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Abstract

This dissertation contributes to the state of thenathe field of pattern recognition
and machine learning by advancing a family of nwdr dimensionality reduction
methods. We start with the automatisation of spéaimensionality reduction
approaches in order to facilitate the usage ofethteshniques by scientists in
various domains wherever there is a need to exdoge volumes of multivariate
data. Then, we focus on the crucial and open pnoldé modelling the intrinsic
structure of multidimensional time series. Solusido this outstanding scientific
challenge would advance various branches of sciénoce meteorology, biology,
engineering to computer vision, wherever time iseg asset of high dimensional
data. We introduce two different approaches to tomplex problem, which are
both derived from the proposed concept of introdg@patio-temporal constraints
between time series. The first algorithm allows fowm efficient deterministic
parameterisation of multidimensional time serieacgg, even in the presence of
data variations, whereas the second one approxsnaateinderlying distribution of
such spaces in a generative manner. We evaluaterigimal contributions in the
area of visual human motion analysis, especiallywn major computer vision
tasks, i.e. human body pose estimation and hunt@mnaecognition from video. In
particular, we propose two variants of temporallpnstrained human motion
descriptors, which become a foundation of view patelent action recognition
frameworks, and demonstrate excellent robustneamstgstyle, view and speed
variability in recognition of different kinds of rtions. Performance analysis
confirms the strength and potential of our contiidms, which may benefit many

domains beyond computer vision.



-Vi-



7o my amazing wije
Agnieszce.

- Vii -



- viii -



Acknowledgments

My time at Kingston University London has been atitng and invaluable
experience. It was very satisfying to conduct ttesearch and propose novel

solutions to scientific challenges of machine l@sgrand computer vision fields.

First and foremost, | would like to thank my exeali supervisors, for their
continuous guidance, wisdom and patience durind’hly. Especially, | would like
to express my deepest gratitude to my primary sigumrDr Jean-Christophe Nebel
for conceiving this project and his enthusiastipprt throughout it. His desire to
maintain the highest standards and professionatudat were key to the
development of this research and to my growth @searcher. | am grateful for his
advice and assistance to keep me along the riglak,trwhile letting me to
implement my ideas and take the research my owettitin. What's more, | truly
appreciated for his numerous hours spent on readingapers and this thesis, his
insight comments and suggestions contributed gréathem. Also, | would like to
thank my co-supervisor Dr Dimitrios Makris for hexpertise, useful discussions
and priceless feedback during the preparation gqferza and this dissertation.
Overall, working with my all supervisors has beerplaasure. They were an
exceptional source of knowledge and motivationnie;, and definitely | have learnt
a lot from them, which without doubt put me in gaape for the future.

Moreover, | would like to thank all my colleaguesttae Digital Imaging
Research Centre, for their support, valuable hints @descussions. Among all, |
want to sincerely acknowledge in name Jesus Martted Rincdn, Paul Kuo,
Alexandros Moutzouris and Norbert Buch for inspiriresearch atmosphere and

fruitful collaborations.

-iX -



Furthermore, | would like to give my heartfelt thanto my parents and
family for their endless support in all my endeauwalways helpful advice and
unconditioned faith in me all the way through. Alaospecial thanks to all my
friends who made my life more enjoyable over thesigad and helped a lot in

clearing my head in times of pressure and intensiwe.

Finally, above all, | dedicate this dissertation noy beautiful wife
Agnieszce, | cannot find appropriate words to egpreny genuine gratitude.
Without her love, unfailing support and constarcamragement | would have given

up long time ago. Thank you for your amazing gesiey@and understanding which

has enabled me to fulfil this dream.



Declarations

| hereby declare that this dissertation describgsaotely own research, which was
carried out at Kingston University, except whereeotvise indicated. Other sources
are acknowledged by explicit references. Some efrdsearch presented in this
thesis has already been published or is underwefaepublication. For a complete

list of publications, please refer to the next page

This thesis has not been previously accepted istanbe for any degree and is not
being concurrently submitted to any other Univgréir examination either in the

United Kingdom or overseas.

Michat LewandowskKi

-Xi -



- Xii -



List of Publications

e Kuo, P., Ammar, T.Lewandowski, M., Makris, D., and Nebel, J.-C. (2009).
Exploiting human bipedal motion constraints for[8be recovery from a single
uncalibrated cameraProceedings of the 4th International Conference on
Computer Vision Theory and Applicatigris557-564. [Kuo et al., 2009].

* Lewandowski, M., Makris, D., and Nebel, J. (2009). Automatic cgafiation
of spectral dimensionality reduction methods for lBdman pose estimation.
Workshop on Visual Surveillance at International @oence on Computer
Vision [Lewandowski et al., 2009].

e Lewandowski, M. Makris, D., and Nebel, J.-C. (2010). Automatic
configuration of spectral dimensionality reductimethodsPattern Recognition
Letters 31. [Lewandowski et al., 2010a].

* Lewandowski, M., Martinez-del Rincon, J., Makris, D., and NebekCJ.
(2010). Temporal extension of laplacian eigenmams finsupervised
dimensionality reduction of time serid3roceedings of the 20th International
Conference on Pattern Recognitigaral presentation). [Lewandowski et al.,
2010c].

e Lewandowski, M., Makris, D., and Nebel, J.-C. (2010). View and estyl
independent action manifolds for human activityoggation. Proceedings of the
11th European Conference on Computer Visi6816. [Lewandowski et al.,
2010b].

e Lewandowski, M., Makris, D., and Nebel, J.-C. (2011). Probabiligeature
extraction from multivariate time series using sp&mporal constraints.
Proceedings of the 15th Pacific-Asia Conference oowdedge Discovery and

Data Mining(oral presentation). [Lewandowski et al., 2011].

- Xiii -



* Moutzouris, A., Martinez-del Rincon, lewandowski, M., Nebel, J.-C., and
Makris, D. (2011). Human pose tracking in low dirsi@mal spaces enhanced
by limb correctionProceedings of the 18th International Conferencdmage

Processing[Moutzouris et al., 2011].

- XIV -



PRELIMINARIES Glossary of Terms

Glossary of Terms

PCA Principle Component Analysis

PPCA Probabilistic Principle Component Analysis
MDS Multidimensional Scalling

Isomap Isometric Feature Mapping

ST-Isomap Spatio-Temporal Isometric Feature Mapping
LLE Locally Linear Embedding

LE Laplacian Eigenmaps

TLE Temporal Laplacian Eigenmaps

GPLVM Gaussian Process Latent Variable Model

ST-GPLVM Spatio-Temporal Gaussian Process Latenilke Model
BC-GPLVM Back-Constrained Gaussian Process LatentWriModel

GPDM Gaussian Process Dynamical Model

LVM Latent Variable Model

GTM Generative Topographic Mapping

MLLM Mixture of Local Linear Models

RBF Radial Basis Function

RBFN Radial Basis Function Network

G-RBFN Graph-based Radial Basis Function Network
MLP Multilayer Perceptron

ID Intrinsic Dimensionality

MoCap Motion Capture

DTW Dynamic Time Warping

MTS Multidimensional/Multivariate Time Series
MVS Multidimensional/Multivariate View Series
MAE Mean Angle Error

RMS Root Mean Square Error
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MI
SR
RV
PA
KMC
RPCL
MCL
EE

Mutual Information

Spearman Rho

Residual Variance

Procrustes Analysis

K-mean clustering

Rival Penalized Competive Learning
Markov Cluster Algorithm

Eigenvalue based estimator
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Glossary of Notations

Generally, we denote scalars in bold lowercase ppercase ¢,N ), vectors in

italics lowercaseX, y), whereas matrices in italics upperca3e Y ).

d the dimension of reduced/latent space

D the dimension of data space

X the vector in a lowl-dimensional space

y the vector in a higD-dimensional data space

X the matrix of lowd-dimensional vectors

Y the matrix of higlD-dimensional vectors

N the number of vectors iX, Y, i.e. number of data points

i ] indices of matrices, usually in rangej =1.N , if not
overridden otherwise

o the centre of cluster

C the matrix of centres

Z the number of clusters in the matfx

L the Laplacian matrix of a graph

wW weights of a graph

X, ¥,6 the (ith vector of a corresponding matriX,Y, C

X Y6 W the (i,j)xh entry of a corresponding matrixX,Y, C W

A the vector of eigenvalues

% the vector of eigenvectors or the vector of vwrameters

S the vector of style parameters

. the dot product

||[n] the Euclidean norm
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AXB
AB

AT

tr(A)
p(x)
p(Y| X)

N(#, %)
N(X | ¢,2)

~ & ® @&

K(%, %)

the size of matrix with rows andB columns
a product of matrice& andB
a transpose of matri

the dimensionality reduction mapping from datacepto to

latent or reduced-dimension representation space

the reconstruction mapping from latent or redudi&dension

representation space to data space

the forward mapping function from a high to low
dimensional space

the inverse mapping function from a low to higmdnsional
space

the identity matrix

the trace of the matri®

the probability ofx

the probability ofy given x

the mean

the covariance matrix

the Gaussian distribution with meanand covarianc&

the Gaussian distribution oveX with mean g and

covariancez

hyperparameters

the empirical kernel map/interpolation matrix

the Gaussian basis function

a positive semi definite Mercel kernel

the element of matrix

the kernel function evaluated on data poigtsind x;
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H(X)

H(X,Y)

the neighbourhood size

real numbers

the value of quantitave measure
the marginal entropy oK

the marginal entropy oK andY
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CHAPTER1 Introduction 1.1 Dimensionality Reduction

1. Introduction

“How complex or simple a structure is depends caific upon the way
we describe it. Most of the complex structures founthe world are

enormously redundant, and we can use this redundansiynplify their

description. But to use it, to achieve the simpiaoga we must find the
right representation” [Simon, 1996]

Professor H.A. Simon

Nobel Prize Winner 1978

Understanding and exploration of the intrinsic cfiwe of multidimensional
phenomena are of fundamental importance in datangipattern recognition, and
machine learning. The past decade has witnessecharkable explosion of a high
dimensional digital content in most disciplines etience due to rapid
improvements in data acquisition and storage céipabias well as falling costs of
data warehousing technology. As a consequenceaiy rareas where observations
used to be scarce, we have now access to suffiai@ounts of information to
explain a phenomenon with a data-driven paradigen,to induce a model for an

event of interest given acquired observations.

Providing a machine which has the ability to leamul study such models
has been fascinating scientists for a long timeanous branches of science from
linguistics, biology, engineering, artificial intiglence to computer vision.
However, in order to represent the natural compfexind all inherent aspects of a
phenomenon, a tremendous amount of parametersohas tmeasured. This high
dimensionality introduces outstanding challengethencreation of generalised and
meaningful models by a machine, since the numbewaflable training samples is
usually not sufficient to cover appropriately alimgnsions. In addition, many

parameters are redundant or irrelevant in desgribigiven event of interest, thus
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making the process of learning extremely difficllhese problems have led to the
formation of the machine learning/pattern recognitifield referred to as
dimensionality reductionDimensionality reduction is a transformation dagh
dimensional observations into a faithful low dimensl representation in order to
simplify data representation and extract true msid parameterisation of a
phenomenon. This is achieved by removing redundafdrmation, while
maintaining important relationships between paransetAs a consequence, the
number of required parameters is significantly oe=dlto essential ones, thus
facilitating the process of model learning by a hiae.

Let's consider the scientific discipline of computésion, which aims at
enabling a machine to interpret the world, whiclpriesented to it by one or more
cameras, in a similar way to humans. Recorded hun@ion is a classic example
of a high dimensional and complex phenomenon, wiscbxtremely difficult to
model by a machine due to large variations in nmo#tyle and dynamics, human
body shape and appearance, camera viewpoint amement settings. However,
automatic analysis of human motion is now of fundatal importance in many
areas and desired by many potential applicatioheynclude content-based video
analysis, security and surveillance systems, huocaamputer interactions,
animation and synthesis in the entertainment imgu&.g. games and movies).
Therefore, an appealing solution to tackle this b is to reduce the
dimensionality of human motion in order to asdis generation of robust human

motion models.

In this thesis, we explore the realm of dimensityaleduction with a
special focus on its application to human motioalgsis. We propose several novel
approaches which allow for the effective modellwfghigh dimensional data and
prove to be superior to the current state of thamam range of computer vision

tasks such as pose recovery and action recognition.
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In this introductory chapter, first, we present tdomtext of our research in
sections 1.1 and 1.2. Following this, the principahtributions of this work are
summarised in section 1.3, whereas the structutbisfdissertation is outlined in

section 1.5.

1.1.Dimensionality Reduction

A phenomenon is usually represented by a set ofrebsons, which are
measurements of a set Df quantitative values, i.e. features or attributest tare
collected by data capture devices. These valuebeanranged in the form of[a -
dimensional vector, which reflects distinctive agpeand characteristics of the
considered observation. Since features can vargpewndently from each other;
they are often referred to as the degrees of freedba model [Good, 1973].
However, due to the natural complexity of the mtmephenomena and imperfect
capturing devices, a very large number of featusesollected with the aim to
capture adequately all inherent aspects of obsarvedts. This leads to information
overload in most sciences and the crucial parattexmore features (dimensions)
are available, the more challenging the proceswariel learning and information
extraction is. For instance, high dimensional datgy contain several features that
are measurements of the same underlying causethigysire redundant. Moreover,
some features may be irrelevant and not very in&bira in characterising the
nature of the phenomenon. Finally, a closely reldtendamental challenge in the
high-dimensional data analysis is the so-callededisionality curse (see section
2.2), i.e. observations in a high dimensional spaeefar less representative than
those in a low dimensional space because of anrdnhesparsity of the high
dimensional space. As a result, the number of @htens required to cover
‘satisfactory’ the entire high dimensional spacer@ases exponentially with the

number of measured features. This implies that \a&tgn the collected data
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represent the degrees of freedom of capturing devitstead of those of the actual

underlying phenomenon.

Dimensionality reduction overcomes these fundantenpaoblems
associated with the exploration of large volumesnoftidimensional data. This is
achieved by discovering a compact, meaningful amdnsic parameterisation of
the phenomenon that governs the observed data.efoher dimensionality
reduction can be seen as the process which transfa capturing device
representation with many degrees of freedom in allemnumber of relevant
degrees of freedom which characterise accuratelg#ent of interest. A schematic
representation of this process is shown in Figute Ih addition to computational
costs decrease, the key advantage of dimensiongdiiyction is better data
representation and understanding while preserviagmaich of the original
information as possible. Moreover, since the wigldssentially three dimensional,
1, 2 and even 3-dimensional data are very intuigind assimilable representations
for human perception. As we will show in this tlsgghany complex phenomena,
such as human motion, are intrinsically of very falmensions, therefore
dimensionality reduction can be employed to visgsabuch data and facilitate its

analysis and interpretation.

measured features underlying parameters, that govern
(D dimensions) the data, embedded in d dimensions
pug A N\ f_%
L N
I transform
N d<D T
observations of C #>
a phenomenon
L N

Figure 1.1. The concept of dimensionality reduction



CHAPTER1 Introduction 1.1 Dimensionality Reduction

To illustrate the concept of dimensionality redoeti let's consider an
example from visual perception, where a datasesistsnof images of an object
taken from multiple orientations simultaneouslyalyes can be thought of as points
in some high-dimensional image space where eachdicabe represents the
intensity value of a single pixel. In this exampimages have a size @6x 101
pixels, and thus form points in a 7676-dimensionlaservation space. However,
despite of appearance differences, the perceptoadigningful structure of these
images has only one intrinsic degree of freedommédision), i.e. the orientation of
the depicted object. Therefore, these images gpectxd to lie on or near a 1-
dimensional curve which is embedded in a two dinwgrad space to model the
cyclic nature of the view change (Figure 1.2). THislimensional curve is
parameterised only by the viewing angle. The objeaif dimensionality reduction
techniques is to identify this embedded represemtdiy removing irrelevant and
overlapping information from data in order to egtréhe intrinsic parameterisation

that truly governs them.
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A

Figure 1.2. The 1-dimensional parameterisation of a highly dimensional image
dataset embedded in a 2-dimensional space. The intr  insic dimension corresponds to

the viewing angle of the depicted object.

Nowadays, many multivariate statistical methodsroftely on a pre-
processing step involving some form of dimensiafuation to eliminate undesired
properties of high dimensional data and consequéntirove overall performance.
Figure 1.3 illustrates this concept, showing theefisionality reduction as a pre-
processing stage in the whole system. As a reduttensionality reduction has
become an essential process across a wide vafiéglds wherever there is a need
to explore large volumes of multivariate data. lartjgular, scientists in the

following domains have to deal with this problem:
e computer vision,

* image processing,

» artificial intelligence,

« medicine,
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* linguistics,

* signal processing,
e meteorology,

* engineering,

* bioinformatics.

il d:ir:;nswnal —)Gimensionality reductioD—) LE dl(;:llte;smnal —)C Processing system )

4

complex

Figure 1.3. Performance of many processing systems can be improved in terms of
accuracy and efficiency by reducing dimensionality of the data in a pre-processing

step.

1.2 Multidimensional Time Series

In many real world applications, the analysis ofhdgoural and dynamic
characteristics of phenomena is much more inforreahan the description of their
states at a certain point in time. Therefore, agotnucial challenge in modelling
high dimensional data is the time aspect, whicthésintrinsic property of many
natural as well as man-made phenomena. As a comsegjuthe adaptation of time
in the dimensionality reduction process seems tarbatuitive and really relevant
objective to study, which has only recently beewmestigated by the research
community.

Time series is the standard digital representabiophenomena with the
temporal correlation among observations [Hannan7019Chatfield, 1996].
Observations are collected at regular intervalg aveeriod of time and, as a result,
successive observations exhibit a certain leveldependency. Note that in
principle the two main objectives of time serieslgsis are to characterise and

represent time series and/or to forecast futur@webr. In this thesis, we are only
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interested in the modelling of time series represd@n, and we do not address the

problem of time series extrapolation.

1.2.1. Human Motion Analysis

A typical example of multidimensional time serieatal is human motion data.
Human motion can be seen abstractly as a contingtais machine, where the
body is considered to be in a single high dimeraistate at a given instant. The
space of human motion is highly dimensional siteehtuman body is a deformable
object with no less than 244 degrees of freedons|[@asky, 2002], anthropometric
variability between people [Easterby et al., 19881 dynamics [Farnell, 1999].
Since, subsequent states of real human motiorearpdrally correlated and ‘short’
motion patterns tend to be repeatable over timegtaral digital representation of
motion is a time series sequence of high dimensideature vectors, which

correspond to successive states of the motion.

One of the pioneering and systematic investigatims the nature of
human motion was carried out by the photographdwi&ard Muybridge in the late
19" century [Muybridge, 1901]. He built a complex gystof multiple cameras to
capture motion, which was composed of a fixed batteom 12 to 24 cameras
along an open shed and an invented shutter wittoid sxposure time. The cameras
were triggered sequentially over time at sufficispeed to generate the earliest
‘digital’ dataset of human motion and thus allowitng first manual vision-based

motion analysis (Figure 1.4).

ﬁﬁﬁ&a%

Figure 1.4. The series of photos of the human figur e in motion by Eadweard
Muybridge taken in the late 19th century [Muybridge  , 1901].
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In the next century, the classic moving light dégplexperiment of
Johansson [Johansson, 1973] has paved the waye tautiomatic human motion
analysis and mathematical modelling of human moti#whansson demonstrated
that a sequence of only a few reflective marketached to major joints of human

body is sufficient to understand and recover motigna human subject (Figure

1.5).
- L ] -
- - -
] . -
» L e . -
/xo ¢ e ® .
L ]
«§ \\7 * . ¢
Figure 1.5. lllustration of moving light displays, taken from [Thornton et al., 1998].

When static images are presented in a sequence, an observer can easily organise
the complex patterns of lights movement into a cohe rent perception of human

motion.

Over the last few decades this experiment inspmeshy researchers in
human motion analysis and directly led to the itienof marker-based motion
capture systems. Modelling human motion by thesstesys involves strapping
sensors (e.g. electromagnetic markers) to the laodythen recording transmitted
signals in three dimensions at very high frequen@e an individual performs
various movements [Menache, 1999]. However, theggesis are not only
expensive but also very invasive, typically requdrispecial clothing and a
controlled studio-like environment. Moreover, th@ye not very practical in
applications where observed humans are not coaperdtherefore, in practice,

they are primarily used for the training of machie&rning algorithms.
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In contrast, cameras are low-cost, flexible and-oimusive devices which
are able to record a massive amount of informatbout an observed scene.
However, in order to perform any human motion asialyfirst the individual has to
be localised and motion has to be extracted frodeos. This is an extremely
difficult problem due to image variability which igmates from cluttered and
dynamic environments, depth ambiguity, occlusidighting conditions, camera
viewpoint as well as people variability in termspifysical appearance and motion
style. Assuming that these issues can be solvadfazorily, the challenging
machine learning problem of inducing human motioodeis from the extracted
information has to be addressed. These models ¢houdstrain the space of
plausible solutions while maintaining appropriat@tability to all forms of human
movement variations. Despite all these difficdtienarkerless and vision-based
analysis of human motion is currently one of theshaztive research domains.

Video based analysis of human motion comprises nampects. In this
thesis, we limit our scope of interest to humaneposcovery and human action
recognition. The former aims at the determinatidriogations or angles of key
body joints given an image or a video capture ahan figure. The latter is a high
level description of an image sequence by assigaimgeaningful annotation that

best describes the observed motion.

1.3.Aim and Objectives

The overall aim of this research is to advancefild of dimensionality reduction
with a special attention to human motion analysis.

First, although dimensionality reduction transfotima may allow
improving overall performance in many processingtays, difficulties in practical
usage of these algorithms limit their applicability various domains. Most

powerful dimensionality reduction approaches rety @ set of parameters and
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extensions in order to be applied effectively. Hegre manual user input into the
process requires specialised knowledge, whereay s@antists would prefer to
consider the dimensionality reduction process ablagk box, which can be
employed directly as a pre-processing step in shatems. To tackle this problem,
we propose a methodology for automatic configuratd a group of nonlinear
dimensionality reduction methods. Since it fadié& their usage, it makes them

more convenient for the research community.

Secondly, despite the huge research effort thabbas already dedicated
to dimensionality reduction, the majority of therrant state of the art approaches
ignores or considerably simplify the temporal asg@esent in many phenomena.
Such approach is clearly inadequate in many redvapplications, where usually
the analysis of behavioural and dynamic propemiephenomena is much more
informative than the description of their statesaatertain point in time. As a
consequence, the key objective of this thesis ideieelop novel dimensionality
reduction algorithms which are tailored to timeeoted data, i.e. multidimensional
time series. Consideration of the time domain duthmg dimensionality reduction
process allows learning more accurate and meaningfdels of events which are
temporally correlated.

The final objective is to examine practical advget of the proposed
dimensionality reduction approaches by applyingritie human motion analysis.
Although digital representation of human motion vsry complex and high
dimensional, we demonstrate that only a few extcheinderlying parameters are
sufficient to model and discriminate between défgrhuman actions regardless of

view, speed and motion style.
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1.4 .Scientific Contribution

This thesis provides significant advances towardslation of essential problems

which are faced by machine learning, pattern reitiognand computer vision

communities. These contributions originate from navel and original ideas and

are summarised below:

First, in chapter 2, we give an extensive reviewtled state of the art in
dimensionality reduction with a special attentioo tomputer vision
applications. We provide the motivation and thekigagund to the machine
learning/pattern recognition task of dimensionatggluction and describe the
main directions of research as well as the strengtid weaknesses of different
approaches. This chapter can be seen as a knowlegfgesitory about
dimensionality reduction and one of the most com@nsive discussions
available in the field.

In chapter 3, we examine thoroughly a family of pofl nonlinear spectral
dimensionality reduction methods and review thianithtions, i.e. selection of
free parameter and lack of generative abilitiegriseen examples. Motivated by
the personal belief that simplicity of usage iseasisl to an algorithm
popularity, we propose a framework for automatiofiguration of spectral
dimensionality reduction methods, which overconueEiified weaknesses. As
a consequence, this novel framework improves saamfly the applicability
and performance of spectral methods. The framewaskbeen validated using
three main representatives of the spectral fammty shows excellent versatility
in a range of tasks including human pose recovery.

Despite of the huge amount of work, which has leroted to the research in
dimensionality reduction (see section for 2.2 oiw@&y, the majority of this
effort does not take into consideration the dynanaiture of many phenomena.

Such static approaches are clearly inappropriatethim context of time

-12 -



CHAPTER1 Introduction 1.4 Scientific Contribution

dependent phenomena, where measured features matipuously over time;
thus consecutive observations are expected to d@lyhcorrelated. We are
convinced that the time domain is a crucial asketa-world data and thus it is
essential to take it into account when modellinghsphenomena. To tackle this
intellectually and technically challenging problem,chapter 4, we propose a
novel dimensionality reduction method, called Termaphaplacian Eigenmaps,
which takes advantage of spatial and temporal evtegrrelationships between
time series in order to extract the intrinsic paetamnisation of a high
dimensional time series space regardless of datatieas. Our fundamentally
different and fresh perspective to the dimensioypaBduction problem, which
aims at preserving the temporal topology of obskrvgpace during
dimensionality reduction instead of the traditidpalsed geometric one, allows
us to produce automatically meaningful and gersadlilow dimensional
representations tailored to multivariate time seridata. An exhaustive
evaluation on a couple of computer vision applamadj i.e. pose recovery and
action recognition, demonstrates the effectiveimésbe proposed methodology
for modelling different types of multidimensionahe series and its superiority

in comparison to the current state of the art aggines.

 To cover adequately the complexity and richnessmefhsured phenomena,
tremendous amounts of representative data are aféguired to learn
appropriate data-driven models. Since, in practioe,capture of such amounts
of data may be unfeasible, the problem arises abowt to generalise known
data samples to the entire phenomenon space tdonoataeliable model.
Although, several approaches have already beeropeopto address this issue
(section 2.2.2.3), they either do not consideraatiqally simplify the temporal
aspect of high dimensional data. In chapter 5, wal dvith this scientific

challenge in the context of multidimensional timeziss data. Inspired by the
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spatio-temporal constraints of Temporal LaplaciageEBmaps, we formulate a
generative nonlinear dimensionality reduction atyon, which is called Spatio-

Temporal Gaussian Process Latent Variable Modet. itnovative method is

capable of approximating a compact underlying iistion of time series space
in the presence of data variations. As a resugra pattern of multivariate time
series is extracted with associated uncertainfiggegliction. A comprehensive
evaluation, using different types of multidimensibtime series, confirms the
superiority of this concept in modelling and cléisation of human motions.

« Finally, in chapter 6, we investigate further a qbial aspect of our
contributions from chapters 4 and 5 in a challeggieal-life computer vision
task of view-independent action recognition. Anyi@t recognition system
usually involves a combination of methods from thision and machine
learning realms. The vision part is responsible fte extraction of
representative and relevant features from actialeos, whereas the machine
learning one creates actual semantic models obrectiOur contribution falls
strictly in the learning domain. We devise two poiwkvariants of temporally
constrained action descriptors, so called actiomifolals, which encapsulate
style, view and speed variability of any type oftmo in a compact and
consistent low dimensional representation. The f@perty of the introduced
descriptors is their generalisation potential tevpsusly unobserved motions
regardless of view. Despite using basic vision @iigms for video processing,
promising experimental results match the perforreant the most accurate

action recognition methods, while overcoming sornneir limitations.

1.5.Thesis Outline

The body of the thesis is divided into seven chapte
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In this chapter, we have put our research intoecdrand summarised our

contributions to science.

In chapter 2, first, a formal definition and dissias of the dimensionality
reduction problem are presented. They are folloled detailed review of the state
of the art in the dimensionality reduction field.

Then, in chapter 3, we propose a framework forraatec configuration of
spectral dimensionality reduction methods. Tdhiapter is based on work that was first
published at theWorkshop on Visual Surveillancduring IEEE International
Conference on Computer Visig®S 2009) [Lewandowski et al., 2009], and then it
was extensively extended for a journal versionh@Rattern Recognition Letters
(PRL 2010 [Lewandowski et al., 2010a].

In turn, in chapter 4, we introduce a novel nordineimensionality
reduction method, called Temporal Laplacian Eiggmnavhich is tailored to
modelling multidimensional time series. The chajptdrased on work presented in
the IAPR International Conference on Pattern Recognitif PR 2010
[Lewandowski et al., 2010c] and additional expenisavhich were conducted later
with a view to an ongoing journal paper preparation

The next chapter 5 describes a generative nonlirtkarensionality
reduction approach for modelling uncertainty of tidiinensional time series space,
called Spatio-Temporal Gaussian Process LatentablariModel. The chapter is
based on work published in tiacific-Asia Conference on Knowledge Discovery
and Data Mining (PAKDD 201) [Lewandowski etal.,, 2011] and additional
experiments which were conduced later with a viewam ongoing journal paper
preparation.

In chapter 6, a practical application of our cdnition to view-
independent action recognition is presented. Thapter is based mainly on work

published in thdNRIA European Conference on Computer Vis(&@CCV 2010
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[Lewandowski et al., 2010b]. Some elements are alssented in th€ AKDD
2011conference paper [Lewandowski et al., 2011].

Finally, chapter 7 concludes the undertaken rebeagummarises
limitations and highlights potential directions fature work.

Each contribution chapter, i.e. 3, 4, 5, 6, sharesnilar format. They start
with a statement and scope of problem in the intcbalty section (3.1, 4.1, 5.1,
6.1), which will be addressed in that chapter. Tiodosely related work, which has
already been carried out by research community, @2 5.2, 6.2), is discussed.
Next, a developed solution to the problem is presk(3.3, 4.4, 5.3, 6.4), followed
by evaluation of the proposed methodology (3.4, 8.8, 6.5). Most of evaluation
sections begin with a description of datasets whighused in experiments (3.4.1,
4.5.1, 5.4.1) followed by the experimental setupt.@1, 4.5.2.1, 5.4.2.1) and an
explanation of the performed experiments (3.42.2,2.2, 5.4.2.2). Then, results of
each experiment are presented and discussed. Tdsedrr discussion, which
summarises all experiments, is provided in the dasisection (3.4.7, 4.5.8, 5.4.5).
Finally, all chapters finish with a summary of tbentribution (3.5, 4.6, 5.5, 6.6)
with respect to the stated objective in the comeasing introduction section (3.1,
4.1, 5.1, 6.1). Note that, it is advised to readptars in the provided order, since
most of them relies on the previous ones, espgdiadl contribution chapters 4, 5,

6.
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2. State of the Art Review

2.1.Introduction

This chapter introduces and defines the problerdimiensionality reduction and
related topics such as the curse of dimensionalitg intrinsic dimensionality
(section 2.2). Then, a comprehensive survey oflthrensionality reduction field is
provided to show the full evolution of the concdpim preliminary relatively
simple feature selection approaches (section 2. lhowadays powerful and
popular feature extraction methods (section 2. Agrwards, two computer vision
fields, i.e. human pose recovery and action redimgniare overviewed to establish
the general background used for the evaluatioruotontributions (section 2.3). In
particular, we discuss the current state of the radarding the usage of
dimensionality reduction transformations in humarotion analysis (sections
2.3.2.2.3 and 2.3.3.2.4). In addition, this chapt¢roduces some basic notations
and conventions for dimensionality reduction transfations, which are exploited

in the rest of the dissertation.

2.2.Dimensionality Reduction

Analysis of multidimensional data often suffersnfran effect known as the ‘curse
of dimensionality’. The term ‘curse of dimensiomgliwas coined by [Bellman,

1961] and refers to the fact that in the absencsimplifying assumptions, the
number of data samples required to estimate aibmaf several variables to a
given accuracy (i.e., to get a reasonable low-nagaestimate) on a given domain
grows exponentially with the number of dimensiobed and Verleysen, 2007]. To
illustrate the problem, let's consider the 3-clgsasttern recognition problem
presented by [Gutierrez-Osuna, 2006] (Figure Eit3t, the 1-dimensional space is
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divided into B uniform bins with 3 samples each (Figure 2.1, dstepEach bin is
labelled by majority voting using training labets) that a new sample is classified
by assigning the label of the corresponding binttdSince there is significant
overlap among the classes, a second dimension cerporated to improve
separability (Figure 2.1, step 2). At this poifitwie decide to maintain the number
of training examples, then a very sparse 2D scpltéris obtained (Figure 2.1, step
2a). Otherwise, if we choose to keep a constargijeof sampling per bin, then the
number of training examples increases exponential®7 (Figure 2.1, step 2b). As
a consequence, a new sample may be unclassifiedgsifocated in an empty bin;
this can be solved by adding more training samjple®ver evenly the entire space.
Adding another dimension makes these problems w@igere 2.1, step 3), since
now the 3D scatter plot is almost empty (Figure 8tép 3a) or at least 81 samples
are required (Figure 2.1, step 2b). This phenomesoknown as the curse of
dimensionality. Another basic illustration of dinsgonality curse problem can be

found in [Trunk, 1979].
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1) D=1,B=3,N=3 (100%
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2) D=2,B=F,N=2 (66% D=2,B=3,N=3 (100%
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Figure 2.1. lllustration of dimensionality curse in a toy pattern recognition problem
where: D — dimensionality, B — number of bins, N — number of samples, (x% =

N/B*100) — space denseness.

A few counterintuitive properties of the high dinsemnal spaces are
responsible for the dimensionality curse [Jimenek laandgrebe, 1998]. First, most
of data points of high dimensional spaces resideinaxpected places, such as
corners for hypercube or in a thin shell near ob@undary of hypershpere and
hyperellipsoid [Scott and Thompson, 1983, Jimenet laandgrebe, 1998, Weber

et al., 1998]. This implies that the centre becofaedess important and the high
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dimensional space is inherently sparse (Figure 2€lp 2a, 3a). This property is
known as the ‘empty space phenomenon’ [Scott arahipison, 1983]. A further

undesired property is that the size of data samg@sired to adequately cover a
hyper-volume to perform ‘satisfactory’ data anadysicreases exponentially with

dimensionality (Figure 2.1, step 2b, 3b).

In addition to the curse of dimensionality, anotbhemplexity induced by
analysing high dimensional spaces is the ‘nearegthbour problem’, which is
defined as [Beyer et al., 1999]:

Given a collection of data points and a query paméa D-dimensional
metric space, find the data point that is closegshe query point.

For a given query point, it has been shown thatdie@ance to the nearest
neighbour tends to be similar to distance to tithést neighbour as dimensionality
increases [Beyer etal.,, 1999]. This is particulady issue when using the
Manhattan norm (, ), the Euclidean norm I, ) and the general k-norm
L, [Hinneburg etal., 2000]. This effect is known aBe t ‘concentration
phenomenon’ [Beyer et al., 1999, Francois et alQ720In addition, this distance
grows steadily with dimensionality and decreasdyg orarginally as the number of
points increases [Weber et al., 1998]. [Francoial.e2007] proved formally that
the concentration phenomenum is an intrinsic ptypeErthe norm when measuring
high-dimensional data similarity even when an immumber of data points are

considered.

In general, all these properties manifest themsdbyea decrease of overall
accuracy of system according to the statisticainieg theory approach [Vapnik,
1998]. As a consequence, for a given dataset, tlsee maximum number of
dimensions above which the quality of data analgileigrades when the number of
training samples is small relative to dimensiogalFigure 2.2) [Devijver and

Kittler, 1982, Bishop, 1995, Jain and Zongker, 198&ber et al., 1998, Jain et al.,
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2000, Korn et al., 2001, Hua et al., 2009]. Thisagaxical behaviour is referred to
as the ‘peaking phenomenon’ [Devijver and Kittlek982]. Dimensionality
reduction attempts to overcome effectively theseas without losing significant
information in terms of data intrinsic structure daproperties. Moreover, it
facilitates classification, visualisation, clusteyi and compression of high

dimensional data.

accuracy

dimensionality

Figure 2.2. Dimensionality versus accuracy of a mul  tidimensional data analysis.

Given a set of data points in a high-dimensionalcsp dimensionality
reduction is defined as the process of discoverya aheaningful and compact
representation of reduced dimensionality to obtawmre informative, descriptive
and practical data representation for further asigalyThis process is achieved by
eliminating redundancies and irrelevant informafmrasent in data while ensuring
the maximum possible preservation of informatiomirfJet al., 2000, van der
Maaten et al., 2009].

Ideally, the reduced dimensionality should correspdo the intrinsic
dimensionality of the data. This can be understaedthe minimum number of
independent variables needed to explain satisfatha observed properties of the
data. More formally, from a geometrical point oéwi, a dataseY O R® is said to
have intrinsic dimensionality (ID) equal thif its elements lie entirely within a d-

dimensional subspace &° [Fukunaga, 1982, Fukunaga, 1990].
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In general, dimensionality reduction can be pertmnby either feature
selection or feature extraction. Feature selectiorthods select the most
discriminative key features among those given; dfoge low-dimensional data
representations possess a physical meaning. Aliesha feature extraction
approaches create new informative features by applgertain operations to the
original features. In other words, the new projacttdf data is created based on

transformation or combination of the original featset.

2.2.1.Feature selection

Feature selection is based on the ‘principle ofipaony’ [Bell and Wang, 2000].
This says that, we prefer the model with the sraaessible number of parameters
that adequately represents the data. For this mdasture selection methods aim at
selecting an optimal subset of relevant featuresnfra given set of original
candidate features [Devijver and Kittler, 1982].rélea feature vector is defined as
a one dimension of a data samples set (see figB)e &R definition of the optimal
subset and various notions of relevance in a cowtiefeature selection framework
are given in [Kohavi and John, 1997, Blum and Laggll997]. Using [Jain and
Zongker, 1997] notation, given a set of features{ y;| y OR", j=1..D} the goal

of a feature selector is to find a sub3et] Y (x; 0Y) which optimises a particular
evaluation criterion) and cardinality of seX is d:

J(X)= max J(2) (2.1)

z0y, z=

where a higher value of indicates a better feature subset (Figure 2.3)dard

(oftend << D).
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2.2 Dimensionality Reduction
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Figure 2.3. Principle of feature selection and nota  tions.

There are four basic steps in a typical featurecsiein method (Figure 2.4)

[Dash and Liu, 1997, Dash and Liu, 2003, Liu and 3@05]:

e ageneration procedure to generate the next cardidaset for evaluation,

* an evaluation function to evaluate the candidabsest)

* astopping criterion to decide when to stop, and

» avalidation procedure to check whether the subsetlid.

Original ]
Generation Evaluation
feature set (D) Subset (d)
A N
AN Goodness
S of the subset
N
N
N
No i Yes
Stopping ® §  Validation
criterion
Figure 2.4. Four basic steps of the feature selecti  on process.
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A comprehensive review of feature selection alfong in different fields
can be found in [Jain and Zongker, 1997, Jain.e2800, Guyon and Elisseeff,
2003, Liu and Yu, 2005, Saeys et al., 2007, Hud. e2009].

2.2.1.1.Subset Generation

The generation procedure is essentially a heurssarch, with each state in the
search space specifying a candidate subset ofrésafar evaluation. The search
process starts with no features, with all featumswith a random subset of
features. Since for a data set whh features, there exi" candidate subsets,

different search strategies have been explored.

2.2.1.1.1.Complete Search

In the case of exhaustive search all possible coation of subsetsl - D are
evaluated like in Focus method [Almuallim and Deetth, 1994]. However, the
exhaustive search is impractical even for modesates ofd and D because of
exponentially increases of the size of the seagpelees [Jain and Zongker, 1997, Liu
and Yu, 2005]. In order to avoid the enormous dataans of the exhaustive
method, different heuristic functions are usedddgrm non-exhaustive search on a
smaller number of subsets by using, for examplen@&ra& Bound algorithms
[Narendra and Fukunaga, 1977, Yu and Yuan, 1993nCh@03, Somol et al.,
2004, Cao and Saha, 2005] (B&B). Complete search giggsito find the optimal
subset according to the evaluation criterion whgluised [Guyon and Elisseeff,

2003].

2.2.1.1.2. Sequential Search

The simplest sequential search technique is hithlmhg in a search tree (also
called greedy search). Here a feature’s subseititety grows (forward selection)

or shrinks (backward elimination) by adding/remaythe best descendant features.

- 24 -



CHAPTERZ2 State of the Art Review 2.2 Dimensionality Reduction

It can also start from both ends and iterativelyd aahd remove features
simultaneously (bidirectional selection) [Huan aHd@oshi, 1998]. The process
terminates when there is no improvement over aeatirsubset. Best-first search
[Russell and Norvig, 2003] is a more general andisbimethod than hill climbing.

Instead of using only current descendant featutes,most promising feature is

selected from all unexpanded nodes which have geeerated.

In both search engines, quality of a feature i®meined according to a
specified rule. These search strategies are cotgma#ly advantageous and robust
against over fitting in producing deterministic uks; however they may miss

optimal subsets.

2.2.1.1.3.Random Search

Following the sequential search, a random procss&jected into the above
classical sequential approaches; this processnmdasi to simulated annealing
[Doak, 1992, Meiri and Zahavi, 2006] or geneticasithms methods [Siedlecki and
Sklansky, 1989, Vafaie and De Jong, 1993, Raymat.,e2000, Oh et al., 2004].
The random subsets are derived either from MontdoGampling or Random
mutation hill climbing [Skalak, 1994]. Alternatiweleach subset is produced in a
completely random manner like in the Las Vegasrélgo [Brassard and Bratley,
1996]. For all these approaches, the incorporatiorandomness helps to escape
local optima in the search space; however this sih result in a stochastic
suboptimal solution.

2.2.1.2. Subset Evaluation

Another dominating factor in designing a featurdest#®on algorithm is the
evaluation function which is used to determine dbality of a candidate subset. A

new subset replaces a previous one, only if itéuetian score is better. According

to [Blum and Langley, 1997], the evaluation critesr@ broadly grouped based on
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their dependency on mining algorithms (also refér@ as inductive or machine
learning algorithms) that will finally be appliech dhe selected feature subset (e.qg.

classification or clustering).

Popular induction algorithms include decision tre€uinlan, 1993,
Forman, 2003, Draminski et al., 2008], naive Bayessifiers [Kohavi and John,
1997, Forman, 2003, Ding and Peng, 2003, Peng,e2@D5, Draminski et al.,
2008], nearest neighbour classifiers [Draminskalet 2008, Hua et al., 2009],
discriminant analysis [Peng etal.,, 2005, Hua .et2009], least-square linear
predictors [Guyon and Elisseeff, 2003], and supp@ttor machines [Forman,
2003, Ding and Peng, 2003, Peng et al., 2005, Sategls, 2007, Draminski et al.,
2008, Forman, 2008, Lin et al., 2008, Rodriguezahugt al., 2010, Gheyas and
Smith, 2010].

2.2.1.2.1.Filter

Filter techniques assess the relevance of featwdsoking only at the intrinsic
characteristics of the training data without inwoty any inductive algorithm. In
most cases a feature relevance score is calculatedl,low-scoring irrelevant
features are filtered out (Figure 2.5). Afterwartlse best subset of features is
passed as input to the mining algorithm. By debnit filter methods are
independent of the chosen inductive algorithm;dfee typically they are based on

certain statistical criteria, so called measu@sahk subsets.

Original data

Best feature

set
Training data {Feature subset selectionH Induction Algorithm >

Split Model

Final
performance

I
[ g - —>
| Test data 4 Evaluation /)_ |

Figure 2.5. The filter approach for feature subset  selection.
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2.2.1.2.1.1.Separability Measures (distance measures)

The most straightforward method for the featured@n is an exhaustive
ranking of each individual feature in a datasetlependently of the context of
others. Commonly known ranking metrics for this maginclude Chi-Squared test
[Yang and Pedersen, 1997] (Chi), Information Gaimry and Pedersen, 1997]
(IG) or Bi-Normal Separation [Forman, 2003, Form2008] (BNS). More criteria
can be found in [Guyon and Elisseeff, 2003].

In contrast, to improve computationally performanBeanch & Bound
algorithm [Narendra and Fukunaga, 1977] (B&B) perfemon-exhaustive search
and uses intermediate results to obtain boundsefirial criterion value. The key
assumption of the algorithm is an adaptation ofrtfenotonicity principle for the

criterion functionJ , i.e.:
J(AOB)= J(A, OABI Y (2.2)

This means that the addition of new features tareeat subset must result
in an increase of performance according to theuew@n criterion. B&B starts
from the full set and removes features using aldégst strategy. The subsets are
coded as bit-strings, i.e. as sequences of zerdoaes which correspond to the
absence or presence of a feature in the subset. @atigmal complexity of search
process is improved further by exploiting minimuolusion tree [Yu and Yuan,
1993], asymmetrical solution tree [Chen, 2003], agpnating values of evaluation
function by predictions [Somol et al., 2004] or eiw&lly best-first search approach
[Cao and Saha, 2005]. Typical choices of monotoniatiterion include:
Bhattacharyya distance [Chen, 2003, Somol et al.ARGflscriminant functions
[Chen, 2003] Divergence distance [Somol et al., 2004], Patkhdcher distance
[Somol et al., 2004] and the minimum Hankel singulalues [Cao and Saha,

2005].
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On the other hand, the sequential Relief algoritlita] and Rendell,
1992] was inspired by instance-based learning [&hal., 1991]. The key idea
behind Relief method is to assign a relevance weigh¢ach feature, which is
meant to denote the relevance of the feature totdhget concept. It samples
instances randomly from the training set to updatevance values. In context of
classification, the relevance estimation of eadtuee is based on the difference
between the selected instance and the two neamst&inces of the same and
opposite classes. Since the original formulatiorRefief can only be applied on
binary problems [Kira and Rendell, 1992], [Kononenkt©94] proposes a
generalisation to univariate case. Relief evaluagesulness of features according

to the relevance level [Kira and Rendell, 1992].

2.2.1.2.1.2. Information-theoretic Measures

Information measures typically determine the infation gain from features.

In Sequential Forward Generation [Huan and Hiro4898] (SFG), the
algorithm starts with an empty set and adds ontuifedgrom the original set at a
time. At each round of selection, the best featarehosen according to fithess
function.

The Decision Tree Method [Cardie, 1993] (DTM) emplay similar idea
to generate feature subsets, however the seapsrfrmed with the decision tree
algorithm [Quinlan, 1993] and candidate subsetseaeduated according to entropy

criterion.

Monte Carlo feature selection [Draminski et al., FO0QMCFS) is an
example of random information algorithm. It provddan objective measure of
relative importance of each feature for a particelassification task regardless of
the classifier that will be used. This is achievbg taking into account

interdependencies between the features; a featayepnove to be informative only
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in conjunction with some other features. Importantea feature is measured via

intensive use of classification trees.

2.2.1.2.1.3.Dependency Measures

Dependency measures are also known as correlatisimdarity measures. They
quantify the ability to predict the value of onerighle from the value of another
variable.

For instance, in Correlation-based Feature Sele¢tail, 2000] (CFS), a
linear Pearson’s correlation heuristic is exploite@valuate the merit of a subset of
features rather than individual features like ini€&elThis heuristic takes into
account the usefulness of individual features fedjzting the target concept along
with the level of intercorrelation among them. Atigre is considered to be a good
one if it is relevant to the target concept buh@d redundant to any of the other
relevant features. A goodness of measure is exguelsg a correlation between
features. [Yu and Liu, 2003] introduces a concdppredominant correlation and
predominant feature to formulate Fast CorrelationeBagilter (FCBF) which
allows to reduce time complexity of CFS. In additiotifferent correlation
measures are incorporated into CFS, for instance Kbbenogorov-Smirnov
correlation coefficient [Biesiada and Duch, 2005] Rearson’s chi-squared test
[Biesiada and Duch, 2007].

In contrast to standard CFS, a maximal relevancexPet al., 2005]
(MaxRel) and minimal-redundancy-maximal relevancengPand Peng, 2003, Peng
et al., 2005] (MRMR) frameworks use nonlinear cotr@fabetween features in a
heuristic search. MaxRel maximises relevance camdith obtain an optimal subset
of original features, whereas mMRMR also minimiseslunelancy condition
simultaneously. The idea of maximum relevance iseiect the features such that

they are mutually maximally similar, while the nmmim redundancy ensures
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selection of mutually exclusive features. As a liesoinimal redundancy will make
the feature set more representative of the entitasét. Both conditions are defined
in terms of mutual information measure [Cover andribs, 1991, Ding and Peng,
2003, Peng etal.,, 2005]. Recently, [Zhang et 80082 proposed a two-stage
selection algorithm combining the best propertiesmBMR and ReliefF to select a
compact yet effective gene subset from the caneliskett

Given the prohibitive cost of considering all pddsisubsets of features,
the MaxRel and mRMR algorithms must select featureedily and optimise
evaluation criterion with features chosen in preasiosteps. The smaller time
complexity with comparable accuracy is achieved Qyadratic Programming
Feature Selection [Rodriguez-Lujan et al., 2010PEQ) even though it ranks all
training features according to mutual informatiom Bearson’s correlation
coefficient as a similarity measure. The featurkecmn is formulated as the
quadratic programming optimisation problem whicketa advantage of Nystrom

approximation to reduce the computational compjexit

2.2.1.2.1.4.Consistency Measures

Consistency measures are defined by inconsisterteyfoa a given feature set:
I.(A)<J whereod is a user given inconsistency rate threshold [Dasti Liu,
2003]. An inconsistency is defined as a sum oftadlinconsistency counts over all
patterns of the feature subset; see [Dash and20@3] for more details. The best
subset satisfies the consistency criterion. Consigteneasures are usually used for
classification. For instance, Focus method [Almualland Dietterich, 1994]
exhaustively examines all subsets of features aletts minimal subset of features
that is sufficient to determine a value of cladseldor all instances in a training set.
This preference for a small set of features isrrete to as Min-Features bias

[Almuallim and Dietterich, 1994]. [Liul etal., 189 proposes an automated
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interpretation of standard Branch & Bound algorithhB&B) where the bound is
set to the inconsistency rate of the original featset. In contrast, the Las Vegas
Filter [Liu and Setiono, 1996] (LVF) randomly selaes the space of subsets and
makes probabilistic choices to guide the searchenguiickly towards an optimal
solution. Method adopts the inconsistency rateimal fa minimum number of
features that separate classes as consistentligjeatult set of features can. An
inconsistency is defined as two instances havirgg shme feature values but
different classes. To improve processing perforraafcAB&B and LVF, a hybrid
Quick Branch & Bound (QBB) was proposed [Huan and Hiiras998]. It runs first
LVF and afterwards AB&B on pre-processed smaller stgosf features [Dash and

Liu, 2003].

2.2.1.2.1.5.Summary of Filtering Selection Methods

Advantages of all discussed filter techniques hag they easily scale to very high-
dimensional datasets. Moreover, they are computatip simple and efficient, and
the most importantly they are independent of tluative algorithm. As a result,
feature selection needs to be performed only osmeé,then various classifiers can

be evaluated.

A common disadvantage is that they ignore the actésn with the mining
algorithm (the search in the feature subset spgaseparated from the search in the
hypothesis space) which may lead to worse perfoced@uyon and Elisseeff,
2003, Liu and Yu, 2005, Saeys et al.,, 2007, Hual.e2009] in comparison to
wrapper methods (see next section). In additionstrob the proposed techniques
are univariate (Chi, 1G, BNS, Relief, B&B, SFG, DTM,dus, AB&B, LVF, and
QBB). This means that each feature is consideredraggy, thereby they lack in
robustness against interactions among featuredemtdre redundancy. In order to

address the problem of ignoring feature dependsnademe multivariate filter
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techniques were introduced (MCFS, CFS, FCBF, MaxRel, mR®IRFS) which

aim at the incorporation of feature dependencieoine degree. Finally, filters tend
to select the full feature set as the optimal smhjtas a result the threshold for
rankings must be chosen arbitrary by a user taseldy truly important features
and exclude noise. Unfortunately, there is no ganerde how to set this crucial

parameter.

2.2.1.2.2\Wrapper

The wrapper methodology, popularised by [Kohavi alwhn, 1997], offers a
conceptually simple, powerful and universal alték@ato the problem of feature
selection. Namely, it requires one predeterminedhim& learning algorithm and
uses its performance as the evaluation criterioddt®rmine which features are
selected (Figure 2.6). In fact, the inductive aildpon is considered to be a perfect
“black box”: no knowledge about it is required.tins setup, a search procedure in
the space of all possible feature subsets is difase ‘wrapper’ around the data
mining model, which repeatedly calls the inductalgorithm as a subroutine to
evaluate quality of various subsets of featurese Hvaluation of subsets is
performed with an internal validation set obtairied a hold-out or k-fold cross
validation schema. The feature subset with thedsglvaluation is chosen as the
final set on which the induction algorithm is rundafinal performance of the

system is calculated.
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Feature subset selection
Original data /I_ ______________________ :IN
| ’ Training data ’%(Feature selection search )~ _)C Induction Algorithm )
|
L Feature Performance Best feature
Training data ’— set estimation set

Test data H Feature evaluation )
Model
Feature
( Split ) set Model

| .

| ( Induction Algorithm ) Final
| \ performance
: Test data ‘ < Final evaluation ) -
S 1

Figure 2.6. The wrapper approach for feature subset selection. The induction

algorithm is used as a “black box” by the subset se lection algorithm.

2.2.1.2.2.1.Sequential Search Strategy

Sequential Backward Elimination [Green, 1963, Kiitl&978, Cotter et al., 2001]
(SBE) and Sequential Forward Selection [Whitney,11%ittler, 1978, Colak and
Isik, 2003] (SFS) are the two most commonly usedpper methods that exploit a
greedy hill-climbing search strategy. SBE startshwithe set of all features and
progressively eliminates the least promising omdsereas SFS does the opposite.
Similarly, the termination criteria are contraryhile SBE stops if the evaluated
performance drops below a given threshold, SFS &stsires until performance
stops improving. The main drawback of these methed$hat they cannot alter
already chosen subsets. It means that if a feawegained (resp. deleted), it cannot
be discarded from (resp. reselected to) the regutibset. As a result both SFS and
SBE can easily be trapped into local minima. Morepvkey produce ‘nested
subsets’, i.e. the subset of the four best featchesen must contain the subset of
the three best features, and so on. It has beewnsimopractice that the actual best
four features may not contain any of the actualt libsee features [Jain and

Zongker, 1997].

To overcome these problems [Pudil etal.,, 1994]ppses Sequential

Forward/Backward Floating Search (SFFS, SFBS) thegbimes a greedy search
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with the ability to backtrack after each sequergtalp, so that it can locate a better
subset. Adaptive versions of the floating searckhows were proposed by [Somol
et al., 1999]. The adaptive methods (ASFFS, ASFB&¥ider adding or removing
variable number of features in each sequential giepearch for a better subset
depending on closeness to the desired number nirésd . Recently [Nakariyakul
and Casasent, 2009] has extended Sequential FoRrl@atng Search method by
adding a checking procedure whether removing aatufe in the currently selected
feature subset and adding a new one at each s&jst@p can improve the current

feature subset.

2.2.1.2.2.2.Random Search Strategy

Genetic algorithms [Siedlecki and Sklansky, 1988fae and De Jong, 1993, Yang
and Honavar, 1998, Raymer et al., 2000, Oh et @04Rand simulated annealing
[Metropolis et al., 1953, Kirkpatrick et al., 198Bpak, 1992, Meiri and Zahavi,

2006] are stochastic methods for feature subsettsah which belong to the class
of Monte Carlo algorithms [Fishman, 1996, Rubinst@ml Kroese, 2008]. These
two classes of techniques are based on the assumtpét large domains of data are
organised and can evolve to simulate specific @®&E® occurring in nature. Genetic
algorithms (GA) are inspired by Darwinian biolodigainciples of evolution and

natural selection, where simulated annealing (S#) the rough physical analogous

to the annealing process in metallurgy.

Application of GA for feature selection was inspirby [Siedlecki and
Sklansky, 1989] who represents a feature subsatfa®ed length binary string (a
so-called chromosome), where the value of eacltiposn the string represents the
presence or absence of a particular feature. ThgtHeof the binary string
corresponds to the total number of available festurhe algorithm starts with an

initial random population of subsets. Afterwardsratively each chromosome is
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evaluated on the basis of its overall fitness wéhpect to the given application
domain. The high performing chromosomes will suevand breed into the next
generation. The next generation of subsets is fdrine using two main genetic
operators, i.e. crossover and mutation [Holland5]19The crossover operation is
responsible for mixing random parts of two diffdrparent chromosomes to create
two new offspring, whereas mutation randomly changemponents of a single
parent to insert new information into the populatidhis population of competing
solutions evolves in parallel over time. Eventuality converges to an optimal
chromosome since the best features are inheritedgdtine evolutionary process to

the next generations with respect to the given.goal

The major advantage of GA are their rapid convergefGheyas and
Smith, 2010] however the combination of crossovet a low fixed mutation rate
may still trap the search in a local minimum [Ghewad Smith, 2010]. GA can
deal with large search spaces efficiently and pgowe obtain closer suboptimal
solution to global optimum in comparison to greesgquential approaches,
especially with the increase of interactions améemfures [Vafaie and De Jong,
1993, Yang and Honavar, 1998]. Moreover, they obtatter performance and
parsimonious in the number of features requiredciueve that accuracy [Raymer
et al., 2000]. To reduce time complexity, [Oh et @004] introduces hybrid GA

where crossover and mutation operations are foliolelocal search operations.

Simulated annealing (SA) is an iterative, adapéiad probabilistic method
initially introduced by [Metropolis etal., 1953]na later popularised by
[Kirkpatrick et al., 1983]. It takes random walksdugh the problem space, where
the probability of taking a step is determined Iy Metropolis criteria [Metropolis
et al., 1953]. Application of simulated annealirg feature selection is motivated

by the following simple idea [Haykin, 1998]:
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When optimising a very large and complex syste &.system with
many degrees of freedom), instead of always goingndii, try to go
downhill most of the time.

The simulated annealing algorithm starts with alcanly generated initial
subset and attempts to iteratively improve it. Atkeiteration, the algorithm selects
a random ‘neighbouring’ feature and computes tlifiergince in evaluation quality
(i.e. energy difference) between the current amdliceate subsets. If the new subset
is better for a given application, then it is au&tically retained. Otherwise, the
new subset is accepted with a probability deterchibg the Metropolis criteria
[Metropolis etal.,, 1953]. Based on the laws of mhedynamics, in most
applications a variant of the Boltzmann distributisnused for calculating this
probability. It depends on the energy differencel amrrent temperature, i.e.
parameter which gradually decreases with the dlgariprogress. This changing
temperature causes a progressive decline of theapildy for accepting the bad
new subset By occasionally accepting inferior stdygbe SA algorithm is able to
escape local optima. This acceptance is directbtad to the temperature, so it is
more likely to happen in the beginning of the psscand less probable later. As the
algorithm progresses, the temperature is graduwatlyced until it vanishes and a

final solution is obtained.

The strength of SA is good global search abilittheveas its main
weakness a slow convergence speed [Gheyas and,Si0itB]. SA proves its
robustness against local minima in [Meiri and Zah2006] and demonstrates a
high evaluation performance in [Lin et al., 2008jde-and-Seek SA [Romeijn and
Smith, 1994] extends standard SA by picking a ramdeature from all feasible
regions following a random vector instead of usandy neighbouring regions. As a
result, Hide-and-Seek SA converges faster and rctosgiobal optimum regardless

of how quickly the ‘temperature’ falls to O.
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[Gheyas and Smith, 2010] introduces a hybrid atbori SAGA which
combines the ability to avoid being trapped in @laninimum of SA with a very
high rate of convergence of the crossover opet@A. The SA algorithm here is
a mutation-based search approach which correspgonaildong jump in the search
space. SAGA shows the best performance over mabgesueature selection

methods including GA and SA [Gheyas and Smith, 2010

2.2.1.2.2.3.Summary of Wrapper Selection Methods

The main advantage of wrapper approaches is tlgt &m at finding features
better suited to the predetermined machine learalggrithm resulting in superior
performance of the underlying induction algorithMoreover, they include the
interaction between feature subset search and nsmdettion, and the ability to
take into account feature dependencies. In additemdom wrapper methods are

less sensitive to local minima.

However, a common drawback of these methods istlilegthave a higher
risk of over fitting than filter techniques. Besiddsey also tend to be more
computationally intensive especially if running uation algorithm has a high
computational cost [Kohavi and John, 1997, Blum hadgley, 1997]. Moreover,
the solution suffers from the lack of generalitince it is tuned for a specific
induction algorithm. Finally, both GA and SA rely several user determined
parameters which may significantly impact the solutCurrently, established rules

do not exist for selecting these parameters.
2.2.1.3. Stopping Criterion

The feature selection process should stop wheneaifsal stopping criterion is

reached. Some frequently applied stopping critechude:

* The search completes.
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* Some given bound is reached, where a bound can rbmienum number of

features or maximum number of iterations.

* The ‘probe’ method, i.e. whether further additia ¢leletion) of any feature

deos not produce a better subset.
» A sufficiently good subset is obtained accordingame evaluation function.
* Predefined time limit.
2.2.1.4. Validation

The validation procedure is not a part of the femgelection process itself. It tries
to test the validity of the selected subset of Uesg. A straightforward way for
result validation is to directly measure the resising prior knowledge about the
data. In real-world applications, however, suchwkiedge is usually unavailable.
Hence, the validation process relies on some iotlimethods which monitor the
change of mining performance with the alterationfedtures (e.g. classification
error). This is achieved by simply conducting tthefore-and-after” experiment to
compare the error rate of the learning algorithnttenfull set of features and that

learned on the selected subset.
2.2.1.5. Summary of Feature Selection Methods

The selected optimal set of features can be seitablunderstand the physical
process that generates the patterns, therefonaréeselection has proved to be very
popular approach in some applications especiallyaittern recognition [Jain et al.,
2000, Raymer et al., 2000, Oh et al., 2004, Dramieskl., 2008, Lin et al., 2008,
Forman, 2008, Hua et al., 2009, Rodriguez-Lujan.e2810, Gheyas and Smith,
2010] and bioinformatics [Saeys et al., 2007]. Heosve the huge disadvantage is
that the obtained solutions are always relativeatoertain evaluation criterion.
Moreover, it is difficult to propose meaningful éwation criterion in many

domains including computer vision, graphics, speeclognition, image processing

-38-



CHAPTERZ2 State of the Art Review 2.2 Dimensionality Reduction

etc. A brief summary of discussed feature selectimethods according to the

framework depicted in Figure 2.4 is presented iblgd2.1.

Table 2.1. Categorisation of feature selection algo rithms for dimensionality

reduction.
Search strategies
Complete Sequential Random
Separability B&B Relief
Chi, I1G, BNS
Information SFG MCFS
s| B DTM
g | @
= Dependency QPFS CFS, FCBF
o
S MaxRel, MRMR
©
TE Consistency Focus LFV, QBB
i
AB&B

5 | System SFS, SBE GA

Q.

& | performance SFFS, SBFS | SA

=

SAGA

2.2.2.Feature extraction

Feature extraction is defined as the transformatoiand combination of the
original multidimensional features in order to gete a completely new set of
informative features in a space of fewer dimensifBacker etal., 1998]. In
contrast to feature selection methods, here a rieatector is defined as a data
sample. Feature extraction is a powerful altereativfeature selection since it aims
at preserving most of the original information ilon@ appropriate low dimensional

representation [Jain et al., 2000, van der Maatah,£2009].

-39 -



CHAPTERZ2 State of the Art Review 2.2 Dimensionality Reduction

Given a space of featuré(s:{ Y| yD]RD, i= 1.N} , the linear or nonlinear
transformation functionF is defined to map the original feature space iato
subspace of reduced dimensional}(y:{ x | xORY,i= 1.N} (Figure 2.7):

F:Y - X, YORP, XOR®

2.3
X o X= F(y):R? - R® (@3)

whered <D (oftend << D). A corresponding reconstruction mapping functibn

is given by:
f:X - Y, XOR?, YOR® (2.4
y - y=f(¥:R" - R
D d
(Yn Yo Ys Yu Yis Y Yio Y = X Xit X Xi3 id\
(o000 0060 @ x=Fv o 0¢ ¢
o000 00 ® T X 'S
00000 ° e o
o000 00 ® T X 'S
e00000 0 P ALK S
o000 00 ® T X 'S
T ieeeeee e, ., +46 o
0000066 ofnurc dss &
00000 oo o
00000 o X X 2 <
e00000 ® 'YX K

~

Figure 2.7. Principle of the feature extraction and notations.

The fundamental assumption that justifies featuteaetion is that the high
dimensional data is actually distributed, at lesgbroximately, on a manifold of
smaller dimension than the data space (for theclteasininology and explanation of

manifold concept please see section 2.2.2.1). Asrsequence, the objective of
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dimensionality reduction is to uncover this embetdenifold structure from the
high dimensional data space. Solving this problenreaferred to as manifold
learning, since the task is to “learn” unknown getmy of a manifold from a set of

points [Camastra and Vinciarelli, 2008].

An overview of feature extraction methods is degcin Figure 2.8. A
much broader review and comparison of determinfsimeworks can be found in
[van der Maaten et al., 2009], where probabiliftieneworks are the main concern
of work [Quirion et al., 2008]. Generally, featwgtraction techniques are divided
broadly into two categories, i.e. deterministic grdbabilistic frameworks. Both
categories are further classified into two mainssés: linear and non linear
methods. Linear methods assume that the data lmosmately on a linear
subspace of the high-dimensional data. Since meat datasets are highly
nonlinear, linear methods cannot model the cureatamd nonlinear structures
embedded in most observed spaces. As a consequand@ear methods were

proposed to address this issue.

‘ Feature extraction methods ‘

Deterministic Probabilistic

Linear ‘ Linear ‘ ‘ Nonlinear ‘
‘Preservm lobal pro ertles‘ ‘ Preserving local properties ‘ Mixture of linear Nonlinear
99 prop 9 prop models mapping function

‘Dlstance preservatlon Kernel based

[ PCA ] LLE PPCA GT™M ]

Figure 2.8. Taxonomy of feature extraction algorith  ms for dimensionality reduction.
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2.2.2.1.Manifold Theory

A manifold is a topological space of dimensionatitythat is locally Euclidean, i.e.,
around every point, there is a neighbourhood thabpologically the same as the
open unit ball inR® [Hirsch, 1976]. For instance, let's consider thighh
dimensional spaces shown in Figure 2.9 which greesented in eitheR? or R®.
Since these spaces are parameterised by only ortevcorvariables, they are

intrinsically one or two dimensional manifolds erdded in two or three

dimensions.
a) b) c)
D
i
x.
x /
X
g ek Do,

M :{YDRZ:Y: f(v), uz<o,1>} M :{YIZI]R3:Y: (), LD[ u, g}} M :{YDR3:Y: f(yy, ya< o,b}

RCOS 2T Rcos2mu (S+ Reos2ru) cosZr
f(u):{RCQSZmJ f(u)=| RsinZru fu,v)=| (S+ Ros2ru) sinZ
sin Su Rsin2mu
D={D,D} ~dH }h D={D,D,D} -~d£ } D={D,D,D} ~dH uy
Uil X% X
X X X X
x x x
KR Paad HK—HKAKWOOH— KK * X HH MM AKX xxxx x i ¥ x
0 1 Ua Us X%
X X x o L i) x
x X i XX xx
u u \%

Figure 2.9. Examples of one (a,b) and two dimension al manifolds (c) embedded in

either two (a) or three dimensions (b,c).

From a mathematical point of view, the concept ahifold is defined by
recalling the following definitions from differemli geometry and topology

[Camastra and Vinciarelli, 2008]:
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Definition 1. A homeomorphisnis a continuous function whose inverse

is also a continuous function.

Definition 2. A d-dimensionalmanifold M is set that is locally

homeomorphic witlR?. That is, for eaclxOM , there is an open

neighbourhood arouna, N, and a homeomorphisrh: N, - R .

These neighbourhoods are overlapping and referee@d coordinate

patchesand the map is referred to@ordinate charfThe image of the

coordinate charts is referred to as tharameter space.

Definition 3. A smooth(or differentiable) manifold is a manifold such

that each coordinate chart is differentiable withlifferentiable inverse

(i.e., each coordinate chart is a diffeomorphism).

In the context of feature extraction, a smooth ricdehiM is considered: it

lies in a high dimensional spacéM(JR®) and is homeomorphic with a low-

dimensional spaceR‘, with d << D).
2.2.2.2. Deterministic Frameworks

Deterministic dimensionality reduction methods oy$e an objective function that
does not contain any local optima, in other wotds $olution space is convex
[Boyd and Vandenberghe, 2004]. The objective fumctias usually the form of a
(generalised) Rayleigh-Ritz theorem [Horn and Johnd®85] (see example in
section 4.4.1.2, equation (4.20)) and thereforeopdimised by solving the

(generalised) eigenvalue problem [Arnoldi, 1951kKema et al., 1999, Knyazev,
2002]. The final embedded space is formed by eigetovs which correspond to
smallest or largest eigenvalues. Any deterministethod is classified as global or
local one. The global methods perform the eigenahposition of a dense cost
matrix (Principal Component Analysis, MultidimensabrScaling, Kernel Principal

Component Analysis, Isomap, Maximum Variance Unfailj whereas local

methods perform the eigendecomposition of a spawse matrix (Locally Linear
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Embedding, Laplacian Eigenmaps). All these appresichre discussed in the

subsequent sections.
2.2.2.2.1Linear Methods

2.2.2.2.1.1.Principal Component Analysis

A typical and well-established representative afedir methods is Principal
Component Analysis (PCA) which is also known as tlséeling or the Karhunen-

Loeve transform [Hotelling, 1933, Jolliffe, 198%ckson, 1991]. Its popularity is
due to its conceptual simplicity, its analyticaloperties and the existence of
efficient implementations which have polynomial quexity. The objective is to

obtain a low-dimensional representation of the déat preserves maximum
amount of variance. In fact, this defines an ortramal coordinate system where

the correlation between different axes is minimised

In mathematical terms, PCA reduces dimensionalitsh vein orthogonal

linear transformation:

x=A'y (2.5)

which projects a number of (possibly) correlatedaldes into a smaller number of
uncorrelated variables callguincipal componentdt can be shown that this linear
mapping A is formed by the top eigenvectors of théxD covariance matrix
C= N‘lziNzlyi y assuming that the input pattergsare centred on the origin. The
first principal component accounts for the largestiability in the data, and each
successive component accounts for the largest namgavariability. PCA is an
optimal linear dimension reduction technique in tihean-square sense, i.e., it
minimises the errors in reconstruction of the aoragidata from its low-dimensional
representation [Jolliffe, 1989, Jackson, 1991]. PGAan example of a non-

parametric feature extraction which produces a umigolution regardless of the

- 44 -



CHAPTERZ2 State of the Art Review 2.2 Dimensionality Reduction

distribution of the data, as long as the data limve variance along the principal

axes.

Figure 2.10. Geometrical interpretation of PCA. The PCA projects the data along the

directions where the data vary the most.

2.2.2.2.1.2.Multidimensional Scaling

Another classical example of linear methods is Mirtensional Scaling
[Torgerson, 1952, Kruskal, 1964, Cox and Cox, 199D§). In practice, MDS
covers a collection of techniques sharing the comgmal of faithfully preserving
the inner products between different feature vectorhigh and low dimensional
spaces. This is achieved by, first, constructirgggioximity matrix which measures
the pairwise similarity among all patterisand, then, optimising a stress function.
The stress function measures the error betweepdheise inner products in the

low-dimensional and high-dimensional representatiofithe data:

g:Z(yi.yj—)l(.x) (2.6)

ij=1

The minimisation of the above cost function dependsthe specific
properties of the chosen inner product. In most@gghes MDS is motivated by the
idea of preserving pairwise distances which areveded into equivalent dot

products with a formula:
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7(S) = —% csé 2.7)

1T . . . :
whereC = (I _W) denotes the geometric centring matrix &id{ X ¥, 1 is a

matrix of ones with the sizBlx N . This leads to a technique called the metric MDS
which exploits the raw stress function of any diseametric, such as the Euclidean

and Manhattan distances [Cox and Cox, 1994]:

=3 (r(dist(y, y))~r(dis( k K) (2.8)

=1
A solution is obtained from the spectral decompasiof the Gram matrix
of inner productsg; =y [y =—-0.5C dist(y, y) C [Cox and Cox, 1994] and
selecting thed dominant eigenvectors. The classical MDS is ecigpease of
metric MDS where Euclidean distances are employi@dgerson, 1952]. Though
based on a somewhat different geometric intuittdassical MDS is closely related
to PCA and yields identical output patterns. Thenemtion between PCA and

classical scaling is described in more detail inlljg¥ns, 2002].

Alternatively, Sammon’s cost function is used ie tmetric MDS to put
more emphasis on retaining distances that werenaflg small [Sammon, 1969,
Cox and Cox, 1994]. This is achieved by weightingdbetribution of each pair (i,
J) in the stress function using the inverse of thmirwise distance in the high

dimensional space:

_ 1 (r(dist(y, y))-z(dis{ x x)))°
> rdisty, ) r(dist(y, ¥ ))

(2.9)

Finally, the non-metric MDS [Kruskal, 1964] is cathered as a nonlinear
approach since it discovers the underlying stractof monotonic data by
maintaining the rank ordering of the interpointtaice based on the ranking of the

value of dissimilarities derived from the originaput space:
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= D2 (TdistOg, ) ~7(dis % )

> T(dist(y, y)) (219

where c]ist(x, X ) are pseudo-distances derived from ¢h&t(x, X ) with Kruskal's
monotone regression procedure [Kruskal, 1964]. Tdreycalculated in such a way
that their rank order matches perfectly the rameoof thedist(y, y) and they are

as close as possible to thest( x, x ) [Kruskal, 1964].

The minimisation of Sammon’s metric MDS and non noeMDS is
generally performed using either the conjugate igrdad back propagation
[Johansson et al.,, 1992] or a pseudo-Newton mefBattiti and Masulli, 1990,
Cox and Cox, 1994].

2.2.2.2.1.3.Summary of Linear Methods

PCA and MDS are well-established linear methodsdubg the research
community. However, the fact that they rely on #ssumption that the data must
lie approximately on a linear subspace of the hlghensional data limits

significantly the scope of potential real life apptions.
2.2.2.2.2Nonlinear Methods

2.2.2.2.2.1 Kernel-based Approaches

Kernel PCA (KPCA) is the nonlinear generalisatidriraditional PCA in a high-
dimensional space that is constructed using a kdumetion [Schélkopf et al.,
1997]. If the data is distributed in a nonlinearywhen it should be projected on a
curve rather than a line (Figure 2.11). Such distton may be linearised using
nonlinear mapping from the input spa¢eto a higher dimensional feature space,
i.e. a Hilbert spacéd of possibly infinite dimension, using empiricalrkel map
®:R° - H,®(y)OH [Scholkopf and Smola, 2002]. Here the mappigis

approximated implicitly by the form of a dot produ® (). ® (0] in the feature
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spaceH . These inner products are computed using kernettifons without
actually performing the mappin@® [Scholkopf et al.,, 1997]. Formally, for an
arbitrary pair of data pointsy, and y; , the dot product between them
®(y,) « @(y,) is parameterised by the kernel function

ki =K(Y,y;) =P(y) « P(y) (2.11)

This kernel function can be any function which S&ks Mercer's condition
[Mercer, 1909, Courant and Hilbert, 1953], i.e.agvise to a positive semi definite

Mercel kerneK :{kij li,] = 1.N} . Popular choices for the kernel function include:
* thelinear kernelx(y;,y;) =y « y (makes KPCA equivalent to standard PCA),
+ the polynomial kernelx(y;,y,) = (b+y - y ),

* the Gaussian kernel:
1
K(Y.Y)) =expE 055 (4 -y Yy -y) (2.12)

It is assumed that the data have a zero mean ifedhare spacH , thus in
practice, the symmetric kernel matik is double centred by subtracting out the
mean from each feature vector. Finally, KPCA computhe d dominant
eigenvectorqv;| j=1.d} and eigenvalue§/, | j =1.d} of the kernel matrix to
produce a low dimensional representation whichinearly related to the feature
space, however nonlinearly related to the inputtepdigure 2.11). In order to
obtain the low-dimensional data representationa date projected onto scaled
versions of the eigenvectors. The result of the projection is given by [Schdiko

et al., 1997]:

N

x={Y —— K(y, ¥)| j=1.d} (2.13)
=N/N

k=1

Although KPCA is robust against local minima, a sabtial disadvantage
is that it is sensitive to the choice of kerneldisdifferent kernels produce different

low dimensional structures which display differgetrformances. Since no a priori
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knowledge is available, a whole space of kernettions has to be explored in
order to find the most suited to a particular tasloreover, KPCA is
computationally very expensive, especially for &atgaining set, since it requires
evaluation of the kernel function in respect offalrs of training points. To address
this problem [Tipping, 2001] proposed to approxientite covariance matriK in a
feature space by a subset of outer products ofifeatectors using a maximum

likelihood criterion.

2 .
D, R @ H \ D,
® _ a )
° KOy =(Y + ¥) ° °
o @
Y o () AN e
o ) .
e D () D
1 o A
® J® e . o oo
.kldl

Figure 2.11. The principle of kernel PCA: using a n on-linear kernel function K
instead of the standard dot product, PCA is perform ed implicitly in a possible high-

dimensional space H whichis nonlinearly related to the input space.

2.2.2.2.2.2. Embedded-based Approaches

Embedded-based approaches, also called spectrhlodsethave emerged as a
powerful tool for unsupervised nonlinear dimensldapareduction and manifold
learning. They aim at preserving some geometricapgrty of the underlying
manifold by constructing neighbourhood graphs whielkpress nonlinear
dependencies between high dimensional points. &paoethods can broadly be
divided into three families according to the wawpttee vectors are expressed in

function of their neighbours:

e Locally Linear Embedding [Roweis and Saul, 2000} &,
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» Laplacian Eigenmaps [Belkin and Niyogi, 2002] (LE),
* Isometric Feature Mapping [Tenenbaum et al., 2QB@jmap),

All these methods seek to produce an embedded splaeee proximity
relations are preserved, so nearby points in datces remain close in low
dimensional space. However, while Isomap attempisaintain global geometric
properties, LLE and LE focus on preserving localrgetry in each neighbourhood,
which implicitly tends to keep the global layout tdfe data manifold. These

methods share the same structure of algorithm wkighustrated in Figure 2.12.

Free
parameter - d

High dimensional i
feature vectors Construct a Determine Construct cost

neighbourhood weights matrix
for each data (method (method

Frete K point dependent) dependent)
parameter -

Solve
eigenvalue
problem

Low dimensional
feature vectors

Figure 2.12. Dimensionality reduction using spectra | methods.

Briefly, the algorithm structure consists of thdldwing steps. First, the
neighbourhood for each data point is constructetl vaeights, which express the
geometrical relationship between each data poitismeighbours, are determined
according to the property to be preserved. Thech eaethod derives a cost matrix
from this weighted graph and optimises it subjectconstraints that make the
problem well-posed. Finally, low dimensional embieddis obtained from the

Eigen-decomposition of the cost matrix.

2.2.2.2.2.2.1.Neighbourhood Construction

All algorithms start by finding neighbours for eagata point of the dataset. Since
the neighbourhoods overlap with one another, aajledpology of manifold is

efficiently described by a combination of theseghéiourhoods in a coherent
structure. In addition, for local methods, it issased that within each

neighbourhood the manifold is approximately lin€ghis is justified by Taylor's
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theorem that any differentiable function becomegpreximately linear in a
sufficiently small region around a point [Kline, 98].

The neighbourhood for each point is formed by g&lgceither the K-
nearest neighbours or neighbours whose distancesloaver than a constant
thresholde¢, i.e. points belonging to a hyper sphere of radiughe Euclidean
norm was used as distance metric in the originpema[Tenenbaum et al., 2000,
Roweis and Saul, 2000, Belkin and Niyogi, 2002].c&@ese of its conceptual
simplicity and its robustness against data dengigy K-nearest neighbour approach
is far more popular in the research community. Bdveethods to automate the
process of the parameter selection have been pdpgd&uropteva et al., 2002,
Samko et al., 2006, Karbauskait et al., 2007, Gaigiland Ritov, 2009]. Detailed
discussion about selection of the neighbourhooel s&n be found in section 3.2.1.
For a large dataset, the identification of neighlbas realised very efficiently with

the usage of kd-tree [Bentley, 1975].

2.2.2.2.2.2.2.Determination of Weights

WeightsW express the magnitude of geometrical relationsld@fpween each data
point and its neighbours.

In LLE, they summarise the neighbours’ contributibm the linear
reconstruction of a data point and are obtainedsdlying a least square error
problem in the original space [Roweis and Saul, @08y design, these
reconstruction weights reflect intrinsic geometpioperties of the data and are
invariant to translations, rotations and scalingerefore, they are expected to be
equally valid for characterisation of the local gery in the low dimensional
patches of a manifold.

In the case of the LE and Isomap algorithms, thigite are relatetd the

distance between a high dimensional point and eightbours using respectively
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heatkernel [Belkin and Niyogi, 2002] and Euclidean diste [Tenenbaum et al.,
2000].

The manifold is then approximated, by an adjaceumcglirected graph.
Nodes in these graphs correspond to the data ppmct®dges represent the weights
between points, i.e. neighbour relations. Grapbsaty locally connected (through
the neighbourhood of each point), because an edgeection exists only if its
weight is not equal to 0. However, one of key agsions behind the
neighbourhood size selection procedure is to creaeapping neighbourhoods on

the manifold, thus a fully connected graph candsembled (Figure 2.13c,d).

Figure 2.13. Examples of fully connected neighbourh  ood graphs for: a,c) s-curve and

b,d) swissroll.

In the case of Isomap which aims at preservinggtbbal topology of the
manifold, the geodetic distancesst; (Y, y;) between all pairs of data points on the
manifold are estimated. The geodetic distance letviwo points is defined as the

minimum length of all possible paths encapsulatédimthe manifold joining both
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points [Do Carmo, 1976] (Figure 2.14). Locally, theodesic distance is equal to
the Euclidean distance between two points in tigd dimensional space. However
this approximation breaks down for distant poifitserefore, globally, the geodesic
distances are estimated by computing shortest giatances in the graph using a
technique such as the Floyd-Warshall’s algorithhoy&, 1962, Warshall, 1962] or

the computationally more efficient Dijkstra’s algbm [Dijkstra, 1959].
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Figure 2.14. One dimensional manifold embedded in a two dimensional space

illustrating a difference between Euclidean and geo  desic distance. Let's consider

of Euclidean distance (b) does not

two red points in the spiral (a), the preservation
wo points in the one dimensional

reflect the intrinsic dissimilarity between these t

manifold (d). In contrast, the geodetic distance (¢ ) is able to encapsulate adequately

the relationship between these two points along the one-dimensional manifold (e).

-54 -



CHAPTERZ State of the Art Review 2.2 Dimensionality Redugctio

2.2.2.2.2.2.3.Cost Function and Cost Matrix

In the next step, an appropriate cost function eodesponding cost matrix are
constructed. Since the calculated weights refleetintrinsic geometric structure of
the manifold, an embedded manifold in a low dimenal space is constructed
using the same weights. This is achieved by opinmgidifferent quadratic cost
functions with respect to the unknown coordinakesand the fixed cost matriw/

(the original inputsY are not involved).

In the LLE method, each low dimensional data pamtreconstructed
entirely from a weighted linear combination of iespective nearest neighbours, so
the d-dimensional coordinateX are chosen to minimise the embedding cost

function :

2
N

X =2 WX

j=1

= tr( X" MX) (2.14)

i=1

whereM =(| —W)T (1-W) is the cost matrix.
Similarly, LE minimises the relative distance beéwenodes in a graph in
order to preserve proximity relations between miAs a result, the following cost

function was designated using similar components:
13 2
:Ezux =% [ w = tr( X" LX) (2.15)
ij=1

Here, the cost matrixL is called the Laplacian matrix and is defined
by:L=M -W, whereM =diag{ m, m,..., m,} is a diagonal matrix with entries
m :ZLWJ :

The optimisation of the above objective functioagperformed subject to
the following constraints [Roweis and Saul, 2008lkis» and Niyogi, 2002]:
e a square cost matrix is real, symmetric and pasitsemidefinite (i.e.

Hermitian).
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» the outputsX are centred on the origin,
« embedding vectors have unit covariance.

Isomap tries to preserve the distances and angiggebn nodes in the
graph; however its cost function has a differentmiglation. Isomap can be
understood as a non-linear extension of the claksmetric MDS (section
2.2.2.2.1.2), in which, estimates of geodesic dista along the sub manifold are
preserved instead of standard Euclidean distahcesther words, Isomap tries to
discover points whose pairwise Euclidean distardis (%, %) in the embedded
space match geodesic distancisi; (Y, ¥;) in the high dimensional data space. As
a result, derived from the equation (2.8), thedwihg objective function was

proposed:

£=) (r(dists(y, ¥))-7(dist (% X)) (2.16)

2.2.2.2.2.2.4.0ptimisation

In the last step, the actual low dimensional regmétion of data points is revealed
through optimisation of an objective functioargmin, &). The optimisation of this
constrained quadratic programming problem is peréat by introducing Lagrange
multipliers [Mizrahi and Sullivan, 1990] to enfortlee constraints to an objective
function.

The embedded space is spanned by the eigenvectors given by either the
d smallest nonzero eigenvalues in the case of LLE BE or thed largest
eigenvalues for Isomap. Eigenvectors and eigensasue calculated by spectral
decomposition of cost matrices [Arnoldi, 1951, Fekla et al., 1999, Knyazev,
2002] according to the generalisation of the RayidRitz theorem [Horn and
Johnson, 1985]:

e LLE: eigenvalue problem is solved on the sparsé madrixM .

e LE: generalised eigenvalue problem is solved orspagse cost matrix.
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* Isomap: eigenvalue problem is solved on the deose matrix (dist; (Y, ¥))

wherer is defined according to equation (2.7).

2.2.2.2.2.2.5.Extensions

Since research into embedding based approachesddes very active, many
extensions and improvements have been suggestete 8bthem are summarised

in this section.

Instead of preservation of the specific local gemimeelationships (LLE,
LE) or isometric structure of data (i.e. distaneg®l angles) (Isomap), in some
scenarios a more faithful embedding of high dimemsi data can be obtained by
maximally preserving only angles in each neighboath [De Silva and
Tenenbaum, 2003, Sha and Saul, 2005]. Based omrdhiept, conformal Isomap
[De Silva and Tenenbaum, 2003] and conformal eiggrar{Sha and Saul, 2005]
(extension of LLE and LE) were proposed which afieno maintain explicitly
these local angles. Note that the class of conforemabeddings includes all
isometric embeddings, but not vice versa.

Alternatively, Hessian LLE [Donoho and Grimes, 2D03essian
Eigenmaps [Donoho and Grimes, 2003] and Local Taingpace Alignment
[Zhang and Zha, 2005] (LTSA) explore the geometradations between
neighbouring data points in a local tangent spabéetwis constructed at every
point. Hessian LLE minimises the ‘curviness’ of thigh-dimensional manifold
under the constraint that locally the low-dimensiordata representation is
isometric. The local tangent space at every datat @ described by the Hessian,
thus, the global curviness of the manifold is meaduoy means of these local
Hessians. Hessian Eigenmaps are based on a souitaept: they simply replace
the Laplacian manifold by the Hessian manifoldcémtrast, LTSA aligns all local

tangent subspaces to construct a global coordgyastiem for a nonlinear manifold.
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The local tangent space is constructed by applpi@d in each neighbourhood, so
a linear mapping is defined from a high-dimensiahtia point to its local tangent
space. It is assumed that a similar mapping cancbmputed from the
corresponding low-dimensional data point to theesgonal tangent space.

Since the process of dimensionality reduction ugilodpal methods is very
computationally demanding in comparison to locathuds [van der Maaten et al.,
2009], [De Silva and Tenenbaum, 2003] proposedcarleration procedure which
initially reduces dimensionality of a small subsétlandmark” feature vectors. In
turn, the rest of the embedding is approximatednftbese landmarks using the

Nystrém approximation [De Silva and Tenenbaum, 2003

By definition, all presented methods are unsuped/algorithms; therefore
they do not take into account the availibility oditd labels when producing the
embedded space. To address supervised learningem®l{e.g. classification) a
few extensions were proposed. They include disc@ami Isomap [Yang, 2003],
supervised LLE [De Ridder et al., 2003] and senpiesuised LE [Zheng et al.,
2008].

2.2.2.2.2.2.6.Summary of Embedded-based Approaches

All methods discussed here are based on the assuntbat the observed data are
densely sampled, also called smoothly sampledherDedimensional manifold in
the data space and the underlying embedded marafogls. In such case, local
linearity assumption is valid for LE and LLE, thesch patch can be characterised
accurately by linear coefficients which encapsulgeometrical relationships
between points. In the case of Isomap, it is asduthat the geodesic distance
between nearby points is approximately linear. Thius geodesic distance between
two near points is well approximated by the Euditdedistance in the high-

dimensional data space.
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These methods do not provide any explicit genariccion for mapping
between low and high dimensional spaces nor prbb@bidensity model. As a
result, embedding for new unseen points cannotibaireed directly. Despite this
limitation, these methods have proved very popudacause they can handle
efficiently very large high dimensional datasetsp@ially local methods) and scale
well with dimensionalityd . Moreover, the analytical non iterative optimieati

process guarantees a unique global solution.

2.2.2.2.2.3.Maximum Variance Unfolding

Maximum Variance Unfolding [Weinberger and Saul02D(MVU) is a global
nonlinear dimensionality reduction method inspifegd KPCA and embedding
based approaches. Since the choice of the keragé [@ crucial role in KPCA,
MVU attempts to learn kernel matrix from neighbourhood graph restrictions so

that the kernel function does not need to be ahasznually.

The algorithm structure is similar to embeddingdabhapproaches (Figure
2.12). First, the neighbourhood for each data pw@intonstructed as described in
section 2.2.2.2.2.2.1 and the fully connected ajag graph is assembled. In
contrast to spectral methods, MVU employs a venyp$e rule for edge weights: a
value of 1 is assigned to each pair of neighboWesifberger and Saul, 2005].
From such discretised approximation of the manjfofe kernel based matrix is

derived.

MVU aims at preserving exact distances and angiésden nodes in the
graph. This is achieved by maximisation of the Itotariance which pulls

embedding coordinates as far apart as possible:
1 2
:NZHK _XjH :Z”)I(”z (2.17)
1] i

with local isometry constraints to maintain pairgvdistances and implicitly angles:
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2
(ki =2+ ) =[y=y]" w (2.18)
where K is a cost Gram matrix where the inner proddgts X « X . As a

consequence of this formulation, a quadratic pnognang problem (2.17) is

simplified to a linear programming problem:
N N
=% => k =tr(K) (2.19)
i=1 i=1

A low dimensional embedding is discovered by opation of the above
constrained linear programming problem wusing senefinde program
[Vandenberghe and Boyd, 1996] followed by the etgmomposition of the
obtained cost matriX . The embedded spacé is spanned by the eigenvectors
given by thed largest eigenvalues.

Similarly to Isomap, MVU is a global method withdanse cost matrix,
hence the optimisation process is computationaahding. Inspired by landmark
Isomap [De Silva and Tenenbaum, 2003], [Kilian let 2005] proposes a
conceptually similar acceleration procedure, wheremall subset of “landmark”
feature vectors is used for dimensionality reductitn turn, the rest of the
embedding is approximated from these landmarksgusifactorised approximation
of the Gram matrix [Kilian et al., 2005]. Sincei#t easier to optimise a linear
programming problem than a quadratic one, [Houl.et2®09] presents a linear
reformulation of the LLE and LE cost functions, was [Wang and Li, 2009]
combines MVU and LE to design the distinguishingiarace embedding method
which maximises the global variance subject toaxipmity preservation constraint

derived from LE.
2.2.2.3. Probabilistic Frameworks

The main limitations of the previously describedtimoels are the absence of an
associated probability density and the lack of aegative model, which are

essential in many applications. As a result, arottlass of dimensionality
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reduction methods evolved, the so-called latentabée models [Bishop, 1999]
(LVMs). LVMs are statistical methods for modelliige covariance structure of
high dimensional data using a small number of \e® Comprehensive overviews
of probabilistic frameworks can be found in [Bishal®99, Carreira-Perpinan,

2001, Quirion et al., 2008].

Let's consider an unknown distributiop(y) in an observed data space
YORP (yOY) of which only sample¥ :{ Y| i:1.N} are known. The observed
high-dimensional samples are assumed to be indepéadd identically distributed
random variables, which are generated from an lyidgrlow-dimensional process
relying only ond degrees of freedom (Figure 2.15). Since this m®de defined
by a set of latent or hidden variablesthe entire space of these hidden variables is

referred as the latent spaged R? (x OX,i=1.N).

latent variables:

observed dimensions:

Figure 2.15. Latent variable model with D observed dimensions and d latent

variables. The latent variables may or may notbe i  ndependent.

A point x in the latent space is generated according taca @istribution
p(X) and is related to a higher dimensional observeatesphrough a continuous
and fixed transformationf ¥ - Y . Since M =f()) represents a low
dimensional manifold, where the data would resid¢here was no noise, the
observed distribution of whole data space is agprated by adding the noise
modelp(y| X)= p(y| f(X). Figure 2.16 illustrates the concept of latent afale

models.
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prior p(x)
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Figure 2.16. lllustration of a continuous latent va  riable model with a 2-dimensional

latent space X on the left and a 3-dimensional observed space Y on the right.

The marginal distribution in data space is giventlhg joint probability
density functionp(y, ¥) in the product spac¥x X by integrating over the latent

space:

P =[Py Y] gy x pXd (2.20)

This is called the fundamental equation of laterdriable models
[Bartholomew, 1984]. According to the above equatiany continuous latent

variable model is defined by three main components:
* a prior distribution in the latent spag¥x),
e asmooth non-singular mapping from latent to obsgispacef (x) ,
* anoise model in the data spae/| X).
Therefore, the objective is to find a combinatidhatent distributionp(x)

along with a uncertainty modgd(y| X) that approximates ‘satisfactorily’, given

observed data, samples using the axiom of loc&peddencei(=1.N):

p(yilx)=|f| (Y| X (2.21)
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This axiom states that, for somde<D , the observed variables are
conditionally independent given the latent variajBartholomew, 1984, Everitt,
1984]. Hence, the goal is to identify the bestrateariables for which this axiom
holds. It is assumed that the density functfy| X) used for the noise model has
the following properties [Carreira-Perpinan, 2001]:

e It is centred atf(x), which would become a single point in the abseoice
noise.

e It decays gradually as the distanceft(x) increases.

* It assigns nonzero density to every point in theeobed space.

« It should have a diagonal covariance matrix to antdor different scales in the
different observed dimensiogg(j =1.D).

The priorp(x), the mapping functionf and the noise modeb(y| X)
usually rely on a set of parameters denoted coliegt by ®. These parameters
relate the sets of latent and observed variablesanfetersb are usually obtained
by iterative maximum likelihood estimation using fimstance the Monte Carlo
simulation [Fishman, 1996, Rubinstein and Kroes€®08 or more often
Expectation-Maximisation (EM) algorithm [Dempstdraé, 1977, McLachlan and
Krishnan, 2008]. Note that all LVMs rely on an apigation process, thus they are
sensitive to local optima.

Since the observed data points are assumed talbpendent, the likelihood

of the full data set is:

p(Y) = I_l 8% (2.22)

where p(y |®) is given by equation (2.20).
Latent variable models are classified as linear modlinear according to

the corresponding functional form used for mappingthe following sections, the
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notation A/ (z| u,Z) will denote a Gaussian distribution overwith meany and

covariance .

2.2.2.3.1Linear Methods

Two well established linear models are factor asialjEveritt, 1984, Bartholomew,

1987] (FA) and probabilistic principal componentskysis [Tipping and Bishop,

1999b] (PPCA). The relationship between the lat@antable and the observed data

point is linear with added noise and expressedéydllowing generative model:
f(x)=Ax+u (2.23)
Y = f(x; A+¢ (2.24)

where the matrixA (Dxd) expresses the linear relationship between thentat
space Y and the data spac€, while the parameter vectgr permits the model to

have a non-zero meas. denotes the Gaussian noise:
p(e)=N(e|0y) (2.25)
while the corresponding conditional noise modelcentred atf(x) with the

diagonal covariance matri :

PCY I X, AY)=NV (Y| T(x; B )=V (y| Ax+uy ) (2.26)

The latent variables are defined to be independerdt Gaussian with a unit
variancep(x) = A" (x]0,1).

According to equation (2.20) and the defined disttions, it can be shown
analytically that the marginal distribution in thata space is normal [Tipping and
Bishop, 1999a, Tipping and Bishop, 1999b, CarrBieapinan, 2001] given the

model parameter® ={A ¢} :

(Y | AY)= [y | X A) j(x) de A (ylu Z )
X (2.27)
T=AA +y

where the sample meanus N'le.
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The goal of LVM is to estimate the parametdrsthat best model the
covariance structure of . A standard approach for fitting LVMs is to margiise
the latent variables by optimising the parametésnvaximisation of the observed
data likelihood given the parametg€Y |®). The log-likelihood of a normal
distribution (2.22) based on (2.27) for the samyples:

L(®) =In p(Y | D) = i In p(y|®)= —% (ND In27+N In[z|+ trE™ C)) (2.28)

whereC is a covariance matrix of the observati®ds (Y - )(Y—- )" . Estimates
for parametersb are obtained via maximisation of the log posteti¢®) using a
variation of the EM algorithm [Rubin and Thayer,829 Tipping and Bishop,
1999b].

Applying the Bayes rule to equation (2.26), thetpoer distribution of the
latent variablesx conditioned on the observation with constant covariance is
estimated by [Tipping and Bishop, 1999a, Carreegsihan, 2001]:

p(x |y, @)= A (AZ7(y-p).(1+ Ry~ A7) (2.29)

The dimensionality reduction processis performed by projecting the
observed data into a representation of the reddoednsionality according to the

posterior mean vectors in (2.29):
X = ATy - p) (2.30)

where the corresponding optimal least-squares rlimeaonstructionf of the

observed data from the posterior mean vectorsgsessed by:
y, = AA A'S x+u (2.31)

The main difference between FA and PPCA is in #sumed noise model.
PPCA can be seen as a maximum likelihood FA in wkhe isotropic noise model
is adopted, i.e. residual varianaggs of covariance matri¥y/ are constrained to be

equal, i.eq =10*. FA thus models the individual noise variability @ach of the
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dimensions, whereas PPCA assumes all dimensioresdraequal noise level. As a
result, while FA parameters are estimated iterftias any other LVM method
(section 2.2.2.3), the parameters of PPCA can bepated explicitly by numerical
singular value decomposition of the covariance ma@r=U,V,S , where
V, =diag{A,...,A;} denotes the diagonal matrix of eigenvalues (olere
decreasingly),U, ={u;| j=1..D} are the associated eigenvectors &ds an
arbitrary rotation matrix. In [Tipping and Bishop999b] it has been shown that,
withZ = AA" + Ig?, the log-likelihood (2.28) is maximised when:

A=U,(V, - Ig*)*? (2.32)
and the corresponding maximume-likelihood estim&oro? is given by:

1 D
ol=—— Y ) (2.33)
D_djg;rl ]

The main advantage of both approaches is the existef a bidirectional
projection function between low and high dimenslospaces; however their

effectiveness is limited because of their glohaéirity assumption.
2.2.2.3.2NonlinearMethods

2.2.2.3.2.1.Mixture of Local Linear Models

Mixture approaches capture nonlinear complexityhigh dimensional space by a
combination of local linear models [Everitt and ldari981]. The objective of a
finite mixture of LVMs is to perform concurrenthyjustering and dimensionality
reduction so that a complicated global structuréhigh dimensional data can be
characterised by a collection of simple modelsiffecent regions of the observed
space. Mixture of local linear models (MLLM) can bmmposed of FA

[Ghahramani and Hinton, 1997] (MFA) or PPCA [Tippimnd Bishop, 1999a]

(MPPCA).
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The probability of observing samphe under a mixture model witK

components is given by:

p(y) =Zﬂk p(yl K (2.34)

where ther, express mixing proportionsn\‘(zO,Zﬂk =1). p(y|K) is a local

LVM on latent space), defined according to (2.20) for each model:

p(yIK=[ pyxRde] By xkpxke (2.35)
X X

where p(x| K)is the prior distribution in the latent space oé tkh component,
p(y| x K) is its noise model, and, = X, - Yis its mapping from latent to data
space. Note that a separate mean vegtoris now associated with each local
model along with a different set of parametefs={ A, ¥, 77} . The log-likelihood

of observing a whole datéd according to equations (2.22) and (2.34) is:

L@ =In[] p(y 19)=[] X7y 19,19= 3 N7, o Y19, . ¥ (2:26)

i=1 =
The maximum of the above log-likelihood with regptxthe parameters

®={o, | k=1..K} can be found by adaptation of the iterative EMo&tbm
[Ghahramani and Hinton, 1997, Tipping and Bish&99a].

Since a collection of local models does not provide global
parameterisation of the manifold, [Roweis et al02] addressed this problem by
proposing an extension of MFA called Global Cooatiion of Local Linear Models
(GCM). This method encourages the global consigtealong the manifold of
disparate internal representations by incorporatingdditional variational penalty
term into the maximum likelihood objective functioAlternatively, [Teh and
Roweis, 2003] present an automatic alignment praeedvhich is invoked after
learning the local dimensionality reduction expdtkC). Thank to the separation
of the learning and coordination processes, therdiign gains efficiency and

avoids local optima in the coordination phase. @iga already trained mixture, the
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alignment is achieved by solving a variant of tHeELeigenvalue problem on the
internal representations of the mixture componeniss framework can be applied

to any set of experts, especially MFA and MPPCA.

Modelling nonlinearity of high dimensional data lay combination of
simple local reducers is an attractive and effectalternative to linear LVMs;
however the main drawback is that a methodologysdtect automatically the
number of mixture components has not yet been daaéisfactory by the research

community.
2.2.2.3.2.2.Nonlinear Function Mapping

2.2.2.3.2.2.1.Generative Topographic Mapping

Generative Topographic Mapping [Bishop et al., 19@3TM) is a nonlinear LVM
which has been proposed as a principled alternatveSelf-Organizing Map
[Kohonen, 1982]. The basic concept behind the &lgoris to define a discrete
prior distribution p(x) given by a sum of delta functions centred on thees x, of

a uniform grid in latent space:
1 K
P(Y) =~ > 3(x= X) (2.37)
k=1

This discrete prior can be seen as a fixed appratkam of a continuous
and uniform distribution using Monte Carlo sampliiMacKay, 1995]. It assigns
nonzero probability only to the pointg{ kE K..CJR. The distribution of the
noise modelp(y| X) is chosen to be an isotropic Gaussian centred ©) and
having a variancg. The mappingf is performed using a radial basis function
network (a special case of a generalised linearetiod

y=f(X)=A@X (2.38)
where @ is a vector of fixed basis functions. Each lamintx, , after projection to

a corresponding point in a data spgceforms the centre of a Gaussian density
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function, as illustrated in Figure 2.17. The setnobdel parameters includes a
coefficient matrix A and a variancg: ® ={A )} . By substituting (2.37) and

(2.26) into (2.22), the distribution function iretivhole data space takes the form:

PYI9)=[ 1 2 Ky 1 %.@) (2:39

The model paramete® are determined by the maximum log-likelihood

of the above posterior using the EM algorithm [Biglet al., 1998]:
N 1 K
L(®) =In p(Y]®) =Y In- > p(y| x.P) (2.40)
i=1 k=1

Since the mapping functio is smooth and continuous, the projected
points have a topographic ordering in the senseattmatwo points which are close
in the latent space will be mapped to the closatpan data space. The initial low

dimensional representation is initialised using PCA

Figure 2.17. Discrete prior distribution p(X) on the left consists of delta functions,
located at the nodes of a regular grid in latent sp  ace. Each node X, is mapped to a
corresponding point  f(X.) in observed space, where it forms the centre of a

Gaussian distribution.

The major limitation of GTM is that, since it redieon Monte Carlo
sampling, it requires a uniform discretised grigddof the latent space . As a result,

both the numbers of latent grid poirs and basis functiong grow exponentially
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with the dimension of the latent space [Bishop, S,98arreira-Perpinan, 2001].
Another shortcoming is that EM estimates may cogedo bad suboptimal maxima

[Bishop, 1995, Carreira-Perpinan, 2001].

2.2.2.3.2.2.2.Gaussian Process Latent Variable Model

Gaussian Process Latent Variable Model was derirad the observation that a
particular interpretation of probabilistic PCA igpeoduct of Gaussian Process (GP)

models [Lawrence, 2004, Lawrence, 2005].

2.2.2.3.2.2.2.1. Dual Probabilistic PCA

In standard approaches, such as PPCA [Tipping asttbB, 1999b], GTM [Bishop
etal.,, 1998] and MLLMs [Ghahramani and Hinton, 7199ipping and Bishop,
1999a], LVMs are learned by marginalising the lateariablesX and optimising
the parametersd via maximum likelihood estimation. In contrast,afirence,
2004, Lawrence, 2005] introduces an alternativer@gh and suggests a novel
probabilistic interpretation of PCA called dual patilistic PCA (DPPCA). From a
Bayesian perspective, the probabilistic model (Ri2itted to the training data by
marginalising over mapping parameteksand optimising with respect to the latent
variablesX . The generative model of DPPCA follows regressqgnations (2.23)
and (2.24), whereas the corresponding Gaussiae aois the noise model itself are
given by (2.25) and (2.26) respectively. The kayowation is that a zero mean and
spherical Gaussian prior is imposed over the gémeréunction parameters in

each dimension of instead on the latent variables:

p(A)=|:|/l/(aI0,l) (2.41)

wherea is ith row of the weight matrixA=[a, a,...]' (Dxd). As a result, the
marginal likelihood of observed data for every dmsien j =1.D is obtained by

integrating over a space of mappings:
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p(yj|x,z/f):j|] Dy | X AY)ADEN (YluE) (2.42)

where the precision of noise model is expressethéytandard PPCA covariance
matrix ¢ = | g and the covariance matrix of the distributioniigeg by:

= XX +y (2.43)

Here, the observed datayY is presumed to be centred at
originY:Y—N‘lziN:l y, thus, the mean is taken to be zgre0. Since the
different dimensions ofY are expected to be independent, the complete joint
likelihood of all observed data dimensions gives lditent positions is:

tr (Z7YYT) .

expt (2.44)

Y1 Xg)= [ (y 05)=—
PV X2 [ (4 102)= sl

The maximisation of the above likelihood is equérdlto minimising the
negative log likelihood of the model:
L(X)==In p(Y| X@)= % (NDIn27+D In[Z|+ tr& ™YY ) (2.45)
The optimisation of the above objective functionpexformed by taking
gradients of (2.45) with respect to the latentatales X [Magnus and Neudecker,

1999] and solving the eigenvalue problem equivaterdtandard PCA [Lawrence,

2004, Lawrence, 2005].

2.2.2.3.2.2.2.2. Gaussian Process

Gaussian processes [O’Hagan, 1992, Williams, 1%®&8&mussen and Williams,
2006] (GPs) are a class of probabilistic modelscivisipecifies a distribution over a
function space on points where the function isansated. GP can be seen as a
natural generalisation of multivariate Gaussiandoan variables, where the
Gaussian process describes a whole function o¥mitea number of variables. In
the context of dimensionality reduction, any GR@ameterised completely by a

mean functiony:R* — R® and a covariance function, or kernkl, R%: - R° .
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Both functions must be of the space on which thecess operates, so that a

Gaussian distribution over an entire space of fanst s :RY - RP, is given by:
s~ N (u.2)

> ={k i,j =1.N} (2.46)

Usually, the mean function is taken to be zen@<0), whereas the
covariance functiork characterises the nature of the functions thatbeasampled
from the process and it is constrained to produwrstipe definite matricex (i.e.
satisfies Mercer's condition [Mercer, 1909, Couramd Hilbert, 1953]). GP
regression adjusts the paramet@rof the covariance matriX over the space of
functions in order to maximise the likelihood oktlbbserved data given the GP
[Rasmussen and Williams, 2006].

Let's consider a simple GP prior over the spacduoictions that are
fundamentally linear with additive Gaussian noi$evariances®. The covariance
function k, =« (%, %)= X x+0°d for such prior is evaluated on the whole
embeddingX to produce the following covariance matrix of theocess where
w=10°:

T=XX"+y (2.47)

Note that the above expression can be recognisdteaovariance matrix
associated with each dimension of the marginaliliked for DPPCA ((2.42) and
(2.43)). For this reason, the complete marginadliifood (2.44) can be seen as a
product of D independent GPs, where each of them is assocwitbda linear

covariance function.

2.2.2.3.2.2.2.3. Gaussian Process Latent Variable Model

GPLVM-based approaches aim at constructing a cootis d-dimensional latent
space for D-dimensional data by defining a smoathlinear transformation from

the latent to the observation space using a GP Ineoda training set of data points
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[Lawrence, 2004, Lawrence, 2005]. A GP prior is @®@d on a mapping function

f in every dimension of the high dimensional spazmading to (2.46):

P(F19)=[] p(f; 19)=[] /(1 102) (2.48)

Therefore, the corresponding likelihood for the eved dimensiony;
(j=1.D) is obtained through marginalizing the mappingction f, (in particular,

the linear function defined in (2.42)):

p(y,-|x,¢)=j|] Py % f@)RfI®)f=A"(y [0z, (249

As a result, since a GP model is completely spatity the covariance
matrix 2, a rich and flexible probabilistic distributiondgfined. Thanks to this the
linear covariance function ((2.43), (2.47)) of DR€an be replaced with a non-
linear kernel function in order to produce a glolaald differentiable nonlinear
mapping from latent to data space. A common chd&acenonlinear covariance
function is a radial basis function (RBF) becausamoothly interpolates the latent
space [Lawrence, 2004, Lawrence, 2005] and saisfiercer's condition [Mercer,

1909, Courant and Hilbert, 1953]:

kij :K(Xﬂi):aexp% ()|(_ )J()T(P(_ P())+0-2q
z={k [i,j=1.N}

(2.50)

where the kernel hyperparamet&rs={a, o2 )} respectively determine the output
variance, the variance of the additive noise aedRBF width.o. is the Kronecker

1

delta function.

In general, there is no closed form solution forxmmasing (2.44) when
nonlinear kernel functions are employed (2.50).ré&fare, the learning process is
performed using two-stage maximum a posterior (MA§)mation. First, the latent
variables are initialised, usually using PPCA oy apectral method. Secondly,
latent positions and the hyperparameters are ogiiteratively until the optimal
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solution is reached. According to Bayes theorens, ith achieved by maximising
the likelihood (2.44) with respect to the latentspions, X , and the

hyperparametersp using the following posterior:

P(X,@|Y)D p(Y] X®) { X 1P) (2.51)

where the priors of the unknowns amg(X)=.A7(0,1), p(®) O |_|iCDi‘1. These
priors are introduced to prevent overfitting on Brvaining sets [Grochow et al.,
2004, Lawrence, 2005]. The maximisation of the &puwsterior is equivalent to

minimising the negative log likelihood of the moaeth respect toX and ®:

L(X,®)=—In p(X,®|Y)=
(2.52)

:%((DN +)In27+D g +tr @YY )+ > X[ )+ > o,

This optimisation process is performed numerichihtaking the gradients
of L(X,®) with respect to the kern& and then combining them with the kernel
gradients with respect to the latent positiodsand the model parametef®
through the chain rule. These gradients are usembmbination with (2.52) in a
non-linear optimiser to obtain a final latent vatea model of the data. Typical
numerical optimisation methods which are employadthis task include the
Levenberg-Marquardt method [Levenberg, 1944, Mamijial963], conjugate
gradient [Johansson et al., 1992], scaled conjugeatdient [Méller, 1993] or L-
BFGS [Nocedal and Wright, 2006],

2.2.2.3.2.2.2.4. Extensions

Recently, many researchers have exploited GPLVM wariety of applications,
thus designing a number of GPLVM-based extensiofi®e main ones are

summarised in this section.

The learning process of standard GPLVM is componaily very
expensive, sinc®(N?®) operations are required in each gradient stepverse the

kernel matrixZ (2.52). Therefore, in practice, a sparse approtamato the full
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Gaussian process, such as ’fully independent tginconditional’ (FITC)
approximation [Lawrence, 2007, Urtasun etal., 2007 active set selection
[Lawrence, 2004], is exploited to reduce the corapahal complexity to a more
manageableD(n? N) where m is the number of points involved in the sparse
approximation [Lawrence, 2007]. The approximatioagess requires an additional
set of representative variables, so called indusiagables [Lawrence, 2007] or
active points [Lawrence, 2004], that are used éldlwer rank approximation of the
covarianceZ . Unfortunately, the number of inducing variablesaotive points has
to be chosen empirically, since there is no optimal to automate this process
[Urtasun etal., 2007]. The selection of the wrongmber of representative
variables may come with the risk of overfitting mwor generalisation potential to
unseen samples.

The different data dimensions have different irsticn scales (or,
equivalently, different levels of variance). Thigams that a small change in one
dimension may have a larger impact on the obsespade than a change in another
dimension. To address this problem, scaled GPLVMofBow etal.,, 2004]
(SGPLVM) generalises the GP models by introductrajisg parameters to account

for different variances in the output dimensions(2f49).

Since GPLVM focuses primarily on modelling the dgtabal structure,
there is no guarantee that the data local strucsuretained in the latent space. The
smooth mapping in GPLVM ensures that dissimilamfin a data space remain
distant in a latent space. However, there is natramt to prevent two points which
are close in data space to be placed far apattedatent space. A more faithful
preservation of the observed space topology wapaostgd by imposing high
dimensional constraints on the latent space. BawkstCained GPLVM [Lawrence
and Quinonero-Candela, 2006] (BC-GPLVM) enforcesalalistance preservation

through the form of a kernel based regression nmgpfsom the observed space to
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the latent space. Locally linear GPLVM [Lawrencel &uinonero-Candela, 2006]
(LL-GPLVM) extends this concept by defining expligia cylindrical topology to
maintain. This is achieved, first, by constructadyanced similarity measures (i.e.
kernels) to reflect a priori knowledge in the bamnstrained mapping function.
Secondly, a distance metric is adjusted in the bbgective function [Roweis and
Saul, 2000] and incorporated into the GPLVM framewto reflect a domain
specific prior knowledge about observed data. Oifser, Observation Driven
GPLVM [Gupta et al., 2008] (OD-GPLVM) relates twdfdrent high dimensional
observation spaces, e.g. image feature space atidnmmapture space, using a
single latent space. This is achieved by learnirfisariminative embedding from
the observation image feature space to the lafatesin addition to the standard
generative mapping from the latent space to therwhsion pose space. As a result,
OD-GPLVM aims at preservation of local distancesdoth observation spaces at

the same time.

Alternatively, Gaussian Process Dynamical Model f¢/eet al., 2006,
Wang et al., 2008] (GPDM), augments SGPLVM withyamamical model in the
latent space by defining a nonlinear auto-regresamapping on the latent space.
The latent dynamical model favours preservationlaafal proximities between
points. The GPDM is obtained by marginalizing obe tparameters of both
mapping processes and optimizing the latent coatds of training data. In
[Urtasun et al., 2006a] further smoothness of katesjectories is encouraged by
simply balancing the effect of the dynamics on Htent space based on the ratio
between dimensions of data and latent spaces.

Finally, the problem of supervised data classiftcatwas addressed by
integrating into GPLVM a prior distribution overegHatent space that is derived
from an adaptation of generalised discriminant ysiglconstraints [Urtasun and

Darrell, 2007] or pairwise constraints [Wang ef 2010].
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2.2.2.3.2.2.2.5. Summary

The key strength of GPLVM approaches is a generatignlinear probabilistic
model which can be easily applied even to previousiseen data. However, their
main limitation comes from the computational costh@ir learning process which
restricts their usage to relatively small datasktereover, the objective function
(2.52) is severely under-constrained in the geneesle. This means that the
optimisation is very likely to converge towardsdbeinima if the initialisation of

the model is poor; hence, good initialisation isesdial.
2.2.2.4. Projection Strategies

Once dimensionality reduction is performed, an irtgoat property of the method is
its ability to generalise to a new unseen high-disienal data pointy by
embedding it using the existing low dimensionabda&presentation. The process of
transformation between high and low dimensionalceps carried out by two
contrary mapping (projection) functions (Figure &.1The forward mapping
function:

G:Y - X, YOR®, XOR® (2.53)

projects data from a high dimensional space tddiedimensional space, whereas
the inverse mapping function projects data in thgosite direction:
g:X =Y, XOR*, YORP (2.54)

Forward mapping G

=

High dimensional space Low dimensional space
Y X

\

Inverse mapping g

Figure 2.18. Mapping functions for generalisation o f unseen samples of data.
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The mapping functions are either an intrinsic propef a dimensionality
reduction method or designed explicitly in a pastgessing step. The summary of
basic properties together with available mappingcfions in all discussed groups
of dimensionality reduction methods are preseni€tiable 2.2.

Table 2.2. Overview of available mapping functions and basic properties of different

algorithms. Convex: algorithms are considered conve x if they have a unique

solution, otherwise they may be subject to local op ~ tima.

Mapping | Mapping

Y o X X LY Nonlinear| Probabilistic| Global | Convex
PCA Y % v v
PPCA Y % vy v v
KPCA Y v v v
MDS v v
LLE, LE % v
Isomap, MVU v v v
FA Y % v v
MLLM Y % Y vy
GTM % v v v
GPLVM Y Y Y v

2.2.2.4.1Intrinsic Property of the Method

The forward mapping function is given directly bdyetdimensionality reduction
process (2.5) and (2.13) for PCA and KPCA respebtivin the case of PCA, the

corresponding inverse projection, or reconstructibry from X, is y = AX.

The principle of probabilistic LVMs is to focus dearning the mapping

function during dimensionality reduction process. @result, the forward mapping
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of PPCA and FA is equivalent to the dimensionatéguction function given by
(2.30) and similarly the inverse mapping correspotadthe reconstruction function
(2.31). In MLLM, first the posterior responsibilifgr generating a new data point is
computed for every mixture in the model, and subseatly the projection is
performed using the local mapping functions of tm®st probable mixture
[Ghahramani and Hinton, 1997, Tipping and Bisho@99a]. Similarly to linear
LVMs, GTM employs directly a reconstruction funetid for inverse mapping
according to equation (2.38).

The key advantage of GPLVM over other LVMs is tlitaprovides a
general-purpose probability distribution for newadpoints. In particular, the use of
a GP to perform inverse mapping results in modgllincertainty in the positions of
the points in the data space. It can be shownattmapoint in X and especially any
new oneX can be related with a data space as a Gaussititutisn [Williams,
1998]:

PYIXY, X @)= A" (Y (Ro” (R ) (2.55)

where the mean is the point that the model would predict for aegi X, whereas
the variances? indicates the uncertainty of this prediction (teetainty is greatest
near the training data). Both are represented céispdy by:
%azw%@xle_l~ (2.56)
o (R)=kXY-K% XN 2" KxX
In the general case, there is no closed form swiutor estimating the
latent positionX given a new data poiny in GPLVM. However, the forward
mapping can be seen as a two-stage inference prdG¥schow et al., 2004,
Lawrence, 2005, Tian et al., 2005, Ek et al., 200vthe first stage the position on
the latent space is initialised to the most likelyhich may have generated the

observed datg according to (2.55). Afterwards, the positionsofs optimised by

minimising the negative log likelihood of (2.55)ing gradient descent optimisation
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[Levenberg, 1944, Marquardt, 1963, Johansson ,e1@92, Mdller, 1993, Nocedal
and Wright, 2006]:

~ ~\ 12
_|y-u®[", D

L= x) 2

In 02(5()+22In 2n+12|| X’ (2.57)

where an isotropic spherical prior is imposed om thew latent position.
Alternatively, BC-GPLVM provides directly the non&ar forward mapping

function [Lawrence and Quinonero-Candela, 2006asim and Darrell, 2007].

2.2.2.4.2 0ut-of-sample Extension

The standard formulation of geometrically motivatepproaches (LLE, LE,
Isomap, and MVU) and MDS do not provide any explaapping between spaces.
However, the forward mapping can be estimated bgraparametric out-of-sample
extension of these algorithms. For LLE, LE, IsomBDS, this is achieved by
reinterpreting basic algorithms as the KPCA withtimod dependent kernel matrices
and obtaining the eigenfunctions of these kerrfaigugh Nystrom approximation
[Bengio et al., 2003]. This allows embedding anyvngoint using the standard
KPCA forward mapping. Similar nonparametric outsainple extensions were
proposed for Isomap in [De Silva and Tenenbaum32@hoi and Choi, 2007].
MVU approximates the kernel eigenfunction using €#an basis functions [Chin

and Suter, 2008].

2.2.2.4.3Multilayer Perceptrons

Another possibility for designing mappings in geanoally motivated approaches
(LLE, LE, Isomap, and MVU) as well as in MDS waggented in [Haifeng et al.,
2006]. After the discovery of an embedded spacuukilayer feed-forward neural
network, also referred to as a multilayer percep(MLP), is employed to simulate
the projection procedure between spaces. The aatailow dimensional

representation is used as supervision for a neetalork training procedure.
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Initially, the architecture of the neural networkshto be designed [Haykin,
1998]. The neural network architecture can be ssethe organised topology of the
interconnected neuron-like processing elementsu(Ei@.19). These neurons are
assembled into hierarchical layers. Any MLP is cosgtl of one input layer, zero
or more hidden layers and one output layer andlig €onnected. This means that
every neuron in each layer is connected in a wedyhtanner to every other neuron
in the next layer and so on. Neurons in each layerequipped with the same
activation function, for instance tangent sigmaithdtion or pure linear function.
Given such architecture, the learning process tdweights of synapses to best
represent transformation from one space to anoftier.parameters of the network
are determined using non linear optimisation tegphes [Rumelhart et al., 1985,

Johansson et al., 1992, Nocedal and Wright, 2006].

The forward mapping is performed with a neural rekmMearned from a
high to low dimensional space, where the input dagecomposed oD neurons
and the output layer consists @fneurons (Figure 2.19). The inverse mapping is
carried out with another network trained in oppmsiirection withd neurons in the

first layer andD in the last one.
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hidden layers

D input d output

< >

neurons neurons

Figure 2.19. Forward mapping function using a multi layer feed-forward neural

network.

The MLP is capable of approximating some nonlineappings [Lapedes
and Farber, 1988] for a specific architecture [Elagf et al., 2006]. In addition, it
has better generalisation properties than the betimple extension [Haifeng et al.,
2006]. However, the main drawback of this appraadhe manual process required
to design the MLP architecture. It consists of:

e The selection of the number of hidden layers,
e The selection of the number of neurons in eachdriddyer,
* The selection of the activation functions for newsan hidden and output

layers.

2.2.2.4.4Generalised Radial Basis Function Network

Generalised Radial Basis Function Network (RBFNa& isonceptually simple and
powerful alternative to the MLP model, which overas the problem of manual
design of the network architecture. Whereas MLP mawiewed as a stochastic

approximation, RBFN is motivated as a curve-fitteqggproximation problem in the
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high dimensional space [Haykin, 1998]. Accordingthis viewpoint, the learning
process is equivalent to finding a surface in atichnhensional space that provides
the best fit to the training data in some sta@dticsense. Consequently,
generalisation is performed by using this high disienal surface to interpolate the
new data. Note, that RBFN is a simpler variatiomoitilayer feedforward network
which offers the comparable generalisation propethut in addition it is capable of
implementing any nonlinear transformation [Haykif98].

Figure 2.20 presents the architecture of a RBFNghwvimvolves only three
layers [Poggio and Girosi, 1990]. The input layenmects the network to its
environment similarly to standard MLP. The seconddén layer applies a
nonlinear transformation from the input space tudden space using an arbitrary
radial basis functions (RBFs). The layer is paramstd by the RBF coefficients
and centres, i.e. representative points in an ispate which summarise the whole
dataset. The number of neurons in the hidden legeesponds to the number of
centresZ . The output layer is a weighted linear sum ofdhgputs of hidden units,
providing the response of the network to the atitwapattern which was supplied

to the input layer. All layers are fully connectad single direction as in MLP.
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RBFs Linear sum with adjustable weights wj

—_— —A— (k=1.d)

D input d output
features features
Adjustable parameters o; and
centres ¢; for each RBF (j=1..2)
Figure 2.20. Forward mapping function using radial basis function network.

Let's consider a highly nonlinear mappirgy from a low dimensional
spaceX to a high dimensional spadt. Such complex function is approximated
by a combination of radial basis functions whicle assumed to be linearly

independent [Poggio and Girosi, 1990]:

009 = 9 +3 W x ¢ (2.58)

wherek is the kth dimension in a high dimensional spagg€x) is an optional
linear low-degree polynomial term in the formp(x) =[1 X]*t. ¢ is a real-valued
basis function ol variables andv, are real coefficients. The RBFN structure is
formed by the centre€ ={c;| j=1..Z} which summarise the training data points
in order to ensure generalisation properties of tiedwork. The centres are
determined in the input space using either the kmaeclustering [Kanungo et al.,
2002] or rival penalized competitive learning [Xuak, 1993]. Finally,|d denotes

the norm, usually Euclidean.
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The radial activation functiogp can be defined in various ways. However,
it must satisfy Micchelli’'s theorem, which statéstt empirical kernel mag/(X)
(Nx2Z) [Scholkopf and Smola, 2002], which is constructexin these functions,
must be nonsingular [Micchelli, 1986]. The entriek this interpolation matrix
Y(X) are:

OO ={L& % — ) &) x- ¢ 8 x= eIl =1.N} (2.59)

There is a large class of radial basis functiorBowell, 1987] that is

covered by Micchelli’'s theorem, it includes Gausdanctions:
#(x - ¢ ) =expC|x - ¢|"/ 2?) (2.60)

and thin plate spline:

#x ) =]~ [ + con @s1)

which are of particular interest in the researclrRB+N [Poggio and Girosi, 1990,
Haykin, 1998]. Because of its excellent approxiomtiproperties [Poggio and
Girosi, 1990], the Gaussian basis function is eixgdbin this research, whee is

set to the average distance between all centres.

The interpolation mapping (interpolation surfaceekpressed by an over-
constrained nonlinear system of equations withaking into account polynomial
term (t =0):

y=g(9=¢(x A (2.62)

where A is aZxD matrix of network weights foD different nonlinear mappings
g“. The training phase of RBFN is performed by estingathe coefficientsA for
the interpolation surfacg based on known centres and data points presentee t
network in the form of input-output examples. Thauson for A is found by
applying the Moore—Penrose pseudo-inverse [Pend®&5] on matrixy(X) in

equation (2.62) and solving the obtained lineatesysof equations:
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A=y(X)'Y (2.63)

Consequently, equation (2.62) can be seen as Weesm mapping which
allows projecting any new point from the embeddaalce into the high dimensional
space. Similarly to MLP, the forward mapping cansbreulated by another RBFN,
which is learned in the same manner by swappinginpet and output space

X oY.

Learning the RBFN from a high to low dimensionaasp may be more
challenging because of the dimensionality curspe@aslly if there is not enough
data in relation to input dimensionalify. In such scenario, the forward mapping is
approximated by the inversion of the inverse mapgiPoggio and Girosi, 1990].
This is achieved by exploiting the polynomial tefrh=1) in the interpolation
function (2.58), thus, the interpolation matrix4®) is extended to:

wx) 1 x}

ag o (2.64)

Ww(x) {

and the solution folA is determined in the same way by equation (2id8yever,
since the vectog/(x) has a special form thanks to the linear polynoméat in the
interpolation function, the forward mapping is appmated by the inversion of
equation (2.62):

w(x)=yA (2.65)

and taking directly the lastcolumns from the reconstructed vecw(x) as the
embedded coordinate&” denotes the Moore—Penrose pseudo-inverse of matrix
[Penrose, 1955].

RBFN has been successfully applied as the projeduoctions on the
embedded spaces produced by LLE [Elgammal and 2@@4a, He et al., 2004,
Elgammal and Lee, 2007, Ohbuchi et al., 2008, Leloauski et al., 2009], Isomap
[Shi et al., 2005, Blackburn and Ribeiro, 2007, Qdtb et al., 2008, Lewandowski
et al., 2009] and LE [Ohbuchi et al., 2008, Lewamski et al., 2009].
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2.2.2.5. Summary of Feature Extraction Methods

Feature extraction by dimensionality reduction \eeay powerful approach and has
proved to be more flexible than feature selectsince it has been successfully
applied in a variety of application domains inchglicomputer vision [Tian et al.,

2005, Urtasun et al., 2006a, Hou et al., 2007, W&treg., 2008], image processing
[He et al.,, 2004], computer graphics [Grochow et 2004, Urtasun et al., 2008,
Deena and Galata, 2009], robotics [Shon et al.,62@ltzer and Vijayakumar,

2009], speech recognition [Jain and Saul, 200&ighahi and Ariki, 2007, Singh-

Miller et al., 2007, Jafari and Almasganj, 2010yitlgr 2010], data visualisation

[Tenenbaum et al., 2000, Belkin and Niyogi, 2002wkence, 2004] and pattern
recognition [Yang, 2003, De Ridder et al., 2003tasun and Darrell, 2007, Zheng
et al.,, 2008, Wang et al., 2010]. As a consequeramEntly extensive research is
carried out in the feature extraction field, esplgiin the domains beyond the
range of interest of feature selection algorithniere it is unfeasible to design an
intuitive evaluation criterion, in particular contpuvision.

In the rest of the thesis, the term ‘dimensionaléguction’ will refer to

feature extraction branch of dimensionality redut@pproaches.

2.2.3. Frameworks for Time Series

All discussed dimensionality reduction methods assiuthat the observed data
samples are independent; therefore any temporatlation present between data
samples is not taken into consideration. While thia valid assumption for many
applications, there are many situations when tealpgtructure is a key intrinsic

property of data, thus an alternative approactesrdd. In particular, when dealing
with time series data, the assumption of indepecel&etween data points is clearly
inappropriate since points at each time step apea®rd to be highly correlated.

Since many real datasets are time series, the tgyuafi low dimensional
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representation can be improved by modelling theptead dependencies between

points. This information is exploited twofold.

In the first case, temporal constraints are emmlog® a valuable clue for
dimensionality reduction process. For instance, empboral neighbourhood
preserving embedding [Wu et al., 2009] uses a @rgrnporal model to represent
each point as a linear combination of its sequemeghbours through linear
projection from high to low dimensional space. lontast, a spatio-temporal
Isomap [Jenkins and Mataric, 2004] is a nonlindab@ approach designated for
time series. Initially, the original distance wetigjn the graph of local neighbours
are empirically altered to emphasise similaritywsstn temporal related points.
Afterwards, the temporal dependencies are propdggtbally via a shortest-path
mechanism. In the case of LVMs, BC-GPLVM includesnporal coherence
constraints to ensure the smoothness of the ma@itvgeen spaces [Lawrence and
Quinonero-Candela, 2006], whereas [Bishop, 199#rels the GTM algorithm to
capture temporal dynamics of sequential data bgrparating this information as

an emission density in a hidden Markov model [Rahia989].

An alternative approach to model the rich compiexit time series is to
first reduce dimensionality assuming no temporahetence and then learn a
dynamical model on the latent space. In [Lin et 2006], a dynamic Bayesian
network is constructed by adding links among thiansic coordinates of the GCM
to account for temporal dependency. As a restobal linear dynamical model is
incorporated into the latent space. To handle nooraplex dynamics, [Li et al.,
2007c, Li et al., 2010] use a generalisation ofsWwéching linear dynamical model
[Pavlovic et al., 2001] on the low-dimensional gt coordinated latent space. In
turn, GPDM and its variants integrate time inforimatby associating nonlinear,
autoregressive dynamic model to the embedded dp¥arg et al., 2006, Urtasun

et al., 2006a, Wang et al., 2008, Gupta et al.8R00
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2.3.Human Motion Analysis

2.3.1. Introduction

Over the last two decades, human motion analysdbkan very popular due to the
wide range of potential applications and its inhéreomplexity. This section

reviews the main research effort regarding compuigon based human motion
analysis, i.e. human pose recovery (section 2&12) action recognition (section
2.3.3). A comprehensive survey of both fields iydrel the scope of this thesis,
thus, first we provide a brief overview of the m@somising lines of research in
each field. Afterwards, we focus on the applicatafrdimensionality reduction in

both areas. The main motivation of this sectiortoigprovide some background
information about these two important computerornstasks on which evaluation

of our contribution is performed.

In this research, human motion is defined in tewhsa starting pose,
ending pose and a sequence of continuous trarsitloat takes the human body
from a pose at timé¢ to a pose at timeé,. In turn, a human body ‘pose’
corresponds to the configuration of the various ybgérts in a body-centric

coordinate system regardless of the chosen digipaesentation.

2.3.2.Human Pose Recovery

Pose recovery refers to a process of estimatinfjgroation of articulated human
body skeleton from a single monocular image or ipleltimages captured at the
same time in a multi-view setting. Alternativelyadking is a special case of pose
estimation, which is formulated as inference of theman pose over a set of
consecutive image frames from a video sequenceordiog to this definition, the
goal of pose recovery is to localise a person’stgoand limbs in either an image
plan (2D recovery - Figure 2.21) or a world spa8P (ecovery - Figure 2.22),
which usually results in the reconstruction of anlan skeleton in a body centric
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coordinate system. Pose recovery from video fooiage very active and broad
research field in computer vision. In this worke gcope of interest is limited to 3D
pose recovery from videos, where 3D motion willdefined as sequences of 3D
human body poses at successive time instants. dhesponding 3D motion

reconstruction is formulated as the problem of vecp a sequence of 3D human
poses. This section discusses the recent reseaogneps in 3D pose recovery.
More comprehensive reviews can be found in [Moeslenal., 2006, Poppe,

2007b, Ji and Liu, 2010].

recovered 2D skeleton in an image plane

Figure 2.21. 2D pose recovery from a video frame.

recovered 3D skeleton, which has been
rendered in different views

__qﬂ% M JL}\ iiX

Figure 2.22. 3D pose recovery from a video frame.

2.3.2.1. Activity I ndependent Methods

The most straightforward approach to 3D pose esitimd@arom a monocular video
is to compute the inverse kinematics from knowni22ge positions of body joints
under a simple scaled orthographic projection mpteylor, 2000, Remondino and

Roditakis, 2003, Barron and Kakadiaris, 2003, #ad Enhua, 2005]. Since such
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camera model handles only images with very littlerspective effects, the
perspective camera model was employed to overchmsdimitation and deal with
more realistic images [Zhao et al., 2005, Pend.eP@09]. The main limitation of
these approaches is that they require accuratetagteof body joints in 2D image
plane, which still remains a difficult problem iroputer vision. Moreover, they
presuppose an explicitly known parametric body rhoddich is naturally

constrained by body kinematics and dynamics.
2.3.2.2. Activity Constrained Methods

Activity-constrained learning approaches focus earting the prior model of

motion directly from carefully selected trainingtaa

2.3.2.2.1.Object Tracking Framework

The problem of 3D motion reconstruction from images be formulated as a
Bayesian tracking process, where the objectiveoisdnstruct statistical motion
models from pre-recorded human motion data. Thesthods use an explicit 3D
geometric representation of human shape and ieiatic structure to reconstruct a
human posture by numerically optimising the siniyabetween observed images
and predicted images rendered from a model. Then8bon and pose extraction
are usually implemented as a variation of trackirgmework, especially the
particle filter [Gordon etal.,, 1993]. The partickdter employs a stochastic
sampling strategy for representing simultaneousrrative hypotheses. This is
achieved by modelling arbitrary non-Gaussian praibaldensity functions using a
set of independent sample particles. The partittkr is derived from the Kalman
filter and overcomes the constraint of a single €8&@an distribution [Kalman,
1960]. The performance of the particle filter deggeion designing an appropriate
sampling strategy which guides the tracking by oattyithe complexity and size of

the solution space.
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Tracking in monocular video sequences has beeressiel in a variety of
different approaches [Brubaker et al., 2010]. Aiasar of the particle filter, called
condensation algorithm [Isard and Blake, 1998],respnts hypotheses by a
spherical and randomly generated set which istitelg propagated over time
using a learned dynamical model. An annealed pearfiter was presented by
[Deutscher et al., 2000, Deutscher and Reid, 20D}, combines a deterministic
annealing approach with stochastic sampling to iyl focus the search effort on
promising areas of solution space. Alternativehg hypothesis are generated by
sequential importance sampling constrained by ther pver dynamics of the
human body [Sidenbladh et al., 2000] or by a ladgeabase of example motions
[Sidenbladh et al., 2002], to focus search in thigmbourhood of known trajectory
paths. In [Sminchisescu et al., 2001, Sminchiseswli Triggs, 2003], the probable
3D body configurations over time are representedabyixture-of-Gaussians
density model. A global search is performed byroing a robust model-image
matching cost metric which combines extracted edims and motion boundaries,
subject to 3D joint limits, non self-intersectioonstraints, and model priors. Model
hypothesis are sampled from a defined distributisimg cost-surface sensitive
Covariance Scaled Sampling [Sminchisescu et alQ1R®r Kinematic Jump
Sampling [Sminchisescu and Triggs, 2003]. Finaty[Peursum et al., 2007], the
stochastic search is guided by a variation of tfleeanchical hidden Markov model
to improve robustness of the patrticle filter agaotsservation errors.

Multiple views reduce significantly depth ambigyitgnd therefore may
provide more accurate pose estimations. 3D visullrbconstruction of a human
body shape is a natural way for fusing informatfomm multiple images which
provides more informative cues about a recoveres pim [Mikic et al., 2003], 3D
visual hull representation is integrated within #wended Kalman filter tracking

imposing angle limits. As a result, the system gotes an automatic acquisition
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of a human body model and estimation of physicaltyid human postures. An
alternative approach based on full 3D-to-3D nodrigurface matching using
spherical mapping is presented in [Starck and HIjltB005]. Alignment of a

predefined skeletal model with the first frame akothe 3D motion to be recovered
from the non-rigid surface motion over time. Reosotk by [Caillette et al., 2005,

Caillette et al., 2008] identifies Gaussian clustef simple motions and trains a
variable-length Markov model based on these cladtedirect local posture search

towards better areas of the distribution.

The drawback of these approaches is that high diloeality of observed
features requires usage of many particles to samese space with a sufficient
density. Unfortunately, each particle comes withirarease in computational cost
associated with the propagation of the particleostiog to a dynamical model and
the evaluation of a likelihood function. In additjoa human body model has to be
rendered and compared to extracted image desaiptorevery particle. As a
consequence, the optimisation process is expeasi@dagequires good initialisation;
and the problem always has many local minima. Aeotlrawback of tracking in a
high dimensional space is its sensitivity to th@averishment sample problem, i.e
a tendency of clustering particles on a very smagiion of the search space,
therefore explicitly overconstraining the searchcgby decreasing the number of
effective particles [King and Forsyth, 2000]. Ferthdiscussion about tracking
frameworks can be found in [Wang and Rehg, 2006jer@ several common

tracking schemes are evaluated quantitatively.

2.3.2.2.2. Example Based Approach

Example-based methods are two-stage approachesfitbatcollect an image
database of silhouettes from various viewpointshveibrresponding 3D poses to

adequately cover the entire space of possibleisakitThen, the pose estimation is
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conducted by similarity checking between the stardmples and a given image
query.

For a pose recovery from monocular images, a reptasve system was
presented in [Poppe, 2007a], where silhouettes esyage encoded as a variant of
histogram of oriented gradients [Dalal and Trigg805] and query matching is
performed with an entire training set using the Nhttan distance. A
computationally more attractive approach was iniosdi in [Shakhnarovich et al.,
2003], where parameter-sensitive hashing is apptiedexamples to speed up
searching process. Another method was proposedvioyi [and Malik, 2006] in
which the 2D joint locations in a query image anéeired according to stored
examples using the technique of shape context nmgtdn conjunction with a
kinematic chain-based deformation model. Then ep8sture is estimated based
on the scaled orthographic projection algorithnmadticed by [Taylor, 2000]. An
alternative approach was proposed in [Agarwal angigs, 2006], where instead of
explicitly storing and searching for similar traigi examples, a relevance vector
machine [Tipping, 2000] is employed to learn a medr regression of joint angles
against histogram of shape context descriptorsvel@rirom silhouettes [Belongie
et al.,, 2002]. As a result, a single compact mddat has good generalisation to
unseen examples is produced and employed for hypuse estimation. A data-
driven iterative approach is presented in [Lee &wuhen, 2006], where pose
candidates are generated in a Markov chain Montéo Gaarch guided by image

observations.

When videos from multiple views are available, anan body posture can
be inferred directly from a reconstructed 3D vishall using a support vector
machine trained on appearance-based shape desxiipahen and Li, 2003].

The main limitation of these techniques is thateayvarge training set is

required to provide satisfactory accuracy and gaisation properties.

-94 -



CHAPTERZ State of the Art Review 2.3 Human Motion Analysis

2.3.2.2.3Learnt Motion Model

Human motion resides in a very high dimensionatsgdaecause of its complexity
and rich dynamic. However, many studies have rexk#hat the space of many
activities is intrinsically a low dimensional namiiar subspace embedded in the
high dimensional space [Grochow et al., 2004, Elgaiand Lee, 2004a, Lee and
Elgammal, 2006b, Urtasun et al., 2006a, Ek ek@b;7, Hou et al., 2007, Elgammal
and Lee, 2009]. Therefore, the reduction of dataetisionality to constrain vision
based reconstruction of human movement from a&siogimera has become a very

active research topic.

The pose recovery process shares some concepiudardies with
example based approaches. First, a low dimensimmabkn body motion model is
learned by reducing dimensionality of training M@Cdata. Afterwards, the
obtained model is used for pose estimation. Dinmeradity reduction decreases
computational and memory complexity of the poseinegion process in
comparison to example based approaches. Moreovetipgs not require an
extensive training set of feasible human motiongeneralise well to unseen data.
In principle, the low dimensional representatiom te& exploited twofold for pose

estimation.

2.3.2.2.3.1.Direct Approach

The straightforward approach is to use a direahried model of human motion
for inferring 3D poses.

A pose inference is formulated as estimating anesldimg point on the
low dimensional manifold which is subsequently potgd back to the pose space.
In [Elgammal and Lee, 2004a], a view based low disnenal representation of
activity is discovered using LLE. Afterwards, mapgifunctions (i.e. RBFN) are

learned between obtained representations and bhetiigual input space and the 3D
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body configuration pose space. The body pose @vezed in a closed form in two
steps by projecting a new observed silhouette ¢ole¢hrned representations of the
activity manifold followed by interpolating the 3fbse. On the basis of this work,
the authors in [Lee and Elgammal, 2006b] presemewa generative model to
represent shape deformations according to viewbadg configuration changes on
a conceptual two dimensional torus manifold. Sirtylao previous work, the
activity model is extended with a RBFN mapping fiimes, i.e. a style adaptive
mapping function from a visual space to the low elisional space and standard

mapping function from the embedded to the poseespac

Another approach is to interpret a pose estimagoocedure as an
optimisation process. The space of human motigaiameterised by a set of linear
subspace models obtained using PCA. Such paramnmettion model is then used
to formulate and restrict the tracking frameworkaasinimisation of differentiable
objective function using a deterministic gradiemscent optimisation [Urtasun
et al., 2006b]. Alternatively, the parametric sudasg model is used in construction
of a generative human body motion model to constitae solution space [Chen and
Chai, 2009]. During pose inference the generatieelehis continuously deformed
to best match 2D joint trajectories derived fromnmeular video sequences using a

proposed gradient-based multi-resolution optimmsaprocess.

[Grochow et al., 2004] presents a probabilistierfeavork which is based
on a learned model of human poses and an invemsenigtics system. The model is
obtained using SGPLVM which provides the probapildistribution over all
possible 3D poses and constrains pose reconstudétamm known 2D joint
locations extracted from images. Since it is diffi¢o obtain a 2D skeleton from an
image, [Ek et al., 2007] proposes a shared andrggwve activity model, which

encapsulates silhouette observations, joint angled their dynamics using
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GPLVM. As a result, the 3D pose is inferred dingdtbm the model given a query

silhouette.

2.3.2.2.3.2.Tracking Approach

The low dimensional motion model can be also inomafed in a 3D visual tracking
framework to reduce the state space of tracker tangrovide powerful human
motion priors for a pose recovery. As a resultadigle filtering with the reduced
state space is faster since significantly fewetiglas are required to adequately

approximate the state space posterior distribution.

For instance, [Elgammal and Lee, 2009] exploiteva timensional torus
manifold [Lee and Elgammal, 2006b] to constrain plagticle filter tracker. Such
torus is a natural continuous, low-dimensional espntation of the joint (view and
configuration) distribution which allows accurate &otion reconstruction. From a
probabilistic perspective, the low dimensional moidelearned using balanced
GPDM [Urtasun et al., 2006a] or observation dri¢eADM [Gupta et al., 2008] to
ensure a continuous embedding of movement in teatispace for robust tracking
and motion reconstruction. A conceptually equivabgmproach is also presented in
[Li et al., 2007c, Li et al., 2010], where the spat human motion is reduced using
GCM [Li et al., 2007c] or LLC [Li et al., 2010] tprovide prior information for a
Multiple Hypothesis Tracker [Cham and Rehg, 1989fontrast, recent work [Guo
and Qian, 2008] discovers two separate low-dimerdiananifolds; one for
silhouettes and one for 3D poses using GPLVM ardnicad GPDM respectively.
Then, bidirectional mappings between these two folais are established using a
Bayesian mixture of experts [Xu etal., 1995] arelevance vector machine
[Tipping, 2000]. The resulting motion model is useda strong prior in the particle

filter to explore the articulated space of humartiom
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In [Hou et al., 2007], the problem of 3D pose eation in a multiple view
scenario is considered. First, the low dimensiemabedding of example motions is
learned using BC-GPLVM. Then, the latent spaceatifoned into elementary
motion sequences using an unsupervised EM clugtetigorithm. The temporal
dependencies between these elementary movementsffigiently captured by a
Variable Length Markov Model. Tracking is then farated in a particle filter
based framework with a volumetric reconstructiogoathm to evaluate each
candidate pose against image evidence capturednmaitiple views.

The main limitation of all already discussed methathat they take into
account only one particular activity in the leaiprocess. To handle multiple
activities, [Darby et al., 2010] defines a numbéractivity models obtained with
PCA, each composed of a pose space with a unigoeendionality and an
associated dynamical model. Consequently, eaclnddamodel is capable to
recover a particular class of activity. Finally, attivities models are combined in a
new variant of an annealed particle filter to perforobust 3D human motion

reconstruction.
2.3.2.3. Dataset and Metrics

While research on articulated human motion and mstenation has progressed
rapidly in the last few years, a requirement fateynatic quantitative evaluation of
competing methods has emerged to establish thertustate of the art. Although
many datasets have been proposed (INRIA perceptidti-cam dataset [Knossow
et al.,, 2008], CMU MoCap dataset [CMU, 2010], CMWRBbL dataset [Gross and
Shi, 2001]), HUMANEVA [Sigal et al., 2010] is theast extensive and established
dataset for evaluation of human pose and motiomatbn. The HUMANEVA

dataset was collected using a hardware systenfainoaatory setting. It provides:

» Synchronised videos recorded simultaneously byd3oarl cameras.
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e Ground-truth 3D motion of the body captured usingtion capture system
(MoCap).
e 4 subjects (Figure 2.23) performing a set of 6 efieeéd actions in three

repetitions (twice with video and motion captuned ance with motion capture

alone).

Figure 2.23. Four subjects available in HumanEva da taset.

2.3.2.3.1Human Body Pose Description

In 3D pose recovery, a human body pose descrigousually based on an
articulated hierarchical skeleton (Figure 2.24) akhiconsists of joints and
connecting rigid segments (i.e. bones) organisealtiee structure [Poppe, 2007b].
The joint is a connection point at which bone catate with respect to its parent.
Lengths of bones are usually expected to satisyhtiman body proportions, e.g.

these defined by the Leonardo Da Vinci [Vinci, 1492 this thesis, the human
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skeleton model is composed of 13 joints (FigurelR.During motion, the skeleton
is constrained by the 3D body kinematics and dyoanais well as the specific
dynamic of the action being performed.

The learning of the prior model of human kinematies be performed
using data collected with marker-based human matapture systems. The known
correspondence between markers and joints togetithr the reconstructed 3D

marker trajectories during movement provide thdetka joint positions for each

pose (15 dots in Figure 2.24).

Figure 2.24. The Leonardo da Vinci human model and human skeleton model
composed of 13 joints. The Leonardo da Vinci human model expresses the ideal

human skeleton proportions of the body.

In the hierarchical model, the global position leé human body is defined
at the root of the hierarchy. All other joints doeated relatively to the parent
following a hierarchical kinematic chain (or kinetmsatree). Any moving object,
either the entire skeleton or a particular jointhe skeleton, has some degrees of
freedom (DOF). The term ‘degree of freedom’ reterthe number of parameters or
variables that are allowed to vary independenttynfreach other [Good, 1973]. In
human motion, degree of freedom describes the nuofbeays in which an object
can move [Rose and Christina, 2005]. An object bame at most 6 degrees of

freedom in the three dimensional space, since oh ehmension there are two
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possible types of movement: translation and ratathen using a hierarchical
model, joints are usually not allowed any transtatiHere, apart from the root joint
which has 6 DOFs, because it is responsible forimgpthe entire object in the three
dimensional space, other joints have between odetlaree DOF and each DOF
correspond to orthogonal rotation around one ofakis in a 3-dimensional space.
The angle of each DOF is expressed either usingrEamgles or quaternion.
Moreover, each DOF can be constrained by minimuthraaximum values using
the human body kinematics constraints. The hiereattskeleton model with the
local angle representation for each joint allowsntomalise the motion capture
data. As a result, a human motion can be definedriaw coordinate system which
is centrered on a moving person. This is cruciakfdracting the intrinsic pattern of
a motion, which is expected to be independent filmenglobal position and rotation

of the human with respect to the camera.

Quaternion [Hamilton, 1844] is a 4-dimensional wecivhich expresses
orientations and rotations of objects in three disiens. Any 3-dimensional
rotation is described by just one real value argyld a vector of 3 imaginary
dimensions (Figure 2.25):

g=a+ix+ jy+kz (2.66)

In comparison to Euler angles, quaternions arglgimo compose and
can be smoothly interpolated. Moreover, quaternewad the problem of gimbal
lock, i.e. the loss of one degree of freedom in-@dn3ensional space when two
gimbals are in the same plane (a gimbal is a pivetgport that allows the rotation

of an object about a single axis).

As a consequence, quaternions have the flexibiityich make them
particularly suitable for modelling local anglestween joints in a skeleton

according to a 3D kinematic tree.
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Figure 2.25. a) a 4-dimensional quaternion (a,\7); b) a rotation of vector u by the

quaternion (a,\7) :

The pre-processing of MoCap data is summarisedoewis. First, all
poses are converted intomrmalised posefElgammal and Lee, 2009], i.e. poses
invariant to the subject’'s global rotation and slation. Then, the three angles
defining each joint position are computed and repnéed by a single quaternion.
An articulated human skeleton is then parametergsed high dimensional feature
vector by simply concatenating quaternions onery €or all joints in a single row
vector. In this work, a 52-dimensional feature weds constructed for each pose

(13 joints multiplied by the 4-dimensional vector).

2.3.2.3.2 Evaluation Metrics

Various evaluation measures have been proposeduiman motion tracking and
pose estimation (see [Sigal et al., 2010] for omawy. In this work, two metrics are
exploited to evaluate estimated poses against matapture data, which is our
ground truth. Firstly, this thesis reports meanefo#ll angles) absolute difference
errors between the true and estimated joint anglgovs (in degrees) to show

performance independent on the skeleton limb sizes:
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MAE(®) = ﬁ%(x ~ X;) mod 180 (2.67)

i=1
Secondly, Root-Mean-Square error (RMS) is computedacilitate the
comparison between the reconstructed body and rikend truth data when the
properties of body models are known. This is penfedt using Procrustes Analysis
[Seber, 2004], which determines a linear transfoiona(translation, rotation, and
scaling) of the reconstructed body to best matehgiound truth by minimising

RMS.

2.3.3. Action Recognition

Vision-based human action recognition is a higrelgnocess of image sequence
analysis. This is achieved by assigning action Itallkat best describe action
instances, even when performed by different subjecder different viewpoints,
and in spite of large differences in manner andedpén this work, we adopt the
three level hierarchy of [Moeslund et al., 20064#&dine the following notions:

« An action primitive (i.e. atomic action) is a simapmotion pattern usually
executed by a single person and typically lastiog & short duration (e.g.
‘jumping’, ‘running’, ‘sitting’, ‘drinking’).

e An action is a sequence of action primitives, whiepresent a more complex
movement in a longer period of time (e.g. the ‘jumgphurdles’ action contains
‘starting’, ‘jJumping’ and ‘running’ action primities).

* An activity contains a number of successive actipesformed by several
humans who could interact with each other in a tamed manner (e.g. the
‘hurdling race’ activity which involves several p#e performing the ‘jumping

hurdles’ action followed by the ‘resting’ action).

Most action recognition systems are composed of pypelines: one for

training (Figure 2.26) and one for classificatiéiigure 2.27). In the training phase
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(Figure 2.26), first, relevant features are exgddrom image sequences and used
to produce a shape descriptor for each motion niestdsection 2.3.3.1). Then, for
each action, the shape descriptors are combinexletite action models (section
2.3.3.2). In the classification phase (Figure 2.2fJeos are pre-processed in the
same way as for training and compared with thenkgaction models to perform

the semantic interpretation of the action (sec#idh3.3).

Creation of feature
descriptors for each
action instance

Learning of Action
action models
descriptors (classifiers)

Low level processing of
Videos videos to extract a set of
discriminative features

Figure 2.26. Training of action recognition framewo rk.

Creation of feature
descriptors for an
action

Low level processing of a
video to extract a set of
discriminative features

New
video

Classification | Decision

Learned action
models (classifiers)

Figure 2.27. A standard testing procedure for actio  n recognition.

In this section, a state-of-art review of the vacyive field of human action
recognition is presented. Although the identifioatiof a human activity from a
single video is the ultimate goal, we also repatiesnes based on multi-camera
frameworks. Note that we limit our scope of intéresthe most established and
popular approaches in the research community wipeial focus on recognition
of action primitives. Therefore, if it is not stdtetherwise, the term ‘action’ refers
to ‘action primitive’ in the rest of the dissertati A much more detailed overview
of current advances in the field is provided by soeveys [Moeslund et al., 2006,

Turaga et al., 2008a, Poppe, 2010, Weinland e2@1.0a].
2.3.3.1.Feature Descriptors

A variety of features has been used in the huménracecognition task. Ideally,

these should generalise over small variations prergon appearance, background,
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and viewpoint and action execution. At the sameetithe representations have to
be sufficiently rich to allow for the robust clasation of an action. The temporal
aspect is usually essential in an action performaanad, therefore, most features
take the temporal dimension into consideration. Agature descriptor is classified

as either local or global representation.

2.3.3.1.1Local Feature Descriptors

Local feature descriptors decompose an observednaictto a collection of local
patches, which capture shape and motion only in néghbourhoods of pre-
selected points using some image measurements.e Th@erest’ points are
locations in space and/or time where sudden chaofj@ovement occur in the
video. These locations are assumed to be the mfostiative for the recognition of
a human action. The spatial and temporal sizespaiteh are usually determined by
the scale of the interest point. As a result, keftthe computation of final local
descriptors (section 2.3.3.1.1.2), a detector ipliegp to select spatio-temporal
locations of the interest points and scales irdawiby maximising specific saliency
functions (section 2.3.3.1.1.1). An overview anddat evaluation of different

detectors and local descriptors can be found inni\&t al., 2009].

2.3.3.1.1.1.Detectors

2.3.3.1.1.1.1.Harris Detector

Harris detector is a combination of corner and edegctors based on the local
auto-correlation response function [Harris and Bégeyg, 1988]. The idea is to detect
locations in a spatial image where the image vahss significant variations in
both directions. Laptev et al. proposes the Halris@etector [Laptev and
Lindeberg, 2003, Laptev, 2005], which is more atixee to the action recognition

community, since it extends the Harris detectoo e spatio-temporal domain. It
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requires that a point will be considered as ‘indérg’ only if the image value in
local spatio-temporal volume has large variationsthie spatial as well as the
temporal dimension. Points with such propertied & the spatial interest points
with distinct location in the time corresponding tocal spatio-temporal
neighbourhoods with non-constant motion. The spatioporal extents of the
detected points are estimated by maximizing themabsed spatio-temporal

Laplacian operator over independent spatial anghoeah scales.

2.3.3.1.1.1.2.Cuboid Detector

Cuboid detector is proposed by [Dollar et al., 2085d it is based on the spatio-
temporal response function which is calculated \are location in the spatio-
temporal image volume. Interest points are locakima of this function. The
response function is calculated by applying separdimear filters to video
sequences. This function is derived from the 2D $S&un smoothing filter applied

spatially and a pair of 1D Gabor filters appliedyosmlong the temporal dimension.

2.3.3.1.1.1.3.Hessian Detector

Hessian 3D detector [Willems et al., 2008] selectet of spatio-temporal interest
points which are at the same time scale-invariaoth( spatially and temporally)
and densely cover a video content. This is achidyesimultaneous localisation of
points in the spatio-temporal domain and over Ismhles (spatial and temporal)
using the determinant of the 3D Hessian matrix saali@ncy measure. The Hessian
detector is computationally very efficient since thetermination of interest points
iS a non iterative procedure. Moreover, the authuses the approximate box-filter

operations on an integral video structure to furpeed up the detector.
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2.3.3.1.1.1.4.Dense Sampling

Dense sampling is a very naive approach, whichaetdrvideo blocks at regular
positions and scales in space and time. There dménsions to sample from: two
spatial dimensions, one temporal dimension anddeales (spatial and temporal).
The spatial and temporal sampling of 3D patchesiglly performed with overlap

at multiple scales.

2.3.3.1.1.2.Local Descriptors

2.3.3.1.1.2.1.Cuboids

The cuboids are extracted at interest point andtagonthe spatio-temporally
windowed pixel values [Dollar et al., 2005]. They &nherently local in nature, and
therefore capture the local appearance and mationnnation. The size of a cuboid
is set to contain most of the volume of data tleatiebutes to the response function
at that interest point; specifically, the cuboiasists of all (grey scale) pixel values
within an area of six times the scale at whichavdetected. The cuboid descriptor

can be the vector of:
» flattened cuboid values,
e aglobal histogram of cuboid values,

* local histograms of cuboids values which are comgburh partitioned regions of
the cuboid.
The dimensionality of the final descriptors is reeld using the PCA.

[Ta et al.,, 2010a] uses cuboids to formulate th&goacrecognition as a
graph matching problem, whereas [Zhao and Elgamg@08] employs them to
describe an action as a discriminative set of egatnporal key frames.
Alternatively, [Ta et al., 2010b] combines cuboiesdriptors with spatio-temporal

relations among them to design the novel conceptpair wise feature descriptor.
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2.3.3.1.1.2.2.Histograms of Oriented Gradient

Histograms of Oriented Gradient [Dalal and Trigg®05] (HOG) are based on
evaluating well-normalised local histograms of imagradient orientations in a
dense grid. The basic idea is that local objecteapgnce and shape are often
characterised sufficiently by the distribution aicél intensity gradients or edge
directions, even without precise knowledge of tberesponding gradient or edge
positions. In practice this is implemented by dinglthe gradient image window
into small spatial regions (cells), for each cet@mulating a local 1-D histogram
of gradient directions or edge orientations overixels of the cell. The vectors of
all cells are concatenated to give one global featector for the image window.
For better invariance to illumination, shadowintg. eit is also useful to contrast-
normalise the local responses before using thens i§hdone by accumulating a
measure of local histogram energy over somewhgetaspatial regions (blocks)
and using the results to normalise all of the dallhie block.

For example, [Kadniche and Brémond, 2010] gener&deal motion
signatures based on the schema: people detectitinkeselection followed by
HOG descriptor generation/tracking. Similarly te ttuboids [Zhao and Elgammal,
2008], the HOG is used to represent an actionnas series of a few snapshots of
human-body parts in their most discriminative possu relative to other activity
classes (key poses) [Brendel and Todorovic, 2018].turn, [Kaéniche and
Brémond, 2009] extends the HOG into the temporahalo by tracking 2D
descriptors based on frame-to-frame HOG trackergusie extended Kalman filter.
To characterise local motion and appearance, th& H&Ocombined with optical
flow field [Roth et al., 2009] or histograms of aatl flow accumulated in space-
time neighbourhoods of detected interest pointp{ea et al., 2008]. Eventually,
the self-similarity descriptor is derived from thEOG to deal with view changes

[Junejo et al., 2008].
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Alternatively, [Klaser et al., 2008] introduces tkpatio-temporal HOG
(HOG3D), which is based on histograms of 3D gradigientations and generalises
the HOG concepts to 3D, assuming videos as spatipdral volumes. Gradients
are computed using the integral video represemtafidne descriptor, therefore,
combines shape and motion information at the same. tA given 3D patch is
divided into spatio-temporal cells. The correspagdidescriptor concatenates
gradient histograms of all cells and is then norgeal. [Weinland et al., 2010b]
uses a local partitioning of the dense HOG3D repriedion in a hierarchical
classifier, which first performs a local classitioa followed by global, to provide
robustness to both viewpoint changes and occlusions

The HOG has proved to be the very powerful featigscriptor [Wang
et al., 2009] and showed satisfactory results deerextremely challenging film
based datasets such as YouTube [Brendel and Tadp&®40, Ikizler-Cinbis and
Sclaroff, 2010, Matikainen et al., 2010], Hollywof{laser et al., 2008, Satkin and
Hebert, 2010, Wang et al., 2009] and UCF televigiang et al., 2009, Weinland
et al., 2010b].

2.3.3.1.2Global Feature Descriptors

Global feature descriptors are extracted from dore@f interest centred on a
person performing an action (so called bounding bbxhe action). As a result,
usually input videos are pre-processed to segnhentetgions of interest, which are
then encoded as a whole by taking into accourd\ailable pixel information. The
segmentation can be performed using detectionigatain algorithms, background
subtraction or tracking. In current action recoigmtresearch, it is assumed that the
segmentation is a solved problem. The final featueetor is given by the
normalised region of interest in the raster scahitan where the dimension of

vector is equal to the number of pixels in therentegion.
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2.3.3.1.2.1.Silhouettes

A binary silhouette (i.e. binary shape or contaasra very simple image descriptor
with a featureless interior of a person and unifdiack background. Silhouette
representation is insensitive to colour, textural eontrast changes, but at the same
time provide sufficient discriminative informatiofor many action recognition
frameworks [Chin et al., 2007, Wang and Suter, 20@vang and Suter, 2007b, Lv
and Nevatia, 2007, Tran and Sorokin, 2008, WangSurtdr, 2008, Jia and Yeung,
2008, Fang et al., 2009, Vezzani et al.,, 2010, ghand Gong, 2010]. Although
such approaches used pure silhouettes, in moss$ cilbeuettes are converted to
more discriminative features such as the temporation templates (section
2.3.3.1.2.2) or the space-time local features i@e&.3.3.1.2.3) to take into account
some temporal information. Alternatively, silhoasttare used for a volumetric
reconstruction of data to form a 3D volume of hurbady [Weinland et al., 2007,

Pehlivan and Duygulu, 2010].

2.3.3.1.2.2.Temporal Motion Templates

Motion History Image [Bobick and Davis, 2001] (MHB the simplest temporal
template motion feature, which represents an achignencoding a history of
silhouette deformation over time using decayingghts. Conceptually, the MHI
image contains the past images within itself, incithe most recent image is the
brightest. To overcome limitations of the MHI, [Mgmand Pears, 2009] proposes
the Motion History Histogram by additionally stogifrequency information as the
number of times motion is detected at every pifetther categorised into the
length of each motion. 2D temporal templates cagilyede extended into 3D to
form the Motion History Volumes by considering véxeinstead of pixels
[Weinland et al., 2006b]. A binary version of MH talled the Motion Energy
Image [Bobick and Davis, 2001].
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2.3.3.1.2.3.Space-Time Local Features

A silhouette is surrounded by a simple, closed @ont A more advanced
representation of the silhouette is inferred byigmssg to every internal pixel a
value which depends on a relative position of thaint within the silhouette
[Gorelick et al., 2006]. This relationship is detémed by placing a set of particles
at the point which are then moved in the randomkwaitil the contour is hit.
Thanks to the statistics of this random walk, thealf value of internal pixel
corresponds to the mean time required for the gdarto hit the boundaries of the
silhouette. This mean time measure is computed pgraal differential equation,
called the Poisson equation, with the silhouettetaars providing the boundary

conditions.

The above spatial concept has been extended tdethporal domain
[Gorelick et al., 2007]. A sequence of binary silbties can be considered as the
space-time shape surrounded by a closed surfaca.r@sult, particles can wander
randomly in the spatio-temporal volume of data.sThllows representing each
silhouette by local space-time saliency and orignafeatures extracted from the
solution of the Poisson equation of the correspmpdiolumetric surface, which
implicitly takes into account the time domain. Tfieal global descriptor for a
given temporal range is obtained by calculating wleéghted moments over these

local features.

2.3.3.1.3.Summary of Feature Descriptors

Global descriptors are powerful and discriminatbece they encode much of the
information. However, they rely on robust detectiocalisation, background
segmentation or tracking to determine the regioninbérest and may not be
appropriate in the presence of cluttered dynamickdp@und and serious self

occlusions. In contrast, local descriptors are mmobeist against noise, variations of
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viewpoint and partial occlusions, although the &ction of a sufficient amount of
relevant interest points is challenging and comjutally expensive. Moreover,

local descriptors usually required a set of emalinarameters.

2.3.3.2.Action Descriptors

2.3.3.2.1Hidden Markov Model

Hidden Markov Model [Rabiner, 1989] (HMM) is a sstital generative model in
which the system being modelled is assumed to Idaekov process with an
unobserved state, i.e. the state is not direc8iblg, but the output, dependent on
the state, is visible. In action recognition, thagilen states correspond to different
phases in an action. HMM learns state transitioobgbilities that model the
temporal extent of action and observation probigbifiensity distributions that
model the observation process of hidden stateke€p the modelling of the joint
distribution over representation and labels trdetatwo independence statistical
assumptions are introduced. First, the state tiansiare conditioned only on the
previous state, not on the state history. Thidé Markov assumption. Secondly,
observations are conditioned only on the currestiestso subsequent observations
are considered to be independent in time. Traiointpe HMM is done efficiently
using the Baum-Welch algorithm [Baum et al., 1970¢neralised case of the

Expectation-Maximisation algorithm).

For instance, [Feng and Perona, 2002] considerspkegs as states, and
sequences of movelet codewords to model dynamiwgelka them using an HMM
framework. In similar manner, a HMM is used to mloteEmporal evolution of
silhouettes [Vezzani et al., 2010] or dynamic teasupatterns [Kellokumpu et al.,
2008]. Another interesting application is propossd[Martinez-Contreras et al.,

2009], where HMM tracks the Self Organizing Map [fémen, 1982] behaviour on
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the temporal sequences of MHI. In multi view sein[Ahmad and Lee, 2008]
represents an action with a set of multidimensiéfidMs for multiple views using
combined features of optic and shape flow in thetiaptemporal action boundary.
Alternatively, [Weinland et al., 2007] proposes themplar-based HMM to model
two independent random processes: one for thetatien of a subject relative to a
camera, and the other for a most discriminativevviiredependent poses taken by a

performer during the various stages of an action.

2.3.3.2.2 Conditional Random Fields

Conditional Random Field [Lafferty et al., 2001]RE) is a generalisation of the
HMM that allows observation and possible transgido be arbitrary functions.
Moreover, it is discriminative and can use multipleerlapping features. The model
predicts the conditional probability of the stagisen multiple observations on
different time scales. In contrast to the geneeatiMM, the CRF is trained to
discriminate between action classes rather thamilega to model each class
individually. As a consequence, it avoids the irefggence assumption and can

represent rich relationships among observationd@rgirange dependencies.

[Sminchisescu et al., 2006] uses the simple lirwin CRF, where the
state dependency is a first-order, to recognise amummotion and to show
superiority of the method in comparison to the HMMother application of the
CRF is presented in [Zhang and Gong, 2010], wheeemodified hidden CRF is
used to model an action and a global optimal smiuig guaranteed after the HMM
pathing stage. In a multi view scenario, [Nataragawl Nevatia, 2008] introduces
the two layer graph model of an action, where naddble top level correspond to
events in each viewpoint and on the lower layer €Rife used to encode the action
and the viewpoint-specific pose observation. FinallWwang and Suter, 2007b]

introduces the factorial CRF for an action recagnit
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2.3.3.2.3Bag of Words

The Bag of Words [Schuldt et al., 2004, Dollar let 2005, Niebles et al., 2008,
Junejo et al., 2008, Kaéaniche and Brémond, 200@niKhe and Brémond, 2010,
Reddy et al., 2010, Brendel and Todorovic, 201BpW) is a simple and powerful
approach for modelling an action as a large visuatabulary (dictionary,
codebook) of discriminative code words. This visdaltionary is formed by the
vector quantization of local feature descriptorsraoted from images using for
instance the k-means algorithm [Kanungo et al.,220@ode words are then
defined as the centres of the learnt clusters afteming out the clusters with a too
small number of members. Then each local descriptassigned to the closest code
word. A sequence of images is summarised by thekdison of code words from
the fixed codebook by computing a histogram of caed occurrences based on
the assignment of local descriptors. Action classaifon is performed by
constructing a feature vector for video based @ dbfined dictionary to relate

“new” descriptors in query images to descriptomsvpyusly seen in training.

Since BoW models discard the spatio-temporal lagduhe local features
which may be almost as important as the featuremgkelves, the main line of
research tries to reintroduce this information bamto the BoW model. For
instance, Laptev et al. [Laptev et al., 2008] emplspatio-temporal grids to extend
the BoW into the spatio-temporal domain. A concafpyudifferent approach is to
explore the spatio-temporal correlation betweenecebrds using the spatial
correlogram and spatio-temporal pyramid matching fnd Shah, 2008] or relative
location probabilities [Matikainen et al., 2010]lté&natively, two codebooks are
generated according to an appearance and a geonsdtnilarity of spatio-
temporally related pairs of cuboids [Ta et al., @1 As a result, each image is
represented by two histograms of visual words wlaioh combined into a single

feature vector. Similarly, [Liu etal., 2008] alstefines two vocabularies (i.e.
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spatio-temporal cuboids and spin images), howeees these features are fused in
the weighted manner using the Fiedler embedding gfaph. Eventually, even a
hierarchy of vocabularies is constructed using meogirhoods of spatio-temporal
features, where each code word encodes the infgoegtand a loose configuration
of neighbours to capture space-time relationshigsvéen words at successively

broader scales [Kovashka and Grauman, 2010].

Another issue with BoW is that the k-means algonitbnly considers
appearance similarity; therefore visual words ace necessarily semantically
meaningful. To address this problem the featurecespé& clustered using
Information Bottleneck [Liu and Shah, 2008] or Kivergence [Liu et al., 2009] to

obtain compact yet discriminative semantic vocatiesa

2.3.3.2.4Dimensionality Reduction

Action video sequences are very high dimensionabbse of the human motion
complexity. However, different instances of theggivaction reside only in a part of
the entire feature space. This subspace can bédeoed as a nonlinear manifold
embedded in a space of image frames. As a resdtdiscriminative and low
dimensional manifold of the action can be discogtdrg a dimensionality reduction
process.

A naive approach is to employ the linear PCA tocaoler a low
dimensional representation of filtered images [Makscand Papanikolopoulos,
2003] or HOG descriptors [Lu and Little, 2006]. éihatively, the locality
preserving projection (LPP) is employed for prodgclow dimensional space of
actions [Wang and Suter, 2007a, Wang and SuteB,Z¥hg et al., 2009] (LPP is a
linear approximation of the nonlinear Laplaciandtighap [He and Niyogi, 2004a]).
Since human motion is highly nonlinear, a nonlingetion manifold is obtained by

applying the LLE on silhouettes [Chin et al., 2Qdgpmap on the implicit function
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distance representations [Blackburn and Ribeird7200r Isomap on the view
invariant R-transform descriptors [Richard and Ky2009]. Another approach for
modelling nonlinearity of an action is to use thea€smann and Stiefel manifold
embeddings [Turaga etal., 2008b]. All these maasoare learned in an
unsupervised manner, which does not guarantee gi®atimination between
related action classes. To address this issueafidiayeung, 2008] proposes a novel
dimensionality reduction method, called Local Spdtemporal Discriminant
Embedding, which is tailored to the human actiocogaition task. In principle,
LSTDE projects data points of the same class dlegbe manifold and those of
different classes far away, while temporal relagiane modelled in subspaces of the

manifold.

2.3.3.2.5Summary of Action Descriptors

HMM and in particular CRF are excellent in modedlithe temporal development
of an action and allow making a probabilistic dexisin the classification task.
However, the process of model learning is challeggdbecause of the curse of
dimensionality associated with the space of featuta contrast, the learning
process of BoW is extremely simple, but, at the esaime, the obtained action
model proves to be very discriminative and effitiefhe main drawback of the
BoW model is that it is not view and scale invatjanoreover it is a black box with
neither rigorous spatial nor temporal structurdbimation about action. On the
other hand, not only dimensionality reduction medafe easy to learn, but also
they can simultaneously extract conceptually megfninmotion patterns from
actions. As a consequence, these models are ntarviem and understandable for a
user and, therefore, easy to analyse and procesgeWr, similarly to BoW, the
temporal aspect of the action is generally not nak&o account during the

dimensionality reduction process.
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2.3.3.3.Classifiers

The action models are used to ‘train’ a classifiehich performs the final
annotation of a new action. We will describe byiefhree of the most popular

approaches.

2.3.3.3.1Nearest Neighbour Classification

The k-Nearest neighbour (NN) classifier uses sorigtamice metric to assess
similarity between the descriptor of an observequsace and available training
descriptors. The most common label among khelosest training sequences is
chosen as the classification decision. In ordexhiays obtain a majority voté is
usually an odd number to prevent tie cases. Thissdier is common for action
models generated by a dimensionality reduction ¢s®c [Masoud and
Papanikolopoulos, 2003, Chin et al., 2007, Wang @uir, 2007a, Blackburn and
Ribeiro, 2007, Wang and Suter, 2008, Turaga et2lQ8b, Fang et al., 2009].
Usually a new instance of action is projected thi action manifold and similarity
between the projection and the learned manifolchlsulated. The NN classifier is
also used in combination with the BoW by simplyccddting a distance between an
input descriptor and available code words in tleiaiary [Dollar et al., 2005, Liu
et al., 2008, Kaaniche and Brémond, 2009, Kaanait Brémond, 2010, Brendel
and Todorovic, 2010]. Other approaches which expkas metric include [Bobick
and Davis, 2001, Weinland et al., 2006b, Gorelicale 2007, Zhao and Elgammal,
2008, Tran and Sorokin, 2008, Pehlivan and Duyg20d].

2.3.3.3.2Probabilistic Classification

Probabilistic classification matches an observeaglisece to the trained model (for
instance HMM or CRF) that maximises the observatimbability. The probability

of observing the given sequence is computed by rtfaximum a posteriori
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estimation [Weinland et al., 2007, Natarajan andatia, 2008, Martinez-Contreras
et al., 2009, Zzhang and Gong, 2010, Vezzani e8l10] or using the efficient
Viterbi algorithm [Feng and Perona, 2002, Sminctuseet al., 2006, Lv and
Nevatia, 2007, Kellokumpu et al., 2008, Ahmad aed,[2008].

2.3.3.3.3Support Vector Machine

Support Vector Machine (SVM) is a discriminative areb which focuses on
separating two [Boser et al., 1992, Cortes and \kad®95] or more classes [Hsu
and Lin, 2002] using decision boundaries, rathantmodelling them. It constructs
the hyper plane or set of hyper planes in a higinfaite dimensional space to
optimally separate data. Intuitively, good separais achieved by the hyper plane
that has the largest distance to the nearestnnipattern of any class, since, in
general, the larger the margin between classekWer the generalisation error of
the classifier. The feature vectors that consttaemwidth of the margin are called
support vectorsAlthough SVM is applied in the original finitedh dimensional
space of features, it often happens that in thatesphe sets of features cannot be
linearly separated. For this reason, SVM uses agkéunction to transform the data
into a higher (and potentially infinite) dimensibnspace to make the linear
separation possible. Many kernel mapping functicars be used; some of them are

presented in section 2.2.2.2.2.1. For more detads[Burges, 1998].

SVM has been usually trained on BoW and has praeetbe a very
powerful classifier for action recognition [Laptetal., 2008, Klaser et al., 2008,
Junejo et al., 2008, Wang et al., 2009, Meng arat2009, Liu and Shah, 2008,
Schindler and van Gool, 2008, Yeffet and Wolf, 2008 et al., 2010b, Weinland
etal., 2010b, Ikizler-Cinbis and Sclaroff, 2010atén and Hebert, 2010,
Matikainen et al., 2010].
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2.3.3.4. Datasets and Metrics

Since action recognition is a very dynamic areaesearch in the computer vision
community, many datasets have been proposed toaedrameworks in different
settings and scenarios. The most widely used datas#ude: Weizmann [Gorelick
etal., 2007], KTH [Schuldt etal.,, 2004], IXMAS @Wland etal.,, 2006b],
MuHAVi [MuHAVi, 2010], ViHASI [Ragheb et al., 2008]Hollywood [Laptev
et al.,, 2008], YouTube [Liu et al., 2009], UCF tekon [Rodriguez et al., 2008]

and UT-Iteraction [Ryoo and Aggarwal, 2009].

In this work, our contribution is validated on tweell established datasets
which are considered as the baseline for all aatemognition frameworks. Both
datasets will be described in the next sectionevi@d by the description of the

standard evaluation protocols used by the actioogm®ition community.

2.3.3.4.1.Weizmann Dataset

The human action dataset recorded by [Gorelick. e2@07] consists of 9 different
subjects repeating several times 10 actions inamutenvironment (walk, run,

jump, gallop sideways, bend, one-hand wave, twathaave, and jump in place,
jumping jack and skip). The backgrounds are statid foreground silhouettes are
included in the dataset. The dataset is usefutHerevaluation of view dependent
frameworks, because the viewpoint of provided v&disostatic. Example frames of

actions and subjects are presented in Figure 2.28.
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jack wavel skip place jump

run walk

side

Figure 2.28. Examples of different actions and acto  rs in the Weizmann dataset.

2.3.3.4.21XMAS Dataset

IXMAS dataset is introduced by [Weinland et al. 080] and contains videos of
actions captured from five viewpoints. A total & fiersons perform 3 times each
of 13 actions (check watch, cross arms, scratcd,l@adown, get up, turn around,
walk, wave, punch, kick, point, pick up, throw).tlms dataset, actors' positions and
orientations are arbitrary since no specific insian was given during acquisition.
As a consequence, the action viewpoints are randoedhunknown. The camera
views are fixed, with a static background and ilimation settings. Silhouettes and
reconstructed 3D visual hulls are provided by tlagaset. Example frames of

actions and subjects are presented in Figure 2.29.
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head
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watch
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Figure 2.29. Examples of different actions, actors and views in the IXMAS dataset.

2.3.3.4.3Evaluation Protocols and Metric

Different action recognition frameworks often uséedent experimental settings;
therefore a direct comparison is not always sttéogivard. Popular evaluation
schemas are divided into three groups:

* The holdout validation — a dataset is split intataets of videos and one of
them is used for training, while another one fatitey. This schema is used in
[Schuldt et al., 2004, Lv and Nevatia, 2007, Lap&hal., 2008, Meng and
Pears, 2009].
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« The K -fold cross validation — a dataset is partitionedoiK groups of
subject’'s dependent videos. For each of khexperimentsK -1 subjects are
used for training and the remaining one for testidinal error is estimated by
the average error rate over all experiments. Thieema is used in [Liu and
Shah, 2008, Liu et al., 2008, Zhang and Gong, 2BtEdikainen et al., 2010].

* The Leave-one-out cross validation — this schema special case of thi -
fold cross validation, wher& is chosen as the total number of subjects. For
each ofK experiments, only action instances of one acterused for testing
and all remaining for training. A final error istiesated by the average error
rate over all experiments. This schema is usedWeifland et al., 2007,
Gorelick et al., 2007, Wang and Suter, 2007a, Ghial., 2007] [Klaser et al.,
2008, Junejo et al., 2008, Tran and Sorokin, 200&) et al., 2008, Turaga
et al.,, 2008b, Kellokumpu et al., 2008] [Roth et @009, Richard and Kyle,
2009] [Kaaniche and Brémond, 2010, Weinland et2f11,0b, Ta et al., 2010a,
Ta et al., 2010b, Vezzani et al., 2010, Brendel &oadorovic, 2010, Kovashka
and Grauman, 2010, Pehlivan and Duygulu, 2010].

Action recognition performance is measured by tlerage number of
correctly classified actions in dataset over albjsats and views. In addition,
detailed accuracy results are very often presentadconfusion matrix with respect

to available actions.

2.4.Summary

In this chapter we outlined the background for temainder of this thesis. We
began with the theoretical foundations of dimenalityy reduction. Then we
reviewed algorithms of the two main strands ofdbeent research and highlighted
some of the strength and weaknesses of each griodpnensionality reduction

methods. Afterwards, we discussed the main devedopsnin the literature of
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human motion analysis with a special attention He tisage of dimensionality
reduction transformations. This is essential tal@d&gh the general background for
the evaluation of our contributions.

Although enormous effort has been already undemtdke the research
community to design powerful dimensionality redanttools to tackle a wide range
of real-life problems, we have identified a few damental research gaps which we

address in this dissertation in the following cleapt
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3. Automatic Configuration of
Spectral Dimensionality Methods

3.1.Introduction

Many real datasets are highly nonlinear and higmedisional. Since spectral
methods can handle very large datasets with a maag® computational cost, they
have proved very popular (see section 2.2.2.2.RPi@vever, the absence of explicit
mapping between low and high dimensional spacewedlsas manual tuning of
parameters limits their usefulness. In this chapter tackle these fundamental
problems by proposing an advanced framework foratlt@matic configuration of
spectral dimensionality reduction methods [Lewanskiw etal., 2009,
Lewandowski et al.,, 2010a]. This is achieved byodticing, first, the mutual
information measure to assess the quality of deem/ embedded spaces.
Secondly, unsupervised graph-based Radial Basistibannetwork (G-RBFN) is
designated for mapping between spaces where tharlggorocess is derived from
graph theory and based on Markov cluster algoritBwhaustive experiments on
synthetic and real datasets demonstrate the eféeetss of the proposed
methodology in a variety of applications, i.e. slfisation of hand written digits,

face recognition and human pose recovery.

The rest of the chapter is organised as followsti@e 3.2 investigates
advantages and disadvantages of embedded basety famidimensionality
reduction methods and some competitive proposalshadddress their limitations.
The proposed framework is described in detail otisa 3.3. Its evaluation is given

in section 3.4. Finally, a summary can be founsgdation 3.5.
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3.2.Related Work

Spectral or embedding-based approaches modelrtinese of data by preserving
some geometrical property of the underlying madifoWhile the Isomap
[Tenenbaum et al., 2000] method attempts to mairghibal properties, LE [Belkin
and Niyogi, 2002] and LLE [Roweis and Saul, 200@j aat preserving local
geometry which implicitly tends to keep the glollejout of the data manifold.
Since the brief description of these techniquepravided in section 2.2.2.2.2.2,
here we focus on their limitations.

The main shortcomings of spectral methods are fibsit the quality of
embedded space is extremely sensitive to the mdjuiree parameters and,
secondly, they do not provide any mapping functomiween the low and high
dimensional spaces. Despite research being cortltiatémprove these methods
[De Silva and Tenenbaum, 2003, De Ridder et abD320onoho and Grimes, 2003,
He and Niyogi, 2004b, Yang, 2003, He et al., 20804 et al., 2005, Choi and Choi,
2007, Zhang and Wang, 2007, Kokiopoulou and Sa@@7.2Zheng et al., 2008,
Yin et al., 2008b, Goldberg and Ritov, 2009, Wand &i, 2009], they still rely on
the emperical set of a few values, i.e. neighboodhgize, dimensionality of

embedded space and mapping function parameters.

3.2.1. Selection of Free Parameters

All spectral approaches have two essential frearpaters (Figure 2.12):
» the dimensionality of embedded spade,
* the neighbourhood siz& ,

which have to be specified apriori in order to perf dimensionality reduction.
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3.2.1.1. Dimensionality of Embedded Space

The dimensionalityd is used to choose the appropriate number of eajeas and
corresponding eigenvectors, which are solutionshef eigenvalue problem. The
eigenvectors form the basis of the low dimensi@paice. The optimal value df
should satisfy the ‘principle of parsimony’ [Belhé Wang, 2000], thus, it should be
set to the smallest possible number of dimensiorsciw allows maximal
preservation of the original information. Such oml dimensionality is defined as
the intrinsic dimension of the high dimensional adaMore formally, a dataset
X ORP is said to have intrinsic dimensionality (ID) etitmd if its elements lie
entirely within a d-dimensional subspaceRt (whered << D) [Fukunaga, 1982].
The estimation of the intrinsic dimensionality is caucial problem, because
knowing it the possibility of over- or under-fittnwould be eliminated. In
particular, if the number of dimensions is too lamportant data features may be
collapsed onto the same dimension. Therefore, ¢herhination ofd is a very well
studied problem in machine learning and many apres have been proposed (see

[Camastra, 2003] for a detailed review). They idelu

e projection methods, which use a low dimensional esaling to estimate ID:
0 eigenvalue-based estimator [Fukunaga and Olserd] 1EE),
o PCA estimator with cover sets [Fan et al., 2010],

e geometric approaches, which investigate the intriggometric structure of data

in order to estimate ID:
o packing numbers [Kegl, 2003],
o0 analysis of a geodesic minimum spanning tree [CaxstHero, 2004],
o fractal-based method [Camastra and Vinciarelli, 2200

o neighborhood convex hull method [Li et al., 2007Db],
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» probabilistic methods, which make a distributiorslasption on data to build
the ID estimator:
o maximum likelihood estimation [Levina and BickeQ5, MacKay and

Ghahramani, 2005],
0 incising ball algorithm [Fan et al., 2009].

However, none of them has achieved consensus asnts¢ accurate
method. Projection methods [Fukunaga and Olsen,1Pan et al., 2010] are based
on a heuristic basis [Camastra, 2003], whereastalrbased [Camastra and
Vinciarelli, 2002] and packing numbers [Kegl, 2003¢thods are designed for low-
dimensional datasets since their complexity groxgseentially with the dimension
[Camastra, 2003]. In turn, the graph-based metf@dsta and Hero, 2004, Li et al.,
2007b] are sensitive to a required neighbourhoad giarameter and tend to
overestimate the ID as the neighbourhood size aser® [Fan et al., 2010]. Finally,
the maximum likelihood estimation assumes thatreosading of any data points
can be correctly approximated by a uniform probgbitistribution function
[Levina and Bickel, 2005]. However, in very highnainsional spaces with a
relatively small number of observations due to tmensionality curse (section
2.2), the assumption under which the method retiesot fulfilled [Ramos et al.,
2007]. In a similar vein, [Fan et al., 2009] is @a®n a uniformity assumption. As a
consequence, in practice, the choice of ID estongbrocedure depends very often
on a particular application and the nature of exg@ibdatasets.
3.2.1.2. Neighbourhood Size
The selection of the optimal neighbourhood sizalse a challenging problem. If it
is too small, global feature information is loste@ the manifold may be split into
unconnected pieces. If it is too large, the LE Bh# assumption that a data point

and its neighbours are locally linear is violatedthe case of Isomap, a large value
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of K introduces errors in geodesic distances. The fimans of research to discover

the optimal value oK are following:
» Adaptive selection of local neighbourhood sizedach data point.

« Assessing directly the quality of embedded spages guantitative measure in

order to infer the global optimal value of the ridagurhood size.

» Optimisation of already constructed neighbourhoods.

3.2.1.2.1. Adaptive Neighbourhood Selection

The main idea behind these algorithms is to adelytiestimate the neighbourhood
size of each data point separately by interativadgling/removing points to a
considered neighbourhood until a defined conditsoviolated.

For instance, [Wang et al., 2005] defines neighboad contraction and
expansion procedures based on the estimation af tangent space. However, the
neighbourhood size parameter is indirectly repldmgdeveral other user-specified
parameters. [Mekuz and Tsotsos, 2006] overcome is th problem by
proposing a parameterless estimation procedure ewvhar neighbourhood
incrementally grows as long as candidates agrele aitocally computed linear
tangent orientation based on the estimated intridgnensionality. Alternatively,
instead of using the Euclidean distance for deteation of neighbourhood
candidates, [Wei et al., 2008] exploits, first, tmanifold ranking method [Zhou
et al., 2003] to choose the best candidate and, tbenstructs a suitable local
tangent space. In contrast, [Zhan et al., 2009&anZét al., 2009b] proposes an
algorithm that expands neighbourhood for each gt by measuring local
linearity of its neighbourhood patch on a manifoking PCA under the assumption

that neighbourhood should be as large as possible.
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3.2.1.2.2 Quantitative Evaluation of Embeded Spaces

An alternative approach is to use a single glole&ymbourhood size for all points.

This neighbourhood size parameter can be estima¢aimatically by assessing
directly the quality of embedded spaces using antijfative measure. The

neighbourhood size, which leads to the best sar¢he corresponding embedded
space, is chosen. Many measures have already Weponspd, such as Residual
Variance [Kouropteva et al., 2002, Samko et alQ&0 Spearman Rho [Samko
et al., 2006, Karbauskait et al., 2007] and Prdesiénalysis [Goldberg and Ritov,

2009].

3.2.1.2.2.1.Residual Variance

The residual variance [Kouropteva et al., 2002, I&aet al., 2006] expresses how
well the distance information is preserved betwé&e&n corresponding sets of
variables X andY consisting ofN examples each, i.e. it reflects the degree of
linear relationship between these variables. Thdriemas expressed by the
following formula and a value of 0 implies thatithés no linear relationship:

p=argmin(d-rz, ) (3.1)

wherer,, is the standard linear Pearson's product-momenelation between

high and low dimensional spaces:

1 () (V-4 )
XY—NZ oy o, (3:2)

Here 4 and o denote respectively the mean and standard dewiatia dataset.

3.2.1.2.2.2.Spearman’s Rho

Spearman's rho [Samko etal.,, 2006, Karbauskadl.,et2007] measures the
accuracy of the low-dimensional manifold in retagithe order of pair wise

distances of data points of the high-dimensionaliahie of 1 or -1 corresponds to
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the highest correlation, whereas correlation isaét¢m zero implies no association
between the two variables. In principle, SR is dingspecial case of the Pearson
product-moment coefficient in which variabl&sand y, are converted to rankings
r,() andr, (i) before calculating the coefficient. The Spearntamis expressed by

the following equation:

61, 0)-1,0))
N°®-N

p:]_— (33)

3.2.1.2.2.3.Procrustes Analysis

The procrustes analysis measure [Goldberg and R#@39] reflects the matching
of two sets of variableX andY in terms of distances. It determines how well a
linear transformation (i.e. translation, reflecti@nthogonal rotation, and/or scaling)
of the points in one space conforms to the pomthé other space. The smaller the
value of the procrustes measure, the better threlation between spaces:

o =trac( X—( AY+ D)( X=( A¥ P] (3.4)

where A is the Procrustes rotation matrix which is comguexplicitly by the
singular value decomposition o™ HY, whereH is the centering matrix [Sibson,
1979]. The Procrustes translation vectoris given by the difference between

means ofX andY [Goldberg and Ritov, 2009].

3.2.1.2.3Neighbourhood Optimisation

This class of methods assumes that neighourhoods dleeady been found using
any of the already discussed techniques. Thesélb@ighoods are then optimised
to better represent the high dimensional data.example, an approach based on
path algebra of graph is investigated in [Wen gt @&007], where better

neighborhoods were obtained for Isomap by considean implicit correlation
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among data points. Alternatively, [Wen etal., 20@®plies locally estimated

geodesic distances to refine the neighborhoods.

3.2.1.2.4Summary of Neighbourhood Selection Procedures

Although methods which adaptively select neighboodh show promising results
[Wang et al., 2005, Mekuz and Tsotsos, 2006, Wei.eR008, Zhan et al., 2009a,
Zhan et al., 2009b], their main drawback is versorsy dependency on local
constraints. Real datasets are high dimensionahantinear but, at the same time,
a sampling density is usually poor because of threedsionality curse (see section
2.2). As a consequence, locally linear patchesialm space as well as the estimated
neighbourhoods tend to be very small and may p@diigjoint graphs in different
areas of a manifold. In such case, the global tapolof the data manifold is
completely lost during a dimensionality reductiorogess, since it has to be
performed independently on each of the graphs.dtitian, the assembled graph
may provide less constraints for an optimisatioocpss, since it may be not well

connected.

To overcome these limitations, a single global hkaurhood size for all
points can be estimated, which reduces signifigathi& probability of generating
disjoint graphs because of weak local costraitsnearest neigbhours can always
be determined, even though they lie only on an @pprately linear patch of a
manifold. In such case, spectral methods arecstpable to discover a meaningful
low dimensional representation because the fullynnested graph can be

assembled.

Neighbourhood optimisation techniques assume thaali neighourhood
sizes have already been provided for each datd, gbus they can be considered as

the post processing optimisation step of any ofih@ve methodologies.
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3.2.2. Design of Mapping Function

An inherent limitation of spectral dimensionaligduction approaches is that they
do not provide any explicit mapping function betwdew and high dimensional
spaces. Such function is essential to allow a ptigje of data between spaces and
an interpolation of the low dimensional represeatato unseen examples. Among
the different strategies that have been applie@ddress this issue (see section
2.2.2.4 for overview), Radial Basis Function netww@Poggio and Girosi, 1990]
(RBFN) tackles this problem quite satisfactory bgpmximating the optimal
mapping function [Elgammal and Lee, 2004a, He et2004, Shi etal., 2005,
Elgammal and Lee, 2007, Blackburn and Ribeiro, 200fbuchi et al., 2008,
Lewandowski etal., 2009]. The entire process drriag RBFN has been
summarised in section 2.2.2.4.4. However, peformariche obtained RBFN relies

on the careful selection of a few parameters whiehusually chosen empirically.

The RBFN structure is based on centfes{c| i=1..Z,Z <N} which
summarise training data points in order to prowgeéeeralisation properties to the
network. The performance and generalisation paknfi RBFN critically depend
upon the choice of these centres [Chen et al., ]183ineans clustering [Kanungo
et al., 2002] and rival penalized competitive leéagnXu et al., 1993] are currently

the most popular and well studied methods whichresidthis task.
3.2.2.1. K-means Clustering

The most common form of the K-means clustering ilgam [Kanungo et al., 2002]
(KMC) uses an iterative refinement heuristic knoas the Lloyd's algorithm
[Lloyd, 1982]. It starts by random initialisatiorf @entres and then two steps
alternate points’ assignment and centres relocatiothe first step, all points are

assigned to the closest centre to form clusterser#brds, means of obtained
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clusters are computed and become new centres. Thesgteps are repeated until

convergence of the following objective function:

j=1i=1

N 2
| @9)
The above equation corresponds to a minimisatioiotaf intra-cluster variance in
dataset. In terms of performance the algorithmoisguaranteed to return a global
optimum. The quality of the final solution depenidsgely on the initial set of
clusters. Moreover, a key drawback of the KMC alon is that it requires prior

knowledge of the correct number of centres.
3.2.2.2. Rival Penalized Competitive Learning

The rival penalized competitive learning [Xu et a993] (RPCL) algorithm is
capable of finding the optimal localisation of aestas well as their correct number
Z in an automatic way. FirsZ' centres are randomly initialisedZ(>>Z ).
Subsequently, in each iteration, the algorithm cemigt selects a sample from the
training set and moves the closest centre (theafledccompetition winnec,,)
towards the considered poiatby a weighted distancel. In the same step the
second closest centre (or rive) is pushed away from the sam@eby a weighted
distancew2 (wherewl>>w2). Learning rates, i.ewl, w2 are monotonically
decreased after each iteration. The entire proeeduepeated until it converges or
reaches a given threshold. This mechanism allowenzatic determination of the
centres’ positions by locating them at the corelatf point clusters and gradually
driving unrequired centres away from those clust&fe discussed procedure is

illustrated in Figure 3.1.
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Figure 3.1. Rival Penalized Competitive Learning: a ) the rival ¢ r is pushed away from
the cluster that the winner ¢  is approaching at each time step. b) The correct

number of centres is determined by pushing away unn ecessary centre such asc .
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3.3.Proposed Methodology

We propose a general framework for the automaticofigoration of spectral
dimensionality reduction methods which contributdhte current state of the art by
addressing two essential problems: the selecticheobptimal neighbourhood size
K and the inherent absence of mapping function bevepaces. First, we propose
to estimate the optimal neighbourhood size by agsgghe quality of discovered
embedding spaces using the mutual information (Rdpasure [Cover and Thomas,
1991]. Secondly, we overcome the deficiency of nrapgunction by extending
RBFN to design the optimal structure of the netwirkan unsupervised manner
using spectral graphs which are constructed irfiteestep of the embedded based
approaches. In principle, our framework can be iedplto any spectral
dimensionality reduction approach which shares gtracture of the algorithm
illustrated in Figure 2.12. This includes Isomagd,EL. LE and many of their
extensions. In agreement with the previous resedartife field (section 3.2.1.2), we
assume that the intrinsic dimensionalidy(ID) is known or it is estimated using

any dimensionality estimation technique (sectich131).

3.3.1. Mutual Information Measure

The selection of the optimal neighbourhood dkzes still an open and challenging
problem as discussed in section 3.2.1.2. Our pexpaderence procedure follows
the most promising line of research which focusesestimating globally the
neighbourhood size (section 3.2.1.2.2). Althougmynmeasures have already been
proposed (section 3.2.1.2.2), experiments sugdesttheir accuracy depends not
only on the choice of intrinsic dimensionality balso on the dataset nature.
Consequently, they are not suitable when dealinh womplex nonlinear high
dimensional data of unknown nature [Lewandowskalet2009, Lewandowski

et al., 2010a].
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The optimal neighbourhood siz¢ can be identified directly by assessing
embedded space quality, by the following processst,Fdata are divided into
training and testing sets. Then, for a given valti€ , dimensionality reduction is
applied on the training set and a mapping fundsopuilt between the original and
embedded spaces. Finally, test data are projentedthe low dimensional space
and an error metric is calculated. This procesgpeated for a range &f values

so that the optimal neighbourhood size is idertifie

Since this process requires calculating computatipexpensive mapping
functions for all possible values &, quantitative metrics have been proposed to
evaluate the quality of an embedded space withoapping. The standard
procedure of optimal neighbourhood size estimatisimg a quantitative metric is

summarised in the following pseudo-code (algorithm

Algorithm 1. Estimation of optimal neighbourhood size

Input: high dimension dataset, maximug (maxK), ID estimated
Output: optimal K
Find minimumK (minK) which produces a fully connected graph
for eachK in range < minK, maxK xo
Reduce dimensionality of the dataset usisgextral method
Use metric to assess the quality of the enibedpace
end for

Select optimaK according to metric

In our framework, we adopt an advanced metric &ess the quality of
spaces. This metric can deal with features withany linear relationship. We
propose to use the mutual information (MIl) mead@ever and Thomas, 1991]
which has proved to be able to discover even margiependency between two

spaces of variables, since, in contrast to linearetation coefficients, it is also
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sensitive to dependencies which do not manifeshéieéves in the covariance. Ml is
null if and only if the two random variables areicgty independent. The first idea
would be to design a cost function directly in #pectral dimensionality reduction
framework using MI; however since M| expressestietaship between two sets of
variables rather than individual points, it is remt appropriate metric for that
purpose. As a consequence, we propose to emplayaitpost processing step to
evaluate the quality of spaces.
The most straightforward and widespread approackdtmating Ml is to
partition the data and approximate Ml by the folilogvfinite sum:
SAY p(i, )

I (X,Y)= i, )log————~2— 3.6
(X¥)=2.2, Wi Dlog=50 55 (3.9

where p(i, j) is the joint probability distribution function, dnp, (i) and p,(]) are
the marginal probability distribution functions of and Y respectively. This
formulation is equivalently expressed as [Cover @hdmas, 1991]:

[(X,Y)=H(X)+ HY)- H X Y) (3.7)
where H(X) and H(Y) are the marginal entropies ard(X,Y) is the joint
entropy of X andY.

However, this standard approach can only be appiedD=d=1,
because the estimation of entropy is based on 8Oataing. Since, in our
framework, we need to estimate MI measure for higtiienensional variables
(D>1d=1), we calculate the entropy using K-nearest neighbstatistics as
proposed in [Kraskov et al., 2004]. Assuming thame metric is defined on the
spaces spanned by andY, all neighbours of a given data powt are ranked
according to their distance to that point. As a semuence, the entropy
HW) (wl{x y ) can be estimated by the average distance to tmeafest
neighbour, averaged over ail . This leads to the following equation [Kraskov

et al., 2004]:
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H(vv):N*;fw(m(wl)—w(N)—logcuw—dﬁwgloge(i)] 38)

Here, n, (i) denotes the number of points whose distance fmpnis
strictly less there(i), i.e. (:ountnvvi - W, H <&(i)), wheres(i) is a distance between
w and its Kh neighbour. In turny() is the digamma function [Kraskov et al.,
2004], whereasl,, (wL{Xx } ) denotes the dimension ®f andc, is the volume
of the d-dimensional unit ball. Similarly, the jbientropy of X andY for a given

K [Kraskov et al., 2004] is expressed by:

+dy

d N
H(X,Y)=¢(K)-¢N)-log(g, %y)—XT;|09€(i) (3.9)

Combining equations (3.7), (3.8) and (3.9) resuitghe expression of

multi-dimensional MI:
LX) =g+ (N)-N"Y (w(n()+D+o(n,()+1)  (3.10)

Although mutual information has never been usedhis context, its
multidimensional extension allows M| becoming atuitive measure for analysing

the mutual correlation between high and low dimemsi spaces.

3.3.2. Graph-based Radial Basis Function Network

All spectral approaches suffer from the deficieméytacking a mapping function.
Very popular solution to this problem is to use RBBased mapping [Elgammal
and Lee, 2004a, He etal.,, 2004, Shi etal., 2@§ammal and Lee, 2007,
Blackburn and Ribeiro, 2007, Ohbuchi et al., 20@8wever, this process relies on
manual adjustment of RBFN structure according ta.dln the case of standard
KMC algorithm, it means that prior knowledge abthé correct number of centres

is required.
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Our first attempt to automate the mapping learrpngcess was to apply
RPCL for training of RBFN in the context of mandolearning [Lewandowski
et al., 2009]. However, RPCL, as KMC, depends @nitiitial random localisation
of centres and relies on the Euclidean distancéchwis not the most appropriate
metric to model high dimensional relationships [Aggal et al., 2001]. In order to
improve accuracy, we extend our idea of unsupedvisepping learning and
propose to use the Markov cluster algorithm [Dond@&90] (MCL) to identify the
suitable number and localisation of centres autmally by exploiting the
adjacency graph constructed during spectral diroeasity reduction
[Lewandowski et al., 2010a]. As a consequencenthel graph-based radial basis
function network is introduced (G-RBFN) which islaeed to spectral methods. As
it will be demonstrated in the results section,¢bmputational cost of the mapping
learning process is greatly reduced and the oldaim@pping exhibits better

accuracy in comparison to standard approachesasusiMC and RPCL.

At the heart of the MCL algorithm [Dongen, 2000¢di the idea of
simulating flow within a graph: flows are promotedhere current is strong and
demoted where current is weak. Flow simulation deieved by transforming a
graph into a Markov graph using the standard défmiof a random walk on a
graph. Then, a flow is defined by two simple algébroperations, i.e. expansion
and inflation, which are applied connectively ostachastic (Markov) matrix in the
iterative estimation, so that the flow becomeskicin regions of higher current
and thinner in regions of lower current. The prgcesnverges quadratically in the
neighbourhood of so called doubly idempotent mesri¢idempotent under both
expansion and inflation) [Dongen, 2000].

According to this paradigm, if natural groups aresent in the spectral
graph obtained in the first step of dimensionahéguction, then current across

borders between different groups will wither awAg. a result, a fully connected
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graph is divided into few sub graphs (Figure 31Ays revealing the optimal
numberZ as well as coordinates of clust€2s={c| i=1..Z}. Application of this

procedure enables the discovery of more represemttsters of high dimensional
data and subsequently customises RBFN structudat@set in an automatic and
efficient manner. For instance, clusters obtaingdgiKMC or RPCL mixes points
from different branches of the manifold (Figur&&, thus a global structure is
lost, whereas MCL clusters follow appropriately ighhdimensional curvature of

the dataset (Figure 3.3b),

Once the clusters are determined, the learningegmof RBFN follows

the standard procedure described in section 2.2.2.4

Figure 3.2. 2D representation of successive iterati  ons of flow simulation using the

MCL process for discovery of the localisation and t he number of centres in RBFN.

)

a)

Figure 3.3. Customisation of RBFN structure for swi  ssroll using a) KMC/RPCL and b)
MCL.
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3.4.Evaluation

The proposed framework was validated with bothfieidi and real datasets.
Standard datasets were selected to extensivelyuatealthe performance and

robustness of the proposed methodology in diffeseanharios.

In this section, first, all datasets, which aredusethe evaluation process,
are introduced in section 3.4.1. Then, a setupxpéements is explained in section
3.4.2.1 followed by a definition of performed expegnts in section 3.4.2.2.
Subsequently, sections 3.4.3, 3.4.4 and 3.4.6 ¢eovesults of experiments,
whereas section 3.4.5 presents a practical apiplicat the proposed methodology,
I.e. 3D human pose recovery. Finally, the broadudision about obtained results is

provided in section 3.4.7.

3.4.1. Datasets

Figure 3.4 and Figure 3.5 illustrate the datass¢sldor evaluation.

oo L w—

QAN RQ % Q Y
TPP—ad= oW
SV v N
M WS WS W —
OO 4 NN G NN

=)

Figure 3.4. Datasets used in the experiments: from le

to right, swissroll manifold,

handwritten digits (the MNIST dataset) and face ima  ges (the ORL dataset).
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Figure 3.5. Variety of actors from HumanEva dataset which were used in the

evaluation process. From left to right: S1, S2, S3.

The swissroll dataset is a synthetic and nonlineeample of a two
dimensional flat submanifold which lies in a thiierensional space. The ideal low
dimensional representation is a two dimensionaturegular structure, which is
expected to be revealed by unrolling the three dsimmal swissroll shape. This
dataset exhibits significant disagreement betwesmgsic and Euclidean distances
(Figure 3.4a). Two thousand points were randomigad from the manifold and
used in all our experiments. In addition, we getegtaa second smaller dataset
consisting of 1000 points (denoted by a star ineoyoreriments) in order to compare
Isomap results with those of the original IsomapgrdTenenbaum et al., 2000].

The MNIST dataset [LeCun, 2000] consists of hantdemi characters
images containing digits from 0 to 9 (Figure 3.4bhe size of each image is
28x 28 pixels, with 256 grey levels per pixel. Due to gmrtational and memory
constraints, in our experiments we used a subsiéteoMNIST database consisting
of 6000 images. According to [Camastra and Vindiiar@001], the optimum
intrinsic dimensionality of handwritten digits is Whereas the upper bound of the

intrinsic dimensionality as determined by EE equéls
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The ORL (formerly Olivetti) face database conta#®0 images of 40
distinct subjects [Samaria and Harter, 1994] (Feg®.4c). All images were
captured against a dark homogeneous backgroundthigtsubjects in an up-right,
frontal position, with tolerance for some side mmeats. There are variations in
facial expression (open/closed eyes, smiling/nolisg)] and facial details
(glasses/no glasses, different skin colours). Tinages are grey-scale with a
resolution of64x 64 pixels. The analysis of relation between recognitiates and
dimensionality of embedded space in [Yin et alQ&] suggests a value of 10 as
the optimal intrinsic dimensionality for this da¢éd The upper bound of the

intrinsic dimensionality as determined by EE eq4dls

The HumanEva (HE) dataset has been introducedctioae?.3.2.3. In this
evaluation only sequences of “walking in a circee processed using the actors
depicted in Figure 3.5. In all cases, trail 3 objsat 3 was used for training the
spectral dimensionality reduction methods (S3T3g. 8hose frames 750 to 1750 to
include a variety of walking postures. Testing vp&sformed using three ground
truth datasets and one dataset composed of poseatest. Datasets were carefully
selected to validate robustness of the framewotk different actors, who differ in
size, body shape, motion style and gender. Thengrdruth datasets consist of:
frames 55 to 315 for male subject 3 in trail 1 (38 Trames 340 to 760 for male
subject 2 in trial 1 (S2T1) and frames 1 to 400féwnale subject 1 in trial 1 (S1T1).
The last dataset is a set of body configuratiormedes obtained through our auto
calibration technique [Kuo et al., 2009] for subje€c (S2EST) (see also section
3.4.5.1 for details). Intrinsic dimensionality deténed by EE equals 2 which is in
agreement with other research on modelling walldotion [Grochow et al., 2004,

Elgammal and Lee, 2004a, Urtasun et al., 2006ahypetral., 2010].
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3.4.2. Experimental Framework

The proposed methodology is evaluated through t@ti@k and quantitative
analyses of performance using the representatifethe three main spectral

families (section 2.2.2.2.2.2), i.e. Isomap, LLE 4.
3.4.2.1.Setup

All experiments were performed usikg values in the range 4,30>. The lower
bound of the range corresponds to the minimum teigihood size, which allows
generating a fully connected graph for the selectatsets. The upper bound is
motivated by [van der Maaten et al., 2009]. Theinaustive evaluation of spectral
dimensionality reduction methods on various dataéatluding MNIST and OCL)
suggests that an upper bound of 15 neighbours sl@dmaining the optimal results
across most spectral methods. In our work, we @aonservative approach: this
value was doubled to ensure that the neighbourlmande is sufficiently large to
find the optimal neighbourhood size in all conddcgéxperiments even for datasets
not investigated by [van der Maaten et al., 2008].multidimensional spaces,
geodesic distances are used, whereas on the plrnploy Euclidean distances
as suggested in [Samko etal., 2006]. RBFN wasddhifrom high to low
dimensional space as described in section 2.2.2a#dl a resulting mapping
function is given by the equation (2.62).

3.4.2.2.Experiments

First, we evaluate qualitatively the novel M| esdior against current approaches,
i.e. residual variance (RV), spearman rho (SR) &ndcrustes analysis (PA)
measures. This is performed using the synthetiasegatfor which the underlying

structure is known so the quality of embedded spacebe judged visually (section

3.4.3).
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Then, two classical pattern classification problefase and handwritten
digit recognition, are considered in order to amalthe quantitative performance of
the MI metric (section 3.4.4). We do not performyapre-processing or
normalisation of the data in order to prevent arfgrimation lost. It is important to
note that, in this work, we did not focus on designa state of art classification
system, but on comparing existing metrics with tree we proposed using a
standard classification framework based on a galieation.

In addition, we apply all measures in a pose regoapplication (section
3.4.5), where human motion is represented by matapture data as described in
section 2.3.2.3. In the first experiment, we coesithe simplest scenario, in which
we train and test with the same subject, i.e. SBygudifferent trials. This should
allow finding the lowest bound of the reconstructierror which can be obtained
within our framework. In the next two experiment& evaluate our approach using
MoCap data from subjects 2 (S2T1) and 1 (S1T1)hBetasets differ considerably
from training set as actions are performed by \different subjects, see (Figure
3.5). Since input data are ideal estimates, thenstouction error should highlight
differences introduced by variations of walkinglesyand body frames between
testing and training characters. Afterwards, in finerth experiment, we take the
corrupted 3D pose estimates produced by our algorfor subject 2 on a walking
sequence (S2EST) and we refine them according eofrimework (see section
3.4.5).

Finally, in the last experiment we show superioofygraph-based RBFN
in comparison with standard RBFN (section 3.4.6)isTis achieved by repeating
the classification experiments with digits and facecognition and pose recovery
experiments using the new mapping function whoseicttre is inferred

automatically from the spectral graphs.
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3.4.3. Artificial Dataset Evaluation

Table 3.1 presents the low dimensional spaceseofwissroll dataset produced by
Isomap, LE and LLE using the estimated neighboulhsiaes calculated by RV,
SR, PA and the proposed MI measure.

Table 3.1. The low dimensional spaces of swissroll with estimated and recommended

neighbourhood sizes for Isomap, LE and LLE accordin g to coefficients RV, SR, PA
and Ml.

Method Coefficient Visualisation
(recommended K) | (estimated K)

LLE (20) residual variance

[Roweis and Saul, (11)
2000]

spearhman rho

(22)

procrustes analysis %

(8) véf%
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3.4

mutual information

(20)

LE (5-15)
[Belkin and
Niyogi, 2002]

residual variance

(8)
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Isomap (-)

residual variance

(21)

spearhman rho,
procrustes analysis

mutual information

(18)
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Isomap (7) residual variance

[Tenenbaum et al.,| (9)

2000]

(The swissroll dataset

with 1000 points spearhman rho

instead of 2000 points (4)

procrustes analysis,

mutual information

(7)

In all cases, the MI measure was able to identigryvgood low
dimensional representation of swissroll dataset, an embedded space which
manages to unroll manifold and preserves localcgira. Moreover, estimated
values ofK using MI are in agreement with parameters whichewecommended
in the original papers [Tenenbaum et al., 2000, &swnd Saul, 2000, Belkin and
Niyogi, 2002]. Although other measures usually seteasonable low dimensional
representations, their quality is not consistemt. Fstance, the local structure is
distorted in most experiments involving RV/SR. Altilygh PA seems to behave
similar to MI, in the case of LLE the very diffetemeighbourhood size returned by

PA leads to the production of an embedded spatdesfor quality.
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3.4.4. Classification Evaluation

In this experiment, grey-level images of digits dades are vectorized using raster-
scan order into 784 and 4096 dimensional featuretove respectively. The
recognition of either digits or faces is performactording to the 10-fold cross
validation strategy, where we divide a dataset tetodistinct partitions. For each
partition, we reduce dimensionality of remainingasg&t and train RBFN with the
standard RPCL algorithm. Then, each partition i®jgmted into the low
dimensional space and classification is performgidgua first nearest neighbour
classifier (Ho, 1998). Finally, classification acacy is calculated by averaging
over the ten partitions. For each dataset, estimaif optimal neighbourhood size
for dimensionality reduction is calculated using,FBR, PA and MI. Moreover, the
actual optimaK (Opt) is calculated experimentally by an exhawstvaluation of
classification accuracy for all values Kf within the range<4,30>(see section
3.4.2). In addition, using the optimal value, walerate the classification accuracy

of the scheme (Opt*) which includes graph-based RBE-RBFN).

Table 3.2 and Table 3.3 show the results of th&peranents which were
conducted with two sets of IDs as defined in secto4.1. Note that the huge
computational cost of applying PA on the very hidimensional faces dataset
(dimensionality of 4096) did not allow us to obtdlme results for this measure

using our processing capabilities (16-node cluster)
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Table 3.2. Percentage accuracy of handwritten digit s recognition, where Opt is
calculated experimentally using RBFN by exhaustive evaluation of all considered

neibhourhood sizes, whereas Opt* corresponds to the usage of graph-based RBFN

% ID RV SR PA Ml Opt Opt*
Isomap 10 88 88 88 88 89 90
LLE 62 63 59 78 78 82
LE 79 79 80 80 80 84
Isomap 7 85 82 84 85 85 87
LLE 56 63 53 74 74 77
LE 75 75 74 76 77 80
Table 3.3. Percentage accuracy of faces recognition , where Opt is calculated

experimentally using RBFN by exhaustive evaluation of all considered neibhourhood

sizes, whereas Opt* corresponds to the usage of gra  ph-based RBFN

% ID | RV SR PA MI Opt Opt*
Isomap 40| 76 73 - 77 77 77
LLE 78 78 - 80 80 80
LE 67 67 - 67 68 73
Isomap 10| 65 57 - 76 76 76
LLE 55 55 - 61 62 62
LE 62 50 — 63 63 63

In agreement with our previous experiments, neighbood sizes
estimated by the Ml measure produce consistentigbelassifications than those
suggested by other metrics regardless of the chasemsic dimensionality.
Moreover, the performance of nearest neighboursifias is optimal or near-
optimal when using MI, for a given dimensionaligduction method. Results also

reveal that unlike LLE and Isomap, LE is not veepsitive to neighbourhood size
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selection. As expected, decrease of intrinsic dsimality results in a decline of
accuracy since more discriminative information iscdrded during dimensionality
reduction. Two dimensional visualisation of the tbésw dimensional space

obtained with Isomap for the digit dataset is pnése in Figure 3.6.
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Figure 3.6. Two dimensional visualisation of the be st low dimensional space

obtained with Isomap for MNIST data subset.

Although we used classification experiments to carapjuantitatively the
measures, our aim was not to produce a state @rthaassifier, but to demonstrate
that our innovations could be applied successftdlyepresentatives of the three
main spectral families, i.e. Isomap, LLE and LE. Weuld suggest readers with a
special interest in classification to apply our adeed techniques to spectral
methods which were developed especially to hanbbkt task. They include
discriminant Isomap [Yang, 2003], supervised LLEe[Ridder et al., 2003] and
semi-supervised LE [Zheng et al., 2008].

Finally, the proposed G-RBFN (Opt*) achieves bettassification
accuracy in comparison to the standard RBFN (Om) &ll considered

dimensionality reduction methods (Table 3.2 and IdaB.3). The efficiency
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improvement is especially noticeable for large sets like handwritten digits
(Table 3.2), when the enormous graph can be assdmbth distinctive groups of
well connected points due to usage of Khenearest neighbour procedure, which
allows to form representative centres for the m@gpiurther evaluation of the

novel mapping function is provided in section 3.3.2

3.4.5. Application to Pose Recovery

To demonstrate the performance of the proposed adetbgy for automatic
configuration of spectral dimensionality reductiorethods, it is applied to the
refinement of 3D body pose estimates in pose ragoygplication. Here, a human
motion is represented by a sequence of 52-dimeaki®@ature vectors extracted

from motion capture data as described in secti8r2 3.
3.4.5.1. 3D Pose Recovery Framework

Our proposed 3D pose recovery framework aims @nhathg a 3D pose from 2D
joint locations using a single uncalibrated camigdao et al., 2009]. Figure 3.7

shows an in-depth insight of this process.

P —m
|

|
|
—:)CKey frame identiﬁcatiorD—l—) Key frames

Pin-hole based
reconstruction

for key frames
A sequence of

extracted 2D key |43 | camera relative position and Parameters
points |

Reconstruction
propagation by
static foot

3D pose estimates

—)CStatic foot identiﬁcation>

Figure 3.7. Generation of 3D body pose estimates.

First, we assume that 2D joint positions of the hanfbody have been

extracted from a video sequence using any 2D pasevery method (for instance
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[Kuo et al., 2008]). These 2D key points are emetbyo perform camera auto-
calibration for a set of key frames automaticalgfested in the sequence [Kuo

et al., 2007]. This is an iterative process, whiohsists of two steps:

» Selection of specific key frames by exploiting antamn bipedal motion

constraint that certain body joints become coplavidrin a motion cycle.

e Estimation of camera calibration parameters, iacaf length and camera

relative position, using Tsai’s coplanar calibratmaethod [Tsai, 1987].

In addition to the camera parameters and key fraichstification, the
process generates also a 3D coplanar model repiresene 3D configuration of
the set of coplanar body joints at these frame® dlbtained 3D coplanar points
correspond to shoulders (3 points) and hips (2 tppimccording to human
biomechanics. Since sufficient knowledge has beeouraulated, a pin-hole
projection model is applied to reconstruct othetgpaf the 3D figure in the world
space, i.e. limbs and head (Figure 3.8). The ptiojedine of each key body point
on the image is established using the estimatedl feagth. Their corresponding
3D points are located on the projection lines atiogr to the camera relative
position and the body model. The body model is asBEletal representation of the
human body (see section 2.3.2.3). It is construfited the calibrated 3D coplanar
model with known body ratios. Since this problenilligonstrained R* - R?),
multiple postures are generated. A pose selectienhanism is then required to
extract the correct posture. In this experiment, ve@e chosen poses with the

smallest error in comparison to the ground truth.
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Optical
centre

Figure 3.8. Pin-hole camera model for 3D pose recon struction applied to the
reconstruction of the left arm: P 5 and Pg — shoulder and elbow image points, P’ ¢ —
known 3D shoulder coplanar point, P g and P'g, — two proposals for 3D elbow
reconstruction by taking into account depth ambigui ty, Ls e - expected segment
length between two successive key points, D , — distance between 3D point and

optical centre.

In order to recover poses for other frames, andtii@nan bipedal motion
constraint, i.e. the presence of a foot on the mplo(so called static foot), is
exploited to propagate the parameters of the plia-poojection model from one
frame to another. Human biomechanics reveals tretyamoment at least one foot
is in contact with the ground in most types of bliglemotion. This static foot exists
because the body requires at least one limb to cstpfs weight. Motion is
achieved by switching weight support to the othmatfBoth feet can only be off
ground for a short moment if any, e.g. running. Ttatic foot is identified
effectively and accurately by comparing displaceimeh foot points between

consecutive frames [Kuo etal., 2009]. The obtairsdtic foot constraint is
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exploited for pose recovery, since knowledge of 3Beposture at one frame also
provides the 3D coordinates of one foot in the ni&ame. Therefore, these
coordinates are used as the starting point of pla-pose reconstruction for the
next frame. As a result, postures are propagataaseely forward and backward
in time from the reconstructed key frames to tineighbouring frames. Since there
are multiple key frames within a given sequencdjnaar combination of the
propagated postures from each key frame is catailed generate the final one.
Weights are introduced to penalise postures whiehieanporally further away from

their key frames.
3.4.5.2. 3D Pose Refinement Framework

Because of theD - 3D ambiguity, the pipeline described in the previsastion

as well as many other activity independent meth@@stion 2.3.2.1) produces
imperfect 3D estimates of poses. The accuracy @ #stimation can be
significantly improved by incorporating learned grimodels of activity into
pipeline. The 3D pose refinement framework is pmés# in Figure 3.9
[Lewandowski et al., 2009]. It is composed of twartp: activity learning, which is

an automatic offline process, and the online praoedf pose refinement.

Online refinement of 3D human body configurations

. Interpolation functions
A sequence of 3D pose estimates %( provided by RBFN >ﬁ A sequence of enhanced 3D poses

Range of possible (
K

. . . . Low
Motion N Dimensionality dimensional
capture data reduction
spaces

Known free
parameter - d

Train a RBFN )

Choose the best low
dimensional space
by comparing
quantitative
measures.

Low
dimensional
space

Offline learning

Figure 3.9. Automatic refinement of 3D body pose es  timates.

- 155 -



CHAPTER3 Automatic Configuration of Spectral Dimensionaliiethods 3.4
Evaluation

During the learning stage, the space of human masioeduced following
the procedure proposed in section 3.3.1 and theldveglimensional representation
is chosen according to the quantitative metric.nlte obtained space is employed,
first, for designing the structure of the RBFN arslibsequently, for training
automatically the network in order to provide ait@dtional projection mechanism
between spaces.

The online module of the framework deals with tietual problem of 3D
pose recovery. In principle, it can be applied tse estimates produced by any
activity independent method (section 2.3.2.1).His &xperiment, we consider the
output of algorithm described in the previous sst#8.4.5.1 as a sequence of 3D
pose estimates. In the refining process, an inatel8D skeleton is projected into
the embedded space using the corresponding mapfpingtion. Then, this
projection is associated to its nearest low din@araitraining neighbour according
to the Euclidean distance. Finally, the determineigihbour is projected back to the

human motion space as the refined 3D pose estimate.
3.4.5.3. Results

In the Table 3.4, the MAE angle error and the gpoading RMS error (see section
2.3.2.3.2 for details about these metrics) are igeal for all considered methods
obtained in the second, third and fourth experimeihg human motion capture
data (section 3.4.2.2). Detailed quantitative ltssof the first experiment are not
provided, because all methods performed very weid ahe impact of
neighbourhood size estimation on results is matgirtze errors for the embedded
space calculated using the optinkal (Opt) are compared with those obtained for
the low dimensional space selected by the four tifaéiie measures. The actual
optimal K is calculated experimentally by an exhaustive wat@dn of all spaces

similarly like to the classification experimenta. dddition, using the optimal value,
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the pose recovery accuracy of the scheme, whidhdes graph-based RBFN (G-

RBFN) (Opt*), is evaluated.

Table 3.4. Mean of absolute angle error (MAE) and s tandard deviation for the best
low dimensional spaces according to four coefficien ts discovered by different
methods for S2T1, S1T1 and S2EST datasets. S2EST co rresponds to the initial
estimation error. The root mean square error (RMS) error in mm is depicted within

bars.
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Analysis of the different quantitative measures duge choose& ,
demonstrates once again the superiority of MI ih cainducted experiments.
Although it does not always identify the optirKal it outperforms the other metrics
and systematically produces more stable and aectegatlts. In this evaluation both
Isomap and LE seems to be less sensitive to thextgel of K than LLE. As
expected, the accuracy of estimation decreases watigects differ the most from
the one used for training, however it is worth toinp out, that all methods
enhanced significantly the quality of pose estimatethe fourth experiment which
validates the proposed refinement methodology. Rangle of low dimensional

manifold discovered by Isomap is depicted in FigRide.

Similarly to the classification experiment (secti®4.4), the proposed G-
RBFN (Opt*) outperforms the standard RBFN (Opt) fatl considered
dimensionality reduction methods. Further comparisbboth mapping functions is

presented in section 3.3.2.
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Figure 3.10. Representation of the best low dimensi  onal manifold with corresponding

poses discovered by Isomap according to the Ml meas  ure for training set S3T3.

A more detailed comparison of pose estimates befodeafter refinement
for the fourth experiment is shown in Figure 3.1iene Isomap was applied using
the K value predicted by MI. Since we use different satg for training and
testing, the quality of refinement cannot go oveegain threshold which expresses
individual differences between walkers. Therefdoe,some frames 350-410, 561-
568, 605-655 pose estimates are worst after reBnémHowever, in average,
accuracy is improved significantly (30%) and ouhesme provides much more
stability in pose prediction: standard deviatioop from 4.5° (i.e. 41.6mm) to 0.5°
(11.8mm). Figure 3.12 illustrates the effect of famework by showing refined

poses against initial estimates and ground truth.
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Figure 3.12. Refinement results; first row: ground truth with frame index; second
row: estimated pose with initial MAE and RMS error; third row: refined pose with
output MAE and RMS error. As it can be noticed, on average, accuracy of estimation
in the third row is improved significantly (~30%) i n comparison to the second one.

Moreover, our scheme provides much more stability i n pose prediction.
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3.4.6. Graph-based Mapping Evaluation

Regarding the efficiency of graph-based RBFN, Tabk Table 3.3 and Table 3.4
show that this new scheme improves significantlg tfuality of the mapping

produced by standard RPCL RBFN in all experimenisther comparison between
those two mapping methods is provided in Figure33ahd Figure 3.14, where
classification accuracy and processing time aresorea for various sizes of the
digits dataset. Here, LE is used for dimensional#guction as a representative of

spectral methods.
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Figure 3.13. Classification accuracy comparisons be  tween graph-based RBFN and

standard RPCL RBFN according to digits dataset size (ID = 10).
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Figure 3.14. Classification processing time compari sons between graph-based RBFN

and standard RPCL RBFN according to digits dataset size (ID = 10).
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First, whatever the size of the training set, d¢fesdion accuracy using
graph-based RBFN is higher than for standard RBWNMreover, graph-based

RBFN is in the order of magnitude computationallgrenefficient (Figure 3.14).

3.4.7.Discussion

Consistently across all experiments, the Ml medemonstrates its accuracy in the
identification of the optimal neighbourhood size.dontrast to other metrics, the
proposed Ml is validated successfully in variousndns, including artificial data

(section 3.4.3), face and handwritten digit rectigni (section 3.4.4) and human
pose recovery (section 3.4.5). This suggests tHas Mery versatile since it is less

sensitive than the other metrics to a dataset @atur

In parallel, we prove the advantageous of G-RBFMrathe standard
RBFN in all conducted experiments. The superiasityhe novel mapping function
is especially evident for handwritten digits recibign (section 3.4.4) and human
motion refinement (section 3.4.5.3), when the appate localisation of centres is
significantly more challenging because of vast amhad training features and their

high dimensionality.

3.5.Summary

In this chapter, a framework is proposed to autcrally configure spectral

dimensionality reduction methods. This is achietvealfold.

First, we introduce the MI metric to estimate néighrhood size. All
experiments demonstrate that Ml outperforms preshioused metrics independent
on the spectral methods and the dataset. Embeduientss produced by MI are
visually convincing. Moreover, our quantitative dyu i.e. classification and pose
recovery experiments, confirms its superiorityw Idimensional spaces selected by

the Ml measure consistently provide better accuraggrdless of the estimated ID.
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Moreover, unlike PA, MI proved its ability to haedivery high dimensional
datasets.

Secondly, we propose graph-based RBFN to providpping between
embedded and data spaces using the efficient M@brighm, as part of the
learning process of spectral dimensionality redurctimethods. This scheme
outperforms significantly standard RBFN mapping both accuracy and
computational efficiency.

To conclude, the effectiveness of our contributives been validated
gualitatively and quantitatively in various domaifsesults prove that the proposed
MI-based neighbourhood selection procedure in coatlmn with the graph-based
RBFN allow to automatically configure the represgine approaches (LLE, LE,
Isomap) of the three main families of spectral dimenality reduction methods. As
a consequence, our flexible and unified methodologgrcome limitations of
embedded based approaches and thus may benefartp aneas where scientists

face the problem of analysing high dimensional data
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4. Temporal Laplacian Eigenmaps

4.1 Introduction

The previous chapter demonstrates flexibility andefulness of spectral
dimensionality reduction methods for exploration bfghly nonlinear and
multivariate datasets. Although the preservatibsome geometrical property of an
underlying manifold is a valid goal for various #pations, there are many
situations in which an alternative approach is mesiln particular, when dealing
with multidimensional time series data, the temparaer which is imposed on
observations is expected to be more intuitive addaatageous constraint for a
dimensionality reduction process.

A multidimensional time series is a collection aglh dimensional data
observations measured sequentially through the, timeich are very often
nonlinear. Time series data are widely availabledifierent fields including
medicine, finance, science, engineering and compusén. Therefore modelling
of time series data effectively becomes an esdediiallenge for the machine
learning community. Since multidimensional timeisgrcan bear a lot of data
variations, noise, redundancies and correlatiods@iimportant relationships, it is
extremely difficult to understand and process thémdimensionality reduction
process should eliminate these undesired propeirigs the time series, while
ensuring the maximum possible preservation of palginformation. Analysis of
time series using dimensionality reduction methduds only recently been
investigated by the research community.

The standard dimensionality reduction methods i@@@.2.2) are clearly

inappropriate for this task, since they assume tiatobserved data samples are
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independent, thus any temporal correlation betwksgta samples is ignored. Since
successive points at each time step of time saresexpected to be highly
correlated, a few temporal extensions of the stahdaethods were proposed
including Spatio-Temporal Isomap [Jenkins and Mef&004], Back-Constrained

Gaussian Process Latent Variable Model [LawrenceQuminonero-Candela, 2006]
and Gaussian Process Dynamical Model [Wang e#06]. Although, these

approaches exploit some temporal constraints duairdjmensionality reduction

process, we will show that they are not designepréserve the global topology of
the time series manifold. As a result, they faiptoduce a unique and informative
low dimensional representation in the presence aih diariations between time
series. Moreover, they are computationally expengind often require a set of
empirically chosen parameters. These algorithmsdaeussed in details in the
subsequent section 4.3.

In this research, we address these limitationscamdribute to the state of
the art by introducing a novel spectral dimensignaéduction method, called
Temporal Laplacian Eigenmaps [Lewandowski et &11(] (TLE). Our proposed
algorithm exploits temporal relationships and dejesties of time series as key
constrains during the nonlinear dimensionality i#mun process. In contrast to
previous approaches, we introduce two types of tcaings: temporal within time
series and spatio-temporal between different tirages. This is achieved by
introducing two forms of intuitive temporal grapiwhich are incorporated into the
LE framework. In addition, neighbourhood sizes dadtho graphs are derived
automatically from data analysis. As a consequemgemethod aims at preserving
a temporal structure of multivariate time seriestead of the commonly used
geometric structure. This fundamentally differemncept allows automatically
producing meaningful and generalised low dimengdioepresentations tailored to

multivariate time series data. Exhaustive experisi@n a couple of computer
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vision applications demonstrate the effectivendsth® proposed methodology for
modelling different types of multidimensional tinseries and its superiority in
comparison to other dimensionality reduction tegbes in terms of accuracy and
efficiency. In addition, its lower computational stoand generalisation abilities
suggest it is scalable to larger datasets.

The remainder of this chapter is organised asvi@lorhe next section 4.2
introduces formally the concept of multivariate ¢inseries. Then, section 4.3
discusses the relevant work in the dimensionaétjuction of time series data. The
detailed information about basic version of LagacEigenmaps and our temporal
extension of Laplacian Eigenmaps are introducedeiction 4.4. Then results of

evaluation are presented in section 4.5. Secti@®rdncludes the chapter.

4.2 Multivariate/Multidimensional Time Series

A time seriesS={y| t=1.t, yOR® DOZ,D > 0} is a sequential collection of
observations generated by a dynamical systenti(he.series source) for a specific
phenomenon. Here, we define time as a set of deseaues which is indexed by
t, whereag denotes the number of observations in the sequénde D is equal
to one then the time series is referred to as umiedone-dimensional, and if it is
greater than one the time series is referred tonalivariate/multidimensional

[Hannan, 1970, Chatfield, 1996] (MTS).

In this work, we are interested in modelling mufilate time series
(D >1), since their high dimensionality creates chalesfpr machine learning and
data mining algorithms. As a result, our spaceigh ldimensional features is now a

set ofL multivariate time series, each willy (I=1.L ) features:

Y={s|l=14} y | =1L t = 11},

4.1
={y; li=1.N, y OR®, D>1,D07} P
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whereN :Zleltl . In addition, a se¥ may consist of MTS which are issued by
different sources (for examplg, O,, B in Figure 4.1b) and/or repetitions from a
single source (for exampl§ ,S,, S, in Figure 4.1a). The intra-data variations
between MTS from different sources are not on tmes scale as the inter-data
variations from a single source. This can be comn@ly expressed in terms of
relative difference between dynamic time warpingtalices (DTW) (see appendix

A.1) for any pair of time series:

DTW(S, S)< DTW S § 4.2)
a) b)
D e D, . ''''' o
. S, 4 V.
Sy [] H
S, . . e g . .
83 .. o ° . . . ° ’ O1 L] . . o [
. NP .. ._..
Dy [P; [} e e, P4 e ....". . .4-""."
1'.§D3 Y . e pe A ... [ ]
D,
Dy |Ds .. o
- ° .
2 e

Figure 4.1. Example of multivariate time series dat a issued from a single source (a)
or different sources (b).

Finally, we define 'style' as the intra-data anérmuata variations between
two or more time series representing a similar ph@mnon. They may be produced
by different sources and/or multiple repetitionsggcles) from a single source.

In the rest of the thesis, the term ‘time serieefers to
multivariate/multidimensional time series. Moregvethe term ‘time series

repetitions’ bears on time series repetitions iddmesingle and/or multiple sources.
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4.3 Related Work

A presentation about relevant time series framewbiks been provided in section
2.2.3. In this section, we discuss in more deta#scurrent state of the art methods
for the dimensionality reduction of time seriesadathese approaches are used as
references in the evaluation process (section bh3ddition, for completeness and
clarity reasons, we provide short descriptionshoséé techniques in appendix A
which are used in our implementation; althoughrafieve approaches could be
chosen. They are dynamic time warping distance (DTAVL), optical flow (A.2)

and Hausdorff distance (A.3).

4.3.1. Spatio-Temporal Isomap

The spatio-temporal Isomap [Jenkins and MataricQ420(ST-Isomap) is an
extension of standard Isomap algorithm designedirioe series data. The structure
of the algorithm remains the same (see sectior2.2.2.2) with two extra steps
added for temporal windowing and temporal augmentadf data. First, the input
data is windowed into temporal blocks of a prequedi size. As a result, some
temporal history is introduced into each data poifhen, the standard local
neighbourhood graph is constructed (section 2.222) and the corresponding
matrix of distances between neighbouring pointsosiputed using pre-processed
data (section 2.2.2.2.2.2.2).

The key novelty of ST-lsomap is a definition of awgnt temporal
neighbours and K-nearest nontrivial neigbhours.aéent temporal neighbours are
adjacent points in the sequential order of the emurpoint, whereas K-nearest

nontrivial neighbours are defined by Jenkins easlfollows:

“A pointy; to be a nontrivial match within the local neighboood of
a pointy, if it is closest matching point on its trajectottyrough the

neighbourhood”
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These neighbours are used to empirically alteiotiginal distances in the
graph (matrix) of local neighbours to emphasiselanity between spatio-temporal
related points using constant pre-defined factdys. the value of this factor
increases, the distance between data pairs witliogeaporal correspondences
decreases and their similarity is strengthenedsd&tspatio-temporal relationships
are then propagated globally via a shortest-patthar@sm and the dense matrix of
distances between all points is genearated. FinléyMDS (section 2.2.2.2.1.2) is
applied on obtained matrix to produdelimensional embedded space similarly to

standard Isomap.

The ST-lsomap algorithm has pioneered in researchdimensionality
reduction of time series. However, a few impor@mtwbacks limit its usefulness in
many applications. First, ST-Isomap cannot discalkerglobal temporal pattern of
time series, since the temporal information is prsiployed to alter the geometric
relationships between points. As a result, ST-Igproanceptually still aims at
preserving the global geometric topology of datstead of the temporal topology.
In addition, the introduction of the temporal infaation into the geometric
constraints requires two pre-defined constant factdhese factors, which have to
be chosen manually, control similarity between dadé&s with spatio-temporal
correspondences. Another crucial disadvantage asréguirement of the prior
knowledge about the number of the K-nearest naatriveighbours. In fact, the
algorithm is very sensitive to this parameter. dtlsf to produce a meaningful
representation whenever it is chosen inappropyiaespecially if it exceeds the
actual number of time series repetitions in datarédver, the naive procedure for
selecting the nontrivial neighbours depends heamilythe size of the pre-defined
searching window and does not take into accountheeispatial nor temporal

similarity between different time series. Final§T-Isomap inherits from its parent
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method the computational complexity, thus the pseteg time grows cubically

with the number of points in a dataset.

4.3.2.Back-Constrained Gaussian Process Latent Variable bHel

Back Constrained GPLVM [Lawrence and Quinonero-@¢ad 2006] (BC-
GPLVM) imposes high dimensional constraints on tenfaspace to enforce the

local distance preservation and implicilty the temgb coherence of time series.

Since the standard GPLVM (see section 2.2.2.3.pf@cises primarily on
modelling the data global structure, there is nargaotee that the local temporal
order of time series is retained in a latent spabte. smooth mapping in GPLVM
implies that dissimilar points in the data spacmam distant in the latent space.
However, there is no constraint to prevent two fsoimhich are nearby in the data
space to be placed far apart in the latent sphas,dreating discontinuities of time
series in the low dimensional representation. Asbasequence, GPLVM can be
seen as a dissimilarity preserving method [Lawreaod Quinonero-Candela,
2006].

To tackle this problem and obtain a continuous esgntation of time
series, BC-GPLVM constrains a latent space to bemaoth mapping from a data
space, i.e. it forces two points to be always neamkthe latent space if their data
space counterparts are also relatively close. Torererather than maximising the
likelihood (2.44) with respect tX directly, each element ok is replaced with
the form of the kernel based regression mappinm ftioe observed space to the

latent spaceri=1.d):

X = On( V) = Z WK (Y ) (4.3)

where W ={w,| m=1.d, j=1.N} are the mapping parameters axdis the
Gaussian RBF kernel (equation (2.12)). The maxitiwgaof the likelihood (2.44) is
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then performed with respect to the mapping paramet&/ , and the
hyperparametersp, using the posterior (2.51) with substituted Y445 a result,
the learned model is composed of the dissimilgpityserving, probabilistic GP-
LVM mapping from a latent to data space, and thealladistance preserving

mapping from a data to latent space referred tmaak-constrained mapping.

During dimensionality reduction, BC-GPLVM takes ymhto account the
local temporal ordering of time series. Althouglstionstraint is not explicitly
modelled, temporal sequences are mapped to smatis pn a latent space,
because consecutive points of time series tené wrbilar. On the other hand, BC-
GPLVM cannot handle any spatio-temporal relatiopshbetween different time
series, thus the global topology of time seriesgisored during dimensionality
reduction. As a result, BC-GPLVM is not able toatiger the unique time series
pattern in the presence of time series repetitionparticular when generated from
different sources [Urtasun et al., 2008]. In addifiBC-GPLVM is computationally
expensive, since the processing time grows culieédth the number of points in a
dataset and linearly with the number of iterationsthe optimisation process.
Finally, BC-GPLVM has two free parameters, the nseewidth of the back
constrained mapping, which controls the smoothméssiapping [Lawrence and
Quinonero-Candela, 2006], and the number of reptatee variables for the

sparse approximation of covariance matrix (sea@et2.2.3.2.2.2).

4.3.3. Gaussian Process Dynamical Model

Gaussian Process Dynamical Model [Wang etal., 2008fng etal.,, 2008]
(GPDM), augments SGPLVM [Grochow et al., 2004] (seetion 2.2.2.3.2.2.2)
with a dynamical model in a latent space to modeaktseries observations. It
comprises the GPLVM based generative nonlinear mgpfgom a latent to data

space (equation (2.24)):
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Y= (% A+e, (4.4)

and the nonlinear auto-regressive mapping on thentlaspace with first-order
Markov dynamics:

X =h(x.; B+é, (4.5)

wheree, ; andg, denote zero-mean, white Gaussian noise procesbeseasf
and h are nonlinear mappings parameterised by coeftsienatricesA and B
respectively. Both mappings are expressed by line@nbinations of often

nonlinear basis functiong :

(A=Y a4 (3 (4.6)
h(x B)=" b4, (3 (4.7)

From a Bayesian perspective, the specific forméunttions f andhas
well as the numbers of basis functions are incilerdnd therefore should be
marginalised out. With a zero mean and sphericaus&an prior over the
generative function parameters (equation (2.48)) fallowing the equation (2.49),

the marginalisation over functioh yields:

tr (2, YW?Y") 4.8)

2 w[*
p(Yl X’CDY): |]__l/‘/(y| |O’ZY ): (2]]')DN/2|Z |D/2 expe
= Y

where the kernel matriX, over all points is defined by the equation (2.5@hwhe
following kernel hyperparametersd, ={a,, g, y} . The scaling matrix
W =diad w w,..., w} accounts for different variances in the differadata
dimensions [Grochow et al., 2004, Wang et al., 2008

Similarly, the complete joint likelihood over thatént coordinates is

obtained by marginalisation over the dynamic fusctn

p(X |, )=[ p(X, hl®, )dr= | { X| hb, ) it b, ) d (4.9)

The incorporation of the first-order Markov dynam{d.5) results in:
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p(X |y )= pmj[J x| %, b0, ) HHO, ) d (4.10)

Assuming a zero mean and spherical Gaussian pvier the generative
function parameter8 in each column, the above equation is simplifed t

Xp(_ tr (z;(lx OX(T))

p(x |CD><): p()g)(zﬂ)d(N_l)/2|zx|d/2 2

) (4.11)

whereX, ={x |i=2.N} . The kernel function of the matriX, is based on the

equation (2.50) with the additional linear term d@hd following hyperparameters
o, ={a,, 0% Vx B3 [Wang et al., 2008]:
k, =K(%,%)=a exp%x (x=x) (x= x)+acq +4 X x
>, ={k li,i=1.N-1}

(4.12)

The learning process is performed using a two-stagemum a posterior
(MAP) estimation (see section 2.2.2.3.2.2.2) by im&ing the likelihood (4.8)
with respect to the latent positionX,, and all hyperparameters, using the following

posterior:

p(X, @y, \WIYV)O fY] XPy) § XPy,) gy) @) oV (4.13)

where uninformative priors are placed on the hypemmeters:p(®,) O |_|id>;i1
and p(®, ) O Hiqb'xli to discorage overfitting. In turn, the broad hadfrmal prior
is placed onW [Wang et al., 2008]. The maximisation of the abgasterior is
equivalent to minimising the negative log posteabthe model with respect tX ,
®,, ¢, andW:

L(X,P,, P, ,W)==In p( X,®,, P, W|Y)=

=%((DN +1)In 27+ D In|Z, | +tr £ YW?Y ))=N In| W

+%((d(N -1)+1)In27+d |n|zx|+tr EIX XD+ X %) (4.14)

1
IR LM tog (w?)
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This optimisation process is performed numeric@be section 2.2.2.3.2.2.2).

The latent dynamical model favours preservationlawfal proximities
between consecutive points, therefore a low dinoeradirepresentation respects the
temporal continuity of time series data. On theeotlhand, similarly to BC-
GPLVM, GPDM cannot model any spatio-temporal relasi between different time
series, thus the global topology of time seriessdua constrain the dimensionality
reduction process. As a consequence, GPDM canodupe the unique time series
representation in the presence of time series itepet in particular when
generated from different sources [Urtasun et &l082. Moreover, the inclusion of
the latent dynamical model in the learning processults in a further cubical
increase of the processing time in comparison te@W.VM. Finally, GPDM has
one free parameter, i.e. the number of represeatatariables for the sparse

approximation of covariance matrix (see section22322.2.2).

4.4 Proposed Methodology

We introduce a novel parameterless nonlinear dimealbty reduction method to

process efficiently multidimensional time seriestadaThe Temporal Laplacian
Eigenmaps is a powerful extension of the stand&dramework, which aims at
preserving the temporal structure of the data meéthihstead of its local geometry
as basic LE does. This is achieved by extensiveplo@ing the key property of

standard LE framework of preserving approximatedstagices between
neighbourhood points in a low dimensional spaceprinciple, points closeness in
the embedded space can be flexibly controlled l®atarg connections between
corresponding high dimensional features in the &eph graph. Therefore,
powerful temporal constraints are introduced basedhe innovative concept of
temporal neighbourhoods. These constraints encapseffectively spatio-temporal

dependencies of time series, in particular whenedsfrom various sources. We
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propose to construct two complementary graphs frahese temporal

neighbourhoods which are simultaneously exploi@ddnstrain an optimisation
process. As a consequence, the proximity of poimtshe embedded space is
governed by these graphs. This allows respectiagemporal consistency of each
time series as well as modelling spatio-temporailarity of time series repetitions

during dimensionality reduction even in the pregeoicsignificant data variations.

In this section, first, the standard Laplacian Bigeps method is
comprehensively described (section 4.4.1). Thismslamental before introducing

the proposed algorithm in section 4.4.2.

4.4.1.Background of Laplacian Eigenmaps

Laplacian Eigenmaps [Belkin and Niyogi, 2002, Belkind Niyogi, 2003] is a
nonlinear and unsupervised geometrically motivatBchensionality reduction
method which is based on a simple intuition thadrbg high dimensional input
features should be mapped to nearby low dimensmuplut points. As a result, the
algorithm aims at faithfully preserving localityrstture of high dimensional data

(Figure 4.2).

/

Figure 4.2. Laplacian Eigenmap aims at maintaining the local properties of high

—00 CEE—— O +00

dimensional data.
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4.4.1.1. Justification

The mathematical justification for the Laplaciang&imap actually involves an
interconnection between several areas of mathesnstich as differential geometry,
spectral graph theory, partial differential equasi@and linear algebra.

In principle, in the manifold learning setting, thederlying manifold is
usually unknown. Therefore the functional form ¢fetmanifold need to be
estimated using a high dimensional cloud of daiatpo In the case of a compact
infinitely differentiable manifold, such functionahap applied on underlying
manifold is given by the Laplace Beltrami operafBelkin and Niyogi, 2002,
Belkin and Niyogi, 2003, Zheng, 2008]. The Lapl&=dtrami operator is a positive
semi-definite self-adjoint operator and has a eigcrspectrum on a compact
manifold. It has been shown that the optimal embepddf a high dimensional
manifold is equivalent to finding the nonzero eiga@mes as well as its
corresponding eigenvectors associated with thedcapBeltrami operator [Belkin
and Niyogi, 2002, Belkin and Niyogi, 2003, Zhen§03].

As a consequence, the objective of manifold legrmmto compute the
Laplace Beltrami operator on a continuous manifolthe problem is very
challenging, since only a sparse cloud of high disi@nal points is available.
However, the Laplace Beltrami operator can be disty approximated using heat
diffusion equations on the Laplacian graph as fressented in [Belkin and Niyoqgi,
2002, Belkin and Niyogi, 2003, Zheng, 2008]. Basadspectral graph theory, such
graph can then be represented as a local similaatlyix which reflects the degree
to which points are near to one another. Specwabuhposition of this Laplacian
matrix reveals the low dimensional structure of tmederlying manifold. The
convergence of eigenvectors of graph Laplaciancst®al to a point cloud dataset
to eigenfunctions of the Laplace-Beltrami operatorcontinuous manifold has been

proved mathematically [Belkin and Niyogi, 2007].
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4.4.1.2. Algorithm

The structure of Laplacian Eigenmaps is presemtedd Figure 4.3 and was briefly

described in section 2.2.2.2.2.2. Here, we invagtighe algorithm in more details.

Initially, the adjacency graph is constructed bytipg an edge between
nodesi and j if high dimensional pointy; andy, are ‘close’ based on the K-
nearest neighbours or hyper sphere neighbourhoategure (see section
2.2.2.2.2.2.1 for details). Then, weights are amsigto the edges of the graph to
express the geometrical relationship between qooreting points using the

following heat kernel:

(4.15)

_Jexp|y -y, Hz) if i and j connecte
= 0 otherwise

The optimal embedding is discovered by minimizirfge tfollowing

objective function (see also section 2.2.2.2.2:2.3)

1y 2 T
g:EZ\x—xj\ w = X" LX (4.16)

ij=1
subject to constraint to remove an arbitrary sgalactor in the embedding:
x'Mx=1 (4.17)
and constraint to remove translation invariancec@atre on the origin):

X" M1=0 (4.18)

Matrix M is a diagonal weight matrix with elemerqs:Z:?:lvg . This
matrix is interpreted as a measure of the empidealsity of points aroung, (the
degree of vertex importance). In turn, the Laplageaph is given by a sparse semi
definite positive matrix:

L=M-W (4.19)

The square matrit is symmetric and real, hence it is Hermitian, i.e.

L =L”, whereOdenotes the conjugate transpose of the matrix. iBhés sufficient

-177 -



CHAPTER4 Temporal Laplacian Eigenmaps 4.4 Proposed Methggolo

condition to apply a version of the Rayleigh-Ritzdrem [Ledermann and Vajda,
1961], which characterises eigenvalues of Hermitrairices as the solutions of a
series of optimisation problems [Horn and John4&85]:
A =argminX'LX
XTMX=1

A, =argminX'LX
XTMX=|
X 0%,

A, =argmin X' LX (4.20)
XTMX=|
XOX OX,

Ay, = argmin XTLX
XTMX=1
X 0%, 0..0%p

where O=i, <i,< ..<L, are the eigenvalues df , whereasx, x,,...,%, the
corresponding eigenvectors. Minimisation of equaio(4.20) subject to
X"MX =1 (from (4.17) and (4.18)) is equivalent to the siolu of generalised
eigenvalue problem in the form (see also secti@®2.2.2.4) [Belkin and Niyogi,
2002, Belkin and Niyogi, 2003]:

LX = AMX (4.21)

where the obtained eigenvectors ordered accorditigeir eigenvalues satisfy:
Lx =1, Mx

LX =, M, (4.22)

LXy =Ap,Mx,

The final low dimensional coordinate$ are given byd eigenvectors
which correspond to thd smallest nonzero eigenvalues. Note the bottbri
eigenvectors of L can be determined without performing a full matrix
decomposition [Bai etal., 2000]. Moreover, the mxat. is extremely sparse,

which results in substantial computational savifogdarge training sets.

In the cost function (4.16), a large weight corresponds to small distance

between the data pairy; and y;, according to equation (4.15). Hence, the
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difference between their low dimensional represesrta x and x; highly

contributes to the objective function (4.16). Asansequence, nearby points in the

high dimensional space are brought closer togethethe low dimensional

representation, so that local neighbourhood relatere correctly preserved by LE.
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Figure 4.3. Successive steps of standard Laplacian Eigenmaps.
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4.4.2. Temporal Laplacian Eigenmaps

The proposed Temporal Laplacian Eigenmaps algorghanes the processing steps
with the embedding based approaches (section 2.2.2. and Figure 2.12).
However, there are fundamental differences in thendlations of the algorithm.
First, a neighbourhood for each data point is oletiautomatically using the novel
concept of temporal neighbours. Then, two sparsmpteEmentary graphs are
assembled to encapsulate temporal constraints amgloged in an extended

optimisation process to discover embedding of laighensional time series.
4.4.2.1.Construction of Temporal Neighbourhoods

The temporal similarity between data points is raamed implicitly during
dimensionality reduction by building new types @ighbourhoods which express
temporal dependencies. Since, temporal neighbotes ptaced nearby in the
embedded space; there is no need to enforce afigiarconstraints as in the ST-
Isomap framework. Two types of temporal neighboodware proposed for each
data pointP:
e Temporal neighbours (T): thBm closest points in the sequential order of input
(Figure 4.4a):
Ti={Rps Ry B Ry B} (4.23)

« Spatio-temporal repetition neighbours (S): let'soat@te to each point?,
2stemporal neighbours which define a time seriesnfraigt F . The repetition
neighbours,S, of P are the centres of thg time series fragments;; |

which are similar toF;, (Figure 4.4b):

S={F{Q,.... g (O} (4.24)

where (C) returns the centre point df . Note that by design repetition

neighbours are assumed to be extracted from diffeepetitions of the current
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MTS fragment. These repetitions of the same phenomere generated by

either the same source or different sources.

Figure 4.4. Temporal (a) and spatio-temporal repeti  tion (b) neighbours (green dots) of

a given data point, Pi, (red dots).

The selection of th@m adjacent neighbours is straightforward since it is
based on the data temporal order (equation (4.BBpractise, this parameter is set
to one (m=1) to model the first-order Markov dependency betweensecutive
points in time series. The size of the repetitielghbourhoodg corresponds to the
number of times a state is repeated in the trairsefy The optimal repetition
neighbourhood size as well as a selection of thesghbours is automatically

determined using the following procedure (Figueand Figure 4.6):

1. Associate to each data poirl®,, 2s adjacent temporal neighbours to

create the local fragmenk;, , centred onP.

2. Calculate similarity between the local fragmeht and fragments
created by sliding a warping window through thdrentraining set. The
similarity between fragments is measured with thHBAD metric (see
appendix A.1) and stored in a neighbourhood simtylanatrix M of
sizeNxN. The pair wise similarity of points during comatibn of
DTW can be measured using any distance, in paatichlanhattan,

Euclidean or Hausdorff (see appendix A.3) metfigt is not explicitly
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stated otherwise, the standard Euclidean distangsdd in an evaluation

process.

3. Perform temporal windowing of the similarity mati by applying a
moving average filter on distances between fragmesing a history

window of size2s:

1 2s-1
& | ng; Mo, (4.25)
4. For each data point, search for similar fragmentEi’k, defined by a
similarity greater tharb =0.75 standard deviations; from the mean

M in the rowi of neighbourhood similarity matriX:

k={jla, <y -ba} (4.26)

The value ofb was set a priori in all conducted experimentefresent
a difference ofl.5 standard deviations between consecutive local
extremas. Vast range of performed experiments udifigrent datasets
(see section 4.5) suggests that TLE is not seadibithis value.

5. Extract from each similar fragmenﬂ,:i’k , the data point which
corresponds td, i.e. the centre of5, . The extracted points define
P’s temporal repetition neighbourhood.

This procedure takes into account a spatio-tempsirallarity between
different time series to identify the optimal rapet neighbours. To facilitate this
process and obtain the best possible results, a leigel representation of data
should change smoothly in local regions with theleor of the input. This
assumption is valid for time series, since sucwesdata points in time series tend
to be very similar, and likewise in the correspoigdnigh level data representations.
As a consequence, TLE can take advantage of amesgglly ordered input data to
identify spatio-temporal dependencies by just pae@ssing raw data into an

appropriate domain specific feature representation.
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Neighbourhood selection is performed for each data point
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Figure 4.6. Example of neighbourhood similarity mat rix created by the TLE using two
sources of MoCap data with a few repetitions each. Each local minimum
corresponds to the most similar repetition neighbou r in relation to the reference

pose (green) extracted from different repetitions o f the time series.
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The introduced procedure has one free paraneteshich defines the
length of the time series fragment used during D&®vhparisons. However, the
choice of this parameter is extremely simple andsitnot critical, since the
neighbourhood selection schema is quite insensttvés value. First, assuming
some basic prior knowledge about the dataset efast, the upper value bound of
this parameter could be estimated since it shooldemceed the lengths of time
series repetitions in the dataset. Secondly, thanpeter value should be sufficient
large to express ‘satisfactory’ local curvaturetiaie series fragments. Although,
the determination of the lower bound depends on dataset and may be
problematic, in practice, it does not have to bégomed.

In Figure 4.7, we present the percentage of cdyreadientified repetition
neighbours in relation to the values of the paremetfor human MoCap data. The
depicted graph shows clearly a plateau for a vanyel range of parameter values.
Performance in the right area of graph convergesitds zero whes reaches the
lengths of the time series repetitions in this slataAs seen in Figure 4.7 any value
between 9 and 72 is equally appropriate in termacofiracy. Thus, in practice, by
taking a conservative approach, the value can beramly as a half of any
repetition length. However, when exact knowledgeuabengths of repetitions is
not available, the value can be intuitively suggdsby a user. Note that due to
computional cost of DTW alignment, the smaller esluof parametes are
advantageous when the processing time is an issubis research, we advise a
default value of 10 for this parameter, which pive work satisfactory for all

conducted experiments whatever the dataset.
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Figure 4.7. The relation between the percentage of correctly identified repetition
neighbours and values of parameter s in the propose d neibhourhood selection

procedure.

4.4.2.2.Graphs Assembling

The temporal neighbour relations are used in thastcoction of two temporal
graphsG ={T, $ , where any two vertices are connected only whemestmporal
relation exists between these points. Weightsare assigned to edges of each

graph separately using the standard LE formulg#dobb):

of = {exp(—”yi -y, HZ) if i and j are temporally correlats (4.27)

0 otherwise
The difference between the standard LE graph, whiak obtained with
the K-nearest neighbour procedure, and our temgpegihs is illustrated in Figure
4.8. In the case of standard LE, the temporal &irads not reflected in the graph
when time series are generated from a single sdirigeire 4.8a). Similarly, for
time series issued from different sources, not dmdytemporal structure is lost but
each time series is modelled almost separatelyclwimay result in creating

disjoints graphs when variations between time sesiee large (Figure 4.8c). In
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contrast, our combined temporal graphs are capabtepresent appropriately the
temporal structure of the data in both cases (EiguBb and Figure 4.8d), thus, they

encode more powerful constraints for the dimendign@duction process.

Neighbourhood connections defined in the Laplaggaphs implicitly
impose points closeness in the embedded space.e@gar#ly, the temporal
neighbours allow modelling a first-order Markov dagdency of time series into the
resulting embedding, whereas repetitions neighboemnsove style variability by

aligning time series in the embedded space.
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a) b)
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Figure 4.8. Graphs constructed by standard Laplacia  n Eigenmaps (left — red colour
denotes K-nearest neigbhours) and proposed Temporal Laplacian Eigenmaps (right
— blue colour denotes temporal neighbours, whereas green colour illustrates
repetition neighbourhoods) for: a,b) time series is sued from a single source, c,d)

time series issued from different sources.

4.4.2.3.0ptimisation Process

Following the standard LE formulation, we introdwsre extended cost function to

combine information from both graphs:

18 13
e=5 2 x[ wHS 2 [x-xf w=XTLX+ XTIGX  (4.28)
Q=1 ij=1

The objective of dimensionality reduction procestoi minimise the above

equation with respect to the embedded coordinXtesubject to constraints:
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argmin, X' L X+ XT g X (4.29)
subject to XTM; X+ XT Mg X= | (4.30)

where M, =diag{nf, n},..., n§} is a diagonal matrix with entries:
G NN i _ , . , -

m; —ijlmé , andL; =My -W; is the Laplacian matrix. The minimum of the

objective function is found by applying Lagrangeltipliers [Mizrahi and Sullivan,

1990] to equation (4.29) subject to the constraxpressed by equation (4.30):

O(X,A)= X" (L + L) X+ A(1= X" (M;+ M X) (4.31)
%:(LT+LS)X—A(MT+MS)X:0 (4.32)
(L +LIX =AM+ M )X (4.33)

The solution of minimisation problem is given by tembedded spaceé
which is spanned by the eigenvectors which cormedpo thed smallest nonzero
eigenvaluesA obtained by the solution of the sparse generalisggnvalue
problem (4.33) [Arnoldi, 1951, Fokkema et al., 198@yazev, 2002] based on the
generalisation of the Rayleigh-Ritz theorem [Homa dohnson, 1985] (see section

4.4.1.2).
4.4.2.4.Summary

Since temporal relationship is a local propertydafa, TLE can be conceptually
classified as a local nonlinear dimensionality tttun method similarly to the
standard LE framework. However, whereas the ldtieuses at preserving only
local geometry, the former aims at maintaining ltheal temporal structure of high
dimensional data, which implicitly tends to the g@eration of the global temporal
topology of the data manifold. As a result, ourraggh is able to extract a common
temporal pattern and generate a distinctive dateedr representation of
multivariate time series regardless of stylisticiat@ons. Therefore, it is particularly
suitable for time series data which include dafeeti#éon; otherwise, when applied

on a single time series, it often behaves similarlthe standard LE.
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Note that, style variability is actually not comiglly removed from the low
dimensional representation but only considerablyrgmnalised during the
dimensionality reduction process. This is expectette according to equation
(4.27), small distances between successive tempaggjhbours result in
corresponding large weights in a cost matrix angs thigh contributions to the
objective function (4.28). In contrast, weightsvie¢n relatively distant spatio-
temporal repetition neighbours, which are respdesilor expressing stylistic
variability, are significantly smaller and thus paostionally less important. As a
consequence, the temporal constraints dominatespagio-temporal ones and thus
allow the discovery of the unique low dimensionattern of time series. Finally,
thank to the sparse generalised eigenvalue prolmammethod is computationally
very efficient and guarantees globally optimal shedl solution in a non iterative
manner.

As we will show in the evaluation section (4.5)r moethod is superior to
ST-Isomap and other time-series-oriented dimenstgnaeduction methods
including BC-GPLVM and GPDM in the terms of effioey and quality of

produced embedded spaces.

4.5 Evaluation

The proposed method is validated with both ar@fi@nd real datasets. Different
types of multidimensional series are chosen toresitely evaluate the performance
and robustness of the proposed methodology inrdiftescenarios.

While we have implied that MTS are ordered alorgtime dimension, in
practice TLE is a versatile framework and withowdifying the algorithm core, it
can be used for any MTS, no matter how they arereias long as the markovian
property is preserved. This is achieved by simplg-grocessing raw data to a

feature representation which changes smoothly hih order of input. Such
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representation facilitates the selection procedfirepetition neighbourhoods using

the DTW metric (see section 4.4.2.1).

First, all datasets used in this evaluation arsothiced in section 4.5.1.
Then, the setup of experiments is explained inieect.5.2.1 followed by a
description of performed experiments in section. 2% Subsequently, the
flexibility of TLE framework is demonstrated by melting the temporal structure
of motion capture data (section 4.5.5), raw vid@estions 4.5.7 and 6.4) and even
the sequential change of the camera perspectivenages (section 4.5.4). A
practical application of the proposed methodologg, view dependent action
recognition, is presented in section 4.5.7. Finalproad discussion about obtained

results is provided in section 4.5.8.

4.5.1. Datasets

Figure 2.28, Figure 3.5 and Figure 4.9 illustrate datasets used for evaluation.

Figure 4.9. Datasets used in the qualitative experi ments: a) the mouse movement
dataset and b) the 6 selected representative object s seen from different view angles

(every 45 degrees) from the Columbia Image Library.

The “two moons” dataset [Zhou et al., 2003] is eord of two successive

sets of vertical mouse movements each forming anmslmpe with a transition
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between them (Figure 4.9a). This toy problem wasdtuced to evaluate spatio-
temporal properties of dimensionality reduction moels [Zhou et al., 2003, Jenkins
and Mataric, 2004]. Although the input dimensiotyabf data is 2, the dataset is
intrinsically a 3-dimensional [Jenkins and Mata@604], since two distinct spatial
motions are expected to be modelled separately wgpect to the temporal cycle
of the movement. This dataset consists of a siMJI& source with a number of
motion repetitions.

The Columbia Object Image Library (COIL) is a datsé of colour images
of 100 objects. These objects were captured fromié&s against a uniform black
background by a fixed camera (every 5 degrees) ¢Naral., 1996]. All images
were normalised to the siA@28x 12¢. In our experiment, 6 representative objects
were chosen according to a rough visual similaoitythe global shape, although
they significantly differ in appearance (objectsi.car, 31.box_1, 39.container,
46.cigarette_packet, 55.jar, 79.box_2, see Figudb)4 The sequential change of
the object shape along the view circle can be densd as a multidimensional
series, which we call a multidimensional view ser{®VS). In such case, each
object is considered to be a different source ofSvih this dataset, two repetitions
of each source are available in the range@8°,180) and <180°,360
respectively. From a geometrical point of view, fiseond range is the repetition of
the first one with the front-back inversion of thppearance (Figure 4.12c). All
these images are expected to reside on a 1-dirmedsimnifold, since there is only
one intrinsic dimension, i.e. the object orientatiBlowever, in our experiment, this
intrinsic structure is embedded into a 2-dimendi@pace to take into account the
cyclic nature of the view change. As a result, deal visual low dimensional
representation of this dataset is a unique ciratéepn for all objects, since the view
dimension is shared between all of them. This eir€lexpected to be parameterised

by only one parameter, i.e. the view change (sger€i2.9a).
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The HumanEva (HE) dataset has been introducedctioee?.3.2.3. In this
evaluation only sequences of “walking and joggingicircle” are processed using
the actors depicted in Figure 3.5. Training wasfquered using the longest
available continuous sequence of valid MoCap p&sesach subject as presented
in Table 4.1. The walking and jogging actions weh®sen, since their intrinsic
dimensionality as well as their underlying manifattucture is well known and
conceptually easy to justify. Both actions are ityckince the intrinsic joint
configuration of human body recurs every two stefil both legs. Therefore, two
successive steps are considered to be a single Which is repeated several of
times in the action. Intuitively, any two stepsrespond to a continuous curve in a
human motion space, since there is only one degfdeeedom, i.e. the innate
state/configuration of the motion over time. As ansequence, the intrinsic
structure of both actions is a 1-dimensional madifembedded into a 2-
dimensional space to model the nonlinearity andicytature of the action. A
natural visual low dimensional representation @ 8truture is a smooth closed 2-
dimensional curve. It is worth to point out thatthbcsteps are usually highly
symmetric, since the intrinsic configuration of rjts is roughly the same for
opposite limbs. For that reason, in the ideal cabe, 2-dimensional curve
representation is expected to have an axis of symm&uch as an ellipse, where
each half represents one step in the cycle. Finalllsubjects (i.e. sources of MTS)
are expected to be modelled jointly along a unigllipse like pattern, since the
intrinsic content/configuration of the motion isettsame, despite of the style
variability in the execution. This ellipse is suppd to be parameterised by only
one parameter, i.e. the intrinsic change of theylmmhfiguration (see Figure 2.9a).
This analysis is in agreement with the value ofimsic dimensionality determined

by EE (see section 3.2.1.1) and consistent witeratbsearch on modelling walking

-193 -



CHAPTER4 Temporal Laplacian Eigenmaps 4.5 Evaluation

and jogging actions [Grochow et al., 2004, Elgammatl Lee, 2004a, Urtasun
et al., 2006a, Darby et al., 2010].

Table 4.1. The summary of frames which are used in  a learning process.

Action | Name Frames| Number of frames

Walking | Subject 1 in trial 3 16-1484 1468
Subject 2 in trial 3 55-1498 1443
Subject 3 in trial 3 52-1172 1120

Jogging | Subject 1 intrial 1 6-252 246
Subject 2 in trial 1 6-795 789
Subject 3 in trial 1 5-775 770

The Weizmann dataset has been introduced in seti®r3.4.1. All 9
subjects and 10 actions are used for the evalugidew examples are illustrated in
Figure 2.28). Actions were manually segmented 240 instances of primitive
motions. Each atomic action is a single MTS, whereach actor is regarded as a
different MTS source. The intrinsic dimensionaldfthe dataset is 2 as evaluated

by [Blackburn and Ribeiro, 2007].

4.5.2. Experimental Framework

The proposed algorithm is evaluated through gualéaand quantitative analyses
of performance. Results are compared with thosdymed by standard dimension
reduction methods, i.e. LE, Isomap and BC-GPLVM #reir respective improved

temporal versions, i.e. TLE, ST-Isomap and GPDM.
4.5.2.1.Setup

In order to evaluate embedding-based methods dqatweiy a mapping function is
required which allows projecting data between hagid low dimensional spaces.

The RBFN mapping was trained from a low to high elisional space and then
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inverted as described in section 2.2.2.4.4. Thes&an basis function (equation
(2.60)) is exploited in the learning process, beeaof its excellent approximation
properties [Poggio and Girosi, 1990]. Note that guaph based extension of
RBFN, which has been proposed in section 3.3.Bptscompatible with TLE. In

contrast to standard spectral methods (see Fig8eed), the structure of TLE graph
is very regular and uniformly spread across trgrdata (see Figure 4.8b,d). As a
consequence, it is not feasible to simulate neiftemg nor weak flows in such
graph to determine desired sub graphs, which bedbmeluster centres. For that

reason, the standard RBF network is learned iexgériments.

Unlike TLE and mapping-based approaches, all odrmebedding-based
methods require manual parameter tuning. In thiglyst we used the default
parameters provided with the Matlab implementatioh8C-GPLVM [Lawrence
and Quinonero-Candela, 2006] and GPDM [Wang et28Q6]. In the case of
spectral methods, extensive testing was conduoteétermine the optimal settings
for each experiment. In addition, the number oftneial neighbours required for
ST-Isomap [Jenkins and Mataric, 2004] was calcdlateing the TLE estimation

procedure when appropriate.
4.5.2.2. Experiments

First, we evaluate qualitatively our novel algomtlusing two datasets for which the
underlying structure is known so that the qualifytlee embedded space can be
judged visually. Initially, we compare TLE agairtee most similar approach, i.e.
ST-Isomap using the synthetic dataset of mouseomd@siection 4.5.3). Afterwards,
TLE and all baseline methods are evaluated in @&rdemanding experiment using
a very high dimensional image dataset. Here, wavghat TLE can take advantage
of any sequential series of observations as londhasselection procedure of
repetition neighbourhoods is feasible. The objectof this experiment is to

discover a compact 1-dimensional joint view mamwifolf the 6 different objects,
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where multivariate series corresponds to a secalestiange of camera perspective
for an object (section 4.5.4).

Secondly, the quantitative and further qualitate@mparison of TLE
against state of the art approaches is providegation 4.5.5. Here, time series are
human motions which are represented by motion captlata as described in
section 2.3.2.3. In order to make the quantitat@mparison possible, the 3D pose
refinement framework presented in section 3.4.6 &mplified. In this experiment,
we consider three different subjects performing agtions (walking and jogging).
In order to provide an exhaustive evaluation, ado6®00 pose estimates in total are
simulated by introducing a Gaussian noise to growath poses with an average
error per joint of 80mm. This error correspondsttte average error of 3D pose
estimates generated by the 3D pose recovery frankewescribed in section
3.4.5.1. In addition, we also provide results @ thal 3D pose estimates produced

by our algorithm as a reference (see section 34%.5.

Finally, we demonstrate practicality the generéligsapotential of TLE in
a challenging computer vision applications, i.eseaecovery from multiple
cameras (4.5.6) and view dependent action recognitiom monocular videos

(section 4.5.7).

4.5.3. Qualitative Evaluation on Artificial Dataset

Figure 4.10 shows the 3D spaces of the “two moatetaset produced by ST-
Isomap, LE and TLE. Unlike standard LE, the othep tmethods successfully
represent the activity as two periodic motions @mted by a transition motion
since both aims at preserving spatio-temporal ptagseof the data. Comparison of
computation times (Figure 4.11) illustrates theesigrity of TLE, which is almost

9 times faster than ST-Isomap when the whole daisissed.
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This toy problem was introduced to evaluate thebglaspatio-temporal
properties of dimensionality reduction methods [@het al., 2003, Jenkins and
Mataric, 2004]. Since neither BC-GPLVM nor GPDM aandel any global spatio-
temporal relationships between time series, theynat taken into account in this

experiment.

Figure 4.10. The intrinsic representations of the "  two moons" dataset which were
discovered by: a) ST-Isomap, b) LE and c) TLE.
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Figure 4.11. Computation time comparison between ST  -Isomap and TLE.

4.5.4. Qualitative Evaluation on Image Dataset

In the first step, each image from COIL datasetrapresented by a 16384-
dimensional vector in the grey level scale. Anyeseof observations ordered along
a single dimension, such as time, may be though&sofa time series. In this

experiment, the multidimensional series is defiasd sequential change of camera

- 197 -



CHAPTER4 Temporal Laplacian Eigenmaps 4.5 Evaluation

perspective. Such type of series is refered to asudidimensianal view series
(MVS).

The current temporal methods, such as ST-lsomap,GBCVM and
GPDM, consider such MVS as ordinary temporally elated sequence of points.
In contrast, the proposed TLE is more flexible ayah take advantage of the
sequential view change information to produce bdte dimensional model by
pre-processing the input data to facilitate theetiépn neighbourhood selection

procedure.

Although the appearance of objects usually difiegsificantly, the global
shape of many objects is similar and change smypatbhg the view circle (Figure
4.12a). As a consequence, MVS can be seen astératian of the global object
geometry across different views. The global geoynetran object in an image can
be represented as a contour of the object shapefbne, initially, the shape is
extracted by thresholding pixel values of the gieyel image to obtain a binary
shape of the object (Figure 4.12b). The qualitgtudpes is improved by applying a
combination of morphological operations, icdose shrink thicken and majority.
The final contour of the object is generated by aeimg interior pixels using the
morphologicalremoveoperation and tracing the obtained boundary (leigui2c).
As a result, each image is represented as a sesjoéirternal contour coordinates.
Such representation of image changes smoothly ssaldferent views (Figure
4.12c) and, therefore, helps to select accurate w@piesentative repetition
neighbours for TLE. In order to deal with differgmoportions of shapes, a rigid
point registration procedure [Myronenko et al., ZP3 employed, whereas a final
comparison between pairs of shapes in the DTW m@ient is performed using the
median Hausdorff distance (see appendix A.3). Aanmgde of the neighbourhood
similarity matrix constructed during dimensionaligduction using TLE is depicted

in Figure 4.13.
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Single MTS Single MTS

Figure 4.12. Extraction of object contours in diffe rent views (every 45 degrees): a)
original image; b) foreground mask and c) contour r epresentation. The full cycle of

view consists of two time series repetitions.
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Neighbourhood similarity matrix (6 sources, 2 repetitions)
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Figure 4.13. Example of neighbourhood similarity ma
series using the 6 objects with two repetitions eac
to the most similar repetition neighbour in relatio

extracted from different repetitions of the time se ries.

trix created by the TLE for view
h. Each local minima corresponds

n to the reference object (green)

Figure 4.14 presents a group of 1-dimensional jeietv manifolds of 6 original

image objects embedded in the 2-dimensional spdsEpvered by: LE, BC-

GPLVM, ST-Isomap and TLE. Embedded spaces whichpanduced by Isomap

and GPDM are similar to those obtained with LE &@GPLVM respectively.
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Figure 4.15, Figure 4.16, Figure 4.17 and Figur&84provide the detailed
visualisation of the view manifold structures fdretrelated spaces illustrated in
Figure 4.14. The geometrically motivated LE as vasllithe locality preserving BC-
GPLVM fail to discover the structure of the viewries (Figure 4.14a,b). Both
embeddings are dominated by the inter-data vanstai series issued from single
sources. In order to also model intra-data vamatiof series between different
sources, the spatio-temporal constraints are eabast seen in embedded spaces
generated by ST-Isomap and TLE (Figure 4.14c,dwéder, although parameters
of ST-Isomap are set to optimal values using pkimowledge about the available
series, the obtained low dimensional representasiaill highly distorted because
of object appearance variations. As a consequendég,difficult to identify any
global pattern in that space (Figure 4.17). In st TLE produces a compact and
consistent ellipse-like representation which memis expectations (see section
4.5.1). Figure 4.18 clearly shows that all the otgeare arranged according to the

view point in this representation, which is invati#o object appearance.
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Figure 4.14. The 1-dimensional joint view manifold of 6 image objects from the COIL
dataset embedded in the 2-dimensional space discove  red by: a) LE; b) BC-GPLVM;
c) ST-Isomap and d) TLE. Different colours correspo  nd to series associated with

different objects.
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Figure 4.15. The 1-dimensional joint view manifold embedded in the 2-dimensional

space discovered by LE with visualisation of corres ponding objects.

Figure 4.16. The 1-dimensional joint view manifold embedded in the 2-dimensional

space discovered by BC-GPLVM with visualisation of corresponding objects.
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Figure 4.17. The 1-dimensional joint view manifold embedded in the 2-dimensional

space discovered by ST-Isomap with visualisation of corresponding objects.

Figure 4.18. The 1-dimensional joint view manifold embedded in the 2-dimensional

space discovered by TLE with visualisation of corre sponding objects.
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4.5.5.Quantitative  Evaluation wusing 3D Pose Refinement

Framework

The quantitative comparison between the proposefl dhd other state of the art
methods is performed using the 3D pose refinememdwork, which has been
introduced in section 3.4.5.2. Here, human motgrepresented by a sequence of
52-dimensional feature vectors extracted from nmotiapture data as described in
section 2.3.2.3. To measure performances, expetsmaae conducted using cross-
validation taking either one or two subjects f@iriing leaving respectively two or
one subjects for testing. Initial test pose estamaire simulated by introducing a
Gaussian noise to ground truth poses (see sectii)3hus, final quantitative
results are calculated by averaging over 5 testuessmes. In addition, the
guantitative results are supported with the visaaluation of the generated low
dimensional spaces, since the ideal visual reptasen is known (see section
4.5.1).

In order to provide a fair comparison, first, thl dbffline learning pipeline
presented in section 3.4.5.2 is used for calcigative average errors for LE and
Isomap according to the MI metric. Subsequentlg, flamework is simplified by
removing the quantitative measure block from thi#ingf processing (see Figure
3.9). Then, such simplified offline learning prooeel is employed for the
exhaustive search of parametérin LE and Isomap to identify the optimal solution
which is used as a reference. The evaluation of, BElsomap, BC-GPLVM and
GPDM is performed on the simplified framework adlywsnce there is no need of
estimating the K-nearest neighbour parameter. Aamge of neighbourhood
similarity matrix generated during dimensionaligduction using TLE is depicted
in Figure 4.6. The online refinement pipeline doeschange (Figure 3.9), thus, 3D
pose estimates are projected to the embedded spacéhe nearest neighbour is

projected back to the posture space.
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Figure 4.19a,b,c and Figure 4.20a,b,c show tlwahép and LE are unable
to recover the expected unified ellipse (see seectid.1) to represent the 2-subject
walking/jogging cycle in the embedded space. Imhlwaises, the obtained spaces are
dominated by intra variations between the subjepteddent series in agreement
with previous experiment (section 4.5.4). Among penal methods, BC-GPLVM
and GPDM discover the closed 2-dimensional curveresentations for each
subject separately without space generalisatiogu(Ei4.19b,e and Figure 4.20b,e).
Moreover, the symmetrical feature of the motiomna well preserved between
succeeding steps (Figure 4.19b,e and Figure 4.20hes implies that the simple
constraint of temporal continuity is insufficie@ tnodel intra variations between
series of different sources. In contrast, the ipooation of some spatio-temporal
constraints using either ST-Isomap or TLE, allowneyalising the space of the
different MTS (Figure 4.19d,f and Figure 4.20dHpwever, the spaces discovered
by ST-Isomap are distorted and not smooth even wvilneroptimal parameters are
provided, hence, accuracy results are unsatisfadBigure 4.19d and Figure
4.20d). On the other hand, TLE produces the expgamé@ue ellipse representation
(see section 4.5.1) by embedding nonlinearly thmmon intrinsic dimension of
motion and discarding style variability betweenfelént sources as well as

different repetitions of the same source (Figui®#and Figure 4.20f).
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a) ‘ b) c)

Figure 4.19. Embedded spaces for walking (2 subject s) using a) Isomap, b) BC-
GPLVM, c) LE, d) ST-Isomap, e) GPDM and f) TLE.

Figure 4.20. Embedded spaces for jogging (2 subject s) using a) Isomap, b) BC-
GPLVM, c) LE, d) ST-Isomap, e) GPDM and f) TLE.
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Figure 4.21. Embedded space for walking (2 subjects

corresponding key poses. The red and blue dots corr

subjects depicted on the left, whereas 4 magenta do

selected from training set for visualisation purpos
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These findings are supported by a quantitative @spn of the obtained
accuracy (Figure 4.22). First, performance analygsiafirms the generalisation
abilities of the methods integrating temporal coaists since data from a second
subject improves their accuracy (Figure 4.22). @osely, performances of Isomap
and LE worsen. Among the temporal approaches, BCW®&Pand TLE benefit the
most from additional training samples (accura€}2%). On the other hand,
GPDM'’s dynamic model seems to be able to optimisstrof its parameters from a
single subject. Consequently, TLE and BC-GPLVM dne most successful
approaches. However, TLE not only displays the pestormances and produces
better quality embedded spaces (Figure 4.19b,fRagdre 4.20b,f), but it is also
significantly faster by an order of magnitude, evemen the cost of the proposed
automatic parameter estimation procedure is adBignife 4.23 last column). This
is very important because this shows that, unlike@PLVM, TLE has the ability
to learn models from much larger training sets Wwtshould conduce to even better

results.

Note that the results reported in Figure 4.22 swmap and LE using a
single subject for training are worse than thoses@nted in the last experiment of
Table 3.4 (second and third experiments in TabdeaBe not comparable, because
they were performed using perfect motion captutta gathout any noise, thus the
better performance is expected). The reason ofev@sults in this experiment is
that the more challenging and exhaustive evaluasiararried out according to the
leave-one-subject-out procedure; for instance itrgims performed with the male
subjects S2 and S3, while testing is done withfémeale subject S1 (see Figure
3.5), or training with the short subjects S1 anda8é testing using the tall subject
S3 (see Figure 3.5).
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Accuracy for walking sequence (1/2 subjects)
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Figure 4.22. Average refinement RMS error of cross validation for walking and
jogging sequences using either one (blue) or two (g reen) subjects for training. Error
for the optimal neighbourhood size for Isomap and L E is depicted within

corresponding bars.

Training times for walking sequence (1/2 subjects)

40000 - 35480

35000 | .
“ 6000 5549 -
E L£NNnN

2000

942 1005
1000 oy | 105 I =

=
Lok
Lo
[
[=
[
b
g;
[

.

| ol eSS — — ..
0 . . ——
Isomap ST-Isomap*  BC-GPLVM GPDM LE TLE * * Parameter
Estimation
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Finally, the error of the real 3D pose estimatesioled using our 3D pose
recovery framework (section 3.4.5.1), when thecactinodel is trained by TLE
using 2 subjects, is equal to ~M& (an improvement 09% in relation to LE and
4% in comparison to the best Isomap, see Table B4 )overall improvement of
the refinement framework using the real noise gaedrby our 3D pose recovery
framework is~ 40%; whereas it is~ 28% for artificially simulated noise in this

experiment.

The main motivation of this experiment was to pdava comprehensive
evaluation platform for the quantitative comparisainthe proposed TLE and the
state of the art methods. In order to do that,rgeldesting dataset was simulated.
Although we did not intend to design a state ofahegpose recovery framework, we
believe that our 3D refinement framework has theeipiial to produce even better

pose estimates than those presented in Figure Wl applied on real noise data.

4.5.6. Application to Pose Recovery

In the previous section, the proposed methodologg mcorporated into the 3D
human pose recovery framework (section 3.4.5.1)haspost processing step to
refine pose estimates. Here, we demonstrate thih@mexemplary application by

integrating TLE directly into a 3D pose recoverggdine from multiple cameras.
4.5.6.1. 3D Pose Recovery Framework

The proposed 3D pose recovery framework aims ahashg a 3D human skeleton
from a visual hull using multiple calibrated cansefMoutzouris et al., 2011]. The

entire process is summarised in Figure 4.24.
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b Gl Dimensionality reduction using TLE L dlmen51.onal
capture : human motion
and learning of RBFN

data model

Volumetric human t
body model

. Extraction of Reconstruction of Human body Extraction of a 3D pose
Videos . X .
silhouettes a 3D visual hull models fitting 3D skeleton estimates

Figure 4.24. 3D pose recovery framework with a prio  r model of human motion, which

is learned from MoCap data using Temporal Laplacian Eigenmaps.

First, during the learning stage, the space of mumation is reduced by
applying TLE as described in previous section 4.Sifbjects 1 and 2 are used for
the training. Then, the RBFN mapping is learnedptovide a bidirectional

projection mechanism between spaces as explaingzttion 4.5.2.1.

Let's assume that human motion is observedvbyfixed and calibrated
cameras located around a scene of interest. Irii@aldsince we do not deal with
the problem of global tracking, the global rotatexmd translation are assumed to be
provided for every frame. The introduced framewexploits two 3D articulated
human body models, i.e. skeleton (Figure 2.24) woldimetric (Figure 4.25a)
representations. Since relations between body pagt&known and both models are
expected to satisfy the human body proportionsclwvhvere defined by Leonardo
da Vinci (Figure 2.24), the transformation betwé#em is straightforward.

The actual process of 3D pose estimation (FiguBd)4starts with the
extraction of silhouettes in each camera using skendard threshold-based
background subtraction technique. Then, the 3D aliswll is created from
silhouettes shape (Figure 4.25b) according to thening edge method [Cheung
et al., 2005]. This is achieved by computing thtersection of theM visual cones,
which are formed by projecting the contour of imagiouette into 3D space
through a pin hole camera centre [Tsai, 1987] (Fig&8). For the current frame,
the 3D skeleton is estimated by maximising the layebetween the current visual
hull representation and predicted volumetric huipady models. These predictions
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are estimated by, first, projecting the 3D skelefimm the previous frame on the
low dimensional space using trained RBFN. Thers, pindjection is associated to its
closest low dimensional neighbour in the manifdtéhally, for the obtained low
dimensional point, a set of neighbouring sampleseiected based on K-nearest
neighbours procedurek([1{2,30}) and projected back to the human motion space
as the predicted pose candidates for the curremtdr

a) b)

Cs

Figure 4.25. a) A volumetric human body model; b) a visual hull, which is extracted

from silhouettes using the centre  C,, of the pin hole camera model.

4.5.6.2. Results

For testing, the first 100 frames of walking actiare used from the Image &
MOCAP Synchronized Dataset [HumanEval, 2010]. Nb& the testing subject is
completely different than those used for trainikggure 4.26 presents the mean
average error between estimated positions of boutysj and the ground truth for
each frame. The error is reported using either fgeen) or thirty predicted

candidates (blue). We also provide the estimatiooregred) without using low

dimensional human motion model in order to demastthe practical advantage
of applying TLE. Here, since pose candidates ateamailable, the human body

volumetric model is fitted into the visual hull ogi an exhaustive and expensive
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optimisation process, which aims at maximisatiomhef limbs overlap according to

the hierarchical model structure.
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Figure 4.26. The obtained average error of 3D pose  recovery for each frame: the
framework without TLE (red — 164mm); with TLE using 2 pose candidates (green —

81mm) and using TLE and 30 pose candidates (blue —  48mm).

Figure 4.26 shows clearly that when the procegsost estimation is not
constrained, the average error drastically divemes time. The incorporation of
TLE into the pipeline prevents the accumulationeafor and allows significantly
improving the performance from initial 1684n to 48nm in the case of thirty

predicted pose candidates (accura@yl%).

4.5.7. Application to Action Recognition

In the previous sections, we have demonstratedperior performance of TLE.
Here, we integrate our technique within a standamghan action recognition
framework [Blackburn and Ribeiro, 2007] to performideo annotation and
demonstrate its generalisation potential in a engling computer vision task, i.e.

view dependent action recognition. Our action redgn framework consists of
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two processes: offline generation of action desorgp (Figure 4.27) and online

classification of new instances of actions (Figdu28).

Extract Discover action model using ;
. . Create shape . Action
Videos silhouettes descript TLE and learng mapping model
+ optical flow escriptor function using RBFN
Figure 4.27. Process of learning action descriptor.
Extract Create shape Project new
Video silhouettes descriptor instance of Calculate
+ optical flow action into similarity | Decision
Set of action each action measure

%

models model

Figure 4.28. Classification process of a new video.

Let Y denotes the set &f videos defining an action primitive performed
by different people. More formallyy is defined asy ={Y*| s=1..N .}, wheres
denotes the style index. Each frameof the video is represented Iy pixels of
interest region (see section 2.3.3.12):={ y’| y’'ORP®, i=1..T°} , whereT"® is the
number of frames in the sequence. A unified and pamnaction modelX , of
dimension d<D , is defined by X ={X®° s=1..N} ,
whereX® ={x°| x*0OR’, i=1..T°} .
4.5.7.1.Pre-processing and Shape Representation

In the first step, video pre-processing is perfainme generate informative and
discriminative features of observed human motidre process starts with isolating
foreground pixels in each frame using a simple gemknd subtraction operation
(the background of a scene is provided in the d&taghen, in each frame, the
moving foreground object is converted to a binaitiiosiette, whose quality is
improved by applying the morphologicapen operation (i.e. holes are filled)
(Figure 4.29b). All silhouettes are normalised ®aldwith translation and scale

variations by using the largest silhouette squanending box available within the
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entire action dataset. As a result of this normaéili;, any motion becomes relative

to the internal deformation of the shape.

Afterwards, silhouettes are converted to a greelleyradient using a
signed distance function at each pixel [Elgammal bee, 2004a, Blackburn and
Ribeiro, 2007]:

dist.(p  pixel inside contour
y(p) = 0 pixel on contour (4.34)
—dist,(p) pixel outside contot

where thedist,( p) is the distance to the closest point on the contoth a positive
sign inside the contour and a negative sign outidecontour. Such representation
assigns highest values to the silhouette’s mostiahedis points. The obtained
shape representation is illustrated in Figure 412%key scale images are used as
high dimensional features in our framework (Figdr@9f), whereas, the colour
versions illustrate the effect on the silhouetteisdial axis (Figure 4.29e). The
smoothing decreases the variance between subfdeatites of similar shapes, such
as those caused by clothing and hair variabilifyebphasizing medial axis. Once
the smoothing is completed, the intensity rangallinmages is re-scaled to a pre-
defined maximum value (e.g., 255).

As a result of the pre-processing stage a statils2Bmension feature
vector is extracted for each franmye In addition, to increase the discriminative
power of each frame, an average optical flow coeputy Lucas and Kanade

method (see appendix A.2) (Figure 4.29c,e) is mhetbias a dynamic characteristic.
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walk

Figure 4.29. Extraction of shape representation: a) original video; b) binary silhouette
with the bounding box; c) optical flow; d) implicit distance function representation
(colour scale) and e) implicit distance function re presentation (gray scale) with a

dominant motion direction.
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4.5.7.2.Learning of Action Descriptors

A unique template modeX of observed motions for a specific action is disred
automatically by reducing the dimensionality oftistefeatures to 2 dimensions
using TLE. A 4-dimensional action descriptor cotsi®f the 2-dimensional
template model of the action plus the 2-dimensiah@hinant direction of the
motion obtained using optical flow. Thanks to tlengralisation power of TLE, we
produce a single unified descriptor per actiondadt of the action and subject
dependent descriptors required by the standardefnanrk [Blackburn and Ribeiro,
2007].

4.5.7.3.Manifold Mapping Function

Our low dimensional action descriptor requires gpmag procedure between the
original spacey of motions and low dimensional spae of the action model in
order to generalise to unseen examples. Since gqueirembedding of action is
discovered, the difference of observed shape arddfegent people with the same
body configuration is reflected in a nonlinear miagp This is addressed by
learning the advanced RBFN, called generative decsable model [Elgammal
and Lee, 2004b], from the low to high dimensionadhee for each action model,
which is inverted for the projection in the oppediirection as described in section
2.2.2.4.4. This model explicitly decomposes theinstc body configuration as a
function of time from other conceptually orthogonatpects which affects
observation such as shape and appearance vayiabiittowing the approach of
[Elgammal and Lee, 2004b], the generative mappimgtion is modelled using two

factors:

 Content B : a representation of the intrinsic body configiomat which
characterises motion as a function of time ans imvariant to person shape and

appearance.

-218 -



CHAPTER4 Temporal Laplacian Eigenmaps 4.5 Evaluation

« Style S: a time-invariant person parameter which descritles person

appearance, shape and execution style.

In our framework, content is a continuous domainilev style is
represented by the discrete classes present itraiming data, thus intermediate
styles can be linearly interpolated. As a reshk, $tyle continuity is approximated.
The procedure of fitting the decomposable genezatiodel to the data consists of
two steps. First, a set of style-dependent funstiare trained. Then, all functions

are combined into a single style-independent ptigedunction.

Since mapping between the embedded action mardgiottthe observed
space is highly nonlinear, generalised RBFN (seticge 2.2.2.4.4) is applied to
provide the style dependent nonlinear mapping fanctor each persos in the
training data following equation (2.62):

Ye=y(x°) A (4.35)

where A’ is a £ +d + 1xD matrix of mapping coefficients, which encodes @tti
content and style variability. The interpolationtrha(//(-) is defined according to
(2.64) by:

wO) =X - q) & X*- )b X- g1 X (438)

where C ={c,| j=1..Z} is a set of distinctive representative points gldhe
embedded space amd-) is a radial basis function (see section 2.2.2.4M)is
calculated by applying the Moore-Penrose pseuders®e/ on matrixy(X*®) and
solving a linear system of equation&: =¢/(X®)"Y?, like in section 2.2.2.4.4. On
the contrary to [Elgammal and Lee, 2004b], the riadchi representatiorC is
computed directly as a mean style manifold dueht® @nified representation
obtained using TLE. Next, it is transformed by animgid point registration

procedure [Myronenko et al., 2007] to better f& thata.
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Given the learned nonlinear mapping coefficieAts(s=1..N,) the shape
style parametersS are decomposed by fitting an asymmetric bilineasdeh
[Tenenbaum and Freeman, 2000] in the space of mearlimapping coefficients
[Elgammal and Lee, 2004b]:

A=Bx,S (4.37)

where all coefficientsA® are arranged in an order three coefficient te@sovhose
dimensionality isZ ¢ +1¥DxN_. S (N,xN,) denotes the mode-3 basis Af,
which represents the orthogonal basis for the sipkce, whereaB contains the
content bases for the mapping coefficient spaZed¢1}xD xN,) . Mode-i %, is a
tensor multiplication as defined in [Lathauwer let 2000].

This decomposition is performed by representingtémsorA in a matrix
form A, where first each coefficient matri&® is converted to a coefficient vector
a° of dimensionalityN, = D*(Z+d+1) by column wise stacking (columns of the
matrix are concatenated to form a vector). Aftedsarall coefficient vectora®™
are arranged in the matridA of dimensionalityN,xN,. The style orthogonal
factors are decomposed from the assembled mahrixising Singular Value
Decomposition:

A=USV
B = unstack Uy (4.38)
S=V'

To avoid over-fitting, the dimensionality of stytathogonal spac& is
reduced to retain a subspace representation byerpneg 99% of the original
information. The reduced dimensionality for tensBrsS are € € +1xDxn_,

n, XN, respectively, wher@, denote the number of basis maintained for theestyl

factor.

As a result, the style-independent projection fiomgtwhich generalise the

space of the action descriptor (Figure 6.9d), mressed by equation:
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Y =¢(x)0(Bx, 9 (4.39)

where any image observatiop® is synthesized from the body configuration
represented by an embedding coordinatasing the estimated style vectsrof

dimensionalityn, and the learned content tenddr
4.5.7.4.Action Classification Process

Action recognition is accomplished by a nearestinieour classification scheme.
First, a new instance of action is pre-processebthen projected into each action
model using the corresponding generative decompmsabdel presented in the
previous section 4.5.7.3. The similarity betweea fojection and the model is
calculated using the sum rule of the following threetrics: the modified Hausdorff
distance (see appendix A.3, equation (6.28)), cdissimilarity function [Frenkel

and Basri, 2003] and optical flow variation.

Given a new instance of actioW , the corresponding embedded
coordinatesX on the manifold and the person style paramstare obtained by

minimising the following reconstruction error:
) ~ ~ ~ 2
arg mInx,SHy—l/l x)O(Bx, sﬂ (4.40)

If the style vectors is known we can obtain a closed form solution or
and vice versa. This leads to an iterative procedior estimatings and x
simultaneously until equation (4.40) converges @iglignal and Lee, 2004b]. First,
the styles is initialised using a mean style vector, whichi@ived fromS. Then,
the embedded coordinatesare computed by solving a linear system of equoatio

using the Moore-Penrose pseudo-inverse (from enqué?.65)):
W)= Y(Bx, 3" (4.42)

Coordinates ofx are provided by the last rows of the matrw/(;(). The
optimal styleé Is assumed to be approximated as a weighed lowabination of

style classes present in the training data:
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Ng N Ng o .
s=) ws, > w=1 w>0 (4.42)
i=1 i=1

In order to solve for the linear regression weightslet's assume that the
observationy is drawn from a Gaussian mixture model centreg/(af) [ Bx, S
for each style class. Then, the observation probability given the cahtnd style

is expressed by:
~ ~ ~ ~ 2
p(yI % 90 expt| y-¢ (N0 (B, § /2°) (4.43)

and proportional style conditional class probalb#itare defined by:

JETLE (4.44)

P S 1% 9 K3

The new styles is estimated using equation (4.42) wheveis set to
p(s| xy). Given these two steps, both parameters, i.e. édibg coordinates
and style vectors, are optimised iteratively in the Expectation-Maigation
framework [Dempster et al., 1977]. In the E-stdpe toordinates are computed
given the style parameters, whereas in the M-s@p style parameters are re-
estimated given the content coordinates. The proeeds repeated until

convergence of equation (4.40) [Elgammal and L8648].
4.5.7.5.Results

Action recognition results are presented in Tab &cording to the leave-one-
subject-out cross validation (see section 2.3.3.4lBsage of TLE improves
accuracy of the standard framework [Blackburn aitmeiRo, 2007] t0100% which

has been the state of the art for this datasee sk@i©®7. Other methods which
generate low dimensional action representationd@hén et al., 2007, Wang and
Suter, 2007b, Wang and Suter, 2008, Fang et &9]26lowever, all these methods
do not model the temporal structure of actions rdurlimensionality reduction.
Moreover, all methods require the exhaustive seafclthe optimal number of

nearest neighbours in order to obtain satisfactaocuracy. Since TLE's
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generalisation property handles stylistic variagiatisplayed by different people,

this scheme is scalable to a larger subject pdpulatAn example of the

neighbourhood similarity matrix constructed durtighensionality reduction using

TLE is depicted in Figure 4.30, whereas a 3D visa#ibn of action manifolds is

given in Figure 4.31.

Table 4.2. Action recognition results in comparison

Weizmann dataset.

to previous results on the

Name Accuracy Comments

Our TLE +[Blackburn and Ribeiro, 2007] 100.0% | Model per action
Blackburn[Blackburn and Ribeiro, 2007]| 95.0% | Model per action per subje
Blank [Gorelick et al., 2007] 100.0% | No action model

Yeffet [Yeffet and Wolf, 2009] 100.0% | Model per all actions
SchindlerSchindler and van Gool, 2008]| 100.0% | Model per action
Wang[wang and Suter, 2008] 100.0% | Model per all actions
Ta[Taetal., 2010a] 100.0% | Model per action per subje
Weinland[Weinland et al., 2010b] 100.0% | Model per all actions
JhuandJhuang et al., 2007] 98.8% | Model per all actions
Wang[Wang and Suter, 2007b] 97.8% | Model per action
Roth[Roth et al., 2009] 97.0% | Model per all actions
Kellokumpu[Kellokumpu et al., 2008] 95.6% | Model per action
Junejo[Junejo et al., 2008] 95.3% | No action model
Brendel[Brendel and Todorovic, 2010] 95.0% | No action model
Ta[Taetal., 2010b] 94.5% | Model per all actions
Chin[Chin et al., 2007] 93.0% | Model per action

Liu [Liu et al., 2008] 90.4% | No action model
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Fang[Fang et al., 2009] 89.5% | Model per all actions
Zhang[zhang and Gong, 2010] 89.3% | Model per all actions
Vezzani[Vezzani et al., 2010] 86.7% | Model per action
Klaser[Klaser et al., 2008] 84.3% | Model per all actions
Dollar [Dollar et al., 2005] 80.0% | No action model

Neighbourhood similarity matrix (9 sources, a few repetitions)

Low similarity

High similarity

distance

series

I
LA

% /' J 1t|]0 L \ﬂlm \ 300¥ & 4‘00 \ ¢ 500

'L‘

Figure 4.30. Example of neighbourhood similarity ma  trix created by the TLE using

the action ‘jack’ and 9 subjects with a few repetit ions each. Each local minima
corresponds to the most similar repetition neighbou r in relation to the reference

pose (green) extracted from different repetitions o f the time series.

- 224 -



CHAPTER4 Temporal Laplacian Eigenmaps 4.5 Evaluation

jump jack wave one hand

d2

time

Figure 4.31. Action manifolds generated by TLE with reintroduced time dimension
(for visualisation purpose only) to visualise the t emporal development of actions.

Different colours correspond to different subjects used for learning.

4.5.8. Discussion

In all experiments, the proposed TLE discovers istastly more informative and
intuitive low dimensional representations of MTScomparison to the other state
of the art methods. This is achieved by the inngeaormulation of temporal and

spatio-temporal constraints, which are incorporatéalthe LE framework.

Analysis of results produced by BC-GPLVM and GPD$édtions 4.5.4
and 4.5.5) confirms that both methods cannot coifie large stylistic variations of
data during dimensionality reduction. The same kmicn was drawn by [Urtasun
et al., 2008]. Our evaluation gives evidence tihat $simple temporal correlation
between successive points is an insufficient camgtrto preserve the global
relationships between series during a dimensignaditiuction. As a consequence,
spatio-temporal constraints are essential to racimnemeaningful global pattern of
multidimensional series, especially with the inseeaf input dimensionality and
data-inter/intra variations of MTS. For instanckheugh BC-GPVLM and GPDM
produce reasonable low dimensional spaces in sedtto4 for motion capture data,

they fail completely when applied on a much higdenensional image dataset
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(section 4.5.5). This can be explained by the thett the number of training
samples becomes insufficient to overcome the coirgsBmensionality (see section
2.2), when the problem complexity increases, duentre sources and larger
stylistic variations between them. In contrast,nktsato defined spatio-temporal
constraints, ST-Isomap and, in particular, TLE @apable to recover both the local
and global pattern of multivariate series in botheximents.

Although ST-Isomap may seem to be an alternativeutomethodology,
we show that TLE is superior in terms of perfornand practicality (sections
45.3, 45.4, 45.5). This implies that our fundataly different concept of
modelling spatio-temporal constraints is more adedrthan what was proposed by
Jenkins et al. Whereas, they use a naive spatipgml approach for
neighbourhood selection using distance based @unelence to alter the
geometrically motivated cost matrix (according éztoon 4.3.1), we compose two
temporal graphs directly from factual spatio-tengborelationships between
neighbours in an automatic manner. Consequentbtal ltemporal neighbours are
placed nearby in the embedded space without enfprany additional artificial
constraints. Moreover, assuming that the intrirdiimensionality is known (the
standard assumption for all dimensionality reductieethods), our method is fully
automatic and does not require any manual tuningasAmeters. On the contrary
ST-Isomap is sensitive to a set of parameters whashto be provided in advance:
the crucial number of nontrivial neighbours for legmint, two similarity factors,
the size of temporal window and the size of tempblack for the pre-processing

(see section 4.3.1).

Assuming that the optimal parameters are providethle 4.3 provides
insight into the computational complexities of thest time consuming algorithmic

components for all considered temporal techniqliable 4.3 as well as Figure 4.11
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and Figure 4.23 confirm that TLE is much more édint. Thus, it can be applied to
much larger datasets of MTS than the other predenethods.

Table 4.3. Computational complexity of temporal dim  ensionality reduction methods,
where N denotes the number of points in a dataset, | denotes the number of
iterations in an optimisation process and p denotes the ratio of nonzero elements in

a sparse matrix to the total number of elements N.

Method Computational complexity

ST-Isomap | O(N?)

BC-GPLVM | O(l* N?

GPDM O(1*(N?+ N?)

TLE O(p* N?)

In the last experiment, TLE was applied successtolilmodelling realistic
MTS extracted from videos to perform view dependsstion recognition (section
4.5.7). The difficulty of this experiment is derdv/érom a high dimensionality of
feature vector, a large number of available soured repetitions, significant
stylistic variability between them and finally tleensiderable size of the whole
dataset. Unfortunately, it was impractical to ap@y-Isomap, BC-GPLVM and
GPDM in this application, because of their inherkmitations, which has been

confirmed by the previous experiments, in particula

» the prohibitive computational complexity (Figur3, Table 4.3),

« the number of parameters to be set empiricallygeglly ST-Isomap — section
4.3.1),

» the poor generalisation properties which may suggegery low recognition
rate (for example, see ‘bend’ action in Figure 4digcovered by ST-Isomap

and BC-GPLVM, or Figure 4.14).
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M time d1time di

Figure 4.32. Action ‘bend’ manifold discovered by a  ,d) BC-GPLVM; b,e) ST-Isomap
and c,f) TLE. In second row the time dimension is r  eintroduced into the space to
visualise the temporal development of the action. T  he poor generalisation properties

of a,d,b,e may suggest a very low recognition rate in comparison to c,f.

4.6.Summary

In this chapter, a novel embedded-based dimensipmatiuction approach, called
Temporal Laplacian Eigenmaps was proposed. It aatically discovers embedded
spaces tailored to multidimensional time series,particular, when data are

generated from different sources.

The main motivation of the algorithm is to expl@tmporal coherence as a
valuable clue in the dimensionality reduction psceThis is achieved by inclusion
of time series constraints in the form of tempagedphs, in the LE framework
without requiring the manual tuning of parametdiwo types of constraints were
proposed: temporal within time series and spatiopteral between different time
series. As a result, TLE is able to preserve inithtithe local and global temporal
topology of the data instead of the local geomelhis means that TLE maintains

the temporal continuity of time series during dirsienality reduction process and
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suppress stylistic variations displayed by différgources of time series by aligning
them in the low dimensional space.

Qualitative and quantitative experiments in diffardomains proved the
high quality of the generated low dimensional spad&oreover, the practicality of
the algorithm was demonstrated in two important jgoter vision applications: 3D
pose recovery and action recognition. These exmgarisndemonstrated that the

method is computationally efficient and has exceligeneralisation properties.
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5. Spatio-Temporal Gaussian
Process Latent Variable Model

5.1.Introduction

Advances in data acquisition and storage capaslidiuring the past decades have
led to more and more high dimensional datasets gingerin most branches of
science. However, at the same time, the amountvafladble data samples is
severely insufficient in relation to the sample dmsionality to cover adequately
the complexity and richness of measured phenom&na consequence, scientists
very often face the problem of the generalisatibthe known data samples to the
entire distribution of possibilities to obtain aliable model of the observed
phenomenon. This issue can be tackled effectivglynbnlinear probabilistic
dimensionality reduction (section 2.2.2.3). In c¢ast to deterministic
dimensionality reduction methods (section 2.2.2iR2allows not only eliminating
redundancies and irrelevant information presentdata while ensuring the
maximum possible preservation of information, btitalso approximates the
underlying distribution of the observed space usordy a small number of
corresponding hidden variables. As a consequenamn#énuous and generative
model is created which exhibits excellent geneatii; properties to unseen data.
In addition, it can be learned successfully withouer-fitting using significantly
less data samples than space dimensions [Lawr2@0d, Lawrence, 2005], which
is a desired property for many real-life problefasr instance, a probabilistic and
generative model of high dimensional data may bedua such applications as

tracking, animation, pose recovery, robots corntrgland classification.
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Obviously, the same generalisation problems ariéenwdealing with
multidimensional time series (MTS), thus, the piulbstic exploration of MTS is
an appealing concept with a lot of potential amilmns including MTS
classification. To the best of our knowledge, thebabilistic analysis of time series
using dimensionality reduction transformation, whis constrained explicitly by
MTS structure, has never been addressed by thercBeseommunity. In this
chapter, we propose a methodology which takes dadganof the MTS temporal
structure in order to learn the probabilistic gatige model tailored to the MTS
space.

On one hand, the previous chapter introduced a lnamd powerful
method, called Temporal Laplacian Eigenmaps (TLUE)allows the automatic
recovery of low dimensional spaces tailored to maitate time series (MTS), in
particular generated from different sources. Altjiod’LE proves its superiority in
this challenging task in comparison to the othguytar state of the art methods, it

is a deterministic framework which does not modwdartainty of series space.

On the other hand, GPLVM is a very attractive pioligtic alternative for
nonlinear dimensionality reduction. It emerged 002 [Lawrence, 2004] and
instantly made a breakthrough in dimensionalityuction research (see section
2.2.2.3.2.2.2). The novelty of this approach ig thaddition to the optimisation of
low dimensional coordinates during the dimensidpakeduction process as other
methods do, it marginalises out parameters of ao#mand nonlinear mapping
function from low to high dimensional space. Ascasequence, GPLVM defines a
continuous and generative low dimensional represemnt of high dimensional data,
which is called latent space. Current GPLVM basepr@aches have proven to be
effective in many tracking and animation applicatio(see section 5.2), when
preservation of MTS variability is desired, assugnirelatively small stylistic

variations among MTS. However, extensive studyhef GPLVM framework has
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revealed some essential limitations of the bagoridghm. As we have seen in the
previous chapter 4, the GPLVM family is not suiabbr discovering a unified low

dimensional representation of MTS in the presericyistic variations because of
the absence of global spatio-temporal constraisection 4.5). Another key
drawback of GPLVM is its computationally expensilearning process (see
sections 2.2.2.3.2.2.2 and 4.5.5) which may coreveigwards local minima

[Urtasun et al., 2008]. Although these methods haeen applied successfully in
tracking and animation, they are clearly inappraigriin a context of MTS

recognition based applications where the discowérg unique content pattern is
more valuable than modelling stylistic variatiomslaisually learning is performed

on large datasets.

As we have seen in previous chapter 4, modellinlyI®& is not a trivial
problem because of the inherent complexity in terofisstylistic variations,
redundancies and temporal correlations. In thiptrawe tackle this fundamental
problem within a probabilistic framework by intradiog a novel concept of spatio-
temporal interpretation of GPLVM. The main innowatiis a combination of the
generalisation potential of TLE with the probaltiisgenerative model of GPLVM
to formulate a probabilistic nonlinear dimensiotyateduction algorithm. We call it
Spatio-Temporal GPLVM [Lewandowski et al., 2011T{GPLVM). ST-GPLVM
is capable of producing an underlying probabilistiodel of MTS in the presence
of stylistic variations. Our main contribution is &ntegration of a spatio-temporal
‘constraining' prior distribution over a latent spawhich is inspired by TLE, within
the likelihood optimisation process of GPLVM. Asresult, a core pattern of
multivariate time series is extracted with assetlatincertainties of prediction,
whereas style variability is marginalised. QuaNtatand quantitative evaluations
confirm the superiority of the concept for a cléisation of different types of MTS

using the GPLVM framework.
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The remainder of this chapter is organised asvi@lorhe next section 5.2
provides a brief review of the main variations dPI&M and their applications.
Then, the theory behind the concept is introduaedsection 5.3. Eventually,
evaluation results are presented in section 5ldveld by the chapter summary in

section 5.5.

5.2 Related work

GPLVM is a very flexible approach and it has beeocsssfully applied in a range
of application domains including pose recovery fiT& al., 2005, Ek et al., 2007],
human tracking [Urtasun et al., 2005, Urtasun ¢t2006a, Urtasun et al., 2006b,
Hou et al., 2007, Jing et al., 2008, Moon and Ra®]a2008, Gupta et al., 2008,
Zhang et al., 2010], computer animation [Grochowlgt2004, Urtasun et al., 2008,
Deena and Galata, 2009], robotics [Shon et al.,62®@ltzer and Vijayakumar,
2009], wireless telecommunication [Ferris etal.007], data visualisation
[Lawrence, 2004], classification [Urtasun and DEyr2007] and modelling of
deformable surfaces [Salzmann et al., 2008].

The standard formulation of GPLVM has been desdrilie section
2.2.2.3.2.2.2, whereas back-constrained (BC-GPLVahd dynamic (GPDM)
extensions in sections 4.3.2 and 4.3.3 respectiyelyhis section, we summarise
the main limitations of the GPLVM framework (secti6.2.1) and discuss another
interesting variant of GPLVM, called Locally Line@&PLVM [Urtasun et al., 2008]
(LL-GPLVM), in section 5.2.2.

5.2.1.Limitations of GPLVM methods

The whole family of GPLVM based approaches shamsesmajor limitations.
First, they cannot extract the global pattern of/Muring dimensionality reduction

especially in the presence of stylistic variatigesction 4.5). Moreover, they are
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computationally expensive [Lawrence, 2004, Lawre2€®7, Urtasun et al., 2008]
(see also section 4.5.5), with the processing tinoeeasing cubically with the
number of points in a dataset and linearly with thenber of iterations in the
optimisation process. Furthermore, the GP-LVM oftijec function is severely
under-constrained in the general case [Ek et @09Rand, therefore, it is sensitive
to local minima if the initialisation of the modslpoor [Urtasun et al., 2008].
Although GPLVM frameworks have been applied sudcdlysin a variety

of applications (see section 5.2), the above drakdarevent successful utilisation
of the GPLVM framework for many MTS classificaticapplications such as
speech, gesture and action recognition where |afgates should be inferred from
large amount of time series data generated byrdiffesubjects and used to classify

data produced by unknown individuals.

5.2.2.Locally Linear GPLVM

Locally Linear GPLVM [Urtasun et al., 2007, Urtasahal., 2008] (LL-GPLVM)
extends the concept of imposing high dimensionalstaints over a latent space
during optimisation process, which was introducgdBL-GPLVM (see section
4.3.2). The main idea of LL-GPLVM is to exploit priknowledge about the cyclic
nature of human motion to enforce a cylindricaldiogy. This is achieved by two
means. First, advanced similarity measures (i.enétg) are carefully designed to
reflect prior knowledge in a back-constrained magdunction. In particular, two
of the three latent dimensions are constrainedhleyeixtracted periodic phase of
motion and compared during optimisation using agiesl distance function on a
unit circle. Similarly, the LLE based objective fition (see section 2.2.2.2.2.2.3) is
adjusted to consider the cyclic phase of motion iacdrporated into the GPLVM

framework to preserve a domain specific prior krexgle about observed data.
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LL-GPLVM is very effective in a preserving style nability of cyclic
motions, e.g. walking and running. However, in &ddi to the general
disadvantages of GPLVM family (see previous sectdhl), LL-GPLVM comes
with three additional important drawbacks. By dasiig requires prior knowledge
about the expected topology of an action, whiclussially unknown, and the
creation of constraints which support this topologyioreover, the current
implementation of constraints can deal with onlycliy types of human body
motions. Finally, the LLE objective function is lealson the empirical setting of the

number of nearest neighbours.

5.3.Proposed Methodology

We propose a novel spatio-temporal formulation BL8M to extract the intrinsic
structure and associated uncertainty of a MTS spHuis is achieved by giving a
Gaussian process prior to the generative mappingtifin from the latent variable
space, X , to the observed spacé, under constraints preserving the spatio-

temporal MTS patterns of the underlying manifold.

A brief introduction of the methodology is givensection 5.3.1, whereas
details are provided in section 5.3.2. Finally, teec 5.3.3 summarises our

contribution.

5.3.1. Approach Outline

The proposed methodology is summarised in Figude Bitially the spatio-
temporal constraintd. are constructed. These spatio-temporal constraands
founded on adaptation of temporal graphs (sectidr2£), which have proved to
be very powerful in modelling complexity and dependes of MTS (chapter 4).
They are exploited twofold. First they are usetétter initialise the latent space by

discovering a low dimensional embedded space wldcblose to the expected
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representation. Secondly, they constrain the GPLMKImisation process, in the
form of spatio-temporal constraining prior distrilom over a latent space, so that it
converges faster and maintains the spatio-tempapalogy of MTS. The learning
process is performed using two stage maximum aepost (MAP) estimation,
which is standard for GPLVM (see section 2.2.2232). The latent positions X,
and the hyperparameteds, are optimised iteratively until the optimal saodutt is
reached under the introduced constraining ppfX | L). The key novelty of the
proposed methodology is its style generalisationtemital. ST-GPLVM
approximates a compact and coherent probabiligstrilbution of MTS in the
observed space by conserving simultaneously the teeporal correlation within
each MTS and global spatio-temporal relationshipsvben different MTS. As a
consequence, the method is capable to identify commspatio-temporal patterns of

MTS by discarding style variability among all coptally similar series.
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Figure 5.1. Spatio-Temporal Gaussian Process Latent  Variable Model pipeline.

5.3.2. Spatio-Temporal Extension of GPLVM

The proposed ST-GPLVM relies on a spatio-tempooalstraining prior which is
introduced into the standard GPLVM framework in@rtb maintain the temporal
coherence and suppress the style variability oMA& space.

First, since neighbourhood graphs have been poWwenfudesigning
nonlinear geometrical constraints for dimensiogai@duction using spectral based
approaches (see section 2.2.2.2.2.2), we use aontstderived from graph theory.
Here, in order to model effectively MTS, the temgdographs, which have been
proposed in section 4.4.2.2, are adopted to fortanaatically a novel conditioned

prior p(X|L), whereL denotes the spatio-temporal constraints. Neigimmd

- 237 -



CHAPTERS Spatio-Temporal Gaussian Process Latent Variabledil6.3 Proposed
Methodology

connections in both graphs represent spatio-terhptaendencies of MTS (see
section 4.4.2.1) and implicitly enforce point closes in the latent space.
Consequently, the temporal graphallows modelling the temporal continuity of
MTS, whereas the repetition graph (also referredpagial graph)S marginalises

style variability by aligning MTS in the latent sjga The proposed prior probability
of the latent variables, which forces each lateainfpto preserve the spatio-

temporal topology of the observed data, is exprebye

p(X | )= &exp(—%) (5.1)

whereL =L, +Lg combines information from both graphs, dndis the Laplacian

matrix given by equations (see sections 4.4.2.24a42.3):

2 ip - .
W = eXp(—Hyi Y H ) ifiandjare temporally correlat (5.2)
0 otherwise
Le =Mg~Ws (5.3)

for each graph individuallyG={T, § and M, =diag{nf, nf,..., ¥} ,

m? :Z:'j\':lvxzj3 . 0 denotes a global scaling of the prior and contiiods'strength’
of the constraining prior. Note that, althougi{X|L) is not a proper prior,
conceptually it can be seen as equivalent to ar oo a given set of constant

weightsL in agreement with the notation of [Urtasun et2008].

The spatio-temporal formulation of GPLVM is intrashd by designing an
objective function, where the standard uninformafrior p(X) is replaced by the

proposed conditioned instructive prigf X | L) to form a new objective function:
p(X,®|Y, DO p(Y] X®) { X| L) #) (5.4)

where graph-based spatio-temporal constraibtare imposed on the latent space.
Although distance relation between neighbours (@ap¢ spatial ones) may be

large in L according to equations (4.19) and (4.27), it ifinite between

- 238 -



CHAPTERS Spatio-Temporal Gaussian Process Latent Variabledil6.3 Proposed
Methodology

unconnected points. Therefore optimisation of theva objective function enforces
implicitly closeness of temporally correlated psinin the latent space.
Maximisation of the new objective function (5.4)dguivalent to minimising the

negative log posterior of the model:

L(X,®)==In p(X,®|Y, L)=
(5.5)

:%((DN +1)In 277+ D In|Z] +tr YY" )+ 072 tr(XT LX)+ > @,
Following the standard GPLVM approach, the learngmgcess involves
minimising equation (5.5) with respect ¥ and @ iteratively using a numerical

optimisation method until convergence (see se@idr?.3.2.2.2).

ST-GPLVM is initialised using TLE which is able tpreserve the
constraintsL in a produced embedded space (see chapter 4).eQoagly,
compared to the standard usage of linear PPCAs@e®n 2.2.2.3.1), initialisation
is likely to be closer to the global optimum. Indé&tn, the enhancement of the
objective function (2.51) with the prior (5.1) ctraéns the optimisation process and
therefore further mitigates the problem of locahima. The topological structure in
terms of spatio-temporal dependencies of MTS idlicitly preserved in the latent

space without enforcing any domain specific prioowledge.

The proposed methodology can be easily appliediteraGPLVM based
approaches, such as BC-GPLVM (section 4.3.2) anBDNBRsection 4.3.3). The
extension of BC-GPLVM results in a spatio-temponabdel (ST-BC-GPLVM)
which provides explicitly bidirectional mapping teten latent and high
dimensional spaces, where the objective functiatesgnated by substituting (4.3)
into (5.4):

pW, @Y, DO p(Y|WP) W ) ) (5.6)
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Alternatively, ST-GPDM produces a spatio-temporabdel with an
associated nonlinear dynamical process in a |ajeate, where the proposed prior
(5.1) is integrated into objective function (4.18%ulting in:

P(X,®,, @, WIY, DO p(Y] XO,) g X, ) # X D #,) ) PV (5.7)
5.3.3. Summary

The proposed ST-GPLVM is a continuous latent vagialnodel, which
approximates an underlying probability distributiohMTS in a high dimensional
space. This is achieved by learning a probabilgygity function which gives a
natural measure of plausibility, assigning higheobabilities to MTS that are
similar to those used for training. The learninggass is constrained through a
novel prior distribution in a latent space whickesa into account the local temporal
correlation between successive points in MTS ara dglobal spatio-temporal
relationships between different MTS. Note that #oeurate initialisation of the
model using TLE and the incorporated constraintkice significantly the risk of
converging towards local minima. Moreover, since tlew objective function is
more constrained, the processing time is reducedllr, the proposed extension is
compatible with a sparse approximation of the Hussian process (see section

2.2.2.3.2.2.2) which allows decreasing further pesing complexity.

As we will demonstrate in the evaluation sectiod, She integration of
spatio-temporal extension addresses some of th@afions of GPLVM family. In
particular, it allows producing generalised latspaces of MTS in the presence of
stylistic variations, which is extremely importdot classification of MTS, e.g. in

action, gesture and speech recognition applications
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5.4 Evaluation

The proposed approach was validated in terms dbpeance and robustness in
two different domains, i.e. human body motion mbdgl and sign language

recognition.

In this section, first, two datasets, which aredusethe evaluation process,
are introduced in section 5.4.1. Then, the setumxgferiments is explained in
section 5.4.2.1 followed by a description of pemied experiments in section
5.4.2.2. Subsequently, sections 5.4.3 and 5.4geptexperimental results. A broad
discussion of the obtained results is provideddcatisn 5.4.5. Finally, a practical
application of the proposed methodology, i.e. viedependent action recognition,

is demonstrated in chapter 6.

5.4.1. Datasets

The HumanEva (HE) dataset has been introduced d@tiose2.3.2.3. In this
evaluation, we consider three different subjectsopming a “walking in a circle”
action in trial 3. Each action comprises the 50 firames of the longest available
continuous sequence of valid MoCap poses, as sedmable 4.1. We do not use all
available frames because of the high computionahptexity of the standard
GPLVM optimisation procces. Similarly to previousperiments in section 4.5.1,
two successive steps are considered to be a i which is repeated a number
of times in the action. Each subject corresponds ddferent source of MTS. Since
our goal is to model probabilistic distribution lmiman poses, as recommended by
[Wang etal.,, 2006, Urtasun etal., 2006a, Wangl.et2008], we reduce the
dimensionality of a walking space to 3 dimensian$atilitate the learning process
of the underlying probabilistic model.

Flock Sign Language Dataset [Kadous and Sammug]2@ghsists of 95

signs of the Auslan language which is used by thetralian Deaf and non-vocal
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communities. Auslan is a dialect of British Signngaage. The dataset was
collected by a two-hand system using the two Hiftmension Technologies data
gloves (left photo in Figure 5.2) and two Ascensielock-of-Birds magnetic
position trackers (right photo in Figure 5.2). Egobsition tracker provides 6
degrees of freedom (i.e. roll, pitch and yaw aslwsl x, y and z), whereas the
gloves also provide information about all five ferg. As a consequence, each sign
is represented by 11 channels of information pedhahich result in a sequence of
22-dimensional feature vectors. All signs wereeaxittd from a single native signer
in a longitudinal study over a period of nine weeksis nine sources of gestures are
available. Each sign is considered to be a singl&SMnd is repeated three times,
which results in 27 samples per sign in total. DBu¢he high flexibility of human
hand, gestures exhibit large intra variations betweepetitions, as well as various
moving speeds. Intuitively, any gesture correspdadscontinuous curve in a hand
gesture space, since there is only one degree@ddm, i.e. an innate configuration
of hands over time. Gestures are embedded intaien@nsional space to model a
nonlinearity of hand motion. Similarly to body numi capture data, the third
dimension is added for a sign representation owadimensional space to facilitate

a learning process of underylying probabilistic miod

Figure 5.2. The Fifth Dimension Technologies data g love on the left [5DT, 2011] and

the Ascension Flock-of-Birds magnetic position trac ker on the right [Inition, 2011].
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5.4.2. Experimental Framework

The proposed methodology is evaluated through t@ti@k and quantitative
analyses of performance using the original andneldd formulation of the three
main representatives of the GPLVM family, i.e. GRU\(section 2.2.2.3.2.2.2),
BC-GPLVM (section 4.3.2) and GPDM (section 4.318pte that it does not make
sense to incorporate our extension into LL-GPLVNhce the main objective of
LL-GPLVM is to model distinctly style variabilityni a latent space, whereas the
goal of our extension is to suppress style vaiitgtfibr the sake of generalisation to

extract the intrinsic content pattern.
5.4.2.1.Setup

In all experiments, the computational complexitytloé learning process is reduced
using the sparse FITC approximation of covariancatrimn (see section
2.2.2.3.2.2.2). The back-constrained models us8R lernel (section 4.3.2). The
global scaling of the constraining prior, and the width of the back constrained
kernel were set empirically for each experiment meéwer appropriate. Values of all
the other parameters of the models are estimatémmatically using standard

maximum likelihood optimisation during model traigi
5.4.2.2.Experiments

First, our new approach is evaluated qualitatiteipugh a comparative analysis of
latent spaces discovered by standard non-linedrapilistic latent variable models,
i.e. GPLVM, BC-GPLVM and GPDM and their spatio-teongl extensions, i.e.,
ST-GPLVM, ST-BC-GPLVM and ST-GPDM, where the propospatio-temporal
constraints have been included (section 5.4.3). &fauation is conducted using
time series of MoCap data, i.e. repeated humanomgtiwhich are represented

using quaternions as described in section 2.3.2.3.
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Then, the superiority of spatio-temporal extensien demonstrated
quantitatively in a multivariate stream data cliasaiion task in the presence of
large stylistic variations. In this experiment, émseries are sequences of language
signs, i.e. hand configurations over time, whiclraveollected by a set of sensors
attached to each hand of native signer. The obgds to perform accurate and
automatic sign language recognition [Starner, 1998F evaluation is performed
using the standard GPLVM, its back-constrainedresite BC-GPLVM and finally
the proposed spatio-temporal formulation, i.e. HL8M. Since, ST-BC-GPLVM
produces similar spaces similar to ST-GPLVM acauydito the previous
experiment (see for example Figure 5.3b,d and Ei§utb,d), it is not considered in
this experiment. In addition, it was not possibte use GPDM and its spatio-
temporal extension in this experiment because eptiohibitive computational cost
of the learning process (see Figure 4.23, Figugeahd Table 4.3). In any case, it
was not expected that a dynamical model would perfparticularly well in a
recognition based application, since it has newsnbused in this context by the

research community.

5.4.3. Qualitative Evaluation on Human Motion Dataset

Similarly to other experiments on the human motiataset (sections 3.4.5 and
4.5.5), a human body movement is represented bggaesice of 52-dimensional
feature vectors extracted from motion capture datalescribed in section 2.3.2.3.
In this experiment, the number of inducing variabie set tdl0% of the data for
the FITC approximation (see section 2.2.2.3.2.2:)ereas the global scaling of
the constraining priog, and the width of the back constrained RBF kemele

set empirically tal0* and10™ respectively.

The learned latent spaces for walking sequencds thé corresponding

first two dimensions and processing times are pteskein Figure 5.3 and Figure
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5.4. Qualitative analysis confirms the generalsatpotential of the proposed
extension. Standard GPLVM based approaches dis@atmbetween subjects in the
spatially distinct latent space regions (left cotunf Figure 5.3 and Figure 5.4).
Moreover, action repetitions by a given subject eepresented separately. In
contrast, the introduction of our spatio-temporahstraint in objective functions
allows producing consistent and smooth represemtatby discarding style
variability in all considered models (right colurohFigure 5.3 and Figure 5.4). In
addition, the extended algorithms converge sigaifity faster than standard
versions. Here, we achieve a speed-up of a fadin64

As seen in Figure 5.3 and Figure 5.4, our spaftigptwral extension is
adaptable to three established variants of the G®PVamily, i.e. GPLVM, BC-
GPLVM and GPDM. There is no clear evidence abouicwtspatio-temporal
variant is best, since they are designed to tagitferent type of applications. For
instance, ST-GPDM may be superior when a dynammeadel in a latent space is
required, whereas ST-BC-GPLVM may be more valuakieen a direct
bidirectional mapping function between low and hifjimensional spaces is needed.
On the other hand, we will demonstrate that ST-GML$ a very attractive
approach for MTS classification applications, sashhand gesture (section 5.4.4)

and human action (chapter 6) recognition.
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Figure 5.3. 3D models learned from walking sequence s of 3 different subjects with
corresponding processing times: a) GPLVM; b)ST-GPLV  M; c¢) BC-GPLVM; d) ST-BC-
GPLVM; e) GPDM and f) ST-GPDM. Warm-coloured region s correspond to high

reconstruction certainty.
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subjects in Figure 5.3 with corresponding processin g times: a) GPLVM; b) ST-
GPLVM; ¢) BC-GPLVM; d) ST-BC-GPLVM; e) GPDM and f) ST-GPDM.

5.4.4. Quantitative Evaluation on Sign Language Dataset

Here, each sign is represented as a sequence dim&asional feature vectors.
Experiments are carried out according to the leavesource-out cross validation
strategy (see section 2.3.3.4.3), where sourcaesmond to rounds of perfomed
gestures, which were captured in a longitudinadlgt final error is estimated by
the average error rate over all experiments. We ame sign repetition of each

source for training, whereas testing is performeth &ll gesture repetitions. The
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number of inducing variables is set to the lengthsloortest repetition of the
considered sign for the FITC approximation (sed¢ise®.2.2.3.2.2.2), whereas the
global scaling of the constraining prior, and the width of the back constrained

RBF kernel were set empirically i®* and10™ respectively.

Given a trained model, a gestufeof unknown source is recognised by
maximising the following introduced estimation likeod:

PY] XY, X®)= g(V X Y X20) g, (Y XY (5.8)

where pg is the joint likelihood of frames iY , which is derived from the standard

equation (2.55):

s 5.~
Y| XY, XO)=[]1—5—=5 expt——— | 5.9
whereasp,,, is the probability of predicting the entire sequeN :
o< 1 DTW(Y, (>
Porw (Y1 X, Y, X®)= ——— exp 2w A(X) (5.10)

N 2mo? ¢ 20° )

The meansu(X) are the sequence of frames that the model woeldigir
for a given X , whereas the variances?(X) indicate the uncertainty of this
prediction. The meang/(X) and variancesr?(X) are expressed by equations
(2.56). DTW denotes the dynamic time warping distarfsee appendix A.l),
whereaso? is the 'strength' of the constraining prior asird&f in equation (5.1).
The maximisation of the above posterior (5.8) igiegjent to minimisation of the
following sum of negative log likelihoods:

L=Le+Lony (5.11)

where

=Y (”y2 ”E ;” 2|na (%) + Dln 277) (5.12)
KOX

<2 DTW(Y,4(X)

Lorw = ZZ(

24593 o’

+Ino®+1In2m) (5.13)
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Table 5.1 gathers the obtained results of signuagg recognition for
GPLVM, BC-GPLVM, ST-GPLVM and the current statetbg art results for this
dataset. First, the imposition of high dimensior@nstraints improves the
recognition performance in comparison to the steshdader-constrained GPLVM.
Among extended methods, the increase of performenespecially noticeable for
our proposed spatio-temporal formulation of GPLVMhich confirms the
generalisation abilities of the proposed methodgplognfortunately, it is not
straightforward to compare our best results with ¢thrrent state of the art, since
not all approaches follow the same evaluation naluyy. For instance, some of
them use only a subset of the provided signs fafuation, which makes a direct
comparison very difficult. Nevertheless, our franoekv achieves the best
performance when aiming at 25 signs, whereas ircése of the most exhaustive
evaluations using all available signs, our ST-GPLV#fill produces very
competitive results. While all considered methods tilored to hand gesture
recognition and some of them rely dramatically asetiof parameters provided by
the user, our methodology is general for MTS maalgll where all critical
parameters are estimated automatically. In pagicuhe approach proposed by
[Kadous and Sammut, 2005] is intrinsically of attygsupervised nature, since it is
based on a set of pre-defined metafeatures desifpred specific application
domain. Not only, this design process is extremefyllenging [Kadous and
Sammut, 2005], but Kadous’ algorithm is not det@istic because of embedded
randomness and thus exhibits very high variatiorestilts [B6hm et al., 2009]. In
contrast, the nature of ST-GPLVM is fundamentaliffedent, since training only
relies on training set labels and when appliedctassification task decisions are
stable and repeatable. Note that the best remptsrted by [Kadous and Sammut,
2005] are obtained when the powerful boosting diaasion is integrated

[Schapire, 1999]. Therefore further improvement aafr performance will be
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possible, if a more advanced classification methed applied. Since our
methodology is a general concept for MTS modelli®-GPLVM can be

adaptable to a wide array of problems beyond hastuge recognition, for instance
video based action recognition (chapter 6).

Table 5.1. Percentage accuracy of sign language rec  ognition, where C — customised
data models, S — large sensitivity to parameter cho ice, V — variation of results, P —
probabilistic framework, D — deterministic framewor k, R — uncertainty regarding

signs used for evaluation.

Method Number of signsAccuracy| Comment
ST-GPLVM 95 91% P
TLE 95 78% D
BC-GPLVM 95 52% P
GPLVM 95 44% P
Kadous[Kadous and Sammut, 2005] 95 ~93% C,V
Kadous + Boosting 95 98% C,Vv

[Kadous and Sammut, 2005]

RozaddRozado et al., 2010] 95 90% C,D
Yang[Yang and Shahabi, 2007] 95 ~90% D
BOhm[Bshm et al., 2009] 95 75% D
ST-GPLVM 25 97% P
Weng[weng and Shen, 2008a] 25 ~95% D, S
Liu [Liu and Kavakli, 2010] 25 94% D,S
Li [Li et al., 2006] as evaluated by 25 89% D

[Weng and Shen, 2008b]

Weng[Weng and Shen, 2008b] 25 89% D, S
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Li [Li et al., 2007a] as evaluated by 25 88% D

[Weng and Shen, 2008b]

ST-GPLVM 10 97% P
Seo[Seo et al., 2009] 10 ~98% P

Siddiqi [Siddigi et al., 2007] 10 96% P,R
Bicego[Bicego et al., 2009] 10 ~87%~ P

5.4.5. Discussion

In all conducted experiments, the proposed spatigpbral extension of GPLVM
discovers a compact underlying probabilistic maafd TS space, where intra and
inter variations between MTS are suppressed toduggeneralisation properties.
This is achieved by the innovative spatio-tempamahstraining prior, which is
imposed over a latent space within the optimisapiatess of GPLVM framework.
In agreement with previous experiments (sectior), abalysis of results
produced by GPVLM, BC-GPLVM and GPDM (sections 8.4nd 5.4.4) confirms
that these methods cannot handle stylistic vanatif MTS during dimensionality
reduction. The introduced spatio-temporal enhanc¢raectively overcomes this
limitation and allows learning a unique generatmmedel of MTS (Figure 5.3). In
line with other research [Lawrence and Quinoneradeta, 2006, Urtasun et al.,
2008], we have shown that incorporation of highehsional constraints within the
GPLVM framework is extremely important for a suckes dimensionality
reduction. However, our temporally motivated cosisiis are not only conceptually
different, but significantly more powerful in motiey MTS as it has been shown
gualitatively in section 5.4.3 and quantitativety section 5.4.4. In particular, our
constraints, which are derived from the temporabpfs (section 4.4.2.2),

encapsulate both the local temporal and globalispatporal relations between
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MTS, whereas BC-GPLVM tries to encourage only aperal coherence of
successive points using back-constrained mappomg & high to low dimensional
space. In contrast to LL-GPLVM, we aim at suppmgstyle variability from MTS
data in order to generate a unique low dimensiogiesentation which is crucial
in recognition based scenarios. Moreover, our caimgs are data-driven, whereas
constraints of LL-GPLVM are highly supervised, dgeited for a specific domain
of cyclic activities, and prior knowledge aboutrinsic structure of MTS space is
required in order to perform dimensionality redanoti
Among other limitations of GPLVM family (section®1), ST-GPLVM is

computationally more attractive and more robustirejalocal minima (see
processing times in Figure 5.3). This relies, fimt an accurate initialisation of a
latent space using TLE, which is more likely to ddeser to the global optimum.
Secondly, the ST-GPLVM objective function is momnstrained, which further

mitigates the problem of local minima.

In order to further show the value of the proposegthodology in a real
and challenging computer vision application, ST-&RL has been incoporated
within a view independent action recognition franesekvwhich will be presented in

chapter 6.

5.5.Summary

In this chapter, a novel spatio-temporal extenssdnGPLVM framework was
proposed, which allows discovery of a smooth andque low dimensional
representation tailored to MTS with an associatedettainty. As a consequence,
ST-GPLVM can be deployed in various MTS classifmatapplications such as
speech, gesture and action recognition, which babeen possible until now.

This is achieved by formulating a concept of sp&timporal conditioned

prior which is placed over a latent space and caimst the optimisation process of
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GPLVM. The prior is derived automatically from twanmplementary temporal
graphs which express the local temporal and glspatio-temporal dependencies
between MTS. As a result, a unique and consisteriigbility distribution over the
space of MTS is learned in the form of generativé eontinuous mapping function
from a low to high dimensional space.

In conclusion, qualitative and quantitative expenms proved the high
quality and generalisation power of the generat®d Himensional spaces. In
particular, our proposed methodology has been sstdéy applied in a context of
two real-life MTS classification applications, iland gesture (section 5.4.4) and
human action (chapter 6) recognition, where thegmatisation of style variability
is crucial. The very competitive results producedtbe proposed methodology

demonstrate its strength and potential.
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6. Action Manifolds for View -
Independent Action Recognition

6.1.Introduction

Since video recording devices have become ubigsiigod have increasing impact

on various aspects of our lives, the automatedyaisabf human action from video

is now one of the most active areas of researadomputer vision. This growing
attention is driven by a broad spectrum of prongisapplications such as security
and visual surveillance, content-based video arglysehavioural biometrics,
human-computer interactive applications and enwirents, robotics, indexing of
film archives and animation in the entertainmedustry (e.g. games and movies).

However, action recognition is an extremely chajlag problem due to
large variability in a physical appearance and vidial motion style, camera
viewpoint, perspective and scene environment. Ratlg the work of [Sheikh
et al., 2005], we have identified three major searthat give rise to variation in
observed features:

« anthropometry - morphological and biomechanicalfedénces between
individuals induced by body size, body shape, genawod, etc. as well as
motion execution variability [Easterby et al., 1982 has been shown that the
same action performed multiple times by the samesgoe or by different
people, exhibits significant inter and intra dispafParameswaran, 2004]. All
these anthropometric factors are referred to gte'sh the rest of the chapter.
More formally, ‘style’ is defined as a variation afgiven activity or movement

which does not affect its intrinsic nature.
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* viewpoint — an external factor not related to thearved type of action. It is the
global position in a scene from which an actiomeisorded by a camera. If the
camera is sufficiently far from the object of irgst, its position can be defined
on a sphere centred on the object (Figure 6.lajveder, in practice, in the
context of action recognition within the applicatiof visual surveillance and
sport analysis, the static viewpoint is locatechimita height range which allows
defining its position within a cylinder (Figure ®)1 We assume that perspective
effects are negligible. The variation of viewpdeads to highly different image
evidence of the same action. Note that the viewpamad camera configuration

are usually not available to an action recogniigstem.

» execution rate — speed of movement while performaimgction as well as a rate
at which the action is recorded. They both haveimaportant effect on the
recorded temporal extent of an action.

a) spherical view model b) cylindrical view model

viewpoint viewpoint

o/

<+— change of azimuth angle

change of elevation angle

Figure 6.1. Spherical and cylindrical view models.

Any robust action recognition system should be iiiard to these factors,

i.e. it should be able to generalise over variatioh style, view and speed within
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one class and distinguish between actions of @iffeclasses. This can be achieved
by learning so called action models from pre-aeglirtraining datasets.
Subsequently, these action representations are fasedassification of unseen
action instances. However, the learning proceswtdrivial, since models have to
be obtained from sparse training data in relationtite diversity of naturally
plausible motions while avoiding over-fitting. Maneer, variability in human
shape, appearance, posture, speed and individglel ist a motion performance
makes the unified description of a given actionegtionally difficult. In the case of

a single uncalibrated camera, the lack of deptbrmétion and perspective effects
make the problem of recognition even more demandiumsequently, the task of

action recognition from a single video is immensghigllenging.

In this research, an innovative action descrip®rintroduced, which
addresses all these fundamental problems and alimesarate classification of
unseen actions recorded by a single uncalibratedeica [Lewandowski et al.,
2010b, Lewandowski etal., 2011]. The space of hunmmaotion is highly
dimensional since the human body is a deformabjecolwith no less than 244
degrees of freedom [Zatsiorsky, 2002], anthropoimetriability [Easterby et al.,
1982] and nonlinearity of human dynamics [Farn@é®99]; however different
instances of a given action reside only in a suteséd the entire feature space. Our
innovative descriptor is learned by eliminating liciply irrelevant factors, such as
style and speed variability, to extract the intign®otion pattern of action during a
dimensionality reduction process. Since tempordbrimation is essential to
characterise an action, the dimensionality redacticansformation takes into
account local temporal and global spatio-tempooalstraints to ensure uniqueness
of the extracted motion pattern. This pattern isntlgeneralised across different
views to provide a compact and discriminative modé&l an action. As a

consequence, we propose an intuitive and compastrigéor of human body
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motion which has the form of the temporally consied Action Manifold. It is
learned automatically from labelled training datel &ncapsulates style, view and
speed variability in a coherent torus-like two-dite®nal manifold (e.g. Figure
2.9c). The two intrinsic dimensions of each actamrespond to style-invariant
body configurations over time and view variabilifyhe novel procedure which is
used for generating this torus-like descriptor sakdvantage of our contributions,
which have been presented in chapters 4 and 5,saemdral other advanced
techniques which have never been used in the coofexew-independent action

recognition.

First, we propose a variant of Temporal LaplaciegeEBmaps (TLE) which
is tailored to human action videos. Then, our psggbaction descriptor is produced
by applying this natural extension of TLE to vieepg&ndent videos in order to
produce a stylistic invariant embedded manifold feach view separately.
Implicitly, during dimensionality reduction, thetam execution rate is normalised.
Then, all view-dependent manifolds are automaticalbmbined to discover a
unified representation which models the action peselently from style, speed and
viewpoint in a single 3-dimensional space. In ortterproject actions between
original and low dimensional descriptor space, tmanifold continuity is
approximated by either a bidirectional nonlinearmppiag function [Lewandowski
etal., 2010b] or an underlying probabilistic mod#l action (chapter 5). The
proposed descriptors are validated in a challengieg-life scenario of view-
independent action recognition using the IXMAS datgsee sections 2.3.3.4.2 and
6.3), which is composed of a variety of actionsnsdem arbitrary camera
viewpoints. Experimental results demonstrate roiesst of the descriptor against
style, speed and view diversity during action redtign and match the
performance of most accurate action recognitionhoud, while overcoming their

limitations.
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The structure of this chapter is organised as vidlo First, action
recognition frameworks, which have been introduiceskection 2.3.3, are put into a
context of modelling view variability. Then, usinfpe IXMAS dataset as an
example (section 2.3.3.4.2), we describe in seddiéthe main properties of an
action video dataset which are required for trgronr action models. Without any
loss of approach generality, the IXMAS datasetsisdufor clarity of explanation in
numerous figures to illustrate key aspects of th@ppsed methodology (section
6.4). Furthermore, it is also used for the evabrawf our action descriptors in
section 6.5. Subsequently, two procedures for aatiemgeneration of either
deterministic or probabilistic action manifolds ameplained in sections 6.4.1 and
6.4.2 respectively. Next, the proposed descriptoes incorporated in an action
recognition framework, which is validated quantitaly on a real dataset of human

actions in section 6.5. Finally, section 6.6 codelithe chapter.

6.2.Related work

A general overview of action recognition framewohas been provided in section
2.3.3 with a special focus on feature and actisstdptors, classification methods
and popular evaluation protocols. Here, we complkte earlier presentation by
discussing previous work in terms of view-dependend view-independent

approaches.
6.2.1.1.View-Dependent Frameworks

View-dependent methods assume that all actions racerded from a fixed
viewpoint. The standard approach uses temporalltgagpsuch as Motion History

Image [Bobick and Davis, 2001, Martinez-Contreraal e 2009] or Motion History

Histogram [Meng and Pears, 2009]. Actions have htsn described in the space
time domain. Local space-time features are extdaftem the volumetric space-

time action shape derived from sequence silhoudiiessolving the Poisson

- 258 -



CHAPTERG6 Action Manifolds for View-Independent Action Recoon 6.2 Related
work

equation [Gorelick et al., 2007]. Alternativelygtistructure of local 3D patches is
analysed by detecting interest points in the sgatigporal domain and extracting
local descriptors, such as cuboids [Dollar et2005, Zhao and Elgammal, 2008,
Ta et al., 2010a, Ta et al., 2010b] or histogramsriented gradients [Kaéniche and
Brémond, 2009, Roth et al., 2009]. Moreover, byingkinto account dynamics,
action descriptors can be defined in terms of gbaovariant features from joint

tracking [Ali et al., 2007]. This can also be acled by modelling the temporal
development of a view-dependent action using Hiddarkov Model [Kellokumpu

et al., 2008, Vezzani et al., 2010] or ConditioRandom Fields [Wang and Suter,
2007b, Zhang and Gong, 2010]. Eventually, view-deeat action is represented in
a low dimensional space [Wang and Suter, 2007y €hal., 2007, Blackburn and
Ribeiro, 2007, Wang and Suter, 2008, Jia and Ye@0§8]. Although all these

approaches have proved very accurate, the factrétgyn videos captured from a

specific view limits their practicality in real widrscenarios.
6.2.1.2.View-I ndependent Frameworks

View-independence has been addressed by two cpramgroaches. In the first
one, the view-independence is not directly modellgidce it is assumed that
enough training data is available to adequatelyecdle entire space of plausible
solutions. In particular, bag of words has provede effective in this category
when applied on histograms of oriented gradien&pfév et al., 2008, Klaser et al.,
2008, Brendel and Todorovic, 2010, Ikizler-CinbredeSclaroff, 2010, Matikainen
et al., 2010, Satkin and Hebert, 2010]. Howevers¢happroaches do not model any
intrinsic structure of action and their learningogesses rely only on image
evidence. As a consequence, the general robusihessh action models is limited
by image variability and, therefore, in practicaining and testing data are expected

to have a common origin.
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On the other hand, viewpoints can be modelled eitlyiito allow view-
independency in an action representation. Manyarekers focused on multiple
camera systems to achieve view-invariant actiorogettion. For instance, 2D
temporal templates are extended into 3D motiorohjstolumes [Weinland et al.,
2007]. If point correspondences between actionsaaseimed to be known, then
either epipolar geometry [Yilmaz and Shah, 2005]poojective invariants of
coplanar landmark points are exploited [Parameswamad Chellappa, 2006].
Alternatively, an action and its view variabilityearepresented using Stiefel and
Grassmann manifolds [Turaga etal., 2008b] or autar representation of
volumetric data [Pehlivan and Duygulu, 2010]. Thaimdrawback of these
methods is that, since they all require multipleneeas setups, they can only be
applied in a controlled environment.

More recently, research has tackled the task abracecognition from an
arbitrary view, i.e. from a single video, where thuamera data are used for
training. Typically, a database of exemplars froiffecent views is created to
recognise actions based on the best matching shoreally silhouettes are used
to represent an action. However their intrinsic muity leads to a high density
sampling of the view space [Ogale et al., 2005thar requirement of supervised
learning of a distance metric [Tran and SorokiQ&Qo obtain accurate results. In
contrast, richer action descriptors based on 3Dmekars represented by visual
hulls and Hidden Markov Model allow reducing sigeaintly the size of action
templates [Weinland et al., 2007]. In this casenseguently, matching between
observation and exemplars has to be performed irbR[projecting visual hulls.
Since such projection from high dimensional spacdotwv dimensional maps to
several possibilities, it impacts on the qualitytbé recognition rate [Weinland
et al., 2007]. Junejo et al. [Junejo et al., 20@¥®pose to represent image sequences

using self-similarity based descriptors which agly stable under view variation
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and characterises well the dynamics of a scene.edeny this approach relies on
coarse localisation and tracking of people in tlikee [Junejo et al., 2008]. In [Yan
et al., 2008], a video is represented by the coatlmn of 3D visual hulls with
spatio-temporal volumes to build 4-dimensional acti feature models.
Alternatively, a video can be described as a bagpatio-temporal features called
video-words (see section 2.3.3.2.3) by quantisixigaeted 3D points of interest
[Dollar et al., 2005]. For instance, bag of cubaosisised to train a support vector
machine [Liu and Shah, 2008] or a Feature-tree iRezt al., 2010], alternatively
the support vector machine is trained on multigatdres, i.e. cuboids and spin-
images [Liu et al., 2008]. In a similar vein, higtams of oriented gradients have
been deployed [Kadniche and Brémond, 2010, Wein&tral., 2010b]. Although
these schemes perform accurate action recognihergabsence of generative action
models limits their applicability and scalibilitAnother interesting approach is to
represent actions and view change as graphs. B@anite, [Lv and Nevatia, 2007]
introduce Action Nets that uses keyposes of actimrsdered from multiple
viewpoints for view-invariant action recogntion, &k transitions between views
and poses are encoded explicitly. In contast, migiajan and Nevatia, 2008], a two
layer graph model of an action is proposed whered@ional Random Fields are
used to encode the action and the viewpoint-specpgbse observation.
Unfortunately, a large amount of motion captureadatrequired for training both

approaches.

The methods most closely related to our approachiemactions by
reducing dimensionality of each sequence to obtdew-invariant manifold
representations. [Richard and Kyle, 2009] usesaRsfiorm as a descriptor and
Isomap for dimensionality reduction (see sectidh22.2.2), whereas [Elgammal
and Lee, 2004b, Elgammal and Lee, 2009] choosemguticit distance function

representation and locally linear embedding (sedicse 2.2.2.2.2.2). In these
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approaches [Richard and Kyle, 2009, Elgammal arel P809], generative view-
independent functions are designed to interpolate/éen intermediate views. This
generative function is extended to handle alsassitylvariation of data [Elgammal
and Lee, 2004b, Elgammal and Lee, 2009]. Howewuege, td the limitations of the
chosen dimensionality reduction methods, none efdhapproaches managed to
produce consistent style invariant representatioes, representations which are
valid for a variety of individuals. Consequentlpetaccuracy of their systems is
limited. This problem can be addressed by applymug-rigid transformation
[Myronenko et al., 2007] to artificially unify maioid representations of different
people [Elgammal and Lee, 2004b, Richard and K30€9]. However, since such
transformation affects manifold geometry, they maylonger reflect relationships
between points in the high dimensional space. Adtevely, in [Elgammal and Lee,
2009] the topological structure of a torus is aidfly constrained on the manifold
to explicitly deal with stylistic variation insteaxf being learned from the data. The
problem within this approach is that it artificiaknforced embedded representation
may not adequately reflect relationships and isiciproperties of high dimensional

features.

6.3.Dataset Characteristics

Although, the proposed action manifolds can be ueedclassification of any
monocular action video, the framework requires ec#j type of video data for
learning. First, the ideal dataset should provideagisfactory’ amount of training
data for all actions, which may appear during tbeognition process. Moreover,
each action should be repeated a number of timeslifigrent subjects, thus
providing ‘sufficient’ information for the framewhr to extrapolate stylistic
variability to unknown subjects. Then, each actierexpected to be recorded by

synchronous multiple cameras in order to generalisgy variability in action

- 262 -



CHAPTERG6 Action Manifolds for View-Independent Action Recaon 6.4
Proposed Frameworks

descriptors. In practice, only a few viewpoints exquired to allow reconstruction
of 3D visual hulls [Cheung etal.,, 2005] for eacttien. They can latter be
employed for synthesising more dense and evenlgasptraining data across
different azimuths and elevations of views (seeti@ec6.5.1) according to the
cylindrical model (Figure 6.1b).

In this research, without any loss of generalitye fpublicly available
multi-view IXMAS dataset is used (section 2.3.3)4snce it is the only available
currently dataset providing sufficient training aaftor view-independent action
recognition applications. Moreover, it is considkses the well known benchmark
for view-independent action recognition methodsthiy research community. This
dataset comprises of 13 actions, performed 3 tinye$2 different actors. Each of
these 468 activity instances was recorded simudtaslg by 5 calibrated cameras.
This dataset is very challenging for two main reasd-irst, it exhibits large style
variability because of the number of available eat§, who perform action
repetitions in a various ways. Secondly, since pecsic instruction was given
during acquisition, actors’ chose freely their piosis and orientations for each

repetition. As a consequence, the action viewpargsarbitrary and unknown.

6.4.Proposed Frameworks

Our framework is based on a novel compact and idigtative action descriptor,
called Action Manifold, which accounts for variatyilthat arises when cameras at
arbitrary positions capture different people perfmig the same action. The
descriptor is learned on a set of videos of acgiomitives performed by a variety
of individuals, each of them captured on their ol a set of calibrated and
synchronised cameras. In addition, for each actioe, video can be labelled as a
good representative, i.e. the most visually discrative one,in order to speed up

the dimensionality reduction process as we willlaxpin section 6.4.1.1.3. Usually
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the representative video is captured from a sidevvNote that this is the optional
step which simplifies processing requirements ef phoposed prototype, however
it can be easly automated (see section 6.4.1.1 @doe details). We do not impose
any restrictions regarding the number of video ®arfor a given action primitive.
Moreover, an individual may perform an action sal&mes in an arbitrary manner
and at different speeds. Our action manifold isswered to be a high level
semantic description of the action. Therefore,greament with current research in
the field (see section 2.3.3.1.2), we assume thgbeeson localisation and
segmentation, as well as a temporal segmentati@ctain into primitives can be
carried out sensibly by some low level pre-processof video data. Testing is
performed using examples of unknown action primgiyperformed by unknown
people captured from an arbitrary and unknown vidate that multi-camera setup
is required only for the learning of action model$ereas the testing can be done

using either single or multiple views.

Let Y denotes the set df videos defining an action primitive performed
by different people and captured from differentwge For a given view, action
repetitions and variability of people define acttyle. ThereforeY is defined as
Y ={Y"] s=1.N,, v=1.N } , wheres denotes the style index andis the view
class index. Each framg of a video is represented WYy pixels of region of
interest (see section 2.3.3.1.%)% ={y*| y*OR", i=1.T*} , whereT® is the
number of frames in the sequence. A unified and pamnaction modelX , of
dimension d<<D , is defined by X ={X*]s=1.N,v=1.N} ,
whereX® ={x¥ x*0OR", i=1.T*} .

The proposed descriptor is of either a determmisti a probabilistic
nature. First, the deterministic variant is introed in section 6.4.1 [Lewandowski

etal.,, 2010b] followed by the probabilistic forratibn in section 6.4.2
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[Lewandowski et al., 2011]. The summary of our cwition is given in section

6.4.3.

6.4.1. Deterministic Action Model

The descriptor learning procedure is divided i fparts. First, view-dependent
analysis of action data generates a style invadation model for each view. This
is performed using Temporal Laplacian Eigenmapayftdr 4), which is capable to
generalise a space of multidimensional time sdgag actions) in the presence of
stylistic variations (i.e. different people perfommepetitions of the same action).
Then, these models are combined to produce a cdrapdwiew invariant model of
the action. Finally, continuity of the descript@ approximated by learning a
generative decomposable model [Lee and Elgammah6#0 Figure 6.2
summarises the processing pipeline for the gemeratfi a deterministic action

model.
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6.4.1.1.View-Dependent Manifold

6.4.1.1.1 Pre-processing and Shape Representation

A frame of video is generally defined by grey saaleolour pixel values. This very
high dimensional description makes the procesgarning an activity model from
a frame sequence costly and inaccurate. Howeveny nstudies (see section
2.3.3.1.2) have revealed that a binary represemtatf moving objects, i.e.
silhouettes, is sufficient to capture the activitgscribed by a frame sequence.
Consequently, we adopt the space-time extensitmafy silhouette representation

in our framework (see section 2.3.3.1.2.3).

We extract the region of interest and correspondiimgry silhouettey”
from each video by a standard background subtradtehnique which models
each pixel as a Gaussian in RGB space [Weinlarad.,e2006b] followed by a
frame cropping. When videos consist of multipletamges of a given motion,
temporal segmentation is required to extract eléamgnmotion segment¥*®’
[Cutler and Davis, 2000, Rui and Anandan, 2002,\éed et al., 2006a]. Here we

assume that videos have been segmented.

All silhouettes are normalised to deal with tratista and scale variations
by using the largest silhouette square bounding &eailable within the entire
action dataset. In order to improve the qualitythed normalised silhouettes, two
morphological operations, i.e. bridge and open, anchedian filter are applied.
Lengths of all sequencés” are also normalised to match the length of thetebb
sequencel ' in the setY using standard bicubic spline interpolation to ucsl

computational cost by cutting the number of tragnamd testing frames.

A sequence of binary silhouettes can be considasea space-time shape
surrounded by a closed surface (Figure 6.3a, s&® s®ction 2.3.3.1.2.3). This

allows representing each silhouette by a local esppmce saliency feature (Figure
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6.3c) extracted from the solution of the Poissomatign of the corresponding
volumetric surfaceS (Figure 6.3b), which takes into account the tinwmdin
[Gorelick et al., 2007]:

AU (p,, P, )= -1 (6.1)

with (p,, p,,t)0 S, where the Laplacian df is defined asdU =U  +U +U,
subject to the Dirichlet boundary conditiodg p,, p,,t) = 0 at the bounding surface
0S. The space-time saliency feature is defined byftimetion w at every pixel
(Pe: Py, 1) in shapeS [Gorelick et al., 2007] according to the followieguation:

log(1+U +1.50U|")

2 \
(pxr,rg%mslog(ﬁu + 150U )

w(p,. p, =1~ (6.2)
This representation assigns highest gradient valigsn fast moving
limbs which are usually much more informative foemtifying actions, whereas the
torso has relatively smaller values inside (Fig@r8c). As a consequence, such
descriptor is significantly more powerful than bipaepresentation [Gorelick et al.,
2007]. As shown later in section 6.4.1.1.3, thisalptor is also essential in the
procedure allowing the selection of the TLE repenit neighbourhoods. The

generated shape descriptor is 3364-dimensidsgéx# 68 pixels).
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wave kick walk

. &
My

Figure 6.3. Extractions of shape representation for ‘wave’, ‘kick’, ‘walk’ actions: a)

space-time shapes; b) the solution to the Poisson e  quation on space-time shapes;
and c) the local space-time saliency features. The values in b,c are encoded using a

colour spectrum from blue (low values) to red (high values).
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6.4.1.1.2 Dimensionality Reduction

Even after the generation of shape descriptors,high dimensionality of the
feature spaceY prevents obtaining a descriptive action represemta
Consequently, our model of action is produced bylinear dimensionality
reduction of feature space using a variant of TbEapter 4), which is tailored to
human action videos. The standard TLE extracts usignd descriptive pattern
from MTS and, at the same time, suppresses stykstiiability. Moreover, MTS
are implicitly aligned along the time axis as autesf spatio-temporal detection of
repetition neighbours in different MTS. In the cextt of action recognition, any
action primitive is considered to be a single MMereas different subjects
correspond to different sources of MTS. The alignhtd MTS results in the speed
normalisation of the action. Here, the standard T&Extended by using a more
advanced repetition neighbourhood estimation praeedhich is designed to deal

with human action videos. It is described in thesaguent section 6.4.1.1.3.

The dimensionality reduction transformation is &uplin each view
independently, i.e. for eacW'. As a result, a set of style-invariant but view-
dependent action models” is obtained. In this set, each action model is-a 1
dimensional manifold embedded in 2-dimensional sgacmodel the nonlinearity
of human motion. The intrinsic dimension of eachiaac corresponds to innate

configuration of motion over time.

6.4.1.1.3Selection of Repetition Temporal Neighbourhood

Successful dimensionality reduction using TLE deseron the appropriate
identification of repetition neighbours for eacharfre. The repetition temporal
neighbourhood corresponds to the number of timesdion is repeated in the
training set. Although video lengths are normali$edeach action, it cannot be

assumed that these videos are synchronous. Fitlsly, may start with different
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postures and, secondly, due to style and speedtizas, there may not be frame to
frame correspondences between two action insta@msequently, the estimation
of the size and location of the repetition neighthood is essential.

In order to take full advantage of the shape dpsms generated in section
6.4.1.1.1, we propose an advanced method for atiaetermination of repetition
neighbourhoods which is tailored for dimensionaligduction of human action
videos. This is achieved by adopting the actiorect&in method proposed in
[Gorelick et al., 2007] to formulate a procedureiahhis conceptually equivalent to
the usage of DTW metric (see section 4.4.2.1). &Simdigh dimensional human
motion pattern in a video is theoretically equivdlto a high dimensional curvature
of time series fragment, the identification proce$ssime series fragments can be
seen as a detection process of similar motion npatte each video of the training
set in the context of human action data. Therefogpetition neighbours can be
extracted from each detected motion pattern in anmasimilar to the one used in
the case of time series fragments (section 4.4.Z'h)s new schema can be
straightforwardly deployed within the TLE framewaskthout any modifications of
the algorithm core. The key advantage of the newcgrure is its computational

efficiency in comparison to DTW (see section 6.14.4).

Extract the local

space-time salience

orientation features
for each frame

Construct

frames

feature for each Construct the | |Perform the . Set of
the global . Find and .
frame . neighbourhood temporal repetition
. space-time et . . refine .
Videos similarity windowing ... _ [™neighbours
cube over a . repetition
Extract the local matrix between of the . for each
. sequence of . neighbours
space-time all cubes matrix frame

Figure 6.4. Successive steps of the repetition neig

hbourhood selection procedure

tailored to human action videos.

The adaptation of the motion detection procedurer¢Gck et al., 2007] to

form the alternative variant of DTW metric for TLE summarised as follows
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(Figure 6.4). First, the local space-time saliesbgpe descriptor defined in section
4.5.7.1 (Figure 6.5b) is extended with 6 local sptime orientation features
(Figure 6.5c,d) [Gorelick etal., 2007]. This allewndentifying regions with
vertical, horizontal, and temporal ‘plates’ andicks’ within bodies and define
orientation local features. Figure 6.2 and Figuge @ illustrate examples of ‘plate’
and ‘stick’ local features for a good representatnew. Blue, red, and green colour
regions correspond to temporal, horizontal, andicedrdirections of local ‘plates’
and ‘sticks’ within a human shape. These features @mputed from the
3x3 HessianH of the solution to the Poisson equation (6.1) aergvpixel
(P Py»t), where its eigenvectors correspond to the locaicypal orientation
directions and the corresponding eigenvaldeare related to the local curvature in
the direction of the eigenvectors. The ‘stick’ feetinformative direction which
corresponds to the third eigenvectortbf whereas the ‘plate’ corresponds to the
first eigenvector. The space-time orientation femaia defined by the functiow at
every pixel (p,, p,,t) in the shapeS [Gorelick etal., 2007] according to the
following equation:

W (B, B,.9=R(R. R, 3T D(R, p.) (6.3)

where deviationsD, of the informative directionv(p,, p,,t) is measured by
D, :‘v(px, py,t)Dq‘ with €, denoting the unit vectors in the direction of the
principal axes (U{L,2,3} respectively horizontak, vertical y and temporat
direction). In turnR is a continuous measure of ‘platenesgl X or ‘stickness’ §t)
at every space-time poinit[{{st p} ):

Rpl = @h/h

(6.4)
Rst = (1_ Rpl) é%//]z

Further on, a space-time cube is associated to facte y* in a view-

dependent sequend€ by sliding a warping window in time. The cube,. itee
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global space-time descriptor, combines local staaqkorientations features within

a window using weighted moments of the form:

0 00 00

Mo =[] [ Wp. B.99 R B YA Bdpdp (6.5)

—00 —00 —00

where p,, p, are pixels coordinategj(p,, p,,t) denotes the characteristic function
of the space-time shapey(p,, p,,t) is one of the seven possible weighting
functionswhich corresponds to local features, the. space-time saliency feature
(equation (6.2)) and 6 space-time orientationsufeat (equation (6.3)). As
suggested in [Gorelick et al., 2007], spatial anmtetmoments are considered up to
orderm, =2 andm =2 respectively with & & m, andr <m, in equation (6.5).
Each space-time cube is centred around its spae-tientroid and uniformly
scaled to preserve spatial aspect ratio. The diimealty of each space-time cube
equalsl26 (7x(m +1)x (0.50m+ DI (m+ 2)).

The obtained global space-time descriptor is a @npand temporally
constrained representation of time series fragm®imce, now, each time series
fragment is expressed by a single feature vechar,similarity between them is
computed effectively using the standard Euclideanrm without the need of
computationally expensive temporal alignment ofnpoisequences like in DTW

(see section 6.4.1.1.4).

Therefore, a neighbourhood similarity matiix (N, % N,) of Euclidean
distances is calculated between all space-timegsscalnong all sequences for a
particular view (Figure 6.6 and right part of Figus.8). To emphasise continuity
and temporal coherence of the underlying actiorwbenh sequentially adjacent
points in time, we perform temporal windowing oftnda E by averaging distances
through time within boundaries of each sequenceilaily to the standard
procedure (see section 4.4.2.1). This implicithade to introducing a temporal

history into each data point.
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Finally, for each cube we look for the most simitaotion pattern in each
different repetition of activity based da according to the standard procedure in
section 4.4.2.1. The centre point of each mostlainspace-time cube becomes a
repetition neighbour.

Because of possible substantial differences in dgpaed imperfect
segmentation of action, the repetition neighbouesy matill not align coherently
along time which may result in distortions in thebedded space. To address this
problem, we incorporate an optional neighbourhoefinement procedure. In
principle, for given pointP , we accept only thesB neighbours which are within a

specific range from a corresponding point in eatielosequence:

R={Ryru-T<R<P+T, F2. N F2.N (6.6)

whereT"' is defined ad0% of the normalised sequence length

The entire procedure of repetition neighbourhoddregion is performed
only once per action for the most discriminativeewiY"'. Since, all view-
dependent frames were captured at the same tirreniagsynchronised cameras),
the temporal structure of an action is a view-iretefent property, which is valid
across all views. Since our shape descriptor isvelgérfrom a silhouette, there is a
view where image evidence facilitates the most #stimation of temporal
constraints. For instance, action ‘point’ in thent view provides a very small
amount of meaningful information about temporalisture of action, whereas the
side view is significantly more informative (Figueb). As it has been mentioned
earlier, we assume that one view for each actiothéntraining set is manually
labelled as the most discriminative, for most awgidt is intuitively the side view.
The neighbourhood estimation procedure is thenezhiwut on this view (Figure
6.6). Afterwards, the obtained constraints in tlent of temporal and spatio-
temporal neighbourhood relations are employed terdene neighbourhoods in all
remaining views (Figure 6.7).
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Note that the selection of the most discriminatiew could be automated
by applying the discussed neighbourhood selectioocquure in each view
independently and then choosing the neighbourh@rdensus between them for
each frame. Such automatic procedure for the autonselection of most
discriminative view can be considered as a futusekwHere, in practice, the choice
of the most discriminative view is a very intuitimed simple operation for a human
user, who will have already generated the traindagaset. Consequently, the
manual option is applied in this work for two reaso First, it reduces
computational cost of the learning process. Segonidl allows generation of
visually convincing models which would not suffepri noisy neighbourhoods,
which may sometimes be created as result of laigggreement between different

views.
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c)

d)

Front view

d)
Figure 6.5. Original video (a), space-time saliency features (b), space-time
orientations of plates (¢) and sticks (d) for the * point’ action in the side and front
view. The side view is a representative view, since it exhibits more temporal

information about the action (a larger variation of colours in all local features).

- 276 -



CHAPTERG6 Action Manifolds for View-Independent Action Recagon 6.4
Proposed Frameworks

Neighbourhood similarity matrix (12 sources, 3 repetitions)
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Figure 6.6. Example of neighbourhood similarity mat rix created by the TLE using the
action ‘sit down’ and 12 subjects with a 3 repetiti ons each for the side view. Each
local minima corresponds to the most similar repeti tion neighbour in relation to the

reference pose (green) extracted from differentrep  etitions of the time series.
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6

distance

Figure 6.7. Example of repetition neighbourhood in the front view obtained from the
side view similarity matrix created by the TLE for the action ‘sit down’ using 12
subjects with a 3 repetitions each (Figure 6.6). Ea  ch local minima corresponds to the
most similar repetition neighbour in relation to th e reference pose (green) extracted

from different repetitions of the time series.

6.4.1.1.4Comparison of Repetition Neighbourhood SelecticocPdures

Figure 6.8 presents two examples of style invariaew-dependent manifolds of
the ‘wave’ action (here front view) and the assttlaneighbourhood similarity
matrices generated by the standard DTW based puoedteft) (section 4.4.2.1)
and the proposed motion detection schema (righgs& matrices are calculated for
12 sources and 3 repetitions of each source. Dartdeiurs correspond to small

distances between time series fragments, wheregitdar colours express larger
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dissimilarities. In principle, the ideal identifibtan of the most similar time series
fragments in different repetitions should resultiminiform spread of colours with
clear local minima in approximately diagonal direns, which are used to extract
repetition neighbours.

Standard DTW procedure Motion detection procedure
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| ! ]
High similarity Low similarity High similarity Low similarity
Style invariant view-dependent manifold Style invariant view-dependent manifold
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Percentage of frames with a determined Percentage of frames with a determined
range of repetition neighbours range of repetition neighbours
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 oA
0-8 9-16 17-24 25-35 0-8 9-16 17-24 25-35
Time 147 min Time 13 min

Figure 6.8. Neighbourhood similarity matrices for t he ‘wave’ action in the front view,
which are computed using the standard DTW procedure and the proposed motion
detection procedure with the corresponding processi ng times and discovered style-

invariant view-dependent manifolds using TLE.
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As seen in Figure 6.8, the DTW metric is not alwegpable of localising
appropriate repetitions of the action, which resirtthe high variation of distances
between time series fragments in the neighbourlsaodarity matrix. In particular,
one subject performs the ‘wave’ action in a conglletifferent manner (red area in
the matrix). The poorer performance of DTW is dieaelated to the high
dimensionality of feature spaceD(=3364). The process of DTW alignment is
based on the Euclidean distance (see appendix Adyever because of the
‘concentration phenomenon’ (see section 2.2), esric is not always suitable to
measure similarity in very high dimensional spaddss drawback in combination
with natural style variability between subjectsuiesin difficulties in assessing pair
wise similarity between frames and implicitly malke process of DTW alignment
more problematic and inaccurate. In contrast, thpgsed motion detection schema
is more robust against style variability and capaiflrecognising similarity even in
very challenging cases. Although, the final stageéhts procedure also relies on
Euclidean distance, the dimensionality of spacetoube D =126) is much lower
than that of the shape descriptdD £ 3364), thus the metric is expected to be
significantly more accurate in the evaluation ofitarity.

Tables in Figure 6.8 summarises the number of tilileth repetition
neighbours for each procedure after refinementgusguation (6.6). Ideally, in the
case of minor style variability and perfect framefriame correspondence between
different repetitions of action, we would expectttermine 35 neighbours for each
frame (i.e. 12 sources multiple by 3 repetitiongumithe current MTS fragment). In
practice, a repetition neighbour may not existdogiven frame, because of style
and speed variability between different repetitiddevertheless, in most cases, the
more repetition neighbours are obtained after esfiant, the more constraints are
available and, therefore, the better is the alignnoé time series fragments during

dimensionality reduction.
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Finally, as seen in Figure 6.8, both algorithmsdpie enough constraints
for TLE to discover a unique representation of teeeies. However, besides better
detection accuracy, the key advantage of the newcegiure is its very low
computational cost in comparison to the DTW. Heve, achieve a speed-up of a
factor ~10. The processing times reported in Figu8take into account times for
computing space-time features, neighbourhood giityilanatrix and extraction of
repetition neighbours.

At the same time, we have shown another interestingerty of the TLE
framework. The proposed algorithm can discover rsistent and meaningful low
dimensional representation even though for conalidernumber of points not all

repetition neighbours are found (left table of F&8.8).

6.4.1.2.View-I ndependent Manifold

6.4.1.2.1 Generation of a View-Independent Topological Strcect

Discovery of a compact representation of any humetivity requires modelling
both the view and body configuration jointly iniagle space. Here we assume that
human motion is observed from different viewpoiatsng a view circle at fixed
camera height (Figure 6.1b). Although such cyliodrisetting appears limited, its
robustness to view elevation variations, up to 4fgrdes as shown in the
experimental section, makes it appropriate for magaj-life applications such as
visual surveillance and sport analysis. It is imt@ot to note that this configuration
is not critical to our framework since it can ep$ie extended to a full view sphere-
like model using training videos captured from eliéint camera heights.

In section 6.4.1.1.2, style invariant and speed madised body
configuration manifolds could be discovered fortesew separately (Figure 6.9a,
Figure 6.10b and Figure 6.11b). They are intringich-dimensional manifolds,

which are embedded in 2-dimensional spaces toitdkeaccount the nonlinearity
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of human motion. Since these embedded spaces tsleasame topology regardless
of the view (see Figure 6.2, Figure 6.9a, Figu®b.and Figure 6.11b), for a given
posture there is a unique correspondence on edtiesd manifolds. Consequently,
the connection of those corresponding points in dhder of view angle values
creates a closed 1-dimensional manifold (topoldyi@guivalent to a circle) which

is the view-independent embedded space of the yosinerefore, we define the
unified representation of an action as the combispdce of the two sets of
continuous 1-dimensional manifolds, i.e. style memat posture and view, which are

placed orthogonally to each other and embeddedinealy in a 3-dimensional

space (Figure 6.9c).

Figure 6.9. Generation of the style and view-indepe ndent manifold for the ‘point’
action: a) style-independent and view-dependent 2D manifolds; b) the set of aligned
2D manifolds; c) the assembled style and view-indep  endent 3D action manifold and

d) approximation of the manifold continuity (see su bsequent section 6.4.1.2.2).

The process of producing the unified manifold cosgs two steps (Figure
6.9). First, the view-dependent representations camabined (Figure 6.9b): the
embedded spaces’ are aligned with respect to a good representatiVe using
Procrustes analysis [Wang and Mahadevan, 2008]ceSithis is a rigid
transformation of the spaces, the internal strectireach manifold is not changed.

Secondly, each embedded representaddnis aligned into a three-dimensional

- 282 -



CHAPTERG6 Action Manifolds for View-Independent Action Recagon 6.4

Proposed Frameworks

structure according to the view angle parametefl< 770, 2The outcome of this

procedure reveals a torus-like structure which psgkates both style and view

(Figure 6.9c). We called this structure a view asigle-independent action

manifold. This result is in line with previous wofklgammal and Lee, 2009],

where the usage of a torus is justified as an idgalesentation for modelling both

the viewpoint and the body configuration of diffierections. However, while, in

that work the topological correspondence betweeda daintsY and an ideal torus

is artificially enforced, our torus-like represeida is data-driven and reflects the

temporal structure of the view-dependent data. dfioee, in our approach all types

of motions, i.e. periodic, quasi-periodic and namipdic, see (Figure 6.10c and

Figure 6.11c), are handled using the same framework

a) |

ﬂb)

Vi

V2

V3

Figure 6.10. Training results for quasi periodic ac

videos; b) style-independent low dimensional repres

and view-independent manifold.
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S1 S2 S3 S4

a) | 7 b) ¢)

Figure 6.11. Training results for non periodic acti on "sit down”: a) training videos; b)
style-independent low dimensional representation fo r each view; c) style and view-

independent manifold.

6.4.1.2.2 Manifold Mapping Function

In the previous section, we described how view detrs could be combined to
form anunique view-independent action manifold (ffgg6.9c). Since TLE is a
spectral dimensionality reduction method, theradsgenerative mapping function
between observed and embedded spaces. As a consegatthis stage, the model
is only defined on the training data (Figure 6.9n)order to perform an accurate
action classification, the descriptor has to bes dblgeneralise to unseen examples
by taking into account not only stylistic variatgrbut also view changes to avoid
over-fitting.

This is achieved by learning a decomposable geawueratodel [Lee and
Elgammal, 2006a], which approximates the continwitydescriptor space in the
form of a powerful projection function between tlwsv dimensional descriptor
space and high dimensional observed space (Fig@@).6This model aims at
separating the intrinsic action configuration frother factors such as motion style

and view. The considered generative model is a rgésation over the model
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described in section 4.5.7.3 where only style fadias been decomposed.

Following [Lee and Elgammal, 2006a] approach, teaeegative mapping function

is modelled using three factors:

« Content B : a representation of the intrinsic body configioat which
characterises motion as a function of time. Itnigariant to either person or
view.

« Style S: a time-invariant person parameter which descrities person
appearance, shape and motion style.

* View pointV : a time-invariant view parameter which characesishe view
point from which the performed action is captured.

In our framework, content evolves along a contirsumanifold while style
and view are represented by the discrete classsemirin the training data. For the
last two factors, intermediate states can be iotatpd. As a result, we are able to
approximate view and style continuity. In additiave assume that both style and
view factors are time-invariant, i.e. both parameteemain constant during any
instance of an action. The procedure of fitting deeomposable generative model
to the data consists of two steps. First, a setyd¢ and view-dependent functions is
trained. Then, all functions are combined intoregk style and view-independent
projection function.

Since mapping between the embedded manifold andribaal space is
highly nonlinear, generalised RBFN (see section22424) is applied to provide the
nonlinear view-dependent mapping. It is expressedilp style-dependent mapping
functions using equation (2.62):

Y=g X) A (6.7)
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where A% is a ¢ +d + 1xD matrix of mapping coefficients, which encodes estyl
variability in the specific view. The kernel matrix(+) is defined according to
(2.64) by:

pOX) =LA X" o) A X )0 X g1, XT - (68)

where C={c,| j=1..Z} is a set of distinctive representative points iacte
embedded space amg-) is a radial basis function (see section 2.2.2.4M)is
calculated by applying the Moore-Penrose pseuders®s on matrixy(X*®') and
solving a linear system of equation&® =¢/ XY "Y)", like in section 2.2.2.4.4. In
contrast to [Lee and Elgammal, 2006a], our unifirednifold representatiof is
data-driven and independent of the style and sfsextdrs due to the usage of TLE
in the generation of view-dependent low dimensioeglesentations. It is obtained
by calculating a mean style and view manifold, wahg then transformed by a non-
rigid point registration procedure [Myronenko et @D07] to better fit the data.

The final style and view-independent decomposakleetative model is
obtained by multi-linear tensor analysis [Vasilesow Terzopoulos, 2003] in the
space of nonlinear mapping coefficients [Lee andaEimal, 2006a]. Each
coefficient matrix A* is represented as the coefficient veadr of dimensionality
N,=D*(Z+d+1) by column wise stacking (columns of the matrix are
concatenated to form a vector). Afterwards, allfficient vectorsa® are arranged
in an order three coefficient tensdr whose dimensionality i8I xN xN_. The
view and style orthogonal factors are decomposeunh fihe assembled coefficient
tensor A using higher order Singular Value Decompositioratiauwer et al.,
2000]:

A=Bx Sx,Vx, F= G &, \ (6.9)

whereS (N,xN,) is the mode-1 basis @ , which represents the orthogonal basis

for the style space. Similarly, (N, *N,) is the mode-2 basis matrix which spans
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the space of viewpoint parameters &d N, xN,) represents the mode-3 basis for
the mapping coefficient spacB. is a core tensorN,xN xN_) which governs the
interactions between orthogonal factors represemtethe mode basis matrices.
Coefficient eigenmode$s is a new core tensor formed I§y=Bx, F whose
dimensionality isN_xN_ xN_. Mode-i x is a tensor product as defined in
[Lathauwer et al., 2000]. To avoid over-fitting, ethdimensionality of each
orthogonal spaces is reduced to retain a subspacesentation by preservirg®%

of the original information. The reduced dimensiggdor tensorsB, S, V, F, C

aren,xn,xn_,, N.xng, N,xn, , N, xn_, n,xn XN, respectively, where

a !

ng, n,,n, denote the number of basis maintained for eadirfac

As the result, style-independent and view-indepehgeojection function,
which generalise the space of the action descriffimure 6.9d), is expressed by
equation:

y¥ =¢(x)Ounstack &, &, \ (6.10)

where image observatiop™ is generated from the body configuration represant
by an embedding coordinate using the estimated parameters of styland view
v given the learned core tens@r.
6.4.1.3.Action Classification Process
Action classification is performed by projecting anknown motion sequence into
each action descriptor using the generative deceaige model presented in the
previous section 6.4.1.2.2. Then, the DTW distgsee appendix A.1) is calculated
to measure similarity between the action projecéind action model.

Given a new instance of actiovi, its length is first normalised as
described in section 6.4.1.1.1. Then the embeddertimatesX of the new action

are obtained by least square solution of the fahgwionlinear system:

argmin, H\? -y (X )NAN (6.11)
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Its minimum solution is found by determining andiopsing coefficient
matrix A given a learned model and then projecting datsdbying a linear system

of equations using the Moore-Penrose pseudo-inverse
w(X)=YA (6.12)

Coordinates ofX are provided by the last rows of the matrix//(i). In
order to determine the optimal coefficient matrix, we adopt an iterative
procedure [Lee and Elgammal, 2006a]. First, weutate a data driven mean view
manifold C over all aligned mean styles manifol@$ to obtain a homeomorphic
manifold [Lee and Elgammal, 2006a]. Then, the gorfiit matrix is initialised by
solving the following equation:

A=y(C)'Y (6.13)

Let's a denote a vector obtained by column wise stackihgatrix A.
Then given a mapping model, as described in theique section 6.4.1.2.2, and
any style vectors, and any view vectov, we can define a coefficient vectarby
the tensor product:

a=Gx sx, v (6.14)

Mapping coefficientsa” are optimised to reflect style and view of a new

. . SV e e . .
instance actiorY by minimising the following error:

arg i, 5—G><1~s><2~vH (6.15)

whereG is derived from learning (equation (6.9)). SineasorG represents the
intrinsic body configuration ’'content’ of the codsred action and manages
interactions between all factors, an accurate wwilfbr style and view can only be

reached for the same type of action.

If the style vectors is known we can obtain a closed form solutionor

and vice versa. This leads to an iterative procedfor estimatings andv
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simultaneously until equation (6.15) converges [lagel Elgammal, 2006a]. In
practice, we follow Lee’s approach wheseis initialised with a mean style
estimate. Since the view classes are discretededify the closest view class and
use it to estimate. Finally, vectora is unstacked to create matri; then the

actionY is embedded into the low dimensional space usipgigon (6.12).

6.4.2. Probabilistic Action Model

The probabilistic formulation of action descriptoiss achieved by feeding the
extended version of ST-GPLVM (chapter 5) with theained topological structure

from section 6.4.1.2.1, which encapsulates styleed and view variability.
6.4.2.1.View-I ndependent Manifold

The learning pipeline of probabilistic action matdf is derived from the standard
pipeline (Figure 5.1) and summarised in Figure 6.TBe latent space and
parameters of ST-GPLVM model are optimised jointhger a new combined prior
p(X|L) to discover an underlying probabilistic model aftian. This prior is
derived by taking into account constraints assediatith each view \(=1...N,)
and replacing the standard prior (5.1) in the dbjedunction (5.4) with:
 r(XJLX,)

NV 1
X|L)= ex 6.16
p(X]| L) |'| oo p¢ g7 ) (6.16)
where L is a block diagonal matrix formed by dl| :
L 0 0 O
0L 0O
L= (6.17)
0O 0 .. ..
0 O L,
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Construct spatio-

temporal constraints for

each view
<L;..L,>

Reduce dimensionality using TLE

Generate a view-independent topological structure

Constraining prior

L 2

Optimise using GPLVM objective function

Ny
P(XIL)=D p(X | L)#-==--

Latent space

Figure 6.12. Pipeline for generation of probabilist  ic view and style invariant action

descriptor.
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Figure 6.13. Probabilistic view and style invariant action descriptors obtained using

ST-GPLVM for a) sit down, b) cross arms, ¢) turnar  ound and d) kick.

6.4.2.2.Action Classification Process

The probabilistic descriptor handles naturally uteiaties inherent to actions
performed by different people with different styksd in different views, therefore
it is applied directly for action recognition usimgaximum likelihood estimation

(equations (5.8)).

6.4.3. Summary

The proposed deterministic action manifold andoisbabilistic extension possess

all desired properties of a robust and descripgioon descriptor (see introduction
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6.1). First, our action manifold is a unique andmpact high level semantic
description of an action, which encapsulates apitimetric and view variability,
as well as normalises implicitly execution speeecddly, it can handle any type
of motion, i.e. periodic, quasi-periodic and nomipeic. Last but not least, thank to
its generative abilities, the action model is cdpab handle effectively previously
unobserved subjects performing the action regasdiéwview. As we have seen in
previous sections, the core of each descriptoniegrprocedure is founded on our
earlier contributions, i.e. TLE (chapter 4) and SPLVM (chapter 5).

In order to evaluate the performance of our desmgp an action
recognition framework is designed which consisténaf parts: offline training and
online testing. During training, one descriptor &ach action class is automatically
generated. Then in testing, an instance of newomctivhich is performed by an
unfamiliar individual in an unknown view is project into each action manifold
using descriptor based projection schema. Aftersjaadabel is assigned to the new
action according to the classification using eittlex nearest neighbour procedure
for the deterministic model (section 6.4.1.3) oximaum likelihood estimation for
the probabilistic formulation (section 6.4.2.2).

As we will demonstrate in the evaluation sectidb, ®@ur descriptors are a
very attractive alternative to the current statehef art methods and achieve very

competitive results in the challenging task of viedependent action recognition.

6.5.Evaluation

6.5.1. Experimental Setup

To obtain a dense set of action videos regardiegpoints for the training of our

action manifolds, we follow [Richard and Kyle, 2Q@®proach where the animated
visual hulls are projected onto 12 evenly spacemiai cameras located around the
vertical axis of the subject. In line with othempeximents made on this dataset [Liu
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and Shah, 2008, Liu et al., 2008, Yan et al., 2608]dy et al., 2010, Kaéniche and
Brémond, 2010], the top view is discarded frometialuation.

Two recognition tasks are evaluated using by eithesingle view or
multiple views. In multiple views recognition, angle majority voting rule is
applied. Note that testing is performed with viewiich are not included in the
training data. Moreover, these views differ sigrafitly from those used for
training, e.g. there is up to 45 degrees of vieavation. Following the original
paper introducing the dataset [Weinland et al.,72@8 well as subsequent research
[Yan et al., 2008, Tran and Sorokin, 2008, Weinlatal., 2010b, Kaaniche and
Brémond, 2010], our recognition rates are compingdhe leave-one-source-out
method, i.e. at each run, one subject is seleaedekting, whereas all remaining
actors are used for descriptors learning (see we@i3.3.4.3). A final error is
estimated by the average error rate over all expanis.

In the case of the learning probabilistic descriptioe global scaling of the
constraining prior and the number of inducing Malea in FITC (see section
2.2.2.3.2.2.2) are set &' and 25% of the data in each view respectively. Values
of all the other parameters of the models are es#ich automatically using

maximum likelihood optimisation.

6.5.2. Results

Table 6.1 reports the current state of the artli®sund ours on this dataset where
the top view has been discarded. Unfortunately,amdy different approaches do

not follow exactly the same evaluation protocolf blso the experimental settings
differ in terms of considered number of actions anldjects. As a consequence, it is

very difficult to draw any definitive conclusion $&d purely on those results.
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Table 6.1. Average recognition accuracy over all ca

either single or multiple views for testing.

meras (top view excluded) using

Average accuracy

% Subjects|Actions
Single view | All views

Probabilistic Action Manifold 12 13 76.2 85.6
Deterministic Action Manifold 12 13 73.2 83.3
Lv [Lv and Nevatia, 2007] 10 14 82.9 -
Tran[Tran and Sorokin, 2008] 12 13 80.2 -
Liu [Liu and Shah, 2008] 12 13 73.7 82.8
KaanischdKaaniche and Brémond, 2019] 12 13 71.7 90.6
Liu [Liu et al., 2008] 12 13 71.7 78.5
Reddy[Reddy et al., 2010] 12 13 66.5 72.6
Probabilistic Action Manifold 12 11 78.3 84.7
Deterministic Action Manifold 12 11 74.7 83.1
Weinland[weinland et al., 2010b] 10 11 86.9 -
Junejo[Junejo et al., 2008] 10 11 73.7 -
Yan[Yan et al., 2008] 12 11 64.0 78.0
Weinland[Weinland et al., 2007] 10 11 63.9 81.3

First, the probabilistic formulation of our acti@escriptor obtains better

performance than the deterministic variant. Thiexpected, since the probabilistic

action model provides directly a continuous undegydistribution of the action

space, which is used effectively to generalise sgacunseen instances of actions

regardless of view. In contrast, the continuitydeterministic framework is only

discretely approximated using the generative decsaiple model (section
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6.4.1.2.2). Moreover, because of the unfavourabt® rbetween the number of
available training samples and the dimensionalitthe feature space, the learning
of the decomposable RBFN model is a challenginggss. In particular, a forward
mapping from high to low dimensional space canmolelarned directly, therefore it
is obtained by an analytical inversion of an ineemapping from low to high
dimensional space, which introduces another let@accuracy in the model. On
the other hand, the probabilistic generative mappsnmore robust against over-
fitting even in the case of data sample shortagelation to the dimensionality of

feature space [Lawrence, 2004, Lawrence, 2005].

The comparison with the current state of the aor@gches reveals that our
probabilistic descriptor displays very good perfarnces either when all actions
completed by all subjects are considered, i.e.dt3pnly 11 actions, when the
'point’ and ‘throw’ actions are discarded. Althou@ifran and Sorokin, 2008] and
[Weinland et al., 2010b] seem to obtain better ltsshoth frameworks are actually
trained and tested using the same views, whereagrimalidation a testing view is
completely unknown and thus different from therhag views. As consequence, it
is unclear how results of these two competitorafilfand Sorokin, 2008, Weinland
et al., 2010b] would extrapolate to the more comgleenario of action recognition
in an unfamiliar view. In the light of those resuyltour descriptor exhibits an
exceptional robustness not only to subject styleiabdity but also to view
variations in terms of azimuth and elevation anghste that results of [Lv and
Nevatia, 2007] are reported only for a single segagout of three) per actor. This
sequence was selected to achieve the best rabuissmaking a direct comparison
impossible, since all repetitions are consideredunvalidation. Furthermore, some
approaches [Weinland et al., 2007, Lv and Neval@)7, Junejo etal., 2008,
Weinland et al.,, 2010b] and especially two of ouainmcompetitors [Lv and

Nevatia, 2007, Weinland et al., 2010b] use a smaéé of available subjects which
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may further favour their approaches. Finally, ressidannot be compared with
[Richard and Kyle, 2009], because, instead of eatalg their method with original
video data, they did it by using projections of #sual hulls.

Figure 6.14 and Figure 6.15 present the confusiatrices of recognition
for the ‘single view’ experiment, whereas Figuré@and Figure 6.17 depict the
confusion matrices for the ’all-view’ experiment ing deterministic and
probabilistic descriptor respectively. They revéaht our framework performed
better when dealing with motions involving the wiblody, i.e. "walk”, "sit down”,

"get up”, "turn around” and "pick up”. Since tempdinformation is essential when
dealing with highly dynamic motions and TLE aims @mteserving temporal

structure in each view, action manifolds of thostvities are more representative.
Due to more powerful generative abilities, the @tabstic descriptor outperforms

the deterministic variant especially by reducingfogsion between hand related

motions.
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probabilistic action manifolds. The average perform ance is 76.2%.
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Figure 6.16. Class-confusion matrix using multiple views for deterministic action

manifolds. The average performance is 83.3%.
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Figure 6.17. Class-confusion matrix using multiple views for probabilistic action

manifolds. The average performance is 85.6%.

The best recognition rates for both descriptorsadtained for camera 2
and 4 respectively (Figure 6.18 and Figure 6.19)s Wwas expected, since both
views are the most similar among those used famitrg. Moreover, when dealing
with either different, i.e. camera 1, or even digantly different views, i.e. camera
3, our framework still achieves reasonable recagmitates (Figure 6.18 and Figure
6.19), which confirms the outstanding generalisapooperties of the descriptors to

view alteration.
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BMcam]l Mcam?2 Wcam3 Mcamd

Figure 6.18. Action recognition rates using single views for deterministic action
manifolds. Average values are 71.6%, 74.9%, 65.8% a nd 80.6% for cameras 1 to 4,

respectively.

Bcaml Mcam2 ®cam3 ®cam4

Figure 6.19. Action recognition rates using single views for probabilistic action
manifolds. Average values are 75.0%, 78.6%, 69.9% a nd 81.4% for cameras 1 to 4,

respectively.

Table 6.2 provides insight into the approximatedcpssing times of
generating the proposed action descriptors (trg)nend recognising of a new
action (testing) based on an unoptimised Matlakecad single 3Ghz CPU. First,
the generation of deterministic descriptors is ificgmtly more efficient than

probabilistic ones because the deterministic legrprocess is solely analytical and
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non iterative,. Since TLE is very efficient (Taldls), especially using the repetition
neighbourhood selection procedure tailored to actideos (sections 6.4.1.1.3 and
6.4.1.1.4), most of the training time is spent lo@ generation of shape descriptors
(section 6.4.1.1.1) and the learning of generateeomposable model (section
6.4.1.2.2). In contrast, the recognition phase iothbdescriptors involves
computationally expensive optimisation procedureciisns 6.4.1.3 and 6.4.2.2),
thus processing times are relatively large and gntognal to the action lengths,
especially for the probabilistic action model whese more complex and
unconstrained problem is optimised. Finally, notattboth frameworks were
implemented in Matlab and a code optimisation wasaur main concern. As a
result, both frameworks should be considered asogqmwes of solution, which
validate successfully the proposed methodologyheratthan the productive
applications. A significant improvement of efficnmay be achieved by using a
more advanced programming language like C++. Magosince a training of
different models as well as recognition of diffeareaction primitives are
independent processes, they can be easily pasalielising a cluster environment
thus further reducing processing times.

Table 6.2. Average processing time of generating mo  dels and recognising actions

using an unoptimised Matlab code and single 3Ghz CP  U.

Average time [hours] Deterministic | Probabilistic

Action Manifold | Action Manifold

Training per action model ~5 ~62
Testing per action primitive ~7 ~11
6.6.Summary

In this chapter, our contributions from chapterandl 5, were applied in a realistic

and challenging computer vision task, i.e. vieweipendent action recognition from
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a monocular video. As a consequence, a novel haci@on recognition framework

was proposed, which is based on intuitive and catnpation descriptors, which

reside in a low dimensional space. We introduced taction models, i.e.

deterministic and probabilistic which represent aagtion independently from

camera views, execution rates and individuals’estylThe learning procedures
involve the TLE, and ST-GPLVM, for the probabiltstnodel, in order to extract
the descriptive action pattern, while maintainingp@@priate adaptability to all

forms of variations within the action class.

Although the discussed methods cannot be compartedlyp on the
reported action recognition performances, we belithat our action models are
superior, especially in comparison to local featln@sed descriptors (section
2.3.3.1.1) [Liu and Shah, 2008, Liu et al., 2008ye]Jo et al., 2008, Reddy et al.,
2010, Kaaniche and Brémond, 2010, Weinland e@llpb]. Due to the sparsity of
the data relative to the diversity of naturallyysddle motions and the difficulty of
acquiring larger amounts of appropriate trainintadgenerative action models like
ours seem to be more practical in real-life applices. This is because of their
outstanding generalisation properties to previousipbserved styles, speeds and
views as we have demonstrated in the evaluatiani¢set.5).

In conclusion, our contributions were proved to dgplicable in a real
application and obtained very satisfactory and psorg results. In addition, since
our action models are general, they should ben&dity other applications beyond

action recognition such as visual surveillancepmrsanalysis.
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7. Conclusions

This chapter concludes the dissertation. In sectidn we summarise briefly our
contributions to the fields of machine learningtpat recognition and computer
vision. Then, a general discussion of our achievemés given in section 7.2.
Afterwards, we highlight remaining open issues #mdtations of the proposed
solutions as well as a number of avenues for futesearch in section 7.3. Finally,

closing remarks are provided in section 7.4.

7.1.Summary of Contributions

In this thesis, we explored comprehensively thédfif dimensionality reduction
with a special focus on computer vision application

First, in chapter 2, we provided an extensive mevamad discussion of the
main directions of research in dimensionality readuc and computer vision. A
detailed analysis of both fields allowed uncoversmgme fundamental research
problems which had not yet been solved satisfadiyryhe research community.

Thus we decided to address them in this dissentatio

Our research began in chapter 3 with thorough exation of a family of
powerful nonlinear spectral dimensionality reductimethods and study of their
limitations, i.e. selection of free parameters dack of generative abilities of
unseen examples. We proposed a framework for th@meatic configuration of
spectral dimensionality reduction methods, whickroemes identified weaknesses
(section 3.3). First, the mutual information measwas adopted to develop an
automatic procedure for neighbourhood size selec{section 3.3.1). Then, we
automated and adjusted a process of Radial Basmstibn Network (RBFN)

learning to design a generative mapping functioowben embedded and data

- 302 -



CHAPTER7 Conclusions 7.1 Summary of Contributions

spaces (section 3.3.2). This was achieved by takithgantage of the efficient
Markov Cluster algorithm and the graph construatieding the dimensionality
reduction process. The combination of these twoovative ideas allowed
proposing a flexible and unified methodology foe thutomatic configuration of
spectral dimensionality reduction techniques, wtshbuld benefit areas wherever

scientists face the problem of analysing high disi@mal data.

Then, since a key feature of many natural phenorsetieat their course is
expressed in the time domain, we examined issukdede to the usage of
dimensionality reduction techniques to time oriedntéata, i.e. multidimensional
time series. Despite the huge research effort thas been dedicated to
dimensionality reduction (section 2.2) the majordly work does not take into
consideration appropriately the dynamic charadiesisof many phenomena. To
address this challenging research problem, in ena$t we proposed a novel
spectral dimensionality reduction method, callednperal Laplacian Eigenmaps
(TLE), which exploits temporal coherence as anmsseclue of the dimensionality
reduction process. This was achieved by taking @tdge of spatial and temporal
coherency relationships between time series in rotde extract the intrinsic
parameterisation of the high dimensional time sespace regardless of data
variations. These time series constraints are egprke in the form of two
complementary temporal graphs (sections 4.4.2.1 4ml2.2), which are
incorporated into the standard Laplacian Eigenntamnéwork (section 4.4.2.3)
without requiring the manual tuning of paramet&ased on this original concept,
the proposed method aims at preserving implichly tocal and global temporal
topologies of observed spaces during dimensionafg@guction instead of
maintaining only geometry as it is usually the ca$his allowed producing
automatically meaningful and generalised low din@mel representations tailored

to multidimensional time series data.
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In some scenarios, in order to cover adequately cim@plexity and
richness of measured phenomena, massive amountspodsentative data are
required to learn appropriate data-driven modelsceSthe capture of large quantity
of data may be impractical, a solution may be toegalise known data samples to
the entire phenomenon space to obtain a reliabdemén chapter 5, motivated by
the spatio-temporal constraints of TLE, we introelidche concept of a spatio-
temporal conditioned prior which is placed overateht space and constrains the
optimisation process of Gaussian Process LateriablarModel (section 5.3.2). As
a consequence, a novel generative nonlinear diowesldly reduction algorithm,
which is called Spatio-Temporal Gaussian Procedentavariable Model (ST-
GPLVM), was proposed. This innovative approachapable of approximating a
compact underlying distribution of time series span the presence of data
variations. As a result, a core pattern of mulisi@ time series is extracted in the
form of generative and continuous mapping functioom a low to a high
dimensional space with associated uncertaintigsegfiction.

Finally, in chapter 6, we investigated further tpeacticality of our
contributions from chapters 4 and 5 in a realiatid challenging real-life computer
vision task of view-independent action recognitidxe a consequence, a novel
human action recognition framework was developeliclvis based on devised
deterministic (section 6.4.1) and probabilisticc(g®m 6.4.2) variants of temporally
constrained action manifolds. These descriptora@gndate style, view and speed
variability of any type of motion in a compact andnsistent low dimensional
representation. The key advantage of the introducedcriptors is their
generalisation abilities to previously unobserveations regardless of view. Very
satisfactory and promising results confirmed thefulsess of our contributions in a

real application and suggest many potential apipdica beyond computer vision.
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7.2.Discussion

The main emphasis of this thesis is the modellihgholtidimensional time series
data using an underlying low dimensional repres@mavith applications to human
motion analysis. Although chapter 3 did not ding@bdress this issue, it was an
essential step in our research. It allowed foradhgh insight into theoretical and
practical aspects of spectral dimensionality reidactransformations and thus
implicitly stimulated the proposal of TLE in chapt# In turn, chapter 5 with the
introduced ST-GPLVM shows an attractive evolutidnttte TLE concept to the
generative modelling of multidimensional time seridata. Finally, the action
recognition framework presented in chapter 6 wasveleé from the previous
contributions (chapters 4 and 5) to demonstratephogment of proposed ideas in a

real-life computer vision application of multivateatime series classification.

Note that, to some extent, TLE and ST-GPLVM are petitive methods
for dimensionality reduction of time series datheTchoice of the algorithm is not
straightforward and depends on the application e & the amount of available
training data. On one hand, although ST-GPLVM ign#icantly more
computationally expensive than TLE, it exhibitsteegeneralisation properties as
seen in sections 5.4.4 and 6.5.2. On the other, hErte has superior scalability in
terms of dataset size and dataset dimensionaligre®er, in a combination with
RBFN, it is often able to produce similar perforroas assuming that ‘enough’ data
are collected for training.

Performance of both approaches, i.e. TLE and ST\@RLrelies heavily
on the appropriate identification of repetition gi@ours in order to construct
adequately spatio-temporal constraints between t@ges. Although we have
proved that the DTW-based repetition neighbourh@adection procedure is
capable to tackle effectively this issue in variapplications, in some cases, it may

be useful to customise it in order to take full actage of a domain specific feature
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representation. As seen in sections 4.5.4 and.6.8,lthe adaptation of procedure
should not be a major issue since it does not regany modification of the

dimensionality reduction method core.

Other drawbacks of our approaches are inheriteth ftheir respective
parents. Similarly to other spectral dimensionaiggtuction methods, TLE does not
provide any inherent generalisation abilities t@sesn data. As a consequence, in
many situations, the additional post-processing steRBFN learning is required,
which increases the computational cost of modetniag. In the case of ST-
GPLVM, it is computationally expensive by desigechuse of the reliance on an
iterative optimisation process.

In addition to these, an important limitation of roproposed view
independent action recognition frameworks is thaytassume the required video
processing step can be solved satisfactorily, firosiding sufficient information
for the machine learning and recognition processedgortunately, this is usually
only a valid assumption when dealing with data geggt in a controlled
environment: analysis of unconstrained videos isopaen and difficult scientific
challenge. Moreover, our proposed frameworks cadeat with unknown actions;
hence, our action recognition frameworks rely oaining datasets which are
composed of all possible actions, which may apda&ang the recognition phase.

Although, we made significant steps towards sohdiof a few essential
problems in dimensionality reduction, i.e. the addisation of dimensionality
reduction process (chapter 3) and the determifpstibabilistic parameterisation of
time series data (chapters 4 and 5), we have oBrtabt provided a definitive
solution but rather a solid and appealing foundetidor further research and
improvements. Similarly, our view independent acti@cognition framework in

chapter 6, despite several advantages over existipgroaches, has some

- 306 -



CHAPTER7 Conclusions 7.3 Future Work

limitations. A few still open issues, suggestiorfspossible extensions, and the

promising directions for further research are oetli in the next section 7.3.

7.3.Future Work

While the graph-based RBFN has been proved to beffenent approach tailored
to spectral dimensionality reduction methods, #lecion of radial basis activation
functions in a network design is still an open dques In this research, we chose
the Gaussian basis function as suggested by [PaguloGirosi, 1990]. However
different basis functions, such as thin plate splmultiquadratic, Cauchy and many
others [Powell, 1987], may produce mapping funciavhich display different
performances. Consequently, it would be interestmg@xamine the sensitivity of
the graph-based RBFN to this choice. More fundaaignsince there is no general
rule suggested in the literature about how to aatenthe basis function selection
process, this is an area which would be worth itigasng and could impact
significantly on further improvement of generalisat capabilities of spectral
dimensionality reduction methods.

The proposed TLE maintains the temporal continaftyime series during
dimensionality reduction process and suppresssttylivariations displayed by
different sources of time series by aligning themai low dimensional space.
However, style variability is actually not complgteremoved from the low
dimensional representation but only drastically gralised during the
dimensionality reduction process in order to extitae intrinsic pattern of time
series data (see justification in section 4.4.23inhce the maintenance of style
information may be advantageous in some applicatimuch as tracking, an
interesting idea to investigate would be to modgllieitely style variability along
an extra dimension. This could be done by compemsdhe domination of the

temporal constraints over spatio-temporal ones gusan balancing mechanism

- 307 -



CHAPTER7 Conclusions 7.3 Future Work

between constraints in the optimisation processis Twould enforce equal
importance in the preservation of both stylistiada@emporal variations of time
series. This is ongoing research and preliminasylte are shown in [Martinez-del
Rincon et al., 2011].

Although ST-GPLVM proved to be a powerful extensiohthe TLE
concept and confirmed to be computationally moteaetive than the standard
GPLVM framework, it may still be impractical forrige and high dimensional
datasets. In addition, it requires empirical sébectof a few parameters which
introduces another level of complexity in its exfdboon. One interesting
possibility, which is worth of further study is aett reformulation of TLE into the
generative framework inspired by [Lu et al., 206&naujia et al., 2007]. As a
consequence, TLE could be extended with a bi-doeat probabilistic mapping
between a latent and observed space, which refleetsnderlying data distribution.
Similarly to TLE, such enhancement would be paranhets and according to [Lu

et al., 2007, Kanaujia et al., 2007] more efficigvan GPLVM based approaches.

Finally, the creation of a robust and full pipelifee view independent
action recognition in a realistic visual surveit@nscenario is a very ambitious
project, which is well beyond the scope of a singhd. This thesis demonstrates
promising progress towards such a goal, howevarmaber of simplifications and
shortcuts had to be employed to obtain a runningopype system. Our main
intention was to validate our contributions in @lreomputer vision application
rather than building a productive application. Einse focused on a high level
semantic description of an action. In line with estmesearch in the field (section
2.3.3.1.2), we assumed that localisation and setatien of a moving person, as
well as a temporal segmentation of action into fin@s can be carried out sensibly

by some low level pre-processing of video data.
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In order to develop a full pipeline for action rgodtion from videos, the
proposed framework should be extended by incorfwrabf some advanced
techniques for video analysis, such as [Dalal angg§, 2005, Felzenszwalb et al.,
2010, Simonnet and Velastin, 2010] for person Isa#ibn in videos, [Stauffer and
Grimson, 1999, Fuentes and Velastin, 2001] for bemknd/foreground
segmentation, [Yin et al., 2008a] for ghost remasadl finally [Cutler and Davis,
2000, Rui and Anandan, 2002, Weinland etal., 2DO&a the temporal
segmentation of actions into primitives. A furtlteresting aspect to investigate is
the usage of more advanced feature representatioh,as optical flow [Efros et al.,
2003] or a variant of space-time interest pointapiev and Lindeberg, 2003,
Laptev, 2005, Dollar et al., 2005, Dalal and Trigg605]. However note that a
change of feature representation will impose theigie of an appropriate
neighbourhood selection procedure in TLE for theedwination of repetition

neighbours.

Another software engineering problem is that theremt prototype
implementation of frameworks is computationally phlotive for a productive
application. Thus it would be desirable to redepelloe proposed methodologies
using a more computationally efficient programmiagguage like C++. In terms of
scientific challenges, the frameworks could be moéel to deal with complex
actions by using action primitive models as a cod&ln some sort of hierarchical
classification schema. Alternatively, a high lefiedion or voting module could be
introduced which would allow for interaction recdpn by combining
independent classification results of each indigldwsing action primitive models.

In addition, in order to make an objective comparibetween different
algorithms, but without a loss of generality, wevdaused publicly available
IXMAS database for the evaluation. Although, itase of the most challenging

datasets in view independent action recognitioniava for research community, it
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is captured in a controlled environment, thus d&féecom real visual surveillance
recordings. One of the essential tasks for futasearch should be an evaluation of
the descriptors using a more realistic visual silaree dataset in the recognition

stage.

7.4.Closing Remarks

We believe that this thesis has contributed to pheciples and practice of
dimensionality reduction field and hopefully it & significant step towards the
applicability of dimensionality reduction to a wideange of scientific problems
wherever there is a need to explore large volunfesnuoltivariate data. The
automatisation of spectral dimensionality reductapproaches simplify usage of
these algorithms, and thus may help many scienisteaking advantage of a
dimensionality reduction transformation to elimmatndesired properties of high
dimensional data before applying domain specifiscpssing. Similarly, wherever
time is an essential characteristic of examinechpheena, we equipped scientists
with two powerful methodologies for the determimistor probabilistic
representation of such multidimensional time sed@s using only key underlying

parameters.

Our contributions proved to be especially usefulvilo computer vision
tasks, i.e. human pose recovery and action redgognand inspired us to propose a
promising and advanced view independent actiongmition framework which
may open the door to the longstanding aspirationraifust and automatic
interpretation of human motion.

Finally, the presented contributions are intended ntotivate future
research in the area of machine learning/pattecngration with applications to
computer vision problems and, hopefully, built amier foundation for a next

generation of nonlinear dimensionality reductiortmes for time series.
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A. Appendices

A.1l. Dynamic Time Warping

Dynamic Time Warping [Rabiner and Juang, 1993, 15eB008] (DTW) is an
algorithm for measuring similarity between two tinseries (high dimensional
curves) which minimises the effects of shifting atistortion in time by allowing
“elastic” transformation of time series in order detect similar shapes with

different phases.

Value
"\.
/%
\
/
/
~
.

Time

Figure 7.1. Raw time series where arrows show desir  able points of alignment.

Given two time series A=(a,a,..,a) (@QOR”) and
=(h,b,.... ) (POR®), optimal matching becomes the task of aligning two
sequences of points in order to generate the repstsentative distance measure of
their overall difference (Figure 7.1). The naiveagach of aligning points is a plain
linear matching, where everthipoint of the first curve matches witth ipoint of
the second curve, and both curves are of equatheggure 7.2a). However, this

procedure produces a poor similarity score. Altevely, DTW allows for a
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nonlinear (elastic) alignment of times series bynimizing the warping cost

function (Figure 7.2b). As a result, a more inudtsimilarity measure is obtained,
which allows matching similar shapes even if they @ut of phase in the time axis
and/or they are not of equal size.

a) b)

Time Time

Figure 7.2. Time series alignment: a) Linear matchi ng “one to one”, b) nonlinear

matching by warping time axis.

The algorithm starts by building the Euclidean cd$stance matrix
E :{e}j}izl_N Py representing all pair wise distances betwéeand B :

g =|a-p| i=1.N, j=1.M (6.18)

Once the cost matrix is built, the algorithm fintie best alignment path

(i.e. warping path) which satisfies the followingteria:

* Boundary condition which assigns first and lastredats of A and B to each

other.
* Monotonicity condition which preserves the time-enidg of points.

» Continuity condition which limits the warping pattom long jumps (shifts in

time) while aligning sequences.

Let's an accumulated global cost matrix is dendigd® where the first

row and the first column are initialised accordinghe following equations:

P(l,j)=Z]_‘,elk,j=1.M (6.19)
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P(i,1)=i2q<l,i =1.N (6.20)

then the cost function associated with a warpinit @ computed with respect to
the distance matriE expressed by:

PGQ,j)=min{P(-1j-DP (-1 Pi(j - D+e,i,= N jj= M (6.21)

The final warping path in the global cost matRx i.e. the correspondence
between elements ok and B, is illustrated in Figure 7.3. The path is fourg b
simple backtracking from the end poiR{N, M) to the start poinf(1,1) following
a greedy strategy. More information about DTW isvsied by [Rabiner and Juang,
1993, Senin, 2008].

1 M

sof 4 + B

Relevance Index

Query Index

Figure 7.3. The optimal warping path aligning time series from the Figure 7.1.

Since DTW is expensive to calculate, techniquespeed up similarity

search have been introduced. The most populardaclu

e Global constraints like Sakoe-Chiba band [Sakoe Ginidba, 1990] and Itakura
parallelogram [ltakura, 1990].

* Lower bounding techniques [Yi et al., 1998, Kimaét 2001].
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A.2. Optical Flow

Optical flow (image velocity) is a measurement ofikeb change between
consecutive image frames which are used as a ogtts of information in many
computer vision tasks including 3D shape acquisijtabject recognition and scene
understanding. The goal is to compute an approxomab the 2d motion field - a
projection of the 3d velocities of surface pointdathe image plane - from spatio-
temporal patterns of image intensity. A common tstgr point for differential
optical flow estimation [Lucas and Kanade, 1981rrHand Schunck, 1981, Nagel
and Enkelmann, 1986] is to assume that pixel intiessare translated from one
frame to the next using:

(P, Py, t)=1(p,+dx p,+ dy t+ dj (6.22)

wherel (p,, p,,t) is image intensity as a function of spatelenotes time, whereas
dxand dy are displacements of the pixel after tide. Assuming that the
displaced image is well approximated by a firstesr@laylor series, the right side of
equation (6.22) is expanded:

I (p,+dx, p,+dy t+ d)= I(p, R, 9+ L | dy |d (6.23)

where |, =dl /op, and |, =0l /:joy are spatial partial derivative of the image,
whereasl, =dl /& denotes the time partial derivative of the imaBg.ignoring
higher-order terms in the Taylor series and therbssiuting the linear
approximation (6.23) into (6.22) or more generallpm an assumption that
intensity is conserved(p,, py,t)/dt:O, the gradient constraint equation is
derived:

| dx+1.dy+1dt=0 (6.24)

After devision bydt, the 2d image velocity vectar= (dx dt, dy dj is obtained:

dx dy =
|Xa+|ya+lt=| oty =00+ =0 (6.25)
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andUl =(1,,1 ) is the spatial intensity gradient. Of course, ab@ve equation is
heavily under constrained since we have two unkmpuirerefore some additional
constraints are required to solve it.

One common way to further constrainis to use gradient constraints from
local neighbourhood pixels, assuming that they eshdre same constant 2D
velocity. This is achieved by solving the basicicgdt flow equations for all the
pixels in that neighbourhood using the weightedstiesquares estimator like in
Lucas and Kanade method [Lucas and Kanade, 19&Jiir¢-7.4). Alternatively,
Horn and Schunck [Horn and Schunck, 1981] combihes gradient constraint
(6.25) with a global smoothness term to constraemdstimated velocity field over
image domain. Nagel and Enkelmann [Nagel and Enkeim1986] extends that
work and suggests aiented-smoothness constraintspatio-temporal domain, in

which the optic flow is only smoothed in the diieat perpendicular to the image

brightness gradient, so that discontinuity bouretaare much better preserved.

Figure 7.4. Estimation of the optical flow using Lu cas and Kanade method.

The discussed approaches are well establisheditalgsr for the optical
flow estimation, however many other methods hawenligoposed. Further details
and more comprehensive review can be found in {Baet al., 1994, Beauchemin

and Barron, 1995, Fleet and Weiss, 2006].

- 315 -



APPENDIXA APPENDICES A.3 Hausdorff Distance

A.3. Hausdorff Distance

The Hausdorff distance is a simple metric for meagusimilarity between two
arbitrary ~ high  dimensional  curves A=(a,a,..,a,) (@OR°) and
B=(h,b,...k) (POR®). In contrast to the DTW, the computation of thistric
does not involved determining an explicit correggence of points. By definition
the Hausdorff distance is the maximum distance séguence to the nearest point
in the other sequenc&édpte, 1991 Huttenlocher et al., 1993More formally, the
Hausdorff distance between time serksand B is a maximin function, defined

as:

H(A B) = ry&x{gndg{”a— a} (6.26)

It should be noted that the Hausdorff distancerisnted, i.e. asymmetric,
which means that most of the tinkd (A, B) is not equal taH (B, A) (Figure 7.5).
However, in a classification task, a distance ipeexed to be symmetric to
adequately express similarity between two sequenbestackle this problem a
variant, called the symmetric median Hausdorff &nse, was proposed [Gorelick

et al., 2007, Wang and Suter, 2007a]:

H'(A B)= maeDdAi\an{DnmwliBn{] a- 4} (6.27)
H(AB)=H'(AB+ H(B A (6.28)

A H(B,A) A
f\/\

A
B S e C— L
) X ) HEAS <
N PR AT Hee L/
| a8 VS AN )
iy T

Figure 7.5. Hausdorff distance on toy example betwe en two sequences: standard
definition based on equation (6.26) (left) and medi an variation based on equation
(6.27) (right).
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