 Another method is proposed that allows substantial reduction in the 

memory requirements for storing an integral image in situations 

where the size of the filter to be computed (using the integral image) 

is much smaller than the size of the input image.        

1.4 Thesis Structure 

A brief outline of the material presented in this thesis is as follows. 

Chapter 2 introduces local invariant feature detection and presents 

a literature survey encompassing the major advancements in this domain. 

The chapter covers state-of-the-art detectors, such as SIFT and Harris-

Laplace, in more detail as they form the primary stage of many 

sophisticated vision systems today and are frequently employed by 

researchers in the vision community. Finally, the chapter provides an 

overview of the progress made in efficient hardware implementation of 

popular local invariant feature detectors.    

Chapter 3 begins with a brief review of the methods used for 

performance characterization of local feature detectors. It then identifies the 

limitations of repeatability, the most frequently-employed theoretical metric 
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in this regard. In this chapter, improved repeatability measures are 

proposed which correlate much better with the true performance of feature 

detectors. An evaluation of several state-of-the-art feature detectors based 

on the presented measures utilizing widely-used image datasets is then 

carried out to finish this chapter.  

Chapter 4 illustrates how the improved repeatability measures from 

the previous chapter can be utilized in the design of more reliable and 

effective vision systems. In this regard, it presents a generic framework that 

allows assessment of the upper and lower bounds of detector performance 

and finds statistically-significant performance differences between detectors 

as a function of image transformation amount by introducing a new variant 

of McNemar’s test [51, 52]. In order to demonstrate the utility of the 

proposed framework, results for several state-of-the-art detectors are 

presented in this chapter using newly acquired, large image databases for 

JPEG compression, uniform light changes and blurring. Finally, this 

chapter proposes to include a pre-processing step as part of the detection 

scheme which improves the performance of state-of-the-art detectors 

significantly in the presence of uniform light variations.  

Chapter 5 concentrates on the issue of online performance analysis 

of local feature detectors. It emphasizes that spatial distribution of local 

image features can be used as a good performance indicator and presents a 

metric that can be calculated rapidly, concurs with human visual 

assessments and is complementary to existing offline measures such as 

repeatability. Utilizing the proposed measure, the chapter presents 

qualitative results for several state-of-the-art detectors on widely-used 

datasets. A newly-acquired, larger image database is then used to identify 

statistically-significant performance differences between competing feature 

detectors. The chapter also proposes a measure of complementarity for 

combinations of detectors, correctly reflecting the underlying principles of 

individual detectors. Based on this metric, various detector pairs and 
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triplets are investigated quantitatively and the results provide a useful 

guideline for combining detectors in applications that require reasonable 

spatial distribution of image features. The chapter also details the timing 

results for the proposed metrics with different feature detectors to 

demonstrate their utility for online applications. Finally, a prediction-based 

framework for combining local feature detectors in vision applications is 

presented.  

Chapter 6 covers the problem of scale-space octave selection for 

Speeded-Up Robust Features (SURF) algorithm. It discusses the effect of 

octave reduction on the matching performance of SURF. The chapter shows 

that discarding the higher scale-space octaves for reducing computation is 

not always the most sensible approach and presents an algorithm for 

choosing which octaves to discard based on properties of the imagery. 

Results presented in this chapter demonstrate the effectiveness of this “best 

octaves” algorithm both in terms of matching performance and computation.  

Chapter 7 focuses on the integral image, an intermediate image 

representation that allows multi-scale feature detection techniques like 

SURF to achieve significant speed-ups. The chapter deals with two 

important problems regarding integral image: computation and storage. 

Two parallel algorithms are presented for speeding up the computation of 

integral images in hardware with low computational resources. By 

extending these algorithms, an efficient design strategy for reducing the 

internal memory requirements of the integral image computation unit is 

proposed. Regarding storage, two methods are presented that allow 

significant reduction in the memory requirements of integral image.  

Chapter 8 provides a summary of the work presented in this thesis 

and draws important conclusions. Some promising directions for future 

research based on the work presented in this thesis are also identified. The 

chapter is finished with the closing remarks.   
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2 Local Invariant Feature 

Detection: A Review 
 

If I have seen further it is only by standing on the shoulders of giants. 

SIR ISAAC NEWTON 

Although local features have been around for a long time, it was only 

towards the end of 1990s that researchers became interested in local 

invariant feature detection. This chapter provides a bird’s eye view of the 

earlier work and the major advances in this domain during the last decade. 

Feature detection techniques like SIFT and SURF, which had a significant 

impact on the research field and form the primary stage of many computer 

vision systems today, are discussed in more detail. Since computer vision 

continues to strive towards real-time systems, an overview of the progress 

made in efficient hardware implementation of feature detectors is also 

provided.    
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2.1 Introduction 

As mentioned in Chapter 1, the arrival of SIFT [11, 12] at the turn of the 

21st century signalled the dawn of a new era in the short history of computer 

vision and has revolutionized the entire field since then. The interest of 

vision researchers in local invariant feature detection has continued to grow 

and numerous feature detectors have been proposed to solve the image 

correspondence problem under various geometric and photometric 

transformations. SURF [13, 53], SFOP [16] and MSER [14] are some of the 

obvious examples which had a particularly significant impact on the 

research field. Although each chapter in this thesis discusses the related 

work regarding the specific problem that is investigated in that particular 

chapter, it is worth having a look at the important developments in the 

domain of local invariant feature detection from a historical perspective. 

A general introduction to the field of local invariant feature detection 

is provided in Section 2.2. This is followed by an overview of the literature 

on local feature detection, encompassing the early work on local features 

and the more recent advances in Section 2.3. The chapter discusses the 

state-of-the-art feature detection techniques, such as the ones mentioned 

above, in more detail in Section 2.4 as they form the primary stage of many 

sophisticated vision systems today. Section 2.5 provides an overview of the 

work done so far regarding hardware acceleration of local feature detectors. 

Finally, a summary of the chapter is presented in Section 2.6.    

2.2 Local Invariant Features 

A local feature is generally defined as an image pattern which is different 

from its immediate neighborhood and related with a variation of an image 

property or several properties (such as intensity, color and texture) 

simultaneously [1]. It is usually considered robust to occlusion and clutter. 

Corners, blobs and edges are some of the examples of local features. By 

utilizing the information in a region centered on a detected local feature, a 

descriptor is computed which is then used for image matching. SIFT [12], 
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SURF [13], PCA-SIFT [54] and GLOH [55] are some of the popular 

descriptors that are utilized in combination with most local feature 

detection techniques.    

 Since a vision system may encounter images having different types of 

geometric and photometric transformations, such as viewpoint and 

illumination changes, it is important that the employed local feature 

detector is not affected by such variations in imaging conditions. This 

essentially means that the local feature detector must be invariant to 

various image transformations to work reliably. For example, scale 

invariance and rotation invariance ideally imply that the same image 

features can still be extracted by the detector if the input image is scaled up 

or down by any scale factor and rotated by any angle.  

A local invariant feature detector providing a set of well-localized and 

individually identifiable anchor points is especially suitable for matching, 

tracking, camera calibration, 3D reconstruction, pose estimation and image 

alignment applications [1]. Moreover, the detected features can also be used 

as a robust image representation for recognition tasks, such as objects and 

scenes, texture analysis, image retrieval, scene classification and video 

mining without the need for image segmentation [1]. 

Some desirable properties of local invariant features stated in [1] are: 

a high percentage of the detected features should be repeatable in two 

images of the same scene taken under different imaging conditions (useful 

for all types of applications); the features should have a lot of variation in 

the underlying intensity patterns as it helps with descriptor-based feature 

matching; depending upon the requirement of a specific application, a 

sufficient number of features should be detected (especially for class-level 

object or scene recognition methods that require large number of features); 

the localization accuracy of the detected features in image location and scale 

should be good (particularly useful for wide baseline matching, registration 

and structure from motion applications); and the features should be 

detected in a time-efficient manner (valuable for real-time applications).       
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2.3 A Very Brief History of Local Feature 

Detection 

This section provides an overview of the literature on local feature detection, 

encompassing the early work in this domain and the more recent advances, 

from a historical perspective by categorizing feature detection methods into 

specific classes; see [1] for an in-depth exposition. The pioneering work on 

local features appeared back in 1954 when it was observed by [2] that 

information on shape is concentrated at dominant points having high 

curvature. Since then, the field has continued to grow rapidly and a large 

number of local feature detectors have emerged. 

Many vision researchers have examined the curvature of contours to 

detect corners. During the 1970s and the 1980s, the methods based on 

contour curvature were quite popular and were mainly utilized for line 

drawings, piecewise constant regions and cad-cam images. Some methods 

that are representative of this class of local feature detectors are [6, 56-84].  

Another category of local feature detectors are the intensity-based 

methods which directly analyze the image intensities, such as the 

techniques based on the first- and second-order gray-value derivatives. 

These methods are generally suitable for a wide variety of images. The 

techniques proposed by [3-9, 15, 17, 18, 21, 23, 85-98] are some of the 

methods that had a particularly significant impact within this specific 

category of local feature detectors.  

Some vision researchers working on local features have also proposed 

methods in the context of artificial intelligence and visual recognition to 

model the processes of human brain. Such techniques are usually termed 

‘the biologically plausible methods’. Some representative techniques for this 

particular class are [99-108].   

For extracting local features, the color information has also been 

exploited by different methods. The biologically plausible techniques usually 

utilize color information for creating saliency maps. The techniques 

presented by [105, 108-113] signify some of the important developments in 
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this specific category. Model-based methods form another group of local 

feature detection techniques. Some methods that are representative of this 

class are [114-121].  

During the last decade or so, local feature detection methods that are 

invariant to various image transformations, such as viewpoint and scale 

changes, have become quite popular. This particular category of detectors is 

useful for a wide range of vision applications. The techniques described in 

[12-16, 18, 122] are some of the important methods presented so far.     

Vision researchers have also employed segmentation-based methods 

for detecting local image features. The techniques presented by [14, 123-

129] represent some of the key developments in this specific category. 

Finally, machine learning based techniques have also forced their way into 

local feature detection domain. Some examples are the methods proposed by 

[17, 23-25, 130, 131].  

2.4 State-of-the-art Local Invariant Feature 

Detectors 

A few selected, representative local invariant feature detectors are described 

in more detail in this section as they are widely-used in computer vision 

systems today. The methods discussed are: SIFT [12], SURF [13], Harris-

Laplace, Harris-Affine, Hessian-Laplace, Hessian-Affine [15], EBR [122],  

IBR [122], MSER [14], Salient Regions [18] and SFOP [16]. Although      

FAST [22, 23] is also quite popular, it has not been included here as it is not 

invariant to scale changes [1].       

2.4.1 Scale Invariant Feature Transform (SIFT) 

During the last decade or so, SIFT [12] has become the most popular 

technique for matching image features due to its fast detector coupled with 

a highly distinctive descriptor. The algorithm is divided into four main 

stages: scale-space extrema detection, keypoint localization, orientation 

assignment and keypoint descriptor computation. The first two stages form 
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the detection phase, where in all scales and image locations are searched to 

identify potential interest points followed by 3-D quadratic interpolation to 

determine their location to sub-pixel, sub-scale accuracy. SIFT approximates 

Laplacian-of-Gaussian (LoG) with a Difference-of-Gaussians (DoG) filter to 

detect blobs in an image. This approximation leads to a speed gain in the 

feature detection phase of SIFT.  Once detected, each keypoint location is 

assigned one or more orientations depending upon local image gradient 

directions. This is followed by descriptor computation: the algorithm 

employs a descriptor with 128 coefficients, based on the histogram of local 

oriented gradients around the interest point. The high dimensionality of 

SIFT descriptor directly affects the amount of computation required for 

feature matching and is considered a major shortcoming of SIFT for real-

time applications [13]. 

2.4.2 Speeded-Up Robust Features (SURF) 

The SURF algorithm [13] has two main (and distinct) stages, detection and 

description, followed by feature matching. SURF constructs a scale space by 

convolving rectangular masks of increasing size, corresponding to different 

scales, with the input image, using an integral image representation [132] 

for speed. This results in a series of blob response maps at different scales. 

The scale space is divided into a number of octaves, formed by grouping blob 

response maps for adjacent scales. Normally, four scales per octave are used 

as this is considered sufficient for scale space analysis [13]. The algorithm 

also doubles the spatial sampling interval with increasing octave to reduce 

computation. Once the scale-space is constructed, 3-D non-maximum 

suppression is performed [133], followed by 3-D quadratic interpolation 

[134], to achieve sub-pixel, sub-scale accuracy. A blob response threshold is 

normally applied to select high-contrast interest points. The descriptors for 

the detected interest points, based on sums of Haar wavelet responses, are 

calculated after orientation assignment, to achieve rotation invariance. The 

final stage is image feature matching on the basis of computed descriptors 

by employing a nearest neighbor matching scheme [12]. 
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2.4.3 Harris-Laplace/Affine 

The Harris-Laplace detector [15] is based on the multi-scale Harris corner 

detector and the Laplacian operator. The algorithm consists of two main 

stages: the utilization of the multi-scale Harris corner detector for 

determining the image location of the local features; and selection of the 

characteristic scale of a local structure, for which a given function attains an 

extremum over scales. The Laplacian operator is utilized for this purpose. 

At the selected scale, there is maximum similarity between the feature 

detection operator and the local image structures.  

The Harris-Affine detector [15] is based on the Harris-Laplace 

detector. It iteratively estimates the elliptical affine regions to obtain affine 

invariant corners. The algorithm utilizes the features detected by the 

Harris-Laplace detector and estimates the affine shape with the second 

moment matrix.  The affine region is then normalized to a circular one and 

the new location and scale in the normalized image are determined. In the 

event that eigenvalues of the second moment matrix for the new point are 

not equal, the affine shape is again estimated with the second moment 

matrix and the whole process is repeated until the eigenvalues become 

equal.  

2.4.4 Hessian-Laplace/Affine 

These detectors are usually categorized as blob detectors. The Hessian-

Laplace detector [15] is based on similar principles that are used by the 

Harris-Laplace detector. The main difference is that it employs the 

determinant of the Hessian matrix instead of the multi-scale Harris corner 

detector for determining the image location of the local features. Like the 

Harris-Laplace detector, it utilizes the Laplacian operator for selecting the 

characteristic scale at which there is maximum similarity between the 

feature detection operator and the local image structures.  

    The Hessian-Affine detector [15] is similar in spirit to the Harris-

Affine detector in the sense that it follows the same procedure for detecting 
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affine invariant regions. The only dissimilarity is in the utilization of the 

features detected by the Hessian-Laplace detector as initial regions, instead 

of the ones detected by the Harris-Laplace detector.  

2.4.5 Edge-Based Regions (EBR) 

Since edges are stable image features that can be detected over a range of 

viewpoints, scales and illumination changes, the EBR detector [122] utilizes 

the edges present in an image for detecting affine invariant regions. The 

algorithm consists of the following stages: selection of Harris corners [4]; 

detection of Canny edges [135]; evaluation of relative affine invariant 

parameter along edges; construction of one-dimensional family of 

parallelograms; and selection of a parallelogram based on local extrema of 

invariant function. EBR usually detects corner-like structures in an image 

and is considered to perform well on structured scenes due to its dependence 

on the presence of edges in the given image.  

2.4.6 Intensity-Based Regions (IBR) 

The IBR detector [122] finds affine invariant blob-like structures in an 

image by starting from intensity extrema detected at multiple scales and 

then exploring the image around them in a radial way, delineating regions 

of arbitrary shape and finally replacing them by ellipses. The main stages of 

the algorithm are: selection of intensity extrema; consideration of intensity 

profile along rays; selection of maximum of invariant function along each 

ray; connection of all local maxima to enclose an affine-invariant region; and 

ellipse fitting on the irregularly shaped region. Since the direct output of 

IBR can be any closed boundary of a segmented region [19], this algorithm 

is usually categorized as a segmentation-based detector.  

2.4.7 Maximally Stable Extremal Regions (MSER) 

The MSER detector [14] is an affine invariant method which is based on the 

concept of computing a watershed-like segmentation with varying 

thresholds. It selects such regions that remain stable over a range of 
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thresholds.  The feature detected by the MSER detector, known as the 

Maximally Stable Extremal Region, is a connected component for an 

appropriately thresholded image, which is often a blob-like structure similar 

to the features detected by IBR. The set of extremal regions is closed under 

continuous transformation of image coordinates and monotonic 

transformation of image intensities.  Although detection of these regions is 

related to thresholding, no global threshold is used. The detector tests all 

thresholds and evaluates the stability of the connected components. The 

MSER detector is considered to perform well on structured images with 

uniform regions separated by strong intensity changes.   

2.4.8 Salient Regions  

The Salient Regions detector, which is based on information theory, 

searches for salient features in an image, where saliency is described as 

local complexity or unpredictability. By utilizing the entropy of the 

probability distribution function of intensity values within a local image 

region and the self-dissimilarity in scale-space of the feature, this detector 

provides well-localized features. The detector consists of two main steps: the 

entropy of the probability distribution function is evaluated at each pixel 

over the three parameter family of ellipses centered on that pixel, and the 

set of entropy maxima over scale and the corresponding ellipse parameters 

are recorded, which are termed the candidate salient regions; for each of the 

candidate regions, the magnitude of the derivative of probability 

distribution function with respect to scale is computed, which in turn is used 

to calculate saliency; the candidate regions are then ranked over the entire 

image using their saliency and a specific number of top ranked regions are 

finally selected as salient regions. 

2.4.9 Scale Invariant Feature Operator (SFOP) 

The SFOP detector [16] is a multi-type detector as it extracts different types 

of complementary image features, such as circles, corners and blobs, 

simultaneously. This feature detection method is a scale-space extension of 
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the detector proposed in [9], generalizing it from junctions to all types of 

spiral features by incorporating the general spiral feature model of [136]. 

The SFOP detector is based on the concept of searching points where the 

consistency of image regions with respect to a spiral model is locally 

optimal. As a result, simultaneous detection and classification of image 

structures with complementary properties over scale-space as interpretable 

and identifiable subclasses is achieved. Due to the complementarity of its 

detected features, SFOP is a considered a good feature detector for camera 

calibration and object recognition tasks, particularly in the case of poorly 

textured scenes [16]. 

2.5 Hardware-Based Local Feature Detection 

In recent years, researchers have started to focus on hardware-based 

systems for real-time detection of local invariant image features. This 

section provides an overview of the significant technological advances made 

in this field over the last few years. 

Computer vision techniques are generally computation-intensive in 

nature and are mostly implemented in software. The local feature detection 

methods are no exception. Since real-time performance is desirable for many 

computer vision applications, such as target tracking and mobile robot 

navigation, it is usually difficult for software-only implementations to 

achieve the real-time goal due to the high computational complexity of these 

algorithms. Modern desktop computers that employ multiple processors 

clocking at GHz frequencies are, surprisingly, not generally well-suited to 

computation intensive, real-time computer vision algorithms due to the 

limited image processing capabilities of underlying hardware architecture. 

General-Purpose computation on Graphics Processing Units (GPGPU) is an 

emerging trend that utilizes high memory bandwidth and huge 

computational resources of graphics hardware to speed up many 

applications including image processing and video processing [137]. 

Graphics Processors, however, have high power consumption (usually tens 
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of watts) that makes them unsuitable for embedded vision systems with 

restricted power resources. Such systems usually employ commercial off-

the-shelf embedded computers that do not guarantee real-time performance 

as they run at much lower clock frequencies and have restricted 

computational and power resources as compared to graphics processors. 

Lack of computer architectures capable of processing image and video data 

is thus, a major hurdle in real-time vision processing. 

In order to achieve real-time performance for computer vision 

applications, especially on embedded processors, the inherent parallelism 

found in this class of algorithms can be used to great advantage. This 

implies the design of special-purpose parallel hardware structures capable 

of real-time operation for computer vision algorithms and applications.  

Table 2-1: Performance of the state-of-the-art local invariant feature detection algorithms on 

modern desktop computers 

Algorithm Computation Time with Platform description 

SIFT 

600 ms for detection and description of interest points for an image size 

of 640 x 480 on Pentium III running at 700 MHz [138] 

SURF 

610 ms for detection and description of 1529 interest points for an image 

size of 800 x 640 on Pentium IV running at 3 GHz [13] 

Harris-Laplace 

7 sec for detection of 1438 interest points for an image size of 800 x 640 

on Pentium II running at 500 MHz [15] 

Hessian-Laplace 

700 ms for detection of 1979 interest points for an image size of 800 x 

640 on Pentium IV running at 3 GHz [13] 

Harris-Affine 

36 sec for detection of 1123 interest points for an image size of 800 x 640 

on Pentium II running at 500 MHz [15] 

Hessian-Affine 

2.73 sec for detection of 1649 regions for an image size of 800 x 640 on 

Pentium IV Linux PC running at 2 GHz [46] 

MSER 

140 ms for detection of regions for an image size of 530 x 350 on a Linux 

PC with the Athlon XP 1600+ Processor [14] 

Salient Regions 

33 min and 33.89 sec for detection of 513 regions for an image size of 

800 x 640 on Pentium IV Linux PC running at 2 GHz [46] 

EBR 

2 min and 44.59 sec for detection of 1265 regions for an image size of 

800 x 640 on Pentium IV Linux PC running at 2 GHz [46] 

IBR 

10.82 sec for detection of 679 regions for an image size of 800 x 640 on 

Pentium IV Linux PC running at 2 GHz [46] 
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The performance of the state-of-the-art feature detection algorithms 

on modern desktop computers is far from real-time due to the high level of 

computational complexity involved. The execution times for software-only 

implementations of some popular feature detectors are given in Table 2-1. 

These clearly demonstrate the inability of desktop computers to run these 

algorithms in real-time. Special-purpose hardware architectures exploiting 

inherent parallelism of these algorithms are therefore required in order to 

achieve significant speed gain. 

The work presented in [138] is considered ground breaking in the 

area of hardware-based local invariant feature detection. An FPGA based, 

fixed-point implementation of SIFT algorithm was targeted to achieve speed 

gain over software implementations. As a first step, a floating-point 

software implementation of the SIFT algorithm was converted to fixed-

point, and modifications were made to routines so as to make them efficient 

for hardware implementation. Instead of using low-level hardware 

description languages like VHDL and Verilog, a high level tool known as 

System Generator was employed for major part of this particular hardware 

implementation. In this work, VHDL was used only for implementing low-

level processes like DMA transfers and memory accesses, to make them 

more efficient. The final bit file for the FPGA was generated using Xilinx 

ISE. The Virtex-II Xilinx FPGA-based design reduced execution time of 

SIFT to 60 ms for an image size of 640 x 480 pixels, compared to 600 ms 

required on a Pentium-III 700 MHz processor. In [139], it is reported that 

this FPGA-based design is capable of computing SIFT features at a rate of 7 

Hz for an image size of 1024 x 768.  

A partial hardware implementation of the SIFT algorithm is 

described in [140] for online stereo calibration. Only two main components 

of the SIFT algorithm, i.e., Gaussian pyramid and Sobel filter, were 

implemented in Virtex-II Xilinx FPGA using VHDL, whereas the remaining 

ones were executed in software on a host computer. A pipelined hardware 

architecture clocking at 54 MHz was designed for implementing the 

Gaussian pyramid in a way that allowed feature extraction to start before 
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the image was fully digitized. A Sobel operator was also implemented in 

FPGA, instead of calculating edge gradient and orientation using finite 

differences. This architecture was capable of operating at 60 frames per 

second and reduced by 50–70% the time for feature extraction.  

An innovative pipelined hardware architecture for Harris-Affine 

feature detector is presented in [141, 142], claiming to be the first attempt 

at implementation of a complex iterative algorithm in reprogrammable 

hardware. This fixed-point implementation was unique in a sense that it 

employed multiple FPGAs for extraction of scale- and rotation-invariant 

features. The coding was done in VHDL and was compiled using the 

Quartus-II software provided by Altera. The computation was distributed 

among four Altera Stratix S80 FPGAs that were able to process standard 

video (640 x 480 pixels) at 30 frames per second. This hardware architecture 

achieved a speed gain of 90-9000 times over an equivalent software 

implementation of the Harris-Affine feature detector, depending upon the 

language of implementation and the computing platform.  

Another FPGA-based partial implementation of the SIFT algorithm is 

discussed in [143, 144]. A hardware-software co-design strategy was 

preferred over pure hardware implementation; the hardware–software 

partitioning was done in such a way that the detection phase of the 

algorithm was implemented in hardware whereas the description phase was 

targeted to run in software on a MicroBlaze processor. This architecture was 

realized on a Xilinx XUP-Virtex-II Pro board but was only capable of 

processing one octave for the SIFT algorithm. With MicroBlaze running at 

100 MHz, it was claimed that this architecture required 0.8 ms for detection 

and description of key points for an image size of 320 x 240 pixels. 

An FPGA based implementation of the Maximally Stable Extremal 

Region (MSER) detector is described in [145]. The designed architecture was 

implemented on a Xilinx XC2VP100 FPGA and achieved performance of 54 

frames per second for an image size of 320 x 240 pixels without using any 

off-chip memory.  
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In [146], a dedicated processor for SIFT-based object recognition is 

proposed. This processor was based on Visual Image Processing memory 

and Network-on-Chip. Ten SIMD processing elements were also integrated 

into this processor architecture for exploiting data- and task-level 

parallelism of the SIFT algorithm. An important feature of this architecture 

was its low-power consumption. For an input image size of 320 x 240, this 

dedicated processor was able to achieve 10.1–15.9 frames per second for 

SIFT feature extraction at 200 MHz.  

A parallel hardware architecture for SIFT is proposed in [147] which 

utilizes a hardware–software co-design strategy. Except descriptor 

computation, which ran in software on a NIOS-II soft core processor, all 

other steps of the SIFT algorithm were implemented in hardware. This is 

the most complete implementation of the SIFT algorithm to date and 

provided accurate results that were similar to software implementations. 

With a NIOS-II soft core processor running at 100 MHz, this architecture 

required 33ms to extract SIFT features for an image size of 320 x 240 pixels; 

thus, it could achieve performance of up to 30 frames per second. 

Finally, researchers have also targeted the SURF algorithm for 

hardware acceleration. Some innovative hardware architectures for this 

particular feature detector are presented in [148-151].  

2.6 Summary 

After introducing the field of local invariant feature detection, this chapter 

has provided an overview of the local feature detectors proposed in the 

literature. The state-of-the-art feature detection techniques, such as SIFT 

and SURF, that are prevalent in most computer vision systems today are 

discussed in more detail. Finally, the chapter has provided a summary of 

the progress made in efficient hardware implementation of local feature 

detectors.  
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3 Improved Repeatability 

Measures 
 

In theory, theory and practice are the same. In practice, they are not. 

ALBERT EINSTEIN 

Since local feature detection has been one of the most active research areas 

in computer vision during the last decade, a large number of detectors have 

been proposed. The interest in feature-based applications continues to grow 

and has thus rendered the task of characterizing the performance of various 

feature detection methods an important issue in vision research. The most 

frequently-employed metric in this regard is repeatability, essentially a 

theoretical measure. However, it has been observed that this does not 

necessarily mirror actual performance. In this chapter, after identifying the 

limitations of the original repeatability metric, improved repeatability 

measures are proposed which correlate much better with the true 

performance of feature detectors. Comparative results for several state-of-

the-art feature detectors are presented using these measures which provide 

new insights into their behavior under various geometric and photometric 

transformations.    
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3.1 Introduction 

Accuracy of observation is the equivalent of accuracy of thinking.  

WALLACE STEVENS 

Broadly speaking, every designed system aims to achieve some particular 

goals. For example, a robotic hand which is developed to catch a ball would 

strive to accomplish this objective. Performance measures are proposed by 

studying these goals in an effort to improve the effectiveness and reliability 

of the designed system. Their role is critical as an ineffective metric can 

potentially lead to a wrong research direction. Conversely, a carefully 

designed performance indicator helps to pinpoint areas of strength and 

weakness accurately, serving essentially as the primary step for directing 

the research effort in the right direction. 

Performance measures are an integral part of contemporary local 

feature detection research and have played a vital part in the considerable 

progress in the field. For any feature detector, offline testing utilizing 

reliable measures (here the author means testing before deployment in the 

actual environment) is crucial to its success as the systems of which they are 

a component generally operate in complex and unknown environments 

across a wide spectrum of applications.  

While designing performance indicators for local feature detectors, it 

is important to take into account the dependence of the feature description 

and feature matching stages on the selected features. If not considered 

properly, a feature detector may show good performance based on a specific 

measure when tested in isolation but may provide poor results in practical 

applications. A well-designed performance measure would gauge the 

performance not only of the feature detector but of the whole image 

matching system (see Figure 1-1).  

Another useful aspect of performance metrics is the relative 

comparison of different feature detection techniques. Vision researchers 

today have a range of feature detectors available. However, there can be a 
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huge variation in results for a particular application depending on the 

detector used [1, 47]. It is therefore widely agreed that the performance 

characterization of feature detectors is an important issue in vision research 

[1, 46-48]. Performance metrics provide a systematic way of selecting a 

suitable feature detector for solving any particular vision problem under 

various geometric and photometric transformations. Comparison of 

competing algorithms based on an unreliable and ineffective metric can 

potentially lead to the selection of a feature detector that is not capable of 

solving a vision problem under expected imaging conditions. 

Although there has been a lot of activity in the research community 

regarding performance measures and evaluation based on them, there is 

still a lack of reliable and effective performance metrics [1]. The most 

frequently employed measure for characterizing the performance of feature 

detectors is repeatability [1, 15, 46]. It is a theoretical measure which 

requires ground truth information for estimating the performance of any 

given detector. However, it has been reported that a high repeatability score 

does not guarantee good performance in practical situations [1]. More 

specifically, repeatability does provide information about the theoretical 

performance of detector but does not always mirror actual performance.  

There is hence a strong motivation to design reliable and effective 

performance measures for local feature detectors. By reliable here the 

author means that the metrics must provide results which are consistent 

with the true performance in practical scenarios for a variety of detectors 

across a number of datasets. The word effective here implies that the 

metrics must also have some utility from a systems design perspective. To 

bridge the abovementioned research gap, this chapter first identifies the 

problems of the original repeatability metric [15, 46] and then presents 

improved repeatability measures which correlate much better with the true 

performance of feature detectors. By using Pearson’s correlation coefficient, 

it will be shown that these improved measures are more reliable than the 

original repeatability metric across a wide range of local feature detectors 

utilizing well-established datasets [50]. Evaluation of eleven state-of-the-art 
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feature detectors based on the proposed measures will be carried out to 

identify the relative strengths and weaknesses of the algorithms under 

different geometric and photometric transformations using the widely-used 

Oxford datasets [50].            

The remainder of the chapter is structured as follows: Section 3.2 

describes the related work on performance measures and evaluation of local 

invariant feature detectors based on these metrics. After investigating the 

limitations of repeatability, improved repeatability measures are presented 

and the results based on them are verified by using Pearson’s correlation 

coefficient across a wide range of feature detectors on well-established 

datasets [50] in Section 3.3. Comparative results for several state-of-the-art 

local invariant feature detectors based on the proposed measures under 

various geometric and photometric transformations utilizing the widely-

used Oxford datasets [50] are presented in Section 3.4, providing new 

insights into the strengths and weaknesses of various detection techniques. 

A summary of the work described in this chapter is presented in Section 3.5. 

3.2 Related Work 

This section provides a review of the performance measures presented so far 

regarding local feature detectors. It also gives a summary of the related 

work on evaluation of feature detectors based on these metrics. 

 Corner detectors are evaluated based on chain coded curves by [84]. 

Visual inspection is used for performance characterization of detectors in 

[6]. An evaluation of feature detectors based on a quantitative measure of 

the quality of detected dominant points is performed in [152]. In [153], the 

localization accuracy of interest point detectors is utilized as a performance 

measure for comparing them using different planar projective invariants for 

which reference values are computed using scene measurements. Three 

interest point detectors are evaluated by utilizing a L-corner model in [117]. 

In the same spirit, theoretical analysis of L-corners with aperture angles in 

the range 0–180° is used for comparing feature detectors in [154]. Alignment 
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of the extracted points, accuracy of the 3D reconstruction, accuracy of the 

epipolar geometry and stability of the cross-ratio are used as criteria to 

measure the localization accuracy of a model-based L-corner detector by 

[118]. An approach similar to [153] is utilized in [155] for comparing feature 

detectors.    

A metric based on visual inspection is employed in [156] for 

evaluating feature detectors. Canny’s criteria [135], namely good detection, 

good localization and low response multiplicity are used as performance 

metrics for theoretical evaluation of edge detectors by [157]. In [158], 

structure from motion is used as a specific task to characterize performance. 

Edge detectors are compared for object recognition task by [159]. Human 

marked ground-truth is utilized in [160] for assessing the performance of 

edge detectors. Collinearity, intersection at a single point, parallelism and 

localization on an ellipse are used as criteria for performance 

characterization of detectors in [161]. In [162], an evaluation of the quality 

of detection is carried out based on a set of visual inspection criteria. 

  Repeatability and information content are utilized as performance 

metrics in [47]. These two measures are also used in [163] for evaluating 

feature detectors in the context of image retrieval. The definition of 

repeatability was refined by [15] and used for evaluating six state-of-the-art 

local feature detectors in [46]. Consistency of the number of corners and 

accuracy are employed as performance metrics in [164]. The same approach 

is used by [165] for performance characterization of corner detectors. For 

evaluating performance of detectors in [98, 166], the number of frames over 

which the corners are detected during tracking is used as a measure. An 

evaluation of local feature detectors on non-planar scenes is carried out in 

[167, 168].  

For the specific task of matching 3D object features across viewpoints 

and lighting conditions, an assessment of the performance of feature 

detectors is done by [169, 170]. Feature detectors are compared for 

recognition task using object category training data in [171, 172]. Clustering 

properties and compactness of feature clusters are employed as performance 
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metrics in [171]. For a pedestrian detection task, an evaluation of feature 

detectors is done in [173].  

More recently, in the context of automatic image orientation systems, 

the performance characterization of local features is carried out by [45]. 

Localization accuracy of feature detectors is evaluated in [174]. A similar 

approach based on localization accuracy is reported in [175]. Completeness 

of detected features is used as a performance metric in [19, 176] for 

comparing state-of-the-art local feature detectors. In [177], the performance 

of detectors is evaluated under viewpoint, scale and light changes by using a 

large database of images with recall rate as performance measure.  

Finally, the author would like to state that the literature on 

performance metrics and evaluation of local feature detectors based on them 

is vast and has grown rapidly after the emergence of SIFT [11, 12]. There 

have been a number of evaluations based on specific vision tasks such as 

visual SLAM [178] and face detection [179]. It is not possible to describe 

every such contribution here but an attempt has been made to mention all 

those developments which are considered important in this domain.                     

3.3 Improved Repeatability Measures 

In this section, following a brief overview of the original repeatability metric 

[15, 46], its limitations are highlighted and then alternatives are proposed, 

with supporting results, which indicate the effect of various image 

transformations reliably and are more consistent with the actual 

performance of detectors. Here, actual performance means the true matches 

obtained using ground-truth homography after descriptor-based matching of 

detected points. A true match occurs when a nearest neighbor matched 

feature in one image is projected into another image using the ground-truth 

homography and its projection lies within 1.5 pixels of corresponding 

nearest neighbor matched feature in the other image. Any nearest neighbor 

matches that do not satisfy this criterion are classified as false matches (i.e., 

false alarms). As already mentioned in Section 1.1, the SIFT descriptor [11, 
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12] is utilized as it is considered to provide the best matching results among 

the available descriptors [55, 180]. For matching, the Nearest Neighbor 

matching scheme proposed by [12] is used.  

3.3.1 An Overview of the Repeatability Metric 

The evaluation of the performances of local feature detectors under various 

geometric and photometric transformations has become important, in order 

to identify their strengths and shortcomings for a range of vision 

applications. As is clear from Section 3.2, several approaches have been 

used in this regard including ground-truth verification, localization 

accuracy, theoretical analysis and specific tasks; however, the most widely 

employed measure for the performance characterization of feature detectors 

is the repeatability rate [1]. This metric was originally proposed by [47] and 

later refined by [15, 46]. In [47], the repeatability rate is defined as the ratio 

of the number of points repeated in the overlapping region of two images to 

the total number of detected points. An interest point is considered 

‘repeated’ if its 2-D projection in the other image using planar homography 

lies within a neighborhood of size ε of an interest point detected in the other 

image. Since these feature detectors identify interest points at different 

scales, measuring the 2-D distance between interest points detected at 

different scales, to decide whether they are repeatable or not, may lead to 

inaccurate results. A more sophisticated definition of repeatability is 

presented in [15, 46], which also considers the overlap of scale-dependent 

regions centered in the interest points. This may be written mathematically 

as in [15, 46]: 

 
              

                               

                                                           
 

 

Equation 3-1 

3.3.2 Limitations of Repeatability 

Despite being popular, it has been remarked that “repeatability does not 

guarantee high performance” [1]. The author has investigated the 
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repeatability metric in detail across a wide range of detectors by utilizing 

well-established datasets [50] and identified its shortcomings. Here, two 

sample cases are discussed to illustrate the problems with this metric and 

then the conclusions drawn from this investigation are presented.  

 

Figure 3-1: Repeatability curve and number of true matches for Hessian-Laplace detector 

with Bark dataset using the original metric 

Figure 3-1 depicts the first sample case, the repeatability values and 

the numbers of true matches obtained for the Bark dataset [50] with the 

Hessian-Laplace detector utilizing the original metric [15, 46]. Note that 

repeatability values should be read from the left ordinate axis and the 

number of true matches from the right ordinate axis. The number of true 

matches was calculated for every image pair using ground-truth 

homography after SIFT descriptor based matching of the detected points. 

Observing the trends of the two curves (repeatability and number of true 

matches), it becomes evident that the original metric reports good 

performance, with only slight variation in repeatability values, but there is 
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a continuous decline in the actual performance of the detector as indicated 

by the decreasing number of true matches. Interestingly, for the image pair 

Bark 1 and Bark 6, the original repeatability metric shows that there is an 

improvement in performance with respect to the previous image pair (Bark 

1 and Bark 5). This illustrates that the original repeatability metric [15, 46] 

overestimates the performance of the detector and fails to capture the effect 

of image transformation in its performance. 

The second sample case is shown in Figure 3-2, the repeatability 

values and the numbers of true matches obtained for the Boat dataset [50] 

with SURF detector utilizing the original metric [15, 46]. As in Figure 3-1, 

note that repeatability values should be read from the left ordinate axis and 

the number of true matches from the right ordinate axis. Again, it is clear 

that the repeatability curve does not have high correlation with the true 

performance of SURF in practical situations. The curve for the number of 

true matches shows a continuous decay but the original repeatability metric 

reports an improvement in performance for the image pair Boat 1 and Boat 

3 relative to the previous image pair (Boat 1 and Boat 2). This essentially 

means that the performance of SURF increases with the increasing amount 

of image transformation (zoom and rotation changes in this particular case) 

which is misleading.  

From this investigation of the original repeatability metric [15, 46], 

the following limitations are identified: 

1) The repeatability rate only partially reflects the effect of various 

geometric and photometric transformations as it considers the 

minimum number of interest points detected in either of the two 

images.  

2) It is not always possible to predict the effect of a specific 

transformation on the number of corresponding points from the value 

of repeatability.  

3) The reference image is not fixed when evaluating the performance of 

a detector for a specific dataset. 
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4) Repeatability does not always reflect the effect of transformation on 

the number of true matched points, i.e. the true performance. 

 

Figure 3-2: Repeatability curve and number of true matches for SURF detector with Boat 

dataset using the original metric 

3.3.3 Proposed Measure 1 

To overcome the above-mentioned shortcomings, two alternative definitions 

of repeatability are presented that are more consistent with the actual 

performance of feature detectors. Both use the same scale-dependent 

regions as [15, 46]. The first of these is appropriate for applications that 

involve image sequences, while the second is more suited to applications 

involving pairs of images (e.g., computational stereo). 

Unlike the definition in [15, 46], the sequence of images is not ignored 

when determining the effect of various photometric and geometric 

transformations; the first image in the sequence is considered as the 

‘reference’ in all cases. The author also takes into account only those 

interest points that lie in the common part of the two images and defines an 
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interest point as ‘repeatable’ if ε < 1.5 pixels and the overlap error between 

scale-dependent regions centered in the two interest points, defined as: 

 

                
    (     )

           
 Equation 3-2 

is less than 40%, as in [15, 46], where   and   are the regions defined by 

xTµx = 1 and A is the homography between the two images. The numerator 

of the fractional part in Equation 3-2 represents the intersection whereas 

the denominator represents the union of these regions. However, as opposed 

to [15, 46], which uses the minimum of the number of interest points 

detected in the two images, the repeatability rate is defined as:  

 
          

    

    
 Equation 3-3 

where      is the total number of repeated points and      is the total 

number of interest points in the common part of the reference image. 

3.3.4 Proposed Measure 2 

This measure follows the same framework as described above but employs a 

symmetric approach for the computation of repeatability rate: 

 
           

        

           
  Equation 3-4 

where      is the number of repeated interest points,      and       are the 

number of interest points detected in the common part of the scene in the 

reference and test images respectively. 

3.3.5 Qualitative Results 

To demonstrate the utility of the proposed measures, the two sample cases 

of Section 3.3.2 are used again.  
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Figure 3-3: Repeatability curves and number of true matches for Hessian-Laplace detector 

with Bark dataset using the improved measures 

 

Figure 3-4: Repeatability curves and number of true matches for SURF detector with Boat 

dataset using the improved measures 
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Figure 3-3 shows the repeatability values and the numbers of true 

matches obtained for the Bark dataset with the Hessian-Laplace detector 

utilizing the proposed measures. As compared to the original repeatability 

metric (see Figure 3-1), the improved measures achieve results which are 

much better correlated with the true performance of Hessian-Laplace. The 

results for the second sample case (SURF with Boat dataset) utilizing the 

proposed measures are depicted in Figure 3-4. The same trend shown by all 

three curves (number of true matches and repeatability curves) in this 

figure highlights the usefulness of the improved repeatability measures.    

3.3.6 Verification of Improved Measures using Pearson’s 

Correlation Coefficient 

For the proposed measures to be reliable and have any value, the 

performance results obtained utilizing them must be consistent with the 

true performances for a variety of feature detectors across a number of 

datasets. Here, results are presented that verify the accuracy and reliability 

of the proposed repeatability metrics.  

Repeatability values were computed for the widely-used Oxford 

datasets [50] using the original repeatability metric [15, 46] and the two 

proposed measures. Results were obtained for eleven state-of-the-art feature 

detectors, namely SIFT, SURF, Harris-Laplace, Hessian-Laplace, Harris-

Affine, Hessian-Affine, MSER, IBR, EBR, Salient and SFOP, using their 

original implementations with default parameters [1, 12-16, 18, 122]. For all 

detectors, the number of true matches was also calculated for every image 

pair using the ground-truth homography after SIFT descriptor based 

matching of detected points. To measure how well the three calculated 

repeatability curves agree with the number of true matches, Pearson’s 

correlation coefficient, r, is used. Correlation coefficient values with 

corresponding p-values for the above mentioned detectors are given in Table 

3-1–Table 3-11; note that a p-value gives the probability that the 

corresponding correlation value is incorrect. A discussion of these results is 

given in the next few paragraphs. 
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SURF.  Table 3-1 presents the results for the SURF detector. For the 

original repeatability metric, the correlation coefficient values indicate that 

the results are highly correlated with the actual performance of SURF for 

only the Bark, Graffiti, UBC and Wall datasets. Although it is clear that the 

results are not particularly consistent with true performances for the 

remaining four datasets, the case of Trees dataset is noteworthy and 

deserves more discussion. The negative value of the correlation coefficient 

here means that the original repeatability metric is reporting a performance 

score which is opposite to the actual performance of SURF (i.e., the true 

performance is decreasing whereas the original repeatability metric is 

showing an increase in performance). This is certainly not desirable and 

indicates the unreliability of the original repeatability metric. On the other 

hand, it is evident that the results obtained by utilizing the improved 

repeatability measures are highly correlated with the actual performance of 

the detector.  

SIFT.  Presented in Table 3-2 are the results for the SIFT detector. Again, 

for the improved repeatability measures, the results are consistent with the 

actual performances for all datasets as indicated by large positive values of 

the correlation coefficient. The unreliability of the original repeatability 

metric is again highlighted by the negative value of correlation coefficient 

for the Bark dataset. It should be noted that, for the same dataset, the 

results achieved utilizing the improved repeatability measures manage to 

mirror actual performances reasonably well. 

Harris-Laplace.  Table 3-3 illustrates the results for the Harris-Laplace 

detector. Except for the Bark dataset with the original repeatability metric, 

all other results obtained using the three metrics indicate high degrees of 

correlation with the actual performances of the Harris-Laplace detector.   

Hessian-Laplace.  It is evident from Table 3-4 that the results obtained 

using the improved repeatability measures are consistent with the true 

performance of the Hessian-Laplace detector for all datasets. On the other 
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hand, the original repeatability metric fails to achieve large values of 

correlation coefficient for the Bark, Boat and Trees datasets. 

Table 3-1: Pearson’s correlation coefficients and corresponding p-values calculated using 

repeatability values and true matches for SURF detector 

Datasets Original Metric Measure 1 Measure 2 

r p-value r p-value r p-value 

Bark 0.884  0.0466 0.997  0.0002 0.989  0.0014 
Bikes 0.768  0.1287 0.996  0.0003 0.985  0.0022 

Boat 0.697  0.1909 0.996  0.0003 0.993  0.0007 

Graffiti 0.939  0.0179 0.971  0.0059 0.960  0.0095 

Leuven 0.778  0.1213 0.998  0.0001 0.991  0.001 
Trees -0.591  0.2940 0.991  0.001 0.968  0.0068 

UBC 0.990  0.0012 0.998  0.0001 0.999  0.000 

Wall 0.889  0.0436 0.950  0.0133 0.929  0.0225 
 

Table 3-2: Pearson’s correlation coefficients and corresponding p-values calculated using 

repeatability values and true matches for SIFT detector 

Datasets Original Metric Measure 1 Measure 2 

r p-value r p-value r p-value 

Bark -0.301 0.6226 0.853  0.0661 0.884  0.0466 
Bikes 0.962  0.0088 0.995  0.0004 0.999  0.000 

Boat 0.963  0.0085 0.989  0.0014 0.997  0.0002 

Graffiti 0.948  0.0141 0.973  0.0053 0.964  0.0082 
Leuven 0.860  0.0615 0.993  0.0007 0.978  0.0039 

Trees 0.942  0.0166 0.969  0.0065 0.959  0.0099 

UBC 0.918  0.0278 0.865  0.0583 0.876  0.0514 
Wall 0.891  0.0425 0.944  0.0158 0.908  0.0330 

 

Table 3-3: Pearson’s correlation coefficients and corresponding p-values calculated using 

repeatability values and true matches for Harris-Laplace detector 

Datasets Original Metric Measure 1 Measure 2 

r p-value r p-value r p-value 
Bark 0.686 0.201 0.980 0.0034 0.983 0.0027 

Bikes 0.984 0.0024 0.983 0.0027 0.983 0.0027 

Boat 0.918 0.0278 0.992 0.0009 0.998 0.0001 
Graffiti 0.889 0.0436 0.938 0.0184 0.919 0.0273 

Leuven 0.962 0.0088 0.989 0.0014 0.980 0.0034 

Trees 0.820 0.0892 0.925 0.0244 0.894 0.0408 
UBC 0.994 0.0006 0.996 0.0003 0.987 0.0018 

Wall 0.885 0.0460 0.959 0.0099 0.934 0.0202 
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Harris-Affine.  Table 3-5 shows the results for the Harris-Affine detector. 

All three metrics achieve good results as indicated by large positive values 

of correlation coefficient.  

Hessian-Affine.  Given in Table 3-6 are the results for the Hessian-Affine 

detector. The improved repeatability measures again yield results that have 

high correlation with the actual performance of Hessian-Affine detector. 

Barring the Boat dataset, the original repeatability also achieves good 

results.  

SFOP.  Table 3-7 presents the results for the SFOP detector. For all 

datasets, the results obtained utilizing the original repeatability metric and 

the improved measures are consistent with the true performance of SFOP.  

Table 3-4: Pearson’s correlation coefficients and corresponding p-values calculated using 

repeatability values and true matches for Hessian-Laplace detector 

Datasets Original Metric Measure 1 Measure 2 

r p-value r p-value r p-value 
Bark 0.628 0.2566 0.994 0.0006 0.984 0.0024 

Bikes 0.954 0.0118 0.994 0.0006 0.983 0.0027 

Boat 0.742 0.1511 0.998 0.0001 0.996 0.0003 

Graffiti 0.866 0.0577 0.950 0.0133 0.921 0.0263 
Leuven 0.936 0.0192 0.999 0.0000 0.993 0.0007 

Trees 0.792 0.1103 0.881 0.1197 0.922 0.0258 

UBC 0.996 0.0003 0.996 0.0003 0.997 0.0002 
Wall 0.919 0.0273 0.971 0.0059 0.953 0.0121 

 

Table 3-5: Pearson’s correlation coefficients and corresponding p-values calculated using 

repeatability values and true matches for Harris-Affine detector 

Datasets Original Metric Measure 1 Measure 2 

r p-value r p-value r p-value 
Bark 0.918 0.0278 0.953 0.0121 0.971 0.0059 

Bikes 0.978 0.0039 0.998 0.0001 0.993 0.0007 

Boat 0.889 0.0436 0.995 0.0004 0.997 0.0002 
Graffiti 0.968 0.0068 0.992 0.0009 0.983 0.0027 

Leuven 0.989 0.0014 0.998 0.0001 0.993 0.0007 

Trees 0.941 0.0171 0.943 0.0162 0.928 0.0229 

UBC 0.996 0.0003 0.996 0.0003 0.994 0.0006 
Wall 0.950 0.0133 0.986 0.0020 0.975 0.0047 
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Table 3-6: Pearson’s correlation coefficients and corresponding p-values calculated using 

repeatability values and true matches for Hessian-Affine detector 

Datasets Original Metric Measure 1 Measure 2 

r p-value r p-value r p-value 
Bark 0.887 0.0448 0.986 0.0020 0.990 0.0012 

Bikes 0.972 0.0056 0.993 0.0007 0.985 0.0022 

Boat 0.788 0.1134 0.999 0.0000 0.993 0.0007 
Graffiti 0.943 0.0162 0.986 0.0020 0.970 0.0062 

Leuven 0.973 0.0053 0.998 0.0001 0.996 0.0003 

Trees 0.851 0.0675 0.838 0.0763 0.938 0.0184 
UBC 0.998 0.0001 0.998 0.0001 0.998 0.0001 

Wall 0.969 0.0065 0.994 0.0006 0.987 0.0018 
 

Salient.  In Table 3-8 are provided the results for Salient detector. The 

results clearly indicate the high reliability and accuracy of the proposed 

measures. On the other hand, the original repeatability metric achieves a 

poor value of correlation coefficient for the Leuven dataset which highlights 

its failure to describe the actual performance of Salient detector. 

MSER.  High degree of correlation of the results achieved utilizing the 

proposed measures with the true performance of MSER detector for all 

datasets in Table 3-9 provides evidence to their dependability.  The original 

repeatability metric fails to achieve high correlation for the Leuven and 

Boat datasets. 

IBR.  Illustrated in Table 3-10 are the results for IBR. It can be seen clearly 

that the proposed repeatability measures reflect the true performance of 

IBR for all datasets. In the case of Bark and Leuven datasets, the original 

repeatability metric accomplishes a relatively low value of correlation 

coefficient.  

EBR.   Finally, Table 3-11 presents the results for EBR. For the original 

repeatability metric, the results for Boat and Trees again fail to achieve 

high degree of correlation with the true performance. However, the worst 

case of all is the Bikes dataset, for which the original repeatability metric 

provides a negative correlation coefficient value. As mentioned before, this is 
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undesirable and indicates the inconsistency of the metric. Conversely, the 

improved repeatability measures display a reliable behavior once more for 

all datasets.  

Table 3-7: Pearson’s correlation coefficients and corresponding p-values calculated using 

repeatability values and true matches for SFOP detector 

Datasets Original Metric Measure 1 Measure 2 
r p-value r p-value r p-value 

Bark 0.839 0.0751 0.943 0.0160 0.962 0.0086 

Bikes 0.985 0.0021 0.993 0.0006 0.988 0.0014 
Boat 0.869 0.0553 0.998 0.0000 0.992 0.0008 

Graffiti 0.951 0.0127 0.979 0.0035 0.969 0.0064 

Leuven 0.994 0.0005 0.998 0.0001 0.996 0.0002 
Trees 0.983 0.0026 0.877 0.0503 0.976 0.0043 

UBC 0.991 0.0010 0.984 0.0024 0.994 0.0005 

Wall 0.912 0.0308 0.950 0.0130 0.935 0.0193 

Table 3-8: Pearson’s correlation coefficients and corresponding p-values calculated using 

repeatability values and true matches for Salient Regions detector 

Datasets Original Metric Measure 1 Measure 2 
r p-value r p-value r p-value 

Bark 0.871 0.0544 0.943 0.0162 0.960 0.0094 

Bikes 0.965 0.0077 0.991 0.0009 0.984 0.0024 
Boat 0.957 0.0106 0.997 0.0001 0.997 0.0002 

Graffiti 0.963 0.0082 0.983 0.0027 0.976 0.0044 

Leuven 0.523 0.3656 0.989 0.0012 0.975 0.0047 
Trees 0.874 0.0523 0.995 0.0003 0.961 0.0090 

UBC 0.935 0.0195 0.956 0.0107 0.934 0.0199 

Wall 0.907 0.0331 0.959 0.0097 0.943 0.0162 

Table 3-9: Pearson’s correlation coefficients and corresponding p-values calculated using 

repeatability values and true matches for MSER detector 

Datasets Original Metric Measure 1 Measure 2 
r p-value r p-value r p-value 

Bark 0.989 0.0012 0.993 0.0006 0.992 0.0007 

Bikes 0.961 0.0090 0.997 0.0001 0.989 0.0012 
Boat 0.780 0.1194 0.999 0.0000 0.990 0.0011 

Graffiti 0.971 0.0056 0.996 0.0003 0.993 0.0007 

Leuven 0.467 0.4274 0.996 0.0002 0.986 0.0020 
Trees 0.994 0.0004 0.984 0.0024 0.970 0.0060 

UBC 0.997 0.0001 0.997 0.0001 0.981 0.0030 

Wall 0.978 0.0037 0.995 0.0003 0.990 0.0010 
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General Conclusions.  These results demonstrate the high reliability of 

repeatability values obtained using the proposed measures. For all 

combinations of the eleven state-of-the-art feature detectors and eight 

datasets [50], the mean value of the correlation coefficient is: 0.850 with 

standard deviation 0.286 for the original repeatability metric, 0.977 ± 0.033 

for proposed measure 1, and 0.973 ± 0.027 for proposed measure 2. 

Table 3-10: Pearson’s correlation coefficients and corresponding p-values calculated using 

repeatability values and true matches for IBR detector 

Datasets Original Metric Measure 1 Measure 2 

r p-value r p-value r p-value 
Bark 0.751 0.1433 0.996 0.0003 0.977 0.0041 

Bikes 0.958 0.0102 0.999 0.0000 0.996 0.0003 

Boat 0.839 0.0754 0.999 0.0000 0.986 0.0020 
Graffiti 0.983 0.0026 0.998 0.0001 0.995 0.0003 

Leuven 0.761 0.1348 0.999 0.0000 0.997 0.0002 

Trees 0.996 0.0002 0.987 0.0017 0.967 0.0070 
UBC 0.996 0.0002 0.999 0.0000 0.998 0.0001 

Wall 0.988 0.0015 0.998 0.0001 0.995 0.0003 

Table 3-11: Pearson’s correlation coefficients and corresponding p-values calculated using 

repeatability values and true matches for EBR detector 

Datasets Original Metric Measure 1 Measure 2 

r p-value r p-value r p-value 
Bark 0.862 0.0600 0.957 0.0103 0.936 0.0190 

Bikes -0.782 0.1175 0.998 0.0000 0.993 0.0007 

Boat 0.786 0.1145 0.997 0.0001 0.975 0.0045 
Graffiti 0.922 0.0258 0.997 0.0001 0.985 0.0021 

Leuven 0.965 0.0077 0.995 0.0003 0.988 0.0015 

Trees 0.732 0.1592 0.981 0.0030 0.957 0.0105 
UBC 0.994 0.0005 0.955 0.0111 0.994 0.0005 

Wall 0.939 0.0175 0.992 0.0008 0.980 0.0032 
 

3.4 Evaluation of State-of-the-art Detectors 

Having established the authenticity and reliability of the proposed 

measures in the previous section, these improved metrics are now employed 

to perform a relative performance comparison of the eleven state-of-the-art 

feature detectors mentioned in Section 3.3.6 under various geometric and 

photometric transformations. The widely-used Oxford datasets [50] and 
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authors’ original programs (binary or source) are utilized with parameters 

set to values recommended by them in an effort to make these results a 

direct complement to existing evaluations.  

3.4.1 Results under Various Transformations using 

Proposed Measure 1 

Figure 3-5 to Figure 3-12 depict the comparative results for the state-of-the-

art feature detectors under various image transformations utilizing 

proposed measure 1. Since the evaluation work done by [46] is considered 

the most comprehensive in this domain, the similarities and contradictions 

of the author’s findings with those reported in that study are also discussed. 

The following six feature detectors were considered in [46]: Harris-Affine, 

Hessian-Affine, MSER, EBR, IBR and Salient. The author however is 

investigating a larger group of feature detectors to encompass the recent 

advancements in the field, such as SURF [13] and SFOP [16]. A discussion 

of these results is given below. 

Bark dataset.  This dataset involves zoom and rotation changes for a 

textured scene. Figure 3-5 shows the results for this dataset. It is evident 

that the repeatability scores for all the detectors under investigation 

decrease with the increasing amount of transformation. This is 

contradictory to the results presented in [46] which show that the 

performance of most detectors, especially Hessian-Affine, Harris-Affine and 

MSER, is little affected in the case of Bark dataset. Moreover, the 

repeatability scores for all detectors are much lower than those presented in 

[46]. For example, Hessian-Affine, the detector which is declared the best for 

this particular dataset is shown to achieve a repeatability score of around 

80% for the image pair Bark 1 and Bark 2 in [46], whereas according to the 

proposed measure, its value is about 32% (see Figure 3-5). The author also 

finds that the repeatability curve of Salient is continuously decaying—

another discrepancy from the results presented in [46] which show a highly 

unstable behavior of Salient detector. According to Figure 3-5, SIFT and 
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Salient seem to be the best detectors for increasing amounts of zoom and 

rotation. EBR shows the worst performance of all the detectors, in 

agreement with the results shown for EBR in [46]. Harris-Affine and MSER 

also perform poorly, contradictory to the previous findings [46].        

 

Figure 3-5: Repeatability results for state-of-the-art detectors for Bark dataset (zoom and 

rotation) using proposed measure 1 

 

Figure 3-6: Repeatability results for state-of-the-art detectors for Bikes dataset (blur) using 

proposed measure 1 
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Bikes dataset.  Figure 3-6 shows the results for the Bikes dataset, which 

are fundamentally different from [46]. This particular dataset involves 

increasing amounts of blur for a structured scene. In [46], it is claimed that 

all detectors investigated in that study show high invariance to image blur 

resulting in nearly horizontal repeatability curves except for MSER. This is 

totally contradictory to the presented results, which demonstrate a 

continuous decrease in performance for all the detectors with increasing 

image blur, a closer agreement with intuition. Hessian-Laplace and 

Hessian-Affine achieve the best performances for this particular dataset 

(see Figure 3-6).  Although Hessian-Affine is also ranked as the top detector 

for the Bikes dataset in [46], the author’s results show that its performance 

is significantly affected by the increasing amount of blur, which disagrees 

with the almost horizontal repeatability curve for Hessian-Affine shown in 

[46]. From Figure 3-6, it is also evident that SFOP and IBR demonstrate 

good performance for the Bikes dataset—again a deviation from the findings 

of [46], which ranks IBR quite low. The most notable result, however, is for 

the SIFT detector, which is outperformed by all other detectors. EBR, which 

is shown as one of the top two detectors for this dataset in [46] and 

essentially appears to improve its performance with the increasing amount 

of blur according to those results, also performs poorly as indicated by the 

low repeatability scores in Figure 3-6.   

Boat dataset.  Presented in Figure 3-7 are the comparative results of state-

of-the-art detectors for the Boat dataset, a structured scene with zoom and 

rotation changes. Observing the repeatability curves shown in Figure 3-7, it 

appears that nearly all detectors have similar degradation of performance 

with the increasing amount of image transformation. Again, this loss in 

performance is substantially larger than the results presented in [46]. 

Hessian-Laplace and Hessian-Affine seem marginally better than the other 

detectors. While Hessian-Laplace is also identified as the best performer 

with a much flatter repeatability curve in [46], MSER achieves moderate 

repeatability scores in this investigation, which is contradictory to [46].  
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Figure 3-7: Repeatability results for state-of-the-art detectors for Boat dataset (zoom and 

rotation) using proposed measure 1 

 

Figure 3-8: Repeatability results for state-of-the-art detectors for Graffiti dataset (viewpoint) 

using proposed measure 1 

 



52  CHAPTER 3                                                                                      

 
 

Graffiti dataset.  This dataset consists of a structured scene with 

increasing viewpoint changes. Figure 3-8 depicts the performance of the 

detectors utilizing proposed measure 1. It is can be seen clearly that MSER 

comprehensively out-performs all other detectors, in agreement with [46]. 

On the other hand, Hessian-Affine and Harris-Affine show similar 

performances in this study which contradicts [46]. From Figure 3-8, it is 

evident that all other detectors barring Hessian-Affine, Harris-Affine, EBR, 

MSER and IBR, fail under increasing image transformation. Salient, which 

is shown to have reasonable repeatability for large viewpoint changes in 

[46], performs poorly for the last two image pairs (Graffiti 1 and Graffiti 5; 

Graffiti 1 and Graffiti 6) according to the presented results.       

Leuven dataset.  Figure 3-9 demonstrates the adverse effect of uniform 

light changes on the performance of the state-of-the-art detectors. Again, the 

presented results largely disagree with the findings of [46]. A substantial 

decline in performance is noticed with decreasing illumination for all the 

detectors in Figure 3-9, whereas it is concluded in [46] that the detectors 

under study have good robustness to illumination changes and achieve 

nearly horizontal repeatability curves. SFOP, SIFT and SURF seem to be 

the best detectors for the Leuven dataset (see Figure 3-9). MSER, Hessian-

Affine and Harris-Affine show relatively low repeatability scores according 

to the presented results—a contradiction once again as they are shown as 

the top three detectors in [46].       

Trees dataset.  This particular dataset involves increasing image blur for a 

textured scene. The results for this dataset are presented in Figure 3-10. 

Hessian-Laplace, SURF, Hessian-Affine and SFOP show good performances 

under increasing image blur. SIFT appears to be severely affected by this 

type of image transformation. MSER also shows low repeatability scores 

which disagree with [46]. The performance of EBR is poor even for the 

images which do not have large amounts of blurring: this largely agrees 

with the results of [46]. 
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Figure 3-9: Repeatability results for state-of-the-art detectors for Leuven dataset (light) using 

proposed measure 1 

 

Figure 3-10: Repeatability results for state-of-the-art detectors for Trees dataset (blur) using 

proposed measure 1 
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UBC dataset.  The effect of increasing JPEG compression on the 

repeatability scores of feature detectors is shown in Figure 3-11.  These 

results seem to be largely consistent with those reported in [46]. Hessian-

Laplace and Hessian-Affine perform best, followed by Harris-Laplace and 

Harris-Affine. SURF also shows relatively good performance. The 

repeatability scores achieved by SIFT decrease rather substantially with 

increasing JPEG compression.   

Wall dataset.  This dataset contains a textured scene with increasing 

viewpoint changes. Figure 3-12 depicts the results obtained for this dataset 

utilizing proposed measure 1. SIFT, SFOP and SURF out-perform other 

detectors for all image pairs in this dataset except the last one (Wall 1 and 

Wall 6). Interestingly, MSER, which is identified as the top performer in  

[46], achieves lower repeatability scores for most image pairs of this dataset 

when compared to Salient—the detector which is shown as the lowest 

ranked in [46].  Salient also out-performs EBR and IBR which again 

contradicts the previous findings [46].  

General Conclusions.  The author has evaluated eleven state-of-the-art 

detectors utilizing proposed measure 1. The results shown in Figure 3-5 to 

Figure 3-12 provide new insights into their behavior under different 

geometric and photometric transformations. It can be concluded that some 

of the observations support previous findings but most of them largely 

disagree with them. There is generally a continuous decline in detector 

performances with any increasing geometric or photometric transformation, 

which is what intuitively one would expect. It is quite noticeable that no 

detector achieves high repeatability scores for all the image transformations 

discussed above.  MSER, which is identified as the best detector in [46], does 

not show promising results in this study except for the Graffiti dataset 

where it dominates all other detectors. It is also important to note that 

Salient, a detector which is generally ranked the lowest in [46], here either 

out-performs or has similar performance to MSER in most cases.   
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Figure 3-11: Repeatability results for state-of-the-art detectors for UBC dataset (JPEG 

compression) using proposed measure 1 

 

Figure 3-12: Repeatability results for state-of-the-art detectors for Wall dataset (viewpoint) 

using proposed measure 1 
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3.4.2 Results under Various Transformations using 

Proposed Measure 2 

The comparative results for state-of-the-art detectors utilizing proposed 

measure 2 for the widely-used Oxford datasets [50] are shown in Figure 

3-13–Figure 3-20. Although the repeatability scores in these results are 

generally higher than those presented in Section 3.4.1, the findings are 

largely consistent for the two evaluations done in this chapter, enabling us 

to draw the same general conclusions. SIFT seems to be the best detector for 

the Bark dataset in Figure 3-13. Hessian-Laplace and Hessian-Affine 

dominate for the Bikes dataset (see Figure 3-14). There is not much to 

distinguish between nearly all detectors for the Boat dataset in Figure 3-15. 

For the Graffiti dataset, MSER out-performs all other detectors (see Figure 

3-16). SFOP and SURF achieve good repeatability scores for the Leuven 

dataset in Figure 3-17. SURF and Hessian-Laplace exhibit good 

performance for the Trees dataset (see Figure 3-18). For the UBC dataset in 

Figure 3-19, Hessian-Laplace and Hessian-Affine show high scores. Finally, 

SURF and SFOP perform well for the Wall dataset in Figure 3-20. 

 

Figure 3-13: Repeatability results for state-of-the-art detectors for Bark dataset (zoom and 

rotation) using proposed measure 2 
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Figure 3-14: Repeatability results for state-of-the-art detectors for Bikes dataset (blur) using 

proposed measure 2 

 

Figure 3-15: Repeatability results for state-of-the-art detectors for Boat dataset (zoom and 

rotation) using proposed measure 2 
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Figure 3-16: Repeatability results for state-of-the-art detectors for Graffiti dataset 

(viewpoint) using proposed measure 2 

 

Figure 3-17: Repeatability results for state-of-the-art detectors for Leuven dataset (light) 

using proposed measure 2 
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Figure 3-18: Repeatability results for state-of-the-art detectors for Trees dataset (blur) using 

proposed measure 2 

 

Figure 3-19: Repeatability results for state-of-the-art detectors for UBC dataset (JPEG 

compression) using proposed measure 2 
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Figure 3-20: Repeatability results for state-of-the-art detectors for Wall dataset (viewpoint) 

using proposed measure 2 

3.5 Summary 

Repeatability, the most widely used performance metric for local 

feature detectors, does not always describe the true performance of the 

detector. This chapter has presented improved repeatability measures 

which provide results that are reliable and consistent with the actual 

performance of a wide variety of detectors across a number of well-

established datasets. Based on the proposed measures, eleven state-of-the-

art local invariant feature detectors were evaluated using standard 

datasets. The results obtained largely contradict the previous findings and 

provide new performance scores for these popular feature detectors under 

various image transformations. These performance curves are more 

consistent with what experienced vision researchers expect and encounter.       
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4 Repeatability: A Systems 

Design Perspective 
 

The value of an idea lies in the using of it. 

THOMAS EDISON 

By utilizing one of the improved repeatability measures proposed in  

Chapter 3, a generic framework is presented in this chapter that allows 

assessment of the upper and lower bounds of detector performance and finds 

statistically significant performance differences between detectors as a 

function of image transformation amount by introducing a new variant of 

McNemar’s test in an effort to design more reliable and effective vision 

systems. The proposed framework is then employed to establish operating 

and guarantee regions for several state-of-the art detectors and to identify 

their statistical performance differences for three specific image 

transformations: JPEG compression, uniform light changes and blurring. 

The results are obtained using newly acquired, large image databases for 

JPEG compression (7546 images with 539 different scenes), blur (5390 

images with 539 different scenes) and uniform illumination changes (7546 

images with 539 different scenes). For improving performance in the 

presence of uniform light variations, this chapter proposes including a pre-

processing step as part of any feature detection technique. It demonstrates 

that this technique improves the performance of state-of-the-art detectors 

significantly in the presence of uniform light variations. 
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4.1 Introduction 

Consider designing a small power supply for one of the coldest inhabited 

regions on the planet – Oymyakon, a village in Russia. Apart from some 

general design constraints, such as the required maximum output voltage, 

freezing temperatures in the area of deployment make this design task more 

challenging as the characteristics of most electronic components change 

with temperature. For example, the capacitance of a capacitor is a function 

of temperature. Similarly, the current-voltage characteristics of a diode are 

also dependent upon temperature. Thus, looking at the datasheets of the 

required electronic components for this power supply would be a logical step 

for finding devices that operate reliably in extremely low temperatures. 

Only those components would be selected which show stable operating 

characteristics across the required range of temperatures to ensure that the 

final output of the power supply would satisfy the initial design 

specifications. 

What is most impressive about the above design example is the 

methodical manner in which electronic systems are designed in general 

through accurate knowledge of the upper and lower performance limits of 

the required electronic components. The operating characteristics of every 

device to be used in the designed system are well known through their 

datasheets which make it easier to predict the output of the system as a 

whole under different scenarios, such as large variations in temperature. 

The main motivating factor behind this approach is to make the designed 

system as much reliable as possible.  

Now come back to the computer vision world and design a simple toy 

car tracking system with local feature detection as its primary stage while 

expecting only 20% uniform decrease in illumination. Looking at the 

repeatability results presented in [46] (which are widely considered the 

most comprehensive) for the Leuven dataset (which involves uniform 

changes in light), MSER appears to be the best option for achieving a 

reasonable value of repeatability (more than 60%) for this small 
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transformation amount. Now consider two sample images shown in Figure 

4-1 which the designed vision system would encounter when deployed in the 

actual environment. The first image is the reference image and the second 

image has undergone 20% uniform decrease in light relative to the 

reference. Theoretically speaking, the feature detection unit (based on 

MSER) of the designed vision system would achieve high repeatability score 

for this negligible image transformation. As it turns out, MSER only 

manages a repeatability value of only 28.17% for the image pair shown, 

which is much less than what is expected of the feature detection unit and 

highlights its unreliable behavior – a stark contrast to the power supply 

design example.    

 

Figure 4-1: Two sample images; the left image is the reference image whereas the right image 

undergoes 20% uniform decrease in illumination   

Having gone through the above two examples, the obvious question 

which springs to mind is: what is the distinguishing factor between the two 

approaches which makes one designed system highly reliable and the other 

one unpredictable? The answer is fairly simple. Every component of an 

electronic system has known operating characteristics (or performance 

limits). The system which is built using these components would continue to 

operate according to the design specifications. On the other hand, how much 

do we all know about the upper and lower performance bounds of the MSER 

detector, essentially the primary stage of the designed vision system, for 

20% uniform decrease in illumination?  Not more than what is reported in 

[46], which is based on a single dataset!  
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Indubitably, vision researchers can incorporate the good practices of 

electronic system designers and take a leaf out of their book. Building 

reliable and effective vision systems is the sole purpose of working in the 

area and perhaps this needs to be reiterated. Recently, it has been 

commented by [49] that the vision community places too much emphasis on 

beating latest benchmark numbers regardless of whether the improvement 

over other methods is statistically significant. This is especially true for 

local feature detection where most methods seem to have confined 

themselves to some particular datasets for demonstrating their superiority 

over other competing algorithms. This is essentially where the original 

objective of building a reliable vision system is lost. The author contends 

that it is time to shed the best-case analysis approach to concentrate on the 

original purpose.  

For achieving the goal of reliability and effectiveness, the operating 

characteristics of every component in the vision system should be well 

known – something which is in line with the electronic system design 

practices but has not been done yet. The question is: how to determine the 

operating characteristics of different components in a vision system? 

Clearly, a principled framework, utilizing suitable metrics that mirror real-

world performance of different components of the system, is required for this 

– something which is currently lacking.     

This chapter attempts to bridge this research gap. Limiting itself to 

the feature detection stage, the chapter demonstrates how one of the 

improved repeatability measures proposed in Chapter 3 can be utilized from 

a vision systems design perspective. Inspired by the good practices of 

electronic systems design, this chapter proposes a generic framework for 

finding the operating and guarantee regions of a local feature detector under 

some specific image transformation. Taking into account the comments of 

[49], the framework also identifies statistically significant performance 

differences between detectors by introducing a variant of McNemar’s test 

[51, 52]. To demonstrate the utility of this framework, three specific image 

transformations, namely JPEG compression, blurring, and uniform light 
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changes, are used. The operating and guarantee regions for several state-of-

the art detectors are established and statistical performance differences are 

identified for these image transformations. These detailed results provide 

insights into the behavior of detectors, and are also useful from the vision 

systems design perspective. The chapter also presents large image 

databases for JPEG compression (7546 images with 539 different scenes), 

blur (5390 images with 539 different scenes) and uniform illumination 

changes (7546 images with 539 different scenes) which are utilized for 

obtaining the results for state-of-the-art feature detectors. Finally, the 

chapter proposes including a pre-processing step as part of any feature 

detection technique for improving its performance significantly under 

uniform changes in light.  

The remainder of the chapter is structured as follows: Section 4.2 

presents a generic framework utilizing one of the improved repeatability 

measures (see Section 3.3.3) for establishing the performance bounds of local 

feature detectors and for identifying statistically significant performance 

differences between them in an effort to build reliable vision systems. By 

employing the proposed framework and a newly acquired large image 

database, results for eleven state-of-the-art feature detectors under JPEG 

compression are presented in Section 4.2.2. To demonstrate the utility of the 

proposed framework, Section 4.4 and Section 4.5 present results for state-of-

the-art feature detectors under blurring and uniform changes of 

illumination respectively. Section 4.6 proposes including a pre-processing 

step as part of any feature detection scheme to improve its performance in 

the presence of uniform light variations and backs it up by presenting 

results for several state-of-the-art detectors utilizing this method. A 

summary of the work described in this chapter is presented in Section 4.7. 

4.2 Proposed Framework  

Enthused by the good practices of electronic systems design for improving 

the reliability of the designed systems, this section presents a generic 
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framework targeting the feature detection stage of the vision system design 

process for developing systems that would follow the design specifications 

and would be more reliable and effective. Before discussing the details, it is 

worth stating that the proposed framework is based on two main principles:   

1) The ability to determine the upper and lower performance bounds of a 

given detector under some specific type and amount of image 

transformation — an idea borrowed from electronic systems design 

practice.  

2) The ability to identify statistically significant performance differences 

between a given detector and some other detector whose performance 

is considered a benchmark under specific type and amount of image 

transformation — a concept for taking into account the comment 

made by [49].  

To adhere to the above-mentioned principles, the framework is divided into 

two distinct components. The details of these components are given below. 

4.2.1 Component 1 

The first part of the framework establishes the upper and lower 

performance bounds of a given detector. It utilizes one of the improved 

repeatability measures presented in Section 3.3.3 for achieving this 

objective. Assuming the availability of a large image database involving a 

specific type of image transformation with known ground truth mapping 

between images and consisting of n individual datasets with each having a 

different scene, the first component of the framework carries out the 

following steps:  

1) The repeatability scores are computed using Equation 3-3 for all 

images in every individual dataset (of the large image database) by 

taking the first image in each dataset which contains no 

transformation, as the reference. Assuming that the amount of image 

transformation is varied in m discrete steps for every single dataset,  



4.2  PROPOSED FRAMEWORK 67 
 

 
 

n values of repeatability are obtained for each discrete step. Let A be 

the set of m discrete steps representing specific transformation 

amounts 

 
                

 
Equation 4-1 

Let    be the set of n repeatability values at any one specific step  , 

where   is an element of set A 

 
                            

 
Equation 4-2 

For example, if the image database consists of 539 different datasets 

(the number which will be used in the next few sections), each 

consisting of a sequence of 14 images, the values of n and m will be 

539 and 14 respectively. In other words, there will be 539 values of 

repeatability available for each step of image transformation amount. 

2) For every discrete step  , the maximum value of repeatability is 

 
                                        

 
Equation 4-3 

The values of set P are plotted against the corresponding image 

transformation amounts from set A to obtain a curve which 

represents the upper bound of performance for the given detector 

with variation in the amount of transformation. This curve is named 

the max curve. 

3) For every discrete step  , the minimum value of repeatability is found 

to give 

 
                                        

 

Equation 4-4 

The values of set Q are plotted against the corresponding image 

transformation amounts from set A to obtain a curve which 

represents the lower bound of performance for the given detector with 

the same variations in image transformation. This curve is named the 

min curve. 

4) For every discrete step  , the median value of repeatability is found 
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Equation 4-5 

The values of set S are plotted against the corresponding image 

transformation amounts from set A to obtain a curve which 

represents the typical performance for the given detector with 

variation in image transformation amount. This curve is named the 

median curve. 

5) By plotting the three curves together, the area between the max curve 

and the min curve is defined as the operating region of the detector. 

The detector is expected to produce repeatability scores that lie inside 

this region. A narrow operating region implies that the detector is 

stable and there is little variation between the maximum and 

minimum repeatability values that it can achieve for some specific 

amount of transformation. On the other hand, a large operating 

region indicates an unstable detector which may achieve high 

repeatability scores for some particular images but may fare poorly 

for others.    

6) The area under the min curve is defined as the guarantee region of 

the detector. Repeatability values achieved by the detector should 

never be as low so as to lie inside this region. A wide guarantee region 

shows that the detector manages to achieve reasonably high 

repeatability values for every input image with increasing amount of 

image transformation. Contrary to that, a small guarantee region 

implies that the detector performs poorly with increasing amount of 

image transformation.   

4.2.2 Component 2 

The second part of the proposed framework identifies statistically 

significant performance differences between two given detectors by 

introducing a variant of the non-parametric McNemar’s test [51, 52]. 

McNemar’s test is a form of chi-squared test with one degree of freedom that 
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evaluates the performance of two algorithms based on their outcomes on a 

case-by-case basis over the same dataset [51, 52]: 

 
   

|       |   

√       

 

 

Equation 4-6 

where     and     are the numbers of occurrences when one algorithm 

succeeds and the other algorithm fails.  If             , the statistic is 

reliable and Z can be converted into a probability using tables [51, 52]. 

For utilizing McNemar’s test, a criterion is needed to determine 

whether a test case results in success or failure. This framework utilizes 

repeatability score as this criterion. By selecting a specific threshold value of 

the repeatability score, it is possible to determine the success or failure of a 

detector. However, there is a variety of feature detectors available which 

show large variations in absolute and relative performances for different 

types of image transformations, so it is difficult to select one specific 

repeatability threshold that would work for all cases without introducing 

any bias. To solve this problem, this framework introduces a variant of 

McNemar’s test. Instead of fixing the threshold value for repeatability, this 

variant utilizes a ROC-like approach, where the value of the threshold is 

varied in t discrete steps for each specific image transformation amount. Let 

X be the set of discrete steps that represent specific test thresholds 

  
               

 

Equation 4-7 

For any value k of set A, which represents the image transformation 

amount, there will be t Z-scores obtained for the two given detectors. This 

may be represented mathematically as: 

 
                            

 
Equation 4-8 

By varying the value of k in the above equation within the range of set A 

allows Z-scores obtained for the two detectors to be viewed as a function of 

image transformation amount and test threshold. This can conveniently be 

displayed in the form of an image. 
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4.3 Results for JPEG Compression 

To demonstrate the utility of the proposed generic framework, this section 

presents results for eleven state-of-the-art feature detectors which establish 

their operating and guarantee regions and identify statistically significant 

performance differences between them under JPEG compression.   

4.3.1 JPEG Image Database 

In [46], the authors examined the performance of different local feature 

detectors on the basis of a single dataset (UBC [50]) for JPEG compression 

ratios varying from 60% to 98%. To investigate the behavior of local feature 

detectors by employing the framework proposed in the previous section 

reliably, a much larger database of images with variation in JPEG 

compression ratio is required. Since there is no such resource available, this 

section presents a newly acquired database of images with JPEG 

compression ratios varying from 0% to 98%. The database consists of 7546 

images with 539 different planar scenes, captured by the author; both 

structured and textured scenes are included to eliminate any potential 

dataset bias. It should be noted that the maximum number of scenes which 

has been used so far for studying the performance of local feature detectors 

under different image transformations is only 60 [177]; the number of 

scenes for the presented database is thus nearly 9 times that of what is used 

in [177]. Moreover, the scenes employed in [177] are not real-world scenes 

and are captured in a highly controlled environment, whereas the presented 

database consists of images with scenes that are encountered routinely in 

everyday life. Some images from the JPEG image database are shown in 

Figure 4-2. For every scene, the JPEG compression ratio is varied in 14 

discrete steps from 0% to 98% (14 x 539 = 7546). The database was 

generated using the cjpeg and djpeg utilities in a Linux-based environment 

by varying the image quality parameter. Each image in the database 

consists of 717 x 1080 pixels. Since there is no geometric transformation 

involved in the case of JPEG compression, the ground truth homography 
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relating any two images of the same scene with different compression ratios 

is simply a 3 x 3 identity matrix. To facilitate future research in this area, 

the image database is made available at [181]. 

 

Figure 4-2: Some images from the JPEG image database 

4.3.2 Establishing Operating and Guarantee Regions 

Results for eleven state-of-the-art detectors utilizing the framework 

proposed in Section 4.2 are presented in Figure 4-3 to Figure 4-13. These 

results determine the upper and lower bounds of performance of detectors 

with varying JPEG compression ratio, and then establish their operating 

and guarantee regions. This approach of presenting performance limits is 

intended to provide information for the design of robust vision systems; it is 

entirely possible that the standard deviations of performance may be 

significantly smaller than these limits. Before discussing the results, it is 

worth stating that this appears to be the first attempt to do such a detailed 

analysis; there is no other work in the literature with which these findings 

can be compared to determine consistencies and contradictions. The results 
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provide useful insight into the behavior of detectors under JPEG 

compression.   

 

Figure 4-3: JPEG database results for MSER utilizing the proposed framework 

 

Figure 4-4: JPEG database results for IBR utilizing the proposed framework 
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Figure 4-3 depicts the operating and guarantee regions for the MSER 

detector. Although MSER does perform well for some particular images with 

increasing JPEG compression ratio (see the max curve in Figure 4-3), it is 

evident from the large operating region that its behavior is unstable. Even 

for small amounts of transformation, MSER fails to achieve high 

repeatability values for some images (see the value of min curve at 20% 

JPEG compression). Such an unpredictable performance does not make 

MSER a suitable choice for vision systems with more than 10% JPEG 

compression ratios as the detector may perform poorly for some images 

encountered.  

The results for IBR are presented in Figure 4-4. IBR is more stable 

than MSER with increasing JPEG compression ratios as its operating region 

is smaller. It is however noticeable that IBR fails to beat the max curve of 

MSER. Although reasonable values of repeatability are achieved by IBR for 

JPEG compression ratios up to 95%, the performance may go to nearly zero 

for some particular images for 98% compression ratio.  

Figure 4-5 shows the results for Salient utilizing the proposed generic 

framework. A much wider guarantee region for JPEG compression ratios up 

to 20% indicates that Salient is relatively more stable compared to MSER 

and IBR up to this point. For ratios greater than that, the operating region 

for Salient becomes wider and the min curve nearly goes to zero for 98% 

JPEG compression ratio. From a vision systems design perspective, Salient 

is a not an appropriate option if the JPEG compression ratio is expected to 

be more than 20%.  

 It is evident from Figure 4-6 that EBR shows highly unstable 

behavior. The operating region is wide, indicating that the performance of 

EBR may vary between rather high and rather low repeatability values for 

increasing JPEG compression ratios, depending upon the image content. 

Again, such behavior is not desirable when designing vision systems as it 

jeopardizes the final output of the system. Thus, EBR does not appear to be 

the best detector, even for vision systems expecting small JPEG 

compression ratios. 
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Figure 4-5: JPEG database results for Salient detector utilizing the proposed framework 

 

Figure 4-6: JPEG database results for EBR utilizing the proposed framework 
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Figure 4-7: JPEG database results for SURF detector utilizing the proposed framework 

 

Figure 4-8: JPEG database results for SFOP utilizing the proposed framework 
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The operating and guarantee regions for SURF are shown in Figure 

4-7. SURF performs well for increasing JPEG compression ratios up to 95% 

as is evident from its wide guarantee region. It shows relatively poor 

stability only for the case when JPEG compression ratio is 98%. This makes 

SURF a good choice from a vision systems design perspective when the 

expected JPEG compression ration does not exceed 95%.  

Figure 4-8 depicts the results for SFOP. It is clear that the detector 

experiences small but continuous degradation in performance with 

increasing JPEG compression ratios; indeed, its narrow operating region for 

compression ratios up to 60% indicates that the detector is quite stable up to 

this point. For JPEG compression ratios exceeding 90%, SFOP may fail to 

achieve repeatability scores greater than 35%, depending upon the image 

content.  

 The results for Harris-Laplace, Hessian-Laplace, Harris-Affine and 

Hessian-Affine utilizing the proposed framework are presented in Figure 

4-9 to Figure 4-12 respectively. The narrow operating regions for these 

detectors, especially Hessian-Laplace and Hessian-Affine, demonstrate their 

stability to increasing JPEG compression. These four detectors also have 

wide guarantee regions, which indicate that they manage to achieve high 

repeatability scores even for large JPEG compression ratios.  Although the 

performance of these detectors fall sharply when the compression ratio 

exceeds 85%, the repeatability scores are still reasonable compared to all 

other detectors but SURF. 

   Finally, the operating and guarantee regions for SIFT are depicted 

in Figure 4-13. Although the performance of SIFT is reasonable, its 

operating region is wider than those of Hessian-Laplace and Hessian-Affine 

and grows with increasing JPEG compression ratio. Moreover, the 

performance of SIFT may go to nearly zero depending upon the image 

content for 98% compression ratio (see the min curve in Figure 4-13). It may 

be concluded that SIFT is a suitable option for vision systems expecting 

JPEG compression ratios up to 50%.  
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Figure 4-9: JPEG database results for Harris-Laplace utilizing the proposed framework 

 

Figure 4-10: JPEG database results for Hessian-Laplace utilizing the proposed framework 
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Figure 4-11: JPEG database results for Harris-Affine utilizing the proposed framework 

 

Figure 4-12: JPEG database results for Hessian-Affine utilizing the proposed framework 
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Figure 4-13: JPEG database results for SIFT detector utilizing the proposed framework 

Not only do the results shown in Figure 4-3 to Figure 4-13 for JPEG 

compression provide insights into the behavior of detectors for this 

particular transformation, they also allow a vision system designer to select 

the best detector considering the design constraints for achieving more 

reliability — a feature inherited from electronic systems design practices.      

4.3.3 Identifying Statistically Significant Performance 

Differences 

For the statistical performance comparison of the feature detectors utilizing 

the proposed framework, results are presented in Figure 4-14 to Figure 

4-17. Color coding in these figures indicate the Z-scores obtained as a 

function of image transformation amount and McNemar’s test threshold 

when one detector is compared with another. Although the value of Z is 

always positive, here a sign convention has been used to distinguish the 

detector with the better performance of the two examined: a positive Z-score 

shows that the first detector is better than the second, whereas a negative 

value of Z indicates the converse. 
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Figure 4-14: JPEG database results for Hessian-Laplace, SFOP and SURF with other 

detectors showing Z-scores obtained using the proposed framework; positive Z-scores indicate 

that the first detector is better than the second whereas negative values show the converse 
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It is evident from Figure 4-14 that Hessian-Laplace out-performs 

EBR, IBR, MSER and Salient for most JPEG compression ratios when the 

test threshold is varied from 10% to 90% as indicated by large positive 

values of Z — a confirmation that the performance differences between 

Hessian-Laplace and these detectors are statistically significant. A 

comparison of Hessian-Laplace with Harris-Laplace, Harris-Affine, Hessian-

Affine and SURF shows that they have broadly similar performance, 

although Hessian-Laplace does dominate them for some particular JPEG 

compression ratios at specific test thresholds. From Figure 4-14, it can be 

concluded that Hessian-Laplace also performs better than SFOP and SIFT. 

The statistical comparison of SFOP and SIFT is interesting: the two 

detectors have largely similar performance but for some particular test 

thresholds and JPEG compression ratios, SFOP out-performs SIFT and vice 

versa. SURF is dominant when compared to SIFT, Salient and SFOP. It 

appears that EBR fails to achieve better performance than all other state-of-

the-art feature detectors in most cases, as is evident from the large negative 

values of Z in Figure 4-15. IBR is also comprehensively outperformed by 

SURF, and to some extent by SFOP and SIFT.  

Harris-Laplace and Harris-Affine show better performance than IBR, 

MSER, Salient, SIFT and SFOP for most test thresholds and JPEG 

compression ratios in Figure 4-16. Moreover, their performances are largely 

similar to each other and to those of SURF and Hessian-Affine. In Figure 

4-17, Hessian-Affine out-performs MSER, IBR, Salient and SFOP. The large 

positive values of Z for some particular test thresholds and JPEG 

compression ratios indicate that the performance differences between 

Hessian-Laplace and SIFT are statistically significant, with the former 

appearing better of the two compared. SURF, SFOP and SIFT also seem to 

out-perform MSER. Finally, for some particular test thresholds and JPEG 

compression ratios in Figure 4-17, Salient performs better than MSER and 

vice versa.     
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Figure 4-15: JPEG database results for EBR, IBR and Salient with the other detectors 

showing Z-scores obtained utilizing the proposed framework; positive Z-scores indicate that 

the first detector is better than the second whereas the  negative values show the converse 
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Figure 4-16: JPEG database results for Harris-Laplace and Harris-Affine with other 

detectors showing Z-scores obtained using the proposed framework; positive Z-scores indicate 

that the first detector is better than the second whereas negative values show the converse  
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Figure 4-17: JPEG database results for Hessian-Affine and MSER with the other detectors 

showing Z-scores obtained utilizing the proposed framework; positive Z-scores indicate that 

the first detector is better than the second whereas the negative values show the converse 

4.4 Results for Blur 

This section presents results for some of these feature detectors utilizing the 

proposed generic framework under changes in blur. A newly acquired 

database is employed to obtain these results which establish the upper and 
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lower performance bounds of the detectors and find statistically significant 

performance differences between them.  

4.4.1 Blur Image Database 

For investigating the behavior of local feature detectors utilizing the 

proposed framework under blur changes, a large database of images 

involving the same scenes as in the JPEG image database is presented with 

variations in the amount of blur. It should be noted that only two datasets of 

six images each, one containing a textured and the other a structured scene 

(Trees and Bikes datasets respectively), are used in [46] to determine the 

performance of six state-of-the-art local feature detectors. Instead, the 

presented database consists of 5390 images in total with 539 different 

planar scenes captured by the author. Both structured and textured real-

world scenes are included to ensure that there is no bias shown towards any 

particular detector when determining the upper and lower performance 

bounds. Some images from the blur image database are shown in         

Figure 4-18.  

Each image in the presented database consists of 717 x 1080 pixels. 

The amount of blur is varied in 10 discrete steps for each scene (10 x 539 = 

5390). The database has been generated digitally utilizing MATLAB; the 

first image of every scene (having no blur) is convolved repeatedly with 

Gaussian blur kernels, having the same size as the image, with increasing 

standard deviations to produce a sequence of images with increasing 

amount of blur. More specifically, standard deviations ranging from 0.5 to 

4.5 with a step size of 0.5 are used for the blur kernels. Since the increasing 

amount of blur does not cause any geometric transformation in the image 

with respect to the previous images in the same sequence, the ground truth 

homography which provides the image-to-image mapping for any two 

images of the same scene with different amounts of blur is simply a 3 x 3 

identity matrix. Finally, in an effort to make the presented database a 

benchmark against which the future detectors can be examined, it has been 

made available at [182]. 
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Figure 4-18: Some images from the Blur image database 

4.4.2 Establishing Operating and Guarantee Regions 

Figure 4-19 to Figure 4-28 present results for several state-of-the-art feature 

detectors utilizing the proposed generic framework which establish their 

operating and guarantee regions under changes in blur. Again, there is no 

other detailed work in the literature with which these results can be 

compared to determine the consistencies and contradictions. In [46], the 

authors had concluded on the basis of only two datasets that the detectors 

under examination are robust to changes in blur, as they featured almost 

horizontal repeatability curves. The results presented here are more 

comprehensive and largely contradict that perception. It should be noted 

that SIFT detects more than 20,000 features for some images in the blur 

image database which makes it very time-consuming to do such a detailed 

analysis for SIFT. In the case of JPEG image database, it took more than 

two months to obtain results on HP ProLiant DL380 G7 system with Intel 

Xeon 5600 series processors. Therefore, results for SIFT are not provided in 

this section. 
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Figure 4-19: Blur database results for MSER utilizing the proposed framework 

 

Figure 4-20: Blur database results for IBR utilizing the proposed framework 
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Figure 4-21: Blur database results for Salient detector utilizing the proposed framework 

 

Figure 4-22: Blur database results for EBR utilizing the proposed framework 
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The results for MSER and IBR are shown in Figure 4-19 and Figure 

4-20 respectively. It is evident that the two detectors undergo a decline in 

performance with increasing amount of blur. Both MSER and IBR are 

segmentation-based detectors but it is interesting to note that the guarantee 

region of IBR is much wider than that of MSER. Moreover, the operating 

region of MSER is large, indicating that the detector is unstable; it may 

provide high repeatability scores for some particular images yet may fare 

poorly for others. Such unpredictable behavior is not suitable from the 

vision systems design viewpoint. 

Figure 4-21 depicts the operating and guarantee regions for Salient. 

There is continuous degradation in the performance of Salient with 

increasing blur. However, the detector appears more stable than MSER and 

IBR, as indicated by a narrow operating region. The results for EBR are 

shown in Figure 4-22. The performance of EBR depends largely upon the 

image content as it may achieve good repeatability scores for some image 

while its performance may go to zero for others. A large operating region for 

EBR points to its unstable behavior under changes in the amount of blur.  

The operating and guarantee regions for SURF are shown in Figure 

4-23. It is clear that the operating region of SURF grows rapidly with 

increasing blur, thus indicating unpredictable behavior of the detector. 

Depending upon the image content, SURF may fail to provide repeatable 

features in the presence of increasing blur (see the min curve in Figure 

4-23). Conversely, SFOP shows comparatively good performance with a 

large guarantee region and a narrow operating region (see Figure 4-24). It 

seems quite stable under increasing blur and the max and min curves are 

also fairly smooth, indicating a gradual degradation in performance. Figure 

4-25 to Figure 4-28 depict results for Harris-Laplace, Hessian-Laplace, 

Harris-Affine and Hessian-Affine respectively. The operating and guarantee 

regions of these four detectors are similar, although Hessian-based detectors 

appear better than Harris-based ones. For small amounts of blur, the 

detectors demonstrate good performance but may fare poorly in the presence 

of increasing blur.  
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Figure 4-23: Blur database results for SURF detector utilizing the proposed framework 

 

Figure 4-24: Blur database results for SFOP utilizing the proposed framework 



4.4  RESULTS FOR BLUR 91 
 

 
 

 

Figure 4-25: Blur database results for Harris-Laplace utilizing the proposed framework 

 

Figure 4-26: Blur database results for Hessian-Laplace utilizing the proposed framework 
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Figure 4-27: Blur database results for Harris-Affine utilizing the proposed framework 

 

Figure 4-28: Blur database results for Hessian-Affine utilizing the proposed framework 
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4.4.3 Identifying Statistically Significant Performance 

Differences 

Figure 4-29 to Figure 4-31 depict the results for statistical performance 

comparison of state-of-the-art feature detectors utilizing the proposed 

framework under changes in blur. As in the figures of Section 4.3.3, color 

coding in Figure 4-29 to Figure 4-31 indicates the Z-scores obtained as a 

function of image transformation amount and McNemar’s test threshold 

when one detector is compared with another. The same sign convention has 

been used to distinguish the detector with the better performance of the two 

examined: a positive Z-score shows that the first detector is better than the 

second whereas a negative value indicates the converse. 

It is clear from Figure 4-29 that the performance differences between 

Hessian-Laplace and other detectors, except Hessian-Affine, are statistically 

significant for most test thresholds and blur amounts, with Hessian-Laplace 

turning out to be the better detector of the two compared. Harris-Laplace 

performs better than MSER and Salient (see Figure 4-29) but is dominated 

by Hessian-Affine, IBR, SFOP and SURF for most test thresholds and blur 

amounts. In Figure 4-30, it is evident that EBR is comprehensively out-

performed by all other detectors but MSER. Harris-Affine and Harris-

Laplace show largely similar performances (see Figure 4-30). The 

performance of Harris-Affine is better than MSER and Salient in Figure 

4-30, while large negative Z-scores show the supremacy of Hessian-Affine, 

IBR, SFOP and SURF over Harris-Affine. Like Hessian-Laplace, Hessian-

Affine out-performs IBR, MSER, Salient, SFOP and SURF in Figure 4-31. 

The performance differences between IBR and MSER are statistically 

significant, with IBR appearing the better of the two. IBR also performs 

better than Salient. When IBR is compared with SURF and SFOP, both 

positive and negative Z-scores are obtained for different test thresholds and 

blur amounts (see Figure 4-31). Also, MSER is dominated by Salient, SURF 

and SFOP, whereas Salient is out-performed by SFOP and SURF. 
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Figure 4-29: Blur database results for Harris-Laplace and Hessian-Laplace with other 

detectors showing Z-scores obtained using the proposed framework; positive Z-scores indicate 

that the first detector is better than the second whereas negative values show the converse 
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Figure 4-30: Blur database results for EBR and Harris-Affine with the other detectors 

showing Z-scores obtained using the proposed framework; positive Z-scores indicate that the 

first detector is better than the second whereas the negative values show the converse 
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Figure 4-31: Blur database results for Hessian-Affine, IBR, MSER, SFOP and SURF with 

other detectors showing Z-scores obtained using  proposed framework; positive Z-scores show 

that the first detector is better than the second whereas  negative values show the converse 
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4.5 Results for Uniform Light Changes 

This section presents results for the state-of-the-art feature detectors under 

uniform changes in illumination. These results determine the operating and 

guarantee regions of the detectors by employing a large image database and 

identify statistical performance differences between them under uniform 

changes in light. 

4.5.1 Light Image Database 

Among the Oxford datasets [50], only Leuven, consisting of a sequence of six 

images, involves uniform changes in light. In [177], a large image database 

is presented to investigate the effect of light direction on the performance of 

feature detectors. However, the total number of scenes that have been used 

in that database is only 60. Also, the scenes employed are not real-world 

scenes but are captured in a highly controlled environment. A large image 

database is thus presented in this section to investigate the behavior of local 

feature detectors under uniform changes in illumination by employing the 

framework proposed in Section 4.2. The database consists of 7546 images, 

involving the same 539 scenes as in the JPEG and blur image databases, 

with variation in illumination. Both structured and textured real-world 

scenes are included. The number of scenes for the presented database is 

nearly 9 times that of what is used in [177]. Some images from the light 

image database are shown in Figure 4-32.  

Each image in the database consists of 717 x 1080 pixels. For every 

scene, the brightness level is decreased in 14 discrete steps from 0% to 90% 

(14 x 539 = 7546). The database has been generated digitally using 

MATLAB by varying the image brightness level. The ground truth 

homography that relates any two images of the same scene with different 

light conditions in the presented database is a 3 x 3 identity matrix as 

uniform changes in light do not result in any geometric transformation. The 

image database has been made available at [183] to facilitate future 

research. 
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Figure 4-32: Some images from the Light image database 

4.5.2 Establishing Operating and Guarantee Regions 

Figure 4-33 to Figure 4-42 depict the upper and lower performance bounds 

of several state-of-the-art feature detectors under uniform changes in light 

utilizing the proposed generic framework. Again, the results of SIFT are not 

provided as it detects a large number of features in some images of the 

database (in excess of 20,000), making the computation time prohibitively 

large for such a detailed analysis.  

In [46], the authors have concluded that the six detectors under study 

are highly robust to uniform variations in illumination. As mentioned 

earlier, this deduction is based on a single dataset (Leuven [50]). The results 

presented here largely contradict those findings, showing that there is a 

rapid decline in the performance in the presence of uniform light changes. A 

similar performance degradation effect is observed in [177] while studying 

the behavior of feature detectors under changes in light direction.  
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Figure 4-33: Light database results for MSER utilizing the proposed framework 

 

Figure 4-34: Light database results for IBR utilizing the proposed framework 
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Figure 4-35: Light database results for Salient detector utilizing the proposed framework 

 

Figure 4-36: Light database results for EBR utilizing the proposed framework 
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Figure 4-33 and Figure 4-34 show the results for the two 

segmentation-based detectors, MSER and IBR, respectively. It is evident 

that both the detectors have very large operating regions which indicate 

their unstable behavior in the presence of decreasing light. It is interesting 

to note that the min curve of MSER, the detector which is identified as the 

best for this specific image transformation in [46], reaches zero for only 50% 

uniform decrease in light (see Figure 4-33). MSER and IBR do not seem 

suitable for vision systems expecting more than 10% uniform decrease in 

light. 

The operating and guarantee regions for Salient and EBR are 

depicted in Figure 4-35 and Figure 4-36 respectively. As with MSER and 

IBR, both Salient and EBR have large operating regions, indicating that 

they may achieve high repeatability values for some particular images yet 

may fare poorly for some other images in the presence of uniform changes in 

illumination; such unpredictable behavior is not desirable from a vision 

systems design perspective. There is a rapid decline in the performance of 

SURF with decreasing light (see Figure 4-37). SFOP seems to perform much 

better as indicated by its wide guarantee region. However, its operating 

region shows that the performance of the detector may vary between high 

and low values of repeatability. 

    The results for Harris-Laplace, Hessian-Laplace, Harris-Affine and 

Hessian-Affine are depicted in Figure 4-39 to Figure 4-42 respectively. It is 

clear that all these detectors undergo a quick degradation in performance 

with decreasing light. The min curves for these detectors show that they 

hardly manage to achieve a repeatability score of 10-15% in the presence of 

only 20% uniform decrease in light (see Figure 4-39 – Figure 4-42). The 

operating regions of these detectors are large and their guarantee regions 

are narrow, meaning that they may achieve high repeatability scores for 

some images but may fare poorly for others. This large variation in 

performance for the same amount of image transformation is not desirable 

from a vision systems design perspective.   
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Figure 4-37: Light database results for SURF detector utilizing the proposed framework 

 

Figure 4-38: Light database results for SFOP utilizing the proposed framework 
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Figure 4-39: Light database results for Harris-Laplace utilizing the proposed framework 

 

Figure 4-40: Light database results for Hessian-Laplace utilizing the proposed framework 
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Figure 4-41: Light database results for Harris-Affine utilizing the proposed framework 

 

Figure 4-42: Light database results for Hessian-Affine utilizing the proposed framework 
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4.5.3 Identifying Statistically Significant Performance 

Differences 

In an effort to find the statistically significant performance differences 

between these state-of-the-art feature detectors, results are presented in 

Figure 4-43 to Figure 4-45 utilizing the proposed framework. Again, the 

color coding in these figures indicate the Z-scores obtained as a function of 

image transformation amount and McNemar’s test threshold when one 

detector is compared with another detector. The same sign convention has 

been used to distinguish the detector with the better performance: a positive 

Z-score shows that the first detector is better than the second and vice 

versa. 

Figure 4-43 shows the performance differences of Harris-Laplace and 

Hessian-Laplace with the other detectors. It appears that nearly all 

detectors, including EBR, perform better than Hessian-Laplace for most test 

thresholds and decreasing light percentages. Apart from Hessian-Laplace 

and Hessian-Affine, Harris-Laplace fails to out-perform other detectors and 

is particularly dominated by SFOP, Salient and IBR. EBR shows better 

performance when compared with Hessian-Affine, Harris-Laplace, Harris-

Affine and SURF (see Figure 4-44). SFOP, Salient and IBR show supremacy 

over EBR, whereas MSER has largely similar performance to EBR for most 

test thresholds and decreasing light percentages. As with Harris-Laplace, 

Harris-Affine is also out-performed by SFOP, Salient, IBR and MSER in 

Figure 4-44. 

While Hessian-Affine and SURF seem to have largely similar 

performances, Hessian-Affine fares poorly when compared with IBR, MSER, 

Salient and SFOP (see Figure 4-45). Of the two segmentation-based 

detectors, IBR seems the better. MSER and IBR out-perform SURF but are 

dominated by SFOP and Salient. The performance differences of SURF with 

SFOP, and Salient are also statistically significant for most test thresholds 

and decreasing light percentages, with SURF emerging as the worst of the 

detectors compared. SFOP also out-performs Salient comprehensively.     
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Figure 4-43: Light database results for Harris-Laplace and Hessian-Laplace with other 

detectors showing Z-scores obtained using the proposed framework; positive Z-scores indicate 

that the first detector is better than the second whereas negative values show the converse 
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Figure 4-44: Light database results for EBR and Harris-Affine with the other detectors 

showing Z-scores obtained using the proposed framework; positive Z-scores indicate that the 

first detector is better than the second whereas the negative values show the converse 
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Figure 4-45: Light database results for Hessian-Affine, IBR, MSER, SFOP and SURF with 

other detectors showing Z-scores obtained using  proposed framework; positive Z-scores show 

that the first detector is better than the second whereas  negative values show the converse 
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4.6 Proposed Solution for Uniform Light Changes 

As shown in the previous section, the state-of-the-art local feature detectors 

undergo a rapid decline in performance for even a small uniform change in 

light conditions, which is not desirable from a vision systems design 

viewpoint. This section presents a solution for improving the performance of 

these feature detection techniques under uniform changes in illumination. 

For demonstrating the effectiveness of the proposed solution, results for 

several state-of-the-art feature detectors utilizing the light image database 

(see Section 4.5.1) are presented which show significant improvement in 

performance.   

4.6.1 Method 

The method essentially adds a simple pre-processing stage to any feature 

detection technique in an effort to counter the negative effects of uniform 

changes in light on its performance. The method comprises of three distinct 

steps: 

1) The arithmetic mean    and standard deviation    of the input image 

are calculated. 

2) The pixel values of the input image are adjusted to achieve a target 

arithmetic mean    and a target standard deviation    by using the 

following equation:  

 
     (

        

  
     )      

 

Equation 4-9 

     where    is an original pixel value and      is the adjusted one. As 

most distributions are symmetric,                         is selected as the 

value for    to be used in Equation 4-9. For an 8-bit image pixel, the 

value of    will be 128. The value of    is chosen to be 

(                     )  ⁄   since 99.5% of Gaussian distributed values lie 
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within ±3 standard deviations of the arithmetic mean. For an 8-bit 

image pixel, the value of    is      ⁄  

3) The adjusted pixel values obtained from Equation 4-9 are clipped in 

the range 0 to                          This essentially means that all 

adjusted pixel values which are less than zero are made equal to the 

minimum possible value in the range whereas the values greater than 

                        are made equal to the maximum possible value in 

the range. For an 8-bit image pixel, this range is 0 to 255. 

4.6.2 Results for State-of-the-art Detectors 

The results for several state-of-the-art feature detectors using the proposed 

solution are presented in Figure 4-46 to Figure 4-54 for the light image 

database. It is evident that there is a marked improvement in the 

performances of detectors as compared to the results presented in Section 

4.5 for uniform changes in light. Hessian-Laplace, Harris-Laplace, Hessian-

Affine, Harris-Affine, SFOP and SURF show stable behavior for decreasing 

light conditions as indicated by their narrow operating regions. The 

guarantee regions of these detectors are also wide enough to show that there 

is minor degradation in the performances of detectors with decreasing light. 

MSER and IBR also show significant improvement as compared to the 

results presented in Figure 4-33 and Figure 4-34. However, barring EBR, 

their performance is overshadowed by the other detectors. Of all the 

detectors, EBR performs the worst but it still achieves better repeatability 

scores when compared to the results presented in Figure 4-36. Even for 90% 

decrease in light, all the above-mentioned detectors including EBR show 

reasonable performance, which provides evidence of the effectiveness of the 

proposed solution.    
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Figure 4-46: Light database results for MSER with the proposed method 

 

Figure 4-47: Light database results for IBR with the proposed method 
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Figure 4-48: Light database results for Hessian-Laplace with the proposed method 

 

Figure 4-49: Light database results for Harris-Laplace with the proposed method 
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Figure 4-50: Light database results for SURF with the proposed method 

 

Figure 4-51: Light database results for SFOP with the proposed method 
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Figure 4-52: Light database results for Hessian-Affine with the proposed method 

 

Figure 4-53: Light database results for Harris-Affine with the proposed method 
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Figure 4-54: Light database results for EBR with the proposed method 

4.7 Summary

For designing reliable and more effective vision systems, this chapter has 

presented a generic framework based on one of the improved repeatability 

measures proposed in Section 3.3.3. The framework has two important 

steps: the first one is the estimation of the upper and lower bounds of 

performance for a given feature detector under a specific image 

transformation in order to segment detector performance into operating and 

guarantee regions; and the second step is the identification of statistically 

significant performance differences between detectors as a function of the 

amount of image transformation. To that end, the chapter has introduced a 

variant of McNemar’s test to find statistically significant performance 

differences. It has demonstrated the utility of the proposed framework by 

establishing operating and guarantee regions for several state-of-the art 

detectors and has identified statistical performance differences between 

them under JPEG compression, uniform light changes and blurring. Results 

are obtained by utilizing newly acquired, large image databases for JPEG 
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compression (7546 images with 539 different scenes), blur (5390 images 

with 539 different scenes) and uniform illumination changes (7546 images 

with 539 different scenes). These detailed results provide novel insights into 

the strengths and weaknesses of the detectors from a vision system design 

perspective. Finally, the chapter has proposed the inclusion of a pre-

processing step as part of any feature detection technique to improve 

performance under uniform illumination changes. Results are presented 

which show that this pre-processing step drastically improves performance 

for several state-of-the-art detectors in the presence of uniform light 

changes. 
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5 Rapid Online Analysis of 

Local Feature Detectors and 

their Complementarity 
 

Measure what is measurable, and make measurable what is not so. 

GALILEO GALILEI 

A vision system that can assess its own performance and take appropriate 

actions online to maximize its effectiveness would be a step towards 

achieving the long-cherished goal of imitating humans. This chapter 

proposes a method for performing an online performance analysis of local 

feature detectors, the primary stage of many practical vision systems. It 

advocates the spatial distribution of local image features as a good 

performance indicator and presents a metric that can be calculated rapidly, 

concurs with human visual assessments and is complementary to existing 

offline measures such as repeatability. The metric is shown to provide a 

measure of complementarity for combinations of detectors, correctly 

reflecting the underlying principles of individual detectors. Qualitative 

results on well-established datasets for several state-of-the-art detectors are 

presented based on the proposed measure. Using a hypothesis testing 

approach and a newly-acquired, larger image database, statistically-

significant performance differences are identified. Different detector pairs 

and triplets are examined quantitatively and the results provide a useful 

guideline for combining detectors in applications that require a reasonable 

spatial distribution of image features, such as image registration and 

accurate multi-view geometry estimation. A principled framework for 

combining feature detectors in these applications is also presented. Timing 

results reveal the potential of the metric for determining the performance of 

detectors and their complementarity in online applications. 
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5.1 Introduction 

The last decade has seen significant interest in the development of low-level 

vision techniques that are able to detect, describe and match image features 

[1, 12-14, 16, 18]. The most popular of these algorithms operate in a way 

that makes them reasonably independent of geometric and photometric 

changes between the images being matched. Indubitably, the Scale 

Invariant Feature Transform (SIFT) [12] has been the operator of choice 

since its inception and has provided the impetus for the development of 

other techniques such as Speeded-Up Robust Features (SURF) [13] and the 

Scale Invariant Feature Operator (SFOP) [16].  

One of the main driving factors in this area is the improvement of 

detector performance. In Chapters 3 and 4, the author focused on 

repeatability [15, 46], the ability of a detector to identify the same image 

features in a sequence of images, which is considered a key indicator of 

detector performance and is the most frequently-employed measure in the 

literature for evaluating the performance of feature detectors [1]. However, 

it has been emphasized that repeatability is not the only characteristic that 

guarantees performance in a particular vision application [1, 184]; 

attributes such as efficiency and the density of detected features are also 

important. It is therefore desirable to be able to characterize the 

performance of a feature detector in several complementary ways, rather 

than relying only on repeatability [1, 129, 185]. Moreover, it is not possible 

to compute repeatability online in practical applications as doing so involves 

‘ground truth’ data which are generally not available. Hence, a performance 

measure that can be calculated rapidly to assess detector performance 

online would be useful.       

One property that is crucial for the success of any feature detector is 

the spatial distribution of detected features, known as the coverage [129]. 

Many applications, such as tracking and narrow-baseline stereo, require a 

reasonably even distribution of detected interest points across an image to 

yield accurate results; however, it is sometimes found that the features 



5.1  INTRODUCTION   119 

 

identified by detectors are concentrated on a prominent textured object and 

hence cover only a small region of the image. Robustness to occlusion, 

accurate multi-view geometry estimation, accurate scene interpretation and 

better performance on blurred images are some of the advantages of 

detectors whose features cover images well [129, 185].   

Despite its significance, there is no standard metric for measuring the 

coverage of feature detectors [129]. An approach based on the convex hull is 

employed in [45] to measure the spatial distribution of detected features. 

However, the convex hull traces the boundary of interest points without 

considering their density within that boundary and, as will be demonstrated 

in Section 5.2, results in an over-estimation of coverage. The convex hull 

approach is criticized by [19] and an alternative measure, completeness,  

presented. Completeness, however, employs an entropy coding scheme and 

Gaussian image model; results may vary with other coding schemes and 

image models, so this approach merits further investigation. Moreover, the 

metric is compute-intensive and so cannot be employed online for evaluating 

performance.       

To fill this void, this chapter explores the online analysis of local 

feature detectors, proposing a metric that can be computed rapidly to 

measure the spatial distribution of detected features. It is intended to be 

used only with detectors that are known to have similar performances with 

offline measures such as repeatability and robustness to geometric and 

photometric transformation; this eliminates the possibility of favoring a 

poor detector that randomly scatters its points everywhere in the image. It 

can also be utilized in a framework such as [185] which is dependent upon 

the coverage of interest points, including those that cannot be matched 

accurately. Unlike repeatability [46, 47, 186], which is essentially a 

theoretical measure due to its requirement for ground truth, the proposed 

measure is a viable performance indicator for detectors in practical 

applications that require a reasonable distribution of detected features 

(assuming similar performances with offline measures). It will be 

demonstrated that the proposed measure concurs with human visual 
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assessments and is reliable. By employing a statistical hypothesis testing 

approach, a quantitative evaluation based on the proposed measure will be 

carried out to ascertain the statistical significance of performance 

differences between several state-of-the-art local feature detectors.  

Since the notion of complementary feature detectors (i.e., 

combinations of detectors that identify different types of feature) was 

introduced by [187], they have become more popular for vision tasks [30, 

188, 189]. Hence, it is valuable to have a measure of the complementarity of 

combinations of feature detectors so that their combined performance can be 

predicted and measured [1]. This chapter shows how mutual coverage, the 

coverage of a combination of the interest points from multiple detectors, can 

be used to measure complementarity and presents results from empirical 

investigations for combinations of detectors that reflect their underlying 

principles. The chapter also highlights the potential of the proposed 

measure as an online analysis tool for complementarity—the first of its 

kind, to the author’s knowledge. 

The remainder of the chapter is structured as follows: Section 5.2 

describes the coverage measure, which is used to evaluate the performances 

of the eleven state-of-the-art feature detectors on well-established datasets 

encountered in Chapter 3. In order to avoid inadvertent data dependencies, 

Section 5.3 presents results obtained by employing statistical hypothesis 

testing on a new database of 520 images using the proposed coverage 

measure for the same detectors. A complementarity measure derived from 

coverage, termed mutual coverage, is proposed in Section 5.4 and its 

effectiveness is demonstrated by results for combinations of detectors. 

Section 5.5 discusses the feasibility of the proposed measures for real-world 

scenarios and demonstrates their speed advantage from a computational 

perspective. A framework for combining feature detectors in applications 

which require reasonable distribution of feature points is proposed in 

Section 5.6. Finally, a summary of the chapter is presented in Section 5.7. 
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5.2 Measuring Coverage 

This section presents a method for measuring the spatial distribution of 

detector responses rapidly that makes it suitable for use in practical 

applications. Qualitative results on the widely-used Oxford datasets [50] are 

presented for the eleven state-of-the-art feature detectors to demonstrate 

the effectiveness of the measure. 

5.2.1 Proposed Method 

There are several desiderata for a coverage measure:  

1) Consistency with human visual inspection. Humans can easily 

distinguish between a set of features that cover only a small region 

and one that is well-distributed over the whole image. The differences 

in spatial distribution of two sets of features indicated by the measure 

should be consistent with those obtained by human visual inspection. 

2) Penalization of clustered feature sets. As stated in Section 5.1, it is 

quite common for local feature detectors to detect many feature points 

near a prominent textured object in an image. A useful measure 

would penalize techniques that concentrate interest points in a small 

region as that does not improve coverage. 

3) Avoidance of over-estimation. The measure should avoid over-

estimation of coverage by taking into account the density of feature 

points. To illustrate this, consider the simple example in Figure 5-1. 

Assuming that the four points shown in the image on the left are the 

output of a local feature detector for an image of size 640 x 480, the 

region enclosed by the dotted line is the convex hull of these four 

points. The ratio of the area of the convex hull to the area of the 

image, as used in [45], shows that these four points cover nearly 32% 

of the area of the entire image. If an additional interest point is 

detected inside the same region, as shown in the right-hand image of 
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Figure 5-1, the coverage reported by this measure is unchanged, 

despite there being an improvement in the spatial distribution of 

points. This is certainly not desirable. 

 

Figure 5-1: A simple example: (left) an image with four detected interest points and their 

convex hull; (right) the same image with an additional detected interest point and convex 

hull 

4) Homogeneous or non-textured regions. Most local feature detectors 

work with high-entropy areas in the image. Consequently, 

homogeneous or non-textured regions have long been considered 

uninteresting by the vision community. However, the development of 

methods like NF-features [190] has shown the utility of non-textured 

regions in feature detection and matching. Unlike [19], which 

penalizes features appearing in homogeneous areas, the author 

argues that a good coverage measure should encompass all repeatable 

features, irrespective of the texture of the region in which they are 

detected. 

5) Ground truth information. As mentioned above, repeatability, the 

most-widely employed performance measure for feature detectors, 

relies on the availability of ground truth, ultimately limiting its use to 

offline evaluation only. The completeness measure proposed in [19] 

requires calculation of entropy density of the entire image for use as 

reference, also making it unsuitable for online use. A metric that does 

not require ground truth information or reference computation would 
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be valuable for online applications. Since it is assumed here that all 

regions of the image are equally important for feature detection 

irrespective of the image content and texture (see point 4), it 

automatically eliminates the requirement to compute a reference.      

6) Low computation cost. Online performance analysis of a feature 

detector can help it adapt to the nature of the imagery it is 

processing. However, existing performance measures for local feature 

detectors allow only offline evaluation due to their high computation 

cost. A measure that can be computed quickly is therefore required to 

achieve the goal of online performance analysis. 

The obvious way to estimate coverage is to calculate the arithmetic 

mean of the Euclidean distance between feature points. However, the 

arithmetic mean is greatly influenced by outliers and may provide 

misleading estimates, especially for skewed distributions. The geometric 

mean also estimates the central tendency of a sample space in a way that is 

influenced by outliers, although less so than the arithmetic mean. 

Conversely, large outliers have little effect on the harmonic mean while 

small values are much more significant, making it good at penalizing 

clustered features while being reasonably robust to noise. These properties 

have led to its widespread use in data clustering algorithms [191]. Indeed, 

the harmonic mean is an inherently conservative approach for estimating 

the central tendency of a sample space, as 

 
                                 Equation 5-1 

where A(.) is the arithmetic, G(.) the geometric and H(.) the harmonic mean 

of the sample set   ,…,   ,        .  

Formally, we assume that   ,…,    are the   interest points detected 

by a feature detector in image       , where   and   are the spatial 

coordinates. Taking    as a reference interest point, the Euclidean distance 

    between    and some other interest point    is  
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Equation 5-2 

providing    . Computation of Equation 5-2 provides     Euclidean 

distances for each reference interest point   . The harmonic mean of     is 

then calculated to obtain a mean distance   ,         with    as reference: 
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Equation 5-3 

Since the choice of the reference interest point can affect the 

calculated Euclidean distance, this process is repeated using each interest 

point as reference in turn, resulting in a set of distances   . Finally, the 

coverage of the feature detector is calculated as  
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 Equation 5-4 

Since multi-scale feature detectors may provide image features at 

exactly the same image location but different scales, interest points that 

result in zero Euclidean distance in Equation 5-2 are excluded from the 

calculations on the basis that they do not improve the spatial distribution of 

features. It is clear from Equation 5-4 that coverage has the dimension of 

length (i.e., pixels), so its value needs to be considered against the image 

dimensions as the same coverage value may indicate a good distribution for 

a small image but a poor distribution for a large one, a topic that is 

considered in more detail in Section 5.3.3. In general, a large coverage value 

is desirable for a feature detector as a small value implies the concentration 

of interest points into a small region.  

To illustrate the advantage of the proposed measure over the convex 

hull approach [45], the simple example of Figure 5-1 is utilized again. For 

the case of four detected points (the image on the left), the proposed 

coverage measure provides a small value (39.49) to reflect that, although 

there are some widely-spaced points, the density of points is low. The 
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coverage value for the case that includes the additional interest point in the 

right-hand image of Figure 5-1 is 50.26, indicating an improvement in the 

spatial distribution of feature points. 

5.2.2 Qualitative Results 

For the proposed coverage measure to have any value, its values need to be 

consistent with visual assessments of coverage across a range of feature 

detectors and a variety of images. To that end, this section presents a 

comparison of the coverage of the eleven state-of-the-art feature detectors 

encountered in Chapter 3: SIFT (Difference-of-Gaussians), SURF (Fast 

Hessian), Harris-Laplace, Hessian-Laplace, Harris-Affine, Hessian-Affine, 

Edge-based Regions (EBR), Intensity-based Regions (IBR), Salient Regions, 

Maximally Stable Extremal Regions (MSER) and Scale Invariant Feature 

Operator (SFOP) [1, 16]. These were chosen because they are representative 

of a number of different approaches to feature detection (see Section 5.4.2 

and [1]); also their implementations are widely available and they have 

broadly similar repeatability performance. Although the control parameters 

of these feature detectors can be varied to yield a similar number of interest 

points for all detectors, this approach has a negative effect on their 

repeatability and performance [19].  Therefore, authors’ original programs 

(binary or source) have been utilized with parameters set to values 

recommended by them, and the results presented were obtained with the 

widely-used Oxford datasets [50]. The parameter settings and the datasets 

used make these results a direct complement to existing evaluations. 

To demonstrate the effectiveness of this coverage measure, first 

consider the case of the Leuven dataset [50] in Figure 5-2. It is evident that 

SFOP outperforms the other detectors in terms of coverage, whereas values 

for EBR, Harris-Laplace and Harris-Affine indicate a poor spatial 

distribution of interest points. To back up these results, the actual 

distribution of detector responses for SFOP, IBR, Harris-Laplace and EBR 

for image 1 of the Leuven dataset are presented in Figure 5-3. Visual 

inspection of these distributions is consistent with the coverage results of 
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Figure 5-2: the interest points detected by SFOP are distributed all over the 

image rather than being concentrated on a specific textured object in Figure 

5-3. IBR also seems to achieve a reasonable spatial distribution of interest 

points. On the other hand, the image features detected by EBR and Harris-

Laplace appear clustered in small regions and fail to cover the image well, a 

fact that is correctly reflected by Equation 5-4 (see Figure 5-2). 

 

Figure 5-2: Coverage results for Leuven dataset [50] 

The coverage values obtained for the Boat dataset [50] are presented 

in Figure 5-4. Again, the performances of well-established techniques like 

SIFT and SURF are eclipsed by SFOP. Harris-Laplace, Harris-Affine, 

Hessian-Affine and EBR again fare poorly. In addition, the curves depicted 

in Figure 5-2 and Figure 5-4 incorporate the effects of illumination changes 

(Leuven dataset) and zoom and rotation (Boat dataset) on coverage. 

A summary of the mean results obtained with all these feature 

detectors for the Oxford datasets [50] is presented in Table 5-1. It is clear 

that SFOP achieves better coverage than the other feature detectors for 

almost all datasets under various geometric and photometric 

transformations. 
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Figure 5-3: Actual detector responses for image 1 of Leuven dataset [50]. From top left to top 

right:  EBR and SFOP; from bottom left to bottom right: IBR and Harris-Laplace 

Table 5-1: Coverage results for state-of-the-art feature detectors 

 Bark Bikes Boat Graffiti Leuven Trees UBC Wall 

SIFT(DoG) 190.3 207.8 206.7 221.0 193.1 263.4 204.2 253.5 

SURF(FH) 195.8 228.1 207.8 221.9 195.0 265.4 205.4 246.6 

Harris-Lap 122.9 136.5 143.6 181.2 123.7 230.2 154.5 213.7 

Hessian-Lap 120.0 154.5 154.8 199.2 146.2 234.2 154.9 208.6 

Harris-Aff 122.8 136.0 142.8 181.0 123.3 229.9 153.8 212.8 

Hessian-Aff 119.9 148.9 146.5 191.0 140.4 233.0 153.5 208.2 

Salient 190.6 258.7 213.8 218.0 211.0 256.4 201.5 236.4 

EBR 139.2 138.3 119.1 166.4 127.7 214.3 119.0 204.4 

IBR 192.3 214.7 189.7 209.7 184.2 255.5 198.4 243.8 

MSER 179.6 86.4 177.0 200.3 174.9 229.6 200.6 248.3 

SFOP 204.4 246.3 224.4 228.7 218.3 270.3 213.8 256.5 
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Figure 5-4: Coverage results for the Boat dataset [50] 

5.3 Performance Evaluation 

Although the results presented in Section 5.2 on the widely-used Oxford 

datasets complement existing evaluations, the small number of images 

involved makes drawing statistically-significant conclusions difficult. Hence, 

a confirmatory data analysis is required to ascertain whether or not the 

obtained results have occurred by chance due to inadvertent data 

dependencies, and to do this a larger database of images needs to be used. 

The confirmatory data analysis revolves around two important questions: 

1) Do the results obtained for the Oxford datasets provide a complete 

insight into the behavior of feature detectors? In other words, are 

the results obtained for the Oxford datasets consistent with the 

results obtained on a larger image database, having a variety of 

scenes and variations in texture? 

2) Are differences in coverage between various feature detectors 

statistically significant? 

A discussion of the methodology employed to tackle the above 

questions and the results obtained are given below. A third important 



5.3  PERFORMANCE EVALUATION   129 

 
 

question, asking whether high coverage implies good performance in an 

application, is considered in Section 5.5. 

5.3.1 The Image Database 

With the objective of yielding statistically-valid comparisons of coverage-

based performance, the author has captured a database of 520 images, more 

than ten times the size of the Oxford datasets. Since the distribution of 

detected local features is dependent upon the nature of the imagery, such as 

natural scenes and man-made objects, it is quite possible that a specific type 

of content may favor a particular detector during performance analysis. This 

issue has been addressed by including images with a variety of scene types, 

categorized into four datasets based on content: Snow, Indoor, Campus-1 

and Campus-2. This categorization allows identification of the strengths and 

the weaknesses of detectors with regards to image content. Each dataset 

contains more than 100 images of 1440 x 956 pixels, with structured and 

non-structured scenes and medium to low levels of texture. For example, the 

Snow dataset includes images that have large areas of scene covered with 

snow, leading to low texture. Similarly, most images in the Indoor dataset 

contain one or two prominent objects in low-texture surroundings. Some 

images from these four datasets are shown in Figure 5-5. To facilitate 

comparisons of other feature detectors with the author’s findings, these 

image datasets are made available at [192]. 

5.3.2 Quantitative Evaluation on Image Database 

To answer the first question, coverage values for the eleven state-of-the-art 

detectors of Section 5.2 were calculated using the large image database 

[192], again utilizing binaries provided by the authors and the 

recommended parameter settings. Since every detector included in this 

evaluation generally extracts different numbers of interest points for a given 

image, the mean number of features detected by each detector for the four 

image datasets is depicted in Figure 5-6 so as to determine its possible 

impact on coverage. It is clear that SIFT, SURF and Salient detect large 
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numbers of interest points for all datasets, whereas the feature sets 

extracted by other detectors are relatively sparse. The mean coverage 

results obtained with all these feature detectors for the Snow, Indoor, 

Campus-1 and Campus-2 datasets [192] are shown in Figure 5-7 to Figure 

5-10 respectively. It should be noted that, following [19], the error bars in 

these figures indicate the 1-σ confidence intervals for the mean values, 

where σ is the probability of Type I error. The associated confidence level 

with these intervals is 95%, which is often used in practice [193]. 

 

Figure 5-5: Some images from the Snow, Indoor, Campus-1 and Campus-2 datasets in the 

first, second, third and fourth row respectively 
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Figure 5-6: Average number of interest points detected by state-of-the-art detectors on image 

database [192] 

 

 

 

Figure 5-7: Coverage results for Snow dataset [192]; the error bars indicate the 95% 

confidence intervals for mean values 
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Figure 5-8: Coverage results for Indoor dataset [192]; the error bars indicate the 95% 

confidence intervals for mean values 

 

 

 

Figure 5-9: Coverage results for Campus-1 dataset [192]; the error bars indicate the 95% 

confidence intervals for mean values 
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Figure 5-10: Coverage results for Campus-2 dataset [192]; the error bars indicate the 95% 

confidence intervals for mean values 

Although the results obtained on the image database appear broadly 

consistent with the findings for the Oxford datasets, there are some 

discrepancies. It is evident from Figure 5-7 to Figure 5-10 that SFOP and 

Salient provide the best coverage. Apart from the Indoor and Campus-2 

datasets, there is only a marginal difference between the mean coverage 

values achieved by SFOP and Salient for the other two image datasets. 

SFOP prevails in the case of Campus-2 but is out-performed by Salient for 

Indoor, a significant discrepancy from the results obtained for the Oxford 

datasets [50]—this can perhaps be attributed to the lack of indoor scenes in 

the Oxford datasets. On the other hand, the performance of SFOP can be 

considered remarkable considering that it generally detects fewer interest 

points than Salient. For example, for the first image of the Campus-1 

dataset, Salient detects 8799 interest points whereas SFOP detects only 

3348 points, roughly 2.5 times fewer. However, SFOP still achieves a better 

coverage value of 333.1 as compared to Salient (326.44). 

Figure 5-7 to Figure 5-10 show that SURF out-performs SIFT in 

terms of coverage — again, a digression from the results obtained in Section 

5.2. In addition, the performance of SIFT is eclipsed by IBR for all four 

datasets, which is not apparent in the results presented in Section 5.2. A 
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reasonable explanation for this might be the availability of a limited 

number of scenes with texture variations in the Oxford datasets. MSER 

achieves relatively good coverage values for the Campus-1 and Campus-2 

datasets, both of which contain images with good to medium levels of 

texture, but its performance is poor for the more challenging Snow and 

Indoor datasets. Also, the Hessian-Laplace and Hessian-Affine detectors 

perform slightly better than their Harris-based counterparts. It is evident 

that EBR fails to achieve good coverage values for all four datasets. 

5.3.3 Identifying Statistically-Significant Performance 

Differences 

Since 1-σ confidence intervals for population means do not necessarily 

indicate statistically significant results [194, 195], it is desirable to perform 

some statistical tests that ascertain whether any differences in 

performances between different feature detection algorithms are 

statistically significant in order to back up the largely qualitative discussion 

of performance in Section 5.2. Formally, one proposes a null hypothesis (i.e., 

that there is no difference in performance between methods) and uses a 

statistical test to determine whether the data are consistent with this 

hypothesis. Although statistical tests like ANOVA (analysis of variance), 

paired t-test and Wilcoxon signed rank test provide direct methods to assess 

the difference between population means depending upon distribution [193], 

the author finds it more useful to identify statistically-significant 

performance differences in a manner that can be related to the spatial 

distribution of interest points in the image. An appropriate statistic in this 

case is the non-parametric McNemar’s test, a form of chi-squared test with 

one degree of freedom that evaluates the performance of the two algorithms 

based on their outcomes on a case-by-case basis over the same dataset [51, 

52] (see Equation 4-6). The author has utilized McNemar’s test to compare 

the performances of these eleven feature detectors for the large image 

database [192]. To employ it, one needs a criterion to determine whether a 

test case results in success or failure. As coverage has the dimension of a 
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length, a criterion that encapsulates the size of an image seems a suitable 

option for such an evaluation. A common such criterion in the physics 

literature that has long been used for specifying field sizes is the ratio of 

area to perimeter [196]: 

 
          

             

                  
 

 

Equation 5-5 

More precisely, if an algorithm satisfies Equation 5-5, it is considered to 

have succeeded; otherwise, it is deemed to have failed. Although arbitrary, 

experiments show that this criterion is consistent with the visual 

inspections discussed in Section 5.2. For example, for the first image of the 

Leuven dataset [50], which has dimensions of 900 x 600 pixels, the area 

divided by perimeter is 180; detectors which satisfy Equation 5-5 exhibit 

good spatial distribution of interest points visually, whereas the others fare 

poorly (see Figure 5-2 and Figure 5-3).  

An experiment was performed in which the coverage was calculated 

for each detector on every image in the database [192]. Where the coverage 

exceeded the threshold of Equation 5-5, the detector was deemed to have 

succeeded on that image; otherwise, it failed. This allowed     etc (in 

Equation 4-6) for each pair of detectors to be determined over the image 

database and hence a Z-score calculated. Table 5-2 details the numbers of 

successes and failures for SFOP and Salient with the other detectors under 

consideration and the resulting Z-scores. Since it is not possible to include 

such detailed results for all detectors, a summary of the Z-scores for 

McNemar’s tests between different detectors is given in Table 5-3, where 

positive values indicate that the detector in the left hand column performs 

better than the detector mentioned on the top and vice versa. Although the 

Z-score is always greater than or equal to zero, this sign convention is used 

to facilitate identifying the detector with the better performance of the two 

compared. Z-scores of about 3 are equivalent to a confidence of about 0.995, 

while larger Z-score values indicate a more significant result. It is clear that 

most values in Table 5-2 and Table 5-3 are substantially larger than 3 and 
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hence provide evidence that differences in coverage values between the 

detectors are statistically significant. 

These results confirm the better performance of Salient and SFOP 

detectors over all other feature detectors considered. However, it is 

interesting to note that Salient out-performs SFOP, as there are 56 images 

for which SFOP failed to achieve good coverage but where Salient 

succeeded; conversely, there are only 10 images for which Salient failed and 

SFOP succeeded. The resulting Z for these results is 5.53, indicating that 

Salient detector out-performs SFOP with a probability well in excess of 

0.995. Barring Salient, which detects two to three times more interest points 

(see Figure 5-6), SFOP appears to be the best detector of the remaining ones 

by a significant margin. 

Apart from Salient and SFOP, high Z-scores were achieved by the 

SURF detector against all remaining detectors, including SIFT and IBR. Of 

the two segmentation-based detectors, IBR performs much better than 

MSER as indicated by a high Z-score of 11.96. The results also highlight 

that EBR ranks very low in terms of coverage-based performance. It is 

observed that Harris-Laplace and Harris-Affine behave in exactly the same 

manner (Z = 0) and fail to outperform EBR. Moreover, Hessian-Laplace 

barely manages to prevail over Hessian-Affine, as indicated by a low value 

of Z; this presumably reflects the similar underlying principles of the two 

detectors.  
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Table 5-2: McNemar’s test results for SFOP and Salient detector with other detectors  

 
SIFT 

PASS 

SIFT  

FAIL 

SURF 

PASS 

SURF 

FAIL 

SALIENT

PASS 

SALIENT

FAIL 

MSER 

PASS 

MSER 

FAIL 

SFOP 

PASS 239 174 308 105 403 10 132 281 

SFOP 

FAIL 1 106 1 106 56 51 1 106 

Computed 

Z-Score 
13.0 10.0 5.53 16.61 

 
EBR  

PASS 

EBR  

FAIL 

IBR   

PASS 

IBR   

FAIL 

HAR-LAP 

PASS 

HAR-LAP 

FAIL 

HES-LAP 

PASS 

HES-LAP 

FAIL 

SFOP 

PASS 36 377 280 133 35 378 55 358 

SFOP 

FAIL 1 106 0 107 0 107 1 106 

Computed 

Z-Score 
19.28 11.44 19.39 18.78 

 
SIFT  

PASS 

SIFT  

FAIL 

SURF  

PASS 

SURF 

FAIL 

MSER 

PASS 

MSER 

FAIL 

IBR    

FAIL 

IBR    

FAIL 

SALIENT

PASS 240 219 306 153 133 326 279 180 

SALIENT

FAIL 0 61 3 58 0 61 1 60 

Computed 

Z-Score 
14.73 11.92 18.0 13.23 

 
EBR  

PASS 

EBR  

FAIL 

HAR-LAP 

PASS 

HAR-LAP 

FAIL 

HES-LAP 

PASS 

HES-LAP 

FAIL 

HES-AFF 

PASS 

HES-AFF 

FAIL 

SALIENT

PASS 37 422 35 424 56 403 48 411 

SALIENT

FAIL 0 61 0 61 0 61 0 61 

Computed 

Z-Score 
20.49 20.54 20.02 20.22 
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5.3.4 Discussion 

It is valuable to correlate these performance differences to the underlying 

principles of the detectors in order to validate the proposed measure. Whilst 

responding to a number of different feature shapes, most feature detectors 

exhibit a strong response for a specific type of feature; for example, SIFT 

shows a bias for blobs in the image. Conversely, Salient is based on 

Shannon’s entropy and responds equally to different feature types [18]; this 

allows it to achieve good coverage, though the large number of interest 

points detected also plays an important role in this regard. The design of 

SFOP utilizes several feature types in the same spirit as Salient, including 

star-like and circular shapes. The good ranking achieved by SFOP 

emphasizes the benefits of extracting multiple types of features.  

Table 5-3: A summary of McNemar’s test results (computed Z-score) for state-of-the-art 

detectors; negative values indicate that the detector mentioned on the top performs better 

than the detector shown on the left hand side 

 SURF MSER IBR EBR HAR-LAP HES-LAP HAR-AFF HES-AFF 

 

SIFT –6.90 

 

10.15 

 

–4.41 

 

14.17 

 

14.24 

 

13.41 

 

14.28 

 

13.78 

 
SURF -- 13.11 

 

3.64 

 

16.43 

 

16.49 

 

15.84 

 

16.52 

 

16.09 

 
MSER -- -- –11.96 

 

8.89 

 

9.42 

 

7.56 

 

9.47 

 

8.19 

 
IBR -- -- -- 15.39 

 

15.58 

 

14.76 

 

15.62 

 

15.03 

 
EBR -- -- -- -- 0.17 

 

–2.62 

 

0.33 

 

–1.52 

 
HAR-LAP -- -- -- -- -- –3.84 

 

0 

 

–2.50 

 
HES-LAP -- -- -- -- -- -- 3.96 

 

2.47 

 
HAR-AFF -- -- -- -- -- -- -- –2.77 

 

As completeness and coverage serve similar purposes, it is also 

interesting to compare this ranking of detectors with the results presented 

in [19]. Salient is identified as the best detector in both studies. Although 

MSER is reported to have completeness scores comparable to those of 

Salient in [19], the rank for MSER here is lower than SFOP, IBR and SIFT. 

It is, however, agreed that the performance of MSER is commendable 

considering the sparseness of its features as compared to SFOP and SIFT. 
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In addition, the presented results suggest that SIFT is significantly better 

than the Harris-Laplace, Hessian-Laplace, Harris-Affine and Hessian-Affine 

detectors in terms of coverage. Since all these detectors, including SIFT, are 

stated to have similar completeness scores (see Fig. 12 in [19]), this 

observation is contradictory to [19]. 

5.4 Mutual Coverage for Measuring 

Complementarity 

This section extends the coverage-based metric of Section 5.2 to measure the 

complementarity of combinations of detectors. After describing the 

mathematical formulation, the metric is utilized to present results for 

detector pairs and triplets.  

5.4.1 Method 

Since the utilization of combinations of detectors is an emerging trend in 

feature detection [1], the author proposes a measure, based on coverage, to 

estimate how well these detectors complement one another. In addition to 

the principles mentioned in Section 5.2, the objective here is to penalize 

techniques that detect several interest points in a small region of an image: 

if detectors A and B detect most feature points at the same locations in an 

image, they should have a low complementarity score. Conversely, a high 

score should be achieved if detectors A and B detect most features at widely-

spaced locations, indicating that they complement each other well. Again, a 

metric utilizing the harmonic mean seems a promising solution to achieve 

the required goal, for the reasons discussed in Section 5.2.  

Formally, let us consider an image       , where   and y are the 

spatial coordinates, being operated on by   feature detectors           , so 

that                   is the set of   feature points detected by   . We 

then define 

 
             

 
Equation 5-6 



140  CHAPTER 5                                                                                      

 
 

as the set of feature points detected in image        by    and   . The 

coverage is then calculated as described in Section 5.2 using    ; as that 

includes points detected by both    and   , it is denoted as the mutual 

coverage of    and    for image       . Although this chapter confines itself 

to combinations of two and three detectors only, this notion of mutual 

coverage can be extended to more by simply combining their feature points 

in Equation 5-6. 

5.4.2 Results for Detector Pairs 

To ascertain how well the detectors under discussion complement one 

another, the mutual coverages of combinations of these detectors were 

calculated. The author starts with the hypothesis that all detectors are 

complementary to one another and combines each detector with all other 

detectors in groups of two; if a pair’s mutual coverage value is high, it 

should be because they identify different types of feature—in other words, a 

high mutual coverage should reflect their different principles of operation. 

A categorization of the eleven feature detectors was published in [1] 

and is summarized in Table 5-4. This experiment allows us to ascertain 

whether or not this taxonomy requires revision to reflect the findings on the 

larger database employed here. 

Table 5-4: A taxonomy of state-of-the-art feature detectors based on [1] 

Category Type Detectors 

1. Blob detectors SIFT, SURF, Hessian-Laplace, Hessian-

Affine, Salient Regions 

2. Spiral detectors Scale Invariant Feature Operator (SFOP) 

3. Corner detectors Edge-based Regions (EBR), Harris-

Laplace, Harris-Affine 

4. Segmentation-based 

detectors 

MSER, Intensity-based Regions (IBR) 

Figure 5-11 to Figure 5-17 depict the mean mutual coverages for the 

detectors under investigation when grouped with all other detectors for 

image database [192]. Note that the error bars in these figures indicate the 

1-σ confidence intervals for mean values, with a confidence level of 95%. As 
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expected, all combinations involving Salient achieve good coverage (see 

Figure 5-11). The best results are obtained from a combination of Salient 

and SFOP, which is not surprising as both detect several types of features 

and have good individual coverages. Grouping Salient with IBR or MSER 

also provides good performance; this also reflects underlying principles, as 

the two segmentation-based detectors usually detect irregularly-shaped 

patterns and some blob-like structures, which helps to complement Salient. 

The combination of EBR and Salient also performs well, which again can be 

attributed to the different type of features they detect. Apart from Harris-

Laplace and Harris-Affine, which start from the Harris corner detector, the 

detectors that yield low coverage values when combined with Salient (see 

Figure 5-11) are those that mainly detect blobs. A good explanation of this is 

the fact that Salient itself typically ‘fires’ on blob-like structures in the 

image. It is also interesting to note that SURF and SIFT perform the worst 

of all combinations involving Salient, despite detecting large number of 

interest points. (see Figure 5-6).    

 

 

Figure 5-11: Mutual coverage of Salient detector in combination with other detectors for 

image database [192]; the error bars indicate the 95% confidence intervals for mean values  
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Figure 5-12: Mutual coverage of SFOP detector in combination with other detectors for 

image database [192]; the error bars indicate the 95% confidence intervals for mean values 

6 1 

 

Figure 5-13: Mutual coverage of EBR in combination with other detectors for image 

database [192]; the error bars indicate the 95% confidence intervals for mean values 

Apart from Salient, SFOP works best with IBR and MSER (as shown 

in Figure 5-12) which is again understandable due to the detection of 

different feature types. SURF and EBR also yield good coverage when 

combined with SFOP, for the same reason. Of all the remaining 

combinations involving SFOP, SIFT again performs worst, which may be 

attributed to the ability of SFOP to find some SIFT-like blobs in an image. 
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Figure 5-13 shows that combining SURF or SIFT with EBR achieves 

reasonable coverage. Grouping EBR with IBR or MSER is not particularly 

rewarding. Similarly, combinations involving Hessian-Laplace, Hessian-

Affine, Harris-Laplace and Harris-Affine fare poorly.  

 

Figure 5-14: Mutual coverage of MSER in combination with other detectors for image 

database [192]; the error bars indicate the 95% confidence intervals for mean values 

MSER and IBR often detect blob-like structures in an image in 

addition to irregularly-shaped patterns. Figure 5-14 and Figure 5-15 

highlight that they work better with Salient and SFOP as compared to blob 

detectors. In Figure 5-14, it is interesting to note that a combination of 

MSER and IBR, which are somewhat similar in spirit, achieves higher 

coverage than a group involving MSER and SIFT. This shows that the 

feature sets of MSER and SIFT have some redundancy. On the other hand, 

IBR does not share this property and its combination with SIFT achieves 

higher coverage than a group of two segmentation-based detectors. Finally, 

it is evident from Figure 5-16 that combinations of SURF and SIFT with 

other blob detectors yield low coverage as compared to their combination 

with detectors that extract different feature type. Also, Hessian-Laplace, 

Hessian-Affine, Harris-Laplace and Harris-Affine, when combined with one 

another in a group of two, fare poorly as can be seen from Figure 5-17. 
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Figure 5-15: Mutual coverage of IBR in combination with other detectors for image database 

[192]; the error bars indicate the 95% confidence intervals for mean values 

 

 

 

Figure 5-16: Mutual coverage of SIFT and SURF in combination with other detectors for 

image database [192]; the error bars indicate the 95% confidence intervals for mean values 
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Figure 5-17: Mutual coverage of combinations of Harris-Laplace, Hessian-Laplace, Harris-

Affine and Hessian-Affine for image database [192]; the error bars indicate the 95% 

confidence intervals for mean values 

5.4.3 Results for Detector Triplets 

In order to reduce the number of detectors to discuss for combinations of 

three, the results for detector pairs presented above are utilized for 

identification of possible similar trends in the behavior of detectors. This 

allows detectors showing similar characteristics to be grouped together. 

Some key inferences made from the results for detector pairs (Figure 5-11 to 

Figure 5-17) are described in the following paragraphs. 

Although Salient is categorized as a blob detector in Table 5-4, its 

behavior is rather different from other detectors extracting the same feature 

type, such as SIFT and SURF. The author considers that this is in 

agreement with the underlying design principles of these detectors as 

Salient responds equally to different feature types whereas others show bias 

towards blobs. Salient is therefore separated from blob detectors and put 

into a new category of entropy-based detectors. 

The behavior of MSER and IBR is similar when combined with all 

other detectors. Moreover, these two detectors achieve low coverage when 

grouped together. They are thus categorized as segmentation-based 

detectors (as in Table 5-4). 
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Although SURF and SIFT are both blob detectors, there are 

discrepancies in their behavior when combined with other detectors: For 

example, they provide similar performance when combined with a corner 

detector but different when grouped with a spiral detector. This disparity 

may be attributed to the method they use to detect blobs. SIFT 

approximates Laplacian using Difference-of-Gaussians whereas SURF is 

based on the determinant of the Hessian matrix. Although they do not 

complement each other well, as indicated by their relatively low mutual 

coverage (Figure 5-16), SIFT and SURF are placed in different categories as 

their behavior is inconsistent when combined with other detectors.     

Harris-Laplace, Hessian-Laplace, Harris-Affine and Hessian-Affine 

exhibit similar behavior when combined with all other detectors. Low 

coverage values for combinations of these detectors indicate that they do not 

complement each other well. It is also evident that their behavior is 

different from Laplacian-based and Hessian matrix-based blob detectors. 

These detectors are therefore grouped together in a new category named 

‘hybrid’ detectors which subsumes some detectors from the ‘blob’ category in 

Table 5-4 and others from the ‘corner’ category. Table 5-5 summarizes the 

re-categorization of the detectors under investigation.     

Table 5-5: Re-classification of state-of-the-art detectors based on results for detector pairs 

Category Type Detectors 

1. Laplacian-based SIFT (Difference-of-Gaussians) 

2. Hessian Matrix-based SURF (Determinant of Hessian) 

3. Hybrid detectors Harris-Laplace, Hessian-Laplace,  

Harris-Affine, Hessian-Affine 

4. Corner detectors Edge-based Regions (EBR) 

5. Spiral detectors SFOP 

6. Entropy-based detectors Salient 

7. Segmentation-based 

detectors 

MSER, Intensity-based Regions 

(IBR) 

By grouping detectors from three different categories in Table 5-5, the 

author has investigated the performance of detector triplets using image 

database [192]. Instead of presenting individual findings, the author has 

generalized the results for detector triplets and produced a ranking of these 
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combinations, which provides more useful insight into the performance of 

different detector categories in Table 5-5 when combined with other 

categories. Table 5-6 presents a rank-ordered list of those classes of detector 

triplets that achieve highest mutual coverage; it can be thought of as a 

guideline to choosing which classes of detector to combine. However, 

entropy-based detectors are slow to compute, making them undesirable for 

online use, the aim of this chapter, so Table 5-7 presents similar lists of 

detector triplet classes that exclude entropy-based ones. Indeed, two such 

lists are given: the first includes spiral (for detecting circular features) and 

the second excludes it (when circles are known not to be present in 

imagery).   

It is evident from Table 5-6 that combining entropy-, spiral- and 

segmentation-based detectors produces the highest mutual coverage across 

all combinations of detector categories. For combinations that do not involve 

an entropy-based detector, grouping a spiral detector with a Hessian 

matrix-based and a segmentation-based detector provides the best 

performance. Combining a spiral detector with a segmentation-based and a 

corner detector also achieves good results. It is interesting to note that the 

Laplacian-based detector category does not appear in Table 5-7 due to the  

relatively low mutual coverages obtained; this is the same observation made 

in Table 3 of [19]. Overall, the results can be considered broadly consistent 

to the findings in [19]. In addition, these results provide a guideline as to 

which detectors to combine in applications that require a reasonable 

distribution of image features, such as image registration and accurate 

multi-view geometry estimation, apart from good repeatability and speed.  

Table 5-6: Top ranking detector triplets in terms of detector categories 

Rank Detector Triplet 

For all combinations 

1. Entropy-based + Spiral + Segmentation-based 

2. Entropy-based + Spiral + Corner  

3. Entropy-based + Spiral + Hybrid  

4. Entropy-based + Corner + Segmentation-based 
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Table 5-7: Some other promising detector triplets in terms of detector categories 

Rank Detector Triplet 

For combinations excluding Entropy-based detector 

1. Spiral + Hessian Matrix-based + Segmentation-based 

2. Spiral + Corner + Segmentation-based 

3. Spiral + Hessian Matrix-based + Corner  

4. Spiral + Hessian Matrix-based + Hybrid 

For combinations excluding Entropy-based and Spiral detectors 

1. Hessian Matrix-based + Corner + Segmentation-based 

2. Hessian Matrix-based + Hybrid + Segmentation-based 

3. Hessian Matrix-based + Corner + Hybrid 

4. Hessian Matrix-based + Laplacian-based + Corner 

 

5.5 Feasibility of Proposed Methods for Real-

World Applications 

This section discusses the viability of the proposed measures for real-world 

applications. It analyzes how well the results presented above map to real-

world problems, both for detectors and their combinations. In particular, it 

shows that high coverage implies better performance for homography 

estimation. The section also provides a timing analysis that shows the speed 

of calculating coverage, allowing it to be employed online as part of a 

practical system.      

5.5.1 Mapping Coverage Results to Practical Problems 

Since the suitability of local feature detectors for automatic image 

orientation systems was studied in detail by [45] recently, it is interesting to 

compare the results of this work to those of [45]. That evaluation was done 

using SFOP, Entropy [45], SIFT, MSER, Harris-Affine and Hessian-Affine. 

For separate detectors, SFOP was identified as providing the overall best 

performance; SIFT and MSER work well with images having good and 

medium amounts of texture, whereas Harris-Affine and Hessian-Affine 

perform poorly. Although the author’s results are obtained using a different 

database of images to [45], the conclusions drawn from the results of Section 

5.3 largely agree with the findings in [45] as SFOP is recognized as the best 

among SIFT, MSER, Harris-Affine and Hessian-Affine. The coverage-based 
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performance measure ranks SIFT higher than MSER. Moreover, the 

quantitative evaluation of Section 5.3 also demonstrates that SIFT and 

MSER perform better on images with good and medium texture (Campus-1 

and Campus-2 datasets in this case [192]) but their performance is 

somewhat poorer for images with low texture. Hessian-Affine and Harris-

Affine are at the bottom according to the ranking, consistent with [45].  

For detector pairs, it was concluded in [45] that combining Hessian-

Affine with SIFT has a detrimental effect on performance for an automatic 

image orientation problem as they have highly redundant feature sets. The 

results for detector pairs in Section 5.4 also yield the same conclusion for a 

combination involving SIFT and Hessian-Affine. A combination of SFOP, 

SIFT and MSER was identified as the most promising setting in [45] for 

automatic image orientation; the author’s results also identify this 

configuration as one of the top groupings when considering only those triple 

combinations that involve the detectors evaluated in [45]. The high degree of 

correlation between the results presented here and those of [45] provides 

evidence that coverage and mutual coverage provide reliable methods of 

determining spatial distribution of interest points for image feature 

detectors.   

To illustrate the impact of these results on real-world applications, 

consider the task of homography estimation for the Leuven dataset [50]. The 

mean error was computed between the positions of points projected from one 

image to the other, using a ‘ground-truth’ homography from [50], and a 

homography determined using the above detectors. SFOP performed best, 

with a mean error of 0.245, whereas EBR achieved a poor value of 3.672, 

consistent with the results shown in Figure 5-2 and Figure 5-3. Figure 5-18 

shows a plot of coverage (read values from the left ordinate axis) and mean 

homography estimation error (read values from the right ordinate axis) for 

the MSER detector utilizing the Bikes dataset [50]; this is a typical result. 

Pearson’s correlation coefficient for the two curves is  0.90 with a p-value of 

0.03, clearly indicating that a high coverage implies a low mean error of 

homography estimation.    
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Figure 5-18: Curves for coverage and homography estimation error for MSER detector 

utilizing the Bikes dataset [50]  

5.5.2 Computational Aspects 

A method that can quickly predict the performance of feature detectors 

accurately would be valuable for time-critical applications. This section 

illustrates the potential of coverage and mutual coverage for ascertaining 

the performance of detectors and the complementarity of their 

combinations. Since the completeness measure [19] is to the author’s 

knowledge the only existing scheme for carrying out such an analysis, 

coverage appears to be the first measure that makes possible the online 

adaption of feature detection to image content in order to improve 

performance. 

Figure 5-19 and Figure 5-20 plot the total computation times for 

analyzing the performance of a specific detector and detector combinations 

respectively for 48 images of the Oxford datasets [50] utilizing coverage-

based measures and the completeness measure of [19] (read values from the 

left ordinate axis). The dotted lines in these figures show the relative speed-

up for the proposed methods as compared to the completeness tool (read 
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values from the right ordinate axis); the author has excluded the time taken 

to compute the reference entropy density for the completeness measure, 

some 716.68 minutes for the 48 images of the Oxford datasets. These results 

were obtained by running MATLAB implementations of these methods on a 

Linux-based HP ProLiant DL380 G7 system with Intel Xeon 5600 series 

processors. Since every detector extracts a different number of features for a 

given input image, as mentioned above, the mean number of interest points 

detected by every technique for the Oxford datasets is provided in Table 5-8 

so as to visualize the dependence of computation time on the number of 

feature points. 

It is evident from Figure 5-19 and Figure 5-20 that coverage has the 

potential to analyze feature detectors quickly. For example, analysis of the 

SFOP detector requires a mean time of only 241.85 ms per image. Detectors 

such as IBR, which have sparse feature sets, are analyzed more quickly 

(50.64 ms  per  image  on  average  for IBR). 

Table 5-8: Average number of interest points detected by state-of-the-art feature detectors for 

Oxford datasets [50] 

 Bark Bikes Boat Graffiti Leuven Trees UBC Wall 

SIFT(DoG) 4549 1505 6939 4060 1910 10707 6310 11499 

Salient 2238 2027 4231 2653 2081 5921 3817 6584 

Harris-Lap 539 611 2107 2060 624 4669 1540 2520 

Hessian-Lap 451 870 2527 3028 944 3942 1762 1479 

Harris-Aff 537 590 2056 2041 612 4650 1500 2470 

Hessian-Aff 450 801 2070 2424 757 3872 1617 1434 

SURF(FH) 3526 2692 4822 5520 3405 7482 5184 5047 

EBR 299 465 1024 1074 495 577 821 2716 

IBR 706 673 635 807 330 1623 649 758 

MSER 545 286 1012 692 392 2148 890 1975 

SFOP 1735 1186 1692 1031 974 3159 1725 2720 
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Figure 5-19: Timing analysis of the proposed coverage method and the Completeness tool 

[19] for 48 images of the Oxford Datasets [50] 

 

Figure 5-20: Timing analysis of the proposed mutual coverage method and the Completeness 

tool [19] for 48 images of the Oxford Datatsets [50] 
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5.6 A Prediction-based Framework for Combining 

Detectors 

This section presents a principled framework for combining local feature 

detectors automatically, having the capability of handling varying scene 

types reliably, to achieve better performance in real-world applications that 

require a reasonable distribution of feature points. Utilizing the proposed 

framework, results are presented for the task of image registration which 

highlight its usefulness. 

The emerging trend of running multiple feature detectors 

simultaneously to take advantage of complementary features for solving 

complex vision problems, such as category-level object recognition [44], 

stems from an inability to utilize different detectors in a selective and 

efficient manner depending upon the image content. Although this parallel 

approach may help in tackling the uncertainty of image content in 

situations where there is no prior knowledge available, it has detrimental 

effect on computation time due to increasing amount of data to process. 

Moreover, it results in an over-complete representation of an image rather 

than a compact one [1], and is not particularly useful for time-critical 

applications.  

Complementarity of different feature types was first articulated in 

[187] which investigated the ability of edge- and blob-like features to carry 

image information based on a model of retinal cells for image reconstruction. 

With the aim of dealing with a wider range of images and exploiting several 

types of image structure, the desire to build an ‘opportunistic’ system by 

combining the output of several feature detectors was advocated by [122]. 

Similarly, a sparse texture representation using affine-invariant regions 

was proposed in [39] that utilized a combination of a corner and a blob 

detector. It details an interesting case study for which the recognition rate 

for a combination of detectors was lower than what was achieved using a 

single detector. This particular work emphasized two important points: the 

need to acquire a better understanding of the performance of different 
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detectors on different types of texture and to investigate how the output of 

different detectors can be combined so as to avoid detrimental effects on 

combined performance. Combinations of feature detectors have also been 

employed for category-level object recognition and object detection in videos 

[30, 43, 44]. As already mentioned in Section 5.5, the performance of 

different detector pairs and triplets was studied for the task of automatic 

image orientation in [45]. This work showed the negative effects on 

performance when SIFT is combined with Hessian-Affine and attributed it 

to the redundancy of features extracted by the two techniques.  

The lack of a principled framework for combining feature detectors 

automatically in an effort to achieve better performance in real-world vision 

applications hence presents a major bottleneck. Development of such a 

framework is vital, as combining multiple detectors may have detrimental 

effects on combined performance, in some cases making it even lower than 

what can be achieved by a single detector [39, 45]. 

5.6.1 Proposed Framework 

Figure 5-21 shows a block diagram of the proposed framework for combining 

local feature detectors automatically in vision applications that require a 

reasonable distribution of feature points. Depending upon the image 

content, the framework decides whether to operate in a single detector mode 

or employ multiple detectors. For predicting the performance of a single 

detector or a combination of detectors for a specific vision task, this 

framework utilizes the coverage and mutual coverage measures presented 

in Section 5.2.1 and Section 5.4.1 respectively. The aim here is not to 

produce an optimal solution (in the sense that it is the best conceivable) but 

rather to provide a reliable framework that allows performance to be 

improved when it is clear that a single detector will not perform adequately 

and to have a low enough overhead that it can be used online. 

Before discussing the framework in detail, it is worth stating that the 

proposed framework is generic in the sense that it can be utilized for any set 

of local feature detectors and a variety of vision applications. To keep this 
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generality, the framework is discussed here without referring to any specific 

detector or giving example of any particular application; more specific 

results will be discussed later in Section 5.6.2.     

 

Figure 5-21: A block diagram of the proposed framework for combining local feature 

detectors 

According to the proposed framework, the available feature detectors 

are first divided into specific groups based on general knowledge about 

complementarity of their detected features. For this categorization, the 

results given in Section 5.4, which provide a useful guideline for combining 

detectors in pairs and triplets, can be utilized. Any suitable detector is then 

selected from one of the groups to run on a pair of images. The coverage 

values are computed for the two sets of detected feature points utilizing the 

metric proposed in Section 5.2.1. A criterion is then needed to determine 

whether to use a single detector or a combination of detectors. As discussed 

in Section 5.3.3, the ratio of area to perimeter (Equation 5-5), which has 

long been used in physics for specifying field sizes [196], provides results 
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that are consistent with the visual inspections of Section 5.2 (see Figure 5-2 

and Figure 5-3). It is therefore a suitable criterion to be used for 

ascertaining whether the coverage of a single detector is good enough. If the 

coverage values achieved by the selected detector are greater than or equal 

to the ratio of area to perimeter of image for both the images individually, 

the single detector mode is selected by the proposed framework and the rest 

of the processing required for the specific vision task (such as feature 

description and matching) is done utilizing the detected feature points. 

In the event that the coverage value achieved by the selected detector 

for any one image is less than the ratio of area to perimeter of image, the 

proposed framework opts for multiple feature detectors for that particular 

image pair. For selecting another detector which can be combined with the 

first detector, a knowledge database is employed which contains information 

about the complementarity of different feature detector groups. Again, the 

results given in Section 5.4 can be utilized for building such a database. 

After getting the input from the knowledge database, a second detector is 

selected from a complementary detector group to the first; mutual coverage 

values are then calculated using the metric presented in Section 5.4.1 for 

both input images. If the computed mutual coverage values are greater than 

or equal to the ratio of area to perimeter of image, the detected feature 

points are selected and the rest of the processing is done. If this is not the 

case, the second detector is discarded and another detector is selected from 

some other detector group whose detected features are generally considered 

complementary for the first detector. This process of selecting a second 

detector is repeated until the required mutual coverage threshold is 

achieved for both the images. In case it does not happen after combining the 

first detector with all available detector groups, one of the earlier discarded 

detectors is used with the first detector on the basis that this combination 

yields the highest mutual coverage.      

The proposed framework in Figure 5-21 can be extended in a number 

of ways. Instead of employing a pre-defined, fixed knowledge base, it is 

possible to utilize one which updates its stored information dynamically by 
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taking into account the current combined performance of different feature 

detectors. Another variation that can be introduced is to look for a third 

detector to make a triplet for the particular scenario when a detector pair 

fails to achieve the required mutual coverage values.        

5.6.2 Results 

To demonstrate the utility of the proposed framework, an image registration 

task is used here as it is dependent on achieving a reasonable spatial 

distribution of detected feature points. A database of 37 image pairs with 

rotation and viewpoint changes is employed for this particular task. Each 

image in the database has dimensions of 1080 x 717 pixels and any two 

images that form a pair have large overlapping regions, to provide ample 

opportunity for an employed detector to show its best performance. This 

database has been made available online at [197].  

 

Figure 5-22: Image registration result for the image pair 7 of the database using IBR alone 

Before presenting the results for the proposed framework, it is worth 

having a look at the individual performance of the detector to be employed 

as the starting detector for the framework. Here, IBR serves as the starting 

detector; although IBR manages to solve the image registration problem for 
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all image pairs in the database, there is large variation in the accuracy of 

registration. Figure 5-22 to Figure 5-25 show four sample registered image 

pairs from the database utilizing IBR alone. 

 

Figure 5-23: Image registration result for the image pair 8 of the database using IBR alone 

It is evident from Figure 5-22 that image pair 7 is registered 

reasonably well from the feature matches of IBR. Contrary to that, the 

image registration result for image pair 8 is quite poor (see Figure 5-23). 

Although the results for image pair 4 (Figure 5-24) and image pair 12 

(Figure 5-25) can be considered better than that of image pair 8, more 

accurate registration is desirable for these cases.  

The variation in the accuracy of registration for the database when 

using feature points detected by IBR can be explained by the coverage 

values achieved by the detector for this database (as shown in Figure 5-26). 

It can be seen clearly that the coverage values of IBR for the image pair 7 

are much greater than the area to perimeter ratio of image (215.45 for this 

particular case). The reasonable spatial distribution of detected features for 

both the images thus allows IBR to register this particular image pair 

accurately (Figure 5-22 and Figure 5-26). On the other hand, the coverage 

values for image pairs 4, 8, and 12 are below the required threshold of 

215.45 and provide reasonable justification for the inaccurate registration 
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results shown in Figure 5-23 to Figure 5-25. It should be noted that 

coverage values for image 8 are particularly low, which ultimately leads to 

such a poor result.  

 

Figure 5-24: Image registration result for the image pair 4 of the database using IBR alone 

 

Figure 5-25: Image registration result for the image pair 12 of the database using IBR alone 
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Figure 5-26: Coverage results of IBR for the database 

When the proposed framework is employed with IBR as the starting 

detector (selected from the segmentation-based detector group), coverage 

values are computed for every image pair of the database as described in 

Section 5.6.1. The SFOP detector is then combined automatically with IBR 

for only those image pairs which have coverage values below the required 

threshold of area to perimeter ratio. For the remaining image pairs, the 

framework opts for the single detector mode (continuing with IBR only) as 

the coverage values are greater than or equal to 215.45. The coverage values 

achieved by this ‘intelligent’ dual mode system for the database are shown 

in Figure 5-27. To indicate when the framework selects single detector mode 

or employs multiple detectors, the operating mode is shown by numerical 

values in Figure 5-27. Note that the coverage values and the area to 

perimeter ratio should be read from the left ordinate axis whereas the value 

of operating mode should be read from the right ordinate axis. For the 

operating mode, a value of ‘0’ indicates that the framework selects single 

detector mode for the current image pair, whereas a value of ‘1’ shows that 

the framework employs multiple detectors for the specific image pair. It is 

clear that there is a marked improvement in the spatial distribution of 
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detected features as compared to the results shown in Figure 5-26. This 

improvement is apparent in the final output: Figure 5-28 to Figure 5-31 

show the registration results for the four sample image pairs, and it is 

evident that all the image pairs are registered more accurately when the 

proposed framework is employed.   

   

Figure 5-27:  Coverage results achieved using the proposed framework for the database 

  

 

Figure 5-28: Image registration result for the image pair 7 of the database using the 

proposed framework 
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Figure 5-29: Image registration result for the image pair 8 of the database using the 

proposed framework 
 

 

Figure 5-30: Image registration result for the image pair 4 of the database using the 

proposed framework 
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Figure 5-31: Image registration result for the image pair 12 of the database using the 

proposed framework 

5.7 Summary 

The spatial distribution of image features has received little attention until 

comparatively recently. This chapter has taken a step in this direction and 

presented a reliable method of measuring coverage which concurs with 

visual assessments. The proposed metric reflects the underlying principles 

of detectors and can be employed as a quick indicator of detector 

performance. It has also been found that the mutual coverage of several 

feature detectors, obtained simply by concatenating the feature points they 

detect and calculating the coverage of the combination, gives a rapid, 

principled way of determining whether combinations of interest point 

detectors are complementary without having to undertake extensive 

evaluation studies; indeed, calculation is so rapid that one can consider 

using it online in an intelligent detector that adds features from several 

detectors in order to ensure that coverage, and hence accuracy of 

subsequent processing, is good enough.  
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The chapter has presented coverage-based evaluation results for 

several state-of-the-art local feature detectors utilizing standard datasets. 

For quantitative analysis, a database of images containing both indoor and 

outdoor scenes with variations in texture was developed and a standard 

statistical test, McNemar’s test, was employed to identify statistically-

significant performance differences between detectors. The results obtained 

indicate the better performance of Salient and SFOP; other detectors, such 

as EBR, Harris-Laplace and Hessian-Laplace (and their affine-invariant 

versions) achieve a low ranking. The same image database was utilized to 

investigate detector pairs and triplets. Salient combined with SFOP 

provides the best performance in the case of detector pairs. Combining 

Salient or SFOP with a segmentation-based detector (IBR or MSER) also 

yields good coverage. For triplets, a segmentation-based detector or a corner 

detector added as a third component to the combination of Salient and 

SFOP is the most promising configuration. It is also identified that among 

combinations not involving Salient detector, grouping SFOP with a 

segmentation-based detector and SURF achieves high coverage. In an effort 

to provide a useful guideline for combining feature detectors in vision 

applications, the chapter has presented results for different detector classes. 

It has been shown that, for detectors with known good repeatability, 

high values of coverage predict low errors in homography estimation, a task 

typical of a number of vision applications. Finally, the chapter has 

presented a prediction-based framework for combining local feature 

detectors in applications that require reasonable distribution of feature 

points. 
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6 An Algorithm for the 

Contextual Adaption of SURF 

Octave Selection with Good 

Matching Performance 
 

Fast is fine, but accuracy is everything. 

XENOPHON 

Speeded-Up Robust Features (SURF) is a feature extraction algorithm 

designed for real-time execution, though this is rarely achievable on low-

power hardware such as that in mobile robots. One way to reduce the 

computation is to discard some of the scale-space octaves, and previous 

research has simply discarded the higher octaves. This chapter shows that 

this approach is not always the most sensible and presents an algorithm for 

choosing which octaves to discard based on properties of the imagery. 

Results obtained with this best octaves algorithm show that it is able to 

achieve a significant reduction in computation without compromising 

matching performance. 
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6.1 Introduction 

As already mentioned in Chapters 1 and 2, recent years have seen a great 

deal of effort expended within the research community towards techniques 

that are able to detect, describe and match image features [10, 12, 13, 17, 

54, 55, 198-201]. The most popular of these algorithms operate in a way that 

makes them reasonably independent of scale and orientation changes 

between the images being matched. The technique known as SURF 

(Speeded-Up Robust Features) has a number of adaptions over earlier 

techniques such as SIFT (Scale Invariant Feature Transform) [11, 12] and 

the Harris-Laplace feature detector [200] that are intended to improve 

execution speed without compromising the effectiveness of feature detection 

[13, 53, 202]. Indeed, SURF has gained widespread popularity in vision 

systems due to its faster execution, paving the way for applications such as 

an interactive museum guide, retina mosaicking and mobile handheld 

augmented reality [203-205].  

During the last decade or so, SIFT [12] has become the most popular 

technique for matching image features due to its fast detector coupled with 

a distinctive descriptor. However, the high dimensionality of this descriptor 

directly affects the amount of computation required for feature matching 

and is considered a major shortcoming of SIFT for real-time applications 

[13]. A number of optimizations and extensions have been proposed for the 

basic feature detection-description scheme presented by SIFT.  The driving 

factors have been improvement in matching performance, reduction in 

amount of computation and adaptation for new applications.  PCA-SIFT, 

GLOH, RIFT, CSIFT and n-SIFT represent some of the popular variants 

proposed to date [54, 55, 198, 199, 206].  PCA-SIFT applies principal 

component analysis (PCA) to the gradient around each detected interest 

point, coupled with reduction of the descriptor from 128 to 36 coefficients in 

an effort to speed up the subsequent matching phase. This, however, results 

in a less distinctive descriptor as compared to SIFT [55].  The GLOH 

descriptor uses more spatial regions in its histograms than SIFT but yields 
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the same number of coefficients by again employing PCA. Although the 

GLOH descriptor reputedly is more distinctive and robust than SIFT, this 

advantage is diminished by the extra computation required. Since color has 

the potential of providing valuable information in object description and 

matching tasks, colored SIFT (CSIFT) extends the basic algorithm by 

computing SIFT descriptors in a color invariant space; these have proven 

more robust to color and photometrical variations. Features from images of 

arbitrary dimensionality are extracted and matched by n-SIFT which is 

built upon the basic concepts outlined by SIFT. This method is particularly 

useful for automated matching of medical images such as MRI images.  

SURF was devised using insights gained from previously-proposed 

feature detectors and descriptors. It employs a Hessian-based detector due 

to its documented higher stability and repeatability [15, 55].  Inspired by 

the DoG detector used by SIFT, it approximates the determinant of the 

Hessian matrix to detect blobs in an image.  In addition, SURF utilizes an 

integral image representation [132] to reduce computation, leading to a 

significant speed-up [13]. As with most of the proposed descriptor schemes, 

SURF builds its 64-coefficient descriptor using the same basic strategy as 

SIFT but makes use of sums of Haar wavelet responses instead of gradient 

information.  The resulting descriptor can out-perform the SIFT counterpart 

both in terms of computation speed and matching performance [13].  

Despite being faster than contemporary techniques, SURF does not 

necessarily achieve real-time performance on modern desktop computers 

with software-only implementations due to its high computational 

complexity. For example, detection and description of 1,529 interest points 

using the original software implementation of SURF [207] for the first 

image (800 x 640 pixels) of the Graffiti data set provided by [50] takes about 

610 ms on a standard Pentium-IV PC running at 3 GHz [13].  Since real-

time performance is critical for vision-based applications such as target 

tracking and aerial surveillance, removing or reducing the bottlenecks that 

impede SURF from achieving real-time performance is desirable. 
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Recent research has targeted software-based optimization and/or 

hardware acceleration in an effort to improve the execution speed of SURF, 

with encouraging results.  In [201], a speed-up by a factor of 2-6 relative to 

the original implementation [207] is achieved by running a multi-threaded 

software implementation of SURF on multi-core processors. Simulation 

results for a hardware-accelerated system are presented in [205] that 

demonstrate real-time performance, though for still images only. An 

implementation of SURF on programmable graphics hardware is detailed in 

[208] that can process image sequences at a rate of more than 100 frames 

per second. With the spectrum of embedded vision applications becoming 

broader and broader, there is enough motivation to investigate efficient 

software and/or hardware solutions, not only in terms of execution speed but 

also for computational resources, chip area, weight and power consumption.  

Since computational complexity is the major bottleneck in achieving 

real-time performance, it is clear that algorithm-level optimization of SURF 

holds the key for faster software and/or hardware solutions.  This chapter 

takes a step in this direction by exploring the reduction of scale-space 

‘octaves’ as a key algorithm-level optimization for reducing the 

computational complexity of SURF.  Conventionally, this is achieved simply 

by discarding the higher octaves; but the results presented below 

demonstrate that this may often reduce accuracy.  Instead, this chapter 

develops and assesses a more sophisticated approach, termed best octaves, 

by selecting the optimal SURF octaves for a particular application; it will be 

demonstrated that this significantly out-performs the conventional approach 

both in terms of computation and matching performance. Unlike the 

original SURF algorithm, the best octaves method processes all four octaves 

at a uniform sampling rate of unity, thus providing a fair opportunity for all 

octaves to show their maximum performance. The proposed method then 

finds two octaves that provide the best matching performance according to 

criteria expounded below. To the author’s knowledge, this is the first 

systematic approach to SURF octave selection. 
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The remainder of this chapter is structured as follows.  Following a 

brief overview of the SURF algorithm in the next section, Section 6.3 

examines the reduction of SURF octaves as a key method to improve 

execution speed.  The above-mentioned image matching approach for SURF 

octave selection is presented in Section 6.4. A detailed statistical assessment 

of the proposed technique in terms of matching performance and reduction 

in computation is done in Section 6.5. Finally, a summary of the chapter is 

presented in Section 6.6. 

6.2 An Overview of the SURF Algorithm 

This section provides a brief overview of the SURF algorithm; see [13, 53] 

for an in-depth exposition. There are two main (and distinct) stages: 

detection and description. These are followed by feature matching, as shown 

in Figure 6-1. The key tasks performed at each stage are summarized below.  

Input Image

Feature Detection

Feature Description

Feature Matching

Matched Feature Points

Integral Image 

Calculation + Blob 

Response 

Calculation + 3-D 

Non-Maximum 

Suppression + 3-D 

Quadratic 

Interpolation

Orientation 

Assignment + 

Descriptor 

Calculation

Nearest Neighbor 

Algorithm

 

Figure 6-1: The key stages of SURF-based feature matching 
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6.2.1 Interest Point Detection 

Interest point detection can be sub-divided into four steps: integral image 

calculation, computation of blob response maps at different scales,               

3-D non-maximum suppression and 3-D quadratic interpolation. To 

eliminate the computationally-expensive multiplication operations when 

calculating box filters, SURF first computes the integral image 

representation for the whole input image, reducing the computation to three 

additions per pixel for calculating box filters, leading to significant speed 

improvements over other feature detection-description schemes. The value 

of the integral image at any location (x,y) in an image is the sum of all the 

pixels to the left and above it [132]. 

The next step is the calculation of blob response values for every 

image location at different scales.  At any specific scale σ, the algorithm 

computes the blob response at an image location (x,y) by approximating the 

determinant of the Hessian matrix using: 

 
   (       )                   

 
Equation 6-1 

where     ,     and     are the convolutions of the input image with 

approximate second-order Gaussian partial derivatives in the x-, y- and xy-

directions respectively, centered at location (x,y). As the second-order 

Gaussian partial derivatives are approximated as rectangular masks by 

SURF, increasing values of σ result in large mask sizes. By employing the 

integral image representation discussed above, SURF ensures efficient 

computation of     ,     and     at a constant speed, irrespective of the 

mask size. Once computed, these values of     ,     and     are normalized 

with respect to the mask size before being utilized in Equation 6-1.  

To achieve scale-invariant detection of image features, a scale-space 

is constructed by convolving rectangular masks of increasing size, 

corresponding to different scales, with the input image. This procedure 

results in a series of blob response maps at different scales.  The scale-space 
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is divided into a fixed number of octaves, where each octave consists of a 

specific number of adjacent scales at which the blob response maps are 

calculated. The maximum number of octaves that can be computed is 

therefore dependent upon the number of scales per octave and the highest 

scale at which blob response map can be calculated.  The size of the input 

image determines this highest scale as the maximum size of mask must not 

exceed the input image size.  

Normally, four scales per octave are used by SURF. With this 

configuration, four octaves are considered sufficient for scale-space analysis, 

as the contribution of octaves higher than that is negligible in terms of 

detected interest points [13].  Rectangular masks of size 9 x 9 are used for 

computation of the blob response map at the lowest scale (σ = 1.2). The blob 

response map for the next adjacent scale (σ = 2.0) is computed by increasing 

the size of rectangular masks by 6 pixels in total (15 x 15 masks). The same 

procedure is followed to compute blob response maps for other scales. In 

short, masks of size 9 x 9, 15 x 15, 21 x 21 and 27 x 27 are used for the first 

octave. For the second octave, SURF increases the size of masks by 12 pixels 

instead of 6 pixels (as in the case of first octave) and also doubles the 

sampling interval in the spatial domain. The motivation behind doubling 

the sampling interval is to reduce the computation time. Since interest 

points can be arbitrarily close together, this implies a loss of accuracy due to 

skipping every second pixel in the input image [12, 13]. The second octave 

thus utilizes masks of sizes 15 x 15, 27 x 27, 39 x 39 and 51 x 51 pixels.  The 

size of masks for the third and the fourth octave is increased by 24 and 48 

pixels respectively. In addition, the sampling interval for the third octave is 

doubled to 4, while for the fourth octave the sampling interval is 8, meaning 

that every fourth pixel is processed in the third octave and every eighth 

pixel in the fourth octave. The mask sizes for the third octave are 27 x 27,  

51 x 51, 75 x 75 and 99 x 99 pixels. Similarly, the fourth octave is computed 

using masks of sizes 51 x 51, 99 x 99, 147 x 147 and 195 x 195 pixels.          

Once the scale-space is constructed, local maximum detection (3-D 

non-maximum suppression) is performed.  The highest and lowest scales in 
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every octave are used only for comparison purposes as the local maxima 

need to be detected in 3-D space.  Thus, for the two central scales of every 

octave, the blob response value at any pixel is considered a local maximum 

in a neighborhood of 3 x 3 x 3 if it is greater than the blob responses of all 26 

neighbor pixels. To speed up this computation, SURF employs a fast variant 

introduced by [133]. A blob response threshold is normally applied, so that 

only high-contrast interest points are selected. 

The next step is 3-D quadratic interpolation of the detected local 

maxima, allowing SURF to achieve sub-pixel, sub-scale accuracy.  As 

proposed by [134], a 3-D quadratic function is fitted to the interest points for 

finding the interpolated location of the local maximum.  

6.2.2 Interest Point Description 

Two key tasks are performed in this stage: orientation assignment and 

descriptor computation. Since scale-space analysis provides interest points 

that are only scale-invariant, a reproducible orientation needs to be 

identified for every detected interest point to make its descriptor invariant 

to image rotations, and both these stages are based around Haar wavelets.  

Firstly, Haar wavelet responses in the x and y directions are computed 

within a circular neighborhood of radius 6s, where s is the scale at which the 

interest point was detected, around the interest point and the sampling step 

is set to s. To achieve a speed-up, SURF again utilizes the integral image 

representation of the input image, as computation of Haar wavelet 

responses requires convolution with rectangular wavelets having side length 

of 4s. The calculated Haar wavelet responses are then weighted with a 

Gaussian (σ = 2s) centered at the interest point.  Vectors of different lengths 

are obtained by summing all horizontal and vertical responses using a 

sliding orientation window of    . The orientation of the longest such vector 

is assigned to the interest point.   

To compute the descriptor, the algorithm constructs a square region 

of size 20s aligned to the selected orientation and centered at the interest 

point. After dividing this square region into smaller 4 x 4 square sub-
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regions, Haar wavelet responses are calculated for each sub-region in 

horizontal and vertical directions at 5 x 5 regularly-spaced sample points 

using wavelets with side length of 2s. Once computed, the wavelet responses 

are weighted with a Gaussian (σ = 3.3s) centered at the interest point.  The 

horizontal and vertical responses are then summed for each sub-region.  

Finally, the 64-coefficient SURF descriptor is obtained by summing the 

absolute values of the horizontal and vertical responses for each sub-region, 

which is normalized to achieve contrast invariance. 

6.2.3 Nearest Neighbor Matching 

The final stage is image feature matching on the basis of computed 

descriptors. This can be achieved using a nearest neighbor strategy [12]. For 

matching interest points between a reference image and a test image, 

Euclidean distances are computed for a candidate interest point in the 

reference image with all interest points in the test image.  If the ratio of the 

Euclidean distance of the first nearest neighbor to the Euclidean distance of 

the second nearest neighbor is greater than 0.7, a matched pair is detected 

[53]. To speed up the matching process, SURF utilizes the sign of the 

Laplacian (the trace of the Hessian matrix) as it helps to differentiate bright 

blobs on dark backgrounds from dark blobs on bright backgrounds. This 

implies matching interest points with the same contrast type.  

6.3 Reducing the Number of SURF Octaves 

As with most computer vision techniques, SURF is both computation- and 

data-intensive in nature. For example, integral image calculation is 

recursive in nature and involves a large number of additions, due to the 

processing of every pixel in the input image. On the other hand, orientation 

assignment requires evaluation of trigonometric functions, which is also 

computationally expensive. Thus, to be able to improve the speed of SURF, 

one needs an understanding of the effect of the various parameters on each 

of its stages.  Table 6-1 summarizes how the various stages scale, where n is 
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the image resolution, m is the number of detected local maxima, i is the 

number of detected interest points and k is the product of the number of 

feature descriptors for a test image and the number of feature descriptors 

for a reference image. The computation time of the detection stage is 

dependent upon image resolution and has a near linear relationship; for 

example, on an Intel Atom Platform running the OpenCV implementation of 

SURF [209] under Windows at 1.6 GHz, increasing the image resolution by 

a factor of 1.56 from 640 x 480 to 800 x 600 pixels results in an increase in 

computation time of the detection stage by a factor of 1.57, from 183 ms to 

287 ms; thus, increasing the number of pixels in the image increases the 

computation time for the detection stage linearly [210].  The computation 

time of the feature description phase is a function of the number of detected 

interest points: the higher the number of detected interest points, the longer 

the computation time.  On average, 0.2 ms per interest point is required to 

compute a SURF descriptor on a Pentium IV clocked at 3 GHz using the 

original implementation of SURF [202].  Finally, the computation time of 

the matching stage is determined by the number of feature descriptors for 

the test image and the number of feature descriptors for the reference image 

or in a feature database.    

 Table 6-1: Computational complexity of SURF-based image matching 

S.No. Stage Computational Complexity 

                                 Detection 

S1. Integral Image Calculation O(n) 

S2. Blob Response Calculation O(n) 

S3. 3-D Non-Maximum 

Suppression 

O(n) 

S4. 3-D Quadratic Interpolation O(m) 

                                 Description 

S5. Orientation Assignment  O(i) 

S6. Descriptor Calculation O(i) 

                                 Matching 

S7. Nearest Neighbor Algorithm O(k) 
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Reduction of the number of octaves below the usual four should 

reduce the computation time (and also reduce utilization of other resources, 

such as memory) for each stage of the algorithm and hence the focus in this 

chapter is on optimization of the number of octaves required for any 

particular vision application, though this must not be achieved at the 

expense of accuracy.  This approach will benefit both software and hardware 

solutions.  

6.3.1 The Conventional Approach 

A technique that is commonly used for reducing the number of SURF 

octaves is simply to discard higher octaves in favor of lower ones: the lowest 

octave (octave 1) has the highest preference and the highest octave (octave 

4) has the lowest preference. For example, only the first three octaves are 

processed in [201] for an image size of 1024 x 768 pixels. 

For the purpose of discussion and to demonstrate the effectiveness of 

this approach in reducing the computational complexity, the first and the 

second image of the Boat data set [50] are utilized here – see Figure 6-2 and 

Table 6-2. With four octaves and a blob response threshold of 0.002, some 

2,360 interest points are detected for the first image and 2,500 interest 

points for the second image using the OpenSURF implementation [211]. 

When the first image is matched with the second image, some 210 point 

correspondences are obtained using the nearest neighbor algorithm. For the 

case when only the lower two octaves (i.e., 1 and 2) are processed with the 

same threshold, the number of detected interest points for the images are 

2,050 and 2,227 respectively and the total number of point correspondences 

between them is 177.  Hence, there is a decrease of 15.7% in the number of 

matched points when the number of octaves is reduced from four to two; this 

can be considered negligible. Processing only the lower two octaves and 

rejecting all the higher octaves is therefore a fair compromise between 

computational complexity and matching performance in this particular case. 
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Figure 6-2: The first (left) and the second image (right) of the Boat data set [50] 

Table 6-2: Results for the first and the second image of the Boat data set 

Image Octaves Scales Per 

Octave 

Threshold Interest 

Points 

Matches Performance 

Decrease 

1 

2 

1 2 3 4 

1 2 3 4 

4 

4 

0.002 

0.002 

2360 

2500 

 

210 

 

-- 

1 

2 

1 2 

1 2 

4 

4 

0.002 

0.002 

2050 

2227 

 

177 

 

15.7% 

6.3.2 Limitations 

The obvious limitation of the method discussed above is that it can be used 

to reduce the number of octaves only for images where the contribution of 

higher octaves is negligible. The selection of lower octaves and rejection of 

higher octaves for processing is actually based upon the assumption that the 

lower octaves always detect more interest points than higher octaves [13].  

However, the author has observed that this assumption is not always true 

in real-life vision applications as there is a strong possibility of higher 

octaves being more dominant than the lower octaves in terms of detected 

interest points once the blob response threshold is applied. Thus, applying 

this approach to images where higher octaves are more significant in terms 

of detected interest points may introduce a dramatic degradation in image 

matching performance, which is certainly not desirable. Simply discarding 
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the higher octaves would also result in failure if higher octaves are less 

dominant in terms of detected interest points but more significant in terms 

of matched interest points compared to lower octaves. 

 

Figure 6-3: The fifth (left) and the sixth image (right) of the Bikes data set [50] 

 To illustrate the adverse effects of this kind of octave reduction, two 

sample cases are discussed here. The first uses the fifth and the sixth 

images of the Bikes data set [50] (Figure 6-3).  The image matching results 

for the two images with four and two octaves are detailed in Table 6-3, again 

using OpenSURF [211]. It is evident from Table 6-3 that there is a 

considerable decrease (58.3%) in the number of matched interest points 

when the number of octaves is reduced from four to two.  This degradation 

of image matching performance is certainly not desirable and is a sharp 

contrast to the results presented in Table 6-2. Simply discarding higher 

octaves is therefore not a sensible approach for this particular case. 

Table 6-3: Results for the fifth and the sixth image of Bikes data set 

Image Octaves Scales Per 

Octave 

Threshold Interest 

Points 

Matches Performance 

Decrease 

5 

6 

1 2 3 4 

1 2 3 4 

4 

4 

0.0022 

0.0022 

101 

74 

 

36 

 

-- 

5 

6 

1 2 

1 2 

4 

4 

0.0022 

0.0022 

59 

30 

 

15 

 

58.3% 
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Figure 6-4 shows the second sample case which consists of two images 

from an aerial sequence. The image matching results for these two images 

using OpenSURF are presented in Table 6-4. With four octaves, there are 59 

interest point matches, whereas with two octaves there are only 21. The 

drastic reduction of 64.4% in image matching performance here also 

demonstrates the detrimental effect that simply discarding higher octaves 

can have. 

 

Figure 6-4: The 47th (left) and the 48th image (right) of an aerial sequence 

Table 6-4: Results for the 47th and the 48th image of an aerial sequence 

Image Octaves Scales Per 

Octave 

Threshold Interest 

Points 

Matches Performance 

Decrease 

47 

48 

1 2 3 4 

1 2 3 4 

4 

4 

0.0022 

0.0022 

349 

278 

 

59 

-- 

47 

48 

1 2 

1 2 

4 

4 

0.0022 

0.0022 

202 

144 

 

21 

64.4% 

6.4 Proposed Method 

To overcome the limitations of the conventional method, this section 

presents a technique for SURF octave selection, which the author has 

termed the best octaves method.  This section presents a comparative 

analysis of the best octaves approach with the conventional one, both in 

terms of matching performance and computation. 
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6.4.1 Underlining Principles 

Since the performance of any SURF-based vision system relies 

heavily on the number of matched points, it is essential to keep the number 

of matched points as high as possible. Moreover, assessment based around 

matched points is preferable to one that considers only detected interest 

points as it is matches that determine the accuracy of the vision system: 

detection of a large number of interest points does not guarantee a large 

number of interest point matches. Conversely, it is entirely possible to 

obtain a significant number of interest point matches from a small group of 

detected interest points.  Rather than preferring lower octaves based on the 

assumption that they detect more interest points, the focus here is on 

obtaining the maximum number of interest point matches without 

preferring any particular octave, while keeping the computational cost as 

low as possible. 

Before detailing the main steps of the proposed method, let us 

consider briefly the significance of the sampling rate during the detection 

phase. The developers of SURF recommended doubling the sampling 

interval in the spatial domain when moving from lower octaves to higher 

octaves during calculation of the blob response map and other detection 

stages in order to reduce computation [13].  More precisely, all scales in the 

first octave are processed at sampling rate of 1 whereas, for the second, 

third and fourth octaves, the sampling rate is 2, 4 and 8 respectively. To 

reduce computation further, sampling rates of 2, 4, 8 and 16 respectively 

can be used for the four octaves, though the numbers of detected and 

matched interest points are reduced. This non-uniform sampling of octaves 

implies that the first octave has the highest preference whereas the fourth 

octave has the lowest preference; it also indicates that it is presumed that 

the lowest octave will detect the highest number of interest points and the 

highest octave the fewest. The above results demonstrate that this 

assumption is not always true and, once the blob response threshold is 

applied during the detection phase, any of the four octaves can contribute 
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more detected interest points and matched interest points. In summary, the 

non-uniform sampling strategy employed by SURF does not provide an 

equal opportunity to all the octaves to show their maximum performance in 

terms of detected and matched interest points. It is interesting to note that 

if the number of scales per octave is increased, some of the scales move from 

the higher octaves to the lower octaves and are processed at double their 

previous sampling rate. This again shows the inclination of SURF towards 

lower octaves, because if a particular scale is considered to detect a lower 

number of interest points due to the application of a large Gaussian filter 

and is thus sampled at a lower rate to reduce computation, it should be 

sampled at the same rate irrespective of the fact whether it is in the highest 

or the lowest octave. 

Since detected interest points can be arbitrarily close together in the 

image, this non-uniform sampling inevitably incurs some loss of accuracy 

[12, 13].  This can be overcome by sampling all four octaves uniformly at a 

sampling rate of unity. It thus provides the maximum performance 

configuration in terms of detected and matched interest points at a 

particular blob response threshold. A comparison of the computation 

involved in this four-octave maximum performance configuration with non-

uniformly sampled variants for the first three stages of SURF is shown in 

Figure 6-5. The computation for the first stage (S1) is equal for the four 

configurations, thus leading to zero percentage reduction as depicted in 

Figure 6-5. However, the maximum performance configuration involves 

significantly more computation compared to the non-uniformly sampled 

alternatives in stages S2 and S3. It should be noted that the reduction in 

computation with respect to the maximum performance configuration shown 

in Figure 6-5 is independent of the images being matched. 
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Figure 6-5: Comparison of computation for stages S1, S2 and S3 between maximum 

performance and non-uniformly sampled SURF configurations 

The amount of computation for the next four stages depends upon the 

particular images being matched.  The results presented in Table 6-2 to 

Table 6-4 are obtained using sampling intervals of 1, 2, 4 and 8 for the four 

octaves respectively. For the purpose of discussion, the 47th and the 48th 

image of the aerial sequence in Figure 6-4 are utilized here and the results 

are presented in Table 6-5. The results for the maximum performance 

configuration in Table 6-5 are obtained by a modified version of OpenSURF 

for achieving uniform sampling rate of unity. The maximum performance 

configuration provides 135 interest point matches (Table 6-5) as opposed to 

the 59 interest point matches (Table 6-4) provided by the non-uniformly 

sampled configuration at a threshold of 0.0022. Thus, the matching 

performance in this particular case of the non-uniformly sampled approach 

with four octaves is only 43.7% of the performance of the four-octave 

configuration processed at uniform sampling rate of unity.  This is a 

significant reduction in matching performance, and trying to reduce it 

further by the conventional method of discarding octaves compromises 

accuracy. 

Since the number of matches for the non-uniformly sampled SURF 

with four octaves cannot be increased beyond 59 at threshold of 0.0022 in 
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this particular case, the threshold can be lowered to 0.0009 (Table 6-5) to 

find an equal number of matched points. Although lowering the threshold 

too much can reduce the quality of interest point matches due to noise and 

hence is not desirable in practice, it has been done here to make a fair 

comparison with the maximum performance configuration in terms of 

computation.  It is evident from the results presented in Table 6-5 that, for 

achieving the same number of matches, the non-uniformly sampled system 

with four octaves requires processing 44.4% more interest points compared 

to the system with a sampling rate of unity. Alternatively, we can say that 

10.4 interest points are processed per match for the system with unity 

sampling rate, whereas 19.0 interest points need to be processed per match 

for non-uniformly sampled system with four octaves. A comparison of the 

computation involved in the last four stages of SURF-based image matching 

is shown in Figure 6-6; it is apparent that the maximum performance 

configuration provides more performance with less computation in this 

particular case, compensating for the extra computation done in the first 

three stages of algorithm (Figure 6-5), and thus out-performs the non-

uniformly sampled configuration in terms of both performance and 

computation. The unity sampling rate configuration provides the maximum 

matching performance but its potential to out-perform the non-uniformly 

sampled configuration in terms of computation is more dependent upon the 

specific images being matched.              

Table 6-5: Results for the 47th and the 48th image of an aerial sequence with sampling 

interval = 1 and sampling interval = 1, 2, 4 and 8  

Image Octaves Scales 

Per 

Octave 

Threshold Sampling 

Interval 

Interest 

Points 

Matches Interest 

Points 

Processed 

Per Match 

47 

48 

1 2 3 4 

1 2 3 4 

4 

4 

0.0022 

0.0022 

1 

1 

767 

648 

 

135 

 

10.4 

47 

48 

1 2 3 4 

1 2 3 4 

4 

4 

0.0009 

0.0009 

1 2 4 8 

1 2 4 8 

1317 

1231 

 

134 

 

19.0 
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Figure 6-6: Comparison of computation for stages S4, S5, S6 and S7 between maximum 

performance and a non-uniformly sampled, 4-octave SURF configuration having equal 

performance at lower threshold for aerial images 

To summarize, this discussion has underlined two basic principles for 

the selection of SURF octaves: equal opportunity for all the octaves to show 

their maximum performance; and to prefer the octaves with the best 

performance irrespective of being a lower or a higher octave. 

6.4.2 The Best Octaves Approach 

In best octaves, all four octaves are uniformly sampled to provide a fair 

opportunity for all octaves to show their maximum performance and to allow 

better evaluation of their relative performance. The proposed method then 

finds the two octaves that provide the best matching performance. For any 

given pair of images, the main steps of the proposed method are outlined in 

the following paragraphs. 

Step 1.  The matched interest points are calculated for the two given images 

for the maximum performance configuration (unity sampling rate and four 

octaves) and the number of them is considered as a reference for the later 

steps. 

Step 2.  The matched interest points are calculated for the two given images 

with unity sampling rate and the first two octaves. The ratio of the number 

of matched points, R, for octaves 1 and 2 against the reference is computed 
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to assess the effect of octave reduction. If R ≥ 0.5, more than half the 

matches lie in octaves 1 and 2, so they are selected.  Otherwise, we proceed 

directly to step 4, omitting step 3. A threshold of 0.5 is chosen here because 

a much lower value of R (say 0.25) may make the performance of the 

selected octaves only 25% of that of the maximum performance 

configuration in some cases, which is undesirable. Conversely, if R is much 

larger than 0.5 (say 0.85), the probability of obtaining that proportion of 

matches within two octaves becomes small. The experimental results 

presented later in this chapter show that this approach does not reduce the 

number of true matches; rather, it appears to reduce the number of false 

matches, thereby improving overall performance. 

Step 3. Since the first two octaves are sampled at rates of 1 and 2 

respectively in the original SURF algorithm, sampling every pixel of octave 

2 for the selected best octaves in step 2 above may not make a significant 

difference to matching performance. To ensure that no extra computation is 

done, the matched interest points for the two images are calculated for the 

first two octaves with sampling rates of 1 and 2. The number of matched 

points for this non-uniform sampling case is compared with the reference; if 

greater than 0.4, then a non-uniform sampling rate of 1 and 2 is chosen for 

the selected best octaves in step 2 above. Otherwise, unity sampling rate is 

selected and the next three steps are skipped. 

Step 4.  The matched interest points are calculated for the two images with 

unity sampling rate and octaves 2 and 3 only. The Gaussian filters applied 

at different scales of octaves 2 and 3 are the same as in the original SURF 

algorithm. Similarly, after discarding octaves 1 and 2, the number of 

matched points is computed for octaves 3 and 4 by applying Gaussian filters 

to different scales, as in the original algorithm.  The ratio of the number of 

matched points to the reference is then computed for the two cases and 

compared with each other to determine which is greater. If the maximum 

ratio is ≥ 0.5, then octaves corresponding to that ratio are selected as the 

best octaves. A sampling rate of unity is chosen and the next two steps are 

skipped. 
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Step 5.  For the two images, the matched interest points are computed with 

unity sampling rate for each of octaves 1 and 3, octaves 1 and 4, and octaves 

2 and 4.  The ratio of the numbers of matched points to the reference is then 

computed for the three cases and compared to determine which is greatest. 

If the maximum ratio is ≥ 0.5, then octaves corresponding to that ratio are 

selected as the best octaves. A sampling rate of unity is chosen and the next 

step is skipped.   

Step 6.  Finally, the maximum of the six ratios calculated for octaves 1 and 

2, octaves 2 and 3, octaves 3 and 4, octaves 1 and 3, octaves 1 and 4, octaves 

2 and 4 with unity sampling rate is determined and the octaves 

corresponding to the maximum ratio are selected as the best octaves. A 

sampling rate of unity is chosen for the best octaves except for the case 

when octaves 1 and 2 are selected, in which case the sampling rate is 

determined as described in step 3.  

It should be noted that, due to low frame-to-frame motion in the case 

of image sequences with medium to high frame rate, the number of matches 

in Step 1 need to be computed for the first pair of images only, then utilized 

as reference for the next few images based on frame rate, and then updated. 

6.4.3 Qualitative Results and Comparative Analysis 

To demonstrate the effectiveness of the proposed best octaves method, 

results for three sample cases are presented here and a comparative 

analysis is performed with the reference configuration (unity sampling 

interval and four octaves) and non-uniformly sampled SURF systems in 

terms of both matching performance and computation. The non-uniformly 

sampled variants that are being utilized here for comparison with the best 

octaves method are: SURF with 4-octaves (this is effectively the full version 

of the algorithm [13]); SURF with 3-octaves; and SURF with 2-octaves. For 

evaluation of matching performance, it is important to consider not only the 

total number of nearest neighbor matches but also their quality in terms of 

true matches. Different methods, such as Precision-Recall curves and ROC 

curves, can be employed to determine the quality of matches after their 
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categorization into true positives, false positives, true negatives and false 

negatives [55]; here ROC and Sensitivity-Specificity curves are used to 

demonstrate the quality of matches for the algorithms being evaluated, and 

support this with a quantitative statistical analysis in Section 6.5.  The 

results have been obtained using OpenSURF modified for unity sampling 

rate at a threshold of 0.0022. 

6.4.3.1 Matching Performance 

Aerial images 47 and 48 (Figure 6-4) are again utilized here as the first 

sample case. Figure 6-7 shows the results of the best octaves method for 

these aerial images; the bars in the figure represent the number of points 

(read values from the left ordinate axis) whereas the line graph shows the 

matching ratio (read values from the right ordinate axis). Octaves 3 and 4 

are selected as the best octaves in this particular case as the first two 

octaves have less than 50% matches as compared to the reference. It should 

be noted that with the selected best octaves, the decrease in matching 

performance with respect to the reference is less than 30%, a sharp contrast 

to the results achieved with non-uniformly sampled SURF (Table 6-4).  To 

illustrate the performances of the best octaves method and other SURF 

configurations in this particular case, a Receiver Operating Characteristic 

(ROC) curve is shown in Figure 6-8, where the true positive and false 

positive rates were calculated using [212]: 

 
                   

             

                            
 

 

Equation 6-2 

 

 
                    

              

                            
 

 

Equation 6-3 

It is clear that the best octaves method out-performs the others. 

Results of the best octaves method for the first and the fifth image 

(Figure 6-9) of the Trees data set [50] are presented as the second sample 

case in Figure 6-10. As in Figure 6-7, the bars in Figure 6-10 represent the 
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number of points (read values from the left ordinate axis) whereas the line 

graph shows the matching ratio (read values from the right ordinate axis). 

Here, octaves 2 and 3 are selected as the best octaves and provide a 

matching performance only 31.4% less than the reference configuration.  

Again, to assess the quality of matches, a comparison of ROC curves for 

these images is presented in Figure 6-11. Clearly, the best octaves approach 

out-performs all the other SURF configurations comprehensively, including 

the reference. 

 

Figure 6-7: Results of best octaves for 47th and 48th image of aerial sequence; octaves 3 and 4 

are selected as the best octaves 

 

Figure 6-8: Comparison of ROC curves for the 47th and the 48th image of aerial sequence
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Figure 6-9: The first (left) and the fifth image (right) of the Trees data set [50] 

 

Figure 6-10: Results of best octaves for image 1 and 5 of the Trees data set; octaves 2 and 3 

are selected as the best octaves 

Finally, results are shown for the first and the sixth images of the 

widely-used UBC dataset [50] in Figure 6-12. The bars in Figure 6-12 

represent the number of points (read values from the left ordinate axis) 

whereas the line graph shows the matching ratio (read values from the right 

ordinate axis). Octaves 2 and 3 are the best for UBC images with a 

matching performance 32.3% less than the reference configuration. Figure 

6-13 shows the Sensitivity-Specificity curves for the algorithms, confirming 

the better performance of the selected best octaves in terms of the quality of 

interest point matches as compared to the other variants. The interest point 
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matches obtained using the selected best octaves for image 1 and 6 of the 

UBC dataset are depicted in Figure 6-14.   

 

Figure 6-11: Comparison of ROC curves for the first and the fifth image of the Trees data set 

[50] 

 

Figure 6-12: Results of best octaves for image 1 and 6 of the UBC data set; octaves 2 and 3 

are selected as the best octaves 
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Figure 6-13: Sensitivity-Specificity curves for the first and the sixth images of the UBC 

dataset 

 

Figure 6-14: Interest point matches obtained using the selected best octaves for the first and 

the sixth images of the UBC dataset

6.4.3.2 Reduction in Computation 

Figure 6-15 provides a comparison in terms of computation of the best 

octaves approach with the maximum performance configuration for the first 

three stages of SURF. Reductions in computation achieved by best octaves 

for two possible cases are shown: sampling rate of unity and sampling rate 

of 1, 2 (when octaves 1 and 2 are selected as best octaves).  For stage S1, the 
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computation is equal for the maximum performance configuration and best 

octaves, so there is no reduction in computation, as shown in Figure 6-15. 

There is however a significant reduction in computation for best octaves with 

respect to the reference configuration in stages S2 and S3.  It should also be 

noted that this reduction in computation is again independent of the specific 

images being matched. 

 

Figure 6-15: Reduction in computation for the first three stages of SURF using best octaves, 

compared to the maximum performance configuration 

 

Figure 6-16: Reduction in computation for the last four stages of SURF using best octaves 

with respect to the maximum performance configuration
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A comparison of the computation of best octaves with the maximum 

performance configuration for the last four stages of SURF is shown in 

Figure 6-16 for the three sample image sets.  It is apparent that there is a 

significant reduction in computation with respect to the maximum 

performance configuration, demonstrating that the proposed method of 

octave selection provides a fair trade-off between matching performance and 

computation with respect to the maximum performance configuration.   

 

 

Figure 6-17: Reduction in computation for non-uniformly sampled SURF configurations 

with respect to best octaves (sampling = 1) for stages S1, S2 and S3 (top)  (b) Reduction in 

computation for best octaves (sampling = 1, 2) with respect to non-uniformly sampled SURF 

configurations for stages S1, S2 and S3 (bottom) 
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Figure 6-17 (top) shows the reduction in computation achieved by the 

three non-uniformly sampled SURF configurations for the first three stages 

of the algorithm when compared with best octaves. This is the case when a 

sampling rate of unity is selected for best octaves. Again, the reduction in 

computation for the first three stages remains consistent and is independent 

of the images being matched. Equal computation in stage S1 for all 

configurations results in no reduction in computation; moreover, it can be 

seen that the reductions achieved by the non-uniformly sampled SURF 

configurations with 3 and 4 octaves respectively are not significant. 

The reductions for non-uniformly sampled SURF variants in Figure 

6-17 (top) are applicable for all situations except when octaves 1 and 2 are 

selected as the best octaves with non-uniform sampling rate. This particular 

case is shown in Figure 6-17 (bottom). As can be seen from the zero 

reductions, best octaves and non-uniformly sampled SURF with 2 octaves 

require the same amount of computation and provide similar matching 

performances. It should be noted that when best octaves utilizes non-

uniform sampling, it achieves a reduction in computation for stages S2 and 

S3 with respect to non-uniformly sampled SURF variants with 3 and 4 

octaves respectively, whereas there is no reduction in computation for stage 

S1. 

For the three image sets, the percentage reduction in computation for 

the last four stages of SURF achieved by the best octaves method with 

respect to non-uniformly sampled SURF configurations having matching 

performance equal to the best octaves method is presented in Figure 6-18 to 

Figure 6-20. It is evident that the best octaves approach compensates for the 

extra computation in the first three stages of the algorithm by achieving 

significant reduction in computation in the last four stages and 

comprehensively out-performs the non-uniformly sampled configurations.  

Finally, as an example, the author presents here the timings obtained 

on a mobile robotic platform based on the Intel Atom (CPU N450 running at 

1.66 GHz) for extraction of image features and nearest neighbor matching 

for UBC (image 1 and 6): 30.58, 26.79 and 26.55 sec for non-uniformly 
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sampled SURF variants with 2, 3 and 4 octaves respectively; and 15.81 sec 

for best octaves. Clearly, the best octaves approach out-performs the others. 

 

Figure 6-18: Reduction in computation for stages S4, S5, S6 and S7 for best octaves with 

respect to the non-uniformly sampled SURF configurations having equal matching 

performance for 47th and 48th image of aerial sequence 

 

Figure 6-19: Reduction in computation for stages S4, S5, S6 and S7 for best octaves with 

respect to the non-uniformly sampled SURF configurations having equal matching 

performance for image 1 and 5 of Trees data set  
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Figure 6-20: Reduction in computation for stages S4, S5, S6 and S7 for best octaves with 

respect to the non-uniformly sampled SURF configurations having equal matching 

performance for image 1 and 6 of UBC data set 

The results presented illustrate the dominance of the proposed 

method over non-uniformly sampled SURF configurations in terms of 

matching performance and computation. To summarize, best octaves 

provides more and better quality interest point matches for significantly less 

computation for the three sample cases discussed. 

6.5 Statistical Performance Comparison 

To back up the largely qualitative discussion of performance in the previous 

section, it is desirable to be able to perform statistical tests that ascertain 

whether any differences in performances between best octaves and non-

uniformly sampled SURF are statistically significant. Formally, one 

proposes a null hypothesis (i.e., that there is no difference in performance 

between methods) and uses a statistical test to determine whether the data 

are consistent with this hypothesis. As already mentioned in Section 5.3.3, 

the appropriate statistic in this case is McNemar’s test, a form of chi-

squared test that evaluates the performance of the two algorithms based on 
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their outcomes on a case-by-case basis over the same dataset [51, 52] (see 

Equation 4-6). 

McNemar’s test was used to compare the performance of the best 

octaves method with non-uniformly sampled SURF systems with each of 2, 3 

and 4 octaves. To employ it, one needs a criterion for determining whether a 

particular case results in success or failure; as a matched interest point is 

more significant than a detected interest point in vision applications, the 

criterion adopted is based on the number of matches obtained. Since the 

maximum performance configuration (sampling rate of unity with 4 octaves) 

provides the maximum number of matches, if an algorithm achieves at least 

45% of the number obtained by this maximum performance configuration, it 

is considered to have succeeded; otherwise, it is deemed to have failed. 

Although the 45% figure is arbitrary, it does not affect the conclusions we 

draw from the data. To avoid inadvertent dataset dependencies, a total of 

776 image pairs were employed, taken from the Oxford [13], Copydays [213] 

and Blur [214] datasets used in [46, 55, 215, 216]. The image pairs involved 

changes in scale, rotation, blurring, illumination, viewpoint and JPEG 

compression. All results were obtained using OpenSURF at a threshold of 

0.0022. 

6.5.1 Matching Performance 

Table 6-6 shows the results for best octaves and non-uniformly sampled 

SURF with two octaves. There are 358 image pairs for which the non-

uniformly sampled SURF with 2 octaves failed to achieve 45% of the 

maximum matching performance, cases where best octaves succeeded. More 

significantly, there is not a single image pair for which best octaves failed 

and 2 octaves SURF passed. The resulting Z-score for these results is 18.8, 

indicating that best octaves out-performs 2-octaves SURF (sampling = 1, 2) 

with a probability well in excess of 99.5%.       
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Table 6-6: Results of McNemar’s Test for best octaves and non-uniformly sampled SURF 

with 2-octaves    

 2-octaves SURF 

(Sampling = 1, 2) 

PASS 

2-octaves SURF 

(Sampling = 1, 2) 

FAIL 

Best Octaves 

PASS 

 

402 

 

358 

Best Octaves 

FAIL 

 

0 

 

16 

Results comparing best octaves and non-uniformly sampled SURF 

with 3 octaves are presented in Table 6-7. The non-uniformly sampled 3-

octaves SURF performs better than its 2-octave variant with a probability 

well in excess of 99.5%. However, there are still 168 image pairs for which 3-

octaves SURF failed to achieve the 45% correct matches threshold when best 

octaves succeeded; yet there are only 16 image pairs for which the converse 

occurred. Using Equation 4-6, the value of Z is 11.1, showing that best 

octaves comprehensively outperforms 3-octaves SURF (sampling = 1, 2) 

variant with a probability well in excess of 99.5%. 

Table 6-7: Results of McNemar’s test for best octaves and non-uniformly sampled SURF with 

3-octaves    

 3-octavesSURF 

(Sampling = 1, 2, 4) 

PASS 

3-octavesSURF 

(Sampling = 1, 2, 4) 

FAIL 

Best Octaves 

PASS 

 

592 

 

168 

Best Octaves 

FAIL 

 

16 

 

0 

Finally, best octaves was compared statistically with 4-octaves SURF 

(sampling = 1, 2, 4, 8) using McNemar’s test (Table 6-8). Equal numbers of 
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failures of both algorithms were obtained, resulting in a Z-score of zero and 

showing that the performances of the two algorithms are statistically 

indistinguishable. However, best octaves required only 2 octaves to achieve 

this, whereas the non-uniformly sampled SURF needed to compute 4 

octaves.  

Table 6-8: Results of McNemar’s test for best octaves and non-uniformly sampled SURF with 

4-octaves    

 4-octaves SURF 

(Sampling = 1, 2, 4, 8) 

PASS 

4-octaves SURF 

(Sampling = 1, 2, 4, 8) 

FAIL 

Best Octaves 

PASS 

 

744 

 

16 

Best Octaves 

FAIL 

 

16 

 

0 

6.5.2 Reduction in Computation 

Since the reduction in computation achieved by the non-uniformly sampled 

SURF variants with respect to best octaves for the first three stages of the 

algorithm is independent of images being analyzed, it is interesting to 

examine the performance of best octaves in terms of computation for the last 

four stages (S4–S7) of the algorithm. To make this analysis thorough, the 

amount of computation required by every algorithm in the last four stages 

for the 776 image pairs used in McNemar’s test above was measured.  Since 

it is tedious to equate the matching performance of all the algorithms by 

varying their threshold values (as was done in Table 6-5) for such a large 

number of image pairs, the difference in the number of interest points 

processed per match is used for comparing the computation of algorithms. 

Since computation in stages S4, S5 and S6 of SURF is a function of the 

number of detected local maxima and interest points (Table 6-1), this allows 

a fair comparison between best octaves and the non-uniformly sampled 
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SURF variants for these stages.  For a comparative analysis of computation 

for the last stage, interest point matching (S7), the difference in the number 

of descriptor comparisons per match is used. 

For every image pair, the number of interest points processed per 

match is calculated for best octaves and the 2-octaves SURF (sampling = 1, 

2).  The values obtained for best octaves are subtracted from the number of 

interest points processed per match for the 2-octaves SURF configuration so 

that a positive value indicates that the best octaves method does less 

computation per match. To gauge the significance and magnitude of any 

computation reduction achieved by best octaves, Figure 6-21 shows the 

histogram of the difference in number of interest points processed per match 

(i.e., for stages S4–S6).  It is evident that there are only 9 instances where 

computation of best octaves is higher than 2-octaves SURF. Indeed, the 

mean difference in the number of interest points processed per match in this 

particular case is 44.7, showing that best octaves computes and processes 

nearly 45 times fewer interest points than non-uniformly sampled SURF 

with 2-octaves, a huge reduction in computation. The histogram of the 

difference in number of descriptor comparisons per match (stage S7) is 

shown in Figure 6-22 for this particular case, again illustrating the 

significant reduction in computation achieved by best octaves.  On average, 

2-octaves SURF (sampling = 1, 2) performs 14,940 more descriptor 

comparisons per match than best octaves. 

Figure 6-23 shows the histogram of differences in the number of 

interest points processed per match for best octaves and 3-octaves SURF 

(sampling = 1, 2, 4). The distribution indicates that 3-octaves SURF 

achieves a reduction in computation with respect to best octaves for only 190 

image pairs. Although the performance of 3-octaves SURF is better than 2-

octaves, it still computes 12 times more interest points than best octaves on 

average.  Thus, best octaves achieves a significant reduction in computation 

here as well. To illustrate the reduction in computation achieved for the 

interest point matching stage, a histogram of the differences in the number 

of descriptor comparisons per match is shown in Figure 6-24. Best octaves is 
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again dominant as the non-uniformly sampled 3-octaves SURF requires on 

average 6,159.5 more descriptor comparisons per match. 

 

Figure 6-21: Histogram of difference in number of interest points processed per match for 

best octaves and non-uniformly sampled SURF with 2-octaves 

 

Figure 6-22: Histogram of difference in number of descriptor comparisons per match for best 

octaves and non-uniformly sampled SURF with 2-octaves 
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Finally, a comparison of computation for best octaves and the non-

uniformly sampled SURF configuration with 4-octaves is presented in 

Figure 6-25 and Figure 6-26. The two histograms again demonstrate the 

dominance of best octaves: on average, it processes 5 times fewer interest 

points than 4-octaves SURF. Similarly, for the matching stage, best octaves 

achieves a significant reduction in computation as 4-octaves SURF requires 

3,991.4 more descriptor comparisons per match on average.  

 

Figure 6-23: Histogram of difference in number of interest points processed per match for 

best octaves and non-uniformly sampled SURF with 3-octaves 

 

Figure 6-24: Histogram of difference in number of descriptor comparisons per match for best 

octaves and non-uniformly sampled SURF with 3-octaves
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Figure 6-25: Histogram of difference in number of interest points processed per match for 

best octaves and non-uniformly sampled SURF with 4-octaves 

 

Figure 6-26: Histogram of difference in number of descriptor comparisons per match for best 

octaves and non-uniformly sampled SURF with 4-octaves 

6.6 Summary 

Algorithm-level optimization of SURF is critical for designing highly-

optimized software and/or hardware implementations of the algorithm – and 

doing so is essential if real-time performance is to be achieved on commodity 

hardware. After drawing attention to the limitations of the conventional 

method of octave reduction for enhancing execution speed, this work has 

underlined the significance of employing a unity sampling rate for the 
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detection stages of SURF, providing an equal opportunity for all octaves to 

achieve their maximum performance. The chapter has proposed a method 

for reducing the computational complexity of SURF, namely an intelligent 

reduction in the number of SURF octaves. As opposed to the conventional 

method that concentrates only on reducing the computational complexity of 

detection stages, the proposed algorithm sets a new paradigm by 

emphasizing on the description and matching stages of SURF to yield 

significant reduction in computation at the cost of little extra calculation in 

the detection stages. Both software and hardware solutions can benefit from 

the proposed method: for example, on multi-core processors, a multi-

threaded implementation of SURF can potentially achieve more speed-up 

using the presented algorithm. In addition, this work may pave the way for 

the use of a computation-intensive technique like SURF in battery-operated 

robots, for which low-power consumption is extremely critical. It has been 

shown that, as well as reducing the computation significantly, this approach 

also out-performs other SURF variants in terms of matching performance.
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7 Integral Images: Efficient 

Algorithms for their 

Computation and Storage 
 

Innovation distinguishes between a leader and a follower. 

STEVE JOBS 

The integral image is an intermediate image representation that allows 

rapid calculation of rectangular features at constant speed, irrespective of 

filter size, and is particularly useful for multi-scale local feature detection 

algorithms like Speeded-Up Robust Features (SURF). Although calculation 

of the integral image involves simple addition operations, the total number 

of operations is significant due to the generally large size of image data. 

Recursive equations allow considerable reduction in the required number of 

addition operations but require calculation of the integral image in a serial 

fashion. This is generally not desirable for real-time embedded vision 

systems with strict time limitations and low-powered but parallel hardware 

resources. With the objective of minimizing the computational resources 

involved, this chapter proposes two novel hardware algorithms based on the 

decomposition of these recursive equations, allowing calculation of up to 

four integral image values in a row-parallel way without significantly 

increasing the number of addition operations. An efficient design strategy is 

also proposed for a parallel integral image computation unit to reduce the 

size of the required internal memory. Finally, two algorithms which allow 

substantial decrease in the memory requirements for the storage of the 

integral image are presented. 
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7.1 Introduction 

Originally proposed as the summed-area table for texture-mapping in 

computer graphics in the mid-1980s [217], the integral image is 

comparatively new in the image processing domain. The idea of using an 

integral image was introduced as an intermediate image representation by 

the Viola-Jones face detector [132]. Since then, it has been particularly 

useful for fast implementation of image pyramids in multi-scale computer 

vision algorithms such as Speeded-Up Robust Features (SURF) and Fast 

Approximated SIFT [13, 53, 218]. 

The primary reason for using an integral image is the improved 

execution speed for computing box filters. Employment of the integral image 

eliminates computationally expensive multiplications for box filter 

calculation, reducing it to three addition operations [132]. This allows all 

box filters to be computed at a constant speed, irrespective of their size; this 

is a major advantage for computer vision algorithms, especially feature 

detection techniques which utilize multi-scale analysis. Such algorithms 

generally require calculation of variable-size box filters to implement 

different scales of an image pyramid. For example, SURF requires 

computation of 9 x 9 box filters for implementation of the smallest and     

195 x 195 for the largest scale of its image pyramid [13]; without an integral 

image, these larger filters would take almost 500 times longer than the 

smallest one to compute. 

Although speed gain and reduced computational complexity are major 

benefits of the utilization of the integral image representation, the 

calculation of integral image introduces a performance overhead [219]. 

Image processing and computer vision algorithms are generally computation 

and data intensive in nature, and integral image calculation is no exception.  

Although it involves only additions, the total number of operations is 

significant due to its dependence upon the input image size. Recursive 

equations due to Viola and Jones [132] reduce the total number of additions 

required for computation of the integral image but require that calculation 
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is done in a serial fashion because of the data dependencies involved. This is 

not desirable for real-time embedded vision systems that have strict time 

limits and restricted hardware resources for processing a single frame, 

possibly coupled with power constraints.  

Since serial calculation can provide only one integral image value per 

clock cycle at best, there is a strong motivation to investigate methods for 

efficient computation of the integral image. Indeed, there are examples in 

the literature where efficient computation of the integral image has been 

achieved on a variety of computing platforms such as multi-core processors, 

GPUs (Graphics Processing Units), and custom hardware [219-242]. For 

example, integral image calculation is accelerated by first computing the 

sum of all pixels in the horizontal direction and then in the vertical direction 

utilizing the huge computational resources of a GPU (ATI HD4850 in this 

particular case) in [220]. However, to the author’s knowledge, no technique 

has emerged so far that would achieve significant speed-up for integral 

image computation while optimizing the required computational and 

memory resources which is a big constraint for embedded systems. This 

chapter takes a step in this direction. Firstly, it performs an analysis of the 

recursive equations and the data dependencies involved for parallel 

calculation of integral image; it then proposes two hardware algorithms 

based on the decomposition of these recursive equations, allowing 

simultaneous computation of up to four integral image values in a row-

parallel way without any significant increase in the number of addition 

operations. An efficient design strategy for a parallel integral image 

computation engine is then presented which reduces the internal memory 

requirements significantly.  

 Another drawback of the utilization of the integral image 

representation is the substantial increase in the memory requirements for 

its storage [243]. This is essentially due to the significantly larger word 

length of integral image values as compared to the original pixel values.  

Again, for embedded vision systems it becomes a bottleneck due to the strict 

constraints on hardware resources. In [243], two techniques are presented 
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for reducing the word length of integral image: an exact method which 

reduces the word length by computation through the overflow without any 

loss of accuracy on platforms with complement-coded arithmetic; and an 

approximate technique which is based on rounding the input image by value 

truncation. The exact method is useful only when the maximum size of the 

box filter is considerably smaller than the input image size. Loss of accuracy 

is the main drawback of the approximate method. To address these issues, 

this chapter presents two generic methods for reducing the storage 

requirements of the integral image significantly which can benefit both 

custom hardware design and software implementation on programmable 

processor architectures for resource constrained embedded vision systems. 

The remainder of this chapter is structured as follows. An analysis of 

the computation of the integral image is given in Section 7.2. Proposed in 

Section 7.3 is a parallel computation strategy that provides two integral 

image values per clock cycle. Section 7.4 presents another parallel method 

that delivers four integral image values per clock cycle. Extending the 

approach of Section 7.3, a memory-efficient design strategy is proposed for a 

parallel integral image computation unit in Section 7.5. Two methods for 

reducing the size of memory for storing integral image are presented in 

Section 7.6. Finally, a summary of the chapter is provided in Section 7.7.   

7.2 Analysis of Integral Image Computation 

This section analyzes integral image calculation from a parallel computation 

perspective. The value of the integral image at any location (x,y) in an image 

is the sum of all the pixels to the left of it and above it, including itself, as 

shown in Figure 7-1. This can be stated mathematically as in [132]: 

 

        ∑         

            

 

 

Equation 7-1 

where ii(x,y) and i(x,y) are the values of the integral image and the input 

image respectively at location (x,y).  



7.2  ANALYSIS OF INTEGRAL IMAGE COMPUTATION   209 

 
 

Location (x,y)

Row x

Shaded 

Region

Column y

 

Figure 7-1: Calculation of integral image value at image location (x,y). The shaded region 

indicates all pixels to be summed 

Equation 7-1 has potential for parallel computation, providing the 

input image is stored in memory and all its pixel values can be accessed.  

For example, the integral image of a 2 x 2 image may be computed in 

parallel using the following set of equations: 

 
               

 

Equation 7-2 

 
                      

 

Equation 7-3 

 
                      

 

Equation 7-4 

 
                                    

 
Equation 7-5 

Although Equation 7-1 can be used for small images, the number of 

additions involved scales as 
 

 
    for an input image of size       pixels 

[219]. For example, 1,866,240,000 addition operations are required to 

compute the integral image for a medium resolution image of size 360 x 240 

pixels. Thus, Equation 7-1 is not particularly suitable from a hardware 

perspective. 

The total number of addition operations can be drastically reduced by 

utilizing the recursive equations presented in [132]: 

 
                       

 

Equation 7-6 
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Equation 7-7 

where i(x,y) is the input pixel value at image location (x,y), S(x,y) is the 

cumulative row sum value at image location (x,y) and ii(x,y) is the integral 

image value at image location (x,y). These equations reduce the number of 

additions involved to    . 

+ +

Delay

i(x,y)

S(x,y)

S(x,y-1)
ii(x-1,y) from 

immediate 

upper row

ii(x,y)

 

Figure 7-2: Data Flow Graph of the Viola-Jones recursive equations for a single row of the 

input image 

Equation 7-6 and Equation 7-7 represent a two-stage system which 

operates in a serial fashion: the first stage computes the cumulative row 

sum at a specific image location and forwards the data to the second stage 

for calculation of the integral image value at that particular location. The 

data flow graph of this serial system is shown in Figure 7-2 for a single row 

of the input image. It can be observed from Figure 7-2 that individual stages 

are also dependent upon data from previous iterations for their operation. 

The first stage requires the cumulative row sum to be computed in a serial 

way for a single row of the input image. The second stage is more complex 

as it needs data from the previous row to calculate an integral image value. 

Hence, there is little opportunity for parallel computation in single row 

operations. 

However, a deeper analysis of Equation 7-6 and Equation 7-7 shows 

that it is possible to compute the cumulative row sum for all rows 

independently and hence simultaneously. This is however not true for 

Equation 7-7 due to its dependency on data from the neighboring row.  
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Thus, the best possible system using these equations is to process individual 

rows in a delayed fashion. As an example, Figure 7-3 shows a 5 x 5 image 

for which integral image values are calculated by processing all rows in 

parallel using these equations. The shaded blocks represent the pixels for 

which integral image values are computed simultaneously; blocks with a 

cross sign indicate pixels whose integral image values have already been 

calculated; and white blocks show pixels for which integral image values 

still need to be calculated. It can easily be seen that the integral image 

value for the second pixel in the third row cannot be calculated until the 

integral image value for the second pixel in the second row is calculated.  

Figure 7-4 shows the time delay involved in computation of integral image 

values for different rows. 

(a)

R
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Figure 7-3: Delayed row computation using the Viola-Jones recursive equations 
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Figure 7-4: Time delay between computation of integral image values for different rows 
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7.3 Parallel Computation for Two Rows 

The proposed algorithm represents a two-stage, pipelined system that 

processes two rows of an input image in parallel, providing two integral 

image values per clock cycle without any delay when the pipeline is full.  In 

particular, it allows calculation of the second pixel of the two rows in the 

same clock cycle. The whole image is divided in groups of two rows and one 

group is processed at a time, moving from the top to the bottom of the input 

image. The following set of equations is used for calculation of integral 

image values in a row-parallel way: 

 
                       

 

Equation 7-8 

 
                             

 

Equation 7-9 

 
                         

 

Equation 7-10 

 
                                    

 

Equation 7-11 

where Equation 7-8 and Equation 7-10 are for computation of integral 

image values in the first row; and Equation 7-9 and Equation 7-11 are for 

the second row. 

This set of equations requires     
  

 
 addition operations for an 

input image of size   x   pixels.  This is not a significant increase compared 

to the     additions required for the standard recursive equations, 

Equation 7-6 and Equation 7-7.  For all odd rows, two additions are required 

per pixel, as given by Equation 7-8 and Equation 7-10. An extra addition is 

done for each pixel in the even rows in Equation 7-11 to allow simultaneous 

calculation of integral image values for even and odd rows without any 

delay. The data flow graph for the proposed algorithm is shown in Figure 

7-5. A pipelined approach for this two-stage system reduces the critical data 

path from two adders to one. The proposed system has the potential to 

compute integral images in half the number of clock cycles required serially. 



7.4  PARALLEL COMPUTATION FOR FOUR ROWS   213 

 
 

For example, for an input image of size 640 x 480 pixels, 307200 clock cycles 

are required for conventional serial calculation, whereas this approach 

requires only 153600. 

+ +i(x,y)

ii(x-1,y) from 

memory

ii(x,y)Delay

+ +i(x+1,y)
ii(x+1,y)

Delay

Delay

Delay

S(x,y)

S(x+1,y)

 

Figure 7-5: Data Flow Graph for Parallel computation of integral image for 2 rows 

7.4 Parallel Computation for Four Rows 

The above algorithm for processing two rows in parallel can be extended to 

four rows, though at the expense of extra additions per pixel in rows 3 and 

4, allowing calculation of four integral image values per clock cycle. 

However, this is not an attractive option as it involves more hardware.  

With the objective of minimizing hardware resources, another 

decomposition of Equation 7-6 and Equation 7-7 is proposed in this section; 

it provides four integral image values per clock cycle in a row-parallel way 

with     
  

 
 additions for an input image of size   x   pixels. 

The proposed algorithm represents a three-stage, pipelined system 

(as opposed to the two-stage one above) to reduce the computational 

resources required in hardware. It processes four rows of an input image in 

parallel, providing four integral image values per clock cycle. In this case, 

the image is divided in groups of four rows and one group is processed at a 

time moving from top to bottom.  The following set of equations is used for 

calculation of integral image values in a row-parallel way: 
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Equation 7-12 

 
                             

 

Equation 7-13 

 
                             

 

Equation 7-14 

 
                             

 

Equation 7-15 

 
                         

 

Equation 7-16 

 
                                    

 

Equation 7-17 

 
                             

 

Equation 7-18 

 
                                      

 
Equation 7-19 

where Equation 7-12 and Equation 7-16 are for computation of integral 

image values in the first row; Equation 7-13 and Equation 7-17 are for the  

second row;  Equation 7-14 and Equation 7-18 are for the third row; and 

Equation 7-15 and Equation 7-19 are for the fourth row. 

The main advantage of this system is that it requires     
  

 
 

addition operations for an input image of size   x   pixels as is required for 

parallel processing of 2 rows. The corresponding data flow graph is shown in 

Figure 7-6. This scheme has the potential to compute the integral image for 

an input image in one-fourth the number of clock cycles required for serial 

calculation, reducing the number of clock cycles for calculation of the 

integral image of a 640 x 480 image to only 76800. 

Table 7-1 presents comparative resource utilization results for 

prototype implementations of the serial method (Viola-Jones recursive 

equations), the proposed two-rows, and the 4-rows algorithms on a Xilinx 

Virtex-6 FPGA for some common image sizes. All three implementations 

achieve a maximum frequency of about 147 MHz. It is evident that, without 
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significant increase in the utilized resources, the proposed algorithms 

provide two and four times speed-up relative to the serial algorithm. The 

resource consumption for the three compared algorithms increases with the 

increasing image size and all the algorithms show a similar trend.  This is 

essentially due to the same internal memory requirements (to store one 

complete row of integral image values for the calculation of the very next 

row) of the three algorithms.   
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Figure 7-6: Data Flow Graph for Parallel computation of integral image for 4 rows 

Table 7-1: Comparative resource utilization results for Serial, 2-rows and 4-rows parallel 

prototype implementations on a Xilinx Virtex-6 XC6VLX240T FPGA for some common 

image sizes 

Image Size 
Serial 2-Rows Parallel 4-Rows Parallel 

Slice 
Registers 

LUTs       
Slice 

Registers 
LUTs 

Slice 
Registers 

LUTs 

360 x 240 9050 3465 9075 3606 9128 3789 

720 x 576 19488 7344 19515 7502 19791 7721 
800 x 640 21648 8155 21701 8276 21967 8506 

1280 x 720 36134 13426 36293 13548 36522 13765 

1920 x 1080 55732 20707 55761 20823 56932 21059 
2048 x 1536 61495 22816 61525 22890 62853 23164 



216  CHAPTER 7                                                                                      

 
 

7.5 A Memory-Efficient Parallel Architecture 

In embedded vision systems, parallel computation of the integral image 

presents several design challenges in terms of hardware resources, speed 

and power consumption. Although recursive equations significantly reduce 

the number of operations for computing the integral image, the required 

internal memory becomes prohibitively large for an embedded integral 

image computation engine for increasing image sizes. With the objective of 

achieving high throughput with low hardware resources, this section 

proposes a memory-efficient design strategy for a parallel embedded 

integral image computation engine. Results show that the design achieves 

nearly 35% reduction in memory usage for common HD video. 

Both the recursion-based serial [132] and parallel methods (in Section  

7.3 and Section 7.4) require one complete row of integral image values to be 

stored in an internal memory so that it can be utilized for the calculation of 

the very next row. The width of the required internal memory is 

    (number of rows x number of columns x maximum image pixel value) 

rounded to the upper integer whereas the depth is equal to the total number 

of columns in one row of the image.  Figure 7-7 highlights the internal 

memory requirements for an integral image computation engine 

implemented in hardware for some common images sizes. It is evident that 

with the increasing image size, the design of the integral image computation 

engine becomes inefficient in terms of hardware resources due to the large 

internal memory. It is desirable to achieve a design which is memory-

efficient and provides high throughput.  

To address the internal memory problem discussed above, a resource-

efficient architecture is presented that is also capable of achieving high 

throughput. The design strategy makes use of the fact that integral image 

values in adjacent columns of a single row differ by a column sum (Figure 

7-8). This difference value is maximum in the last row as the column sum 

includes all pixel values from the top to the bottom of the image in a 

particular column. In the worst case, the difference between two adjacent 
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columns in the last row of the image will be the product of the number of 

rows and the maximum value that can be attained by an image pixel (e.g., 

the maximum value is 255 for an 8-bit pixel).  

 

Figure 7-7: Internal memory requirements for the integral image computation engine for 

some common image sizes 

 

Figure 7-8: Worst case difference between adjacent integral image values in one row 

Figure 7-9 shows a proposed architecture for an embedded integral 

image computation engine. This pipelined architecture computes two 

integral image values in a single clock cycle. Unlike the parallel methods 
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presented in Section 7.3 and Section 7.4 which store a complete row of 

integral image values in internal memory for computing the next row, this 

design strategy saves only the difference values of the adjacent columns in a 

row for calculating the next row. Only the integral image value for the first 

column in that row is saved in a separate register to allow computation of 

the integral image values from the stored difference values. Although the 

depth of the internal memory remains the same as mentioned above, the 

proposed design approach requires the width to be     (number of rows x 

maximum image pixel value) rounded to the upper integer value.  Table 7-2 

provides the results for internal memory reduction when prototyped on an 

FPGA, a Virtex-6 XC6VLX240T device, for some common image sizes. The 

maximum frequency of the design is 146.71 MHz. It is evident from Table 

7-2 that the architecture is capable of achieving significant memory 

reduction over other recursion-based methods, even for small image sizes.  

 

Figure 7-9: Block diagram of the proposed architecture. i(x,y) and ii(x,y) are the image pixel 

value and the integral image value at location (x,y) in the image. S(x,y) is the row sum at 

that particular location 
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Table 7-2: Reduction in internal memory requirements for the Proposed Architecture on 

Virtex-6 XC6VLX240T  

Image Size 

Memory-Efficient 
Design Strategy 

Reduction in Internal 
Memory Bits relative 

to other recursion 
based methods 

Reduction in resource 
consumption relative 
to 2-Rows Algorithm 

Slice 
Registers 

LUTs       
Slice 

Registers 
LUTs 

360 x 240 6307 2792 32% 30.50% 22.57% 

720 x 576 13164 5537 33.3% 32.54% 26.19% 

800 x 640 14602 6047 33.3% 32.71% 26.93% 
1280 x 720 24668 9864 32.1% 32.03% 27.19% 

1920 x 1080 37145 14614 34.4% 33.39% 29.82% 

2048 x 1536 39694 15558 36.6% 35.48% 32.03% 

7.6 Efficient Storage of Integral Image 

As opposed to its computation, storage of the integral image has received 

less attention until recently. The only work of significance in this domain is 

presented in [243]. Memory requirements for an integral image are 

substantially larger than for the input image. For resource-constrained 

embedded vision systems, storage of the integral image presents several 

design challenges. In this section, two viable techniques for reducing the 

memory requirements of an integral image are proposed for different 

application scenarios. Both hardware and software solutions can benefit 

from the presented techniques. Results for some common image sizes are 

presented which show that the methods guarantee a minimum of 44.44% 

reduction in memory for all image sizes and application scenarios, and may 

achieve reduction of more than 50% in specific situations for embedded 

vision systems.  

The bars in Figure 7-10 show the storage requirements of an integral 

image for some common image sizes (read values from the left ordinate 

axis), while the line indicates the percentage increase in memory with 

respect to the input image considering 8-bit pixels (read values from the 

right ordinate axis). It is evident from Figure 7-10 that the storage 

requirements of the integral image are much larger than for the input 

image. Since there is a corresponding integral image value for every pixel in 
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the input image, the dimensions of the two image representations are the 

same. The increased memory requirement for the integral image is therefore 

a consequence of the much larger word length of the integral image values 

as compared to the input pixel values (which are usually 8-bit wide). Figure 

7-11 depicts the word lengths required for an integral image considering 8-

bit input pixel values for some common image sizes. It can be seen clearly 

that with increasing image size, the required word length for the integral 

image also increases.   

 

Figure 7-10: Storage requirements of the integral image for some common image sizes and 

percentage increase in memory relative to the input image (considering 8-bit pixels) 

7.6.1 Limitations of Existing Methods 

Although the exact and approximate methods presented in [243] manage to 

reduce the word length of an integral image, they do have some limitations:  

1) These methods are applicable only in situations where the size of the 

box filter is a priori known.  

2) The exact method achieves negligible reduction in memory if the 

maximum size of the box filter is almost equal to the input image size.   
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3) The approximate method involves loss of accuracy due to rounding 

pixel values. For example, there is significant increase in false 

detection rate for the Viola-Jones face detector when the approximate 

method is used in [243]. 

4) Although the exact method does not incur any loss of accuracy, it fails 

to achieve significant reduction in word length. 

5) These techniques are one-dimensional in the sense that they only 

concentrate only on reducing the word length of the integral image, 

which in turn affects the width of the storage memory but not its 

depth.   

To overcome the above-mentioned shortcomings, two methods are 

presented for storing the integral image efficiently in embedded vision 

systems without any loss of accuracy. The first of these is appropriate for 

any application that involves an integral image without prior knowledge of 

the box filter size and in situations where the size of the box filter is nearly 

the same as that of the input image. The second method is suited to 

applications where the size of box filter is a priori known (e.g., SURF [13]). 

 

Figure 7-11: Word length requirements for integral image for some common image sizes 

considering 8-bit input pixels 
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7.6.2 Proposed Method 1 

This is a general technique that guarantees 44.44% reduction in memory 

resources for storing an integral image and can be utilized for any 

application involving integral images. The method is lossless and is suitable 

for scenarios where the box filter size is either unknown or is not much 

smaller than the image size. The technique is especially attractive for 

embedded systems, as the same system can be utilized for different 

applications without any modifications to hardware or software.  

Unlike the methods in [243], the proposed technique attempts to 

reduce the depth of the memory required to store an integral image. For this 

particular method, the width of the memory is assumed to be     (length of 

the image x width of the image x maximum pixel value) rounded to the 

upper integer value. The first step is to make the length and width of the 

integral image both into multiples of 3. For example, if the integral image 

dimensions are 360 x 240 then the length and the width values are already 

multiples of 3 and nothing needs to be done. Otherwise, the last rows and/or 

columns of the integral image are discarded to achieve this objective. In the 

worst case, the last two rows and the last two columns need to be 

eliminated. The whole integral image is then divided into blocks of 3 x 3 

integral image values. Figure 7-12 depicts a single such block. The shaded 

integral images values in Figure 7-12 are the ones that are selected by the 

proposed method to store in the memory; the remaining four values on the 

corners are discarded. Despite not storing these four corner integral image 

values, the 3 x 3 integral image block can be perfectly reconstructed from 

the stored integral image values by utilizing the fact that 

 
                               

 

Equation 7-20 

 
                                

 

Equation 7-21 

 
                               

 

Equation 7-22 



7.6  EFFICIENT STORAGE OF INTEGRAL IMAGE   223 

 
 

 
                               

 

Equation 7-23 

 

Figure 7-12: A sample 3x3 integral image block for the proposed method. The shaded region 

shows the integral image values that need to be stored 

  

Figure 7-13: A sample integral image of dimensions 9 x 9. The shaded regions indicate the 

integral image values that need to be stored in the memory 

Figure 7-13 shows all 3 x 3 blocks for a sample integral image of 

dimensions 9 x 9 (with values shaded as to whether they need to be stored 

or discarded). Out of the 81 integral image values in Figure 7-13, only 45 

values need to be stored in memory, meaning that this method achieves a 

44.44% reduction in the storage requirements for the integral image. 

Moreover, this reduction is independent of the input image size and the box 

filter size.  
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As a box type filter can be computed quickly using three addition and 

subtraction operations when the integral image values on the four corners of 

that filter are known [132] (see Figure 7-14), the proposed method does not 

require any extra computation if the required four values are those which 

are stored in memory. In the worst case, all four integral image values 

needed for computing the box filter will not be available from memory. In 

that particular case, Equation 7-20 to Equation 7-23 can be utilized for 

computing the integral image values which were discarded earlier; they can 

then be used for calculating the required box filter. Although there is a 

speed-memory tradeoff involved, the method is still an efficient way of 

computing box type filters as it eliminates computation intensive 

multiplications.   

 

Figure 7-14: Box filter calculation using the integral image; the shaded area indicates the 

filter to be computed whereas ‘X’ shows the integral image values required for computation of 

this box filter 

7.6.3 Proposed Method 2 

In an effort to reduce the size of the memory required for storing the 

integral image further, a technique is presented here which decreases both 

the width and the depth of memory. It combines the exact method presented 

in [243] with the technique proposed in Section 7.6.2. This hybrid method is 

suitable for scenarios where the maximum size of the box filter to be 

computed is considerably smaller than the input image size. Again, the 

method does not incur any loss of accuracy.  
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The worst-case integral image value that determines the binary word 

length required to represent integral image is dependent upon the width, 

height and number of bits per pixel of the input image. This can be stated as 

[243]: 

 
                      

 

Equation 7-24 

where i is the input image, ii is the integral image,       is the worst case 

integral image value, W is the width of the input image, H is the height of 

the input image and    is the number of bits per pixel for the input image. 

According to [243], the number of bits     required for representing the worst 

case integral image value thus needs to satisfy 

 
                         

 
Equation 7-25 

The total memory in bytes required to store the integral image can be 

calculated as follows: 

 
       

             

 
 

 

Equation 7-26 

According to the exact method in [243], for platforms with 

complement-coded arithmetic, if the maximum height and the width of the 

box filter to be calculated are known, then the word length for the integral 

image needs to satisfy: 

 
                               

 
Equation 7-27 

where      is the maximum width of box filter and      is the maximum 

height of a box filter. Equation 7-27 can be explained on the basis that if a 

chain of linear operations is performed on integers and there are some 

intermediate overflowing results then it is possible to get the correct final 

result if this result can be represented by the used data word length [243]. 

The proposed method first makes both the length and width of the input 

image multiples of 3. Equation 7-27 is then used to find the required word 

length for storing the integral image. As a final step, the depth of the 

memory is reduced by employing the method proposed in Section 7.6.2.  
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A variant of this method can also prove useful. Observing      

Equation 7-27 closely reveals that the supposition of having all pixel values 

in the input image set to their maximum value (255 in the case of 8-bit 

pixels) for evaluating the worst case integral image value does not seem 

very practical for feature detection techniques like SURF which is used for 

blob detection. i.e., to detect dark areas/regions in the input image 

surrounded by light ones or vice versa. Assuming that all the pixels are set 

to their maximum value in the input image implies that there is absolutely 

no variation in the pixel values. Since most feature detection techniques try 

to detect features in those areas of the image where there are large changes 

in pixel values, this assumption simply means that there are no features to 

be detected in the input image.  

This variant of the above technique further extends the exact method 

of [243] by supposing that there is variation in pixel values of the input 

image. Equation 7-27 is thus modified as: 

                                          
 

                                   
 

Equation 7-28 

It is assumed here that 96% of all pixels in a box filter to be evaluated have 

maximum values, while the other 4% of pixels have half the maximum 

value. This is a suitable approximation as most images generally have more 

variation in pixel values than given by Equation 7-28. The final step is to 

reduce the depth of the required memory by employing the technique 

presented in Section 7.6.2.  

Figure 7-15 shows comparative results for the two variants of the 

proposed method and the original exact method [243] for the specific case of 

the SURF detector with increasing image sizes by taking       65 and 

      129. Note that the largest box filter to be computed for SURF is    

195 x 195 but it can be broken down into three box type filters of 65 x 129 

(or 129 x 65)[13]. The bars in Figure 7-15 represent the memory required for 

storing the integral image (read values from the left ordinate axis) whereas 



7.7  SUMMARY   227 

 
 

the line graphs show the percentage reduction in memory (read values from 

the right ordinate axis) relative to the actual requirement (see Figure 7-10). 

It is evident that the best performance in terms of memory reduction is 

achieved by utilizing Equation 7-28 in combination with the depth reduction 

method from Section 7.6.2 (Variant 2 in Figure 7-15). It can be seen that the 

two variants of the proposed method out-perform the original exact method 

comprehensively and allow more than 50% reduction in memory, even for 

small sized images.   

 

Figure 7-15: Comparative results for the original exact method [243] and the two variants of 

the proposed technique 

7.7 Summary 

This chapter has addressed computation and storage issues related to 

integral images. It has analyzed integral image calculation from a parallel 

computation perspective. With the objective of reducing computational 

resources, two hardware algorithms based on the decomposition of the 

Viola-Jones recursive equations were proposed in this chapter. These are 

capable of providing up to four integral image values per clock cycle without 

any significant increase in the number of addition operations. An efficient 

design strategy for a parallel embedded integral image computation engine 
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that is capable of achieving nearly 35% reduction in internal memory for 

common HD video (1920 x 1080) was also proposed. Finally, the chapter has 

presented two methods for the reduction of memory for storing an integral 

image. These techniques guarantee at least 44.44% reduction in memory 

and may allow more than 50% reduction when the maximum size of a box 

filter to be computed is considerably smaller than the input image size. 
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8 Conclusions and Future 

Directions 
 

I start where the last man left off. 

THOMAS EDISON 

A summary of the main contributions made by this thesis is provided in this 

chapter. Some potential future directions are also suggested for building on 

its work. These are followed by closing remarks to end the chapter.    
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8.1 Summary of Contributions 

Determining image correspondences is a fundamental problem in computer 

vision. This thesis generally targeted this problem while mainly 

concentrating on the detection step for improving the effectiveness and 

reliability of the three-stage system (consisting of detection, description and 

matching shown in Figure 1-1). A brief account of the major contributions of 

this thesis is given below. 

 Predicting the performance of vision-based systems which usually 

operate in complex and unknown environments across a range of 

different applications is a challenging task. The metrics which are 

currently available to gauge the performance of feature detectors do 

not always reflect actual performance. Moreover, existing 

performance measures allow only offline assessment due to their 

requirement for ground truth data and high computation cost. To 

bridge these research gaps, Chapters 3, 4 and 5 presented offline and 

online performance metrics that reflect real-world performance for 

local feature detectors. The proposed online metrics can be computed 

quickly and allow a feature detector to gauge its own performance 

and take appropriate actions online to maximize its effectiveness by 

adapting to the nature of the imagery it is processing. Furthermore, 

the thesis has shown how these metrics can be utilized for building 

more effective vision systems, confirming in a statistically meaningful 

way that these metrics work. 

 In vision research, absolute and relative evaluation of feature 

detectors is considered an important issue as it is useful for selecting 

a particular detector for some specific application depending on its 

strengths and weaknesses. This thesis has presented comparative 

results for several state-of-the-art detectors on standard datasets and 

some newly acquired large image databases utilizing the designed 

performance metrics. The presented results contradict some previous 
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findings and have advanced current understanding about the 

behavior of these feature detectors. 

 Running multiple feature detectors simultaneously to tackle the 

uncertainty of image content for solving complex vision problems has 

detrimental effects on overall computation time, usually provides an 

overcomplete representation of an image rather than a compact one, 

and may have adverse effects on the combined performance of 

multiple detectors. To address this issue, this thesis has shown how 

knowledge of individual feature detectors’ functions allows them to be 

combined efficiently and made into an integral part of a robust vision 

system (see Chapter 5).  

 Many state-of-the-art feature detection techniques are unsuitable for 

real-time applications on commodity hardware and show poor 

matching performance in the presence of various image 

transformations. To tackle these problems, this thesis has presented 

several improvements to feature detectors’ performance in terms of 

matching accuracy and speed of execution (see Chapters 4, 6 and 7). 

 Embedded systems generally have strict constraints on computational 

resources, power consumption, memory size, chip area and weight; 

this makes the task of running computation-intensive feature 

detection algorithms on such systems challenging. To that end, 

Chapter 7 demonstrated how resource-efficient architectures can be 

designed for local feature detection methods by focusing on the 

efficient computation and storage of the integral image. 

8.2 Future Directions 

The thesis has shown how the improved repeatability metrics (presented in 

Chapter 3) can be employed for the framework (proposed in Chapter 4) for 

vision system design under blur, JPEG compression and uniform light 

variations. This work can be extended to develop new datasets for scale, 
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rotation and viewpoint changes with a large number of different scene types 

and utilize the proposed framework for establishing the upper and lower 

performance bounds of state-of-the-art detectors and to identify statistically-

significant performance differences between them as a function of the 

amount of image transformation.  

Another refinement of the work presented in this thesis would be the 

evaluation of the combined effect of different image transformations on the 

performance of state-of-the-art feature detectors utilizing the framework 

presented in Chapter 4. For example, it will be valuable to see how a feature 

detection technique performs when blur and viewpoint changes occur 

simultaneously. This type of approach will make analysis more thorough 

and much closer to the real-world situations where one often encounters 

multiple types of transformation in a pair of images. This will be really 

useful from a vision systems design perspective.   

Without any doubt, the human visual system (HVS) is the ultimate 

vision system. To compare the performances of state-of-the-art feature 

detectors utilizing the improved repeatability metrics proposed in Chapter 3 

while considering the HVS as reference is another promising direction. Such 

work will identify detectors that find feature points mostly in those areas of 

the input image which are considered interesting by the human eye.  

In Chapter 5, it was demonstrated that utilizing the coverage metrics, 

one can combine feature detectors intelligently. A possible extension can be 

the incorporation of the coverage metric in the design of an individual 

detector for selecting only those points that increase the overall coverage. 

Moreover, such individual detectors can also be combined to further improve 

performance. The proposed prediction-based framework can also be 

extended by making it adaptive. This essentially means that the system 

would initially utilize the general guidelines for combining feature detectors 

stored in a database (as given in Chapter 5) but will also keep track of the 
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actual performance it is achieving following them and would be able to 

update the database based on these observations. 

Another potential future direction is to design a low-power, high-

throughput architecture for SURF detector utilizing the integral image 

computation and storage algorithms of Chapter 7. 

Since SFOP detector shows good performance in the quantitative 

evaluations done in Chapters 4 and 5, a promising future direction would be 

to improve its performance further and investigate efficient computation 

architectures for this algorithm. 

8.3 Closing Remarks 

We need better features. 

5DAVID G. LOWE, 2009 

Ten years after proposing the highly influential SIFT algorithm, this 

perspicacious statement from David Lowe clearly reflects that there is still 

plenty of room for improvement in the domain of local invariant feature 

detection. Although this thesis has endeavored to push the boundaries 

further, many challenges lie ahead for the vision community in the context 

of overall advancement of the field. Surely, the words of David Lowe will 

continue to befit this situation until the emergence of next SIFT.   

 

 

 

– THE END – 

 

 

                                                           
5
 ‘Some Machine Learning Problems that We in the Computer Vision Community would like to see 

solved’, Keynote speech by William T. Freeman, MIT at NIPS 2009 Workshop on Approximate Learning 
of Large Scale Graphical Models: Theory and Applications, Whistler, Canada, December 12, 2009. 
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