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Abstract

This thesis describes our work towards a unified framework for automatic restoration
of dirt and blotches in archive film. The framework we present here is composed
of three stages, i.e. defect detection, false alarm elimination, and defect removal.
First, we propose a novel probabilistic approach to detect defects in digitized archive
film. An HMM is characterized and trained to model the statistical changes of
temporal pixel transitions over several frames before and after the current frame.
The trained HMM is then applied to measure how the likelihood of an unseen
observation sequence being normal varies if each single observation within it was
missing, one at a time in a leave-one-out fashion. The centre pixel of the observation
sequence will be marked in the defect map, if the likelihood of the observation
sequence without the centre pixel is larger, by a certain degree, than the average of
all likelihoods.

The resulting defect maps from our proposed defect detector encapsulates the true
defects very well, but can suffer from many false alarms. Therefore, we extend
the defect detection method to add a two-stage false alarm elimination process,
which is developed based on investigating the characteristics and causes of false
alarms. The proposed false alarm approach first applies MRF modelling on the
defect map to propagate neighbouring normal pixels into the false alarm region using
spatial continuity constraints. Then, the pyramidal Lucas-Kanade feature tracker is
adopted to impose temporal correlation constraints on spatially isolated false alarm
regions. This helps increase the accuracy of the proposed method significantly.

Finally, we present a novel restoration method for defects and missing regions in
archive films. Our statistical framework is based on Random Walks to examine the
spatiotemporal path of a degraded pixel, and uses texture features in addition to
intensity and motion information traditionally used in previous restoration works.
The degraded pixels within a frame are restored in a multiscale framework by up-
dating their features (intensity, motion and texture) at each level with reference
to the attributes of normal pixels and other defective pixels in the previous scale
as long as they fall within the defective pixel’s random walk-based spatiotemporal
neighbourhood.

The proposed algorithms are compared against state-of-the-art and industry-standard
methods to demonstrate their improved detection and restoration performance using
our archive film restoration dataset.
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Chapter 1
Introduction

Restoration of old, archived films is of great importance to preserve the originality

of such media in terms of “a historical record”, as well as the means to quality im-

provement for reproduction purposes. Most filmed footage, whether recently shot or

historical, will experience impairment during the storage, duplication, transmission

and even at the time of filming. Repeated damage to the footage will finally degrade

audience’s perception in various forms, such as increased level of noise, flicker, vi-

bration and so on. Hence, such films require quality control and restoration before

they are broadcastable again.

Currently the most reliable method is manual restoration, a tiresome course of

restoration by chemical and physical means [82]. In order to recover an archive

film, restoration specialists with adequate training and experience are required to

perform a series of processes, e.g. printing, grading, restoration processing, and

maintenance. The cost of staff training and film processing is high, considering

it is multiplied by the numerous number of archives there exists. Besides being

uneconomical, manual restoration may also cause irreversible damage to the original

film copy, e.g. mishandling during the rewashing and drying process could result in

the damage of emulsion or even broken film. Such processes could cause permanent

loss of information.

Another issue of manual processing is that it is difficult to assure the quality of

1



2 Chapter 1. Introduction

restoration. There are many elements that could affect the final output of restora-

tion in a traditional restoration process, e.g. restoration equipment, operator’s ex-

perience, skills and even personality. Deficiency in any of these aspects will leave

the quality of restoration at risk.

Based on the consideration of cost, safety and quality of the restoration process as

discussed above, our motivation for implementing an automated restoration frame-

work for archive film is threefold.

First, automated restoration in digital form is more cost-efficient. The mass avail-

ability of high capacity digital storage and broadcast technologies has had a large

impact on the film industry in the last two decades. Hence, nowadays the preferred

route to preservation and rebroadcasting is digitisation and automated restoration.

Such techniques can speed up the whole restoration process and meanwhile greatly

reduce the cost of human resources, specialized equipment and consumable materials

from the traditional restoration process.

Second, digitized and automated restoration processes are able to provide a more

convenient and safe solution for archive maintenance. Instead of physical transporta-

tion and repeated handling of the original film copy, remote access to the digitised

copy could be achieved with a few simple mouse clicks. Furthermore, any restoration

conducted on the digitised copy is reversible and will still be available for further

refinement with more advanced techniques in future. And most importantly, the

original film copies will remain untouched in the light of the conjecture in [82] that

“Restoration is essentially duplication”.

Last but not least, it is more effective to control the quality of restoration in digital

form. The restoration algorithms can be adjusted (usually in forms of parameters)

for different type of films in order to achieve the maximum accuracy. In the same

fashion, the accuracy can also be traded for less computational cost due to possible

time or budget limitations.
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1.1 Automated Restoration Framework for Archive

Film

Over the last two decades, there has been growing interest in developing automated

quality control and improvement system for films and videos with several academic

and industrial collaborations, e.g. BRAVA (Broadcast Restoration of Archives by

Video Analysis, 1999) [14] and PrestoSpace (Preservation towards Storage and access

Standardised Practices for Audiovisual Contents in Europe, 2004) [75].

In general, solutions to these projects all involve a digitised restoration system that

includes a number of self-contained modules. Each module is designed to handle an

individual problem which may correspond to a step in the traditional restoration

framework, e.g. recovering flicker is related to the grading process and removing

dirt and blotches corresponds to the restoration process (polishing and washing).

According to different quality control and improvement requirements in each specific

project, some or all of these modules are adopted to replace equivalent processes in

the traditional restoration framework so as to form an automatic or semi-automatic

restoration system.

Based on this system design, the work presented here focuses on the restoration

problem of one group of defects, dirt and blotches (see the description below). The

aim is to design a framework (as a self-contained module) to enable automatic

detection and removal of the target defect. Our proposed restoration framework

consists of three individual stages, i.e. defect detection, false alarm elimination and

defect removal. An overview of our proposed restoration framework is illustrated in

Figure 1.1.

There are many types of defects in archive film, such as dirt, blotches, line scratches,

blurring, flickering, instability and so on. Later, we will present a brief outline of

categories of defects in Chapter 3. The dirt and blotches type of defect that we deal

with in this thesis can be characterised as follows.

We assume the appearance of a degraded pixel as a stochastic pixel-change event.

Such changes can happen in one or more (consecutive) frames as black, white, or
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Figure 1.1: The structure of proposed automatic restoration framework
for archive film.

semi-transparent regions. However, degrees of degradation and their shape and size

can vary due to their random appearance.

Therefore, our target defect is not limited to any particular categories providing it

has such characteristics as described above. For example, moving line scratches with

different locations in each frame are considered as our target. Here, we refer to all

such discontinuities as dirt and blotches, including hair, sparkle, salt and pepper

like noise, digital drop out and certain line scratches. Figure 1.2 shows 4 sample

degraded frames with dirt and blotches.

1.1.1 Defect Detection

Our proposed HMM based Archive FIlm Defect detection (HAFID) approach func-

tions as the first step towards an automatic restoration framework. The resulting
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Figure 1.2: 4 sample degraded frames with Dirt and Blotches from Squir-
rel(hair), Cinderella(dirt), Junior Prom(blotches) and Lamp of Mem-
ory(scratches) are shown from top to bottom, left to right.

defect maps contain the time and location information of defects. Such information

could be directly employed by the follow-up removal process so as to implement

a seamless automatic restoration framework without human interference. On the

contrary, traditional computer aided defect removal, e.g. the missing data correc-

tion method from Bornard et al. [12], will require the input of handlabelled masks.

Furthermore, defect maps also provide the possibility to obtain quantitative mea-

sures of defects, which are extremely useful for film quality control. For instance,

the total number of defects in each frame indicates the degree of degradation while

the distribution of a defect across a number of frames can reflect the type of defect.

The central image in Figure 1.3 presents a sample degraded frame overlaid with its

defect map in red from our proposed method HAFID.

The pixels labelled in our defect maps often include both true defects and false

positives. Performing restoration on those falsely detected (normal) pixels might

introduce new artifacts. Generally, the difficulty of defect detection lies in how
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Figure 1.3: Cliff - A degraded frame with degraded pixels labelled and
restored by the proposed framework.

to increase the correct detection rate while including fewer false detections. Our

strategy is to first detect the maximum number of true defects and then process the

false detections sequentially. This enables us to study both true defects and false

alarms closely and design more accurate and specified approaches based on their

characteristics.

Previous defect detection methods [51, 67, 84] recruit local spatial and temporal

information (within 1 or 2 neighbouring frames) to help determine if a pixel is truly

degraded based on the assumption that defects are single-frame events. However,

our solution is to look at a larger number of frames before and after the current

frame. This allows us to examine the statistical changes in pixel transitions for a

longer range to help determine defects more accurately. In our proposed HAFID

detector, a Hidden Markov Model (HMM) is first trained for normal pixel sequences

and then applied within a framework to detect defective pixels by examining each

new observation sequence and its subformations via a leave-one-out process. This

approach is described in detail in Chapter 4.

1.1.2 False Alarm Elimination

Although our HAFID defect detector is capable of capturing the majority of defects,

the resulting defect maps also contain quite a number of false detections. Previous

works [11, 22, 23, 50, 79] have outlined some of the possible causes (see a review of
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causes of false alarms in Section 5.1). These methods also made efforts to develop

corresponding elimination methods for all possible causes. However, the task is

difficult to complete since enumerating all possible causes itself is laborious. There-

fore, in addition to looking at causes of false alarms, we also try to understand the

false detections from a novel angle by investigating their characteristics. We find

that false alarms caused in different circumstances share two similar characteristics

and based on this, we designed a two-stage false detection elimination procedure

in which each stage associates with one characteristic of false alarms. In this two-

stage process, the defect map from HAFID is first modelled with a Markov Random

Field (MRF) to enforce spatial continuity constraints and then the pyramidal Lucas-

Kanade feature tracker [60] is applied to impose temporal correlation constraints.

This entire process is referred to as HAFID-STC (Spatial and Temporal Continuity

analysis) and is described in detail in Chapter 5.

1.1.3 Defect Removal

As the final step in our restoration framework, the defect removal process aims to

recover the original values of pixels labelled in those defect maps. It is worth noticing

that the defect maps still contain a number of false alarms even after the false alarm

elimination stage. Hence, a key part of this stage is to restore truly degraded pixels

while preserving the original intensities of those falsely detected pixels.

An exemplar based restoration method is our choice in this application based on

the assumption that an optimal candidate for replacement of the original pixel in-

tensity can always be located inside the target image sequence. Instead of using the

traditional search scheme with sliding windows, we explore a dynamically generated

region of candidate pixel-exemplars using spatiotemporal random walks. Every pixel

in this region shares a significant similarity with the previous pixels in the region

as defined by their features, i.e. intensity, motion and texture. Based on the statis-

tics computed during the random walks, we substitute the degraded pixel with the

optimal replacement selected from its region of candidate pixel-exemplars. Our

proposed Random Walk based Defect Removal (RWDR) method is able to recover

the degraded pixel intensities more accurately compared to traditional methods as

shown later in Chapter 6. Figure 1.3 shows an example of a restored frame based
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on the defect map shown in the middle.

1.2 Thesis Outline

In Chapter 2 we review the background literature for automatic archive film restora-

tion. First, we discuss the hardware-based solutions to the automatic restoration

of archive film and video, most of which are from the industry. Then, automatic

restoration algorithms are grouped and introduced according to different system

structures. Recent developments in defect detection, false alarm elimination and

defect removal are reviewed respectively. Finally, current trends and our motivation

are summarized.

Chapter 3 outlines defect and data related issues. First, we summarise the charac-

teristics and causes of our target defect, dirt and blotches. We also introduce other

categories of defects along with sample degraded frames for each category. Further-

more, the archive film restoration data set is introduced, which we use throughout

the thesis for training and testing. Finally, we introduce the quantitative measures

used for performance evaluations in both defect detection and restoration stages.

In Chapter 4 we introduce the proposed defect detection approach as a form of

novelty detection using HMM modelling and testing. First, we train a single HMM

for normal image pixel sequences, which is then applied in the testing stage to

compute the likelihood of a new sequence being normal. A leave-one-out process is

used to create subformations of the target observation sequence and the quality of the

centre pixel is examined based on how similar the observation sequence without the

centre pixel is relative to the mean of the subformations. In the experiments section,

the proposed method is evaluated and compared with state-of-the-art methods using

real degraded image sequences from our archive film restoration data set.

Chapter 5 first introduces the possible causes and characteristics of false detection in

archive film defect detection and then provides a two-stage false alarm elimination

solution by analyzing the characteristics of false positives. The defect map from our

proposed defect detector is first modelled with a MRF to enforce spatial continuity
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constraints and then the pyramidal Lucas-Kanade feature tracker [60] is applied to

impose temporal correlation constraints. Finally, both qualitative and quantitative

results are presented to demonstrate the performance of the proposed false alarm

elimination method.

Chapter 6 discusses the post-detection work of archive film restoration. A novel

method is proposed for restoration of missing regions in video sequences. Our sta-

tistical framework is based on random walks to examine the spatiotemporal path of

a degraded pixel. The degraded pixels within a frame are restored in a multiscale

framework by updating their features (intensity, motion and texture) at each level

with reference to the attributes of normal pixels and other defective pixels in the

previous scale as long as they fall within the defective pixel’s random walk-based

spatiotemporal neighbourhood. The proposed algorithm is compared against state-

of-the-art methods to demonstrate improved accuracy in restoring synthetic and real

degraded image sequences. In addition, we also demonstrate the application of our

proposed method on image and video inpainting in Appendix A.

In Chapter 7 concluding comments are given about the work presented in this thesis

and ideas for possible future works are discussed.
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Chapter 2
Background

Over the last two decades, automatic restoration algorithms have become more and

more sophisticated through the mass availability of fast-computing facilities and high

capacity digital storage. These methods have evolved from filter-based methods to

high order mathematic models.

The structures of these restoration frameworks have nevertheless steered and adapted

according to the cost-efficiency requirements from the industry. Traditionally, the

filter-based methods restore the archive film by processing every pixel in the target

sequence regardless of its degree and nature of degradation. On the other hand, re-

cent restoration frameworks usually involve a quality control (defect detection) stage

for quality inspection purpose. Hence, films (or scenes) with less degradation will

not necessarily go through the full restoration process. In addition, the detection

procedure provides not only quantitative evidence for quality control but also the

time and location information of defects, which will increase the efficiency of defect

removal process by only looking at labelled pixels. We will review methods from

both filter-based and two-stage system structures while recent methods in defect

detection, false alarm elimination and defect removal are discussed respectively.

In this chapter, techniques and algorithms are reviewed for automatic restoration

in archive film while the methods are limited to those developed for detecting and

restoring dirt and blotches. In the following Section 2.1, hardware based methods

11
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Figure 2.1: Sample restored frames t − 1, t and t + 1 from Archangel
Ph.C-HD. Images are extracted from a sample sequence from [91].

are outlined first. Defect detection methods will be reviewed in Section 2.2 and then

followed by false alarm elimination methods in Section 2.3. Finally in Section 2.4, we

will introduce the algorithms developed generally for filling the missing region and

then those designed especially for archive film defect restoration. Approaches used

to compare against our methods will be discussed later in more detail in Chapter

4 and Chapter 5 for defect detection [52, 54, 67, 84] and in Chapter 6 for defect

removal [34, 51].

2.1 Hardware based Automatic Restoration

The earliest solution to the problem was hardware based and can be traced back

to 1985 when BBC’s prototype equipment [93] was invented to detect and remove

the film grain, dirt, and unsteadiness electronically. The idea was to examine if

the pixel’s temporal forward and backward intensity differences are above a certain

threshold and then replace its intensity with the median of pixels from the local

neighbourhood. The equipment was reported to be capable of removing small de-

fects automatically while large degraded regions needed to be handled manually to

avoid introducing motion impairment. This detection-and-removal two-stage sys-

tem structure has been inherited and popularly used in recent restoration systems

compared to filter-based methods.

Recently, the Snell Group released the fully automated “Archangel Ph.C-HD” [91]

restoration system for High Definition videos as the latest successor of its “Archangel”

family. This state-of-the-art hardware based system is housed in a 3RU chassis. It



2.2 Defect Detection 13

Figure 2.2: Teranex VC300 with integrated touch screen GUI from [96].

can perform motion compensated removal of noise, dirt, scratches and flicker in

real-time. Figure 2.1 shows 3 sample restored frames by Archangle. Some defects

(especially large degraded region) were not restored accurately.

Teranex VC300 platform [96] is another commercial solution to the archive film

restoration problem. The system is also implemented in a 3RU frame based on Ter-

anexs patented SIMD array processing technology (as shown in Figure 2.2). A family

of real-time and interactive repair tools is provided to mix and match according to

specific requirements for each application.

Additionally, some restoration algorithms were accelerated with hardware implemen-

tations. For example, Marshall et al. [41, 43] first developed a Soft Morphological

Filter (SMF) based algorithm for archive film restoration, whose structuring ele-

ments were computed in advance using a genetic algorithm. Later in [40, 45], this

algorithm was implemented in hardware with FPGAs. It was reported that the

computational cost of attaining the optimal structuring elements was reduced from

days to minutes.

2.2 Defect Detection

Archive film defect detection methods can be broadly categorised into filter-based

and model-based methods.
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Figure 2.3: Motion compensated temporal neighbours defined in ROD [68].

2.2.1 Filter-based Methods

Probably the earliest work on filter-based archive film defect detection is the BBC’s

hardware-based dirt and sparkle detector [93] as mentioned above. A binary defect

map was generated by examining if the temporal forward and backward intensity dif-

ferences were above a certain threshold. In addition, the Double Threshold Method

(DTM) from Schallauer et al. [90] further demanded the absolute difference between

two temporal neighbours was below a second threshold.

The Spike Detection Index (SDIp) [54] is a similar example of filter-based detectors,

which improved Storey’s method [93] by using motion compensated pixel values

while requiring the forward and backward intensity differences to have the same

sign. This method is strongly sensitive to the errors of motion estimation.

Nadenau and Mitra’s Rank Order Detector (ROD) [68] further extended SDIp de-

tector [54] to use six pixel values from motion compensated temporal neighbours

as {pi|1 ≤ i ≤ 6} (illustrated in Figure 2.3). The algorithm sorted the six val-

ues as {si|1 ≤ i ≤ 6, s1 < s2... < s6} and calculated the rank-ordered mean

mx = (s3 + s4)/2. Three rank-ordered differences diff = [diff1, diff2, diff3] were
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computed,

diff1 =

{
si − Ix Ix ≤ mx

Ix − s7−i Ix > mx

(2.1)

A pixel x(k) was then marked as a defect if diff1 > τ1, diff2 > τ2 and diff3 > τ3.

(τi|i = 1, 2, 3) were thresholds, which were experimentally selected. In addition to

direct temporal neighbours, the spatial information from local neighbourhood was

recruited to minimize the misjudgement caused by erroneous motion information. In

[35], Gangal et al. upgraded the ROD detector with a more accurate bi-directional

motion estimator and examined the temporal neighbours in a 5-frame scheme. Fur-

thermore, [86] has attempted to accelerate the ROD detector by only thresholding

the intensity differences between the target pixel and local extremes.

Other recent work includes Ren and Vlachos’s [83, 84] filter-based method that

employed a more complicated confidence function of intensity differences to measure

the likelihood of a pixel being defective. First, given three adjacent frames ft−1, ft

and ft+1, the difference map difft for frame ft was defined as

difft =

{
2·difft−1·difft+1

|difft−1|+|difft+1| difft−1difft+1 > 0

0 otherwise
(2.2)

where difft−1 = I(ft)− I(ft−1) and difft+1 = I(ft)− I(ft+1). Then the probability

density function P (x) is computed based on the histogram of the difference map

difft. Finally, the confidence function pc(m) is defined for each value m in diffn

pc(m) = (M − 1)

∑m
x=m0

P (x)∑M
x=m0

P (x)
(2.3)

where M is the size of the set of all possible value in difft and m0 is set as a constant.

This confidence function was able to highlight those pixels with large temporal

differences. Pixel x would be marked in defect maps if its confidence value is below

the threshold Tm. In addition, local region growing algorithms were adopted to help

eliminate false alarms that have strong correlations with their spatial neighbours.

The correlation was measured by examining each pixel’s features, i.e. mean and

standard deviation of image intensities.
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Morphological filtering [92] is another popular tool in archive film restoration. Mor-

phological filtering based methods consider slightly larger spatial neighbourhoods

(e.g. 5 by 5 pixels) than the previous methods. However, a common dilemma of

these methods has been that while a large structuring element is usually required

for detecting large degraded region, it also increases the possibility of picking up

false detections.

In [30, 31, 32], Ferrandière regarded the target image sequences as a 3-D matrix

and designed two-step morphological operations for defect detection. A temporal

opening operation was first performed with a linear structuring element parallel

to the temporal axis. Defects that were temporally isolated were erased together

with a number of normal pixels which usually involved motions. Therefore, as the

second step, a geodesic spatial reconstruction method [102] was adopted to recover

the contours which were damaged during the first operation. Defect maps were

generated by comparing the reconstructed images against the original ones.

In [15, 94, 95], more complicated structuring elements were specially designed to

detect blotches by assuming target blotches are local maximum or minimum. White

and black blotches were detected individually by using multiple structuring elements

and thresholding Dwhite and Dblack

Dwhite(I, SE0, SEn) = I − ((((I 	 SE0)	 SEn)⊕ SE0)⊕ SEn)

Dblack(I, SE0, SEn) = ((((I ⊕ SE0)⊕ SEn)	 SE0)	 SEn)− I
(2.4)

where ⊕ and 	 represent morphological dilation and erosion. SE0 and SEn were

structuring elements defined as

SE0 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 ; SEn =


2n 2n 2n 2n 2n

2n n n n 2n

2n n 0 n 2n

2n n n n 2n

2n 2n 2n 2n 2n

 (2.5)

Here, structuring elements SE0 and SEn were designed to detect small defects and

relatively larger defects with high gradients respectively. Detectors equipped with a

combination of both elements (shown in 2.4) not only revealed various sizes of defects
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but also reduced the false detection significantly. Furthermore, motion compensated

temporal neighbours were computed and serve as assisting evidence to help prevent

false detections.

In [97, 99], Tilie et al. applied Dempster-shafer evidence theory on the fusion of

detection results from a Simplified ROD (SROD) detector [86] and spatial morpho-

logical filtering [15]. The combined detection results achieved an improved accuracy

(with less false alarms) by taking advantage of both temporal and spatial informa-

tion.

2.2.2 Model-based Methods

Morris’s MRF based defect detector [67] is a pioneering example of model-based

defect detector. The author adopted an Ising model to represent the prior of the

defect map D,

P (D) =
1

ZD
exp(− 1

T

∑
x∈I

[−β1

∑
x′∈Nx

dxdx′ + β2δ(1− dx)]) (2.6)

where β1 controls the smoothness of degraded region while β2 assigns a penalty to

pixel positions marked as defects in order to prevent a solution with every position

detected as defects. Then, Gibbs sampling with annealing was applied to compute

the Maximum a posteriori (MAP) configuration of the defect map given the im-

age intensities from adjacent motion compensated image frames. The a posteriori

distribution was defined as

P (D|I) =
1

Z
exp(− 1

T

∑
x

[α(1−dx)(Ix−Ixmc)
2−β1

∑
x′∈Nx

δ(dx−dx′)+β2δ(1−dx)])

(2.7)

where xmc was the motion compensated temporal neighbour of x, either forward or

backward connected and parameter α highlights the discontinuity of intensity values

on the temporal axis. Pixels were marked in the final defect map if discontinuities

were shown on both forward and backward adjacent frames.
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In [21], Morris’s method [67] was reported to be sensitive to the errors of motion

estimations and cause false alarms along the moving edges. Therefore, Chong and

Krishnan [21] suggested an improvement by adding a moving edge detection element

into Morris’s model so as to increase the accuracy. The new a posteriori distribution

was defined as

P (D|I) =
1

Z
exp(− 1

T

∑
x

[α(1− dx)(Ix − Ixmc)
2

−(β1 + φ(x,xmc))
∑
x′∈Nx

δ(dx − dx′) + (β2 + φ(x,xmc))δ(1− dx)])
(2.8)

where

φ(x,xmc) =

{
0 xnot on amoving edge

maxx′∈Nx(Ix′ − Ix′mc
)2/τ 2

1 x on amoving edge
(2.9)

Pixel x was detected as a moving edge pixel if the bidirectional displacement frame

differences (DFD) of every pixel x′ in the spatial 8-connected neighbourhood Nx of

x were below the threshold τ2.

Kokaram [52] also developed a Bayesian framework to model noise and blotches

while performing motion correction. Three binary variables were used for each pixel

to mark if the pixel is degraded, forward occluded or backward occluded. These

variables, together with restored image values and motion vectors, were defined as

unknowns. Given the pixel values of degraded frames and initial motion estimations,

the method applied the ICM [9] algorithm to solve these unknowns via an iterative

procedure. More details about this method, i.e. two-stage restoration process and

motion correction, will be discussed in Section 2.4.

2.3 False Alarm Elimination

All defect detection methods reviewed above suffer from false detections to some

degree. In order to improve the performance of detectors, a straightforward idea

is to include an extra process to reduce false detections as much as possible while

preserving the highest possible detection rate. Many algorithms [1, 10, 11, 22, 50,
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58, 79, 98, 104] have adopted this route with over-detection and then false alarm

elimination, rather than under-detection and then dealing with its consequences. In

this preferred route, the difficulty of false alarm elimination has been transferred to

how to model normal pixels, particularly false alarms, to distinguish them from true

defects.

A few works [78, 79, 80] investigated the causes of false alarms and developed their

corresponding solutions. One of the major causes is the irregular motion of camera

and objects, especially in fast motion scenes, which was referred to as pathologi-

cal motions. In [78, 79, 80], Rares et al. briefed all classes of pathological motions

which may cause false detections, including motion blurring, occlusion, image over-

lapping, interlacing and shot change, large displacement, strong zooming and inter-

mittent/erratic motion. Many algorithms [10, 11, 22, 23, 50, 50, 58, 59, 78, 86] have

been designed to remove one or multiple classes of false alarms by focusing on their

causes.

As an increment to Roosmalen’s SROD detector [86], eliminating false alarms caused

by motion blurring was introduced in [78]. False alarm regions were excluded from

the initial defect maps through a 3-step segment matching process using statistics

computed from each segment’s intensity histogram across temporal neighbouring

frames.

In [11, 22, 23, 50], the authors distinguished the pathological motions from true

artifacts by defining the pathological motions on the temporal axis. A set of binary

variables were used to reflect the intensity changes across a fixed number (3 or 5) of

consecutive frames.

Bornard [11] first pointed out that the appearance of intensity discontinuities at same

location across three consecutive frames could suggest the existence of a pathological

motion event (occlusion in this case). Two binary variables were recruited to state

the forward and backward occlusions on the temporal axis and MRF modelling was

adopted to compute the MAP configuration of binary variables.

Additionally, Corrigan et al. [22, 23] further improved the work in [11] by using

four binary variables instead of two, which represent the states of intensity changes

across five neighbouring frames. More pathological motion events were explicitly
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Table 2.1: Definition of Pathological Motion events in terms of intensity
discontinuity from [23].

State s(x) Detection State s(x) Detection

0 0,0,0,0 Normal 8 1,0,0,0 Normal

1 0,0,0,1 Normal 9 1,0,0,1 PM

2 0,0,1,0 PM 10 1,0,1,0 PM

3 0,0,1,1 PM 11 1,0,1,1 PM

4 0,1,0,0 PM 12 1,1,0,0 PM

5 0,1,0,1 PM 13 1,1,0,1 PM

6 0,1,1,0 Defect 14 1,1,1,0 PM

7 0,1,1,1 PM 15 1,1,1,1 PM

defined (as shown in Table 2.1), in which s(x) = {s1(x), s2(x), s3(x), s4(x)} was the

set of binary variables showing if there were large intensity changes (as si(x) = 1)

between temporally consecutive pixels across five frames. However, the accuracy

of this method is still limited by the number of binary variables since the intensity

transitions in complex motion events, e.g. tracking an object with fast movements

or slow periodic motions, need to be examined in a longer range.

Improvement on Morris’s defect detector [67] was also reported in [50] by including a

segmentation process before performing the defect detection. Images were first seg-

mented into foreground and background, involving different types of motion. Then,

Morris’ method was performed on foreground and background parts individually so

that false detection caused by complex foreground motions could be reduced.

There are other false alarm elimination methods [10, 58, 59], which focused on the

special kinds of false alarms generated under more specified circumstances. For

instance, [10] attempted to remove isolated false detected pixels caused by Gaussian

noise and Licsár et al. [58, 59] limited their target defect to blotches so that false

detections could be eliminated with the help of using blotches’ spatial features, such

as local smoothness and the difference between intensity means inside and outside

blotches.
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(a) (b) (c) (d)

Figure 2.4: A comparison of image structure propagation based (c) and
exemplar based (d) methods with the original image (a) and inpainting mask
(b).

2.4 Defect Removal

The task of filling in missing regions in single or consecutive frames is often referred

to as inpainting, which originates from restoration in the world of Art. It was first

introduced into digital image restoration by Bertalmı́o et al. [6] who adapted the

original idea of artistic inpainting by smoothly propagating the surrounding colour

and structure into the missing area iteratively. The intensity updating function was

defined as

In+1(i, j) = In(i, j) +4tInt (i, j),∀(i, j) ∈ D, Int (i, j) = ∇Ln(i, j) · |∇⊥In(i, j)|

(2.10)

whereD represents the inpainting region. Ln(i, j) = Inxx(i, j)+I
n
yy(i, j) is the smooth-

ness estimator and ∇⊥In(i, j) provides the propagation direction.

Since then, inpainting has become a popular topic in computer vision and most of

the research was concentrated on mainly two directions, i.e. image structure (non-

texture) propagation based methods and exemplar (texture) based methods. Figure

2.4 illustrates sample inpainting results from both groups of methods, i.e. [6] for

image structure propagation based methods and [24] for exemplar based methods.
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2.4.1 Image Structure Propagation based Methods

This group of methods usually requires complex image models with high order par-

tial differential equations (PDE) or variational energy functional. Although such

methods have proven to be effective solutions to restoring small gaps in degraded

images, they suffered from blurring side effects when dealing with large missing ar-

eas, e.g. they could fail to restore textural details within the missing regions they

recover. An example is shown in Figure 2.4(c). The restored image lost the texture

details in the filling region.

Atzori and De-Natale [3] and Rares et al. [81] believed that the priority of recovering

the “skeleton” of images (edges) should be granted in an image restoration mission.

Both algorithms first detected and coupled the edges that may have been discon-

nected with the appearance of missing regions. After being sketched, the missing

region would be separated into independent ones and “flesh” would be added us-

ing patch duplication [3] or interpolation with a combination of surrounding image

intensities [81].

Masnou and Morel [64, 65] were inspired by the Nitzberg et al. ’s variational frame-

work [69] on image segmentation and edge completion. Instead of edges, they pre-

sented an algorithm that connected level lines that arrived at the boundary of the

missing region by minimizing the sum of the angular total variations along each

candidate level lines connections as follows:

Ci,j =
∑∫

Li,j

(1 + |κ|p) dl, p ≥ 1 (2.11)

where κ = |∇ · [ ∇fI|∇fI |
]| is the curvature of the connected level lines Li and Lj. fI is a

noise-free image represented as a function of Bounded Variation (BV) and l donated

the length of level lines. Figure 2.5 presents an example with possible configuration

of level lines in an occluded region.

Chan and Shen [18] introduced the Total Variation (TV) inpainting model based on

Rudin-Osher-Fatemi BV image model. BV images were interpolated by minimizing
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Figure 2.5: Level lines connected over an occluded region from [65].

the following posterior energy:

ETV [fI |f 0
I ,D] =

∫
Ω

|∇fI |dx +
λ

2

∫
Ω\D

(fI − f 0
I )2 dx (2.12)

where λ is a predefined positive function and f 0
I is the initial edge condition around

the missing area D. Inside the missing region D, the TV inpainting method is equiv-

alent to anisotropic diffusion if we leave out the second part of Equation (2.12). As

reported in [19], the TV inpainting model provided an effective solution with lower

complexity and easier computational implementation compared to other variational

models.

However, TV inpainting model may fail to complete the occluded object when the

gap is much wider than the width of the object, considering that the geometric

information of isophotes is neglected in the diffusion. Therefore, Chan and Shen [17]

presented an improvement based on Curvature-Driven Diffusion (CDD) to encourage

the connection of edge isophotes. Figure 2.6 illustrates a sample situation with the

desired recovery from a view of human beings and recovery results from previously

discussed TV model. In a similar fashion to Bertalmı́o et al. ’s [6] inpainting scheme,
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Figure 2.6: An example of completing an occluded object with the gap is
wider than the width of the object. The desired solution and results from
TV model are also shown. Image is taken from [17].

a third order PDE was employed here:

∂fI
∂t

= ∇ · [G(|κ|)
|∇fI |

∇fI ] + λD(fI − f 0
I ) (2.13)

where G(s) is the key factor which encourages smooth isophotes inside the missing

region:

G(s) =

{
1, x ∈ Ω\D
sp x ∈ D,

λD(x) =

{
λ, x ∈ Ω\D
0 x ∈ D

(2.14)

The CCD based method basically performed anisotropic diffusion outside the in-

painting region which was similar to the TV model while the propagation inside the

inpainting region was driven by a function of the curvature κ.

In addition, other improvements [4, 18, 20, 27, 101] on the TV inpainting model have

been presented. The authors adopted different image models which were originally

designed for image segmentation. These methods aimed to achieve smoother image

interpolation based on the assumption that images are composed of a collection of

smooth regions. In [18, 101], the Mumford-Shah image model was employed

EMS[fI ,Γ|f 0
I ,D] =

γ

2

∫
Ω\Γ
|∇fI |2dx +αlength(Γ) +

λ

2

∫
Ω\D

(fI − f 0
I )2 dx (2.15)
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where Γ represents boundaries of the inpainting regions. In [4, 20], Chan et al. in-

troduced the Euler’s elastica image model into the inpainting task

EE[fI |f 0
I ,D] =

∫
Ω

(α + βκ2)|∇fI |2dx +
λ

2

∫
Ω\D

(fI − f 0
I )2 dx (2.16)

In [27], Esedoglu and Shen combined the Euler elastica and Mumford-Shah image

model and proposed the Mumford-Shah-Euler image model

EMSE[fI ,Γ|f 0
I ,D] =

γ

2

∫
Ω\Γ
|∇fI |2dx+

∫
Γ

(α+βκ2)dx+
λ

2

∫
Ω\D

(fI−f 0
I )2 dx (2.17)

When we look into Equations above and compare it with (2.12), we find that a

second order geometric regularity of edges (α + βκ2) has been enforced on either

the boundary of the occluded region or the whole domain of images, which provides

more natural and geometrical modelling of the images.

Other techniques used in inpainting approaches were borrowed from other subjects,

such as Navier-Stokes equation from Fluid Dynamics [7] and Ginzburg-Landau equa-

tion from Superconductors [39]. For example, Bertalmio et al. [7] assumed the image

intensity function as the stream function for 2−D incompressible fluids and modelled

it using the vorticity equation:

∂w

∂t
+ v · ∇w = v4w (2.18)

where w is the Laplacian 4I and velocity vector v = ∇⊥I. Instead of solving the

transport equation for I in Equation (2.18), the authors obtained the vorticity w

first and then solved the following Poisson problem to recover I:

4I = w, I|Γ = I0. (2.19)

2.4.2 Exemplar based Methods

Exemplar based inpainting methods, e.g. [11, 24, 34, 72, 105], attempted to overcome

the shortcoming of image structure propagation based methods on inpainting both
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texture and non-texture regions. The key point was to inpaint the missing region

with the image information from the rest part of the images. The idea of texture

(referred to as Examplar) duplication was first suggested in a texture synthesis work

[26], in which Efros and Leung assumed the texture image as a Makrov Random Field

and synthesized the texture in a pixel-by-pixel manner. Each pixel’s intensity was

computed based on its Markovian neighbours’ while this Markovian neighbourhood

was estimated using a patch selected from texture samples.

However, traditional texture synthesis methods [25, 26, 44, 47, 103] could not be

applied for the image inpainting task directly since those methods were usually

applied on pure stochastic texture images with a reference texture sample while

the inpainting task on a single natural image involves working on both texture and

non-texture regions.

In order to perform texture synthesis methods on natural images and image se-

quences, Bornard et al. [12] inherited Efros and Leung’s idea and inpainted pixels in

order by measuring the reliability of its reference Markovian neighbourhood. Fur-

thermore, the size of spatiotemporal reference neighbourhoods was adaptive instead

of the fixed one employed in [26].

In another landmark work, Criminisi et al. [24] also extended [26] to perform the

propagation of textures using a patch-based sampling process. In [24], authors also

pointed out that the order of the filling process is critical for achieving simultaneous

recovery of image structure and texture while priorities were granted to those pixels

with high gradients, i.e. image structures. Figure 2.7 shows an example of filling a

missing region with the image structure (edge in this case) restored first. In order to

let the structure propagation take precedence, the authors defined a Patch Priority

Function P (x) for each patch Ψp centred at the pixel x on the boundary of inpainting

area Γ:

P (x) = Co(x)Da(x) (2.20)

The confidence term Co(x) and the data term Da(x) were defined as follows:

Co(x) =

∑
x′∈Ψx∩(Ω\D) Co(x)

|Ψx|
Da(x) =

|∇I⊥x · nx|
α

(2.21)
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Figure 2.7: The priority has been given to structure propagation in exem-
plar based methods [24, 34, 72, 105].

where |Ψx| is the area of Ψx, α is a normalization factor, ∇I⊥x is the isophote at

pixel x, and nx is a unit vector orthogonal to Γ at pixel x. The idea presented was

similar to Masnou and Morel’s work [64, 65] which was designed to recover edge

isophotes first.

Wexler et al. [105, 106] and Patwardhan et al. [72] extended the algorithm in [24]

by enlarging the sampling region to a number of temporal neighbouring frames (for-

wards and backwards) and both methods were designed to fill in space-time holes

in video sequences with stationery background and moving foreground in periodic

motions. Wexler et al. [106] further achieved a global optimization of patch se-

lection in a multiscale framework. However, Patwardhan et al. [72, 73] considered

scenes with restricted camera motions by including a motion segmentation proce-

dure. Foreground and background parts were restored separately to preserve the

spatiotemporal consistency on both intensity and motion. In [34], instead of using

a global search as performed in [72, 105], Gangal et al. limited their search region

to temporal motion compensated neighbourhoods (as shown in Figure 2.7).

These three methods ([105], [72], and [34]) inherited the shortcomings of [24]: (a) It
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is difficult to choose the optimal size of an exemplar patch, considering that a larger

patch will possibly bring artifacts while a smaller one may cause mismatching, and

(b) A mismatching of patches in early stages will cause an incremental effect to the

detriment of the final results.

In addition, methods using global image statistics were also developed. From a

statistical point of view, inpainting can be regarded as a problem of estimating the

missing region with the statistics from the rest parts of the image. An estimation

method has been presented by Levin et al. [57], which intends to build an exponential

family distribution through a training process by looking at the histograms of image

features, such as gradient magnitude and pairwise gradient angle. After finding the

optimized parameters for the distribution of the target image, they combined it

with the image gradients computed from the pixels on the boundary to inpaint the

missing region through loopy belief propagation.

2.4.3 Combined Methods

Since images usually contain both texture and non-texture regions, some works have

tried to handle the challenges posed by simply treating them separately. Image

decomposition algorithms and transformations, such as wavelets and DCT have

been used to decompose the image into two groups of subimages, i.e. those exhibiting

texture and those containing non-texture information (see an example in Figure 2.8).

Then, corresponding methods from the two classes of structure and exemplar based

approaches have been applied to the subimages separately and the final restoration

was achieved by reuniting the subimages back into one, e.g. see [8], [71], and [33].

2.4.4 Archive Film Restoration Algorithms

We now focus on algorithms developed to restore missing scene information in

archive films specifically. There is a class of methods that have used filter-based

techniques applied to the entire image regardless of a defect map, e.g. the Lower-

Upper-Median (LUM) filter [42], the ML3Dex filter [56] and the Soft Morphological
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Figure 2.8: A sample image is decomposed into texture and non-texture
subimages and restored respectively [8]. Top: the original image before
and after inpainting; Middle: texture and non-texture sub-images; Bottom:
inpainted texture and non-texture sub-images.

Figure 2.9: Sliding windows used in ML3dex from [56].
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Filter (SMF) [41, 45]. These methods have shown good performance on removing

small dirt (within 7×7 windows) in archive film but often result in artifacts elsewhere

in the image by removing texture detail.

By combining LUM smoother and LUM sharpener, LUM filter [42] was essentially a

rank-ordered filter using a sliding window. First, all pixels {x(i) ∈ Wxc , 1 ≤ i ≤ N}
inside the sliding window Wxc centred at xc were ordered

x(1) ≤ x(2) ≤ · · · ≤ x(N) (2.22)

Then lower and upper statistics were computed

xL = median{x(k),xc,x(l)} (2.23)

xU = median{x(N−k+1),xc,x(N−l+1)} (2.24)

where 1 ≤ k ≤ l ≤ (N + 1)/2 with xL ≤ xU and N is the number of pixels in

the sliding window centred at xc. k and l are variables to control the strength of

smoothing and sharpening. The final output of LUM filter was defined as

x̄c =

{
xL, if xc ≤ (xL + xU)/2

xU , otherwise
(2.25)

ML3Dex filter [56] extended the LUM filter by using different shapes of sliding

window across 3 adjacent frames. Totally five different windows were adopted in

the filter (see Figure 2.9). The filtered pixel intensity was defined as follows:

x̄c = median(m1,m2,m3,m4,m5); mi = median(Wi), i = 1, . . . , 5 (2.26)

As discussed previously, the accuracy of morphological filter based method is largely

dependent on the design of structuring elements. Marshall et al. [41, 45] optimized

their grayscale soft morphological filter using a genetic algorithm. The optimized

parameters included the size and shape of structuring element’s hard center and

soft boundary, repetition and morphological operations. All these parameters were

encoded as a “chromosome” during the evolution. The best configuration of their
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SMF was given in [41] and improved results on restoring blotches were demonstrated

in comparison to LUM and ML3Dex.

Additionally, a series of methods [52, 53, 55, 67, 86] have applied statistical modelling

to perform the defect detection and removal in a single framework.

As a follow-up to previous MRF based defect detector[55], Morris’s missing region

interpolator [67] adopted standard MRF image model using first order spatiotem-

poral neighbourhoods. Gibbs sampling and an improved mean field approximation

method were recruited to compute the MAP configuration of restored images.

In [55], Kokaram proposed a 3-D Autoregressive (AR) model for recovering image

local smoothness. Missing pixel intensities were assumed to be sums of their original

intensities and errors and were then estimated using a weighted linear combination

of their spatial and temporal neighbouring pixels’ intensities.

Î(x, y, t) =
N∑
k=1

akI(x+ qxk, y + qyk, t+ qtk) (2.27)

where ~qk = [qxk, qyk, qtk] is the location offset vector and N is the size of the spa-

tiotemporal neighbourhood of I(x, y, t). The weights {ak} were first predicted by

minimizing the errors using normal image sequences. In another AR model based

work [86, 87], instead of combining intensity values from both previous and next

frames, Roosmalen interpolated the current pixel by using intensities from one di-

rection only (either forward or backward) whose values were close to the predictions

from his AR model.

As the state-of-the-art, Kokaram’s Bayesian framework [52, 53] attempted to model

noise and scratches, and performed motion adjustment together. First, a set of

three binary variables s(x) = [d(x), Ob(x), Of (x)] were used for each pixel to mark

if a pixel is degraded, forward occluded or backward occluded. In addition, the

degradation model was defined as

Gt(x) = (1− d(x))I t(x) + d(x)c(x) + µ(x) (2.28)

where I t(x) and Gt(x) are the image intensities at time t and position x before
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and after the degradation. d(x) = 1 marks pixel x as a degraded position and c(x)

represents the intensity of degradation. µ ∼ N (0, σ2
µ) models the background noise.

Binary variables s(x), together with original image intensities I t(x) and motion

vectors qt,t−1(x) and qt,t+1(x), were defined as unknown vector θ(x). Given the

pixel values of degraded frames and its two neighbouring frames, the conditional

distribution was defined as

p(θ|I t−1, Gt, I t+1) ∝ p(Gt|θ, I t−1, I t+1)× p(θ|I t−1, I t+1). (2.29)

where Gaussian Markov Random Field priors were used to model degraded intensity

c(x), backward occlusion Ob(x) and forward occlusion Of (x). Finally, a two-stage

procedure was designed to estimate θ(x) first and then correct the motion vectors,

before repeating this process for a fixed number of iterations using the ICM [9]

algorithm. The adjustment of motion vectors was block based and candidate motion

vectors were selected from 8-connected spatial neighbouring blocks. The optimal

motion vector was chosen provided a motion vector produced the minimum intensity

difference of current block and its motion compensated one.

2.5 Summary

In this chapter, we presented a literature review on both hardware and software

based archive film restoration methods. Recent developments in specified stages of

automatic restoration, i.e. defect detection, false alarm elimination and defect re-

moval, were discussed in detail. By studying these previous works, a few motivations

are obtained for the work that we will present in this dissertation.

Previous defect detection methods assumed the defect as a stochastic event. This

assumption was then followed by the practice of investigating the information from

one or two previous and successive frames to determine if the current frame is

suffering from degradation. Due to the high complexity of motions in archive film

and possible errors introduced in motion estimation, examining the pixel intensities

only in direct motion compensated neighbourhood will cause considerable number of

false detections. Therefore, our approach, unlike previous methods, is to investigate
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an optimized number of frames before and after the current frame so as to achieve

a higher accuracy.

Previous false alarm elimination methods have paid considerable attention on the

causes of false alarms. As discussed above, the major causes of false alarm in the

defect detection task are the irregular and complex motions that exist in archive

film. In [11, 22, 23, 50], the change of intensity values across 3 or 5 frames was in-

vestigated while patterns of intensity changes were defined for different pathological

motion events. However, the accuracy of elimination was limited by the fixed num-

ber of neighbouring frames investigated and the fixed number of pathological motion

events pre-defined. Instead of looking at all possible causes of false alarms, we ex-

amine the characteristics of false alarms and then design corresponding elimination

methods. This is achievable since false alarms caused in different situations share

similar characteristics and it is probably more efficient to focus on limited number

of characteristics than to develop a solution for each cause which is laborious and

sometime repetitive.

Quite a number of methods have been developed for defect removal, considering

that all image/video inpainting algorithms can be directly adopted for this task.

However, few methods have taken recovering falsely detected pixels into account,

which can easily lead to the introduction of new artifacts especially when the number

of false alarms is large. Furthermore, recovering large degraded regions remains an

unsolved problem. Intensities of central pixels in a large degraded region are more

difficult to restore due to the shortage of reliable neighbours. Our random walk

based algorithm is designed to handle these problems with integrated multiscale

scheme and reliability values.
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Chapter 3
Defects and Data

Archived films often suffer damage and quality degradation through inappropriate

storage and wear and tear, and sometimes even at the time of production. These

defects can be categorised according to different causes, e.g. dirt and blotches, line

scratches, and flicker, amongst many others.

3.1 Our Target: Dirt and Blotches

As defined in Section 1.1, our target is one group of common defects in archived films,

including dirt, hair, sparkle, blotches, salt and pepper like noise, digital dropout and

all other temporal impulsive intensity discontinuities. We summarize the character-

istics of such defective pixels as follows:

• Black, white or semi-transparent

• Random shape pattern

• Random appearance in a single frame or at the same position across several

frames.

• Observed as surge or fall of image intensities

35
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Figure 3.1: Junior Prom - Dirt: Top: sample degraded frames t− 1, t
and t+ 1; Bottom: enlargement of selected areas.

The appearance of such defects is assumed as stochastic pixel-change events due

to improper storage environment or repeated damage during the acquisition, du-

plication, transmission and even at the time of filming. Figure 3.1 and Figure 3.2

illustrate 2 sample degraded frames along with enlargement of selected areas across

3 frames. More sample degraded frames with dirt and blotches can be found in

Figure 3.8, 3.9 and 3.10.

3.2 Other Defects

In this section, we present a general introduction of other defects that commonly

appear in archive film. Some of them can become our target as long as they conform

to the definitions and features of our target as discussed above. An example of such

kind, i.e. moving line scratches, is shown in Figure 3.2.

• Line Scratches, also known as Tramlines, usually appear as horizontal or

vertical gaps across a number of frames. Line scratches are resulted from

the film abrasion caused by ill-maintained footage transportation mechanics.

A challenge in removing line scratches is how to preserve the normal line

structures in the scene. An example of line scratches over 4 consecutive frames
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Figure 3.2: Personal Hygiene - Moving line scratches: Top: sample
frames t − 1, t and t + 1 degraded with moving line scratches; Bottom:
enlargement of selected areas.

Figure 3.3: Steel - Line scratches: 4 consecutive sample frames.
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Figure 3.4: New York World Expo - Colour variation: Local colour
variation possibly caused by mould is shown.

is illustrated in Figure 3.3.

• Brightness or colour variation is defined here as global or local, lumi-

nance or colour variation that occurs between consecutive frames in archive

film, which is usually caused by improper grading changes or inhomogeneous

storage environments. An example of local colour variation is illustrated in

Figure 3.4.

• Instability is another common distraction in old films, which are mainly

caused by inaccurate transporting systems during the filming and duplication.

Periodic movements can often be found across a number of frames while camera

motions will further complicate the problem. Four successive frames affected

by unsteadiness are shown in Figure 3.5.

• Blurring can be categorised into two groups according to different causes.

One kind of blurring results from incorrect setting or manipulation of filming

equipment, such as focus setting error and long exposure time. The resulting

blur will usually influence the viewer’s visual perception and the blurring we

defined here is limited to this kind. On the contrary, some blurring effects are
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Figure 3.5: Junior Prom - Instability: Sample degraded frames with
global vibration across 4 successive frames.

added on purpose to increase the visual coherence [107], i.e. the smoothness of

motions. In addition, the process of frame rate converting will also introduce

motion blurring into the interpolated frames. Two examples of blurring caused

by focus error and long exposure time are illustrated respectively in Figure 3.6.

3.3 Archive Film Restoration Dataset

Among previous archive film restoration algorithms, few have been fully assessed us-

ing a large data set. Instead, only one or two image sequences are used to evaluate

the accuracy of designed methods. The comparison with other methods can also be

biased since methods may obtain better results in one particular image sequences

than others. Therefore, we developed an archive film restoration dataset that com-

prises a variety of archive films, which will be used for comparison and evaluation

of our automatic restoration methods against others. Our archive film restoration

dataset is composed of two parts, i.e. training dataset and testing dataset.
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Figure 3.6: New York World Expo - Blurring: Examples of blurring
caused by focus error (top) and long exposure time (bottom).

3.3.1 Training Dataset

The training dataset contains 10 normal archive films of different types, includ-

ing grayscale, colour, indoor, outdoor, slow and fast motions, and real scenes and

cartoons. These sequences only contain normal pixels and are used as the source

of sample pixel sequences for HMM training. Figure 3.7 shows 10 sample frames

extracted from the training dataset.

3.3.2 Testing Dataset

The testing dataset is used for both quantitative and qualitative evaluation of pro-

posed methods. It consists of two groups of film sequences. Similar to the training

data, these sequences also vary in colour, scene, degree of motions and subjects.

The first group is composed of real degraded sequences (each at a length of about

one second) with handlabeled groundtruth produced from 50 film sequences totalling
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Figure 3.7: 10 sample normal frames from training data (one from each
sequence).
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1060 frames. 50 sample degraded frames are shown in Figure 3.8, 3.9 and 3.10).

This group of data is used for quantitatively measuring the performance of both the

proposed defect detection algorithm and others. The archive films which we extract

frames from are downloaded from [48].

The other group comprises 10 real sequences (each in a length of about 10 seconds)

with artificial artifacts totalling 2952 frames (note these 10 sequences are entirely

different from the ones in training data). Figure 3.11 illustrates sample frames

from these sequences overlaid with artificial defects. The degraded sequences were

produced by adding hand-painted black and white defects of sizes of from 1 to 6000

pixels. These data were used to evaluate and compare our proposed defect removal

method against state-of-the-art methods. Quantitative assessments (e.g. MSE and

PSNR) can be computed to measure the difference between the original defect-free

frames and the restored ones. We obtained these 10 sequences from [108].

3.4 Quantitative Measures

We adopt a number of quantitative measures to objectively evaluate the performance

of our proposed algorithms against previously developed techniques. For defect de-

tection, we compare the resulting defect maps against the handlabelled groundtruth

produced from real degraded sequences using binary classification test. For defect

removal, quantitative results are computed based on real film sequences with ar-

tificial defects. Mean Square Error (MSE) is employed to measure the difference

between the restored frames and the original defect-free ones.

3.4.1 Defect Detection Stage

As described earlier, the difficulty of defect detection lies in how to increase the

correction detection ratio while keeping the false alarm ratio low. Hence, correction

detection ratio and false alarm ratio are two key measurements to the accuracy of

defect detection methods. They are defined in terms of binary classification test as

follows:
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CorrectDetectionRatio (Sensitivity) =
Number of TP

Number of TP +Number of FN
(3.1)

where TP stands for true positive pixels which are true defects correctly detected

in our defect detection application and FN for false negatives (true defects not

correctly detected).

FalseAlarmRatio (1−Specificity) =
Number of FP

Number of FP +Number of TN
(3.2)

where FP stands for false positive pixels which are false alarms in our defect detec-

tion application and TN for true negatives (normal pixels not falsely detected).

Based on such definitions, we compute Receiver Operating Characteristic (ROC)

curves using our testing data set with handlabelled groundtruth of defects. Then,

we are able to measure the detection performance of our proposed methods and

other techniques by looking at the correct detection ratios and false alarm ratios

simultaneously.

3.4.2 Defect Removal Stage

The primary task of defect removal is to restore the pixels labelled in the defect maps

to their original image intensities. In our experiments, artificially degraded image

sequences are used as testing data. We compare the restored sequences against their

original defect-free ones so as to evaluate the restoration accuracy of all defect re-

moval methods. MSEs are computed to measure the difference between the original

defect-free frame F and the restored frame F̂ :

MSE(F, F̂ ) =
1

Width×Height× 3

∑
x∈F

3∑
i=1

(F i
x − F̂ i

x)2 (3.3)
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3.5 Summary

In this chapter, we discussed the defects and data related issues for our archive film

restoration application. First, we briefly discussed the cause and characteristics of

our target defect and other categories of defects. Then, the training and testing data

sets used in our experiments were outlined along with sample frames from each film

sequence. Finally, quantitative measurements were introduced for our experiments

in defect detection and defect removal individually.
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Figure 3.8: 1-18 of 50 real degraded frames from testing data (one from
each sequence).
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Figure 3.9: 19-36 of 50 real degraded frames from testing data (one from
each sequence).
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Figure 3.10: 37-50 of 50 real degraded frames from testing data (one from
each sequence).
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Figure 3.11: Example frames from 10 artificially degraded testing se-
quences.



Chapter 4
HAFID: HMM based Archive Film Defect

Detection

Defect detection is the first stage of our automatic archive film restoration frame-

work. The main purpose of the detection procedure is to detect defects and recover

their spatial and temporal addresses. This information can then be recorded in

the form of defect maps to help restore the archive film in our proposed defect re-

moval approach (presented in Chapter 6) or in any other restoration method by only

looking at the labelled pixels.

For the proposed HAFID detector, it is of primary importance to detect the max-

imum number of true defects even though quite a few false alarms may also be

produced. Traditional methods [15, 86, 99], nevertheless, are not able to detect all

true defects and extra works were required to obtain improvements till a reasonable

target is met. Although the over-detection followed by false positive elimination

is preferred to under-detection and its consequences in our automatic restoration

framework, we will demonstrate in Section 4.4 that the proposed method provides

a higher correct detection rate and much less false alarms than current state-of-

the-art techniques. These false alarms will be specially handled in our false alarm

elimination approach presented in Chapter 5.

Defects have been assumed as temporal impulse events across frames. Based on this

49
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assumption, previous archive film defect detection methods have only investigated

the information from one or two previous and successive frames to determine if

the current frame suffers from degradation, e.g. the SDIp [54] and MRF based [55]

detectors. However, the approach here is to look at a larger number of frames before

and after the current frame so that we are able to examine the statistical changes in

pixel transitions for a longer range. This better helps model normal pixel sequences

and later determine defects more accurately.

Due to the high complexity of motions in archive films and possible errors from

motion estimation, a considerable number of false detections would rise by only

examining the pixel intensities in direct motion compensated neighbourhoods. The

majority of these false alarms, as reviewed in Section 2.3, are caused by complex

motion events. Therefore, previous works [11, 22, 23, 50] have tried to distinguish

these motion events from true artifacts by investigating the change of intensity

values across three or five consecutive frames. Such motion events are recognised by

their predefined patterns of intensity changes. However, their detection is limited by

the fixed number of neighbouring frames, considering that it requires examining a

longer range of frames to detect complex motion events, e.g. fast moving object and

periodic motions. Hence, our strategy to investigate temporal pixel transitions in

a longer range of frames before and after the current frame will also help recognise

complex motion events and reduce the number of false detection.

Given the somewhat random nature of the occurrence of defects, rather than at-

tempting to model pixel sequences with defects, we build a model of how normal

pixels transit sequentially. This is in effect a form of novelty detection where any

pixel sequences deviating from this normal model can be marked as a possible de-

fect. A pixel x would normally remain in one state and undergo a transition only

when the intensity value at this location changes by a certain amount. For example,

a constant state sequence may be linked to a temporal pixel sequence at a static

background, whereas a single frame based defect would cause sudden state transi-

tions at that pixel location. This temporal change of states (at a pixel location) can

be considered as a Markov chain. Given some observation sequences, we are then

able to model normal pixel sequences (i.e. state transitions) using an HMM.

In this chapter, we present our HMM based archive film defect detection method.
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First, we briefly introduce the concept of novelty detection, followed by the funda-

mentals of HMM modelling in the context of our defect detection application. For

the proposed defect detection approach, we characterize and train a single HMM

for normal observation sequences and then apply the trained HMM within a frame-

work to detect degraded pixels by examining each new observation sequence and its

subformations being normal via a leave-one-out process. In order to demonstrate

its improved detection performance, the proposed defect detection approach is com-

pared against four commonly used and/or state-of-the-art techniques [52, 54, 67, 84]

using real degraded archive film with handlabelled groundtruth (described in Chap-

ter 3). For example, note although [54] is from 1992, it is still one of the most

regularly used methods in industry.

4.1 Novelty Detection

As defined in Section 1.1, our target defects, dirt and blotches, are one group of

defects that appear randomly as black or white sparkles or regions in one or more

frames. The proposed HAFID detector aims to distinguish any such temporal in-

tensity discontinuities against normal image pixel transitions, which is essentially a

form of novelty detection. Hence, we first briefly introduce novelty detection as a

data-oriented task and then discuss about the connection between our data and the

proposed approach.

Novelty detection is a binary classification problem, which classifies new data into

normal and abnormal ones, e.g. degraded pixels against normal ones in a defect de-

tection task. Traditionally, solutions to binary classification involve learning profiles

or models for both normal and abnormal data. However, due to the random nature

of abnormal data and the shortage or sometime non-existence of samples, modelling

abnormal data is difficult or sometime impossible. Hence, the framework of novelty

detection is characterized by modelling only the normal data and then using the

learned profile or models to detect abnormal data as outliers.

In [62, 63], Markou and Singh presented a comprehensive survey of novelty de-

tection methods developed for a variety of applications, e.g. fault/defect detection,
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mass detection in mammogram, radar target detection, intrusion detection in CCTV

sequences, etc. From a view of methodology, novelty detection can be understood

as a data-oriented mission. This means that the techniques used to model the data

are driven by the characteristics of data. According to this, we categorize novelty

detection methods into two groups, targeting at two types of data individually.

• Data with known distribution: the methods towards this class of data

share the assumption that the probability distribution of data is known, e.g. nor-

mal distribution or Gaussian Mixture Model (GMM), etc. Such approaches

mainly focus on computing the parameters of the probability density function,

which usually requires knowledge and/or samples of the data. A simple exam-

ple is to threshold the distance between new data and the mean of known data

(following Gaussian distribution) so as to decide whether new data are nor-

mal. There are other more complex techniques, such as HMM and Hypothesis

testing.

• Data with unknown distribution: the algorithms designed for data with

an unknown distribution mostly rely on the sample data. The true underlying

distribution of data usually remains undiscovered in real applications. There-

fore, the sample data (the training data set) is of significance in estimating the

probability density function of testing data. Most efforts have been made on

selecting the optimal amount and formations of sample data and developing

corresponding techniques to process the data. Previous solutions include his-

togram analysis, nearest neighbour based density estimation, neural network

based approaches, etc.

We believe the temporal pixel sequence used in our archive film defect detection

task should be categorized into the class of data with known distribution. We are

modelling the sequential data based on the assumption that the observations (im-

age intensities) in the sequence are controlled by the hidden states (description of

scenarios in a higher level) while the state sequence is a Markov process. The prob-

ability distribution of observations for each state is determined during the training

stage by learning from the training dataset provided.

We first investigate the statistics computed within each temporal pixel sequence in

order to distinguish the degraded pixel sequences from normal ones. However, we

found that it was difficult to decide if the central pixel of a temporal pixel sequence
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is degraded by only looking at the statistics, e.g. mean or standard deviation of

all pixel’s observations against the central pixel’s observation. Figure 4.1 illustrates

the statistics computed for both degraded temporal pixel sequences and normal

ones using two types of observations, i.e. image intensities and absolute temporal

intensity differences. Totally 480 × 352 normal temporal pixel sequences and 539

degraded ones are used.

Therefore, we additionally examine the Markovian nature of our data and HMM

modelling is chosen here to learn the pixel transitions across a number of neighbour-

ing frames. HMM has been a useful tool in modelling sequential data, demonstrated

in many applications, e.g. speech recognition [49] and handwriting recognition [46].

The traditional route for HMM based classifications is to train HMMs for each class,

measure the probabilities of new data belonging to each class and categorize new

data into the group with the highest probability. However, due to the random na-

ture of defect we only train a single HMM for normal data in our defect detection

approach. This trained HMM is then applied in the testing stage to compute the

likelihood of a new observation sequence being normal.

Besides introducing the HAFID defect detector, the other aim of this chapter is to

investigate the possibility of modelling temporal transition of pixel intensities using

a single HMM. In order to testify the accuracy of our proposed HMM modelling,

we test the trained HMM using 1 million normal observation sequences randomly

extracted from 10 real image sequences (see Section 4.3).

4.2 HMM based Defect Detection

Figure 4.2 illustrates the outline of HAFID, which contains two stages, i.e. offline

training of the HMM model and online testing of unseen data. In the training

stage, the Baum-Welch method is adopted to estimate the parameter of our pro-

posed HMM based on the training data extracted from real defect-free films. In the

testing stage, the trained HMM is applied to compute the likelihood of a new ob-

servation sequence being normal. This involves creating subformations of the target

observation sequence in each case with one observation missing, which we refer to
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Figure 4.1: Statistics computed for both degraded temporal pixel se-
quences and normal ones are shown based on two types of observation,
i.e. image intensity (top) and absolute intensity difference (bottom).
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Figure 4.2: The diagram shows the system structure of our proposed defect
detection framework.

here as a leave-one-out process. Then, the quality of the centre observation of the

original observation sequence is examined based on how similar the likelihood of the

observation sequence without the centre pixel being normal is relative to the mean

of the likelihoods of all subformations.

The key problem in implementing this HMM based defect detection method is how

to train an accurate HMM given the sample training data. In the following sections,

we will discuss the principles of HMM modelling and the factors that are influential

to the accuracy of our characterized HMM.

4.2.1 Fundamentals of HMM

Let I tx represent the image intensity value at pixel location x at frame t. We extract

intensity values at corresponding position x across frames temporally as a time series,

i.e. {I t}x. We specify θ as the HMM trained for our proposed defect detector.

For HMM θ, we define O = {on, n = 1, . . . , N} as the set of observations where

N is equal to the size of the discrete observation space. Various image features

could be chosen as observations on, such as intensity values, local variance and

so on. In this application, we use temporal absolute intensity differences (where
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Figure 4.3: Graphical illustration of a general architecture of HMM mod-
elling.

N = 256) for grayscale image sequences and temporal absolute Value differences in

the HSV colour space for colour ones as observations. The reason why we adopt

these observations will be stated in Subsection 4.2.2. Then, let {o(k)|o(k) ∈ O, 1 ≤
k ≤ K}tx (abbreviated to {o(k)}tx) be the sequence of observations centred at pixel

x in frame t for length K. The observation sequences are extracted from time series

{I t}x within the range

[t− (
K − 1

2
), t+ (

K − 1

2
)] (4.1)

In a similar manner, let S = {sm,m = 1, . . . , Q} be the set of states and {s(k)|s(k) ∈
S, 1 ≤ k ≤ K}tx (abbreviated to {s(k)}tx) be the state sequence. The topological

structure of state transitions and the optimal value of Q will be discussed in Sub-

section 4.2.3. All observation sequences and state sequences share the same fixed

length K at both training and detection stages.

A general architecture of HMM θ is illustrated in Figure 4.3. The observations are

visible while they are controlled by the hidden states. The control is through HMM

parameters, which are λθ = (π,A,B):

• Start probability π = {π(m),m = 1, . . . , Q} which states the probability of

s(1) being sm.

π(m) = P (s(1) = sm), 1 ≤ i ≤ Q; (4.2)

For example, pi = (1, 0, 0) if the state sequence {s(k)}tx always starts with s1
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for a 3-state HMM.

• Transition probability A = {alm, l,m = 1, . . . , Q} which states the proba-

bility of transition from current state sl to next state sm.

alm = P (s(t+ 1) = sm|s(t) = sl);
∑
l

alm = 1 (4.3)

In our defect detection application, different states represent different intensity

levels. Therefore, state transitions usually indicate large intensity changes. We

will further discuss the state transition probability matrix of our proposed 5-

state HMM in Subsection 4.2.3.

• Emission probability B = {bm(on),m = 1, . . . , Q, n = 1, . . . , N} which

states the probability of the observation on given the current state sm.

bm(on) = P (o(t) = on|s(t) = sm);
∑
n

bm(on) = 1 (4.4)

For example, the size of our emission probability matrix will be 5× 256 if the

trained HMM has 5 states and taking absolute difference of image intensities

as observation.

When we model normal temporal pixel sequences using HMM, the three factors

above need to be specified to characterize the HMM for our defect detection ap-

plication, i.e. observations, topology and number of states, and HMM parameter

estimation. The initialization and estimation of these parameters will be discussed

in detail in Subsection 4.2.4.

4.2.2 Observations

As previously discussed, defect detection as a form of novelty detection is a data-

oriented task. Therefore, choosing the observation is the first step in characterizing

our HMM. Observations may vary in formation, such as discrete or continuous,

single or multiple dimensions and so on. However, once the formation is decided,

computed observations shall remain consistent across the entire data set. It means
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that computed observations will always fall in the set of defined discrete observations

or the range of continuous observation values.

As mentioned earlier, in HAFID detector we use temporal absolute intensity dif-

ferences (|I tx − I t−1
x |) as observations (on ∈ [0, 255]) for grayscale image sequences

and temporal absolute Value (V channel) differences in the HSV colour space for

colour ones. The reason why we use the temporal absolute intensity difference as

observation is twofold. First, as discussed above a pixel x would normally remain in

one state and start a transition only when its intensity value changes by a certain

amount, which will be highlighted by the temporal difference of intensities. Second,

similar pixel sequences in terms of pixel transition can be mapped into a similar

form of observation sequence even though they have different image intensities. For

example, two pixel sequences extracted from two static background regions with

different intensity levels shall share a similar observation sequence, having all its

elements equal to 0 if we compute the intensity differences. Consistent observations

will not only speed up the convergence of HMM parameters during training but also

increase the applicability of the trained HMM on unknown data.

For colour image sequences, the Value channel represents the brightness or lightness

of images in the HSV colour space, which functions in a similar manner as the

grayscale intensity. Therefore, we scale values [0, 1] from the V Channel to [0, 255]

before processing all colour films.

We also face the problem of determining the length of observation sequences. Adapt-

ing a short length of observation sequences may not be able to capture long-range

pixel transitions in normal data while a longer length will introduce more compli-

cated situations that leads to the failure of convergence in the training stage. In

our defect detection application, different length of observation sequences were ex-

amined to optimize the accuracy of HMM modelling and defect detection. Values

of K varying from 9 to 17 were examined for the optimal length of the observation

sequences and K = 13 was found to give the most optimal results across our testing

data set. A detailed comparison of different values of K is provided in Section 4.4.
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Figure 4.4: Graphical illustration of an Ergodic HMM.

4.2.3 Topological Structure of State Transitions

We begin with a brief introduction of topological structure of state transitions in

HMM and three sample structures are illustrated, i.e. Ergodic model, Left-Right

model and Circular model. Then, the topological structure of our proposed HMM

is designed based on the Left-Right model and Circular model by considering both

the temporal and circular characteristics of pixel sequences.

A general topological structure of HMM state transitions is shown in Figure 4.4,

which is referred to as the Ergodic model [76]. In this fully connected HMM, each

state can transit to all possible states including itself. Some transitions might be

forbidden or unnecessary in specified applications, which leads to a number of topo-

logical variations:

• Left-Right model is also known as Bakis model [49]. This model was origi-

nally developed for speech recognition [76, 77] and later handwriting recogni-

tion [46]. The derivation from the Ergodic model was driven by the temporal

characteristics of speech signal segments [76]. Figure 4.5 illustrates the visual

topological structure of a common Left-Right model with 5 states. Each state
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Figure 4.5: Graphical illustration of a Left-Right HMM.

sequence starts with s1 and ends with sK , going through all states from left

to right in order. The initial state probabilities are defined as

πm =

{
1 m = 1

0 m = 2, . . . , Q
(4.5)

Since state transitions from right to left are forbidden in this case, all values in

the bottom-left corner of the transition probability matrix are set permanently

to 0:

A =


a11 a12 a13 a14 a15

0 a22 a23 a24 a25

0 0 a33 a34 a35

0 0 0 a44 a45

0 0 0 0 a55

 . (4.6)

• Circular model is another important variation. Figure 4.6 visualizes a simple

structure of Circular HMM with 5 states. Unlike the Left-Right model, the

state sequence can start with any state but must end with the same state that

it started with. States still transit in order, which is similar to the Left-Right

model. The transition matrix for the circular structure is defined as

A =


a11 a12 0 0 0

0 a22 a23 0 0

0 0 a33 a34 0

0 0 0 a44 a45

a51 0 0 0 a55

 . (4.7)
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Figure 4.6: Graphical illustration of a circular HMM.

The circular topological structure was originally designed for planar shape

recognition [2, 16]. In these methods, the circular structure provided the

trained HMM with rotation invariance, which is important for regular shape

recognition applications.

Proposed Topological Structure

There are two special features of image pixel sequences that need to be highlighted

when we characterize our HMM. The temporal feature of image pixel sequences

serves as the first one. Normal image pixel sequences usually contain pixels with

gradual intensity transitions, which is similar to the temporal feature of speech

signals. On the other hand, pixel sequences with a defect, for an example, do not

have such feature. Hence, Left-Right model is ideal for modelling the temporal

feature in our application.

The other feature of pixel sequences can be reviewed from a higher level understand-

ing of temporal pixel sequences as elements of video sequences. Video sequences

usually contain complex scenarios, e.g. multiple moving foregrounds with static or

moving background, etc. Hence, pixel sequences from a single position can experi-
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Figure 4.7: Graphical illustration of state transitions of a 5-state HMM in
our application.

ence a series of state transitions, e.g. transition from background to foreground and

then back to background. The iterative feature of state transitions is akin to the

rotation invariance feature required in a regular shape recognition task, which can

be modelled using a Circular HMM.

Therefore, by considering both features of image pixel sequence, the desired topo-

logical structure of our HMM can be a combination of the Left-Right and Circular

models. Figure 4.7 graphically illustrates the topological structure of the proposed

HMM with 5 states. The transition matrix of our proposed HMM model is defined

as

A =


a11 a12 a13 0 0

0 a22 a23 a24 0

0 0 a33 a34 a35

a41 0 0 a44 a45

a51 a52 0 0 a55

 . (4.8)

Each state represents different level of intensities and at each time it is possible to

jump by 0, 1, or 2 steps to the next state. Transitions with large intensity changes

(jumping more than 2 steps) are forbidden in our proposed model, which usually

imply either defects or complex motions. The initial state probabilities are defined
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in the same manner as Left-Right model.

πm =

{
1 m = 1

0 m 6= 1
(4.9)

A state sequence shall always start with s1 but can end in any state. Unlike shape

recognition applications, state sequences for pixel transitions in our defect detection

application will not necessarily go through a complete loop. By such definition, the

proposed HMM is able to model more complex pixel transition situations, e.g. peri-

odic motions.

Number of States

Deciding the number of states is part of the topological design of HMM modelling.

The number of states is usually determined according to designers’ experience and

knowledge of the training data while practical experiments could also be conducted

to achieve the optimal number. Here, we present not only the logical representation

of states but also experiment with different number of states in practice.

Different numbers of states of transitions ranging from 2 to 7 were experimented

with and Q = 5 provided the best overall detection result. The value Q = 5 is

logically more persuasive given what it represents (see Figure 4.7). The 5 states

correspond to the scenes at a pixel position x, i.e. background, intermediate stage

between background and foreground, foreground, intermediate stage between fore-

ground and background, and background again (possibly different to that initially

at x). Table 4.1 gives a sample observation sequence with K = 13 and its associated

state sequence. In this example, the original intensity sequence starts with a static

intensity level and then transits to another intensity level while the corresponding

state sequence goes through a stable state (s3), an intermediate state (s4) and finally

another stable state (s5).

The representation of states can also be illustrated by looking at the transition
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Table 4.1: Sample observation sequence and its associated state sequence

Original intensity sequence:
[46, 46, 46, 46, 47, 47, 76, 124, 125, 125, 125, 125, 125]

Observation sequence:
[0, 0, 0, 0, 1, 1, 29, 48, 1, 0, 0, 0, 0]

State sequence:
[s1, s3, s3, s3, s3, s3, s4, s4, s5, s5, s5, s5, s5]

probability matrix of the trained 5-state HMM as follows:

A =


0.1314 0.4609 0.4077 0 0

0 0.8991 0.0001 0.1008 0

0 0 0.9629 0.0097 0.0274

0.1614 0 0 0.8385 0.0001

0.0137 0.0001 0 0 0.9862

 (4.10)

where the transition probabilities are coherent with the state representations given

above. States representing foreground and background pixels are intended to remain

unchanged (with self-transition), e.g. states s3 (with a probability of 0.9629) and s5

(with a probability of 0.9862).

s1 is a special case considering that the state sequences always start with s1. The

initial state probabilities can also be defined as randomly or uniformly distributed.

However, we prefer that the state sequences start with s1 all the time with the

assumption that pixel sequences always begin with certain intensity level and then

either start transiting in an intermediate state or jump to a more stable state. As

shown in Equation (4.10), a pixel observation at state s1 has similar probabilities

of transiting to either a intermediate state (s2) or a more stable state (s3). This

preference of transitions from s1 also well reflects that the components of training

data include both static and dynamic background sequences.

If we uniformly initialized s1 (e.g. πm = 0.2, m = 1, . . . , 5 in the case of a 5-state

HMM), the trained transition probabilities of states (shown in Equation (4.11))

would be averaged out (with all 5 states having similar probabilities for self-transition).

In comparison, the transition matrix for our proposed HMM (shown in Equation
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(4.10)) is more logically plausible and meaningful.

A =


0.5166 0.4812 0.0022 0 0

0 0.5081 0.2291 0.2628 0

0 0 0.6626 0.0545 0.2829

0.3063 0 0 0.5144 0.1793

0.2053 0.1132 0 0 0.6815

 (4.11)

4.2.4 Training HMM for Normal Pixel Sequences

We train a single HMM θ, for normal image pixel sequences, which will then be ap-

plied in the testing stage to compute the likelihood of a new sequence being normal.

The training procedure involves estimating HMM parameters λθ = (π,A,B) and

selecting the training data.

HMM parameter estimation is an iterative procedure to refine the parameter λθ =

(π,A,B) based on an initial estimation by maximizing

P ({o(k)}tx|λθ) =

Q∑
m=1

αK(m) (4.12)

which represents the probability of an observation sequence {o(k)}tx being normal as

defined by the HMM parameters λθ. αK(m) is the forward variable in the Forward-

Backward algorithm [76]:

αK(m) = P ({o(g), g = 1, . . . , K}tx, s(K) = sm|λθ) (4.13)

The value of αK(m) can be computed in a recursive manner,

αk+1(m) =

[
Q∑
l=1

αk(l)alm

]
bm(ok+1) (4.14)

where k = 1, . . . , K − 1, m = 1, . . . , Q and α1(m) = πmbm(o1).

Initial estimations of HMM parameters usually take previous experience and knowl-

edge of the data into account considering that an accurate initial estimation would
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speed up the convergence at the training stage. However, experiments [76] have

proved that randomly or uniformly initialized parameters will not necessarily re-

quire longer time to achieve the convergence. Therefore, in our defect detection

approach, the initial estimation of transition and emission probabilities is first set

using a random distribution in the training stage.

The Baum-Welch method [5] is a common HMM parameter estimator, which is a

special form of generalized EM (Expectation-Maximisation) methods. Other meth-

ods are also available, e.g. traditional gradient based optimization methods. How-

ever, it is the training data that plays a more important role in the HMM training

procedure. The diversity and quantity of data are two basic requirements when we

prepare the training data. The convergence of HMM parameters is most likely to be

biased if all the data are from a single image sequence and/or only a small amount

of data is used for training.

In our defect detection application, the training data set was extracted at random

positions from 10 different types of archive film (5 grayscale and 5 colour image

sequences), which is part of our archive film restoration dataset (as introduced in

Section 3.3). In total, 207,561 normal observation sequences were used for training

the HMM θ. The estimation of the parameters for our 5-state HMM is optimized

by maximizing Equation (4.12) through an iterative procedure until convergence,

using Baum-Welch algorithm [76].

4.2.5 Leave-one-out Test Process

The training stage results in an HMM which models the normality of transitions in

temporal pixel sequences. Traditionally, this trained HMM would be only adopted

to classify whether the testing sequence matches the trained model or not. However,

the spatial and temporal addresses of pixels that result in the degradation of testing

sequences are still unknown. Here, we design a leave-one-out process to look at both

the testing observation sequence and its subformations to determine if a specified

(central) image pixel in the testing observation sequence is degraded.

At the test stage, we first apply the trained HMM to compute the likelihood of an
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Figure 4.8: Leave-one-out processing of a sample observation sequence
with K = 7.

observation sequence centred at position x being normal, i.e. P ({o(k)}tx|λθ). We

then measure how the likelihood of this observation sequence (arising from normal

data) varies if each single observation within it was missing, one at a time in a leave-

one-out fashion. This process enables us to observe how single observation affects

the likelihood of the entire observation sequence being normal, considering that our

aim is to mark the locations of degraded pixels to form a defect map. In this leave-

one-out process, we will obtain a set of likelihoods for each observation sequence.

The pixel at the centre of the observation sequence can then be marked as a defect,

if the likelihood of the observation sequence without the centre pixel is larger, by

a certain degree, than the average of all leave-one-out likelihoods computed on the

observation sequence. In such manner, we are able to investigate every single pixel

in the target pixel sequence and generate the corresponding defect map.

Formally, the leave-one-out process is implemented as follows and a example of how

this process works will be presented in Subsection 4.2.6 for a detailed illustration.

Figure 4.8 shows the leave-one-out processing of a sample observation sequence with

K = 7.

As in the training stage, we extract a test observation sequence {o(k)}tx centred
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at candidate pixel x in frame t with observation o(c) when centred on each image

pixel location. For every element in {o(k)}tx, we define a new observation sequence

indexed by h that does not include the element o(k) itself, i.e. {o(h), h 6= k)}tx. This

will result in K observation sequences of length K − 1. We can then obtain, for

each of these K observation sequences, the likelihood of the observation sequence

{o(h), h 6= k}tx arising from normal data.

In traditional HMM based classifications, the likelihood of a testing observation

sequence matching the trained HMM is computed in the same manner as the training

stage using Equation (4.12). However, it is no longer feasible here to compute

the likelihood using only Forward part of the Forward-Backward algorithm since

observations in the original observation sequence are missing one at a time. Here, we

adopt both parts of the Forward-Backward procedure to help compute the likelihood

of each subformation of the original observation sequence being normal,

V t
x(k) = P ({o(h), h 6= k)}tx|λθ)

=
∑

m P ({o(h), h 6= k}tx, s(k − 1) = sm|λθ)
=
∑

m αk−1(m)βk−1(m)

(4.15)

where k = 1, . . . , K. αk−1(m) and βk−1(m) are the forward and backward variables

defined in the Forward-Backward algorithm [77], which individually represent the

likelihoods of two parts of the subformation {o(h), h 6= k)}tx (i.e. {o(g), g = 1, . . . , k−
1}tx and {o(g), g = k + 1, . . . , K}tx) being normal given s(k − 1) = sm.

αk−1(m) = P ({o(g), g = 1, . . . , k − 1}tx, s(y) = sm|λθ)
βk−1(m) = P ({o(g), g = k + 1, . . . , K}tx|s(y) = sm, λθ)

(4.16)

where αk−1(m) and βk−1(m) are specified when k = 1 and k = K, i.e. when the first

or last observation is missing from the original observation sequence.

α0(m) = P ({o(g), g = 2}tx, s(2) = sm|λθ)
β0(m) = P ({o(g), g = 3, . . . , K}tx|s(2) = sm, λθ)

αK−1(m) = P ({o(g), g = 1, . . . , K − 2}tx, s(K − 2) = sm|λθ)
βK−1(m) = P ({o(g), g = K − 1}tx|s(K − 2) = sm, λθ)

(4.17)



4.2 HMM based Defect Detection 69

In a similar manner to αk−1(m), βk−1(m) is computed through a backward recursion,

βk−1(m) =

Q∑
l=1

amlbl(ok)βk(l) (4.18)

where k = K, . . . , 2, m = 1, . . . , Q and βK(m) = 1.

Although we have considered the diversity and quantity of data when we trained

the HMM, exceptional situations like intensity level changes caused by motion can

result in a high value of V t
x(k). Enormous false alarms will be produced if we

simply threshold the V t
x(k) of pixel x. Therefore, a mean of all V t

x(k) values can be

computed to average out the effect of such situations.

utx =
V t
x(c)

1
K

∑K
k=1 V

t
x(k)

(4.19)

utx will reach a high value when x is a truly degraded pixel position. For normal

pixel positions, utx values will be relatively smaller (see an example in the following

Subsection 4.2.6).

After computing utx for every pixel x in frame t, we obtain the likelihood map

U t = {utx} for all x in frame t. Finally, any pixel x in frame t is marked as a defect

in the binary defect map Dt = {dtx, dtx ∈ {0, 1}} if utx > τθ where τθ is a threshold

(see Section 4.4 for discussion of how this threshold is determined).

4.2.6 An Example Case

Here, we present a detailed example of how the likelihood V t
x(k) is computed in our

proposed leave-one-out process for a normal observation sequence that involves mo-

tions. This example also illustrates how false detections caused by complex motion

events are prevented by comparing the likelihood of the subformation without the

centre pixel with the mean of all likelihoods (i.e. Equation (4.19)).

First, we give a sample normal pixel sequence with a length of 13 and its intensities
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as follows:

25, 25, 24, 48, 79, 106, 127, 152, 179, 179, 178, 178, 178 (4.20)

This pixel sequence is extracted from a pixel position which experiences a transition

from background to foreground. Its associated observation (absolute difference of

intensities) sequence is:

0, 0, 1, 24, 31, 27, 21, 25, 27, 0, 1, 0, 0 (4.21)

We first compute the likelihood V t
x(1) of the subformation {o(g), g 6= 1)}tx being

normal (with the first observation 0 missing), which is a special case using α0(m)

and β0(m) defined in Equation (4.17),

V t
x(1) =P ({o(g), g 6= 1)}tx|λθ)

=
∑
m

P (o(2), s(2) = sm|λθ)P ({o(g), g = 3, . . . , 13}|s(2) = sm, λθ)

=
∑
m

α0(m)β0(m)

=
∑
m

πmbm(o2)

Q∑
l=1

am,lbl(o3)β3(l)

(4.22)

where β3(m) can be computed by a recursive process using Equation (4.18).

Next, let us look at the subformation {o(g), g 6= 7)}tx with the centre pixel missing.

The likelihood V t
x(7) computed using Equation (4.16),

V t
x(7) =P ({o(g), g 6= 7)}tx|λθ)

=
∑
m

P ({o(g), g = 1, . . . , 6}, s(6) = sm|λθ)P ({o(g), g = 8, . . . , 13}|s(6) = sm, λθ)

=
∑
m

α6(m)β6(m)

=
∑
m

[
Q∑
l=1

α5(l)alm

]
bm(o6)

Q∑
l=1

am,lbl(o8)β8(l)

(4.23)
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where α5(l) and β8(l) are computed in a recursive manner using Equation (4.14)

and (4.18) respectively. In a similar manner, we can obtain the likelihood for every

observation in the sequence,

{4, 4, 6, 110, 130, 115, 97, 110, 115, 4, 15, 6, 6} × 10−5 (4.24)

The mean of all likelihoods is equal to 58× 10−5. Although the likelihood V t
x(c) =

97× 10−5 is quite large (in comparison to V t
x(1) = 4× 10−5), this high value can be

averaged out by comparing it with the mean of all likelihoods so that false detections

caused by motions can be prevented.

4.2.7 Notes on Pre-processing

During the detailed implementation, we design a couple of processes before the main

algorithm to increase the efficiency and accuracy of defect detection. The overall

effect of such pre-processing is similar to BBC’s hardware-based dirt and sparkle

detector [93].

Before applying the leave-one-out process, we exclude those pixels with the absolute

temporal forward and backward intensity differences below a certain threshold since

only a large difference value implies a significant pixel transition or a defect. This

will help dramatically increase the processing speed.

In addition, we also require the sign of forward and backward intensity differences

to be the same. This allows us to leave pixels with opposing signs that imply mainly

false alarms caused by continuous motions out of the main algorithm.

4.3 Testing the Trained HMM and Discussion

As stated at the very beginning of this chapter, the primary task of the proposed

method is to detect the maximum number of true defects and false alarms are

affordable expenses at this stage. Hence, we modelled the normal sequences using
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Table 4.2: Accuracy of HMM modelling computed on 10 normal sequences

Sequence Name # of sequence Tested as normal Accuracy (%)

Mobile Calender

100000

97067 97.1

Container 99971 99.9

Foreman 99202 99.2

News 99703 99.7

Paris 99677 99.7

Stockholm 97801 97.8

Flower 97717 97.7

Shields 97154 97.2

Park 96677 96.7

Bus 95595 95.6

Average 100000 98066 98.1

a single HMM, which is rather coarse but probably accurate enough for our defect

detection task.

Here, we demonstrate the accuracy and limitation of HMM modelling on general

normal sequences by testing the trained HMM with normal observation sequences

randomly extracted from 10 unseen defect-free film sequences, namely Mobile Cal-

endar, Container, Foreman, News, Paris, Stockholm, Flower, Shields, Park and Bus.

These sequences are part of the archive film testing dataset (see Section 3.3), which

will also be adopted in Chapter 6 to generate artificially degraded sequences.

We randomly select 100,000 normal observation sequences from each film sequence.

Hence, 1 million sequences in total go through the leave-one-out testing process.

The number of observation sequences tested without degraded pixels are counted as

correct detections for each film sequence. Table 4.2 presents the computed statistics,

giving the number of observation sequences tested, number of sequences correctly

tested as normal, and the accuracy of HMM modelling.

As shown in Table 4.2, the trained HMM is capable of accurately modelling pixel se-

quences from all 10 films with correct detection rates of 95.6% to 99.9%. On average,

only 1.9% of normal observation sequences were detected as false alarms. We believe

it is reasonable to model temporal pixel transitions using a single HMM though the

number of false detections increases provided the testing sequences contain complex
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motion events, e.g. the Bus sequence (with the lowest accuracy) is composed of

multiple objects and camera motions, i.e. camera tracking and zooming out on a

fast moving bus with many occlusions and disocclusions of other vehicles.

These false alarms reflect the limitation of the proposed HMM modelling. Although

the optimal length of observation sequences is computed through experiments, the

decision is not made in the best consideration of modelling all possible motion events

but the convergence of HMM parameters and the overall performance of defect

detection. Some complex motion events will still not be recognized by the proposed

HMM due to the length limitation while longer lengths of observation sequences will

cause the reduction of correct detection ratio as we experimentally verified in Section

4.4, Although the number of such events is small as shown in Table 4.2. Therefore, we

prefer to handle this small number of exceptions with specific elimination solutions

according to their characteristics, which will be discussed in Chapter 5.

4.4 Results and Comparative Study

To demonstrate the accuracy of the proposed defect detection algorithm, we compare

our method against state-of-the-art methods using both quantitative and qualitative

results. The specificity and sensitivity (as defined in Section 3.4) of the proposed

method HAFID is measured with reference to handlabelled groundtruth produced

from the real degraded image sequences in our archive film restoration database.

Image samples from real degraded sequences are also shown to present a subjective

comparison amongst all the methods.

4.4.1 Quantitative Results

The ROC graph in Figure 4.9 shows a comparison of HAFID against those of four

commonly used and/or state-of-the-art techniques: SDIp [54], Morris’s MRF based

defect detector [67] (referred to as Morris95), a Bayesian defect detection frame-

work [52] (referred to as Kokaram04) and Ren and Vlachos’s recent work [84] (re-

ferred to as RV07). These methods and the manner by which they are applied for
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Figure 4.9: ROC graph shows a comparison of HAFID against four well
known or current state-of-the-art techniques [52, 54, 67, 84], averaged across
our entire handlabelled test data set.

fair comparison here are now outlined as follows:

SDIp: The Spike Detection Index (SDIp) [54] was a typical filter based defect

detector, which improved Storey’s method [93]. A binary defect map was generated

by examining if the motion compensated temporal forward and backward intensity

differences were above a certain threshold. In addition, it also required the forward

and backward intensity differences to have the same sign to further reduce false

detections. This method was strongly sensitive to motion estimation errors. The

threshold τ is the only variable that needs to be adjusted. In our experiments, τ is

set to values in {2, 5, 8, 11, 14, 17, 20} (abbreviated to [2 : 3 : 20]).

Morris95 : The work of Morris [67] is a good example of model-based defect detec-

tor in which the author adopted an Ising model to represent the prior of the defect

map. Gibbs sampling with annealing was then applied to compute the MAP con-

figuration of the defect map given the image intensities from two adjacent motion
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compensated frames. Sites in the final defect map were marked if discontinuities

were shown on both adjacent frames. As described in Section 2.2, there are three

parameters in this method, i.e. α, β1 and β2. α controls the strength of temporal

intensity discontinuity while β1 and β2 enforce the smoothness of degraded regions.

There parameters are set to the values recommended in [67]. Only α varied in our

experiments in the range [0.125 : 0.125 : 0.75].

Kakaram04 : Kokaram [52] developed a Bayesian framework to model noise and

scratches while performing motion correction. Three binary variables were used for

each pixel to mark if the pixel is degraded, forward occluded or backward occluded.

These variables, together with restored image values and motion vectors, were de-

fined as unknowns. Given the pixel values of degraded frames and initial motion

estimations, the method applied the ICM [9] algorithm to solve these unknowns via

an iterative two-step procedure. In our experiments, parameter ∧b and ∧c varied so

as to control the local smoothness of binary defect maps and restore image inten-

sities. ∧b was set to values in {2n, n = [0 : 1 : 5]} while ∧c was set to a constant,

which is equal to 0.1.

RV07 : Ren and Vlachos [83, 84] created a confidence function of intensity differ-

ences to measure the possibility of a pixel being degraded. The confidence function

was computed by comparing candidate pixel’s intensity against the intensity his-

togram for the entire frame. The candidate pixel would be categorized as degraded

if its confidence value is below the threshold Tm. Image segmentation and local

correlation information was also included to help eliminate false alarms. In our

experiments, Tm varied in a range from [180 : 10 : 250].

HAFID : For our HMM based detector HAFID, the likelihood utx of pixel x being

degraded was thresholded by τθ, which varied in [1 : 1 : 7].

These methods were all tuned for optimal performance. In the ROC graph in Figure

4.9, the correct detection ratio (sensitivity) is plotted against the false alarm ratio (1-

specificity) computed from the average across 50 test sequences. These quantitative

measures were described in detail in Section 3.4. The false alarm ratio was computed

as a logarithm which is visually more sensible for the representation of small numbers

(i.e. in a range of 10−5 to 10−1). In general, the closer the curve is to the top-left
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corner, the better the method performs in terms of both higher correct detection

rates and lower false alarm rates.

As shown in Figure 4.9, HAFID comfortably outperforms all previous methods with

both higher correct detection rates and much less false detections. Kokaram04

performed relatively better than the other three methods, considering that a motion

correction process was integrated to prevent false detections caused by motions.

In Figure 4.9, we also examine the accuracy of our proposed method by applying

the training and the testing on the same image sequence, i.e. American Girl. The

image sequence is composed of 50 normal frames (for training) and another 250

degraded frames (for detection). As shown in Figure 4.9, HAFID SELF’s accuracy

is no better than HAFID, considering that training data extracted from the first

50 frames may not well represent the pixel transitions in the succeeding frames. It

also suggests that training data extracted from a variety of image sequences provide

a better modelling of normal pixel transitions on the temporal axis and superior

detection accuracies on unseen data.

The results for HAFID with different sequence length K are shown in Figure 4.10.

We experiment with difference K in a range from 9 to 17. As the length of the obser-

vation sequences increases, HAFID first achieves better accuracy and then falls back.

The optimal results across our data set was reached when K = 13. As discussed in

Subsection 4.2.1, it is because investigating a short length of observation sequences

could cause false alarms while a longer length would introduce more complicated

situations that leaded to a under-detection (low correct detection rate).

4.4.2 Qualitative Results

Figure 4.11 and Table 4.3 show a comparative visual example of defect detection

for a sample degraded frame from sequence Seaman. Seaman is composed of scenes

with a slow wave-like global motion and small movements of the canvas in the

background. SDIp detected 92.1% of the defects but also produced 717 false alarm

pixels (out of a total frame size of 136704 pixels). Morris95 and RV07 were able to

achieve correct detection rates of 93.8% and 93.3% but still resulted in 674 and 725
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Figure 4.10: ROC graph shows a comparison of HAFID with different
window sizes K, averaged across our entire handlabelled test data set.

false detections respectively. Those falsely detected pixels are mainly distributed

around the seaman and the canvas, which indicates that they can be attributed

to the motion of those objects. Kokaram04 produced far fewer false alarms (253)

but only detected 86.7% of the true defects. The HAFID method was better at

both detecting more true positives, i.e. 94.6%, and fewer false alarm pixels at 97

only. It shows our proposed HAFID detector is immune to some complex motion

events (i.e. periodic movements in this case), which is a direct benefit derived from

investigating a longer range of data at both training and testing stage.

In Figure 4.12 and Table 4.4, another visual example with a sample degraded frame

from sequence Cinderella is shown. Cinderella had a static background and slow

motions of the girl. SDIp, Morris95 and RV07 all detected 88.4% of the defects

but also produced 2543, 889 and 5297 false alarm pixels respectively (out of a total

frame size of 135424 pixels). These false alarms concentrated on the head and hands

of the girl, which are the parts that exhibit motions. Kokaram04 and HAFID were
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Figure 4.11: Seaman - Top: Degraded frame and its groundtruth mask;
Middle: detection results from SDIp, Morris95, Kokaram04; Bottom: results
from RV07, HAFID. Green: correctly detected defect; Red: false alarms;
Blue: defects not detected.

Table 4.3: Seaman - Statistical results of defect detection

Method SDIp Morris95 Kokaram04 RV07 HAFID

Detected true defects 201 204 189 203 206

Defects not detected 17 14 29 15 12

False detection 717 674 253 725 97

Correct detection(%) 92.1 93.8 86.7 93.3 94.6

False alarm(%) 0.5 0.5 0.2 0.5 0.01
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able to decrease the number of false detections down to 401 and 381 respectively.

However, compared to Kokaram04, the HAFID method achieved a much higher

correct detection rate, i.e. a rise from 80.8% to 97.1%.

Figure 4.13 and Table 4.5 show a comparative example of preventing false detections

from sequence Science. Science contains ego motion, i.e. the camera tilts down at

an approximate speed of 5 pixels per frame. In this case, all methods achieved a

high detection rate (above 90%). However, Morris95 and RV07 resulted in 3514 and

3290 false alarm pixels respectively (out of a total frame size of 54970 pixels). As

SDIp includes motion compensation, it was able to produce fewer false detections at

1400 in this case. Kokaram04 produced far less false detections at 411 from the help

of its integrated motion restoration algorithm. Finally, our HAFID method resulted

in the least number of false alarm pixels at 281 only.

These results show that even though HAFID’s emphasis is on modelling normal

pixels at the expense of false alarms, our normal observation modelling is rather

very accurate and the rate of false alarms is significantly lower than the current

state-of-the-art techniques.

Computational Issues

Table 4.6 shows a comparison of the computational speed of all the methods in

terms of average time per frame1 in seconds. All implementations were coded and

computed in MATLAB on a laptop with Intel Core Duo 2.4 GHz processors and

2GB RAM. The proposed algorithm is somewhat slower than SDIp, considering a

longer temporal range is investigated to help determine defects, but it is a lot more

accurate and also outperforms all the other methods.

It is worth to note that the HAFID defect detector only uses the temporal informa-

tion so that each pixel site could be processed independently. Therefore, a promising

acceleration to the current HAFID detector is to implement it using parallel com-

puting techniques with multiple processors. It will result in a dramatically reduction

1The average frame size in our data is 480× 356 pixels
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Figure 4.12: Cinderella - Top: Degraded frame and its groundtruth
mask; Middle: detection results from SDIp, Morris95, Kokaram04; Bottom:
results from RV07, HAFID. Green: correctly detected defect; Red: false
alarms; Blue: defects not detected.

Table 4.4: Cinderella - Statistical results of defect detection

Method SDIp Morris95 Kokaram04 RV07 HAFID

Detected true defects 92 92 84 92 101

Defects not detected 12 12 20 12 3

False detection 2543 889 401 5297 381

Correct detection(%) 88.4 88.4 80.8 88.4 97.1

False alarm(%) 1.9 0.6 0.3 3.9 0.3
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Figure 4.13: Science - Top: Degraded frame and its groundtruth mask;
Middle: detection results from SDIp, Morris95, Kokaram04; Bottom: results
from RV07, HAFID. Green: correctly detected defect; Red: false alarms;
Blue: defects not detected.

Table 4.5: Science - Statistical results of defect detection

Method SDIp Morris95 Kokaram04 RV07 HAFID

Detected true defects 190 194 185 191 205

Defects not detected 15 11 20 14 0

False detection 1400 3514 411 3290 281

Correct detection(%) 92.6 94.6 90.2 93.2 100

False alarm(%) 2.5 6.3 0.7 6.0 0.5
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Table 4.6: Averaged computational speed for all methods

Method SDIp Morris95 RV07 Kokaram04 HAFID K=13

seconds 3 288 62 174 11

of computational cost.

4.5 Conclusions

In this chapter, we have presented a novel defect detection approach based on HMM

modelling. We first discussed the fundamental factors which characterize HMMs,

i.e. states, observations and HMM parameters. Then, an HMM was designed and

trained for normal pixel sequences and used to compute the likelihood of a testing

observation sequence and its subformations being normal in a leave-one-out process.

The resulting defect maps presented the time and location information of defects.

In addition, the accuracy of HMM modelling was tested using 1 million randomly

selected normal observation sequences. The proposed HAFID was able to detect

true defects with a high accuracy while keeping the false alarm rates low. It was

achieved by investigating the pixel intensity transitions on the temporal axis in a

relatively longer range. A few false detections were also produced due to complex

motions that exist in archive film, which will be handled with false alarm elimination

methods in the following Chapter.

The proposed HAFID detector fails to respond to a defective pixel if all pixels across

a single observation sequence were defective pixels, although this rarely happens

except for continuous vertical line scratches. However, overall, the proposed HAFID

performs much more accurately than the current state-of-the-art and is considerably

faster too (except for SDIp which is not so accurate).

The defect detection approach we proposed here is indeed a form of novelty detection.

We believe it is straightforward to adapt it for other novelty detection applications

in sequential data analysis. For instance, it can be applied to detect vertical line

scratches by using spatial pixel sequences parallel to the horizon instead of temporal

ones. For a more generic application, our method can be applied to detect tool
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breakage in an end milling operation by observing the cutting force.
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Chapter 5
HAFID-STC: False Detection Elimination

In Chapter 4, we presented HAFID, a novel defect detection method based on HMM

modelling. The resulting defect map from HAFID encapsulates the true defects very

well, but suffers from a few false alarms. Large number of false positives will increase

not only the computational cost of the follow-up restoration process but also the

possibility of introducing new artifacts at those normal pixel locations.

In this chapter we try to refine our defect detection results based on the defect

maps produced by HAFID. This is achieved by introducing a two-stage false alarm

elimination process imposing spatial and temporal constraints respectively. Figure

5.1 illustrates the two-stage structure of our proposed elimination approach. First,

the defect map from HAFID is modelled with a MRF to enforce spatial continuity

constraints, and then the pyramidal Lucas-Kanade feature tracker [13] is applied

to impose temporal correlation constraints. This extended method is referred to as

HAFID-STC (HMM based Archive FIlm Defect detection with Spatial and Temporal

Constraints). In a similar manner to HAFID, a comparison of HAFID-STC against

four commonly used and/or state-of-the-art techniques [52, 54, 67, 84] is outlined to

demonstrate the accuracy of our false alarm elimination method.

Previous archive film defect detection methods share a common dilemma - that is

how to increase correct detection rates while reducing the number of false alarms.

One popular strategy is to integrate the false alarm elimination scheme into the

85
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Figure 5.1: The two-stage structure of our proposed false alarm elimination
algorithm.

defect detection algorithm by handling false alarms due to one particular cause,

e.g. blurring in [79, 80], occlusions in [51], intermittent motions in [22], etc. Never-

theless, our strategy is to start with an over-detection to mark the maximum number

of true defects and then handle the false detections specifically. These false alarms

may belong to multiple categories with different causes but they can be handled

together by looking at their shared characteristics. Here, we focus on two groups of

false alarms with their own unique characteristics, which we observed in the detec-

tion results from HAFID. Accordingly, a two-stage false alarm elimination approach

is developed to handle them respectively.

In Section 5.1, we first give a detailed introduction of false alarms by looking at both

their causes and characteristics. Based on two distinctive characteristics, we develop

the two-stage false alarm elimination process presented in Section 5.2. Finally, the

elimination results and experiments are demonstrated in Section 5.3.

5.1 Category of False Alarms

In order to distinguish false alarms from true defects, previous works have focused on

investigating the causes of false alarms and then developing corresponding solutions

for elimination. In [79, 80], Rares et al. reported that the majority of false alarms are

caused by irregular and complex motions in image sequences, which were referred

to as pathological motion. In addition to pathological motion events, there are

other causes, e.g. shot transitions, blurring, etc. It is rather difficult and sometime

repetitive to develop an individual solution for each cause of false alarms. Therefore,
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our strategy here is to investigate the characteristics of false alarms, considering

false alarms caused in different situations can share a similar characteristics. In the

following section, we will briefly discuss a few common causes of false alarms and

demonstrate that all these false alarms share two distinctive characteristics.

5.1.1 Causes of False Alarms

As mentioned before, irregular and complex motion events are the major cause of

false alarms. We further categorize them into inter-motion, intra-motion and other

complex motions based on the assumption that motion scenes in image sequences

can always be separated into foreground object(s) and the background. In addition,

two other causes are also discussed, i.e. blurring and shot transition. Though they

will not complete the list of all possible causes of false alarms, we demonstrate here

that false alarms share some common characteristics regardless of the causes.

We illustrate the causes of false alarms along with image examples for each cat-

egory, including two consecutive sample frames, the resulting defect maps from

HAFID overlaid on the original frames and the elimination results from our pro-

posed method. The detected true defects are marked in green, defects not detected

in blue, and the false alarms in red.

Inter-motion: The inter-motion of foreground object(s) and background is a com-

mon cause of false alarms, e.g. the background is often occluded by the moving

foreground objects. It can be seen as an interaction event amongst two or multiple

objects. The reappearance of occluded objects is also categorized into this group.

An occlusion or reappearance only causes the discontinuity of image intensities in

one temporal direction, either forward or backward. Therefore, we can explore tem-

porally in one of these directions for the relationship between false alarms and their

temporal neighbours. In Figure 5.2, we show two consecutive sample frames from

Man on the Land with a truck shifting into the scene from the left.

Intra-motion: In terms of image intensity changes, false alarms caused by the

transformation of a nonrigid object generate similar discontinuities as true defects.

Transformations of objects, such as zooming and shape transformation can cause
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Figure 5.2: Man on the Land (Inter-motion) - Top: original images
(frame n and n+ 1); Middle: HAFID results before false alarm elimination;
Bottom: after false alarm elimination by our proposed method.

sudden appearance and disappearance of novel pixel intensities. However, these

novel pixel intensities are usually connected with their spatial or temporal neigh-

bours, such as sharing similar texture and colour. In Figure 5.3, we illustrate false

detections caused by the transformation of a nonrigid object (flag in this case) on

sample frames from New York World Expo.

Other complex motions: It is still a difficult task to estimate complex and irreg-

ular motions in film sequences, e.g. fast motions, periodic motions and rotations of
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Figure 5.3: New York World Expo (Intra-motion) - Top: original
images (frame n and n + 1); Middle: HAFID results before false alarm
elimination; Bottom: after false alarm elimination by our proposed method.

objects. Erroneous motion estimation will further cause false detection of defects for

those motion-dependent defect detectors, e.g. [54, 67, 68]. However, the continuity

of intensities can still be tracked by looking at either spatial or temporal neigh-

bouring pixel’s intensities. Figure 5.4 gives an example of false detections caused

by object rotation (as the camera inside the image was panning towards left) from

Story of Television. It is worth noticing that false alarms in this case are mainly

located around the camera with strong correlation with their spatial neighbours.

This characteristic helps us eliminate these false alarms.

Shot transition: There are varieties of shot cut and transition means used in film
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Figure 5.4: Story of Television (Complex motion) - Top: original
images (frame n and n + 1); Middle: HAFID results before false alarm
elimination; Bottom: after false alarm elimination by our proposed method.

post production, such as fade-in, fade-out, dissolve, wipe, push and so on. These

transition methods will produce similar false alarms as those caused by inter-motion

and intra-motion of objects or a combination of both. For example, Figure 5.5 shows

two sample frames before and after a shot cut. The resulting defect maps from our

HAFID detector show a large number of false detections. Our false alarm elimination

method is more likely to lose tracking of these falsely detected regions since their

corresponding pixels on the temporal axis can only be found in one direction, either

forward or backward.



5.1 Category of False Alarms 91

Figure 5.5: American Girl (Shot transition) - Top: original images
(frame n and n+ 1); Middle: HAFID results before false alarm elimination;
Bottom: after false alarm elimination by our proposed method.

However, this group of false alarms could be easily avoided by introducing a pre-

processing step into our automated restoration framework. A shot transition de-

tection procedure, e.g. [74], could be performed before the defect detection so as to

divide a long video sequence into a number of separate shots. Defect detection could

then be conducted on each shot to avoid false alarms caused by shot transitions.

Blurring: As discussed in Section 3.2, two types of blurring exist in archive film.

What we discuss here is the second kind which is added on purpose to increase

the visual coherence, i.e. the smoothness of motions, to provide the human visual
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Figure 5.6: Is This Love (Blurring) - Top: original images (frame n
and n+ 1); Middle: HAFID results before false alarm elimination; Bottom:
after false alarm elimination by our proposed method.

system with a more natural perception of object motions [107] in high frame rates.

The blurring effect could also be introduced in the interpolated frames during the

processing of frame rate conversion for the same consideration. Figure 5.6 presents

an example with sample frames extracted from Is This Love. The girl’s arm is

blurred and falsely detected as defects. Since the pixel intensities caused by blurring

are unique compared to their spatial and temporal neighbours, it is difficult to
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separate them from the true defects. Therefore, we will handle these false alarms in

the defect removal stage to maximally preserve the original intensities of pixels at

these locations.

5.2 Two-stage False Alarm Elimination

The HMM model performs extremely well in locating true defects. However, it is

rather sensitive to scene motion leading to false positives. As shown in Subsec-

tion 4.2.5, we have already integrated some anti-false alarm mechanisms into our

proposed HAFID detector, e.g. computing the mean of all V t
x(k) values (i.e. the

likelihood of all observation sequences) to average out the effect of intensity level

transitions caused by motion. However, if the length of such transitions compared

to the entire state sequence is short, as true defects are, then false alarms arise

in or around moving regions caused by object and/or ego motion. Therefore, it is

necessary to introduce an extra false alarm elimination procedure after we perform

an over-detection to maximize the detection of true defects. In order to identify and

remove the false alarms, we extend the defect detector to apply a two-stage process

enforcing (a) spatial continuity and (b) temporal correlation constraints based on

the two characteristics of false alarms that we learned by investigating the causes of

false alarms.

When investigating pixel transitions over time on a single location, we find that

false detection usually appears as a discontinuity of image intensity on temporal

axis, which is similar to true defects. However, by taking their spatial or temporally

motion compensated neighbours into consideration, we can summerize two common

characteristics of false alarms against true defects as follows.

For those false alarms that locate around the edges, e.g. the red pixels around the TV

presenter’s head shown in the second row of Figure 5.7. They are mainly caused by

irregular motion or transformation of objects so that only partial pixels around the

objects are falsely detected as defects. Those pixels are novel to their direct temporal

neighbours while strong correlation could be found between those pixels and their

spatial neighbours as defined by their features, e.g. intensities and gradients. In
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such cases local smoothness can be exploited by modelling the defect map Dt and

the likelihood map U t with MRFs to encourage grouping defects into connected

regions while removing false positives by propagating neighbouring non-degraded

pixel locations (see Subsection 5.2.1).

For those false alarms that make up an entire moving region, e.g. the shadows in the

curtain folds (shown in Figure 5.8) which leave the scene as the camera pans and

zooms in towards the girl. These isolated false alarm regions are mostly caused by

fast motion or interactions of objects. No relationship with other pixels may be found

unless we trace forwards and backwards on the temporal axis. The pyramidal Lucas-

Kanade feature tracker [13] is used here in order to impose temporal constraints (see

Subsection 5.2.2).

5.2.1 MRF modelling

In [67], Morris applied an Ising model to represent the prior of what he referred

to as his detection frame (effectively an initial defect map). Gibbs sampling with

annealing was then applied to achieve the MAP configuration of the defect map

given the image intensities from two adjacent motion compensated image frames.

Positions in his final defect map were marked if discontinuities were shown on both

adjacent frames. In this work, in contrast to Morris’s initial zero-valued detection

frame, Dt becomes our initial defect map, effectively providing advanced-stage prior

information. False alarms are then eliminated iteratively by computing the MAP

configuration of Dt given the likelihood map U t. Thus, again unlike Morris [67],

who investigated intensities at this point, we use the original likelihood map values

in U t to support the MAP estimation of Dt.

This process is implemented as follows. According to Bayes’ theorem:

P (Dt|U t) ∝ P (U t|Dt)P (Dt) (5.1)

The joint probability distribution of U t modelled with an MRF is equivalent to a

Gibbs distribution. The function φ(·) = (·)2 is used to denote the potential for all

possible connected 2-element cliques in an 8-connected neighbourhood. For each
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Figure 5.7: Artificial Respiration (Spatial continuity) - From top
to bottom: original images (frame n and n+1); results from HAFID; results
after false alarm elimination with MRF modelling only; results after the full
algorithm.
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Figure 5.8: Cinderella (Temporal correlation) - From top to bot-
tom: original images (frame n and n+ 1); results from HAFID; results after
false alarm elimination with Motion Analysis only; results after the full al-
gorithm..
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defect position in map Dt, we compute the probability of a pixel having value utx

as a function of all its spatial neighbourhood (N t
x) pixel likelihoods and (previous

frame) temporal neighbour ut−1
x . So the joint probability distribution of U t given

Dt is:

P (U t|Dt) =
1

ZUt

exp(−
∑
x

[α′
∑
x′∈Nt

x

φ(utx − utx′) + α(1− dtx)φ(utx − ut−1
x )]) (5.2)

where ZUt is a normalizing constant and α′, α are weights. φ(utx − ut−1
x ) measures

the difference of likelihoods between corresponding pixels on the temporal axis. It

will be switched on as a penalty for any pixel position that is not labelled as defect

and the strength of this penalty is controlled by α. The prior of defect map Dt is:

P (Dt) =
1

ZDt

exp(−
∑
x

[−β1

∑
x′∈Nt

x

δ(dtx − dtx′) + β2δ(1− dtx)]) (5.3)

where δ(·) is the delta function, β1, β2 are weights and ZDt is also a normalizing

constant. β1 enforces the continuity of defect maps and β2 is a penalty to any pixel

position that is labelled as defect. The bigger β2 is, the more likely labelled pixel

positions are eliminated as false alarms. Finally, combining (5.2) and (5.3), the a

posteriori likelihood function is:

P (Dt|U t) ∝ 1

Zt
exp(−

∑
x

[α(1−dtx)(utx−ut−1
x )2−β1

∑
x′∈Nt

x

δ(dtx−dtx′)+β2δ(1−dtx)])

(5.4)

where Zt = ZUtZDt . Gibbs sampling with annealing [36] is applied to compute the

MAP configuration for eliminating false alarms. Weights (α and β2) work together

to balance the number of labelled pixels to be eliminated as false alarms. We set

β1 = 1, as suggested in [85], and apply a similar parameter estimation procedure as

[67] for (α, β2). The images at the second row (from bottom) of Figure 5.7 show the

TV presenter scene after false alarm elimination using this approach and the images

at the bottom row show the final results after applying the two-stage method.
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5.2.2 Motion Analysis

Some false alarms make up an entire (but small) moving region. The MRF modelling

introduced above requires strong spatial correlation upon local neighbourhood to

propagate surrounding non-degraded pixels into the false alarms regions. Nonethe-

less, for those spatially isolated false alarm regions, we look for temporal correlation

constraints instead.

We apply pyramidal Lucas-Kanade motion tracking [13] on pixels corresponding to

map Dt positions across K frames centred at the current frame to determine the

stability of the pixels being tracked. If the tracking fails (in more than K−1
2

frames),

then the position in Dt is left unchanged, otherwise it is eliminated as a false positive.

The images at the second row (from bottom) of Figure 5.8 show examples of a scene

after false alarm elimination using this approach. The proposed method is able to

remove most false alarm regions on the curtain.

The target of this approach is comprised of those false alarms caused by fast motions,

occlusions and many other complex motion events. In many of these situations,

falsely detected pixels can only be tracked in one temporal direction, either forwards

or backwards. Therefore, we will eliminate a false alarm pixel only if it is trackable

in at least half (K−1
2

) of the K− 1 neighbouring frames. We also experimented with

other values of this threshold in a range from K−1 to 1. A high elimination rate also

comes with a fall in the overall correct detection rate of true defects. K−1
2

is able to

provide the highest elimination rate while preserving the highest correct detection

rate. We also examined different values of K and K = 13 provided the highest

elimination accuracy across our testing data set (described in detail in Section 5.3).

This value also matches the length of observation sequences on which we examined

the pixel intensity transitions in HAFID.

5.3 Results and Comparative Study

In order to illustrate the improvement of HAFID-STC over HAFID, we now show

the HAFID-STC results on the same graph as in Figure 4.9. The ROC graph in
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Figure 5.9: ROC graph shows a comparison of HAFID-STC against four
well known or current state-of-the-art techniques [52, 54, 67, 84], averaged
across our entire test data set.

Figure 5.9 illustrates a comparison of HAFID-STC against HAFID, Kokaram04,

RV07, Morris95, SDIp as defined previously in Section 4.4.

It is worth noting that both Kokaram04 and RV07 have integrated false alarm elim-

ination techniques into their defect detectors. In Kokaram04, two binary variables

are used to indicate if the current pixel is forward and backward occluded. These

variables, together with defect map, restored image intensities and motion vectors

achieve the optimal values through the ICM algorithm in an iterative two-stage pro-

cedure. Hence, Kokaram04 is able to handle false alarms caused by occlusion. In

RV07, false alarm elimination is implemented as an incremental to the main detec-

tion algorithm, whose system structure is similar to the one of our HAFID-STC

detector. Region growing based segmentation and local correlation information

(i.e. mean and standard deviation of intensities) are adopted to eliminate those

pixels that impair local smoothness. Both Kokaram04 and RV07 target only one
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Figure 5.10: The graph shows a comparison of HAFID-STC with different
window sizes K for motion tracking, averaged across our entire handlabelled
test data set.

category of false alarms while our proposed false alarm elimination algorithm, never-

theless, handles a larger collection of false alarms and also achieves a higher accuracy.

For HAFID-STC, the threshold τθ was varied (as with HAFID) while we found

the optimum α and β2 for each τθ. α controls the strength of temporal continuity

constraint while β2 enforces the elimination of (possibly both correct and false)

detections. Two parameters work together to eliminate false detections with strong

local correlations. As shown in Figure 5.9, HAFID comfortably outperforms all

previous methods while HAFID-STC achieves the best results overall (with lower

false alarm ratios and higher correct detection ratios).

The results for HAFID-STC with different window sizes K for motion tracking are

shown in Figure 5.10. The false alarm ratios increase as K varies from 7 to 17.

However, K = 13 was found to give the highest correct detection ratio across our

testing data set while eliminating over 70% of the false alarms.
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5.3.1 Image Example from Real Sequences

Figure 5.11 shows a comparative visual example for a sample degraded frame from

Henry Ford. In Table 5.1, we also reproduce the quantitative results for HAFID and

other methods from previous chapter and additionally show results from HAFID-

STC for a better comparison of the defect map before and after false alarm elimi-

nation. The Henry Ford sequence is composed of a stable indoor background and

some object motions in the foreground. The corresponding statistics of detection

results for all methods are listed in Table 5.1. As shown in the table, SDIp and

RV07 achieved correct detection rates of 87.3% and 82.1% but still resulted in 3236

and 5107 false detections respectively (out of a total frame size of 118800 pixels).

Morris95 was able to detect 96.8% of the defects but also produced 3868 false alarm

pixels. Kokaram04 produced far fewer false alarms (1094) but only detected 72.6%

of the true defects. The HAFID method was better at both detecting more true

positives, i.e. 100%, and fewer false alarm pixels at 536 only, while the full proposed

method HAFID-STC improved the result further by reducing the false alarms down

to 13 pixels. HAFID-STC also falsely eliminates 7 true defects, which causes a drop

of correct detection ratio from 100% to 92.6%.

In Figure 5.12 and Table 5.2, another comparative example on a sample degraded

frame from American is shown. The camera is slowly tracking in circle with the

statue as the centre. As illustrated in Table 5.2, both SDIp and Morris95 detect

over 82% of the defects while also producing large numbers of false detections,

i.e. 9397 and 4356 respectively. RV07 was capable of reducing the false alarms

down to 3008 but its correct detection ratio also decreased to 73.9%. Kokaram04

was able to detect 85.8% of the defects while keeping the number of false alarm

below 4000. The HAFID method was again better at both detecting more true

defects, i.e. 96.2%, and fewer false alarm pixels at 1917. Our proposed HAFID-STC

improved the result further by eliminating over 90% of all false alarms but also cause

a decrease of the correct detection ratio down to 87.7% in this case.
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Figure 5.11: Henry Ford - Top: Degraded frame and its groundtruth
mask; Middle: detection results from SDIp, Morris95, Kokaram04; Bottom:
results from RV07, HAFID and HAFID-STC. Green: correctly detected
defect; Red: false alarms; Blue: defects not detected.

Table 5.1: Henry Ford - Statistical results of false alarm elimination

Method SDIp Morris95 Kokaram04 RV07 HAFID HAFID-STC

Detected true defects 83 92 69 78 95 88

Defects not detected 12 3 26 17 0 7

False detection 3236 3868 1094 5107 536 13

Correct detection(%) 87.3 96.8 72.6 82.1 100 92.6

False alarm(%) 2.7 3.2 0.9 4.3 0.5 0.01
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Figure 5.12: American - Top: Degraded frame and its groundtruth mask;
Middle: detection results from SDIp, Morris95, Kokaram04; Bottom: results
from RV07, HAFID and HAFID-STC. Green: correctly detected defect; Red:
false alarms; Blue: defects not detected.

Table 5.2: American - Statistical results of false alarm elimination

Method SDIp Morris95 Kokaram04 RV07 HAFID HAFID-STC

Detected true defects 1707 1712 1780 1534 1997 1819

Defects not detected 368 363 295 541 78 256

False detection 9397 4356 3938 3008 1917 191

Correct detection(%) 82.3 82.5 85.8 73.9 96.2 87.7

False alarm(%) 11.6 5.4 4.8 3.7 2.3 0.2
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Table 5.3: Averaged computational speed for all methods

Method SDIp Morris95 RV07 Kokaram04 HAFID HAFID-STC

seconds 3 288 62 174 11 17

Computational Issues

In Table 5.3, we reproduce the comparison results of the computational speed of

all the methods from the previous chapter and additionally show the computational

cost of HAFID-STC. As other methods, HAFID-STC is implemented and computed

in MATLAB on a laptop with Intel Core Duo 2.4 GHz and 2GB RAM. On average,

HAFID-STC adds a further 6 seconds on the entire algorithm, but this additional

computational cost is affordable in archive film restoration, considering that HAFID-

STC is able to remove over 70% of the false alarms and still detect more true defects

than all the other methods.

5.4 Conclusions

In this chapter, we first briefly outlined the categories of false alarms by looking

at both causes and characteristics. Two distinctive characteristics of false alarms

were summarized and analyzed, which is shared by the majority of false alarms

caused in defect detection. Then, our two-stage false alarm elimination algorithm

was proposed to eliminate false alarms according to their characteristics based on (a)

MRF modelling for false alarms that have strong correlation with their neighbours

and (b) localised feature tracking for those that can be traced temporally. The

resulting defect maps after false alarm elimination achieved improved accuracy in

comparison to other commonly used or state-of-the-art techniques.

Our proposed false alarm elimination algorithm was not able to eliminate false

alarms caused by blurring due to its unique features discussed earlier. Since some

of the blurring effects are added on purpose, we will pass them to the follow-up de-

fect removal stage in which algorithms have been designed to preserve the original

intensities of those falsely detected pixels.
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RWDR: Spatiotemporal Random Walks

based Defect Removal

Given the defect maps from defect detection, the aim of the defect removal stage is to

restore the missing data on the degraded pixel positions labelled in the defect maps.

Although HAFID-STC is capable of eliminating the majority of false alarms, the

defect maps still comprise a number of falsely detected pixel positions. Therefore,

we also need to prevent introducing new artifacts at those false detection pixels

during the defect removal process.

As described in Section 2.4, a number of inpainting methods have been developed

for filling missing regions. Most of these algorithms can be applied directly to our

defect removal application in a frame-by-frame manner, however the accuracy of

these methods is limited without the use of temporal correlation information among

frames. Our proposed defect removal method aims to achieve improved accuracy by

looking into both the spatial and temporal information contained in a dynamically

generated neighbourhood for each missing pixel. As categorized in Section 2.4, our

proposed spatiotemporal Random Walk based Defect Removal (RWDR) method is

an exemplar based restoration approach which involves a search-and-replace proce-

dure.

One approach to the restoration of a degraded pixel is to replace it with an original
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corresponding pixel along its projected motion trajectory from (temporal) neigh-

bouring frames. This clearly involves an accurate estimation of the degraded pixel’s

motion through space and time and helps enforce a local consistency by imposing fea-

tures besides just image intensities, i.e. motion vectors (leading to consistent optical

flows). The chances of more accurate recovery can be increased by recruiting more

significant features, e.g. texture features such as the Local Binary Pattern (LBP)

[70] (leading to consistent region representation). Unlike previous methods such as

[34, 53, 67, 86], we consider multiple features in an integrated fashion and show that

this provides better restoration than treating the features separately. The computa-

tional expense incurred due to the use of more features is an affordable tariff in our

archive film restoration application where accuracy is of paramount importance.

In order to locate the optimal replacement for a degraded pixel, we establish a region

of candidate pixels formed by a number of 3D random walks on the spatiotempo-

ral domain, starting from the defective pixel. In [29], spatial-only random walks

were applied for noise reduction by taking a weighted average over all spatial pixels

visited by the random walks, whereas we select the optimal pixel-exemplar as the

pixel which has the maximum likelihood of being the original pixel - as defined by

its intensity, motion and texture characteristics - from this dynamically generated

spatiotemporal region. The relationship between the proposed method and previous

random-walk based methods will be discussed in detail in Subsection 6.3.4. We per-

form this search-and-replace procedure for each degraded pixel in the defect map in

a multiscale framework to refine the restored pixels from coarse to fine. This multi-

scale refinement particularly helps with large degraded regions which are forced to

implode gradually through the propagation of reliable outer pixels into the region.

The contributions of our approach are therefore as follows. We present a novel pixel-

exemplar based restoration algorithm using spatiotemporal random walks. In com-

parison to current state-of-the-art archive film restoration techniques, our method is

more accurate by using more reliable statistics produced during the random walks.

Also, in addition to intensity and motion features, we employ a higher order texture

feature, i.e. one that is more complex than raw intensities. Finally, degraded pixels

within a frame are collectively restored in a multiscale framework by updating all

their features (intensity, motion and texture), which leads to more effective search-

ing for optimal replacements (and significantly helps in the restoration of degraded
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regions that are considerably larger than typical defects). This means that at each

scale the attributes of a defective pixel are updated with reference to the attributes

of normal pixels and other defective pixels updated in the previous higher scale

as long as they fall within the defective pixel’s random walk-based spatiotemporal

neighbourhood. Thus, there are more constraints to contribute to the restoration of

intensities.

The fundamentals of 3D random walks are introduced first in Section 6.1. Then,

our restoration algorithm is described in Section 6.2, in which an advanced algo-

rithm for exemplar searching and a multiscale restoration framework are discussed

in Subsections 6.2.1 and 6.2.3 respectively. In Section 6.3, we evaluate and compare

our proposed method against two state-of-the-art methods, i.e. [52] and [34], on a

variety of artificially degraded and real films. Finally, we demonstrate the applica-

tions of our proposed algorithm in image and video inpainting using handlabelled

masks.

6.1 Spatiotemporal Random Walks on Image Se-

quences

A random walk is a simple stochastic process, which has been applied to model

random processes in many areas, such as share prices [61], random movement of

molecules [88], image segmentation in computer vision [38] and so on. Here, we

establish the fundamentals of 3D random walks on an image sequence and then

express the probability of a random walk sequence in the context of our application.

First, we define the input image sequence as an undirected and weighted graph

G = (V,E) with vertices (nodes) vx ∈ V and edges ex′ ,x′′ ∈ E ⊆ V × V . Each

edge ex′ ,x′′ is assigned a weight wx′ ,x′′ where wx′ ,x′′ > 0 and wx′ ,x′′ = wx′′ ,x′ . An

image pixel x at location (i, j, t) (1 ≤ i ≤ Width, 1 ≤ j ≤ Height, 1 ≤ t ≤ Length)

is represented as a node vx(vx ∈ V ) in graph G where Width × Height × Length
defines the image sequence volume.

A random walk sequence Path0,K = {x0,x1, . . . ,xK} with length K+1 on graph G is
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Figure 6.1: Spatiotemporal motion compensated neighbourhood across 3
frames.

specified as a sequence of nodes (pixels) which is a Markov process. The probability

of the transition p(xk|xk−1) between consecutive pixels xk−1 and xk is given as the

weight wxk−1,xk on the edge exk−1,xk . According to the Markov property of Path0,K ,

the probability of a Path0,K starting at pixel x0 is defined as

p(Path0,K) =
K∏
k=1

p(xk|xk−1) =
K∏
k=1

wxk,xk−1 , (6.1)

where P = {Pathm0,Km
}Mm=1 is a set of M random walks on graph G, with each walk

starting from x0. Furthermore, we define the region of candidates or pixel-exemplars

Rx0 =
⋃M
m=1 Path

m
0,Km

as the set of all pixels visited by the random walks in P . An

example of Rx0 is illustrated later in Figure 6.4. The neighbourhood for a pixel, the

associated edge weights, and the walk length are discussed in detail in the following

sections.

6.1.1 Neighbourhood

For each pixel x on a walk, we define a 3×3×3 spatiotemporal motion compensated

neighbourhood Nx centred at x. Figure 6.1 shows a sample 3-D neighbourhood

across 3 frames centred at a pixel marked in red. At Nx, we denote the connection

between pixel x and x′(x′ ∈ Nx,x
′ 6= x) as edge ex,x′ with a weight wx,x′ . For each
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step in a random walk, a transition from the current pixel x to one of its 26 direct

neighbours x′(x′ ∈ Nx) is permitted.

6.1.2 Edge Weight

In the same fashion as previous graph-based methods, e.g. [37], the edge weights are

defined by a function that evaluates the similarity of two consecutive pixels during a

random walk so as to bias it to stop the walk when a significant decrease in similarity

is observed. Here, we define edge weights as the probability of pixels x and x′ being

identical, measured by using a number of different pixel features,

wx,x′ =
1

T

Q∏
q=1

exp{−
ϕ2
q(x,x

′)

2σ2
q

}, (6.2)

where T is a normalization constant, σq is the standard deviation for pixel feature q,

and ϕq(·) measures the Euclidean distance between pixel x and x′ in feature space

Fq. A variety of pixel features can be used to measure the similarity between two

pixels and here we apply four (i.e. Q = 4); these are intensity, forward and backward

motion, and the local LBP texture pattern:

ϕ2
q(x,x

′) = 1
Jq

∑Jq
j=1 (Zj

q (x)− Zj
q (x
′))2, (6.3)

where Zq = {I,Vf ,Vb,L} for q = {1..4}, I represents RGB intensity maps with

J1 = 3, Vf
x and Vb

x represent forward and backward motion vector maps with

J2 = J3 = 2 respectively, and L represents maps of 2D image LBP patterns in a

spatial 3 × 3 neighbourhood with J4 = 8. The addition of a texture feature, along

with a more integrated contribution of all the features used through (6.3), and subse-

quently (6.5), is an essential improvement on other works in archive film restoration,

such as [52] and [34]. The extra texture feature is specifically appropriate to enforce

a constraint in textured regions to help select the pixels that can be included in the

region of candidates during the random walks.
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6.1.3 Walk Length

We control the length of a random walk by monitoring p(Path0,K) in the same

manner as proposed in [29]. Since we are performing a biased random walk by

encouraging transitions between similar neighbours, the random walk will be ter-

minated if p(Path0,K) is smaller than a threshold. This will prevent random walks

from stepping across strong boundaries in terms of significant changes of all pixel

features. A walk will also be terminated if it hits a hard boundary, i.e. the image

boundaries on the spatial domain and the first and last frames on the temporal axis.

6.2 Defect Removal in Archive Film

Traditional pixel-exemplar or patch-exemplar based restoration methods such as

[26, 34, 105], search for the optimal exemplar amongst a square or rectangular region

of pixels using sliding windows. A novel feature of our proposed method is that for

each defective pixel examined, we explore a dynamically generated, random-walk

based region of candidate pixel-exemplars to select the optimal replacement from.

Every pixel in this region shares a significant similarity with the previous pixels in

the region as defined by their features, i.e. intensity, motion and texture. A random

walk starts from a degraded pixel and stops when it reaches a strong boundary in

terms of a significant change in all the pixel features. The size of the region is thus

determined on-the-fly and is based on the length of all the random walks (for the

current defective pixel). We perform an experimentally-determined fixed number

(see Section 6.2.1 for details) of random walks for a degraded pixel to form a region.

After building the region of candidate pixel-exemplars for a degraded pixel, we assign

to each of them a likelihood of being the optimal replacement for the degraded pixel.

This is obtained for each pixel-exemplar by first computing the average (geometric

mean) of transition probabilities during each random walk which starts from the

degraded pixel and visits the pixel-exemplar. Then the averaged probabilities from

these random walks are summed up to get a measure of the similarity between the

pixel-exemplar and the rest of the pixel-exemplars in the region (recalling that the

transition probabilities are an indication of pixel similarities in a path). The higher
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Figure 6.2: Outline of our proposed defect removal method.

this value, the higher is the similarity. This is then weighted by a reliability value,

which measures the degree of degradation for each pixel-exemplar, to obtain its

likelihood value. The pixel-exemplar with the maximal likelihood will be selected to

replace the target degraded pixel. This means that the selected pixel is the optimal

representation of the spatiotemporal random walk-based region of candidates - with

relatively low (to possibly no) degree of degradation - to restore the current degraded

pixel. The above processing is performed in multiscale for all degraded pixels within

a frame along with their reliability values, refining the updated pixels’ features from

coarse to fine. Figure 6.2 outlines the structure of our defect removal approach.
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(a) Traditional searching approach

(b) Proposed advanced searching approach

Figure 6.3: Visual comparison between traditional searching and proposed
advanced searching. Blue: Searching range; Green: Sliding Window; Red:
Target pixel; dashed line: Motion trajectory.

6.2.1 Random-walk based Searching

Figure 6.3 illustrates two different searching approaches: traditional sliding-window

based method and our proposed random-walk based method. Traditionally, sliding-

window based searching is mostly used in exemplar based inpainting methods [26,

34, 105]. The difficulty of adopting this searching approach lies in how to decide

the size of the search region and the size of the sliding window. A larger search

region will increase the computational cost while a smaller one may miss the optimal

replacement. In a similar sense, a larger sliding window will possibly result in under-

matching while a smaller one may cause over-matching. It will require experiments

to compute the optimal sizes for each application.

This dilemma can be resolved by investigating a region of candidates with an adap-
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tive size. Our motivation is also based on the assumption that the optimal replace-

ment for a degraded pixel always exists somewhere near the degraded pixel position

spatially and temporally. Our task here is to outline this adaptive-size neighbour-

hood to include all the pixels that have higher probability of being the original pixel

than those located outside this region. Then, we are able to select the optimal

pixel-exemplar to replace the degraded pixel from this region.

For each degraded pixel position, we start a random walk from the degraded pixel

and randomly select one of its 26 spatiotemporal neighbour as the next step. The

probability of this random walk path p(path0,K) is updated with the edge weight

between two pixels using Equation (6.1). The value of edge weight wx′,x′′ decreases

when the similarity between two pixels connected by the edge ex′,x′′ reduces along

the random walk path, as the similarity is defined by pixel’s intensity, motion and

texture characteristics. The random walk continues until the probability p(path0,K)

is below a threshold. By performing such random walks for M number of times

(discussed in detail in Section 6.3), we are able to dynamically generate the region

of candidate pixel-exemplars for degraded pixel position x0. The size and shape of

this region vary according to the neighbouring pixels’ characteristics, e.g. this region

will be larger if the degraded pixel is in a more homogeneous area while it will be

smaller in a high frequency area.

Figure 6.4 illustrates the generation of a region Rx0 of candidate pixel-exemplars in

three consecutive frames. It is worth noticing that the entire Rx0 is larger than the

region shown in these frames, which is across 9 frames. The likelihoods of being the

replacement of the target pixel are also shown for pixels in Rx0 after we perform

the random walks independently for M = 50, 250 and 800 times. This likelihood

Ax · r(x) will be defined in Equations 6.4 and 6.6 in the following Subsection 6.2.2.

As shown in Figure 6.4, Rx0 grows bigger when we perform more random walks

and a few pixels surrounding the target pixel are highlighted with relatively higher

likelihoods.

In addition to a dynamically generated region of candidates, the statistics computed

during the random walks provide us with the evidence for choosing the optimal re-

placement, which also increases the efficiency by reducing the cost of including other

optimization methods. The procedures of computing the statistics and selecting the
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Figure 6.4: Stadium - Top row: three consecutive frames n − 1, n and
n+ 1; Bottom three rows (from left to right): enlargement of selected areas,
defect maps with the target pixel (the starting position of random walks) in
blue , likelihood maps of pixels being the replacement for the target pixel
after performing random walks independently for 50, 250 and 800 times.
The higher grayscale level, the more likely is a pixel to be the replacement.

optimal pixel-exemplar are introduced in detail in the following section.

6.2.2 Degraded Pixel Replacement

For each pixel-exemplar x in a degraded pixel’s region of candidates, i.e. Rx0 , the

similarity between x and the rest of the pixel-exemplars in the region is measured

based on the probabilities of random walk paths which start from the degraded pixel



6.2 Defect Removal in Archive Film 115

and visit the pixel-exemplar, represented as

Ax =
M∑
m=1

Km∑
k=1

(
p(Pathm0,k)

1/k · δ(xk = x)
)
, (6.4)

where δ(·) is the Dirac delta function. In order to measure the similarity among

all pixel-exemplars in a random walk path regardless of the length of the path, we

compute the geometric mean of their transition probabilities. Provided we perform

a sufficient number of spatiotemporal random walks, the sum of their averaged

probabilities suggests the similarity between the pixel-exemplar and the rest of the

pixel-exemplars in the region. This is influenced by the way spatial random walks

are used in [29] to examine the transition probabilities (i.e. similarity) of pixels

along a path in their image denoising application. The reason why we use this

value instead of using other measurements, e.g. a count of random walks that visit

the pixel-exemplar, is because this value indicates if the pixel-exemplar provides

random walks with a smooth transition from their previous locations to this pixel-

exemplar, e.g. if the probabilities of random walk paths decrease significantly after

they visit this pixel-exemplar, this value will be probably small even though this

pixel-exemplar has been visited by a large number of random walks. The optimal

pixel-exemplar is then selected as

x̂0 = arg max
x∈Rx0

(Ax · r(x)) , (6.5)

where r(·) indicates the reliability of a pixel-exemplar based on its degree of degrada-

tion. For normal pixels, r(·) is 1 while a degraded pixel is initialised to the likelihood

of being identical to all its defect-free neighbours in Nx:

r(x) =

{
1∑

x′∈Nx
δ(dx′ )

∑
x′∈Nx

wxx′δ(dx′) dx = 1

1 dx = 0
(6.6)

Note also that by this definition, a false alarm pixel is more likely to be initialised

with a high r(·) value, given it is likely to be more similar to its defect-free spatiotem-

poral neighbours than to real degraded pixels. Figure 6.5 shows different initializa-

tions for a true degraded region and false alarm regions. The higher grayscale level,

the higher is the value of reliability. As shown in Figure 6.5, normal pixels are set

to the highest value (white) and true defect positions are mostly black. False alarm
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Figure 6.5: Story of Television - from top to bottom: the original frame
and its defect map; enlargement of selected areas overlaid with defect maps;
Initialized r(·) maps. Green: true defects; Red: false alarms Blue: defects
not detected.

pixels are granted with higher reliability values than real degraded pixels (e.g. the

false alarm region on man’s nose) so that the false alarm pixel is more likely to

obtain an optimal replacement considering more reliable candidates (nearby false

alarm pixels) are present in its random walk-based neighbourhood.

After a degraded pixel is replaced with a specific pixel-exemplar, its reliability value

is updated with:

r̂(x) =
1

|Nx|
∑
x′∈Nx

r(x′). (6.7)
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During the multiscale updating algorithm (reviewed next), the r(·) value for a de-

graded pixel will approach 1 after a number of updates. For a degraded pixel near

the boundary of a degraded region, the r(·) value will reach 1 faster than an inner

pixel considering it is surrounded by more reliable spatiotemporal neighbours (nor-

mal pixels). Thus, during the multiscale refinement, a degraded region will gradually

implode through the propagation of more reliable outer pixels in the region. For an

example see Figure 6.6.

6.2.3 Multiscale Refinement

Given an image sequence and its defect map, we build pyramids for each frame and

its corresponding defect map by downsampling the original by a factor of 2 after

smoothing with a 5×5 Gaussian kernel. A sample image pyramid and its associated

defect pyramid are shown in Figure 6.6. After restoring the degraded pixels’ features

on a current level of the pyramid, we upsample these pixels to the next level and

then update their corresponding pixels’ features in that level. This level-by-level

refinement and restoration process continues until it reaches the lowest level of the

pyramid (see Algorithm 6.1).

6.3 Experimental Results and Discussion

We present the restoration performance of the proposed algorithm on both artifi-

cially degraded and real sequences, and compare our results against two state-of-the-

art techniques: Kokaram’s Bayesian framework [52] and Gangal and Dizdaroglu’s

exemplar-based method [34], hereafter referred to as Kokaram04 and GD06 respec-

tively.

Kokaram04 : As the state-of-the-art, Kokaram’s statistical approach performed

defect detection and defect removal in a single framework. As discussed in Section

2.4, the method attempted to remove noise and dirt, and perform motion correction

together in a two-stage restoration process. Three binary variables were used for

each pixel to mark if a pixel is degraded, forward occluded or backward occluded.
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Figure 6.6: (from left) A sample image pyramid, the defect map pyramid,
and the restored results using the proposed method. The degraded regions
are gradually recovered from coarse to fine and from the boundaries to their
inner part.

These variables, together with restored image intensities and motion vectors, were

defined as unknowns. Given the pixel values of degraded frames and initial motion

estimations, a two-stage procedure was designed to estimate the variables and image

intensities first and then adjust the motion vectors according to neighbouring motion

vectors, before repeating this process for a fixed number of iterations.

It is worth noting that to perform motion adjustment for a degraded pixel, Kokaram04

relied on the accuracy of the pixel’s surrounding motion vectors. During the itera-

tive processing, motion information was improved separately and with no reference

to the improved intensities. However as stated earlier, we update the motion vectors

of a defective pixel in a multiscale process with reference to all attributes (i.e. in-

tensity, motion and texture) of normal pixels and other defective pixels (updated in
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1: Build pyramids {Is}Ss=1 and {Ds}Ss=1;
2: Initialize scale s = 1: Compute motion vector maps Vf

1 , Vb
1, L1, and r1;

3: while s ≤ S do
4: if s > 1 then
5: Update Is, Vf

s , Vb
s, Ls by Is−1, Vf

s−1, Vb
s−1;

6: /*Only on degraded sites*/
7: end if
8: (Is+1,Vf

s+1,Vb
s+1, Ls+1) = Restoration(Is, Vf

s , Vb
s, Ls, Ds);

9: Update rs+1 using Equation (6.7);
10: if s < S then
11: Upsample Is+1,Vf

s+1,Vb
s+1,rs+1by factor 2;

12: /*For every scale but the last*/
13: end if
14: s = s+ 1;
15: end while

Algorithm 6.1: The multiscale restoration algorithm

the higher scale) as long as they fall within its spatiotemporal random walk-based

neighbourhood.

GD06 : Gangal and Dizdaroglu extended Criminisi’s exemplar based image inpaint-

ing method [24] into the spatiotemporal domain. A patch matching based process

was conducted to propagate the textures into the degraded region by giving the pri-

orities to those pixels that have higher gradients, i.e. image structures, so that the

recovery of image structure and texture can be achieved simultaneously. In GD06,

the searching and matching were restricted in motion compensated spatiotemporal

neighbourhoods for better accuracy and efficiency.

The defect maps for both GD06 and the proposed method were produced in ad-

vance using the HAFID-STC defect detector (described in Chapter 4 and 5) while

Kokaram04 has an integrated defect detector. All methods were tuned for optimal

performance using constant parameter values across all experiments.
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6.3.1 Synthetic Defects

The proposed method was compared against Kokaram04 and GD06 on restoring 10

artificially degraded real sequences totalling 2534 frames, namely Mobile Calendar,

Container, Foreman, News, Paris, Stockholm, Flower, Shields, Park and Bus. The

degraded sequences were produced by adding synthetic black and white defects of

sizes of between 1 and 6000 pixels on a random basis (see examples in Section 3.3).

For each method, the Mean Square Error (MSE) to measure the difference between

the original defect-free frame F and the restored frame F̂ was computed. The MSE

measurement was previously described in Section 3.4.

Columns 2 through to 5 in Table 6.1 and Table 6.2 show the MSEs for four randomly

selected sample frames from the Mobile Calendar, Container, Foreman, News, Paris,

Stockholm, Flower, Shields, Park and Bus sequences respectively. The percentage

of degraded pixels in each frame is listed along with the frame number along the

top row. The raw, unrestored frame error rate is shown along the ‘Degraded’ row

in each case. The last column in Table 6.1 and Table 6.2 shows the average MSEs

across all degraded frames in each of the synthetic-error sequences for each method;

for example for the Foreman sequence, given the average true MSE rate of 153.4,

the proposed method resulted in the lowest error at 44.7 compared to Kokaram04

and GD06 at 130.3 and 103.1 respectively.

The proposed method performed much better (with lower MSEs) than Kokaram04

and GD06 in all the sequences, e.g. for sequences Container and Stockholm, the

averaged MSEs resulted from the proposed method was less than 20% of the MSEs

computed on the original frame with synthetic defects and about 50% of Kokaram04

and GD06’s. Additionally, the proposed method was also more capable of restoring

large defects. For instance, frame 233 of the News sequence (shown in Table 6.1)

was artificially degraded with a large black blotch. The proposed method reduced

the MSE from 751.5 to 119.8 while Kokaram04 and GD06 resulted in higher errors

at 289.1 and 205.3 respectively.

The proposed method was also able to avoid the creation of too many artifacts on

these false detection pixel positions in comparison to Kokaram04 and GD06. For

example, the Bus sequence consisted of complex motions as mentioned in Section
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Table 6.1: Comparison of MSEs on 1-5 of 10 real sequences with synthetic
errors

Mobile Calendar
Frame # 32(0.07%) 58(0.11%) 181(3.47%) 233(0.03%) Avg(0.62%)

Degraded 16.3 31.8 651.5 56.6 183.5

Kokaram04 210.6 89.9 293.6 92.5 157.3

GD06 128.7 80.7 196.8 123.5 135.9

Proposed 23.4 19.5 105.9 46.7 49.2

Container
Frame # 9(0.06%) 23(0.21%) 138(2.44%) 210(0.06%) Avg(0.60%)

Degraded 15.7 80.7 451.1 15.7 119.1

Kokaram04 7.6 3.5 93.4 2.8 33.9

GD06 0.9 0.8 96.3 3.2 23.8

Proposed 0.6 0.6 45.1 3.3 10.5

Foreman
Frame # 33(0.12%) 65(0.24%) 98(0.23%) 199(0.02%) Avg(0.55%)

Degraded 29.7 45.8 40.8 5.3 153.4

Kokaram04 70.5 155.32 89.84 74.0 130.3

GD06 95.3 149.12 95.87 68.5 103.1

Proposed 21.4 51.38 40.37 10.7 44.7

News
Frame # 113(0.08%) 165(0.05%) 233(2.47%) 291(0.21%) Avg(0.61%)

Degraded 31.5 15.2 751.5 66.9 154.5

Kokaram04 159.9 218.3 289.1 89.5 140.7

GD06 140.7 125.7 205.3 113.5 125.3

Proposed 49.5 27.7 119.8 54.4 54.2

Paris
Frame # 81(0.16%) 123(0.01%) 158(1.34%) 280(0.10%) Avg(0.60%)

Degraded 80.7 15.7 537.1 85.3 122.1

Kokaram04 30.5 25.6 107.1 11.3 63.9

GD06 21.8 27.9 122.3 15.4 83.8

Proposed 13.4 14.3 69.3 6.3 33.5
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Table 6.2: Comparison of MSEs on 6-10 of 10 real sequences with synthetic
errors

Stockholm
Frame # 12(0.06%) 40(0.22%) 81(0.16%) 158(1.34%) Avg(0.60%)

Degraded 88.1 64.7 274.2 676.2 132.2

Kokaram04 34.7 43.2 44.9 106.5 51.7

GD06 18.5 69.5 76.8 97.1 55.4

Proposed 5.5 47.0 16.5 80.5 26.2

Flower
Frame # 7(0.15%) 65(0.24%) 119(0.65%) 152(0.07%) Avg(0.46%)

Degraded 37.4 195.8 173.5 31.1 142.8

Kokaram04 120.6 112.3 73.5 51.1 90.3

GD06 67.2 242.1 154.5 69.8 145.2

Proposed 11.4 83.3 35.7 17.6 33.7

Shields
Frame # 32(0.07%) 33(0.12%) 58(0.11%) 133(1.21%) Avg(0.56%)

Degraded 64.1 112.6 53.2 40.2 78.4

Kokaram04 48.2 52.7 44.2 52.6 49.1

GD06 52.9 60.5 31.1 18.8 36.8

Proposed 10.6 12.9 7.2 12.7 12.7

Park
Frame # 23(0.21%) 81(0.16%) 85(0.19%) 158(1.34%) Avg(0.63%)

Degraded 84.8 208.2 29.4 440.9 108.4

Kokaram04 105.5 99.2 56.1 167.5 63.6

GD06 193.9 186.9 21.7 179.5 80.1

Proposed 18.2 28.9 12.8 88.9 27.9

Bus
Frame # 81(3.47%) 105(0.09%) 109(0.05%) 138(2.44%) Avg(0.62%)

Degraded 197.1 190.9 17.5 488.4 113.7

Kokaram04 236.8 230.2 152.4 190.4 153.1

GD06 210.3 337.5 298.8 272.8 279.4

Proposed 97.9 87.4 36.3 119.5 66.9
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4.3 and its defect map from HAFID-STC contained a considerable number of false

detections. As shown in Table 6.2, MSEs errors resulted from both Kokaram04 and

GD06 were constantly larger than the raw original whose MSE is only based on

synthetic defects. However, the proposed method resulted in an averaged MSE at

66.9, about half of the original MSE.

6.3.2 Real Defects

We compared the three methods in restoring a variety of real degraded image se-

quences, including grayscale and colour, indoor and outdoor scenes, and slow and

fast motions, and in all cases the proposed method produced the best results. In the

following, three sets of sample results are illustrated to inspect three aspects of the

proposed method, i.e. recovering a large degraded region and substantially avoiding

artifacts in Figures 6.7 and 6.8, handling defect-free (false alarm) pixels in Figures

6.9 and 6.10, and correcting motions in Figures 6.11 and 6.12.

Figure 6.7 shows the results on a sample degraded frame with a large missing area.

The original frame and the defect map (in red) are shown in the top row. The results

by Kokaram04, GD06, and the proposed method are in the middle row and a close-

up of the degraded area is shown in the bottom row for each method. Kokaram04

resulted in a considerable number of artifacts in the restored frame because its

performance strongly depends on the accuracy of motion information. Its motion

correction procedure is not designed for such large missing areas, but rather for

small degraded areas with accurate motion information provided in their spatial

neighbouring regions. While GD06 was able to restore the outline of the man’s

head, it introduced some artifacts in the inner region due to the mismatching of

patches in an early stage. Although the proposed method still caused some small

artifacts, both the image structure and texture were recovered well.

Figure 6.8 shows another example with a large degraded area in a sample frame from

Red China. In a similar manner as the previous example, the restoration results are

shown in the middle and a close-up of the degraded area in the bottom row for each

method. In this case, Kokaram04 was only able to decrease the degradation, consid-

ering its estimation of the original intensity is computed based on an average over
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Figure 6.7: Cliff - Comparing large missing area recovery. Top: orig-
inal frame and the defect map in red; Middle: restoration results from
Kokaram04, GD06, and the proposed method; Bottom: enlargement of se-
lected areas.
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Figure 6.8: Red China - Comparing large missing area recovery. Top:
original frame and the defect map in red; Middle: restoration results from
Kokaram04, GD06, and the proposed method; Bottom: enlargement of se-
lected areas.

the local spatiotemporal neighbourhood. Due to mismatching, GD06 introduced

some artifacts in the centre of the missing region. The proposed method was able

to restore the image structure (edge of the label) well while inconsistency can still

be found over the boundary of the missing area when we examine closely.

In Figure 6.9 we investigate the restoration performance of the three methods on

handling false alarm pixels. A sample degraded frame and its corresponding defect

map are in the top row. Restoration results from Kokaram04, GD06 and the pro-

posed method are in the middle row and close-up of the false alarm areas follow in

the bottom row. All methods did well in restoring the real degraded pixels. How-

ever, both Kokaram04 and GD06 introduced artifacts on those false detection pixel

positions, e.g. artifacts were introduced across the telephone and the policeman’s
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Figure 6.9: Policeman - Comparing restoration of false alarms. Top:
original and its defect map; Middle: restoration results from Kokaram04,
GD06, and the proposed method; Bottom: enlargement of selected areas.

hand in the frame restored by Kokaram04 and GD06.

Figure 6.10 illustrates another example of handling false alarm pixels. Three consec-

utive frames are shown with their corresponding defect maps and restoration results

from Kokaram04, GD06 and the proposed method (from top to bottom). All meth-

ods also restored the real degraded pixels well in this example, but both Kokaram04

and GD06 lose considerable detail at positions of false alarm defects, e.g. the man’s

nose is missing in the frame restored by Kokaram04, and the crouching man’s arms

and face are only restored partially in the results from GD06.
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Figure 6.10: Artificial Respiration - Comparing restoration of false
alarms over Three consecutive frames. From top to bottom: original frames,
their defect map, restoration results from Kokaram04, GD06, and the pro-
posed method.
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Figure 6.11: Junior Prom - Comparing motion correction. (from top left
to bottom right) Original frame with overlaid defects, Original motion vec-
tors, Corrected motion vectors from Kokaram04 and the proposed method.

Figure 6.12: Coffee - Comparing motion correction. (from top left to
bottom right) Original frame with overlaid defects, Original motion vectors,
Corrected motion vectors from Kokaram04 and the proposed method.
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The final two examples present a comparison between Kokaram04 and the proposed

method on correcting motions for degraded pixels. The motion vectors overlaid on

original frames are shown in the second image from left in Figures 6.11 and 6.12. The

correction based on this by the result from Kokaram04’s integrated motion correction

algorithm and the proposed method follow this respectively. During Kokaram04’s

iterative process, motion information was improved separately and with no reference

to the improved intensities; this means its correction was limited by the accuracy

of initial motion estimations which were often inaccurate by the presence of defects.

The proposed method outperformed Kokaram04 by achieving more accurate motion

correction for each defective pixel by reference to their spatiotemporal random-walk

neighbours through the multiscale process.

6.3.3 Performance and Implementation Issues

All methods were implemented in MATLAB on a laptop with Intel Core Duo 2.4

GHz and 2GB RAM. The average speed for a degraded frame of average size of

480 × 360 was 406 seconds for our proposed method, while Kokaram04 and GD06

needed 174 and 265 seconds respectively. Our proposed algorithm is slower but

more accurate than Kokaram04 and GD06, since it considers an extra feature and

requires considerable sampling by the random walks. The number of steps in each

random walk often varied from 2 to 48. Since accuracy is critical for the restoration

of archive films, the extra computational burden is a tolerable cost.

Due to the random nature of random walks, the optimal replacements located may

not be the same, as we perform the search-and-replace procedure on the same pixel

twice. Therefore, we experiment with different numbers of random walks (M) per-

formed for each degraded pixel position so that we can find the optimal number of

random walks required to achieve a stable and accurate result. Figure 6.13 illus-

trates the standard deviations of the optimal replacements’ intensities with different

values of M , resulting from 1000 separate runs of our proposed restoration method

on 10689 randomly selected degraded pixel positions using different random seeds

for each random walk. M = 800 was found to provide stable results (with the

standard deviation below 1) and reasonable computing costs.
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Figure 6.13: The graph shows the deviation of the optimal replacements’
intensities falls as the number of random walks performed increases.

6.3.4 Relationship to Previous Random Walk based Meth-

ods

Previous methods [28, 66] applied image segmentation by investigating the transi-

tion matrix of the random walks and studying the eigenvalues and eigenvectors of

this matrix without actually performing random walks. This transition matrix was

computed using the pairwise similarities of all pixels in the target image. Then,

normalised cut [66] or mini cut [28] were performed on this matrix to group pixels

that share similar image features. The segmented local regions are what we want in

our defect removal application as sources of candidate exemplars for the degraded

pixels located inside these regions. However, this segmentation was optimized glob-

ally and results may change significantly with the present of defects, especially large

degraded regions. Furthermore, a full segmentation of the image may not be neces-

sary for our defect removal application considering the number of defects is relatively

small compared to the entire image. This motivated us to generate a localized and

random walk based segmentation around each degraded pixel position.
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Estrada et al. [29] proposed an image denoising algorithm by performing random

walks in the image domain. For each pixel x in the target image, a weighted av-

erage was computed over all pixels that are passed by a number of random walks

started from pixel x. However, instead of only looking at the pairwise similarities

for adjacent pixels, the algorithm also measured the similarity between current pixel

xk and pixel x in random walk step k. This would particularly benefit the denois-

ing process since image intensities are usually not highly degraded by image noise

(Gaussian noise in this case). In such manner, all the pixels used to compute the

average share similarities not only with each other but with the starting pixel x as

well. However, the information on the degraded pixel position is often completely

lost in our defect removal application. Here, we perform random walks to generate

a local segmented region for each degraded pixel by only measuring the pairwise

similarity of multiple image features between two adjacent pixels in each random

walk step.

We believe our proposed method is not only a spatiotemporal extension to [29]

in the archive film restoration application but also an advancement in terms of

methodology due to several respects, e.g. : (a) In our method, we select the optimal

pixel-exemplar from a dynamically generated spatio-temporal neighbourhood, which

has the maximal likelihood of being the original pixel, whereas [29] simply takes a

weighted average over all spatial pixels, (b) The multiscale algorithm and reliability

values are integral in our method to deal with large degraded regions while [29]

has no such mechanism and is only designed to recover individual Gaussian noise

infected pixels, and (c) We employ additional features, i.e. motion and texture,

which play an important role in the algorithm and hugely influence the outcome

of our archive film restoration application. Both motion and texture features help

measure the similarity of pixels during random walks and motion information is

essential to guide the random walks on the temporal axis.

6.4 Conclusions

In this chapter, we presented a novel pixel-exemplar based restoration algorithm

using spatiotemporal random walks. The random walks were performed by consid-
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ering pixel similarities using multiple features. The method was applicable given

a defect map generated by any archive film defect detection algorithm. While the

use of multiple features added to our computational costs, we obtained much more

accurate and artifact-free results than current state-of-the-art techniques.



Chapter 7
Conclusions and Further Work

The basic motivation of the work presented here is to find an effective, safe and

convenient solution for digitised and automatic archive film restoration. This dis-

sertation not only demonstrates that automatic restoration of archive films is feasible

and accurate but also attains insights on the restoration problem itself, e.g. charac-

teristics of defects and false alarms, which also leads to a few directions for future

investigation.

7.1 Summary

In this thesis, we presented a framework towards automatic restoration of a group of

common defects in archive film, i.e. dirt and blotches. It was achieved by adapting

HMM modelling, MRF modelling and motion analysis, and random walks in three

individual stages of this framework, i.e. defect detection, false alarm elimination

and defect removal.

In Chapter 4 we proposed an archive film defect detection approach involving HMM

modelling of temporal pixel sequences and then a leave-one-out process to pinpoint

the degraded pixels. An HMM was first characterized by combining the Left-Right

and Circular models according to the features of pixel transitions on the temporal

133



134 Chapter 7. Conclusions and Further Work

axis. The trained 5-state HMM was accurate for our defect detection task, which

was backed up by a testing experiment using real normal pixel sequences. Then, we

applied the trained HMM in a leave-one-out process to investigate how the likeli-

hood of an observation sequence being normal varied if each pixel in the sequence

was missing one at a time. Most importantly, this process enabled the method to

detect if the centre pixel was degraded, instead of only computing if an observation

sequence was degraded as in traditional HMM based classifications. Furthermore,

we found that it was better to have an overzealous defect detector and then remove

false positives, rather than apply a conservative method where not all true defects

are found and extra steps have to be implemented till a reasonable target is met.

Although we applied a rather coarse modelling of normal pixel observations at the

expense of false alarms, the proposed HAFID defect detector resulted in not only

a higher correct detection rate but also a lower rate of false detections than the

current state-of-the-art techniques, which was testified using a large number of real

degraded films with handlabelled groundtruth from a generalized catalogue.

In Chapter 5, we used the resulting defect map from HAFID as a prior in an MRF

scheme, to iteratively remove false positive defect candidates by examining spatial

constraints followed by a motion tracking stage to remove more false positives based

on temporal constraints. This two-stage elimination procedure was developed by

analyzing the characteristics of false alarms in addition to causes that were often

investigated in previous methods. This strategy was chosen based on our finding

that false alarms share similar characteristics though they are caused in different

circumstances. The proposed approach proved to be an effective solution to remove

false alarms from our HAFID defect detector through experiments reproduced from

Chapter 4.

In Chapter 6, we presented a novel pixel-exemplar based restoration algorithm by

performing the spatiotemporal random walks on image sequences. An advanced

random walk based searching algorithm was first proposed to dynamically generate

a region of candidate pixel-exemplars for each degraded pixel position. The ran-

dom walks were performed by computing pixel similarities using multiple features

(intensity, motion and texture). Then, the optimal exemplar was chosen from this

region to replace the degraded pixel using the statistics produced during the random

walks. Large degraded regions were specially handled using multiscale updating and
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reliability values. The proposed algorithm was compared against two state-of-the-

art methods to demonstrate the improved accuracy in restoring synthetic and real

degraded image sequences. We also demonstrated the performance of our proposed

defect removal approach on inpainting.

7.2 Contributions

The contributions of this thesis are:

• A defect detection approach was proposed based on HMM modelling of pixel

transitions over a long range and a leave-one-out test process.

• A two-stage false alarm elimination method was developed using spatial and

temporal continuity analysis based on two characteristics of false alarms.

• A pixel-exemplar based restoration algorithm was proposed based on spa-

tiotemporal random walks.

7.3 Future Work

• Defect detection: Modelling the normal pixel sequences using multiple

HMMs can be applied in HAFID detector in the benefit of not only a higher

correct detection rate but less false alarms as well although our strategy is

always to detect the maximum number of true defects first and followed by

false alarms elimination. Modelling of normal pixel sequences using a single

HMM was rather coarse as shown in Section 4.3. Complex motion events that

last for a longer range can be modelled using additional HMMs.

As mentioned before, our defect detection approach can be generalised as a

novelty detection framework with applications in other areas, such as detecting

vertical line scratches by using spatial pixel sequences parallel to the horizon

instead of temporal ones and detecting tool breakage in an end milling opera-

tion by observing the cutting force signal.
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• False Alarm Elimination: Our two-stage false alarm elimination method

was designed based on two characteristics that were discovered during the

investigation of the false detections from HAFID. A further understanding

of the characteristics of false alarms is necessary to give a more generalised

categorization of false alarms, where the investigation should not be limited to

results from our HAFID detector. Additionally, the accuracy of our proposed

elimination method shall be evaluated in a comparison with other false alarms

elimination methods.

As previously mentioned, false alarms caused by shot transitions can be pre-

vented by including a video segmentation process into our archive film restora-

tion system. Hence, a film will be separated into a number of clips, each of

which only contains one scene.

• Defect Removal: our proposed defect removal method fails to restore some

pixels on image structures, which was easier to observe when it was applied

in image inpainting. Higher accuracy can be achieved through a better op-

timized selection in the search-and-replace procedure. The current optimal

pixel-exemplar was chosen based on the statistics generated during the ran-

dom walk by computing the pairwise similarities of pixels inside the region

of candidates. However, propagating image structures requires emphasises on

the correlation between the optimal replacement pixel and the degraded pixel’s

neighbours. Hence, we can improve the restoration accuracy if we addition-

ally measured the similarities of image features between the pixel-exemplar

candidates and the degraded pixel’s neighbours.

The proposed 3-D random walk based search can be useful in some computer

vision applications, such as finding corresponding pixels in tracking and image

registration, creating a support region to compute key point descriptions and

so on. However, it was limited by its high computational cost. A possible so-

lution will be to perform fast random walks [89, 100] to reduce the number of

random walks being performed. Another choice will be to study the eigenval-

ues of the random walk transition matrix computed in a local neighbourhood

instead of in the entire image.

• Other types of defects: as mentioned in Chapter 4, the proposed HAFID

detector fails to respond to defective pixels caused by other types of defects,
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such as continuous vertical line scratches. Therefore, one of the future works

involves developing specified solutions to handle other defects (discussed in

Chapter 3) so as to further replace corresponding manual processes in the

automatic archive film restoration system that we outlined in Chapter 1.
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Appendix A
RWDR: Application to Image and Video

Inpainting

In this appendix, we demonstrate the application of our proposed defect removal

approach to image and video inpainting. As mentioned in Section 2.4, defect removal

is essentially a task of filling in missing regions. It is straightforward to apply our

method to inpainting problems using handlabelled mask instead of defect maps. In

the following sections, we will discuss the applications in detail and give some sample

results along with comparative results from both image structure propagation based

[6] and exemplar based [24] inpainting methods.

The term “inpainting” originates from painting restoration in the world of Art (see

an example in Figure A.1). The original idea of artistic inpainting is to smoothly

propagate the surrounding colour and structure into the missing area iteratively.

Like [6], the proposed approach also adapted this idea by introducing the multiscale

algorithm and reliability values to enforce a (large) degraded region to implode

gradually through the propagation of reliable outer pixels into the region.
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Figure A.1: A painting restored by our proposed method is shown with
original images on the left, masks in the middle and results on the right.

Image Inpainting

In the case of image inpainting, the random walking is limited to the spatial domain.

Instead of 26 spatiotemporal neighbours, a pixel can only transit to one of its 8

spatial neighbours in each random walk step. The spatial-only regions of candidate

pixel-exemplars are generated much faster than using 3-D random walks. Figure A.2

shows two sample image inpainting results from our proposed algorithm. In both

examples, the inpainting regions are small and thin so that our proposed method is

able to achieve subjectively good restoration of these regions.

Figure A.3 gives an example of filling in a large missing region. The inpainting

result from our proposed method are compared with two landmark works, i.e. image

structure propagation based method [6] and exemplar based method [24]. It is

truly difficult to measure the quality of restoration when we restore large missing

regions. Subjectively speaking, results from the exemplar based method [24] is more

reasonable in this case since the house is better restored, but quite a few artifacts are

also introduced in some parts of the image, e.g. trees on the roof and lake. For our

proposed method, the inpainting result is rather plain and lacks of textures. This is

because patch-exemplar based methods perform more effectively in propagating non-

stochastic (regular or structured) textures than pixel-exemplar based methods and
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Figure A.2: Two examples of image inpainting are shown with the original
image on the top, inpainting mask in the middle and restored image at the
bottom.
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Figure A.3: Bungee - Top: Original image and inpainting mask; Bottom:
(left to right) inpainting results from structure propagation based method
[6], exemplar based method [24] and our proposed method.



153

the texture feature (LBP) used in our method is limited to a 3× 3 neighbourhood.

Furthermore, our approach is designed to propagate spatiotemporal neighbouring

pixel-exemplars into the missing region where the temporal neighbours play a more

important role in restoring the texture information while spatial neighbours mostly

help propagate image structures into the region.

Video Inpainting

Our proposed defect removal method can be directly applied to video inpainting by

using the handlabelled masks instead. Figure A.4 and A.5 illustrate two examples

with five consecutive frames extracted from the inpainting image sequences. In a

similar sense as the applications demonstrated here, the proposed method may also

be useful in some film post production processes, e.g. removing distractions or any

unwanted objects.

Figure A.4 shows sample frames from Container, which is a real sequence with a

static background and slow motions of the container ship in the front. Our target

here is to remove distractions (two swiftly crossing birds). The proposed method is

able to properly restore the texture details (sea waves) and the occluded object (the

flagpole in the last frame) on the missing regions left from removing the birds.

In Figure A.5, we illustrate a more challenging example of video inpainting with

sample frames from an image sequence we call stadium. Three layers of motions

can be observed in stadium, i.e. slow motions in the background (the camera pans

towards left), relatively faster motions of the fence and fast motions of the athlete.

In this case, we would like to remove the running athlete from the scene to draw

more attention on the people sitting on the bench. The proposed approach provides

reasonable restoration of the inpainting regions but some blurring-like artifacts are

also produced over the fence (in the first frame) and man’s head (in the last three

frames). Due to the complex motions in this image sequences, incorrectly restored

motion information further causes these blurring-like artifacts.

In this appendix, we illustrated the application of our proposed defect removal ap-

proach in inpainting. When applied in image inpainting, our method was not good
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at propagating image structure information into large missing regions, which leads

to a segmentation-like side effect in the inpainted regions. It also indicated that

the proposed defect removal method mostly relied on the temporal information that

existed in the image sequences.
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Figure A.4: Container - Inpainting results from 5 consecutive frames
from top to bottom. Original frames are shown on the left, mask in the
middle and results on the right.
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Figure A.5: Stadium - Inpainting results from 5 consecutive frames from
top to bottom. Original frames are shown on the left, mask in the middle
and results on the right.


