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Abstract

This thesis presents research aimed at using a 3D linear statistical model (known as a 3D

morphable model) of an object class (which could be faces, bodies, cars, etc) for robust shape

recovery. Our aim is to use this recovered information for the purposes of potentially useful

applications like recognition and synthesis. With a 3D morphable model as its central theme,

this thesis includes: a framework for the groupwise processing of a set of meshes in dense

correspondence; a new method for model construction; a new interpretation of the statistical

constraints afforded by the model and addressing of some key limitations associated with using

such models in real world applications.

In Chapter 1 we introduce 3D morphable models, touch on the current state-of-the-art and

emphasise why these models are an interesting and important research tool in the computer

vision and graphics community. We then talk about the limitations of using such models and

use these limitations as a motivation for some of the contributions made in this thesis.

Chapter 2 presents an end-to-end system for obtaining a single (possibly symmetric) low

resolution mesh topology and texture parameterisation which are optimal with respect to a set

of high resolution input meshes in dense correspondence. These methods result in data which

can be used to build 3D morphable models (at any resolution).

In Chapter 3 we show how the tools of thin-plate spline warping and Procrustes analysis

can be used to construct a morphable model as a shape space. We observe that the distribution

of parameter vector lengths follows a chi-square distribution and discuss how the parameters of

this distribution can be used as a regularisation constraint on the length of parameter vectors.

In Chapter 4 we take the idea introduced in Chapter 3 further by enforcing a hard constraint

which restricts faces to points on a hyperspherical manifold within the parameter space of a
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linear statistical model. We introduce tools from differential geometry (log and exponential

maps for a hyperspherical manifold) which are necessary for developing our methodology and

provide empirical validation to justify our choice of manifold. Finally, we show how to use

these tools to perform model fitting, warping and averaging operations on the surface of this

manifold.

Chapter 5 presents a method to simplify a 3D morphable model without requiring knowledge

of the training meshes used to build the model. This extends the simplification ideas in Chapter

2 into a statistical setting. The proposed method is based on iterative edge collapse and we

show that the expected value of the Quadric Error Metric can be computed in closed form for a

linear deformable model. The simplified models can used to achieve efficient multiscale fitting

and super-resolution.

In Chapter 6 we consider the problem of model dominance and show how shading constraints

can be used to refine morphable model shape estimates, offering the possibility of exceeding the

maximum possible accuracy of the model. We present an optimisation scheme based on surface

normal error as opposed to image error. This ensures the fullest possible use of the information

conveyed by the shading in an image. In addition, our framework allows non-model based

estimation of per-vertex bump and albedo maps. This means the recovered model is capable

of describing shape and reflectance phenomena not present in the training set. We explore the

use of the recovered shape and reflectance information for face recognition and synthesis.

Finally, in Chapter 7 we provide concluding remarks and discuss directions for future re-

search.
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are set into dense correspondence using a modified version of the algorithm of [6]. For this

dataset, the training meshes (used for building the model) are not available. Additionally,

this dataset is topologically symmetric.

• [1]: This dataset contains 100 meshes obtained using a Cyberware 3030PS laser range

scanner. The meshes were set into dense correspondence using the modified optical flow

algorithm of [14].

• [104]: This dataset contains 385 meshes of a single subject acquired using spacetime

stereo. Vertex motion is tracked using optical flow and the mouth is unconnected (i.e. it

contains a hole).

• [45]: This dataset consists of 550 full body meshes of 114 subjects (in 10 poses). The

meshes were captured using a Vitronic laser scanner and are set into dense correspondence

using an approach similar to [6].

• A dataset containing 150 meshes obtained using a Cyberware 3030PS laser range scan-

ner. The meshes were set into dense correspondence using a thin-plate spline warp (refer

Section 3.3.2).

13



Acknowledgements

To:

• My Parents and Brother: Thank you for all your unstinting support and encourage-

ment throughout the last three years (and prior).

• Will: It has been an absolute pleasure and privilege to work with you over the last three

years. It is impossible to express my gratitude in a few words. Thank you for everything.

• Prof. Hancock, Prof. Wilson and Dr. Bors: Thank you for all the guidance and

support whenever I needed it.

• Colleagues, Friends and Family: All your contributions (however big or small) are

much appreciated and will never be forgotten.

• EPSRC and The Department of Computer Science: Thank you for supporting

this work.

14



Declaration

I declare that all the work in this thesis is solely my own, except where attributed and cited to

other authors. Most of the material in this thesis has been previously published (or accepted for

publication). Below is a complete list of publications on which the Chapters 2 to 6 are based.

• Chapter 2

– A. Patel and W.A.P. Smith. Automated Construction of Low Resolution, Texture-

Mapped,Class-Optimal Meshes. IEEE Trans. Vis. Comp. Gr., 2011 (Accepted).

• Chapter 3

– A. Patel and W.A.P. Smith. 3D Morphable Face Models Revisited. In Proc. CVPR,

pages 1327-1334, 2009.

• Chapter 4

– A. Patel and W.A.P. Smith. Exploring the Identity Manifold: Constrained Opera-

tions in Face Space. In Proc. ECCV, pages 112-125, 2010.

• Chapter 5

– A. Patel and W.A.P. Smith. Simplification of 3D Morphable Models. In Proc. ICCV,

2011 (Accepted).

• Chapter 6

– A. Patel and W.A.P. Smith. Shape-from-shading driven 3D Morphable Models for

Illumination Insensitive Face Recognition. In Proc. BMVC, 2009.

15



Chapter 1

Introduction

A set (class) of meshes are in dense correspondence (Figure 1.1), if they share the same connec-

tivity (topology) and corresponding vertices have equivalent meaning in some sense, for example

functional, topological, evolutionary etc. Such data can arise in at least two ways (Figure 1.2).

The first is when a deforming surface is tracked over time (e.g. [35, 104]), sometimes known

as 4D mesh data. In this case, shape variation is the result of surface deformation. The sec-

ond is when an object class such as human faces [14], body shapes [45] or automobiles [60] is

statistically modelled. In this case, shape variation is related to change in identity.

Efficiently and accurately modelling the class of human face shapes has received longstand-

ing attention in computer vision and graphics. In particular, 3D face shape has proved to be a

competitive biometric with numerous commercial applications [86]. A recent technology evalu-

ation (FRVT 2006 [80]) showed using 3D face scans results in orders of magnitude improvement

in recognition performance over using 2D image data alone. To this end, a Principal Component

Analysis (PCA) based linear statistical model of 3D human faces (known as a 3D morphable

model [14]) has received considerable research focus in recent years. The model provides a para-

metric description of object instances and can be fitted to data by using the model generatively

in an analysis-by-synthesis framework. The statistical constraint afforded by these models leads

to robust performance when fitting to real world, potentially noisy data.

The body of work which uses morphable models offers globally accurate and robust shape

recovery from real images. Additionally, given a single image of a person, the deformable 3D

model provides automatic estimates of 3D shape and texture/albedo (the intrinsic parameters),

which are fully independent of the estimated 3D scene parameters (the extrinsic parameters).
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Figure 1.1: A class of 2 meshes in dense correspondence. The meshes share the same topology
(red triangular facets) and corresponding vertices (for example the tip of the nose indicated by
the blue arrows) have equivalent meaning.

Figure 1.2: Shape variation due to surface deformation (top row). Shape variation due to
change in identity (bottom row).

Hence these models provide an excellent means for solving the two main challenges for face

recognition i.e. variations in pose and illumination [86]. Besides providing a route to state-of-

the-art performance in pose and illumination invariant face recognition [15, 76], these models

have many other potentially useful applications such as markerless motion capture [104], image

based editing and animation [11] and texture transfer and morphing [4].

However, there are several key challenges which hinder the further development of tech-

niques which use these models. Applications involving face analysis require fitting the model to

data (such as images, photometric normals or noisy range scans). The fitting process is com-

putationally expensive and prone to converge on local minima close to the mean. For robust

performance, parameter tuning is also required. Applications involving face synthesis require

that the model is capable to generating plausible and realistic face instances. Model dominance

means synthesised instances lack high frequency detail and hence realism. In summary, we
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(a) (b) (c)

Figure 1.3: (a) Input rendered image, b) Ground truth and c) Shape estimated using a state-
of-the-art model fitting algorithm [76]. The algorithm uses an analysis-by-synthesis technique
to optimise an objective comprising three error terms based on landmark points, contours and
image intensity. In spite of using this state-of-the-art model fitting approach, the estimated
shape fails to capture all the atypical features of the face (wrinkles on the cheek). This clearly
emphasises model dominance as a serious weakness and shows the need to study additional cues
to overcame this drawback.

identify the key problems faced by morphable models as follows:

• Computational expense: Fitting the model generally requires solution of a highly

nonconvex optimisation problem. In order to avoid local minima, global optimisation

strategies such as stochastic search are needed to fit the model to data [15]. Such methods

are slow to converge and require many iterations to be confident of obtaining a solution

close to the global minimum. In addition, each iteration may require rendering the current

estimate of the model and computing the error to the input. Since state of the art 3D

morphable models have a very high resolution (typically > 50000 vertices [15, 76]), this is

an expensive process.

• Model dominance: The quality of a reconstructed or synthesised face shape is critically

dependent on whether the model was trained using data which contained similar examples.

In other words, the ability of the model to generalise to new examples is limited. This

is particularly evident in the loss of high frequency (fine scale) surface details which are

often the most distinguishing features of a face. Hence, there is a fundamental limit on

the accuracy the model can attain. See Figure 1.3 for an illustration. However, even this

limit is difficult to reach since iterative methods commencing from a mean initialisation

are likely to converge on a minimum close to the mean, further exacerbating the problem

of model dominance. Several attempts have been made to overcome this problem. For
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(a) (b)

Figure 1.4: (a) Unseen input mesh (ground truth) and (b) Least squares shape estimate. In
spite of perfect correspondence between the input data and the model and a linear objective
function, we can obtain a grossly over fitted shape estimate. This clearly illustrates the need to
study statistical constraints afforded by the model in order to obtain the right trade off between
fitting quality and shape plausibility.

example, Romdhani et al. [87] proposed augmenting the objective function with additional

terms (such as edges, specular highlights and pixel intensities) which encourage convexity

of the search landscape.

• Parameter tuning: Obtaining the optimum trade off between fitting quality and shape

plausibility is data-dependent and requires manual tuning of a regularisation parameter

[12]. If the prior is underweighted, the model will overfit the data and the resulting surface

may contain many severe artefacts. If the prior is overweighted, the problem of model

dominance is further increased and the solution is forced to lie close to the mean. See

Figure 1.4 for an illustration.

1.1 Contributions

The central theme to this thesis is a 3D morphable model. The contributions made are aimed

at addressing some open problems related to model construction, statistical modelling and

fitting. Specifically, this thesis presents: a framework for the groupwise processing of a set of

meshes in dense correspondence; an empirically justified reconsideration of the techniques used

to construct the model; a study of the statistical constraints afforded by the model; methods

which address the afore mentioned limitations associated with using such models in real world

applications. Figure 1.5 provides a detailed visual schematic (flow diagram) of the steps involved
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Figure 1.5: Outline of the contributions made in this thesis.

in building and using a morphable model. We highlight where the chapters of this thesis

contribute to these steps.

In detail, the contributions made in this thesis are as follows:

• Processing a Class of Meshes (Chapter 2): We present a framework for the groupwise

processing of a set of meshes in dense correspondence. We extend a number of mesh

processing tools to operate in a groupwise manner. Specifically, we present a geodesic

based surface flattening and spectral clustering algorithm which estimates a single class-

optimal flattening. We also show how to modify an iterative edge collapse algorithm to

perform groupwise simplification whilst retaining the correspondence of the data. Finally,

we show how to compute class-optimal texture coordinates for the simplified meshes. We

present alternative algorithms for topologically symmetric data which yields a symmetric

flattening and low resolution mesh topology. We present flattening, simplification and

texture mapping results on three different datasets and our approach results in data that
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allows the construction of 3D morphable models (at any resolution).

• 3D Morphable Models Revisited (Chapter 3): We revisit the process of construct-

ing a high resolution 3D morphable model of face shape variation. We demonstrate how

the statistical tools of thin-plate splines and Procrustes analysis can be used to construct

a morphable model that is both more efficient and generalises to novel face surfaces more

accurately than previous models. We also reformulate the probabilistic prior that the

model provides on the distribution of parameter vector lengths. This distribution is de-

termined solely by the number of model dimensions and can be used as a regularisation

constraint in fitting the model to data without the need to empirically choose a parameter

controlling the trade off between plausibility and quality of fit. As an example application

of this improved model, we show how it may be fitted to a sparse set of 2D feature points

(approximately 100). This provides a rapid means to estimate high resolution 3D face

shape for a face in any pose given only a single face image. We present experimental

results using ground truth data and hence provide absolute reconstruction errors.

• Manifold Based Constraints (Chapter 4): We constrain faces to points on a manifold

within the parameter space of a linear statistical model. The manifold is the subspace

of faces which have maximally likely distinctiveness and different points correspond to

unique identities. We develop a novel implementation of log and exponential maps for a

hyperspherical manifold. We show how these tools can be used to replace linear operations

such as warping and averaging with operations on the surface of this manifold. Finally,

we use the manifold to develop a new method for fitting a statistical face shape model to

data, which is both robust (avoids overfitting) and overcomes model dominance (is not

susceptible to local minima close to the mean face). Our method outperforms generic non-

linear optimisers based on the BFGS Quasi-Newton method and the Levenberg-Marquardt

algorithm when fitting using a state-of-the-art morphable model.

• Model Simplification (Chapter 5): We show how to simplify a 3D morphable model.
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Our method only requires knowledge of the original highest resolution statistical model

and leads to low resolution models in which the model statistics are a subset of the original

high resolution model. We employ an iterative edge collapse strategy, where the deleted

edge is chosen as a function of the model statistics. We show that the expected value of

the Quadric Error Metric can be computed in closed form for a PCA deformable model.

Model parameters obtained using the model at any resolution (lower) can be used to

reconstruct a high resolution surface, providing a route to super-resolution. We are able

to decrease the model resolution and fitting time by factors of approximately 10 and 4

respectively whilst inducing an error which is only slightly larger than the fitting error of

the original model.

• Shape-from-Shading Driven Morphable Models (Chapter 6): We show how sur-

face orientation information inferred using shape-from-shading can be used to aid the

process of fitting a 3D morphable model to an image of a face. We consider the problem

of model dominance and show how shading constraints can be used to refine morphable

model shape estimates, offering the possibility of exceeding the maximum possible accu-

racy of the model. We use this observation to motivate an optimisation scheme based on

surface normal error. This ensures the fullest possible use of the information conveyed by

the shading in an image. Moreover, our framework allows estimation of per-vertex albedo

and bump maps which are not constrained to lie within the span of the model. This means

the recovered model is capable of describing shape and reflectance phenomena not present

in the training set. We show reconstruction and synthesis results and demonstrate that

the shape and albedo estimates can be used for illumination insensitive face recognition

using a single gallery image.

1.2 Thesis Outline

Each contributing chapter (2 - 6) begins by introducing the problem to be addressed, provides

a review of the relevant prior work and states the contributions made. This is followed by a
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detailed presentation of the theoretical contribution and experimental validation of the pro-

posed methods. Conclusions are provided to end each chapter. All the notations and symbols

introduced in each chapter are explained as relevant and are to be used in reference to that

particular chapter only. Finally, in Chapter 7 we provide some concluding thoughts and discuss

directions for future research.
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Chapter 2

Processing a Class of Meshes

2.1 Introduction

High resolution meshes with per-vertex texture information arise from data acquisition devices

such as structured light [76] or laser range scanners [14], or more recently from photometric light

stages [64]. If we wish to simplify such a mesh whilst retaining the mapping to the original high

resolution texture, a number of existing tools can be used. Typically, the high resolution mesh

is flattened using any one of the huge range of surface flattening algorithms [92] to establish a

texture parameterisation. The mesh is then simplified using a simplification algorithm such as

QSlim [36] and the texture coordinates of the resulting vertices interpolated. Finally, the low

resolution mesh may be rendered using the original high resolution texture. However, such tools

are not available when the input is a class of meshes which share a common parameterisation,

i.e. they are in dense correspondence.

Members of such a class have fixed mesh topology (or connectivity) but varying shape (i.e.

vertex positions). The shape variations can be the result of surface deformation (sometimes

known as 4D data mesh data) [35, 104] or changes in identity [14, 45, 60].

In this chapter we present an end-to-end system for obtaining a single (possibly symmetric)

low resolution mesh topology and texture parameterisation which are optimal with respect to a

set of input meshes. We do not consider the problem of obtaining a consistent parameterisation

of the set of meshes (known as cross-parameterisation), this is already well studied [6, 14,

55, 60, 82]. Our aim here is instead to compute class-optimal flattenings, simplifications and

low resolution embeddings which preserve cross-parameterisation over the input set of meshes.
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The most obvious application of the methods we present is in compressing 4D mesh data

whilst preserving inter-frame correspondence. However, we focus on results for (low resolution)

statistical shape/texture modelling. Additionally, our method could form part of a system for

automated construction of efficient and robust facial rigs for varying identity or expression.

2.2 Related Work

To our knowledge, the problem of groupwise surface flattening has not previously been con-

sidered. Surface flattening methods can be categorised with respect to their parameterisation

domain and the type of parametric distortion minimised [92]. Early work used fixed boundary

parameterisations, e.g. Floater’s Mean Value Coordinates [33]. The advantage of such an ap-

proach is that it can guarantee bijectivity whilst requiring only the solution of a linear equation.

However, it induces significant distortion. Linear methods with a free boundary such as the

Least Squares Conformal Map of Levy et al. [61], can reduce this distortion although bijectivity

(either local or global) can no longer be guaranteed. Nonlinear methods offer significantly less

distortion at increased computational expense.

Zigelman et al. [109] showed how classical MDS could be used to preserve geodesic distances

in an efficient manner although the embedding cannot be guaranteed to be bijective. Zhou et

al. [108] extended this approach by partitioning the mesh into a number of separate charts,

each of which could be flattened bijectively. Sheffer et al. [91] proposed a nonlinear angle based

flattening which can be efficiently implemented. Their approach yields an embedding which is

locally bijective, meaning that no triangles become inverted.

More recently, Liu et al. [62] proposed a local/global approach in which 3D triangles are

mapped to the plane locally and then globally stitched together by solving a sparse linear

system. When the triangles are mapped in an as-rigid-as-possible manner, the embedding seeks

to preserve global shape. Ben-Chen et al. [9] present a conformal flattening method which aims

to concentrate all the 3D curvature at a small number of mesh vertices. These singular vertices

are chosen automatically and are used to cut the mesh to obtain a disk topology. The method
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is again linear and yields parameterisations with low quasi-conformal distortion. Instead of

computing a strictly conformal flattening, Yang et al. [102] find the best discrete conformal

mapping that also minimizes area distortion.

The problem of groupwise mesh simplification has been considered before in the context of

modelling motion or deformation of a surface. Mohr and Gleicher [73] were the first to propose

a method for simplifying a deforming mesh where the sequence is in dense correspondence.

They extended Garland and Heckbert’s [36] QSlim algorithm such that edge collapses use an

error metric which is summed over all samples in the set. A more sophisticated approach was

taken by DeCoro and Rusinkiewicz [27]. They perform simplification of skeletally articulated

meshes by incorporating knowledge of potential poses into a probability function, which in turn

determines the error quadrics associated with the surface. Using Monte Carlo sampling, they

obtain a mesh which approximates the likely poses more accurately than the improbable ones.

A similar approach is taken by Landreneau and Schaefer [56], who perform simplification based

on a set of user-specified poses that are representative of typical deformations. Their approach

also generates resolution-dependent skin weights.

We assume that the input meshes are already in dense correspondence and share the same

mesh topology. There are already a range of techniques available for compatible remeshing

of sets of meshes. These can be classified into domain specific techniques (which may exploit

user prescribed constraints) and those that can be applied to generic meshes. Domain specific

techniques include Leotta and Mundy [60], who use a manually constructed coarse template

vehicle mesh whose vertices are repositioned to match CAD models of vehicles in the training set.

Blanz and Vetter [14] use a variant of optical flow to align surfaces which can be parameterised

to a 2D texture space. Their flow objective function includes measures of both texture and

shape information such as Gaussian curvature, mean curvature and surface normals. Generic

techniques include both Kraevoy and Sheffer [55] and Praun et al. [82]. These methods produce

a consistent parameterisation so that the meshes share the same base domain and respect pre-

selected feature vertices. Amberg et al. [6] extend the ICP framework to nonrigid registration
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while retaining the convergence properties of the original algorithm.

2.3 Contributions

In Section 2.5 we extend the surface flattening approach of [109], based on multidimensional

scaling (MDS), to operate in a groupwise manner. We begin by providing examples to show

that two näıve approaches do not yield optimal results. We then provide an algorithm for

computing a class-optimal surface flattening, in which MDS is applied to the matrix of average

normalised geodesic distances. We show how to efficiently flatten a set of large (in terms of

number of vertices) meshes, by performing spectral analysis using a key-points subset. The

key-points are obtained using a method for groupwise uniform sampling of a set of meshes. We

use the recently-reported method of [10] to extend the embedding to the whole mesh, which is

once again computed using class-average geodesic distances. The result is a single flattening

which minimises the total distortion induced by flattening all meshes in the class. We consider

the case of meshes with symmetric topology and provide a modified version of the algorithm to

obtain a class-optimal symmetric flattening. We also extend the spectral clustering algorithm

of [108] to operate on a set of meshes. In doing so we show how to flatten a set of meshes by

partitioning them into class-optimal charts and also overcome the problem of triangle flips.

In Section 2.6 we present a modification of Garland and Heckbert’s [36] iterative edge collapse

algorithm which allows groupwise simplification of a set of (possibly symmetric) meshes. In

Section 2.7 we show how class-optimal texture coordinates can be computed for the simplified

mesh structure.

In Section 2.8 we present results for varying identity on faces from the Basel Face Model

(BFM) [76] and for facial motion data using the dataset of [104]. We also present results on a

set of body meshes obtained from [45]. Finally, we show how our simplifications can be used

to construct low resolution 3D morphable models which capture the same statistics as the high

resolution data. A summary of our contributions is shown in Figure 2.1.
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(a) (b) (c) (d) (e)

Figure 2.1: From an input set of high resolution meshes (∼ 50k vertices) with per-vertex texture
information and in dense correspondence (a), we compute a single class-optimal flattening (b)
and simplified (1k vertices) mesh structure (c). Simplified meshes (d) remain in dense corre-
spondence and we compute class-optimal texture coordinates for the low resolution vertices.
This allows us to render the simplified meshes with the flattened high resolution textures (e).

2.4 Preliminaries

We are interested in processing a set of F meshes which are augmented with per-vertex texture

values. We assume that the meshes are already in dense correspondence. That is to say, each

mesh has the same number of vertices and that the ith vertex in any one mesh corresponds to

the ith vertex in another. Moreover, each mesh shares the same connectivity.

Formally, we define the fth mesh asMN
f = (KN ,Sf ,Tf ). Here, KN is a simplicial complex

with N vertices, which is a set whose elements can be vertices {i}, edges {i, j} or triangles

{i, j, k}, with the indices i, j, k ∈ [1 . . . N ]. The complex KN defines the connectivity or topology

of a mesh. All meshes in the input set share the same complex. The actual shape of the fth

mesh is defined by the vector Sf ∈ R3N , where the ith vertex is given by vfi = [Sf (3i−2) Sf (3i−

1) Sf (3i)]T . Similarly, the per-vertex texture values are given by the vector Tf ∈ R3N , where

the RGB vector of the texture associated with the ith vertex is given by tfi = [Tf (3i−2) Tf (3i−

1) Tf (3i)]T . We centre all meshes, such that
∑N
i=1 vfi = [0 0 0]T .

Although the faces of individual subjects will contain asymmetries [32], facial shapes as a

class (and many other biological structures) are symmetric. It has been shown that symmetry

is a powerful constraint to exploit in mesh simplification, resulting in more meaningful low

resolution meshes [41]. Moreover, it may be more convenient for an artist or animator to rig or
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design a texture map for a symmetric mesh. For this reason it may be useful to use a symmetric

topological structure. We present algorithms for both symmetric and non-symmetric sets of

meshes. Where a mesh is symmetric, then for each vertex {i} ∈ KN , there is a corresponding

symmetric vertex {sym(i)} ∈ KN . If {i} lies on the line of symmetry, then {i} = {sym(i)}.

Similarly, for each edge {i, j} ∈ KN , there is a corresponding symmetric edge {sym(i), sym(j)} ∈

KN and if both {i} and {j} lie on the line of symmetry then {i, j} = {sym(i), sym(j)}.

2.5 Groupwise Surface Flattening

The aim of planar surface flattening is to embed a set of vertices {v1, . . . ,vN} using a mapping

g(i) = ṽi ∈ R2 such that some measure of distortion is minimised. We focus on perhaps

the most natural measure of distortion: the extent to which distances between pairs of points

are maintained. For example, by requiring that the geodesic distances on the manifold are

preserved, i.e. d(i, j) ≈ ‖ṽi − ṽj‖, where d(i, j) is the geodesic distance between vertices vi

and vj . The extent to which an embedding g, satisfies this condition is measured by a quantity

known as Stress-1 [26]:

σ1(g) =

√√√√∑N−1
i=1

∑N
j=i+1 (d(i, j)− ‖g(i)− g(j)‖)2∑N−1

i=1

∑N
j=i+1 ‖g(i)− g(j)‖2

. (2.1)

The advantages of distance based measures are optimality with respect to a global distance

distortion metric (e.g. Classical MDS is optimal with respect to strain [26]) and efficiency (fast

marching can be used to compute geodesic distances and spectral methods to compute the

embedding). We show that MDS based flattening extends naturally to the groupwise case and

can be modified in a straightforward manner to handle topologically symmetric data. We use

normalised aggregated distances over the dataset and hence the Classical MDS analysis com-

putes a solution whose strain is optimal with respect to average normalised geodesic distance.

Note that, depending on the requirements of the flattening, other objectives may be more ap-

propriate. For example, consider a sample of faces in which 10% exhibited unusually long noses.
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Figure 2.2: Averaging and geodesic distance computation do not commute: d(A,C) = 2 for
both of the input shapes but d(A,C) = 1 for the mean shape.

If these noses were required to be flattened with low strain, geodesic distances over the nose

should be weighted higher for the long-nosed samples. However, this would be at the expense

of increasing the average case strain.

The drawback of embeddings based on preservation of geodesic distances is that they cannot

be guaranteed to be bijective. This leads to the potential problem of triangle flips. The reason

for this problem is that for certain surfaces a folded solution may provide better distance

preservation. However, Zhou et al. [108] have shown how to overcome this problem by applying

spectral clustering based on MDS. We extend their method to the groupwise case.

2.5.1 Näıve Approaches

Two näıve strategies for groupwise surface flattening turn out, in practice, to have drawbacks.

Both are based on averaging.

The first is to compute the mean of the input set of meshes and then apply a traditional

surface flattening algorithm to the resulting mean mesh. The problem with this approach is

that the average mesh does not necessarily retain the properties of the input surfaces which the

flattening seeks to preserve. For example, consider the two shapes shown on the left of Figure

2.2. ABC forms an equilateral triangle with sides of length 1. Hence, the geodesic distance

between A and C for both shapes is 2 and hence the average geodesic distance is 2. On the right,

the mean of the two shapes is shown. In this case, the geodesic distance between A and C is

1. Clearly, a flattening which preserves average geodesic distances is not the same as flattening

the average shape.

The second is to apply a surface flattening algorithm to each of the input meshes and average

the resulting flattened coordinates for each vertex. This also does not yield optimal results with
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Figure 2.3: Averaging optimal parameterisations does not yield optimal results. (a) and (b)
show two triangles flattened with zero distortion. (c) shows the Euclidian average of the two
flattenings with σ1 = 0.1575. (d) shows the optimal result with σ1 = 0.1562.

respect to minimising total distortion. In the example shown in Figure 2.3, corresponding

triangles in two meshes are flattened with zero stress-1 to coordinates: A1 = (0, 0), B1 =

(
√

0.75,−0.5), C1 = (
√

0.75, 0.5) and A2 = (0, 0), B2 = (
√

0.9375,−0.25), C2 = (
√

0.9375, 0.25).

Hence, the geodesic distance between A and B, and A and C, is 1 in both cases, whilst the

distance between B and C is 1 for case 1 and 0.5 for case 2. The optimal solution in this case is

an isosceles triangle with two sides of length 1 and one of length 0.75, shown in Figure 2.3(d).

This yields a stress-1 value of 0.1562 for both cases. However, taking the Euclidian average of

the coordinates of the original flattenings, as shown in Figure 2.3(c), yields a stress-1 value of

0.1575 for both cases. In other words, this approach introduces an unnecessary increase in the

distortion of 0.83% for a mesh consisting of only a single triangle. An additional weakness of

this approach is that an individual flattening must be computed for every mesh in the input set.

This is potentially highly computationally intensive, particularly if there are a large number

of input meshes. Nevertheless, in Section 2.8.1 we compare this approach with our groupwise

result, using the ABF++ [91] method to compute the individual flattenings.

Next we present a more efficient and flexible approach to obtain a single class-optimal

flattening.

2.5.2 Multidimensional Scaling

Consider a symmetric distance matrix D in which element Dij is the squared geodesic distance

between vertices vi and vj , i.e. Dij = d2(i, j). Geodesic distances can be computed efficiently

on a triangle mesh using the Fast Marching algorithm of Kimmel and Sethian [53]. Classical
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MDS converts these distances into equivalent dot products using the double centering formula

[26]:

D̃ij = −1

2

(
Dij −

1

N
Wi −

1

N
Wj +

1

N2

N∑
k=1

Wk

)
, (2.2)

where Wi is the ith row sum of D:

Wi =

N∑
j=1

Dij . (2.3)

The pth dimension of the embedding of the vertex vi is then given by eip =
√
λpψip, where ψip

is the ith element of the pth principal eigenvector of D̃ and λp is the corresponding eigenvalue.

Since we are interested in flattening the mesh to a 2D plane, we use the embedding g(i) =

(ei1, ei2).

Zigelman et al. [109] were the first to propose the use of Classical MDS applied to geodesic

distances for surface flattening. However, computing pairwise geodesic distances for every vertex

pair and computing the spectral decomposition of the resulting distance matrix is impractical

for meshes of a reasonable size. For this reason, they compute geodesic distances for only a

small subset of the mesh vertices and apply MDS to this smaller distance matrix. A similar

approach is taken by Peyré and Cohen [78] who use Local Linear Embedding on a subset of

key-points.

2.5.3 MDS of Aggregated Distances

Our method is a groupwise extension of the method of Zigelman et al. [109]. However, we also

make two refinements to the algorithm by tackling two questions that were not explored in the

original paper. Namely, how to select the key-points subset and how to extend the embedding

to the non key-point vertices.

Our set of input meshes gives rise to a set of corresponding distance matrices, differing

according to the shape of each mesh. The common variations and individual differences within

these distance matrices can be studied using the tools of Replicated MDS [69]. However, we

wish to compute a single embedding whose strain is optimal with respect to average normalised
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geodesic distance. To achieve this, we apply Classical MDS to a matrix of aggregated geodesic

distances. We weight the contribution of each mesh according to its scale, where we define the

scale of the fth mesh as the norm of its shape vector, i.e. ‖Sf‖ (recall that input meshes are

zero centred). The average normalised geodesic distance between two vertices is given by:

d(i, j) =
1

F

F∑
f=1

df (i, j)

‖Sf‖
, (2.4)

where df (i, j) is the geodesic distance between the ith and jth vertices of the fth mesh. Our

distance matrix is given by Dij = d
2
(i, j). We apply double centering and compute the spectral

decomposition of the resulting matrix. Note that D is only computed for a subset of key-points

selected from the vertices of KN . We describe how to choose these key-points and how to

extend the embedding to the whole mesh in the following sections.

2.5.4 Groupwise Uniform Mesh Sampling

We would like the key-points subset to sample the surfaces in the input set as evenly as possible.

Peyré and Cohen [79] recently presented a greedy algorithm for efficient uniform sampling of a

manifold. The idea is to choose a set of evenly spaced points on a triangle mesh by iteratively

selecting the point furthest from those chosen so far (in terms of geodesic distances). For the

groupwise case, we would like to choose a subset of the vertices of KN , such that they are evenly

spaced on average over all surfaces in the class.

We initialise by choosing a vertex {x1} ∈ KN , at random. We compute an average geodesic

distance map, U1(i) = d(x1, i), from {x1} to all vertices {i} ∈ KN . We then iteratively add

key-points. Assume the set SM−1 = {{x1}, . . . , {xM−1}} contains the first M − 1 key-points

and that UM−1 is the geodesic map to SM−1, computed over all meshes in the input class. The

new point {xM} is the point furthest from SM−1:

{xM} = arg max
{i}∈KN

UM−1(i). (2.5)
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Figure 2.4: Groupwise uniform sampling: the key-points are uniformly distributed on average
over all meshes in the input class.

The new geodesic distance map is simply, UM = min(UM−1, UxM ), where UxM is the geodesic

distance map to {xM}. This can be computed efficiently by starting a front from xM using Fast

Marching and restricting the solution to the set {i : UxM (i) ≤ UM−1(i)}.

An example of this groupwise uniform sampling is shown in Figure 2.4. The sampling is

computed for 100 key-points over the 10 meshes of the BFM [76]. The sampling is plotted on

three of the meshes.

2.5.5 Extending the Embedding

The application of MDS (as above) allows us to compute the embedding g(xm) ∈ R2 for all M

key-points {xm} ∈ SM . To extend the embedding to the whole mesh, we need to interpolate the

location g(i) for all remaining N −M vertices {i} ∈ KN \ SM . We do so using the eigenvector

learning approach of Bengio et al. [10]. This method uses a kernel derived from the embedding

of the key-points to approximate a Nyström integral.

Accordingly, the pth dimension of the embedding of the ith vertex is given by:

gp(i) =

√
λp

λp

M∑
m=1

ψmpK̃(i, xm), (2.6)

where K̃(a, b) is a kernel function. This kernel is obtained by using a continuous version of the

double-centering formula:

K̃(a, b) = −1

2

(
d

2
(a, b)− Ex[d

2
(x, b)]− Ex′ [d

2
(a, x′)] + Ex,x′ [d

2
(x, x′)]

)
, (2.7)
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where the expectations are computed over the key-points subset:

Ex[d
2
(x, b)] =

1

M

M∑
m=1

d
2
(xm, b), (2.8)

Ex′ [d
2
(a, x′)] =

1

M

M∑
m=1

d
2
(a, xm), (2.9)

Ex,x′ [d
2
(x, x′)] =

1

M2

M∑
m1=1

M∑
m2=1

d
2
(xm1

, xm2
). (2.10)

Extending the embedding to all vertices in the mesh requires the computation of FMN geodesic

distances, i.e. the geodesic distance from the key-points subset to all other vertices, averaged

over all meshes in the class. In practice, this results in Fast Marching being applied M times

to each of the F meshes and an overall time complexity of O(FMN logN) for the geodesic

distance calculations.

With the embedding extended to all vertices, the vertex vfi maps to location (g1(i), g2(i)),

for all f . In other words, the same vertex maps to the same texture coordinate for all meshes.

2.5.6 Symmetric Flattening

Obtaining a symmetric flattening for meshes with symmetric topology is straightforward. We

must simply ensure that the distance matrix used in the MDS contains distances which respect

symmetry relations. To enforce this, we begin by extending the key-points subset to include

the symmetric partner of all key-points, i.e. S2M = SM ∪ {{sym(x1)}, . . . , {sym(xM )}}. If SM

contains key-points lying on the line of symmetry, then S2M will have corresponding duplicate

entries. Hence we ensure that all points in SM are away from the line of symmetry. We can

now set the distance between a pair of key-points as the average of the distance between these

points and the distance between the symmetric partners of these points:

D12 =

(
1

2

(
d(x1, x2) + d(sym(x1), sym(x2))

))2

. (2.11)
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Do the same for all other key-points pairs. Applying Classical MDS to this matrix will yield a

symmetric flattening for the key-points. To ensure that the kernel used to extend the embedding

to non key-point vertices yields symmetric results, we must also modify Equation 2.7 such that

the distances are averaged with symmetric distances where appropriate.

2.5.7 Groupwise Charts

When the groupwise flattening obtained for a class of meshes results in large distortion or trian-

gle flips, we can recursively partition the meshes into smaller charts. Each of these charts can be

individually flattened using the same method as described above. This recursive partitioning

can continue until a satisfactory level of distortion is reached or until no chart contains any

triangle flips. This strategy is particularly useful when flattening a set of closed genus-0 meshes

which must be cut in order to be topologically equivalent to discs.

In order to partition a set of meshes into class-optimal charts, we extend the single mesh

spectral clustering approach of Zhou et al. [108] to operate on a set of meshes. Their algorithm

proceeds by choosing vertices (landmark points), which correspond to the min-max values along

each of the first p most significant eigenvectors resulting from the MDS spectral decomposition.

In our case, this is computed using the average normalised geodesic distances. These vertices

are used to cluster the surface into C charts by assigning every triangle to the closest landmark

(in terms of the average normalised geodesic distance). Hence we obtain class-optimal landmark

points and charts which are shared across the set of meshes. Landmark points which are too

close together are discarded and hence C ≤ 2p. The value of p (hence the number of charts C)

depends on the shape complexity of meshes [108]. This process can be iterated with each chart

being subdivided further based on a spectral analysis of the segmented part. For the set of

body meshes [45], we partition the bodies into C = 30 charts. For this data we use the p = 12

most significant eigenvectors to obtain the initial set of charts. We then split the charts into

further sub-charts until the embedding results in no triangle flips. Figure 2.5 shows a body

mesh partitioned into 30 charts.
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Figure 2.5: A body mesh partitioned into 30 charts. The various colours represent the vertices
belonging to the respective charts.

2.5.8 Flattened Coordinates and Maps

We can finally obtain texture maps in UV space from the original per-vertex texture values

using the computed flattening. We apply a scale s and offset o to the flattened coordinates

such that 0 ≤ s · g1(i) + o ≤ 1 and 0 ≤ s · g2(i) + o ≤ 1 for all {i} ∈ KN . We then compute

a 2D colour texture map T̄f ∈ RR×R×3 for every mesh in the set. Each R × R texture map

is obtained by regularly sampling the flattened texture function Texf (g1(i), g2(i)) = tfi using

bicubic interpolation.

2.6 Groupwise Mesh Simplification

As seen in Section 2.4, each mesh within the input set is characterised by the same complex K,

having the same number of vertices and the same connectivity, but varying intrinsic shape. Our

groupwise mesh simplification algorithm is based on iterative edge contraction. Specifically, we

use the Quadric Error Metric [36] to choose class-optimal edge collapses. Our framework follows

that of Garland and Heckbert but acts on a set of meshes such that dense correspondence is

preserved while the intrinsic shape of each mesh varies.

A pair contraction (v1,v2) → v̄, transforms a pair of vertices v1 and v2 to a new position

v̄, connects all their incident edges to v1 and deletes the vertex v2. Any edges or faces which
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became degenerate after the contraction are removed.

We extend this concept to a groupwise operation, which contracts a vertex pair over all

meshes in a class:

(vfi ,v
f
j )→ v̄fij . (2.12)

It is important to note that the same pair is contracted for all meshes in the class and hence

the same edges and faces are removed. This means that the consistent topology established by

the dense correspondence process is preserved through a contraction. Only the new position

v̄fij varies, determined by the shape of each individual mesh.

Starting with the original high resolution meshes MN
f = (KN ,Sf ), a sequence of pair

contractions is applied until the simplification goals are satisfied. Each contraction corresponds

to a local incremental modification of the complex KN and shape vectors Sf . The algorithm

generates a sequence of meshes MN
f ,M

N−1
f ,MN−2

f , . . . with decreasing resolution. It should

be noted that for the case F = 1 (a single mesh in a class), our formulation reduces to that

proposed in [36]. For the purpose of mesh simplification we do not consider the texture vectors

Tf . Instead, in Section 2.7 we show how to compute texture coordinates for the low resolution

meshes, to index into the high resolution flattened texture maps.

We consider only edge pairs as valid for contraction, i.e. where {i, j} ∈ KN . We label the

valid pairs at initialisation by constructing an edge table from the input triangle list. When we

perform a contraction (vfi ,v
f
j ) → v̄fij , the complex KN is modified. Degenerate faces (those

that no longer have 3 distinct vertices) and duplicate edges are removed as well as the collapsed

edge and the redundant vertex j:

KN−1 =KN \
{
{j},{i, j},{j, κ},{i, j, κ} :{i, j, κ} ∈ KN

}
. (2.13)
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2.6.1 Quadric Error Metric

The quadric Q assigns a value Q(v) to every point in space v by the second order equation:

Q(v) = vTAv + 2bTv + c, (2.14)

where A is a 3x3 matrix, b is a 3-vector and c is a scalar [36].

When considering the contraction of a pair (vfi ,v
f
j ), we need to determine the target position

v̄fij . We select the optimum position (v̄) as the one that minimizes Equation 2.14. Since

Equation 2.14 is a quadratic, finding its minimum is a linear problem. Taking partial derivatives

we obtain:

∇Q(v̄) = 2Av̄ + 2b. (2.15)

Solving for ∇Q(v̄) = 0, we find the optimum position to be:

v̄ = −A−1b. (2.16)

If A is singular, its inverse does not exist and we cannot solve for v̄ using Equation 2.16.

In such a situation we select either end point vi or vj as v̄, depending on which one of these

produces the lowest Q(v̄). It should be noted we must compute the target positions v̄fij for each

edge {i, j} across the whole set of F meshes. The edge quadric used for computing each target

placement is obtained by the addition rule [36]. We must also incorporate a boundary penalty

into the initial quadrics for vertices lying on a discontinuity edge [36].

With the target position for each pair (vfi ,v
f
j ) computed, the last remaining step is the

selection of the edge pair for contraction. Following the strategy used for simplifying deforming

or articulated meshes [73], we select that pair to be the one which minimises Equation 2.14 over

the whole set of meshes. After the removal of L vertices this is given by:

{i∗, j∗} = arg min
{i,j}∈KN−L

F∑
f=1

Qfi+j(v̄
f
ij). (2.17)
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After every edge contraction we must update the quadrics and the error heap for the modified

entries in the complex K [36]. Our method adds an overhead to the computational complexity

of the QSlim method for a single mesh. A single edge contraction requires, O(F ) operations

to recompute the quadric error in the neighborhood of the contracted edge, plus O(logN)

operations to maintain the heap property. As the number of contractions is bounded by N , the

iterative contraction phase runs in O(FN +N logN) time.

2.6.2 Symmetric Mesh Simplification

Golovinskiy et al. [41] modified Garland and Heckbert’s QSlim algorithm to operate in a sym-

metric manner. Our groupwise simplification algorithm can be similarly modified to ensure that

all simplified meshes preserve the symmetric mesh topology. In order to achieve this, we modify

Equation 2.17, to select symmetric edge pairs for contraction as follows:

{i∗, j∗}, {sym(i∗), sym(j∗)}= arg min
{i,j},{sym(i),sym(j)}∈KN−L

(2.18) F∑
f=1

Qfi+j(v̄
f
ij) +

F∑
f=1

Qfsym(i)+sym(j)(v̄
f
sym(i)sym(j))

 .

We contract both the edge {i∗, j∗} and its symmetric partner {sym(i∗), sym(j∗)} as normal.

This symmetric version of the algorithm can be implemented efficiently using a symmetric mod-

ification of the edge table. Each entry contains symmetric edge pairs and priority is determined

based on the sum of their Quadric Error Metric scores. It should be noted that in the symmetric

implementation, during each contraction, L (the number of vertices removed) is incremented

by 2. However, in the case where {i∗, j∗} = {sym(i∗), sym(j∗)}, only one edge is collapsed and

hence one vertex is removed during the contraction.
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Figure 2.6: Groupwise surface flattening results. The top row shows 3 faces from the BFM and
the bottom row shows 3 frames from the Spacetime dataset.

2.6.3 Preventing Mesh Inversion

While performing an edge pair contraction, we must ensure that the orientation of the faces is

preserved (i.e. none of the faces affected by a contraction fold over). Following [36], we compare

the normals of all the affected faces before and after contraction. If any of the normals flip,

we disallow that contraction. Unlike [36], we do not impose a penalty for mesh inversion, we

simply disallow it. This strategy is important to produce higher quality meshes, especially at

lower resolutions.

For the groupwise case, we disallow a contraction if it results in a flipped normal for any

one of the F meshes in the input set. Note that because the shape of each mesh varies, flips

can occur in some meshes and not others. Disallowing mesh inversions restricts the number

of vertices that can be removed and effectively provides a stopping criteria, i.e. the point at

which no edge can be contracted without causing a mesh inversion in at least one of the meshes

in the set. The level of simplification that can be obtained before this happens is related to

the variability and hence the number of meshes in the input set. This is a difference between

groupwise and individual mesh simplification and shows that the groupwise case is more heavily

constrained.
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Subject
MDS [109] MDS Groupwise ABF++ [91] ABF++ Groupwise

Stress-1 Stretch Stress-1 Stretch Stress-1 Stretch Stress-1 Stretch
1 0.1217 1.942 0.1279 1.474 0.2620 1.031 0.2525 2.177
2 0.1022 1.951 0.1049 1.541 0.2251 1.019 0.2401 2.213
3 0.1036 1.430 0.1099 1.517 0.2264 1.016 0.2432 2.288
4 0.1146 1.634 0.1176 1.558 0.2500 1.020 0.2437 2.219
5 0.1317 1.600 0.1346 1.552 0.2735 1.036 0.2619 2.216
6 0.1093 3.167 0.1209 1.562 0.2560 1.032 0.2501 2.294
7 0.1217 4.732 0.1233 1.572 0.2755 1.029 0.2506 2.271
8 0.1254 1.597 0.1236 1.491 0.2710 1.009 0.2593 2.192
9 0.1256 1.567 0.1333 1.493 0.2494 1.009 0.2423 2.201
10 0.1080 1.661 0.1091 1.528 0.2538 1.026 0.2512 2.262

Mean 0.1164 2.128 0.1205 1.529 0.2543 1.023 0.2495 2.233

Table 2.1: Surface flattening results for the BFM data.

Figure 2.7: The groupwise chart atlas obtained for one of the body meshes.

2.7 Low Resolution Texture Mapping

In order to texture map simplified meshes using the original high resolution flattened textures,

we must compute the texture coordinates of the simplified vertices. Once again, this must

be done in a groupwise manner such that we establish a single mapping from vertex indices

at the lower resolution to the texture space. Following [22], we do this by associating each

low resolution vertex to the closest vertex in the original high resolution mesh, looking up the

texture coordinates for this high resolution vertex and then averaging over all meshes in the

class. This step runs in O(FN(N − L)) time.

Consider a vertex v̂fi in a simplified mesh which has had L vertices removed and where

{i} ∈ KN−L. We define h(v̂fi ) as the function which returns the index of the vertex vfj which
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Subject Single Mesh [108] Groupwise
1 0.0313 0.0410
2 0.0326 0.0403
3 0.0335 0.0484
4 0.0336 0.0428
5 0.0346 0.0509
6 0.0339 0.0530
7 0.0311 0.0443
8 0.0330 0.0481
9 0.0314 0.0438
10 0.0320 0.0391

Mean 0.0327 0.0452

Table 2.2: Surface flattening results for the body meshes. We report stress-1 values averaged
over the 30 charts in each case.

is closest to v̂fi and where {j} ∈ KN :

h(v̂fi ) = arg min
{j}∈KN

‖v̂fi − vfj ‖. (2.19)

Recall that g is the embedding of the vertices at the highest resolution N . The embedding of

a vertex from a simplicial complex with a reduced number of vertices is given by:

ĝ(i) =
1

F

F∑
f=1

g
(
h(v̂fi )

)
. (2.20)

When the meshes have been flattened into charts, we assign each triangle in the low resolution

mesh to one chart (at the highest resolution). The optimal chart is chosen as the one which

is closest to the triangle in terms of Euclidian distance (on average over all the meshes in the

set). Low resolution texture coordinates are computed by using Equations 2.19 and 2.20, with

the constraint that the solution is restricted to the entities associated with the corresponding

charts.

2.8 Experimental Results

We now present experimental results of applying our groupwise surface flattening and simplifi-

cation to sets of meshes and using the flattened textures to texture map the simplified meshes.
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Figure 2.8: Simplification results for 3 of the faces from the BFM (at 1000 vertices).

We experiment with three datasets. The first consists of 10 faces from the BFM [76] which were

obtained using a three view structured light scanner and are set into dense correspondence using

a modified version of the algorithm of Amberg et al. [6]. These meshes are topologically sym-

metric. The second is the Spacetime faces [104] motion sequence which comprises 385 meshes

of a single subject acquired using spacetime stereo. Vertex motion is tracked using optical flow

and the mouth is unconnected (i.e. it contains a hole). For the Spacetime dataset, we use a

subset of 96 meshes (every 4th frame) for our experiments. Finally, the third dataset consists

of 550 full body meshes of 114 subjects [45]. The meshes are captured using a Vitronic laser

scanner and are also set into dense correspondence using an approach similar to [6]. We use a

subset of 10 bodies (different subjects in the same pose, i.e. pose 0) for our experiments. The

two face datasets contain meshes which are topologically equivalent to a disc, whereas the body

dataset contains genus-0 closed surfaces.

2.8.1 Surface Flattening

In Figure 2.6 we show examples of applying groupwise surface flattening to the two face datasets.

We show three samples from each dataset, flattened using a single flattening calculated over

the whole set. In both cases, the flattening was computed using 200 key-points which were

obtained using groupwise uniform sampling. For the BFM data, 200 additional symmetric key-

points were also used. The BFM flattening is perfectly symmetric whilst the Spacetime faces

data is close to symmetric since the averaging of geodesic distances over varying expressions

averages out asymmetries. Note that the boundary vertices are free to assume any position.

The approximately elliptical and circular boundaries are simply the optimal MDS solution for
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Figure 2.9: Simplification results for 5 frames from the Spacetime dataset. The original sequence
(23728 vertices) is shown in the top row and the bottom row shows the sequence simplified to
2000 vertices.

Subject
Single Mesh [36] Groupwise
Mean RMS Mean RMS

1 0.0923 0.130 0.106 0.148
2 0.106 0.146 0.121 0.169
3 0.129 0.176 0.148 0.204
4 0.11 0.155 0.126 0.176
5 0.104 0.144 0.118 0.165
6 0.119 0.165 0.132 0.182
7 0.103 0.141 0.115 0.158
8 0.111 0.154 0.132 0.183
9 0.093 0.131 0.109 0.151
10 0.092 0.126 0.104 0.145

Mean 0.106 0.147 0.121 0.168

Table 2.3: Surface simplification results for the BFM data.

the respective datasets.

Quantitative results for the BFM data are shown in Table 2.1. We use two metrics to assess

the quality of the flattening: stress-1 (as described in Equation 2.1) and mean L2 stretch [89].

The stress-1 metric evaluates global distortion of geodesic distances. Since it requires computing

pairwise distances between all points, we compute this only over the 400 key-points. The stretch

metric evaluates local distortion by measuring how a unit circle would be non-uniformly scaled

at each triangle. Stretch values are computed using the tool Graphite [43].

We provide results for 4 approaches. The first set of results are obtained by applying the

MDS based flattening method of Zigelman et al. [109] to each mesh individually. Note that

we select key-points and extend the embedding to non key-points vertices using the techniques
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Figure 2.10: Simplification results for the body meshes. The top row shows 4 bodies at the
highest resolution (6449 vertices) and the bottom row shows the simplified meshes (1000 ver-
tices).

described in Section 2.5. This method provides optimal results for each mesh with respect to

strain and is likely to be close-to-optimal for the related measure of stress-1. The second set

of results are for our groupwise extension. Here, a single flattening is computed from all of the

input meshes. We then measure the distortion induced by applying this flattening to each mesh.

The third set of results are obtained by applying the Fast and Robust Angle Based Flattening

(ABF++) method of Sheffer et al. [91] individually to each mesh. This approach yields very

low stretch values and is included to provide a baseline comparison to the MDS based results.

Since this is the first work to consider groupwise flattening, we have no results against which to

directly compare. Instead, we use the ABF++ results to produce a näıve groupwise flattening

(as described in Section 2.5.1). We compute the average embedding produced by ABF++ and

measure the distortion induced by applying this flattening to each of the input meshes. Note

that we also computed individual and näıve groupwise flattenings using the Hierarchical Least
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Subject
Single Mesh [36] Groupwise
Mean RMS Mean RMS

1 0.7450 0.9620 1.1435 1.5650
2 0.7585 0.9700 1.1750 1.6090
3 0.7650 0.9935 1.1725 1.5985
4 0.7720 0.9955 1.1800 1.6155
5 0.7660 0.9890 1.2135 1.6515
6 0.7310 0.9460 1.1575 1.5900
7 0.7695 1.0025 1.1595 1.5895
8 0.8255 1.0620 1.2710 1.7380
9 0.7530 0.9660 1.1140 1.5300
10 0.7605 0.9810 1.1405 1.5530

Mean 0.7646 0.9868 1.1727 1.6040

Table 2.4: Surface simplification results for the body meshes.

Squares Conformal Mapping method of Ray and Lévy [83] and the Mean Value Coordinate

method of Floater [33]. These methods performed worse than ABF++ so we do not include

them here.

The best individual flattenings are given by MDS (with respect to stress-1) and ABF++

(with respect to stretch). Our groupwise modification to MDS induces only a modest mean

increase in stress (3.5%) and a reduction in stretch (compared to the MDS based individual

flattenings). On the other hand, the näıve groupwise approach given by averaging the ABF++

embeddings results in a large increase in stretch (by a factor of two) whilst the stress-1 remains

approximately equal to the ABF++ individual flattenings. Moreover, the tabulated results

demonstrate that our groupwise modification to MDS yields a single flattening which is quan-

titatively superior to the näıve approach whilst not being significantly worse than individual

flattenings.

In Figure 2.7 we show an example of applying groupwise spectral clustering and flattening

to the body data. The meshes are partitioned into 30 charts and then flattened to obtain

the chart atlas. We show the flattened bump map which is computed from the corresponding

vertex normals. The body data has a relatively small number of vertices (compared to the

face datasets). Hence the spectral analysis was performed using all the vertices (i.e. we do

not subselect key-points) . Table 2.2 provides the stress-1 values obtained for the 10 body
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Figure 2.11: Highest resolution (53490 vertices) meshes from the BFM rendered with texture
maps (first row) and texture plus bump maps (second row). Simplified meshes (1000 vertices)
rendered with texture maps (third row) and texture plus bump maps (fourth row).

meshes used in our experiment. We also compare our groupwise chart atlas, with the chart

atlas obtained for each individual body mesh (i.e. the method of [108]). We use the same chart

partitioning to compare the stress-1 values resulting from the two methods.

2.8.2 Surface Simplification

In Figure 2.8 we show simplification results on the BFM data. The original data is topologically

symmetric and this is preserved in the simplification process. In Figure 2.9 we show simplifica-

tion results for the Spacetime faces data. For 5 frames containing different expressions we show

the original (23728 vertices) and simplified (2000 vertices) sequences. Finally, Figure 2.10 shows

the simplification results for the body meshes. Table 2.3 shows the mean and RMS distances

between the highest resolution meshes (53490 vertices) and the simplified (1000 vertices) meshes
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Figure 2.12: Highest resolution (23728 vertices) meshes from the Spacetime dataset rendered
with texture maps (first row) and simplified meshes (2000 vertices) rendered with texture maps
(second row).

for the BFM data. These distances are computed using the tool Metro [23]. We report the av-

erage of the forward and backward distances [23]. As expected the groupwise modification of

the QSlim algorithm induces a modest increase in the mean and RMS distances. Similar results

for the body data is shown in Table 2.4. In this case the highest resolution is 6449 vertices and

the simplified resolution is 1000 vertices. All the reported distances are in mm.

2.8.3 Texture Mapping

In Figure 2.11 we show results of mapping the highest resolution flattened textures/normals

onto the highest resolution (53490 vertices) and simplified meshes (1000 vertices). The first

two rows show the highest resolution BFM data mapped with texture values (top row) and

texture plus vertex normal values (second row). The bottom two rows show similar results for

the low resolution BFM data. Note that the perceptual difference at the two resolutions is

negligible. Similar results are shown for the Spacetime faces data in Figure 2.12. In Figure 2.13

we show three low resolution BFM faces texture mapped with a checkerboard pattern. This

highlights both the smooth nature of the surface flattening, with little distortion to the pattern

and the stability of the texture mapping between subjects. Finally, in Figure 2.14 we show

bump mapping results for the body meshes. Each body is bump mapped using the respective

chart atlas.
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Figure 2.13: Three BFM faces (rows) at a resolution of 1000 vertices texture mapped with a
checkerboard pattern.

2.8.4 Application: Statistical Modelling

Finally, we demonstrate using the output of our approach for the purposes of training a (low

resolution) 3D morphable model. We will take a detailed look at the process of building a

morphable model in Chapetr 3. For now in order to demonstrate the application of the proposed

techniques to statistical modelling we will refer to the pioneering morphable model of Blanz and

Vetter [14]. In [14], Principal Components Analysis (PCA) was applied to the high resolution

shape and texture vectors, Sf and Tf . This yields a statistical model comprising an average

shape/texture vector and the principal modes of shape/texture variation. The first mode of

variation of such a model can be seen in the top row of Figure 2.15. On the left we show texture

mapped surfaces demonstrating texture and shape variation jointly, whilst on the right we show

shape variation only.

We contrast this with applying PCA to the simplified shape vectors, Ŝf ∈ R3(N−L), and

the flattened high resolution texture maps, T̄f ∈ RR×R×3. Once again, this yields an average

shape vector and principal modes of shape variation and an average texture map and principal

modes of texture variation. Instead of learning per-vertex texture variation, we learn variation

in the high resolution texture maps which can be mapped to the low resolution meshes using

the embedding ĝ. The first mode of variation of this model is shown in the second row of Figure

2.15. Modes of variation captured by the two models are very similar and the texture mapped
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Figure 2.14: Highest resolution (6449 vertices) bodies rendered with bump maps (first row) and
simplified bodies (1000 vertices) rendered with bump maps (second row).

versions are almost indistinguishable. This means that a morphable model with over 50 times

less vertices can be used to synthesise face appearance of a similar quality. For applications

such as fitting a morphable model to images, the lower resolution model will vastly reduce

computational complexity.

2.9 Conclusions

We have shown how a set of meshes (possibly symmetric) which are in dense correspondence can

be flattened and simplified in a groupwise manner which preserves correspondence. Groupwise

flattening is performed by applying Classical MDS to a aggregated distance matrix. Where

appropriate, groupwise spectral analysis can be used to partition the meshes into class-optimal

charts. Groupwise simplification is performed by modifying an iterative edge collapse algorithm

to make class-optimal edge collapses at each iteration. The techniques have application in

motion compression (we are able to reduce the number of vertices in the Spacetime data by a
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Figure 2.15: Shows the deviations (around the mean) in the most significant parametric mode
for the texture and shape statistical models. The top row corresponds to models built at the
highest resolution (53490 vertices) and the bottom row corresponds to models built at resolution
of 1000 vertices. δ is the standard deviation corresponding to the most significant parametric
mode.

factor of 10 with no appreciable difference in rendered results), in training a (low resolution)

3D morphable model and in the automated construction of facial rigs.
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Chapter 3

3D Morphable Models Revisited

3.1 Introduction and Related Work

Linear statistical models have been used to model variation in 2D [25] and 3D [54] shape,

appearance [24] and texture [15]. These models are generative in nature, in the sense that

instances similar to those used to train the model can be computed from a low dimensional pa-

rameter vector. Faces have proven a particularly suitable class to model using such approaches.

The most common method for learning such models from data, Principal Components Analysis

(PCA), is based on the assumption that faces form a Gaussian cloud in a high dimensional

space. The principal axes of this cloud are estimated from a training sample, allowing any face

to be approximated in terms of a small number of parameters.

In this chapter we revisit the process of constructing a 3D morphable model from training

data. We reference back to the pioneering work of Blanz and Vetter [14, 15], provide alternative

means of establishing dense correspondences between a set of 3D meshes and subsequently using

those meshes to build a 3D morphable model. We also reformulate the probabilistic prior that

the model provides on the distribution of parameter vector lengths and provide an illustrative

example (by fitting the model to sparse data) of how this prior can be used to control the

trade-off between the fitting quality and shape plausibility.

3.2 Contributions

First, we provide a new framework for constructing a 3D morphable model from a training set

of facial meshes. By making use of techniques from the statistical shape analysis literature, we
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show how to construct a morphable model whose captured variance is of greater utility, in the

sense that the generalisation error (i.e. average error when representing out of sample surfaces)

is lower for both a fixed number of model dimensions retained or a fixed percentage of total

variance captured. Second, we show that the distribution of parameter vector lengths follows

a chi-square distribution and discuss how the parameters of this distribution can be used as

a regularisation constraint on the length of parameter vectors. Finally, we use our improved

model and statistical prior in the setting of fitting a dense 3D morphable model to sparse 2D

feature points. We verify empirically that our analytical prediction of the parameter vector

length constraint coincides with the optimum operating point of our algorithm.

3.3 Morphable model construction

The process of constructing a morphable model is divided into three stages: 1. establishing a

dense correspondence, 2. shape alignment and 3. statistical modelling. In each case, we outline

previous methods before describing our approach. We begin by describing how our approach

allows us to construct a morphable model as a shape space.

3.3.1 Morphable Models as Shape Spaces

The 3D morphable face model of Blanz and Vetter [15] captures the class-specific properties

of faces by finding a low dimensional parameterisation of 3D face shape and texture. The

model is learnt from a sample of high resolution 3D face scans. A common interpretation of

the meaning of the shape of an object is Kendall’s [29] notion that shape is the geometrical

information that remains after the effects of location, scale and rotation have been removed.

There is a comprehensive toolbox of techniques available for the statistical analysis of shape

using data which is provided in terms of coordinates of named point locations or landmarks.

Namely, these are Kendall’s shape space and the application of linear multivariate statistics

in the tangent space at the Procrustes average [29]. This group of techniques has become to

be known as geometric morphometrics. A landmark is a hypothesis of equivalence under a
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particular measure of similarity, e.g. anatomy, topology or function. In effect, the implied

meaning of a landmark point is, in some sense, the same across the whole population.

However, the statistical analysis of continuous curves or surfaces (which contain only rel-

atively sparse salient points) is not so well developed. For example, only a relatively small

proportion of the face surface contains salient points which may be identified with good re-

peatability across all faces. The remainder of the face comprises large areas of smoothly shaded,

textureless surface. It is therefore not obvious how a landmark based statistical approach can

be applied to model the variations in the face surface.

The morphable model of Blanz and Vetter [15] described above is based on transforming a

set of face surfaces into a vector space such that any convex combination of members of the

training set results in a viable new face. However, their model is not a shape space. They only

coarsely remove the effects of rotation, translation and scale before the dense correspondence

between samples is known. In other words, they ultimately treat every vertex in the model as

a landmark but do not remove pose effects with respect to these landmarks.

We propose an alternative approach for constructing a 3D morphable model using Kendall’s

notion of shape space. Our work closely follows the semilandmark approach of Bookstein [18].

The key idea is to compute correspondences for deficient regions (i.e. those lacking landmark

points) using the part of the data that is not deficient. This is done in a principled manner

by minimising a physically motivated bending energy of the data about its average. We use

Procrustes analysis to obtain pose free shape vectors. This combination of techniques allows us

to construct a dense 3D morphable model as a shape space.

3.3.2 Finding Dense Correspondences

Blanz and Vetter’s [15] approach is to effectively treat every vertex of a face mesh as a distinct

landmark point. This is possible because a modified optical flow algorithm is used to find dense

correspondences between all samples in the training set. These correspondences are based

on matching regions with similar colour and topography to a reference face and subsequently
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resampling every face in a consistent manner.

The advantage of their approach is that a model may be constructed automatically with

little manual intervention. However, the similarity measure used to find corresponding points

between faces relies on an ad hoc formulation of local surface features, such as 3D position,

texture, local curvature and the surface normal. It is unclear which features should be chosen

and how their relative importance should be weighted. Moreover, the utility of different features

will vary spatially and between samples. For example, when registering a sample with a beard

to one without, texture is an unreliable feature to use. The second problem is that large areas

of the face contain no salient structures, either in the texture or shape domain. For example,

the forehead and cheeks. In these regions the calculated flow field is noisy and unreliable. Blanz

and Vetter [15] overcome this problem by smoothing and interpolating the flow fields. Finally,

the choice of reference face will affect the quality of detected correspondences and ultimately

the final model.

At the expense of introducing some manual intervention, we suggest an alternative approach

which offers potentially more stable performance. Because our method does not require the

selection of a reference face, only one possible model can be constructed from a given set of

training data.

We commence with a set of face surfaces obtained by a Cyberware 3030PS laser range

scanner. These surfaces are parameterised in cylindrical coordinates. This provides a convenient

representation of the facial manifold in 2 dimensions, (u, v). A set of sparse 2D landmark points

are manually identified on the parameterisation of each face surface. The landmark points are

chosen such that they can be reliably located on all training samples. With these sparse, but

reliable, correspondences in hand, the mean coordinates of each landmark point are found. The

x, y and z coordinates of each vertex can be expressed as a function in (u, v) space, e.g. x(u, v).

Similarly for each colour channel in the texture map. We warp the landmark points of each

sample to the mean landmarks. We interpolate this warp using a physically motivated bending

energy, through the application of a thin-plate spline warp [17]. Finally, we resample the vertex
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Figure 3.1: Shows the correspondence of scans based on the principle of thin-plate splines.
Using two sets of 2D points (white dots), a novel scan (left) is warped to the mean scan (right)
using the thin-plate spline function −U (r) = −r2 log r2.

coordinate functions in a consistent manner across all faces. The result is that a point (u, v)

corresponds to the same point on each face in the training set, i.e. we have established a dense

correspondence. This process is demonstrated in Figure 3.1.

In drawing a comparison between our approach and Blanz and Vetter’s [15] optical flow

algorithm: both methods begin with a sparse set of correspondences (ours manually landmarked,

theirs the set of automatically detected correspondences that are considered reliable) and both

interpolate the remainder. Construction of the morphable model is done offline prior to its use

in an application such as face shape recovery. Hence the manual processing required by our

methods is an acceptable burden if it results in more accurate correspondences.

3.3.3 Shape Alignment

In Blanz and Vetter’s [15] morphable model, shape alignment is treated as a preprocessing step.

The raw face meshes are marked with a small number of feature points and a 3D-3D transform

is used to align each face to a reference face. In other words, when this alignment takes place,

the dense correspondence between faces is unknown and the scale, translation and rotation

necessary to register each face to the reference is only a very coarse approximation. Further,

as with computing the dense correspondences, the choice of reference face will affect the final

model. We propose instead to use Procrustes analysis as a rigorous means to remove pose effects

without having to choose a reference face (the reference face is instead the Procrustes mean

which is iteratively updated).

With our sample of faces in dense correspondence (forming a vector space) we can proceed
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with shape alignment using the standard tools of statistical shape analysis. The idea here

is to remove any effects of scale, rotation and translation to obtain a pure shape model that

captures only variation in identity. The ith face is represented by the shape vector xi =

(x1, y1, z1, . . . , xp, yp, zp)
T ∈ R3p, that contains the x,y,z coordinates of its p vertices.

Our aim is to transform the shape vectors into a shape space. We do this by aligning the

shape vectors to a common coordinate frame using generalised Procrustes analysis. This is an

iterative procedure which alternates between aligning all samples to the current estimate of the

mean shape and then re-estimating the mean from the aligned vectors. These two steps are

iterated until convergence.

Our mean shape estimate (for m face scans) is the Procrustes mean:

x0 =
1

m

m∑
i=1

xi. (3.1)

In order to maintain a constant scale for the model, we fix the length of the mean shape at each

iteration:

x̄ =
x0

‖x0‖
. (3.2)

All samples are aligned to the current estimate of the mean shape using a 3D similarity trans-

form, Tr(xi, γi) = (x′1, y
′
1, z
′
1, . . . , x

′
p, y
′
p, z
′
p)
T , where:


x′j

y′j

z′j

 = sR


xj

yj

zj

+ t. (3.3)

Here, j ∈ [1 . . . p], R ∈ SO(3) is a rotation matrix, s ∈ R is a scaling and t ∈ R3 is a translation.

The optimal pose parameters γi = (R, s, t) which map a sample onto the mean shape vector

are found by using Horn’s method [48] to solve:

γi = arg min
γ

‖Tr(xi, γ)− x̄‖2. (3.4)
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A summary of the steps involved in generalised Procrustes analysis is as follows:

1. Find the Euclidian mean of the face shape vectors (Equation 3.1).

2. Rescale the mean shape vector to unit length (Equation 3.2).

3. Find the optimal pose parameters, γi, to align each shape vector, xi, to the mean.

4. Set xi = Tr(xi, γi).

5. If change in estimate of mean indicates convergence, stop. Otherwise iterate to step 1.

This process converges very rapidly (typically within 3 iterations).

Since scale has been removed from the shape vectors, they all lie on the surface of a curved

manifold in shape space (since we set the model scale to 1, the shape vectors will all lie on a unit

hypersphere). This invalidates the application of linear statistical analysis using tools such as

PCA. A standard technique to overcome this problem is to apply a stereographic projection to

the shape vectors in order to transform them to points on the tangent space to the Procrustes

average. This is simply a case of rescaling the aligned shape vectors as follows:

x′′i =
1

x̄ · xi
xi. (3.5)

It is to these rescaled vectors that we apply further analysis. In practice, this rescaling slightly

improves the efficiency of the model (typically reducing the dimensions required to capture 95%

variance by one).

In our experimental results, we demonstrate that our shape alignment procedure results in

a superior model to that of Blanz and Vetter [15].

3.3.4 Statistical Modelling

We apply PCA to the set of pose free shape vectors x′′i . This performs a basis transformation to

an orthonormal coordinate system spanned by the m eigenvectors Pi. Any face surface x, may
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Figure 3.2: Probability density function for parameter vector lengths (measured in terms of the
squared Mahalanobis distance) for a 100 parameter model.

now be represented as a linear combination of the average surface and the model eigenvectors:

x = x̄ +

m∑
i=1

biPi, (3.6)

where b = (b1, . . . , bm)T is a vector of parameters. We stack the eigenvectors to form a matrix

P, such that we may write: x = x̄ + Pb. The PCA eigenvalues λi provide a measure of how

much of the variance of the training data is captured by each eigenvector. We may choose to

retain n < m model dimensions, such that a certain percentage of the cumulative variance is

captured. We discuss the effect of the number of model dimensions in our experimental results.

Our statistical model also provides an estimate of the probability distribution of the shape

vectors. We begin by defining the distance of a sample from the mean in terms of the square of

the Mahalanobis distance:

D2
M (b) =

n∑
i=1

(
bi√
λi

)2

. (3.7)

Since we assume each parameter follows a Gaussian distribution, the parenthesised terms are

independent, normally distributed random variables with zero mean and unit variance. This is

exactly the definition of the chi-square distribution.

In other words, the lengths of the parameter vectors (as measured by the square of the
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Mahalanobis distance from the mean) follow a chi-square distribution with n degrees of freedom,

i.e. D2
M ∼ χ2

n. Such a distribution has a mean value of n and variance 2n. The probability

density function over the parameter vector length g for an n parameter model is:

f(g;n) =
1

2n/2Γ(n/2)
g(n/2)−1e−g/2. (3.8)

The interesting observation here is that the expected length of the parameter vector of a n-

dimensional model is n. The likelihood of a sample having a length close to zero (i.e. ap-

proximately the mean sample) is extremely small. For example, a model with 100 dimensions

would have a mean vector length of 100 and over 99% of parameter vectors would have lengths

greater than 70. The probability of a vector length less than 50 is negligibly small. In Figure

3.2 we show the probability density function for parameter vector lengths for a model with

100 parameters. Note that as n increases, the shape of the chi-square distribution tends to a

Gaussian.

This prior on the parameter vector lengths is starkly different to Blanz and Vetter’s [15]

assumption that the parameters are normally distributed with zero mean. According to their

assumption the most probable parameter vector is that with length zero and that the probability

decreases as the parameter vector length increases. Infact this contradiction is known as The

Face-Space Typicality Paradox [21].

We use this prior distribution on the parameter vector lengths to motivate imposing a hard

constraint on the length during the fitting process. In effect, we force all samples to lie on the

shell of a hyperellipsoid in parameter space (i.e. we fix the vector length to its expected value).

We provide empirical validation justifying our choice of manifold in Sections 3.5.2, 4.4.4 and

4.4.5.
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3.4 3D Face shape from sparse feature points

In this section we lay the framework for a nonlinear, iterative fitting algorithm to estimate a

high resolution 3D face surface given the positions of k 2D annotations on the subjects face

(k << p). In contrast to the analysis-by-synthesis approach of Blanz and Vetter [15], we do

not use face appearance or a model of texture variation to reconstruct the 3D surface of a face.

This makes the shape recovery process approximately two orders of magnitude faster.

3.4.1 The need for regularisation

If the effects of pose are discounted (i.e. if it is assumed that the rotation required to align the

model with a set of feature points in the image plane is known), then estimating the morphable

model shape parameters that give rise to a particular configuration of landmark points can be

solved using linear least squares. Such an approach is impractical as it leads to gross overfitting

of the data. Clearly, there is a trade off between the quality of fit to the observed data and

prior probability as measured by the model. Using our model of prior probability described in

Section 3.3.4 as a regularisation constraint results in a nonlinear optimisation problem.

Blanz et al. [12] proposed a linear, single step solution to this problem based on their

assumption of a Gaussian distribution over the parameter vectors. However, the 3D rotations

on the position of 2D feature points in the image plane also introduce nonlinearities. To sidestep

this problem, Blanz et al. [12] use small angle approximations which are only valid for very small

changes in pose. Due to this approximation, the estimated pose may be inaccurate. To overcome

this problem, they repeat the process using the result of the first pass as an initialisation, in

effect turning their one shot method into an iterative one.

We choose instead to separate the influence of pose and shape parameters on the optimisation

and solve the problem using nonlinear, iterative optimisation. As stated above, the chi-squared

distribution of parameter vector lengths implies that the parameter vectors lie on the surface

of a hyperellipsoid in parameter space. We use this observation to motivate imposing a hard

constraint on the length of the estimated parameter vectors. If the number of parameters in the
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model is n, we enforce the constraint D2
M < n (recall that the mean length of the parameter

vector of a n- dimensional model is n). In practice, because of the tendency to overfit, the result

is that D2
M = n. To impose this constraint, at each iteration of the minimization we scale the

estimated parameter vector such that its length in terms of squared Mahalanobis distance from

the mean is n:

b =

√
n

DM (b)
b. (3.9)

3.4.2 Fitting to sparse data

Given a set of k annotations marked on the input face (L2d ∈ R2k), we can determine the

vertices corresponding to those salient points on the mean face as shown in Figure 3.6. Once

we have the k indexed vertices we can extract their corresponding 2D projections using:

L̂2d = PkT
−1
r (x̄ + Pb, γ) . (3.10)

where, the term x̄ + Pb provides the estimated shape, γ provides the 3D pose with respect

to the mean shape and Pk is the projection of the k indexed vertices under an orthographic

projection.

Using Equation 3.10 our aim is to minimize the error between L2d and L̂2d subject to the

constraint on the parameter vector length. The quality of fit to the data is measured by:

E (b, γ) =
∥∥∥L2d − L̂2d

∥∥∥2

. (3.11)

The optimal parameters are therefore given by:

(b∗, γ∗) = arg min
D2
M (b)≤D2

max,γ

E (b, γ) , (3.12)

where D2
max is the maximum allowable parameter vector length. We examine the effect of
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Figure 3.3: Cumulative variance curve.

varying this value in our experimental results. We solve this minimization using Levenberg-

Marquardt optimization [63].

3.5 Experimental Results

In this section we present the results of our experimental evaluation. We begin by evaluating

our approach to constructing a morphable model as a shape space and compare it to that of

Blanz and Vetter [15]. We then demonstrate an example application of our model by using it

to reconstruct high resolution 3D face surfaces from sparse 2D landmarks.

3.5.1 Morphable Model Construction

In this section we compare our strategy for morphable model construction described in Section

3.3 with the state of the art. In order to ensure a fair comparison, we use data provided by [1].

This comprises 100 3D face scans which have been set into correspondence using a modified

optical flow algorithm [15]. Blanz and Vetter’s [15] model is obtained by applying PCA directly

to these shape vectors. Our model uses generalised Procrustes analysis to obtain a stable

estimate of the mean face and shape vectors that are free of scale, translations and rotations.

We rescale each shape vector according to the tangent space projection given in Equation 3.5.

We divide the data into a training set of 75 scans and a test set of 25 scans. In Figure
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Figure 3.4: Shows the deviations in the two most significant parametric modes. The deviations
are shown for our model (left hand side) and the Blanz and Vetter Model (right hand side).
The deviations from the mean head (middle row) of the most significant (top row) and second
most significant (bottom row) parameters shows the subtle differences in the morphing ability
of the two models.

3.3 we plot the percentage cumulative variance captured as a function of the number of model

dimensions. It is clear that the model of Blanz and Vetter captures a larger proportion of

cumulative variance for a given number of model dimensions. This is often seen as evidence

that a model is more efficient and hence superior. Our results show that in fact, the variance

captured is spurious and is related to variations in pose rather than identity. Although our

model apparently captures less cumulative variance, the variance it does capture is of more use

for representing out of sample data. The modes of variation of the two models are visually

distinguishable. In Figure 3.4 we show the effect of adding and subtracting the first two modes

of variation to the mean face for both models. As can be seen, the characteristics captured by

the modes are subtly different.

We compare generalisation ability by measuring the accuracy with which the two models

can reconstruct out of sample face meshes. For a novel shape vector, s, we find the optimal

parameter vector (in a least squares sense), i.e. b∗ = PT (s − x̄). The reconstructed surface is
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Figure 3.5: (a) E3d (in mm) vs Number of modes, (b) E3d (in mm) vs Percentage variance.

given by Pb∗ + x̄. The average reconstruction error over the whole test set is given by:

E3d =
1

tp

t∑
i=1

p∑
j=1

∥∥∥∥∥∥∥∥∥∥∥∥


xi,j

yi,j

zi,j

−


xri,j

yri,j

zri,j



∥∥∥∥∥∥∥∥∥∥∥∥
, (3.13)

where t is the number of samples in the test set, xi,j is the x component of the jth vertex in

the ith test sample, with xri,j being the corresponding reconstructed value after projection onto

the model. Note in Equation 3.13, ‖ · ‖ denotes average Manhattan distance.

Figure 3.5 shows the absolute reconstruction errors (in mm) for both models. We vary the

number of model dimensions retained and observe its effect on the generalisation error. In

Figure 3.5a, we use the same number of dimensions for both models. In Figure 3.5b, we retain

as many dimensions as are required to capture a fixed proportion of the cumulative variance. By

either measure, our model generalises to unseen data more accurately, even when less cumulative

variance has been retained. This makes our model both more efficient (fewer model dimensions

required to obtain a given generalisation error) and more accurate (even with all dimensions

retained, our model provides higher accuracy).
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Nonlinear
Iterative Fitting

Figure 3.6: Framework for the proposed system. The mean mesh (top left) and 2D input image
with k indexed annotations (center) are the inputs to the system. The mean texture map
(bottom left) is used to determine the vertices (white dots) corresponding to the k indexed
points (yellow dots) in the input image. The system outputs the estimated shape and pose
(right column). A simple blending function is used to estimate the occluded texture. The 2D
input image is taken from [93].

3.5.2 Estimation of 3D faces from Sparse 2D Features

In this section we show the result of using the technique described in Section 3.4 to estimate

high resolution 3D face surfaces from sparse 2D feature points. For these experiments we use a

morphable model constructed from 100 face scans using the techniques described in Section 3.3.

The scans are preprocessed to remove the hair and neck regions and are set into correspondence

using a thin-plate spines based warping (Figure 3.1). Each face is represented by p = 50468

vertices. To test the effects of the resolution of the model, we also obtained a lower resolution

model composed of face meshes containing p = 3147 vertices. In both cases, we retain the 99

most significant modes.

Our reconstruction algorithm requires the user to annotate the positions of the landmarks

on the input image (Figure 3.6). Note that in practice this could be done using a 2D feature

detector. We use k = 104 annotated points. The fitting time (on a 1.78 GHz AMD Athlon

processor) is approximately 550ms and 10000ms for the p = 3147 vertices and p = 50468 vertices

face models respectively.

As discussed in Section 3.4, we impose a hard constraint, D2
max, on the length of the esti-

mated parameter vectors during the fitting process. Without this constraint, the tendency of
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Under Fitting Optimum Fitting Over Fitting

Figure 3.7: Shows the tradeoff between the fitting quality and shape plausibility. Given an
unseen face (top row), the bottom row shows the three cases of fitting: (a) Under Fitting (b)
Optimum Fitting and (c) Over Fitting.

the algorithm is to overfit the sparse data resulting in a very poor global shape estimate. We

examine the effect of varying the value of this constraint on the 3D error of the reconstructed

surface. In effect, this parameter controls the trade off between fitting quality and shape plau-

sibility. Our statistical prior predicts that the average length of the parameter vectors for an

n parameter model is n. For values of D2
max significantly greater than n, the system clearly

overfits and the faces are heavily distorted. For values of D2
max close to zero, the shape estimate

is always similar to the average face and the fitting quality is low. We show that the optimum

operating point of our algorithm coincides with the prediction of our statistical prior on real

data, i.e. optimal performance occurs when D2
max ≈ n. An example of underfitting, overfitting

and optimal performance is shown in Figure 3.7.

To provide quantitative confirmation of this assertion, we applied our shape estimation

algorithm to 50 ground truth samples. These were disjoint from the samples used to construct

the morphable model. For each scan we obtained the k indexed vertices corresponding to

the salient annotations. These were projected to 2D. The faces were in approximately frontal

pose (variations of up to 12◦ from frontal occurred in practice). For different values of D2
max,

we fitted our morphable model to this sparse data and computed the per vertex average 3D

reconstruction error over all 50 samples. This experiment was carried out for both the high and

68



0 50 100 150 200 250
3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

D2
max

E
3
d

 

 

p = 50468 vertices

p = 3147 vertices

Figure 3.8: E3d (im mm) vs D2
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low resolution models.

Figure 3.8 shows the result of this experiment. For both models, the minimum reconstruction

error occurs approximately when D2
max = n. The error of the reconstructed faces is approxi-

mately 3.6mm. Although this is only a slight quantitative improvement over using the average

face, the perceptual improvement is much greater, as evidenced by Figure 3.7.

Our findings show that our analytical prediction of the average parameter vector lengths

coincide with the optimum operating point of our reconstruction algorithm and hence provide

a non-heuristic constraint for optimal fitting.

3.6 Conclusions

In this chapter we revisited the process of constructing a morphable model from training data.

We showed how the tools of thin-plate spline warping and Procrustes analysis can be used to

construct a morphable model as a shape space. We also formulated the probabilistic prior over

the distribution of parameter vector lengths. In Chapter 3, we further investigate the statistical

prior and show how this information can be used to develop a framework that constrains faces

to points on a manifold within the parameter space of a linear statistical model.
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Chapter 4

Manifold Based Constraints

4.1 Introduction

Principal Components Analysis (PCA) based linear statistical models have proven to be a very

efficient means of modelling human faces [24, 15]. Applying these models to face analysis tasks

requires a means to fit the model to observed data. Often this fitting process is underconstrained,

prone to converge on local minima and computationally expensive. For these reasons, there is

strong motivation for developing additional constraints to reduce the search space of the fitting

process.

Psychological results [75, 96] have shown that the model parameter space has an interesting

perceptually-motivated interpretation: identity relates to direction in parameter space while

distinctiveness is related to vector length (or equivalently distance from the mean). The reason

for this is that increasing the length of a parameter vector simply exaggerates its differences from

the average linearly, in other words its features, whereas rotating a parameter vector changes

the mix of features present in the face. This is the justification for using angular difference in

face space as a measure of dissimilarity for face recognition [15].

This decomposition also allows a useful probabilistic interpretation. Under the Gaussian

assumption, each model parameter is independent and distributed according to a Gaussian dis-

tribution. This means that all faces lie on or near the surface of a hyperellipsoid in parameter

space, with the probability density over the parameter vector lengths following a chi-square dis-

tribution. In other words, distinctiveness is subject to a statistical prior with the distinctiveness

of most samples clustered around the expected length.
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In this chapter, we use these observations to motivate a representation for faces which

decomposes face appearance into identity and distinctiveness subspaces. We focus on statistical

models of 3D face shape, though all of our results are equally applicable for any parametric data

representation. We use ideas from differential geometry to develop tools which operate in the

identity subspace, i.e. which retain constant distinctiveness. We provide empirical justification

for constraining samples to have fixed distinctiveness, determined by the expected vector length.

We propose a new algorithm for fitting a statistical face model to data. Many such methods

have been proposed previously, the details being dependent on the precise nature of the model

and data. This inevitably involves a nonlinear optimisation over the model parameters. Our

approach is more general and can be applied to any objective function. It operates via gradient

descent on the manifold of equal distinctiveness. In other words, we solve for identity and

assume distinctiveness takes its expected value. We show how the method naturally lends itself

to a coarse-to-fine optimisation strategy and how the result avoids local minima or overfitting

without having to select a regularisation weight parameter. We show that this offers improved

performance over two generic nonlinear optimisation algorithms.

4.2 Related Work

Perhaps the best known statistical face model is the Active Appearance Model (AAM) [24] which

combines a linear model of 2D shape and 2D appearance. Rather than model appearance, the

3D Morphable Model of Blanz and Vetter [15] models the shape and texture which give rise

to appearance via a model of image formation. Xiao et al. [101] have used a 3D model in

conjunction with a 2D appearance model to enforce geometric constraints on the 2D shape

generated.

Construction or training of a statistical face model involves a number of steps: 1. data

collection, 2. cross-parameterisation and 3. statistical analysis. When represented in a vector

space, face-like samples can be synthesised by taking convex combinations of training faces.

However, it is the statistical analysis which allows us to study how the face samples distribute
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themselves in high dimensional space and which regions of this space correspond to plausible

faces, i.e. face space.

Although statistical face models have useful applications when used in a purely generative

manner (e.g. for the synthesis of faces), the most compelling applications necessitate face

analysis through fitting the model to observed data. This data may take many forms, such as

the appearance of a face in one [15, 24, 101] or more [5, 49] images, a noisy and incomplete 3D

scan [13] or the location of a sparse set of feature points in an image [12, 54].

When the objective function is underconstrained or ill-posed, the classical approach is to use

Tikhonov regularisation (for a linear objective) [95] or more generally to augment the objective

function with a regularising term using a Lagrange multiplier [30]. Typically, the regularisation

term encourages smaller norms or equivalently, solutions closer to the mean face. With a suitable

choice of the regularisation weight, this prevents overfitting and ensures that the resulting face

is plausible. However, the optimal choice of regularisation weight may be different for different

data samples. By choosing a conservative value, fitting results are likely to be too close to the

mean face to capture features of the input face.

Nonlinear objective functions are usually solved using local optimisation methods such as

Levenberg-Marquardt or Newton’s method. Examples include Cootes’s [24] original algorithm

for fitting AAMs to images which assumes that the relationship between error and optimal addi-

tive parameter updates is constant. Matthews and Baker’s [67] inverse compositional algorithm

avoided this assumption allowing faster and more robust convergence.

A challenging problem occurs if the objective function is nonconvex and contains local

minima far from the global optimum. In this case, global optimisation methods may provide

improved performance, for example Blanz and Vetter [15] use stochastic Newton optimisation

in an analysis-by-synthesis framework. Careful initialisation and regularisation is required to

obtain stable performance. Another alternative is to augment the objective function with addi-

tional terms which encourage convexity of the search landscape. This was the strategy adopted

by Romdhani et al. [87] who fitted a 3D morphable model using a hybrid objective function
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composed of image features (such as edges, specular highlights and pixel intensities) in con-

junction with model priors. It was found that this hybrid objective was smoother and solutions

closer to the global optimum could be found using local optimisation. Another approach is to

design an objective function which can be expressed as a linear system of equations or other

convex optimisation problem. In this case the global optimum can be found efficiently. For

example, Romdhani et al. [85] showed how to use linear equations to recover the shape and

texture parameters irrespective of pose and lighting conditions of the face image. All these

approaches trade off satisfaction of a model based prior against quality of fit. To ensure robust

performance, these approaches must favour the prior, resulting in model dominance.

In this chapter, we propose instead to solve the model fitting problem within the subspace

of maximally likely faces. This requires the solution of an optimisation problem on the surface

of a manifold. This problem has been considered previously in the medical imaging [2], signal

processing [66], computer vision [65], robotics [46] and projective geometry [59] communities.

Generic methods for optimisation on arbitrary manifolds have also been proposed [50]. We

focus on the case of a hyperspherical manifold and derive efficient implementations of the log

and exponential maps. We use these to develop a hypherspherical gradient descent algorithm

which exploits the closed nature of the manifold to reduce line searches to interval searches.

4.3 Contributions

In Section 4.4 we begin by describing our statistical model and manifold. We first introduce tools

from differential geometry which are necessary for developing our methodology and then provide

empirical validation to justify our choice of manifold. In Section 4.5 we describe how warps and

averages between two or more faces can be constrained to the manifold and compare the result

with linear methods. In Section 4.6 we present our principle contribution: a method for fitting

the model to data within the subspace defined by the manifold. In Section 4.7 we provide results

for two contrasting objective functions (one overconstrained, the other underconstrained) and

compare with generic nonlinear optimisers using a regularised objective.
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4.4 Statistical Modelling

Consider a sample of 3-dimensional face meshes which are in dense correspondence (i.e. the

same point on every face has the same vertex index). The ith shape is represented by a

vector of p vertices si = (x1, y1, z1, . . . , xp, yp, zp) ∈ R3p. Given m such shape vectors, we use

principal components analysis to obtain an orthogonal coordinate system spanned by the m

eigenvectors, where pi is the ith eigenvector. Any shape vector s may now be represented as a

linear combination of the average shape and the model eigenvectors:

s = s̄ +

m∑
i=1

cipi, (4.1)

where c = [c1 . . . cm]T is a vector of parameters. We stack the eigenvectors to form a matrix

P, such that we may write: s = s̄ + Pc. The PCA eigenvalues, denoted λi for the ith eigen-

value, provide a measure of how much of the variance in the training data is captured by each

eigenvector. We may choose to retain n < m model dimensions, such that a certain percentage

of the cumulative variance is captured. Psychological results show us that the dimensionality

of face space is relatively small (Meytlis and Sirovich [70] suggest 100 dimensions is sufficient,

even using a crude eigenface model). We discuss the effect of the number of model dimensions

and empirically evaluate their stability in Section 4.4.4.

Our interest in this paper is to explore how shape samples drawn from a population distribute

themselves in parameter space and how we can use this knowledge to constrain operations. We

define the vector ĉ = [c1/
√
λ1 . . . cn/

√
λn]T as the variance-normalised parameter vector. This

vector is distributed according to a multivariate Gaussian with zero mean and unit variance,

i.e. ĉ ∼ N (0, In). This is the prior constraint typically used in the model fitting process to

ensure that solutions remain plausible. It is maximised by a zero vector, which corresponds to

the mean sample.

However, another interpretation based on the parameter vector length is possible. The
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squared norm of ĉ corresponds to the square of the Mahalanobis distance of c from the mean:

‖ĉ‖2 = D2
M (c) =

n∑
i=1

(
ci√
λi

)2

. (4.2)

Since we assume each parameter follows a Gaussian distribution, the parenthesised terms are

independent, normally distributed random variables with zero mean and unit variance. The

sum of the square of such variables follows a chi-square distribution with n degrees of freedom,

i.e. ‖ĉ‖2 ∼ χ2
n. This distribution has expected value n and variance 2n. Hence, the standard

deviation grows as the square root of the mean and the vector lengths become relatively more

tightly concentrated about the mean length as the number of dimensions grows.

These two apparently contradictory distributions suggest that the mean face is the most

probable sample but has a highly improbable vector length (this has been reported in the

psychology literature as The Face-Space Typicality Paradox [21]). For example, a model with

100 dimensions would have an expected vector length of 100 and over 99% of parameter vectors

would have lengths between 70 and 130. The probability of a vector length less than 50 is

negligibly small.

A note of caution is required to accompany this analysis. Under the assumption that each

parameter vector follows a Gaussian distribution, the chi-square analysis holds. However, since

PCA eigenvectors capture the maximum possible variance, the eigenvalues decay rapidly with

increasing dimension number. The effect of this is to amplify less significant parameters, i.e.

the denominator in Equation 4.2 becomes small. The reason that this causes a problem is that

eigenvectors associated with smaller eigenvalues are more susceptible to the influence of noise,

particularly when the training set size is small. The empirical analysis in Section 4.4.4 confirms

the above mentioned.
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4.4.1 Identity as Direction

Our argument is that valid members of the class will occupy a subspace of parameter space.

These points will lie close to the surface of a hyperellipsoid, the diameters of which are deter-

mined by the eigenvalues of the data.

To negate the need for regularisation, we choose to force all samples to lie on the surface

of the hyperellipse, i.e. we fix distinctiveness (vector length) to its expected value as a hard

constraint. With distinctiveness fixed, points on the manifold correspond to unique identities.

Using this representation, face processing and analysis are transformed to operations on the

surface of a manifold.

The analysis of data on a hyperellipsoidal manifold is extremely complex. Therefore, with-

out loss of generality, we transform the manifold to a hypersphere by scaling each dimen-

sion by its corresponding standard deviation. For the remainder of this paper, we there-

fore represent parameter vectors with squared Mahalanobis length n as unit vectors in Rn:

x = 1√
n

[
c1√
λ1

. . . cn√
λn

]T
, where ‖x‖ = 1.

4.4.2 Log and Exponential Maps

Linear operations in Euclidian space such as averaging, warping and computing partial deriva-

tives must be reformulated for data which lies on a curved manifold. This is conveniently done

in tangent space, where geodesic curves through the point of tangency correspond to straight

lines. Transforming points from the surface of a manifold to tangent space and back is done

using operations from differential geometry, namely the log and exponential map.

A unit vector in n-dimensional space x ∈ Rn, may be considered as a point lying on the

hyperspherical manifold x ∈ Sn−1. The two are related by x = Φ(x) where Φ : Sn−1 7→ Rn is

an embedding. If v ∈ TbSn−1 is a vector in the tangent space to Sn−1 at a base point b ∈ Sn−1,

the exponential map, denoted Expb of v is the point on Sn−1 along the geodesic in the direction

of v at distance ‖v‖ from b. Figure 4.1 provides a visual illustration of the operation for the S2

manifold. The inverse of the exponential map is the log map, denoted Logb.
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Figure 4.1: Exponential map for the S2 manifold.

The geodesic distance (i.e. angular difference) between two points x1, x2 ∈ Sn−1 on the

unit hypersphere can be expressed in terms of the log map, i.e. d(x1, x2) = ‖Logx1
(x2)‖ =

arccos (Φ(x1) · Φ(x2)). In Section 4.4.3, we derive a simple and efficient means to compute the

log and exponential maps for the unit hypersphere. In the remaining sections, we use the log

and exponential maps to perform useful operations on the manifold.

4.4.3 Log and Exponential Maps for the Hypersphere

We propose a novel implementation of the exponential and log maps for a unit hypersphere

which is both efficient and conceptually simple. We do so using a stereographic projection.

The log map of a point xat basepoint b is calculated as follows. We define the tangent vector

v′ ∈ TbS
n−1 as the stereographic projection of x from −b to the tangent space to Sn−1 at

b. This tangent vector has the correct direction but incorrect magnitude. To obtain the log

map of x, we rescale v′ giving v, such that ‖v‖ = d(b, x). The exponential map is computed

by reversing this process, i.e. by applying an inverse stereographic projection to the rescaled

tangent vector. Figure 4.2 clarifies the geometry involved for the S1 case.

In practice, we represent points on both the hyperspherical manifold and the tangent space

as vectors embedded in Rn. Our proposed implementation of the log map of x at base point b

is therefore computed with respect to unit vectors in Rn: b = Φ(b) and x = Φ(x).

We begin by computing the angle α from the known edge lengths of the triangle formed by

b, x and −b: d(−b,x) = ‖b+x‖, d(b,x) = ‖x−b‖ and since b is a unit vector: d(−b,b) = 2.

77



b

-b

x = Expb(v)

v'

v = Logb(x)

θ

α

Figure 4.2: Computing log and exponential maps using a stereographic projection for the S1

manifold.

From the law of cosines, we can therefore write:

α = arccos

(
4 + ‖b + x‖2 − ‖x− b‖2

4‖b + x‖

)
. (4.3)

Considering now the right angled triangle formed by v′, b and −b, we can compute d(−b,v′) =

2 cos−1 α. The stereographic projection of x to the tangent plane at b is therefore given by:

v′ =
2(b + x)

‖b + x‖ cosα
− b. (4.4)

The log map is given by rescaling a vector from b to v′ such that its length is equal to the

angular distance between b and x, i.e. θ = arccos(b · x):

ΦT (Logb(x)) = b +
θ(v′ − b)

‖v′ − b‖
. (4.5)

The result is a vector in the tangent space TbS
n−1 embedded in Rn according to an arbitrary

embedding ΦT : TbS
n−1 7→ Rn.

A similar expression can be derived for the exponential map. Given a tangent vector em-

bedded in Rn, v = ΦT (v), our aim is to find the point which corresponds to a stereographic

projection of x = Expb(v) to TbS
n−1. This can then be rescaled to the unit sphere. With
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reference to the same geometry as above, the angular distance is given by:

θ = ‖v‖ = ‖b− v‖. (4.6)

With this angle to hand, the following distances can be computed:

d(−b,x) =
√

2(1 + cos θ), (4.7)

d(b,x) = 2 sin(θ/2), (4.8)

which can be used to find the stereographic projection angle:

α = arccos

(
4 + d(−b,x)2 − d(b,x)2

4d(−b,x)

)
. (4.9)

It is then straightforward to find the stereographically projected point:

v′ = b +
(v − b)2 tanα

‖v − b‖
, (4.10)

and finally to invert the stereographic projection to give the exponential map:

Φ(Expb(v)) = d(−b,x)
v′ + b

‖v′ + b‖
− b. (4.11)

These expressions hold for unit vectors in any number of dimensions.

4.4.4 Empirical Evaluation: χ2 Prediction

Before we consider applications of processing data on the manifold described above, we provide

some empirical assessment of how well real world data adheres to the theoretical prediction made

in Section 4.4.1. In order for all plausible data samples to lie on or near the predicted manifold,

the assumption of parameter vector lengths following the chi-squared distribution must hold.

In turn, the distribution of faces along each eigenvector must follow a Gaussian distribution. In
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Figure 4.3: Parameter vector length vs Number of model dimensions retained. The red points
represent the vector length for each out-of-sample face. The error bars (blue) represent three
standard deviation variation around the mean of the chi-square distribution. The green squares
denote the two faces which grossly overfit when projected onto the model (see column (b) in
Figure 4.6).

practice, these eigenvectors are estimated from a sparse sample of a high dimensional space. In

the case of a dense 3D face shape model, observations typically consist of tens of thousands of

vertices while the training set typically comprises only hundreds of samples.

Clearly, the validity of the estimated manifold depends on the quality of the estimated

eigenvectors and therefore the size and diversity of the training set. Within-sample data (i.e.

that used to train the model) adheres almost exactly to the manifold assumption. Hence, we

empirically evaluate whether out-of-sample data follows the theoretical prediction. For our

empirical test we use the Basel Face Model (BFM) [76]. The BFM is a 3D morphable model

constructed from 200 faces. An additional 10 unseen (out-of-sample) faces are provided which

are in correspondence with the model.

Given an out-of-sample face, s, the optimal parameter vector (in a least squares sense) is

given by simply projecting the face onto the model, i.e. c∗ = PT (s− s). Substituting c∗ back

into Equation 4.1, we obtain smod, the shape which minimises ‖smod − s‖2. We do this for

each face and measure the distance of the resulting point in parameter space from the mean (in
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terms of squared Mahalanobis distance). We vary the number of model dimensions and show

the results in Figure 4.3. The blue line shows the expected vector length which grows linearly

with the number of dimensions. We indicate the expected spread of vector lengths by using

error bars to show three standard deviations either side of the mean. Red points represent the

vector length for a sample projected onto the model.

There are a number of interesting observations to make on this plot. For a small number

of model dimensions, the samples adhere to the statistical prediction. However, as the number

of dimensions increases, certain samples deviate rapidly from the prediction. These are faces

which are dissimilar to the those in the training set and whose shape is poorly approximated by

the model eigenvectors. The two extreme cases indicated by the green squares are gross overfits,

visualisations of which can be seen in Figure 4.6. The explanation for this is that with sparse

training data, the less significant eigenvectors are unstable and cannot be reliably estimated. A

much larger training set may mitigate this problem and lead to a model for which out-of-sample

faces adhere more closely to the statistical prediction. Nevertheless, to retain the expressiveness

of the model the dimensions with smaller eigenvalues are important and cannot be discarded.

What is required are constraints which prevent overfitting and ensure that model instances

remain plausible. Our proposal to do this by enforcing a hard constraint on the parameter

vector lengths is evaluated in the next section.

4.4.5 Empirical Evaluation: Manifold Approximation

Irrespective of how well out-of-sample data adheres to the manifold assumption, from a practical

perspective the more important question is whether forcing samples to lie on the manifold

provides a useful constraint. We attempt to answer this by measuring the effect of enforcing

the manifold constraint on the “plausibility” of a face. For a face to be plausible is must appear

face-like but to be a plausible representation of a specific face it must also have a low perceptual

error between the original face and its model representation. There are many proposed measures

for computing the perceptual error between a mesh and its reconstruction. Most are based on
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Figure 4.4: Mean angular error vs Parameter vector length (for four different values of model
dimensions retained). All reported error measures are averaged over the 10 unseen faces in the
BFM.

the surface derivatives since it is surface orientation which determines appearance. Hence, we

measure perceptual error in terms of the angular difference between surface normals.

We compare the optimal model-based reconstruction described above, smod, to that obtained

by projecting c∗ to the closest point on the hyperspherical manifold:

ĉman =

√
n

‖ĉ∗‖
ĉ∗. (4.12)

We refer to the resulting shape as sman. It should be noted we use the variance-normalised pa-

rameter vectors in Equation 4.12. We begin by establishing whether the expected vector length

predicted by the chi-square distribution is a good choice with which to define the manifold. To

do so, in Figure 4.4 for the 10 out-of-sample faces in the BFM, we show the effect when the

vector given by projection onto the model is rescaled to various lengths. The x-axis shows the

enforced vector length, the y-axis shows the mean angular error in the surface normals (i.e.

perceptual error). We perform this test for n = 49, 99, 149 and 199 parameter model.

The plot for each model shows a similar trend, with small and large vector lengths having

a higher error (underfitting and overfitting respectively) and a minimum occurring close to the
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Figure 4.5: Left plot (a): Mean Euclidian error vs Number of model dimensions retained; Right
plot (b): Mean angular error vs Number of model dimensions retained. All reported error
measures are averaged over the 10 unseen faces in the BFM.

chi-square prediction (i.e. when the parameter vector lengths are forced to n). This suggests

our statistically motivated choice of hard constraint is reasonable.

Finally, we wish to show that forcing samples to lie on the manifold reduces perceptual error.

In Figure 4.5 (a) we plot the mean Euclidian error for smod and sman. Since it is optimal, smod

achieves a lower Euclidian error than sman for all n and this error decreases monotonically as the

number of dimensions increases. However, the purpose of our choice of manifold is to enforce

plausibility. If we repeat the same experiment but instead plot angular (perceptual) error,

shown in Figure 4.5 (b), we see that sman achieves a lower angular error than smod for all n.

Increasing the number of model dimensions yields an almost monotonic reduction in perceptual

error for sman, whilst the perceptual error of the optimal least-squares surfaces (smod) begins to

increase beyond about 80 dimensions. Two visual examples are shown in Figure 4.6. The two

out-of-sample faces in column (a) are grossly overfitted when allowed to minimise least squares

error (column (b)). When rescaled to the manifold (column (c)) the perceptual error reduces

and the faces are visually plausible.
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(a) (b) (c)

Figure 4.6: Manifold approximation: (a) input unseen face; (b) least squares fit to vertices; (c)
parameter vector of (b) rescaled to manifold. All the results are for a n = 199 parameter model.

4.5 Plausibility-preserving warps and averages

4.5.1 Warps

Warping between faces or, more generally, computing weighted combinations of two or more

faces has applications in animation and in the production of stimuli for psychological experi-

ments [75]. The most obvious way to warp between two shapes that are in dense correspon-

dence is to linearly warp each vertex from its position in one shape to its position in the other.

Equivalently, this can be approximated by linearly warping between the two vectors of PCA

parameters. However, in either case the intermediate faces will not correspond to plausible

faces. Since the manifold of maximally probable distinctiveness is curved, any linear warp will

include faces that do not lie on the manifold, with the least plausible face occurring halfway

along the warp.

Face-antiface warps provide a particularly interesting special case. An antiface is the an-

tipodal point of a source face on the manifold. Perceptually, antifaces appear opposite in some

sense to the original face. The vector connecting a face to its antiface in parameter space passes

through the mean. A linear warp between a face and antiface is therefore well-defined but will

include implausible faces for the duration of the warp. There is a further problem with such

linear warps. Psychological studies have shown that there is a perceptual discontinuity as the

face trajectory crosses the mean [75]. In other words, as identity flips from face to antiface, the
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Figure 4.7: Warping between face and antiface on the S2 manifold. A linear warp is shown in
red and one of the possible plausibility-preserving warps is shown in blue.

perceptual effect of a small movement through face space is exaggerated.

Instead, we propose warps which take place across the surface of the manifold, following

the geodesic curve between the two source faces. Another way to view these warps is as a

rotation of a unit vector in Rn. All intermediate faces in this case have equal distinctiveness

and are equally plausible. In the case of antifaces, there is no single geodesic warp connecting

face to antiface. In fact, there are an infinite number of valid warps, all of length π. Any such

warp will smoothly vary identity from the source face to its antiface, via a series of faces with

uniform distinctiveness. One way to conceptualise this is that we can set off from a point on

the hyperspherical manifold in any direction and reach the antiface after travelling a distance

π.

An interesting result of this observation is that we can choose any intermediate face as a

target which will be visited on the warp from face to antiface. This gives us a way to specify

one of the infinite face-antiface warps and may also have interesting applications in generating

stimuli for psychological studies. This idea is demonstrated in Figure 4.7 for the S2 manifold,

which shows the difference between a plausibility-preserving and linear warp.

For a source face xsrc and intermediate target face xtar, we can define a unit vector in the

tangent space, v ∈ TxsrcSn−1, from xsrc in the direction of xtar: v =
Logxsrc (xtar)

d(xsrc,xtar) . A geodesic

warp from xsrc to xtar is therefore given by following this vector by a distance specified by the
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Plausibility-
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Figure 4.8: Linear versus plausibility-preserving warp from face to antiface.

warping parameter w:

xwar = Expxsrc

(
w

Logxsrc(xtar)

d(xsrc, xtar)

)
. (4.13)

When w = 0 we obtain the source face, i.e. xwar = xsrc, and when w = d(xsrc, xtar)

we obtain the target face, i.e. xwar = xtar. If we set w = π we obtain the antiface to xsrc.

Intermediate faces are obtained when w ∈ (0, π).

We show an example warp from face to antiface via an intermediate target face in Figure

4.8 using the 199 parameter BFM [76]. Note that the effect is of smooth variation of identity,

with each of the intermediate faces containing significant detail. We contrast this with a linear

warp through the mean face which results in implausibly smooth intermediate faces and no

transition through intermediate identities. In Figure 4.9 we plot the parameter vector lengths

for the linear and plausibility-preserving warps.

4.5.2 Averages

Given u > 2 source faces, x1, . . . , xu ∈ Sn−1, we wish to compute a plausible average face

which captures characteristics of each of the source faces. The linear or Euclidian mean of the

parameter vectors minimises the sum of square error in Rn from the average to each of the

source faces. This is the extrinsic mean and will not lie on the manifold. The result is that

the face is implausibly smooth and lacking in features. We propose the use of the intrinsic or
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Figure 4.9: Vector length or ‘plausibility’ is plotted throughout a warp between a face and
antiface (see Figure 4.8).

Karcher mean [77]. For u = 2, this can be found using the warping equation given above with

w = 0.5. For u > 2, this is the point xµ ∈ Sn−1 which minimises the total squared geodesic

distance to each of the source faces:

xµ = arg min
x∈Sn−1

u∑
i=1

d(x, xi)
2. (4.14)

This point cannot be found analytically, so we solve it as an iterative optimisation using the

gradient descent method of Pennec [77]. We initialise our estimate as one of the source data

points, i.e. x
(0)
µ = x1. The estimated intrinsic mean is then iteratively updated as follows:

x(j+1)
µ = Exp

x
(j)
µ

(
1

u

u∑
i=1

Log
x
(j)
µ

(xi)

)
. (4.15)

This process converges rapidly, typically within 5 iterations. In Figure 4.10 we compare our

plausibility-preserving averages with linear averaging of the 74 dimensional parameter vectors

obtained using the data provided by [1]. Notice that each of the Euclidian averages appears

unrealistically smooth, whereas the averages computed on the manifold clearly show the presence

of distinct features present in the source faces (for example, the broader nostrils of face 1 are
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Figure 4.10: Linear versus plausibility-preserving averages.

visible in the first three averages but not the fourth).

4.6 Model fitting on the manifold of plausible faces

The most powerful application of the identity manifold is to use it for the purpose of constraining

the process of fitting a model to data. Suppose the function ε : Sn−1 7→ R is an objective

function which evaluates the quality of fit of a face represented by a point on the plausibility

manifold to some observed data. This function could take any form, for example the difference

between predicted and observed appearance in an analysis-by-synthesis framework or the error

between a sparse set of feature points. We pose model fitting as finding the point on the

manifold which minimises this error, i.e.:

x∗ = arg min
x∈Sn−1

ε(x). (4.16)

In doing so, we ensure that plausibility is enforced as a hard constraint. Note also that the

optimisation is more heavily constrained since the dimensionality of the hypersphere is 1 less

than the parameter space.
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4.6.1 Local Optimisation

We can perform gradient descent on the surface of the manifold to find a local minimum in the

error function. The fact that our manifold is hyperspherical has some interesting implications

for such an approach. We must first compute the gradient of the objective function in terms of

a vector on the tangent plane: ∇ε(x) ∈ TxSn−1. To do so, we compute the gradient in terms

of a vector in Rn and project the result to the tangent plane as follows:

∇ε(x) = Logx

(
Φ−1

(
x− g

‖x− g‖

))
(4.17)

where x = [x1 . . . xn]
T

= Φ(x). The gradient in Rn:

g = [∂x1
ε(x) . . . ∂xnε(x)]

T
, (4.18)

is approximated by using finite differences to calculate the partial derivatives:

∂xiε(x) ≈ ε(x′i)− ε(x)

ε
, (4.19)

where x′i = Φ−1([x1 . . . xi + ε . . . xn]).

With a means to compute the gradient, we can iteratively minimise the objective function

by adapting the gradient descent algorithm to operate on the surface of a manifold:

x(t+1) = Expx(t)

(
−γ∇ε(x(t))

)
, (4.20)

where γ is the step size. Note that as γ varies, the point Expx (−γ∇ε(x)) ∈ Sn−1 traces out a

great circle about the hypersphere. This is the search space for the one-dimensional line search

at each iteration of gradient descent.
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4.6.2 Coarse-to-fine Model Fitting

The difficulty with our approach is choosing an unbiased initialisation. Existing methods for

fitting statistical models to data typically commence from an initialisation of the mean (i.e.

zero parameter vector), e.g. [15, 24]. However, this point lies far from the plausibility manifold

and is therefore unsuitable in our case.

We tackle this problem and also reduce susceptibility to becoming trapped in local minima by

proposing a coarse-to-fine algorithm which iteratively increases the number of model dimensions

considered in the optimisation.

Consider in the simplest case a two dimensional model (in the one dimensional case the

manifold collapses to a pair of points and is the boundary of a line segment). In two dimensions

the manifold is S1 (i.e. a unit circle) and requires the optimisation of a single angular parameter,

θ. The result in two dimensions, x(2) = [cos θ∗ sin θ∗]T , is given by solving the following interval

search problem:

θ∗ = arg min
θ

ε(Φ−1([cos θ sin θ]T )), 0 ≤ θ < 2π, (4.21)

which we solve using golden section search [52]. We use this result to initialise the solution in

three dimensions, initially setting the third parameter to zero: x
(n)
init =

[
x(n−1) | 0

]
. We then

perform gradient descent. We continue this process, incrementally adding dimensions to the

optimisation, each time setting the new parameter to zero and then performing gradient descent

on the new manifold using this as an initialisation. Hence, the result of a local optimisation in

n dimensions is used as the initialisation for optimisation in n+ 1 dimensions ensuring that the

solution is already constrained to the right region of the manifold.

The nature of the hyperspherical manifold can be used to inform the stepsize used in the

gradient descent optimisation. We assume that the result in n dimensions has restricted the

solution to the correct hemisphere of the hypersphere. Travelling in the direction of the negative

gradient reduces the error. To travel in this direction whilst remaining in the same hemisphere

means the maximum arc distance that can be moved is π
2 . Hence, the result in n dimensions is
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given by x(n) = h(γ∗), where

h(γ) = Exp
Φ−1(x

(n)
init)

−γ ∇ε
(

Φ−1(x
(n)
init)

)
∥∥∥∇ε(Φ−1(x

(n)
init)

)∥∥∥
 . (4.22)

The arc distance γ determines how far we travel along the great circle implied by the gradient

of the objective function. Since we wish to constrain our solution to the same hemisphere, γ

must lie in the interval
[
0, π2

]
and we hence find γ∗ using golden section search [52] to solve:

γ∗ = arg min
γ

h(γ), 0 ≤ γ ≤ π
2 . Multiple iterations of gradient descent can be used each time a

dimension is added to the optimisation. In our results we use four iterations per dimension.

4.7 Model Fitting Examples

For our experimental evaluation, we use the algorithm described above to fit our 3D morphable

shape model to unseen data. We show results for two different objective functions and compare

our results with those obtained using two different generic optimisers.

4.7.1 Overconstrained Optimisation

We choose as an objective function the angular error between surface normals at each vertex of

the model. This is an interesting choice of objective function for two reasons. First, the search

landscape of the objective function is littered with local minima. Second, the fitted result is

likely to have lower perceptual error than a least squares fit directly to the vertices. Whilst such

a least squares fit gives minimal geometric error, the result is often a gross over-fit which does

not resemble the input face. Minimising the surface normal error is a non-linear problem which

is related to minimising appearance error, as undertaken by analysis-by-synthesis of image data

[15].

From an input face shape, represented by p vertices, we compute surface normals at each

vertex [68]. If Ni is the surface normal at vertex i, our objective function is the sum of squared
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angular errors between input and model surface normals:

ε(x) =

p∑
i=1

(
arccos(ni(Φ(x)) ·Ni)

)2
, (4.23)

where ni([x1 . . . xn]) is the surface normal of the ith vertex of the shape given by: s+Pc, where

the parameter vector is computed by transforming the unit vector back to the hyperellipse:

c =
√
n
[
x1

√
λ1 . . . xn

√
λn

]T
. (4.24)

We compare our manifold optimisation with direct optimisation of the objective function

using a generic optimiser based on the BFGS Quasi-Newton method with a cubic line search

[20]:

c∗ = arg min
c

p∑
i=1

(
arccos(ni(c) ·Ni)

)2
. (4.25)

Note that the generic optimiser converges close to the mean if all parameters are optimised

simultaneously. We therefore take the same coarse-to-fine approach as for the manifold fitting,

whereby we iteratively increase the number of dimensions considered in the optimisation.

We provide results on the BFM [76] data. The scans were obtained obtained using the

structured light scanning system provided by ABW-3D [76] and are set into correspondence

using a modified version of the Optimal Step Nonrigid ICP Algorithm [6]. In Figure 4.11,

column (a) shows input bump maps for three unseen subjects. Column (b) shows the ground

truth shape estimates. Column (c) shows the result of using the BFGS non-linear optimiser to

solve Equation 4.25. Because of local minima close to the mean, these faces are implausibly

smooth. Finally, our manifold fitting result is shown in column (d). Note that this result

represents a trade off between over and underfitting. Table 4.1 tabulates the angular error of

the surface normals averaged over all the out-of-sample faces in the BFM.
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(a) (b) (c) (d)

Figure 4.11: Overconstrained model fitting example: (a) input bump maps for 3 unseen subjects;
(b) ground truth; (c) BFGS optimisation; (d) manifold optimisation. All the results are for a
n = 99 parameter model.

Method Angular Error (in ◦)
BFGS method 7.23
Our method 5.33

Table 4.1: Model fitting results (overconstrained objective).

4.7.2 Underconstrained Optimisation

We now consider an objective function which is highly underconstrained. In other words,

solutions which minimise the objective function lead to highly implausible faces. The problem

we consider is estimation of a high resolution 3D face surface given the positions of k = 70

2D annotations (k << p). A linear version of this problem has been considered previously

[12], where it was observed that the problem leads to a trade off between the quality of fit to

the observed data and prior probability as measured by the model. The parameter to control

this trade off can be determined heuristically [12], although no single value will give optimal

performance for all faces. In contrast, our proposed approach requires no such regularisation

constraint and ensures that the fitted results have high quality shape estimates which are

plausible.
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Our aim is to recover face shape parameter estimates from a set of k 2D annotations. We

represent the ith observed feature point by Li ∈ R2. We write ri(Φ(x)) ∈ R4 for the 3D position

of the vertex corresponding of the ith feature point represented in homogeneous coordinates.

This is extracted from the model shape vector given by: s + Pc, where the parameter is vector

c is computed by transforming the unit vector Φ(x) back to the hyperellipse using Equation

4.24. The corresponding projected 2D position is given by:

L̂i = [ei/gi fi/gi]
T
, (4.26)

where [ei fi gi]
T

= Cri(Φ(x)) and C ∈ R3×4 is a camera matrix [44] which performs a per-

spective projection. Our objective function is taken by measuring the sum squared Euclidian

distances between the observed 2D feature point positions and the projected model estimates:

ε(x) =

k∑
i=1

‖Li − L̂i‖2. (4.27)

The conversion from homogeneous to 2D Euclidian coordinates means that the error is a non-

linear function of the shape parameters. We assume that the camera matrix is known, since

our aim here is to evaluate a simple underconstrained, nonlinear objective function. However,

for a real world implementation this can be estimated using the Gold Standard algorithm [44]

and the two steps of pose and shape estimation iterated to convergence.

We compare our manifold optimisation with direct optimisation of the objective function

using a generic optimiser based on the Levenberg-Marquardt algorithm (LMA) [63]. Note that

since the problem is underconstrained, direct optimisation of the objective function using LMA

leads to gross overfitting. We therefore also provide results for the regularised version:

c∗ = arg min
c

k∑
i=1

‖Li − L̂i‖2 + ηD2
M (c), (4.28)

where η is a Lagrange multiplier which controls the influence of the regularisation term. It
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(a) (b) (c) (d)

Figure 4.12: Underconstrained model fitting example: (a) ground truth faces (unseen) with the
input feature points (blue circles); (b) LMA with no regularisation constraint; (c) LMA with
regularisation constraint;(d) manifold optimisation. All the results are for a n = 50 parameter
model.

should be noted in this case L̂i = Cri(c).

In Figure 4.12 we show results on the BFM [76] data. Column (a) shows the ground truth

faces (unseen) with the input feature points (blue circles). Column (b) shows the result of using

LMA to solve Equation 4.28, with η = 0. In this case there is no regularisation constraint

applied and hence we obtain grossly overfitted shape estimates. Column (c) shows the result

of solving Equation 4.28 using LMA, with η chosen experimentally to provide optimal average

performance. To provide stable performance over all faces, the regularisation weight must be

set conservatively which means some solutions are restricted to lie too close to the mean. The

resulting faces therefore lack salient detail. Figure 4.13 demonstrates the effect of varying the

regularisation weight. Finally, our manifold fitting result is shown in column (d). This result

represents a trade off between over and underfitting via the hard manifold constraint. Our

method does not require tuning of a parameter and provides stable performance in all cases.

Table 4.2 tabulates the mean Euclidian error over all vertices in the mesh averaged over all the

out-of-sample faces in the BFM.
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Figure 4.13: Demonstration of parameter selection for LMA optimisation of regularised objec-
tive. For two different subjects (shown on the left in the first and third rows), the optimal
regularisation weight (corresponding to the shape estimate with the bounded box) is differ-
ent. The manifold solution (shown on the right in the first and third rows) does not require
parameter tuning and provides improved results.

Method Euclidian Error (in mm)
LMA without regularization 5.68

LMA with regularization 4.81
Our method 4.21

Table 4.2: Model fitting results (underconstrained objective).

4.8 Conclusions

We have shown how a number of useful operations can be performed on the manifold of equally

distinctive faces. This provides a new way to constrain operations involving the parameters of a

statistical model. In particular, we have shown how to constrain the process of fitting a model

to data which is robust but does not require the selection of a regularisation weight parameter.

We avoid using a biased initialisation and improve efficiency by using a coarse-to-fine strategy.

This approach outperforms the use of two generic nonlinear optimisation algorithms on two

different objective functions.
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Chapter 5

Model Simplification

5.1 Introduction

State of the art 3D morphable models have a very high resolution, typically > 50000 vertices

[15, 76]. Fitting these high resolution models to unseen data, amounts to optimisation of

complex nonlinear objectives. This iterative process is computationally expensive and requires

significant amount of time to converge [15]. Depending on the resolution of the input data,

or whether a coarse-to-fine strategy is employed, the use of such a high resolution model may

be unnecessary and wasteful of computational resources. This provides motivation for the

presented work.

In this chapter we show how to simplify a 3D morphable model without requiring knowledge

of the shapes used to train the model (thus extending the simplification ideas in Chapter 2 into

a statistical setting). Similar in spirit to the progressive mesh of Hoppe [47], we compute a

multiresolution mesh structure which is optimal at each resolution with respect to the statistics

of the original high resolution model. This allows us to define a continuous sequence of simpler

versions of the morphable model, all of which are a subset of the original high resolution model.

Our approach requires the storage of only a single mean mesh and modes of variation. The

proposed method is based on iterative edge collapse and we show that the expected value of the

Quadric Error Metric [36] can be computed in closed form for a PCA deformable model. We

also present a variant of the approach which can applied to models with topologically symmetric

mesh structure (though the shapes themselves need not be symmetric).

We show how the morphable models generated at different resolutions can be used to achieve
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super-resolution. By fitting a low resolution morphable model to data, we implicitly make

a statistical estimate of the corresponding high resolution surface. We show that fitting a

simplified 3D morphable model to data only slightly increases the fitting error (as compared

to fitting the original model to the same data), while offering considerable improvement in the

efficiency of model fitting.

5.2 Related Work

Simplification of individual triangular meshes is a well studied problem. Simplification algo-

rithms can be classified according to how they modify a mesh and the mesh property they seek

to preserve after modification. The former includes vertex decimation [90], vertex clustering

[88] and edge contraction [36]. The latter includes geometric error, volume and appearance.

However, the property which has proven both efficient to compute and to lead to simplified

meshes with low geometric error is the Quadric Error Metric [36].

Simplifying sets of meshes which are in dense correspondence has only recently begun to

receive attention amongst the graphics community [27, 56, 73]. Standard mesh operations such

as simplification, remeshing, surface flattening or smoothing must be adapted to operate on a

set of meshes whilst preserving dense correspondence. In [73] the authors extend the QSlim

algorithm [36], such that the contraction edge is selected by summing over all the samples in the

set. DeCoro and Rusinkiewicz [27] perform simplification of skeletally articulated meshes by

incorporating knowledge of potential poses into a probability function which in turn determines

the error quadrics associated with the surface. The idea is to obtain a mesh which approximates

the likely poses more accurately than the improbable ones. However, they were unable to obtain

a closed form solution for the error quadrics and resorted to Monte Carlo sampling. A similar

approach is taken by Landreneau and Schaefer [56] who perform simplification based on a set

of user-specified poses that are representative of typical deformations.

The solution strategy in [73] could be used to construct a multiresolution morphable model

by applying it to the training set of meshes. A statistical model could be constructed at each
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resolution using the appropriately simplified meshes. However, this would require the storage

of PCA statistics at every resolution. Moreover, the modes of variation computed at each

resolution may be unrelated. The methods in [27] and [56] are not suitable for this application,

since each mesh in the training set would have to be regarded as equally probable. In contrast

(to [73]), the method we propose requires only knowledge of the 3D morphable model at the

highest resolution. The mean shape and modes of variation remain the same and lower levels

of detail are simply mesh structures which use a subset of the original model vertices. Edges

for collapse are chosen according to the statistics of the model.

5.3 Contributions

First, we show how the Quadric Error Metric [36] can be formulated (in closed form) as a

function of the model statistics. Second, we show the simplified models can be used very

efficiently to achieve multiscale fitting and super-resolution. Finally, we provide evaluation for

the model simplification and model fitting experiments.

5.4 Preliminaries

A 3D morphable model describes the variability of a set of meshes in dense correspondence.

The model is obtained by applying PCA to the set of shape vectors (x1, y1, z1, . . . , xp, yp, zp),

where p is the number of vertices in the mesh. With a sufficiently large training set, an unseen

shape can be accurately approximated as a linear combination of the average surface and the

model eigenvectors:

s(b) = s̄ +

n∑
l=1

blPl = s̄ + Pb, (5.1)

where b = (b1, . . . , bn)T is a vector of shape parameters and s̄ the mean shape. We retain the

n most significant eigenvectors which are stacked to form the 3p × n matrix P. Additionally,

each shape parameter bl is distributed according to a Gaussian with zero mean and variance

99



given by the lth eigenvalue λl:

P (bl) ∼ e
− 1

2

(
bl√
λl

)2

. (5.2)

Similarly any unseen texture vector t can be represented as a linear combination of the average

texture and the model eigenvectors:

t(c) = t̄ +

n∑
l=1

clRl = t̄ + Rc, (5.3)

where the vector t ∈ R3p contains the texture value at each of the p vertices for each of the 3

colour channels. R, t̄ and c are the texture eigenvectors, mean texture and texture parameter

vector respectively. The texture parameters are normally distributed, similar to the shape

parameters.

This statistical analysis is used to define a deformable mesh M(b, c)p = (Kp, s(b), t(c)),

which is a function of the shape and texture parameter vectors. The connectivity or topology of

the deformable mesh is fixed and is given by the simplicial complex Kp with p vertices, which

is a set whose elements can be vertices {i}, edges {i, j} or triangles {i, j, k}, with the indices

i, j, k ∈ [1 . . . p]. The actual shape of the mesh, given by the vector s(b) ∈ R3p, varies with the

parameter b, as in Equation 5.1. We denote the ith vertex as vi ∈ R3, which is composed of

elements 3i − 2, 3i − 1 and 3i of the vector s(b). Similarly, the RGB vector ui of the texture

at the ith vertex is given by elements 3i− 2, 3i− 1 and 3i of the vector t(c).

5.5 Simplification of Morphable Models

Our starting point is a 3D morphable model built at a resolution p as described by Equations

5.1 and 5.3. Our algorithm for simplification of a morphable model is based on iterative edge

contraction. The key idea behind our method is to select an edge for contraction whose removal

induces the minimum error over all possible shapes generated by the morphable model, weighted

by their probability.

Simplified models comprise a subset of the vertices (and hence statistics) of the original
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model and a corresponding mesh topology. This ensures that the model statistics need only

be computed once and that the mean face (shape and texture) and model eigenvectors at

any resolution can be obtained by simply indexing the appropriate rows corresponding to the

retained vertices. Consequently, a given shape and texture parameter vector can be used to

generate a shape and texture at any of the model resolutions.

For this reason, edges must be contracted to one of the vertices at either end of the edge.

This is not the optimum vertex placement policy if simplifying a mesh [36]. However, since

we do not have knowledge of the individual meshes for simplification (we have only the model

statistics), we are restricted to picking a subset of the original model and hence contracting an

edge to either of its end vertices. In addition, if the initial morphable model is symmetric (i.e.

every vertex has a corresponding symmetric partner), we would like to maintain this symmetry.

In this case, we must adapt the cost function to select the pair of symmetric edges which together

induce the minimum error.

Starting with the original high resolution morphable model, a sequence of edge contractions

is applied until the simplification goals are satisfied. The algorithm generates a progressive

sequence of model statistics which in turn can be used to generate meshes with decreasing

resolution (M(b, c)p,M(b, c)p−1,M(b, c)p−2, . . .).

We consider only edge pairs as valid for contraction, i.e. where {i, j} ∈ Kp. We label the

valid pairs at initialisation by constructing an edge table from the initial mesh structure. When

we perform a contraction, the complex Kp is modified. Degenerate faces (those that no longer

have 3 distinct vertices) and duplicate edges are removed as well as the collapsed edge and

redundant vertex j [36]:

Kp−1 =Kp \ {{j}, {i, j}, {j, κ}, {i, j, κ} :{i, j, κ}∈Kp} . (5.4)

Finally, we need to keep track of the indices of the vertices in the original model which are

retained after each edge contraction. This is a straightforward extension of the modification

101



to simplicial complex K. Let Ip = [1 . . . p] be a list of vertex indices at the highest resolution

p. The updated index list at a lower resolution (after γ edge contractions) would have a

length p − γ with its contents being the indices of the retained vertices upto that instance i.e.

Ip−γ = [g1 . . . gp−γ ], with g1 . . . gp−γ ∈ Ip.

5.5.1 Quadric Error Metric as a Function of the Morphable Model

Statistics

In order to select a pair for contraction at every iteration, we use the Quadric Error Metric

proposed in [36]. We formulate the error quadrics as a function of the shape parameters (b), the

shape eigenvectors (P) and the mean shape (s̄). We then integrate over the shape parameters,

weighting by probability, to obtain the expected error quadric for each edge pair. It should be

noted that the texture model plays no role in the computation of the Quadric Error Metric.

In order to compute the error quadrics, we make use of the assumption that each shape

parameter (bl) is an independent random variable that is normally distributed (Equation 5.2).

Using this assumption we determine a fundamental quadric for each vertex based on each pa-

rameter (bl). Hence each vertex will be associated with n fundamental quadrics. A fundamental

quadric for the ith vertex and lth parameter is defined as:

Qil = (Di
l, e

i
l, f

i
l ) =

planes(i)∑
m=1

(Dm
l , e

m
l , f

m
l ), (5.5)

where Dm
l = nml nml

T is a 3x3 matrix, eml = dml nml is a 3-vector and fml = dml
2 is a scalar. Qil

represents the set of triangular planes (defined by [nml
T dml ]T ) that meet at the ith vertex. The

summation is done using the component-wise additive rule [36].

Let sl(bl) = Plbl + s̄ be the shape obtained by deforming the mean shape according to the

lth eigenvector by an amount given by bl. Here, Pl is the lth column of the shape eigenvector

matrix. The plane equations needed to compute the initial quadrics Qil can be obtained from

sl(bl). We incorporate the boundary penalty [36] into the initial quadrics for vertices lying on
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a discontinuity edge. This results in Di
l, eil and f il , as polynomials in bl with degrees 6, 7 and 8

respectively. We make the assumption that the triangular polygons of our deformable mesh have

approximately uniform area prior to simplification. This allows us to avoid normalising the plane

normals to unit length and hence leads to quadrics which are polynomials in bl. It also enables

efficient implementation of the component-wise addition of the quadrics. Our assumption is

reasonable if the model training data is uniformly remeshed as part of the process of establishing

dense correspondence. This holds for the morphable model we use in our experiments [76].

Once the initial n quadrics for each of the p vertices are computed, we can derive the quadric

for each edge pair {i, j} using the additive rule i.e. Qi+jl = Qil +Qjl . The quadric Qi+jl assigns

a value Qi+jl (vwl ) to the wth vertex by the second order equation:

Qi+jl (vwl ) = vwl
TDi+j

l vwl + 2ei+jl

T
vwl + f i+jl , (5.6)

where w takes the values i and j, the two end points of the edge pair {i, j}. Substituting and

rearranging results in a polynomial in bl with degree 8:

Qi+jl (vwl ) = δ8lbl
8 + δ7lbl

7 + ...+ δ0l, (5.7)

where δ8l, δ7l, ..., δ0l are constants. These constants are determined by the statistical shape

model (i.e. the actual values of the eigenvectors and mean shape). The formulas for computing

these constants are obtained using the MATLAB Symbolic Math Toolbox.

Since Ql is a continuous function in bl, we determine the quadric error for the edge pair

{i, j} as:

E
{i,j}
l (vwl ) =

∫ β

α

P (bl)Q
i+j
l (vwl ) dbl. (5.8)

The total contraction error for the edge pair {i, j} can be obtained by summing over the error
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resulting from the n independent shape parameters:

E{i,j}(vw) =

n∑
l=1

E
{i,j}
l (vwl ). (5.9)

Using Equations 5.2 and 5.7 we have:

E{i,j}(vw) =

n∑
l=1

∫ β

α

e
− 1

2

(
bl√
λl

)2(
δ8lbl

8 + ...+ δ0l
)
dbl. (5.10)

This integral has a closed form solution in terms of error functions. We evaluate the definite

integral over the interval [α, β] = [−3
√
λl, 3
√
λl]. This range captures > 99% of the variance.

Increasing the interval beyond this point has a negligible effect on the error values. Keeping in

mind our need to retain either ends of the contracted edge, we store the error associated with

an edge pair {i, j} as:

Γ{i,j} = min
(
E{i,j}(vi), E{i,j}(vj)

)
. (5.11)

We select the contraction edge pair to be the one that minimises Equation 5.11:

{i∗, j∗} = arg min
{i,j}∈Kp−γ

Γ{i,j}. (5.12)

After every edge contraction we must update the quadrics and the error heap for the modified

entries in the complex K [36].

5.5.2 Symmetric Model

If the original model has symmetric topology, then we would like to ensure that the symmetry is

preserved during simplification. We would like to select a symmetric pair of edges for contraction

at each iteration. Assuming the highest resolution model is symmetric, then for each edge

{i, j}, there is a corresponding symmetric edge {̆i, j̆}. In the case where {i, j} lies on the line
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Figure 5.1: Case 1 (left): The edge lies on the line of symmetry. In this case only one vertex
is removed during the symmetric edge pair contraction. Case 2 (Center): The symmetric edge
pair lies away from the line of symmetry. This is the most common case encountered. Case 3
(Right): One vertex of the symmetric edge pair lies on the line of symmetry. In this case we
always retain the vertex pair lying on the line of symmetry.

of symmetry, then {̆i, j̆} = {i, j}. We select a symmetric edge pair for contraction as follows:

{i∗, j∗}, {̆i∗, j̆∗} = arg min
{i,j},{ĭ,j̆}∈Kp−γ

Γ{i,j},{ĭ,j̆}, (5.13)

where:

Γ{i,j},{ĭ,j̆} = min
(
E{i,j}(vi) + E{ĭ,j̆}(vĭ), E{i,j}(vj) + E{ĭ,j̆}(vj̆)

)
. (5.14)

This symmetric version of the algorithm can be implemented efficiently using a symmetric

modification of the edge list structure. It should be noted that in the symmetric implementation,

during each iteration, γ (the number of vertices removed) is incremented by 2. However, in the

case where {̆i, j̆} = {i, j}, only one vertex is removed during the contraction.

We need to make a special consideration if the symmetric edge pairs have only one vertex

lying on the line of symmetry (either i, ĭ or j, j̆). In order to preserve the line of symmetry, we

need to enforce that the retained vertices in this case are the ones lying on the line of symmetry

(i.e. set Equation 5.14 to the error value associated with the symmetric vertex pair lying on

the line of symmetry). Figure 5.1, provides a visual illustration of the 3 types of symmetric

edge pairs that are encountered. Figure 5.2, shows an example of the symmetry preserving

implementation of the algorithm.
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Figure 5.2: Cross-section of a face showing the symmetry preserving implementation of the
algorithm.

5.5.3 Algorithm Output

After γ edge contractions, the algorithm outputs the simplicial complex of the simplified mesh

structure Kp−γ and the list of retained vertex indices Ip−γ . Using Ip−γ we can obtain the shape

and texture morphable models at the resolution p− γ by simply indexing the relevant rows in

Pp, s̄p, Rp and t̄p corresponding to each entry of Ip−γ . The simplified morphable model and

mesh structure can then be used to generate lower resolution meshes, M(b, c)p−γ , using the

same shape and texture parameters as the original model.

5.5.4 Computational Complexity

Similar to [73], our method adds an overhead to the computational complexity of the QSlim

method for a single mesh [36]. A single edge contraction requires, O(n) operations to recom-

pute the quadric error in the neighborhood of the contracted edge, plus O(logp) operations

to maintain the heap property. As the number of contractions is bounded by p, the iterative

contraction phase runs in O(np+ plogp) time.

5.6 Multiresolution Model Fitting

Applications which make use of a 3D morphable model for analysis or synthesis, in particular

those which involve fitting the model to image data, are computationally expensive [15]. The
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main reason for this is the resolution at which the state-of-the-art models are built. For example,

the Basel Face Model (BFM) [76] is built using scans with p = 54390 vertices. For this reason,

there is strong motivation for developing multiscale fitting algorithms which vary the resolution

of the model in a way which is appropriate to the data. Essentially, our simplified models

can be plugged in as appropriate to any morphable model fitting algorithm with a resulting

improvement in efficiency. Our approach to simplification of a morphable model lends itself well

to multiscale fitting and super-resolution. Since the simplified model is a subset of the original

high resolution model, shape parameter vectors can be used interchangeably between models

at different resolutions.

Given an unseen 3D shape (sp−γtest ) having p − γ vertices, using the eigenvectors (Pp−γ)

and mean shape s̄p−γ (the shape model at this resolution), we can obtain a parametric shape

estimate that is optimum in a least squares sense:

b∗ =
(
Pp−γ)−1 (

sp−γtest − s̄p−γ
)
, (5.15)

where (Pp−γ)−1 is the pseudo inverse of Pp−γ . It should be noted that at a resolution < p,

the reduced eigenvectors are no longer orthonormal, hence the use of the pseudo inverse rather

than the transpose. We can now compute the corresponding shape at the highest resolution as:

sprec(b∗) = Ppb∗ + s̄p. (5.16)

Combining the above, the least squares estimate of a high resolution face given a low resolution

observation (i.e. super-resolution) is given by:

sprec(b∗) = Pp
(
Pp−γ)−1 (

sp−γ − s̄p−γ
)

+ s̄p. (5.17)

In Section 5.7.2, we provide an analysis of the shape reconstruction error between the original

and reconstructed meshes over a range of input resolutions (i.e. super-resolution). We compare
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Figure 5.3: Simplification results for 2 BFM test meshes at different resolutions. The resolution
from left to right: 53490, 25000, 20000, 15000, 10000, 5000 and 1000 . The first 2 rows show
results for 3D shape and the last two rows show results for 3D shape and texture.

this with the model best fit to the original high resolution input (i.e. the generalisation error of

the model). It should be noted that exactly the same derivations hold for the texture model.

Besides the linear least squares estimates, a more challenging application of our simplified

models is to study the relationship between fitting quality and computational complexity when

lower resolution models are used to optimise a more complex, nonlinear objective function.

Many such objective functions have been proposed and our simplified model could be used in

conjunction with any one of these. For our evaluation, we choose a simple exemplar objective

function to highlight the effect of model simplification on the fitted result. Namely, the sum of

squared angular errors between the input and model surface normals:

b∗ = arg min
b

p−γ∑
l=1

(
arccos(nl(b) ·Nl)

)2
, (5.18)

where Nl is the input surface normal at vertex l and nl(b) is the lth surface normal correspond-

ing to the shape estimate (b). We choose this objective function for two reasons. First, the

search landscape of the objective function is littered with local minima. Second, minimising the

surface normal error is a nonlinear problem which is related to minimising appearance error,
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γ p− γ Our Method Method in [73]

Mean RMS Mean RMS

28490 25000 0.0140 0.0369 0.0355 0.3947

33490 20000 0.0232 0.0626 0.0617 0.4775

38490 15000 0.0406 0.1230 0.0834 0.4987

43490 10000 0.0739 0.1956 0.1186 0.5443

48490 5000 0.2062 0.4788 0.2087 0.6828

Table 5.1: Mean and RMS distances between the highest resolution meshes and the simplified
meshes. All distances are in mm.

as undertaken by analysis-by-synthesis of image data [15]. The problem also arises in fitting to

photometric estimates of surface orientation. In Section 5.7.2 we show results of solving this

objective function at different resolutions and compare results to the solution at the highest

resolution.

5.7 Experimental Results

For our experimental evaluation, we use the BFM [76]. The BFM is a 3D morphable model

trained on 200 faces and has a resolution of p = 54390 vertices. Using the method described

in this chapter we can generate lower resolution models at any resolution with p − γ vertices.

We use the n = 50 most significant model eigenvectors (capturing 98.46% of the cumulative

variance for the shape model) in our simplification algorithm. The BFM is a symmetric model

and our simplification preserves this property.

5.7.1 Model Simplification

We begin by providing a quantitative analysis of how the low resolution meshes generated using

the proposed algorithm compare to the highest resolution meshes. We compare our solution with

the solution proposed in [73]. While our method uses the statistics of the trained morphable

model to select an edge for collapse, in [73] the contraction edge is determined by summing the

error metric over a set of meshes. We apply the method of [73], by summing over 50 meshes

randomly generated using the BFM. The shape parameter vectors are generated by randomly
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Figure 5.4: Least squares estimates for 4 unseen subjects. Row 1 shows the ground truth. Row
2 shows the estimates obtained using the model at the highest resolution. Row 3 shows the
estimates obtained using the model at a resolution of 5000. The first 4 columns show 3D shape
and the last 4 columns show 3D shape and texture.

sampling from the appropriate normal distribution for each parameter. Also for both methods

we use the same vertex placement policy and symmetric implementation as described in Section

5.5.

To evaluate the simplified meshes, we use 10 out-of-sample test scans provided with the

BFM. The scans were obtained using the structured light scanning system provided by ABW-

3D [76] and are set into correspondence using a modified version of the Optimal Step Nonrigid

ICP Algorithm [6]. We subselect the vertices corresponding to the simplified model and apply

the corresponding low resolution mesh topology. The resulting low resolution mesh is compared

to the original high resolution mesh. We provide mean and RMS distances computed using the

Metro tool [23] in Table 5.1. We report the average of the forward and backward distances,

averaged over the 10 meshes. It should be noted that the 10 test meshes are disjoint from the

ones used to build the BFM or the 50 randomly generated meshes. The table shows that our

solution results in the selection of more class-optimal edges to be contracted as compared to

the solution strategy proposed in [73].

The effect of our vertex placement policy becomes evident when low resolution meshes in the

model are visualised. In Figure 5.3 we show two of the BFM test meshes at various resolutions.

Because we force edges to collapse to one of the vertices at either end, meshes at resolutions
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γ p− γ p
p−γ

Ehs
Es

Eht
Et

28490 25000 2.1396 0.9950 0.9913

33490 20000 2.6745 0.9768 0.9871

38490 15000 3.5660 0.9509 0.9716

43490 10000 5.3490 0.9080 0.9365

48490 5000 10.6980 0.8935 0.8812

Table 5.2: Quantitative analysis for the least square estimates. Here Es = 1
p

∑p
l=1 ‖vltest −

vlrec(b∗)‖ and Et = 1
p

∑p
l=1 ‖ultest−ulrec(c∗)‖. The units for Es and Et are mm and normalised

RGB intensity respectively. h denotes the analysis for the highest resolution morphable model,
with Ehs = 0.9810 and Eht = 0.0372. We use 199 parametric modes for the reported analysis.

< 5000 begin to lose salient facial details and start developing visual artefacts. Qualitatively,

an acceptable perceptual output is possible for simplifications up to a factor of ∼ 10.

5.7.2 Model Fitting

The second aspect of our evaluation investigates the trade off between quality of fit and efficiency

(computational times) when fitting simplified models to data.

In the first experiment we provide results for the least squares fit of the model to unseen

input meshes at a variety of resolutions (see Equation 5.17). We provide results for both shape

and texture in comparison to a least squares fit at the highest resolution. The quantitative

results are given in Table 5.2. All error measures are with respect to ground truth and we

report error measures averaged over the BFM test set. Figure 5.4 shows the visual illustration

of the least squares estimates for 4 unseen subjects. The results show that our low resolution

morphable models can reliably estimate unseen data when the resolution is reduced by upto a

factor of ∼ 10.

Next we provide results for fitting the morphable models to optimise a more complex, non-

linear objective function (Equation 5.18). For our experiment we use as input, out-of-sample

normal maps obtained using the ABW-3D scanner [76]. Once again correspondence is estab-

lished using a modified version of the algorithm of [6]. From the input 3D surface, we compute

surface normals at each vertex [68]. We begin by optimising the objective function using the
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Figure 5.5: Model fitting estimates (optimising Equation 5.18). Row 1 shows the input bump
maps (noise free and noisy) for 2 unseen subjects. Row 2 shows the ground truth. Row 3 shows
the shape estimates obtained using the model at the highest resolution. Row 4 shows the shape
estimates obtained using the model at a resolution of 5000.

original high resolution morphable model. We then use a morphable model at a much lower

resolution (10000 and 5000) to optimise the same objective function, followed by generating the

highest resolution output using Equation 5.16. We analyse the quality of fittings obtained and

computational times required in the two cases. Note that at lower resolutions the input normals

are obtained by subselecting the vertices corresponding to the simplified model and using the

corresponding low resolution mesh topology. We use the coarse-to-fine model fitting strategy

suggested in Chapter 4 to optimise an n = 50 parameter model (at all resolutions).

We also provide results for fitting to noisy normal maps. In this case we add noise to perturb

the 3D geometry of the scans set in correspondence before computing the vertex normals. For

our experiment, we randomly sample the noise from a normal distribution having zero mean.

The standard deviation of the noise distribution is set proportional to the extent of the 3D

geometry and ranges from 0.1 mm to 0.3 mm for the test data used. Table 5.3 reports the

quantitative findings of our experiment. We report all results averaged over the BFM test set.

Figure 5.5 shows the qualitative results for the experiment. In general, our low resolution models
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γ p− γ Eha
Ea

Eha
Ea

(Noisy) τh

τ

43490 10000 0.9558 0.9494 3.0888

48490 5000 0.9046 0.9176 3.7623

Table 5.3: Quantitative analysis for a model fitting application. Ea is the mean angular error
between the ground truth and fitted surface normals (in degrees) and τ is the computational
time (in minutes) required for optimising the objective function (Equation 5.18). h denotes
the analysis for the highest resolution morphable model, with Eha = 5.135 (for noiseless input),
Eha = 6.203 (for noisy input) and τh = 12.433. All computations are done on a 1.78 GHz AMD
Athlon processor.

(shape, texture or a combination of both) can be used to achieve a considerable reduction in

computational times at a small compromise in the quality of fitted estimates.

5.8 Conclusions

In this chapter we have shown how to simplify a dense statistical 3D surface model by formulat-

ing the Quadric Error Metric as a function of the model statistics. Our simplified models can be

used for super-resolution and to improve the efficiency of model fitting. In theory this work can

be extended by including the texture model statistics in the formulation of the Quadric Error

Metric (along the lines of [37]). However, doing so may be impractical from the point of view

of implementing a closed form solution as it would result in a high degree polynomial in two

variables (shape and texture parameters). Finally, since our vertex placement policy requires

an edge to collapse to one of the vertices at either end, employing vertex decimation [90] could

prove to be an effective strategy.
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Chapter 6

Shape-from-Shading Driven Morphable Models

6.1 Introduction

Estimating 3D face shape from single images has several applications, primarily as a route to

pose and illumination invariant face recognition. A considerable body of work has focused on

this problem in recent years [8, 15, 39, 58, 85, 86, 103, 106]. Recent advances in this area can

be divided into two distinct avenues of research. The first uses a morphable model of facial

appearance [15, 103] while the second uses classical shape-from-shading techniques [81, 94].

The body of work which uses morphable models offers globally accurate and robust shape

recovery from real images, but the recovered shape lacks local detail and only weakly satisfies

image irradiance constraints (and hence photorealism). Recent results in shape-from-shading

have shown that fine local surface detail can be recovered from face images but that the esti-

mated global 3D shape is of inferior quality to that recovered using a morphable model. The

aim in this chapter is to explore an approach which combines these currently divergent strands

of research in the hope of retaining the benefits of both.

6.2 Related Work

6.2.1 3D Morphable Models

To solve the problem of face shape recovery using a morphable model, the challenge is to fit the

model to images of previously unseen subjects. This amounts to solving a highly complex non-

linear minimisation problem which requires estimation of: 1. the shape and texture parameters,
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2. pose, scale and position of the subject, 3. camera and surface reflectance parameters and

4. the illumination conditions present in the scene. Such an approach provides 3D face shape

estimates that are globally accurate. Importantly, the method is robust under real world con-

ditions and explicitly models the underlying physical processes which give rise to the observed

image. However, several key problems hinder further development of the technique. Model

dominance is the most serious weakness. Morphable models provide a face shape recovery ap-

proach in which the quality of the reconstructed shape is entirely dependent on whether the

model was trained using data which contained similar examples. Hence, fine surface detail or

atypical surface features (often the most distinguishing elements of the face) are lost. No cues

are exploited from within the image to directly recover shape. Instead, the only information

extracted from the image is the cost value associated with the current parameter estimates.

Minimising this cost function requires a highly complex and computationally expensive search,

with no guarantee of obtaining the global minimum. In fact, Blanz and Vetter [15] had to

employ stochastic minimisation techniques to avoid finding local minima.

Model dominance is also a problem in the estimation of surface texture or more precisely

albedo. To date, albedo has been modelled, as for shape, using a linear statistical model

[15, 71, 87, 103]. It is not clear how features such as moles, freckles and facial hair can be

efficiently captured and hence recovered using such a model. In addition, obtaining meaningful

albedo values with which to construct the training set is challenging. For example the Cyberware

3030PS scanner used to collect data [15] measures a texture map using digital cameras in

the scan head. However, these texture measurements are illumination dependent and do not

correspond to a physically meaningful albedo value.

More recently the morphable model of Blanz and Vetter [15] has been extended using multi-

linear face models to study and synthesize variations in faces along several axes, such as identity,

expression and visemes [97] or to use statistical models for synthesis of detailed facial geometry

[40]. Other methods for capturing fine scale details of human faces are also well researched
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[99, 110]. Even though these methods would enable us to learn fine structural details and at-

tributes, these methods require considerably more effort in the building of the models and the

models would still be able to recover only what they were trained on.

The most recent work in this area of fitting morphable models has focused on developing

more sophisticated morphable model fitting algorithms. Zhang and Samaras [103], use the fit

of a morphable model to each gallery image to obtain a spherical harmonic basis (9D) for that

subject. This is also done in a model based manner by learning a statistical model of spherical

harmonic basis (assuming a Lambertian reflectance model). The proposed method can represent

a face under arbitrary unknown lighting and pose simply by four low-dimensional vectors,

i.e. shape parameters, pose parameters, spherical harmonic basis parameters and illumination

coefficients. In order to improve performance when the images are taken under an extreme

lighting condition, a subregion based framework that uses a Markov random field to model the

statistical distribution and spatial coherence of face texture was used in [98]. In [57] the authors

use a 30 basis Bilinear Illumination Model (BIM) to create a compact illumination subspace

given 3D morphable model shape estimates.

All of these methods are based on explicitly modelling the underlying physical processes

that give rise to an observed image, by rendering each hypothesised appearance. It is not clear

that this is either necessary or the most practical approach. As already mentioned, the only

information extracted from the image is the cost value associated with the current parameter

estimates. On the other hand, both Romdhani and Vetter [87] and Moghaddam et al. [71] focus

on improving the accuracy and efficiency of the fitting process respectively by using features

derived from the input images rather than the intensity data itself. Romdhani and Vetter [87]

used edges and specular highlights to obtain a smooth cost function, while Moghaddam et al.

[71] used silhouettes computed from a large number of input images. In order to overcome

model dominance, Knothe et al. [54] use local feature analysis to locally improve the fit of the

model to a set of sparse feature points.
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6.2.2 Shape-from-Shading

In contrast to fitting a morphable model, where the problem reduces to minimisation of a

complex error functional, the idea in shape-from-shading is to make an estimate of the surface

orientation at every pixel directly from the image intensities [105]. This approach is data-driven

in that the intensity information at every pixel in the input image is used and by satisfying hard

irradiance constraints, it can be ensured that the estimated shape recreates the input image

exactly.

Unfortunately single image shape-from-shading has proved ineffective (compared to other

methods such as photometric stereo [39]), in recovering realistic 3D shape. Several authors

have shown that the accuracy of the recovered shape information can be greatly enhanced by

using domain specific constraints. For instance, Prados and Faugeras [81] use the location of

singular points to enforce convexity on the recovered surface. Zhao and Chellappa [107], on the

other hand, have introduced a geometric constraint which exploits the approximate bilateral

symmetry of faces. Dovgard and Basri [28] combined the statistical constraint of [7] and the

geometric constraint of [107] into a single shape-from-shading algorithm.

More recently, Smith and Hancock [94] show how to recover a field of surface normals (a

needle-map) using a statistical model of variations in surface normal direction. In contrast to

a morphable model, their statistical model is view-dependent and does not consider correspon-

dences between subjects. This makes projection of measured surface normals onto the model

straightforward but limits the applicability of the model to registered fronto-parallel views.

Without dense correspondence, it is also not clear how the model can efficiently characterise

facial shape. Most recently, Ecker and Jepson [31] examine the shape-from-shading problem

without boundary conditions as a polynomial system which they solve using semidefinite pro-

gramming.
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6.3 Contributions

In this chapter we propose a method for facial shape recovery from a single image which combines

the strengths of both approaches (global robustness and recovery fine local detail) while tackling

the weaknesses faced by current state-of-the-art methods that rely on fitting a 3D morphable

model. In doing so, we make a number of contributions.

We begin by reviewing background theory of morphable models (Section 6.4) and shape-

from-shading (Section 6.5). In Section 6.6, we then show how constraints on surface normal

direction suggested by shading cues provide a route to exceeding the accuracy of face shape

estimates obtainable using a morphable model. Our approach is based on linear optimisation of

an error measure based on a combination of the geometric and surface normal errors. We show

that reducing this error correlates with reduction in the appearance error of a recovered shape.

Our method is able to reduce the error of a face reconstructed using a state-of-the-art analysis-

by-synthesis algorithm and even improve upon the generalisation error induced by projecting

an out-of-sample face onto the model. We also show that this refinement step can be used to

improve upon the state-of-the-art recognition results.

We discuss the implications of this approach in Section 6.6.3 and consider how to incorporate

the method into an iterative model fitting framework. We present our approach to do this in

Section 6.7, where we describe an objective function which seeks morphable model parameters

whose surface normals minimise the difference to those suggested by shape-from-shading. In

addition to providing a new way in which to fit a morphable model, our algorithm also outputs

per-vertex albedo and bump maps which are not constrained by the morphable model. These

maps are able to capture fine detail of a face’s surface shape and reflectance properties, without

the lack of expressive power introduced by a statistical model. The extent to which shading

variations are explained in terms of changes in surface orientation or albedo (i.e. ‘shaded’

versus ‘painted’ hypothesis) can be controlled by the degree of smoothness enforced on the

albedo maps. We also show how the proposed method can be used for illumination insensitive

face recognition. Finally, we present experimental results in Section 6.8.
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6.4 3D Morphable Models

Consider a sample of m 3D face meshes which are in dense correspondence. The mth shape

is represented by a vector of p vertices xm ∈ R3p. We use principal components analysis to

obtain an orthonormal basis spanned by the m eigenvectors Pm. Any shape vector x may now

be represented as a linear combination of the average shape and the model eigenvectors:

x = x̄ +
∑
m

bmPm, (6.1)

where b is a vector of shape parameters. We stack the eigenvectors to form a matrix P, such

that we may write: x = x̄ + Pb. The PCA eigenvalues λm provide a measure of how much

of the variance of the training data is captured by each eigenvector. We may choose to retain

n < m model dimensions, such that a certain percentage of the cumulative variance is captured.

The lengths of the parameter vectors (as measured by the square of the Mahalanobis distance

from the mean) follow a chi-square distribution with n degrees of freedom (Chapter 3):

D2
M (b) =

∑
n

(
bn√
λn

)2

∼ χ2
n. (6.2)

Such a distribution has a mean value of n and variance 2n. An interesting observation is that

the chi-square distribution of parameter vector lengths implies that the parameter vectors lie

approximately on the surface of a hyperellipsoid in parameter space. This observation suggests

sensible constraints to enforce on the parameter vector lengths (Chapters 3 and 4).

6.5 Shape-from-Shading

The aim of computational shape-from-shading is to estimate 3D surface shape from single 2D

intensity images. In order to recover surface orientation from image intensity measurements,

the reflectance properties of the surface (human skin in our case) must be modelled. The

bidirectional reflectance distribution function (BRDF) describes the ratio of the emitted surface
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radiance to the incident irradiance over all possible incident and exitant directions. Assuming

the light enters and leaves the surface at the same point, the skin reflectance properties can be

explained by a BRDF. A number of analytic reflectance models have been proposed that can

capture a range of surface BRDFs. The simplest Lambertian model [16] predicts that light is

scattered equally in all directions. The radiance function for such a surface is therefore:

gLambertian (θi, ρd) = ρd cos (θi) , (6.3)

where ρd is the diffuse albedo, which describes the intrinsic reflectivity of the surface. θi is

the angle between the surface normal n and light source s vectors. Note that the reflected

intensity is independent of the viewing direction. The Blinn-Phong reflectance model [16]

is a phenomenological attempt to describe surfaces which reflect light both specularly and

diffusely. It comprises a Lambertian diffuse term and a specular term controlled by the shininess

parameter:

gPhong (θi, θh, ρd, ρs, ηs) = ρd cos (θi) + ρs cosηs (θh) , (6.4)

where ρs is the specular coefficient, ηs is the shininess parameter and θh is the angle between

the surface normal n and the vector h = s+v
‖s+v‖ which bisects the light source s and viewer v

directions.

The radiance function provides a succinct mapping between the reflectance geometry in

the scene and the observed intensity (I = g(. . . )). This relationship is known as the image

irradiance equation in the shape-from-shading literature. For an image in which the viewer

and light source directions are fixed, the image irradiance equation reduces to a function of the

surface normal direction. For typical reflectance models, this equation does not have an unique

minimum and there are likely to be an infinite set of normal directions all of which minimise

the equation.

The Lambertian reflectance model (Equation 6.3), provides a partial constraint on the di-

rection of the surface normal, namely that the angle between the light source and the surface
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normal is given by:

θi = arccos (n · s) = arccos

(
I

ρd

)
. (6.5)

Geometrically this means that the surface normal must lie on a right circular cone whose axis

is the light source direction and whose half angle is θi. By constraining the surface normal to

lie on the cone, the image irradiance equation is strictly satisfied, thereby ensuring that the

information conveyed by the image is used to its fullest extent. Worthington and Hancock [100]

show how to restore this constraint by rotating a surface normal to its closest on-cone position:

ń = Θ (a, α) ñ, (6.6)

where ñ is an off-cone surface normal and Θ is a rotation matrix which rotates a unit vector

about axis a by an angle α. To restore a normal to the cone, we set a = ñ × s and α =

θi − arccos[ñ · s]. ń is the closest on-cone position that satisfies θi = arccos
(
I
ρd

)
.

For a surface which reflects light according to Equation 6.4, we can reformulate Equation

6.5 to provide an incident angle estimate which is consistent with the Blinn-Phong model:

θi = arccos(n · s) = arccos

(
I − ρs cosηs (θh)

ρd

)
. (6.7)

If we use this angle in the computation of the rotation in Equation 6.6, we strictly enforce the

image irradiance constraint on a surface normal, by finding the closest surface normal direction

that satisfies θi = arccos
(
I−ρs cosηs (θh)

ρd

)
.

6.6 Shading Constraints for Improving Morphable Model Shape Es-

timates

A morphable model allows us to represent a novel face using a linear combination of an or-

thonormal basis. Shape-from-shading enables us to modify an estimated set of surface normals

such that they strictly satisfy constraints implied by the reflectance properties of the surface.
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Given an estimate of the morphable model shape x (Equation 6.1), we can obtain the pth vertex

normal np(x) [68]. Shading cues provide a constraint on the vertex normal direction which we

can impose on the normals of a morphable model shape (hence directly utilising the image cue).

Let:

noc
p (x) = Θnp(x), (6.8)

be the rotated vertex normals. In the case a vertex is not visible (i.e we cannot sample the

intensity value from the image), Θ is taken to be an identity matrix. The visibility of each

vertex is tested with a z-buffer algorithm [34].

We would like to use the rotated vertex normals to improve the estimate of the shape and

reduce the problem of model dominance. Using the approach suggested by Nehab et al. [74], a

triangular mesh can be adjusted to match a set of target surface normals by minimising a sum

of two error terms. The first measures the difference between the tangent plane normals of the

refined shape and the target vertex normals:

Enc =
∑
p

∑
u,w

[noc
p (x) · (x∗u − x∗w)]2, (6.9)

where (u,w) are vertices of edges surrounding the vertex p. These edges are used to approximate

the local tangent plane and the refined edges are encouraged to assume a direction which is

perpendicular to the target vertex normal. The second term encourages a solution close to the

original shape by penalising large departures:

Egc =
∑
p

‖Mp(x)(x∗p − xp)‖2, (6.10)

where Mp(x) is a 3× 3 matrix that helps prevent self intersections in the optimised shape [74].

The refined shape x∗ is given by:

arg min
x∗

γEgc + (1− γ)Enc. (6.11)
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This minimisation is linear in x and can be solved efficiently using sparse linear least squares.

The parameter γ ∈ [0, 1] controls the extent to which each error term is satisfied. A value of

0.1 gives stable performance which is not overly sensitive to either the intial shape or target

normals [74]. The refined shape x∗ is able to capture finescale local details of a face and does

not suffer from model dominance.

6.6.1 An Error Measure for Evaluating Morphable Models

The ability of a morphable model to faithfully reconstruct an unseen shape is most commonly

measured in terms of a geometric error [12], i.e. the average Euclidian distance between ground

truth and reconstructed vertex positions. Such an error measure does not consider how well

higher order properties of the surface are reconstructed, which determine the appearance of a

mesh. It is this effect that has led to the development of many perceptual measures of error in

the mesh processing literature. Using the measures described in Section 6.6, we can evaluate a

reconstruction based on a combined term which penalises both geometric and surface normal

errors. Let xg be the ground truth shape of an unseen face. If xe is the estimated shape, then

we can evaluate the accuracy of the estimated shape with respect to the ground truth shape as:

Ecomb = κEgeo + (1− κ)Enor, (6.12)

where

Egeo =
1

p

∑
p

‖xgp − xep‖2, (6.13)

and

Enor =
1

p

∑
p

∑
u,w

[np(x
g) · (xeu − xew)]2. (6.14)

These are analogous to Equations 6.9 and 6.10, with the term Mp no longer needed to evaluate

Egeo and the on-cone vertex normals replaced by the ground truth normals in Enor. κ ∈ [0, 1],

is a scalar weight assigned to each error term.
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We motivate this error measure by showing that it correlates well with appearance error.

Appearance error measures how well the intensity at a vertex corresponds to ground truth when

rendered under a variety of illumination conditions. We use the following appearance error:

Eapp =
∑
ζ

1

p

∑
p

∑
c

(
ρcd(np(x

g) · sζ)Υ(xgp, sζ)− ρcd(np(xe) · sζ)Υ(xep, sζ)
)2
, (6.15)

where c ∈ {R,G,B} and ζ is a set of randomly generated light source directions. We use

|ζ| = 18 directions to compute the appearance error. Our appearance error measure assumes

a Lambertian reflectance model. Υ(xp, sζ) = 0 if vertex p is shadowed from direction sζ and

equals 1 otherwise. The measure can be modified to incorporate other reflectance models.

An interesting observation is that the appearance error also measures differences in geometry

and surface normal direction. Υ is a function of the global geometry since a light source can be

occluded by any other vertex in the mesh, while the Lambertian shading term is determined by

the surface normal direction. In the following section we show that our combined error measure

Ecomb correlates well with appearance error Eapp and hence any optimisation which reduces

the combined error is likely to yield meshes with lower appearance error.

6.6.2 Quantitative Analysis

We provide quantitative results on the Basel Face Model (BFM) [76]. The BFM contains

a morphable model built using 200 faces and they provide an additional 10 unseen (out-of-

sample) faces. In all our experiments we provide error measures with respect to ground truth

data.

In our first experiment, we consider the optimal least squares shape estimate:

b∗ = PT (x− x̄). (6.16)

This represents the closest possible fit that the morphable model can make to the target vertex

positions. We project out-of-sample faces onto the 199 parameter model and obtain the optimum
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Figure 6.1: Ecomb (in mm2) vs Eapp (in normalised squared pixel intensity).

least squares shape estimates using Equations 6.16 and 6.1. Using the morphable model shape

estimates, we compute the on-cone vertex normals (Equation 6.8) and the refined geometry

(Equation 6.11). The intensity (diffuse component) values which provide a constraint on the

vertex normals are obtained from a rendering of the scan. Figure 6.1 shows a plot of Ecomb

versus Eapp for each of the 10 test faces in the BFM. It is clear that refinement of the shape by

minimising Equation 6.11 yields a decrease in Ecomb and Eapp. The critical observation is that

there is sufficient information in the surface orientation provided by shape-from-shading alone

to obtain a mesh which is an improvement over the optimal morphable model shape according

to two different errors measures. For the results reported in this chapter, Ecomb is computed

using κ = 0.1. However, the shape refinement yields a decrease in Ecomb for any weighting of

the two individual error terms.

Next we show experimental results for the problem of fitting a morphable model to a 2D

image. For this we use the 270 BFM renderings. These consists of 27 renderings of the 10

unseen faces across varying lighting and pose. For each rendered image, we use the shape

parameters obtained using a state-of-the-art morphable model fitting algorithm [76]. This

analysis-by-synthesis technique optimises an objective comprising three error terms based on

landmark points, contours and image intensity. For the purpose of our experiment we consider
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Figure 6.2: Ecomb (in mm2) vs Eapp (in normalised squared pixel intensity).

the shape parameters provided for a 4 segment (eyes, nose, mouth and the rest) morphable

model [76], with each segment having a face space of the 99 most significant modes. Hence the

shape parameter vector b ∈ R396. We take the fitted shape estimates and correct them using

Equation 6.11. Figure 6.2 shows the plot of Ecomb vs Eapp for the 270 rendered images. We

show the error measures averaged over the 27 renderings for each of the 10 subjects. We can see

from Figure 6.2 that our refinement improves upon the shape estimate of the state-of-the-art

morphable model fitting algorithm in all cases. Two of the refined results are shown in Figure

6.3. As can be seen in the figure, the corrected shapes for the examples clearly capture all the

atypical features of the face (dimple on right cheek in row 1 and wrinkles on the cheek in row

2) in greater detail as compared to the BFM shape estimates.

In order to further validate this point, we use the BFM shape estimates and our corrected

shape estimates in a recognition experiment (across varying pose and illumination). We divide

the 270 rendering into a training set of 10 renderings (under frontal lighting and pose) and use

the remaining 260 renderings as the test set. Thus we have 1 gallery image and 26 probe images

per subject. We use the cosine of the angle between two shape parameter vectors (say b1 and
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Figure 6.3: Ground truth out-of-sample faces (column 1), BFM fitted face shapes (column 2)
and our corrected face shapes (column 3).

b2) as our similarity measure [15]:

sim =
b1 · b2

‖b1‖‖b2‖
. (6.17)

Using Equation 6.17, we obtain two sets of similarity matrices, one for the BFM shape pa-

rameters and one for the parameters obtained by projecting our refined shape back onto the

morphable model. The recognition results are tabulated in Table 6.1. As we can see our cor-

rection step increases the recognition rate from 98.85 % to 99.62 %. Hence, our refinement step

not only improves the recovered shape, but yields more informative parameter vectors when

projected back into the model space.

These results show clearly that the additional constraint provided by shading cues helps

exceed the optimum morphable model shape estimates and more importantly, improves upon

the state-of-the-art analysis-by-synthesis results. Finally, the proposed method is very efficient.

It requires p vertex normal rotations (Equation 6.8) and a linear optimization (Equation 6.11).

For a face with 53490 vertices the refinement process takes 0.16 sec to run on a 1.78 GHz AMD

Athlon processor.
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Method Recognition Rate (%)
BFM Parameters 98.85

Our Corrected Parameters 99.62

Table 6.1: Face recognition results.

6.6.3 Discussion

The process described in this section is a one-shot post-processing step, which can be applied to

improve upon the output of a morphable model fitting algorithm. The important implication of

these results is that they demonstrate that shading information provides a powerful cue which

can be used to exceed the accuracy possible with a morphable model.

Note that Equation 6.11 solves for vertex positions which are not constrained by the statis-

tical model. Hence, iterating the refinement process turns out to be ineffective. If the recovered

mesh is allowed to assume any shape, without the regularising effect of the morphable model, the

process is prone to diverge and overfit to potentially noisy shape-from-shading normal estimates.

This drawback prevents the use of Equation 6.11 in model fitting applications. Neverthe-

less, shape-from-shading does provide useful cues which can potentially be used to guide the

morphable model fitting process. For these reasons, in the next section we describe an iterative

algorithm for fitting a morphable model to a single image. The aim is to strike a compromise

between the stability of a purely model based approach and the improved accuracy afforded

by allowing the shape to move outside the span of the statistical model according to shading

constraints. We derive an objective function which penalises errors between model based sur-

face normals and those implied by shape-from-shading, whilst simultaneously estimating albedo

and bump maps which lie outside the span of the model and which strictly satisfy the image

irradiance equation. This can be solved as a nonlinear optimisation and in doing so, robust

3D shape estimates can be obtained which capture the fine surface detail or atypical surface

features of a face.
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6.7 Fitting a Morphable Model using Shading Constraints

In this section we provide a framework to iteratively fit a morphable model based on minimizing

the angular error between surface normals:

b∗ = arg min
D2
M (b)≤D2

max

ξ(b), (6.18)

where

ξ(b) =
∑
p

(arccos (np(b) ·Θnp(b)))
2
. (6.19)

In other words, Equation 6.18 seeks a morphable model shape estimate whose surface normals

need minimal adjustment in order to strictly satisfy shading constraints. In contrast to Equation

6.11 (which simply adjusts the input vertex positions), this minimisation gives a new way to

estimate model parameters in an iterative framework. b∗ is the optimum shape parameter

vector that minimises the objective function. D2
max enforces a hard constraint on the maximum

allowable parameter vector length. This controls the trade off between fitting quality and shape

plausibility. Optimum performance occurs when D2
max ≈ n (Chapter 3).

For each vertex in the mesh, we sample the image intensity by projecting the vertex to

the image plane using an orthographic projection. We denote the intensity associated with

the pth vertex as I(r̂p). Perspective effects could in principle be modelled at the expense of

estimating additional parameters. It is these intensity values which provide a constraint on

the surface normal, which is strictly satisfied by applying the rotation Θnp(b). The rotated

vertex normals strictly satisfy Equation 6.7. These shape-from-shading normals possess two

important qualities: 1. they will exactly recreate the input image 2. they are not constrained

by the statistical model. The result of this is that they will capture fine surface detail. We

therefore use these surface normals as a bump map in conjunction with the 3D mesh provided

by the morphable model parameters.
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The final ingredient in our method is to iteratively update the diffuse albedo map. Rear-

ranging Equation 6.7, we can obtain a per-vertex estimate of the diffuse albedo:

ρpd =
I(r̂p)− ρs cosηs(θph(b))

np(b) · s
. (6.20)

There is an additional constraint we impose here. The diffuse albedo cannot be greater than

1 (since a surface cannot reflect more light than was incident upon it) or less than the diffuse

component of the sampled intensity. The diffuse albedo is estimated for each vertex at each

iteration of the optimisation.

6.7.1 Implementation

Our implementation estimates morphable model shape parameters using an optimisation based

on shape-from-shading constraints. The input to our algorithm is a single intensity image,

the light source direction and the viewer direction. Following [38], we make some simplifying

assumptions. The first is that we do not consider colour and the second is that the specular

coefficient (ρs) and roughness parameter (ηs) are constant over the surface. We set these

parameters as ρs = 0.2 and ηs = 20, which are reasonable for face images.

Allowing the albedo and surface normals to vary arbitrarily renders the problem undercon-

strained. Therefore, in practice we enforce an additional regularisation constraint which requires

the albedo to be piecewise smooth. This has a long history in the albedo estimation literature,

as the underpinning assumption of the Retinex algorithm [19]. To do the regularisation, we

can apply any edge sensitive smoothing filter. For simplicity, we use a median filter on a small

region around each vertex p:

ρpd = Ψq×q(ρ
p
d), (6.21)

where Ψq×q represents a median filter applied on a region of size q × q. Although the region

size adds a parameter to our approach, it turns out to have an useful interpretation. When q

is large, the smoothing effect is large and high frequency variation is removed from the albedo
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Algorithm 1 Steps in evaluating the objective function

Constrain the shape parameter vector length (Equation 6.18),
for all visible p do

Compute the diffuse albedo using I(r̂p) and np(b) (Equation 6.20),
end for
Enforce local consistency (regularisation constraint) on the diffuse albedo map (Equation
6.21),
err = 0,
for all visible p do

Compute Θ using I(r̂p), np(b) and the regularised diffuse albedo (Section 6.5),
Obtain Θnp(b) the pth bump normal,
err = err + arccos (np(b) ·Θnp(b)),

end for
return err

map and must be explained as changes in surface orientation, i.e. the ‘shaded’ hypothesis. On

the other hand, when q is small the albedo is free to retain high frequency variation, so sharp

changes in intensity are explained as albedo variation, i.e. the ‘painted’ hypothesis. Hence, the

size parameter provides a user tuneable interface to smoothly vary between the two hypotheses.

We discuss good choices of value for this parameter in our experimental results.

We minimise Equation 6.18 (a non-linear objective function) using the Levenberg-Marquardt

algorithm [63] to find optimal estimates of the shape parameter vector b∗. Our convergence

criterion is based on the total angular error between the model based and shape-from-shading

normals:

ξ(b) < ε. (6.22)

Evaluating the objective function involves a number of steps which are described in Al-

gorithm 1. This process is executed at each iteration of the optimisation. We initialise our

optimisation by fitting the model to a sparse set of manually selected feature points (based on

Chapter 3). The initialisation also provides an estimate of the 3D pose. A similar initialisation

strategy was used by Blanz and Vetter [15] for their stochastic optimisation procedure. Note

that simply using this initial shape estimate to compute the albedo and bump maps (i.e. one

pass of Algorithm 1, without optimising Equation 6.18) will not yield optimal results. We

provide experimental validation of this in Section 6.8.3.

131



Figure 6.4: Given an input 2D image (leftmost). The figure shows (from left to right) the
estimated a) bump map, b) diffuse albedo map, c) Lambertian reflectance map, d) specular
reflectance map and e) Blinn-Phong reflectance map.

Upon convergence we output the final per-vertex bump and albedo maps. When combined

with the estimated mesh, these maps ensure that the input image is recreated exactly.

6.7.2 Face Recognition

We follow the approach of Basri and Jacobs [8] based on spherical harmonics in which a low-

dimensional subspace is derived analytically from a model. They show that under any lighting

conditions, at least 98% of the variability in the reflectance function is captured by the first 9

harmonic images. Their analysis therefore suggests that images of a convex Lambertian surface

will lie close to a 9D subspace. This subspace can be derived exactly from the estimated albedo

and bump maps without being dependent on the quantity or variability of a sample of training

images.

Let ρd denote a vector of length l containing the albedo values across a face’s surface, such

that ρld is the albedo at the lth vertex. Here l ≤ p is the number of visible vertices. Similarly,

the x, y and z components of the surface normals are stacked to form a further three vectors of

length l: nx, ny and nz, such that nlx is the x component of the lth vertex normal. We define:

nx2 = nx. ∗ nx (where the operator .∗ denotes the component-wise product of two vectors of

the same length). Similarly for ny2 , nz2 , nxz, nyz and nxy. The first nine harmonic images for
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Figure 6.5: The first image in row 1 is the image under frontal illumination (s = (0, 0, 1)T ).
This image is used as the input image for synthesis. The remaining 4 images in row 1 (from
left to right) are the actual images corresponding to the light source direction s = (−1, 0, 1)T ,
s = (1, 0, 1)T , s = (0,−1, 1)T and s = (0, 1, 1)T respectively. Row 2 shows the synthesised image
under the 5 different light source directions. Row 3 shows similar results for the the estimated
bump map (i.e. cos(θi)). Row 4 shows the results of row 3 in a novel pose.

a surface with known normals and albedo are given by:

e00 = 1√
4π
ρd, e10 =

√
3

4πρd. ∗ nz,

eo11 =
√

3
4πρd. ∗ ny, ee11 =

√
3

4πρd. ∗ nx,

e20 = 1
2

√
3

4πρd. ∗ (2nz2 − nx2 − ny2),

eo21 = 3
√

5
12πρd. ∗ nyz, ee21 = 3

√
5

12πρd. ∗ nxz,

eo22 = 3
√

5
12πρd. ∗ nxy, ee22 = 3

2

√
5

12πρd. ∗ (nx2 − ny2).

(6.23)

We form a l × 9 matrix B containing the basis images as columns . However, this basis is not

orthonormal. Using a QR decomposition, we find the l×9 orthonormal basis Q and 9×9 matrix

R, such that QR = B. Given a vector of sampled image intensities I, we may now compute

the distance to the subspace using: ‖QQT I− I‖ and perform recognition.
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Figure 6.6: Given an input image with prominent wrinkles (red bound box). The second row
shows the estimated bump map (i.e. cos(θi)) under 5 light source directions (s = (0, 0, 1)T ,
s = (−1, 0, 1)T , s = (1, 0, 1)T , s = (0,−1, 1)T and s = (0, 1, 1)T ).

6.8 Experimental Results

We now present results for the fitting algorithm proposed in Section 6.7. For these experiments

the 3D morphable model was built using 100 face scans obtained from a Cyberware 3030PS

laser scanner. The data was set into correspondence using the principle of thin-plate splines

and the model was constructed according to Kendall’s notion of a shape space (Chapter 3). We

retain 99 modes for all our experiments. The morphable model fitting process takes 2 to 2.5

mins to run on a 1.78 GHz AMD Athlon processor. We provide results on the data obtained

from the Yale Face Database B [39].

6.8.1 Face Synthesis

Figure 6.4 shows the shape and reflectance parameters estimated from a single input image.

Note that the albedo map contains no residual shading information, while the bump map clearly

contains fine-scale surface detail present in the original image. Figure 6.5 shows the synthesis

results under different light source directions.

Figure 6.6 shows the ability of our algorithm to recover shape not present in the training

set. To demonstrate this we captured a 2D image of a subject with clearly visible wrinkles. In

the second row we show a zoomed portion of the mesh in which we have reilluminated the bump

map with a varying light source direction. The appearance of the wrinkles under the different

light source directions is realistic. Note in particular when s = (0, 1, 1)T (i.e the face is lighted
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Figure 6.7: Given an input image with prominent wrinkles (red bound box). The rows (on
the right) show the estimated albedo (left) and bump map (right) for different amounts of
regularisation constraint applied. The black block arrow indicates an increasing q (from q = 3
to q = 5).

from the top), the wrinkles disappear altogether. This would not be the case if the wrinkles

were explained as variation in albedo.

Figure 6.7 shows how our algorithm can be used to explain shading variations as either

changes in surface orientation (the ‘shaded’ hypothesis) or albedo (the ‘painted’ hypothesis).

Our experimentation shows, using q = 5 provides the right trade off between allowing the

shading variations to be explained as changes in surface orientation and not allowing too severe

a regularisation constraint. This choice of q works well in critical applications like recognition.

In Figure 6.8 we show synthesis results for 5 subjects in the Yale Face Database B. For

each subject we show the estimated Blinn-Phong reflectance (rows 2 and 3) and bump maps

(rows 4 and 5). In all cases the shape recovery process is stable (even with large variations

in albedo caused by facial hair). Note in particular that the bump maps successfully capture

discriminating facial shape details, i.e. the identity of each subject is clearly visible in the shape-

only images. Since the specular term is dependent on the viewer direction, we can observe the

specularity motion when the viewpoint changes (row 3). Finally, in Figure 6.9 we show synthesis

results for input images in non-frontal poses. We show the estimated Blinn-Phong reflectance

and bump maps for both images.

6.8.2 Sensitivity to Non-Ideal Illumination Conditions

Our reflectance model assumes a single directed light. In practice, this assumption may be too

strong for many real world applications. Nevertheless, because of the regularising effect of the
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Figure 6.8: Face synthesis results for 5 subjects in the Yale Database B.

morphable model on the shape estimate, our algorithm is robust to some degree of deviation

from the assumed conditions. We provide evaluation for the case when there is more than one

source present in the scene. To do this, we generate images which simulate the presence of 3

and 5 directed light sources by taking weighted combinations of the single source images. The

light source directions are given in Table 6.2.

We consider the shape estimates from images taken under light source s1 as our baseline.

Mean angular error from the baseline shape to that recovered from images containing multiple

light sources are shown in Table 6.3. The results show that our estimated surface normals deviate

by only ∼ 6◦ when as many as 4 distracting sources are included. These results demonstrate that

our method is robust to non-ideal illumination conditions, i.e. those likely to be encountered in
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Figure 6.9: Face synthesis results for non-frontal input images. The pose variation is about 24
◦ from the camera optical axis [39].

Light Azimuthal Angle Elevation Angle
Source in ◦ in ◦

s1 0 0
s2 -70 0
s3 85 -20
s4 20 -40
s5 0 45

Table 6.2: List of five directed light sources considered for our evaluation. Baseline images are
taken under light source s1. 3 light source images result by combining images taken under light
sources s1, s2 and s3 (with a weighting 0.8,0.1,0.1). 5 light source images result by combining
images taken under light sources s1,s2,s3,s4 and s5 (with a weighting 0.6,0.1,0.1,0.1,0.1). See
Figure 6.10 for an example of the generated images. Refer [39] for details about the original
images under each tabulated light source.

images taken in an uncontrolled environment. Figure 6.10 provides the qualitative analysis for

our experiment.

6.8.3 Illumination Invariant Face Recognition

We perform illumination invariant face recognition on data obtained from the Yale Face Database

B [39], which contains images of 10 individuals (disjoint from the morphable model training

data) under 45 different illumination and 9 pose conditions. In our experiment we consider

images having frontal pose (pose 1). We group the lighting variation into 4 subsets of differing

extremity (refer [39] for details).

We use a single training image with frontal lighting (azimuth and elevation angles equal to

zero degrees). Our test set consists of the remaining 440 varying illumination images. We apply
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Subject 3 light source 5 light source
Number images images

1 5.8 5.93
2 5.36 5.71
3 7.08 7.36
4 5.30 5.71
5 6.80 7.13
6 5.43 5.65
7 6.52 6.55
8 5.56 5.88
9 6.28 6.30
10 5.02 5.31

Average 5.92 6.15

Table 6.3: Mean angular error (in ◦) between the estimated bump maps for each subject in
the Yale Database B. All reported errors are with respect to the baseline estimates (for images
taken under a single directed light source s1).

Figure 6.10: Estimated bump maps (fourth column) for images taken under 3 and 5 directed
light sources. The first column shows the baseline image (taken under s1). The second column
shows the images simulating 3 and 5 directed light sources (refer Table 6.2). The third column
shows the difference images with respect to the baseline image. The last column shows the
estimated bump map for the baseline image.

our algorithm to each training image and use the estimated albedo and bump maps to perform

recognition (as described in Section 6.7.2).

Figure 6.11 shows the estimated albedo map, bump map and spherical harmonic basis for a

subject in the database. Table 6.4 shows the recognition results for our method and compares

them with other methods. Our method is most similar to that proposed by Zhang and Samaras

[103], who use the fit of a morphable model to each gallery image to obtain a spherical harmonic

basis for that subject. In contrast to the method proposed in [103], our albedo and bump

maps not are constrained by a statistical model and are therefore free to capture atypical,
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Figure 6.11: Given an input 2D image under frontal illumination (first column). The figure
shows the estimated albedo and bump maps (second column). The last 3 columns show the
spherical harmonic subspace derived from the estimated albedo and bump maps.

discriminating facial features. The advantage of non-model based albedo and bump maps is

evident from our recognition performance as compared to that of [103]. The MRF based method

[98] reports the best recognition results using a spherical harmonic model and single training

image. This method involves a more complicated optimization process, with a greater number

of parameters to be optimized as compared to the method of [103] or our method. The 30

basis BIM also achieves a better recognition rate compared to our method (using 9 spherical

harmonic basis). However, for a 9 basis BIM the subset 4 error rate increases to 7.1% [57].

Finally, as stated in Section 6.7.1, using the initial feature point based estimates will not

result in optimal performance. For the face recognition experiment described above, our optimal

estimates result in an error rate of 1.4% on subset 4, whereas using the initial feature points

based estimates result in an error rate of 10% on the same subset. This point clearly illustrates

the importance of iteratively minimising Equation 6.18.
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Comparison of Recognition Methods

Method

Number of
Training
Images

Error Rate(%) vs. Illum
Subset Subset Subset
1 & 2 3 4

Correlation 6-7 0.0 23.3 73.6
Eigenfaces 6-7 0.0 25.8 75.7

Linear subspace 6-7 0.0 0.0 15
Illum. Cones-attached 6-7 0.0 0.0 8.6

Illum. Cones-cast 6-7 0.0 0.0 0.0
9 Points of Light (9PL) 9 0.0 0.0 2.8

Zhang & Samaras 1 0.0 0.0 3.1
BIM (30 basis) 1 0.0 0.0 0.7

MRF Based Method 1 0.0 0.0 0.1
Our Method 1 0.0 0.0 1.4

Table 6.4: Recognition results on the Yale Face Database B. Except for our method the data
was summarized from [98].

6.8.4 Pose and Illumination Invariant Face Recognition

It is straightforward to extend our method to perform recognition on faces in a non-frontal pose.

The fitting algorithm can be applied to a non-frontal training set, a spherical harmonic basis

(for each training image) constructed and subsequently used to perform illumination insensitive

recognition.

However, performing recognition across poses using a training image in a single pose does

not result in robust performance. There are multiple reasons for this. The first is that the

number of visible vertices varies with pose and hence the length of the spherical harmonic basis

also varies. This means that a basis constructed in one pose (say frontal) and transformed to

an orthonormal basis using a QR decomposition will no longer be orthonormal when vertices

visible in another pose are sub-selected. The second problem is that vertices which are not

visible in the training pose will have no albedo and bump map estimates. They will therefore

be missing in other poses where those vertices may be visible.

Due to these obstacles, robust pose and illumination invariant recognition (using the pro-

posed method) can only be performed by using one training image per pose.
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6.9 Conclusions

In this chapter we have shown how constraints on surface normal direction suggested by shading

cues provide a route to fitting a morphable model to single images and refining model based

shape estimates.

We began by demonstrating that surface normals estimated using shape-from-shading could

be used to refine morphable model face shape estimates, even exceeding the accuracy of a least

squares model fit. We then proposed an algorithm for iteratively fitting a 3D morphable model

using constraints suggested by shape-from-shading. Our approach provides a robust means of

estimating facial albedo and bump maps which are not constrained by a statistical model. They

are therefore free to capture atypical, discriminating facial features. We also show how this data

can used to perform illumination insensitive face recognition from a single gallery image and

obtain results which are competitive with the state-of-the-art.
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Chapter 7

Conclusions

In recent years, 3D morphable models have attracted considerable research attention within the

computer vision community (and related areas). Since the models were first introduced about

a decade ago, substantial headway has been made and they now provide a viable research tool

for face processing applications ranging from forensics to analysis of art. They have also been

shown to offer a potential solution to the problem of pose and illumination invariance in face

recognition [80]. However, the problem of fitting a morphable model to image data in a general

setting is still an unsolved problem and they are therefore some way away from being viable

as a commercial tool. Next, we summarise the contributions made in this thesis, highlight

some weaknesses of the work presented in this thesis and end by discussing directions for future

research.

7.1 Summary of Contributions

In this thesis, we have proposed a number of advances in the training and application of mor-

phable models which go some way to addressing the outstanding issues identified in Chapter 1.

The contributions made in this work are summarised in the following list.

• We have shown how to simplify both training data (Chapter 2) and trained models (Chap-

ter 5) in a way which yields class-optimal low resolution morphable models. These sim-

plified models can be plugged into any existing fitting algorithm to reduce computational

expense.

• We have shown (in Chapter 3) how the tools of thin-plate spline warping and Procrustes
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analysis can be used to construct a morphable model that is both more efficient and

generalises to novel face surfaces more accurately than previous models.

• We have shown (in Chapter 4) how a hard constraint on facial distinctiveness ensures

plausible fitting results without having to employ global optimisation strategies to avoid

local minima close to the mean. The constraint also helps alleviate problems of model

dominance by ensuring all results are equally distinctive without having to tune a regu-

larisation parameter.

• We have shown (in Chapter 6) how incorporation of shading constraints into the morphable

model fitting process allows model dominance to be overcome by moving outside the span

of the model. This allows the recovery of fine surface detail.

7.2 Critical Analysis

There are some criticisms which may be levelled at the work presented in this thesis. We now

discuss these weaknesses and then provide potential avenues to address them in the next section.

• Enforced Hard Constraint on the Parameter Vector Length: In Chapter 4 we

showed how we can constrain faces to lie on a manifold of equal distinctiveness, with only

identity allowed to vary. The enforced distinctiveness was chosen as the expected value

of the distribution which follows from the statistics of the model parameters. This hard

constraint could potentially be deemed as limiting or restrictive.

• Iterative Optimisation: The model fitting algorithms described in this thesis involve a

nonlinear optimisation over the model parameters. The drawback of this is that iterative

procedures are ill-suited to applications which must operate in real time.

• Lack of Local Statistical Models: In Chapter 6 we showed high frequency details

can be captured by incorporating shading constraints. However, we had no statistical

model to efficiently characterise the high frequency variations in an individuals face shape
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and albedo. Incorporating such local models would help regularise the shape/albedo

estimation process and may significantly improve the results presented in Chapter 6.

• Lack of Photorealism: In Chapter 6 we modelled human skin using a Blinn-Phong

reflectance model. It can be argued that incorporating more realistic reflectance and il-

lumination models would greatly enhance quality of rendered estimates. Additionally,

biophysical constraints could have an important role to play in obtaining meaning para-

metric descriptions of skin histology.

7.3 Directions for Future Research

We conclude the thesis by providing directions for future research. Whilst most of the stated

directions address the points raised in Section 7.2, we also ask interesting questions about the

training data and statistical modelling.

• Relaxing the Manifold Based Constraint: In the future it would be interesting to

relax the enforced hard constraint on the parameter vector length. The decomposition

into identity and distinctiveness may still prove useful as different priors and constraints

could be enforced on direction and magnitude in parameter space.

• Convex Objective Functions: One of the major challenges of using a 3D morphable

models to fit to data (such as images, photometric normals or noisy range scans), is that it

requires solving a highly complex nonconvex optimisation problem. This is computation-

ally expensive and also there is no guarantee of obtaining the globally optimal solution.

There has been significant recent progress in recognising the way in which convex (but

potentially nonlinear) objective functions can be constructed through disciplined convex

programming [42]. Such systems can be efficiently solved. It would be interesting to ap-

proach the problem of morphable model fitting from the perspective of designing a convex

objective function. One approach we have begun to experiment with involves deriving a

linear system of equations which minimises both surface orientation errors and positional

144



errors in the image plane. This is particularly well suited to fitting the model to 2.5D

data, such as might be obtained by photometric stereo. We believe the whole problem

could be formulated using a bilinear system with a linear objective to estimate the camera

parameters (along the lines of the Gold Standard Algorithm [44]), followed by a linear

objective to estimate the shape parameters (extending the method of [74]).

• Local/Global Statistical Models: Global statistical models cannot efficiently char-

acterise the high frequency variations in individuals face shape and texture. In a sense,

projection onto a global model acts like a low-pass filter. A critical question is therefore

how to best represent the remaining high frequency information. One approach would be

to augment the global model with local models of high frequency variation. For example,

Mohammed et al. [72] demonstrated a data-driven approach along these lines which op-

erates in 2D. The challenge is whether such high frequency (and potentially stochastic)

variation can be efficiently modelled. To this end Golovinskiy et al. [40] introduced a

statistical technique for the analysis and synthesis of small 3D facial features, such as

wrinkles and pores. Another approach would be to enforce biophysical constraints. For

example, only certain skin types can exhibit freckles. Freckles themselves follow spatial

distributions which can be learnt from data and their appearance is determined by well

understood skin histology. Hence, skin type may be stored as a global parameter (which

is in turn constrained by ethnicity), while freckle distribution can be explained using

spatially varying local models.

• Enhancing Realism of Appearance Modelling: Photorealistic rendering of faces

is now possible when sufficiently accurate shape and reflectance information is available

[64]. Important advances have included skin reflectance models which provide parametric

descriptions of skin histology that can generalise to any skin type [51] and realistic models

of environment illumination [84]. By incorporating more information about the reflectance

properties of faces into the model and using more realistic reflectance and illumination

models in the fitting process, much higher quality results are likely to be possible [3].
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The challenge here is that this additional information increases the dimensionality of the

training data and hence the difficulty of learning a low dimensional model.

• Training Data and Statistical Modelling: In 2D face analysis, the vast availability

of data has led to a whole subfield dedicated to developing manifold learning techniques

to efficiently and accurately describe face space. Because of the much higher cost and

technical challenge of capturing 3D data and obtaining dense correspondence for large

datasets, a similar literature for 3D data does not exist. For this reason, there are many

open questions related to statistical modelling and the empirical nature of 3D face space.

These include:

– How much training data is required to build a model which can accurately generalise

to any face?

– What is the true dimensionality of face space?

– Is a unimodal multivariate Gaussian distribution an accurate or efficient model of

the true underlying face space? Or would a better model result from a nonlinear or

multilinear analysis?

– Can face space be learnt in an unsupervised manner? Or should information about

gender, ethnicity, age etc be used to label training samples and guide the manifold

learning process?

– Is the sparsity of training samples with respect to the dimensionality of the data a

limiting problem?
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[79] G. Peyré and L. D. Cohen. Geodesic remeshing using front propagation. Int. J. Comput.
Vis., 69(1):145–156, 2006.

[80] P. Phillips, W. Scruggs, A. O’Toole, P. Flynn, K. Bowyer, C. Schott, and M. Sharpe.
FRVT 2006 and ICE 2006 large-scale results. Technical Report NISTIR 7408, NIST,
2007.

[81] E. Prados and O. Faugeras. A generic and provably convergent shape-from-shading
method for orthographic and pinhole cameras. Int. J. Comput. Vision, 65(1-2):97–125,
2005.

[82] E. Praun, W. Sweldens, and P. Schrder. Consistent mesh parameterizations. In Proc.
SIGGRAPH, pages 179–184, 2001.
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