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Abstract

Many problems of image understanding can be formulated as semantic segmen-

tation, or the assignment of a ‘class’ label to every pixel in the image. Until

recently, for reasons of efficiency, the problem of generating a good labelling of

an image has been formulated as the minimisation of a pairwise Markov random

field. However, these pairwise fields are unable to capture the higher-order statis-

tics of natural images which can be used to enforce the coherence of regions in

the image or to encourage particular regions to belong to a certain class.

Despite these limitations, the use of pairwise Markov models is prevalent in

vision. This can largely be attributed to the pragmatism of computer vision

researchers; although such models do not fully capture image statistics, they ser-

vice as an effective discriminative model that prevents individual pixels from be-

ing mislabelled. Moreover, unlike many optimisation approaches for higher-order

models, approximation algorithms exist for pairwise models, that are guaranteed

to find a solution whose cost must lie within a fixed bound of the cost of global

optima.

In this thesis, we show that the optimisation of many higher-order models can

also be performed by approximate algorithms which have the same guarantees

and effectiveness as those used for the optimisation of pairwise algorithms. We

first consider the optimisation of the higher-order Associative Hierarchical Net-

works, and by transforming them into pairwise models, propose new approximate

algorithms for efficiently minimising them. This work is the first to prove approx-

imation bounds, independent of the size of cliques, for the widespread P n and

robust P n models. We consider the problem of optimising the set of labels present

in an image and the labelling of the image concurrently, and show how they can

be optimised simultaneously using a variety of techniques. In the final chapter,



we move beyond this, and try to address the question, “Which higher-order func-

tions can be efficiently minimised with graph-cuts?” Although this question is

not yet amenable to an algebraic answer, we propose novel linear programming

based techniques for exploring the space of solutions.
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Contributions of the Thesis

I have been privileged in the people I have been able to work with over the course

of my PhD. In particular, my supervisor Philip Torr has done a great job in filling

his group with PhD students who are able to work well together, and have done

exciting work. Unfortunately, this presents some challenges for me in claiming

the contribution of my thesis, as all of my work has been in collaboration with

others.

As such material in the first two chapters should be seen as motivational

rather than as a theoretical contribution of my thesis. In particular, chapter 2

describes the papers Ladicky et al. (2009) and Ladicky et al. (2010b) – these are

not to be seen as a contribution of my thesis but as motivating the need for the

efficient methods of inference developed in chapter 3.

The work in chapters 3 and 4 was done in close collaboration with Lubor

Ladicky, and it is difficult to say who did exactly what. To the best of my rec-

ollection, Lubor initially proposed a nested P n style graph-cut, but was unsure

what cost function it optimised. In response to this, I proposed the pairwise

formulation of the model, which allowed us to further define unary and pairwise

potentials over super-pixels, and showed how standard α-expansion could be per-

formed on it - leading to the inference bounds reported in this thesis. Of the

co-occurrence potentials, again, Lubor first proposed the graph construct (also

independently discovered by Hoiem et al. (2007) and Delong et al. (2010)) while

I characterised the space of functions i.e. those that are monotonically increasing

that can be solved by them, and proposed alternate methods of inference.

Chapter 5 is unpublished work with Srikumar Ramalingam, and Lubor Ladicky.

The general formulation, up to and including Theorem 1, which allows any higher-

order function that can be solved with graph-cuts to be solved, is entirely my own

work. The remainder of the chapter, which is concerned with the compact rep-
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Chapter 1

Introduction

The purpose of computing is insight, not numbers.

RW Hamming (1971)Introduction to Applied Numerical Analysis

1.1 Semantic Segmentation

Semantic Segmentation refers to the process of automatically providing a dense

annotation in which every pixel within an image is labelled with one of a prede-

termined set of classes. This labelling should match human annotations. Note

that the concept of a person’s annotation is inherently ill defined: for instance the

correct label of a particular pixel in an image could be any one of car, Toyota,

1.5 m from the camera lens, or any combination of the three, depending on

the choice of domain (see figure 1.1 for an example).

Typically, the problem of finding a labelling close to human based labellings

is formulated as the minimisation of a cost function. This function is either

hand-crafted by researchers, or more typically learnt from human annotations of

different data. Such learning methods include probabilistic approaches, which

can be loosely categorised as generative (Besag, 1986), or conditional (Lafferty

et al., 2001) which can be learnt using pseudo-likelihood (Besag, 1975; Sutton and

6



Figure 1.1: Example annotations of a road scene. A Natural images, B, E
human annotations of object class and depth respectively. D,G shows ahn and
crf based labellings of object class and depth. C, F show a joint labelling of
object class and depth via an ahn. See Ladicky et al. (2010d) for more details.
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McCallum, 2007), or as discriminative approaches such as (Taskar et al., 2003;

Alahari et al., 2010). In this thesis, we assume that the problem of formulating

the cost function has already been solved, and we are interested in finding a

minimum cost labelling of this function.

The first half of this chapter discusses prior works on semantic segmentation.

Readers familiar with Markov Random Fields, Conditional Random Fields and

the P n Model, may wish to gloss over it. In section 2 we introduce the Associa-

tive Hierarchical Networks, and show their application to semantic segmentation.

Section 2.3 shows how they can be integrated with detectors for improved accu-

racy.

1.2 Existing Models

We begin by introducing the mathematical models used by standard approaches.

Note that while much of the notation, and early methods used in semantic seg-

mentation were probabilistic, we choose to take a discriminative approach, and

phrase the problem of semantic segmentation as the minimisation of some arbi-

trary cost function.

Assume that every pixel in the image takes a label from a set L = {l1, . . . , lk}.

Let X = X1 ×X2 × . . . ×Xn = Ln be the set of possible variables assignments

representing all semantic labellings of the pixels in the image {1, . . . , n}. We use

x = {x1, . . . , xn} ∈ Ln to refer to a labelling of X. We will use C(x), where

C(·) : X→ R (1.1)

to refer to the cost of a labelling x.

Given a predefined function C and label space X, we define the problem of

8



inference as finding a minimal cost labelling x∗ such that:

C(x∗) = min
x∈X

C(x). (1.2)

1.2.1 Independent model

Two components, or subsets of variables, U,V ⊆ X such that U ∪V = X and

U ∩ V = ∅ are said to be independent with respect to C if there exists two

functions C1(·) : U→ R, C2(·) : V→ R such that:

C(u,v) = C1(u) + C2(v) ∀u ∈ U,v ∈ V (1.3)

We say that a model is independent if for all possible choices of U, V there exists

two appropriate functions C1(·), C2(·) such that condition (1.3) holds. For an

independent model, the cost C(x) can be written in the form:

C(x) =
n∑
i=1

ψi(xi) (1.4)

This implies that the cost associated with the labelling of any variable Xi is

independent of the state of any other Xj. This allows us to use a piecewise

greedy labelling strategy to find the optimal solution.

The nature of ψi

Although independent models exhibit no dependence between the labels of differ-

ent pixels, the labelling of any one pixel must still depend on the appearance of

surrounding pixels if they are to have any hope of correctly classifying pixels (see

figure 1.2 for an illustration of this). In practice pixel-based classifiers, which give

rise to the cost ψi rely upon an aggregate of statistical features taken from the

region surrounding a particular pixel. For example: TextonBoost (Shotton et al.,

9



Figure 1.2: Recognising individual pixels without context. An illustration
of some issues in labelling individual pixels without knowledge of the surrounding
image. (Left) a slide containing cells. (Centre) Pixels extracted from cells and
non-cell (Right) The distribution of grey-scale values of both cells and non-cells,
over two different images. See Russell et al. (2007), and section 1.2.1 for further
details.

2006) performs boosting based on weak features which describe the number of a

particular type of texton lying in a rectangle near the pixel; the example of figure

1.2 can be easily classified using the variance of a small patch about each pixel

(see Russell et al. (2007)); Kumar and Hebert (2006) used a variety of statistical

moments defined over a rectangular block to describe regions. For challenging

problems, the use of a single set of features over a region is not enough. The unary

potentials of Ladicky et al. (2009) relied upon a combination of textons, signed

hog (Dalal and Triggs, 2005), colour hog (Villamizar et al., 2009), location and

local colour to achieve state the art performance on the msrc data set (Shotton

et al., 2006) at the time of writing.
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1.2.2 Conditional Random Fields and Markov Random

Fields

We can generalise the form of an independent model by allowing smoothing terms

between pairs of variables. The cost C(x) now takes the form:

C(x) =
n∑
i=1

ψi(xi) +
∑

(i,j)∈N

ψi,j(xi, xj) + C (1.5)

where N is the neighbourhood structure which describes which ordered pairs of

variables share cost dependencies, and C is a reparameterisation term used to

hide constant terms that do not affect the location of minima. Where possible

the constant term C will be omitted from future equations for clarity.

We will also use the word reparameterisation to refer to a different decompo-

sition of the cost C(·). For example, let Ni = {j| (i, j) ∈ N ∨ (j, i) ∈ N} i.e. the

set of all neighbours of i, then letting:

ψ′i,j(xi, xj) =
1

|Ni|
ψi(xi) + ψi,j(xi, xj) +

1

|Nj|
ψj(xj), (1.6)

we have

C(x) =
n∑
i=1

ψi(xi) +
∑

(i,j)∈N

ψi,j(xi, xj) + C (1.7)

=
∑
i∈V

∑
(i,j)∈Ni

(
1

|Ni|
ψi(xi) + ψi,j(xi, xj) +

1

|Nj|
ψj(xj)

)
+ C (1.8)

=
∑

(i,j)∈N

(
1

|Ni|
ψi(xi) + ψi,j(xi, xj) +

1

|Nj|
ψj(xj)

)
+ C (1.9)

=
∑

(i,j)∈N

ψ′i,j(xi, xj) + C (1.10)

and (1.10) is a reparameterisation of (1.5).

We refer to sub-costs of the form ψi(xi) as unary potentials and those of the
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form ψi,j(xi, xj) as pairwise potentials.

If the pairwise potentials ψi,j(xi, xj) are defined without inspection of the im-

age, the model may be referred to as a Markov Random Field (mrf). If ψi,j(xi, xj)

changes with the appearance of pixels it is referred to as a Conditional Random

Field (crf) (Lafferty et al., 2001). From a discriminative perspective, and as a

problem of optimisation, there is no difference between mrfs and crfs, except

that expressibility of crfs strictly dominates that of mrfs and typically offer bet-

ter performance. The probabilistic perspective on the difference between mrfs

and crfs is more involved and we refer the interested reader to (Lafferty et al.,

2001). These pairwise potential encode a smoothness prior which encourages

neighbouring pixels in the image to take the same label, resulting in a shrinkage

bias (Kohli et al., 2008).

The pairwise crf formulation suffers from a number of problems stemming

from its inability to express high-level dependencies between pixels 1. Despite

these limitations, pairwise models are widely used and highly effective.

The presence of pairwise inter-dependencies make the problem of finding a

minimal cost solution NP-hard in the general case (Dahlhaus et al., 1994), how-

ever several notable exceptions exist.

Binary submodular costs If the label space is binary, i.e. L = {0, 1}, and all

pairwise potentials ψi,j satisfy the inequality

ψi,j(0, 1) + ψi,j(1, 0) ≥ ψi,j(0, 0) + ψi,j(1, 1), (1.11)

then the cost function C(x) is said to be pairwise submodular.

Uniquely, out of all pairwise definitions in this chapter, the property of sub-

1For example, such dependencies may express the belief that a set of pixels should belong
to the same class (Kohli et al., 2009), or to one particular class (Ladicky et al., 2009), or to a
particular ordered range of classes (Woodford et al., 2008).
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modularity is invariant to reparameterisation. If we have two parameterisations

of the function C(·)

C(x) =
n∑
i=1

ψi(xi) +
∑

(i,j)∈N

ψi,j(xi, xj) + C =
n∑
i=1

ψ′i(xi) +
∑

(i,j)∈N

ψ′i,j(xi, xj) + C ′.

(1.12)

Then all ψi,j are submodular if and only if all ψ′i,j are.

A global minimum of any pairwise submodular energy can be efficiently found

using a graph-cuts algorithm (see section 1.3.1).

Convex costs Convex costs (Ishikawa, 2003; Schlesinger, 2007) can be seen as

a generalisation of pairwise submodular costs to a larger label space. We say

that a function f is convex over a domain [0, k − 1] if it satisfies the following

constraint:

f(ty2 + (1− t)y2) ≤ t f(y2) + (1− t) f(y2)

∀y1, y2 ∈ [0, k − 1], t ∈ [0, 1].
(1.13)

Given an ordered set of labels L = {0, . . . , k − 1} we say that the set of pairwise

potentials ψi,j(xi, xj) is convex if and only if ∀i, j there exists some convex function

f such that ψi,j(xi, xj) = f(|xi − xj|) 2. As with pairwise submodular costs, a

minimal labelling can be efficiently found using graph-cuts. In the degenerate

case in which L = {0, 1} a cost can be reparameterised to take a convex form if

and only if it is submodular.

Metrics A pairwise energy defined over a label space L is said to be met-

ric (Boykov et al., 2001) if it satisfies the following three properties:

2Note that this definition of convexity differs from that used when talking about higher
order functions as in section 1.2.3, or figure 1.3. These higher order costs are defined as convex
functions over the total number of variables taking a particular label in a region or clique, and
are not dependent on choice of ordering.
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1. Positive definiteness

ψi,j(a, b) = 0 ⇐⇒ a = b ∀a, b ∈ L. (1.14)

ψi,j(a, b) ≥ 0 ∀a, b ∈ L. (1.15)

2. Symmetry

ψi,j(a, b) = ψj,i(a, b) ∀a, b ∈ L. (1.16)

3. Triangle inequality

ψi,j(a, c) ≤ ψi,j(a, b) + ψi,j(b, c) ∀a, b, c ∈ L. (1.17)

The most prevalent metric in semantic segmentation is the generalised Potts po-

tential which takes the form:

ψi,j(xi, xj) =


0 if xi = xj

wi,j otherwise.

(1.18)

This cost is a statement that although we prefer pairs of neighbouring variables to

take the same class, we are indifferent as to how this preference may be violated.

Finding the global minimum of an arbitrary metric is a significantly harder

problem then minimising a convex energy. It has been shown that minimisation

of a generalised Potts model containing at least 3 labels is NP hard (Dahlhaus

et al., 1994). Nonetheless, approximate inference is possible. In particular, if

the terms ψi(xi) and C are always non-negative, the graph cut based algorithm

α-expansion (see section 3.4.1) is guaranteed to find a solution who’s cost lies

within a factor of 2 of the globally minimum cost. We will refer to such factors as

bounds later within the text. For any arbitrary metric, α-expansion is guaranteed

14



to find a solution whose cost lies within a bound of 2
maxxi 6=xj ψi,j(xi,xj)

minxi 6=xj ψi,j(xi,xj)
of the cost

of the global solution.

Semi-Metrics Semi-metrics (Boykov et al., 2001) or pairwise associative ener-

gies (Taskar et al., 2004) are a generalisation of metrics that remove the require-

ment that the triangle inequality holds (1.17). While specialist algorithms such as

αβ swap (Boykov et al., 2001) exist that are designed to optimise these energies,

bounds and better results can be obtained by locally approximating them as a

metric, and using standard metric (Boykov et al., 2001) or tree metric (Kumar

and Koller, 2009) optimisation techniques to approximate them.

Truncated convex potentials Truncated convex potentials (Kumar and Torr,

2008b; Veksler, 2007) are an important class of semi-metrics, defined over an

ordered set of labels. They take the form:

ψi,j(xi, xj) = wi,j min(f(|xi − xj|), k) (1.19)

where f is a convex function.

Such potentials can be understood as lying halfway between convex energies

(1.13) and the generalised Potts model (1.18). This insight allows the formulation

of efficient optimisation algorithms that outperform general metric solving tech-

niques, such as α-expansion, by hybridising the techniques used to solve convex

costs with α-expansion. These techniques will become important in chapter 3,

where we argue that the higher order potentials of section 1.2.33, can be under-

stood as truncated convex potentials defined over an unordered range.

3See also figure 1.3 for an illustration of these costs, and chapter 2 for a generalisation of
them.
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1.2.3 Associative Higher Order Potentials and the Pn Model

Unary and pairwise costs can be generalised to potentials defined over a set of

variables (henceforth a clique) of arbitrary size. Given a subset of variables c ⊆ X

we write xc to refer to the state of the variables in c. We use the notation

ψc(xc) (1.20)

to refer to the cost of the potential defined over clique c. Potentials defined over

a clique of size greater than 2 will be referred to as higher order potentials. We

write the global cost function as

C(x) =
n∑
i=1

ψi(xi) +
∑

(i,j)∈N

ψi,j(xi, xj) +
∑
c∈C
|c|>2

ψc(xc) + C, (1.21)

where C is the set of all cliques, or equivalently as

C(x) =
∑
c∈C

ψc(xc), (1.22)

when the distinction between constant, unary, pairwise, and higher order terms

is irrelevant.

Associative Higher order Potentials

In Taskar (2004), the author defined a higher order associative potential over a

clique c as:

ψc(xc) =
∑
l∈L

−kc,l
∏
i∈c

∆(xi = l) (1.23)
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where kc,l ≥ 0, and ∆ is the Dirac function i.e.

∆(·) =


1 if · is true

0 otherwise.

(1.24)

We can explicitly write these potentials as:

ψc(xc) =


−kc,l if xi = l, ∀i ∈ c

0 otherwise.

(1.25)

Independently, Kohli et al. (2007) defined a P n potential as:

ψ′c(xc) =


γc,l if ∀i ∈ c : xi = l

γc,max otherwise

(1.26)

where γc,max > γc,l > 0 ∀l. (1.27)

Note that, for all choices of kc,l there exists a corresponding set of γc,l and γc,max

such that:

ψc(xc) = ψ′c(xc)− γc,max, (1.28)

and visa versa. Consequently, the two models are equivalent under reparameter-

isation.

The Robust Pn Model

These models have been generalised to the robust P n model (Kohli et al., 2009)

which takes the form:

ψc(xc) = min

(
γc,max,min

l∈L

(
γc,l +

∑
i∈c

kc,i∆(xi 6= l)
))

, (1.29)
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Figure 1.3: The above figure shows standard graphical representations of the
three higher-order potentials discussed in the text. While the P n model, and
Taskar’s Associative higher order potential may appear to be non-convex (see
equation (1.13)) with respect to

∑
i∈c ∆(xi 6= l), this is an artifact of the discrete

state space, and the potentials can be redrawn as convex in a similar manner to
the Robust P n model.

where the γ terms follow the constraints of (1.27) and kc,i ≥ 0 ∀c, i. In the

degenerate case in which we set the terms kc,i = γc,max it can readily be seen that

the Robust P n model becomes equivalent to the P n model and consequently the

family of Robust P n potentials strictly contains all P n potentials and Taskar’s

associative higher order potentials.

These robust potentials can be understood as a truncated majority voting

scheme on the base layer. Where possible, they encourage the entirety of the

clique to assume a homogeneous labelling. However, beyond a certain threshold

of disagreement they implicitly recognise that no consistent labelling is likely to

occur, and no further penalty is paid for increasing heterogeneity. This family of

potentials have been successfully applied to diverse problems such as object class

recognition (Kohli et al., 2009), document classification (Taskar et al., 2004) and

texture based video segmentation (Kohli et al., 2007), where they obtained state

of the art results.
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1.3 Inference

1.3.1 Graph-Cuts

The family of graph-cut algorithms (an excellent review of them, and their appli-

cation to vision problems is given in Boykov and Kolmogorov (2004)) are highly

efficient solvers which compute the minimum cut required to separate two prede-

fined vertices (these vertices are referred to in the literature as the source and the

sink) on a directed graph containing no negative edge-weights. The majority of

these algorithms find the minimum cut by maximising a dual formulation. These

dual formulations exploit the fact that the cost of a minimum cut between source

and sink is equal to the maximum flow that can be pushed through the graph

from the source to the sink4, and that a minimal cut can be extracted by discard-

ing edges that are saturated in the max-flow solution, i.e., they have had flow

exactly equal to their capacity pushed through them. However, for the purposes

of this thesis, graph-cuts will be treated as a black box algorithm.

As previously described, a global minimum of all pairwise submodular costs

(1.11) can be found using graph cuts, a detailed explanation for this can be

found in Kolmogorov and Zabih (2004). A brief sketch of the proof can be given

as follows.

We wish to minimise a pairwise function C(·) defined over X = {0, 1}n. To

do this we define a graph G = 〈V,E〉, as a set of |X|+ 2 vertices V , and a set of

directed edges E between the vertices. The set V contains one vertex Vi for every

variable Xi ∈ X and two additional vertices, which we refer to as the source S,

and the sink T . We define a cut as a partitioning of the vertices of the graph into

two sets, one of which must containing the source S, and the other contains the

sink T . To create an equivalence between partitioning the vertices, and finding a

4If the maximum amount of flow that can be pushed through the edge is bounded by the
cost of breaking that edge.
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labelling of X, we associate a vertex Vi belonging to the same set as S with the

a labelling xi = 0, while if Vi belongs to the same set as T , it is equivalent to the

labelling xi = 1. We associate a weight, wi,j with every edge e = (i, j) ∈ E, and

define the cost of a cut as

∑
i∈S

∑
j∈T

∆((i, j) ∈ E)wi,j (1.30)

where S and T are the sets containing S and T respectively. Providing all of these

weights wi,j are non-negative, the minimal cut can be found effectively using a

graph-cuts algorithm.

To show that any pairwise submodular function can be solved using graph-

cuts, we assert without proof that a pairwise function C(·) defined over X is

submodular if and only if it can be written in the form:

C(x) =
∑
i∈X

aixi −
∑
i,j∈X

bi,jxixj + C (1.31)

where ai ∈ R ∀i and bi,j ∈ R+
0 ∀i, j.

It follows from equation (1.30) that a directed edge from a vertex Vi to Vj,

and of weight wi,j has a cost of 0, unless Vi is partitioned with the source, and

Vj with the sink, in which case the edge is broken with a cost of wi,j. This is

equivalent to the pseudo-Boolean5 cost w(1 − xi)xj. We can use this to rewrite

the pairwise costs of equation (1.31) as

C(x) =
∑
i∈X

(
ai −

∑
j<i

bj,i

)
xi −

∑
i,j∈X,i<j

bi,j(1− xi)xj + C. (1.32)

Clearly, the pairwise terms under this formulation are of the same form as equa-

tion (1.30), and can be optimised with graph-cuts, the only question remaining

5pseudo-Boolean is a technical term used to refer to any cost function that maps from {0, 1}n
to R.
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Figure 1.4: The graph-cut used to find the minimal solution of x1 + x2 − 2x1x2.
First the energy is transformed into x1 + (1− 2)x2 + 2(1− x1)x2, and from this
form, a graph is derived. By inspection, it should be readily apparent that both
problems share multiple optima, which occur whenever x1 = x2.

is how to deal with arbitrary unary potentials. Again this is straightforward; if

the unary term a′i = ai −
∑

j<i bj,i is non-negative, this can be expressed as a

directed edge from the source to the vertex Xi of cost a′i, while if it is negative, it

can be expressed as a directed edge from vertex Xi to the sink, of cost −a′i, and

replacing the constant term C with C + ai. See figure 1.4 for an example.

1.3.2 Move making algorithms

There are two principle approaches to approximately solving the np-hard labelling

problems that frequently occur in vision. The first is one of relaxation, where

we soften the constraints (such as each pixel must take exactly one label) that

make the problem np-hard and consider a larger space of solutions. The second

approach is one of constriction, rather than trying to find the optimal labelling

from a large set of labels Ln, a constrained and much smaller set of labels is

considered6 and the optimal labelling of this subset is found instead. Move-

making algorithms are an extension of constriction-based methods that solves a

sequence of simple problems to explore a larger area of the label space.

These methods start from an arbitrary initial solution of the problem and

6Typically this subset is of approximate size O(2n).
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x . . . β γ α γ γ . . .

Proposed Moves . . . α α α α α . . .

Move choice t . . . 1 0 0 0 1 . . .

x′ . . . α γ α γ α . . .

Figure 1.5: An illustration of move encoding in α-expansion. Starting from an
initial model x a new move t is proposed which causes two variables to change
their label to α. This results in the new labelling x′.

proceed by solving a constrained problem which leads to a solution of the same

or lower energy (Boykov et al., 2001). At each step, the algorithms formulates

a constricted problem by project a set of candidate moves into a Boolean space,

along with their cost function. If the resulting projected cost function (also called

the move energy) is both submodular and pairwise, it can be exactly minimised

in polynomial time by solving an equivalent st-mincut problem. These optima

can then be mapped back into the original space, returning the optimal move

within the move set. The move algorithms run this procedure until convergence,

iteratively picking the best candidate as different choices of range are cycled

through. The algorithm is said to have converged when no lower energy solution

can be found.

Examples of move making algorithms include α-expansion which can only be

applied to metrics, αβ swap which can be applied to semi-metrics (Boykov et al.,

2001), and range moves (Kumar and Torr, 2008b; Veksler, 2007) for truncated

convex potentials. These moves differ in the size of the space searched for the

optimal move. While expansion and swap search a space of size at most 2n while

minimising a function of n variables, the range moves explores a much larger

space of Kn where K is a parameter of the energy (see Veksler (2007) for more

details).
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Encoding moves

The moves proposed by algorithms that function over a range of 2n, can be can be

encoded as a transformation vector of binary variables t = { ti,∀i ∈ V }. Each

component ti of t encodes a partial decision, about what the state of the variable

xi change to. In the case of αβ-swap ti encodes a decision whether xi should take

the label α or β. While in α-expansion, ti encodes a decision if xi should remain

constant, or transition to a new label α. See figure 1.5 for an illustration of the

use of a transformation vector in α-expansion.

The use of these transformation vectors makes the problem of finding the

optimal move equivalent to minimising a pseudo-Boolean cost function. Con-

sequently, if these cost functions can be shown to be pairwise submodular, the

optimal move can be efficiently found using graph-cut, as described in section

1.3.1. Sections 1.3.3 through to 1.3.6 discuss how swap and expansion can be

performed using graph-cuts on pairwise costs, and some higher-order models.

1.3.3 αβ Swap

The algorithm αβ-swap takes x, a current labelling of X, and returns a new

labelling x′ which is the labelling with the lowest cost that can be reached by

re-labelling some of the xi currently taking label α or β as either β or α respec-

tively. A local optima is then found by iteratively apply this operation through

all possible choices of α, β.

Calculation of the optimal swap move for a semi-metric is pairwise submod-

ular, and so can be efficiently solved using graph-cuts.

Proof We decompose the label space X into those labels currently taking label

α or β — which we write as Xαβ and their complement X̄αβ of variables not
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currently taking labels α or β. Then

C(x) =
n∑
i=1

ψi(xi) +
∑

(i,j)∈N

ψi,j(xi, xj) (1.33)

=
∑

Xi∈Xαβ

ψi(xi) +
∑

(i,j)∈N ,
Xi,Xj∈Xαβ

ψi,j(xi, xj) (1.34)

+
∑

(i,j)∈N ,
Xi∈Xαβ

Xj 6∈Xαβ

ψi,j(xi, xj) +
∑

(i,j)∈N ,
Xi 6∈Xαβ

Xj∈Xαβ

ψi,j(xi, xj) (1.35)

+
∑

Xi 6∈Xαβ

ψi(xi) +
∑

(i,j)∈N ,
Xi,Xj 6∈Xαβ

ψi,j(xi, xj) (1.36)

We associate a variable taking label α after the move with the ith component of

t, ti, taking label 1 and same variable taking β with ti = 0.

Over the range of moves considered (1.36) is constant, (1.35) is equivalent to

a unary potential, and (1.34) is a combination of unary and pairwise energies. As

every pairwise cost is a semi-metric, it is positive definite, and therefore satisfies

(1.11) and is submodular.

1.3.4 α-Expansion

α-expansion is a move-making algorithm similar to αβ-swap, but instead of al-

lowing all labels currently taking label α or β to change their label, it allows

all labels to keep their current label or take label α. We will now show that if

all pairwise costs are a metric, computation of the optimal expansion move is

pairwise submodular. The proof is similar to αβ swap.

Proof This time we associate ti = 0 with remaining in the same state as the

current labelling xi and 1 with switching to label α. Consider two variables

Xi, Xj in a pairwise cost, currently taking labels β and γ respectively. We make
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αβγ αβ

βγ βγ

(i) (ii)

(iv)(iii)

Figure 1.6: (i) A simple 3-label 3 variable pairwise cost, where each label is
currently taken by one variable . (ii) Graph-cut to compute optimal αβ-swap.
(iii) Graph-cut originally proposed in Boykov et al. (2001) to solve α-expansion.
(iv) Efficient variant of the same using the techniques of Kolmogorov and Zabih
(2004). Note that in (ii) the vertex currently taking label γ is removed, as it can
not change under a αβ-swap, while in (iii) and (iv) the variable taking label α is
removed for efficiency reasons, as it can not change label under an α-expansion.

no assumptions of uniqueness, β and γ may be equal or may equal α.

By the triangle inequality (1.17).

ψi,j(β, γ) ≤ ψi,j(β, α) + ψi,j(α, γ) (1.37)

By positive definiteness

ψi,j(α, α) = 0 (1.38)

hence,

ψi,j(α, α) + ψi,j(β, γ) ≤ ψi,j(β, α) + ψi,j(α, γ). (1.39)

This is constraint (1.11), and the move is pairwise submodular.
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1.3.5 Higher Order Inference

Taskar suggested that higher order inference could be performed by relaxing the

set of integer constraint xi ∈ L ∀i to linear constraints:

xi ∈ [0, 1]L ∀i (1.40)

such that ∀i,
∑
j∈L

xi,j = 1 (1.41)

where xi,j is the jth component of xi. This approach has several disadvantages.

Firstly the optimisation of these linear programmes (lp) must be performed via

off-the-shelf optimisation packages, and is extremely slow and highly memory in-

efficient7. Secondly, while in the binary case in which L = {0, 1} the lp is tight

i.e. given the optimal lp solution an integer solution of the same cost (and hence

also optimal) can be found, this does not hold if |L| > 2 Taskar et al. (2004).

In such cases probabilistic rounding schemes such as those proposed in Chekuri

et al. (2005); Kleinberg and Tardos (1999) can be used to find solutions that are

expected to lie within some approximation bound. However, these approximation

bounds depend on the size of the cliques the potentials are defined over, and a

direct application of these techniques results in a bound that is O(|c|), where c

is the largest clique (Gould et al., 2009a). As the problems we consider typi-

cally have cliques containing hundreds of thousands of variables, such bounds are

meaningless. Another issue arises with qualitative performance: one important

use of pairwise and higher-order potentials is to smooth the solution and to gen-

erate a solution which is not obviously wrong to the human eye. However, in the

event of a fractional solution being found by the lp-solver, a rounding scheme,

7In chapter 4 we compare higher order lp formulations against graph-cut based methods.
As an lp the memory requirements are the principal bottleneck preventing us from reasoning
about images that contain more than 20× 20 pixels, versus the 500× 500 pixels of a standard
image in the voc data-set. Inference was 30,000 slower than a like-with-like comparison of
graph-cuts. Owing to the computational complexity of lp inference, the relative difference in
inference speed is likely to grow with the complexity of the problem.
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used to give an integer solution, may heterogeneously label large regions of x with

elements drawn at random from a subset of L. Finally, the generalisation from

the strict PN proposed by Taskar, to the Robust PN potentials is mathematically

involved and incurs an additional, substantial, computational overhead.

1.3.6 Move-making algorithms for higher order energies

Kohli et al. (2007, 2009) proposed the use of move-making algorithms for the

optimisation of the P n and robust P n model. Specifically, they demonstrated

graph-cut based variants of αβ-swap and α-expansion for these energies, and

demonstrated how inference was possible with them.

While αβ-swap and α-expansion appear to be inexorably linked to graph-cuts

in the literature, in practice graph-cuts is only chosen due to its efficiency and

speed of convergence. Any other method that can find the optimal move from

the range considered can be used in its place. For example, the lp formulation

of Taskar could be used to compute optimal moves, as the range considered is

binary, allowing the optimal moves to be found.

We will exploit this fact in providing a proof that optimal expansion and

swap moves can be computed using graph-cuts for the P n model. We will first

show that optimal swap and expansion moves can be expressed using Taskar’s

higher-order potentials (1.23), then we will show how these binary higher-order

potentials can be expressed using graph-cuts.

Higher-order swap

We only need to show that the optimal swap moves can be found for a cost

function defined over a single higher-order clique by itself. As the potentials

considered are additive, if we can solve for one clique, we can solve the sum of

several.
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Consider a potential ψc defined over a clique c. We wish to perform a swap

over the labels α and β. Let cα,β ⊆ c be the set of all variables currently taking

label α or β. Let cᾱβ ⊆ c be their complement i.e. all variables in c currently

taking labels other than α or β. Then there are 3 cases to consider, and we

will show that each one of these can be expressed using Taskar’s higher order

formulation .

1. c = cᾱβ i.e. c contains no variables taking labels α or β — If this is the

case then the cost of the potential must remain constant, as the swap move

can not change the label of any variable in the clique. This is trivially

representable as one of Taskar’s potentials.

2. cαβ, cᾱβ 6= ∅ i.e. the current labelling of the clique is a mixture of elements

from {α, β} and its complement — For all possible moves the cost of this

potential must be γc,max, as no homogeneous labelling is possible.

3. cα,β = c i.e. the clique only contains labels α and β — This is a standard

PN potential (1.27) defined over the clique, as discussed in section 1.2.3, it

can be reparameterised into the same form as Taskar’s.

Higher-order expansion

Proof that optimal expansion moves can be computed using Taskar’s potentials

follows much the same structure as swap moves.

Consider a potential ψc defined over a clique c, while we perform a expansion

over the label α. Let cβ ⊆ c be the set of all variables currently taking label β.

There are two case to consider:

1. ∃β 6= α : cβ = c — in this case the entire clique is homogeneously labelled.

Consequently, the cost of all moves considered can be formed as a standard

PN potential and solved in the manner discussed previously.
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2. 6 ∃β : cβ = c — As the clique is currently heterogeneously labelled, the only

way it can become homogeneously labelled is to completely take label α.

This is equivalent to a P n potential of the form:

ψc(xc) =


γα, c if xi = α ∀i ∈ c

γc,max otherwise.

(1.42)

As such the optimal moves can be proposed using Taskar’s lp formulation.

Solving Higher-order Associative Potentials with graph-cuts

We will now show that a potential of the form

ψc(xc) = −kc
∏
i∈c

∆(xi = 0) (1.43)

can be solved using graph-cuts over a two label range.

To do this, we consider a graph G =< V,E > defined as in section 1.3.1, which

contains vertices Vi for every Xi ∈ c and additional source s and sink t vertices.

We adjoin an extra auxiliary variable Vaux to the vertices in the graph, which we

connect with a directed edge to all vertices Vi in the clique, and to the sink with

weight kc. We want to show that whatever labels are taken by variables in the

clique, the cost of the final minimum cut will be the same as equation (1.43) up

to reparameterisation. The resulting pairwise cost is of the form:

kcVaux +
∑
i∈c

kcVi(1− Vaux). (1.44)

Fixing Vc the cost of the minimum cut is:

min
Vaux

(
kcVaux +

∑
i∈c

kcVi(1− Vaux)

)
. (1.45)
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Figure 1.7: Illustration of the graph construct used to solve higher-order potentials
in section 1.3.6. From left to right: The graph construct used to solve Taskar’s
Associative Higher Order potential; The P n potential; and the robust P n potential.

By inspection, this has a a cost of 0 if all vI are tied to the source, or equivalently,

if all of xc takes label zero; and a cost of at most kc otherwise; and is always of

at least cost kc if one variable in xc does not take label 0. By reparameterising

the cost by −kc, we get a potential of the form of equation (1.43).

By symmetry, a similar approach, that swaps Vi with (1− Vi) and Vaux with

(1 − Vaux) gives potentials of the form
∏

i∈c ∆(Vi = 1). Consequently, Taskar’s

Higher-Order potentials can be exactly solved in the binary case using graph-

cuts, and it is possible to perform efficient αβ-swap and α-expansion over these

higher-order potentials.
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Chapter 2

Associative Hierarchical

Networks

2.1 Overview

This section introduces the new model of Associative Hierarchical Networks (ahn),

first proposed in Ladicky et al. (2009). We will first motivate their application

as a true multi-scale model for object class segmentation that can integrate cues

from an arbitrary number of scales in a principled manner. Moreover, this model

allows for efficient map estimation as described in the following chapter. Sec-

ondly, we will show a recent application proposed in Ladicky et al. (2010c),

which integrates detectors with segmentation.

2.2 Introduction

A fundamental problem in semantic segmentation lies in the choice of image

quantisation. Rather than individually labelling each pixels in an image, the

image may be first clustered into super-pixels, and then the super-pixels may be

classified themselves. Each choice in scale carries with it its own advantages and
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Figure 2.1: A simplified 3-layer ahn, composed of a pixel-based grid layer, a layer
representing a segment crf and a higher-order consistency term defined over
segments. Note that although the diagram does not show multiple intersecting
hierarchies, this is for clarity’s sake, and not a limitation of our model.

disadvantages — overly large super-pixels may span object classes, preventing

the image from being correctly labelled. On the other hand, a choice to use very

small super-pixels or pixels means that in order to make use of coarse image

features, defined over large regions of the image, requires the use of aggregate

features from over-lapping regions. This runs the risk of over counting features

that occur only once in the image, but in many of these over-lapping regions,

leading to errors in the final labelling of the image. See figure 2.2, for an example

of this issue.

One approach to dealing with the difficultly of choosing a good quantisation

a priori is to delay the choice of quanta until much later. This allows us to pick

super-pixels that are consistent with a ‘good’ labelling of the image. Gould et al.

(2009b) proposed an approach in which the choice of super-pixels was integrated

with the labelling of the image with object instances. Under their interpretation,

super-pixels should physically exist and represent either the entirety of an object

or a planar facet if the object class is amorphous and can not be decomposed

into individual objects (this includes classes such as grass, building, or sky). Con-
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Figure 2.2: A demonstration of the problems caused by over-counting: Top
Left: a sample image of cells on a slide;Top Right: the human based ground
truth labelling;Bottom Left: The labelling from a pairwise crf in which the
unary potentials are based on an aggregate features about each pixel; Bottom
Right: The labelling from a P n crf in which the appearance of each region
directly governs the labelling of that entire region. Key for bottom row: Green:
True positives, correctly labelled cell pixels; Red: False negatives, cell structure
incorrectly labelled as background; Blue: False positives, background incorrectly
labelled as slide. In comparison to the higher order crf the pairwise crf is
more vulnerable to anomalous textures. In the pairwise crf overly smoothed or
specular regions and their neighbours are mislabelled and this makes it much less
likely that pairwise smoothing terms will be able to recover from these errors.
The elimination of these errors leads to a much tighter boundaries in the higher
order crf. The average distance of a false positive from the nearest true positive
dropped from 11.3 pixels (pairwise crf) to 3.4 pixels (higher-order crf). See
Russell et al. (2007) for details.
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sequently, in their final labelling each pixel belongs to exactly one super-pixel

chosen to represent a single instance of an object.

This process of shaping super-pixels to match object outlines is computation-

ally challenging. As discussed in Gould et al. (2009c), the optimisation techniques

proposed frequently fail to recognise individual instances. Their algorithm is of-

ten unable to merge the super-pixels contained within a single instance, even if

the super-pixels are correctly labelled by class. The recent work by Kumar and

Koller (2010) goes some way to addressing these issues. By using sophisticated

lp-relaxations they are able to trade computation time against the quality of

the solution found. However, the solutions found still lack the approximation

guarantees of our work, as described in the following chapter.

Another approach, and one closely related to ours was proposed in Kohli et al.

(2008). By formulating the labelling problem as a crf defined over pixels, they

were able to recover from misleading segments which spanned multiple object

classes. Further, they could encourage individual pixels within a single segment

to share the same label, by defining higher order potentials (functions defined over

cliques of size greater than 2) that penalised heterogeneous labellings of segments.

Their method can be understood as a relaxation of the hard constraint of previous

methods, that state that the image labelling must follow the quantisation of the

image space, to a softer constraint in which a penalty is paid for failure to conform.

In this section we describe a novel hierarchical crf formulation of the object

class segmentation problem that allows us to unify multiple disparate quanti-

sations of the image space, avoiding the need to make a decision of which is

most appropriate. It allows for the integration of features derived from different

quantisation levels (pixel, segment, and segment union/intersection). By way of

comparison with the work of Gould et al. (2009b), while they explicitly choose

a super-pixel for every pixel, we allow each pixel to simultaneously belong to

several super-pixels. Under our framework, each of these super-pixels proposes a
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set of hypotheses. These hypotheses describe the correlation between members of

the super-pixel, the likelihood that the super-pixel will predominantly belong to

some particular class, or the correlation between the label of this super-pixel and

its neighbours. We will demonstrate how many of the state-of-the-art methods

based on different fixed image quantisations can be seen as special cases of our

model.

Inferring the minimum cost solution in this framework involves the minimisa-

tion of a extremely high order function. In the following chapter, we show that

the solutions of such difficult function minimisation problems may be efficiently

computed using graph cut based move-making algorithms, and provide bounds

which guarantee the quality of the solution found. We evaluate the efficacy of

our framework on some of the most challenging data-sets for object class segmen-

tation, and show that it outperforms existing state of the art methods based on

individual image quantisation levels.

Robust P n and Hierarchical CRFs The pairwise crf formulation of (Laf-

ferty et al., 2001; Shotton et al., 2006) was extended by (Kohli et al., 2008) with

the incorporation of robust higher order potentials defined over segments. Their

formulation was based upon the observation that pixels lying with in the same

super-pixel or cluster are more likely to take the same label. As discussed in

chapter 1.2.3, the energy of the higher order crf proposed by (Kohli et al., 2008)

was of the form:

E(x) =
∑
i∈V

ψi(xi) +
∑

(i,j)∈N

ψij(xi, xj) +
∑
c∈C
|c|>2

ψhc (xc), (2.1)

where C refers to a set cliques corresponding to image regions (or segments), and

ψc are higher order potentials defined over them. As described in the previous

chapter, their higher order potentials took the form of the Robust PN model
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defined as:

ψhc (xc) = min
l∈L

(
γc,max, γc,l +

∑
i∈c

kc,i∆(xi 6= l)

)
, (2.2)

where γlc ≤ γmax
c ,∀l ∈ L. This framework enabled the integration of multiple

quantisations (segmentations) of the image space in a principled manner. How-

ever, they did not use these costs to define unary potentials for segments and

were unable to model contextual relations between segments.

In the following chapter, we show that this potential (2.2) can be represented

as a pairwise graph using a single auxiliary variable yc, that takes values from an

extended label set L ∪ {lF} as

ψhc (xc, yc) = φc(yc) +
∑
xi∈c

φc(yc, xi). (2.3)

where the unary auxiliary potential φc(yc) assigns the cost γlc for yc taking the

first |L| labels and γmax
c for the free label lF and the pairwise potential φc(yc, xi)

is defined as:

φc(yc, xi) =

 0 if yc = lF or yc = xi

klc if yc = l ∈ L and xi 6= l.
(2.4)

This framework can be naturally generalised to a hierarchical model, in which

pairwise connections between elements of the same layer of the hierarchy are

supported, and the connection between layers take the same form as the robust

PN model (Eq. 2.2).

It is defined as:

E(x) =
∑
i∈S(1)

ψ
(1)
i (x

(1)
i ) +

∑
(i,j)∈N (1)

ψ
(1)
ij (x

(1)
i , x

(1)
j ) + min

x(2)
E(2)(x(1),x(2)), (2.5)
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where E(2)(x(1),x(2)) is recursively defined as:

E(n)(x(n−1),x(n)) =
∑
c∈S(n)

ψ(n)
c (x(n−1)

c , x(n)
c ) +

∑
(c,d)∈N (n)

ψ
(n)
cd (x(n)

c , x
(n)
d )

+ min
x(n+1)

E(n+1)(x(n),x(n+1)), (2.6)

without losing the ability to solve this model with graph-cut based move making

algorithms (see following chapter).

In our application, we form hierarchies by recursively applying multiple clus-

tering algorithms to previous generated clusters. Just as in the PN model, pixels

are associated with clusters and encouraged to share the same label, in our model

auxiliary clusters themselves will be associated with ‘super-clusters’ and encour-

aged to take the same label.

2.2.1 Relation to Previous Models

Next we draw some comparisons with the current state of the art models for

object segmentation (Galleguillos et al., 2008; Pantofaru et al., 2008; Rabinovich

et al., 2007; Yang et al., 2007) and show that at certain choices of the parameters

of our model, these methods fall out as special cases. Thus, our method does not

only generalise the standard pairwise crf formulation over pixels, but also the

previous work upon super-pixels and (as we shall see) provides a global optimi-

sation framework which allows us to combine all choices of image quantisations.

Equivalence to CRFs based on Segments Consider a hierarchy defined

over two layers: the pixel grid and a first layer of clusters, and without unary or

pairwise potentials defined over individual pixels, such that all segments c ∈ S

are disjoint (non-overlapping)1. The potentials ψhc (xc, yc) are both semi-metric

1This is equivalent to the case where only one particular quantisation of the image space is
considered.
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and symmetric (Boykov et al., 2001) for any pair of pixels within the segment,

forcing them to take the same label in a minimal cost labelling. Thus, the op-

timal labelling will be segment-consistent. The cost of every segment-consistent

labelling is

E(y) =
∑
c∈S

ψc(yc) +
∑

(c,d)∈N (2)

ψcd(yc, yd) (2.7)

and is exactly the same as the cost associated with the pairwise crf defined

over segments with ψc(yc)
l = γlc is the unary cost and ψcd as the pairwise costs

for each segment. For sufficiently large γmax
c auxiliary variables will not take

the label lF , which means that all pixels connected to them will take the same

label (behave as one unit). In this case, our model becomes equivalent to the

pairwise crf models defined over segments rather than pixels such as those given

by Batra et al. (2008); Galleguillos et al. (2008); Rabinovich et al. (2007); Yang

et al. (2007).

Equivalence to tree structured associative models Various tree struc-

tured hierarchies such as Zhu and Yuille (2005); Lim et al. (2009); Nowozin et al.

(2010); Reynolds and Murphy (2007) have been proposed for semantic segmen-

tation. The structure of these models is clearly a strict subset of ours, as it does

not support pairwise connections between variables in the same level, and each

variable may only be attached to one variable in the layer above. Consequently

if the label space and edge costs between parent and child are of the same form

as those we consider, these models can also be contained in our approach. See

figure 2.3 for more details.

The Relationship with Directed Models A hierarchical, two-layer, directed

model was proposed in Kumar and Hebert (2005). This is a hybrid model rel-

atively similar to ours, with unary and pairwise potentials defined over both

super-pixels and pixels and pairwise connections between the layers, enforcing
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consistency. However, it principally differs from ours in the use of directed edges

between layers. These directed edges mean that max-marginals can be computed

in a piecewise manner, and propagated from one layer to the other, making it

suitable for inference with message passing algorithms (our model is shown to be

ill-suited for message passing algorithms such as belief propagation and trw-s in

the following chapter).

This directed approach does not propagate information through-out the struc-

ture. In order to arrive at a consistent hypothesis, that takes account conflicting

clues from all levels of the hierarchy, there are two desirable criteria for the prop-

agation of information.

1. We wish for information to be transmitted from the pixel to the segment

level and from there back to the pixel level. That is, the labelling of one

pixel should affect the label of the segment potential and, from this, the

label of other pixels in the same segment.

2. Information should also be transmitted from a segment to the pixel level

and back to the segment level. This means that if two segments overlap,

the optimal label of one segment should indirectly depend on the labelling

of the other.

If the connections between layers form a directed acyclic graph (dag) as they

do in Kumar and Herbet’s model, and in the related structure of Deep Belief

Nets (Bengio et al., 2007; Hinton et al., 2006), at most one of these conditions

can hold — both conditions together describe a cycle. Both deep belief nets, and

Kumar and Hubert’s approach only satisfy the first criteria. In simple hierarchies

such as those proposed by Kumar and Herbert, in which each pixel belongs to

only one segment, the second criteria is less important. However, the integration

of multiple segmentations into a single coherent hypothesis depends upon the

transmission of information in both directions.
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Associative 
Hierarchical 

Network

Deep Belief 
Network

Tree Structured 
model

Segment CRF PN model Directed 
Hierarchical 

CRF

Pairwise CRF

Figure 2.3: Pairwise graphical representations of our approach and various other
models. As neither the segment crf nor the tree-based crf contains any loops
in the directed portion of the graph they are equivalent to undirected models
(Pearl, 1998).
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(Shotton et al., 2008) 72 67 49 88 79 97 97 78 82 54 87 74 72 74 36 24 93 51 78 75 35 66 18
(Shotton et al., 2006) 72 58 62 98 86 58 50 83 60 53 74 63 75 63 35 19 92 15 86 54 19 62 07
(Batra et al., 2008) 70 55 68 94 84 37 55 68 52 71 47 52 85 69 54 05 85 21 66 16 49 44 32
(Yang et al., 2007) 75 62 63 98 89 66 54 86 63 71 83 71 79 71 38 23 88 23 88 33 34 43 32

Pixel CRF 81 72 73 92 85 75 78 92 75 76 86 79 87 96 95 31 81 34 84 53 61 60 15
Segment CRF 75 60 64 95 78 53 86 99 71 75 70 71 52 72 81 20 58 20 89 26 42 40 05

Hierarchical CRF 86 75 80 96 86 74 87 99 74 87 86 87 82 97 95 30 86 31 95 51 69 66 09

Table 2.1: Quantitative results on the MSRC data set. The pixel accuracy (%)
for different object classes.
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Original Image Pixel CRF Segment CRF Hierarchical CRF Ground Truth

Figure 2.4: Qualitative results on the MSRC-21 data-set using the range α-
expansion algorithm discussed in the next chapter. Pixels marked black in the
hand-labelled ground truth image are unlabelled. The potentials used in these
experiments are described in Ladicky et al. (2009).

Figure 2.5: Qualitative results on the VOC-2008 data-set Qualitative results on
the MSRC-21 data-set using the range α-expansion algorithm discussed in the
next chapter. Successful segmentations (top 3 rows) and standard failure cases —
context error, detection failure and miss-classification (bottom).
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XRCE 25.4 75.9 25.8 15.7 19.2 21.6 17.2 27.3 25.5 24.2 7.9 25.4 9.9 17.8 23.3 34.0 28.8 23.2 32.1 14.9 25.9 37.3

UIUC / CMU 19.5 79.3 31.9 21.0 8.3 6.5 34.3 15.8 22.7 10.4 1.2 6.8 8.0 10.2 22.7 24.9 27.7 15.9 4.3 5.5 19.0 32.1

MPI 12.9 75.4 19.1 7.7 6.1 9.4 3.8 11.0 12.1 5.6 0.7 3.7 15.9 3.6 12.2 16.1 15.9 0.6 19.7 5.9 14.7 12.5

Hierarchical CRF 20.1 75.0 36.9 4.8 22.2 11.2 13.7 13.8 20.4 10.0 8.7 3.6 28.3 6.6 17.1 22.6 30.6 13.5 26.8 12.1 20.1 24.8

Table 2.2: Quantitative analysis of VOC2008 results. Note that all other methods
used classification and detection priors trained from the whole data-set including
non-segmented images.

2.3 Combining Object Detectors and ahns

For the purpose of this section, a detector should be considered to be a black box

process which takes an image as an input and returns a set of bounding boxes

that says where an instance of an object is likely to appear in the image. The

use of detectors is consequently restricted to class such as person or sheep which

can be decomposed into instances. This makes them well suited to be integrated

with standard approaches to object class segmentation, as the classifiers used are

typically texture-based and better suited for amorphous classes such as road or

water that can not readily be broken down into instances. Within the literature,

instance-based classes are typically referred to as things, while amorphous classes

are referred to as stuff (Adelson, 2001).

In Associative Hierarchical Networks, the process of inference can be under-

stood as a soft competition among different hypotheses (defined over pixel or

segment random variables), in which the final solution maximises the weighted

agreement between them. These weighted hypotheses are potentials in the ahn.

In object class recognition, these hypotheses encourage: (i) variables to take par-

ticular labels (unary potentials), and (ii) agreement between variables (typically

pairwise). Existing methods including a naive application of ahns and (He et al.,

2004; Yang et al., 2007) are limited to such hypotheses provided by pixels and/or
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Figure 2.6: Inclusion of object detector potentials into a ahf. We show a pixel-
based crf as an example here. The set of pixels in a detection d1 (corresponding
to the bicyclist in the scene) is denoted by xd1. A higher order clique is defined
over this detection window by connecting the object pixels xd1 to an auxiliary
variable yd1 ∈ {0, 1}. This variable allows the inclusion of detector responses as
soft constraints. (Best viewed in colour)

segments only. We introduce an additional set of hypotheses representing object

detections for the recognition framework.

Some object detection approaches (Felzenszwalb et al., 2008; Larlus and Jurie,

2008) have used their results to perform a segmentation within the detected

areas2. These approaches include both the true and false positive detections,

and segment them assuming they all contain the objects of interest. There is no

way of recovering from these erroneous segmentations. Our approach overcomes

this issue by using the detection results as hypotheses that can be rejected in

the global crf energy. In other words, all detections act as soft constraints in

our framework, and must agree with other cues from pixels and segments before

affecting the object class segmentation result.

Let D denote the set of object detections, which are represented by bounding

boxes enclosing objects, and corresponding scores Hd, d ∈ D that indicate the

strength of the detections. We define a novel clique potential ψd over the set of

2As evident in some of the pascal voc 2009 segmentation challenge entries.
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pixels xd belonging to the d-th detection (e.g.pixels within the bounding box),

with a score Hd and detected label ld. Figure 2.6 shows the inclusion of this

potential graphically on a pixel-based crf. The new energy function is given by:

E(x) = Epix(x) +
∑
d∈D

ψd(xd, Hd, ld), (2.8)

where Epix(x) is any standard pixel-based energy. The minimisation procedure

should be able to reject false detection hypotheses on the basis of other potentials

(pixels and/or segments). To do this, we create a new layer in our hierarchy to

hold detector potentials. Given a box d, for class c with a detector response s ,

we wish to create a segment associated with it, that captures the object lying in

the centre of the box. This can be easily done using either a parametric max-flow

(Gallo et al., 1989) centred on the box, to create a segment of the correct size, or

with grab-cut (Rother et al., 2004). We then define the unary potential for this

segment as:

ψd(x
(2)
d ) =


αHd if x

(2)
d = c

0 otherwise.

(2.9)

where α is some arbitrary weighting that describes much attention should be paid

to a detector response versus the other potentials of the ahn.

Figure 2.6 illustrates this model. Note that this model is of the standard form

defined in ((2.5)), and consequently can be solved efficiently using the techniques

in the following chapter. As expected the inclusion of these potentials provides a

substantial improvement to results (see figures 2.3, 2.7).
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bonn svm-segm 83.964.3 21.8 21.7 32.040.257.349.4 38.85.2 28.522.0 19.6 33.6 45.5 33.6 27.3 40.418.1 33.6 46.136.3
cvc hocrf 80.2 67.126.630.331.6 30.0 44.5 41.6 25.2 5.9 27.8 11.0 23.1 40.553.232.0 22.2 37.4 23.640.3 30.2 34.5
uoctti lsvm-mdpm 78.9 35.3 22.5 19.1 23.5 36.2 41.2 50.1 11.7 8.9 28.51.4 5.9 24.0 35.3 33.4 35.127.7 14.2 34.1 41.8 29.0
necuiuc cls-dtct 81.8 41.9 23.1 22.4 22.0 27.8 43.2 51.825.9 4.5 18.5 18.0 23.526.9 36.6 34.88.8 28.3 14.0 35.5 34.7 29.7
lear segdet 79.1 44.6 15.5 20.5 13.3 28.8 29.3 35.8 25.4 4.4 20.3 1.3 16.4 28.2 30.0 24.5 12.2 31.5 18.3 28.8 31.9 25.7
brookesmsrc ahcrf 79.6 48.3 6.7 19.1 10.0 16.6 32.7 38.1 25.3 5.5 9.4 25.1 13.3 12.3 35.5 20.7 13.4 17.1 18.4 37.5 36.4 24.8
Our method 81.2 46.1 15.4 24.6 20.9 36.9 50.0 43.9 28.4 11.518.2 25.414.7 25.1 37.7 34.1 27.7 29.6 18.4 43.840.8 32.1

Table 2.3: Quantitative analysis of AHN + detectors on thevoc 2009 test data-
set results (Everingham et al., 2009) using the intersection vs union performance
measure. Our method is ranked third when compared the 6 best submissions
in the 2009 challenge. The method uoctti lsvm-mdpm is based on an object
detection algorithm (Felzenszwalb et al., 2008) and refines the bounding boxes
with a Grab-Cut style approach. The method brookesmsrc ahcrf is the crf
model used as an example in our work. We perform better than both these baseline
methods by 3.1% and 7.3% respectively. Underlined numbers in bold denote the
best performance for each class.

(a) (b) (c) (a) (b) (c)

Figure 2.7: (a) Original test image from pascal voc 2009 data-set (Everingham
et al., 2009), (b) The labelling obtained by ahns without object detectors, (c)
The labelling provided by our method which includes detector based potentials.
Note that no ground truth is publicly available for test images in this data-set.
Examples shown in the first five rows illustrate how detector potentials not only
correctly identify the object, but also provide very precise object boundaries, e.g.
bird (second row), car (third row). Some failure cases are shown in the last row.
This was caused by a missed detection or incorrect detections that are very strong
and dominate all the other potentials. (Best viewed in colour)
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Chapter 3

Exact and Approximate Inference

in Associative Hierarchical

Networks using Graph Cuts

3.1 Overview

Within this chapter we provide a computationally efficient method for approx-

imate inference based on graph cuts. Our method performs well for networks

containing hundreds of thousand of variables, and higher order potentials are

defined over cliques containing tens of thousands of variables. Due to the size

of these problems standard linear programming techniques are inapplicable. We

show that our method has a bound of 41 for the solution of general associative

hierarchical network with arbitrary clique size. Apart from this work, we are

unaware of any methods that provide bounds that are independent of clique size.

1This means that the cost of the solution found is guaranteed to lie within a factor of 4 of
the cost of the minimal cost labelling.
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3.2 Introduction

The last few decades have seen the emergence of Markov networks or random

fields as the most widely used probabilistic model for formulating problems in

machine learning and computer vision. This interest has led to a large amount

of work on the problem of estimating the maximum a posteriori (map) solution

of a random field (Szeliski et al., 2006; Kolmogorov, 2006; Komodakis and Para-

gios, 2008; Kumar and Torr, 2008a; Sontag et al., 2008; Wainwright et al., 2005;

Weiss and Freeman, 2001). However, most of this research effort has focused on

inference over pairwise Markov networks. Of particular interest are the families

of associative pairwise potentials (Taskar et al., 2004) discussed in chapter 1, in

which connected variables are assumed to be more likely than not to share the

same label. Inference algorithms targeting these associative potentials, which in-

clude truncated convex costs (Kumar and Torr, 2008b), metrics (Boykov et al.,

2001), and semi metrics (Kumar and Koller, 2009), often carry bounds which

guarantee the cost of the solution found must lie within a bound, specified as a

fixed factor of n of the cost of the minimal solution.

Although higher order Markov networks (i.e. those with a clique size greater

than two) have been used to obtain impressive results for a number of challenging

problems in computer vision (Roth and Black, 2005; Komodakis and Paragios,

2009; Vicente et al., 2009; Ladicky et al., 2010c; Kohli et al., 2009; Lan et al.,

2006; Werner, 2009; Potetz and Lee, 2008; Woodford et al., 2008; Rother et al.,

2009) the problem of bounded higher order inference has been largely ignored.

In this chapter, we address the problem of performing graph cut based infer-

ence in a new model: the Associative Hierarchical Networks (ahns) described in

chapter 2, that includes the higher order Associative Markov Networks (amns)

(Taskar et al., 2004) or P n potentials (Kohli et al., 2007) and the Robust P n (Kohli

et al., 2008) model as special cases, and derive a bound of 4.
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In general, these ahns are suitable for the representation of any problem that

is Potts-like (i.e. those that encourage homogeneous labellings and penalise all

forms of heterogeneity equally) across any number of arbitrary scales.

For a set of variables x(1) ahns are characterised by energies (or costs) of the

form:

E(x(1)) = E ′(x(1)) + min
xa

Ea(x(1),xa) (3.1)

where E ′ and Ea are pairwise amns and xa is a set of auxiliary variables. The ahn

is a amn containing higher order cliques, defined as a function of x(1), but can

also be seen as a pairwise amn defined in terms of x(1) and xa. We propose new

move making algorithms over the pairwise energy E ′(x(1)) + Ea(x(1),xa) which

have the important property of transformational optimality.

Move making algorithms function by efficiently searching through a set of

candidate labellings and proposing a optimal candidate i.e. one with the lowest

energy to move to. The set of candidates is then updated, and the algorithm

repeats till convergence.

We call a move making algorithm transformationally optimal if and only if

any move (x∗,xa) proposed by the algorithm satisfies the property:

Ea(x∗,xa) = min
x′

Ea(x∗,x′) (3.2)

i.e. xa is a minimiser of Ea(x∗, ·). Inserting this into equation (3.1) we have:

E(x∗) = E ′(x∗) + Ea(x∗,xa). (3.3)

This implies that the partial move x∗ proposed by a transformationally opti-

mal algorithm over E ′(x(1)) +Ea(x(1),xa) must function as a move that directly

minimise the higher order cost of equation (3.1). Experimentally, our transforma-

tionally optimal algorithms converge faster, and to better solutions than standard
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approaches, such as α-expansion. Moreover, unlike standard approaches, our

transformationally optimal algorithms always find the exact solution for binary

ahns.

Outline of the chapter Existing models generalised by the associative hier-

archical network, and the full definition of ahns are given in section 3.3. In

section 3.4 we discuss work on efficient inference, and show how the pairwise

form of associative hierarchical networks can be minimised using the α-expansion

algorithm, and derive bounds for our approach. Section 3.5 discusses the ap-

plication of novel move making algorithms to such energies, and we show that

under our formulation the moves of the robust P n model become equivalent to

a more general form of range moves over unordered sets. We derive transfor-

mational optimality results over hierarchies of these potentials, guaranteeing the

optimality of the moves proposed. We experimentally verify the effectiveness of

our approach against other methods in section 3.6, and conclude in section 3.7.

At points within this chapter, we will want to distinguish between the original

variables of the energy function, whose optimal values we are attempting to find,

and the auxiliary variables which we will introduce to convert our higher order

function into a pairwise one. We refer to the original variables as the base layer

x(1) (as they lie at the bottom of the hierarchical network). All auxiliary variables

at any level h of the hierarchy are denoted by x(h). The set of indices of variables

constituting level h of the hierarchy is denoted by Vh. Similarly, the set of all

pairwise interactions at level h is denoted by Eh.

3.3 Associative Hierarchical Networks

Existing higher-order models Taskar et al. (2004) proposed the use of higher

order potentials that encourage the entirety of a clique to take some label, and
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discusses how they can be applied to predicting protein interactions and docu-

ment classification. These potentials were introduced into computer vision along

with an efficient graph cut based method of inference, as the strict P n Potts

model (Kohli et al., 2007).

A generalisation of this approach was proposed by Kohli et al. (2008), who

observed that in the image labelling problem, most (but not all) pixels belong-

ing to image segments computed using an unsupervised clustering/segmentation

algorithm take the same object label. They proposed a higher order mrf over

segment based cliques. The energy took the form:

E(x) =
∑
i∈V

ψi(xi) +
∑
ij∈E

ψij(xi, xj) +
∑
c∈C

ψc(xc), (3.4)

where ψc(xc) = min
l∈L

(
γmaxc , γlc +

∑
i∈c

kic∆(xi 6= l)

)
(3.5)

as discussed in chapter 1. The potential function parameters kic, γ
l
c, and γmaxc are

subject to the restriction that kic ≥ 0 and γlc ≤ γmaxc ,∀l ∈ L.

We now demonstrate that the higher order potentials ψc(xc) of the Robust P n

model (2.2) can be represented by an equivalent pairwise function ψc(x
(1)
c , x

(2)
c )

defined over a two level hierarchical network with the addition of a single auxiliary

variable x
(2)
c for every clique c ∈ C. This auxiliary variable take values from an

extended label set Le = L ∪ {LF}, where LF , the ‘free’ label of the auxiliary

variables, allows its child variables to take any label without paying a pairwise

penalty.

In general, every higher order cost function can be converted to a 2−layer

associative hierarchical network by taking an approach analogous to that of fac-

tor graphs (Kschischang et al., 2001) and adding a single multi-state auxiliary

variable. However, to do this for general higher order functions requires the addi-

tion of an auxiliary variable with an exponential sized label set (Wainwright and
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Jordan, 2008). Fortunately, the class of higher order potentials we are concerned

with can be compactly described as ahns with auxiliary variables that take a

similar sized label set to the base layer, permitting fast inference.

The corresponding higher order function can be written as:

ψc(x
(1)
c ) = min

x
(2)
c

ψc(x
(1)
c , x(2)

c )

= min
x
(2)
c

[
φc(x

(2)
c ) +

∑
i∈c

φic(x
(1)
i , x(2)

c )

]
. (3.6)

The unary potentials φc(x
(2)
c ) defined on the auxiliary variable x

(2)
c assign the cost

γl if x
(2)
c = l ∈ L, and γmax if x

(2)
c = LF . The pairwise potential φic(xi, x

(2)
c ) is

defined as:

φic(xi, x
(2)
c ) =


0 if x

(2)
c = LF , or x

(2)
c = xi.

kic if x
(2)
c = l ∈ L, and xi 6= l.

(3.7)

General Formulation The scheme described above can be extended by allow-

ing pairwise and higher order potentials to be defined over x(2) and further over

x(i), which corresponds to higher order potentials defined over the layer x(i−1).

The higher order energy corresponding to the general hierarchical network can

be written using the following recursive function:

E(1)(x(1)) =
∑
i∈V

ψ
(1)
i (x

(1)
i ) +

∑
ij∈E(1)

ψ
(1)
ij (x

(1)
i , x

(1)
j )

+ min
x(2)

E(2)(x(1),x(2)) (3.8)
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where E(2)(x(1),x(2)) is recursively defined as:

E(n)(x(n−1),x(n))

=
∑
c∈V (n)

φc(x
(n)
c ) +

∑
c∈V(n),i∈c

φ
(n)
ic (x

(n−1)
i , x(n)

c )

+
∑

(c,d)∈E(n)

ψ
(n)
cd (x(n)

c , x
(n)
d ) + min

x(n+1)
E(n+1)(x(n),x(n+1)) (3.9)

and x(n) = {x(n)
c |c ∈ Vn} denotes the set of variables at the nth level of the

hierarchy, E (n) represents the edges at this layer, and φ
(n)
ic (x

(n−1)
c , x

(n)
c ) denotes

the inter-layer potentials defined over variables of layer n− 1 and n.

While the hierarchical formulation of both Taskar’s and Kohli’s models can

be understood as a mathematical convenience that allows for fast and efficient

bounded inference, our earlier work (described in the previous chapter and in

Ladicky et al. (2009)) used it for true multi-scale inference, modelling constraints

defined over many quantisations of the image.

3.4 Inference

Inference in Pairwise Networks Although the problem of map inference is

NP-hard for most associative pairwise functions defined over more than two la-

bels, in real world problems many conventional algorithms provide near optimal

solutions over grid connected networks (Szeliski et al., 2006). However, the dense

structure of hierarchical networks results in frustrated cycles (or fractional tied

solutions) and makes traditional reparameterisation based message passing algo-

rithms for map inference such as loopy belief propagation (Weiss and Freeman,

2001) and tree-reweighted message passing (Kolmogorov, 2006) slow to converge

and unsuitable (Kolmogorov and Rother, 2006). Many of these frustrated cycles

can be eliminated via the use of cycle inequalities (Sontag et al., 2008; Werner,

52



2009), but only by significantly increasing the run time of the algorithm. The

graph cut based move making algorithms discussed in chapter 1.3.2 do not suffer

from this problem and have been successfully used for minimising pairwise func-

tions defined over densely connected networks that are frequently encountered in

vision.Of these move making approaches, only αβ swap can be directly applied

to associative hierarchical networks as the term φic(xi, xc), is not a metric nor

truncated convex.

Minimising Higher Order Functions A number of researchers have worked

on the problem of map inference in higher order amns. Lan et al. (2006) proposed

approximation methods for bp to make efficient inference possible in higher order

mrfs. This was followed by the recent works of Potetz and Lee (2008); Tarlow

et al. (2008, 2010) in which they showed how belief propagation can be efficiently

performed in networks containing moderately large cliques. However, as these

methods were based on bp, they were quite slow and took minutes or hours to

converge, and lack bounds.

To perform inference in the P n models, Kohli et al. (2007, 2008), first showed

that certain projection of the higher order P n model can be transformed into

submodular pairwise functions containing auxiliary variables. This was used to

formulate higher order expansion and swap move making algorithms as discussed

in 1.2.3.

The only existing work that addresses the problem of bounded higher order

inference is (Gould et al., 2009a) which showed how theoretical bounds could be

derived given move making algorithms that proposed optimal moves by exactly

solving some sub-problem. In application they used approximate moves which

do not exactly solve the sub-problems proposed. Consequently, the bounds they

derive do not hold for the methods they propose. However, their analysis can

be applied to the P n (Kohli et al., 2007) model and inference techniques, which
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do propose optimal moves, and it is against these bounds that we compare our

results.

3.4.1 Inference with α-Expansion

We show that by restricting the form of the inter-layer potentials ψ
(n)
c (x

(n−1)
c , x

(n)
c )

to that of the weighted Robust P n model (Kohli et al., 2008) (see (2.2)), we can

apply α-expansion to the pairwise form of the ahn.

This requires a transform of all functions in the pairwise representation so that

they can be representable as a metric (Boykov et al., 2001). This transformation

is non-standard and should be considered a contribution of this work.

We alter the form of the potentials in two ways. First, we assume that all

variables in the hierarchy take values from the same label set Le = L ∪ {LF}.

Where this is not true — original variables x(1) at the base of the hierarchy can

not take label LF — we artificially augment the label set with the label LF and

associate an infinite unary cost with it. Secondly, we make the inter-layer pairwise

potentials symmetric by performing a local reparameterisation operation.

Before showing the stating the result we will first demonstrate it for a simple

3 label (α,LF , β) problem using matrix notation.

Expressing unary and pairwise costs as matrices It is frequently conve-

nient to describe pairwise costs as a matrix in which the element of the matrix in

the xth
i row, and xth

j column holds the cost of the pairwise potential ψi,j(xi, xj).

Unary potentials can also be expressed as matrices under this framework, after

all a unary potential defined over Xi can be seen as a pairwise potential defined

over Xi and Xj that doesn’t vary with the labelling of xj. For a matrix describing

a pairwise cost φi,j(·, ·) a unary potential of Xi will correspond to a matrix in

which each row is constant, while a unary term potential of Xj will correspond

to a column constant matrix.

54



We wish to find a decomposition of φi,j such that:

φi,j(xi, xj) = ψ
(n−1)
i (x

(n−1)
i ) + Φ

(n)
ic (x

(n−1)
i , x(n)

c ) + ψ(n)
c (x(n)

c ), (3.10)

and Φ is symmetric. Specifically, over a three label range of (α,LF , β), the

decomposition will look like this:

ki


0 1 1

0 0 0

1 1 0

 = −k


0 0 0

1
2

1
2

1
2

0 0 0

+k


0 1

2
1

1
2

0 1
2

1 1
2

0

+k


0 1

2
0

0 1
2

0

0 1
2

0

 . (3.11)

To prove this in the general case, we have lemma 1.

Lemma 1. The inter-layer pairwise functions

φ
(n)
ic (x

(n−1)
i , x(n)

c ) = kic


0 if x

(n)
c = LF or x

(n)
c = x

(n−1)
i

1 if x
(n)
c = l ∈ L and x

(n−1)
i 6= l

(3.12)

of (3.9) can be written as:

φ
(n)
ic (x

(n−1)
i , x(n)

c ) = ψ
(n−1)
i (x

(n−1)
i ) + ψ(n)

c (x(n)
c )Φ

(n)
ic (x

(n−1)
i , x(n)

c ), (3.13)

where

Φ
(n)
ic (x

(n−1)
i , x(n)

c ) = kic



0 if x
(n−1)
i = x

(n)
c

1
2

if (x
(n−1)
i = LF or x

(n)
c = LF )

and x
(n−1)
i 6= x

(n)
c

1 otherwise,

(3.14)
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and

ψ(n)
c (x(n)

c ) = kic


0 if x

(n)
c ∈ L

−1
2

otherwise,

(3.15)

ψ
(n−1)
i (x

(n−1)
i ) = kic


0 if x

(n−1)
i ∈ L

1
2

otherwise.

(3.16)

Proof Consider a clique containing only one variable, the general case will

follow by induction. Note that if no variables take state LF the costs are invariant

to reparameterisation. This leaves three cases:

x
(n)
c = LF,x

(n−1)
i ∈ L

ψc(x
(n)
c ) + ψic(x

(n)
c , x

(n−1)
i ) = −k/2 + k/2 = 0

x
(n)
c ∈ L,x(n−1)

i = LF

ψi(x
(n−1)
i ) + ψic(x

(n−1)
i , x

(n)
c ) = k/2 + k/2 = k

x
(n)
c = LF,x

(n−1)
i = LF

ψi(x
(n−1)
i ) + ψic(x

(n−1)
i , x

(n)
c ) + ψc(x

(n)
c ) = k−k

2
= 0

(3.17)

Bounded Higher Order Inference We now prove bounds for α-expansion

over an ahn.

1. The pairwise function of lemma 1, is positive definite, symmetric, and sat-

isfies the triangle inequality

ψa,b(x, z) ≤ ψa,b(x, y) + ψa,b(y, z) ∀x, y, z ∈ L ∪ {LF}. (3.18)

Hence it is a metric, and the algorithms αβ swap and α-expansion can be

used to minimise it.
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2. By the work of Boykov et al. (2001), the α-expansion algorithm is guaran-

teed to find a solution within a factor of 2 max
(
2,maxE∈E1

maxxi,xj∈L ψE(xi,xj)

minxi,xj∈L ψE(xi,xj)

)
(i.e. 4 where the potentials defined over the base layer of hierarchy take the

form of a Potts model) of the global optimum.

3. The following two properties hold:

min
x(1)

E(x(1)) = min
x(1),xa

(
E ′(x(1)) + Ea(x(1),xa)

)
, (3.19)

E(x(1)) ≤ E ′(x(1)) + Ea(x(1),xa) ∀xa. (3.20)

Hence, if there exists a labelling (x′,x∗) such that

E ′(x′) + Ea(x′,x∗) ≤ k min
x(1),xa

(
E ′(x(1)) + Ea(x(1),xa)

)
. (3.21)

then

E(x′) ≤ kmin
x(1)

E(x(1)). (3.22)

Consequently, the bound is preserved in the transformation that maps the pair-

wise energy back to its higher order form.

By way of comparison, the work of Gould et al. (2009a) provides a bound of

2|c| for the higher order potentials of the strict P n model (Kohli et al., 2007),

where c is the largest clique in the network. Using their approach, no bounds are

possible for the general class of Robust P n models or for associative hierarchical

networks.

The moves of our new range-move algorithm (see next section) strictly contain

those considered by α-expansion and thus our approach automatically inherits the

above approximation bound.
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3.5 Novel Moves and Transformational Optimal-

ity

In this section we propose a novel graph cut based move making algorithm for

minimising the hierarchical pairwise energy function defined in the previous sec-

tion.

Let us consider a generalisation of the swap and expansion moves proposed

in Boykov et al. (2001). In a standard swap move, the set of all moves considered

is those in which a subset of the variables currently taking label α or β change

labels to either β or α. In our range-swap the moves considered allow any variables

taking labels α,LF or β to change their state to any of α,LF or β. Similarly, while

a normal α expansion move allows any variable to change to some state α, our

range expansion allows any variable to change to states α or LF .

This approach can be seen as a variant on the ordered range moves proposed

in Veksler (2007); Kumar and Torr (2008b), however while these works require

that an ordering of the labels {l1, l2, . . . , ln} exist such that moves over the range

{li, li+1 . . . li+j} are convex for some j ≥ 2 and for all 0 < i ≤ n − j, our range

moves function despite no such ordering existing.

We now show that the problem of finding the optimal swap move can be

solved exactly in polynomial time. Consider a label mapping function fα,β :

L → {1, 2, 3} defined over the set {α,LF , β} that maps α to 1, LF to 2 and

β to 3. Given this function, it is easy to see that the reparameterised inter-

layer potential2 Φ
(n)
ic (x

(n−1)
i , x

(n)
c ) defined in lemma 1 can be written as a convex

function of fα,β(x
(n−1)
i )−fα,β(x

(n)
c ) over the range α,LF , β. Hence, we can use the

Ishikawa construct (Ishikawa, 2003) to minimise the swap move energy to find

the optimal move. A similar proof can be constructed for the range-expansion

2Exactly these reparameterised potentials, over this ordered range, are illustrated in matrix
form in (3.11).
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move described above.

The above defined move algorithm gives improved solutions for the hierarchi-

cal energy function used for formulating the object segmentation problem. We

can improve further upon this algorithm. Our novel construction for computing

the optimal moves explained in the following section, is based upon the original

energy function (before reparameterisation) and has a strong transformational

optimality property. We first describe the construction of a three label range

move over the hierarchical network, and then show in section 3.5.2 that under a

set of reasonable assumptions, our methods are equivalent to a swap or expansion

move that exactly minimises the equivalent higher order energy defined over the

base variables E(x(1)) of the hierarchical network (as defined in (3.8)).

3.5.1 Construction of the Range Move

We now explain the construction of the submodular quadratic pseudo Boolean

(qpb) move function for range expansion. The construction of the swap based

move function can be derived from this range move.

In essence, we demonstrate that the cost function of (3.12) over the range

xc ∈ {β, LF , α}, xi ∈ {δ, LF , α} where β may or may not equal δ is expressible as

a submodular qpb potential. To do this, we create a qpb function defined on 4

variables c1, c2, i1 and i2. We associate the states i1 = 1, i2 = 1 with xi taking

state α, i1 = 0, i2 = 0 with the current state of xi = δ, and i1 = 1, i2 = 0 with

state LF . We prohibit the state i1 = 0, i2 = 1 by incorporating the pairwise term

∞(1− i1)i2 which assigns an infinite cost to the state i1 = 0, i2 = 1, and do the

same respectively with xc and c1 and c2. To simplify the resulting equation, we

write I instead of ∆(β 6= δ), and k as a substitute for ψi,c(α, δ) = kic following
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(3.12) then:

ψi,c(xi, xc) = k ((1− I)c2(1− i2) + Ic2 + (1− c1)i1) (3.23)

over the range xc ∈ {β, LF , α}, xi ∈ {δ, LF , α}.

The proof follows from inspection of the function. Below we tabulate the

possible inputs and outputs to allow easy comparison.

xi=δ
i1=1,i2=1

xi=LF
i1=1,i2=0

xi=α
i1=0,i2=0

xc=β
c1=1,c2=1 kI k ((1− I) + I) k ((1− I) + I)

xc=LF
c1=1,c2=0 0 0 0

xc=α
c1=0,c2=0 k k 0

(3.24)

Note that c2 = 1 if and only if xc = β while c1 = 0 if and only if c = α. If

xc = LF then c2 = 0 and c1 = 1 and the cost is always 0. If xc = α the first two

terms take cost 0, and the third term has a cost of k associated with it unless

xi = α. Similarly, if xc = β there is a cost of k associated with it, unless xi also

takes label β. �

3.5.2 Optimality

Note that both variants of unordered range moves are guaranteed to find the

global optimum if the label space of x(1) contains only two states. This is not

the case for the standard forms of α expansion or αβ swap as auxiliary variables

may take one of three states.

Transformational optimality Consider an energy function defined over the

variables x = {x(h), h ∈ {1, 2, . . . , H}} of a hierarchy with H levels. We call a

move making algorithm transformationally optimal if and only if any proposed
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move (x∗,xa) satisfies the property:

E(x∗) = E ′(x∗) + Ea(x∗,xa). (3.25)

where xa =
⋃
h∈2,...,H x

(h)
∗ represents the labelling of all auxiliary variables in

the hierarchy. Note that any move proposed by transformationally optimal algo-

rithms minimises the original higher order energy (3.8). We now show that when

applied to hierarchical networks, the range moves are transformationally optimal.

Move Optimality To guarantee transformational optimality we need to con-

strain the set of higher order potentials. Consider a clique c with an associated

auxiliary variable x
(i)
c . Let xl be a labelling such that x

(i)
c = l ∈ L and xLF be a

labelling that differs from it only in that the variable x
(i)
c takes label LF . We say

a clique potential is hierarchically consistent only if it satisfies the constraint:

E(xl) ≥ E(xLF ) =⇒
∑

i∈c k
i
c∆(xi = l)∑
i∈c k

i
c

> 0.5. (3.26)

The property of hierarchical consistency is also required in computer vision for

the cost associated with the hierarchy to remain meaningful. The labelling of

an auxiliary variable within the hierarchy should be reflected in the state of the

clique associated with it. If an energy is not hierarchically consistent, it is possible

that the optimal labelling of regions of the hierarchy will not reflect the labelling

of the base layer.

To understand why this consistency is important, we consider a case where

this is violated. Consider a simple energy function consisting of a base layer of 10

pixels x(1) and only one clique, with associated auxiliary variable xc, defined over

the base layer. We assume that all the pixels in the base layer wish to belong to

one class sheep while the higher order potential defined over the clique expresses

a preference for class cow.
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More formally we set:

ψi(xi) =


2 if xi = sheep

0 if xi = cow

∀xi ∈ x(1) (3.27)

φc(xc) =


0 if xc = sheep

20 if xc = cow

20 if xc = LF

(3.28)

And we define the pairwise terms between the clique variables as

φc,i(xc, xi) =


1 if xc 6= LF ∧ xc 6= xi

0 otherwise.

(3.29)

For simplicity, we set all pairwise terms within the base layer to 0, and disregard

them. Then a minimal labelling of the solution occurs when, xi = cow ∀xi ∈ x(1)

and xc = sheep. This labelling is incoherent, insomuch as we believe at the base

scale that a region is cow, and at a coarser scale that the same region is sheep.

Our requirement of hierarchical consistency prohibits such solutions by insisting

that the minimal cost labelling of higher levels in the hierarchy, give an fixed

labelling of the base layer, must correspond to either the dominant label in base

layer, or to the label LF .

The constraint (3.26) is enforced by construction, weighting the relative mag-

nitude of ψi(l) and ψi,j(bj, x
(i)
c ) to guarantee that:

ψi(l) +
∑
j∈Ni/c

max
bj∈L∪{Lf}

ψi,j(bj, x
(i)
c ) < 0.5

∑
i∈c

ki∀l ∈ L. (3.30)

If this holds, in the degenerate case where there are only two levels in the hierar-
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chy, and no pairwise connections between the auxiliary variables, our network is

exactly equivalent to the P n model.

At most one l ∈ L at a time can satisfy (3.26), assuming the hierarchy is

consistent. Given a labelling for the base layer of the hierarchy x(1), an optimal

labelling for an auxiliary variable in x(2) associated with some clique must be one

of two labels: LF and some l ∈ L. By induction, the choice of labelling of any

clique in x(j) : j ≥ 2 must also be a decision between at most two labels: LF and

some l ∈ L.

3.5.3 Transformational Optimality under Unordered Range

Moves

Swap range moves

Swap based optimality requires an additional constraint to that of (3.26), namely

that there are no pairwise connections between variables in the same level of the

hierarchy, except in the base layer. From (3.7) if an auxiliary variable xc may

take label γ or LF , and one of its children xi|i ∈ c take label δ or LF , the cost

associated with assigning label γ or LF to xc is independent of the label of xi

with respect to a given move.

Under a swap move, a clique currently taking label δ 6∈ {α, β} will continue

to do so. This follows from (2.2) as the cost associated with taking label δ is

only dependent upon the weighted average of child variables taking state δ, and

this remains constant. Hence the only clique variables that may have a new

optimal labelling under the swap are those currently taking state α,LF or β, and

these can only transform to one of the states α,LF or β. As the range moves map

exactly this set of transformations, the move proposed must be transformationally

optimal, and consequently the best possible αβ swap over the energy (3.1).
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Expansion Moves

In the case of a range-expansion move, we can maintain transformational opti-

mality while incorporating pairwise connections into the hierarchy — provided

condition (3.26) holds, and the energy can be exactly represented in our submod-

ular moves.

In order for this to be the case, the pairwise connections must be both convex

over any range α,LF , β and a metric. The only potentials that satisfy this are

linear over the ordering α,LF , β ∀α, β. Hence all pairwise connections must be

of the form:

ψi,j(xi, xj) =


0 if xi = xj

λ/2 if xi = LF or xj = LF and xi 6= xj

λ otherwise.

(3.31)

where λ ∈ R+
0 . By lemma 1, it can be readily seen that the connections in the

hierarchical network are a constrained variant of this form.

A similar argument to that of the optimality of αβ swap can be made for

α-expansion. As the label α is ‘pushed’ out across the base layer, the optimal

labelling of some x(n) where n ≥ 2 must either remain constant or transition

to one of the labels LF or α. Again, the range moves map exactly this set of

transforms and the suggested move is both transformationally optimal, and the

best expansion of label α over the higher order energy of (3.8).

3.6 Experiments

We evaluate α-expansion, αβ swap, trw-s, Belief Propagation, Iterated Condi-

tional Modes, and both the expansion and swap based variants of our unordered

range moves on the problem of object class segmentation over the MSRC data-
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Method Best E(meth)− E(min) E(meth)
E(min)

Time

Range-exp 265 75 1.000 6.1s
Range-swap 137 9034 1.059 20s
α-expansion 109 256 1.002 6.3s

αβ swap 42 9922 1.060 42s
trw-s 12 38549 1.239 500s

bp 6 13456 1.081 120s
icm 5 45955 1.274 25s

Figure 3.1: Comparison of methods on 295 testing images. From left to
right the columns show the number of times they achieved the best energy (in-
cluding ties), the average difference (E(method) − E(min)), the average ratio
(E(method)/E(min)) and the average time taken. All three approaches proposed
in this chapter: α-expansion under the reparameterisation of section 3.5, and the
transformationally optimal range expansion and swap significantly outperformed
existing inference methods both in speed and accuracy. See figures 3.2 3.3 for
individual examples.

set (Shotton et al., 2006), in which each pixel within an image must be assigned

a label representing its class, such as grass, water, boat or cow. We express the

problem as a three layer hierarchy. Each pixel is represented by a random variable

of the base layer. The second layer is formed by performing multiple unsupervised

segmentations over the image, and associating one auxiliary variable with each

segment - note that this use of several hierarchies results in overlapping segments.

The children of each of these variables in x(2) are the variables contained within

the segment, and pairwise connections are formed between adjacent segments.

The third layer is formed in the same manner as the second layer by clustering

the image segments. Further details are given in Ladicky et al. (2009).

We tested each algorithm on 295 test images, with an average of 70,000 pix-

els/variables in the base layer and up to 30,000 variables in a clique, and ran them

either until convergence, or for a maximum of 500 iterations. In the table in figure

3.1 we compare the final energies obtained by each algorithm, showing the num-

ber of times they achieved an energy lower than or equal to all other methods, the

average difference E(method) − E(min) and average ratio E(method)/E(min).

65



Empirically, the message passing algorithms trw-s and bp appear ill-suited to

inference over these dense hierarchical networks. In comparison to the graph cut

based move making algorithms, they had higher resulting energy, higher memory

usage, and exhibited slower convergence.

While it may appear unreasonable to test message passing approaches on

hierarchical energies when higher order formulations such as (Komodakis and

Paragios, 2009; Potetz and Lee, 2008) exist, we note that for the simplest hierar-

chy that contains only one additional layer of nodes and no pairwise connections

in this second layer, higher order and hierarchical message-passing approaches

will be equivalent, as inference over the trees that represent higher order po-

tentials is exact. Similar relative performance by message passing schemes was

observed in these cases. Further, application of such approaches to the general

form of (3.8) would require the computation of the exact min-marginals of E(2),

a difficult problem in itself.

In all tested images both α-expansion variants outperformed trw-s, bp and

icm. These later methods only obtained minimal cost labellings in images in

which the optimal solution found contained only one label i.e. they were entirely

labelled as grass or water. The comparison also shows that unordered range move

variants usually outperform vanilla move making algorithms. The higher number

of minimal labellings found by the range-move variant of αβ swap in comparison

to those of vanilla α-expansion can be explained by the large number of images in

which two labels strongly dominate, as unlike standard α-expansion both range

move algorithms are guaranteed to find a global optimum of such a two label sub-

problem (see section 3.5.2). The typical behaviour of all methods alongside the

lower bound of trw-s can be seen in figure 3.1 and further, alongside qualitative

results, in figures 3.2, 3.3, and 3.4.
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Figure 3.2: Best Viewed in Colour. This figure shows additional quantitative
results taken from the msrc data set (Shotton et al., 2006). Dashed lines indicate
the final converged solution. The slow convergence and poor solutions found by
trw and bp are to be expected given the large number of cycles present in the
graph. Of the remaining move making schemes, the relatively weak performance
of αβ-swap and icm is in line with the restricted space of moves available to them.
While the three methods derived in this chapter significantly outperform all other
approaches, range α expansion reliably dominates. Over the page, qualitative
results are shown.
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image

range α-expansion

range α− β-swap

α-expansion

Figure 3.3: Best Viewed in Colour. Qualitative results on typical images from
the msrc data set (Shotton et al., 2006). The improvements provided by the three
approaches proposed in this chapter can be seen above, and the other approaches
over the page. As with the quantitative results, the new approaches are a signif-
icant improvement over the old methods, both in correct object boundaries, and
in the elimination of small classes from the image. As before, range α expansion
provides a consistent improvement over the other two approaches.
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BP
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Figure 3.4: Best Viewed in Colour. Qualitative results on typical images from
the msrc data set (Shotton et al., 2006) using pre-existing approaches.Please
compare with figure 3.3, to see the benefits of our approach.
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3.7 Conclusion

This chapter shows that higher order amns are intimately related to pairwise

hierarchical networks. This observation allowed us to characterise higher order

potentials which can be solved under a novel reparameterisation using conven-

tional move making expansion and swap algorithms, and derive bounds for such

approaches. We also gave a new transformationally optimal family of algorithms

for performing efficient inference in higher order amn that inherits such bounds.

We have demonstrated the usefulness of our algorithms on the problem of

object class segmentation where they have been shown to outperform state of the

art approaches over challenging data sets (Ladicky et al., 2009) both in speed and

accuracy. We believe that similar improvements can be achieved for many other

higher order labelling problems both in computer vision and machine learning in

general.
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Chapter 4

Inference with Co-occurrence

Statistics

4.1 Overview

The Markov and Conditional random fields (crfs) used in computer vision typi-

cally model only local interactions between variables, as this is generally thought

to be the only case that is computationally tractable. In this paper we consider

a class of global potentials defined over all variables in the crf. We show how

they can be readily optimised using standard graph cut algorithms at little extra

expense compared to a standard pairwise field.

This result can be directly used for the problem of class based image segmen-

tation which has seen increasing recent interest within computer vision. Here the

aim is to assign a label to each pixel of a given image from a set of possible object

classes. Typically these methods use random fields to model local interactions

between pixels or super-pixels. One of the cues that helps recognition is global

object co-occurrence statistics, a measure of which classes (such as chair or mo-

torbike) are likely to occur in the same image together. There have been several

approaches proposed to exploit this property, but all of them suffer from differ-
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ent limitations and typically carry a high computational cost, preventing their

application on large images. We find that the new model we propose produces

an improvement in the labelling compared to just using a pairwise model.

4.2 Introduction

Class based image segmentation is a highly active area of computer vision research

as shown by a spate of recent publications (Heitz, 2008; Rabinovich et al., 2007;

Shotton et al., 2006; Torralba et al., 2003; Yang et al., 2007). In this problem,

every pixel of the image is assigned a choice of object class label, such as grass,

person, or dining table. Formulating this problem as a likelihood, in order to

perform inference, is a difficult problem, as the cost or energy associated with

any labelling of the image should take into account a variety of cues at different

scales. A good labelling should take account of: low-level cues such as colour or

texture (Shotton et al., 2006), that govern the labelling of single pixels; mid-level

cues such as region continuity, symmetry (Ren et al., 2005) or shape (Borenstein

and Malik, 2006) that govern the assignment of regions within the image; and

high-level statistics that encode inter-object relationships, such as which objects

can occur together in a scene. This combination of cues makes for a multi-scale

cost function that is difficult to optimise.

Current state of the art low-level approaches typically follow the methodology

proposed in Texton-boost (Shotton et al., 2006), in which weakly predictive fea-

tures such as colour, location, and texton response are used to learn a classifier

which provides costs for a single pixel taking a particular label. These costs are

combined in a contrast sensitive Conditional Random Field crf (Lafferty et al.,

2001).

The majority of mid-level inference schemes (Russell et al., 2006; Larlus and

Jurie, 2008) do not consider pixels directly, rather they assume that the image has
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been segmented into super-pixels (Comaniciu and Meer, 2002; Felzenszwalb and

Huttenlocher, 2004; Shi and Malik, 2000). A labelling problem is then defined

over the set of regions. A significant disadvantage of such approaches is that

mistakes in the initial over-segmentation, in which regions span multiple object

classes, cannot be recovered from.

These approaches can be improved by the inclusion of costs based on high

level statistics, including object class co-occurrence, which capture knowledge of

scene semantics that humans often take for granted: for example the knowledge

that cows and crocodiles are not kept together and less likely to appear in the

same image; or that motorbikes are unlikely to occur near televisions. In this

paper we consider object class co-occurrence to be a measure of how likely it is

for a given set of object classes to occur together in an image. They can also

be used to encode scene specific information such as the facts that computer

monitors and stationery are more likely to occur in offices, or that trees and grass

occur outside. The use of such costs can help prevent some of the most glaring

failures in object class segmentation, such as the labelling of a boat surrounded

by water mislabelled as a book.

As well as penalising strange combinations of objects appearing in an image,

co-occurrence potentials can also be used to impose a minimum description length

(MDL) prior, that encourages a parsimonious description of an image using fewer

labels. As discussed eloquently in the recent work (Choi et al., 2010), the need for

a bias towards parsimony becomes increasingly important as the number of classes

to be considered increases. Figure 4.1 illustrates the importance of co-occurrence

statistics in image labelling.

The promise of co-occurrence statistics has not been ignored by the vision com-

munity. Rabinovich et al. (2007) proposed the integration of such co-occurrence

costs that characterise the relationship between two classes. Similarly Torralba

et al. (2003) proposed scene-based costs that penalised the existence of particular
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(a) (b) (c) (a) (b) (c)

Figure 4.1: Best viewed in colour: Qualitative results of object co-occurrence
statistics. (a) Typical images taken from the MSRC data set (Shotton et al.,
2006); (b) A labelling based upon a pixel based random field model (Ladicky
et al., 2009) that does not take into account co-occurrence; (c) A labelling of
the same model using co-occurrence statistics. The use of co-occurrence statistics
to guide the segmentation results in a labelling that is more parsimonious and
more likely to be correct. These co-occurrence statistics suppress the appearance
of small unexpected classes in the labelling. Top left: a mistaken hypothesis of a
cow is suppressed Top right: Many small classes are suppressed in the image of
a building. Note that the use of co-occurrence typically changes labels, but does
not alter silhouettes.
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classes in a context dependent manner. We shall discuss these approaches, and

some problems with them in the next section.

4.3 CRFs and Co-occurrence

To model object class co-occurrence statistics a new term K(x) is added to the

cost function of 2 (2.8) :

E(x) =
∑

ψc(xc) +K(x). (4.1)

The question naturally arises as to what form an energy involving co-occurrence

terms should take. We now list a set of desiderata that we believe are intuitive

for any co-occurrence cost.

(i) Global Energy: We would like a formulation of co-occurrence that allows us

to estimate the segmentation using all the data directly, by minimising a single

cost function of the form (4.1). Rather than any sort of two stage process in

which a hard decision is made of which objects are present in the scene a priori

as in (Torralba et al., 2003).

(ii) Invariance: The co-occurrence cost should depend only on the labels

present in an image, it should be invariant to the number and location of pixels

that object occupies. To reuse an example from (Toyoda and Hasegawa, 2008),

the surprise at seeing a polar bear in a street scene should not not vary with the

number of pixels that represent the bear in the image.

(iii) Efficiency: Inference should be tractable, i.e. the use of co-occurrence

should not be the bottle-neck preventing inference. As the memory requirements

of any conventional inference algorithm (Szeliski et al., 2006) is typically O(|V|)

for vision problems, the memory requirements of a formulation incorporating

co-occurrence potentials should also be O(|V|).
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(iv) Parsimony: The cost should follow the principle of parsimony in the

following way : if several solutions are almost equally likely then the solution

that can describe the image using the fewest distinct labels should be chosen.

Whilst this might not seem important when classifying pixels into a few classes,

as the set of putative labels for an image increases the chance of speckle noise due

to mis-classification will increase unless a parsimonious solution is encouraged.

While these properties seem uncontroversial, no prior work exhibits property

(ii). Similarly, no approaches satisfy properties (i) and (iii) simultaneously. In

order to satisfy condition (ii) the co-occurrence cost K(x) defined over x must

be a function defined on the set L(x) = {l ∈ L : ∃xi = l} of labels used in the

labelling x; this guarantees invariance to the size of an object:

K(x) = C(L(x)) (4.2)

Adding the co-occurrence term to the crf cost function (1.22), we have:

E(x) =
∑
c∈C

ψc(xc) + C(L(x)). (4.3)

To satisfy the parsimony condition (iv) potentials must act to penalise the

unexpected appearance of combinations of labels in a labelling. This observation

can be formalised as the statement that the cost C(L) is monotonically increasing

with respect to the label set L i.e.:

L1 ⊂ L2 =⇒ C(L1) ≤ C(L2). (4.4)

The new potential C(L(x)) can be seen as a particular higher order potential

defined over a clique which includes the whole of V , i.e. ψV (x).
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4.3.1 Prior Work

There are two existing approaches to co-occurrence potentials, neither of which

use potentials defined over a clique of size greater than two. The first makes

an initial hard estimate of the type of scene, and updates the unary potentials

associated with each pixel to encourage or discourage particular choices of label,

on the basis of how likely they are to occur in the scene. The second approach

models object co-occurrence as a pairwise potential between regions of the image.

Torralba et al. (2003) proposed the use of additional unary potentials to cap-

ture scene based occurrence priors. Their costs took the form:

K(x) =
∑
i∈V

φ(xi). (4.5)

While the complexity of inference over such potentials scales linearly with the size

of the graph, they are prone to over counting costs, violating (ii), and require

an initial hard decision of scene type before inference, which violates (i). As it

encourages the appearance of all labels which are common to a scene, it does not

necessarily encourage parsimony (iv).

A similar approach was seen in the Pascal VOC2008 object segmentation

challenge, where the best performing method, by (Csurka and Perronnin, 2008),

worked in two stages. Initially the set of object labels present in the image was

estimated, and in the second stage, a label from the estimated label set was

assigned to each image pixel. As no cost function K(·) was proposed, it is open

to debate if it satisfied (ii) or (iv).

Rabinovich et al. (2007); Galleguillos et al. (2008), and independently Toyoda

and Hasegawa (2008), proposed co-occurrence as a soft constraint that approxi-

mated C(L(x)) as a pairwise cost defined over a fully connected graph that took
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Method
Global energy

(i)
Invariance

(ii)
Efficiency

(iii)
Parsimony

(iv)

Unary 3 7 3 7
Pairwise 3 7 7 3
Hard decisions 7 — 3 —
Our approach 3 3 3 3

Figure 4.2: A comparison of the capabilities of existing image co-occurrence for-
mulations (Unary (Torralba et al., 2003), Pairwise (Rabinovich et al., 2007; Gal-
leguillos et al., 2008; Toyoda and Hasegawa, 2008), Hard decision (Csurka and
Perronnin, 2008)) against our new approach. See section 4.3.1 for details.

the form:

K(x) =
∑
i,j∈V

φ(xi, xj), (4.6)

where φ was some potential which penalised labels that should not occur together

in an image. Unlike our model (4.3) the penalty cost for the presence of pairs

of labels, that rarely occur together, appearing in the same image grows with

the number of random variables taking these labels, violating assumption (ii).

While this serves as a functional penalty that prevents the occurrence of many

classes in the same labelling, it does not accurately model the co-occurrence

costs we described earlier. The memory requirements of inference scales badly

with the size of a fully connected graph. It grows with complexity O(|V|2) rather

than O(|V|) with the size of the graph, violating constraint (iii). Providing the

pairwise potentials are semi-metric1 (Boykov et al., 2001), it does satisfy the

parsimony condition (iv).

To minimise these difficulties, previous approaches defined variables over seg-

ments rather than pixels. Such segment based methods work under the assump-

tion that some segments share boundaries with objects in the image. This is

not always the case, and this assumption may result in dramatic errors in the

1Recall from chapter 1, that this a prerequisite for using standard graph-cuts algorithms
such as αβ-swap for inference.
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labelling. The relationship between previous approaches and the desiderata can

be seen in figure 4.2.

Two efficient schemes (Delong et al., 2010; Hoiem et al., 2007) have been pro-

posed for the minimisation of the number of classes or objects present in a scene.

While neither of them directly models class based co-occurrence relationships,

their optimisation approaches satisfy the desiderata proposed in 2.1.

Hoiem et al. (2007), proposed a cost based on the number of objects in the

scene, in which the presence of any instance of any object incurs a uniform penalty

cost. For example, the presence of both a motorbike and a bus in a single image

is penalised as much as the presence of two buses. Minimising the number of

objects in a scene is a good method of encouraging consistent labellings, but does

not capture any co-occurrence relationship between object classes.

If we view Hoiem’s work as assigning a different label to every instance of an

object class, their label set costs take the form:

C(L(x)) = k||L(x)|| (4.7)

In a recent work, appearing at the same time as ours, Delong et al. (2010) also

proposed the use of a soft cost over the number of labels present. In general their

approach allowed the imposition of a penalty cost if any elements of certain subset

are present in the image. They proposed using this cost to combine probabilistic

formulations such as Akaike’s Information Criterion, or the Bayesian Informa-

tion Criterion (Torr, 1998) with efficient graph cut based label assignment. The

general form of their costs is:

C(L(x)) =
∑
L⊆L

kL∆(L(x) ∩ L 6= ∅) (4.8)

Note that the costs of Delong et al. (2010) and Hoiem et al. (2007) both satisfy

79



the inequality:

C(L1 ∪ L2) ≤ C(L1) + C(L2), (4.9)

where L1 and L2 are any subsets of labels of L. Consequently, their models are

unable to express to co-occurrence potentials which say that certain classes, such

as the previously mentioned example of polar bear and street, are less likely to

occur together than in separate images.

4.4 Inference on global co-occurrence potentials

Consider the energy (4.3) defined in section 4.3. The inference problem becomes:

x∗ = arg minx∈L|V|
∑

c∈C ψc(xc) + C(L(x))

s.t. x ∈ L|V|, L(x) = {l ∈ L : ∃xi = l}. (4.10)

In this section we show that the problem of minimising this energy can be refor-

mulated as an integer program and solved using lp-relaxation. We will also show

how it can be transformed into pairwise energy by adding one auxiliary variable

connected to all pixels in the image and solved using Belief Propagation (Weiss

and Freeman, 2001) or trw-s (Kolmogorov, 2006). However, reparameterisation

methods such as these perform badly on densely connected graphs (see previous

chapter, section 3.6 and Kolmogorov and Rother (2006)). We show that the prob-

lem can be solved efficiently using move-making αβ-swap and α-expansion moves

(Boykov et al., 2001), where the number of additional edges of the graph grows

linearly with the number of variables in the graph. In contrast to (Rabinovich

et al., 2007), these algorithms can be applied to large graphs with more than

200, 000 variables.
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4.4.1 The Integer Programming formulation, and its Lin-

ear Relaxation

In the following two subsections, we make the simplifying assumption that the

cost (1.22) is currently represented as a pairwise energy. The minimisation of the

energy function (4.3) can be formulated as an Integer Program (ip) (Wainwright

et al., 2002; Schlesinger, 1976). A vector z of binary indicator variables is used

to represent the assignment of labels. z is composed of two sets of variables (i)

zi;a∀a ∈ L,∀i ∈ V , and (ii) zij;ab∀a, b ∈ L, (i, j) ∈ E where E is the set of edges,

to represent the state of variables xi, xj such that:

zi;a =


1 if xi = a

0 otherwise

, zij;ab =


1 if xi = a and xj = b

0 otherwise.

(4.11)

In addition z contains a further set zL, indicator variables that show which subset

of labels L(x) is used in the assignment. There are 2|L| such variables in total,

one variable zL for every L ⊆ L. We write:

zL =


1 if L = L(x)

0 otherwise.

(4.12)

Thus, z is a binary vector of length |V| · |L| + |E| · |L|2 + 2|L|. The resulting ip

can be written as:

min
z

∑
i∈V,a∈L

ψi(a)zi;a +
∑

(i,j)∈E,a,b∈L

ψi,j(a, b)zij;ab +
∑
L⊆L

C(L)zL (4.13)
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such that:

∑
a

zij;ab = zj;b, ∀(i, j) ∈ E , b ∈ L, (4.14)

∑
b

zij;ab = zi;a, ∀(i, j) ∈ E , a ∈ L, (4.15)

∑
a

zi;a = 1, ∀i ∈ V , (4.16)

∑
L3a

zL ≥ zi;a, ∀i ∈ V , a ∈ L, L ⊆ L (4.17)

∑
L∈L

zL = 1 (4.18)

zi;a, zij;ab, zL ∈ {0, 1} ∀i ∈ V ,∀(i, j) ∈ E ,∀a, b ∈ L, ∀L ⊆ L. (4.19)

The marginal consistency and uniqueness constraints (4.14 - 4.16) are well-known

and used in the standard ip formulation of the labelling problem (Komodakis

et al., 2007; Kumar and Torr, 2008a; Wainwright et al., 2005; Werner, 2005). To

enforce the consistency between labelling and the label set indicator variables

zL (4.12), two new properties which we refer to as “inclusion” and “exclusion”

properties must be satisfied. The exclusion property which ensures that if zL = 1,

no variable takes a label not present in L, is enforced by the exclusion constraints

(4.17). While, the inclusion property guarantees that if zL = 1, then for each

label l ∈ L there exists at least one variable zi;l such that zi;l = 1, is enforced by

parsimony. To see why this is the case, consider a contra-positive solution where

there is a label l ∈ L not present in the solution. In this case, the solution z

altered by zL = 0 and zL\{l} = 1 would also satisfy all constraints (4.25 - 4.17)

and due to the parsimony property would have the same or lower cost function

4.13). Thus, there exists a global optimum satisfying zL = 1 such that L(x) = L.

The final constraint (4.19) ensures that all indicator variables are binary.
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The inclusion property can also be explicitly enforced by the set of constraints:

∑
i∈V

zi;a ≥ zL, ∀a ∈ L ⊆ L. (4.20)

In this case the formulation would be applicable also to co-occurrence potentials

not satisfying the parsimony property. However, this would simply encourage

degenerate solutions in which only one pixel takes a particular label.

The ip can be converted to a linear program (lp) by relaxing the integral

constraints (4.19) to

zi;a, zij;ab, zL ∈ [0, 1]∀i ∈ V ,∀(i, j) ∈ E ,∀a, b ∈ L,∀L ⊆ L. (4.21)

The resulting linear program can be solved using any general purpose lp solver,

and an integer solution can be induced using rounding schemes such as those of

Kleinberg and Tardos (1999). While this approach allows co-occurrence to be

computed effectively for small images, over large images the memory and time

requirements of standard lp solvers make this approach infeasible.

In many practical cases the co-occurrence cost C(L) is defined as the sum

over costs kL for co-occurrence of subsets of labels, for example all pairs of labels.

The cost kL for each subset is taken if all the labels L are present in an image.

C(L) =
∑
B⊆L

kB, (4.22)

where kB ≥ 0. In general any cost C(L) can be decomposed uniquely into the

sum over subsets recursively as:

kB = C(B)−
∑
B′⊂B

kB′ , (4.23)

however some coefficients kB may become negative. We show, that in the case of
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the co-occurrence cost defined as a sum over costs for low-order subset of labels,

we can remove the exponential complexity of the linear program on the number

of labels. In this case we will need one variable zL for each subset, which is either

of the cardinality 1 or has a nonzero cost kL > 0. The variable zL will be set if

all the labels in L are present in an image (See 4.12 for formal definition). In this

case, the linear program becomes:

min
z

∑
i∈V,a∈L

ψi(a)zi;a +
∑

(i,j)∈E,a,b∈L

ψi,j(a, b)zij;ab +
∑
L⊆L

k(L)zL (4.24)

such that the standard lp constraints (4.14 - 4.16) hold:

∑
a zij;ab = zj;b, ∀(i, j) ∈ E , b ∈ L, (4.25)∑
b zij;ab = zi;a, ∀(i, j) ∈ E , a ∈ L, (4.26)∑

a zi;a = 1, ∀i ∈ V , (4.27)

and

z{a} ≥ zi;a, ∀i ∈ V , a ∈ L (4.28)

zL ≥
∑

a∈L z{a} − |L|+ 1, ∀L ⊆ L, |L| ≥ 2 (4.29)

zi;a, zij;ab, zL ∈ [0, 1] ∀i ∈ V , ∀(i, j) ∈ E ,

∀a, b ∈ L, ∀L ⊆ L. (4.30)

The constraints (4.28) guarantee that z{a} = 1 if the label a is present in an

image. The constraints (4.29) enforce that for all L with cardinality larger than

two, zL = 1 if all labels in L are present in an image. In many practical cases,

when the cost is defined as a sum over costs for each label as in (Delong et al.,

2010), or each pair of labels, this lp program becomes feasible for standard lp

solvers.

We next show that, the higher order energy (4.3) can be transformed into a
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pairwise energy function with the addition of a single auxiliary variable L that

takes 2|L| states.

4.4.2 Pairwise Representation of Co-occurrence Potentials

The optimisation of the energy (4.3) is equivalent to the pairwise energy function

with co-occurrence cost represented using one auxiliary variable z that takes a

label from the set of subsets: z ∈ 2L. The unary potential for this auxiliary

variable is equal to the corresponding co-occurrence cost:

ψu(z) = C(z) ∀z ∈ 2L. (4.31)

The exclusion property is enforced by using a sufficiently large pairwise cost

K →∞ for each pair of inconsistent labelling of pixel xi ∈ x and z as:

ψp(xi, z) = K∆(xi /∈ z) ∀xi ∈ x. (4.32)

The inclusion property is implicitly encoded in a similar way to the ip formulation

as it arises naturally in the usual solutions due to the parsimony. If z = L and

there was a label l ∈ L such that ∀xi ∈ x : xi 6= l, then the solution with

z = L \ {l} would have the same or lower cost E(x).

This formulation allows us to use any approach from the wide body of standard

inference techniques (Boykov et al., 2001; Kolmogorov, 2006; Szeliski et al., 2006)

to minimise this function. However, the complexity grows exponentially with

the size of the label set. In the case in which the costs can also be decomposed

into the sum of positive co-occurrence costs for low-order subsets, the exponential

dependency on the size of label set can be removed. The new pairwise formulation

contains one variable zL for each subset with non-zero cost kL > 0. It takes any

label l ∈ L, which is currently not present in an image, or label ∅ if all labels
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l ∈ L are present in an image. The unary potential for all auxiliary variables is

equal to the corresponding co-occurrence cost, if all labels l ∈ L are present in

an image:

ψu(zL) = k(L)∆(zL = ∅) ∀L ⊆ L. (4.33)

The consistency of the state of zL with the labelling on an image is enforced

by using a sufficiently large pairwise cost K → ∞ for each pair of inconsistent

labelling of pixel xi ∈ x and zL as:

ψp(xi, zL) = K∆(zL = l)∆(xi = l) ∀xi ∈ x, L ⊆ L. (4.34)

Local minima of this pairwise graph can be found using the message passing

algorithms designed for general pairwise graphs, described in chapter 3. However,

in our experiments (section 4.5) such message passing algorithms did not perform

as effectively as the graph cut based algorithm we describe next.

4.4.3 αβ-Swap Moves

We now prove that optimal swap moves can be computed for the relaxed energy

(4.21), where the swap moves considered will exchange α and β in x and simul-

taneously find the optimal choice of zL. We will use the notation A \ B to refer

to the subset of A that contains all the elements of A which are not in B.

Consider a swap move over the labels α and β, and starting from an initial

set of labels L(x). We write

Lα,β = L(x) ∪ {α, β}. (4.35)
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Figure 4.3: The graph constructs used in swap inference. Each column repre-
sents the state of a different random variable. Left: The Ishikawa construction
associated with swap inference, where the cutting of certain edges correspond to
proposed moves. Bi-directional edges that can not be broken in either direction
are marking in bold. Right: The reduced graph built by merging nodes connected
by unbreakable edges in both directions, and the final weights. This is the graph
ultimately solved to compute a swap move. See section 4.4.3.

We assume that either α or β is present in the image2. Then, after a swap move

the set of labels present must be an element of S which we define as

S = {Lα,β \ {β}, Lα,β \ {α}, Lα,β} . (4.36)

Consequently, if we can represent a move that swaps the labels belonging to the

variables in x that currently take labels α or β, while allowing zL to vary over

S, we can exactly compute optimal swap moves in the relaxation of the original

energy (4.3).

Following the work of Ishikawa (2003) we note that the cost of the moves

considered can be exactly represented as a submodular energy if there is an

ordering o of the set S ′ = S ∪ {α, β}, such that the pairwise cost φ between

any two nodes is convex, i.e. it satisfies φ(x1, x2) = g(o(x1) − o(x2)), where

x1, x2 ∈ X∪ zL, o is a function mapping from S ′ to N and g is a convex function.

2If this is not the case, no swap move is possible.

87



Figure 4.4: Illustration of the function g(·).

This approach has been used in the works (Kumar and Torr, 2008a; Veksler, 2007)

that made use of an explicitly defined order over the set of all labels. However,

unlike their approaches, our choice of ordering will change with every considered

move, in the same way as we performed transformationally optimal moves in the

previous chapter.

Such an ordering, and convex function exist, as we now show: To model the

pairwise edges between the auxiliary variable zL and the variables denoting pixels

in the image, we define o as follows

o(x) =



0 if x = α

1 if x = Lα,β \ {β}

2 if x = Lα,β

3 if x = Lα,β \ {α}

4 if x = β

(4.37)

and g as

g(y) =


0 if |y| ≤ 2

λ(|y| − 2) otherwise.

(4.38)

By inspection g is convex (see figure 4.4), and

88



g(o(zL)− o(xi)) =


λ if xi 6∈ l

0 otherwise.

(4.39)

These are the costs we associated with the pairwise formulation in section

4.4.2. As the Ishikawa construction supports arbitrary unary costs we penalise

the states that should not occur (for example zL = β) with infinite cost unary

potentials.

Theorem 1. The resulting cost function is a pairwise submodular energy that

exactly specifies what moves are possible, their costs, and can be efficiently solved

using graph-cuts. Consequently the problem of proposing an optimal αβ swap is

exactly solvable.

The full graph construct can be seen in the left of figure 4.3.

To simplify inference we perform an additional reduction step after construct-

ing the graph. In the Ishikawa construct many nodes are connected by unbreak-

able edges that prevent certain states from occurring. By simply merging any

nodes connected in both directions by an unbreakable edge, we are able to sig-

nificantly reduce the computational overhead, both in terms of time taken and

memory requirements. Using this reduced form, if we let

Cα = C(Lα,β \ {β}) (4.40)

Cα,β = C(Lα,β) (4.41)

Cβ = C(Lα,β \ {α}) (4.42)

we can write the binary submodular function, from an initial state x, that gives

the cost of a swap move t, where t is a binary vector such that ti = 0 if xi = α
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and ti = 1 if xi = β as:3

E(t) = Φ(t) + min
z1,z2∈{0,1}

[
Cβz1 + Cα(1− z2) + Cαβ(1− z1)z2

+
∑

i∈V:xi∈{α,β}

λti(1− z2) +
∑

i∈V:xi∈{α,β}

λ(1− ti)z1

]
(4.43)

where Φ(x) is the cost of a standard swap move. This formulation, along with

it’s edge costs can be seen in the right of figure 4.3.

4.4.4 α Expansion

A similar approach, using an over-estimation of move costs can be used to define

α expansion type moves.

The cost C(L(x)) is, in general, a higher-order non-submodular energy, and

intractable. However, when proposing moves we can use the convex/concave

procedure (see figure 4.5) as described in (Narasimhan and Bilmes, 2005; Rother

et al., 2005) and over-estimate the cost of moving from the current solution.

We define a transformation vector t, which maps from a current labelling x

to a new labelling x′ and takes the value ti = 1 if xi = α and ti = 0 if xi = x′i.

Then our over-estimation Q(t) of the cost of a move needs two properties;

C(x) = Q(0) (4.44)

and

C(xt) ≤ Q(t). ∀t (4.45)

where xt is the new labelling induced by move t. That is Q(·) must be an upper

bound of C(·) over the range of moves considered, and this upper bound must

3There are two subtleties to be aware of here: (i) Variables in x which are not taking either
label α or β are unable to change label, and ignored in the transformation vector, and (ii) as
we are always able to find the optimal label of zL using only the current labelling of x, and
without prior knowledge of it’s previous state, we do not need to track what label it takes.
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Figure 4.5: The convex concave procedure (Yuille et al., 2002) is a move
making strategy for the optimisation of a non-convex or intractable function.
Given a function such as f(x) = x4−2x2 (top left), and a current location x = 0.5,
the function is decomposed into concave (−2x2) and convex (x4) components
(top right). We then replace the concave component with it’s tangent at x =
0.5 (bottom left) This tangent t(x) serves as an upper bound to the concave
function that is tight at x = 0.5. As such it satisfies the general inequality
f(x) = t(x) + x4 ≥ t(x′) + x′4 ≥ f(x′) where x′ is a global minima of the convex
function t(x) + x4. This means that moves made by minimising the convex
approximation t(x)+x4 of f(x) must also decrease the cost of f(x) and eventually
converge to a local minima. The same strategy is used in our formulation of α-
expansion where we conservatively over-estimate the cost of introducing a new
label α (assuming it is not already present) and under-estimate the benefit of
removing any other label. This conservative estimation forms an upper-bound of
the true cost function, guaranteeing convergence.
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be tight with respect to the current location x. If this is the case, then given the

optimal move t∗, of Q(·) the following inequality holds

C(x) = Q(0) ≥ Q(t∗) ≥ C(xt∗). (4.46)

If this property holds, repeatedly optimising over t for different choices of α must

decrease the cost C(x) and eventually converges. We choose our cost Q(t) as a a

sum of Φ(x), being the α-expansion moves proposed in the previous chapter, and

a new term P (t) which serves as an over-estimation of the label set cost C(L(x)).

kβ = min
l⊆L(x)

C(l)− C(l \ {β}) (4.47)

k′α =


0 if α ∈ L(x)

maxl⊆L(x) C(l) ∪ {α})− C(l) otherwise.

(4.48)

P (t) =
∑
β∈L(x)

[kβ∆(β ∈ L(xt)] + k′α∆(α ∈ xt) (4.49)

If kl is non-negative, the pairwise submodular energy is

E ′(t) = Φ(t) + min
z

∑
β∈A\{α}

[
k′β(1− zβ) +

∑
i∈V

λ(1− ti)zβ
]

(4.50)

+k′αzα
∑

i∈V:xi=β

λti(1− zα)

where λ is a sufficiently large positive value.

4.5 Experiments

We performed a controlled test evaluating the performance of crf models both

with and without co-occurrence potentials. As a base line we used the segment-

based crf and the associative hierarchical random field (ahrf) model proposed
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(a) (b) (c) (a) (b) (c)

Figure 4.6: Best viewed in colour: (a) Typical images taken from the voc-
2009 data set (Shotton et al., 2006); (b) A labelling based upon a pixel based
random field model (Ladicky et al., 2009) that does not take into account co-
occurrence; (c) A labelling of the same model using co-occurrence statistics. Note
that the co-occurrence potentials perform in a similar way across different data
sets, suppressing the smaller classes (see also figure 4.1) if they appear together
in an uncommon combination with other classes such as a car with a monitor, a
train with a chair or a dog with a bird. This results in a qualitative rather than
quantitative difference.

in discussed in chapter 2 and the inference method of chapter 3, which currently

offers state of the art performance on the msrc data set (Shotton et al., 2006). On

the voc data set, the baseline also makes use of the detector potentials of (Ladicky

et al., 2010b) also discussed in chapter 2. The costs C(L) were created from the

training set as follows: let M be the number of images, x(m) the ground truth

labelling of an image m and

z
(m)
l = ∆(l ∈ L(x(m))) (4.51)
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an indicator function for label l appearing in an image m. The associated cost

was trained as:

C(L) = −w log
1

M

(
1 +

M∑
m=1

∏
l∈L

z
(m)
l

)
, (4.52)

where w is an arbitrary weighting of the co-occurrence potential, tuned via cross-

validation. The form guarantees, that C(L) is monotonically increasing with

respect to L. To avoid over-fitting we approximated the potential C(L) as a

second order function:

C ′(L) =
∑
l∈L

cl +
∑

k,l∈L,k<l

ckl, (4.53)

where cl and clk minimise the mean-squared error

∑
L∈L

(C(L)− C ′(L))2 (4.54)

between C(L) and C ′(L).

On the msrc data set we observed a 3% overall and 4% average per class

increase in the recall and 6% in the intersection vs. union measure with the

of the segment-based crf and a 1% overall, 2% average per class and 2% in

the intersection vs. union measure with the ahrf 4.5. The comparison on the

voc2009 data set was performed on the validation set, as the test set is not

published and the number of permitted submissions is limited. Performance

improved by 3.5% in the intersection vs. union measure used in the challenge

(see table 4.2). The performance on the test set was 32.11% which is comparable

with current state-of-the-art methods.

By adding a co-occurrence cost into the crf we observe constant improvement

in pixel classification for almost all classes in all measures. In accordance with

desideratum (iv), the co-occurrence potentials tend to suppress uncommon com-

bination of classes and produce more coherent images in the labels space. This
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Segment CRF 77 64 70 95 78 55 76 95 63 81 76 67 72 73 82 35 72 17 88 29 62 45 17

Segment CRF with CO 80 68 77 96 80 69 82 98 69 82 79 75 75 81 85 35 76 17 89 25 61 50 22

Hierarchical CRF 86 75 81 96 87 72 84 100 77 92 86 87 87 95 95 27 85 33 93 43 80 62 17

Hierarchical CRF with CO 87 77 82 95 88 73 88 100 83 92 88 87 88 96 96 27 85 37 93 49 80 65 20

Table 4.1: Quantitative results on the MSRC data set, average per class recall
measure, defined as True Positives

True Positives + False Negatives
. Incorporation of co-occurrence po-

tentials led to a constant improvement for almost every class.

results in a qualitative rather than quantitative difference. Although the unary

potentials already capture textural context (Shotton et al., 2006), the incorpora-

tion of co-occurrence potentials leads to a significant improvement in accuracy.

It is not computationally feasible to perform a direct comparison between

the work (Rabinovich et al., 2007) and our potentials, as the ahrf model is

defined over individual pixels, and it is not possible to minimise the resulting fully

connected graph which would contain approximately 4 × 1010 edges. Similarly,

without their scene classification potentials it was not possible to do a like for

like comparison with (Torralba et al., 2003).

Average running time on the msrc data set without co-occurrence was 5.1s

in comparison to 16.1s with co-occurrence cost. On the voc2009 data set the

average times were 107s and 388s for inference without respectively with co-

occurrence costs. We compared the performance of α-expansion with lp re-

laxation using the solver given in Benson and Shanno (2007) for general co-

occurrence potential on the sub-sampled images. Both methods produced iden-

tical results in terms of energy, however α-expansion was approximately 42, 000

times faster.
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Table 4.2: Quantitative analysis of VOC2009 results on validation set, inter-
section vs. union measure, defined as True Positive

True Positive + False Negative + False Positive
. In-

corporation of co-occurrence potential led to labellings, which visually look more
coherent, but are not necessarily correct. Quantitatively the performance improved
significantly, on average by 3.5% per class.
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4.6 Conclusion

The importance of co-occurrence statistics is well established (Torralba et al.,

2003; Rabinovich et al., 2007; Csurka and Perronnin, 2008). In this work we

examined the use of co-occurrence statistics and how they can be efficiently in-

corporated into a global energy or probabilistic model such as a conditional ran-

dom field. We have shown how they can naturally be encoded by the use of

higher order cliques, without a significant computational overhead. Whilst the

performance improvements on current data sets are slight, we believe encoding

co-occurrence will become increasingly important in the future when, rather than

attempting to classify 20 classes in an image we have to classify 20, 000. Even

with a false positive rate of 1% this would still give 200 false positives per image,

co-occurrence information gives a natural way to tackle this problem.
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Chapter 5

Efficient Minimisation of Higher

Order Submodular Functions

using Monotonic Boolean

Functions

5.1 Overview

Submodular function minimisation is a key problem in a wide variety of appli-

cations in machine learning, economics, game theory, computer vision and many

others. The general solver has a complexity of O(n6+n5L) where L is the time re-

quired to evaluate the function and n is the number of variables (Orlin, 2007). On

the other hand, many useful applications in computer vision and machine learn-

ing applications are defined over a special subclasses of submodular functions in

which that can be written as the sum of many submodular cost functions defined

over cliques containing few variables. In such functions, the pseudo-Boolean (or

polynomial) representation (Boros and Hammer, 2002) of these subclasses are of

degree (or order, or clique size) k where k � n. In this work, we develop efficient
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algorithms for the minimisation of this useful subclass of submodular functions.

To do this, we define novel mapping that transform submodular functions of

order k into quadratic ones, which can be efficiently minimised in O(n3) time

using a max-flow algorithm. The underlying idea is to use auxiliary variables to

model the higher order terms and the transformation is found using a carefully

constructed linear program. In particular, we model the auxiliary variables as

monotonic Boolean functions, allowing us to obtain a compact transformation

using as few auxiliary variables as possible. Specifically, we show that our ap-

proach for fourth order function requires only 2 auxiliary variables in contrast to

30 or more variables used in existing approaches. In the general case, we give

an upper bound for the number or auxiliary variables required to transform a

function of order k using Dedekind number, which is substantially lower than the

existing bound of 22k .

5.2 Introduction

Many optimisation problems in several domains such as operations research, com-

puter vision, machine learning, and computational biology involve submodular

function minimisation. Submodular functions (See Definition 1) are discrete ana-

logues of convex functions (Lovász, 1983). Examples of such functions include

cut capacity functions, matroid rank functions and entropy functions. Submod-

ular function minimisation techniques may be broadly classified into two cate-

gories: efficient algorithms for general submodular functions and more efficient

algorithms for subclasses of submodular functions. This chapter falls under the

second category.

General solvers: The role of submodular functions in optimisation was first

discovered by Edmonds when he gave several important results on the related
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poly-matroids (Edmonds, 2003). Grötschel, Lovász and Schrijver first gave a

polynomial-time algorithm for minimisation of submodular function using ellip-

soid method (Grötschel et al., 1981). Recently several combinatoric and strongly

polynomial algorithms (Fleischer and Iwata, 2003; Iwata, 2002; Iwata et al., 2001;

Schrijver, 2000) have been developed based on the work of Cunningham (Cun-

ningham, 1985). The current best strongly polynomial algorithm for minimis-

ing general submodular functions (Orlin, 2007) has a run-time complexity of

O(n5L + n6), where L is the time taken to evaluate the function and n is the

number of variables. Weakly polynomial time algorithms with a smaller de-

pendence on n also exist. For example, to minimise the submodular function

f(x) the scaling algorithm of Iwata (Iwata, 2003) has a run-time complexity of

O(n4L + n5) logM . As before, L refers to the time required to compute the

function f and M refers to the maximum absolute value of the function f .

Specialised solvers: There has been much recent interest in the use of higher

order submodular functions for better modelling of computer vision and machine

learning problems (Kohli et al., 2007; Lan et al., 2006; Ishikawa, 2009). Such

problems typical involve millions of pixels making the use of general solvers highly

infeasible. Further, each pixel may take multiple discrete values and the conver-

sion of such a problem to a Boolean one introduces further variables. On the

other hand, the cost functions for many such optimisation algorithms belong to a

small subclass of submodular functions. The goal of this chapter is to provide an

efficient approach for minimising these subclasses of submodular functions using

a max-flow algorithm.

Definition 1. Submodular functions map f : BV → R and satisfy the following

condition:

f(X) + f(Y ) ≥ f(X ∨ Y ) + f(X ∧ Y ) (5.1)
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where X and Y are elements of Bn

In this chapter, we use a pseudo-Boolean polynomial representation for de-

noting submodular functions.

Definition 2. Pseudo-Boolean functions (pbf) take a Boolean vector as argu-

ment and return a real number, i.e. f : Bn → R. These can be uniquely expressed

as multi-linear polynomials i.e. for all f there exists a unique set of real numbers

{aS : S ∈ BN} :

f(x1, ..., xn) =
∑
S⊆V

aS(
∏
j∈S

xj), aS ∈ R, (5.2)

where a∅ is said to be the constant term.

The term order refers to the maximum degree of the polynomial. A submodu-

lar function of second order involving Boolean variables can be easily represented

using a graph such that the minimum cut, computed using a max-flow algorithm,

also efficiently minimises the function. However, max-flow algorithms can not

exactly minimise non-submodular functions or some submodular ones of an order

greater than 3 (Živný et al., 2009). There is a long history of research in solving

subclasses of submodular functions both exactly and efficiently using max-flow

algorithms (Billionnet and Minoux, 1985; Kolmogorov and Zabih, 2004; Hammer,

1965; Zalesky, 2003; Queyranne, 2002). In this chapter we propose a novel linear

programming formulation that is capable of definitively answering this question:

given any pseudo Boolean function, it can derive a quadratic submodular formu-

lation of the same cost, should one exist, suitable for solving with graph-cuts.

Where such a quadratic submodular formulation does not exist, it will find the

closest quadratic submodular function.

Let Fk denote the class of submodular Boolean functions of order k. It was

first shown in (Hammer, 1965) that any function in F2 can be minimised exactly

using a max-flow algorithm. In (Billionnet and Minoux, 1985; Kolmogorov and
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Zabih, 2004), showed that any function in F3 can be transformed into functions in

F2 and thereby minimised efficiently using max-flow algorithms. The underlying

idea is to transform the third order function to a function in F2 using extra vari-

ables, which we refer to as auxiliary variables (av). In the course of this chapter,

you will see that these avs are often more difficult to handle than variables in

the original function and our algorithms are driven by the quest to understand

the role of these auxiliary variables and to eliminate the unnecessary ones.

Recently, Zivny et al. made substantial progress in characterising the class of

functions that can be transformed to F2. Their most notable result is to show

that not all functions in F4 can be transformed to a function in F2. This result

stands in strong contrast to the third order case that was positively resolved more

than two decades earlier (Billionnet and Minoux, 1985). Using Theorem 5.2 from

(Promislow and Young, 2005) it is possible to decompose a given submodular

function in F4 into 10 different groups Gi, i = {1..10} where each Gi is shown in

Table 5.1. Zivny et al. showed that one of these groups can not be expressed

using any function in F2 employing any number of avs. Most of these results

were obtained by mapping the problem of minimising submodular functions to a

valued constraint satisfaction problem.

5.2.1 Problem Statement and main contributions

Largest subclass of submodular functions We are interested in transform-

ing a given function in Fk into a function in F2 using avs. As such a transfor-

mation is not possible for all submodular functions of order four or more (Živný

et al., 2009), our goal is to implicitly map the largest subclass Fk2 that can be

transformed into F2. This distinction between the two classes Fk2 and Fk will be

crucial in the remainder of the chapter.

Definition 3. The class Fk2 is the largest subclass of Fk such that every function
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f(x) ∈ Fk2 has an equivalent quadratic function h(x, z) ∈ F2 using avs z =

z1, z2, ..., zm ∈ Bm satisfying the following condition:

f(x) = min
z∈Bm

h(x, z), ∀x. (5.3)

In this chapter, we are interested in developing an algorithm to transform

every function in this class Fk2 to a function in F2.

Efficient transformation of higher order functions: We propose a prin-

cipled framework to transform higher order submodular functions to quadratic

ones using a combination of monotonic Boolean functions(mbf) and linear pro-

gramming. This framework provides several advantages. First we show that the

state of an av in a minimum cost labeling is equivalent to an mbfdefined over the

original variables. This provides an upper bound on the number of avgiven by

the Dedekind number (Korshunov, 1981), which is defined as the total number of

mbfs over a set of n binary variables. In the case of fourth order functions, there

are 168 such functions. Using the properties of mbfs and the nature of these avs

in our transformation, we prove that these 168 avs can be replaced by two avs.

Minimal use of avs: One of our goals is to use a minimum number(m) of avs

in performing the transformation of (5.3). Although, given a fixed choice of Fk,

reducing the value of m does not change the complexity of the resulting min/cut

algorithm asymptotically, it is crucial in several machine learning and computer

vision problems. In general, most image based labeling problems involve millions

of pixels and in typical problems, the number of fourth order priors is linearly

proportional to the number of pixels. Such problems may be infeasible for large

values of m. A recent work shows that the transformation of functions in F4
2

using about 30 additional nodes (Živný and Jeavons, 2008). On the other hand,

we show that we can transform the same class of functions using only 2 additional
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nodes. Note that this reduction is applicable to every fourth order term in the

function. A typical vision problem may involve functions having 10000 F4
2 terms

for an image of size 100 × 100. Under these parameters, our algorithm will use

20000 avs, whereas the existing approach (Živný and Jeavons, 2008) would use

as large as 300000 avs. In several practical problems, this improvement will make

a significant difference in the running time of the algorithm.

5.2.2 Limitations of Current Approaches and Open Prob-

lems

Decomposition of submodular functions: Many existing algorithms for

transforming higher order functions target the minimisation of a single k-variable

kth order function. However, the transformation framework is incomplete with-

out showing that a given n-variable submodular function of kth order can be

decomposed into several individual k-variable kth order sub-functions. Billionet

proved that it is possible to decompose a function in F3 involving several vari-

ables into 3-variable functions in F3 (Billionnet and Minoux, 1985). To the best

of our knowledge, the decomposition of fourth or higher order functions is still

an open problem. We believe that this problem will be to resolve as, in general,

determining if a fourth order function is submodular is co-NP complete (Gallo

et al., 1989). Given this, it is likely that specialised solvers based on max-flow

algorithms may never solve the general class of submodular functions. However,

this decomposition problem is not a critical issue in machine learning and vision

problems. This is because the higher order priors from natural statistics already

occur in different sub-functions of k nodes - in other words, the decomposition

is known a priori. This chapter only focuses on the transformation of a single

k-variable function in Fk. As mentioned above, the solution to this problem is

still sufficient to solve large functions with hundreds of nodes and higher order
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priors in machine learning and vision applications.

Non-Boolean problems: The results in this chapter are applicable only to set

or pseudo-Boolean functions. Many real world problems involve variables that can

take multiple discrete values. It is possible to convert any submodular multi-label

second order function to their corresponding QBF (Ishikawa, 2003; Schlesinger

and Flach, 2006). One can also transform any multi-labelled higher order function

(both submodular and non-submodular) to their corresponding QBF by encoding

each multi-label variable using several Boolean variables (Ramalingam et al.,

2008).

Excess avs: The complexity of an efficient max-flow algorithm is O((n+m)3)

where n is the number of variables in the original higher order function and m is

the number of avs. Typically in imaging problems, the number of higher order

terms is of O(n) and the order k is less than 10. Thus the minimisation of the

function corresponding to an entire image with O(n) higher order terms will still

have a complexity of O((n+n)3). However when m becomes at least quadratic in

n, for example, if a higher-order term is defined over every triple of variables in

V , the complexity of the max-flow algorithm will exceed that of a general solver

being O((n+n3)3). Thus in applications involving a very large number of higher

order terms, a general solver may be more appropriate.

5.3 Notation and preliminaries

In what follows, we use a vector x to denote {x1, x2, x3, ..., xn}. Let B denote the

Boolean set {0, 1} and R the set of reals. Let the vector x = (x1, ..., xn) ∈ Bn,

and V = {1, 2, ..., n} be the set of indices of x. Let z = (z1, z2, ..., zk) ∈ Bk

denote the avs. We introduce a set representation to denote the labellings of x.
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Let S4 = {1, 2, 3, 4} and let P be the power set of S4. For example a labeling

{x1 = 1, x2 = 0, x3 = 1, x4 = 1) is denoted by the set {1, 3, 4}.

Definition 4. The (discrete) derivative of a function f(x1, . . . , xn) with respect

to xi is given by:

δf

δxi
(x1, . . . , xn) = f(x1, . . . , xi−1, 1, xi+1, . . . , xn)− f(x1, . . . , xi−1, 0, xi+1, . . . , xn)

(5.4)

Definition 5. The second discrete derivative of a function ∆i,j(x) is given by

∆i,j(x) =
δ

δxj

δf

δxi
(x1, . . . , xn) (5.5)

=

(
f(x1,...,xi−1,1,xi+1,xj−1,1,xj+1...,xn)−f(x1,...,xi−1,0,xi+1,xj−1,1,xj+1...,xn)

)
−
(
f(x1,...,xi−1,1,xi+1,xj−1,0,xj+1...,xn)−f(x1,...,xi−1,0,xi+1,xj−1,0,xj+1...,xn)

)
.

Note that it follows from the definition of submodular functions (5.1), that their

second derivative is always non-positive for all x

5.4 Transforming functions in Fn
2 to F2

Consider the following submodular function f(x) ∈ Fn2 represented as a multi-

linear polynomial:

f(x) =
∑
S∈Bn

aS(
∏
j∈S

xj), aS ∈ R (5.6)

Let us consider a function h(x, z) ∈ F2 where z is a set of avs used to model

functions in Fn2 . Any general function in F2 can be represented as a multi-linear

polynomial (consisting of linear and bi-linear terms involving all variables):

h(x, z) =
∑
i

ai xi−
∑
i,j:i>j

ai,j xixj +
∑
l

al zl−
∑

l,m:l>m

al,m zlzm−
∑
i,l

ai,l xizl (5.7)
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The negative signs in front of the bi-linear terms (xixj, zlxi, zlzm) emphasise

that their coefficients (−aij,−ail,−alm) must be non-positive if the function is

submodular. We are seeking a function h such that:

f(x) = min
z∈Bn

h(x, z),∀x. (5.8)

Here the function f(x) is known. We are interested in computing the coefficients

a, and in determining the number of auxiliary variables required to express a

function as a pairwise submodular function. The problem is extremely challenging

due to the inherent instability and dependencies within the problem – different

choices of parameters cause auxiliary variables to take different states. To explore

the space of possible solutions fully, we must characterise what states an av takes.

5.4.1 Auxiliary Variables as Monotonic Boolean Functions

Definition 6. A monotonic (increasing) Boolean function (mbf) m : Bn → B

takes a Boolean vector as argument and returns a Boolean, s.t if yi ≤ xi,∀i =⇒

m(y) ≤ m(x)

Lemma 2. The function zS(x) defined as x by

zs(x) = arg min
zs

(
min
z′

h(x, z′, zs)
)
. (5.9)

i.e. that maps from x to the Boolean state of zs is an mbf (See Definition 6),

where z′ is the set of all auxiliary variables except zs.

Proof. We consider a current labeling x with an induced labeling of zs = zs(x).

We first note

h′(x, zs) = min
z′

h(x, z′, zs) (5.10)

is a submodular function i.e. it satisfies (5.1). We now consider increasing the

106



value of x, that is given a current labeling x we consider a new labeling x(i) such

that

x
(i)
j =


1 if j = i

xj otherwise.

(5.11)

We wish to prove

zs(x
(i)) ≥ zs(x) ∀x, i. (5.12)

Note that if zs(x) = 0 or xi = 1 this result is trivial. This leaves the case:

zs(x) = 1 and xi = 0. It follows from (5.5) that:

h′(x1, . . . , xi−1, 1, xi+1, . . . , 0)− h′(x1, . . . , xi−1, 0, xi+1, . . . , 1) ≥ (5.13)

h′(x1, . . . , xi−1, 1, xi+1, . . . , 1)− h′(x1, . . . , xi−1, 0, xi+1, . . . , 0).

As, by hypothesis, zs(x) = 1 and xi = 0 we have:

h′(x1, . . . , xi−1, 0, xi+1, . . . , 0) ≥ h′(x1, . . . , xi−1, 0, xi+1, . . . , 1). (5.14)

Hence

h′(x1, . . . , xi−1, 1, xi+1, . . . , 0)− h′(x1, . . . , xi−1, 0, xi+1, . . . , 0) ≥ (5.15)

h′(x1, . . . , xi−1, 1, xi+1, . . . , 1)− h′(x1, . . . , xi−1, 0, xi+1, . . . , 0),

and

h′(x1, . . . , xi−1, 1, xi+1, . . . , 0) ≥ h′(x1, . . . , xi−1, 1, xi+1, . . . , 1). (5.16)

Therefore zs(x
(i)) = 1. Repeated application of the statement gives yi ≤ xi,∀i =⇒

zs(y) ≤ zs(x) as required

Definition 7. The Dedekind number M(n) is the number of mbfs of n variables.
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Finding a closed-form expression for M(n) is known as the Dedekind problem

(Kleitman, 1969; Korshunov, 1981).

The Dedekind number of known values are shown below: M(1) = 3, this

corresponds to the set of functions:

M1(x1) ∈ {0,1, x1}, (5.17)

where 0 and 1 are the functions that take any input and return 0 or 1 respectively.

M(2) = 6 corresponding to the set of functions:

M2(x1, x2) = {0,1, x1, x2, x1 ∨ x2, x1 ∧ x2} (5.18)

Similarly, M(3) = 20, M(4) = 168, M(5) = 7581, M(6) ≈ 7.8× 106, M(7) ≈

2.4×1012, and M(8) ≈ 5.6×1023. For larger values of n, M(n) remains unknown,

and the development of a closed form solution remains an active area of research.

Lemma 3. On transforming the largest graph-representable subclass of kth order

function to pairwise Boolean function, the upper bound on the maximal number

of required avs is given by the Dedekind number M(k).

Proof. The proof is straightforward. Consider a general multinomial, of similar

form to equation (5.6), with more than M(k) avs. It follows from lemma 2

that at least 2 of the avs must correspond to the same mbf, and always take

the same values. Hence, all references to one of these av in the pseudo-Boolean

representation can be replaced with references to the other, without changing the

associated costs. Repeated application of this process will leave us with a solution

with at most M(k) avs.

Although this upper bound is large for even small values of k, it is much

tighter than the existing upper bound of S(k) = 22k (See Proposition 24 in (Zivny
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and Jeavons, 2008)). For even small values of k = {3, ..., 8} the upper bound

using Dedekind’s number is much smaller: (M(3) = 20, S(3) = 256)(M(4) =

168, S(4) = 65536), (M(5) = 7581, S(5) ≈ 4.29× 109), (M(6) ≈ 7.8× 106, S(6) ≈

1.85×1019), (M(7) ≈ 2.4×1012, S(7) ≈ 3.4×1038 and (M(8) ≈ 5.6×1023, S(8) ≈

1.156 × 1077). Zivny et.al. have emphasised the importance of improving this

upper bound. In section 5.6, we will further tighten the bound for fourth order

functions.

Note that this representation of avs as mbf is over-complete, for example if the

mbf of a auxiliary variable zi is the constant function zi(x) = 1 we can replace

minz,zi h(x, z, zi) with the simpler (i.e. one containing less auxiliary variables)

function minz h(x, z, 1). Despite this, this is sufficient preliminary work for our

main result:

Theorem 2. Given any function f in Fk2 , the equivalent pairwise form f ′ ∈ F2

can be found by solving a linear program.

The construction of the linear program is given in the following section.

5.5 The Linear Program

A sketch of the formulation can be given as follows: In general, the presence

of avs of indeterminate state, given a labeling x makes the minimising an LP

non-convex and challenging to solve directly. Instead of optimising this problem

containing avs of unspecified state, we create an auxiliary variable associated

with every mbf. Hence given any labeling x the state of every auxiliary variable

is fixed a priori, making the problem convex. We show how the constraints

that a particular av must conform to a given mbf can be formulated as linear

constraints, and that consequently the problem of finding the closest member of

f ′ ∈ F2 to any pseudo Boolean function is a linear program.
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This program will make use of the max-flow linear program formulation to

guarantee that the minimum cost labeling of the avs corresponds to their mbfs.

To do this we must first rewrite the cost of equation (5.7), in a slightly different

form. We write:

f(x, z) = c∅ +
∑
i

ci,s (1− xi) +
∑
i

ct,i xi +
∑
i,j:i>j

ci,j xi(1− xj)

+
∑
l

cl,s (1− zl) +
∑
l

ct,l (1− zl) +
∑

l,m:l>m

cl,m zl (1− zm) +
∑
i,l

ci,l xi (1− zl)

(5.19)

where c∅ is a constant that may be either positive or negative and all other c

are non-negative values referred to as the capacity of an edge. By (Kolmogorov

and Zabih, 2004; Billionnet and Minoux, 1985), this form is equivalent to that of

(5.7), in that any function that can be written in form (5.7), can also be written

as (5.19) and visa versa.

5.5.1 The Max-flow Linear Program

Under the assumption that x is fixed, we are interested in finding a minima of

the equation:

fx(z) = c∅ +
∑
i

ci,s (1− xi) +
∑
i

ct,i xi +
∑
i,j:i>j

ci,j xi(1− xj)

+
∑
l

cl,s (1− zl) +
∑
l

ct,l (1− zl) +
∑

l,m:l>m

cl,m zl (1− zm) +
∑
i,l

ci,l xi (1− zl)

= dx,∅ +
∑
l

dx,l,s (1− zl) +
∑
l

dx,t,l (1− zl) +
∑

l,m:l>m

dx,l,m zl (1− zm)

(5.20)

where

dx,∅ = c∅ +
∑
i:xi=0

ci,s +
∑
i:xi=1

ct,i +
∑

i,j:i>j∧xi=1∧xj=0

ci,j (5.21)
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dx,s,l = cs,l +
∑
i:xi=1

ci,l, dx,l,t = cl,t and dx,l,m = cl,m. (5.22)

Then the minimum cost of equation (5.19) may be found by solving its dual max-

flow program. Writing ∇x,s for flow from sink, and ∇x,t for flow to the sink, we

seek

max∇x,s + dx,∅ (5.23)

Subject to the constraints that

fx,ij − dx,ij ≤ 0 ∀(i, j) ∈ E∑
j:(j,i)∈E fx,ji −

∑
j:(i,j)∈E fx,ij ≤ 0 ∀i 6= s, t

∇x,s +
∑

j:(j,s)∈E fx,js −
∑

j:(s,j)∈E fx,sj ≤ 0

∇x,t +
∑

j:(j,t)∈E fx,jt −
∑

j:(t,j)∈E fx,tj ≤ 0

fx,ij ≥ 0 (i, j) ∈ E

(5.24)

where E is the set of all ordered pairs (l,m) : ∀l > m, (s, l) : ∀l and (l, t) : ∀t,

and fx,i,j corresponds to the flow through the edge (i, j).

We will not use this exact lp formulation, but instead rely on the fact that

fx(z) is a minimal cost labeling if and only if there exists a flow satisfying con-

straints (5.24) such that

fx(z)−∇x,s − dx,∅ ≤ 0. (5.25)

5.5.2 Choice of mbf as a set of linear constraints

We are seeking minima of a quadratic pseudo Boolean function of the form (5.19),

where x is the variables we are interested in minimising and z the auxiliary

variables. As previously mentioned, formulations that allow the state of the

auxiliary variable to vary tend to result in non-convex optimisation problems. To

avoid such difficulties, we specify as the location of minima of z as a set hard
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constraints. We want that:

min
z
fx(z) = fx([m1(x),m2(x), . . .mM(k)(x)]) ∀x. (5.26)

where fx is defined as in (5.20), and m1, . . .mM(k) are the set of all possible mbfs

defined over x. By setting all of the capacities di,j to 0, it can be seen that a

solution satisfying (5.26) must exist. It follows from the reduction described in

lemma 2, and that all functions that can be expressed in a pairwise form can also

be expressed in a form that satisfies these restrictions.

We enforce condition (5.26) by the set of linear constraints (5.24) and (5.25)

for all possible choice of x. formally we enforce the condition

fx([m1(x), . . . ,mM(k)(x))−∇x,s − dx,∅ ≤ 0. (5.27)

Substituting in (5.20) we have 2k sets of conditions, namely,

∑
l

dx,l,s (1−ml(x)+
∑
l

dx,t,l (1−ml(x))+
∑

l,m:l>m

dx,l,mml(x) (1−mm(x))−∇x,s ≤ 0,

(5.28)

subject to the set of constraints (5.24) for all x. Note that we make use of the

max-flow formulation, and not the more obvious min-cut formulation, as this

remains a linear program even if we allow the capacity of edges d1 to vary.

Submodularity Constraints We further require that the quadratic function

is submodular or equivalently, the capacity of all edges ci,j is non-negative. This

can be enforced by the set of linear constraints that

ci,j ≥ 0∀i, j. (5.29)

1 In itself d is just a notational convenience, being a sum of coefficients in c.
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5.5.3 Finding the nearest submodular Quadratic Function

We now assume that we have been given an arbitrary function g(x) to minimise,

that may or may not lie in Fk. We are interested in finding the closest possible

function in F2 to it. To find the closest function to it (under theL1 norm), we

minimise:

min
c

∑
x∈Bk

∣∣∣g(x)−min
z
f(x, z)

∣∣∣ = (5.30)

min
c

∑
x∈Bk

∣∣∣g(x)−f(x,m(x))
∣∣∣ = (5.31)

min
c

∑
x∈Bk

∣∣∣g(x)−
(
c∅ +

∑
i

ci,s (1− xi) +
∑
i

ct,i xi +
∑
i,j:i>j

ci,j xi(1− xj) (5.32)

+
∑
l

cl,s (1−ml(x)) +
∑
l

ct,l (1−ml(x)) +
∑

l,m:l>m

cl,mml(x) (1−mm(x))

+
∑
i,l

ci,l xi (1−ml(x))
)∣∣∣

where m(x) = [m1(x), . . . ,mM(k)(x)] is the vector of all mbfs over x, and subject

to the family of constraints set out in the previous subsection. Note that expres-

sions of the form
∑

i |gi| can be written as
∑

i hi subject to the linear constraints

hi > gi and hi > −gi and this is a linear program.

5.5.4 Discussion

Several results follow from this. In particular, if we consider a function g of the

same form as equation (5.2) the set of equations such that

min
c

∑
x∈Bk

∣∣∣g(x)−min
z
f(x, z)

∣∣∣ = 0 (5.33)
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exactly defines a linear polytope for any choice of |x| = k, and this result holds

for any choice of basis functions.

Of equal note, the convex-concave procedure (Yuille et al., 2002), is a generic

move-making algorithm that finds local optima by successively minimising a se-

quence of convex (i.e. tractable) upper-bound functions that are tight at the

current location (x′). (Narasimhan and Bilmes, 2005) showed how this could be

similarly done for quadratic Boolean functions, by decomposing them into sub-

modular and supermodular components. In the previous chapter, in order to

handle arbitrary monotone increasing co-occurrence potentials we showed that

any function could be decomposed into a quadratic submodular function, and an

additional overestimated term. Nevertheless, this decomposition was not optimal,

and we did not address the problem of finding a optimal over-estimation. The

optimal overestimation which lies in F2 for a cost function defined over a clique

g may be found by solving the above lp subject to the additional requirements:

g(x) ≤ f(x, z) ∀x (5.34)

g(x′) ≥ f(x′, z) (5.35)

Efficiency concerns As we consider larger cliques, it becomes less computa-

tionally feasible to use the techniques discussed in this section, at least without

pruning the number of auxiliary variables considered. As previously mentioned,

constant avs and avs that corresponds to that of a single variable in x i.e. zl = xi

can be safely discarded without loss of generality. In the following section, we

show that a function in F4
2 can be represented by only two avs, rather than 168

as suggested by the number of possible mbf. However, in the general case a min-

imal form representation eludes us. As a matter of pragmatism, it may be useful

to attempt to solve the lp of the previous section without making use of any

av, and to successively introduce new variables, until a minimum cost solution is
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found.

5.6 Tighter Bounds: Transforming functions in

F4
2 to F2

Consider the following submodular function f(x1, x2, x3, x4) ∈ F4 represented as

a multi-linear polynomial:

f(x1, x2, x3, x4) = a0+
∑
i

aixi+
∑
i>j

aijxixj+
∑
i>j>k

aijkxixjxk+a1234x1x2x3x4, ∆ij(x) ≤ 0

(5.36)

where i, j, k = S4 and ∆ij(x) is the discrete second derivative of f(x) with respect

to xi and xj. e

Consider a function h(x1, x2, x3, x4, zs) ∈ F2 where zs is an av used to model

functions in F4. Any general function in F2 can be represented as a multi-linear

polynomial (consisting of linear and bilinear terms involving all five variables):

h(x1, x2, x3, x4, zs) = b0+
∑
i

bixi−
∑
i>j

bijxixj−(gs−
4∑
i=1

gs,ixi)zs, bij ≥ 0, gs,i ≥ 0, i, j ∈ S4.

(5.37)

The negative signs in front of the bilinear terms (xixj, zsxi) emphasise that their

coefficients (−bij,−gs,i) must be non-positive to ensure submodularity. We have

the following condition from equation (5.3):

f(x1, x2, x3, x4) = min
zs∈B

h(x1, x2, x3, x4, zs),∀x. (5.38)

Here the coefficients (ai, aij, aijk, aijkl) in the function f(x) are known. We wish

to compute the coefficients (bi, bij, gs, gs,n) where i, j ∈ V, i 6= j, n ∈ S4. If we
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were given (gs, gs,i) then from equations (5.37) and (5.38) we would have

zs =


1 if gs −

∑4
i=1 gs,ixi < 0,

0 otherwise.

(5.39)

The value of zs that minimises equation (5.38) is dependent both upon the assign-

ment of {x1, x2, x3, x4} and upon the coefficients (gs, gs,1, gs,2, gs,3, gs,4). The four

variables x1, x2, x3 and x4 can be assigned to 16 different labellings of (x1, x2, x3, x4)

giving 16 equations in the following form:

f(x1, x2, x3, x4) = h(x1, x2, x3, x4, 0)︸ ︷︷ ︸
h1

+ min
zs∈B

(gs −
4∑
i=1

gs,ixi)zs︸ ︷︷ ︸
h2︸ ︷︷ ︸

h

(5.40)

The function h1 is the part of h not dependent on zs, and h2 is the part dependent

on zs. Our main result is to prove that any function h ∈ F2 can be transformed to

a function h′(x1, x2, x3, x4, zj1, zj2) ∈ F2 involving only two auxiliary variables zj1

and zj2. Using this result we can transform a given function f(x1, x2, x3, x4) ∈ F4
2 ,

the form of which we characterise later, to a function h′(x1, x2, x3, x4, zj1, zj2) ∈

F2.

Let A be the family of sets corresponding to labellings of x such that:zs =

0 = arg minzs h(x, zs). In the same way let B be the family of sets corresponding

to labellings of x such that:zs = 1 = arg minzs h(x, zs). These sets A and B

partition x, as defined below:

Definition 8. A partition divides P into sets A and B such that A = {S(x) :

0 = arg minz∈B h(x, z),x ∈ B4} and B = P\A. Note that ∅ ∈ A.

For the rest of the chapter, we say that the av zs is associated with [A,B] or

denote it by zs : [A,B]. We illustrate the concept of a partition in figure 5.1.
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a b

Figure 5.1: Hasse diagrams sample partitions. Here, we use set represen-
tation for denoting the labellings of (x1, x2, x3, x4). For example the set
{1, 2, 4} is equivalent to the labeling {x1 = 1, x2 = 1, x3 = 0, x4 =
1}. In (a), A = {{}, {2}, {3}, {4}, {2, 3}, {2, 4}, {3, 4}, {2, 3, 4}} and B =
{{1}, {1, 2}, {1, 3}, {1, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, S4}. (a) and (b) are exam-
ples of partitions. On searching the space of all possible partitions (216) we found
that only 168 partitions belong to this class. These are the only partitions which
will be useful in our analysis because any arbitrary av must be associated with
one of these 168 partitions.(See text for the relation between these partitions and
mbf s).

From lemma 3, we could use 168 different avs in our transformation. However,

we show that the same class can be represented using only two avs. In other

words, all existing partitions could be converted to these two reference partitions

represented by two avs taking the states shown below.

Definition 9. The forward reference partition [Af ,Bf ] takes the form:

B ∈ Bf ⇐⇒ |B| ≥ 3,Af = P\Bf (5.41)

On the other hand, a backward reference partition [Ab,Bb] is shown below:

B ∈ Bb ⇐⇒ |B| ≥ 2,Ab = P\Bb (5.42)

The forward and backward reference partitions are shown in figure 5.2. Note that

these reference partitions satisfy the properties of a matroid. Here we treat A

as the family of subsets of the ground set S4. More specifically, these reference
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partitions satisfy the conditions of a uniform matroid (see appendix).

Figure 5.2: The two matroidal generators used to represent all functions in F4
2 .

Note that the bilinear term zj1zj2 is active, i.e. zj1zj2 = 1, in the region of
overlap.

We approach this problem by first considering the simplified case in which

no interactions between avs are allowed. This is covered in section 5.6.1, while

section 5.6.2 builds on these results to handle the case of pairwise interactions

between av.

5.6.1 Non-interacting avs

Here we study the role of av independently. In other words, we don’t consider

the interaction of avs that involve bilinear terms such as zizj. The following

lemmas and theorems enable the replacement of avs with other avs closer to

the reference partitions. By successively applying replacement algorithms, we

gradually replace all the avs using with the two avs in forward and backward

reference partitions.

Lemma 4. Let zs : [As,Bs] be an av in a function h(x, zs) in F2 , then h can be

transformed to some function h′(x, zt) in F2 involving zt : [At,Bt], such that for

all B ∈ Bt, |B| ≥ 2.

Proof. We say that a function h can be transformed to h′ if minzs h(x, zs) =

minzt h
′(x, zt),∀x. It does not imply that h(x, zs) = h′(x, zt),∀x. We first con-

sider the case where ∅ ∈ Bs. If this is the case, arg minzt h
′(x, zt) = 0 ∀x. Hence
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we can transform h(x, zs) to h′(x) and the lemma holds trivially. Next we as-

sume that there exists a singleton {e} ∈ Bs, i.e. {e} is {1},{2},{3} or {4}. We

decompose h as:

min
zs

h(x1, x2, x3, x4, zs) = h1(x1, x2, x3, x4) + min
zs

(gs −
4∑
i=1

gs,ixi)zs︸ ︷︷ ︸
h2

where h2 is the part of h dependent on zs.

min
zs

h2 = min
zs

((gs − gs,e)xezs + (gs − gsxe −
∑
i=S4\e

gs,ixi)zs).

As (e) ∈ Bs, gs − gs,e ≤ 0. As a result, zs = 1 when xe = 1, i.e. xe =⇒ zs or

xezs = xe. In the above equation we replace xezs using simply xe to obtain the

following:

min
zs

h2 = min
zs

((gs − gs,e)xe + (gs − gsxe −
∑
i=S4\e

gs,ixi)zs).

The decomposition of the original function can then be written, replacing zs by

zt:

h′ = h1 + (gs − gs,e)xe)︸ ︷︷ ︸
h′1

+ (gs − gsxe −
∑
i=S4\e

gs,ixi)zt︸ ︷︷ ︸
h′2

.

A sample reduction for this lemma is shown in figure 5.3. Note that h′2 equals

0 for the singleton {e}. Similarly any other singleton {e′} can also be removed

from Bs using the same approach. After repeated application, our final partition,

Bt does not contain any singletons.

Lemma 5. Any function h(x, zs) in F2 with zs associated with the partition

[As,Bs] satisfying the condition Bs ⊆ Bf can be transformed to some function

h′(x, zf ) in F2 with zf belonging to the forward reference partition [Af ,Bf ]. The
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Figure 5.3: An example of lemma 4. The av zs is replaced by zt and the associated
partitions [As,Bs] and [At,Bt] are shown in (a) and (b) respectively. The initial
and the final set of parameters are given by:(gs = 3, gs,1 = 4, gs,2 = 1, gs,3 =
1, gs,4 = 1), (gt = 3, gt,1 = 3, gt,2 = 1, gt,3 = 1, gt,4 = 1). In the initial partition we
have the singleton {1} ∈ Bs. After the transformation all the singletons {e} ∈ At.

same result holds for backward partition.

Proof. The proof is by construction. Let the parameters of the partition [As,Bs]

be

(gs, gs,1, gs,2, gs,3, gs,4). Our goal is to compute a new set of parameters (gf , gf,1, gf,2, gf,3, gf,4)

corresponding to the forward reference partition such that the associated func-

tions keep the same value at the minimum:

min
zf

h′(x, zf ) = min
zs

h(x, zs),∀x (5.43)

min
zf

(h′1(x) + h′2(x, zf )) = min
zs

(h1(x) + h2(x, zs)), ∀x (5.44)

min
zf

(h′2(x, zf )) = min
zs

(h2(x, zs)), ∀x (5.45)

We can rewrite h2 and h′2 using κ function:

min
zf

κ(f, S)zf = min
zs

κ(s, S)zs,∀S ∈ P (5.46)

By substituting the values of zs and zf for all S ∈ P we obtain five equations

120



with five unknowns (gf , gf,1, gf,2, gf,3, gf,4). We rewrite the equations as:



1 −1 −1 0 −1

1 −1 −1 −1 0

1 0 −1 −1 −1

1 −1 0 −1 −1

1 −1 −1 −1 −1


︸ ︷︷ ︸

H



gf

gf,1

gf,2

gf,3

gf,4

gf,5


=



min(0, κ(s, {2, 3, 4}))

min(0, κ(s, {1, 3, 4}))

min(0, κ(s, {1, 2, 4}))

min(0, κ(s, {1, 2, 3}))

min(0, κ(s, S4))


(5.47)

The solution to the above linear system is unique because H is of rank 5. Now we

show that the solution satisfies submodularity condition and corresponds to the

forward reference partition. Submodularity is ensured by the constraint that the

parameters (gf,1, gf,2, gf,3, gf,4) are all non-negative. Using equation (5.47) and

the non-negativity of original variables (gs,i) we obtain the following:

gf,i = min(0, κ(s, S4\i))−min(0, κ(s, S4)) (5.48)

κ(s, S4) ≤ κ(s, S4\i) (5.49)

From these equations we can show that gf,i is always non-negative:

gf,i =

8>>>>><>>>>>:
0 if κ(s, S4) ≥ 0 and κ(s, S4\i) ≥ 0

−κ(s, S4) if κ(s, S4) ≤ 0 and κ(s, S4\i) = 0

κ(s, S4\i)− κ(s, S4) if κ(s, S4) ≤ 0 and κ(s, S4\i) ≤ 0

(5.50)

We now prove that the computed parameters correspond to the forward reference

partition:

S ∈


Bf if |S| ≥ 3

Af otherwise

(5.51)

From equation (5.47) it follows that any set S, such that |S| ≥ 3, exists in Bf .

We need to prove the remaining case where |S| ≤ 3. To do this, we consider
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S = {i, j} = S4\{k, l} and examine its partition coefficients:

κ(f, {i, j}) = κ(f, {i, j, k}) + gf,k

κ(f, {i, j}) = κ(f, {i, j, k}) + ((κ(f, {i, j, l})− κ(f, {i, j, k, l})

κ(f, {i, j}) = min(0, κ(s, {i, j, k})) + min(0, κ(s, {i, j, l}))−min(0, κ(s, {i, j, k, l}))

As in table 5.2 (see appendix), κ(f, {i, j}) has four possible values and κ(f, {i, j}) ≥

0 in all. As each set S : |S| = 2 exist in Af , every other set with a cardinality

less than two must also exist in Af . Hence, for every partition As,Bs satisfying

Bs ⊆ Bf , we can compute an equivalent reference partition [Af ,Bf ].

Lemma 6. Let P = {i, j, k, l} = S4 and let zs be the auxiliary variable in h(x, zs)

associated with the partition [As,Bs]. If both A and B = P\A are elements of

Bs, then it is not possible to have both C and D = P\C in As.

Proof. The statement follows by contradiction. Let {A,B}, where B = P\A,

exist in Bs. The partition coefficients of A and B with respect to z1 are shown

below:

κ(s, A) = gs −
4∑
i=1

1Ai ≤ 0 (5.52)

κ(s, B) = gs −
4∑
i=1

1Bi ≤ 0 (5.53)

Note that A ∪ B = {i, j, k, l} and A ∩ B = ∅. Hence by summing the above

equations we get the following:

2gs − gs,i − gs,j − gs,k − gs,l ≤ 0 (5.54)

Assume now that a different pair {C,D}, where D = P\C exist in As. By
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a b c d

e f g h

Figure 5.4: Examples for the four cases in tables 5.3, 5.4, 5.5 and 5.6. In
the first case the transition in (a) is mapped to that in (b) and the associated
parameters are given by: ((gs = 6, gs,1 = 1, gs,2 = 1, gs,3 = 1, gs,4 = 1), (gt =
5, gt,1 = 1, gt,2 = 2, gt,3 = 2, gt,4 = 3)). The generated pairwise term, inde-
pendent of avs, is −x3x4. The second case is in (c) and (d) with the param-
eters ((5, 1, 2, 3, 4, 5), (2, 1, 1, 1, 1)) (shown in the same order as the earlier one)
and the pairwise function is −x2x4 − 2x3x4. The third case is in (e) and (d)
with the parameters ((5, 4, 1, 1, 1), (2, 1, 1, 1, 1)) along with the pairwise function
−x1x2 − x1x3 − x1x4. The final case is in (f), (g) and (h), as the final function
has two avs z2 and z3. The function consisting of unary and pairwise terms in-
dependent of avs is given by 1 − x1 − x2 − x3 − x1x3 − 2x2x3. Corresponding
parameters are given by: ((gs = 8, gs,1 = 4, gs,2 = 5, gs,3 = 6, gs,4 = 0), (gt =
4, gt,1 = 2, gt,2 = 2, gt,3 = 2, gt,4 = 0), (gr = 2, gr,1 = 1, gr,2 = 1, gr,3 = 1, gr,4 = 0))

123



summing their corresponding partition coefficients we get the following equation:

2gs − gs,i − gs,j − gs,k − gs,l ≥ 0, (5.55)

Equations 5.54 and 5.55 lead to a contradiction, therefore the lemma holds

.

Theorem 3. Any function h(x, zs) in F2 with zs associated with [As,Bs], such

that ∀B ∈ Bs, |B| ≥ 2, can be transformed to another function h′′(x, zf , zb) in F2

without any zfzb terms, where zf and zb are av correspond to the forward and

backward reference partitions respectively.

Proof. Our proof by construction takes the form of a two-step procedure. In

the first stage every function h(x, zs) is transformed to h′(x, zt, zr) where zt and

zr are associated with the partition [At,Bt] and the backward partition [Ar,Br]

respectively and satisfy the conditions Bt ⊆ Bf and Br ⊆ Bb. In the second step

we use lemma 5 to transform h′(x, zt, zs) to h′′(x, zf , zb). In most cases only one

partition, either the forward or the backward, is used.

min
zs

h2(x, zs) = min
zs

κ(s, S)zs,∀S ∈ P (5.56)

min
zs

h(x, zs) =
4∑
i=1

aixi +
4∑
i=1

4∑
j,i6=j

ai,jxixj + min
zt

κ(t, S)zt + min
zr

κ(r, S)zr,∀S ∈ P

(5.57)

The key idea is to decompose h2 into functions of unary and pairwise terms in-

volving only x and functions involving new auxiliary variables zt and zr. Consider

the condition |B| ≥ 2. A degenerate case occurs where |B| ≥ 3; here we can di-

rectly use lemma 5 to obtain our desired result. We now consider the cases where

at least one set S ∈ Bs has cardinality two and show a transformation similar to

the general one of (5.57). Tables 5.3, 5.4, 5.5 and 5.6 in the appendix contain
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details of the decomposition.

After the decomposition the new partitions [At,Bt] and [Ar,Br] satisfy the

conditions Bt ⊆ Bf and Br ⊆ Bb. To show this, we first consider the case where

exactly one set S ∈ Bs has a cardinality of 2. There are six such occurrences, and

all of them are symmetrical. The transformation for this case is in table 5.3.

Next, consider the case where exactly two sets of cardinality two exist in

Bs. Although there are 15 (
(

6
2

)
) possible cases, they must all be of the form

{{i, j}, {k, l}} or {{i, j}, {j, k}}. The first sub-case is prohibited because the

presence of the mutually exclusive pair {{i, j}, {k, l}} would not permit any other

mutually exclusive pair {{i, k}, {j, l}} to exist in As as per lemma 6. The trans-

formation for the latter case is in table 5.4.

Finally, consider the case where exactly three sets of cardinality two exist

in Bs. The 20 different occurrences (
(

6
3

)
) can be expanded to three different

scenarios:{{i, j}, {i, k}, {i, l}}, {{i, j}, {k, l}, {i, k}} and {{i, j}, {j, k}, {i, k}}. Again,

lemma 6 prevents the second scenario {{i, j}, {k, l}, {i, k}} from occurring. The

transformations of the first and the third cases are in table 5.5 and 5.6. Example

transformations are shown in figure 5.4.

Theorem 4. Any function h(x, z1, z2, ...zk) in F2 that is linear in z can be trans-

formed to some function h′(x, zf , zb) in F2 where zf and zb correspond to the

forward and backward reference partitions respectively.

Proof. Every zi is independent of every other zj due to the absence of bilinear

terms zizj. Hence, the minimisation under z can be carried out in any order.

min
zi,zj

h(x, zi, zj) = min
zi

min
zj

h(x, zi, zj) = min
zj

min
zi

h(x, zi, zj) (5.58)

Applying lemma 4, followed by theorem 3, for every av, the function h(x, z1, z2, z3, ..., zk)

can be transformed into ĥ(x, ẑ1, ẑ
′
1, ..., ẑk, ẑ

′
k) where ẑi and ẑ′k correspond to the
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forward and backward reference partitions respectively. In other words, every zi

in the original function is replaced by ẑi and ẑ′i. Note that one reference partition

may be sufficient in some cases. Finally we remove all constant avs to obtain

h′(x1, x2, x3, x4, zf , zb) from ĥ.

5.6.2 Interacting avs

The earlier theorem shows the transformation when the original function h has

no bilinear terms zizj. The problem becomes more intricate in the presence of

these terms. In the earlier case, we could define partitions using a single variable.

Here, it is necessary to consider the partitions using two or more variables. Below,

we show the joint partition that can solve the transformation with interactions

between the avs. We refer to this as the matroidal generators, since the associated

partitions satisfy matroid constraints(See appendix).

Definition 10. The matroidal generators associated with two avs zj1 and zj2 for

expressing all graph-representable fourth order functions is given below:

B ∈ Bj1 ⇐⇒ |B| ≥ 3, Aj1 = P\Bj1 (5.59)

B ∈ Bj2 ⇐⇒ |B| ≥ 2, Aj2 = P\Bj2 (5.60)

In Figure 5.2 we show the matroidal generators for fourth order functions.

These partitions are same as the reference partitions studied earlier. The expres-

sive power of these avs are enhanced by interaction or the usage of the bilinear

term zj1zj2.

Theorem 5. Any function h(x, z1, z2, ...zk) in F2 that has bilinear terms zizj can

be transformed to some function h′(x, zj1, zj1) in F2.
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Proof. The basic idea of the proof is to decompose a given fourth order function

using the result of (Promislow and Young, 2005) and show that all the spawned

mbfs can be expressed by the matroidal generators. Using Theorem 5.2 from

(Promislow and Young, 2005) we can decompose a given submodular function in

F4 into 10 different groups Gi, i = {1..10} where each Gi is in Table 5.1.

Each group Gi contains three or four functions giving rise to a total of 30

or more different functions. Prior work uses one auxiliary variable for every

function, whereas we will show that the two avs corresponding to the matroidal

generators are sufficient to simultaneously model all these functions. As shown in

(Živný and Jeavons, 2008) the functions in G10 are not graph-representable. Note

that the functions in G10 does not become graph-representable when combined

with other generators of F4 according to Theorem 16(3) in (Živný and Jeavons,

2008). We also observe that these functions are not representable by both non-

interacting and interacting avs. Thus the largest subclass Fk2 should be composed

of functions in the remaining 9 groups.

As the functions present in the groups Gi, i = {1..8} do not require bilinear

avterms, any sum of functions in Gi, i = {1..8} can be expressed with only two

avs zf and zb according to Theorem 4. We consider the functions in G9. The sum

of functions in this group may lead to two alternatives. The union of functions

in G9 may either result in a function in G9 or a function that uses the avs zf and

zb. Any function in G9 can be expressed using two avs z91 and z92 (Živný et al.,

2009). As a result, the sum of functions in Gi, i = {1..9} can be expressed using

four avs (zf , zb, z91, z91). These four avs could be merged into two avs zj1 and

zj2 in the matroidal generators as shown in Figure 5.2.

Hence, all functions in Gi, i = {1..9} can be expressed by the matroidal gen-

erators.
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Group f(x) minz1,z2 h(x, z1, z2) where h(x, z1, z2) ∈ F2

G1 −xixj −xixj
G2 −xixjxk minz(2− xi − xj − xk)
G3 −x1x2x3x4 minz(3− x1 − x2 − x3 − x4)

G4

−x1x2x3x4 + x1x2x3 + x1x2x4 + x1x3x4+
x2x3x4 − x1x2 − x1x3 − x1x4−

x2x3 − x2x4 − x3x4

minz(z(1− x1 − x2 − x3 − x4))

G5
xixjxkxl − xixjxk − xixl − xjxl−

xkxl
minz(z(2− xi − xj − xk − 2xl)

G6 xixjxk − xixj − xixk − xjxk minz(z(1− xi − xj − xk))
G7 xixjxkxl − xixjxk − xixjxl − xixkxl minz(z(3− 2xi − xj − xk − xl))

G8
2x1x2x3x4 − x1x2x3 − x1x2x4 − x1x3x4−

x2x3x4
minz(z(2− x1 − x2 − x3 − x4))

G9 xixjxkxl − xixj − xixk − xixkxl − xjxkxl
minz1,z2(z1 + 2z2 − z1z2−
z1xi − z1xj − z2xk − z2xl)

G10
−xixjxkxl + xixkxl + xjxkxl−
xixk − xixl − xjxk − xjxl − xkxl

f(x) 3 F4
2 as shown in (Živný and Jeavons, 2008)

Table 5.1: The above table is adapted from Figure 2 of (Zivny and Jeavons, 2008)
where {i, j, k, l} = S4. Each group has several terms depending on the values of
{i, j, k, l}. As the groups G4 and G8 are symmetric with respect to {i, j, k, l}; they
contain one function each.

5.7 Linear Programming solution

For a given function f(x1, x2, x3, x4) in F4
s , our goal is to compute a function

h(x, z) in F2. As a result of theorem 5 we only need to solve the case with two

avs (zj1, zj2) associated with the matroidal generators. The required function

h(x, z) is:

h(x, zj1, zj2) = b0+
∑
i

bixi−
∑
i>j

bijxixj−(gj1−
4∑
i=1

gj1,ixi)zj1+(gj2−
4∑
i=1

gj2,ixi)zj2−j12zj1zj2.

(5.61)

such that bij, gj1,i, gj2,i, j12 ≥ 0 and i, j ∈ S4. As we know the partition of

(zj1, zj2) we know their Boolean values for all labellings of x. We need the co-

efficients (bi, bij, j12, gj1, gj2, gj1,i, gj2,i), i = S4 to compute h(x1, x2, x3, x4, zj1, zj2).

These coefficients satisfy both submodularity constraints(that the coefficients of

all bilinear terms (xixj, xizj1, xjzj2, zj1zj2) are less than or equal to zero) and
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those imposed by the reference partitions. First we list these conditions below:



bij

gj1,i

gj2,i

j12



T

︸ ︷︷ ︸
Sp

≥ 0, i, j = S4, i 6= j (5.62)

where 0 refers of a vector composed 0’s of appropriate length. Next we list the

conditions which guarantee f(x) = minzj1,zj2 h(x, zj1, zj2) for all x. Let ∀S ∈ P ,

and let the value of zj1zj2 for different subsets S be given by η(S). As we know

the partition functions of both zj1 and zj2 it is easy to find this. Let G and H

denote values of f and h for different S:

G = f(1S1 ,1
S
2 ,1

S
3 ,1

S
4 ) (5.63)

H = h(1S1 ,1
S
2 ,1

S
3 ,1

S
4 , 0, 0)−(gj1−

4∑
i=1

gj1,i1
S
i )−(gj2−

4∑
i=1

gj2,i1
S
i )−j12η(S) (5.64)

As a result we have the following 16 linear equations (N.B. there are 24(16)

different S):

G = H, ∀S ∈ P (5.65)

Note that as with section 5.6 we do not make use of either auxiliary variables

or the min operator over H. Again, this because we already know the partition

of (zj1, zj2) and their appropriate values a priori. This can be seen as (5.65) need
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not hold if zj1 and zj2 do not lie in the reference partitions.

gf −∑4
i=1 gf,i1

S
i

gb −
∑4

i=1 gb,i1
D
i


︸ ︷︷ ︸

Gg

≥ 0, S ∈ Aj1, D ∈ Aj2

gf −∑4
i=1 gf,i1

S
i

gb −
∑4

i=1 gb,i1
D
i


︸ ︷︷ ︸

Gl

≤ 0, S ∈ Bj1, D ∈ Bj2.

Essentially we need to compute the coefficients (bij, gj1, gj1,i, gj2, gj2,i, j12) that

satisfy the equations (5.62,5.65,5.66) This is equivalent to finding a feasible point

in a linear programming problem:

min const (5.66)

s.t Sp ≥ 0, G = H, Gg ≥ 0, Gl ≤ 0 (5.67)

As discussed in section 5.5, by using a different cost function we can formulate a

problem to to compute a function in F2 closest to a given arbitrary fourth-order

function.

5.8 Discussion and open problems

We observe that the basis mbfs corresponding to reference partitions always

satisfy matroid constraints (See appendix). It can be easily shown that for k = 3

there is only one reference partition corresponding to a uniform matroid U1. When

k = 4 we have two reference partitions corresponding to uniform matroids U1

and U2. Thus we conjecture that we can transform a large subclass, possibly

the largest, of Fk2 using k − 2 matroidal generators. Each of these generators

correspond to uniform matroids U1,U2,U3, ...,Uk−2. We do not have any proof for
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this result. However, our intuition is based on the following reasons:

• The reference partitions for k = 3 and k = 4 are symmetrical with respect

all xi variables.

• The reference partitions correspond to only distinct uniform matroids.

• We can only transform a subclass of all submodular functions of order

k. Using the result of Zivny et al., we know that when k ≥ 4, not all

submodular functions can be transformed to a quadratic PBF.

• Although we use only a linear number of auxiliary variables, the underlying

function is powerful as we employ all possible interactions among the aux-

iliary variables. Each of these intersection can be seen as the intersection

of two uniform matroids.

5.9 Appendix

i min(0, κ(s, {i, j, k})) min(0, κ(s, {i, j, l})) min(0, κ(s, {i, j, k, l})) κ(f, {i, j})
1 0 0 0 0
2 0 κ(s, {i, j, l}) κ(s, S4) gs,k
3 κ(s, {i, j, k}) 0 κ(s, {i, j, k, l}) gs,l
4 κ(s, {i, j, k}) κ(s, {i, j, l}) κ(s, {i, j, k, l}) κ(s, {i, j})

Table 5.2: See lemma 5. In all four cases κ(f, {i, j}) is non-negative. This
result holds for the fourth case as κ(s, {i, j}) ≥ 0.

5.9.1 Definitions

Definition 11. A matroid M is an ordered pair (E, I) consisting on a finite set

E and a family of subsets I of E satisfying the following conditions:

1. ∅ ∈ I.

2. If I ∈ I and I ′ ⊆ I, then I ′ ∈ I.
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Case 1:({i, j} ∈ Bs.
h2 = κ(s, {i, j})xixj + ((2 ∗ gs − gs,i − gt,j)︸ ︷︷ ︸

gt

− (gs − gs,i)︸ ︷︷ ︸
gt,j

xi − (gs − gs,j)︸ ︷︷ ︸
gt,i

xj−

gs,k︸︷︷︸
gt,k

xk − gs,l︸︷︷︸
gt,l

xl)zt

S κ(t, S) S ∈ At or S ∈ Bt
{i, j} 0 S ∈ At
{i, k} κ(s, {j, k}) S ∈ At since {j, k} ∈ As
{k, l} κ(s, {i, k}) + κ(s, {j, l}) S ∈ At since {i, k}, {j, l} ∈ As
{i, j, k} −gs,k S ∈ Bt
{i, k, l} κ(s, {j, k, l}) S ∈ Bt since {j, k, l} ∈ Bs

Table 5.3: See theorem 3. Case 1: The details of the transformation (similar
to one in equation (5.57)) are shown for a scenario where exactly one set ({i, j})
with cardinality two exist in Bs. We prove that after the transformation all the
sets S with |S| = 2 exist in At and |S| ≥ 3 exist in Bt. Although the reduction is
illustrated for only a few cases, they are representative of the remainder.

Case 2:{i, j}, {j, k} ∈ Bs.
h2 = κ(s, {i, j})xixj + κ(s, {j, k})xjxk + (3gs − 2gs,j − gs,i − gs,k︸ ︷︷ ︸

gt

−

(gs − gs,j)︸ ︷︷ ︸
gt,i

xi − (2gs − gs,i − gs,j − gs,k)︸ ︷︷ ︸
gt,j

xj − (gs − gs,j)︸ ︷︷ ︸
gt,k

xk − (gs,l︸︷︷︸
gt,l

xl)zt

S κ(t, S) S ∈ At or S ∈ Bt
{i, j} 0 S ∈ At
{i, l} κ(s, {i, k}) + κ(s, {j, l}) S ∈ At since {i, k}, {j, l} ∈ As
{j, l} κ(s, {j}) + gs,l S ∈ At since {j} ∈ As and gs,l ≥ 0
{i, j, k} −κ(s, {j}) S ∈ Bt since {j} ∈ As
{i, k, l} κ(s, {i, k, l}) S ∈ Bt if {i, k, l} ∈ Bs
{i, j, l} −gs,l S ∈ Bt

Table 5.4: See theorem 3.Case 2: We study the scenario where exactly two sets
with cardinality two {{i, j}, {j, k}) occur in Bs. Note that all other cases either
can not happen (according to lemma 6) or similar to the ones shown in this table.
We also prove that after the transformation all the sets S with |S| = 2 exist in
At and |S| ≥ 3 exist in Bt.
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Case 3: {i, j}, {i, k}, {i, l} ∈ Bs.
h2 = κ(s, {i, j})xixj + κ(s, {i, k})xixk + κ(s, {i, l})xixl+

(min(0, κ(s, {j, k, l}) + 3(gs − gs,i)︸ ︷︷ ︸
gt

−min(0, κ(s, {j, k, l})) + 2(gs − gs,i)︸ ︷︷ ︸
gt,i

xi−

(gs − gs,i)︸ ︷︷ ︸
gt,j

xj − (gs − gs,i)︸ ︷︷ ︸
gt,k

xk − (gs − gs,i)︸ ︷︷ ︸
gt,l

xl)zt

S κ(t, S) S ∈ At or S ∈ Bt
{i, j} 0 S ∈ At
{j, k} min(0, κ(s, {j, k, l})) + (gs − gs,i) S ∈ At since {i} ∈ As
{i, j, k} −κ(s, {j}) S ∈ Bt since {j} ∈ As
{i, k, l} κ(s, {i, k, l}) S ∈ Bt if {i, k, l} ∈ Bs
{i, j, l} −gs,l S ∈ Bt

Table 5.5: See theorem 3. Case 3: Here we study the scenario where exactly
three sets with cardinality two {{i, j}, {i, k}, {i, l}) exist in Bs. The only other
case where three sets can exist is shown in table 5.6. The shown cases are gen-
eralisations of all the possible cases that can occur without violating lemma (6).
We prove that after the transformation all the sets S with |S| = 2 exist in At and
|S| ≥ 3 exist in Bt.

Case 4: {i, j}, {i, k}, {i, l} ∈ Bs.
h2 = κ(s, {i, j})(1− xi − xj − xk)− (gs,k − gs,j)xixk − (gs,k − gs,i)xjxk+

(2(gs − gs,k)︸ ︷︷ ︸
gt

− (gs − gs,k)︸ ︷︷ ︸
gt,i

xi − (gs − gs,k)︸ ︷︷ ︸
gt,j

xj − (gs − gs,k)︸ ︷︷ ︸
gt,k

xk − gs,l︸︷︷︸
gt,l

xl)zt+

(−2κ(s, {i, j))︸ ︷︷ ︸
gr

− (−κ(s, {i, j)))︸ ︷︷ ︸
gr,i

(1− xi)− (−κ(s, {i, j)))︸ ︷︷ ︸
gr,j

(1− xj)−

(−κ(s, {i, j)))︸ ︷︷ ︸
gr,k

(1− xk)− 0︸︷︷︸
gr,l

(1− xl))zr

S κ(t, S) S ∈ At or S ∈ Bt
{i, j} 0 S ∈ Atκ = 0
{i, l} κ(s, {k, l}) S ∈ At since {k, l} ∈ As
{i, j, k} −κ(s, {k}) S ∈ Bt since {k} ∈ As
{i, j, l} −gs,l S ∈ Bt since gs,l ≥ 0

S κ(r, S) S ∈ Ar or S ∈ Br
{i, l} 0 S ∈ Ar
{i, j} −κ(s, {i, j}) S ∈ Ar since {i, j} ∈ Bs
{i} 0 S ∈ Br
{l} κ(s, {i, j}) S ∈ Br since {i, j} ∈ Bs

Table 5.6: See theorem 3.Case 4: We consider three sets {i, j}, {i, k}, {j, k} ∈
Bs which involve only three elements and all three repeating in more than one
set. Without loss of generality, we assume that κ(s, {i, j}) ≥ κ(s, {i, k}) and
κ(s, {i, j}) ≥ κ(s, {j, k}). In this case we replace the av zs using two variables zt
and zr.
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3. If I1 and I2 are in I and |I1| < |I2|, then there is an element e of I2 − I1

such that I1 ∪ e ∈ I.

The maximal independent set in a matroid is called the base of a matroid. All the

bases of a matroid are equicardinal,i.e., they have the same number of elements.

Definition 12. The dual matroid of M is given by M∗ whose bases are the

complements of the bases of M.

Definition 13. In a uniform matroid Un(E, I), all the independent sets Ii ∈ I

satisfy the condition that |Ii| ≤ n for some fixed n.
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Chapter 6

Conclusion

The purpose of numeric computing is not yet in sight.

RW Hamming

This thesis covers several novel techniques of inference, which have already shown

themselves to be of importance to the vision community. The analysis shown in

chapter 3 provides the only finite bounds, currently published, of the P n and

robust P n models (Kohli et al., 2007, 2009), both of which, are widely used in

vision. The inference techniques described in this chapter also provide the back-

bone of the Associative Hierarchical Networks, which have remained state of the

art on object-class segmentation data-sets including CamVid (see Sturgess et al.

(2009) for details), and the msrc-data-set (see Ladicky et al. (2009), or chapter

2 for details) which contain ‘stuff’ annotations, such as ‘road’, or ‘grass’, and our

approach has been consistently competitive on data-sets such as voc(Everingham

et al., 2009) which lack these labels.

The work on co-occurrence potentials described in chapter 4, is already show-

ing its importance outside of semantic segmentation. By restricting these co-

occurrence potentials to local neighbourhoods, we have been able to propose a

new form of mrf, defined over sets of labels. Application of this new form of

model, to the problems of Non-rigid Structure from Motion (Russell et al., 2011),
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articulated motion (Fayad et al., 2011), and kernel learning (unpublished work),

has given state of the art performance in all domains. Beyond this, its extension

to more complex forms of Minimum description length (mdl ) cost such as ro-

bust Geometric Information Criteria (Torr et al., 1999), is straightforward, and

already proving valuable in the dense reconstruction of piecewise rigid scenes.

One of the strengths of these novel graph-cut based potentials, is their com-

posability. The fact that texture-based potentials, detections, and co-occurrence

can be integrated into a single robust framework provides a substantial advan-

tage, and in particular the combination of detectors with co-occurrence potentials

is much stronger than the sum of its parts.

One of the more surprising facts that has come to light, since the completion

of my thesis is that the pairwise formulations of both ahns, P n type potentials,

and the restricted class co-occurrence potentials as described by Delong et al.

(2010), belong to the same family of pairwise cost which we call near Potts mod-

els. Formulation of costs in this manner allows us to tighten the approximation

bound to 2. This means that much of the expanded class of potentials discussed

in chapters 2 — 4 essential comes for free, with no weakening of the standard

guarantees of α-expansion over the Potts model.

Despite, its less immediate applications, the techniques discussed in the final

chapter open the door to the automated discovery of cost functions such as those

used in earlier chapters. One future avenue for research, is the combination of

this automated potential discovery, with learning techniques, such as Taskar et al.

(2004); Alahari et al. (2010), which are normally used to learn the optimal weights

assigned to pre-given potentials. However, finding a compact representation in

the general case remains an open problem

Finally, it is worth emphasising that one of the strongest results of this thesis

is a negative. Although much care was taken in chapters 3 and 4 to formulate the

problem of inference in such a way that other message passing and move-making
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algorithms could be used; in every case graph-cuts, and in particular variants of

α-expansion, strongly outperformed all other algorithms.
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