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Abstract

The need to reduce the dimensionality of a dataset whilst retaining inherent

manifold structure is key in many pattern recognition, machine learning and

computer vision tasks. This process is often referred to as manifold learning

since the structure is preserved during dimensionality reduction by learning the

intrinsic low-dimensional manifold that the data lies on. Since the inception of

manifold learning much research has been carried out into the most effective

way of tackling this problem. Two main streams emerged to tackle the task:

local and global methods. Each aim to preserve either local or global properties

of the data. However, in recent years a third stream of research has come forth:

global alignment of local models, which aims to preserve local properties over a

global scale. We present a framework to tackle this local/global problem that

approximates the manifold as a set of piecewise linear models (Piecewise Lin-

ear Manifold Learning). By merging these linear models in an order defined

by their global topology, we can obtain a globally stable, and locally accurate

model of the manifold. Examining the local properties of the data also allows

us to present a generalisation to one of the main open problems in manifold

learning — the out-of-sample extension. This problem is concerned with em-

bedding new samples into a previously learnt low-dimensional embedding. Our

solution — GOoSE — exploits the local geometry of the manifold to project

novel samples into a low-dimensional embedding independent of what manifold

learning algorithm was initially used. The results obtained for both Piecewise

Linear Manifold Learning and GOoSE are significantly improved over existing

state of the art algorithms.





Contents

1 Introduction 3

1.1 Manifold Learning and the Manifold Assumption . . . . . . . . . 4

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Structure of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Manifold Learning 13

2.1 Dimensions, Curses and Blessings . . . . . . . . . . . . . . . . . . 14

2.2 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Vector and Matrices . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Eigenanalysis . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 Transformations . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.5 From Subspaces to Manifolds . . . . . . . . . . . . . . . . 20

2.3 A History of Manifold Learning . . . . . . . . . . . . . . . . . . . 21

2.3.1 The First 100 Years: 1900-2000 . . . . . . . . . . . . . . . 23

2.3.2 The Manifold Revolution: 2000-Present Day . . . . . . . . 31

2.3.3 Artificial Neural Network Based Approaches . . . . . . . 49

2.4 Towards a Taxonomy of Techniques . . . . . . . . . . . . . . . . 50

2.5 Open Problems in Manifold Learning . . . . . . . . . . . . . . . . 51

2.5.1 Intrinsic Dimensionality . . . . . . . . . . . . . . . . . . . 51

2.5.2 Parameter Estimation . . . . . . . . . . . . . . . . . . . . 53

2.5.3 Out-of-Sample Extension . . . . . . . . . . . . . . . . . . 55

2.5.4 Large Scale Data . . . . . . . . . . . . . . . . . . . . . . . 57

2.5.5 Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.5.6 Quality Assessment . . . . . . . . . . . . . . . . . . . . . 59

2.6 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



CONTENTS

3 Piecewise-Linear Manifold Learning 63

3.1 PLML Framework Overview . . . . . . . . . . . . . . . . . . . . . 64

3.1.1 Step 1: Building Local Linear Models . . . . . . . . . . . 65

3.1.2 Step 2: Determining Model Topology . . . . . . . . . . . 67

3.1.3 Step 3: Merging Models . . . . . . . . . . . . . . . . . . . 69

3.1.4 Step 4: Finding the Low-Dimensional Embedding . . . . . 74

3.1.5 Algorithm Step Through . . . . . . . . . . . . . . . . . . . 75

3.2 Piecewise-Linear Manifold Learning . . . . . . . . . . . . . . . . 78

3.2.1 Building Local Models via Local PCA . . . . . . . . . . . 78

3.2.2 The Minimum Spanning Tree for Model Topology . . . . 81

3.2.3 From Local to Global: Combining Local Models . . . . . 84

3.2.4 Obtaining Low-Dimensional Representation . . . . . . . . 93

3.3 Alternative Paths Investigated . . . . . . . . . . . . . . . . . . . 93

3.3.1 Alternative Clustering Techniques . . . . . . . . . . . . . 94

3.3.2 Intersecting Hyperplanes for Model Topology . . . . . . . 95

3.3.3 Non-Parallel Projections . . . . . . . . . . . . . . . . . . . 100

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4 Piecewise-Linear Manifold Learning: Performance and Analy-
sis 101

4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.1.1 Quality Measures . . . . . . . . . . . . . . . . . . . . . . . 104

4.1.2 Comparison Algorithms . . . . . . . . . . . . . . . . . . . 107

4.1.3 Environment . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.2 Method Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.2.1 Swiss Roll . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2.2 Broken Swiss Roll . . . . . . . . . . . . . . . . . . . . . . 112

4.2.3 Fishbowl . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2.4 Helix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.3 PLML Detailed Analysis . . . . . . . . . . . . . . . . . . . . . . . 122

4.3.1 Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.3.2 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.3.3 Parameter Selection . . . . . . . . . . . . . . . . . . . . . 136

4.4 Image Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.4.1 Frey Faces . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

12



CONTENTS

4.4.2 ISOFaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.4.3 COIL-20 Object . . . . . . . . . . . . . . . . . . . . . . . 165

4.5 Computational Complexity . . . . . . . . . . . . . . . . . . . . . 168

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5 A Generalised Solution to the Out-of-Sample Extension Prob-
lem 171

5.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.2 Existing Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.2.1 Principal Components Analysis . . . . . . . . . . . . . . . 176

5.2.2 Bengio et al. . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.2.3 Yang et al. . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.3 A Generalised Solution . . . . . . . . . . . . . . . . . . . . . . . . 179

5.3.1 Step 1: Find The Local Neighbourhood . . . . . . . . . . 182

5.3.2 Step 2: Calculate The Projection Matrix . . . . . . . . . . 183

5.3.3 Step 3: Calculate The Transformation Matrix . . . . . . . 183

5.3.4 Step 4: Calculate Low-dimensional Representation . . . . 187

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.4.1 Embedding Error . . . . . . . . . . . . . . . . . . . . . . . 189

5.4.2 Parameter Selection . . . . . . . . . . . . . . . . . . . . . 190

5.4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6 Conclusions 201

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

6.1.1 Piecewise-Linear Manifold Learning . . . . . . . . . . . . 202

6.1.2 Generalised Out-of-Sample Extension . . . . . . . . . . . 204

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

6.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

A Publications 209

Bibliography 239

1





Schönheit ist ein gutes empfehlungsschreiben

German proverb 1
Introduction1

This thesis is concerned with the development of a manifold learning algorithm

that is easy to understand, yields good results, scalable and is stable under

different data conditions and parameter values. As such, the problem of man-

ifold learning is phrased as a piecewise-linear problem, where the manifold is

partitioned into small linear pieces which are reconstructed in a piecewise fash-

ion. Out of this algorithm springs the extension to embed new samples without

re-learning the entire data — the out-of-sample extension. From the principles

contained in this out-of-sample extension method we are able to extend the al-

gorithm to a generalised form meaning that new samples can be embedded into

any mapping produce by any manifold learning algorithm.

In this chapter we lay the foundations for this thesis, namely introducing mani-

fold learning and the manifold assumption. These two key ideas lie not only at

the heart of manifold learning theory but also at the heart of this thesis. We

end the chapter by outlining the structure of the remainder of the thesis.

1Harry Strange and Reyer Zwiggelaar. Classification Performance related to Intrinsic Di-
mensionality in Mammographic Image Analysis. In Proceedings of the Thirteenth Annual
Conference on Medical Image Understanding and Analysis, pp. 219-223. 2009.



CHAPTER 1. INTRODUCTION

1.1 Manifold Learning and the Manifold Assumption

High-dimensional data is often hard to interpret and is found in many machine

learning, computer vision and pattern recognition problems. For example, con-

sider the case of a set of images of size 32× 32 pixels depicting a 3-dimensional

object undergoing rotation. Each frame consists of an image of the object at

a given rotation angle and the next image in the sequence will increase this

rotation angle until the object has been rotated by 360◦. Each of these im-

ages are considered in their rasterised form, that is they are a single vector

in 1024-dimensional space, this means that if we take an image every 5◦ then

we have a set of 72 vectors in 1024-dimensional space. Given the data in this

form, one question that arrises is: from these samples can we simplify and de-

duce any structure from the data? In this example it would be expected that

the data would contain circular topology and so lies on a 1-dimensional mani-

fold. However, this 1-dimensional manifold can be embedded into 2-dimensional

Euclidean space as a circle. This would be expected because the only change

between frames is the angular rotation of the object around one axis and the

radius of rotation. This idea that the data lies on or near a 1-dimensional man-

ifold is known as the manifold assumption. We assume that even though the

input data is high-dimensional (in this case 1024-dimensions), it actually lies on

or near a low-dimensional manifold (in this example 1-dimension). Therefore

we expect a good manifold learning algorithm to be able to learn this intrinsic

low-dimensional manifold and so reduce the dimensionality of the data whilst

retaining the important underlying structure. Figure 1.1 pictorially shows this

simple example by using a set of images taken from the COIL-20 dataset (Nene

et al., 1996) depicting a 3-dimensional cat object rotating 360◦ over 72 images.

Using manifold learning we can reduce the dimensionality of the data and so

describe each object as the (x, y) position on a circle rather than a point in the

4



1.1. MANIFOLD LEARNING AND THE MANIFOLD ASSUMPTION

Figure 1.1: An example of a high-dimensional problem that can be expressed
in terms of a low-dimensional manifold. The input images are vectors in 1024-
dimensional space which can be represented using only 2-dimensions — their
position on the circular manifold. Each blue dot represents a single image’s
position on the learnt low-dimensional manifold.

high-dimensional input space. If we embedded this data set into 1-dimension

then there would be a cut in the topology and a discontinuity in the manifold.

Thus by reducing the dimensionality we have managed to simplify this rather

trivial problem from that of a set of points in 1024-dimensional space to a set of

points on a circle in 2-dimensional space. More than that we have also managed

to infer some information about the structure of the underlying data. This is

best explained by imagining that we had no idea what the input data in this

example represented (i.e. we did not know that they were rasterised images of

a rotating object).

As mentioned above at the heart of manifold learning is the assumption that

the high-dimensional data lies on or near a low-dimensional manifold. In recent

years this assumption has been shown to hold both experimentally, through the

5



CHAPTER 1. INTRODUCTION

use of manifold learning on data and visualising the results (e.g. (Tenenbaum

et al., 2000; Weinberger and Saul, 2006b; Strange and Zwiggelaar, 2009)); and,

in part, theoretically (Seung and Lee, 2000)). Some preliminary work that

we performed at the start of this thesis showed, through the use of relating

classification performance to intrinsic dimensionality, that mammographic risk

assessment can be related to an intrinsic low-dimensional manifold (Strange and

Zwiggelaar, 2009). This shows that in classification tasks the manifold structure

of the data should not be ignored as it can be used to aid classification. This is

not surprising as it has been argued that visual perception is tightly linked to

manifold structure (Seung and Lee, 2000). Since mammographic image analysis

is a visual problem our preliminary work showed that the link between visual

perception and manifold learning exists even in non-trivial problem areas.

The heart of this argument is that manifolds are fundamental to perception,

so the brain must have some way of representing them (Seung and Lee, 2000).

Because the possible images of an object lie on a manifold, it has been hy-

pothesised that a visual memory is stored as a manifold of stable states or a

continuous attractor (Seung and Lee, 2000). Effectively, the fact that manifold

learning algorithms show that images can lie on low-dimensional manifolds it

can be assumed that the brain must function in a similar way. This leads to

an interesting interplay between the theoretical and experimental areas of man-

ifold learning and perception research. The experimental research shows that

the images lie on a low-dimensional manifold, and the experiments are based on

the claims made by the theoretical research. Similarly the theoretical research

claims that the experimental results show that the theoretical foundations are

fair assumptions. However the problem is phrased, be it experimental or the-

oretical, it is still interesting to note the role that manifold learning plays in

visual perception and so by extension computer vision, machine learning and

6



1.2. PROBLEM STATEMENT

pattern recognition.

1.2 Problem Statement

The questions at the heart of this thesis are whether we can develop a manifold

learning algorithm that models the data correctly at a local and global scale, and

whether the central ideas of this manifold learning algorithm can be extended

to handle new samples without the need to re-learn the entire training data.

As such the work in this thesis is concerned with two main areas of manifold

learning: the development of a manifold learning algorithm, Piecewise Linear

Manifold Learning, and the creation of a mapping function that embeds new

samples between high-dimensional spaces and previously learnt embeddings, the

Generalised Out-of-Sample Extension algorithm. The connection between these

two algorithms is described as follows.

Manifold learning seeks to find a low dimensional embedding of a high dimen-

sional data set which retains any learnt manifold structure. That is, given a

high-dimensional data set, a manifold learning algorithm will attempt to learn

a lower dimensional manifold that the high dimensional data lies on or near.

Many algorithms exist to perform this task, some of which aim to retain lin-

ear structure between the high and low-dimensional spaces and some of which

attempt to learn and retain the intrinsic non-linear manifold. These latter non-

linear algorithms will often attempt to learn the manifold by explicitly mod-

elling the local or global properties of the manifold. Some of these algorithms

are explained in more detail in Chapter 2. In this thesis we are interested in

retaining the local properties of the manifold across a global scale by modelling

the manifold as a set of small linear patches with are then re-created in the low-

dimensional space. The basic idea of our piecewise-linear approach to manifold

7



CHAPTER 1. INTRODUCTION

Figure 1.2: An example of embedding a new sample into a previously learnt
low-dimensional embedding. The red star had not been learnt at the same time
as the blue dots but a good out-of-sample extension algorithm should be able
to successfully find its position on the low-dimensional manifold.

learning is to break the manifold up into small pieces that are locally linear and

so locally low-dimensional. We then determine how these pieces are connected,

that is, given one of these local pieces we know which other pieces are connected

to it. This enables us to merge these pieces into one large piece by re-connecting

them in a piecewise fashion. This gives us our low-dimensional approximation

of the manifold that is both locally and globally stable.

Another related problem to manifold learning is that of the out-of-sample ex-

tension problem. The problem can be summarised as follows: given a set of

high-dimensional data and its low-dimensional embedding, we wish to find the

low-dimensional position of a novel data point that is not in the previously learnt

data set, without re-learning the entire dataset (Figure 1.2). The position of

this new data point could be computed by appending it to the previously learnt

high-dimensional data and re-learning the entire dataset. However, this is com-

8



1.3. CONTRIBUTIONS

putationally inefficient for large data sets and we wish to find a more elegant

solution to the problem. The method we develop in this thesis to perform the

out-of-sample extension task works by learning the local geometric transform

that occurs in the new sample’s neighbourhood within the previously learnt

data as a result of manifold learning. By applying this geometric transform to

the new sample we are able to successfully embed it into the previously learnt

low-dimensional embedding.

1.3 Contributions

The main contributions to this thesis come in the form of publications and

patents and are listed below:

• Harry Strange and Reyer Zwiggelaar, Classification Performance related to

Intrinsic Dimensionality in Mammographic Image Analysis, Proceedings

of the Thirteenth Annual Conference on Medical Image Understanding

and Analysis, 2009, pp.219-223

• Harry Strange and Reyer Zwiggelaar, Iterative Hyperplane Merging: A

Framework for Manifold Learning. In Frédéric Labrosse, Reyer Zwigge-

laar, Yonghuai Liu, and Bernie Tiddeman, editors, Proceedings of the

British Machine Vision Conference, pages 18.1-18.11. BMVA Press, Septem-

ber 2010

• Reyer Zwiggelaar and Harry Strange, Identification of Texture Connectiv-

ity, Patent KS.P47544GB, 2010

• Harry Strange and Reyer Zwiggelaar, Parallel Projections for Manifold

Learning. In Proceedings of the Ninth International Conference on Ma-

chine Learning and Applications. Washington DC, December 2010. IEEE
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Press.

• Harry Strange and Reyer Zwiggelaar, A Generalized Solution to the Out-

of-Sample Extension Problem in Manifold Learning. In Proceedings of

AAAI2011 the Twenty-Fifth Conference on Artificial Intelligence. San

Francisco, CA, August 2011.

Second to these publications comes the impact of this thesis to the wider re-

search community. We have demonstrated that the modelling of a manifold in

a piecewise-linear fashion has many benefits and it is expected that more work

will be carried out to overcome some of the current limitations to this approach

that we have encountered.

1.4 Structure of Thesis

The rest of this thesis is structured as follows. We begin in Chapter 2 by intro-

ducing and exploring the area of manifold learning. Its history is traced from

its earliest inception to present day state of the art techniques. The main tech-

niques are described and phrased within a consistent mathematical algorithm.

We also describe the core mathematics needed to work with manifold learning

as well as current open-problems related to the field. In Chapter 3 we introduce

the Piecewise-Linear Manifold Learning algorithm. This algorithm is described

in both a high-level and low-level fashion, enabling the reader to either quickly

gain insight into its functionality, or to delve deeper into its inner workings.

Each step of the algorithm is explained in detail and various considerations and

mathematical assumptions are discussed. Chapter 4 provides an in depth analy-

sis into the performance of the Piecewise Linear Manifold Learning algorithm on

both artificial and image data sets. The performance is measured using various

error measures, as well as visualisations, and the algorithm is compared against

10



1.4. STRUCTURE OF THESIS

the leading state of the art manifold learning techniques. Chapter 5 introduces

the Generalised Out-of-Sample Extension method used to embed new samples

into previously learnt embeddings. The results show its effectiveness and is com-

pared against other out-of-sample techniques. Finally in Chapter 6 we draw the

main conclusions from the work contained in this thesis and show how the aims

we have set out to achieve have been met. We also point to possible future

directions of research that have arisen as a result of the work contained in this

thesis.
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“Simplicity is removing the unnecessary
so that the necessary may speak”

Hans Hofmann (1880 - 1966)

2
Manifold Learning

This chapter is concerned with providing the motivation for manifold learning

as well as discussing the key contributions to the field. We begin in Section 2.1

by describing the practical and theoretical motivations for manifold learning.

In Section 2.2 we outline the core mathematical framework within which we

can introduce, expand and explain the mathematical principles for manifold

learning. A history of manifold learning is then presented in Section 2.3 from

the earliest day to the current state of the art. This section provides an overview

of the evolution of strategies used to solve the problem of manifold learning

and places them within a historical framework. We present a brief taxonomy

of manifold learning algorithms in Section 2.4. In Section 2.5 we discuss the

current open problems that researchers in the field face. Some places for further

reading are outlined in Section 2.6 and we finish in Section 2.7 by drawing

conclusions from this chapter and discussing how this guided our research in

the following chapters.



CHAPTER 2. MANIFOLD LEARNING

2.1 Dimensions, Curses and Blessings

The field of manifold learning stems from the need to make sense of datasets

with large numbers of samples and variables (i.e. high-dimensional data). Re-

searchers in many diverse areas such as biology, engineering, medicine and re-

mote sensing are presented with datasets with large numbers of observations

and large numbers of variables taken for each observation. Advances in data

collection devices has meant that often more variables are measured than are

actually needed. This redundancy means that often the important variables,

or dimensions, are ‘hidden’ within the data set. Traditional statistical analysis

tools either fail to handle data sets with large numbers of dimensions or signif-

icantly degrade in performance. As such, it is useful to have a tool that can

extract these hidden dimensions and remove the redundant ones. As well as

improving the performance of statistical tools, this reduction of the number of

dimensions will help with visualising the data. Humans struggle to visualise

high-dimensional spaces. Anything where the dimensionality of the space is

greater than three will be difficult to visualise. As such reducing the number

of dimensions to a visualisable number will enable researchers to observe the

data within a known frame of reference and therefore make it easier for them to

attempt to draw conclusions as to the properties of the high-dimensional data.

A common term used to describe the problems associated with high-dimensional

data is “the curse of dimensionality” (Bellman, 1961). This term underlies the

theoretical reasons why working in high-dimensional spaces is problematic. Bell-

man considered a Cartesian grid of spacing 0.1 on the 10-dimensional unit cube.

In this case the number of points on the cube equals 1010. For the same sce-

nario but considering a 20-dimensional unit cube the number of points increases

to 1020. Bellman’s interpretation of this is that the number of data points re-

14



2.2. MATHEMATICAL PRELIMINARIES

quired to get a low variance estimate of a function of several variables grows

exponentially with the number of dimensions. Put simply, as the dimensional-

ity of the space increases so does the sparsity of the data. This “empty space

phenomenon” (Scott and Thompson, 1983) gives unexpected properties to high-

dimensional spaces (a matter discussed further in Section 2.5.5).

Traditionally two different approaches can be used to overcome these problems of

dimensionality: feature selection and feature transformation. Both approaches

attempt to build a lower-dimensional representation of high-dimensional data,

however there are key differences in the way that each approach achieves this.

Feature selection selects an optimal subset of the dimensions (features) that

match some optimality criteria such as Minimum Description Length or Bayesian

Information Criterion (Guyon and Elisseeff, 2003). Feature transformation

transforms the high-dimensional data by projecting it into a learnt low dimen-

sional space. Manifold learning and dimensionality reduction algorithms fall

into the feature transformation category. These algorithms work by transform-

ing the original features into a new low-dimensional space. As such it is to

feature transformation that we will be turning our attention throughout the

remainder of this chapter and the remainder of this thesis.

2.2 Mathematical Preliminaries

To be able to succinctly describe the mathematical processes that drive man-

ifold learning techniques we need to establish a common mathematical frame-

work within which we can work. To do this we need to define concepts from

various mathematical disciplines and so this section sets out the mathematical

terminology that will be used in the remainder of this thesis.

15



CHAPTER 2. MANIFOLD LEARNING

2.2.1 Vector and Matrices

A vector is an ordered collection of n real numbers denoted

v = [v1, v2, . . . , vn] (2.1)

where each of these numbers are referred to as a component of v. We refer to

this vector as an n-dimensional vector. There are two ways of representing such

a vector, either as a row-vector or as a column vector. A row vector will take

the form as shown in Equation 2.1 where as a column vector takes the form

v =




v1

v2

...

vn




(2.2)

Unless otherwise stated, whenever we refer to a vector we will assume that they

take the form of a row vector.

A matrix is a rectangular array of nm numbers with n-rows and m-columns

such that

A =




a11 a12 . . . a1m

a21 a22 . . . a2m

...
...

. . .
...

an1 an2 . . . anm




(2.3)

Throughout this thesis matrices are represented in bold type. The above matrix
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has dimensions of m by n and each number (e.g. aij) is referred to as an element

of A.

2.2.2 Eigenanalysis

The term eigenanalysis is derived from the German word eigen meaning “own”

or “characteristic”. Eigenalysis is concerned with the study of eigenvectors and

eigenvalues related to a square matrix, A. An eigenvalue of A is a scalar which

we denote as λ. An eigenvector of A is a non-zero column vector denoted as v.

For a given square matrix, A, all eigenvalues and eigenvectors must satisfy the

equation

Av = λv (2.4)

and we say that λ is the corresponding eigenvalue to the eigenvector v. The

eigenvalues can be calculated by rewriting Equation 2.4 as

(A− λI)v = 0 (2.5)

where I is an n×n identity matrix. A non-trivial solution to this linear system

exists if the determinant equals zeros1, that is

det(A− λI) = 0 (2.6)

This equation is known as the Characteristic Equation, or Characteristic Poly-

nomial, (Weisstein, 2011). The roots of this polynomial gives us the eigenvectors

1This arises from Cramer’s rule which provides a solution of a system of linear equations
where there are as many equations as unknowns.
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of A.

Once the eigenvalues have been calculated as above then the eigenvectors can

be found by using the linear system in Equation 2.5 and substituting the eigen-

values found from the roots of the characteristic polynomial to calculate each

corresponding eigenvector.

Eigendecomposition therefore is the factorisation of a square n× n matrix into

its associated eigenvalues and eigenvectors. Given an n × n matrix, A, it can

be factorised as

A = VΛV−1 (2.7)

where V is a matrix containing as columns the n eigenvectors such that vi

corresponds to the ith column of V and therefore the ith eigenvector of A. Λ

is a diagonal matrix with the eigenvalues of A residing along the diagonal of

Λ. That is, λi = Λii. It is also worth noting that A must be a diagonalisable

matrix, that is there exists an invertible matrix P such that P−1AP is a diagonal

matrix.

2.2.3 Vector Spaces

A vector space is formed by a set of vectors, V , on which certain additive and

multiplicative properties hold. We denote a vector, v, as belonging to a vector

space, V , as v ∈ V . As shown by Blyth and Robertson (2007), for V to be a

vector space the following properties must hold:

1. x+ y = y + x for all x, y ∈ V ;

2. (x+ y) + z = x+ (y + z) for all x, y, z ∈ V ;
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3. there exists an element 0 ∈ V such that x+ 0 = x for every x ∈ V ;

4. for every x ∈ V there exists −x ∈ V such that x+ (−x) = 0;

5. λ(x+ y) = λx+ λy for all x, y ∈ V and all scalars λ;

6. (λ+ µ)x = λx+ µx for all x ∈ V and all scalars λ, µ;

7. (λµ)x = λ(µx) for all x ∈ V and all scalars λ, µ;

8. 1x = x for all x ∈ V .

When the above scalars are real numbers we say that V is a real vector space2.

Throughout this thesis when dealing with vector spaces we deal with Euclidean

vector spaces. The Euclidean vector space is the set of n real numbers, Rn, with

an added Euclidean metric such that distances between two points, x, y ∈ Rn,

are defined as

d(x, y) =

√√√√
n∑

i=1

(xi − yi)2 (2.8)

As well as the above Euclidean metric, the Euclidean vector space has an inner

product between two vectors, x, y ∈ Rn, defined as

x · y = x1y1 + x2y2 + . . .+ xnyn (2.9)

2.2.4 Transformations

Given two vector spaces V and W , a linear transformation T from V into W is

a function that assigns each vector v ∈ V a unique vector Tv ∈ W such that,

for each u and v in V and each scalar α
2Similarly, if the scalars are complex numbers we refer to V as a complex vector space
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T (u + v) = Tu + Tv (2.10)

and

T (αv) = αTv (2.11)

This transformation is denoted T : V → W which indicates that T takes the

real vector space V into the real vector space W , and T is a function with V

as its domain and a subset of W as its range (Grossman, 1994). This can be

phrased in terms of a transformation matrix such that for a linear transformation

T : Rn → Rm there exists a unique m× n transformation matrix AT such that

Tx = ATx (2.12)

That is the transformed image, Tx, is a product of x and the transformation

matrix AT .

2.2.5 From Subspaces to Manifolds

The above transformations only deal with the global linear case. A linear trans-

form T : Rp → Rq will map onto a global linear subspace in Rq. However, data

is often not distributed on a single linear subspace. Rather, there is often cur-

vature and non-linear variation within the data and as such a linear transform

will not adequately capture the true characteristics of the data. This is where

the concept of manifolds become important.

Manifolds extend the idea of surfaces to higher-dimensions. Manifolds are often
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globally non-linear yet locally exhibit linear structure (Roweis and Saul, 2000).

Concepts from differential geometry show that the local metric on a small local

neighbourhood of a manifold, combined with the topology information of these

neighbourhoods, fully determine a manifold’s intrinsic geometry (Carmo, 1992;

Brand, 2004). As such, by modelling data using the manifold structure one can

often extract the true data distribution that is not available when modelling the

data using subspace methods.

A manifold P can be thought of as locally isometric to an open subset of Rq

and embedded in high-dimensional Euclidean space Rp (where q � p). As such,

at a local scale P is homeomorphic to Euclidean space and for an infinitesimal

neighbourhood N ⊂ P we can say that N ⊂ Rq ∈ Rp.

Given a manifold in high-dimensional space, P ∈ Rp, that is locally isometric to

Rq then we denote the embedding of this manifold in Rq as Q. We represent this

function as f : P ↪→ Q where the hooked arrow, ↪→, represents the embedding

operator.

2.3 A History of Manifold Learning

Now that we have laid the foundations of manifold learning in terms of practical

motivation and mathematical preliminaries, we can turn our focus to the history

of manifold learning.

The story of manifold learning can be broadly split into two main time periods.

First the establishment of dimensionality reduction and subspace learning which

spanned the first 100 years of research in the area. This period was vital in the

laying down of foundations which would later prove essential for research into

manifold learning. The second period was triggered by the establishment of the
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Figure 2.1: The total citations from 2001-2010 of the three most popular man-
ifold learning algorithms: LLE (Roweis and Saul, 2000), Isomap (Tenenbaum
et al., 2000) and Laplacian Eigenmaps (Belkin and Niyogi, 2002) as well as PCA
(Wold et al., 1987).

first true manifold learning algorithms. This period of time is a factor of ten

shorter than the first but has seen a rapid growth in the number of publications

related to the field of manifold learning.

Figure 2.1 shows the relative contributions of LLE (Roweis and Saul, 2000),

Isomap (Tenenbaum et al., 2000) and Laplacian Eigenmaps (Belkin and Niyogi,

2002) as well as PCA (Wold et al., 1987) over the time period 2001 to 2010. The

citation data was taken from the ISI Web of Knowledge database3. The PCA

citation data was taken from the most recent, and most cited, review paper on

PCA (Wold et al., 1987) as the Web of Knowledge database does not go back far

enough to contain citation data for the original PCA papers. As can be seen, the

manifold learning algorithms very quickly overtake PCA in terms of percentage

contribution of citations although PCA remains relatively constant throughout

the time period. This shows that not only has manifold learning become a

lucrative research area, but also that PCA remains an important subject that

3http://wok.mimas.ac.uk (Link checked 27/07/2011).
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has not been ‘overtaken’ as a result of the advent of non-linear dimensionality

reduction techniques.

To understand the current state of manifold learning we first need to explore

the prior work that underpins many of the recent manifold learning algorithms.

So it is to this first 100 years that we initially turn our attention.

2.3.1 The First 100 Years: 1900-2000

Principal Components Analysis (1901)

Arguably one of the most important discoveries in the field of statistical analysis

in the 20th century was the discovery of Principal Components Analysis (PCA)

by Pearson (1901). The algorithm was later re-discovered by Hotelling (1933),

Karhunen (1946) and Loéve (1948) and it provides the backbone to research in

the field of dimensionality reduction and manifold learning. The simplicity and

effectiveness of PCA means that it has been widely used in a range of application

areas and is still the goto technique for many researchers over 100 years after

its discovery.

The basic premise of PCA is to find the low-dimensional subspace contained

within the high-dimensional data which holds most of the ‘information’. By

projecting the high-dimensional samples onto this lower-dimensional subspace

the important information is retained while the less important information (i.e.

noise) is removed. Since PCA underpins so many dimensionality reduction and

manifold learning algorithms it is worth spending some time unpacking the

algorithm and understanding the underlying mathematics.

As with all dimensionality reduction and manifold learning techniques, PCA

takes as input a high-dimensional matrix X ∈ Rp, of row vectors, and pro-

duces a low-dimensional representation Y ∈ Rq and q < p. To produce this
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matrix, Y, PCA finds the low-dimensional subspace within X that contains the

most variance. This maximum variance subspace equates to the subspace which

holds most of the information. As shown in (Lee and Verleysen, 2007), PCA

can be derived from several criteria. Pearson (Pearson, 1901) derives the solu-

tion to PCA from the minimal reconstruction error criteria, whereas Hotelling

(1933) uses the maximal preserved variance criteria4. Most manifold learning

algorithms derive their data model from Hotelling’s criteria.

Hotelling’s PCA can be split up into 3 main steps, 1) producing a matrix that

describes the variance of each sample to each other sample, 2) performing eigen-

decomposition of this matrix to produce a set of associated eigenvalues and

eigenvectors, 3) projecting the original data onto the top q eigenvectors (sorted

according to their eigenvalues) to produce the low-dimensional representation.

These three steps are still followed in many manifold learning algorithms and

can be generalised as follows:

1. Feature Step: Build a square symmetric feature matrix from the original

input data

2. Decomposition Step: Decompose this matrix into associated eigenval-

ues and eigenvectors

3. Projection Step: Project the original data onto these eigenvectors or-

dered according to their associated eigenvalues

As will be seen later, the final projection step is often discarded, but the process

of building a descriptive feature matrix of the original data and then using

eigendecomposition to find its associated eigenvectors is still the backbone of

most manifold learning algorithms.

4A third criterion - distance preservation - is shown when discussing Multidimensional
Scaling.
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At the centre of PCA is the model that assumes that the low-dimensional em-

bedding is the result of a linear transformation W such that

Y = XW (2.13)

This transformation W projects the data between two co-ordinate spaces such

that W : Rp → Rq. The central question then becomes how does PCA form

this transformation matrix? As discussed previously we can build this transfor-

mation matrix by following the steps outlined above.

The first step is to build the symmetric feature matrix which, according to

Hotelling’s methodology, is the covariance matrix. This matrix describes the

variance between a sample and every other sample in the data. To build the

covariance matrix the samples need to be centred such that, as far as possible,

X̄ = 0 (i.e. the samples in X are zero mean). The covariance matrix can then

be defined as

Cij = E{(xi − E(xi))(xj − E(xj))} (2.14)

where E is the expected value. Once we have found the covariance matrix it

is decomposed to its eigenvectors and eigenvalues to obtain the basis vectors of

the subspace spanned by the covariance of the data. This subspace describes

the directions of variance, or principal directions, of the data. The covariance

matrix can be factored by eigendecomposition:

VΛ = CV (2.15)
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where Λ is a square matrix containing the eigenvalues along its diagonal. V

contains as columns the eigenvectors of the matrix C. The i-th eigenvalue in Λ

relates to the ‘size’ of the i-th eigenvector. As such, the eigenvectors are ordered

according to the descending ordering of the eigenvalues. This now gives rise to

the basis vectors for the variance subspace spanning X. To find Y the top q

eigenvectors of V are taken and project X onto them such that

Y = XV1...q (2.16)

This gives the low-dimensional representation, Y, which has been found by

projecting X onto the subspace of maximum variance.

PCA has been used in many different fields (e.g. (Turk and Pentland, 1991;

Huber et al., 2005)) and has also been heavily modified and extended since

its original definition. Simple PCA (Partridge and Calvo, 1998) is an iterative

method for calculating the principal components that does not require the eigen-

decomposition of a covariance matrix. Rather it works by iteratively finding the

principal components of the data set and as such is closely related to Hebbian

learning (Diamantaras and Kung, 1996). One of the advantages of using Simple

PCA is that it overcomes the problem that PCA encounters with very high-

dimensional datasets. Since the size of the covariance matrix is proportional to

the dimensionality of the high-dimensional space, with very high-dimensional

data the calculation and eigendecomposition of this matrix will become com-

putationally unfeasible. As such iterative methods such as Simple PCA or

Probabilistic PCA (Roweis, 1997) may be used.

As previously discussed, PCA can be formulated using three criteria. The third

criteria is to formulate it using distances which gives rise to one of the main
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extensions of PCA: Classical Multidimensional Scaling (Torgerson, 1952). Mul-

tidimensional Scaling (MDS) works in the same way as PCA but replaces the co-

variance matrix with a Gram matrix that represents the inner product between

each data point. This then gives us a distance based adaptation of PCA5.

Sammon Mapping (1969)

Since PCA was first discovered in 1901 it was rediscovered and reformulated

many times (e.g. Karhunen (1946); Loéve (1948)) most notably in the form of

Classical MDS (Torgerson, 1952). However, it was not until 1969 that an alter-

native approach to dimensionality reduction was suggested: Sammon Mappings

(Sammon, 1969). Sammon Mappings extend the ideas of MDS so as to attempt

to preserve non-linear, rather than just linear, relationships in the data. This

is done by reconstructing the interpoint distances in the low-dimensional space

according to the distances measured in the high-dimensional space. Sammon

proposed the mapping error function ε which can be minimised using a steepest

descent algorithm as

ε =
1∑

i<j d
∗
ij

n∑

i<j

(d∗ij − dij)2

d∗ij
(2.17)

This function seeks to minimise the distance between two points as measured

in the high-dimensional space, d∗ij , and the same points in the low-dimensional

space, dij . Prior to the minimisation of ε the vectors in Y are assigned initial

approximations based on PCA.

Sammon Mappings represented an important step forward in the history of

manifold learning. It signified the start of research outside of the bounds of

5The connection between PCA and MDS is described in more detail in (Williams, 2002;
Platt, 2005)
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(a) (b)

Figure 2.2: (a) shows points sampled from a simple curved surface. (b) shows the
two different types of distances, the dotted blue line represents the Euclidean
distance between the two red points. The solid green line in (b) shows the
geodesic distance between the two red points. The geodesic distance is closer
to the true manifold distance between the points.

the linear assumption, although the algorithm’s ability to successfully embed

non-linear manifolds is questionable. The core of the algorithm is to re-build

in the low-dimensional space the distances calculated in the high-dimensional

space. However, measuring global distances that preserve manifold relations is

problematic. The distance relations between points can be accurately modelled

at a local scale using the Euclidean distance but not so at a global scale. Figure

2.2 illustrates this problem. So although Sammon Mappings can perform well

on some non-linear data, on most it will show little improvement over PCA

and Classical MDS. As such, Sammon Mappings is a half-way house between

linear and non-linear techniques. Despite this, the algorithm is still an important

milestone in the history of manifold learning, as it would be almost three decades

until a truly viable, and truly non-linear, method was developed.

Kernel PCA (1998)

Throughout the 1980s and early 1990s methods were proposed to perform di-

mensionality reduction based on artificial neural networks6. These approaches

presented a very different paradigm to dimensionality reduction. Rather than

6See Section 2.3.3 for a discussion as to why these methods are omitted from this discussion.
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drawing inspiration from statistical or geometric sources, they tackled the prob-

lem using methods from artificial intelligence and neural networks. These meth-

ods were some of the first to present possible solutions to the non-linear dimen-

sionality reduction problem. It was not until 1998 that a method akin to the

earlier dimensionality reduction techniques was presented to tackle the non-

linear dimensionality reduction problem.

Kernel PCA (Scholkopf et al., 1998) is a non-linear form of traditional PCA that

exploits the ‘kernel trick’ (Shawe-Taylor and Christianini, 2004) to reformulate

the traditional linear problem into that of a high-dimensional kernel space prob-

lem. The core of Kernel PCA is to move the problem from that of finding the

principal components of the input space vectors to that of finding the principal

components of the variables that are non-linearly related to the input variables

(Scholkopf et al., 1998).

Given a dataset, X, a positive semi-definite kernel, κ, is defined as a real value

function, Φ, which maps the points into a dot product space H such that,

Φ : X → H. Kernel PCA therefore computes the principal components of

the points {Φ(x1),Φ(x2), . . . ,Φ(xn)}. The kernel matrix, K, is created with

elements such that

kij = κ(xi, xj) (2.18)

K is then double centred (a step similar to subtracting the mean of the features

in traditional PCA) leading to the data being zero-mean in kernel space. The

top q eigenvectors, {v1, v2, . . . , vq} of K are then computed. The eigenvectors

of the covariance matrix in the kernel space can be constructed and are related

to the eigenvectors of K through
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ai =
1√
Λi

vi (2.19)

To obtain a low-dimensional embedding the data is projected onto the eigenvec-

tors of the covariance matrix, ai. The low-dimensional representation is then

given by

yi =





n∑

j=1

aj1κ(xj , xi), . . . ,
n∑

j=1

ajqκ(xj , xi)



 (2.20)

where ak1 is the j-th value of the vector a1. Here κ is the same kernel function

used to compute the kernel matrix.

The performance of Kernel PCA is heavily reliant on the choice of kernel func-

tion used. If using a linear kernel then Kernel PCA becomes traditional PCA.

Other possible kernels include the polynomial kernel and the Gaussian kernel.

Kernel PCA has been applied to areas such as face recognition (Kim et al.,

2002) and speech recognition (Lima et al., 2004). However, the size of the

kernel matrix is proportional to the square of the number of data points. This

makes Kernel PCA unusable in applications with large datasets. An approach

to overcome this was proposed in (Tipping, 2000).

One interesting extension of Kernel PCA is to phrase existing manifold learning

algorithms within the Kernel PCA framework (Ham et al., 2003). Isomap,

Laplacian Eigenmaps and Locally Linear Embeddings are all described as Kernel

PCA with specially constructed Gram matrices. This idea was further extended

when considering the out-of-sample extension in (Bengio et al., 2003).

Although the theoretical framework for Kernel PCA is both simple and elegant
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it is not suitable for embedding purposes (Lee and Verleysen, 2007). Kernel

PCA has no geometric interpretation that aids users in the choice of kernel

functions. Rather, extensions of Kernel PCA such as (Ham et al., 2003; Bengio

et al., 2003) or Maximum Variance Unfolding (Weinberger and Saul, 2006b)

should be used.

2.3.2 The Manifold Revolution: 2000-Present Day

Although some non-linear techniques were developed prior to the year 2000,

very little was discussed in terms of manifold learning. The existing non-linear

techniques, such as Kernel PCA or Sammon Mappings, sought to find non-linear

mappings but did not explicitly attempt to reconstruct the manifold upon which

the data is thought to lie. As such there is a clear distinction between those

techniques which seek to perform non-linear dimensionality reduction (such as

Kernel PCA and Sammon Mappings) and those which seek to perform manifold

learning. Even though manifold learning can be seen as a form of non-linear

dimensionality reduction, it is still worth making the distinction so as to be

clear as to which techniques explicitly learn the low-dimensional manifold and

those which do not.

In this section we present the algorithms that we believe have contributed the

most to the field of manifold learning since the year 2000. These techniques

either provide real improvements over previous techniques or represent a com-

pletely different approach to the manifold learning problem. At the end of this

section we briefly discuss other manifold learning algorithms that have emerged

during this period.
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Isomap (2000)

Isomap was first discussed in 1998 (Tenenbaum, 1998) but was most famously

presented alongside its main rival algorithm, Locally Linear Embedding, in Sci-

ence in 2000 (Tenenbaum et al., 2000). These two algorithms were presented

side by side in the same issue and present two very different approaches to

manifold learning.

Isomap explicitly builds on the previous strengths of PCA and MDS: computa-

tional efficiency; global optimality; and asymptotic convergence guarantees; but

extends them to learn a broader class of non-linear manifolds. Central to the

Isomap algorithm is the geodesic distance between samples. In PCA and MDS

the relationships between points are measured at a local and global scale us-

ing measures such as covariance or Euclidean distance. However, for non-linear

manifolds these relationships fail to adequately model the underlying manifold

(See Figure 2.2). Isomap seeks to overcome this problem by measuring inter-

point distances along the manifold by using geodesic distances. The simple and

elegant solution that Isomap employs to measure geodesic distances is partly

what gives it its attractiveness. For neighbouring points the Euclidean distance

provides a good approximation to the geodesic distance. For far away points

the geodesic distance can be approximated by summing a sequence of ‘short

hops’ between neighbouring points. Bernstein et al. (2000) showed that these

approximations can be computed by finding shortest paths in a graph with the

vertex set of the graph being set to the input data points and the edge set

connecting neighbouring samples. As such Isomap was not just one of the first

true manifold learning algorithms but also the first in the class of graph based

(spectral) manifold learning algorithms.

The two core steps of the Isomap algorithm are the construction of a graph
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between samples and the calculation of geodesic distances. As stated in the

original Isomap paper the neighbourhood graph can be constructed in one of

two ways. Both seek to create a graph G = 〈V,E〉 where V is the vertex set

which is equal to the samples in X, and the edge set, E, contains the description

of connectivity between vertices at a local scale. The edges can either be set

according to the k-nearest neighbour rule or the ε-neighbourhood rule. The k-

nearest neighbour rule connects a point to its k-nearest points ordered according

to the inter-point Euclidean distance. The ε-neighbourhood rule connects all

points that are within a ball of radius ε around the given data point.

The neighbourhood graph can now be fully defined as G = 〈V,E〉 with V =

{x}ni=1 and

Eij =




‖ xi − xj ‖ if xj ∈ Ni

∞ otherwise
(2.21)

where Ni is the set containing the nearest neighbours of xi according to the

k-nearest neighbour rule or the ε-neighbourhood rule.

This graph now describes the local connectivity of the data. To obtain global

connectivity information the geodesic distances are calculated using a shortest

path algorithm between all pairs of vertices (e.g. Dijkstra’s algorithm (Dijkstra,

1959)). This graph of shortest paths is described by a square symmetric matrix,

D, such that dij = dji, and dij is equal to the geodesic distance between sample

xi and sample xj . Phrasing this problem in terms of PCA or MDS, this distance

matrix can now be thought of as the Isomap equivalent to the covariance matrix

(PCA) or the standard Euclidean distance matrix (MDS).

The final step of the Isomap algorithm is to construct the low-dimensional em-
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bedding, and as with PCA this is done by solving the eigenproblem

ΛV = DV (2.22)

However, since Isomap is a non-linear mapping the original data cannot be

simply projected onto the eigenvectors V. This means that Isomap does not

follow the third step of the three steps described earlier. Rather it uses the

methodology found in MDS rather than PCA, so the low-dimensional vector yi

is calculated

yi = [
√
λ1v

i
1,
√
λ2v

i
2, . . . ,

√
λqv

i
q] (2.23)

where λq is the q-th ordered eigenvalue and viq is its associated eigenvector.

As mentioned earlier, Isomap is able to learn a broader class of non-linear man-

ifolds than PCA and MDS. However, Isomap is not without its short comings.

The topological stability of Isomap was brought into question by Balasubrama-

nian and Schwartz (2002). This problem of topological stability stems from the

fact that Isomap will obtain a globally consistent mapping of the manifold with-

out considering the changes that occur in local topology as a result of applying

this mapping. Of more importance however are the problems of the correct pa-

rameter choice and Isomap’s large computational complexity. The question of

what neighbourhood size parameter should be selected is still an open problem

and is discussed in more detail in Section 2.5.2, but for now it is worth noting

that incorrect parameter selection can lead to one of two failure cases. First,

if the choice of k or ε is too small then a disconnected manifold is produced.

As such, Isomap will fail to recover the true manifold as there is no global in-
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formation contained in the graph. Rather, the manifold is split into smaller

disconnected sub-manifolds7. Secondly, if the value of k or ε is too large then

erroneous connections will be made and the neighbourhood graph will ‘short

circuit’ the manifold. This will lead to incorrect geodesics beings calculated as

edges will exist in E that do not represent the true connectivity of the manifold.

The computational bottlenecks in the Isomap algorithm are the calculation of

all shortest paths and the eigendecomposition of the resulting shortest path

matrix. Landmark Isomap (Silva and Tenenbaum, 2003a) seeks to overcome

these problems by using landmark points drawn from the input data rather

than the entire input data. Once the landmark points have been embedded the

remaining points can be located by using the known distances from the landmark

points as constraints. This considerably speeds up the algorithm if the number

of landmark points is less than the number of input points. However, if too few

landmark points are chosen then Landmark Isomap will be unable to recover

the low-dimensional embedding as the input data has become too sparse.

Since its introduction in 2000 there have been many proposed extensions and

variants to the Isomap algorithm (e.g. Lee et al. (2004); Yang (2004); Brun

et al. (2005)). One variant of real interest is Conformal Isomap (C-Isomap)

(Silva and Tenenbaum, 2003a), which seeks to improve upon normal Isomap by

adding weights to each edge of the neighbourhood graph that are based on the

mean distance between each data point and its k-nearest neighbours. Although

C-Isomap provides an improvement over normal Isomap in embedding quality

it increases its complexity as a larger sample size is required (this is due to the

fact that the embedding depends on two approximations - geodesic distance and

data density - rather than just one).

7One way to overcome this problem is to only embed the largest of these sub-manifolds.
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Isomap represents a landmark in the history of manifold learning as it is arguably

the first manifold learning algorithm. What is surprising is that it is still one

of the most effective and powerful manifold learning algorithms even though

new approaches have since been presented. Isomap remains the cornerstone of

manifold learning research, and all signs point to it remaining so for some time.

Locally Linear Embedding (2000)

As mentioned earlier, Isomap was presented in an edition of the journal Science

in 2000 alongside another very different manifold learning algorithm, Locally

Linear Embedding (LLE) (Roweis and Saul, 2000). LLE presents a different

paradigm to manifold learning than that of Isomap. Whereas Isomap aims

to recover global properties of the manifold by measuring interpoint geodesic

distances, LLE aims to preserve local properties of the data and to recover a

global non-linear manifold structure by locally linear fits. The two different

approaches taken by Isomap (global) and LLE (local) are still two of the main

streams of research in manifold learning. Although more sophisticated and

mathematically elegant methods have been proposed since their discovery they

still remain the two benchmark manifold learning algorithms.

Although local methods had been previously discovered (e.g. Local PCA (Fuku-

naga and Olsen, 1971)) they had not attempted to produce a global embedding

of the data. Rather, previous local methods embedded data points into their

individual local coordinate space as opposed to a global coordinate space. LLE

aims to preserve local properties of the data whilst also embedding the data

points into a continuous global coordinate space.

The central assumption behind LLE is that each sample and its k-nearest neigh-

bours lie on a locally linear patch of the manifold (Roweis and Saul, 2000). If
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this assumption holds then each sample can be reconstructed by linear coeffi-

cients of its neighbours such that the error measure of reconstructing xi in terms

of its neighbours is

E =

n∑

i=1

‖xi −
n∑

j=1

wijxj‖2 (2.24)

The matrix W is a matrix of weights such that wij summarises the contribution

that xj makes to the reconstruction of xi. Two constraints are added to this

cost function prior to optimisation. First, the samples are reconstructed only in

terms of their neighbours such that wij = 0 if xj is not in the neighbourhood

of xi. Secondly the rows of the weight matrix W are set to sum to 1, that

is
∑n

j=1 wij = 1. This means that LLE becomes a sparse spectral problem.

The optimal weights for W can be found by solving a least squares problem.

Considering a single data point, xi, and its nearest neighbours, Nj , with re-

construction weights, wj , then the reconstruction error, ‖ xi −
∑k

j=1 wjNj ‖2

is minimised in three steps. First, the inner products between the neighbours

in Nj are calculated to form the correlation matrix, Cj . Second, the Lagrange

multiplier, λ, that enforces the sum to one constraint is calculated such that

λ =
1−∑jk C

−1
jl (x · Nk)

∑
jk C

−1
jk

(2.25)

Finally, the reconstruction weights are computed as follows:

wj =
∑

k

C−1
jk (x · Nk + λ) (2.26)

One important property of the reconstruction weight matrix, W, is that it char-
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acterises the intrinsic geometric information of each neighbourhood invariant to

translations, rotations and scaling. The importance of this becomes apparent

when you consider that the weights used to construct X in Rp can also be used

to reconstruct Y in Rq. This is the heart of LLE: since the weights have been

found in Equation 2.24, we can minimise the same cost function but now in terms

of the low-dimensional vectors to obtain an estimation of the low-dimensional

data:

ϕ(Y) =

n∑

i=1

‖yi −
n∑

j=1

wijyj‖2 (2.27)

Whereas in Equation 2.24 we fixed the input vectors and minimised the weight

matrix, here we have fixed the weight matrix and are minimising the low-

dimensional vectors. Roweis and Saul (2000) showed that since this problem

is well posed, the optimisation of the function ϕ(Y) can be performed by solv-

ing a sparse n × n eigendecomposition whose bottom q eigenvectors provide

a set of orthogonal coordinates centred on the origin. By phrasing LLE as a

sparse eigenproblem the need to solve a large dynamic programming problem is

avoided.

The popularity of LLE has lead to it becoming one of the most widely researched

manifold learning algorithms with many variants being proposed (e.g. Donoho

and Grimes (2003); He et al. (2005); Yin et al. (2007)). One particularly popular

extension is Stochastic Neighbour Embedding (SNE) (Hinton and Roweis, 2000).

SNE uses a probabilistic framework to position the data points in the low-

dimensional space. Asymmetric probabilities are assigned to the data points

in high-dimensional space and these probabilities are then reconstructed in the

low-dimensional space by minimising the Kullback-Leibler divergences between

the distributions in the high and low-dimensional spaces. As such, SNE can be
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thought of as a probabilistic extension to LLE. Other variants of SNE include

t-SNE (Maaten and Hinton, 2008) and Trust Region SNE (Nam et al., 2004).

Despite its popularity, LLE is not without its weaknesses. LLE has difficulties

with manifolds containing holes (Roweis and Saul, 2000) and also has a tendency

to ‘collapse’ large portions of the manifold in low-dimensional space. Having said

this, LLE is arguably still one of the most popular manifold learning algorithms.

It is still the standard local manifold learning algorithm, and like Isomap it

remains one of the foundational manifold learning algorithms. Even though

different approaches to local manifold learning have been presented LLE still

remains the most popular and most elegant.

Laplacian Eigenmaps (2002)

Laplacian Eigenmaps (Belkin and Niyogi, 2002) is another local technique that

seeks to preserve local properties of the manifold. As with Isomap and LLE a

neighbourhood graph is constructed by connecting the k-nearest neighbours of

each datapoint. The distances contained in this graph are then reconstructed in

a weighted manner in the low-dimensional space such that the distance between

a point and its first neighbour contributes more than the distance to the second

neighbour and so on.

To begin, Laplacian Eigenmaps constructs a neighbourhood graph that connects

each data point to its k-nearest neighbours. For each vertex in this graph a

weight is added to a sparse adjacency matrix, W. The weights are based on

the Gaussian kernel function such that if there exists an edge between xi and

xj the weight is

wij = e−
‖xi−xj‖2

t (2.28)
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where t is the width of the kernel8. Laplacian Eigenmaps then seeks to minimise

the following cost function

ϕ(Y) =
∑

ij

‖ yi − yj ‖2 wij (2.29)

One of the key aspects of the Laplacian Eigenmaps algorithm is that large values

of W relate to small distances between points in the high-dimensional space. As

such, nearby points in the high-dimensional space will be placed close together

in the low-dimensional space and faraway points in the high-dimensional space

will be placed further away in the low-dimensional space.

Equation 2.29 can be formulated as an eigenproblem by computing the degree

matrix, M, and the Laplacian, L, of W (Anderson and Morley, 1985). The

graph Laplacian L is found by L = M−W and the low-dimensional represen-

tation can be found by solving the eigenproblem

VL = ΛMV (2.30)

The top q nonzero eigenvectors of V, ordered according to their eigenvalues, Λ,

correspond to the low-dimensional representation Y.

Many of the weaknesses present in LLE are also present in Laplacian Eigenmaps

(e.g. manifolds with discontinuities or holes). Despite this, many variants have

been presented (e.g. He and Niyogi (2004); Sha and Saul (2005); Gerber et al.

(2007); Jia et al. (2009)). Laplacian Eigenmaps also fits within the framework

of spectral clustering (Ng et al., 2002) and graph partitioning (Mohar, 1991).

As such, much of the theory behind these disciplines can be shared. This leads

8A simplified version exists where the weights are chosen such that wij = 1 if xi and xj
are connected. This removes the need to select a kernel size t.
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to Laplacian Eigenmaps being one of the most theoretically sound, and well

understood, manifold learning algorithms.

Manifold Charting (2003)

Early research on manifold learning focused on two different approaches: lo-

cal and global. Local methods attempted to preserve local properties of the

manifold while global methods sought to preserve the global structure. Both

approaches often failed at preserving their counterparts’ properties (e.g. local

methods failed at recovering the true global structure of the data). The next

logical step therefore was to attempt to combine the strengths of both into a

unified framework. This led to the development of the so called global alignment

of local models algorithms.

Manifold Charting (Brand, 2003) was one of the first global alignment of local

models techniques. The basic premise of Manifold Charting is to form a set of

locally linear charts from the input data that are then stitched together into a

global co-ordinate system in low-dimensional space. One of the unique aspects

of the Manifold Charting approach to manifold learning is that it overcomes

two of the big open problems in manifold learning. First, it provides the option

to automatically estimate the intrinsic dimensionality of the manifold and it

also allows new samples to be mapped back and forth from the high and low-

dimensional spaces thus solving the out-of-sample extension problem9.

Considering the estimation of the intrinsic dimensionality of the manifold as a

separate process, then Manifold Charting has two main steps: 1) forming the

local charts and 2) connecting these charts. The charting step seeks to recover

the local information of the manifold with minimal loss whilst the connection

step seeks to merge these charts into a globally consistent co-ordinate system.

9See Section 2.5.1 and Section 2.5.3 for discussions on these open problems.
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The charts are formed by finding a soft partitioning of the data into locally

linear low-dimensional neighbourhoods. Two criteria are set out to ensure that

when connecting the charts a minimal amount of information is lost. These two

criteria are (1) that there is a minimal loss of local variance and (2) there is max-

imal agreement of the projections of nearby points onto nearby neighbourhoods

(Brand, 2003). These constraints are expressed as a posterior that combines a

standard Gaussian Mixture Model (GMM) likelihood function with a set prior

that penalises projections that are skewed with respect to existing co-ordinate

frames. As shown in (Brand, 2003) criterion (1) is served by maximising the

likelihood of a GMM density fitted to the data:

p(xi|µ,Σ) = Σjp(xi|µj ,Σj)pj = ΣiN (xi;µj ,Σj)pj (2.31)

This means that each Gaussian component of the mixture model defines a local

neighbourhood around µj with axes defined by the eigenvectors of the covariance

matrix Σj . However this GMM is not sufficient to fully describe the data and

as such a prior is needed. To understand this consider the example where two

connected charts contain large subspace angles which leads to the inconsistent

projection of a point between charts (that is the projection of a point given by

one chart is widely different to the projection of the same point in the other

chart). Criterion (2) seeks to minimise this by maximising the agreement of

projections between charts. This is formulated in the prior:

p(µ,Σ) = exp[−Σi 6=jmi(µj)D(Ni ‖ Nj)] (2.32)

where mi(µj) is a measure of co-locality and D(Ni ‖ Nj) is the cross-entropy

between the two Gaussian models defined by the two neighbourhoods described
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as:

D(Ni ‖ Nj) =

∫
dxN (x;µi,Σi) log

N (x;µiΣi)

N (x;µjΣj)

= (log |Σ−1
i Σj |trace(Σ−1

j Σi)

+ (µj − µi)
T Σ−1

j (µj − µi)−D)/2 (2.33)

This cross-entropy can be thought of as describing the differences in size, ori-

entation and position between the two co-ordinate frames described by the two

mean values µi and µj and the axes specified by the eigenvectors of Σi and Σj .

Given the above soft partitioning of the data into a set of charts, manifold

charting then attempts to stitch these charts together. Each chart is associated

with an affine transform Gk ∈ R(q+1)×q that projects the points of the k-

th chart, Uk, into a global co-ordinate space. For brevity we omit the full

workings of the connecting step, a full description can be found in Section 4

of (Brand, 2003). The general idea of the connection step is to find the low-

dimensional representation of a point by summing over all charts and computing

the probability that a given chart generates the point. Generally, if two charts

contain the same point then they should agree on the final low-dimensional

position of that point.

One of the main disadvantages of Manifold Charting is its high computational

complexity. Formulating manifold charting in terms of an optimisation problem,

the cost function to solve is

ϕ(Y) =

n∑

i=1

m∑

j=1

m∑

k=1

rijrik ‖ yij − yik ‖2 (2.34)
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where rij is the responsibility of point xi to xj as found by the Gaussian Mixture

Models. This cost function can be re-expressed in terms of an eigen-problem

but it, along with the GMM step, is still computationally expensive to execute.

Apart from its computational complexity Manifold Charting is a complete frame-

work that solves many of the major problems in manifold learning such as the

pre-image and out-of-sample extension problems. As such Manifold Charting

lends itself well to many application areas and has been successfully applied to

pose recognition (John et al., 2010).

Local Tangent Space Alignment (2004)

Local Tangent Space Alignment (LTSA) (Zhang and Zha, 2004) is another global

alignment of local models technique in a similar vein to Manifold Charting.

LTSA represents the local properties of the data in terms of local tangent spaces

about each datapoint. These local tangent spaces are globally aligned to form

a low-dimensional representation.

Core to the LTSA algorithm is the observation that, if local linearity is assumed,

then there exists a linear mapping from a datapoint to its local tangent space

in the high-dimensional space. Conversely, there exists a linear mapping from

the corresponding low-dimensional datapoint to the same local tangent space

(Zhang and Zha, 2004). As such, LTSA searches for the coordinates of the low-

dimensional data at the same time as it searches for the linear mappings of the

low-dimensional data to the tangent spaces of the high-dimensional data.

LTSA starts by finding the bases for the local tangent spaces at each datapoint.

These bases are found by computing PCA on the k-nearest neighbours of each

datapoint. This first step creates a local tangent space for each datapoint, Θi,

and an associated linear mapping, Mi, from xi to Θi. As described above there
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also exists a mapping, Ni, from the local tangent space co-ordinates to the low-

dimensional co-ordinates. That is, Ni maps from θj ∈ Θi to yj . LTSA exploits

this property and seeks to minimise the following objective function

min
yi,Li

∑

i

‖ yiJk − LiΘi ‖2 (2.35)

where Jk is the centring matrix of size k. Li is a linear mapping from the local

tangent space to the low-dimensional space. The solution to this minimisation

can be performed by eigendecomposition of an alignment matrix, B, defined as

the following iterative summation

BNiNi = BNi−1Ni−1 + Jk(I−ViV
T
i )Jk (2.36)

for all matrices Vi starting from bij = 0 for ∀ij . The low-dimensional represen-

tation can be obtained by computing the top q eigenvectors of the symmetric

matrix 1
2 (B + BT ).

LTSA has been extended to include a linear variant (Zhang et al., 2007) as

well as an incremental version (Liu et al., 2006b). More recently an improved

version of LTSA has been proposed that seeks to improve the tangent space

construction in datasets with large curvature (Zhang et al., 2011). LTSA has

been applied successfully to analysis of microarray data (Teng et al., 2005).

Global alignment of local models approaches ideally combine the strengths of

local approaches with the strengths of global approaches. Conceptually, they

also fit with the traditional view of a manifold which is modelled according to

both its local metric information and the topology of these local neighbourhoods

(Carmo, 1992). As such, it is likely that the best performing manifold learning
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algorithms will come from this family of techniques. It is for this reason that

our developed method is a global alignment of local models algorithm.

Diffusion Maps (2006)

Diffusion Maps (DM) (Lafon and Lee, 2006) is a framework for dimensionality

reduction, graph partitioning and data set parameterisation grounded in the

field of dynamical systems. Central to the DM approach to manifold learning

is the idea of diffusion distances. The diffusion distance is based on a Markov

random walk on the neighbourhood graph of the data. Performing the random

walk over a number of time steps the diffusion distance is obtained which defines

the proximity of the datapoints. In theory, the diffusion distance is more robust

to short circuiting than geodesic distances as it integrates over all paths through

the graph (Maaten et al., 2009).

Once a neighbourhood graph of the data has been obtained, a weight matrix,

W is constructed based on the approach presented by Laplacian Eigenmaps

(Equation 2.28). A normalised form of this matrix, P(1), is formed where the

rows sum to 1. As such the entries of the matrix P(1) are defined as

p
(1)
ij =

wij∑
k wik

(2.37)

The Diffusion Maps framework considers this matrix to represent the probability

of a transition from one datapoint to another in a single time step. The forward

probability matrix for t time steps is therefore defined as (P(1))t. Using this

idea the diffusion distance can be defined as
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D(t)(xi, xj) =

√√√√∑

k

(p
(t)
ik − p

(t)
jk )2

ϕ(xk)0
(2.38)

where ϕ(xk)0 is a term that penalises parts of the graph with low density

more than those with high density. Once the diffusion distances in the high-

dimensional space have been found the low-dimensional representation tries to

retain these diffusion distances. Lafon and Lee (2006) showed that the low-

dimensional representation that retains the diffusion distances as closely as pos-

sible is formed by the eigenproblem

VP(t) = ΛV (2.39)

where the top q columns of V ordered according to their associated eigenvalues

in Λ represent the low-dimensional representation (the largest eigenvalue and

eigenvector is discarded). The low-dimensional representation is then defined as

Y = {λ2V2, λ3V3, . . . , λqVq} (2.40)

where the eigenvectors are normalised by their corresponding eigenvalues.

Diffusion Maps is an interesting approach to manifold learning as it contains

within the framework more than just a manifold learning algorithm (e.g. graph

partitioning). It is also based on a potentially more robust similarity measure

than Isomap and therefore is less susceptible to short circuits in the graph. As

such Diffusion Maps has been applied to research areas such as shape matching

(Rajpoot et al., 2007) and gene expression analysis (Xu et al., 2007).
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Other Algorithms & Artificial Neural Network Based Approaches

The above list of manifold learning algorithms is by no means exhaustive. Over

the last ten years or so numerous new manifold learning algorithms, and exten-

sions to existing manifold learning algorithms, have been presented. The above

list touches on the algorithms that we believe are most important and most

closely related to the work contained in this thesis. However, other interesting

approaches to manifold learning do exist. Below we very briefly outline some of

the more important of these approaches.

Maximum Variance Unfolding (MVU) (Weinberger et al., 2004; Weinberger and

Saul, 2006b) can be seen as an extension to Kernel PCA that utilises Semidefi-

nite Programming to ‘unroll’ the manifold. MVU is able to successfully learn a

large class of image manifolds.

A class of algorithms also exist that model the underlying manifold as a Rie-

mannian manifold (RML) (Brun et al., 2005; Lin et al., 2006). These algorithms

achieve good results although it is unclear as to whether all manifolds can be

correctly modelled as Riemannian manifolds.

Manifold Sculpting (MS) (Gashler et al., 2008) is an iterative approach using

graduated optimisation that ‘sculpts’ the local neighbourhoods by simulating

surface tension.

Verbeek presented a method for manifold learning that uses a global alignment of

local factor analysers (CFA) (Verbeek, 2006). As such it has much in common

with Manifold Charting (Brand, 2003) and Local Tangent Space Alignment

(Zhang and Zha, 2004), however it has more in common with self-organising

approaches such as SOM (Kohonen, 1995) and GTM (Bishop et al., 1998).

Another global alignment technique is Local Linear Coordination (LLC) (Roweis
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et al., 2002) which uses a probabilistic framework to find the global alignment

of a mixture of factor analysers.

Greedy Procrustes (GP) (Goldberg and Ritov, 2009) seeks to find a low dimen-

sional embedding by calculating the Procrustes transformations of increasing

local neighbourhoods. Starting at a random datapoint the local neighbourhood

is embedded into low-dimensional space using PCA. The embedding is then

found by performing PCA embedding followed by Procrustes alignment on all

neighbourhoods of previously embedded points.

Finally, a recent linear technique based on approximately harmonic projections,

AHP, presents a novel direction in the field of manifold learning (Lin et al.,

2010). It is based on the observation that the manifold to be learnt is often

split into numbers of separate connected components. As such, AHP attempts

to separate these distinct connected components using a harmonic framework.

2.3.3 Artificial Neural Network Based Approaches

The above discussions on manifold learning purposefully omit a large class of

manifold learning and dimensionality reduction algorithms: those based on ar-

tificial neural networks. This class of algorithm includes Self-Organising Maps

(Kohonen, 1995), Generative Topographic Mappings (GTM) (Bishop et al.,

1998) and Multilayer Autoencoders (Hinton and Salakhutdinov, 2006). The

main reason behind omitting these approaches is that they present such a very

different paradigm to manifold learning than those previously discussed. These

algorithms utilise neural networks to obtain the low-dimensional embeddings

and so very often represent ‘black boxes’ into which high-dimensional data is

passed and low-dimensional data are produced. As such, these methods violate

one of the core criteria that we set out in Chapter 1 for our manifold learning
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algorithm to meet (ease of understanding). Also, methods such as SOM and

GTM can be thought of more as clustering algorithms than manifold learn-

ing algorithms. A discussion of the link between dimensionality reduction and

clustering algorithms can be found in (Bengio et al., 2004).

Manifold Feature Scale

PCA Linear Data Covariance Global
Isomap Non-Linear Geodesic Distances Global
LLE Non-Linear Local Fits Local
LTSA Non-Linear Local Tangent Planes Local/Global

AHP Linear Harmonic Projections Global
MDS Linear Euclidean Distance Global
Sammon Maps Linear Euclidean Distance Global
DM Non-Linear Diffusion Distance Global
Kernel PCA Non-Linear Kernel Product Global
MVU Non-Linear Kernel Product Global
RML Non-Linear Riemannian Co-ordinates Global
Eigenmaps Non-Linear Weighted Graph Distance Local
GP Non-Linear Procrustes Metric Local
MS Non-Linear Local Tension Local
SNE Non-Linear Local Probabilities Local
Charting Non-Linear GMM Charts Local/Global
CFA Non-Linear Local Factor Analysers Local/Global
LLC Non-Linear Local Factor Analysers Local/Global

Table 2.1: A taxonomy of manifold learning techniques. The first four tech-
niques are those included in the analysis chapter of this thesis. The techniques
in the latter half of the table are those considered in Section 2.3.

2.4 Towards a Taxonomy of Techniques

Providing a high-level taxonomy of manifold learning algorithms is a useful way

of differentiating and distinguishing between the different approaches (Lee and

Verleysen, 2007; Maaten et al., 2009). Table 2.1 shows one such taxonomy where

the algorithms are described according to the class of manifold they attempt

to learn (linear or non-linear), the features they attempt to retain between the

high and low-dimensional spaces (e.g. Euclidean distances, Geodesic distances),
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and also the scale at which these features are considered (local, global or local

& global).

Our developed approach fits into the above taxonomy as a non-linear, local and

global technique that attempts to preserve local PCA models across a global

scale.

2.5 Open Problems in Manifold Learning

Although manifold learning is becoming an established research field there are

still many unsolved problems associated with the area. These ‘open problems’

are interesting areas which arguably deserve as much attention as the manifold

learning algorithms themselves. For manifold learning algorithms to become

truly useful many of these open problems will need to be tackled. However, at

the time of writing many of them are still unresolved. We outline some of the

major open problems in the field of manifold learning and discuss some of the

current state of the art attempts at solving them.

2.5.1 Intrinsic Dimensionality

Intrinsic dimensionality is concerned with the dimensionality of the manifold

rather than the dimensionality of the space within which it resides. Intrinsic

dimensionality estimators can be used to gain an estimate as to the dimension-

ality of a manifold contained within a high-dimensional space. This process is

important when the target dimensionality of a dataset is unknown as we can

estimate the optimal target dimensionality to embed the data in.

Simplistic approaches to intrinsic dimensionality are based on the local prop-

erties of the data. Two such approaches were presented in (Verveer and Duin,

1995) and are based on the analysis of small, local, regions of the manifold.
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The local eigenvalue algorithm presented in (Verveer and Duin, 1995) was first

discussed in (Fukunaga and Olsen, 1971) and is based on observing the largest

change between eigenvalues of small regions on the manifold. Imagining a graph

of the eigenvalues the intrinsic dimension based on this method is equal to the

largest ‘jump’ between points on the graph. The second method described in

(Verveer and Duin, 1995) is an extension of the nearest neighbour algorithm

first presented in (Pettis et al., 1979) which examines the distribution of data

points over local neighbourhoods to estimate the local intrinsic dimensionality.

A popular global approach to estimate the intrinsic dimensionality of a dataset is

to investigate the correlation dimension of the data (Grassberger and Procaccia,

1983; Camastra and Vinciarelli, 2002). The method uses concepts from fractal

and chaos theory to obtain an estimate as to the intrinsic dimensionality of the

data.

Since the advent of manifold learning algorithms and non-linear dimensionality

reduction techniques, more advanced intrinsic dimensionality estimators have

been proposed. These more recent methods attempt to take the non-linearity

of the manifold into account. Kégl presented a method based on the packing di-

mension of the data (Kégl, 2002). This method does not rely on any parameters

and is able to exploit the underlying geometric structure of the data to obtain an

estimate as to its intrinsic dimensionality. Levina and Bickel suggested an ap-

proach that estimates the intrinsic dimensionality of the manifold based on the

Maximum Likelihood Estimation of a Poisson process approximation (Levina

and Bickel, 2004). A graph based technique was presented in (Costa and Hero,

2004) that bases its intrinsic dimensionality estimation on the growth rate of the

geodesic total edge length functional of entropic graphs. Finally, an interesting

geometric approach was discussed in (Fan et al., 2009) where the estimation

of intrinsic dimension is obtained by examining the relationship between local
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incising balls and the number of samples contained within these balls.

As with manifold learning, there is no gold standard intrinsic dimensionality

estimator. Often the simple local linear approaches provide good approxima-

tions as to the intrinsic dimensionality of the data and more often than not will

suffice for most applications. The newer, more advanced, estimators are often

too complex to be used on large datasets. A possible approach to obtaining a

good estimate as to the intrinsic dimensionality of the data is to take an average

of various intrinsic dimensionality estimators and either take the mean value, or

to obtain a more robust estimate, and given enough estimators, take the median

value.

One other point to note, and a possible further research direction, is that none

of the above methods account for manifolds with variable intrinsic dimension-

ality. In some applications and for some data, it seems unreasonable to model

the entire manifold with the same intrinsic dimension. As such it would be in-

teresting to investigate the idea of estimating a manifold with multiple intrinsic

dimensions.

2.5.2 Parameter Estimation

Many manifold learning algorithms use parameters to help adapt their solu-

tions to different datasets. For example, the algorithm setup for a very high-

dimensional dense dataset will be different to that of a sparsely sampled low-

dimensional dataset. Most manifold learning algorithms take a single parameter,

neighbourhood size10. The majority of work on the correct parameter value se-

lection for manifold learning algorithms is focused on this neighbourhood size

parameter.

10The target dimensionality is another parameter, but here we assume that this is known.
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The neighbourhood size parameter, k, is used in two different settings in man-

ifold learning: either to construct the neighbourhood graph between all data

points or to determine the size of local models. In each of these cases incorrect

neighbourhood sizes can lead to detrimental results. When building a neigh-

bourhood graph, if the value of k is too large then short-circuits will occur in

the graph causing parts of the manifold that are distant in the high-dimensional

space to be embedded closely in the low-dimensional space. Similarly, if the

value of k is too small then a disconnected graph could be formed meaning that

the manifold is incorrectly modelled as a set of disjoint sub-manifolds. When k

is used to build local models then the effects of incorrect k values are different.

If the value of k is too small then the manifold will be under sampled, meaning

that not enough local information is available to reconstruct the local properties

of the data. If the value of k is too large then the manifold will be over sampled

leading to a possible break in the local linearity assumption (that is, the local

model covers a large patch on the manifold that contains non-linear structure).

When considering the spectral case (i.e. building a k-neighbourhood graph)

techniques exist to help estimate the optimal parameter size. Two similar

methods were presented to find the optimal parameter value when using LLE

(Kouropteva et al., 2002) and Isomap (Samko et al., 2006). More general tech-

niques to find the k value specifically for spectral graph techniques have also

been presented (Yang, 2005; Geng et al., 2005; Wen et al., 2007; Lewandowski

et al., 2010).

Fewer methods exist to estimate the correct neighbourhood size for model for-

mation. Wang et al. (2004) presented an algorithm based on the local tangent

space around each datapoint that selects the optimal parameter by examining

the ratios of the square of singular values. However, it does require a global

threshold value, so it could be argued that it does not fully solve the problem.
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Another threshold based approach was presented in (Nathan and John, 2006)

where the sampling density of the local tangent space is used to obtain a param-

eter estimate. If the projection of the near points in the direction of the normal

onto the local tangent space is less than the threshold, then they are selected

as neighbourhood points. This method does however rely on the assumption

that the sampling conditions are ideal therefore making it unusable in many

real settings (Gao and Liang, 2011). A similar approach based on the angle to

the tangent subspace is presented in (Karina et al., 2007).

A more recent algorithm has been presented by Gao and Liang that attempts to

bridge the gap between both spectral and model building estimation techniques

(Gao and Liang, 2011). Their method uses dynamical neighbourhoods around

each point to build the local tangent spaces as well as neighbourhood graphs.

As such it addresses the problem of non-uniform neighbourhood sizes, which is

a problem many of the above algorithms do not attempt to tackle. The strength

of the non-uniform approach is that different regions of the manifold can have

different neighbourhood size parameters making manifold learning algorithms

more robust to changes in sampling of the data.

Although techniques exist for estimating the optimal parameters for manifold

learning algorithms it is still worthwhile to investigate the performance of an

algorithm over a range of parameter values. This will then show how the algo-

rithm responds to different parameter values as well as indicating an optimal

range of values within which the algorithm can work for the given data set.

2.5.3 Out-of-Sample Extension

The out-of-sample extension problem is concerned with the projection of novel

data samples into previously learnt embeddings. If we have previously run a
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manifold learning algorithm on a set of data samples and are given a novel ‘un-

seen’ sample, how do we correctly embed this sample into the low-dimensional

space without re-learning the entire manifold?

In the simplest case, if the manifold has been learnt by a linear technique such as

PCA, then we can obtain an estimate of a new point’s low-dimensional position

by projecting it onto the low-dimensional basis vectors. However, as previously

shown most manifold learning algorithms are not based on a linear transfor-

mation and as such there is no simple solution to the out-of-sample extension

problem.

Some manifold learning techniques come already equipped with the ability to

handle novel data samples. All linear techniques, such as PCA (Hotelling, 1933),

MDS (Torgerson, 1952; Cox and Cox, 2001) and LPP (He and Niyogi, 2004),

inherently allow for novel samples to be added to the low-dimensional space by

projecting onto the linear basis learnt by the manifold learning algorithm. Some

non-linear techniques also allow for new samples to be added. For example,

Manifold Charting (Brand, 2003), Co-ordinated Factor Analysis (Verbeek, 2006)

and Kernel PCA (Scholkopf et al., 1998).

Very little research has gone into the generalisation of the out-of-sample exten-

sion problem. Bengio et al. (2003) extended Isomap, LLE, Laplacian Eigenmaps

and MDS to allow for the out-of-sample problem by phrasing them within a com-

mon kernel framework. Yang et al. then further extended this idea by presenting

a generalised kernel framework exploiting a regularisation term to allow for a

generalised out-of-sample extension (Yang et al., 2010). In Chapter 5 we discuss

the out-of-sample extension in more detail and present a generalised solution to

the out-of-sample extension problem based on the local geometry change of the

manifold between the high and low-dimensional spaces.
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A related problem to the out-of-sample extension is that of the pre-image prob-

lem. This can conceptually be thought of as the reversal of the out-of-sample

extension. Given a novel point in low-dimensional space, the pre-image problem

is concerned with learning its position in the high-dimensional space. The pre-

image problem is a well studied problem in kernel methods (Kwok and Tsang,

2004; Bakir et al., 2004). Often the pre-image problem can be used to help

remove noise from images and shapes (Thorstensen et al., 2009).

Although methods have been developed to help solve the out-of-sample and

pre-image problems, there is no single framework that can solve both problems

in a continuous manner (i.e. points can be mapped to and from the high and

low-dimensional spaces). The creation of such a framework could prove useful

for areas such as manifold based classification (Jun and Ghosh, 2010).

2.5.4 Large Scale Data

One of the drawbacks of most non-linear dimensionality reduction and manifold

learning techniques is their large computational complexity and space require-

ments. This means that in their native form they are unsuitable for learning

large data sets. When we discuss large datasets we mean large in two ways: large

numbers of samples and large numbers of dimensions. Typically large datasets

will have n ≥ 2000 and p > 50 (Lee and Verleysen, 2007). One approach to

help overcome this problem is to subsample the data. However, this could intro-

duce further problems rather than solve the large scale learning problem (See

Section 2.5.5). A more rigorous approach was presented in (Talwalkar et al.,

2008). They tackle the problem of spectral decomposition of a large matrix.

Spectral decomposition is the heart of many manifold learning algorithms and

so a solution to this problem could help overcome one of the main bottlenecks

in manifold learning. Their approach investigates two approaches to large scale
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(a) (b) (c)

Figure 2.3: The effect of sparsity on the ability to recover the true low-
dimensional structure of a dataset. As the sparsity increases the manifold
becomes harder to identify and discontinuities in the sampling will lead to
disconnected components in the neighbourhood graph or incorrect inter-point
distances being calculated.

decompositions: Nyström approximation and column sampling. They test their

method on a large scale (18 million data points) image database and achieve

impressive results.

Although the method described in (Talwalkar et al., 2008) is a step towards

providing a solution to the large scale problem it is still someway off being

truly usable11. As such, the large scale problem remains one of the most under-

researched, yet important open problems. If manifold learning is to be used in

real world, large scale applications, such as bio-medical image analysis, remote

sensing, and data mining, then methods need to exist to scale manifold learning

algorithms to effectively handle large data.

2.5.5 Sparsity

As discussed in Section 2.1, as the dimensionality of the space increases so does

the sparsity of the data. Often as the dimensionality of the space increases more

data points are needed to properly reconstruct the manifold. However, this is

usually not possible and as such sparsity is a problem which manifold learning

algorithms will need to be able to handle effectively.

11Their results were obtained using a cluster of several hundred machines.
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As an example of this, Figure 2.3 shows the 2-dimensional Swiss Roll dataset

with different numbers of samples drawn from the original parameterisation. In

the densely sampled case (Figure 2.3 (a)) the curved structure of the manifold

is visually apparent and as such it is expected that most manifold learning al-

gorithms would be able to successfully learn the low-dimensional embedding.

However, as the density decreases and sparsity increases (Figure 2.3 (b-c)) the

structure becomes less well defined. As such discontinuities appear in the man-

ifold and the low-dimensional embedding will become harder to learn.

The question of how to deal with sparse data from a manifold learning perspec-

tive remains an open one. One interesting approach to dealing with sparsity

is found in (Silva et al., 2005) where the sparsity of the data is exploited to

improve the performance of some manifold learning algorithms. Using LASSO

regression the manifold is built from sparse landmark points. This could be an

interesting starting point for further research in this area.

Although many manifold learning algorithms will be unable to learn meaningful

embeddings for very sparse data, it is still desirable for such embeddings to retain

some structure and for them not to completely collapse in on themselves. As

such, it is expected that the embeddings produced using good manifold learning

algorithms will degrade gracefully as the sparsity of the data increases. This

is in contrast to the performance of poor manifold learning algorithms where a

sudden drop in performance would be observed at a certain sparsity level.

2.5.6 Quality Assessment

In the above discussions mention was made as to a manifold learning algorithm

producing a ‘good’ or ‘faithful’ embedding. The question is then raised as to

what constitutes a ‘good’ embedding? This area of quality assessment is a
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difficult one as, more often than not, no ground truth embeddings are available.

It is therefore impossible to measure how far the embedding produced by a

manifold learning algorithm deviates from the ‘perfect’ embedding. As such,

the ground truth needs to be somehow estimated at either a global or local

scale, or at both local and global scales.

Residual variance is often used to measure the global stability of an embedding

(Tenenbaum et al., 2000). The residual variance is measured by calculating the

correlation co-efficient between the matrix of distances in the high-dimensional

space and the matrix of Euclidean distances in the low-dimensional embed-

ding. The high-dimensional distance matrix is usually calculated by measuring

the geodesic distances between points along a neighbourhood graph12. The

geodesics are often difficult to calculate and, as described in Section 2.5.2, the

selection of the correct neighbourhood size parameter is still an open problem.

The local stability of an embedding is often easier to assess as the manifold in

high-dimensional space can be thought of as locally linear. Such methods for

measuring the local stability include Trustworthiness & Continuity (Venna and

Kaski, 2006) and the Procrustes Error (Goldberg and Ritov, 2009). These meth-

ods work by measuring the change in local neighbourhoods between the high and

low-dimensional spaces. Trustworthiness and Continuity measure the change in

neighbourhood relations (i.e. points entering and leaving a neighbourhood as a

result of manifold learning) and can be thought of as a topological measure as

they ignore metric information. The Procrustes Error on the other hand can

be thought of as a geometric measure as it calculates the rotational and scale

change between neighbourhoods in the high and low-dimensional space.

An attempt to extend the rank based criteria methods (such as Trustworthiness

12As such the Isomap algorithm (Tenenbaum et al., 2000) can be thought to minimise this
correlation co-efficient.
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and Continuity) into a more robust framework was made in (Lee and Verleysen,

2009). They proposed the creation of a co-ranking matrix to compare the ranks

of data points between the high and low-dimensional spaces. However, the

results produced are often difficult to interpret.

Although various quality assessment criteria exist, there is no ‘one size fits all’

measure, and as such when assessing the quality of an embedding it is often

worth measuring a variety of different criteria. A good strategy would be to use

a global approach such as Residual Variance, to measure the global stability,

and then local approaches to measure the topological and geometric stability.

2.6 Further Reading

This chapter provides a brief overview of the area of manifold learning as well as

the foundations and problems associated with it. Therefore, we now point the

interested reader to further sources of information related to the field of manifold

learning and non-linear dimensionality reduction. A good introductory book to

the field of manifold learning is “Nonlinear Dimensionality Reduction” by Lee

and Verleysen (Lee and Verleysen, 2007). It provides a detailed introduction to

the field of manifold learning and discusses some of the main algorithms in the

field. What is of potentially more interest is the final chapters and appendices

where an outline for the correct usage of manifold learning is given. Review

papers are also available that contain overviews of the field of manifold learning

and dimensionality reduction (e.g. Maaten et al. (2009); Fodor (2002); Burges

(2004)).

An excellent online lecture on Geometric Methods and Manifold Learning de-

livered by the Mikhail Belkin and the late Partha Niyogi at the 2009 Machine

Learning Summer School is available at http://bit.ly/oShCNZ (Link checked
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25/07/2011).

2.7 Conclusions

From this work we have found that global alignment of local models techniques

are, to us, the most interesting manifold learning algorithms as they attempt to

capture both the local and global properties of the data. As discussed in Section

2.3.2.5 they are also theoretically grounded. The traditional view of a manifold

is that it can be modelled according to both its local metric information and

the topology of these local neighbourhoods (Carmo, 1992). As such, our devel-

oped method, Piecewise-Linear Manifold Learning, is a global alignment of local

models technique. We attempt to capture and maintain the local information

of the manifold via local PCA models, whilst also providing a globally aligned

representation of these models found according to their topology.

We have also decided to provide a generalised solution to the out-of-sample

extension problem. As shown in Section 2.5, this is one of the open problems

in manifold learning and little work has been carried out into attempting to

provide a robust generalised solution to this problem. The solution to the out-

of-sample extension problem allows novel data points to be quickly embedded

into previously learnt embeddings without the entire manifold needing to be re-

learnt. We believe that a generalised solution to this problem will help manifold

learning algorithms to be used in more real world tasks such as classification.
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“Young man, in mathematics you don’t

understand things. You just get used to them.”

John von Neumann (1903-1957)

3
Piecewise-Linear Manifold Learning1

Piecewise-Linear Manifold Learning (PLML) is a new approach to manifold

learning that builds on the strengths of linear techniques such as Principal Com-

ponents Analysis (Hotelling, 1933) and also recent advances in global alignment

of local linear models (e.g. Local Tangent Space Analysis (Zhang and Zha, 2004)

and Manifold Charting (Brand, 2003)). The core of the PLML algorithm is the

merging of local models according to their topology as defined by a Minimum

Spanning Tree. Unlike existing approaches where a global alignment is attained

by statistical methods (e.g. exploiting the local tangent space (Zhang and Zha,

2004)) the PLML approach is piecewise such that the process can be paused and

1

Harry Strange and Reyer Zwiggelaar. Iterative Hyperplane Merging: A Framework for
Manifold Learning. In Proceedings of the British Machine Vision Conference, pages
18.1-18.11. BMVA Press, September 2010

Reyer Zwiggelaar and Harry Strange(2010) Patent KS.P47544GBi

Harry Strange and Reyer Zwiggelaar. Parallel Projections for Manifold Learning. In Pro-
ceedings of the Ninth International Conference on Machine Learning and Applications.
Washington DC, December 2010. IEEE Press.
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examined at any step and proceeds in a defined manner. This makes it easier

to understand the embedding produced by the PLML algorithm and also makes

it suitable for larger scale applications. This chapter is only concerned with an

explanation of how the PLML algorithm works, for a discussion of experimental

results see Chapter 5.

In the rest of this chapter we introduce the Piecewise-Linear Manifold Learning

algorithm at both a high and low level. Section 3.1 provides a high-level descrip-

tion of the algorithm and is suggested reading if the reader only wishes to gain

a basic understanding of how the algorithm operates. We end this section by

performing a simple step through of the algorithm in Section 3.1.5. In Section

3.2 we describe the PLML algorithm in more depth and provide the mathe-

matical basis for the algorithm. Finally, we end in Section 3.3 by outlining the

alternative research paths that were investigated during the development of the

PLML algorithm.

3.1 PLML Framework Overview

In this section we aim not only to provide a high-level overview of the Piecewise-

Linear Manifold Learning (PLML) algorithm but also to outline the key simi-

larities and differences our approach has to existing algorithms.

The PLML algorithm can be coarsely split into 4 main parts:

1. Building local linear models of the input manifold.

2. Determining the topology between the local models.

3. Combining the local models according to the topology to form a globally

consistent alignment.
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4. Obtaining a low-dimensional embedding of the global alignment of local

models.

Each of these steps is described in more detail later in this chapter but for now

we will provide a brief description of each as we trace our way through the

algorithm.

3.1.1 Step 1: Building Local Linear Models

The first step in the algorithm is to form the local models from the input data.

These local models will then be the blocks upon which the rest of the algorithm

builds. The aim of this first step is to create a set of models from the input

data that contain a set number of data points and are locally linear. This

is shown by the example given in Figure 3.1. The data is partitioned into

discrete models using a constrained clustering algorithm (explained in more

detail in Section 3.2.1). Once the data has been partitioned these local clusters

are turned into local hyperplanes by projecting them onto their basis vectors

(found by performing PCA on the data points within each cluster). These

local hyperplanes are now locally linear but still maintain their position on the

manifold in high-dimensional space. Throughout the rest of this section we

(a) (b) (c)

Figure 3.1: A simple data set sampled from a curved surface (a). The first step
of the PLML algorithm is to cluster the data (b) and then project the points
within each cluster onto their principal components forming local hyperplanes
(c).
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refer to these local hyperplanes as local models. At a local model scale the

data is low-dimensional, that is if we were to examine each model individually

the data would lie on a low-dimensional hyperplane whose dimensionality at

a local scale is equal to that of the low-dimensional space into which we are

wishing to embed our data. Using the example in Figure 3.1 (c) the data within

each model lies on a straight line. However, each model has its own coordinate

system. The local models may be locally low-dimensional but they do not lie

in a global low-dimensional co-ordinate space. For example if you were to take

two models from Figure 3.1 and place them side by side they would not both lie

on the same straight line so they do not both lie in the same low-dimensional

co-ordinate space. This problem is known as the global alignment problem: how

can we form a global co-ordinate system from the local low-dimensional models?

The remainder of the PLML algorithm is concerned with this global alignment

problem.

This problem of globally aligning local models is one much studied in the liter-

ature. Local PCA (Kambhatla and Leen, 1994) can be thought of as the first

truly local dimensionality reduction technique but it did not attempt to join

the local PCA models into a global coordinate system. LLE (Roweis and Saul,

2000) creates local models of the data based on their linear re-constructions

but the global shape of the manifold is not successfully reconstructed as there

is often not enough global information contained in the local reconstructions

to obtain a good estimate of the global manifold. Global alignment techniques

such as LTSA (Zhang and Zha, 2004) and Manifold Charting (Brand, 2003)

improve upon this by approximating some form of global alignment of the local

models using either the optimisation of the local tangent spaces (Zhang and

Zha, 2004) or using charting of Gaussian Mixture Models (Brand, 2003). Our

approach differs from existing global alignment methods as it seeks to learn the
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(a) (b) (c) (d)

Figure 3.2: An example of the differences between a k-neighbour graph that is
too small (b), too large (c) and the Minimum Spanning Tree (d).

global topology between the local models and use this topology as the basis for

combining the local models into a global coordinate system.

3.1.2 Step 2: Determining Model Topology

The question of how best to determine the topology between the local models

is an interesting and difficult one and is analogous to finding the correct topol-

ogy of a data set2. The goal is to determine how the local models formed in

Step 1 are connected (i.e. which models are neighbours and which are not). A

simple method would be to employ a k-nearest neighbour approach, that is to

define the k-nearest models as neighbours. However as discussed in Chapter

2 the k-nearest neighbour graph of a data set can often ill approximate the

connectivity by either over connecting the data (leading to short circuits in the

topology) or by under connecting the data (leading to disconnected sub graphs).

A more robust method than the k-nearest neighbour graph is to use the Min-

imum Spanning Tree (MST) of the data to describe its topology (Figure 3.2).

Robins showed (Robins, 2000) that the MST of a dataset provides a good ap-

proximation of its underlying topology. The MST contains all the information

needed to describe the global connectivity of a dataset and since topology can

be, at least simplistically, thought of as the connectivity of data then the MST

2Various approaches to determining data topology have been presented, e.g. (Aupetite,
2006), (Silva and Carlsson, 2004), (Robins et al., 2000).
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is a good way of approximating the underlying topology. The MST of the local

models therefore provides us with an estimate of the connectivity. Through the

use of the MST we have information as to which models are connected in a

nearest neighbour sense and which are not.

However, not all data sets will exhibit a tree like topology as captured and

represented by the Minimum Spanning Tree. The example shown in Figure

3.2 has a tree like topology, however a data set could easily be imagined that

does not contain such a structure. For example, the data could contain local

sections which, at a point level, are considered neighbours but due to the tree

structure of the MST are not neighbours in the MST. A neighbourhood graph

could potentially overcome this limitation, but some of the important properties

of the MST as described above would not necessarily be present. As such, the

alignment step described later on in this algorithm needs to be able to handle

this potential lack of connectivity. If the alignment step is done properly, and

distortions and mis-alignments are kept to a minimum, then the fact that two

nearby models are not connected by the MST will not matter as the alignment

algorithm will correctly place them anyway.

Since the MST provides a good approximation of the data topology then one

might assume that it provides a good alternative to the k-neighbourhood graph

in spectral techniques such as Isomap (Tenenbaum et al., 2000). An attempt was

made by Roychowdhury (Roychowdhury and Ghosh, 2009) to use the MST as a

replacement for the k-neighbourhood graph in Laplacian Eigenmaps (Belkin and

Niyogi, 2002) to better reconstruct global information. Although the MST does

contain topological information and it can be used to roughly reconstruct the

global shape of the manifold it does not contain enough proximity information

to yield useful results (See Figure 3.3). There is not enough local information

contained within the MST to successfully reconstruct the manifold. A more ro-

68



3.1. PLML FRAMEWORK OVERVIEW

bust approach was presented by Carreira-Perpinán in (Carreira-Perpinán, 2005)

where the MST is calculated over many iterations with jitter (e.g. noise) added

at each iteration to produce slightly different graphs each time. The sum of

these graphs then provides a good approximation of the neighbourhood graph.

However, in the PLML algorithm the MST is not used as a normal neighbour-

hood graph as in most spectral techniques.

As well as the topological properties of the MST other properties exist that make

it suitable for our application, the main one being its non-cyclic nature which

makes it useful for traversal. We exploit the topological stability of the MST

to describe how the models are connected and we use the non-cyclic traversal

property to connect the local models.

3.1.3 Step 3: Merging Models

At a simple level the models are connected by merging them together in an

ordered fashion to create a global ‘merged’ model. This merging process is one

of the key steps of the PLML algorithm but before we discuss this process in
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Figure 3.3: An example of the differences between using a k-neighbour graph
for Isomap (a) and using an MST (b) . Although the MST manages to uncover
the principal directions of the manifold (shown by the transition of labelling
from blue to red) it is unable to map the manifold structure correctly.
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Π1

Π2
Π3

Π4

Π5

Π6
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Π8

Figure 3.4: An in-order traversal of the MST of the local models (Π1-Π8) allows
us to find the correct order that the models should be visited. See body text
for full description.

detail we show how the MST can be used to define the ordering with which

the models are to be merged. The MST provides us with the topology and

therefore the order with which we can connect the local models and we can

exploit this ordering via a pre-order traversal. A pre-order traversal from any

node in the MST will provide us with the order in which the models should be

visited. Consider the simple example shown in Figure 3.4. In this example there

are 8 models labelled Π1 to Π8. We begin at model Π1 and perform a pre-order

traversal to all other models. Given this we know that the traversal order will

be:

order = {Π1,Π8,Π7,Π8,Π2,Π8,Π3,Π8,Π1,Π5,Π1,Π4,Π6} (3.1)

It is worth noting that this ordering includes movement forward (to previously

unvisited models) and backward (revisiting models). Since we wish to find a

global model by merging the local models this ordering only describes half the

process. When moving from one model to a new unvisited model according

to the above ordering we form a completely new model that is based on the

combination of the two models. So, given the above example when we reach

model Π3 we have already visited models Π1,Π8,Π8 and Π2. Therefore we have
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a global model Πglobal that is the merged product of all the previously visited

models, that is

Πglobal = Π′8 ⊕Π′2 ⊕Π′7 ⊕Π′1 (3.2)

where ⊕ refers to the merging process and Π′i refers to the merged version of

the model Πi.

So the merging process is not simply the merging of the current model with the

previous model but rather the merging of the current model with the merged

representation of all the previously visited models. This gives rise to the concept

of the global model. The global model can be thought of as the merged rep-

resentation of the previously visited models (this is because when two models

are merged a new merged representation of the models is created rather than

modifying the existing model representations).

The task now becomes how to merge the models during this traversal so as to

obtain a global approximation of the manifold. This merging process is done

by building an increasingly global model during the traversal of the models as

described above. When moving from one model to the next we merge the models

by projecting the previously visited models onto the hyperplane of the current

model. This process is briefly outlined in Figure 3.5. Starting the traversal of

the MST at any model we then move to the next model in the traversal order

and merge the two models. This merging equates to projecting the previously

visited model onto the hyperplane defined by the current model. In the example

in Figure 3.5 the model Π2 is projected onto the hyperplane defined by Π3 and

the global model consists of Π′2 (the merged representation of Π2) and Π3.

Continuing this, when we move on to the next model in the traversal order, Π4,
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(a)

(b)

(c)

Figure 3.5: An example of how the merging process works in the PLML algo-
rithm. We begin at model Π2 and then merge with model Π3. When moving
on to model Π4 the combined merged representations of Π2 and Π3 (denoted
Π′2 and Π′3) are merged onto Π4.
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we project the global model onto the hyperplane of Π4. At this stage the global

model consists of Π′2, Π′3 and Π4. This merging process is continued until all

models have been reached according to the MST traversal order.

At the heart of this merging process is the projection of the global model onto

the current hyperplane. This hyperplane projection is defined by a subspace

projection followed by a translation. The subspace projection ensures that the

global model lies on the basis vectors of the current hyperplane (that is they

exist in the same co-ordinate space) and the translation moves the global model

onto the current model’s hyperplane. The translation step is trivial, we simply

project a known point on the current model onto the basis vectors and define

the translation as the difference between the two (discussed in more detail in

Section 3.2). Of more interest is the projection step. Subspace projections are

always orthogonal to the basis vectors of the subspace being projected onto.

This becomes problematic if the angle between the two models is large (Figure

3.6 (a)). If the dihedral angle between the two hyperplanes defined by the two

models is large then distortions will be introduced as a result of the projection.

Due to the iterative nature of the PLML algorithm this distortion will continu-

Π1

Π2

(a) orthogonal projection

Π1 Π2

(b) parallel projection

Figure 3.6: (a) An example of an orthogonal projection between two hyperplanes
with a large dihedral angle leading to distortions, shown by the difference be-
tween the red projected points and the true representation of these points shown
in green. (b)The same hyperplanes but with Π1 rotated so that the projection
is parallel and the dihedral angle is 0.
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ally degrade the global model leading to an unusable result3. To improve on this

we rotate the global model so that it is parallel to the current model meaning

that the projection is parallel (Figure 3.6 (b)). This reduces the distortion as a

result of projection and adds little to the computational cost of the algorithm

(a more detailed discussion of how this rotation is performed can be found in

Section 3.2).

One other special case that needs to be considered is when moving back along

the MST during traversal. Just as the global model moves forward with each

forward step in the traversal it also needs to move back with each backward step.

Rather than repeating the projection problem described above we only need to

perform a simple alignment of models. This is due to the fact that when visiting

a model during the backtracking process we already have an image of this model

in the global alignment. So the back tracking step becomes aligning the model’s

representation in the global model to the current model. This alignment can be

found by running the Procrustes algorithm (Gower, 1975) to find the rotation,

translation and scale transformation to match the model’s representation in the

global hyperplane to its original representation.

3.1.4 Step 4: Finding the Low-Dimensional Embedding

Once the traversal has completed we know that we have a global alignment of

the local models. The final step of the process is to reduce the dimensionality of

the global model. Since we know that it is linear to the low-dimensional space

we can reduce the dimensionality by performing PCA (Hotelling, 1933) on the

global model and setting the target dimensionality to the local dimensionality

of the global model (that is the dimensionality of the low-dimensional space).

3See the discussion in Section 3.3.3 for more detail on orthogonal projections.
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3.1.5 Algorithm Step Through

We now move onto a simple step through of the PLML algorithm so as to

provide an example of how the algorithm runs. This step through is shown on

the next few pages as Figures 3.7 and 3.8. Throughout this section we drop

the Figure identifier and simply refer to the subfigure labels (so, for example,

(c) refers to Figure 3.7 (c) and (j) refers to Figure 3.8 (j)). The input data

is shown in (a) and consists of a simple 1-dimensional curve in 2-dimensional

space. The target dimensionality is selected as 1. The first step is to partition

the data using a constrained clustering algorithm (b). Notice that the clusters

are created with near equal sizes. The local models are then formed in (c)

by projecting the points contained in each cluster onto their associated basis

vectors. The minimum spanning tree is then found which defines the model

topology (d). A random model is then chosen, (e), to begin the traversal of the

MST. The next model is then visited, (f), and the previously visited model is

merged onto this current model. Since there are no more new models to visit

at this stage of the traversal the global model is back aligned to the previous

model (g). The traversal continues, (g-l), until all models are visited. By the

time the final model is reached, (l), we have a globally aligned representation of

the local models and we can perform PCA on this global model to obtain the

low-dimensional embedding (m).

75



CHAPTER 3. PIECEWISE-LINEAR MANIFOLD LEARNING

(a
)

(b
)

(c)

(d
)

(e)
(f)

(g
)

(h
)

(i)

F
ig

u
re

3.7:
A

sim
p

le
ex

am
p

le
of

th
e

step
s

p
erfo

rm
ed

b
y

th
e

P
iecew

ise-L
in

ea
r

M
a
n
ifo

ld
L

earn
in

g
algorith

m
.

D
escrip

tion
of

th
is

p
ro

cess
is

fo
u

n
d

in
S

ectio
n

3.1.5.

76



3.1. PLML FRAMEWORK OVERVIEW

(j
)

(k
)

(l
)

(m
)

F
ig

u
re

3.
8:

C
o
n
ti

n
u

ed
fr

o
m

F
ig

u
re

3
.7

77



CHAPTER 3. PIECEWISE-LINEAR MANIFOLD LEARNING

3.2 Piecewise-Linear Manifold Learning

In this section we describe the Piecewise-Linear Manifold Learning algorithm in

more detail than in the preceding section.

We take as input a high-dimensional set of samples X = {xi}ni=1 ∈ Rp sampled

from a low-dimensional manifold M ∈ Rq embedded within Rp (where q � p).

The goal of any manifold learning algorithm is to recover a set of samples Y =

{yi}ni=1 ∈ Rq that best approximate the q-dimensional manifoldM. We assume

that at a local scale the manifold M is homeomorphic to Euclidean space and

is a C∞-manifold (i.e. it is smooth differentiable). The two free parameters

are the target dimensionality, q, and neighbourhood size parameter, k, which is

used to determine the size of the clusters formed in the first step.

3.2.1 Building Local Models via Local PCA

To create the local hyperplanes we first calculate the number of clusters c =

bn/kc and also a minimum cluster size parameter h. This ensures that, as far as

possible, all clusters are created with a similar number of samples. In practice

the value of h is set to k since we wish to create as near as possible equal sized

clusters. We then use a constrained clustering algorithm to partition X into c

clusters {Cl}cl=1 such that the distance between each sample, xi, and its nearest

cluster centre, C̄l is minimised:

min
C1,...,Cc

n∑

i=1

min
l=1,...,c

(
1

2
‖ xi − C̄l ‖2

)
(3.3)

with the specific constraint that no cluster, Cl, is smaller than the minimum

cluster size, h, that is ‖Cl‖ ≥ h. The above approach is similar to that proposed
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by Bennett et al. (2000), where a normal k-means clustering algorithm is run

with the specific cluster size constraint added. A similar output can be obtained

by executing a clustering algorithm and then finding the small clusters (i.e.

|Cl| < h) and joining them to their closest cluster. This process can reduce the

number of clusters to fewer than c, but in the remainder of this section we still

refer to c as the number of clusters even though it may be less than the initial

value.

Once we have partitioned X into c clusters we are able to form local models

based on local hyperplanes. A local hyperplane relating to the l-th cluster is

defined as

Πl = {z | z = xUUT , x ∈ Cl} (3.4)

The basis vectors of the hyperplane are then given by the principal components

of the samples within Cl and are stored as the (q + 1) coordinate vectors in U

found according to UΛ = ΣU and ordered according to their eigenvalues, Λ.

The mean point of the hyperplane Πl corresponds to the cluster centre C̄l.

At this point the data is still embedded within p-dimensional space but is,

at a cluster level, q-dimensional. This is due to the fact that the hyperplane

projection in Eq. 3.4 is a projection onto the subspace vectors spanned by

the data. Although Eq. 3.4 provides us with a definition of a hyperplane the

projection of a point, x, to a hyperplane, Πl, is given by the mapping

f : x→ x∗l = xUlU
T
l + (C̄l − (C̄lUlU

T
l )) (3.5)

where xUlU
T
l projects x onto the subspace spanned by the column vectors
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given in U and (C̄l − (C̄lUlU
T
l )) is the translation vector that moves xUUT

onto the hyperplane Πl. This translation vector is found by calculating the

difference between C̄l and the image of C̄l as projected onto the subspace vectors

(C̄lUlU
T
l ).

This process warrants a slightly more detailed explanation. It is initially worth

noting that xUlU
T
l will project x onto the subspace spanned by the column

vectors of U. As such, xUlU
T
l lies on the subspace spanned by the basis vectors

of the hyperplane Πl and therefore we need to find the translation vector that

moves it from the origin centered subspace to the hyperplane Πl. We can do

this by projecting a known point on the hyperplane, Πl, onto the subspace given

by UUT and then calculating the translation vector between these two points.

This will give us the translation vector needed to move from the subspace to the

hyperplane. This is achieved by projecting the mean point of the hyperplane

(denoted by the mean point of the cluster, C̄l) onto the subspace (i.e C̄lUlU
T
l ).

The difference between the two points, C̄l, and, C̄lUlU
T
l , now gives us the

translation from the subspace to the hyperplane.

An example of how these models approximate the local structure is shown in

Figure 3.9 where we have as input a set of points sampled from an S-curve

(Figure 3.9 (a)). The top q-basis vectors of the local hyperplanes are shown in

Figure 3.9 (b) and show that the local models lie on the manifold and are a

good linear approximation of the local structure.

Since at this stage the data is locally q-dimensional the next step is to align

the local models to build a global alignment of the local models. This global

alignment will still be embedded in p-dimensional space but will be locally and

globally q-dimensional, so a simple PCA transformation will enable us to reduce

the dimensionality of the data to q-dimensions. Prior to forming a global model
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however, we need to determine the topology between the local models.

3.2.2 The Minimum Spanning Tree for Model Topology

The global alignment step of the PLML algorithm is based on the determination

of the correct topology between the local models. The topology here refers

to the local connectivity of the models, so ideally a model will be connected

to its closest neighbours but not to any far away models. As with spectral

techniques this neighbourhood graph provides us with a good approximation of

the topology between the models and therefore the topology between the data.

However, contrary to spectral techniques we do not use this neighbourhood

graph as the feature matrix prior to eigendecomposition, rather we use it as a

means of traversing the manifold. We wish our topology to be used as a road

map describing which other models can be visited from each model. This means

that we can traverse the topological graph in a topologically correct order and

merge the models as we move from one neighbouring model to another thus

forming a continuous global model.

As described in Section 3.1.2 the Minimum Spanning Tree (MST) provides us

with a good solution to the above problem as it has many unique and desirable

properties. First, as shown by Robins in (Robins, 2000) the MST is ideal as

a skeleton for a data set as it tends to avoid shortcuts between branches and

it gives a fully connected graph. These two properties overcome the shortcom-

ings of many spectral graph techniques — short circuits (the neighbourhood

graph is too large) and disconnected components (the neighbourhood graph is

too small). This is shown by the Minimum Spanning Tree in Figure 3.9 (c).

However, as discussed in Section 3.1, the MST does not contain enough proxim-

ity information for it to be used as a replacement for a k-neighbourhood graph

in spectral techniques. The second desirable property of the MST is that it is
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non-cyclic. This means that a simple traversal of the MST will not result in the

traversal being caught in a local loop but rather all vertices of the MST can be

visited in a topological order. It is easy to see therefore how the MST is ideal

for our application since we wish to find a way of visiting all nodes in a graph

at least once and in a well defined order.

We are now in a position to properly define an MST. A spanning tree of a

connected undirected graph is a subgraph that connects all the vertices together.

If the weights of the graph are given then we can say that the minimum spanning

tree of a connected undirected graph is a spanning tree with total weight less

than or equal to the weight of every other spanning tree. That is, the Minimum

Spanning Tree, T , of a graph, G = 〈V,E〉, has the same vertex set of G but a

reduced edge set E′ ⊂ E (where E′ is the edge set of minimal cost). We build

the MST of the local models by firstly building an MST of the input data X.

If we were to build an MST at model level the cluster centres would provide

too sparse an approximation of the manifold to build a suitably robust graph.

As such some of the undesirable properties (e.g. short-circuits and disconnected

components) would be likely to return.

To build the MST of X we first calculate the n × n distance matrix D, where

D(i, j) = d(xi, xj) where d(·) is a metric function, in this case returning the

Euclidean distance between samples xi and xj . We can now build the MST,

T = 〈V,E′〉, of D where T is a subgraph of D with the same vertex set V

but a reduced edge set E′ ⊂ E. This full MST provides us with the basis for

our model-wise MST. The model level MST, G, is formed by adding an edge

between two models, Πi and Πj , if there exists an edge in T (a, b) that connects

a point xa ∈ Πi and xb ∈ Πj . A formal definition of our model level MST is

given by
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G(i, j) =





d(C̄i, C̄j) if ∃e ∈ E | e = 〈va, vb〉

va ∈ Ci, vb ∈ Cj

∞+ otherwise

(3.6)

where d(C̄i, C̄j) is the Euclidean distance between the cluster centre of Ci and

cluster the centre of Cj . The output of the above process is not always guar-

anteed to produce a Minimum Spanning Tree, so we add the post-processing

step of running the MST on G to ensure an MST is created. We now have a

graph describing the topology between our models in the form of an MST of

the models.

The next step can be seen as the heart of the PLML algorithm: aligning the

local models to form a global model.

3.2.3 From Local to Global: Combining Local Models

The core step of the PLML algorithm is that of combining the models formed in

Step 1 according to the topology found in Step 2 to produce a global approxi-

mation of the manifold. This piecewise combination of the locally linear models

is what gives the algorithm its name.

The basic idea is to form a global model by walking along the MST of models

and merging the models as the traversal takes place. Figure 3.10 shows the

principle of this. Starting at the model Π2 we wish to move to Π3 since we

know that it is a neighbour of Π2 through the MST. To move Π2 to Π3 we

rotate Π2 so that its axis is aligned with Π3. We then project Π2 onto Π3.

Since Π2 and Π3 are parallel there is no distortion or change in topology within

Π2 which would not be the case if the two models were not parallel. When

moving from Π3 to Π4 the steps are repeated but the rotation and projection
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are applied to Π2 as well as Π3 since they are now part of the global merged

model. If subsequently we want to incorporate Π1 then we need to move back

from Π4 to Π3 (and subsequently Π2) since Π3 (and Π2) have already been

aligned and are part of the global model. We do this by aligning Π3 (and also

Π2) in turn to their original representations. It is also worth noting that we

create a global model based on local models that is separate from their original

representations. Therefore, we denote Πi as a model as originally created and

Π′i as a model having undergone alignment. So in the last two steps in Figure

3.10 we are aligning Π′3 to Π3 and subsequently Π′2 to Π2.

To walk along the MST we use a simple pre-order traversal (Valiente, 2002)

which ensures that parents are visited before children, and siblings are visited

in left-to-right order. To describe the process of pre-order traversal we denote

the first child of a node Πi as first [Πi]. next [Πi] denotes the next sibling of node

Πi, last [Πi] denotes the last child of node Πi and size[Πi] denotes the number of

nodes in the sub-tree of G. order [Πi] gives the order in which Πi is to be visited.

So we visit the first node with order [Πi] = 1, then order [Πj ] = 2, until we reach

order [Πl] = c. Given a random node, Πr, set as the root node for traversal, a

bijection order Ψ : V → {1, . . . , c} is a pre-order traversal of G if order [Πr] = 1

and order [first [Πi]] = order [Πi] + 1 (if Πi is not a leaf); order [next [vΠi]] =

order [Πi]+size[Πi] (if Πi is not a last child).

As mentioned above, there are two different scenarios that need to be considered

when moving from one model to another. If the new model, Πi, has not been

previously visited then we need to project the global model onto the hyperplane

defined by this model (Forward projection). Otherwise, if the model has been

previously visited then we need to align Π′i to Πi (Back aligning). We deal

with each of these cases separately below.
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(a) (b)

(c) (d)

(e)

Figure 3.10: An overview of the parallel projection method of the PLML algo-
rithm. The result, shown in (b) is that Π2 and Π3 now exist on the same global
model. (c) shows how Π2 and Π3 move onto Π4. In (d), the model under align-
ment, Π′3, is aligned to its original representation Π3. Similarly, when moving
back to Π2, Π′2 is aligned to Π2 (e).
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Πi

a1
a2

a3

a4

Πj

b1

b2

b3

b4

Figure 3.11: Two models Πi and Πj represent here by two hyperplanes and their
basis vectors. Here a4 and b4 are the normal vectors to the two hyperplanes.

Forward Projection

For forward projection we wish to project the previously visited models onto

the current model so that they lie on the same hyperplane (i.e. the same co-

ordinate space). We know that the previously visited models all lie on the

hyperplane spanned by the previous model and we wish to project them onto

the hyperplane spanned by the current model. However, this projection process

is more involved than a simple orthogonal projection (such as that described

in Eq. 3.5) as we are projecting onto basis vectors that are not in the same

locally linear model. As such this can introduce distortions into the mappings4.

To reduce distortions we require the two models to be parallel and it is this

parallelisation of projections that is one of the key processes within the PLML

algorithm.

The principal insight is that two models are parallel if their normal vectors are

aligned5 . The normal vector to a hyperplane or subspace in higher dimensions is

ill defined and so we define a normal vector as the (q+1)th principal component

4See the discussion in Section 3.1.3, in particular Figure 3.6.
5Throughout this discussion we interchange between the terms model and hyperplane for

ease of reading. Therefore the normal vector of a model is the same as saying the normal
vector of the hyperplane spanned by the model.
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of the model. This will provide us with a vector that is orthogonal to the basis

vectors spanning the model. The alignment of these normal vectors is equivalent

to the dihedral angle between the two models being equal to 0. Therefore, the

goal becomes finding the rotation needed to align the previous model with the

current model such that they are parallel.

The concept of rotations in high-dimensional space is ill-defined, so we cannot

simply rotate Πprev by the angular difference between the normal vectors of

Πprev and Πnew as there are multiple ways of performing this rotation. To ex-

plain this further consider the 3-dimensional rotation case. For this we will be

given 3 rotation matrices Rx, Ry and Rz. From these there are 6 different prod-

ucts (ways) of rotation. For 4-dimensional space we no longer rotate around a

point but rather rotate around a plane. We now have 6 rotation matrices leading

to 6! = 720 ways of rotating. Furthering this to 5-dimensions it becomes appar-

ent that there will be 10-planes to rotate about leading to 10! = 3628800 ways

of rotation. To overcome this we borrow a concept from point set registration

theory (Gower, 1975) to find the rotation matrix between the two models.

This rotation matrix can be found by thinking of the basis vectors of each model

as a set of points. In the example shown in Figure 3.11 we have a model Πi with

a set of basis vectors represented by the points a2, a3, a4 and a central point

a1 and a model Πj with the basis vectors as points b2, b3, b4 and the central

point b1. We wish to find the rotation matrix that aligns Πj with Πi (i.e.

the angle between the normal vectors ~b1b4 and ~a1a4 becomes 0). Since we are

dealing with two sets of points a simple solution would be to perform Procrustes

analysis (Gower, 1975) to find the rotation matrix needed to rotate Πj to ‘fit’

Πi. Procrustes analysis seeks to find the change in translation, rotation and

scaling between two sets of points. However, although this will find a rotation

matrix to align the two sets of points there is no unique solution as there are

88



3.2. PIECEWISE-LINEAR MANIFOLD LEARNING

multiple ways of aligning these two sets. For example b4 is not guaranteed to

be aligned with a4, it could be rotated to align with a3 or a2. As such we

need to mirror the axis and scale each point to a unique size relative to the

central point so as to ensure a unique solution. So, for example, the distance

‖ a1− a2 ‖6=‖ a1− a3 ‖6=‖ a1− a4 ‖ but more than that ‖ a1− a2 ‖=‖ b1− b2 ‖.

This means that although each axis has been uniquely scaled, the scaling factor

for each axis is the same between models. This ensures that there is only 1

solution to the alignment. Figure 3.12 shows this in more detail. We have

mirrored each of the axes and scaled them such that the size of the axes is the

same for both models. There now exists a unique solution to the alignment

problem. That is, b1 will be aligned with a1, b2 will be aligned with a2, etc.

Constructing a more rigid definition of this process we denote the previously

visited model’s hyperplane as Πprev and the new model’s hyperplane as Πnew.

We wish to make Πprev parallel to Πnew and to do this we align the axis of Πprev

to the axis of Πnew as described above. Two models, Πa and Πb, are defined as

parallel if their dihedral angle is 0, that is

a1 a2

a3

a4

a5

a7
a8

b1
b2
b3

b4
b5

b7

b8

Figure 3.12: Two axis matrices can be aligned by thinking of each as a set of
points defining the principal directions of each axis. These axes are mirrored
and scaled so as to ensure a unique solution to the alignment problem. In
this example b1 will be aligned with a1, b2 with a2, etc. Although each axis
is uniquely scaled relative to each other axis they are still the same size across
axes. That is, ‖ a2 − a1 ‖ is the same size as ‖ b2 − b1 ‖, etc.
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a1

a4

a2

a3

a5

a6

(a)

a1

a4

a2

a3

a5

a6

(b)

a1

a4

a2

a3

a5

a6
(c)

Figure 3.13: The three different type of axis considered. (a) partial, (b) full, (c)
full scaled.

ϕ(Πa,Πb) = cos−1(nΠa
• nΠb

) = 0 (3.7)

where nΠa
is the normal vector to the model Πa. So the problem of aligning

the axis of Πprev to Πnew can be thought of as minimising the dihedral function

ϕ. As we have shown the solution to this problem can be found by constructing

a set of points relating to the principal axes of each model. This set of points,

referred to as the axis matrix N, will have as columns the top (q+1) eigenvectors

and their additive inverse (which creates the ‘mirror’ of the vectors). The top q

eigenvectors are the vectors spanning the low-dimensional hyperplane and the

(q+ 1)th vector is analogous to the normal to the hyperplane. As such the axis

matrix can be thought of as a concatenation of two matrices - the basis vectors

U1...(q+1) and their additive inverse −U1...(q+1). So we can formally define an

axis matrix as:

N = [U1...(q+1)
−U1...(q+1)] (3.8)

Figure 3.13 (b) shows pictorially the properties of this axis matrix. Although

we have successfully mirrored the axis we have not scaled them and as such

there is still no unique solution to the alignment problem. To ensure a unique
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solution we need to scale each of the axes.

To scale the axis matrix we first create a p× (q + 1) scale matrix S. This scale

matrix is defined as:

S(i, j) =





i if(i ≤ (q + 1))

i+ ( 1
2 ) otherwise

(3.9)

such that the scale is unique for each column (axis) but repeated along each

row. According to Eq. 3.9 the scale matrix for 3-dimensional space would be

S =




1 2 3 1.5 2.5 3.5

1 2 3 1.5 2.5 3.5

1 2 3 1.5 2.5 3.5




(3.10)

To apply the scaling matrix we take the Hadamard product6 of the two matrices

such that we can now define a full axis matrix as:

M = N ◦ S (3.11)

The result of applying this scale matrix is shown in Figure 3.13 (c).

Now that the axis matrices have been defined we can return to the point cloud

registration problem. Given the two axis matrices Mnew and Mprev we wish to

find the rotation matrix R so that ‖ Mnew −MprevR ‖ is minimised (where

‖ · ‖ is the Frobenius norm). The matrix R is orthonormal and gives the

rotation needed to align the axis matrix Mprev to Mnew. Wang and Mahadevan

6The Hadamard product is the element wise multiplication of two same sized matrices, A,
B, such that (A ◦B)ij = Aij ·Bij

91



CHAPTER 3. PIECEWISE-LINEAR MANIFOLD LEARNING

(2008) have shown that the optimal solution is given by the Singular Value

Decomposition (SVD) of MT
prevMnew. That is, if the SVD of MT

prevMnew is

UΣVT then R = UVT .

To apply rotation we simply perform the matrix multiplication Π′prev = ΠprevR

which can be thought of as minimising Eq. 3.7. Now that the two models are

parallel we project Π′prev onto Πnew as follows:

Π′prev’ = Π′prevUΠnewU
T
Πnew + ( ¯Πnew − ( ¯ΠnewUΠnewU

T
Πnew)) (3.12)

where UΠnew is a matrix containing the top q principal components of Πnew.

Since Πprev is the global model, this rotation and project will rotate and project

all the previously visited models onto the current model.

Back Aligning

If the model we wish to move to has already been visited then we do not need to

worry about the parallel projection process described above. Rather we simply

wish to align the model to its original representation. If we wish to align Π′i to

Πi then we need to find the translation vector that moves the centroid of Π′i

onto the centroid of Πi and also the rotation matrix that correctly aligns the

samples in Π′i to Πi. This step can easily be achieved by running Procrustes

analysis on the two sets of samples within the two models. Since the number

of samples within the models will not have changed and the forward projection

step described above does not distort the samples within the model we can use

Procrustes analysis (Gower, 1975; Sibson, 1978; Cox and Cox, 2001) to find

the translation vector v and the rotation matrix R to match Π′i to Πi. The

translation v and rotation matrix R can be found as follows. Let Z = ΠT
i Πj
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and we denote its Singular Value Decomposition (SVD) as Z = ULVT (Mardia

et al., 1979). The Procrustes rotation matrix is given by R = UVT and the

translation vector is given by v = Π̄i−RΠ̄′i (where Π̄ represents the mean point

of the model) (Sibson, 1978). Therefore when back aligning, Π′i = Π′iR+ v. As

with the forward projection step this translation and rotation is applied to the

global model rather than just the previously visited model.

3.2.4 Obtaining Low-Dimensional Representation

Once all nodes have been visited in the traversal described above, that is all

nodes have been visited and in the correct order given by Ψ (see Section 3.2.3),

we will have obtained a globally aligned q-dimensional representation of the

manifold embedded within p-dimensional space. This representation is con-

tained in the models {Π′l}cl=1. We set the matrix Q = {Π′l}cl=1 to contain all

the samples of the globally aligned representation. To find the low-dimensional

embedding we run PCA on Q such that

ΛV = CQV (3.13)

where CQ is the covariance matrix of Q and V is a matrix containing as columns

the top q-dimensional eigenvectors sorted according to their associated eigen-

values, Λ. The low-dimensional representation Y is then given by Y = QV.

3.3 Alternative Paths Investigated

The purpose of this section is to outline the alternative paths of research that

were investigated during the development of the PLML algorithm but did not

explicitly contribute to the final algorithm described above. These alternative
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Figure 3.14: The Swiss Roll dataset topology as determined by the GMM clus-
tering scheme. Notice how simple the topology graph is. This makes it signifi-
cantly easier for the PLML to execute as it is essential a 1-dimensional embed-
ding problem. However, this type of structure is rarely captured by GMM.

paths represent interesting problems that could be used as a springboard for

future improvements and research.

3.3.1 Alternative Clustering Techniques

Before a constrained k-means clustering approach was employed to form the

local models in Step 1 of the PLML algorithm we used a Gaussian Mixture

Modelling (GMM) approach (Bouman, 1997; Sahbi, 2008). This approach was

similar to that used in Manifold Charting (Brand, 2003). A mixture of Gaussians

was trained over the data set but rather than leading to a soft partitioning of

the data as in Manifold Charting we used the GMM to cluster (hard partition)

the data. In some cases this use of a GMM scheme led to a more meaningful

clustering of the data. For example, the Swiss Roll data set is clustered in such

a manner that the models are connected according to a 1-dimensional topology

graph (Figure 3.14). This, however, turned out to be the exception rather than

the rule. Most other data sets were clustered in much the same manner as
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k-means.

The main draw back of the GMM approach was computational complexity. For

a large high-dimensional dataset it proved impossible to obtain a clustering

on the hardware we had available. This meant that it was not suitable for

large scale applications which was one of the attributes we wanted the PLML

algorithm to have.

Another clustering scheme investigated was MST Clustering (Grygorash et al.,

2006). Although this reduced the complexity of the algorithm (as the MST was

already being used to determine the model topology) the quality of the local

models proved to be poor. One of the strengths of the k-means approach is

that it creates as close to ‘spherical’ clusters as possible which is ideal for the

formation of local linear hyperplanes. There was however large variation in the

size and shape of the clusters produced using the MST clustering approach.

This in turn led to incorrect or unusable local hyperplane information leading

to a heavily distorted or completely unstable low-dimensional embedding.

3.3.2 Intersecting Hyperplanes for Model Topology

Before investigating the use of the Minimum Spanning Tree as a way of mod-

elling the topology between local models we exploited hyperplane-hyperplane

intersection as a method for determining the model topology. This method

actually presents a new approach to manifold learning and is heavily based

on Isomap (Tenenbaum et al., 2000) with the major difference being the con-

struction of the neighbourhood graph. Rather than using Euclidean distance

to measure the distance between hyperplanes we use a novel distance - the

hyperplane-hyperplane distance. Once we have determined the low-dimensional

positions of each hyperplane we can find the global alignment of the hyperplanes
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by simply translating the low-dimensional representations as found in Step 1 of

the PLML algorithm to their position as determined by low-dimensional topol-

ogy (Figure 3.15)

The hyperplane-hyperplane distance can be broadly defined as the sum of dis-

tances between the mean of each hyperplane and these mean points as projected

onto their intersecting hyperplane. The key insight here is that the intersection

of two q-dimensional hyperplanes is a (q− 1)-dimensional hyperplane. The dis-

tance between a hyperplane and this (q − 1)-dimensional hyperplane can be

found by measuring the difference between a known point on the hyperplane

and its image as projected onto the intersecting hyperplane. To perform this

projection we need to find a point on the intersecting hyperplane and also its

basis vectors.

To find the intersection point between two hyperplanes we firstly find a point on

the hyperplane and then determine its basis vectors. Once we have a point on

the hyperplane and the hyperplane’s basis vectors we can project points onto

this hyperplane according to Eq. 3.5. Given two hyperplanes Πi and Πj , a

Π1

Π2

Π3

Π4

Π5

Figure 3.15: An example of how the intersecting hyperplanes methods acquires a
global alignment of the local models. The model topology is embedded according
to the hyperplane-intersection distance and Isomap (Tenenbaum et al., 2000)
as shown by the graph on the right. The local models, Π1 to Π5, are then
translated so that their mean points align with the associated mean points in
the model topology.
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point, α, can be found on the intersecting hyperplane Πk = Πi ∩Πj by solving

the linear system




ni

nj


α =




ni · |Πi|

nj · |Πj |


 (3.14)

where ni and nj are the normal vectors to the hyperplanes which can be repre-

sented by the (q + 1)th principal component of the hyperplane7.

Now that we have a point on the intersecting hyperplane we need to find the basis

vectors of this hyperplane so as to be able to project onto it. This is performed by

finding the intersecting subspace between the two hyperplanes. Considering the

basis vectors of the two hyperplanes, Πi and Πj , as two subspaces we know that

the intersection of these two subspaces will be analogous to the basis vectors

of the intersecting hyperplane. We denote Ui as the q-dimensional subspace

spanned by the hyperplane of Πi and Uj as the q-dimensional subspace spanned

by the hyperplane of Πj . Since any pair of subspaces are proper subspaces their

intersection Ui ∩Uj is also a subspace. If Ui ∈ Rp and Uj ∈ Rp then Ui ∩Uj

is also a subspace of Rp (Grossman, 1994).

To find an explicit basis for the subspace Ui∩Uj we follow the method outlined

by Yang in (Yang, 1997). Given the set of q basis vectors of Ui and Uj we

concatenate them to form the p × 2q matrix A = [UiUj ]. We then reduce

A to its reduced row echelon form rref(A). As shown in (Yang, 1997) the t

linear combinations a1u1 + a2u2 + . . . + aquq form a basis for the intersection

represented as V (where t is the number of non-pivotal columns in A).

7An alternative method of finding the normal vector is to take the generalised cross product
of the q basis vectors (Hanson, 1994). This is because in 3-dimensional space the normal vector
to the plane can be found by taking the cross product of the plane’s basis vectors. However
in n-dimensional space this generalised cross product becomes difficult to calculate as the
generalisation is based on finding the cofactors of the determinant of a large dense square
matrix (Hanson, 1994)
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Since we now have a point on the intersecting hyperplane, α, and the basis

vectors of this intersecting hyperplane, V, we can now define the hyperplane

intersection distance. Given two hyperplanes, Πi and Πj , and their sample mean

points, πi and πj , we represent the hyperplane distance, h, between Πi and Πj

as

h(Πi,Πj) = ‖ πi − (πiVVT − (α− (αVVT ))) ‖22 (3.15)

Since we wish to find the bi-directional distance between Πi and Πj we sum the

two hyperplane distances so the total hyperplane distance H becomes

H = h(Πi,Πj) + h(Πj ,Πi) (3.16)

Once we have determined the hyperplane-hyperplane distance between each

model we can then take the k-smallest distances as the k model neighbours.

Once we have formed this hyperplane level neighbourhood graph we follow the

same steps as Isomap (Tenenbaum et al., 2000) to reduce the dimensionality of

the model topology. With the model topology embedded in q-dimensional space

we find the global low-dimensional embedding by aligning the mean of the q-

dimensional representation of each model with the mean as found by performing

Isomap on the model topology.

Although some results were obtained on artificial data using this approach (an

example embedding of the Swiss Roll dataset is shown in Figure 3.16) there

were many drawbacks which left it as an unfeasible option. First, there were no

significant improvements in performance over Isomap. Since this algorithm was
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based so heavily on the Isomap algorithm it would be expected to outperform

Isomap if it were to be seen as an improvement over existing approaches. As

it did not outperform Isomap this raised questions as to its suitability. As

well as this the computational complexity was very high. At the heart of the

algorithm is the need to solve a large linear system (Eq. 3.14) and also perform

the computationally expensive task of reducing a large matrix to its reduced

row echelon form. This meant that we were unable to gather results for any

data set with dimensionality larger than 3. Finally, the method of reducing

the model topology and then aligning the local models to determine the global

alignment was fundamentally flawed. The flaw lies in the fact that Isomap does

not guarantee to preserve the topology and local structure of the data. As such

inter-model distances will change between the high and low-dimensional spaces

and so distortions and overlaps will occur when aligning the local models to the

reduced topology graph.

So although this method provided a novel approach to determining the con-

nectedness of the models it was not robust enough to produce any meaningful

−40 −20 0 20 40 60
−30

−20
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Figure 3.16: An embedding of the Swiss Roll dataset as found by the intersecting
hyperplane method. Notice that even though the data has zero noise there is
still apparent noise in the embedding. This is due to the fact that the low-
dimensional embedding can become distorted by changes in scale to the topology
graph.
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results.

3.3.3 Non-Parallel Projections

At the heart of the PLML algorithm is the parallel projection step (Section

3.1.3). However the first iteration of the PLML algorithm did not include this

parallel projection step (Strange and Zwiggelaar, 2010). Instead it relied solely

on the orthogonal projection between models. If the dihedral angle between

models is small then the amount of distortion introduced by orthogonal pro-

jections is minimal. However, once the dihedral angle increases the distortions

become more obvious and problematic

3.4 Conclusions

In this chapter we have presented the PLML algorithm for manifold learning.

The algorithm works by modelling the manifold as a set of discrete locally linear

models that are locally low-dimensional. The topology between these models

can be represented by a Minimum Spanning Tree which provides us with an

ordering with which we can traverse these models. By visiting these models

in a topologically correct order we can build a global representation of these

local models. This global representation is built by merging the models at each

traversal step. Once all the models have been visited we will have built a global

alignment of the local models.

The next chapter is concerned with providing a detailed analysis of the perfor-

mance of the PLML algorithm.
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Augustine of Hippo (354 - 430) 4
Piecewise-Linear Manifold Learning:

Performance and Analysis1

In this chapter we perform a rigorous analysis of the PLML algorithm testing

it on both artificially generated data and real (image) datasets. These two

different categories allow us to draw conclusions as to how the PLML algorithm

performs. The artificially generated datasets provide us with an environment

within which we can control the structure and properties of the data. Using this

we can change the density and noise levels of the datasets and thereby see how

PLML performs with sparse and noisy data. We can also use the artificially

generated data to explain how PLML performs on manifolds which contain

essential loops or discontinuities. The image data on the other hand allows us

to test the performance of PLML on real world data. These datasets often lie

1Harry Strange and Reyer Zwiggelaar. Parallel Projections for Manifold Learning. In
Proceedings of the ICMLA, Washington DC. IEEE Press, December 2010.
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on difficult and non-trivial manifolds but the embedding produced by PLML

should allow us to make inferences as to the structure of the data.

The PLML algorithm is considered side-by-side with existing state of the art

manifold learning algorithms. These algorithms not only represent the bench-

mark performance but also the different paradigms used for manifold learning.

As such one of the purposes of this chapter is to see how well PLML per-

forms when compared with existing, previously evaluated, manifold learning

algorithms.

In this chapter we also consider the computational complexity of the PLML

algorithm and compare it with the computational complexities of some other

leading manifold learning algorithms.

The remainder of this chapter is structured as follows. We begin in Section 4.1

by outlining the methodology we will use in the experiments in this chapter.

We discuss the quality measures we use, the other manifold learning algorithms

we compare against, and also the environment within which we perform the

experiments. We begin our analysis in Section 4.2 by showing visually how our

algorithm fairs against the comparison algorithms on four artificial datasets.

In Section 4.3 we perform a detailed analysis on the Swiss Roll dataset. We

compare against four state of the art manifold learning algorithms and inves-

tigate the effects of sparsity, noise and parameter selection. In Section 4.4 we

show how the PLML algorithm performs on image data and then we discuss the

computational complexity and memory requirements in Section 4.5. We end

with Section 4.6 by drawing the conclusions obtained from the analysis in this

chapter.
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4.1 Methodology

In this section we outline the methodology used during the analysis of the PLML

algorithm. We begin by visually assessing the quality of embeddings produced

by PLML and four other manifold learning algorithms on four artificially gener-

ated datasets. This visual assessment allows us to gain a high-level understand-

ing as to how the PLML algorithm performs on different types of manifold.

The visual comparison also allows us to see how the performance of PLML dif-

fers from existing manifold learning techniques and allows us to identify the

properties of the low-dimensional embeddings produced by PLML.

We then move on to analyse the performance of PLML in a detailed and quan-

titative manner. By focusing solely on the Swiss Roll dataset we are able to

assess how the PLML algorithm copes with a non-linear dataset under differ-

ent densities, noise levels and parameters. We compare PLML’s performance

with the four existing manifold learning algorithms so as to gain a better under-

standing of the strengths and weaknesses of PLML as well as the differences and

similarities it shares with certain techniques. For this detailed analysis we use

three different quality measures which measure the stability of a low-dimensional

embedding at local and global scales.

Our assessment of the PLML algorithm is then rounded off by applying it to

three different image datasets. These datasets exhibit difficult manifold struc-

ture and we investigate the results obtained by PLML. This qualitative analysis

of the image datasets gives us insight into how the PLML algorithm works on

real world data.
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4.1.1 Quality Measures

The purpose of the quality measures is to assess the stability of a manifold

learning algorithm’s embedding of a given dataset. Therefore the choice of

appropriate quality measures is essential to gain a solid understanding of how

an algorithm performs. The correct choice of quality measure was listed as an

open problem in Chapter 2 and as such there is no gold standard. Instead we

use three different quality measures to assess the performance of a manifold

learning algorithm at both a local and global scale.

Venna rightly postulated that the retention of local properties of a dataset are

often of more importance than the retention of global properties (Venna and

Kaski, 2006). As such two of the three quality measures that we employ are

concerned with the local stability of the embedding, one measuring the topo-

logical stability (Trustworthiness), and one measuring the geometric stability

(Procrustes Error). The third quality measure we use is concerned with how

well the global distances, and therefore global structure, of the data has been

maintained (RMSE).

Trustworthiness

Trustworthiness (Venna and Kaski, 2006) measures the retention of neighbours

between the high and low-dimensional spaces. An embedding achieves a high

Trustworthiness value if the set of k nearest neighbours of a point in Y are also

nearest neighbours of X. As such Trustworthiness is a good measure of how

well the local neighbourhoods have been reconstructed in the low-dimensional

space.

We follow the same terminology and methodology as in (Venna and Kaski,

2006). The Trustworthiness of an embedding over a neighbourhood size region

104



4.1. METHODOLOGY

k is defined as

Tk = 1− 2

nk(2n− 3k − 1)

n∑

i=1

∑

j∈Uk(i)

(r(xi, xj)− k) (4.1)

where Uk is the set of data samples that are in the k-neighbourhood of xi in the

low-dimensional space but are not neighbours in the high-dimensional space.

r(xi, xj) is the rank of the data sample xj in the ordering according to the dis-

tance to xi in the high-dimensional space. So a large value of r(xi, xj) will occur

if the point xj enters into the neighbourhood of xi from a long distance in the

high-dimensional space. The front fraction, 2
nk(2n−3k−1) , is a normalising term.

A Trustworthiness value of 1 indicates that no local neighbourhood distortions

have occurred as a result of manifold learning.

Procrustes Error Measure

The Procrustes Error Measure (Goldberg and Ritov, 2009) measures the local

distortion introduced as a result of manifold learning. Since this error metric

is based on Procrustes analysis it measures the change in rotation between a

neighbourhood in high-dimensional space and that same neighbourhood in the

low-dimensional space. The error measure is defined as

Rk(X,Y) =
1

n

n∑

i=1

G(xi, yi) (4.2)

where G(xi, yi) returns the Procrustes statistic of the neighbourhood around xi

and yi and is measured as follows
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G(xi, yi) = inf
{A,a:A′A=I,b∈Rq}

k∑

i=1

‖ xi −Ayi − n ‖2 (4.3)

= inf
{A,a:A′A=I,b∈Rq}

tr((X−YA′ − 1b′)′(X−YA′ − 1b′)) (4.4)

where A is the Procrustes rotation matrix and b is the Procrustes translation

vector2.

A Procrustes Error value of 0 indicates no distortion between a given neighbour-

hood in the high and low-dimensional spaces. The function Rk is sensitive to

scaling and so will penalise those techniques that normalise the data or introduce

local scale changes.

One question which arises out of the use of the Procrustes error measure is

whether it is biased towards favouring PLML as the PLML algorithm uses Pro-

crustes algorithm to align the local models during Back Alignment (Section

3.2.3). Although PLML does use the Procrustes algorithm it does not find

the low-dimensional embedding my minimising the Procrustes error measure

(Equation 4.2). If it did, then the above error measure would be biased towards

the PLML algorithm as it is this measure which should be minimised during

execution of the algorithm. However, since PLML only uses Procrustes to align

previously moved models, the Procrustes error measure is never explicitly min-

imised. This is in contrast to the Greedy Procrustes and Simulated Annealing

presented by Goldberg and Ritov (2009) where Equation 4.2 is minimised to

obtain the low-dimensional embedding.

2For computation of these values see either Chapter 3 or (Goldberg and Ritov, 2009; Mardia
et al., 1979; Sibson, 1978)
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Residual Mean Square Error

The Residual Mean Square Error (RMSE) sometimes called the Residual Vari-

ance measures the difference in distances between all points in the high and

low-dimensional space (Tenenbaum et al., 2000). The error is measured by

ρk = 1−R2(DX,DY) (4.5)

where DX is a square symmetric matrix containing the distances between all

points in the high-dimensional space (as measured by the geodesic distance

graph formed by the k-nearest neighbours). DY is the Euclidean distance ma-

trix between points in the low-dimensional space. R2 is the linear correlation

coefficient, taken over all entries of DX and DY.

RMSE provides us with a good approximation of how well the manifold learning

technique has preserved the distances during the manifold learning process. A

value of 0 would indicate a perfect correlation between the two distance matrices.

4.1.2 Comparison Algorithms

For an in depth analysis we compare the PLML algorithm against 4 leading

manifold learning algorithms. These algorithms are discussed in more detail in

Chapter 2 and have been selected because each represents a different paradigm

in manifold learning and are the leading algorithms within each paradigm.

Principal Components Analysis (PCA) (Hotelling, 1933) is possibly the

most widely used dimensionality reduction technique and represents not only

linear dimensionality reduction but also the goto method that many people use

when considering manifold learning. Because of this PCA can be seen as the
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baseline method.

Isomap (ISO) (Tenenbaum et al., 2000) is a global approach to manifold learn-

ing. It uses geodesic distances to calculate the inter-point distance matrix and

is one of the most successful and well known manifold learning algorithms.

Locally Linear Embeddings (LLE) (Roweis and Saul, 2000) is a local ap-

proach that appeared at the same time as Isomap. It works by calculating the

local linear reconstruction weights to reproduce a point in terms of its nearest

neighbours.

Local Tangent Space Alignment (LTSA) (Zhang and Zha, 2004) is a global

alignment of local linear models technique that uses the alignment of local tan-

gent spaces to build a global model of the manifold. Since LTSA is a global

alignment of local models technique it can be seen as PLML’s closest relative.

4.1.3 Environment

All experiments were performed in the MATLAB programming environment3.

The implementations for PCA, Isomap, LLE and LTSA were taken from Lau-

rens Van Der Maaten’s Dimensionality Reduction toolbox for MATLAB4. The

experiments were performed on both a Dell Optiplex 755 with a 2.4GHz In-

tel Dual CPU with 3.25GB of RAM running Windows XP Professional, and a

MacBook Pro with a 2.7GHz Intel Core i7 and 8GB of RAM running Mac OS

10.6.7.

3MATLAB: http://www.mathworks.com (Link checked 26/07/11 )
4The toolbox is available from http://bit.ly/9qtylr (Link checked 26/07/2011 ).
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Figure 4.1: Two thousand (2000) points sampled from the Swiss Roll dataset.

4.2 Method Comparison

In this section we provide an overview of the different approaches to manifold

learning on toy manifolds. The simplicity of the manifolds provide us with a

good way of visualising how the different approaches behave when reducing the

dimensionality of a dataset.

We compare the four algorithms described in the previous section with the

PLML algorithm onfour different datasets: the Swiss Roll, the broken Swiss

Roll, the Fishbowl and the Helix. For each dataset the optimal parameter was

selected for each algorithm. This varies between datasets and was chosen by

eye-balling the results and choosing the most visually accurate and pleasing

embeddings.
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Figure 4.2: The 2-dimensional embeddings of the Swiss Roll dataset.

4.2.1 Swiss Roll

The Swiss Roll is the benchmark dataset used in manifold learning5. It contains

many properties which make it a difficult and interesting manifold to learn.

Simplistically it can be thought of as a spiral with an added ‘depth’ dimension.

An example of the Swiss Roll dataset is shown in Figure 4.1. Here 2000 points

are sampled from the Swiss Roll data with zero added noise. As can be seen

the manifold exhibits a highly curved structure and can be represented by a

2-dimensional plane.

5The dataset originates from evaluating the capabilities of Isomap (Tenenbaum et al.,
2000).
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The Swiss Roll was initially used to show the benefits of graph based techniques

(Tenenbaum et al., 2000). The developable nature of the dataset means that

those methods that represent the distances in terms of graph distances will be

able to successfully unroll the data. On the other hand, those methods that

use Euclidean distances will fail to find a stable embedding of the dataset.

This is shown by the embeddings in Figure 4.2. PCA, which uses Euclidean

distances, fails to uncover the true manifold structure of the data, whereas

Isomap successfully unrolls the manifold. This is not surprising as the data

exhibits real non-linear structure and PCA by nature is unable to deal well

with non-linear datasets.

What is of real interest is the comparison of the 4 non-linear techniques. Of

these the 2 that produce the most visually appealing embeddings are LTSA and

PLML. Isomap unrolls the manifold and recovers a good global reconstruction

of the data, however the local neighbourhoods become heavily distorted. This

is shown by the expansion effect seen at a local level in Figure 4.2 (b). Some

of the data points seem to be pushed outwards and there are holes within the

embedding. Conversely, LLE recovers the local neighbourhood structures well

but fails to obtain a good global reconstruction of the data. Figure 4.2 (c) shows

the LLE embedding. Although locally the structure of the manifold is retained,

globally it appears heavily distorted. These results are in keeping with the

nature of the algorithms. Isomap is a global technique which can deal well with

the global structure of the data but often fails at recovering the local properties.

LLE can recover the local structure well but often fails at the global scale.

LTSA and PLML are the two techniques that seek to overcome these limita-

tions by globally aligning local linear models. The efficacy of this approach to

manifold learning is shown by the results obtained in Figure 4.2. Both LTSA

and PLML recover visually pleasing, locally accurate and globally stable embed-
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dings of the dataset. At first it is difficult to separate the two results, however

on closer inspection it becomes apparent that the PLML embedding is an im-

provement over the LTSA embedding. This is due to the normalisation of the

LTSA embedding. One of the artefacts of LTSA is that the final embedding is

normalised. This normalisation is often far from ideal and can lead to problems

not only in the embedding but also further down the processing pipeline (a prob-

lem discussed in detail in (Goldberg et al., 2008)). PLML on the other hand

does not normalise the data and distances in the low-dimensional embedding

are almost identical to those in the high-dimensional space.

Another point to note at this stage is that although the data is near optimal

(i.e. it is noise free and well sampled) some algorithms fail to produce optimal

embeddings. Both Isomap and LLE fail to recover either the true local or the

true global structure of the data. PCA obviously cannot successfully embed

the manifold and LTSA, although it produces a visually appealing embedding,

normalises the output. PLML produces the best embedding under these condi-

tions.

4.2.2 Broken Swiss Roll

An interesting variant of the Swiss Roll is the broken Swiss Roll dataset. This

data is the same as the normal Swiss Roll dataset but with a rectangular area

punched out of the middle (Figure 4.3 (a)). The presence of a discontinuity in

the manifold has drastic effects on graph based techniques. This, as pointed out

in (Lee and Verleysen, 2007), is due to the fact that the graph based distances

when considering inter-point distances across the hole are not equal to Euclidean

distance across the manifold. This explains the stretched-hole effect of the

Isomap embedding as shown in Figure 4.3 (c). LLE also struggles to produce

a meaningful global embedding. In fact the embedding quality is decreased as

112



4.2. METHOD COMPARISON

−10 −5 0 5 10 150

20

40

−15

−10

−5

0

5

10

15

(a) Broken Swiss

−20 −15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

(b) PCA

−60 −40 −20 0 20 40 60
−50

−40

−30

−20

−10

0

10

20

30

40

(c) Isomap

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

(d) LLE

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

(e) LTSA

−50 −40 −30 −20 −10 0 10 20 30 40 50
−20

−15

−10

−5

0

5

10

15

20

(f) PLML

Figure 4.3: The Broken Swiss Roll (a) and the 2-dimensional embeddings of the
(b-f).
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Figure 4.4: The 3-dimensional Fishbowl dataset. The data can be thought of
as a sphere with the top chopped off and is named after the classic bowl shaped
fish tank. (a) shows a 3-dimensional view of the dataset while (b) shows the
2-dimensional y − z projection.

there is even less global information contained in the data as a result of the

introduced discontinuity.

LTSA and PLML again out perform LLE and Isomap. At first sight both

embeddings (Figure 4.3 (e-f)) are nearly identical with the difference that LTSA

again normalises the embedding. However upon closer inspection there is a slight

distortion in the centre of the PLML embedding along the lower connecting

branch. The reason for this distortion becomes apparent when one considers

that the models involved in the distortion represent two end points of the MST.

Due to small accumulative errors being built up during the model merging

procedure the end points of the MST do not exactly match so there is a slight

distortion in the embedding.

4.2.3 Fishbowl

The Fishbowl dataset (Figure 4.4) consists of points sampled from a 3-dimensional

sphere with the top section cut off so that it resembles a classic bowl shaped

fish tank. The data is the stereographic projection in R3 from the plane z = 0
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to the unit sphere (Silva and Tenenbaum, 2003b). A disk in the plane maps to

a fishbowl structure under this map. It is worth noting from Figure 4.4 that

the data is ‘bunched’ up non-uniformly near the rim of the bowl. Even though

the points in the plane z = 0 are uniformly sampled, when projected onto the

unit sphere this uniformity is lost. As pointed out in (Silva and Tenenbaum,

2003b) this non-uniform sampling can be difficult for spectral techniques such

as Isomap to deal with.

Another property of the dataset which makes it of interest is that it is a spherical

manifold. This means that PLML will not be able to embed the manifold

without introducing a cut. Due to the topological skeleton provided by the

MST, circular, spherical, and any manifold with essential loops will be cut to

produce an embedding. Although PLML introduces a cut to the manifold to

produce an embedding, many manifold learning algorithms will be unable to

successfully embed this dataset (Lee and Verleysen, 2005).

The embeddings produced by the different manifold learning algorithms on this

Fishbowl dataset are shown in Figure 4.5. Isomap and LLE struggle to produce a

good embedding of this dataset for two reasons. First, the non-uniform sampling

makes it difficult for Isomap to properly recover the geodesic distances and also,

as described above, the manifold contains essential loops.

Both LTSA and PLML provide interesting embeddings of the data and it is

difficult to differentiate which one is the correct embedding. LTSA recovers the

original disk like structure that was cut out of the plane and projected onto the

unit sphere. PLML on the other hand cuts the manifold and lays it out nicely

in the low-dimensional space. Given that we know the way in which PLML

operates (i.e. the manifold is cut if essential loops exist) then we can use the

PLML embedding to infer that the high-dimensional points lie on a sphere as
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Figure 4.5: The 2-dimensional embeddings of the Fishbowl dataset.
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we can imagine ‘re-stitching’ the embedding to form a sphere.

The Fishbowl manifold presents an interesting case as it is the first example

so far where the two global alignment techniques - LTSA and PLML - differ

drastically in results. With the Swiss Roll and broken Swiss Roll datasets both

LTSA and PLML performed in much the same way. However the Fishbowl

dataset, with its continuous curved structure and essential loops, shows how

these two techniques differ. It is worth remembering that even though both

LTSA and PLML are based on the idea of globally aligning local linear models

their methodology is very different and this can often produce very different

results.

4.2.4 Helix

The helix dataset is shown in Figure 4.6 and consists of a 1-dimensional curve

embedded within 3-dimensional space where the tangent line to the curve at any

point makes a fixed angle with the axis line. The helical structure is continuous,

that is the two ends of the helix are joined together to make one continuous

curve. This makes the true embedding of this dataset interesting as the intrinsic

dimensionality of the data is 1, however it can be embedded in 2-dimensional

space as a circle. This circular embedding is shown by the embeddings produced

by Isomap, LLE and LTSA in Figure 4.7.

PCA provides a good approximation of the manifold by recovering the global

and local curvature of the manifold. It is equivalent to an x − y projection of

the data (See Figure 4.6 (b)) and so some local distortions occur as a result

of this linear projection. Isomap, LLE and LTSA manage to unravel the helix

coil to a circle. Isomap and LLE perform particularly well at this while LTSA

fails to uncover the structure but rather overlays different coils of the circle
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Figure 4.6: The 3-dimensional view, (a), and the x − y projection, (b), of the
Helix coil dataset.

on top of the others. As with the Fishbowl dataset, since the data contains

essential loops PLML will not be able to successfully embed the helix data into

2-dimensions as a circle since a cut will be made in the manifold through use of

the MST. This explains why the 2-dimensional embedding produced by PLML

shown in Figure 4.7 is not circular. Rather it consists of each of the coils of

the helix overlapping one another. The explanation of this is quite simple. The

embedding produced by PLML is built in an iterative manner, that is one model

is embedded into the global model and then the next model is embedded and

so on. There is no ‘all at once’ global optimisation of the local models so the

circle will never be recovered from the data as the helix will never be ‘pulled

out’ into a circular shape. Rather PLML will simply follow the curvature of the

manifold and embed the models according to this curvature.

Since the Helix dataset can be thought of as a 1-dimensional curve there are two

ways of embedding this dataset. The first, attempting to embed it as a circle

in two-dimensions has already been discussed. We now move on to discuss the

second way of embedding this dataset, by embedding it into a single dimension

and attempting to recover the 1-dimensional structure of the data. The strength

of PLML’s cutting of the manifold becomes evident when we attempt to embed
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Figure 4.7: The 2-dimensional embeddings of the Helix coil dataset.

119



CHAPTER 4. PIECEWISE-LINEAR MANIFOLD LEARNING:
PERFORMANCE AND ANALYSIS

the helix in this way (Figure 4.8). All other algorithms that we are considering

fail to properly embed the manifold into 1-dimension. They introduce distor-

tions into the mapping by embedding sections of the manifold over the top of

other sections. PLML on the other hand manages to successfully embed the

manifold into 1-dimensional space without introducing any distortions.
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Figure 4.8: The 2-dimensional embeddings of the Fishbowl dataset.
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4.3 PLML Detailed Analysis

In this section we provide a detailed analysis of the performance of the devel-

oped method, PLML, along with the 4 existing methods described previously

(Isomap, LLE, LTSA and PCA). We focus solely on the Swiss Roll dataset and

investigate the effects of sparsity, noise and parameter selection. The Swiss

Roll exhibits many properties that make it ideal for our analysis. First, it is a

non-linear dataset which means that the best results will be obtained by those

methods that manage to learn its non-linear structure. Although we use PCA

as a comparison algorithm, this non-linearity will mean that PCA becomes the

base-linear method. It will never be able to ‘un-roll’ the data and so we can use

PCA to represent the lower bounds of acceptability for an embedding.

The Swiss Roll also contains no essential loops. As previously shown, when

encountering a dataset with essential loops (such as the Fishbowl or Helix)

LTSA and PLML produce very different embeddings and others can even fail

to embed the data (e.g. (Lee and Verleysen, 2005)). The Swiss Roll provides us

with an environment in which the results of the methods are more stable, a fact

which makes comparison far easier. Datasets with essential loops are re-visited

in our detailed analysis of image data.

Finally, the Swiss Roll is the benchmark dataset for manifold learning. Although

we only compare PLML against 4 other manifold learning algorithms it is easy

to fit these results into the bigger picture of manifold learning by looking at how

other methods perform on the Swiss Roll. If we were to use a less well known

dataset for our detailed analysis we would not be able to do this. However,

since many algorithms are presented with results based on their performance of

learning the Swiss Roll dataset we can get a general idea of how well PLML will

perform by comparing these results with those presented by other algorithms.
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Throughout this analysis section our attention will be mainly fixed on the per-

formance of the PLML algorithm. Although we will comment on the results

produced by the other manifold learning algorithms our main interest is how

well PLML performs and how it compares with the existing approaches.

4.3.1 Sparsity

The ability of manifold learning algorithms to deal with sparse data is one of

the open problems in manifold learning (See Chapter 2). At a certain level

of sparsity there may not be enough information contained within the data to

reconstruct the manifold. However, algorithms should still be able to extract

some meaningful structure from what little data there is. As the density of the

data decreases and so the sparsity of the data increases, algorithms should be

able to gracefully deteriorate with the sparseness of the data.

We use four different dataset sizes to represent the change of data from sparse

to dense. The dataset sizes are n = 250, 500, 1000 and 2000 data points.

Figure 4.9 shows the Trustworthiness values for each dataset density value. For

the sparse case (n = 250) PCA is the top performer with PLML and LLE close

behind. Across all densities PCA is stable: producing similar results for each

density value. This is apparent when we examine the standard deviation, ∆,

between the Trustworthiness values for each density. For PCA, ∆PCA = 0.0084,

where as the other techniques have standard deviation values of: ∆ISO = 0.095,

∆LLE = 0.062, ∆LTSA = 0.164 and ∆PLML = 0.072. The poor performance

and high standard deviation of LTSA is due in part to neighbourhood size

parameter selection. This is discussed in more detail later, but for now it is

worth noting that when LTSA has the optimum parameter it performs well.

This is exhibited when considering the dense data case for LTSA, a maximum
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Trustworthiness value of t = 0.991 can be achieved with the correct parameter

value (k = 9), however the Trustworthiness value significantly decreases when

an incorrect parameter value is chosen (e.g. t = 0.51 when k = 3)6.

At this point it is worth discussing the behaviour of Isomap and LLE at low

densities. The Trustworthiness for LLE falls off as the size of the Trustworthiness

region increases (Figure 4.9 (a)). This is due in part to the fact that LLE cannot

recover the global properties of the data at such a low density.

PLML performs well across all densities and values of Trustworthiness region

with the exception of n = 250 and n = 500 where the Trustworthiness value tails

slightly as the Trustworthiness region increases. The stability of Trustworthiness

over a large range of k tells us something important about the performance of

PLML. The models produced by PLML are discrete and contain no inter-model

overlaps so it would be expected that up to the size of the local model (i.e.

PLML’s k value) the Trustworthiness measure would stay stable. However, as

the Trustworthiness k value increases and exceeds the size of PLML’s k value

it is now more likely to see a drop in Trustworthiness as local relations are not

guaranteed in the same way. The results in Figure 4.9 show that even across

a neighbourhood size larger than PLML’s k-value the Trustworthiness stays

stable. This indicates that the local models are correctly aligned and positioned

in the low-dimensional space as a result of PLML’s merging process.

The Procrustes Error (PE) and Residual Mean Squared Error (RMSE) are

shown in Figure 4.10 and Figure 4.11, respectively. Once again PCA performs

well when compared to the other algorithms on the sparse data sets, especially

when n = 250. The PE graphs all follow a similar pattern with the worst results

occurring at low Procrustes k values and the results then levelling out as the

6These values are not represented in Figure 4.9 as the results are averaged over LTSA’s
neighbourhood size parameter and these good performances are outliers.
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Procrustes k value increases. As the data density increases PLML becomes more

stable with the error value approaching 0 with the density set at n = 2000. This

is not the case for the other algorithms. LTSA consistently performs the worst

for the same parameter selection reasons described earlier. LLE and Isomap

perform much the same at each density value. This indicates that distortions

occur at a local scale as a result of performing manifold learning using either

LTSA, LLE or Isomap with sub-optimal parameter values. PLML on the other

hand is a lot more stable with different parameter values. This again shows

that alignment of the local models is correctly performed as the inter-model

distortion is low.

RMSE measures the retention of global information and as can be seen in Figure

4.11 all algorithms struggle to recover a good global embedding of the manifold

when encountering sparse data. Considering that in this case PCA is the worst

case as it will flatten the manifold and distort global distances then Figure 4.11

(a) shows that neither Isomap, LLE, LTSA or PLML can successfully recover

the global structure of the manifold. This is shown in Figure 4.12 where the

optimal embeddings of the n = 250 data for Isomap and PLML are shown.
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Figure 4.12: The embeddings produced by Isomap and PLML of the sparse
Swiss Roll dataset with n = 250 and optimal parameter values of k = 9 and
k = 5 chosen respectively.
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Neither algorithm recovers the true manifold structure although Isomap does

distort the local neighbourhoods (a fact reflected in the local error measures

discussed previously). The performance of Isomap and PLML improves when

the density is increased to n = 500 (Figure 4.11 (b)) however the performance

of both tails off at the RMSE k > 10 mark. This trend of changing RMSE value

at the RMSE k > 10 mark is due to the calculation of geodesics in the high-

dimensional space. RMSE is based on the difference between geodesic distance

as measured in the high-dimensional space and geodesic distance as measured

in the low-dimensional space. The k value shown on the graphs in Figure 4.11

represents the size of the neighbourhood used to construct the geodesic distance

graph. As this value increases more short circuits and incorrect distances will

be introduced so the RMSE will become more unstable. This point is supported

by the fact that the general shape of each curve in Figure 4.11 is very similar.

Isomap will always perform well when measuring the RMSE as it is the RMSE

that the algorithm seeks to minimise. This aside, PLML still performs well espe-

cially when considering the densely sampled case of n = 2000. It is unsurprising

that LLE does not perform as well as Isomap, LTSA or PLML as it is a local

technique that does not guarantee to recover the global shape of the manifold.

Table 4.1 shows the average results of the different error measures over different

densities with parameter values averaged and zero added noise. At low densi-

ties all non-linear algorithms are unstable and can often produce unpredictable

results. This is shown by the fact that some of the results for n = 500 are worse

than the results for n = 250 which is counter intuitive. One would expect the

results to improve as the density of the data increases. However at lower density

not only do the algorithms fail to recover the true manifold shape but the error

measures used become harder to estimate.
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Trustworthiness Procrustes Error (×10−4) RMSE

n
=

2
50

ISO 0.792(±0.08) 1.525(±0.67) 0.482(±0.03)
LLE 0.823(±0.07) 1.168(±0.40) 0.408(±0.05)
LTSA 0.810(±0.00) 1.591(±0.14) 0.445(±0.03)
PCA 0.889(±0.00) 0.750(±0.44) 0.229(±0.02)
PLML 0.869(±0.00) 1.124(±0.25) 0.469(±0.01)

n
=

50
0

ISO 0.915(±0.00) 0.982(±0.27) 0.362(±0.02)
LLE 0.854(±0.09) 1.181(±0.55) 0.441(±0.05)
LTSA 0.818(±0.00) 1.464(±1.18) 0.560(±0.04)
PCA 0.903(±0.00) 0.627(±0.48) 0.314(±0.13)
PLML 0.927(±0.00) 0.746(±0.42) 0.499(±0.04)

n
=

10
00

ISO 0.924(±0.00) 1.322(±0.50) 0.358(±0.04)
LLE 0.896(±0.00) 1.488(±0.80) 0.473(±0.03)
LTSA 0.795(±0.00) 1.688(±1.52) 0.729(±0.02)
PCA 0.886(±0.00) 0.545(±0.53) 0.548(±0.12)
PLML 0.961(±0.00) 0.291(±0.22) 0.440(±0.13)

n
=

20
00

ISO 0.966(±0.00) 0.865(±0.88) 0.156(±0.01)
LLE 0.909(±0.00) 1.321(±0.91) 0.506(±0.01)
LTSA 0.836(±0.00) 1.640(±1.42) 0.443(±0.03)
PCA 0.884(±0.00) 0.453(±0.47) 0.688(±0.02)
PLML 0.993(±0.00) 0.122(±0.11) 0.257(±0.06)

Table 4.1: Average results of Trustworthiness, Procrustes Error and RMSE
over different density scales. The results were averaged over parameter value,
error metric parameter value and taken with zero added noise. The standard
deviations as a result of this averaging are shown.
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The general trend in results is that as the density increases the algorithms

become more stable as they are able to better recover the underlying manifold.

PCA performs much the same regardless of density which lends weight to the

argument that PCA can be used as a good initial approximation when using

manifold learning for exploratory data analysis (Lee and Verleysen, 2007).

The results on different densities show that all non-linear algorithms struggle

when the data density is low (n < 1000). This is unsurprising as there is

often not enough local and global information contained in the sparse data to

approximate the shape of the manifold correctly at a local and global scale. PCA

on the other hand performs consistently regardless of density and outperforms

the non-linear techniques at low densities. However, when the density increases

(n ≥ 1000) the non-linear algorithms begin to outperform PCA. With n ≥ 1000

PLML becomes the top performer as it is able to recover both the local and

global properties of the manifold. Even though Isomap just out performs PLML

when it comes to RMSE at high densities, PLML manages to out perform

Isomap when observing local stability.

As well as this, PLML degrades gracefully as the density decreases and sparsity

increases. By observing the change of values in Table 4.1 we can see that apart

from one slight outlier with RMSE at n = 500 the performance of PLML im-

proves as the density increases. Similarly we know that as the density decreases

then the performance of PLML will also decrease, but not to the extent to make

it unusable.

With high-density data PLML is able to perform well at both a local and global

scale. It is able to outperform all the other manifold learning algorithms we are

comparing. As the density of the data decreases and we encounter increased

sparsity then the performance of PLML begins to drop. However, the perfor-
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mance of PLML at low-density is still comparable at a local scale to that of

PCA meaning that it meets the lower bounds of performance. Globally, at low

density, PLML is unable to recover the true manifold structure. This is not

however specific only to PLML. All other manifold learning algorithms fail to

uncover the global structure at low-density. As such, as long as the data is well

sampled then PLML will outperform the other manifold learning algorithms.

4.3.2 Noise

Many real world datasets are inherently noisy and so it is important for al-

gorithms that handle such data to cope with noise in a well defined manner.

Within the field of manifold learning, noise can often lead to distorted or even

completely unusable embeddings. As such the ability of manifold learning algo-

rithms to deal with noise is an important topic. In this section we investigate

the effect of noise on the performance of the 5 manifold learning algorithms we

are comparing.

The noise model used throughout these experiments is that of Gaussian noise

with a mean of 0 and standard deviation in the range of σ = [0, 1]. Figure 4.13

illustrates the effect that noise has on the Swiss Roll with n = 2000. Although

with σ = 1 the Swiss Roll does not completely degrade it is still difficult for

many manifold learning algorithms to pick up the true structure of the manifold

with this amount of noise. Throughout the discussion on noise we use n = 2000

unless otherwise stated. This is so as to factor out the effect of density and

concentrate solely on the effect of noise.

Figure 4.14 shows the effect of noise on algorithm performance on the Swiss Roll

dataset. The values for each error measure were obtained by averaging both

the error measure and manifold learning parameter values (See Table 4.2 for
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Figure 4.13: The different amounts of noise used in the experiments. Gaussian
noise is added at each noise level with different standard deviations in the range
σ = [0, 1]

standard deviations). For each error measure PLML degrades with noise; as the

noise increases the performance of PLML decreases. With the exception perhaps

of PCA, PLML is the only algorithm that shows a well defined and predictable

decrease in performance. The other algorithms are more unpredictable in the

presence of noise. For example, consider the RMSE value for LLE (Figure

4.14 (c)). At σ = 0, LLE records an average equal to RMSELLE = 0.506, at

σ = 0.25 this value increases to RMSELLE = 0.71 indicating a decrease in the

global quality of the embedding. However as the noise increases the value of σ

drops again indicating that LLE produces a better global approximation. This

tells us two things. First, LLE is unable to recover a good global approximation

of the manifold even at a low noise level (the value of RMSELLE at σ = 0

is higher than the value of RMSEISO at σ = 1). Secondly, it tells us that

LLE is unstable in the presence of noise. Even though it is unable to gain a
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good global approximation of the manifold it does not improve as the amount

of noise is reduced. The global stability of PLML on the other hand decreases

in a deterministic fashion as the noise increases. That is, as you move up from

one noise level to another the quality of the embedding decreases.

So although the overall performance of PLML does decrease as the noise level

increases, it does so in a well defined manner. From Figure 4.14 it is clear

that at a local scale most algorithms perform in a defined manner. From the

Trustworthiness and Procrustes Error values it is apparent that as the noise

increases the performance of an algorithm either drops (as is the case for all

algorithms when measuring the Procrustes Error) or stabilises (as is the case

for Isomap, LLE and PCA when measuring the Trustworthiness). Although

PLML does not perform as well as some of the other algorithms at high noise

values it is still useful to know that the performance decreases in a well defined

manner and does not suddenly drop at a certain noise level.

We now move on to discuss why the performance of PLML drops in the presence

of noise. We suggest that there is one main reasons why PLML’s performance
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Figure 4.15: The effect of noise on the creation of the MST within the PLML
algorithm.
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drops in the presence of noise. The noise affects the clustering step and so in turn

leads to not only incorrect models being formed but also an incorrect MST being

produced. If the clustering step fails to produce accurate local models of the data

then it is unlikely for the PLML algorithm to recover a true embedding of the

manifold. Figure 4.15 shows an MST created using the PLML algorithm with

n = 2000 and σ = 1. It is clear to see that short-circuits have been introduced

into the MST that cut across the manifold. These short-circuits will introduce

distortions and overlaps into the embedding as the merging step will merge two

models that are not topological neighbours. This is why the Trustworthiness

decreases: overlaps cause points to jump between non-connected neighbours.

Similarly the RMSE increases because short-circuits distort the true distances

between points and models. The Procrustes Error increases but not to such

an extend as is shown in Trustworthiness and RMSE. This is due in part to

the models retaining their local geometric properties even if the MST is not

correctly formed.

Since PLML performs well at mid to low noise (e.g. σ < 0.5) it could be

worthwhile applying a noise reduction algorithm prior to using PLML so as to

attempt to factor out any of the effects that noise may have on the performance.

4.3.3 Parameter Selection

Although methods exist to estimate the optimal parameters for many manifold

learning algorithms (See Chapter 2) it is still worthwhile to note how algorithms

perform with incorrect parameter choices. In this study there are two param-

eters to be investigated. The first, neighbourhood size, is applicable to all the

non-linear dimensionality reduction methods we are comparing. The second,

the starting model, is applicable only to PLML. Since PCA is a parameterless

method we do not include it in the following discussions.
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Trustworthiness Procrustes Error (×10−4) RMSE

σ
=

0

ISO 0.966(±0.00) 0.865(±0.88) 0.156(±0.01)
LLE 0.909(±0.00) 1.321(±0.91) 0.506(±0.01)
LTSA 0.836(±0.00) 1.640(±1.42) 0.443(±0.03)
PCA 0.884(±0.00) 0.453(±0.47) 0.688(±0.02)
PLML 0.993(±0.00) 0.122(±0.11) 0.257(±0.06)

σ
=

0.
25

ISO 0.903(±0.01) 1.226(±0.47) 0.375(±0.03)
LLE 0.857(±0.00) 1.171(±0.51) 0.710(±0.01)
LTSA 0.788(±0.01) 1.914(±1.30) 0.669(±0.02)
PCA 0.877(±0.00) 0.631(±0.76) 0.677(±0.03)
PLML 0.972(±0.00) 0.384(±0.14) 0.259(±0.05)

σ
=

0.
5

ISO 0.916(±0.00) 1.224(±0.37) 0.475(±0.08)
LLE 0.865(±0.00) 1.262(±0.66) 0.601(±0.02)
LTSA 0.773(±0.00) 2.281(±1.28) 0.695(±0.02)
PCA 0.884(±0.00) 0.872(±0.91) 0.573(±0.12)
PLML 0.951(±0.00) 0.863(±0.89) 0.404(±0.05)

σ
=

1

ISO 0.902(±0.00) 1.668(±0.34) 0.279(±0.03)
LLE 0.852(±0.00) 1.706(±0.67) 0.442(±0.03)
LTSA 0.682(±0.00) 2.546(±1.18) 0.604(±0.14)
PCA 0.878(±0.00) 1.101(±1.00) 0.194(±0.01)
PLML 0.862(±0.00) 1.596(±0.00) 0.548(±0.04)

Table 4.2: Average results of Trustworthiness, Procrustes Error and RMSE over
different noise levels. The results were averaged over parameter value, error
metric parameter value and taken with n = 2000. The standard deviations as
a result of this averaging are shown.
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Neighbourhood Size

The neighbourhood size parameter, k, has various uses depending on which

manifold learning technique is being used. For Isomap the neighbourhood size

parameter determines the number of nearest neighbours to connect when form-

ing the neighbourhood graph. For LLE the neighbourhood size parameter de-

termines the number of points to include in the reconstruction of a sample from

its neighbours. For LTSA and PLML the neighbourhood size parameter deter-

mines the size of the local tangent spaces or models. With this in mind it is

expected that with a small k value, Isomap will fail to recover a faithful embed-

ding as it will produce a disconnected graph, LLE will not recover enough local

information to reconstruct the data-points properly, whereas the local models

produced by LTSA and PLML will not contain enough local information to gain

a proper approximation of the structure of the manifold. Similarly, if the value

of k is too large then Isomap’s neighbourhood graph will short-circuit leading to

incorrect geodesics. LLE, LTSA and PLML will over approximate the linearity

of the local models and so produce incorrect mappings because they attempt to

enforce linear constraints on parts of the manifold which are in fact non-linear.

The investigation into the effect of neighbourhood size parameter is broadly

split into two categories. First, we deal with how neighbourhood size and data

density are related and then secondly we deal with how neighbourhood size and

noise are related. Each of these are dealt with separately below.

Figure 4.16 shows the results of changing the neighbourhood size parameter

over a range of different densities. The first point to note is that the effect

of changing the neighbourhood size parameter decreases as the sample density

increases. This is especially true for Isomap and PLML where the standard

deviations for n = 250 are ∆ISO = 0.0921 and ∆PLML = 0.0389 respectively.
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These values drop when n = 2000 to ∆ISO = 0.0613 and ∆PLML = 0.0141.

When compared to LTSA’s standard deviations of ∆LTSA = 0.163 for n = 250

and ∆LTSA = 0.203 it is clear that Isomap, PLML, and to a certain extent LLE,

follow the pattern of stabilising the embedding quality over different parameters

as the number of samples increases. Just as increased density stabilised the

results obtained over average parameter values, so increased density stabilises

the parameter values. Figure 4.17 and Figure 4.18 show the Procrustes Error

and RMSE results obtained over different k values for different densities. What

is interesting to note is that although the results do still partially stabilise as

the density increases there exists an optimal range of parameters in a way that

is not quite so obvious in the Trustworthiness results.

For nearly all techniques, bar perhaps LTSA, this optimal parameter value oc-

curs in the range 4 ≤ k ≤ 14. This could be due in part to the fact that within

this range the local linearity assumption holds. At values smaller than this

there is not enough local information to properly construct the linear basis of

the neighbourhood. Similarly, at k values larger than this the linearity assump-

tion fails to hold because the neighbourhood is over estimated and so lies across

a non-linear patch of the manifold.

The effect of noise on the choice of parameter value is shown in Figure 4.19,

Figure 4.20 and Figure 4.21. Considering the case of PLML only, these results

show that as the noise increases so does the optimal value of k. For example,

the optimal k value for Trustworthiness at σ = 0 occurs in the range 3 ≤ k ≤ 9.

Where as this optimal value increases at σ = 1 to the range 18 ≤ k ≤ 36.

The story is the same for Procrustes Error and RMSE (Figure 4.20 and Figure

4.21). This leads us to draw a general conclusion: as the noise increases we

should increase the neighbourhood size parameter to attempt to counter the

effect of noise. At a certain level this increase in k will have a negative rather
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than positive effect (as can be seen at the higher k values for the higher noise

value figures).

However, we have seen when discussing the effect of density on the choice of

k that large values of k with sparse data can often have detrimental effects

to the quality of the embedding. Therefore a careful trade off needs to take

place between correct parameter selection based on the density and noise of the

dataset. It is difficult to draw a general rule as it is likely to be data dependent

but it is worthwhile to note that it will be difficult to select an optimal parameter

for a low density, high noise data set.

Considering the two different problems of varying k with density and varying

k with noise we can see that it is difficult to formulate a general rule as to

the correct choice of parameter. However, we are able to develop some general

principles which are specific to the PLML algorithm. If the data density is high

then the effect that the neighbourhood size parameter plays in the performance

of the PLML algorithm decreases. At lower densities a smaller parameter value

should be used to achieve better results. This is due in part to the fact that the

number of samples in a neighbourhood relative to the overall number of samples

decreases so the parameter value should also decrease. However in the presence

of high noise this neighbourhood size value should increase to compensate for the

effect of noise. As such there is a trade-off involved in the selection of the correct

neighbourhood size parameter. The stability and predictable performance of

PLML at different densities and noise levels should make this parameter search

easier.
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Starting Model

The PLML specific parameter which we now investigate is the starting model

used in the MST traversal. The assumption we wish to prove is that a random

model can be chosen to initiate the traversal and choosing another starting

model will not change the embedding result. To address this we choose 15

different starting points from the Swiss Roll each at a different position either

around the edge or along the centre of the manifold (Figure 4.22). We then

measure the Trustworthiness, Procrustes Error and RMSE for each of these

embeddings. To cancel out the effect of noise, density and neighbourhood size

parameter we use a Swiss Roll with n = 2000, σ = 0 and set PLML’s k value to

k = 9 (this value falls within the optimal range of parameter values discussed

above for a high-density, low noise dataset).

The starting points are labelled as shown in Figure 4.22 according to their

position relative to the low-dimensional embedding. So the top left point is

called TL, the middle point is called MC (for Middle Centre) and the Bottom

−40 −30 −20 −10 0 10 20 30 40 50 60
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MR

BR

Figure 4.22: The different starting points used to test whether the starting
model affects the low-dimensional embedding. The points are shown as their
respective positions on the low-dimensional embedding.
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Trustworthiness Procrustes Error (×10−6) RMSE

TL 0.999(±0.00) 2.967(±0.96) 0.100(±0.07)
ML 0.999(±0.00) 2.437(±0.67) 0.099(±0.07)
BL 0.999(±0.00) 2.855(±0.84) 0.100(±0.07)
TCL 1.000(±0.00) 2.889(±0.91) 0.100(±0.07)
MCL 0.999(±0.00) 2.525(±0.83) 0.100(±0.07)
BCL 0.999(±0.00) 8.198(±3.35) 0.101(±0.07)
TC 0.999(±0.00) 2.496(±0.63) 0.100(±0.07)
MC 1.000(±0.00) 2.037(±0.52) 0.100(±0.07)
BC 0.999(±0.00) 4.667(±5.40) 0.100(±0.07)
TCR 0.999(±0.00) 3.349(±0.74) 0.101(±0.07)
MCR 0.999(±0.00) 3.717(±1.37) 0.100(±0.07)
BCR 0.999(±0.00) 2.274(±0.39) 0.100(±0.07)
TR 0.999(±0.00) 2.823(±0.83) 0.101(±0.07)
MR 1.000(±0.00) 2.351(±0.50) 0.100(±0.07)
BR 0.999(±0.00) 3.205(±0.97) 0.100(±0.07)

∆ ±0.00 ±2.31× 10−6 ±0.07

Table 4.3: Average results of Trustworthiness, Procrustes Error and RMSE
over different starting positions. The values were obtained on a Swiss Roll with
n = 2000 and σ = 0 with PLML k = 9.

Right is called BR.

Table 4.3 shows the results of testing the embedding quality when starting from

the 15 different starting models as shown in Figure 4.22. The bottom row of

Table 4.3 shows the standard deviation across all starting models. A low value

indicates that the starting model has no effect on this quality measure. With

this in mind we can see that the starting model has no effect on Trustworthiness

as the average standard deviation is 0.00. This is not the case for the Procrustes

Error and RMSE. However these standard deviations can be explained. First,

the standard deviation for RMSE simply reflects the standard deviation within

the measurement of RMSE for each starting model. The value of 0.07 is constant

across all models and so does not reflect any change between the RMSE when

starting at different models but rather the standard deviation from within each

embedding. For Procrustes Error the story is much the same however there
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are some slight outliers, most notably BCL, BC, TCR and MCR. However

for each of these starting positions the standard deviation is high within the

embedding measurement suggesting that there are outlier measurements rather

than a drastic change of Procrustes Error for that specific starting model.

We have shown that although there is slight deviation in the results when choos-

ing different starting models these deviations do not create drastically different

embeddings. As such the starting model does not have enough effect on the

resulting embedding to warrant an ideal starting point. Rather we can select a

starting model at random and be sure that the embedding quality will remain

the same regardless of which random model we choose.
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4.4 Image Data

Learning the low-dimensional manifold of image data presents an interesting

and ‘real world’ problem for manifold learning algorithms. Testing manifold

learning algorithms on image data has become one of the corner stones of this

research field (e.g. Tenenbaum et al. (2000); Roweis and Saul (2000); Verbeek

(2006); Weinberger and Saul (2006a)). Typically the image data will be syn-

thetically produced so as to limit the number of intrinsic dimensions of the

data. For example, the ISO Faces dataset (Tenenbaum et al., 2000) consists of

a 3-dimensional head model changing in left-right and top-down pose with the

lighting conditions also changing. This means that the parameterisation of the

intrinsic manifold is constrained to the head pose and lighting direction. More

complex data can be found in the form of the Frey faces dataset (Roweis and

Saul, 2000). This dataset is a set of frames taken from a video sequence of a face

undergoing different facial expressions. These expressions are the parameters of

the low-dimensional manifold.

In all of the image data examples the raw pixel information is used as the input

features. Each image represents a single point in high-dimensional space. So if

we have a set of 200 images of size 32× 32 pixels then we will have a set of 200

points in R1024. This means that we are attempting to learn the true intrinsic

manifold of the data rather than the manifold created as a result of extracting

a set of image features.

The analysis of this image data is difficult as there is often no ground truth

that describes what the embedding should look like or what properties the

embedding should have. Rather the analysis of the image dataset is heavily

reliant on visual assessment of the embedding. For this reason we perform a

visual, qualitative, assessment of the image datasets rather than a quantitative
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(a) Happy (b) Pouting (c) Neutral (d) Tongue (e) Sad (f) Angry

Figure 4.23: The 6 expressions that parameterise the Frey faces dataset. These
expressions were extracted from the PLML embedding as the mean image of
each manually segmented expression region

analysis. For each of the image datasets used we follow the same methodology.

First, we examine the topology of the data according to the model based MST.

The MST is laid out using the Graph Viz package7 and the mean image of

each model is displayed. This allows us to investigate the connectedness of the

dataset separate from the embedding. As well as investigating the MST we also

investigate the 2-dimensional embedding produced by the PLML algorithm and

discuss the results obtained. The pros and cons of the performance of the PLML

algorithm on each dataset is also discussed.

We use 3 different image based datasets: the Frey faces dataset (Roweis and

Saul, 2000), the ISOFaces data (Tenenbaum et al., 2000) and the COIL-20

data (Nene et al., 1996). Each of these datasets contain an interesting and

potentially difficult manifold structure. For each dataset we discuss the expected

and learnt manifold structure as well as the estimated intrinsic dimensionality

of each dataset.

4.4.1 Frey Faces

The Frey faces dataset (Roweis and Saul, 2000) consists of a sequence of images

showing a face undergoing different facial expressions (Figure 4.23). There are

7The open source GraphViz library is available from: http://www.graphviz.org (Link
checked 22/07/11 )
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1965 images each of size 20 × 28 pixels, meaning the data lies in R560. The

only change in the data between frames is the facial expression with some left-

right and up-down pose variation. The lighting is fixed. However, the amount

of time spent on each facial expression varies. So for example, the neutral

facial expression is over represented, whereas the tongue expression is under

represented. This raises questions as to what is the true intrinsic structure and

dimensionality of the data. In the literature this dataset is often reduced to 2-

dimensions and then paths are traced through the embedding to show how the

variation of expressions can be interpolated (e.g. Roweis and Saul (2000); Roweis

et al. (2002); Goldberg and Ritov (2009)). This embedding to 2-dimensions

however makes many assumptions about the intrinsic structure of the data that

may not necessarily be true. First, the intrinsic dimensionality of the data

is not 2-dimensions. An average of intrinsic dimensionality estimators reaches

the intrinsic dimension value of 7-dimensions8. This means that reducing to

2-dimensions will most likely introduce discontinuities and distortions into the

embedding. Secondly, the idea of tracing a path through the embedding to

show expression interpolation does not equate to a successful embedding. In

the extreme case a carefully selected path could be mapped through a random

projection of the data and structure could be inferred.

The question of what constitutes a successful embedding of the Frey faces data

remains an open question. We wish to suggest that if reducing the data to

2-dimensions, as we do, then the data must contain more structure than simply

single randomly selected paths. There should be a global structure present

within the data. This is in keeping with the discussion on this same dataset

by Lee and Verleysen (Lee and Verleysen, 2007). They suggest that the data is

8Throughout we estimate the intrinsic dimensionality by taking the average of the follow-
ing intrinsic dimensionality estimators: Local PCA (Fukunaga and Olsen, 1971), Maximum
Likelihood Estimation (Levina and Bickel, 2004) and Packing Numbers (Kégl, 2002)
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split into two clusters, and certainly embeddings produced by some algorithms

confirm this. However, it is unclear as to what these two clusters represent. At

a high level how can the expressions be split into two parts? What is there in

the data which lends weight to this argument? This remains unclear in (Lee and

Verleysen, 2007) and as such we do not make the same two cluster assumption.

Rather we wish to see in an embedding of the Frey faces data some form of

multi-level structure. That is, at a high level the expressions exist in separate

regions of the embedding, and at a lower level the expressions can be linked

together in a meaningful way.

With a definition made as to what constitutes a meaningful embedding of this

data we now move on to analyse the performance of the PLML algorithm on this

same dataset. To begin, we examine the model level topology to see the structure

that has been extracted from the data. If there is no apparent structure or

ordering in the data at this level then the embedding produced later on in the

algorithm will be unusable. A simple layout of the model level MST produced

by the PLML algorithm with model size parameter k = 7 is shown in Figure

4.24. A parameter value of k = 7 was chosen as the optimal value by eyeballing

the results produced by different parameter values and choosing the visually

most pleasing. The MST shown in Figure 4.24 was rooted at a random model

(in this case a model representing a happy expression). From this root node the

models expand out along different paths according to the topology defined by

the MST.

Analysing a graph of this form can often be difficult as it is unclear as to what

we are looking for. Therefore we keep in mind the goal of the MST in the

PLML algorithm: to represent the correct topology of the models. Similar

models should be connected and dissimilar models unconnected. We now turn

our attention back to Figure 4.24 and see that the different paths taken along
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Figure 4.24: The MST topology graph for the Frey faces dataset. Each image
is the median face of a model and the graph shows the connectedness of each
model according to the MST.
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the MST represent different expression changes. Take for example the facial

expression at the top of the tree (happy) and one of the facial expressions at

the bottom of the tree (neutral or angry). Visually tracing a path through

the tree from these two models shows that the expression does interpolate in

a meaningful way. A similar example of this is shown in Figure 4.25 where a

sequence was taken from the tree and shows the interpolation of facial expression

from neutral to angry. What is also noticeable is that the under represented

expressions (i.e. sticking tongue out) do not exist on a separate sub-tree of

the graph, rather they are the leaf nodes. Conversely the more represented

expressions such as neutral or happy are subgraphs (with the example of happy

being a subgraph of the top-right of the MST and neutral occupying the lower

left hand side).

We now move on to investigate the PLML algorithm’s ability to embed the Frey

faces dataset into 2-dimensions. As previously discussed this process of embed-

ding into 2-dimensions is not ideal as the intrinsic dimensionality of the data

is 7-dimensions. However we would expect some structure to become apparent

from this embedding process. The result of embedding the Frey faces dataset

is shown in quantised form in Figure 4.26. The quantisation process simplifies

the visualisation of the embedding. Since there are too many points to display

one image per point we split the embedding space into a grid and display the

median face of all the points contained within each grid cell. This means that

Figure 4.25: A sequence of faces taken from the Frey faces dataset topology
graph shown in Figure 4.24. As can be seen the face changes expression from
almost neutral to angry. This change can be traced by following a path through
the MST.
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Figure 4.27: The manual segmentation of the Frey faces embedding. Each
coloured region represents a different facial expression. The regions were seg-
mented by hand based on the expressions contained in the underlying embed-
ding. See Figure 4.23 for the different expression classes.

an overview of the structure of the manifold can be observed without the need

for all data points.

Initially it is difficult to glean any structure or information from the embedding

as it does not display a perfect interpolation of expressions across the embedding.

However under further examination it becomes clear that the different facial

expressions have been segmented into different regions of the manifold. Due

to the non-optimal target dimensionality there are some discontinuities in the

mapping where some facial expressions ‘jump’ to different regions but generally

different facial expressions reside in different areas of the manifold. To prove

this we extend the idea of the quantised mapping to a manual segmentation.

Rather than creating a fixed grid and taking the average face we created a

hand drawn segmentation of regions (Figure 4.27). The average face of these

regions were then taken and can be seen in Figures 4.23 and 4.28. These manual

segmentation regions were determined by eye-balling the quantised embedding

and determining the expression regions.

From examining this segmentation we can gain a better understanding as to how

157



CHAPTER 4. PIECEWISE-LINEAR MANIFOLD LEARNING:
PERFORMANCE AND ANALYSIS

the PLML algorithm arrived as this embedding. The first thing to note is that

the large central region is the neutral expression and then from this the more

‘expressive’ regions branch. This is partly because, as previously discussed, the

neutral facial expression is over represented in the data but also because the

PLML algorithm manages to successfully learn a meaningful embedding of the

manifold. This segmentation of the facial regions into different areas of the

embedding shows that PLML has managed to extract useful structure from the

data. Whether this is the true structure of the data is unclear as there is no

absolute ground truth. However, we can say that the structure displayed in the

embedding produced by PLML is useful as it enables us to identify the different

facial expression regions in the data.
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4.4.2 ISOFaces

The ISOFaces dataset (Tenenbaum et al., 2000) is a sequence of images show-

ing a 3-dimensional computer rendered head under different pose and lighting

conditions. The pose varies from left to right and up to down. The lighting con-

ditions vary according to the point light’s position from left to right. Example

images from the data are shown in Figure 4.29.

The intrinsic dimensionality of the dataset is estimated at 6 dimensions and so as

with the Frey faces dataset any 2-dimensional embedding will be sub-optimal9.

This sub-optimality occurs because we are attempting to embed the data set

into its non-intrinsic dimension. As discussed with the Frey faces dataset this

can introduce distortions and overlaps. This being said since the ISOFaces

dataset is artificially generated with well defined parameters it is easier to glean

structure from the embeddings as we know we are looking for definite change in

pose and lighting. Another real benefit of the data being artificially generated

is that the noise level is kept to a minimum.

As with the Frey faces dataset we begin by analysing the MST produced by the

PLML algorithm. Figure 4.30 shows the MST produced as a result of performing

9The intrinsic dimensionality was estimated using an average of intrinsic dimensionality
estimators as with the Frey faces dataset

Figure 4.29: Sample images taken from the ISOFaces dataset. The computer
rendered head changes left-right and top-down pose as well as lighting condi-
tions.
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Figure 4.30: The PLML model level MST of the ISOFaces dataset created with
k = 5.
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PLML with k = 5 (see footnote10). The first noticeable property of the MST is

that lighting conditions are separated but the two different lighting conditions

(light and dark) do not lie on two distinct sub-graphs of the MST. Rather the

MST can be seen to transition from light to dark and then back to light again.

The change in pose variation is more difficult to identify. A close inspection of

the MST reveals that if the MST is split at the dark lighting region then the

right pose faces generally appear on the subgraph to the left and the left pose

faces generally appear on the right subgraph. Within these subgraphs there is

up-down pose variation but it is more difficult to identify any structured sub

graphs in the same way as the left right poses.

The quantised embedding of the ISOFaces dataset produced by PLML is shown

in Figure 4.31. Again the lighting variation is the most immediately noticeable

parameterisation of this embedding with the lighting changing from light at

the top to dark and the middle and then light again at the bottom. Change

in pose can be split into two subsections with the top section (above the dark

region) containing the left poses and the bottom section (below the dark region)

containing the right pose images. Of these two regions the top (left pose) region

is better structured. This distinction is less apparent in the bottom, right pose,

region.

Although this embedding does contain some structure it is far from ideal and is

not comparable with the structure of embeddings of the same dataset produced

by different algorithms (e.g. Tenenbaum et al. (2000); Roweis et al. (2002)). The

reasons for this are twofold. First, as discussed when considering the Fishbowl

and Helix datasets, PLML struggles when embedding datasets with essential

loops. The rotational changes in the pose and the lighting direction suggests

10The value of k = 5 was reached by eyeballing the embeddings produced across a number
of different parameter values and choosing the best result.
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Figure 4.31: The embedding of the ISO Faces dataset as found with PLML
k = 5. This intrinsic structure of the dataset is difficult to visualise as it is
greater than 2-dimensions. However, from this embedding it becomes evident
that PLML has managed to distinguish the left-right pose variation as well as
the different lighting conditions.
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that the ISOFace dataset does contain essential loops and as such the PLML

embedding will be sub-optimal. With this in mind it is still useful to know that

PLML can still extract some structure from the data. Although PLML does

not create a ‘perfect’ embedding we can still infer structure and meaning about

the original data from the produced embedding (i.e. there is change in pose

and lighting). Secondly, PLML’s performance drops when attempting to embed

a dataset into its non-intrinsic dimension. This is shown when considering the

Trustworthiness of PLML’s embedding of the ISOFaces dataset in 2-dimensions

and in 6-dimensions (the intrinsic dimensionality of the dataset). The average

Trustworthiness value when embedding into 2-dimensions is T = 0.851 whereas

when embedding into 6-dimensions this value rises to T = 0.953.

The ISOFaces dataset presents a difficult problem for the PLML algorithm as

it is not only a dataset being embedded into its non-intrinsic dimension but it

is also a difficult manifold with possible essential loops. The embedding shown

in Figure 4.31 shows that the PLML algorithm can extract some meaningful

structure from this data with the low-dimensional embedding being parame-

terised mainly by left-right pose and lighting conditions. The embedding into

non-intrinsic dimensionality undoubtedly affects the performance of PLML but

the MST (Figure 4.30) which is independent of dimensionality does not show as

clear a structure as the Frey faces MST (Figure 4.24). This therefore suggests

that at the model level PLML is not able to fully recover a good approximation

of the manifold with the consequence being that the low-dimensional embed-

ding will not display an optimal structure. The embedding produced however,

does display some good structure and does allow us to make inferences about

the original data (i.e there is change in pose and lighting positions in a smooth

manner).
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4.4.3 COIL-20 Object

The COIL-20 (Nene et al., 1996) object data consists of a set of 72 images of a

3-dimensional object rotating around 1 axis. Each image is 32×32 pixels in size

and as such this dataset consists of a sparse problem as there are considerably

more dimensions than samples (72 samples in 1024-dimensional space). Due

to the fact that the object only moves around 1-axis and all other variables

(e.g. object size, lighting, etc) are fixed then this data is expected to lie on a 2-

dimensional manifold. This manifold is parameterised by the degree of rotation

and so equates to a circular manifold embedded within the 1024-dimensional

space11. This estimation of intrinsic dimensionality is backed up by the average

intrinsic dimensionality estimate of 2-dimensions.

The PLML based MST of the COIL-20 object dataset is shown in Figure 4.32.

What is immediately noticeable is that the MST is intrinsically 1-dimensional. It

has no branches or sub-graphs and simply consists of a linked list of models. The

MST also successfully captures the rotation of the object with the models being

connected in the correct rotational order. A link could be made between the last

model in the MST and the first model to produce a continuous cycle, however

11For another discussion on a similar dataset see Chapter 1

Figure 4.32: The MST of the Coil-20 Object dataset. The MST is intrinsically
1-dimensional, that is it has no branches or possible subgraphs (unlike the MST
of the other datasets, e.g. Figure 4.24). The ordering here shows that the MST
correctly captures the rotational ordering of the object.
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Figure 4.33: The low-dimensional embedding of the COIL-20 dataset produced
by PLML with k = 4. Notice that the circular structure of the data is not
recovered.
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Figure 4.34: The quantised embedding of the COIL-20 dataset produced using
PLML. Notice that the rotation of the object is captured in the 1-dimensional
embedding whereas this structure is less apparent in the 2-dimensional embed-
ding (Figure 4.33).

this link does not exist. As such this dataset resembles the artificial Helix dataset

discussed in Section 4.2 and we expect PLML to struggle to embed this data

into 2-dimensions. This point is indicated by the embedding shown in Figure

4.33. This embedding is not quantised as with the Frey faces and ISOFaces

dataset. Rather every low-dimensional image is shown. The parameter value of

k = 4 was chosen as this is a sparse problem and the experimentation in Section

4.3.3.1 showed that for sparse problems a small neighbourhood size should be

chosen. The embedding in Figure 4.33 does exhibit some structure. We could

trace a path between the different data points and glean that the object rotates

around one axis. So the embedding is not unstructured but it does not map

to a circle. With the knowledge we have as to the performance of PLML on

datasets with essential loops this is not surprising.

Returning to the similarities between this dataset and the Helix coil dataset, we

can view this dataset as a 1-dimensional curve and therefore attempt to embed

it into 1-dimensional space. The quantised result of embedding the COIL-20

dataset into 1-dimensional space using PLML is shown in Figure 4.3412. By

embedding the data into 1-dimensional space PLML has managed to capture

the structure of the data and clearly shows that the embedding is parameterised

by the degree of rotation of the object. So as with the Helix coil dataset PLML

has produced a more meaningful and accurate embedding by embedding the

circular manifold into 1-dimensional space rather than 2-dimensional space.

12We return to showing a quantised embedding to be able to better show the structure
within the embedding
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4.5 Computational Complexity

The computational complexity of a manifold learning algorithm is determined

by the properties of the dataset (e.g. the number of data points, n, the dimen-

sionality of the input data, p) as well as the properties of the algorithm (e.g.

the parameter size k, target dimension d and the number of local models c).

PLML has three main computational steps, the k-means clustering step, the

creation of the MST and the traversal of the MST. The k-means clustering step

can be computed in O(nk) given that p and k are fixed. The MST can be

computed in O(n2 + n) where n2 is the number of edges in the original graph.

The MST traversal contains a number of iterations with matrix multiplication

occurring at each iteration. Experimental analysis shows that the number of

iterations, on average, is 2c as each model is usually visited twice during the

traversal process. Here, c = bn/kc. Matrix multiplication has computational

complexity of O(p3), so given that we perform matrix multiplication 2c times,

the computational complexity for this step becomes O(2cp3).

The computational complexity of the PLML algorithm therefore is

O(nk) +O(n2 + n) +O(2cp3) (4.6)

which reduces to

O(2cp3) (4.7)

The computational complexity of the other four manifold learning algorithms

we are considering are as follows. ISO: O(n3), LLE: O(rn2), LTSA: O(rn2),
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PCA: O(p3), where r is the ratio of nonzero elements in a sparse matrix to the

total number of elements. In the case of data where p < n then PLML has a

better computational complexity performance than ISO, LLE and LTSA. When

n� p the computational performance of PLML drops and ISO, LLE and LTSA

will outperform the developed method. As such it is worth noting that in cases

where the dimensionality is far greater than the number of data points then

PCA should be used as a pre-processing step to PLML to improve the run-time

of the PLML algorithm. The computational complexity of PCA is low enough

not to add a needless computational burden.

4.6 Conclusions

In this chapter we have performed both a high-level and detailed analysis of the

performance of the PLML algorithm on artificially generated data. We have

also analysed the performance of PLML on high-dimensional image data that

exhibit interesting and difficult manifold structure. From these experiments we

can draw the following conclusions as to the performance and behaviour of the

PLML algorithm:

1. As the sparsity of the data increases the performance of the PLML algo-

rithm decreases at a global and local scale. However, the performance at a

local scale can be improved by reducing the neighbourhood size parameter

k.

2. Under high noise PLML fails to recover a global and locally stable embed-

ding. As with increased sparsity this problem can be slightly alleviated

by changing the neighbourhood size parameter. Unlike the sparse case,

k needs to be increased as noise increases to compensate for the effect of

noise.
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3. With dense, low noise data, the neighbourhood size parameter does not

play as much of a role on the quality of the embedding and so parameter

choice does not become such an important issue. This is not the case

for the other global alignment technique, LTSA. Parameter choice plays

a major part in the performance of LTSA and the incorrect parameter

choice can have drastic effects on the performance.

4. PLML struggles to embed datasets with essential loops. Circular or spher-

ical manifolds will have to be cut to embed them into the low-dimensional

space. This can cause problems as shown in the Helix dataset and also

the Coil-20 image dataset. This can be overcome in the circular case by

embedding the data into 1-dimension.

5. We have also shown that PLML is able to extract meaningful embeddings

from difficult image datasets. These embeddings allow us to draw conclu-

sions as to the nature of the high-dimensional data and so PLML is well

suited as an exploratory data analysis tool.

6. When p < n the computational complexity of PLML is less than that of

Isomap, LLE and LTSA. However when n � p then the computational

complexity of PLML increases. As such PCA could be used as a pre-

processing step to improve the run-time of the PLML algorithm.

The results in this chapter show that modelling the manifold in a piecewise-

linear manner, by using PLML, can achieve significantly improved results over

existing manifold learning methods. This is especially the case when the data is

densely sampled with low to medium noise. Even when the density decreases and

noise increases, PLML is still able to degrade gracefully and produce meaningful

results.
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“To learn something new,

take the path that you took yesterday.”

John Burroughs (1837-1921)

5
A Generalised Solution to the

Out-of-Sample Extension Problem1

The out-of-sample extension problem in manifold learning is concerned with

embedding novel high-dimensional data points into a previously learnt embed-

ding. The brute force approach is to append the new data point to the original

high-dimensional data and then re-learn the low-dimensional embedding to find

the new data point’s low-dimensional position. However, this can often be com-

putational unfeasible and is not the most elegant solution to the problem.

The out-of-sample extension enables manifold learning to be used in many ap-

plication areas. For example, in a classification task we may have a set of

high-dimensional training samples which we map, using manifold learning, to

1Harry Strange and Reyer Zwiggelaar. A Generalised Solution to the Out-of-Sample Exten-
sion Problem in Manifold Learning. In Proceedings of AAAI-11, San Francisco, CA. August
2011.
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a low-dimensional space. We then have a set of test samples which we wish to

embed into the low-dimensional space and classify according to the previously

learnt training patterns. The out-of-sample extension can be used to quickly

map these test samples to the low-dimensional space without re-learning the en-

tire training set at the same time. This can be particularly useful if we are not

classifying all the test samples at once but rather they arrive and are classified

in an incremental manner.

A related problem to the out-of-sample extension is that of incremental learning

(e.g. Incremental Isomap (Law and Jain, 2006), Co-ordinate Propagation (Xi-

ang et al., 2009)). Manifold learning algorithms traditionally learn the dataset

in one single run (batch learning). This restriction means that manifold learn-

ing can not traditionally be applied to sequential data. Incremental learning

seeks to overcome this problem. The incremental version of Isomap (Law and

Jain, 2006) incrementally builds the low-dimensional embedding by appending

new samples to the low-dimensional space in such a way that new data points

hold more significance to the embedding than those previously learnt (with the

old data points gradually losing their significance). This then enables the algo-

rithm to handle changes in the manifold’s characteristics as the data is learnt.

Although at first sight incremental learning may seem similar to the out-of-

sample extension problem there are core differences. The most significant of

these being that the addition of new data points using the out-of-sample exten-

sion does not cause a re-learning of the parameterisation of the manifold. That

is, the information used to embed the new samples is not updated with every

new sample. For incremental manifold learning there is a continuous update

which increases the computational cost.

Incremental learning is closely related to manifold extrapolation, where the pre-

viously learnt manifold is extended as new points are added to the embedding
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(e.g. (Chin and Suter, 2008)). Incremental learning allows for such extrapola-

tion whereas the out-of-sample extension will be less robust to embedding new

points outside of the previously learnt manifold. One of the core assumptions

of the existing solutions to the out-of-sample extension is that the new sample

lies ‘within’ the previously learnt manifold. This is due to the fact that proper-

ties of the existing manifold are used to find the new sample’s low-dimensional

location. If this new sample lies far outside of the existing manifold then there

will not be enough information to correctly position it in the low-dimensional

space. As such, it is worth remembering that out-of-sample extension methods

may not be able to perform manifold extrapolation unless the new points lie

close to the original manifold’s samples.

Many of the existing solutions to the out-of-sample extension problem are algo-

rithm specific (i.e. they only work with certain manifold learning algorithms).

Some manifold learning algorithms come ready equipped with solutions to the

out-of-sample extension problem (e.g. Manifold Charting (Brand, 2003) and

KernelPCA (Scholkopf et al., 1998)). Other algorithms have been explicitly

extended to attempt to cope with the out-of-sample extension problem (e.g.

Isomap, LLE, Eigenmaps and MDS (Bengio et al., 2003)). These solutions are

discussed in more detail in Section 5.2 but for now it is worth noting that al-

though these algorithms work well at embedding new data points into previously

learnt embeddings little work has been carried out to produce a generalised so-

lution to this problem.

In this chapter we present a generalised solution to the out-of-sample extension

problem. Our developed method, GOoSE (Generalised Out-of-Sample Exten-

sion), works by learning the local geometric transform that occurs as a result

of manifold learning. This local transform describes how a local neighbourhood

is distorted and changed as a result of manifold learning. By learning the ge-
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ometric change in an unseen sample’s neighbourhood we can find the sample’s

position in the low-dimensional space. Our algorithm is simple to understand

and fast to compute. It also out-performs existing algorithm specific out-of-

sample methods. We show that it can be applied to any manifold learning

algorithm as long as we have access to the original high-dimensional data and

the low-dimensional embedding.

The remainder of this chapter is structured as follows. We begin in Section

5.1 by outlining the mathematical foundations that underpin the out-of-sample

extension problem. In this section we phrase the out-of-sample extension within

the algorithm of manifold learning so as to better understand how it fits into the

research of the previous chapters. Section 5.2 provides an overview of existing

solutions to the out-of-sample extension problem. We present a generalised

solution to the out-of-sample extension problem in Section 5.3 and compare our

generalised solution with other algorithm specific solutions in Section 5.4. In

this section we also discuss the general performance of the developed method.

Finally, we draw conclusions in Section 5.5.

5.1 Problem Description

The out-of-sample extension problem can be defined as follows: given a set of

observations X ∈ Rp and its low-dimensional embedding Y ∈ Rq found as a

result of manifold learning, we wish to find the low-dimensional position in Rq

of a novel observation x /∈ X, x ∈ Rp without using the entire dataset. We

expand upon this definition in more detail below.

Given two real vector spaces Rp and Rq, and a manifold embedded in each space

I ∈ Rp, J ∈ Rq, we wish to find a function that maps between the two spaces

f : Rp → Rq. For the problem of manifold learning I is known and f is used
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to learn the low-dimensional manifold J . But consider the case where both I

and J are known, the problem now becomes learning f so that new samples

from I can be embedded into J without re-learning the entire manifold. This

is the core of the out-of-sample problem and seeks to embed novel samples into

a previously learnt embedding.

Given a sample x ∈ Rp, x ⊂ I and a function f : Rp → Rq such that f

also maps between manifolds f : I 7→ J , then y = f(x) given y ∈ Rq and

y ⊂ J . This means that the function f not only maps between spaces but also

maps between the manifolds such that if the sample lies on the manifold in the

high-dimensional space it will also lie on the manifold in the low-dimensional

space.

Manifold learning provides us with a setting within which the above assumption

holds. Given a set of observations X = {xi}ni=1 ∈ Rp where X ⊂ I then

manifold learning will attempt to find the set of low-dimensional observations

Y = {yi}ni=1 ∈ Rq such that Y ⊂ J . Since J is assumed to be an embedding

of I in the low-dimensional space (i.e. I ↪→ J ) then we can say that Y is an

embedding of X. This means that the above function can be expressed in terms

of X and Y such that f : X 7→ Y.

The out-of-sample problem can now be defined in terms of X and Y. Given

a novel observation x ∈ Rp and x ⊂ I but x /∈ X then we wish to find its

low-dimensional representation y ∈ Rp where y ⊂ J . This is done by learning

the function f : X 7→ Y that maps from the high-dimensional space to the

low-dimensional space. Some manifold learning algorithms provide this function

(e.g. Kernel PCA (Scholkopf et al., 1998) and Manifold Charting (Brand, 2003))

but we wish to find a generalised function given that we know X and Y.

Given that we now have a proper definition of the out-of-sample extension prob-
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lem we can move on to discuss existing solutions to this problem.

5.2 Existing Solutions

5.2.1 Principal Components Analysis

Many algorithm specific solutions exist to solve the out-of-sample extension

problem. Most of these utilise the information found during the manifold learn-

ing process. The simplest example is that of Principal Components Analysis

(PCA) (Hotelling, 1933). As shown previously (see Chapter 2), PCA seeks to

find the set of basis vectors that span the hyperplane of maximum variance, the

solution to which can be found by

ΛV = CXV (5.1)

where CX is the covariance matrix of X, Λ is the set of eigenvalues of CX and

V are their associated eigenvectors. To then reduce the dimensionality of X we

would project X onto the top q eigenvectors in V. Therefore we can state that

the low-dimensional representation of X found by PCA is Y = XV1...q.

The matrix V contains all the information about our low-dimensional space as

described by PCA. So given a new observation, x∗, we can embed it into this

same low-dimensional space by y∗ = x∗V1...q. By retaining the eigenvectors

found in Eq. 5.1 we can then embed new data points into the low-dimensional

space by projecting them onto these basis vectors.

This simple method provides the basis for most other algorithm specific solutions

to the out-of-sample extension problem. Properties learnt as a result of manifold

learning are retained and then applied to novel samples to embed them into the
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previously learnt low-dimensional embedding. The two most relevant to our

work are that of Bengio et al. (Bengio et al., 2003) and Yang et al. (Yang et al.,

2010).

5.2.2 Bengio et al.

The first attempt to provide an out-of-sample extension for algorithms that do

not naturally contain one was made by Bengio et al. in 2003 (Bengio et al.,

2003). The algorithm presented in (Bengio et al., 2003) extended LLE (Roweis

and Saul, 2000), Isomap (Tenenbaum et al., 2000), MDS (Cox and Cox, 2001),

Eigenmaps (Belkin and Niyogi, 2002) and Spectral Clustering (Weiss, 1999; Ng

et al., 2002) to handle the out-of-sample extension problem. These techniques

are extended by phrasing them within a unified kernel algorithm. Within this

algorithm the algorithms are seen as learning eigenfunctions of a kernel (Bengio

et al., 2003).

To begin with, an n × n kernel matrix is formed, K. This matrix is built us-

ing a two-argument kernel function φ(., .) which produces K such that Kij =

φ(xi, xj). This matrix can then be normalised to obtain K̄. The largest eigen-

values λ and eigenvectors V (with a single eigenvector, vi ∈ V) of K̄ are then

found with the restriction that only positive eigenvalues should be considered.

The embedding of each point xi is then yi with yij being the i-th element of the

j-th principal eigenvector, vj , of K̄.

This solution is then extended to the specific cases of LLE, Isomap, MDS,

Eigenmaps and Spectral Clustering. This extension is based on a continuous

kernel function which can be used to generalise an embedding to a new data

sample2. A separate kernel function then needs to be learnt for each manifold

2We omit the full details of this step and refer the reader to Section 3 and Section 4 of
(Bengio et al., 2003) for full details.
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learning algorithm. This design of data dependent kernel matrices for each

manifold learning algorithm is a non-trivial task (Yang et al., 2010). However,

once an appropriate kernel matrix, K, has been defined a new point can be

embedded according to the Kernel PCA (Scholkopf et al., 1998) projection with

kernel K.

Although this method enables LLE, Isomap, MDS, Eigenmaps and Spectral

Clustering to include new data points, it does so by learning very specific kernel

functions. This limits the approach to be used for other manifold learning

algorithms as it is unfeasible to learn separate kernel matrices for each new

manifold learning algorithm.

5.2.3 Yang et al.

A similar attempt to phrase the manifold learning problem within a common

algorithm was made by Yang et al. in (Yang et al., 2010). Rather than learning

a continuous kernel function as in (Bengio et al., 2003), Yang et al. seek to

employ local regression models to learn the manifold structure. Within this

work a new algorithm for manifold learning is presented alongside a generalised

out-of-sample extension. Throughout this discussion we focus solely on the out-

of-sample extension. Given a new point, x∗, its low dimensional embedding y∗

is estimated as

y = φ(W)Tφ(x∗) + b (5.2)

where φ is the kernel function mapping data into Hilbert space, W is the pro-

jection matrix from Hilbert space to the low-dimensional space and b is a bias

term. This can then be computed by
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y∗ = YT (HKH + γI)−1HKx +
1

n
YT 1n −

1

n
YT (HKH + γI)−1HK1n (5.3)

where H is the global centring matrix, γ is a regularisation parameter (with

γ > 0) and K is a matrix containing the result of the Kernel product such

that Kx∗i = φ(x∗)Tφ(xi). As such K contains the Kernel product of the new

datapoint with all data points in the training set.

This method therefore seeks to generalise Bengio et al.’s solution by using any

positive semidefinite Kernel and adding a regularisation parameter, γ, to control

the bias. However, the presence of this regularisation parameter significantly

complicates the out-of-sample process as there is no guidance on what value γ

should take. The choice of Kernel (e.g. Linear, RBF, etc) will also affect the low-

dimensional embedding and little is discussed in (Yang et al., 2010) as to what

Kernel should be used. In addition, since the out-of-sample calculation involves

all previously learnt data, the computation could potentially be expensive.

With these limitations to existing solutions the need for a simple, generalised

solution becomes apparent. In the next section we outline the developed method

which seeks to obtain a generalised solution to the out-of-sample extension prob-

lem.

5.3 A Generalised Solution

The basic premise of our algorithm is to find the transformation that matches an

unseen samples’s neighbourhood in the high-dimensional space to its represen-

tation in the low-dimensional space. This transformation is an approximation

of running the manifold learning technique on the given sample.

179



CHAPTER 5. A GENERALISED SOLUTION TO THE OUT-OF-SAMPLE
EXTENSION PROBLEM

Given the original set of points X = {xi}ni=1 ∈ Rp, where X ⊂ I, and their

low-dimensional representation Y = {yi}ni=1 ∈ Rq, where Y ⊂ J , we wish to

find the low-dimensional approximation y∗ ⊂ J ∈ Rq of a previously unseen

sample x∗ ⊂ I ∈ Rp given x∗ /∈ X. As described in Section 5.1 we assume

that there exists a function, f , that maps not only between the two real vector

spaces, Rp and Rq, but also between the two manifolds such that f : I 7→ J .

Since Y is an embedding of X in Rq, we can say that f also maps between the

two sets of data, f : X 7→ Y. We can re-write this as

Y = f(X) (5.4)

We seek to learn this function to extend the mapping to new data points. How-

ever, in all but the linear case this function f will be non-trivial to learn. For

the methods presented by (Bengio et al., 2003) and (Yang et al., 2010) this

function is equivalent to learning the kernel function that re-creates X in Rq

as Y. Our approach differs as it is based on learning the local function that

builds a neighbourhood of X in Y. That is, for the i-th data point we express

an individual local function

yi = fi(xi) (5.5)

This is in contrast with the methods in (Bengio et al., 2003) and (Yang et al.,

2010) where the global kernel matrix is used as the main mapping function

between the high and low-dimensional spaces. For the generalised solution we

can express this local function as y∗ = f∗(x∗), where f∗ is learnt according to

the existing mapping X 7→ Y.
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To formulate a solution to this local mapping function we return to one of

the central assumptions in manifold learning. Given a manifold, I, we assume

that the manifold I is a C∞ manifold and at a local scale I is linear. This

is based on the work by (Roweis and Saul, 2000) and further by (Zhang and

Zha, 2004; Brand, 2003) which states that given a subset K ⊂ I represented

by a k-neighbourhood of X, then all but the top q eigenvalues associated with

the basis vectors of this neighbourhood will be 0. Thus, the manifold at a

local scale is linear. Following on from this assumption we can state that the

local function, fi, can be expressed in terms of a linear transformation. This

linear transformation will seek to recover the change in neighbourhood geometry

around a data point that occurs as a result of manifold learning. Once we have

learnt this transformation we can use it to approximate the new data point’s

position in the low-dimensional embedding. As such we can express Eq. 5.5 as

y∗ = AVx∗ (5.6)

where V is the projection matrix from Rp to Rq and A is a similarity transform

representing the change in local geometry that occurs as a result of manifold

learning.

Our generalised solution to the out-of-sample extension problem is achieved

through the following steps:

1. Find the k-nearest neighbours of x∗ in X

2. Find the projection matrix to project the nearest neighbours from Rp to

Rq

3. Calculate the transformation matrix measuring the change between the
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actual embedding of the neighbourhood of x∗ and the projected embedding

as found in Step 2

4. Apply the projection matrix (Step 2) and transformation matrix (Step 3)

to x∗ to find its low-dimensional representation y∗.

We expand upon each of these steps in the text below and then provide a

pseudocode implementation of the developed approach.

5.3.1 Step 1: Find The Local Neighbourhood

The first step is concerned with finding the local neighbourhood of the new

sample, x∗, within the existing data X. This neighbourhood will give us the po-

sition of x∗ relative to existing points in the high and low-dimensional space. By

recovering this neighbourhood in the low-dimensional space we can approximate

the position of y∗ relative to its nearest neighbours.

The k-nearest neighbours can be found using a variety of different approaches

(e.g. (Kleinberg, 1997; Nene and Nayar, 1997; Garcia et al., 2008)) and the

central idea is to find the datapoints in a test set, X, that are closest to the

query point, x∗, according to the Euclidean distance3. The value of k should be

an integer with k � n. We investigate the effect of differing sizes of k in Section

5.4.

The output of our nearest neighbour search is a k×q matrix, XN , which contains

as rows the k-nearest data points of x∗ in X.

3An interesting extension to the developed approach would be to try different metrics.
However since most manifold learning algorithms use the Euclidean metric we focus solely on
the Euclidean distance
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5.3.2 Step 2: Calculate The Projection Matrix

Once the k-nearest neighbours of x∗, XN , have been found we are able to project

x∗ into q-dimensional space by projecting onto the top q eigenvectors of XN .

This will give us y∗ which is the low-dimensional representation of x∗.

To find the projection matrix, V, we perform Principal Components Analysis

on XN . To do this we first zero mean the data XN and form C which is the

covariance matrix of XN . The principal components can then be found by

VΛ = CV (5.7)

where V is the matrix containing as columns the eigenvectors of C ordered ac-

cording to their eigenvalues Λ. To find the projection matrix into q-dimensional

space we take the top q columns of V represented as V1...q. The low-dimensional

projection can then be given by y∗ = x∗V1...q and also Y′N = XNV1...q. It is

worth noting that the projected neighbourhood is denoted as Y′N to distinguish

it from the same neighbourhood in the low-dimensional embedding YN . For

simplicity of reading, throughout the remainder of this discussion we denote the

the top q eigenvectors simply as V.

Although y∗ ∈ Rq it is not in the same co-ordinate system as Y so Step 3 is

concerned with aligning y∗ into the co-ordinate system of Y.

5.3.3 Step 3: Calculate The Transformation Matrix

The central step of the developed approach is to compute the local transfor-

mation that occurs as a result of manifold learning. As described above, the

new sample x∗ has been projected into low-dimensional space, however, its low-
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dimensional representation y∗ is not necessarily in the same co-ordinate system

as Y. So the goal of this step is to align y∗ so as to fit into the same co-ordinate

system as the embedding Y.

This is achieved by aligning the projected neighbourhood, Y′N , with the actual

embedding of this neighbourhood YN . This alignment can be learnt as a trans-

lation, rotation and scale. Once learnt, this similarity transformation can be

applied to y∗ to find its correct location in Rq. Figure 5.1 shows this process.

The position of y∗ is known relative to the projected neighbourhood Y′N and we

wish to find its position relative to the actual neighbourhood YN . This can be

achieved by applying to y∗ the translational, rotational and scale change that

occurs between Y′N and YN . This is represented in Figure 5.1 as the similarity

transformation matrix A plus the translation vector v.

The translation vector is computed first. It is found by calculating the difference

in means between the two low-dimensional neighbourhoods:

v = ȲN − Ȳ′N (5.8)

This then ensures that ‖ Y′N − YN ‖= 0 which is an important property,

A + v

N N

Figure 5.1: To find the position of the new data point (denoted as red star) we
seek to find the similarity transform, A, between the two different neighbour-
hoods (here represented as Y′N for the neighbourhood as a result of projection
and YN as the real neighbourhood)
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because when applying the similarity transform we need to ensure that the

difference in means between the two neighbourhoods is zero. This means that no

translational distortions occur as a result of computing the similarity transform

matrix.

The similarity transform matrix, A, can be represented by a separate scale

component, B, and rotation component, R. These two components are learnt

separately with the rotation component being learnt first.

The rotational difference between Y′N and YN can be found by using a method

from statistical shape theory (Gower, 1975; Wang and Mahadevan, 2008). The

rotation matrix can be found by computing the Singular Value Decomposition

(SVD) of the matrix Y′TNYN . The SVD is given by

Y′
T
NYN = UΣVT (5.9)

where Σ contains the singular values of Y′TNYN as its diagonal. The matrices

U and V contain the left and right singular vectors according to the singular

values in Σ. The rotation matrix is then given by

R = UVT (5.10)

The above process also gives us a scale change value, b = tr(Σ). This value

however only represents the isotropic scale (i.e. the value is scalar meaning

the scale occurs equally for each axis). The transformation that occurs as a

result of manifold learning can often introduce non-isomorphic scale for a local

neighbourhood. Therefore we need a scaling matrix that can handle the different

amounts of scale for each axis. We define the non-isomorphic scale matrix as
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B =




max(Y1
N )−min(Y1

N )

max(Y′1N )−min(Y′1N )
. . . . . .

...
. . .

...

. . . . . .
max(Yq

N )−min(Yq
N )

max(Y′qN )−min(Y′qN )




(5.11)

where Y1
N represents the column vector containing all samples along the first

dimension of YN and Yq
N represents the column vector containing all samples

along the q-th dimension. This scale matrix measures the difference in size along

each dimension between the two neighbourhoods. By multiplying the rotated

representation of Y′N with B we can as near as possible recover the change in

scale that occurs to the neighbourhood as a result of manifold learning.

Figure 5.2 shows the difference between isomorphic and non-isomorphic scaling.

The use of non-isomorphic scaling significantly improves the accuracy of the

matching between the two sets of points (a matter discussed in more detail in

Section 5.4).

5.3.4 Step 4: Calculate Low-dimensional Representation

Once the above transformations have been calculated we have enough infor-

mation to approximate the low-dimensional position of the new sample. The

low-dimensional position, y∗, of x∗ is given by

y∗ = B(R(Vx∗ + v)) (5.12)

where B, R, V and v are calculated according to the steps above.

A pseudocode implementation of our developed method is shown in Algorithm

1. The simplicity of the developed approach is shown in the simplicity of the
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Algorithm 1 Generalized Out-of-Sample Extension

Require: x∗ ∈ Rp,X ∈ Rp,Y ∈ Rq, k � |X|
1: idx← nn(x∗,X,Y, k)
2: ΛV = CXV
3: Z = XidxV1...q

4: (UΣV)← svd(ZTYidx)
5: y∗ ← x∗V1...q

6: y∗ ← y∗ + (Ȳidx − Z̄)
7: y∗ ← y∗T
8: B← identity(q, q)

9: diag(B) = [
range(Y1

idx)

range(Z1
idx)

. . .
range(Yq

idx)

range(Zq
idx)

]

10: T← UVT

11: y∗ ← y∗B
12: return y∗

pseudocode in Algorithm 1. The two main ‘bottle necks’ are the computation

of the k-nearest neighbours and the Singular Value Decomposition. However,

with efficient implementations of these two steps the run-time of the algorithm

is significantly less than that of Bengio or Yang’s solution.

5.4 Results

In this section we discuss the performance of the developed method, GOoSE,

against the two main existing approaches: Bengio (Bengio et al., 2003) and Yang

(Yang et al., 2010). For the majority of this section we compare GOoSE with

Yang’s approach as both provide generalised solutions. However, we do compare

with Bengio’s approach when considering the algorithm specific case. We also

show how GOoSE can extend other algorithms, in particular our developed

approach PLML.

We begin in Section 5.4.1 by defining an embedding error with which we can

assess the performance of an out-of-sample extension method. This embedding

error is based on measuring the global change between the actual and expected
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performance of the algorithm. Once an embedding error has been defined we

discuss in Section 5.4.2 the effect of different neighbourhood sizes on the perfor-

mance of GOoSE. Finally, in Section 5.4.3 we compare GOoSE against the two

other out-of-sample algorithms by comparing embeddings on a known data set.

5.4.1 Embedding Error

To be able to analyse the performance of out-of-sample extensions we need to

first define an embedding error. Given a dataset D we create a training set,

B, and test set, C, such that B ∪ C = D, B ∩ C = ∅ and |B| = |D| − |C|.

As in (Yang et al., 2010) we can obtain the low-dimensional embedding, Y,

by running a manifold learning algorithm on the entire dataset D. We can

then express Y as Y = [Ytrain,Ytest]T where Ytrain and Ytest are the low-

dimensional embeddings of the training and test data. Once Y is known we can

use B to obtain the training set of the manifold and then use an out-of-sample

extension method to estimate the low-dimensional embedding of C. We denote

the estimated low-dimensional embedding of the test data Y′test, we can now

define an embedding error based on the root mean square error between the

actual and estimated test sets

e =

√∑
(Ytest −Y′test)2

n
(5.13)

where n is the number of elements in the test set and both Ytest and Y′test

are transformed according to the rotational difference between Ytrain and B to

remove the effect of the manifold learning algorithms mapping the datasets into

different low-dimensional spaces4. This error measure now provides us with a

4This is something that is not considered by Yang et al. in (Yang et al., 2010) but without
this step the results obtained are meaningless as the two low-dimensional embeddings are in
different co-ordinate spaces
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Figure 5.3: The effect of the neighbourhood size parameter k on the embedding
error of a dataset with a known low-dimensional manifold.

basis for analysing the performance of an out-of-sample extension method, with

a low value of e signifying that the estimated test embedding is closer to the

actual test embedding than that of a test embedding with a high value of e.

5.4.2 Parameter Selection

Our algorithm has only one free parameter, the neighborhood size k. To test

how this parameter affects the performance we ran a set of experiments on a

known manifold with a known low-dimensional embedding. We used the Swiss

Roll manifold with 2000 samples and the known low-dimensional embedding.

The data was randomly split into training and test sets with each set having

a size of 1000. For each permutation of training and test we used the GOoSE

algorithm to try and embed the test set into the low-dimensional space with

varying parameters of k within the range [3, 19]. The embedding error (Eq.

5.13) between the estimated and actual test sets were recorded over 10 runs.

Figure 5.3 shows the results of this test. The graph is shown with associated
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error bars indicating the standard deviation of the results per value of k. The

results show that a minimum is reached around k = 10 ± 2, after this point

the RMSE increases along with the standard deviation meaning that results

obtained with a larger value of k are more unstable. Figure 5.4 shows the

scatter plot of all 190 runs of the experiment. The standard deviations are

increased in a low range of k by one or two outliers, the main grouping of points

in the range k = [3, 10] are far tighter than those in the range k = [11, 19].

This suggests that with the exception of a few outliers the performance of the

GOoSE algorithm is more stable at a lower value of k as opposed to a higher

value. Although this optimum value of k will change depending on what dataset

is used, experiments do support the argument that a local minimum will always

exist. Since the GOoSE algorithm is fast to run it is easy to find an optimum

value of k by performing a simple parameter search over a range of k values and

recording the best performance.
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Figure 5.4: The effect of the neighbourhood size parameter k on the embedding
error of a dataset with a known low-dimensional manifold.
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5.4.3 Analysis

In this section we visually compare the performance of the three out-of-sample

techniques by visualising the change between the estimated and actual low-

dimensional embedding of the test set. This visual comparison is performed

using flow diagrams where a line is drawn from the estimated data point to

its actual position. The flow diagrams then provide a good way of showing us

where the algorithms work well and where they fail.

We begin by comparing the performance of all three out-of-sample algorithms

when using Isomap. Then we move on to analyse the performance of our de-

veloped approach and Yang’s approach when using the PLML algorithm. This

not only enables us to draw conclusions as to the effectiveness of GOoSE with

PLML, but also allows us to see how our approach and Yang’s approach work

with a global alignment of local models manifold learning algorithm.

Figure 5.5 shows the flow diagrams obtained when running the out-of-sample

extension methods on an embedding produced using Isomap. The Isomap pa-

rameter was set at k = 12, Yang’s parameters were set, in accordance to the

values suggested in (Yang et al., 2010), to γ = 10−4 and σ = 10, while GOoSE’s

parameter was set to k = 10 in accordance to the discussion in Section 5.4.2. A

training set of 1500 points was used with a 500 point test set. The size of this

split was set so as to enable the training set to have enough data points to fully

recover the shape of the manifold. Any size less than this and the training set

embedding would differ greatly to the combined training and test embedding.

Inspection of Figure 5.5 shows that none of the 3 algorithms manage to perfectly

embed the new data points into this manifold. This is not surprising as the

manifold is not uniformly sampled and is not ‘perfectly’ re-constructed in the

low-dimensional space. Distortions in the local geometry and global consistency
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Figure 5.5: Flow diagrams for the performance of the three out-of-sample tech-
niques on the Swiss Roll dataset reduced using Isomap (with k = 12). (b) was
obtained with γ = 10−4 and σ = 10. (c) was obtained with GOoSE’s k = 10.
The error values for each method are (a) eBengio = 0.4256, (b) eYang = 0.4210
and (c) eGOoSE = 0.3736
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of the manifold will mean that all three out-of-sample methods will be unable to

fully recover the test sample’s true positions. This aside, GOoSE manages to out

perform both Bengio and Yang’s techniques. This is particularly apparent in the

central region of the embedding where the flow lines for GOoSE are smaller than

that of Bengio and Yang. As well as this the error measure (Eq. 5.13) for the

three embeddings are: eBengio = 0.4256, eYang = 0.4210 and eGOoSE = 0.3736.

Although visually the three embeddings appear quite similar the error measure

reveals that GOoSE is able to recover a better approximation of the test set

than Bengio and Yang.

The results in Figure 5.5 also reveal some interesting properties of the three

out-of-sample algorithms. All of the three approaches struggle in sparsely sam-

pled regions (as displayed by the long lines in Figure 5.5). This is not surprising

for GOoSE as it heavily relies on the local geometry of the new sample’s neigh-

bourhood to reconstruct the new sample in the low-dimensional space. If this

neighbourhood is sparsely sampled then the geometry will be difficult to re-

cover. Having said this, it is still useful to know that GOoSE works well with

a global manifold learning method where the local structure of the manifold is

not guaranteed to be reconstructed in the low-dimensional space. Even though

Isomap is a global technique that introduces local distortions GOoSE is still

able to out perform the other two techniques and approximate the positions of

the test data points.

Figure 5.6 and Figure 5.7 shows the results of running GOoSE and Yang’s

method on an embedding learnt using the PLML algorithm. The PLML pa-

rameter was set at k = 9 as this was recorded as an optimal parameter for this

data set in Chapter 4, Yang’s parameter values were γ = 10e−4 and σ = 2 in

accordance to the values suggested in (Yang et al., 2010). GOoSE’s parameter

was set to k = 10. As can be seen from Figure 5.7 GOoSE is a significant
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Yang (Yang et al., 2010) GOoSE

Isomap 0.273± 0.01 0.138± 0.01
LLE 0.014± 0.00 0.000± 0.00
LTSA 0.022± 0.00 0.000± 0.00
PCA 0.319± 0.03 0.085± 0.01
PLML 0.308± 0.10 0.085± 0.01

Table 5.1: Average embedding error with the Swiss Roll learnt using different
manifold learning algorithms. The results were averaged over 10 different folds
with a different training and test set used for each fold. Yang’s parameters were:
γ = 10e−4, σ = 10) and GOoSE used k = 10.

improvement over Yang’s embedding. The change between the actual test em-

bedding and that obtained using GOoSE is much smaller than the difference

between the actual embedding and Yang’s method. The error values for the two

methods are: eYang = 0.3303 and eGOoSE = 0.0866. GOoSE works well with

PLML as they both exploit the local structure of the manifold. At a local scale

distortions are kept to a minimum when using PLML as long as the local lin-

earity assumption holds. This assumption is exploited by GOoSE and so when

used in conjunction with PLML GOoSE is able to obtain good approximations

of the test sets position in the low-dimensional space.

Table 5.1 shows the average runs obtained using a 10-fold cross validation ap-

proach. We compare GOoSE with Yang’s method using the manifold learning

algorithms we compared in Chapter 4. The data was randomly split into 10 folds

with 9 being used for training and 1 for testing. This was then repeated until

all folds had been used as a test set. The results show that for every manifold

learning algorithm GOoSE is able to outperform Yang’s method. For LLE and

LTSA, GOoSe performs particularly well producing the best results across all

manifold learning algorithms. The fact that the pairing of PLML and GOoSE

do not achieve this level of performance can be due to the way that PLML

models the local structure of the manifold. PLML enforces a hard partitioning
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of the manifold into local models where as for LLE and LTSA this partitioning

is soft. This means that within the hard partitions PLML is able to recover

well the local structure of the manifold. So if a new sample’s neighbourhood

coincides with such a hard partitioning then the GOoSE/PLML combination

will work well. However, if the neighbourhood lies across multiple models then

the performance will drop. A possible future extension to the PLML algorithm

would be to introduce soft partitions. Although this might increase the com-

putational complexity of the algorithm it should improve the performance of

GOoSE when used in conjunction with PLML.

Even though the GOoSE and PLML combination does not reach the same per-

formance as GOoSE and LLE or LTSA, it is still a significant improvement over

the Yang and PLML combination.

5.5 Conclusions

In this chapter we have presented a new generalised solution to the out-of-sample

extension problem in manifold learning. Our developed approach, GOoSE (Gen-

eralise Out-of-Sample Extension), works by learning the local geometric change

that occurs around an unseen data point as a result of manifold learning. This

change is learnt by examining the neighbourhood of the new point in the high

and low-dimensional space and finding the similarity transform that matches

the two neighbourhoods. By applying this similarity transform to the new data

point we are able to get an approximation of its low-dimensional position.

One important consideration is that GOoSE assumes that the novel sample lies

within the previously learnt manifold. That is, the novel datapoint does not lie

outside of the sampling region of the manifold. If the new sample does lie outside

of the manifold then GOoSE may produce sub-standard results. The new sample
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will be projected onto the subspace spanned by its nearest neighbours on the

manifold, but if the sample is far away from its nearest neighbours then its

low-dimensional position may not be accurate. Having said this, GOoSE will

still be able to approximate a low-dimensional position for this new sample and

will not completely fail at producing an embedding.

Our experiments show that the GOoSE algorithm is a significant improve-

ment over the existing approaches to the out-of-sample extension problem.

What’s more, GOoSE works well with our developed manifold learning algo-

rithm PLML. This means that the two could be used together to form an im-

portant tool in many pattern recognition, computer vision and machine learning

tasks.
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I keep six honest serving-men

(They taught me all I knew);

Their names are What and Why and When

And How and Where and Who

Rudyard Kipling (1865 - 1936) 6
Conclusions

In this chapter we draw conclusions as to the work performed in this thesis. We

outline the major contributions and findings contained in this body of work.

We also discuss areas for future work.

6.1 Summary

In this thesis we have presented a new algorithm for manifold learning, Piecewise

Linear Manifold Learning (PLML), along with a generalised solution to the out-

of-sample extension problem in manifold learning, GOoSE. Both algorithms use

local geometric properties of the manifold. PLML exploits the connectivity of

local PCA models to build a global embedding of the manifold. GOoSE uses

the change in local geometry between the high and low-dimensional spaces to

embed new data points into a previously learnt embedding. Both algorithms

can outperform existing state of the art solutions to manifold learning and out-
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of-sample extension problems.

At the outset of this thesis we defined the criteria that we wanted our manifold

learning algorithm to meet: (1) easy to understand, (2) good performance, (3)

scalable and (4) stable under different data conditions and parameter values.

These criteria have been met as follows. (1) The PLML algorithm is easy to

understand as we can trace its execution on a simple 2-dimensional dataset on

paper. PLML does not require the solution of a large sparse eigen-problem or

a large dynamic programming problem. Rather the execution steps are easy to

follow and understand. (2) The PLML algorithm also yields good results. When

compared against existing state of the art manifold learning algorithms PLML

is often able to outperform the existing algorithms. We have also shown how

PLML can be used to extract meaningful structure from high-dimensional image

data. (3) Due to the simplicity and design of the PLML algorithm it is also

scalable to large scale applications. This is one of the possible future directions

of research. By exploiting the parallelisation possibilities of MST construction

and changing the merging strategy we would be able to allow PLML to handle

large data sets. (4) We have also shown how PLML is stable under different

levels of data sparsity, data noise and parameter values. The PLML algorithm

performs in a stable, well defined, manner under high noise and high sparsity.

In the remainder of this section we outline in more detail the conclusions drawn

as a result of the development of the PLML and GOoSE algorithms.

6.1.1 Piecewise-Linear Manifold Learning

One of the key strengths of the PLML algorithm is its simplicity and ease of

understanding. With most existing manifold learning algorithms it is very diffi-

cult to trace the execution of the algorithm as they are often concerned with the
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minimisation of a cost function obtained through the solution of a sparse eigen-

problem. PLML on the other hand builds the global low-dimensional embedding

in an iterative manner by merging local models in a topologically pre-defined

manner according to the Minimum Spanning Tree of the models. This makes it

easier to trace the execution of the PLML algorithm. PLML also does not re-

quire the solution to a large dynamic system which simplifies its computational

complexity and runtime. If appropriate algorithms are used for the building of

the Minimum Spanning Tree (e.g. Parallelised MST (Chon et al., 2001)) and

also for the matrix multiplication (e.g. the Strassen algorithm (Strassen, 1969)

or Coppersmith-Winograd algorithm (Coppersmith and Winograd, 1990)) then

PLML can be used for large datasets which normal manifold learning algorithms

with runtime of O(n3) would not be able to handle.

In this thesis we have also examined the performance of the PLML algorithm

under different levels of data sparsity, data noise and parameter selection. Un-

surprisingly, PLML performs best under low noise, low sparsity, conditions.

However, under increased noise and increased sparsity PLML’s performance de-

grades in a well defined manner (as shown in Table 4.1 and Figure 4.13). We

showed that this is not always the case with other manifold learning algorithms.

This well defined performance under the presence of noise and sparsity is a

useful property as we know that the performance of the PLML algorithm will

not suddenly drop out at certain noise or sparsity levels. We have also shown

that in the presence of dense data, PLML’s parameter value, k, does not affect

the quality of the embedding as much as other technique’s parameter values.

However, with sparse datasets we show that it is worth decreasing the value of

k to improve results, and with noisy data it is worth increasing k to counter the

effect of noise (See Section 4.3.3.1).

The tests carried out on image datasets reveal that PLML is able to recover
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meaningful embeddings from high-dimensional image data. Of particular in-

terest is the embedding produced of the Frey faces dataset where the different

facial expressions are contained within different areas of the low-dimensional

manifold (Figure 4.26). However, results on some image data also reveal how

PLML is unable to cope with manifolds with essential loops (e.g. circular, spher-

ical, etc.). This is due to the use of the MST as the skeleton for the topology

of the data. The MST will always introduce cuts into the manifold and as such

manifolds with essential loops will never be able to be perfectly embedded into

the low-dimensional space.

PLML differs from existing global alignment of local models techniques, such

as LTSA (Zhang and Zha, 2004), Manifold Charting (Brand, 2003) and Locally

Linear Coordination (Roweis et al., 2002), as it uses a hard partitioning of the

data to model the manifold at a local scale. It also does not rely on any form

of optimisation to perform alignment of these local models. As such it will not

get caught in any local minimum.

6.1.2 Generalised Out-of-Sample Extension

The developed solution to the out-of-sample extension problem, GOoSE, utilises

the change in local geometry around a new datapoint to calculate its position

in the low-dimensional space. This simplicity leads to a fast to run and effective

solution to the out-of-sample problem. Our developed method out-performs

existing solutions to the out-of-sample extension problem and can be applied to

an embedding learnt from any manifold learning algorithm.

Whereas existing solutions to the out-of-sample extension problem (e.g. (Bengio

et al., 2003; Yang et al., 2010)) use global properties of the data via kernel func-

tions, GOoSE exploits the local properties of the data. This focus on the local
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properties of the data makes it a potentially faster solution to the out-of-sample

problem as a large kernel problem involving the entire data is avoided. Not only

this, but our results show that GOoSE is able to out-perform existing solutions.

The central assumption of GOoSE is that if the new data point lies within the

previously sampled manifold region, then only the k-nearest neighbours of the

new point will be needed to reconstruct it in the low-dimensional space. This is

similar to the reconstruction assumption made by LLE (Roweis and Saul, 2000)

and our results show that for the out-of-sample extension problem it is a fair

assumption to make as our local approach out-performs the global approaches

to the out-of-sample extension problem.

The correct choice of parameter, k, for the GOoSE algorithm will be data spe-

cific, but experimental results show that a smaller value of k will yield better

results. This is due to the fact that at larger values of k the local linearity

assumption fails to hold. As such, approximating the manifold as a linear sub-

space at large values of k will not hold. Since the GOoSE algorithm is fast to

run an optimal parameter can be found for each dataset via a simple parameter

search.

6.2 Future Work

In this section we outline the possible areas for future research that extend on

the work described in this thesis.

• First, a possible extension to the PLML algorithm is to replace the clus-

tering step with a soft partitioning step in a similar fashion to Mani-

fold Charting (Brand, 2003) and Greedy Procrustes (Goldberg and Ritov,

2009). This soft partitioning could lead to improved performance when

combined with GOoSE (as described in Chapter 5). However, by intro-
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ducing soft partitioning the complexity of the merging step would increase

as more traversal steps would take place.

• Following on from this, another possible improvement of the PLML algo-

rithm would be to perform the merging step in the low-dimensional rather

than high-dimensional space. This would speed up the merging step as

the matrix multiplication would be done using matrices of size q×q rather

than p × p. Therefore, for very high-dimensional data where p � q this

would significantly speed up the merging step. However, work would need

to be done on the alignment of the models in the low-dimensional space

as there would be no known frame of reference as to the positioning of the

models in this space.

• Extending the GOoSE algorithm to handle the pre-image problem (i.e. the

reverse of the out-of-sample extension) would open up many application

areas. By reversing the GOoSE algorithm to enable it to find the high-

dimensional position of known low-dimensional datapoints we would then

have a algorithm within which datapoints can be continuously mapped

between the two different spaces. As shown in (Jun and Ghosh, 2010) this

would subsequently enable us to perform manifold based classification

using the GOoSE algorithm.

• From the above extension to the GOoSE algorithm we could use the ex-

tended version, alongside the PLML algorithm, to perform classification

of texture data. Much work has been performed on texture classification

using textons (Zhu et al., 2002). We expect that this idea could be ex-

tended using PLML and GOoSE to that of texton manifolds, where the

textures are modelled as manifolds rather than clusters. It is expected

that by modelling textures as manifolds, classification performance and

texture synthesis should be improved. One interesting such application
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area would be mammographic risk assessment and texture segmentation

(He et al., 2010). By modelling the different mammographic tissue regions

as manifolds rather than groups of textons it would be expected that more

robust classification results could be obtained. As well as this, the man-

ifold structure could be exploited to help interpolate between textures

(Souvenir et al., 2006) and also synthesise textures (Liu et al., 2006a).

• Finally, it will be important to continue to investigate and help solve the

open problems in manifold learning outlined in Chapter 2. As previously

discussed, these problems will need to be tackled to help make manifold

learning accessible and usable to a wider number of application areas. As

such, research into the open problems such as large scale learning, sparsity

and quality assessment will be essential to aid further work in this field.

6.3 Final Remarks

The developed manifold learning method presented in this thesis, Piecewise-

Linear Manifold Learning, presents a novel approach to the manifold learning

problem. Based on the idea of global alignment of local models, it is able to

recover the manifold structure at both a global and local scale. Our results show

that this piecewise-linear modelling can produce significantly improved results

over existing approaches to manifold learning especially when the data is densely

sampled. It is also far more stable than LTSA, another global alignment of local

models technique, under different density levels, noise levels, and parameter

values. The developed method is also able to extract meaningful structure from

image databases (a matter discussed in detail in Section 4.4).

The developed out-of-sample extension, GOoSE, is a generalised, local, out-

of-sample extension method and is able to out-perform Yang’s global out-of-
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sample extension approach (Yang et al., 2010). By concentrating solely on the

local geometric change of the data we are able to embed novel data points into

previously learnt embeddings with greater accuracy and at less computational

cost. The developed method can also be applied to any embedding produced

by any manifold learning algorithm.
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Classification Performance related to Intrinsic Dimensionality in
Mammographic Image Analysis

Harry Strangea and Reyer Zwiggelaara∗

aDepartment of Computer Science, Aberystwyth University, SY23 3DB, UK

Abstract. In the problem of mammographic image classification one seeks to classify an image, based on certain
aspects or features, into a risk assessment class. The use ofbreast tissue density features provide a good way
of classifying mammographic images into BI-RADS risk assessment classes [1]. However, this approach leads
to a high-dimensional problem as many features are extracted from each image. These features may be an over
representation of the data and it would be expected that the intrinsic dimensionality would be much lower. We aim
to find how running a simple classifier in a reduced dimensional space, in particular the apparent intrinsic dimension,
affects classification performance. We perform classification of the data using a simplek-nearest neighbor classifier
with data pre-processed using two dimensionality reduction techniques, one linear and one non-linear. The optimum
result occurs when using dimensionality reduction in the estimated intrinsic dimensionality. This not only shows
that optimum performance occurs when classifying in the intrinsic-dimensional space but also that dimensionality
reduction can improve the performance of a simple classifier.

1 Introduction

Mammography remains the main tool used for the screening anddetection of breast abnormalities and the development
of full field digital mammographic imaging systems has led toincreased interest in computer aided detection systems
[2]. Radiologists are increasingly turning to such Computer Aided Diagnostics (CAD) systems to assist them in the
detection and/or evaluation of mammographic abnormalities [3]. As such the reliability and accuracy of such systems is
paramount especially as breast cancer constitutes the mostcommon cancer among women in the European Union [4].
Many CAD systems will attempt to detect and classify mammographic abnormalities such as microcalcifications and
masses. However there is a strong correlation between breast cancer risk and breast density [5, 6]. Figure 1 shows 4
mammograms covering a range of breast tissue density [1]. Each of these 4 images represents a different BI-RADS
class. The American College of Radiology BI-RADS [7] is a widely used risk assessment model. It aims to classify a
mammogram into one of four classes according to breast density. The classes can be explained as follows. BI-RADS
I: an almost entirely fatty breast, not dense; BI-RADS II some fibroglandular tissue is present; BI-RADS III the breast
is heterogeneously dense; BI-RADS IV: the breast is extremely dense. Although BI-RADS is becoming a radiological
standard other risk assessment models exist that aim to classify breasts according to different aspects or features present
in the mammogram (e.g. Tabár modelling [8]).

For a CAD system to place a mammogram into one of the BI-RADS classes it will need to use some form of classifi-
cation algorithm. Many algorithms exist for the purpose of classification and generally they work by building a model
of the data from “known” examples (i.e. mammograms with known BI-RADS classes). Using this model the classifier
will then be able to assign each new mammogram to a BI-RADS class. It is unrealistic to use the raw mammographic
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(a) (b) (c) (d)

Figure 1. Mammograms showing 4 different breast densities ranging from low density (a) to high density (d).



image as input into a classifier, so features are usually extracted from each image and used as input. In the data from
this paper280 features are extracted from each mammogram (see Section 3).The obvious question to then ask is
whether all the extracted features are necessary? Most high-dimensional data will contain redundancy (i.e. dimen-
sions that provide no extra information) which could impairclassification performance. Dimensionality reduction is
a pre-processing technique that aims to reduce the dimensionality of the data so as to improve classification perfor-
mance. The question now becomes how many dimensions are needed to best represent the original data? Intrinsic
dimensionality estimators aim to find the number of dimensions needed to represent the data without losing important
features. In this paper we combine these two elements. We estimate the intrinsic dimensionality of the data and then
use dimensionality reduction to show that optimal classification performance occurs when classifying in this intrinsic
dimensionality.

We begin by outlining dimensionality reduction and intrinsic dimensionality estimators in Section 2. The data used in
this experiment is then discussed in Section 3 before the methodology is outlined in 4. The results are shown in Section
5 before final conclusions and future work are discussed in Section 6.

2 Dimensionality Reduction

Dimensionality reduction is the process of finding from a setof high-dimensional observations a representation of lower
dimensionality. This representation will maintain certain aspects, or features, of the original data. Different dimension-
ality reduction algorithms will retain different features, and this leads to a multi-level taxonomy of techniques. At the
highest level techniques can be classified by whether they aim to find a linear subspace within the high-dimensional
data, or whether they aim to find a non-linear manifold. We usetwo dimensionality reduction techniques, one linear
(Principal Components Analysis) and one non-linear (Locally Linear Embedding).

2.1 Mathematical Perspective

Given a set of observationsX = {xi}ni=1 in an ambient space of dimensionalityD (wherexi ∈ RD), the aim of
dimensionality reduction is to recover the outputsY = {yi}ni=1 in inherent spaced (d � D andyi ∈ Rd) that best
represent the subspace or submanifold contained in the ambient space.

2.2 Principal Components Analysis

Principal Components Analysis (PCA) was first discovered byPearson in 1901 [9] and was further developed by
Hotelling in 1933 [10]. It is perhaps the most widely used dimensionality reduction technique and provides the foun-
dation to many other methods. The principal goal of PCA is to maintain maximal variance between the data points in
the low dimensional space and as such it finds the subspaceS within the ambient space that has maximum variance.
PCA begins by constructing the zero mean covariance matrix,C = covX−X , of X, before finding the solution to the
eigenproblem

CW = λW (1)

The original data,X, is then projected onto the topn eigenvectors ofW to give the low dimensional representationY.

2.3 Locally Linear Embedding

Locally Linear Embedding (LLE) [11] is one of the more popular non-linear dimensionality reduction techniques.
LLE, as the name suggests, aims to preserve the local geometry of the manifold by maintaining local neighborhoods in
the high and low dimensional spaces. This is achieved by minimizing the embedding cost function

Ψ(Y) =

n∑

i=1

|yi −
n∑

j=1

Wijyj|2 (2)

The weights contained in the matrixW will have been previously calculated by minimizing a similar reconstruction
error based cost function1. This can then be minimized by solving an eigenvalue problemwhose bottomd eigenvectors

1ε(W) =
∑n

i=1 |xi −
∑n

j=1 Wijxj |2



provide the set of orthogonal coordinates.

2.4 Intrinsic Dimensionality Estimation

An important, but often under used, tool related to dimensionality reduction is the estimation of the intrinsic dimen-
sionality of the data. The intrinsic dimensionality can be defined as the smallest number of independent parameters
that is needed to generate the given data set [12]. When usinga classifier it is useful to be able to work in the smallest
possible dimensionality as high-dimensional problems lead to more redundant data as well as increased computational
complexity. If the intrinsic dimensionality can be correctly estimated then the redundant data can be “stripped-away”
and the real (intrinsic) data can speak for itself.

Many techniques exist for estimating intrinsic dimensionality (see [13]) and in this paper we use two methods with
widely differing approaches. As dimensionality reductiontechniques can be broken up into linear and non-linear, so
can intrinsic dimensionality estimators. We have chosen one linear and one non-linear. The first method is closely
related to PCA and simply uses the Eigenvalues created from Equation 1 to estimate the dimensionality. By calculating
the residuals of the Eigenvalues and finding at which point the biggest “jump” from one value to another occurs
the intrinsic dimensionality can be estimated. The second is based on the Geodesic Minimum Spanning Tree of the
data [14]. This works by creating a sequence of minimal spanning trees using geodesic distances (obtained by the
Isomap [15] algorithm) and uses the overall lengths of the minimum spanning trees to estimate the dimensionality of
the manifold.

3 Data

The data comes from features extracted from the whole set of322 mammograms that form the MIAS database [1,16].
The data is based on breast tissue density and consists of322 samples each with280 features,10 from morphological
characteristics and the remaining270 from texture information. A fuzzy C-means approach was usedto extract two
clusters (relating to fatty and dense tissue) from the mammograms. The morphological features were created using
relative area of the fatty and dense clusters as well as the first four histogram moments of these clusters. The texture
information was derived from co-occurence matrices [17]. Each of these322 mammograms have been assigned to a
BI-RADS risk assessment class by an expert radiologist [1].

4 Methodology

The first step in this experiment was to obtain classificationresults using the raw high-dimensional data. Ak-fold cross
validation technique was employed throughout this experiment. The data was partitioned into two sets: 1 for training
the classifier and 1 for testing. The size of each fold was14 samples. This meant that for each stage of the cross
validation experiment14 of the 322 samples were used for testing the classifier while the remaining 308 were used
for training purposes. The average over each of these folds was then used as the high-dimensional result. A simple
k-nearest neighbor classifier [18] was used throughout this experiment with the results being averaged over a range
of 2 ≤ k ≤ 30. The results are averaged so as to try to factor out any effects the classifier parameters might have
on the results. We try to solely look at the effects that the dimensionality reduction techniques have. More advanced
classifiers could have been used (such as SVM, C4.5 and Bayesian [19]) but the use of these algorithms would have
made factoring out parameter effects more difficult.

The outcome of a dimensionality reduction technique is heavily affected by the choice of parameters. So one of the
key steps needed when using dimensionality reduction is finding the optimal parameter set. Without this step you run
the risk of performing dimensionality reduction at sub-optimal settings, leading to worse classification results. With
this in mind a simple parameter search can be used to find the optimal parameters for each technique. For PCA where
the only parameter is the target dimensionality the search is straight forward, we simply run the algorithm over a range
of dimensions (1 ≤ d ≤ 28). When using LLE the neighborhood size (k) must be specified. So the algorithm was run
multiple times over a range of values fork (2 ≤ k ≤ 30) and the optimal value was recorded and used.

Once the optimal parameters have been found the data can thenbe classified. The results can then be compared against
those created in high-dimensional space to see if an improvement occurs. The optimal dimensionality found from
the parameter search can also be compared against the estimated intrinsic dimensionality to see if the two do actually
coincide.



Ambient Space (κ = 0.50; Ac = 56%)
B-I B-II B-III B-IV

B-I 67 30 13 2
B-II 16 62 35 6
B-III 4 11 40 19
B-IV 0 0 7 10

62% 62% 60% 46%

PCA +k-NN (κ = 0.57; Ac = 63%)
B-I B-II B-III B-IV

B-I 63 20 5 2
B-II 16 67 29 4
B-III 8 16 55 14
B-IV 0 0 6 17

72% 65% 58% 46%

LLE + k-NN (κ = 0.53; Ac = 59%)
B-I B-II B-III B-IV

B-I 66 18 2 2
B-II 16 62 36 2
B-III 5 23 50 20
B-IV 0 0 7 13

76% 60% 53% 35%

Table 1. Confusion Matrices for classification of MIAS database using different dimensionality reduction techniques
with optimal parameter sets. The results from classification in high-dimensional ambient space are also shown.

5 Results

The results of the experiments are shown in Table 5 with optimal parameters found to bePCA(d = 4) andLLE(d =
10, k = 17). As well as the confusion matrices the kappa co-efficient andclassification accuracy of each experiment
is also displayed. The kappa coefficient is a measure of agreement, beyond chance, between the actual results and
the predicted results. As can be seen the use of dimensionality reduction improves classification performance over
classification in high-dimensional space. PCA gives the best performance with an increase of classification accuracy of
7%. LLE yields an increase of3%. When examining the kappa co-efficient again PCA yields the biggest improvement
signifying that it retains more important aspects of the data between the high and the low-dimensional space. Even
though PCA is only a linear technique it still outperforms LLE. One reason for this could be that LLE simply fails
to find any meaningful manifold in the high-dimensional space, and so picks up a sub-optimal noisy manifold. Local
techniques tend to over fit the manifold and do not necessarily find the global structure of the data.

The graph in Figure 6 shows the classification accuracy of PCAand LLE across a range of dimensions. What is
immediately noticeable is the fact that PCA performs best atd = 4. After this point there is no noticable change
in the classifier’s accuracy showing that the data can be wellexpressed using only4 dimensions. This correlates
with the outcome of the intrinsic dimensionality estimators, both of which estimated the intrinsic dimensionality at
4-dimensions. This gives weight to the fact that optimal classification performance occurs when classifying in the
intrinsic-dimensional space. LLE’s optimal performance occurs atd = 10. The reason for this could be related to the
fact that LLE can’t find the manifold on which the data lies. The best estimate of the manifold it can find occurs when
reducing to10-dimensions.

6 Conclusions & Future Work

At the beginning of this paper we posed the questions of how well a simple classification algorithm performs in a
reduced dimensional space, in particular the apparent intrinsic dimension of the data. From the results shown in
Section 5 we can see that when using PCA on feature data extracted from mammographic images the best classification
performance occurs when working in the estimated intrinsicdimension. There is also a noticeable increase in the
classification accuracy and kappa co-efficient when using either PCA or LLE. This shows that there are benefits to
using a classifier in the estimated intrinsic dimension. We intend to extend this work to show how using more advanced
classifiers can yield a greater improvement to the classification accuracy.

A further extension to this work would be to look at how different dimensionality reduction techniques affect the
classification performance. In this paper we have only focused on two techniques but other methods may be able to
pick up more significant aspects (such as topological features) from the data.



2 4 6 8 10 12 14 16 18 20 22 24 26 28
46

48

50

52

54

56

58

60

62

64

Dimensionality of the Reduced Data

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

 

 
LLE
PCA

Figure 2. A graph of classification accuracy against dimensionality of reduced data. The optimum of each is PCA(d =
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Abstract

We present a framework for the reduction of dimensionality of a data set via manifold
learning. Using the building blocks of local hyperplanes we show how a global manifold
can be reconstructed by iteratively merging these hyperplanes. A Minimum Spanning
Tree provides the skeleton needed to traverse the manifold so that the local hyperplanes
can be used to build a global, locally stable, embedding. We show state of the art re-
sults when compared against existing manifold learning approaches using benchmark
synthetic data. We also show how our technique can be used on real world image data.

1 Manifold Learning
The area of dimensionality reduction has received much attention over the last few years,
thanks in part to the growth in the number of non-linear, or manifold learning, techniques.
At its core, any dimensionality reduction algorithm takes a set of high dimensional samples
and returns a representation of lower dimensionality that retains certain features found in the
high dimensional space. In the simple case a dimensionality reduction algorithm will project
the data onto the basis of a global feature, such as the hyperplane of maximum variance (i.e.
Principal Components Analysis [9]). More complex algorithms will aim to recover a low-
dimensional non-linear manifold embedded in the high dimensional space (e.g. ISOMAP
[16]).

It is to this family of manifold learning algorithms that much focus has been given in the
computer vision and pattern recognition communities over the past decade. Many problems
in these fields require a low dimensional representation to be found as working in higher
dimensions can often be problematic [2]. Dimensionality reduction and manifold learning
techniques have also been used to reveal patterns in image data [21]. As an example, con-
sider a data set consisting of a sequence of images showing a rotating 3-dimensional object.
Across the dataset the object rotates around one of its axes. If each of these images were
to be thought of as a point in high-dimensional space (the dimensionality being equal to the
number of pixels in the image) then they would lie on a simple circular manifold that is
parameterized by the degree of rotation of the object. This means that each image can be
discriminated using only 1-dimension - the degree of rotation - as opposed to, in the case of a
128×128px image, 16,384 dimensions. This reduction of dimensionality overcomes many
computational and mathematical problems associated with high-dimensional learning [2, 6].

c© 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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The simplest form of dimensionality reduction is one in which the non-linearity of the
data is ignored and the entire data is projected onto a single linear basis. This approach,
known as Principal Components Analysis (PCA), was first developed by Hotelling in 1933
[9] and has been widely used since (e.g [10, 18]). It finds the global hyperplane of maximum
variance across the data and projects all points onto the low-dimensional basis vectors of
this hyperplane. A covariance matrix is constructed across all the samples and the eigen-
vectors of this matrix provide the linear basis from which the low-dimensional projection
matrix can be formed. If the data set is inherently linear then PCA will work well, but few
real world data sets are purely linear and as such PCA will fail to find an optimal embed-
ding of the data. This linear limitation of PCA has lead to much research into non-linear,
or manifold learning, techniques (e.g. [14, 16, 22]). All of these techniques work on the
assumption that the data lie on a learnable low-dimensional manifold embedded within the
high-dimensional input space. For example, ISOMAP [16] constructs a geodesic distance
graph across the data to approximate distances across the manifold. The eigenvectors of this
geodesic distance matrix form the low-dimensional basis upon which the high-dimensional
data can be mapped. Since ISOMAP considers the distance information across the manifold
it is seen as a global method for manifold learning (as it maintains a global property - the
geodesic interpoint distances). Conversely there exist methods which seek to maintain lo-
cal properties of the data, such as Locally Linear Embedding [14] which aims to maintain
local interpoint relations between the high and low-dimensional spaces. Recently a class
of manifold learning algorithm has emerged that seeks to combine the strengths of global
and local techniques. This family of global-local techniques aim to preserve both local and
global properties of the data. One such example is Local Tangent Space Alignment (LTSA)
[22]. LTSA constructs local models around each sample based on its local tangent space.
These tangent spaces are then globally aligned via the solution of a minimization problem to
produce the low-dimensional embedding of the high-dimensional data. A more recent suite
of techniques proposed by Goldberg et al. in [7] use PCA and Procrustes analysis to build
and align local models. The main algorithm presented, Greedy Procrustes (GP), finds the
embeddings of neighborhoods iteratively using PCA and then aligning them to neighboring
neighborhoods using Procrustes analysis.

Our technique, Iterative Hyperplane Merging, continues this idea of globally aligning
local models using PCA and Procrustes. A clustering algorithm is used to partition the data
into local models. PCA is run on these local models to produce local low-dimensional hyper-
planes. These local hyperplanes are then iteratively merged to produce a global alignment
of the local models. As such Iterative Hyperplane Merging is able to preserve the local
properties of the data across a global scale.

2 Iterative Hyperplane Merging
Iterative Hyperplane Merging (IHM) can be intuitively thought of as a form of local PCA
where PCA is applied at a local scale to produce low-dimensional local hyperplanes. These
local hyperplanes are then globally aligned to produce the final low-dimensional embedding.
A clustering algorithm is employed to create the partitions needed to form the local hyper-
planes and a Minimum Spanning Tree (MST) is used as the basis for forming the global
alignment of the hyperplanes.

The clustering step is used to capture local information and form the local hyperplanes.
The lack of overlap between local models is novel when compared against many existing
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local-global techniques (e.g. [5, 7, 22]) and aims to reduce any within model distortion. This
reduction in local distortions leads to a more locally faithful embedding.

To obtain a faithful global embedding we perform a pre-order traversal on the Minimum
Spanning Tree (MST) of the inter-hyperplane distance graph. When walking from one node
in the MST to another we merge the hyperplanes gradually building a global embedding of
the data. The Minimum Spanning Tree has many properties that are well suited to our algo-
rithm. Firstly, as outlined by Robins in [13], the MST provides all the information needed to
describe the connectedness of the data. Since topology can be, at least simplistically, thought
of as the connectedness of a data the MST provides a good approximation for the topology
of a manifold. However, there is insufficient metric information contained within the MST
to be used as a geodesic graph for isometric techniques (e.g ISOMAP[16]). Secondly, the
non-cyclic nature of the MST ensures that when traversing the tree we won’t get caught in
any local cycles and every vertex in the tree will be visited in the correct ’topological order’.

2.1 Algorithm

We take as input a high-dimensional set of samples X = {xi}n
i=1 ∈ Rq sampled from a low-

dimensional manifold M ∈ Rp embedded within Rq (where p� q). The goal of any man-
ifold learning algorithm is to recover a set of samples Y = {yi}n

i=1 ∈ Rp from X that best
approximate the p-dimensional manifold M . We assume that at a local scale the manifold
M is homeomorphic to Euclidean space and is a C∞-manifold (i.e. it is smooth differen-
tiable).

The q-dimensional set of samples X can be partitioned into k-local hyperplanes by ini-
tially using any clustering algorithm to partition the data. Throughout the rest of this paper
we will be using either a Gaussian Mixture Model clustering scheme or a constrained k-
means clustering algorithm so we will briefly outline the basic methodology of each here1.
For Gaussian Mixture Modelling we are interested in a particular Gaussian Mixture Model
(GMM) where the number of components is equal to n and the parameters are defined as
Θ = {Θi|c, i = 1, . . . ,n} where Θi|c is the mean and covariance matrix of the ith Gaussian
density function and c = 1, . . . ,k. The output of the likelihood GMM function related to a
partition ωc is a weighted sum of n component densities:

p(x | ωc) =
n

∑
i=1

P(Θi|c | ωc)p(x | ωc,Θi|c) (1)

where P(Θi|c | ωc) = µic is the prior probability of the ith component parameter. These
mixture parameters are chosen such that ∑i µic = 1. By fixing the means and covariance
matrices of each partition we can now assign a sample to partition ωl if:

ωl = argmax
yc

p(x | ωc) (2)

The weights µ = {µic} of the GMM functions p(x | ωl), l = 1, . . . ,k can be found by solving
a constrained minimization function [15]. For constrained k-means we wish to find a set
of partitions, ω1,ω2, . . . ,ωk, such that the distance between each point, xi, and its nearest

1For a full description of both of these algorithms we refer the reader to [4, 15] for Gaussian Mixture Modelling
and [3, 17] for constrained k-means clustering.
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partition center, ω̄c, is minimized:

min
ω1,...,ωk

n

∑
i=1

min
h=1,...,k

(
1
2
‖ xi−ωh ‖2

2

)
(3)

with the specific constraint that no cluster, ωc, is smaller than the minimum cluster size, h,
| ωc |≥ h.

The clustering step described above produces a partitioning, Ω, such that
⋃

Ω = X and
for any two distinct partitions, ωi ∈ Ω and ω j ∈ Ω, ωi ∩ω j = ∅. The partitioning should
be chosen such that as far as possible | ω1 | u | ω2 | u . . . u | ωk | although the ability to
achieve this is heavily dependant on the choice of clustering algorithm. Since we assume that
the manifold M is locally linear these partitions can be used to find the k-local hyperplanes
of the data set. We define a hyperplane as

Πi = {∀xUUT ; ω̄i | x ∈ ωi, λU = CU} (4)

where ω̄i is the mean of the samples in ωi, C is the covariance matrix of the samples in ωi
and U is a matrix containing as columns the top p-dimensional eigenvectors sorted according
to their associated eigenvalues, λ . The k-hyperplanes are therefore now intrinsically p-
dimensional but are still embedded within the q-dimensional space. To globally align these
local hyperplanes we first need to find their local connectivity. To do this we construct a
Minimum Spanning Tree (MST) [8] across the data using the means of the hyperplanes as
vertices for the tree. This ensures that all vertices are connected with minimum cost. The
MST is found by firstly connecting all vertices to form a dense graph G =< V,E > where
E is the edgelist connecting all vertices, and the vertex list V = {Π̄i}k

i=1 (where Π̄i is the
mean of the hyperplane Πi). The MST, T =<V,E ′ >, is then a subgraph of G with the same
vertex set V but a reduced edge set E ′ ⊂ E (where E ′ is the edge set of minimal cost) 2. T
now provides us with an approximation of the topology of the hyperplanes and thus a coarse
approximation of the topology of X (since there is a direct mapping between the connectivity
of the hyperplanes and the connectivity of X).

We can now use T to find the global connectivity of the hyperplanes by walking along
T merging hyperplanes across each step. To walk along the MST we use a simple pre-order
traversal [19] which ensures that parents are visited before children, and siblings are visited
in left-to-right order. To describe the process of pre-order traversal we denote the first child
of a node v as first[v]. next[v] denotes the next sibling of node v, last[v] denotes the last child
of node v and size[v] denotes the number of nodes in the subtree of T rooted at v for all v∈V .
order[v] gives the order in which v is to be visted. So we visit the first node with order[v] = 1,
then order[w] = 2, until we reach order[z] = k. Given a random node, r, set at the root node
for traversal, a bijection order Ψ : V →{1, . . . ,k} is a pre-order traversal of T if order[r] = 1
and

• order[first[v]] = order[v]+1 (if v is not a leaf)

• order[next[v]] = order[v]+size[v] (if v is not a last child)

for all v ∈V . Given this bijection order Ψ and the direct mapping between hyperplanes and
our MST we can say that ΠΨ1 is the first hyperplane to be visited in the pre-order traversal
and ΠΨk is the kth hyperplane to be visited. We denote ΠΨa →ΠΨb as the traversal from the

2We omit the full algorithmic outline for forming a MST. For a more detailed description we refer to [8]
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ath hyperplane to the bth hyperplane. Since we wish to merge hyperplanes when traversing
from one to another we define a function

f (ΠΨa →ΠΨb) = AUbUT
b +(Π̄b− (Π̄bUbUT

b )) (5)

which maps the hyperplane ΠΨa onto the hyperplane ΠΨb , where A = ∀x ∈Πa and λbUb =
CbUb. Since the mapping is cumulative, with a new local hyperplane being added to the
global embedding at each iteration, we can define the globally aligned embedding as a matrix
augmentation:

Y← f (ΠΨ1...(k−1) →ΠΨ(k))← f (ΠΨ1...(k−2) →ΠΨ(k−1))← . . .← f (ΠΨ1 →ΠΨ2) (6)

It is worth noting at this point an optional extra step that can be used to increase the robust-
ness of an embedding. During the walk along T if last[v] is reached then we need to backtrack
until we reach v. Backtracking involves visiting and projecting onto hyperplanes we have
already visited. Normally each backtracking step is treated as the same as a forwarding step
and the above function f (ΠΨa′ →ΠΨa) is used (where ΠΨa′ is the image of ΠΨa having gone
through iterative projections). However, f (ΠΨa′ →ΠΨa) 6= f (ΠΨa→ΠΨa′ ) since the projec-
tion matrix that moves us from the linear subspace of ΠΨa′ onto ΠΨa is orthogonal to ΠΨa′ .
This means that an extra alignment step is needed so that f (ΠΨa′ →ΠΨa)≈ f (ΠΨa→ΠΨa′ ).
The alignment step applies simple Procrustes analysis[11] to translate, scale and rotate ΠΨa′
to align to ΠΨa . Once the translation vector, scale value and rotation matrices have been
found we can align the embeddings by adding an extra constraint to the function:

f (ΠΨ1,...,a′ →ΠΨa) = b(AUaUT
a +(Π̄a− (Π̄aUaUT

a )))T+v (7)

where b is the isomorphic scale value, T is the rotation matrix and v is the translation vector.
Once the traversal algorithm outlined above has finished, with or without backtracking,

we are able to obtain the final low-dimensional embedding by performing PCA on the matrix
Y

ΛV = CYV (8)

where C is the covariance matrix of Y and V is a matrix containing as columns the top
p-dimensional eigenvectors sorted according to their associated eigenvalues, Λ.

3 Results

We use synthetic data to analyse the performance of our algorithm on a dataset with a known
manifold. A real world image database is then used to show how our algorithm can han-
dle more difficult manifolds. All our experiments are performed using the MATLAB pro-
gramming environment. For Gaussian Mixture Modelling we use a MATLAB version of
Bouman’s C implementation [4] which has the added benefit of being unsupervised so will
calculate the optimal number of clusters for a given dataset (with the only parameter being
an initial guess of the number of clusters needed).
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3.1 Synthetic Data

For synthetic data we use the benchmark Swiss Roll data set [16]. It consists of a highly
curved 2-dimensional plane wrapped to a Swiss Roll in 3-dimensional space (See Figure
2(a)). Gaussian Mixture Modelling is used to form the partitions needed to create the lo-
cal hyperplanes and the backtracking step described in Eq. (7) is used. We compare our
technique against three widely used algorithms: Principal Components Analysis (PCA),
ISOMAP and Local Tangent Space Alignment (LTSA). A visual comparison of how these
algorithms perform acroos a range of noise levels is shown in Figure 2. PCA (Fig. 2(e) -
Fig. 2(h)) fails to find the underlying manifold at all noise levels since it is simply applying
a linear projection to the data. ISOMAP (Fig. 2(i) - Fig. 2(l)) performs better and at all
noise levels is able to unwrap the Swiss Roll, although it does introduce unwanted holes
in the manifold so the topology, at least at a local scale, is distorted. LTSA performs well
when no noise is present (Fig. 2(m)) but fails to find the correct embedding when significant
amounts of noise are added (Fig. 2(o) - Fig. 2(p)). IHM (Fig. 2(q) - Fig. 2(t)) consistently
performs well managing to find the global shape of the manifold as well as preserving local
relations (although the neighborhoods are somewhat squeezed and expanded at the highest
noise level).

Three error measures are used to analyse the performance of a manifold learning tech-
nique at maintaining both local and global properties of the data. Mean relative rank errors,
trustworthiness and continuity [12, 20], are used to measure the local stability as they com-
pare the differences between local neighborhoods in both the high and low dimensional
spaces. Intuitively trustworthiness measures the number of samples that exist in a neigh-
borhood in the high-dimensional space but not in the same low-dimensional neighborhood.
Continuity measures the number of samples that have entered the low-dimensional neigh-
borhood and do not appear in the same high-dimensional neighborhood. As such they are a
good measure of the local connectivity of the data as they measure the amount of change at
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Figure 1: Graph of results for the trustworthiness (left) and continuity (right) of different
algorithms when trying to unroll the Swiss Roll dataset with 2000 samples. The neighbor-
hoods for Isomap and LTSA were averaged over the range k = [2,32]. For IHM we use
GMM to find optimal cluster sizes with an initial cluster size estimate of 32.
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Algorithm Trustworthiness Continuity Mean Square Error
PCA 0.70 (± 0.06) 0.75 (± 0.05) 0.62 (± 0)
ISOMAP 0.87 (± 0.02) 0.86 (± 0.03) 0.24 (± 0.24)
LTSA 0.74 (± 0.05) 0.76 (± 0.05) 0.23 (± 0.36)
IHM 0.92 (± 0.02) 0.94 (± 0.01) 0.02 (± 0.02)

Table 1: Results on Swiss Roll with 2000 samples. The neighborhoods for Isomap and LTSA
were averaged over the range k = [2,32]. For IHM we use GMM to find optimal cluster sizes
with an initial cluster size estimate of 32.

a local scale. The trustworthiness of an embedding is measured by

T = 1− 2
nk(2n−3k−1)

n

∑
i=1

∑
j∈Uk(i)

(r(i, j)− k) (9)

Similarly continuity is measured by

C = 1− 2
nk(2n−3k−1)

n

∑
i=1

∑
j∈Vk(i)

(r̂(i, j)− k) (10)

where n is the total number of samples and k is the size of the neighborhoods we wish to
measure the trustworthiness and continuity of. r(i, j) is the rank of the data sample X j sorted
according to the Euclidean distance from sample Xi in the high-dimensional space, similarly
r̂(i, j) is the rank of the data sample Y j sorted according to the Euclidean distance from Yi in
the low-dimensional space. Uk is the set of all samples that in the k-neighborhood of i in the
low-dimensional space but not in the high-dimensional space. Vk is the set of samples that
are in the k-neighborhood of i in the high-dimensional space but not in the low-dimensional
space. Figure 1 shows that over a range of neighborhood sizes IHM is locally stable with the
values averaging at T = 0.92 and C = 0.94 (see Table 1). When compared against other
techniques IHM, like ISOMAP, is able to consistently maintain local relations with a low
variation between embeddings.

Procrustes analysis [11] is used to measure the global stability of an embedding. The em-
bedding, as well as the original unwrapped data, is centered and scaled into a 1×1 square.
Procrustes analysis then applies scaling, translation, reflection and rotation in order to min-
imize the squared distances between an embedding and the original unwrapped data. The
lower the sum of squared distances the closer the embedding is to the original data. As shown
in Table 1 IHM provides a significant improvement over existing techniques for maintaining
global stability. IHM is consistently able to find a globally faithful embedding with low vari-
ation between embeddings, as opposed to ISOMAP and LTSA where there is a high variation
between embeddings.

3.2 Image Data
To test our algorithm on real world image data we use the Frey faces dataset3. The data
contains 1965 images of size 20×28 pixels taken from sequential frames of a small video.
We use constrained k-means clustering to partition the data as the computational complexity
and running time is much reduced when using k-means in high-dimensional space. We also

3Frey faces dataset available from http://cs.nyu.edu/~roweis/data.html
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Figure 2: (a) 3D Swiss Roll data set with zero added noise, (b-d) the same data with varying
uniform noise shown in 2D projection. (e-h) PCA embeddings, (i-l) ISOMAP embeddings
with k = 10, (m-p) LTSA embeddings with k = 10, (q-t) IHM embeddings using GMMs with
automatic parameter estimation and an initial cluster size estimate of 32.
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Figure 3: 2-dimensional embedding of the Frey faces dataset found using IHM. The results
were obtained using k-means clustering for partitioning, with k = 64. The manifold is pa-
rameterized by expression with the extremes of the different expressions appearing on the
outer edge of the embedding and the central points representing more neutral expression.

omit the backtracking step in Eq. (7) and instead use the forward tracking only method based
on Eq. (5). The k-means algorithm was run with k = 64 and the minimum cluster size was
set to h = 6.

The video from which the data is taken shows a face moving through a variety of expres-
sions as well as slight changes in left-right pose. The 2-dimensional embedding found using
IHM is shown in Figure 3. The main variation in the embedding is facial expression with the
’extremes’ of the expressions (e.g. smiling, frowning) appearing on the edges of the mani-
fold. The points lying in the centre of the manifold are the more neutral, less discriminable,
expressions. When compared with other results using this dataset our embedding shows
more meaningful structure. The results found in Figure 4 in [7] show that nearby images in
the input space match nearby images in the output space, but the output embedding is homo-
geneous without any apparent of discernable structure. The embeddings found in Figure 3
in [14] reveal slightly more structure in the data but the distribution of expressions is hard to
track. Our results show that there is structure in the data with expressions distributed across
the manifold and at a local scale images in the local input neighborhood match those in the
local output neighborhood.
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4 Discussion & Future Work
We have introduced a new unsupervised manifold learning algorithm, Iterative Hyperplane
Merging, that is based on the iterative merging of local hyperplanes. By using a clustering
algorithm (e.g. Gaussian Mixture Modelling or k-means) to partition the data into local
hyperplanes, which are then aligned according to a simple walk on the minimum spanning
tree of the hyperplanes, we can achieve leading results on benchmark synthetic data. When
compared against PCA, ISOMAP and LTSA our algorithm is capable of discovering the
shape of the manifold even in the presence of substantial noise. We have shown using various
error measures that our algorithm is able to maintain both global and local properties of the
data. We have also shown how our algorithm is capable of learning a non-linear face based
image manifold parameterized by facial expression.

One limitation of our algorithm is the reliance on a clustering algorithm to partition the
samples into local hyperplanes. In high-dimensional spaces this can be both computationally
expensive and slow. Also, if the size of the clusters are incorrectly chosen then this can lead
to a short-circuited or disconnected manifold [1]. One possible approach to overcome this
problem would be to replace the clusters with local tangent spaces. So rather than merging
local hyperplanes the local tangent spaces of each sample would be merged. This could
provide both an improvement in run-time as well as in embedding accuracy.
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Abstract—Manifold learning is a widely used statistical tool
which reduces the dimensionality of a data set while aiming
to maintain both local and global properties of the data.
We present a novel manifold learning technique which aligns
local hyperplanes to build a global representation of the data.
A Minimum Spanning Tree provides the skeleton needed to
traverse the manifold so that the local hyperplanes can be
merged using parallel projections to build a global hyperplane
of the data. We show state of the art results when compared
against existing manifold learning algorithm on both artificial
and real world image data.
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I. MANIFOLD LEARNING

Many real world problems involve data which lies on, or
near, a low-dimensional manifold embedded within a higher-
dimensional ambient space [1], [2]. For example, a video
sequence of a 3-dimensional object can be represented in a
continuous way using far fewer variable than are present in
the ambient data. The video sequence can be made up of a
set of images each representing a vector in high-dimensional
space (where the dimensionality is defined as the number of
pixels in each image). Although the ambient dimensionality
of this space may be high, the latent dimensionality in
reality is much lower as each image will be parameterized
by variables such as object orientation, camera position
and lighting conditions. Assuming that campera position
and lighting are constant then the video sequence could be
represented using only 3 variables, i.e. the orientation of the
camera. The goal of any manifold learning algorithm is to,
as best as possible, recover such low-dimensional manifolds
from the high-dimensional data.

The area of manifold learning has become an established
field of research with much attention being given to pro-
viding algorithms that achieve robust embeddings of highly
non-linear data (such as the 3-dimensional object example
above). Most, if not all, will have their origins in Principal
Components Analysis (PCA) [3] which projects the data
onto the hyperplane of maximal variance. As such it is
only capable of finding the global subspace of the data and
will not find meaningful embeddings for highly non-linear
data sets. To overcome this linear constraint many non-
linear, or manifold learning, algorithms have been presented

that aim to maintain certain properties of the data between
the high and low-dimensional spaces. For example, some
algorithms will aim to maintain global properties of the
data (e.g ISOMAP [1], Kernel PCA [4], and Diffusion Maps
[5]), while others will focus on maintaining local properties
(e.g. Locally Linear Embedding [2], Laplacian Eigenmaps
[6], and Maximum Variance Unfolding [7]). Recently a new
class of algorithm has been established that aims to maintain
local properties of the data across a global scale. Examples
of these global alignment of local models algorithms include
Local Tangent Space Alignment [8], Manifold Charting [9],
and Local Linear Coordination [10].

In this paper we present a manifold learning technique,
Parallel Projections, that fits into this last category of algo-
rithms.

II. PARALLEL PROJECTIONS

To obtain a low-dimensional embedding of the high-
dimensional data the Parallel Projections algorithm follows
four steps. Firstly the local hyperplanes are formed using
any clustering method. Then a Minimum Spanning Tree is
built between the local hyperplanes so that we can traverse
the manifold. The third step involves an iterative walk on
the Minimum Spanning Tree where local hyperplanes are
merged between node traversals to form a global hyperplane
of the manifold. Finally the low-dimensional embedding is
found by running PCA on this global hyperplane.

We take as input a high-dimensional set of samples X =
{xi}ni=1 ∈ Rq sampled from a low-dimensional manifold
M ∈ Rp embedded within Rq (where p � q). The goal
of any manifold learning algorithm is to recover a set of
samples Y = {yi}ni=1 ∈ Rp from X that best approximate
the p-dimensional manifold M. We assume that at a local
scale the manifold M is homeomorphic to Euclidean space
and is a C∞-manifold (i.e. it is smoothly differentiable).
A neighborhood size parameter, k, which along with the
target dimensionality q are the only free parameters within
the developed methodology, is also specified which is used
to determine the size of the clusters formed in Step 1.

Step 1: Form Local Hyperplanes. To create the local
hyperplanes we firstly calculate the number of clusters c =
bn/kc and also a minimum cluster size h. This ensures that,
as far as possible, all clusters are created with a similar



number of samples. In practice the value of h is set to k.
We then use a constrained clustering algorithm to partition X
into c clusters {Cl}cl=1 such that the distance between each
point, xi, and its nearest partition center, C̄c, is minimized:

min
C1,...,Cc

n∑

i=1

min
l=1,...,c

(
1

2
‖ xi − C̄l ‖2

)
(1)

with the specific constraint that no cluster, Cl, is smaller
than the minimum cluster size, h; | Cl | ≥ h. The above
approach is similar to that proposed by Bennett [11], where a
normal k-means clustering algorithm is run with the specific
cluster size constraint added. Similar output can be reached
by running a normal clustering algorithm and then finding
the small clusters (i.e. | Cl | < h) and joining them to
their closest cluster. This process can reduce the number of
clusters to fewer than c, but in the remainder of the paper we
will still refer to c as the number of clusters. This approach
will generally achieve similar results and opens the door for
different clustering algorithms to be used.

Once we have partitioned X into c clusters we are able
to form local hyperplanes. A local hyperplane is defined as

Πl = { ∀xUUT ; C̄; | x ∈ Cl, λU = ΣU} (2)

where C̄l is the mean of the samples in Cl, Σ is the
covariance matrix of the samples in C and U is a matrix
containing as columns the top p-dimensional eigenvectors
sorted according to their associated eigenvalues, λ. This
equates to running Principal Components Analysis on each
cluster and then projecting the cluster’s samples onto the top
(p+ 1) principal components without changing the cluster’s
relative position. At this point the data is still embedded
within q-dimensional space but is, at a cluster level, p-
dimensional. Since the data is locally p-dimensional the next
step is to align the local hyperplanes to build a global p-
dimensional hyperplane of the data within the q-dimensional
space. To do this we firstly form a Minimum Spanning Tree
across the hyperplane centres.

Step 2: Build Minimum Spanning Tree. A Minimum
Spanning Tree (MST) is a subgraph (which is also a tree)

of a connected, undirected graph, with the property that all
the vertices are connected together with a minimum sum
of edge weights. As pointed out in [12] the MST also has
desirable properties that make it ideal as a skeleton of a
data set: it tends to avoid shortcuts between branches and it
gives a connected graph. It also contains no cycles making
it suitable for ordered traversal. The MST is ideal for our
application since we wish to find a way of visiting all nodes
in a graph at least once and in a well-defined order. We build
the MST of the hyperplanes by firstly building an MST of X.
If we were to build an MST at hyperplane level the cluster
centers would provide too sparse an approximation of the
manifold to build a suitably robust graph. As such some of
the undesirable properties (like shortcuts) would be likely
to return. To build the MST of X we firstly calculate the
n× n distance matrix D, where D(i, j) = d(xi, xj) where
d(xi, xj) is the Euclidean distance between points xi and
xj . We can now build the MST, T = 〈V,E′〉, of D where
T is then a subgraph of D with the same vertex set V but
a reduced edge set E′ ⊂ E (where E′ is the edge set of
minimal cost)1. We can now build the hyperlane level MST,
G, given by

G(i, j) =





d(C̄i, C̄j) if ∃e ∈ E | e = 〈vi, vj〉
vi ∈ Ci, vj ∈ Cj

∞+ otherwise
(3)

where d(C̄i, C̄j) is the Euclidean distance between cluster
centre C̄i and cluster center C̄j . We ensure that G is an
MST by removing any cycles and ensuring the sum of edge
weights is minimal.

Step 3: Forming Global Hyperplane. The main step
of the algorithm is to form a global hyperplane across the
entire manifold. It is also the most complicated step as it
involves local alignments that are different depending on
which direction the alignment is being made. The basic idea
is to form a global hyperplane by walking along the MST
of hyperplanes and merging the hyperplanes as the traversal

1We omit the full algorithmic outline for forming an MST. For a more
detailed description we refer to [13]

(a) (b) (c) (d) (e)

Figure 1. An overview of the parallel projection algorithm. When moving from Π2 to Π3 we rotate Π2 so that its normal vector matches that of Π3

and then project it onto Π3. The result, shown in (b) is that Π2 and Π3 now exist on the same global hyperplane. (c) shows how Π2 and Π3 move onto
Π4. When back aligning, (d), the hyperplane under alignment, Π′3, is aligned to its original representation Π3. Similary, when moving back to Π2, Π′2 is
aligned to Π2. Notice that throughout this Π1 and Π5 remain unchanged as it is not a part of this alignment process.



takes place. Figure 1 shows the principle of this. Starting
at hyperplane Π2 we wish to move to Π3, so we rotate
Π2 so that it’s axis is aligned with Π3. We then project
Π2 onto Π3. Since Π2 and Π3 are parallel there is no
distortion or change in topology within Π2 which would not
be the case were they not parallel. When moving from Π3

to Π4 the steps are repeated but the rotation and projection
are applied to Π2 as well as Π3. If subsequently we want
to incoporate Π1 we need to move back from Π4 to Π3

(and subsequently Π2) since Π3 (and subsequently Π2) have
already been aligned and is part of the global hyperplane it
is a case of translating and aliging Π3 (and also Π2) to their
original representations. It is worth noting at this point that
we build a global hyperplane based on local hyperplanes that
are seperate from their original representations. Therefore,
we denote Πi as a hyperplane as originally created and Π′i
as a hyperplane having undergone alignment. So in the last
two steps of in Figure 1 we are aligning Π′3 to Π3 (and
subsequently Π′2 to Π2).

To walk along the MST we use a simple pre-order
traversal [14] which ensures that parents are visited before
children, and siblings are visited in left-to-right order. To
describe the process of pre-order traversal we denote the
first child of a node v as first[v]. next[v] denotes the next
sibling of node v, last[v] denotes the last child of node v
and size[v] denotes the number of nodes in the subtree of G
rooted at v for all v ∈ V . order[v] gives the order in which v
is to be visted. So we visit the first node with order[v] = 1,
then order[w] = 2, until we reach order[z] = c. Given a
random node, r, set as the root node for traversal, a bijection
order Ψ : V → {1, . . . , c} is a pre-order traversal of G if
order[r] = 1 and order[first[v]] = order[v] + 1 (if v is not
a leaf); order[next[v]] = order[v]+size[v] (if v is not a last
child) for all v ∈ V .

As mentioned above there are two different scenarios that
need to be accounted for when moving from one hyperplane
to another. If the new hyperplane, Πi has not been visited
before we need to project the previously visited hyperplanes
onto this hyperplane (forward projecting). Otherwise, if the
hyperplane has been visited before then we need to align
Π′i to Πi (back aligning). We deal with each of these cases
seperately below.

3.1: Forward Projecting. The algorithm for forward
projection is based on the need to align the axis of the previ-
ously visited hyperplane to the new hyperplane. We denote
the previous hyperplane as Πprev and the new hyperplane as
Πnew. We wish to make Πprev parallel to Πnew and to do this
we align the axis of Πprev to the axis Πnew by finding the
rotation matrix needed to rotate the normal vector of Πprev
to match the normal vector of Πnew. To ensure that no other
rotation takes place apart from that defined by the axis of the
normal vector we build axis matrices for each hyperplane.
For Πprev, with basis vectors {u1, u2, . . . , up}, this is defined
as

Ma
prev =

[
u1, 2u2, . . . , (d+ 1)ud+1

]
(4)

Mb
prev =

[
−1.5u1,−2.5u2, . . . , −(d+ 1.5)ud+1

]
(5)

Mprev =
[
Ma

prevM
b
prev

]
(6)

The axis matrix goes up to the (d + 1)th principal com-
ponent since this is the axis that is analogous to the normal
vector to the hyperplane. The axis matrix for Πnew can be
similarly built with the basis vectors of Πprev projected onto
the basis vectors of Πnew and the normal vector of Πnew.
This ensures that rotation only occurs in the direction of
the normal vector and that no ‘skew’ is introduced by the
rotation. By changing the length of each axis and mirroring
the principal axes in the negative direction we can pose the
alignment of the two principal axis matrices as a registration
problem. Since both axis matrices are centered at the origin
the problem is defined as finding the rotation matrix R
so that ‖Mnew −MprevR‖ is minimized (where ‖ · ‖ is
the Frobenius norm). The matrix R is orthonormal and
gives the rotation needed to align the axis matrix Mprev to
Mnew. Wang et al. [15] have shown that the optimal solution
is given by the Singular Value Decomposition (SVD) of
MT

prevMnew. That is, if the SVD of MT
prevMnew is UΣVT ,

then R = UVT . To apply rotation we simply perform the
matrix multiplication Π′prev = ΠprevR. Now that the two
hyperplanes are parallel we need to update the principal
components (axis) of Πprev, that is Uprev = UprevR, and
then project Π′prev onto Πnew. This projection is given by

Π′prev = Π′prevUΠnewU
T
Πnew + ( ¯Πnew − ( ¯ΠnewUΠnewU

T
Πnew))

(7)
where UΠnew is a matrix containing the top p prinicpal
components of Πnew. This rotation and projection should be
performed using the same rotation matrix for all previously
visited hyperplanes, but for simplicity purposes we only
show notation for the previously visited hyperplane.

3.2: Back Aligning. If the hyperplane we wish to move
to has already been visited then we do not need to worry
about the parallel projection process described above. Rather
we simply wish to align the hyperplane to its original
representation. If we wish to align Π′i to Πi then we need
to find the translation vector that moves the centroid of Π′i
onto the centroid of Πi and also the rotation matrix that
correctly aligns the samples in Π′i to Πi. This step can easily
be achieved by running Procrustes analysis on the two sets
of samples within the two hyperplanes. Since the number of
samples within the hyperplanes will not have changed and
the forward projection step described above does not distort
the samples within the hyperplane we can use Procrustes
analysis [16] to find the translation vector v and the rotation
matrix R to match Π′i to Πi

2. Therefore when back aligning,

2We ommit a full discussion of Procrustes here for brevity. A detailed
explanation of Procrustes can be found in [17]



Π′i = Π′iR + v. As with the forward projection step the
translation and rotation should be applied to all previously
visited hyperplanes not just the previously visited one.

4: Find Low-dimensional Embedding. Once all nodes
have been visited in the traversal described above, that is all
nodes have been visited and in the correct order given by Ψ,
we will have obtained a globally aligned p-dimensional rep-
resentation of the manifold embedded within q-dimensional
space. This representation is contained in the hyperplanes
{Π′l}cl=1. We set the matrix Q = {Π′l}cl=1 to contain all the
samples of the globally aligned representation. To find the
low-dimensional embedding we run PCA on Q

ΛV = CQV (8)

where CQ is the covariance matrix of Q and V is a matrix
containing as columns the top q-dimensional eigenvectors
sorted according to their associated eigenvalues, Λ. The low-
dimensional representation Y is then given by Y = QV.

III. RESULTS AND DISCUSSION

To test the Parallel Projection algorithm we apply it to
two known toy data sets and one real world image data
set. We compare its performance at learning the toy data
sets against nine other leading manifold learning algorithms.
Algorithms were chosen from each class of algorithm (as
discussed earlier in the paper) so as to obtain a fair as
possible comparison. All experiments were performed in the
MATLAB programming environment.

A. Toy Data
We test our algorithm on two benchmark toy datasets:

the Swiss Roll [1] and a 3-dimensional Möbius strip. Both
datasets exhibit interesting manifold structure, the Swiss
Roll is a highly curved 2-dimensional plane embedded
within 3-dimensional space. As such a simple 2-dimensional
projection of the data will not uncover the true structure of
the manifold. The Möbius strip can be trivially thought of as
a rectangle with one end twisted by 180◦ and then joined to
the other end. One interesting property of the Möbius strip
is that it is an example of a one sided surface. This makes
finding a meaningful 2-dimensional embedding difficult.

Trustworthiness and continuity [19], are used to measure
the local stability as they compare the differences between
local neighborhoods in both the high and low dimensional
spaces. Intuitively trustworthiness measures the number of
samples that exist in a neighborhood in the high-dimensional
space but not in the same low-dimensional neighborhood.
Continuity measures the number of samples that have en-
tered the low-dimensional neighborhood and do not appear
in the same high-dimensional neighborhood. As such they
are a good measure of the local connectivity of the data as
they measure the amount of change at a local scale3.

3The full description of trustworhiness and continuity can be found in
[19]
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Figure 2. Results of running Parallel Projections on the Swiss Roll dataset
with k = 10. Both the local and global properties of the data are correctly
kept and the manifold is nicely unfolded with no distortions.

The results of the Parallel Projections algorithm on the
Swiss Roll dataset is shown in Figure 2. As can be seen in
Figure 2 Parallel Projections find a meaningul and faithful
embedding of the Swiss Roll data. Locally neighborhood
relations are maintained and globally the shape of the
manifold is true to the true ‘unwrapped’ Swiss Roll (a
rectangle with correct class distribution). One of the ben-
efits of Parallel Projections is that it does not normalize
the final embedding which can often be problematic [20].
The Möbius strip indicated how the Parallel Projections
algorithm works with cyclic manifolds. Due to the use of
an MST Parallel Projections will cut the manifold which
can be seen as a drawback, but also can be shown to be a
benefit as it enables us to visualise the Möbius strip on a
2-dimensional viewing plane4.

Table I shows the quantitative comparison of Parallel
Projections with nine other leading algorithms. We ran the
algorithms on the Swiss Roll and Möbius strip datasets
over a range of parameters. The trustworthiness and con-
tinuity results were obtained by averaging the results over
the neighborhood size range of m = [8, 10, 12, 14, 16].
The results show that Parallel Projections performs well
on both datasets, significantly outperforming other leading
algorithms such as ISOMAP and Local Tangent Space
Alignment. The global stability of Parallel Projections can
be seen in Figure 2 where the global shape of the manifold is
maintained with no normalized. In Table I we can see that
at a local scale Parallel Projections works well too. This
is because locally the data should not change. The parallel
constraint on the projection ensures that no distortion or
topology change is introduced at a local scale into the final
embedding. This makes Parallel Projections a powerful tool
for visualisation where it is important to maintain local
properties of the data.

B. Image Data

The Frey Faces dataset5 is used to test our algorithm
on real world image data. The data set consists of 1965

4Figure not included due to space restrictions
5Frey faces dataset available from http://cs.nyu.edu/∼roweis/data.html



images extracted from a video sequence of a face undergoing
different expressions with slight pose variation. Each image
is 20 × 28 pixels so the ambient dimensionality of the
data is 560. Figure 3 shows the results of running the
Parallel Projections algorithm on the Frey Faces data set.
The embedding is shown on the left of Figure 3 by means
of a grid of thumbnails. The embedding space found by
Parallel Projections was divided into a grid of 30-by-30
cells. The thumbnail image corresponds to the average face
of all samples lying within the given cell. This technique
is a useful way of visualising the final embedding. We also
manually segmented the gridded data into ‘meta’ cells based
on visual perception of regions within the embedding. These
segmented regions were chosen to group together, as far as
possible, similar facial expressions.

As can be seen the 2-dimensional embedding seperates
out the different facial expressions (as shown in the top
right of Figure 3). The manual segmentation shows that
different parts of the low-dimensional embedding correspond
to different facial expressions with the central point of the
entire embedding corresponding to a neutral - expressionless
- face. When compared with other results using this dataset
our embedding shows meaningful structure. For example, the
embeddings found in Figure 3 in [2] reveal some structure
in the data but the distribution of expressions is hard to
track and nearby points in the output space do not match
nearby points in the input space. Our results show that there
is structure in the data with expressions distributed across
the manifold and at a local scale images in the local input
neighborhood match those in the local output neighborhood.

IV. CONCLUSIONS & FUTURE WORK

We have presented a new manifold learning algorithm,
Parallel Projections, which can successfully learn highly
non-linear manifolds such as the Swiss Roll and Frey Faces

dataset. We tested our algorithm on both these data sets
along with the Möbius strip data and showed state of
the art results, particularly for the two toy datasets where
Parallel Projections outperformed nine other leading mani-
fold learning algorithms. The key strength of the algorithm
is that it works well at preserving local structure over a
global scale. As long as the data is well sampled and
the Minimum Spanning Tree is correctly formed then the
Parallel Projections algorithm will work well. If the data
is too sparse then the clusters may be incorrectly formed or
the Minimum Spanning Tree may create shortcuts across the
manifold. Also, if the samples in the cluster are too sparse
then it will become difficult to correctly form the principal
axis of that cluster leading to inconsistencies in the global
alignment step. These aspects will be further investigated. In
the future we intend to test Parallel Projections with different
clustering algorithms (such as Fuzzy C-means or Gaussian
Mixture Modelling). We also intend to try to factor out the
clustering step and see if hyperplanes could be formed from
local neighborhoods around a sample.
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Abstract

Manifold learning is a powerful tool for reducing the di-
mensionality of a dataset by finding a low-dimensional
embedding that retains important geometric and topo-
logical features. In many applications it is desirable to
add new samples to a previously learnt embedding, this
process of adding new samples is known as the out-of-
sample extension problem. Since many manifold learn-
ing algorithms do not naturally allow for new samples to
be added we present an easy to implement generalized
solution to the problem that can be used with any exist-
ing manifold learning algorithm. Our algorithm is based
on simple geometric intuition about the local structure
of a manifold and our results show that it can be effec-
tively used to add new samples to a previously learnt
embedding. We test our algorithm on both artificial and
real world image data and show that our method signif-
icantly out performs existing out-of-sample extension
strategies.

Introduction
Manifold learning is a widely researched statistical tool
used to reduce the dimensionality of a dataset by pro-
jecting the high-dimensional data onto a representative
low-dimensional manifold. At its simplest form this low-
dimensional manifold can be the hyperplane of maximum
variance resulting in the data being projected onto a lin-
ear basis (Hotelling 1933). More recent techniques aim
to find a non-linear manifold upon which the data can
be projected (Tenenbaum, de Silva, and Langford 2000;
Roweis and Saul 2000). Non-linear techniques are able to
discover more complex manifolds than their linear counter-
parts and so pave the way for manifold learning to be used
as a powerful statsticial tool in image processing (Verbeek
2006), data mining (Patwari, III, and Pacholski 2005) and
classification (Strange and Zwiggelaar 2009).

One of the open questions within manifold learning is
how a new ’unseen’ sample can be mapped into a previously
learnt embedding. Consider as an example a simple classi-
fication problem involving a set of training samples and a
seperate set of test samples. We wish to use manifold learn-
ing to reduce the dimensionality of these data sets so that

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

we can perform the classification in the lower-dimensional
space. The two options open are, either to combine the train-
ing and test sets into one and perform manifold learning on
this combined dataset before splitting them again in the low-
dimensional space, or to run the manifold learning algorithm
on the training set and then apply what has been learnt from
this manifold learning process to map the test set into the
low-dimensional space. The advantage of the latter approach
is that it not only potentially less computationally expensive
but it also means that new samples can be continually added
to the low-dimensional embedding without the need to re-
compute the low-dimensional manifold every time. This ap-
proach is commonly referred to as the out-of-sample ex-
tension. It is worth noting that the out-of-sample extension
problem can appear similar in many ways to the problem of
incremental learning (Law and Jain 2006), where the low-
dimensional manifold is incrementally learnt over a number
of iterations of new samples being inserted. This is different
from the out-of-sample problem where a new sample simply
needs to be mapped into the low-dimensional space with-
out affecting the low-dimensional manifold and requiring a
re-learning or change in the manifold parameterization for
future learning.

Many existing manifold learning techniques do not nat-
urally contain an out-of-sample extension so research has
been undertaken to find ways of extending manifold learn-
ing techniques to handle new samples. Bengio et al. (Bengio
et al. 2003) presented ways of extending some well known
manifold learning techniques: ISOMAP (Tenenbaum, de
Silva, and Langford 2000), Locally Linear Embeddings
(Roweis and Saul 2000), Laplacian Eigenmaps (Belkin and
Niyogi 2003) and Multidimensional Scaling (Cox and Cox
2001), to handle the out-of-sample extension problem. The
framework developed by Bengio et alṙelies on phrasing the
out-of-sample problem as a kernel problem where a con-
tinuous kernel function is defined in order to generalize
the existing embeddings to a new data point. Other ap-
proaches have been presented that attempt to extend specific
manifold learning algorithms to handle new samples (e.g.
Maximum Variance Unfolding (Weinberger and Saul 2006;
Chin and Suter 2008), LTSA & LLE (Zhang and Zha 2005;
Saul and Roweis 2003)) but at present there is little work on
creating a generalized solution to the out-of-sample prob-
lem. Recently Yang et al. (Yang et al. 2010) proposed a



Figure 1: The new sample is attached to its nearest neigh-
borhood in the high-dimensional space and then projected
onto the low-dimensional hyperplane defined by the princi-
pal components of that neighborhood.

method for a generalized out-of-sample method based on
their manifold learning technique Local and Global Regres-
sive Mapping. Regularization is used to learn a model to al-
low out-of-sample extrapolation and as such they claim that
their framework can be applied to any manifold learning al-
gorithm to enable an out-of-sample extension.

In this paper we present a generalized out-of-sample ex-
tension (GOoSE) solution. Unlike existing approaches we
do not require information to be retained from the learning
process, such as the pairwise distance matrix or the resultant
eigenvectors, we simply learn the mapping from the original
high-dimensional data and its low-dimensional counterpart.
As such our method is independent of any specific manifold
learning algorithm. The change in local geometry between
the high and low-dimensional spaces provides the informa-
tion needed to compute the transformation of new samples
into the low-dimensional space. This simplicity means that
our approach can be used to extend any manifold learning
technique to handle the out-of-sample extension problem.

The rest of this paper is structured as follows. We begin
by outlining the algorithm behind our generalized solution
before moving on to show how this generalized solution per-
forms on artificial and real world data. In the Results section
we show how using GOoSE can produce comparable results
to the existing out-of-sample techniques described above.
We end by presenting conclusions and possible directions
for future work.

Algorithm
The basic premise of our algorithm is to find the transforma-
tion that maps a new unseen sample’s neighborhood from
the high-dimensional to the low-dimensional spaces. This
transformation is equivalent, as far as possible, to running
the manifold learning technique on the given sample.

Given the original data set X = {xi}ni=1 ∈ Rp and its
low-dimensional representation Y = {yi}ni=1 ∈ Rq , where
q � p, we wish to find the low-dimensional approximation,
ϕ ∈ Rq , of an unkown sample, φ ∈ Rp, given that φ 3 X.
We assume that X is sampled from a hidden manifold M,
that is X ⊆M, and also that at a local scaleM is linear (i.e.
M is a C∞ manifold). Since Y is the result of manifold
learning we can describe Y in terms of a function on X.
That is

Y = f(X) (1)

Unless we are dealing with a linear manifold learning al-
gorithm such as Principal Components Analysis this func-
tion will be difficult to learn at a global scale. Instead we
can think of Y as being built up by individual functions for
each sample. That is for the i-th datapoint yi = fi(xi). The
out-of-sample problem can thus be thought of as finding a
function that best approximates the transformation under-
gone via manifold learning, that is for an unlearnt sample
min(||ϕ−ϕ′||) where ϕ is the actual embedding of the sam-
ple and ϕ′ is its estimated embedding. This problem is evi-
dently cyclical as we need the actual embedding to be able
to find the function to minimize but we need to minimize the
function to find the actual embedding.

To solve this problem it is helpful to take a step back
and consider the situation where we know the actual low-
dimensional representation, y, of a sample x. To re-create
the embedding of x we can examine the local geometric
structure around x in the high and low-dimensional spaces.
If we assume that the result of running a manifold learning
algorithm is a local change in the neighboring geometry of a
sample then we can reformulate the problem as that of find-
ing a simple linear transformation

y = AVx (2)

where A is a similarity transformation matrix and V is a
matrix that projects x into the low-dimensional space. We
now seek to find A and V that best approximates the local
transformation. Given that we know the target dimensional-
ity, q, and we take the manifold to be locally linear we can
find the projection matrix V by performing Principal Com-
ponents Analysis on a local neighborhood of the k-nearest
samples according to Euclidean distance around x. We de-
note the samples in this neighborhood as XNi and so the
principal components are found by

ΛV = CV (3)

where C is the covariance matrix of XNi
and V is a matrix

containing as columns the top q-dimensional eigenvectors
sorted according to their associated eigenvalues, Λ. We can
now find the low-dimensional representation of x by project-
ing onto the eigenvectors, y = Vx (Figure 1).

Figure 2: Since we assume that the transformation under-
gone as a result of manifold learning can be approximated
as a local linear transform we aim to find that transform. By
applying that transform to the new sample we can find its
approximate low-dimensional image.



To find the similarity transformation matrix we need
to examine the change in local geometry. We first need
to project the local neighborhood XNi into the lower-
dimensional space by projecting onto the eigenvectors V
(3). We represent this low dimensional projected neighbor-
hood as Y′ and the same neighborhood of points in the low-
dimensional embedding as Y. For convenience we drop the
subscripted Ni so when referring to Y we actually mean
YNi and similary Y′ is Y′Ni .

We know that

Y ≈ AY′ (4)

and that the transformation matrix A can be represented in
terms of a seperate scale and rotation component

Y ≈ BRY′ (5)

where B is a non-isomporphic scale matrix and R is the
rotation matrix. The task now becomes to find the scale and
rotation that transforms Y′ to Y (Figure 2).

To find the solution to this problem we use a method from
statistical shape theory and find the singular value decompo-
sition (SVD) of the matrix Y′TY.

To find the rotation matrix R and the scale value b we
first find the singular value decomposition

Y′TY = UΣVT (6)

the rotation matrix can then be found by

R = UVT (7)

Once the rotation has been applied we find the scale ma-
trix by

B =




max(Y1)−min(Y1)
max(Y′1)−min(Y′1) . . . . . .

...
. . .

...
. . . . . . max(Yq)−min(Yq)

max(Y′q)−min(Y′q)




(8)
where Y1 indicates the column vector containing all sam-
ples along the first dimension of Y and Yq indicates the
column vector containing all samples along the qth dimen-
sion.

Now we return to the original problem of finding the
low-dimensional representation, ϕ, of an unlearnt sample
φ. As we have shown above, an approximation of the low-
dimensional embedding of a neighborhood in the high-
dimensional space can be found. So a simple solution to
finding the low-dimensional representation of an unlearnt
sample is to find the rotation and scale transformations of the
sample’s nearest neighbors and then applying these trans-
forms to the unlearnt samples. This can be done by find-
ing the k-nearest neighbors of φ in X, XNφ . We then find
the projection matrix of XNφ according to (3) and the ro-
tation and scale values according to (7) and (8). The low-
dimensional representation, ϕ, of φ then becomes

ϕ = BRVNφφ (9)

This process is described in algorithmic form in Algo-
rithm 1.

Algorithm 1 Generalized Out-of-Sample Extension
Require: x ∈ RD,X ∈ RD,Y ∈ Rd, k � |X|

1: idx← nn(x,X,Y, k)
2: ΛV = CXV
3: Z′ = XidxV1...d

4: (UΣV)← svd(Z′Yidx)
5: B← eye(d, d)

6: diag(B) = [
range(Y1

idx)

range(Z1
idx)

. . .
range(Yd

idx)

range(Zdidx)
]

7: T← UVT

8: y ← xV1...d

9: y ← ByT
10: return y

Discussion & Results
In this section we provide both visual and quanititative eval-
uation of our method. We begin by defining an embedding
error which can be used to analyse the performance of an
out-of-sample extension algorithm.We then move on to dis-
cuss how GOoSE’s only parameter, k, affects the accuracy
of the estimated low-dimensional embedding before finally
displaying results using both artificial data as well as real
world image data.

Embedding Error
To be able to analyse the performance of out-of-sample ex-
tensions we need to first define an embedding error. Given
a dataset D we create a training set, B, and test set, C,
such that B ∪ C = D, B ∩ C = ∅ and |B| = |D| −
|C|. As in (Yang et al. 2010) we can obtain the low-
dimensional embedding, Y, by running a manifold learning
algorithm on the entire dataset D. We can then express Y as
Y = [Ytrain,Ytest]T where Ytrain and Ytest are the low-
dimensional embeddings of the training and test data. Once
Y is know we can use B to obtain the training set of the
manifold and then use an out-of-sample extension method
to estimate the low-dimensional embedding of C. We de-
note the estimated low-dimensional embedding of the test
data Y′test, we can now define an embedding error based on
the root mean square error between the actual and estimated
test sets

e =

√∑
(Ytest −Y′test)

2

n
(10)

where n is the number of elements in the test set and both
Ytest and Y′test are transformed according to the rotational
difference between Ytrain and B to remove the effect of
the manifold learning algorithms mapping the datasets into
different low-dimensional spaces1. This error measure now

1This is something that is not considered by Yang et al. in (Yang
et al. 2010) but without this step the results obtained are meaning-
less as the two low-dimensional embeddings are in different co-
ordinate spaces
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Figure 3: The effect of the neighborhood size parameter
k on the embedding error of a dataset with a known low-
dimensional manifold.

provides us with a basis of analysing the performance of an
out-of-sample extension method, with a low value of e sig-
nifying that the estimated test embedding is closer to the ac-
tual test embedding than that of a test embedding with a high
value of e.

Parameter Selection

Our algorithm has only one free parameter, the neighbor-
hood size k. To test how this parameter affects the perfor-
mance we ran a set of experiments on a known manifold with
a known low-dimensional embedding. We used the Swiss
Roll manifold with 2000 samples and the low-dimensional
embedding learnt by LTSA (we could have used any mani-
fold learning algorithm but LTSA produces the most faith-
ful result as shown in Figure 4). The data was randomly
split into training and test sets with each set having a size
of 1000. For each permutation of training and test we used
the GOoSE algorithm to try and embed the test set into the
low-dimensional space with varying parameters of k within
the range [3, 19]. The RMSE of the test data for each value
of k was recorded and averaged over a series of 10 runs.

Figure 3 shows the results of this test. The graph is shown
with associated error bars indicating the standard deviation
of the results per value of k. The results show that a min-
ima is reached around k = 7± 2, after this point the RMSE
increases along with the standard deviation meaning that re-
sults obtained with a larger value of k are more unstable.
Although this optimum value of k will change depending on
what dataset is used, experiments do show that a local min-
ima will always exist. Since the GOoSE algorithm is fast to
run it is easy to find an optimum value of k by performing a
simple parameter search.

Results
To test our algorithm we use 3 main datasets: a 3-
dimensional Swiss Roll, a moving image dataset and the
ISOMAP faces data. Each of these datasets presents a dif-
ferent challenge for a manifold learning algorithm and sub-
sequently an out-of-sample extension algorithm.

Swiss Roll The Swiss Roll dataset consists of a 2-
dimensional manifold embedded within R3. This 2-
dimensional manifold is a highly-curved plane that is rolled
up to resemble a Swiss Roll (Figure 4). A manifold learning
algorithm should be able to ’unwrap’ this Swiss Roll and
embed it into R2. We used 2000 points sampled from the
Swiss Roll and this was randomly split into 1000 samples
for training and 1000 samples for test. We used four dif-
ferent manifold learning algorithms (LLE (Roweis and Saul
2000), LTSA (Zhang and Zha 2005), Eigenmaps (Belkin
and Niyogi 2003) and LGRM (Yang et al. 2010)) to learn
the low-dimensional training embedding before applying
GOoSE to estimate the test set’s low-dimensional embed-
ding. These algorithms were chosen due to the fact that they
all either inherently contain, or have been extended to cope
with, the out-of-sample extension problem. For LLE, LTSA
and Eigenmaps the neighborhood size parameter was set to
8 and for LGRM we used the parameters shown in (Yang et
al. 2010). The results of running our algorithm on the Swiss
Roll dataset using the GOoSE k parameter of k = 7 are
shown in Figure 4. The top row shows the 1000 training
samples and the bottom row shows the results of running
GOoSE on the test samples. In all cases GOoSE is able to
embed the novel samples within the trained manifold to ob-
tain a meaningful embedding of the test set. It is worth not-
ing that the failure of Laplacian Eigenmaps, and to some ex-
tent LLE, to produce meaningful low-dimensional embed-
dings is due to the fact that the problem is under-sampled.
As such these techniques are unable to build an adequate
model of the manifold from the training set leading to an
incorrect low-dimensional embedding. However, this does
enable us to show that even in the case of a distorted em-
bedding GOoSE is able to embed novel samples according
to the shape of the trained embedding.

To obtain quantative analysis of our algorithm and to com-
pare it against existing approaches we measured the embed-
ding error of our algorithm using a 10 fold cross validation
approach. The data was randomly split into 10 folds with 9
being used for training and 1 for test. This was repeated un-
til all folds had been used as a test set. A manifold learning
algorithm was then used to obtain the full low-dimensional
embedding as well as the training set’s low-dimensional em-
bedding. For each run the RMSE was recorded when using
GOoSE and also when using the given manifold learning
algorithm’s out-of-sample extension. For LLE and LTSA
we used the out-of-sample approach outlined in (Saul and
Roweis 2003); for Eigenmaps we used the approach out-
lined in (Bengio et al. 2003) and we used LGRM’s built in
approach (Yang et al. 2010). Thus for each run of the exper-
iment using a given manifold learning algorithm we obtain
two different error scores: the error obtained from using the
out-of-sample extension associated with the given algorithm
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Figure 4: Results of running the GOoSE algorithm on the Swiss Roll data with 1000 samples used from training and 1000
samples used for test. GOoSE’s k parameter was set to k = 7. The neighborhood size parameter for LLE, LTSA and Eigenmaps
was set to 8 while the parameters for LGRM were set according to (Yang et al. 2010).

(the default method) and the error obtained from running
GOoSE as the out-of-sample method. For each test GOoSE
was run multiple times with differing values of k and the
minimum RMSE was taken. The averaged results are shown
in the graph in Figure 5. When compared with existing out-
of-sample approaches our algorithm is able to consistently
out perform current methods. The average RMSE across all
methods for GOoSE is e = 0.0002 when compared with
e = 0.0043 for using the algorithms’ built in out-of-sample
methods. There is also large variation in the performance of
existing out-of-sample methods, σ = 0.0044, with LLE per-
forming the worst (e = 0.010) and LGRM performing the
best (e = 0.0008). The variation between different mani-
fold learning algorithms when using GOoSE is considerably
lower, σ = 0.0001. This shows the stability of GOoSE and
its effectiveness regardless of what manifold learning algo-
rithm is used to learn the low-dimensional embedding.
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Figure 5: Average embedding quality for each of the out-
of-sample extension algorithms on the Swiss Roll and
ISOMAP faces datasets. Due to the large range in results the
plot is shown with the Y axis scaled as log( 1

RMSE ), mean-
ing a larger value indicates a better quality embedding.

Moving Image To test our algorithm on image data we
use two different datasets the first of which consits of an
image moving across a black background. The dataset con-
tains 4096 images of size 96 × 96 pixels and so the high-
dimensional data lies in R9216. The training data consists
of 2048 randomly selected samples and the remaining sam-
ples are used as test. Local Tangent Space Alignment (Zhang
and Zha 2005) with parameter k = 8 was used to learn
the low-dimensional embedding of the training set as it was
able to find a meaningful low-dimensional embedding of the
data. Figure 6 shows the resulting 2-dimensional embedding
with the training data indicated by blue dots ( ) and the test
data indicated by a red plus-signs ( ). As can be seen the
test samples fit nicely into the ‘gaps’ of the training data
as would be expected. The data consists of dense regions
of samples around the corners and a sparser region of sam-
ples in the center (this is due to the manifold being curved
at the edges and so is not truely 2-dimensional). Even with
the more sparsely sampled central region GOoSE manages
to place the unlearnt samples into the correct regions.

ISOMAP Faces The second image dataset used is the
ISOMAP faces dataset (Tenenbaum, de Silva, and Langford
2000) consisting of a set of 698 faces in R4096 under differ-
ent pose and illumination conditions. This dataset is interest-
ing as it has intrinsic dimensionality of 4 (Kégl 2002) mean-
ing the quality of results are not visually assessable. There-
fore our algorithm’s performance on this dataset along with
the performance of other out-of-sample methods is shown
in Figure 5. The neighborhood size parameters for LLE,
LTSA and Eigenmaps were set to 8 while the parameters
for LGRM were set according to (Yang et al. 2010). GOoSE
was run multiple times with differing values of k and the
minimum RMSE was taken. As with the Swiss Roll dataset
we used a 10 fold cross validation approach and averaged
the results (the full details are described in the Swiss Roll
section above). Again GOoSE is able to outperform exist-
ing out-of-sample techniques. The average embedding error
for GOoSE on the ISOMAP faces data is e = 0.0048 with



Figure 6: Result of running the GOoSE algorithm on high-
dimensional image data. The data consists of 4096 images
of size 92×92 split randomly using half as training and half
as test. The blue dots represent the training samples and the
red plus-signs represent the samples learnt using GOoSE.

standard deviation of σ = 0.0026. For the existing out-of-
sample methods the average error is e = 0.0144 with stan-
dard deviation of σ = 0.0052. Although the standard devia-
tion of the results from the GOoSE algorithm on this dataset
is higher it is still able to consistently out perform existing
out-of-sample methods.

Conclusions & Future Work
We have presented a novel and simple technique to solve
the generalized out-of-sample extension problem in mani-
fold learning. Our algorithm, GOoSE, applies the local geo-
metric change between neighborhoods in the high and low-
dimensional space to any unlearnt sample to obtain its low-
dimensional embedding. The method works by learning the
transformation that maps the neighborhood of the unlearnt
sample from the high to the low-dimensional space. This
transformation is then applied to the new sample to obtain
an estimation of its low-dimensional embedding.

The results show that this method is able to succesfully
embed new datapoints into non-linear manifolds. We have
shown that the GOoSE algorithm is able to embed new sam-
ples into previously learnt manifolds regardless of the mani-
fold learning technique used. GOoSE also significantly out-
performs existing out-of-sample techniques when tested on
artificial and real world data. This make GOoSE a powerful
and versatile tool for statistical learning as it is indepenent
of the manifold learning technique used and only requires
access to the original data and the learnt low-dimensional
embedding.

We are currently working on a version of the GOoSE al-
gorithm that reverses the out of sample process, that is it
aims to solve the pre-image problem (given a sample in the
low-dimensional space we wish to find its high-dimensional
image). Using similar methodology outlined in this paper we
aim to produce a pre-image algorithm that can be combined
with the GOoSE algorithm to form a framework for easily
mapping between the high and low-dimensional spaces.
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Kégl, B. 2002. Intrinsic dimension estimation using packing num-
bers. In Advances in Neural Information Processing Systems 15,
NIPS 2002.
Law, M. H., and Jain, A. K. 2006. Incremental nonlinear dimen-
sionality reduction by manifold learning. IEEE Transactions on
Pattern Analysis and Machine Intelligence 28:377–391.
Patwari, N.; III, A. O. H.; and Pacholski, A. 2005. Manifold learn-
ing visualization of network traffic data. In Proceedings of the 2005
ACM SIGCOMM workshop on Mining network data, MineNet ’05,
191–196.
Roweis, S. T., and Saul, L. K. 2000. Nonlinear dimensionality
reduction by locally linear embedding. SCIENCE 290:2323–2326.
Saul, L. K., and Roweis, S. T. 2003. Think globally, fit locally: un-
supervised learning of low dimensional manifolds. J. Mach. Learn.
Res. 4:119–155.
Strange, H., and Zwiggelaar, R. 2009. Classification performance
related to intrinsic dimensionality in mammographic image analy-
sis. In Proceedings of the Thirteenth Annual Conference on Medi-
cal Image Understanding and Analysis, 219–223.
Tenenbaum, J. B.; de Silva, V.; and Langford, J. C. 2000. A global
geometric framework for nonlinear dimensionality reduction. SCI-
ENCE 290:2319–2323.
Verbeek, J. 2006. Learning nonlinear image manifolds by global
alignment of local linear models. IEEE Transactions on Pattern
Analysis and Machine Intelligence 28(8):1236–1250.
Weinberger, K. Q., and Saul, L. K. 2006. An introduction to non-
linear dimensionality reduction by maximum variance unfolding.
In proceedings of the 21st national conference on Artificial intelli-
gence - Volume 2, 1683–1686.
Yang, Y.; Nie, F.; Xiang, S.; Zhuang, Y.; and Wang, W. 2010. Local
and global regressive mapping for manifold learning with out-of-
sample extrapolation. In Twenty-Fifth American Association for
Artificial Intelligence Conference 2010, (AAAI-2010).
Zhang, Z., and Zha, H. 2005. Principal manifolds and nonlinear
dimensionality reduction via tangent space alignment. SIAM J. Sci.
Comput. 26:313–338.



Bibliography

W. N. Anderson and T. D. Morley. Eigenvalues of the Laplacian of a graph.

Linear and Multilinear Algebra, 18:141–145, 1985.

M. Aupetite. Learning Topology with the Generative Gaussian Graph and the

EM algorithm. In Advances in Neural Information Processing Systems 18:

Proceedings of the 2006 Conference (NIPS), pages 83–90, 2006.

G. Bakir, J. Weston, and B. Schölkopf. Learning to Find Pre-Images. In Ad-

vances in Neural Information Processing Systems 16: Proceedings of the 2004

Conference (NIPS), 2004.

M. Balasubramanian and E. L. Schwartz. The Isomap algorithm and topological

stability. Science, 295:7a (Techincal Comments), 2002.

M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for

embedding and clustering. In Advances in Neural Information Processing

Systems 14: Proceedings of the 2002 Conference (NIPS), pages 585–591. MIT

Press, 2002.

R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University

Press, 1961.

Y. Bengio, O. Delalleau, N. L. Roux, J. F. Paiement, P. Vincent, and M. Ouimet.

Learning eigenfunctions links spectral embedding and Kernel PCA. Neural

Computing, 16(10):2197–2219, 2004.

Y. Bengio, J.-F. Paiement, P. Vincent, O. Delalleau, N. L. Roux, and

M. Ouimet. Out-of-sample extensions for LLE, Isomap, MDS, Eigenmaps,

and Spectral Clustering. In Advances in Neural Information Processing Sys-

tems 15: Proceedings of the 2003 Conference (NIPS), pages 177–184, 2003.



BIBLIOGRAPHY

K. P. Bennett, P. S. Bradley, and A. Demiriz. Constrained k-means clustering.

Technical Report MSR-TR-2000-65, Microsoft Research, May 2000.

M. Bernstein, V. de Silva, J. C. Langford, and J. B. Tenenbaum. Graph approx-

imations to geodesics on embedded manifolds. Technical report, Department

of Psychology, Stanford University, 2000.

C. M. Bishop, M. Svensen, and C. K. I. Williams. Gtm: The generative topo-

graphic mapping. Neural Computation, 10:215–234, 1998.

T. S. Blyth and E. F. Robertson. Basic Linear Algebra. Springer, 2 edition,

2007.

C. A. Bouman. Cluster: An unsupervised algorithm for modeling Gaussian mix-

tures. Available from http://www.ece.purdue.edu/˜bouman (Link Checked:

26/07/2011), April 1997.

M. Brand. Charting a manifold. In Advances in Neural Information Processing

Systems 15: Proceedings of the 2003 Conference (NIPS), pages 961–968. MIT

Press, 2003.

M. Brand. From subspace to submanifold methods. In Proceedings of the 15th

British Machine Vision Conference, 2004.

A. Brun, C. F. Westin, M. Herberthson, and H. Knutsson. LOGMAP: prelimi-

nary results using a new method for manifold learning. In Proceedings of the

SSBA Symposium on Image Analysis, 2005.

C. J. C. Burges. Geometric methods for feature extraction and dimensional

reduction: A guided tour. Technical Report MSR-TR-2004-55, Microsoft

Research, 2004.

240



BIBLIOGRAPHY

F. Camastra and A. Vinciarelli. Estimating the intrinsic dimension of data

with a fractal-based approach. IEEE Transactions of Pattern Analysis and

Machine Intelligence, 24(10):1404–1407, 2002.

M. P. d. Carmo. Riemannian Geometry. Birkhauser, 1992.

M. A. Carreira-Perpinán. Proximity graphs for clustering and manifold learning.

In Advances in Neural Information Processing Systems 17: Proceedings of the

2005 Conference (NIPS), pages 225–232. MIT Press, 2005.

T.-J. Chin and D. Suter. Out-of-sample extrapolation of learned manifolds.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(9):

1547–1556, September 2008.

K. W. Chon, Y. Han, and W. Tak. Concurrent threads and optimal parallel min-

imum spanning trees algorithms. Journal of the Association for Computing

Machinery, 48(2):297–323, 2001.

D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic pro-

gressions. Journal of Symbolic Computation, 9(3):251–280, 1990.

J. A. Costa and A. O. Hero. Geodesic entropic graphs for dimension and entropy

estimation in manifold learning. IEEE Transactions on Signal Processing, 52

(8):2210–2221, 2004.

T. F. Cox and M. A. A. Cox. Multidimensional Scaling. Chapman and Hall,

2001.

K. I. Diamantaras and S. Y. Kung. Principal component neural networks: the-

ory and Principal Component Neural Networks: Theory and Applications.

Adaptive and Learning Systems for Signal Processing, Communications and

Control. Wiley-Interscience, 1996.

241



BIBLIOGRAPHY

E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1:269–271, 1959.

D. L. Donoho and C. Grimes. Hessian eigenmaps: Locally linear embedding

techniques for high-dimensional data. In Proceedings of the National Academy

of Science of the United States of America, volume 100, 2003.

M. Fan, H. Qiao, and B. Zhang. Intrinsic dimension estimation of manifolds by

incising balls. Pattern Recognition, 42:780–787, 2009.

I. K. Fodor. A survery of dimension reduction techniques. Technical Report

UCRL-ID-148, US Department of Energy, 2002.

K. Fukunaga and D. R. Olsen. An algorithm for finding the intrinsic dimen-

sionality of data. IEEE Transactions on Computers, C-20(2):176–193, 1971.

Z. Gao and J. Liang. The dynamical neighborhood selection based on the sam-

pling density and manifold curvature for isometric data embedding. Pattern

Recognition Letters, 32:202–209, 2011.

V. Garcia, E. Debreuve, and M. Barlaud. Fast k nearest neighbor search using

GPU. Computer Vision and Pattern Recognition Workshop, pages 1–6, 2008.

M. Gashler, D. Ventura, and T. Martinez. Iterative non-linear dimensionality re-

duction by manifold sculpting. In Advances in Neural Information Processing

Systems 20: Proceedings of the 2008 Conference (NIPS), 2008.

X. Geng, D.-C. Zhan, and Z.-H. Zhou. Supervised nonlinear dimensionality

reduction for visualization and classification. IEEE Transactions on Systems,

Man and Cybernetics, 35(6):1098–1107, 2005.

S. Gerber, T. Tasdizen, and R. Whitaker. Robust non-linear dimensionality

reduction using successive 1-dimensional Laplacian Eigenmaps. In Proceedings

of the 24th International Conference on Machine Learning, 2007.

242



BIBLIOGRAPHY

Y. Goldberg and Y. Ritov. Local procrustes for manifold embedding: a measure

of embedding quality and embedding algorithms. Machine Learning, 77(1):

1–25, 2009.

Y. Goldberg, A. Zakai, D. Kushnir, and Y. Ritov. Manifold learning: The price

of normalization. Journal of Machine Learning Research, 9(1909-1939), 2008.

J. C. Gower. Generalized Procrustes Analysis. Psychometrika, 40(1):33–51,

1975.

P. Grassberger and I. Procaccia. Measuring the strangeness of strange attrac-

tors. Physica, D9(189):189–208, 1983.

S. I. Grossman. Elementary Linear Algebra. Brooks/Cole, 5th edition, 1994.

O. Grygorash, Y. Zhou, and Z. Jorgensen. Minimum spanning tree based clus-

tering algorithms. In ICTAI ’06 Proceedings of the 18th IEEE Conference on

Tools with Artificial Intelligence, 2006.

I. Guyon and A. Elisseeff. An Introduction to Variable and Feature Selection.

Journal of Machine Learning Research, 3:1157–1182, March 2003.

J. Ham, D. D. Lee, S. Mika, and B. Schölkopf. A kernel view of the dimension-

ality reduction of manifolds. Technical Report TR-110, Max Planck Institut

für biologische Kybernetik, July 2003.

A. J. Hanson. Graphics Gems IV. Academic Press Professional, Inc., San Diego,

CA, USA, 1994.

W. He, E. R. E. Denton, and R. Zwiggelaar. Mammographic image segmentation

and risk classification using a novel texture signature based methodology. In

Digital Mammography / IWDM, pages 526–533, 2010.

243



BIBLIOGRAPHY

X. He, S. Yan, Y. Hu, P.Niyogi, and H. J. Zhang. Face recognition using lapla-

cianfaces. IEEE Transactions of Pattern Analysis and Machine Intelligence,

27(3):328–340, 2005.

X. He and P. Niyogi. Locality Preserving Projections. In Advances in Neu-

ral Information Processing Systems 16: Proceedings of the 2004 Conference,

pages 153–160. MIT Press, 2004.

G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data

with neural networks. Science, 313:504–507, 2006 2006.

G. Hinton and S. Roweis. Stochastic Neighbor Embedding. In Advances in Neu-

ral Information Processing Systems 15: Proceedings of the 2003 Conference

(NIPS), pages 833–840. MIT Press, 2000.

H. Hotelling. Analysis of a complex of statistical variables into principal com-

ponents. Journal of Educational Psychology, 24:417–441, 1933.

R. Huber, H. Ramoser, K. Mayer, H. Penz, and M. Rubik. Classification of coins

using an eigenspace approach. Pattern Recognition Letters, 26(1):61–75, 2005.

P. Jia, J. Yin, X. Huang, and D. Hu. Incremental Laplacian Eigenmaps by

preserving adjacent information between data points. Pattern Recognition

Letters, 30:1457–1463, 2009.

V. John, E. Trucco, and S. McKenna. Markerless human motion capture using

charting and manifold constrained particle swarm optimisation. In B. Tidde-

man and H. Strange, editors, Proceedings of the BMVC 2010 UK postgraduate

workshop, 2010.

G. Jun and J. Ghosh. Nearest-manifold classification with Gaussian processes.

In In Proceedings of the International Conference on Pattern Recognition,

pages 914–917, 2010.

244



BIBLIOGRAPHY

N. Kambhatla and T. K. Leen. Dimension reduction by local Principal Compo-

nents Analysis. Neural Computation, 9(7):1493–1516, 1994.

K. Karhunen. Zur spektraltheorie stochastischer prozesse. Annales Academiæ

Sciientiarum Fennicæ, 34, 1946.

Z. Karina, G. Gilles, and C. Stephane. Estimation of tangent planes for neigh-

borhood graph corrections. In ESANN’2007 Proceedings of the European

Symposium on Artificial Neural Networks, pages 25–27, 2007.
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