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Abstract 

This dissertation contributes to the state of the art in the field of pattern recognition 

and machine learning by advancing a family of nonlinear dimensionality reduction 

methods. We start with the automatisation of spectral dimensionality reduction 

approaches in order to facilitate the usage of these techniques by scientists in 

various domains wherever there is a need to explore large volumes of multivariate 

data. Then, we focus on the crucial and open problem of modelling the intrinsic 

structure of multidimensional time series. Solutions to this outstanding scientific 

challenge would advance various branches of science from meteorology, biology, 

engineering to computer vision, wherever time is a key asset of high dimensional 

data. We introduce two different approaches to this complex problem, which are 

both derived from the proposed concept of introducing spatio-temporal constraints 

between time series. The first algorithm allows for an efficient deterministic 

parameterisation of multidimensional time series spaces, even in the presence of 

data variations, whereas the second one approximates an underlying distribution of 

such spaces in a generative manner. We evaluate our original contributions in the 

area of visual human motion analysis, especially in two major computer vision 

tasks, i.e. human body pose estimation and human action recognition from video. In 

particular, we propose two variants of temporally constrained human motion 

descriptors, which become a foundation of view independent action recognition 

frameworks, and demonstrate excellent robustness against style, view and speed 

variability in recognition of different kinds of motions. Performance analysis 

confirms the strength and potential of our contributions, which may benefit many 

domains beyond computer vision. 
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PCA Principle Component Analysis 

PPCA Probabilistic Principle Component Analysis 
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Glossary of Notations 

Generally, we denote scalars in bold lowercase or uppercase ( ,d N ), vectors in 

italics lowercase (,x y), whereas matrices in italics uppercase (,X Y ). 

 

d    the dimension of reduced/latent space 

D    the dimension of data space 

x    the vector in a low d-dimensional space 

y    the vector in a high D-dimensional data space 

X    the matrix of low d-dimensional vectors 

Y    the matrix of high D-dimensional vectors 

N    the number of vectors in ,X Y , i.e. number of data points 

,i j  indices of matrices, usually in range , 1..i j = N , if not 

overridden otherwise 

c    the centre of cluster 

C    the matrix of centres 

Z    the number of clusters in the matrix C  

L    the Laplacian matrix of a graph 

W    weights of a graph 

, ,i i ix y c   the (i)th vector of a corresponding matrix , ,X Y C 

, , , ,, , ,i j i j i j i jx y c w  the (i,j)th entry of a corresponding matrix , , ,X Y C W 

λ    the vector of eigenvalues 

v    the vector of eigenvectors or the vector of view parameters 

s    the vector of style parameters 

•    the dot product 

⋅    the Euclidean norm 
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×A B    the size of matrix with A rows and B columns 

AB    a product of matrices A and B 

TA    a transpose of matrix A 

F  the dimensionality reduction mapping from data space to to 

latent or reduced-dimension representation space 

f  the reconstruction mapping from latent or reduced-dimension 

representation space to data space 

G  the forward mapping function from a high to low 

dimensional space 

g  the inverse mapping function from a low to high dimensional 

space 

I  the identity matrix 

( )tr A    the trace of the matrix A  

( )p x    the probability of x  

( | )p y x   the probability of y  given x  

µ    the mean 

Σ    the covariance matrix 

( , )µ Σℕ   the Gaussian distribution with mean µ  and covariance Σ  

( | , )X µ Σℕ  the Gaussian distribution over X  with mean µ  and 

covariance Σ  

Φ  hyperparameters 

ψ  the empirical kernel map/interpolation matrix 

ϕ  the Gaussian basis function 

K  a positive semi definite Mercel kernel 

,i jk  the element of matrix K  

( , )i jx xκ  the kernel function evaluated on data points ix  and jx  
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K  the neighbourhood size 

ℝ  real numbers 

ρ  the value of quantitave measure 

( )H X  the marginal entropy of X  

( , )H X Y  the marginal entropy of X  and Y  
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1. Introduction 

“How complex or simple a structure is depends critically upon the way 
we describe it. Most of the complex structures found in the world are 
enormously redundant, and we can use this redundancy to simplify their 
description. But to use it, to achieve the simplication, we must find the 
right representation” [Simon, 1996] 

Professor  H.A. Simon 

Nobel Prize Winner 1978 

 

Understanding and exploration of the intrinsic structure of multidimensional 

phenomena are of fundamental importance in data mining, pattern recognition, and 

machine learning. The past decade has witnessed a remarkable explosion of a high 

dimensional digital content in most disciplines of science due to rapid 

improvements in data acquisition and storage capabilities as well as falling costs of 

data warehousing technology. As a consequence, in many areas where observations 

used to be scarce, we have now access to sufficient amounts of information to 

explain a phenomenon with a data-driven paradigm, i.e. to induce a model for an 

event of interest given acquired observations.  

Providing a machine which has the ability to learn and study such models 

has been fascinating scientists for a long time in various branches of science from 

linguistics, biology, engineering, artificial intelligence to computer vision. 

However, in order to represent the natural complexity and all inherent aspects of a 

phenomenon, a tremendous amount of parameters has to be measured. This high 

dimensionality introduces outstanding challenges in the creation of generalised and 

meaningful models by a machine, since the number of available training samples is 

usually not sufficient to cover appropriately all dimensions. In addition, many 

parameters are redundant or irrelevant in describing a given event of interest, thus 
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making the process of learning extremely difficult. These problems have led to the 

formation of the machine learning/pattern recognition field referred to as 

dimensionality reduction. Dimensionality reduction is a transformation of high 

dimensional observations into a faithful low dimensional representation in order to 

simplify data representation and extract true intrinsic parameterisation of a 

phenomenon. This is achieved by removing redundant information, while 

maintaining important relationships between parameters. As a consequence, the 

number of required parameters is significantly reduced to essential ones, thus 

facilitating the process of model learning by a machine. 

Let’s consider the scientific discipline of computer vision, which aims at   

enabling a machine to interpret the world, which is presented to it by one or more 

cameras, in a similar way to humans. Recorded human motion is a classic example 

of a high dimensional and complex phenomenon, which is extremely difficult to 

model by a machine due to large variations in motion style and dynamics, human 

body shape and appearance, camera viewpoint and environment settings. However,  

automatic analysis of human motion is now of fundamental importance in many 

areas and desired by many potential applications. They include content-based video 

analysis, security and surveillance systems, human-computer interactions, 

animation and synthesis in the entertainment industry (e.g. games and movies). 

Therefore, an appealing solution to tackle this problem is to reduce the 

dimensionality of human motion in order to assist the generation of robust human 

motion models. 

In this thesis, we explore the realm of dimensionality reduction with a 

special focus on its application to human motion analysis. We propose several novel 

approaches which allow for the effective modelling of high dimensional data and 

prove to be superior to the current state of the art in a range of computer vision 

tasks such as pose recovery and action recognition. 
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In this introductory chapter, first, we present the context of our research in 

sections 1.1 and 1.2. Following this, the principal contributions of this work are 

summarised in section 1.3, whereas the structure of this dissertation is outlined in 

section 1.5.  

1.1. Dimensionality Reduction 

A phenomenon is usually represented by a set of observations, which are 

measurements of a set of D  quantitative values, i.e. features or attributes that are 

collected by data capture devices. These values can be arranged in the form of a D -

dimensional vector, which reflects distinctive aspects and characteristics of the 

considered observation. Since features can vary independently from each other; 

they are often referred to as the degrees of freedom of a model [Good, 1973]. 

However, due to the natural complexity of the modelled phenomena and imperfect 

capturing devices, a very large number of features is collected with the aim to 

capture adequately all inherent aspects of observed events. This leads to information 

overload in most sciences and the crucial paradox: the more features (dimensions) 

are available, the more challenging the process of model learning and information 

extraction is. For instance, high dimensional data may contain several features that 

are measurements of the same underlying cause, thus they are redundant. Moreover, 

some features may be irrelevant and not very informative in characterising the 

nature of the phenomenon. Finally, a closely related fundamental challenge in the 

high-dimensional data analysis is the so-called dimensionality curse (see section 

2.2), i.e. observations in a high dimensional space are far less representative than 

those in a low dimensional space because of an inherent sparsity of the high 

dimensional space. As a result, the number of observations required to cover 

‘satisfactory’ the entire high dimensional space increases exponentially with the 

number of measured features. This implies that very often the collected data 



CHAPTER 1 Introduction 1.1 Dimensionality Reduction 

 - 4 -  

represent the degrees of freedom of capturing devices instead of those of the actual 

underlying phenomenon.  

Dimensionality reduction overcomes these fundamental problems 

associated with the exploration of large volumes of multidimensional data. This is 

achieved by discovering a compact, meaningful and intrinsic parameterisation of 

the phenomenon that governs the observed data. Therefore, dimensionality 

reduction can be seen as the process which transforms a capturing device 

representation with many degrees of freedom in a smaller number of relevant 

degrees of freedom which characterise accurately the event of interest. A schematic 

representation of this process is shown in Figure 1.1. In addition to computational 

costs decrease, the key advantage of dimensionality reduction is better data 

representation and understanding while preserving as much of the original 

information as possible. Moreover, since the world is essentially three dimensional, 

1, 2 and even 3-dimensional data are very intuitive and assimilable representations 

for human perception. As we will show in this thesis, many complex phenomena, 

such as human motion, are intrinsically of very few dimensions, therefore 

dimensionality reduction can be employed to visualise such data and facilitate its 

analysis and interpretation. 

d D≪

 

Figure 1.1. The concept of dimensionality reduction . 
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To illustrate the concept of dimensionality reduction, let’s consider an 

example from visual perception, where a dataset consists of images of an object 

taken from multiple orientations simultaneously. Images can be thought of as points 

in some high-dimensional image space where each coordinate represents the 

intensity value of a single pixel. In this example, images have a size of 76 101×  

pixels, and thus form points in a 7676-dimensional observation space. However, 

despite of appearance differences, the perceptually meaningful structure of these 

images has only one intrinsic degree of freedom (dimension), i.e. the orientation of 

the depicted object. Therefore, these images are expected to lie on or near a 1-

dimensional curve which is embedded in a two dimensional space to model the 

cyclic nature of the view change (Figure 1.2). This 1-dimensional curve is 

parameterised only by the viewing angle. The objective of dimensionality reduction 

techniques is to identify this embedded representation by removing irrelevant and 

overlapping information from data in order to extract the intrinsic parameterisation 

that truly governs them. 
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1
d

2
d

 

Figure 1.2. The 1-dimensional parameterisation of a  highly dimensional image 

dataset embedded in a 2-dimensional space. The intr insic dimension corresponds to 

the viewing angle of the depicted object. 

Nowadays, many multivariate statistical methods often rely on a pre-

processing step involving some form of dimension reduction to eliminate undesired 

properties of high dimensional data and consequently improve overall performance. 

Figure 1.3 illustrates this concept, showing the dimensionality reduction as a pre-

processing stage in the whole system. As a result, dimensionality reduction has 

become an essential process across a wide variety of fields wherever there is a need 

to explore large volumes of multivariate data. In particular, scientists in the 

following domains have to deal with this problem: 

• computer vision, 

• image processing, 

• artificial intelligence, 

• medicine, 
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• linguistics, 

• signal processing, 

• meteorology, 

• engineering, 

• bioinformatics. 

 

Figure 1.3. Performance of many processing systems can be improved in terms of 

accuracy and efficiency by reducing dimensionality of the data in a pre-processing 

step.  

1.2. Multidimensional Time Series 

In many real world applications, the analysis of behavioural and dynamic 

characteristics of phenomena is much more informative than the description of their 

states at a certain point in time. Therefore, another crucial challenge in modelling 

high dimensional data is the time aspect, which is the intrinsic property of many 

natural as well as man-made phenomena. As a consequence, the adaptation of time 

in the dimensionality reduction process seems to be an intuitive and really relevant 

objective to study, which has only recently been investigated by the research 

community. 

Time series is the standard digital representation of phenomena with the 

temporal correlation among observations [Hannan, 1970, Chatfield, 1996]. 

Observations are collected at regular intervals over a period of time and, as a result, 

successive observations exhibit a certain level of dependency.  Note that in 

principle the two main objectives of time series analysis are to characterise and 

represent time series and/or to forecast future behaviour. In this thesis, we are only 
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interested in the modelling of time series representation, and we do not address the 

problem of time series extrapolation. 

1.2.1. Human Motion Analysis 

A typical example of multidimensional time series data is human motion data. 

Human motion can be seen abstractly as a continuous state machine, where the 

body is considered to be in a single high dimensional state at a given instant. The 

space of human motion is highly dimensional since the human body is a deformable 

object with no less than 244 degrees of freedom [Zatsiorsky, 2002], anthropometric 

variability between people [Easterby et al., 1982] and dynamics [Farnell, 1999]. 

Since, subsequent states of real human motion are temporally correlated and ‘short’ 

motion patterns tend to be repeatable over time, a natural digital representation of 

motion is a time series sequence of high dimensional feature vectors, which 

correspond to successive states of the motion. 

One of the pioneering and systematic investigations into the nature of 

human motion was carried out by the photographer Eadweard Muybridge in the late 

19th century [Muybridge, 1901]. He built a complex system of multiple cameras to 

capture motion, which was composed of a fixed battery from 12 to 24 cameras 

along an open shed and an invented shutter with a short exposure time. The cameras 

were triggered sequentially over time at sufficient speed to generate the earliest 

‘digital’ dataset of human motion and thus allowing the first manual vision-based 

motion analysis (Figure 1.4). 

 

Figure 1.4. The series of photos of the human figur e in motion by Eadweard 

Muybridge taken in the late 19th century [Muybridge , 1901]. 
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In the next century, the classic moving light display experiment of 

Johansson [Johansson, 1973] has paved the way to the automatic human motion 

analysis and mathematical modelling of human motion. Johansson demonstrated 

that a sequence of only a few reflective markers attached to major joints of human 

body is sufficient to understand and recover motion by a human subject (Figure 

1.5). 

 

Figure 1.5. Illustration of moving light displays, taken from [Thornton et al., 1998]. 

When static images are presented in a sequence, an observer can easily organise 

the complex patterns of lights movement into a cohe rent perception of human 

motion.  

Over the last few decades this experiment inspired many researchers in 

human motion analysis and directly led to the invention of marker-based motion 

capture systems. Modelling human motion by these systems involves strapping 

sensors (e.g. electromagnetic markers) to the body and then recording transmitted 

signals in three dimensions at very high frequencies as an individual performs 

various movements [Menache, 1999]. However, these systems are not only 

expensive but also very invasive, typically requiring special clothing and a 

controlled studio-like environment. Moreover, they are not very practical in 

applications where observed humans are not cooperative. Therefore, in practice, 

they are primarily used for the training of machine learning algorithms. 
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In contrast, cameras are low-cost, flexible and non-obtrusive devices which 

are able to record a massive amount of information about an observed scene. 

However, in order to perform any human motion analysis, first the individual has to 

be localised and motion has to be extracted from videos. This is an extremely 

difficult problem due to image variability which originates from cluttered and 

dynamic environments, depth ambiguity, occlusions, lighting conditions, camera 

viewpoint as well as people variability in terms of physical appearance and motion 

style. Assuming that these issues can be solved satisfactorily, the challenging 

machine learning problem of inducing human motion models from the extracted 

information has to be addressed. These models should constrain the space of 

plausible solutions while maintaining appropriate adaptability to all forms of human 

movement variations.  Despite all these difficulties, markerless and vision-based 

analysis of human motion is currently one of the most active research domains.  

Video based analysis of human motion comprises many aspects. In this 

thesis, we limit our scope of interest to human pose recovery and human action 

recognition. The former aims at the determination of locations or angles of key 

body joints given an image or a video capture of human figure. The latter is a high 

level description of an image sequence by assigning a meaningful annotation that 

best describes the observed motion. 

1.3. Aim and Objectives 

The overall aim of this research is to advance the field of dimensionality reduction 

with a special attention to human motion analysis.  

First, although dimensionality reduction transformation may allow 

improving overall performance in many processing systems, difficulties in practical 

usage of these algorithms limit their applicability in various domains. Most 

powerful dimensionality reduction approaches rely on a set of parameters and 
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extensions in order to be applied effectively. However, manual user input into the 

process requires specialised knowledge, whereas many scientists would prefer to 

consider the dimensionality reduction process as a black box, which can be 

employed directly as a pre-processing step in their systems. To tackle this problem, 

we propose a methodology for automatic configuration of a group of nonlinear 

dimensionality reduction methods. Since it facilitates their usage, it makes them 

more convenient for the research community. 

Secondly, despite the huge research effort that has been already dedicated 

to dimensionality reduction, the majority of the current state of the art approaches 

ignores or considerably simplify the temporal aspect present in many phenomena. 

Such approach is clearly inadequate in many real world applications, where usually 

the analysis of behavioural and dynamic properties of phenomena is much more 

informative than the description of their states at a certain point in time. As a 

consequence, the key objective of this thesis is to develop novel dimensionality 

reduction algorithms which are tailored to time oriented data, i.e. multidimensional 

time series. Consideration of the time domain during the dimensionality reduction 

process allows learning more accurate and meaningful models of events which are 

temporally correlated. 

The final objective is to examine practical advantages of the proposed 

dimensionality reduction approaches by applying them to human motion analysis. 

Although digital representation of human motion is very complex and high 

dimensional, we demonstrate that only a few extracted underlying parameters are 

sufficient to model and discriminate between different human actions regardless of 

view, speed and motion style.  
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1.4. Scientific Contribution 

This thesis provides significant advances towards a solution of essential problems 

which are faced by machine learning, pattern recognition and computer vision 

communities. These contributions originate from our novel and original ideas and 

are summarised below: 

• First, in chapter 2, we give an extensive review of the state of the art in 

dimensionality reduction with a special attention to computer vision 

applications. We provide the motivation and the background to the machine 

learning/pattern recognition task of dimensionality reduction and describe the 

main directions of research as well as the strengths and weaknesses of different 

approaches. This chapter can be seen as a knowledge repository about 

dimensionality reduction and one of the most comprehensive discussions 

available in the field. 

• In chapter 3, we examine thoroughly a family of powerful nonlinear spectral 

dimensionality reduction methods and review their limitations, i.e. selection of 

free parameter and lack of generative abilities to unseen examples. Motivated by 

the personal belief that simplicity of usage is essential to an algorithm 

popularity, we propose a framework for automatic configuration of spectral 

dimensionality reduction methods, which overcomes identified weaknesses. As 

a consequence, this novel framework improves significantly the applicability 

and performance of spectral methods. The framework has been validated using 

three main representatives of the spectral family and shows excellent versatility 

in a range of tasks including human pose recovery. 

• Despite of the huge amount of work, which has been devoted to the research in 

dimensionality reduction (see section for 2.2 overview), the majority of this 

effort does not take into consideration the dynamic nature of many phenomena. 

Such static approaches are clearly inappropriate in the context of time 
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dependent phenomena, where measured features vary continuously over time; 

thus consecutive observations are expected to be highly correlated. We are 

convinced that the time domain is a crucial asset of real-world data and thus it is 

essential to take it into account when modelling such phenomena. To tackle this 

intellectually and technically challenging problem, in chapter 4, we propose a 

novel dimensionality reduction method, called Temporal Laplacian Eigenmaps, 

which takes advantage of spatial and temporal coherency relationships between 

time series in order to extract the intrinsic parameterisation of a high 

dimensional time series space regardless of data variations. Our fundamentally 

different and fresh perspective to the dimensionality reduction problem, which 

aims at preserving the temporal topology of observed space during 

dimensionality reduction instead of the traditionally used geometric one, allows 

us to produce automatically meaningful and generalised low dimensional 

representations tailored to multivariate time series data. An exhaustive 

evaluation on a couple of computer vision applications, i.e. pose recovery and 

action recognition, demonstrates the effectiveness of the proposed methodology 

for modelling different types of multidimensional time series and its superiority 

in comparison to the current state of the art approaches.  

• To cover adequately the complexity and richness of measured phenomena, 

tremendous amounts of representative data are often required to learn 

appropriate data-driven models. Since, in practice, the capture of such amounts 

of data may be unfeasible, the problem arises about how to generalise known 

data samples to the entire phenomenon space to obtain a reliable model. 

Although, several approaches have already been proposed to address this issue 

(section 2.2.2.3), they either do not consider or radically simplify the temporal 

aspect of high dimensional data. In chapter 5, we deal with this scientific 

challenge in the context of multidimensional time series data. Inspired by the 
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spatio-temporal constraints of Temporal Laplacian Eigenmaps, we formulate a 

generative nonlinear dimensionality reduction algorithm, which is called Spatio-

Temporal Gaussian Process Latent Variable Model. Our innovative method is 

capable of approximating a compact underlying distribution of time series space 

in the presence of data variations. As a result, a core pattern of multivariate time 

series is extracted with associated uncertainties of prediction. A comprehensive 

evaluation, using different types of multidimensional time series, confirms the 

superiority of this concept in modelling and classification of human motions. 

• Finally, in chapter 6, we investigate further a practical aspect of our 

contributions from chapters 4 and 5 in a challenging real-life computer vision 

task of view-independent action recognition. Any action recognition system 

usually involves a combination of methods from the vision and machine 

learning realms. The vision part is responsible for the extraction of 

representative and relevant features from action videos, whereas the machine 

learning one creates actual semantic models of actions. Our contribution falls 

strictly in the learning domain. We devise two powerful variants of temporally 

constrained action descriptors, so called action manifolds, which encapsulate 

style, view and speed variability of any type of motion in a compact and 

consistent low dimensional representation. The key property of the introduced 

descriptors is their generalisation potential to previously unobserved motions 

regardless of view. Despite using basic vision algorithms for video processing, 

promising experimental results match the performance of the most accurate 

action recognition methods, while overcoming some of their limitations. 

1.5. Thesis Outline 

The body of the thesis is divided into seven chapters.  
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In this chapter, we have put our research into context and summarised our 

contributions to science.  

In chapter 2, first, a formal definition and discussion of the dimensionality 

reduction problem are presented. They are followed by a detailed review of the state 

of the art in the dimensionality reduction field.  

Then, in chapter 3, we propose a framework for automatic configuration of 

spectral dimensionality reduction methods. This chapter is based on work that was first 

published at the Workshop on Visual Surveillance during IEEE International 

Conference on Computer Vision (VS 2009) [Lewandowski et al., 2009], and then it 

was extensively extended for a journal version in the Pattern Recognition Letters 

(PRL 2010) [Lewandowski et al., 2010a].  

In turn, in chapter 4, we introduce a novel nonlinear dimensionality 

reduction method, called Temporal Laplacian Eigenmaps, which is tailored to 

modelling multidimensional time series. The chapter is based on work presented in 

the IAPR International Conference on Pattern Recognition (ICPR 2010) 

[Lewandowski et al., 2010c] and additional experiments which were conducted later 

with a view to an ongoing journal paper preparation.  

The next chapter 5 describes a generative nonlinear dimensionality 

reduction approach for modelling uncertainty of multidimensional time series space, 

called Spatio-Temporal Gaussian Process Latent Variable Model. The chapter is 

based on work published in the Pacific-Asia Conference on Knowledge Discovery 

and Data Mining (PAKDD 2011) [Lewandowski et al., 2011] and additional 

experiments which were conduced later with a view to an ongoing journal paper 

preparation. 

In chapter 6, a practical application of our contribution to view-

independent action recognition is presented. This chapter is based mainly on work 

published in the INRIA European Conference on Computer Vision (ECCV 2010) 
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[Lewandowski et al., 2010b]. Some elements are also presented in the PAKDD 

2011 conference paper [Lewandowski et al., 2011]. 

Finally, chapter 7 concludes the undertaken research, summarises 

limitations and highlights potential directions for future work. 

Each contribution chapter, i.e. 3, 4, 5, 6, shares a similar format. They start 

with a statement and scope of problem in the introductory section (3.1, 4.1, 5.1, 

6.1), which will be addressed in that chapter. Then, closely related work, which has 

already been carried out by research community (3.2, 4.3, 5.2, 6.2), is discussed. 

Next, a developed solution to the problem is presented (3.3, 4.4, 5.3, 6.4), followed 

by evaluation of the proposed methodology (3.4, 4.5, 5.4, 6.5). Most of evaluation 

sections begin with a description of datasets which are used in experiments (3.4.1, 

4.5.1, 5.4.1) followed by the experimental setup (3.4.2.1, 4.5.2.1, 5.4.2.1) and an 

explanation of the performed experiments (3.4.2.2, 4.5.2.2, 5.4.2.2). Then, results of 

each experiment are presented and discussed. The broader discussion, which 

summarises all experiments, is provided in the last subsection (3.4.7, 4.5.8, 5.4.5). 

Finally, all chapters finish with a summary of the contribution (3.5, 4.6, 5.5, 6.6) 

with respect to the stated objective in the corresponding introduction section (3.1, 

4.1, 5.1, 6.1). Note that, it is advised to read chapters in the provided order, since 

most of them relies on the previous ones, especially the contribution chapters 4, 5, 

6. 
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2. State of the Art Review 

2.1. Introduction 

This chapter introduces and defines the problem of dimensionality reduction and 

related topics such as the curse of dimensionality and intrinsic dimensionality 

(section 2.2). Then, a comprehensive survey of the dimensionality reduction field is 

provided to show the full evolution of the concept from preliminary relatively 

simple feature selection approaches (section 2.2.1) to nowadays powerful and 

popular feature extraction methods (section 2.2.2). Afterwards, two computer vision 

fields, i.e. human pose recovery and action recognition, are overviewed to establish 

the general background used for the evaluation of our contributions (section 2.3). In 

particular, we discuss the current state of the art regarding the usage of 

dimensionality reduction transformations in human motion analysis (sections 

2.3.2.2.3 and 2.3.3.2.4). In addition, this chapter introduces some basic notations 

and conventions for dimensionality reduction transformations, which are exploited 

in the rest of the dissertation. 

2.2. Dimensionality Reduction 

Analysis of multidimensional data often suffers from an effect known as the ‘curse 

of dimensionality’. The term ‘curse of dimensionality’ was coined by [Bellman, 

1961] and refers to the fact that in the absence of simplifying assumptions, the 

number of data samples required to estimate a function of several variables to a 

given accuracy (i.e., to get a reasonable low-variance estimate) on a given domain 

grows exponentially with the number of dimensions [Lee and Verleysen, 2007]. To 

illustrate the problem, let’s consider the 3-class pattern recognition problem 

presented by [Gutierrez-Osuna, 2006] (Figure 2.1). First, the 1-dimensional space is 
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divided into B uniform bins with 3 samples each (Figure 2.1, step 1). Each bin is 

labelled by majority voting using training labels, so that a new sample is classified 

by assigning the label of the corresponding bin to it. Since there is significant 

overlap among the classes, a second dimension is incorporated to improve 

separability (Figure 2.1, step 2). At this point, if we decide to maintain the number 

of training examples, then a very sparse 2D scatter plot is obtained (Figure 2.1, step 

2a). Otherwise, if we choose to keep a constant density of sampling per bin, then the 

number of training examples increases exponentially to 27 (Figure 2.1, step 2b). As 

a consequence, a new sample may be unclassified if it is located in an empty bin; 

this can be solved by adding more training samples to cover evenly the entire space. 

Adding another dimension makes these problems worse (Figure 2.1, step 3), since 

now the 3D scatter plot is almost empty (Figure 2.1, step 3a) or at least 81 samples 

are required (Figure 2.1, step 2b). This phenomenon is known as the curse of 

dimensionality. Another basic illustration of dimensionality curse problem can be 

found in [Trunk, 1979]. 
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Figure 2.1. Illustration of dimensionality curse in  a toy pattern recognition problem 

where: D – dimensionality, B – number of bins, N – number of samples, (x% = 

N/B*100) – space denseness. 

A few counterintuitive properties of the high dimensional spaces are 

responsible for the dimensionality curse [Jimenez and Landgrebe, 1998]. First, most 

of data points of high dimensional spaces reside in unexpected places, such as 

corners for hypercube or in a thin shell near outer boundary of hypershpere and 

hyperellipsoid [Scott and Thompson, 1983, Jimenez and Landgrebe, 1998, Weber 

et al., 1998]. This implies that the centre becomes far less important and the high 
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dimensional space is inherently sparse (Figure 2.1, step 2a, 3a). This property is 

known as the ‘empty space phenomenon’ [Scott and Thompson, 1983].  A further 

undesired property is that the size of data samples required to adequately cover a 

hyper-volume to perform ‘satisfactory’ data analysis increases exponentially with 

dimensionality (Figure 2.1, step 2b, 3b).  

In addition to the curse of dimensionality, another complexity induced by 

analysing high dimensional spaces is the ‘nearest neighbour problem’, which is 

defined as [Beyer et al., 1999]: 

Given a collection of data points and a query point in a D-dimensional 

metric space, find the data point that is closest to the query point. 

For a given query point, it has been shown that the distance to the nearest 

neighbour tends to be similar to distance to the farthest neighbour as dimensionality 

increases [Beyer et al., 1999]. This is particularly an issue when using the 

Manhattan norm ( 1L ), the Euclidean norm ( 2L ) and the general k-norm 

kL [Hinneburg et al., 2000]. This effect is known as the ‘concentration 

phenomenon’ [Beyer et al., 1999, Francois et al., 2007]. In addition, this distance 

grows steadily with dimensionality and decreases only marginally as the number of 

points increases [Weber et al., 1998]. [Francois et al., 2007] proved formally that 

the concentration phenomenum is an intrinsic property of the norm when measuring 

high-dimensional data similarity even when an infinite number of data points are 

considered. 

In general, all these properties manifest themselves by a decrease of overall 

accuracy of system according to the statistical learning theory approach [Vapnik, 

1998]. As a consequence, for a given dataset, there is a maximum number of 

dimensions above which the quality of data analysis degrades when the number of 

training samples is small relative to dimensionality (Figure 2.2) [Devijver and 

Kittler, 1982, Bishop, 1995, Jain and Zongker, 1997, Weber et al., 1998, Jain et al., 
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2000, Korn et al., 2001, Hua et al., 2009]. This paradoxical behaviour is referred to 

as the ‘peaking phenomenon’ [Devijver and Kittler, 1982]. Dimensionality 

reduction attempts to overcome effectively these issues without losing significant 

information in terms of data intrinsic structure and properties. Moreover, it 

facilitates classification, visualisation, clustering and compression of high 

dimensional data.  

a
c
c
u
ra

c
y

 

Figure 2.2. Dimensionality versus accuracy of a mul tidimensional data analysis. 

Given a set of data points in a high-dimensional space, dimensionality 

reduction is defined as the process of discovery of a meaningful and compact 

representation of reduced dimensionality to obtain more informative, descriptive 

and practical data representation for further analysis. This process is achieved by 

eliminating redundancies and irrelevant information present in data while ensuring 

the maximum possible preservation of information [Jain et al., 2000, van der 

Maaten et al., 2009].  

Ideally, the reduced dimensionality should correspond to the intrinsic 

dimensionality of the data. This can be understood as the minimum number of 

independent variables needed to explain satisfactory the observed properties of the 

data. More formally, from a geometrical point of view, a dataset Y ⊂ D
ℝ  is said to 

have intrinsic dimensionality (ID) equal to d  if its elements lie entirely within a d-

dimensional subspace of Dℝ [Fukunaga, 1982, Fukunaga, 1990]. 
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In general, dimensionality reduction can be performed by either feature 

selection or feature extraction. Feature selection methods select the most 

discriminative key features among those given; therefore low-dimensional data 

representations possess a physical meaning. Alternatively, feature extraction 

approaches create new informative features by applying certain operations to the 

original features. In other words, the new projection of data is created based on 

transformation or combination of the original feature set.   

2.2.1. Feature selection 

Feature selection is based on the ‘principle of parsimony’ [Bell and Wang, 2000]. 

This says that, we prefer the model with the smallest possible number of parameters 

that adequately represents the data. For this reason feature selection methods aim at 

selecting an optimal subset of relevant features from a given set of original 

candidate features [Devijver and Kittler, 1982]. Here, a feature vector is defined as 

a one dimension of a data samples set (see figure 2.3). A definition of the optimal 

subset and various notions of relevance in a context of feature selection framework 

are given in [Kohavi and John, 1997, Blum and Langley, 1997]. Using [Jain and 

Zongker, 1997] notation, given a set of features { | , 1.. }j jY y y j= ∈ =n Dℝ  the goal 

of a feature selector is to find a subset X Y⊆ ( jx Y∈ ) which optimises a particular 

evaluation criterion J  and cardinality of set X is d : 

 
,

( ) max ( )
Z Y Z d

J X J Z
⊆ =

=  (2.1) 

where a higher value of J  indicates a better feature subset (Figure 2.3) and <d D  

(often <<d D ). 
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Figure 2.3. Principle of feature selection and nota tions. 

There are four basic steps in a typical feature selection method (Figure 2.4) 

[Dash and Liu, 1997, Dash and Liu, 2003, Liu and Yu, 2005]: 

• a generation procedure to generate the next candidate subset for evaluation, 

• an evaluation function to evaluate the candidate subset, 

• a stopping criterion to decide when to stop, and 

• a validation procedure to check whether the subset is valid. 

 

Figure 2.4. Four basic steps of the feature selecti on process. 
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A comprehensive review of feature selection algorithms in different fields 

can be found in [Jain and Zongker, 1997, Jain et al., 2000, Guyon and Elisseeff, 

2003, Liu and Yu, 2005, Saeys et al., 2007, Hua et al., 2009]. 

2.2.1.1. Subset Generation 

The generation procedure is essentially a heuristic search, with each state in the 

search space specifying a candidate subset of features for evaluation. The search 

process starts with no features, with all features, or with a random subset of 

features. Since for a data set with N  features, there exist 2N  candidate subsets, 

different search strategies have been explored. 

2.2.1.1.1.  Complete Search 

In the case of exhaustive search all possible combination of subsets ↔d D  are 

evaluated like in Focus method [Almuallim and Dietterich, 1994].  However, the 

exhaustive search is impractical even for moderate sizes of d  and D  because of 

exponentially increases of the size of the search space [Jain and Zongker, 1997, Liu 

and Yu, 2005]. In order to avoid the enormous calculations of the exhaustive 

method, different heuristic functions are used to perform non-exhaustive search on a 

smaller number of subsets by using, for example, Branch & Bound algorithms 

[Narendra and Fukunaga, 1977, Yu and Yuan, 1993, Chen, 2003, Somol et al., 

2004, Cao and Saha, 2005] (B&B). Complete search guarantees to find the optimal 

subset according to the evaluation criterion which is used  [Guyon and Elisseeff, 

2003]. 

2.2.1.1.2.  Sequential Search 

The simplest sequential search technique is hill climbing in a search tree (also 

called greedy search). Here a feature’s subset iteratively grows (forward selection) 

or shrinks (backward elimination) by adding/removing the best descendant features. 
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It can also start from both ends and iteratively add and remove features 

simultaneously (bidirectional selection) [Huan and Hiroshi, 1998]. The process 

terminates when there is no improvement over a current subset. Best-first search 

[Russell and Norvig, 2003] is a more general and robust method than hill climbing. 

Instead of using only current descendant features, the most promising feature is 

selected from all unexpanded nodes which have been generated.  

In both search engines, quality of a feature is determined according to a 

specified rule. These search strategies are computationally advantageous and robust 

against over fitting in producing deterministic results; however they may miss 

optimal subsets.  

2.2.1.1.3.  Random Search 

Following the sequential search, a random process is injected into the above 

classical sequential approaches; this process is similar to simulated annealing 

[Doak, 1992, Meiri and Zahavi, 2006] or genetic algorithms methods [Siedlecki and 

Sklansky, 1989, Vafaie and De Jong, 1993, Raymer et al., 2000, Oh et al., 2004]. 

The random subsets are derived either from Monte Carlo sampling or Random 

mutation hill climbing [Skalak, 1994]. Alternatively, each subset is produced in a 

completely random manner like in the Las Vegas algorithm [Brassard and Bratley, 

1996]. For all these approaches, the incorporation of randomness helps to escape 

local optima in the search space; however this can still result in a stochastic 

suboptimal solution. 

2.2.1.2.  Subset Evaluation 

Another dominating factor in designing a feature selection algorithm is the 

evaluation function which is used to determine the quality of a candidate subset. A 

new subset replaces a previous one, only if its evaluation score is better. According 

to [Blum and Langley, 1997], the evaluation criteria are broadly grouped based on 
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their dependency on mining algorithms (also referred to as inductive or machine 

learning algorithms) that will finally be applied on the selected feature subset (e.g. 

classification or clustering).  

Popular induction algorithms include decision trees [Quinlan, 1993, 

Forman, 2003, Draminski et al., 2008], naive Bayes classifiers [Kohavi and John, 

1997, Forman, 2003, Ding and Peng, 2003, Peng et al., 2005, Draminski et al., 

2008], nearest neighbour classifiers [Draminski et al., 2008, Hua et al., 2009], 

discriminant analysis [Peng et al., 2005, Hua et al., 2009], least-square linear 

predictors [Guyon and Elisseeff, 2003], and support vector machines [Forman, 

2003, Ding and Peng, 2003, Peng et al., 2005, Saeys et al., 2007, Draminski et al., 

2008, Forman, 2008, Lin et al., 2008, Rodriguez-Lujan et al., 2010, Gheyas and 

Smith, 2010]. 

2.2.1.2.1.  Filter 

Filter techniques assess the relevance of features by looking only at the intrinsic 

characteristics of the training data without involving any inductive algorithm. In 

most cases a feature relevance score is calculated, and low-scoring irrelevant 

features are filtered out (Figure 2.5). Afterwards, the best subset of features is 

passed as input to the mining algorithm. By definition, filter methods are 

independent of the chosen inductive algorithm; therefore typically they are based on 

certain statistical criteria, so called measures, to rank subsets. 

 

Figure 2.5. The filter approach for feature subset selection. 
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2.2.1.2.1.1. Separability Measures (distance measures) 

The most straightforward method for the feature selection is an exhaustive 

ranking of each individual feature in a dataset, independently of the context of 

others. Commonly known ranking metrics for this purpose include Chi-Squared test 

[Yang and Pedersen, 1997] (Chi), Information Gain [Yang and Pedersen, 1997] 

(IG) or Bi-Normal Separation [Forman, 2003, Forman, 2008] (BNS). More criteria 

can be found in [Guyon and Elisseeff, 2003]. 

In contrast, to improve computationally performance, Branch & Bound 

algorithm [Narendra and Fukunaga, 1977] (B&B) performs non-exhaustive search 

and uses intermediate results to obtain bounds on the final criterion value. The key 

assumption of the algorithm is an adaptation of the monotonicity principle for the 

criterion functionJ , i.e.: 

 ( ) ( ),  ,J A B J A A B Y∪ ≥ ∀ ⊆  (2.2) 

This means that the addition of new features to a current subset must result 

in an increase of performance according to the evaluation criterion. B&B starts 

from the full set and removes features using a depth-first strategy. The subsets are 

coded as bit-strings, i.e. as sequences of zeros and ones which correspond to the 

absence or presence of a feature in the subset. Computational complexity of search 

process is improved further by exploiting minimum solution tree  [Yu and Yuan, 

1993], asymmetrical solution tree [Chen, 2003], approximating values of evaluation 

function by predictions [Somol et al., 2004] or eventually best-first search approach 

[Cao and Saha, 2005]. Typical choices of monotonicity criterion include: 

Bhattacharyya distance [Chen, 2003, Somol et al., 2004], discriminant functions 

[Chen, 2003], Divergence distance [Somol et al., 2004], Patrick-Fischer distance 

[Somol et al., 2004] and the minimum Hankel singular values [Cao and Saha, 

2005]. 
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On the other hand, the sequential Relief algorithm [Kira and Rendell, 

1992] was inspired by instance-based learning [Aha et al., 1991]. The key idea 

behind Relief method is to assign a relevance weight to each feature, which is 

meant to denote the relevance of the feature to the target concept. It samples 

instances randomly from the training set to update relevance values. In context of 

classification, the relevance estimation of each feature is based on the difference 

between the selected instance and the two nearest instances of the same and 

opposite classes. Since the original formulation of Relief can only be applied on 

binary problems [Kira and Rendell, 1992], [Kononenko, 1994] proposes a 

generalisation to univariate case. Relief evaluates usefulness of features according 

to the relevance level [Kira and Rendell, 1992]. 

2.2.1.2.1.2.  Information-theoretic Measures 

Information measures typically determine the information gain from features.  

In Sequential Forward Generation [Huan and Hiroshi, 1998] (SFG), the 

algorithm starts with an empty set and adds one feature from the original set at a 

time. At each round of selection, the best feature is chosen according to fitness 

function.  

The Decision Tree Method [Cardie, 1993] (DTM) employs a similar idea 

to generate feature subsets, however the search is performed with the decision tree 

algorithm [Quinlan, 1993] and candidate subsets are evaluated according to entropy 

criterion.  

Monte Carlo feature selection [Draminski et al., 2008] (MCFS) is an 

example of random information algorithm. It provides an objective measure of 

relative importance of each feature for a particular classification task regardless of 

the classifier that will be used. This is achieved by taking into account 

interdependencies between the features; a feature may prove to be informative only 
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in conjunction with some other features. Importance of a feature is measured via 

intensive use of classification trees. 

2.2.1.2.1.3. Dependency Measures 

Dependency measures are also known as correlation or similarity measures. They 

quantify the ability to predict the value of one variable from the value of another 

variable.  

For instance, in Correlation-based Feature Selection [Hall, 2000] (CFS), a 

linear Pearson’s correlation heuristic is exploited to evaluate the merit of a subset of 

features rather than individual features like in Relief. This heuristic takes into 

account the usefulness of individual features for predicting the target concept along 

with the level of intercorrelation among them. A feature is considered to be a good 

one if it is relevant to the target concept but is not redundant to any of the other 

relevant features. A goodness of measure is expressed by a correlation between 

features. [Yu and Liu, 2003] introduces a concept of predominant correlation and 

predominant feature to formulate Fast Correlation-Based Filter (FCBF) which 

allows to reduce time complexity of CFS. In addition, different correlation 

measures are incorporated into CFS, for instance the Kolmogorov-Smirnov 

correlation coefficient [Biesiada and Duch, 2005] or Pearson’s chi-squared test 

[Biesiada and Duch, 2007].  

In contrast to standard CFS, a maximal relevance [Peng et al., 2005] 

(MaxRel) and minimal-redundancy-maximal relevance [Ding and Peng, 2003, Peng 

et al., 2005] (mRMR) frameworks use nonlinear correlation between features in a 

heuristic search. MaxRel maximises relevance condition to obtain an optimal subset 

of original features, whereas mRMR also minimises redundancy condition 

simultaneously. The idea of maximum relevance is to select the features such that 

they are mutually maximally similar, while the minimum redundancy ensures 
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selection of mutually exclusive features. As a result, minimal redundancy will make 

the feature set more representative of the entire dataset. Both conditions are defined 

in terms of mutual information measure [Cover and Thomas, 1991, Ding and Peng, 

2003, Peng et al., 2005]. Recently, [Zhang et al., 2008] proposed a two-stage 

selection algorithm combining the best properties of mRMR and ReliefF to select a 

compact yet effective gene subset from the candidate set. 

Given the prohibitive cost of considering all possible subsets of features, 

the MaxRel and mRMR algorithms must select features greedily and optimise 

evaluation criterion with features chosen in previous steps. The smaller time 

complexity with comparable accuracy is achieved by Quadratic Programming 

Feature Selection [Rodriguez-Lujan et al., 2010] (QPFS) even though it ranks all 

training features according to mutual information or Pearson’s correlation 

coefficient as a similarity measure. The feature selection is formulated as the 

quadratic programming optimisation problem which takes advantage of Nyström 

approximation to reduce the computational complexity. 

2.2.1.2.1.4. Consistency Measures 

Consistency measures are defined by inconsistency rate for a given feature set: 

( )RI A δ≤  where δ  is a user given inconsistency rate threshold [Dash and Liu, 

2003]. An inconsistency is defined as a sum of all the inconsistency counts over all 

patterns of the feature subset; see [Dash and Liu, 2003] for more details. The best 

subset satisfies the consistency criterion. Consistency measures are usually used for 

classification. For instance, Focus method [Almuallim and Dietterich, 1994] 

exhaustively examines all subsets of features and selects minimal subset of features 

that is sufficient to determine a value of class label for all instances in a training set. 

This preference for a small set of features is referred to as Min-Features bias 

[Almuallim and Dietterich, 1994]. [Liul et al., 1998] proposes an automated 
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interpretation of standard Branch & Bound algorithm (AB&B) where the bound is 

set to the inconsistency rate of the original feature set. In contrast, the Las Vegas 

Filter [Liu and Setiono, 1996] (LVF) randomly searches the space of subsets and 

makes probabilistic choices to guide the search more quickly towards an optimal 

solution. Method adopts the inconsistency rate to find a minimum number of 

features that separate classes as consistently as the full set of features can. An 

inconsistency is defined as two instances having the same feature values but 

different classes. To improve processing performance of AB&B and LVF, a hybrid 

Quick Branch & Bound (QBB) was proposed [Huan and Hiroshi, 1998]. It runs first 

LVF and afterwards AB&B on pre-processed smaller subsets of features [Dash and 

Liu, 2003]. 

2.2.1.2.1.5. Summary of Filtering Selection Methods 

Advantages of all discussed filter techniques are that they easily scale to very high-

dimensional datasets. Moreover, they are computationally simple and efficient, and 

the most importantly they are independent of the inductive algorithm. As a result, 

feature selection needs to be performed only once, and then various classifiers can 

be evaluated. 

A common disadvantage is that they ignore the interaction with the mining 

algorithm (the search in the feature subset space is separated from the search in the 

hypothesis space) which may lead to worse performance [Guyon and Elisseeff, 

2003, Liu and Yu, 2005, Saeys et al., 2007, Hua et al., 2009] in comparison to 

wrapper methods (see next section). In addition, most of the proposed techniques 

are univariate (Chi, IG, BNS, Relief, B&B, SFG, DTM, Focus, AB&B, LVF, and 

QBB). This means that each feature is considered separately, thereby they lack in 

robustness against interactions among features and feature redundancy. In order to 

address the problem of ignoring feature dependencies, some multivariate filter 
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techniques were introduced (MCFS, CFS, FCBF, MaxRel, mRMR, QPFS) which 

aim at the incorporation of feature dependencies to some degree. Finally, filters tend 

to select the full feature set as the optimal solution, as a result the threshold for 

rankings must be chosen arbitrary by a user to select only truly important features 

and exclude noise. Unfortunately, there is no general rule how to set this crucial 

parameter. 

2.2.1.2.2. Wrapper 

The wrapper methodology, popularised by [Kohavi and John, 1997], offers a 

conceptually simple, powerful and universal alternative to the problem of feature 

selection. Namely, it requires one predetermined machine learning algorithm and 

uses its performance as the evaluation criterion to determine which features are 

selected (Figure 2.6). In fact, the inductive algorithm is considered to be a perfect 

“black box”: no knowledge about it is required. In this setup, a search procedure in 

the space of all possible feature subsets is defined as ‘wrapper’ around the data 

mining model, which repeatedly calls the induction algorithm as a subroutine to 

evaluate quality of various subsets of features. The evaluation of subsets is 

performed with an internal validation set obtained by a hold-out or k-fold cross 

validation schema. The feature subset with the highest evaluation is chosen as the 

final set on which the induction algorithm is run and final performance of the 

system is calculated.  
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Figure 2.6. The wrapper approach for feature subset  selection. The induction 

algorithm is used as a “black box” by the subset se lection algorithm. 

2.2.1.2.2.1. Sequential Search Strategy 

Sequential Backward Elimination [Green, 1963, Kittler, 1978, Cotter et al., 2001] 

(SBE) and Sequential Forward Selection [Whitney, 1971, Kittler, 1978, Colak and 

Isik, 2003] (SFS) are the two most commonly used wrapper methods that exploit a 

greedy hill-climbing search strategy. SBE starts with the set of all features and 

progressively eliminates the least promising ones, whereas SFS does the opposite.  

Similarly, the termination criteria are contrary: while SBE stops if the evaluated 

performance drops below a given threshold, SFS adds features until performance 

stops improving. The main drawback of these methods is that they cannot alter 

already chosen subsets. It means that if a feature is retained (resp. deleted), it cannot 

be discarded from (resp. reselected to) the resulting subset. As a result both SFS and 

SBE can easily be trapped into local minima. Moreover, they produce ‘nested 

subsets’, i.e. the subset of the four best features chosen must contain the subset of 

the three best features, and so on. It has been shown in practice that the actual best 

four features may not contain any of the actual best three features [Jain and 

Zongker, 1997].  

To overcome these problems [Pudil et al., 1994] proposes Sequential 

Forward/Backward Floating Search (SFFS, SFBS) that performs a greedy search 
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with the ability to backtrack after each sequential step, so that it can locate a better 

subset. Adaptive versions of the floating search methods were proposed by [Somol 

et al., 1999]. The adaptive methods (ASFFS, ASFBS) consider adding or removing 

variable number of features in each sequential step to search for a better subset 

depending on closeness to the desired number of featuresd . Recently [Nakariyakul 

and Casasent, 2009] has extended Sequential Forward Floating Search method by 

adding a checking procedure whether removing any feature in the currently selected 

feature subset and adding a new one at each sequential step can improve the current 

feature subset. 

2.2.1.2.2.2. Random Search Strategy 

Genetic algorithms [Siedlecki and Sklansky, 1989, Vafaie and De Jong, 1993, Yang 

and Honavar, 1998, Raymer et al., 2000, Oh et al., 2004] and simulated annealing 

[Metropolis et al., 1953, Kirkpatrick et al., 1983, Doak, 1992, Meiri and Zahavi, 

2006] are stochastic methods for feature subset selection which belong to the class 

of Monte Carlo algorithms [Fishman, 1996, Rubinstein and Kroese, 2008]. These 

two classes of techniques are based on the assumption that large domains of data are 

organised and can evolve to simulate specific processes occurring in nature. Genetic 

algorithms (GA) are inspired by Darwinian biological principles of evolution and 

natural selection, where simulated annealing (SA) has the rough physical analogous 

to the annealing process in metallurgy. 

Application of GA for feature selection was inspired by [Siedlecki and 

Sklansky, 1989] who represents a feature subset as a fixed length binary string (a 

so-called chromosome), where the value of each position in the string represents the 

presence or absence of a particular feature. The length of the binary string 

corresponds to the total number of available features. The algorithm starts with an 

initial random population of subsets. Afterwards iteratively each chromosome is 
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evaluated on the basis of its overall fitness with respect to the given application 

domain. The high performing chromosomes will survive and breed into the next 

generation. The next generation of subsets is formed by using two main genetic 

operators, i.e. crossover and mutation [Holland, 1975]. The crossover operation is 

responsible for mixing random parts of two different parent chromosomes to create 

two new offspring, whereas mutation randomly changes components of a single 

parent to insert new information into the population. This population of competing 

solutions evolves in parallel over time. Eventually, it converges to an optimal 

chromosome since the best features are inherited during the evolutionary process to 

the next generations with respect to the given goal.  

The major advantage of GA are their rapid convergence [Gheyas and 

Smith, 2010] however the combination of crossover and a low fixed mutation rate 

may still trap the search in a local minimum [Gheyas and Smith, 2010]. GA can 

deal with large search spaces efficiently and proves to obtain closer suboptimal 

solution to global optimum in comparison to greedy sequential approaches, 

especially with the increase of interactions among features [Vafaie and De Jong, 

1993, Yang and Honavar, 1998]. Moreover, they obtain better performance and 

parsimonious in the number of features required to achieve that accuracy [Raymer 

et al., 2000]. To reduce time complexity, [Oh et al., 2004] introduces hybrid GA 

where crossover and mutation operations are followed by local search operations.  

Simulated annealing (SA) is an iterative, adaptive and probabilistic method 

initially introduced by [Metropolis et al., 1953] and later popularised by 

[Kirkpatrick et al., 1983]. It takes random walks through the problem space, where 

the probability of taking a step is determined by the Metropolis criteria [Metropolis 

et al., 1953]. Application of simulated annealing for feature selection is motivated 

by the following simple idea [Haykin, 1998]:   
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 When optimising a very large and complex system (i.e. a system with 

many degrees of freedom), instead of always going downhill, try to go 

downhill most of the time. 

The simulated annealing algorithm starts with a randomly generated initial 

subset and attempts to iteratively improve it. At each iteration, the algorithm selects 

a random ‘neighbouring’ feature and computes the difference in evaluation quality 

(i.e. energy difference) between the current and candidate subsets. If the new subset 

is better for a given application, then it is automatically retained. Otherwise, the 

new subset is accepted with a probability determined by the Metropolis criteria 

[Metropolis et al., 1953]. Based on the laws of thermodynamics, in most 

applications a variant of the Boltzmann distribution is used for calculating this 

probability. It depends on the energy difference and current temperature, i.e. 

parameter which gradually decreases with the algorithm progress. This changing 

temperature causes a progressive decline of the probability for accepting the bad 

new subset By occasionally accepting inferior subsets, the SA algorithm is able to 

escape local optima. This acceptance is directly related to the temperature, so it is 

more likely to happen in the beginning of the process and less probable later. As the 

algorithm progresses, the temperature is gradually reduced until it vanishes and a 

final solution is obtained.  

The strength of SA is good global search ability, whereas its main 

weakness a slow convergence speed [Gheyas and Smith, 2010]. SA proves its 

robustness against local minima in [Meiri and Zahavi, 2006] and demonstrates a 

high evaluation performance in [Lin et al., 2008]. Hide-and-Seek SA [Romeijn and 

Smith, 1994] extends standard SA by picking a random feature from all feasible 

regions following a random vector instead of using only neighbouring regions. As a 

result, Hide-and-Seek SA converges faster and closer to global optimum regardless 

of how quickly the ‘temperature’ falls to 0. 
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[Gheyas and Smith, 2010] introduces a hybrid algorithm SAGA which 

combines the ability to avoid being trapped in a local minimum of SA with a very 

high rate of convergence of the crossover operator of GA. The SA algorithm here is 

a mutation-based search approach which corresponds to a long jump in the search 

space. SAGA shows the best performance over many subset feature selection 

methods including GA and SA [Gheyas and Smith, 2010]. 

2.2.1.2.2.3. Summary of Wrapper Selection Methods 

The main advantage of wrapper approaches is that they aim at finding features 

better suited to the predetermined machine learning algorithm resulting in superior 

performance of the underlying induction algorithm. Moreover, they include the 

interaction between feature subset search and model selection, and the ability to 

take into account feature dependencies. In addition, random wrapper methods are 

less sensitive to local minima. 

However, a common drawback of these methods is that they have a higher 

risk of over fitting than filter techniques. Besides they also tend to be more 

computationally intensive especially if running induction algorithm has a high 

computational cost [Kohavi and John, 1997, Blum and Langley, 1997]. Moreover, 

the solution suffers from the lack of generality, since it is tuned for a specific 

induction algorithm. Finally, both GA and SA rely on several user determined 

parameters which may significantly impact the solution. Currently, established rules 

do not exist for selecting these parameters. 

2.2.1.3.  Stopping Criterion 

The feature selection process should stop when a specified stopping criterion is 

reached. Some frequently applied stopping criteria include: 

• The search completes. 
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• Some given bound is reached, where a bound can be a minimum number of 

features or maximum number of iterations. 

• The ‘probe’ method, i.e. whether further addition (or deletion) of any feature 

deos not produce a better subset. 

• A sufficiently good subset is obtained according to some evaluation function. 

• Predefined time limit. 

2.2.1.4.  Validation 

The validation procedure is not a part of the feature selection process itself. It tries 

to test the validity of the selected subset of features. A straightforward way for 

result validation is to directly measure the result using prior knowledge about the 

data. In real-world applications, however, such knowledge is usually unavailable. 

Hence, the validation process relies on some indirect methods which monitor the 

change of mining performance with the alteration of features (e.g. classification 

error). This is achieved by simply conducting the “before-and-after” experiment to 

compare the error rate of the learning algorithm on the full set of features and that 

learned on the selected subset. 

2.2.1.5.  Summary of Feature Selection Methods 

The selected optimal set of features can be suitable to understand the physical 

process that generates the patterns, therefore feature selection has proved to be very 

popular approach in some applications especially in pattern recognition [Jain et al., 

2000, Raymer et al., 2000, Oh et al., 2004, Draminski et al., 2008, Lin et al., 2008, 

Forman, 2008, Hua et al., 2009, Rodriguez-Lujan et al., 2010, Gheyas and Smith, 

2010] and bioinformatics [Saeys et al., 2007]. However, the huge disadvantage is 

that the obtained solutions are always relative to a certain evaluation criterion. 

Moreover, it is difficult to propose meaningful evaluation criterion in many 

domains including computer vision, graphics, speech recognition, image processing 
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etc. A brief summary of discussed feature selection methods according to the 

framework depicted in Figure 2.4 is presented in Table 2.1.  

Table 2.1. Categorisation of feature selection algo rithms for dimensionality 

reduction. 
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2.2.2. Feature extraction 

Feature extraction is defined as the transformation or/and combination of the 

original multidimensional features in order to generate a completely new set of 

informative features in a space of fewer dimensions [Backer et al., 1998]. In 

contrast to feature selection methods, here a feature vector is defined as a data 

sample. Feature extraction is a powerful alternative to feature selection since it aims 

at preserving most of the original information in more appropriate low dimensional 

representation [Jain et al., 2000, van der Maaten et al., 2009]. 
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Given a space of features { }| , 1..i iY y y i= ∈ =D Nℝ , the linear or nonlinear 

transformation function F  is defined to map the original feature space into a 

subspace of reduced dimensionality { }| , 1..i iX x x i= ∈ =d Nℝ   (Figure 2.7): 

 
: ,  ,  

( ) :

F Y X Y X

x x F y

→ ⊆ ⊆
↔ = →

D d

D d

ℝ ℝ

ℝ ℝ
 (2.3) 

where <d D  (often <<d D ). A corresponding reconstruction mapping function f  

is given by: 
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f X Y X Y

y y f x

→ ⊆ ⊆
↔ = →

d D

d D

ℝ ℝ

ℝ ℝ
 (2.4) 

yi1 yi2 yi3 yi4 yi5 yi6 yiD Y xi3 xidxi2xi1X

D d

a set of N

examples yi (i=1..N)

data sample =

feature vector

X = F(Y)

 

Figure 2.7. Principle of the feature extraction and  notations. 

The fundamental assumption that justifies feature extraction is that the high 

dimensional data is actually distributed, at least approximately, on a manifold of 

smaller dimension than the data space (for the basic terminology and explanation of 

manifold concept please see section 2.2.2.1). As a consequence, the objective of 
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dimensionality reduction is to uncover this embedded manifold structure from the 

high dimensional data space. Solving this problem is referred to as manifold 

learning, since the task is to “learn” unknown geometry of a manifold from a set of 

points [Camastra and Vinciarelli, 2008].   

An overview of feature extraction methods is depicted in Figure 2.8. A 

much broader review and comparison of deterministic frameworks can be found in 

[van der Maaten et al., 2009], where probabilistic frameworks are the main concern 

of work [Quirion et al., 2008]. Generally, feature extraction techniques are divided 

broadly into two categories, i.e. deterministic and probabilistic frameworks. Both 

categories are further classified into two main classes: linear and non linear 

methods. Linear methods assume that the data lie approximately on a linear 

subspace of the high-dimensional data. Since most real datasets are highly 

nonlinear, linear methods cannot model the curvature and nonlinear structures 

embedded in most observed spaces. As a consequence, nonlinear methods were 

proposed to address this issue. 

 

Figure 2.8. Taxonomy of feature extraction algorith ms for dimensionality reduction. 
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2.2.2.1. Manifold Theory 

A manifold is a topological space of dimensionality d  that is locally Euclidean, i.e., 

around every point, there is a neighbourhood that is topologically the same as the 

open unit ball in D
ℝ  [Hirsch, 1976]. For instance, let’s consider the high 

dimensional spaces shown in Figure 2.9 which are represented in either 2
ℝ  or 3

ℝ . 

Since these spaces are parameterised by only one or two variables, they are 

intrinsically one or two dimensional manifolds embedded in two or three 

dimensions. 
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Figure 2.9. Examples of one (a,b) and two dimension al manifolds (c) embedded in 

either two (a) or three dimensions (b,c). 

From a mathematical point of view, the concept of manifold is defined by 

recalling the following definitions from differential geometry and topology 

[Camastra and Vinciarelli, 2008]: 
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Definition 1. A homeomorphism is a continuous function whose inverse 

is also a continuous function. 

Definition 2. A d-dimensional manifold M is set that is locally 

homeomorphic with d
ℝ . That is, for eachx M∈ , there is an open 

neighbourhood aroundx , xN  and a homeomorphism : xf N → d
ℝ . 

These neighbourhoods are overlapping and referred to as coordinate 

patches, and the map is referred to a coordinate chart. The image of the 

coordinate charts is referred to as the parameter space. 

Definition 3. A smooth (or differentiable) manifold is a manifold such 

that each coordinate chart is differentiable with a differentiable inverse 

(i.e., each coordinate chart is a diffeomorphism). 

In the context of feature extraction, a smooth manifold M is considered:  it 

lies in a high dimensional space (M ⊂ D
ℝ ) and is homeomorphic with a low-

dimensional space (d
ℝ , with <<d D ). 

2.2.2.2.  Deterministic Frameworks 

Deterministic dimensionality reduction methods optimise an objective function that 

does not contain any local optima, in other words the solution space is convex 

[Boyd and Vandenberghe, 2004]. The objective function has usually the form of a 

(generalised) Rayleigh-Ritz theorem [Horn and Johnson, 1985] (see example in 

section 4.4.1.2, equation (4.20)) and therefore is optimised by solving the 

(generalised) eigenvalue problem [Arnoldi, 1951, Fokkema et al., 1999, Knyazev, 

2002]. The final embedded space is formed by eigenvectors which correspond to 

smallest or largest eigenvalues. Any deterministic method is classified as global or 

local one. The global methods perform the eigendecomposition of a dense cost 

matrix (Principal Component Analysis, Multidimensional Scaling, Kernel Principal 

Component Analysis, Isomap, Maximum Variance Unfolding), whereas local 

methods perform the eigendecomposition of a sparse cost matrix (Locally Linear 
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Embedding, Laplacian Eigenmaps). All these approaches are discussed in the 

subsequent sections. 

2.2.2.2.1. Linear Methods 

2.2.2.2.1.1. Principal Component Analysis 

A typical and well-established representative of linear methods is Principal 

Component Analysis (PCA) which is also known as the Hotelling or the Karhunen-

Loeve transform [Hotelling, 1933, Jolliffe, 1989, Jackson, 1991]. Its popularity is 

due to its conceptual simplicity, its analytical properties and the existence of 

efficient implementations which have polynomial complexity. The objective is to 

obtain a low-dimensional representation of the data that preserves maximum 

amount of variance. In fact, this defines an orthonormal coordinate system where 

the correlation between different axes is minimised.  

In mathematical terms, PCA reduces dimensionality with an orthogonal 

linear transformation: 

 Tx A y=  (2.5) 

which projects a number of (possibly) correlated variables into a smaller number of 

uncorrelated variables called principal components. It can be shown that this linear 

mapping A  is formed by the top d  eigenvectors of the xD D covariance matrix 

1

1

T
i ii

C y y−
=

= ∑
N

N assuming that the input patterns iy  are centred on the origin. The 

first principal component accounts for the largest variability in the data, and each 

successive component accounts for the largest remaining variability. PCA is an 

optimal linear dimension reduction technique in the mean-square sense, i.e., it 

minimises the errors in reconstruction of the original data from its low-dimensional 

representation [Jolliffe, 1989, Jackson, 1991]. PCA is an example of a non-

parametric feature extraction which produces a unique solution regardless of the 
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distribution of the data, as long as the data have finite variance along the principal 

axes. 

1D

2D

1d

2d

 

Figure 2.10. Geometrical interpretation of PCA. The  PCA projects the data along the 

directions where the data vary the most. 

2.2.2.2.1.2. Multidimensional Scaling 

Another classical example of linear methods is Multidimensional Scaling 

[Torgerson, 1952, Kruskal, 1964, Cox and Cox, 1994] (MDS). In practice, MDS 

covers a collection of techniques sharing the common goal of faithfully preserving 

the inner products between different feature vectors in high and low dimensional 

spaces. This is achieved by, first, constructing the proximity matrix which measures 

the pairwise similarity among all patterns Y and, then, optimising a stress function. 

The stress function measures the error between the pairwise inner products in the 

low-dimensional and high-dimensional representations of the data: 

 
, 1

(     )i j i j
i j

y y x xε
=

= −∑
N

i i  (2.6) 

The minimisation of the above cost function depends on the specific 

properties of the chosen inner product. In most approaches MDS is motivated by the 

idea of preserving pairwise distances which are converted into equivalent dot 

products with a formula: 
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1

( )
2

TS CSCτ = −  (2.7) 

where 
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( )
T

C I= −
N

 denotes the geometric centring matrix and { , }S X Y∈ , 1 is a 

matrix of ones with the size ×N N . This leads to a technique called the metric MDS 

which exploits the raw stress function of any distance metric, such as the Euclidean 

and Manhattan distances [Cox and Cox, 1994]: 

 
, 1

( ( ( , )) ( ( , )))i j i j
i j

dist y y dist x xε τ τ
=

= −∑
N

 (2.8) 

A solution is obtained from the spectral decomposition of the Gram matrix 

of inner products 0.5  ( , )ij i j i jg y y C dist y y C= ⋅ = −  [Cox and Cox, 1994] and 

selecting the d  dominant eigenvectors.  The classical MDS is a special case of 

metric MDS where Euclidean distances are employed [Torgerson, 1952]. Though 

based on a somewhat different geometric intuition, classical MDS is closely related 

to PCA and yields identical output patterns. The connection between PCA and 

classical scaling is described in more detail in [Williams, 2002]. 

Alternatively, Sammon’s cost function is used in the metric MDS to put 

more emphasis on retaining distances that were originally small [Sammon, 1969, 

Cox and Cox, 1994]. This is achieved by weighting the contribution of each pair (i, 

j) in the stress function using the inverse of their pairwise distance in the high 

dimensional space: 
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Finally, the non-metric MDS [Kruskal, 1964] is considered as a nonlinear 

approach since it discovers the underlying structure of monotonic data by 

maintaining the rank ordering of the interpoint distance based on the ranking of the 

value of dissimilarities derived from the original input space: 
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where ˆ ( , )i jdist x x  are pseudo-distances derived from the ( , )i jdist x x  with Kruskal’s 

monotone regression procedure [Kruskal, 1964]. They are calculated in such a way 

that their rank order matches perfectly the rank order of the ( , )i jdist y y  and they are 

as close as possible to the ( , )i jdist x x  [Kruskal, 1964]. 

The minimisation of Sammon’s metric MDS and non metric MDS is 

generally performed using either the conjugate gradient back propagation 

[Johansson et al., 1992] or a pseudo-Newton method [Battiti and Masulli, 1990, 

Cox and Cox, 1994]. 

2.2.2.2.1.3. Summary of Linear Methods 

PCA and MDS are well-established linear methods used by the research 

community. However, the fact that they rely on the assumption that the data must 

lie approximately on a linear subspace of the high-dimensional data limits 

significantly the scope of potential real life applications. 

2.2.2.2.2. Nonlinear Methods 

2.2.2.2.2.1. Kernel-based Approaches 

Kernel PCA (KPCA) is the nonlinear generalisation of traditional PCA in a high-

dimensional space that is constructed using a kernel function [Schölkopf et al., 

1997]. If the data is distributed in a nonlinear way then it should be projected on a 

curve rather than a line (Figure 2.11). Such distribution may be linearised using 

nonlinear mapping from the input space Y  to a higher dimensional feature space, 

i.e. a Hilbert space H  of possibly infinite dimension, using empirical kernel map 

: , ( )iH y HΦ → Φ ∈D
ℝ [Schölkopf and Smola, 2002]. Here the mapping Φ  is 

approximated implicitly by the form of a dot product ( )  ( )Φ ⋅ Φ ⋅i  in the feature 
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spaceH . These inner products are computed using kernel functions without 

actually performing the mapping Φ  [Schölkopf et al., 1997]. Formally, for an 

arbitrary pair of data points iy  and jy , the dot product between them 

( )  ( )i jy yΦ Φi  is parameterised by the kernel functionκ : 

 ( , ) ( )  ( )ij i j i jk y y y yκ= = Φ Φi  (2.11) 

This kernel function can be any function which satisfies Mercer's condition 

[Mercer, 1909, Courant and Hilbert, 1953], i.e. gives rise to a positive semi definite 

Mercel kernel { }| , 1..ijK k i j= = N . Popular choices for the kernel function include:  

• the linear kernel: ( , )   i j i jy y y yκ = i  (makes KPCA equivalent to standard PCA), 

• the polynomial kernel: ( , ) (   )a
i j i jy y b y yκ = + i , 

• the Gaussian kernel:  

 
2

1
( , ) exp( 0.5 (   ) (   ))T

i j i j i jy y y y y yκ
σ

= − − −  (2.12) 

It is assumed that the data have a zero mean in the feature spaceH , thus in 

practice, the symmetric kernel matrix K  is double centred by subtracting out the 

mean from each feature vector. Finally, KPCA computes the d  dominant 

eigenvectors { | 1.. }jv j = d  and eigenvalues { | 1.. }j jλ = d  of the kernel matrix K  to 

produce a low dimensional representation which is linearly related to the feature 

space, however nonlinearly related to the input space (Figure 2.11). In order to 

obtain the low-dimensional data representation, data are projected onto scaled 

versions of the eigenvectors jv . The result of the projection is given by [Schölkopf 

et al., 1997]: 

 
, 1

{  ( , ) | 1.. }j
i k

i k j

v
x y y jκ

λ=

= =∑
N

d  (2.13) 

Although KPCA is robust against local minima, a substantial disadvantage 

is that it is sensitive to the choice of kernel used: different kernels produce different 

low dimensional structures which display different performances. Since no a priori 



CHAPTER 2 State of the Art Review 2.2 Dimensionality Reduction 

 - 49 -  

knowledge is available, a whole space of kernel functions has to be explored in 

order to find the most suited to a particular task. Moreover, KPCA is 

computationally very expensive, especially for large training set, since it requires 

evaluation of the kernel function in respect of all pairs of training points. To address 

this problem [Tipping, 2001] proposed to approximate the covariance matrix K  in a 

feature space by a subset of outer products of feature vectors using a maximum 

likelihood criterion.  

  2   H
Φ
→ℝ

( )( , )   
a

i j i jy y y yκ = i

1D
1D

2D 2D
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Figure 2.11. The principle of kernel PCA: using a n on-linear kernel function κ  

instead of the standard dot product, PCA is perform ed implicitly in a possible high-

dimensional space H  which is nonlinearly related to the input space. 

2.2.2.2.2.2. Embedded-based Approaches 

Embedded-based approaches, also called spectral methods, have emerged as a 

powerful tool for unsupervised nonlinear dimensionality reduction and manifold 

learning. They aim at preserving some geometrical property of the underlying 

manifold by constructing neighbourhood graphs which express nonlinear 

dependencies between high dimensional points. Spectral methods can broadly be 

divided into three families according to the way feature vectors are expressed in 

function of their neighbours: 

• Locally Linear Embedding [Roweis and Saul, 2000] (LLE), 
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• Laplacian Eigenmaps [Belkin and Niyogi, 2002] (LE), 

• Isometric Feature Mapping [Tenenbaum et al., 2000] (Isomap), 

All these methods seek to produce an embedded space where proximity 

relations are preserved, so nearby points in data space remain close in low 

dimensional space. However, while Isomap attempts to maintain global geometric 

properties, LLE and LE focus on preserving local geometry in each neighbourhood, 

which implicitly tends to keep the global layout of the data manifold. These 

methods share the same structure of algorithm which is illustrated in Figure 2.12. 

 

Figure 2.12. Dimensionality reduction using spectra l methods. 

Briefly, the algorithm structure consists of the following steps. First, the 

neighbourhood for each data point is constructed and weights, which express the 

geometrical relationship between each data point and its neighbours, are determined 

according to the property to be preserved. Then, each method derives a cost matrix 

from this weighted graph and optimises it subject to constraints that make the 

problem well-posed. Finally, low dimensional embedding is obtained from the 

Eigen-decomposition of the cost matrix. 

2.2.2.2.2.2.1. Neighbourhood Construction 

All algorithms start by finding neighbours for each data point of the dataset. Since 

the neighbourhoods overlap with one another, a global topology of manifold is 

efficiently described by a combination of these neighbourhoods in a coherent 

structure. In addition, for local methods, it is assumed that within each 

neighbourhood the manifold is approximately linear. This is justified by Taylor's 
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theorem that any differentiable function becomes approximately linear in a 

sufficiently small region around a point [Kline, 1998]. 

The neighbourhood for each point is formed by selecting either the K-

nearest neighbours or neighbours whose distances are lower than a constant 

threshold ε , i.e. points belonging to a hyper sphere of radiusε . The Euclidean 

norm was used as distance metric in the original papers [Tenenbaum et al., 2000, 

Roweis and Saul, 2000, Belkin and Niyogi, 2002]. Because of its conceptual 

simplicity and its robustness against data density, the K-nearest neighbour approach 

is far more popular in the research community. Several methods to automate the 

process of the parameter selection have been proposed [Kouropteva et al., 2002, 

Samko et al., 2006, Karbauskait et al., 2007, Goldberg and Ritov, 2009]. Detailed 

discussion about selection of the neighbourhood size can be found in section 3.2.1. 

For a large dataset, the identification of neighbours is realised very efficiently with 

the usage of kd-tree [Bentley, 1975]. 

2.2.2.2.2.2.2. Determination of Weights 

Weights W express the magnitude of geometrical relationship between each data 

point and its neighbours.  

In LLE, they summarise the neighbours’ contribution to the linear 

reconstruction of a data point and are obtained by solving a least square error 

problem in the original space [Roweis and Saul, 2000] By design, these 

reconstruction weights reflect intrinsic geometric properties of the data and are 

invariant to translations, rotations and scaling. Therefore, they are expected to be 

equally valid for characterisation of the local geometry in the low dimensional 

patches of a manifold. 

In the case of the LE and Isomap algorithms, the weights are related to the 

distance between a high dimensional point and its neighbours using respectively 
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heat kernel [Belkin and Niyogi, 2002] and Euclidean distance [Tenenbaum et al., 

2000].   

The manifold is then approximated, by an adjacency undirected graph. 

Nodes in these graphs correspond to the data points and edges represent the weights 

between points, i.e. neighbour relations. Graphs are only locally connected (through 

the neighbourhood of each point), because an edge connection exists only if its 

weight is not equal to 0. However, one of key assumptions behind the 

neighbourhood size selection procedure is to create overlapping neighbourhoods on 

the manifold, thus a fully connected graph can be assembled (Figure 2.13c,d).  

a) b)

c) d)

 

Figure 2.13. Examples of fully connected neighbourh ood graphs for: a,c) s-curve and 

b,d) swissroll. 

In the case of Isomap which aims at preserving the global topology of the 

manifold, the geodetic distances ( , )G i jdist y y  between all pairs of data points on the 

manifold are estimated. The geodetic distance between two points is defined as the 

minimum length of all possible paths encapsulated within the manifold joining both 
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points [Do Carmo, 1976] (Figure 2.14). Locally, the geodesic distance is equal to 

the Euclidean distance between two points in the high dimensional space. However 

this approximation breaks down for distant points. Therefore, globally, the geodesic 

distances are estimated by computing shortest path distances in the graph using a 

technique such as the Floyd-Warshall’s algorithm [Floyd, 1962, Warshall, 1962] or 

the computationally more efficient Dijkstra’s algorithm [Dijkstra, 1959]. 
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Figure 2.14. One dimensional manifold embedded in a  two dimensional space 

illustrating a difference between Euclidean and geo desic distance. Let’s consider 

two red points in the spiral (a), the preservation of Euclidean distance (b) does not 

reflect the intrinsic dissimilarity between these t wo points in the one dimensional 

manifold (d). In contrast, the geodetic distance (c ) is able to encapsulate adequately 

the relationship between these two points along the  one-dimensional manifold (e). 
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2.2.2.2.2.2.3. Cost Function and Cost Matrix 

In the next step, an appropriate cost function and corresponding cost matrix are 

constructed. Since the calculated weights reflect the intrinsic geometric structure of 

the manifold, an embedded manifold in a low dimensional space is constructed 

using the same weights. This is achieved by optimizing different quadratic cost 

functions with respect to the unknown coordinates X  and the fixed cost matrix W  

(the original inputs Y are not involved).  

In the LLE method, each low dimensional data point is reconstructed 

entirely from a weighted linear combination of its respective nearest neighbours, so 

the d-dimensional coordinates X are chosen to minimise the embedding cost 

function : 

 ( )
2

1 1

T
i ij j

i j

x w x tr X MXε
= =

= − =∑ ∑
N N

 (2.14) 

where ( ) ( )T
M I W I W= − −  is the cost matrix.  

Similarly, LE minimises the relative distance between nodes in a graph in 

order to preserve proximity relations between points. As a result, the following cost 

function was designated using similar components: 

 ( )2

, 1

1

2
T

i j ij
i j

x x w tr X LXε
=

= − =∑
N

 (2.15) 

Here, the cost matrix L  is called the Laplacian matrix and is defined 

by:L M W= − , where 11 22{ , ,..., }M diag m m m= nn  is a diagonal matrix with entries 

1ii ijj
m w

=
=∑

N
.  

The optimisation of the above objective functions is performed subject to 

the following constraints [Roweis and Saul, 2000, Belkin and Niyogi, 2002]: 

• a square cost matrix is real, symmetric and positive semidefinite (i.e. 

Hermitian). 
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• the outputs X  are centred on the origin, 

• embedding vectors have unit covariance. 

Isomap tries to preserve the distances and angles between nodes in the 

graph; however its cost function has a different formulation. Isomap can be 

understood as a non-linear extension of the classical metric MDS (section 

2.2.2.2.1.2), in which, estimates of geodesic distances along the sub manifold are 

preserved instead of standard Euclidean distances. In other words, Isomap tries to 

discover points whose pairwise Euclidean distances ( , )E i jdist x x  in the embedded 

space match geodesic distances ( , )G i jdist y y  in the high dimensional data space. As 

a result, derived from the equation (2.8), the following objective function was 

proposed: 

 
,

( ( ( , )) ( ( , )))G i j E i j
i j

dist y y dist x xε τ τ= −∑  (2.16) 

2.2.2.2.2.2.4. Optimisation 

In the last step, the actual low dimensional representation of data points is revealed 

through optimisation of an objective function (argminXε ). The optimisation of this 

constrained quadratic programming problem is performed by introducing Lagrange 

multipliers [Mizrahi and Sullivan, 1990] to enforce the constraints to an objective 

function.  

The embedded space X  is spanned by the eigenvectors given by either the 

d  smallest nonzero eigenvalues in the case of LLE and LE or the d  largest 

eigenvalues for Isomap. Eigenvectors and eigenvalues are calculated by spectral 

decomposition of cost matrices [Arnoldi, 1951, Fokkema et al., 1999, Knyazev, 

2002] according to the generalisation of the Rayleigh-Ritz theorem [Horn and 

Johnson, 1985]: 

• LLE: eigenvalue problem is solved on the sparse cost matrixM . 

• LE: generalised eigenvalue problem is solved on the sparse cost matrixL . 
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• Isomap: eigenvalue problem is solved on the dense cost matrix ( ( , ))G i jdist y yτ  

where τ  is defined according to equation (2.7). 

2.2.2.2.2.2.5. Extensions 

Since research into embedding based approaches has been very active, many 

extensions and improvements have been suggested. Some of them are summarised 

in this section. 

Instead of preservation of the specific local geometric relationships (LLE, 

LE) or isometric structure of data (i.e. distances and angles) (Isomap), in some 

scenarios a more faithful embedding of high dimensional data can be obtained by 

maximally preserving only angles in each neighbourhood [De Silva and 

Tenenbaum, 2003, Sha and Saul, 2005]. Based on this concept, conformal Isomap 

[De Silva and Tenenbaum, 2003] and conformal eigenmaps [Sha and Saul, 2005] 

(extension of LLE and LE) were proposed which attempt to maintain explicitly 

these local angles. Note that the class of conformal embeddings includes all 

isometric embeddings, but not vice versa.  

Alternatively, Hessian LLE [Donoho and Grimes, 2003], Hessian 

Eigenmaps [Donoho and Grimes, 2003] and Local Tangent Space Alignment 

[Zhang and Zha, 2005] (LTSA) explore the geometric relations between 

neighbouring data points in a local tangent space which is constructed at every 

point. Hessian LLE minimises the ‘curviness’ of the high-dimensional manifold 

under the constraint that locally the low-dimensional data representation is 

isometric. The local tangent space at every data point is described by the Hessian, 

thus, the global curviness of the manifold is measured by means of these local 

Hessians. Hessian Eigenmaps are based on a similar concept: they simply replace 

the Laplacian manifold by the Hessian manifold. In contrast, LTSA aligns all local 

tangent subspaces to construct a global coordinate system for a nonlinear manifold. 
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The local tangent space is constructed by applying PCA in each neighbourhood, so 

a linear mapping is defined from a high-dimensional data point to its local tangent 

space. It is assumed that a similar mapping can be computed from the 

corresponding low-dimensional data point to the same local tangent space. 

Since the process of dimensionality reduction using global methods is very 

computationally demanding in comparison to local methods [van der Maaten et al., 

2009],   [De Silva and Tenenbaum, 2003] proposed an acceleration procedure which 

initially reduces dimensionality of a small subset of “landmark” feature vectors. In 

turn, the rest of the embedding is approximated from these landmarks using the 

Nyström approximation [De Silva and Tenenbaum, 2003].  

By definition, all presented methods are unsupervised algorithms; therefore 

they do not take into account the availibility of data labels when producing the 

embedded space. To address supervised learning problems (e.g. classification) a 

few extensions were proposed. They include discriminant Isomap [Yang, 2003], 

supervised LLE [De Ridder et al., 2003] and semi-supervised LE [Zheng et al., 

2008]. 

2.2.2.2.2.2.6. Summary of Embedded-based Approaches 

All methods discussed here are based on the assumption that the observed data are 

densely sampled, also called smoothly sampled, on the D-dimensional manifold in 

the data space and the underlying embedded manifold exists. In such case, local 

linearity assumption is valid for LE and LLE, thus, each patch can be characterised 

accurately by linear coefficients which encapsulate geometrical relationships 

between points. In the case of Isomap, it is assumed that the geodesic distance 

between nearby points is approximately linear. Thus, the geodesic distance between 

two near points is well approximated by the Euclidean distance in the high-

dimensional data space.  
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These methods do not provide any explicit generic function for mapping 

between low and high dimensional spaces nor probabilistic density model. As a 

result, embedding for new unseen points cannot be obtained directly. Despite this 

limitation, these methods have proved very popular because they can handle 

efficiently very large high dimensional datasets (especially local methods) and scale 

well with dimensionalityd . Moreover, the analytical non iterative optimisation 

process guarantees a unique global solution. 

2.2.2.2.2.3. Maximum Variance Unfolding 

Maximum Variance Unfolding [Weinberger and Saul, 2005] (MVU) is a global 

nonlinear dimensionality reduction method inspired by KPCA and embedding 

based approaches. Since the choice of the kernel plays a crucial role in KPCA, 

MVU attempts to learn kernel matrix K  from neighbourhood graph restrictions so 

that  the kernel function does not need to be chosen manually. 

The algorithm structure is similar to embedding based approaches (Figure 

2.12). First, the neighbourhood for each data point is constructed as described in 

section 2.2.2.2.2.2.1 and the fully connected adjacency graph is assembled. In 

contrast to spectral methods, MVU employs a very simple rule for edge weights: a 

value of 1 is assigned to each pair of neighbours [Weinberger and Saul, 2005]. 

From such discretised approximation of the manifold, the kernel based matrix is 

derived. 

MVU aims at preserving exact distances and angles between nodes in the 

graph. This is achieved by maximisation of the total variance which pulls 

embedding coordinates as far apart as possible: 

 
2 2

,

1

2 i j i
i j i

x x xε = − =∑ ∑N
 (2.17) 

with local isometry constraints to maintain pairwise distances and implicitly angles: 
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 ( ) 2
2ii ij jj ij i j ijk k k w y y w− + = −  (2.18) 

where K  is a cost Gram matrix where the inner products   ij i jk x x= i . As a 

consequence of this formulation, a quadratic programming problem (2.17) is 

simplified to a linear programming problem: 

 
2

1 1

( )i ii
i i

x k tr Kε
= =

= = =∑ ∑
N N

 (2.19) 

A low dimensional embedding is discovered by optimisation of the above 

constrained linear programming problem using semi definite program 

[Vandenberghe and Boyd, 1996] followed by the eigendecomposition of the 

obtained cost matrix K . The embedded space X  is spanned by the eigenvectors 

given by the d  largest eigenvalues. 

Similarly to Isomap, MVU is a global method with a dense cost matrix, 

hence the optimisation process is computationally demanding. Inspired by landmark 

Isomap [De Silva and Tenenbaum, 2003], [Kilian et al., 2005] proposes a 

conceptually similar acceleration procedure, where a small subset of “landmark” 

feature vectors is used for dimensionality reduction. In turn, the rest of the 

embedding is approximated from these landmarks using a factorised approximation 

of the Gram matrix [Kilian et al., 2005]. Since it is easier to optimise a linear 

programming problem than a quadratic one, [Hou et al., 2009] presents a linear 

reformulation of the LLE and LE cost functions, whereas [Wang and Li, 2009] 

combines MVU and LE to design the distinguishing variance embedding method 

which maximises the global variance subject to a proximity preservation constraint 

derived from LE. 

2.2.2.3.  Probabilistic Frameworks 

The main limitations of the previously described methods are the absence of an 

associated probability density and the lack of a generative model, which are 

essential in many applications. As a result, another class of dimensionality 
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reduction methods evolved, the so-called latent variable models [Bishop, 1999] 

(LVMs). LVMs are statistical methods for modelling the covariance structure of 

high dimensional data using a small number of variables. Comprehensive overviews 

of probabilistic frameworks can be found in [Bishop, 1999, Carreira-Perpinán, 

2001, Quirion et al., 2008]. 

Let’s consider an unknown distribution ( )p y  in an observed data space 

ϒ ⊆ D
ℝ  ( y∈ ϒ ) of which only samples { }| 1..iY y i= = N

 
are known. The observed 

high-dimensional samples are assumed to be independent and identically distributed 

random variables, which are generated from an underlying low-dimensional process 

relying only on d  degrees of freedom (Figure 2.15). Since this process is defined 

by a set of latent or hidden variablesix , the entire space of these hidden variables is 

referred as the latent space χ ⊆ d
ℝ  ( , 1..ix iχ∈ = N ).  

 

Figure 2.15. Latent variable model with D observed dimensions and d latent 

variables. The latent variables may or may not be i ndependent. 

A point x  in the latent space is generated according to a prior distribution 

( )p x  and is related to a higher dimensional observed space through a continuous 

and fixed transformation :f χ → ϒ . Since ( )M f χ=  represents a low 

dimensional manifold, where the data would reside if there was no noise, the 

observed distribution of whole data space is approximated by adding the noise 

model ( | ) ( | ( ))p y x p y f x= . Figure 2.16 illustrates the concept of latent variable 

models.  
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Figure 2.16. Illustration of a continuous latent va riable model with a 2-dimensional 

latent space χ  on the left and a 3-dimensional observed space ϒ  on the right. 

The marginal distribution in data space is given by the joint probability 

density function ( , )p y x  in the product space χϒ×  by integrating over the latent 

space: 

 ( ) ( , ) ( | ) ( )p y p y x dx p y x p x dx
χ χ

= =∫ ∫  (2.20) 

This is called the fundamental equation of latent variable models 

[Bartholomew, 1984]. According to the above equation, any continuous latent 

variable model is defined by three main components:  

• a prior distribution in the latent space ( )p x , 

• a smooth non-singular mapping from latent to observed space ( )f x , 

• a noise model in the data space( | )p y x . 

Therefore, the objective is to find a combination of latent distribution ( )p x  

along with a uncertainty model ( | )p y x  that approximates ‘satisfactorily’, given 

observed data, samples using the axiom of local independence ( 1..i = N ): 

 
1

( | ) ( | )i i j ij i
j

p y x p y x
=

= ∏
D

 (2.21) 
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This axiom states that, for some≤d D , the observed variables are 

conditionally independent given the latent variables [Bartholomew, 1984, Everitt, 

1984]. Hence, the goal is to identify the best latent variables for which this axiom 

holds. It is assumed that the density function ( | )p y x  used for the noise model has 

the following properties [Carreira-Perpinán, 2001]: 

• It is centred at ( )f x , which would become a single point in the absence of 

noise. 

• It decays gradually as the distance to ( )f x  increases. 

• It assigns nonzero density to every point in the observed space. 

• It should have a diagonal covariance matrix to account for different scales in the 

different observed dimensions( 1.. )jy j = D . 

The prior ( )p x , the mapping function f  and the noise model ( | )p y x  

usually rely on a set of parameters denoted collectively by Φ . These parameters 

relate the sets of latent and observed variables. Parameters Φ  are usually obtained 

by iterative maximum likelihood estimation using for instance the Monte Carlo 

simulation [Fishman, 1996, Rubinstein and Kroese, 2008] or more often 

Expectation-Maximisation (EM) algorithm [Dempster et al., 1977, McLachlan and 

Krishnan, 2008]. Note that all LVMs rely on an optimisation process, thus they are 

sensitive to local optima. 

Since the observed data points are assumed to be independent, the likelihood 

of the full data set is: 

 
1

( ) ( )i
i

p Y p y
=

= ∏
N

 (2.22) 

where ( | )ip y Φ  is given by equation (2.20). 

Latent variable models are classified as linear and nonlinear according to 

the corresponding functional form used for mapping. In the following sections, the 
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notation ( | , )z µ ΣN  will denote a Gaussian distribution over z  with mean µ  and 

covarianceΣ . 

2.2.2.3.1. Linear Methods 

Two well established linear models are factor analysis [Everitt, 1984, Bartholomew, 

1987] (FA) and probabilistic principal components analysis [Tipping and Bishop, 

1999b] (PPCA). The relationship between the latent variable and the observed data 

point is linear with added noise and expressed by the following generative model: 

 ( )  i if x A x µ= +  (2.23) 

 ( ; )i i iy f x A ε= +  (2.24) 

where the matrix A ( ×D d ) expresses the linear relationship between the latent-

space χ  and the data space ϒ , while the parameter vector µ  permits the model to 

have a non-zero mean. ε  denotes the Gaussian noise: 

 ( ) ( | 0, )p ε ε ψ= N  (2.25) 

while the corresponding conditional noise model is centred at ( )f x  with the 

diagonal covariance matrix ψ : 

 ( | , , ) ( | ( ; ), ) ( | , )i i i i i ip y x A y f x A y Axψ ψ µ ψ= = +N N  (2.26) 

The latent variables are defined to be independent and Gaussian with a unit 

variance, ( ) ( | 0, )i ip x x I= N .  

According to equation (2.20) and the defined distributions, it can be shown 

analytically that the marginal distribution in the data space is normal [Tipping and 

Bishop, 1999a, Tipping and Bishop, 1999b, Carreira-Perpinán, 2001] given the 

model parameters { , }A ψΦ = :  

 
( | , ) ( | , , ) ( ) ( | , )i i i i i i

T

p y A p y x A p x dx y

AA

χ
ψ ψ µ

ψ

= = Σ

Σ = +

∫ N

 (2.27) 

where the sample mean is 1 Yµ −= ∑N .  
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The goal of LVM is to estimate the parameters Φ  that best model the 

covariance structure of Y . A standard approach for fitting LVMs is to marginalise 

the latent variables by optimising the parameters via maximisation of the observed 

data likelihood given the parameters( | )p Y Φ . The log-likelihood of a normal 

distribution (2.22) based on (2.27) for the sample Y  is: 

 1

1

1
( ) ln ( | ) ln ( | ) ( ln 2 ln ( ))

2i
i

L p Y p y tr Cπ −

=

Φ = Φ = Φ = − + Σ + Σ∑
N

ND N  (2.28) 

where C  is a covariance matrix of the observations ( )( )TC Y Yµ µ= − − . Estimates 

for parameters Φ  are obtained via maximisation of the log posterior ( )L Φ  using a 

variation of the EM algorithm [Rubin and Thayer, 1982, Tipping and Bishop, 

1999b]. 

Applying the Bayes rule to equation (2.26), the posterior distribution of the 

latent variables ix  conditioned on the observation iy  with constant covariance is 

estimated by [Tipping and Bishop, 1999a, Carreira-Perpinán, 2001]: 

 1 1 1( | , ) ( ( ), ( ) )T T
i i ip x y A y I A Aµ ψ− − −Φ = Σ − +N  (2.29) 

The dimensionality reduction processF  is performed by projecting the 

observed data into a representation of the reduced dimensionality according to the 

posterior mean vectors in (2.29): 

 1( )T
i ix A y µ−= Σ −  (2.30) 

where the corresponding optimal least-squares linear reconstruction f  of the 

observed data from the posterior mean vectors is expressed by: 

 1( )  T
i iy A A A x µ−= Σ +  (2.31) 

The main difference between FA and PPCA is in the assumed noise model. 

PPCA can be seen as a maximum likelihood FA in which the isotropic noise model 

is adopted, i.e. residual variances iψ   of covariance matrix ψ  are constrained to be 

equal, i.e. 2Iψ σ= . FA thus models the individual noise variability in each of the 
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dimensions, whereas PPCA assumes all dimensions have an equal noise level. As a 

result, while FA parameters are estimated iteratively as any other LVM method 

(section 2.2.2.3), the parameters of PPCA can be computed explicitly by numerical 

singular value decomposition of the covariance matrix T
D DC U V S= , where 

{ ,..., }DV diag= 1 Dλ λ  denotes the diagonal matrix of eigenvalues (ordered 

decreasingly), { | 1.. }D jU u j= = D  are the associated eigenvectors and S  is an 

arbitrary rotation matrix. In [Tipping and Bishop, 1999b] it has been shown that, 

with 2TAA IσΣ = + , the log-likelihood (2.28) is maximised when: 

 2 1 2( )d dA U V Iσ= −  (2.32) 

and the corresponding maximum-likelihood estimator for 2σ  is given by: 

 2

1

1
j

j

σ λ
= +

=
− ∑

D

dD d
 (2.33) 

The main advantage of both approaches is the existence of a bidirectional 

projection function between low and high dimensional spaces; however their 

effectiveness is limited because of their global linearity assumption. 

2.2.2.3.2. Nonlinear Methods 

2.2.2.3.2.1. Mixture of Local Linear Models 

Mixture approaches capture nonlinear complexity of high dimensional space by a 

combination of local linear models [Everitt and Hand, 1981]. The objective of a 

finite mixture of LVMs is to perform concurrently clustering and dimensionality 

reduction so that a complicated global structure of high dimensional data can be 

characterised by a collection of simple models in different regions of the observed 

space. Mixture of local linear models (MLLM) can be composed of FA 

[Ghahramani and Hinton, 1997] (MFA) or PPCA [Tipping and Bishop, 1999a] 

(MPPCA).   
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The probability of observing sample y  under a mixture model with K  

components is given by: 

 
1

( ) ( | )k
k

p y p y kπ
=

=∑
K

 (2.34) 

where the kπ  express mixing proportions ( 0, 1k kπ π≥ =∑ ). ( | )p y k  is a local 

LVM on latent space kχ  defined according to (2.20) for each model: 

 ( | ) ( , | ) ( | , ) ( | )
k k

p y k p y x k dx p y x k p x k dx
χ χ

= =∫ ∫  (2.35) 

where ( | )p x k is the prior distribution in the latent space of the kth component, 

( | , )p y x k  is its noise model, and k kf χ= → ϒ is its mapping from latent to data 

space. Note that a separate mean vector kµ   is now associated with each local 

model along with a different set of parameters { , , }k k k kA ψ πΦ = . The log-likelihood 

of observing a whole data Y  according to equations (2.22) and (2.34) is: 

 
1 1 11 1

( ) ln ( | ) ln ( | , ) ln ( | , ) i k i k k i k
k i ki i

L p y p y k p y kπ π
= = == =

Φ = Φ = Φ = Φ∑ ∑ ∑∏ ∏
N N K N K

(2.36) 

The maximum of the above log-likelihood with respect to the parameters 

{ | 1.. }k kΦ = Φ = K  can be found by adaptation of the iterative EM algorithm 

[Ghahramani and Hinton, 1997, Tipping and Bishop, 1999a]. 

Since a collection of local models does not provide a global 

parameterisation of the manifold, [Roweis et al., 2002] addressed this problem by 

proposing an extension of MFA called Global Coordination of Local Linear Models 

(GCM). This method encourages the global consistency along the manifold of 

disparate internal representations by incorporating an additional variational penalty 

term into the maximum likelihood objective function. Alternatively, [Teh and 

Roweis, 2003] present an automatic alignment procedure which is invoked after 

learning the local dimensionality reduction experts (LLC). Thank to the separation 

of the learning and coordination processes, the algorithm gains efficiency and 

avoids local optima in the coordination phase. Given an already trained mixture, the 
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alignment is achieved by solving a variant of the LLE eigenvalue problem on the 

internal representations of the mixture components. This framework can be applied 

to any set of experts, especially MFA and MPPCA. 

Modelling nonlinearity of high dimensional data by a combination of 

simple local reducers is an attractive and effective alternative to linear LVMs; 

however the main drawback is that a methodology to select automatically the 

number of mixture components has not yet been solved satisfactory by the research 

community. 

2.2.2.3.2.2. Nonlinear Function Mapping 

2.2.2.3.2.2.1. Generative Topographic Mapping 

Generative Topographic Mapping [Bishop et al., 1998] (GTM) is a nonlinear LVM 

which has been proposed as a principled alternative to Self-Organizing Map 

[Kohonen, 1982]. The basic concept behind the algorithm is to define a discrete 

prior distribution ( )p x  given by a sum of delta functions centred on the nodes kx  of 

a uniform grid in latent space: 

 
1

1
( ) ( )k

k

p x x xδ
=

= −∑
K

K
 (2.37) 

This discrete prior can be seen as a fixed approximation of a continuous 

and uniform distribution using Monte Carlo sampling [MacKay, 1995]. It assigns 

nonzero probability only to the points { | 1.. }kx k = ⊂ dK ℝ . The distribution of the 

noise model ( | )p y x  is chosen to be an isotropic Gaussian centred on ( )f x  and 

having a varianceγ . The mapping f  is performed using a radial basis function 

network (a special case of a generalised linear model): 

 ( )  ( )y f x A xφ= =   (2.38) 

where φ  is a vector of fixed basis functions. Each latent point kx , after projection to 

a corresponding point in a data spaceky , forms the centre of a Gaussian density 
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function, as illustrated in Figure 2.17. The set of model parameters includes a 

coefficient matrix A  and a varianceγ : { , }A γΦ = .  By substituting (2.37) and 

(2.26) into (2.22), the distribution function in the whole data space takes the form: 

 
11

1
( | ) ( | , )i k

ki

p Y p y x
==

Φ = Φ∑∏
N K

K
 (2.39) 

The model parameters Φ  are determined by the maximum log-likelihood 

of the above posterior using the EM algorithm [Bishop et al., 1998]: 

 
1 1

1
( ) ln ( | ) ln ( | , )i k

i k

L p Y p y x
= =

Φ = Φ = Φ∑ ∑
N K

K
 (2.40) 

Since the mapping function f  is smooth and continuous, the projected 

points have a topographic ordering in the sense that any two points which are close 

in the latent space will be mapped to the close points in data space. The initial low 

dimensional representation is initialised using PCA. 

1D

2d

kx
f

( )M f χ=

1d

2D

3D

( )kf x

 

Figure 2.17. Discrete prior distribution ( )p x  on the left consists of delta functions, 

located at the nodes of a regular grid in latent sp ace. Each node kx  is mapped to a 

corresponding point ( )kf x  in observed space, where it forms the centre of a 

Gaussian distribution. 

The major limitation of GTM is that, since it relies on Monte Carlo 

sampling, it requires a uniform discretised gridding of the latent space . As a result, 

both the numbers of latent grid points K  and basis functions φ  grow exponentially 
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with the dimension of the latent space [Bishop, 1995, Carreira-Perpinán, 2001]. 

Another shortcoming is that EM estimates may converge to bad suboptimal maxima 

[Bishop, 1995, Carreira-Perpinán, 2001]. 

2.2.2.3.2.2.2. Gaussian Process Latent Variable Model 

Gaussian Process Latent Variable Model was derived from the observation that a 

particular interpretation of probabilistic PCA is a product of Gaussian Process (GP) 

models [Lawrence, 2004, Lawrence, 2005]. 

2.2.2.3.2.2.2.1. Dual Probabilistic PCA 

In standard approaches, such as PPCA [Tipping and Bishop, 1999b], GTM [Bishop 

et al., 1998] and MLLMs [Ghahramani and Hinton, 1997, Tipping and Bishop, 

1999a], LVMs are learned by marginalising the latent variables X  and optimising 

the parameters Φ  via maximum likelihood estimation. In contrast, [Lawrence, 

2004, Lawrence, 2005] introduces an alternative approach and suggests a novel 

probabilistic interpretation of PCA called dual probabilistic PCA (DPPCA). From a 

Bayesian perspective, the probabilistic model (2.22) is fitted to the training data by 

marginalising over mapping parameters A  and optimising with respect to the latent 

variablesX . The generative model of DPPCA follows regression equations (2.23) 

and (2.24), whereas the corresponding Gaussian noise and the noise model itself are 

given by (2.25) and (2.26) respectively. The key innovation is that a zero mean and 

spherical Gaussian prior is imposed over the generative function parameters A  in 

each dimension of Y  instead on the latent variables: 

 
1

( ) ( | 0, )i
i

p A a I
=

= ∏
D

N  (2.41) 

where ia  is ith row of the weight matrix 1 2[ , ,...]TA a a= ( ×D d ). As a result, the 

marginal likelihood of observed data for every dimension 1..j = D  is obtained by 

integrating over a space of mappings: 



CHAPTER 2 State of the Art Review 2.2 Dimensionality Reduction 

 - 71 -  

 
1

( | , ) ( | , , ) ( ) ( | , )j ij i j
i

p y X p y x A p A dA yψ ψ µ
=

= = Σ∏∫
N

N  (2.42) 

where the precision of noise model is expressed by the standard PPCA covariance 

matrix 2Iψ σ=  and the covariance matrix of the distribution is given by: 

 TXX ψΣ = +  (2.43) 

Here, the observed data Y  is presumed to be centred at 

origin 1

1 ii
Y Y y−

=
= − ∑

N
N , thus, the mean is taken to be zero 0µ = . Since the 

different dimensions of Y  are expected to be independent, the complete joint 

likelihood of all observed data dimensions given the latent positions is: 

 
1

22
1

1 ( )
( | , ) ( | 0, ) exp( )

2(2 )

T

j
j

tr YY
p Y X yψ

π

−

=

Σ= Σ = −
Σ

∏
D

DDN
N  (2.44) 

The maximisation of the above likelihood is equivalent to minimising the 

negative log likelihood of the model: 

 11
( ) ln ( | , ) ( ln 2 ln ( ))

2
TL X p Y X tr YYψ π −= − = + Σ + ΣND D  (2.45) 

The optimisation of the above objective function is performed by taking 

gradients of (2.45) with respect to the latent variables X  [Magnus and Neudecker, 

1999] and solving the eigenvalue problem equivalent to standard PCA [Lawrence, 

2004, Lawrence, 2005]. 

2.2.2.3.2.2.2.2. Gaussian Process 

Gaussian processes [O’Hagan, 1992, Williams, 1998, Rasmussen and Williams, 

2006] (GPs) are a class of probabilistic models which specifies a distribution over a 

function space on points where the function is instantiated. GP can be seen as a 

natural generalisation of multivariate Gaussian random variables, where the 

Gaussian process describes a whole function over a finite number of variables. In 

the context of dimensionality reduction, any GP is parameterised completely by a 

mean function :µ →d D
ℝ ℝ  and a covariance function, or kernel, :k →d D

ℝ ℝ . 
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Both functions must be of the space on which the process operates, so that a 

Gaussian distribution over an entire space of functions, :s →d D
ℝ ℝ , is given by: 

 { }
( , )

| , 1..ij

s

k i j

µ Σ

Σ = = N

∼ N
 (2.46) 

Usually, the mean function is taken to be zero (0µ = ), whereas the 

covariance function k  characterises the nature of the functions that can be sampled 

from the process and it is constrained to produce positive definite matrices Σ  (i.e. 

satisfies Mercer's condition [Mercer, 1909, Courant and Hilbert, 1953]). GP 

regression adjusts the parameters Φ  of the covariance matrix Σ  over the space of 

functions in order to maximise the likelihood of the observed data given the GP 

[Rasmussen and Williams, 2006]. 

Let’s consider a simple GP prior over the space of functions that are 

fundamentally linear with additive Gaussian noise of variance 2σ . The covariance 

function 2( , ) T
ij i j i j ijk x x x xκ σ δ= = +  for such prior is evaluated on the whole 

embedding X  to produce the following covariance matrix of the process where 

2Iψ σ= : 

 TXX ψΣ = +  (2.47) 

Note that the above expression can be recognised as the covariance matrix 

associated with each dimension of the marginal likelihood for DPPCA ((2.42) and 

(2.43)). For this reason, the complete marginal likelihood (2.44) can be seen as a 

product of D  independent GPs, where each of them is associated with a linear 

covariance function. 

2.2.2.3.2.2.2.3. Gaussian Process Latent Variable Model 

GPLVM-based approaches aim at constructing a continuous d-dimensional latent 

space for D-dimensional data by defining a smooth nonlinear transformation from 

the latent to the observation space using a GP model on a training set of data points 
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[Lawrence, 2004, Lawrence, 2005]. A GP prior is imposed on a mapping function 

f  in every dimension of the high dimensional space according to (2.46): 

 
1 1

( | ) ( | ) ( | 0, )j j
j j

p f p f f
= =

Φ = Φ = Σ∏ ∏
D D

N  (2.48) 

Therefore, the corresponding likelihood for the observed dimension jy  

( 1..j = D ) is obtained through marginalizing the mapping function jf  (in particular, 

the linear function defined in (2.42)): 

 
1

( | , ) ( | , , ) ( | ) ( | 0, )j ij i j j j j
i

p y X p y x f p f df y
=

Φ = Φ Φ = Σ∏∫
N

N  (2.49) 

As a result, since a GP model is completely specified by the covariance 

matrix Σ , a rich and flexible probabilistic distribution is defined. Thanks to this the 

linear covariance function ((2.43), (2.47)) of DPPCA can be replaced with a non-

linear kernel function in order to produce a global and differentiable nonlinear 

mapping from latent to data space. A common choice for nonlinear covariance 

function is a radial basis function (RBF) because it smoothly interpolates the latent 

space [Lawrence, 2004, Lawrence, 2005] and satisfies Mercer's condition [Mercer, 

1909, Courant and Hilbert, 1953]: 

 

{ }

2( , ) exp( ( ) ( ))
2

| , 1..

T
ij i j i j i j ij

ij

k x x x x x x

k i j

γκ α σ δ= = − − +

Σ = = N
 (2.50) 

where the kernel hyperparameters 2{ , , }α σ γΦ =  respectively determine the output 

variance, the variance of the additive noise and the RBF width. ijδ  is the Kronecker 

delta function.  

In general, there is no closed form solution for maximising (2.44) when 

nonlinear kernel functions are employed (2.50). Therefore, the learning process is 

performed using two-stage maximum a posterior (MAP) estimation. First, the latent 

variables are initialised, usually using PPCA or any spectral method. Secondly, 

latent positions and the hyperparameters are optimised iteratively until the optimal 
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solution is reached. According to Bayes theorem, this is achieved by maximising 

the likelihood (2.44) with respect to the latent positions, X , and the 

hyperparameters, Φ  using the following posterior: 

 ( , | ) ( | , ) ( ) ( )p X Y p Y X p X pΦ ∝ Φ Φ  (2.51) 

where the priors of the unknowns are: ( ) (0, )p X I= N , 1( ) ii
p −Φ ∝ Φ∏ . These 

priors are introduced to prevent overfitting on small training sets [Grochow et al., 

2004, Lawrence, 2005]. The maximisation of the above posterior is equivalent to 

minimising the negative log likelihood of the model with respect to X  and Φ : 

 21

( , ) ln ( , | )

1
(( 1) ln 2 ln ( ) )

2
T

i i
i i

L X p X Y

tr YY xπ −

Φ = − Φ =

= + + Σ + Σ + + Φ∑ ∑DN D
 (2.52) 

This optimisation process is performed numerically by taking the gradients 

of ( , )L X Φ  with respect to the kernel Σ  and then combining them with the kernel 

gradients with respect to the latent positions X  and the model parameters Φ  

through the chain rule. These gradients are used in combination with (2.52) in a 

non-linear optimiser to obtain a final latent variable model of the data. Typical 

numerical optimisation methods which are employed in this task include the 

Levenberg-Marquardt method [Levenberg, 1944, Marquardt, 1963], conjugate 

gradient [Johansson et al., 1992], scaled conjugate gradient [Möller, 1993]  or L-

BFGS [Nocedal and Wright, 2006], 

2.2.2.3.2.2.2.4. Extensions 

Recently, many researchers have exploited GPLVM in a variety of applications, 

thus designing a number of GPLVM-based extensions. The main ones are 

summarised in this section. 

The learning process of standard GPLVM is computationally very 

expensive, since 3( )O N  operations are required in each gradient step to inverse the 

kernel matrix Σ  (2.52). Therefore, in practice, a sparse approximation to the full 
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Gaussian process, such as ’fully independent training conditional’ (FITC) 

approximation [Lawrence, 2007, Urtasun et al., 2007] or active set selection 

[Lawrence, 2004], is exploited to reduce the computational complexity to a more 

manageable 2( )O m N  where m  is the number of points involved in the sparse 

approximation [Lawrence, 2007]. The approximation process requires an additional 

set of representative variables, so called inducing variables [Lawrence, 2007] or 

active points [Lawrence, 2004], that are used in the lower rank approximation of the 

covariance Σ . Unfortunately, the number of inducing variables or active points has 

to be chosen empirically, since there is no optimal way to automate this process 

[Urtasun et al., 2007]. The selection of the wrong number of representative 

variables may come with the risk of overfitting or poor generalisation potential to 

unseen samples. 

The different data dimensions have different intrinsic scales (or, 

equivalently, different levels of variance). This means that a small change in one 

dimension may have a larger impact on the observed space than a change in another 

dimension. To address this problem, scaled GPLVM [Grochow et al., 2004] 

(SGPLVM) generalises the GP models by introducing scaling parameters to account 

for different variances in the output dimensions of  (2.49).  

Since GPLVM focuses primarily on modelling the data global structure, 

there is no guarantee that the data local structure is retained in the latent space. The 

smooth mapping in GPLVM ensures that dissimilar points in a data space remain 

distant in a latent space. However, there is no constraint to prevent two points which 

are close in data space to be placed far apart in the latent space. A more faithful 

preservation of the observed space topology was supported by imposing high 

dimensional constraints on the latent space. Back Constrained GPLVM [Lawrence 

and Quinonero-Candela, 2006] (BC-GPLVM) enforces local distance preservation 

through the form of a kernel based regression mapping from the observed space to 
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the latent space. Locally linear GPLVM [Lawrence and Quinonero-Candela, 2006] 

(LL-GPLVM) extends this concept by defining explicitly a cylindrical topology to 

maintain. This is achieved, first, by constructing advanced similarity measures (i.e. 

kernels) to reflect a priori knowledge in the back constrained mapping function. 

Secondly, a distance metric is adjusted in the LLE objective function [Roweis and 

Saul, 2000] and incorporated into the GPLVM framework to reflect a domain 

specific prior knowledge about observed data. Otherwise, Observation Driven 

GPLVM [Gupta et al., 2008] (OD-GPLVM) relates two different high dimensional 

observation spaces, e.g. image feature space and motion capture space, using a 

single latent space. This is achieved by learning a discriminative embedding from 

the observation image feature space to the latent space in addition to the standard 

generative mapping from the latent space to the observation pose space. As a result, 

OD-GPLVM aims at preservation of local distances of both observation spaces at 

the same time. 

Alternatively, Gaussian Process Dynamical Model [Wang et al., 2006, 

Wang et al., 2008] (GPDM), augments SGPLVM with a dynamical model in the 

latent space by defining a nonlinear auto-regressive mapping on the latent space. 

The latent dynamical model favours preservation of local proximities between 

points. The GPDM is obtained by marginalizing out the parameters of both 

mapping processes and optimizing the latent coordinates of training data. In 

[Urtasun et al., 2006a] further smoothness of latent trajectories is encouraged by 

simply balancing the effect of the dynamics on the latent space based on the ratio 

between dimensions of data and latent spaces. 

Finally, the problem of supervised data classification was addressed by 

integrating into GPLVM a prior distribution over the latent space that is derived 

from an adaptation of generalised discriminant analysis constraints [Urtasun and 

Darrell, 2007] or pairwise constraints [Wang et al., 2010]. 
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2.2.2.3.2.2.2.5. Summary 

The key strength of GPLVM approaches is a generative nonlinear probabilistic 

model which can be easily applied even to previously unseen data. However, their 

main limitation comes from the computational cost of their learning process which 

restricts their usage to relatively small datasets. Moreover, the objective function 

(2.52) is severely under-constrained in the general case. This means that the 

optimisation is very likely to converge towards local minima if the initialisation of 

the model is poor; hence, good initialisation is essential. 

2.2.2.4.  Projection Strategies 

Once dimensionality reduction is performed, an important property of the method is 

its ability to generalise to a new unseen high-dimensional data point yɶ  by 

embedding it using the existing low dimensional data representation. The process of 

transformation between high and low dimensional space is carried out by two 

contrary mapping (projection) functions (Figure 2.18). The forward mapping 

function: 

 : ,  ,  G Y X Y X→ ⊆ ⊆D d
ℝ ℝ  (2.53) 

projects data from a high dimensional space to the low dimensional space, whereas 

the inverse mapping function projects data in the opposite direction: 

 : ,  ,Yg X Y X→ ⊆ ⊆d D
ℝ ℝ  (2.54) 

 

Figure 2.18. Mapping functions for generalisation o f unseen samples of data. 
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The mapping functions are either an intrinsic property of a dimensionality 

reduction method or designed explicitly in a post processing step. The summary of 

basic properties together with available mapping functions in all discussed groups 

of dimensionality reduction methods are presented in Table 2.2. 

Table 2.2. Overview of available mapping functions and basic properties of different 

algorithms. Convex: algorithms are considered conve x if they have a unique 

solution, otherwise they may be subject to local op tima. 

 
Mapping 

Y X→  

Mapping 

X Y→  
Nonlinear Probabilistic Global Convex 

PCA Y Y   Y Y 

PPCA Y Y  Y Y Y 

KPCA Y  Y  Y Y 

MDS     Y Y 

LLE, LE   Y   Y 

Isomap, MVU   Y  Y Y 

FA Y Y  Y Y  

MLLM Y Y Y Y   

GTM  Y Y Y Y  

GPLVM  Y Y Y Y  

2.2.2.4.1. Intrinsic Property of the Method 

The forward mapping function is given directly by the dimensionality reduction 

process (2.5) and (2.13) for PCA and KPCA respectively. In the case of PCA, the 

corresponding inverse projection, or reconstruction of yɶ from xɶ , is y Ax=ɶ ɶ .  

The principle of probabilistic LVMs is to focus on learning the mapping 

function during dimensionality reduction process. As a result, the forward mapping 
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of PPCA and FA is equivalent to the dimensionality reduction function given by 

(2.30) and similarly the inverse mapping corresponds to the reconstruction function 

(2.31). In MLLM, first the posterior responsibility for generating a new data point is 

computed for every mixture in the model, and subsequently the projection is 

performed using the local mapping functions of the most probable mixture 

[Ghahramani and Hinton, 1997, Tipping and Bishop, 1999a]. Similarly to linear 

LVMs, GTM employs directly a reconstruction function f  for inverse mapping 

according to equation (2.38). 

The key advantage of GPLVM over other LVMs is that it provides a 

general-purpose probability distribution for new data points. In particular, the use of 

a GP to perform inverse mapping results in modelling uncertainty in the positions of 

the points in the data space. It can be shown that any point in X  and especially any 

new one xɶ  can be related with a data space as a Gaussian distribution [Williams, 

1998]: 

 2( | , , , ) ( | ( ), ( ) )p y x Y X y x x Iµ σΦ =ɶ ɶ ɶ ɶ ɶN  (2.55) 

where the mean µ  is the point that the model would predict for a given xɶ , whereas 

the variance 2σ  indicates the uncertainty of this prediction (the certainty is greatest 

near the training data). Both are represented respectively by: 

 
1

2 1
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( ) ( , ) ( , ) ( , )

T

T

x Y k x X

x k x x k x X k x X

µ
σ

−

−

= Σ

= − Σ

ɶ ɶ

ɶ ɶ ɶ ɶ ɶ
 (2.56) 

In the general case, there is no closed form solution for estimating the 

latent position xɶ  given a new data point yɶ  in GPLVM. However, the forward 

mapping can be seen as a two-stage inference process [Grochow et al., 2004, 

Lawrence, 2005, Tian et al., 2005, Ek et al., 2007]. In the first stage the position on 

the latent space is initialised to the most likely x  which may have generated the 

observed data yɶ  according to (2.55). Afterwards, the position of xɶ  is optimised by 

minimising the negative log likelihood of (2.55) using gradient descent optimisation 
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[Levenberg, 1944, Marquardt, 1963, Johansson et al., 1992, Möller, 1993, Nocedal 

and Wright, 2006]: 

 
2

22
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( ) 1
( ) ln ( ) ln 2

2 ( ) 2 2 2

y x
L x x x

x

µ
σ π

σ
−

= + + +D Dɶ ɶ
ɶ ɶ ɶ

ɶ
 (2.57) 

where an isotropic spherical prior is imposed on the new latent position. 

Alternatively, BC-GPLVM provides directly the nonlinear forward mapping 

function [Lawrence and Quinonero-Candela, 2006, Urtasun and Darrell, 2007]. 

2.2.2.4.2. Out-of-sample Extension 

The standard formulation of geometrically motivated approaches (LLE, LE, 

Isomap, and MVU) and MDS do not provide any explicit mapping between spaces. 

However, the forward mapping can be estimated by a nonparametric out-of-sample 

extension of these algorithms. For LLE, LE, Isomap, MDS, this is achieved by 

reinterpreting basic algorithms as the KPCA with method dependent kernel matrices 

and obtaining the eigenfunctions of these kernels through Nyström approximation 

[Bengio et al., 2003]. This allows embedding any new point using the standard 

KPCA forward mapping. Similar nonparametric out-of-sample extensions were 

proposed for Isomap in [De Silva and Tenenbaum, 2003, Choi and Choi, 2007]. 

MVU approximates the kernel eigenfunction using Gaussian basis functions [Chin 

and Suter, 2008]. 

2.2.2.4.3. Multilayer Perceptrons 

Another possibility for designing mappings in geometrically motivated approaches 

(LLE, LE, Isomap, and MVU) as well as in MDS was presented in [Haifeng et al., 

2006]. After the discovery of an embedded space, a multilayer feed-forward neural 

network, also referred to as a multilayer perceptron (MLP), is employed to simulate 

the projection procedure between spaces. The obtained low dimensional 

representation is used as supervision for a neural network training procedure.  
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Initially, the architecture of the neural network has to be designed [Haykin, 

1998]. The neural network architecture can be seen as the organised topology of the 

interconnected neuron-like processing elements (Figure 2.19). These neurons are 

assembled into hierarchical layers. Any MLP is composed of one input layer, zero 

or more hidden layers and one output layer and is fully connected. This means that 

every neuron in each layer is connected in a weighted manner to every other neuron 

in the next layer and so on. Neurons in each layer are equipped with the same 

activation function, for instance tangent sigmoid function or pure linear function. 

Given such architecture, the learning process adjusts weights of synapses to best 

represent transformation from one space to another. The parameters of the network 

are determined using non linear optimisation techniques [Rumelhart et al., 1985, 

Johansson et al., 1992, Nocedal and Wright, 2006]. 

The forward mapping is performed with a neural network learned from a 

high to low dimensional space, where the input layer is composed of D  neurons 

and the output layer consists of d  neurons (Figure 2.19). The inverse mapping is 

carried out with another network trained in opposite direction with d  neurons in the 

first layer and D  in the last one. 
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Figure 2.19. Forward mapping function using a multi layer feed-forward neural 

network. 

The MLP is capable of approximating some nonlinear mappings [Lapedes 

and Farber, 1988] for a specific architecture [Haifeng et al., 2006]. In addition, it 

has better generalisation properties than the out-of-sample extension [Haifeng et al., 

2006]. However, the main drawback of this approach is the manual process required 

to design the MLP architecture. It consists of: 

• The selection of the number of hidden layers, 

• The selection of the number of neurons in each hidden layer, 

• The selection of the activation functions for neurons in hidden and output 

layers. 

2.2.2.4.4. Generalised Radial Basis Function Network 

Generalised Radial Basis Function Network (RBFN) is a conceptually simple and 

powerful alternative to the MLP model, which overcomes the problem of manual 

design of the network architecture. Whereas MLP may be viewed as a stochastic 

approximation, RBFN is motivated as a curve-fitting approximation problem in the 
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high dimensional space [Haykin, 1998]. According to this viewpoint, the learning 

process is equivalent to finding a surface in a multidimensional space that provides 

the best fit to the training data in some statistical sense. Consequently, 

generalisation is performed by using this high dimensional surface to interpolate the 

new data. Note, that RBFN is a simpler variation of multilayer feedforward network 

which offers the comparable generalisation properties but in addition it is capable of 

implementing any nonlinear transformation [Haykin, 1998]. 

Figure 2.20 presents the architecture of a RBFN, which involves only three 

layers [Poggio and Girosi, 1990]. The input layer connects the network to its 

environment similarly to standard MLP. The second hidden layer applies a 

nonlinear transformation from the input space to a hidden space using an arbitrary 

radial basis functions (RBFs). The layer is parameterised by the RBF coefficients 

and centres, i.e. representative points in an input space which summarise the whole 

dataset. The number of neurons in the hidden layer corresponds to the number of 

centres Z . The output layer is a weighted linear sum of the outputs of hidden units, 

providing the response of the network to the activation pattern which was supplied 

to the input layer. All layers are fully connected in a single direction as in MLP. 
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Figure 2.20. Forward mapping function using radial basis function network. 

Let’s consider a highly nonlinear mapping g  from a low dimensional 

space X  to a high dimensional space Y . Such complex function is approximated 

by a combination of radial basis functions which are assumed to be linearly 

independent [Poggio and Girosi, 1990]: 

 
1

( ) ( ) ( )k
jk j

j

g x p x w x cϕ
=

= + −∑
Ζ

 (2.58) 

where k  is the kth dimension in a high dimensional space, ( )p x  is an optional 

linear low-degree polynomial term in the form: ( ) [1 ]*p x x= t . ϕ  is a real-valued 

basis function of d  variables and jkw  are real coefficients. The RBFN structure is 

formed by the centres { | 1.. }jC c j= = Z  which summarise the training data points 

in order to ensure generalisation properties of the network. The centres are 

determined in the input space using either the k-means clustering [Kanungo et al., 

2002] or rival penalized competitive learning [Xu et al., 1993]. Finally, ∗  denotes 

the norm, usually Euclidean. 
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The radial activation function ϕ  can be defined in various ways. However, 

it must satisfy Micchelli’s theorem, which states that empirical kernel map ( )Xψ  

( ×N Z ) [Schölkopf and Smola, 2002], which is constructed from these functions, 

must be nonsingular [Micchelli, 1986]. The entries of this interpolation matrix 

( )Xψ  are: 

 1 2( ) {[ ( ), ( ),..., ( )] | 1.. }i i i ZX x c x c x c iψ ϕ ϕ ϕ= − − − = N  (2.59) 

There is a large class of radial basis functions  [Powell, 1987] that is 

covered by Micchelli’s theorem, it includes Gaussian functions: 

 
2 2( ) exp( 2 )i j i jx c x cϕ σ− = − −  (2.60) 

and thin plate spline: 

 
2 2( )i j i jx c x c consϕ − = − +  (2.61) 

which are of particular interest in the research on RBFN [Poggio and Girosi, 1990, 

Haykin, 1998]. Because of its excellent approximation properties [Poggio and 

Girosi, 1990], the Gaussian basis function is exploited in this research, where σ  is 

set to the average distance between all centres.  

The interpolation mapping (interpolation surface) is expressed by an over-

constrained nonlinear system of equations without taking into account polynomial 

term ( 0t = ): 

 ( )( )y g x x Aψ= =  (2.62) 

where A  is a Ζ× D  matrix of network weights for D  different nonlinear mappings 

kg . The training phase of RBFN is performed by estimating the coefficients A  for  

the interpolation surface g  based on known centres and data points presented to the 

network in the form of input-output examples. The solution for A  is found by 

applying the Moore–Penrose pseudo-inverse [Penrose, 1955] on matrix ( )Xψ  in 

equation (2.62) and solving the obtained linear system of equations: 
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 ( )A X Yψ +=  (2.63) 

Consequently, equation (2.62) can be seen as the inverse mapping which 

allows projecting any new point from the embedded space into the high dimensional 

space. Similarly to MLP, the forward mapping can be simulated by another RBFN, 

which is learned in the same manner by swapping the input and output space 

X Y↔ . 

Learning the RBFN from a high to low dimensional space may be more 

challenging because of the dimensionality curse, especially if there is not enough 

data in relation to input dimensionality D . In such scenario, the forward mapping is 

approximated by the inversion of the inverse mapping [Poggio and Girosi, 1990]. 

This is achieved by exploiting the polynomial term ( 1=t ) in the interpolation 

function (2.58), thus, the interpolation matrix (2.59) is extended to: 

 
( )

( ) 1 x
( )

1 C 0
T

x
x

ψ
ψ

 
=  
  

 (2.64) 

and the solution for A  is determined in the same way by equation (2.63). However, 

since the vector ( )xψ  has a special form thanks to the linear polynomial part in the 

interpolation function, the forward mapping is approximated by the inversion of 

equation (2.62): 

 ( )x yAψ +=  (2.65) 

and taking directly the last d columns from the reconstructed vector ( )xψ  as the 

embedded coordinates. A+  denotes the Moore–Penrose pseudo-inverse of matrix A  

[Penrose, 1955]. 

RBFN has been successfully applied as the projection functions on the 

embedded spaces produced by LLE [Elgammal and Lee, 2004a, He et al., 2004, 

Elgammal and Lee, 2007, Ohbuchi et al., 2008, Lewandowski et al., 2009], Isomap 

[Shi et al., 2005, Blackburn and Ribeiro, 2007, Ohbuchi et al., 2008, Lewandowski 

et al., 2009] and LE [Ohbuchi et al., 2008, Lewandowski et al., 2009]. 
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2.2.2.5.  Summary of Feature Extraction Methods 

Feature extraction by dimensionality reduction is a very powerful approach and has 

proved to be more flexible than feature selection, since it has been successfully 

applied in a variety of application domains including computer vision [Tian et al., 

2005, Urtasun et al., 2006a, Hou et al., 2007, Wang et al., 2008], image processing 

[He et al., 2004], computer graphics [Grochow et al., 2004, Urtasun et al., 2008, 

Deena and Galata, 2009], robotics [Shon et al., 2006, Bitzer and Vijayakumar, 

2009],  speech recognition [Jain and Saul, 2004, Takiguchi and Ariki, 2007, Singh-

Miller et al., 2007, Jafari and Almasganj, 2010, Errity, 2010], data visualisation 

[Tenenbaum et al., 2000, Belkin and Niyogi, 2002, Lawrence, 2004] and pattern 

recognition [Yang, 2003, De Ridder et al., 2003, Urtasun and Darrell, 2007, Zheng 

et al., 2008, Wang et al., 2010]. As a consequence, recently extensive research is 

carried out in the feature extraction field, especially in the domains beyond the 

range of interest of feature selection algorithms where it is unfeasible to design an 

intuitive evaluation criterion, in particular computer vision. 

In the rest of the thesis, the term ‘dimensionality reduction’ will refer to 

feature extraction branch of dimensionality reduction approaches. 

2.2.3. Frameworks for Time Series 

All discussed dimensionality reduction methods assume that the observed data 

samples are independent; therefore any temporal correlation present between data 

samples is not taken into consideration. While this is a valid assumption for many 

applications, there are many situations when temporal structure is a key intrinsic 

property of data, thus an alternative approach is desired. In particular, when dealing 

with time series data, the assumption of independence between data points is clearly 

inappropriate since points at each time step are expected to be highly correlated. 

Since many real datasets are time series, the quality of low dimensional 
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representation can be improved by modelling the temporal dependencies between 

points. This information is exploited twofold. 

In the first case, temporal constraints are employed as a valuable clue for 

dimensionality reduction process. For instance, a temporal neighbourhood 

preserving embedding [Wu et al., 2009] uses a simple temporal model to represent 

each point as a linear combination of its sequential neighbours through linear 

projection from high to low dimensional space. In contrast, a spatio-temporal 

Isomap [Jenkins and Mataric, 2004] is a nonlinear global approach designated for 

time series. Initially, the original distance weights in the graph of local neighbours 

are empirically altered to emphasise similarity between temporal related points. 

Afterwards, the temporal dependencies are propagated globally via a shortest-path 

mechanism. In the case of LVMs, BC-GPLVM includes temporal coherence 

constraints to ensure the smoothness of the mapping between spaces [Lawrence and 

Quinonero-Candela, 2006], whereas  [Bishop, 1997] extends the GTM algorithm to 

capture temporal dynamics of sequential data by incorporating this information as 

an emission density in a hidden Markov model [Rabiner, 1989].  

An alternative approach to model the rich complexity of time series is to 

first reduce dimensionality assuming no temporal coherence and then learn a 

dynamical model on the latent space. In [Lin et al., 2006], a dynamic Bayesian 

network is constructed by adding links among the intrinsic coordinates of the GCM 

to account for temporal dependency. As a result, a global linear dynamical model is 

incorporated into the latent space. To handle more complex dynamics, [Li et al., 

2007c, Li et al., 2010] use a generalisation of the switching linear dynamical model 

[Pavlovic et al., 2001] on the low-dimensional globally coordinated latent space. In 

turn, GPDM and its variants integrate time information by associating nonlinear, 

autoregressive dynamic model to the embedded space [Wang et al., 2006, Urtasun 

et al., 2006a, Wang et al., 2008, Gupta et al., 2008]. 
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2.3. Human Motion Analysis 

2.3.1. Introduction 

Over the last two decades, human motion analysis has been very popular due to the 

wide range of potential applications and its inherent complexity. This section 

reviews the main research effort regarding computer vision based human motion 

analysis, i.e. human pose recovery (section 2.3.2) and action recognition (section 

2.3.3). A comprehensive survey of both fields is beyond the scope of this thesis, 

thus, first we provide a brief overview of the most promising lines of research in 

each field. Afterwards, we focus on the application of dimensionality reduction in 

both areas. The main motivation of this section is to provide some background 

information about these two important computer vision tasks on which evaluation 

of our contribution is performed. 

In this research, human motion is defined in terms of a starting pose, 

ending pose and a sequence of continuous transitions that takes the human body 

from a pose at time 1t  to a pose at time 2t . In turn, a human body ‘pose’ 

corresponds to the configuration of the various body parts in a body-centric 

coordinate system regardless of the chosen digital representation. 

2.3.2. Human Pose Recovery 

Pose recovery refers to a process of estimating configuration of articulated human 

body skeleton from a single monocular image or multiple images captured at the 

same time in a multi-view setting. Alternatively, tracking is a special case of pose 

estimation, which is formulated as inference of the human pose over a set of 

consecutive image frames from a video sequence. According to this definition, the 

goal of pose recovery is to localise a person’s joints and limbs in either an image 

plan (2D recovery - Figure 2.21) or a world space (3D recovery - Figure 2.22), 

which usually results in the reconstruction of a human skeleton in a body centric 
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coordinate system. Pose recovery from video footage is a very active and broad 

research field in computer vision. In this work, the scope of interest is limited to 3D 

pose recovery from videos, where 3D motion will be defined as sequences of 3D 

human body poses at successive time instants. The corresponding 3D motion 

reconstruction is formulated as the problem of recovery a sequence of 3D human 

poses. This section discusses the recent research progress in 3D pose recovery. 

More comprehensive reviews can be found in [Moeslund et al., 2006, Poppe, 

2007b, Ji and Liu, 2010]. 

 

Figure 2.21. 2D pose recovery from a video frame. 

 

Figure 2.22. 3D pose recovery from a video frame. 

2.3.2.1.  Activity Independent Methods 

The most straightforward approach to 3D pose estimation from a monocular video 

is to compute the inverse kinematics from known 2D image positions of body joints 

under a simple scaled orthographic projection model [Taylor, 2000, Remondino and 

Roditakis, 2003, Barrón and Kakadiaris, 2003, Jian and Enhua, 2005]. Since such 
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camera model handles only images with very little perspective effects, the 

perspective camera model was employed to overcome this limitation and deal with 

more realistic images [Zhao et al., 2005, Peng et al., 2009]. The main limitation of 

these approaches is that they require accurate detection of body joints in 2D image 

plane, which still remains a difficult problem in computer vision. Moreover, they 

presuppose an explicitly known parametric body model which is naturally 

constrained by body kinematics and dynamics. 

2.3.2.2.  Activity Constrained Methods 

Activity-constrained learning approaches focus on learning the prior model of 

motion directly from carefully selected training data.  

2.3.2.2.1.  Object Tracking Framework 

The problem of 3D motion reconstruction from images can be formulated as a 

Bayesian tracking process, where the objective is to construct statistical motion 

models from pre-recorded human motion data. These methods use an explicit 3D 

geometric representation of human shape and its kinematic structure to reconstruct a 

human posture by numerically optimising the similarity between observed images 

and predicted images rendered from a model. The 3D motion and pose extraction 

are usually implemented as a variation of tracking framework, especially the 

particle filter [Gordon et al., 1993]. The particle filter employs a stochastic 

sampling strategy for representing simultaneous alternative hypotheses. This is 

achieved by modelling arbitrary non-Gaussian probability density functions using a 

set of independent sample particles. The particle filter is derived from the Kalman 

filter and overcomes the constraint of a single Gaussian distribution [Kalman, 

1960]. The performance of the particle filter depends on designing an appropriate 

sampling strategy which guides the tracking by reducing the complexity and size of 

the solution space.  
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Tracking in monocular video sequences has been addressed in a variety of 

different approaches [Brubaker et al., 2010]. A variant of the particle filter, called 

condensation algorithm [Isard and Blake, 1998], represents hypotheses by a 

spherical and randomly generated set which is iteratively propagated over time 

using a learned dynamical model. An annealed particle filter was presented by 

[Deutscher et al., 2000, Deutscher and Reid, 2005], that combines a deterministic 

annealing approach with stochastic sampling to gradually focus the search effort on 

promising areas of solution space. Alternatively, the hypothesis are generated by 

sequential importance sampling constrained by the prior over dynamics of the 

human body [Sidenbladh et al., 2000] or by a large database of example motions 

[Sidenbladh et al., 2002], to focus search in the neighbourhood of known trajectory 

paths. In [Sminchisescu et al., 2001, Sminchisescu and Triggs, 2003], the probable 

3D body configurations over time are represented by a Mixture-of-Gaussians 

density model. A global search is performed by optimising a robust model-image 

matching cost metric which combines extracted edges, flow and motion boundaries, 

subject to 3D joint limits, non self-intersection constraints, and model priors. Model 

hypothesis are sampled from a defined distribution using cost-surface sensitive 

Covariance Scaled Sampling [Sminchisescu et al., 2001] or Kinematic Jump 

Sampling [Sminchisescu and Triggs, 2003]. Finally, in [Peursum et al., 2007], the 

stochastic search is guided by a variation of the hierarchical hidden Markov model 

to improve robustness of the particle filter against observation errors. 

Multiple views reduce significantly depth ambiguity, and therefore may 

provide more accurate pose estimations. 3D visual hull reconstruction of a human 

body shape is a natural way for fusing information from multiple images which 

provides more informative cues about a recovered pose. In [Mikic et al., 2003], 3D 

visual hull representation is integrated within the extended Kalman filter tracking 

imposing angle limits. As a result, the system guarantees an automatic acquisition 
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of a human body model and estimation of physically valid human postures. An 

alternative approach based on full 3D-to-3D nonrigid surface matching using 

spherical mapping is presented in [Starck and Hilton, 2005]. Alignment of a 

predefined skeletal model with the first frame allows the 3D motion to be recovered 

from the non-rigid surface motion over time. Recent work by [Caillette et al., 2005, 

Caillette et al., 2008] identifies Gaussian clusters of simple motions and trains a 

variable-length Markov model based on these clusters to direct local posture search 

towards better areas of the distribution. 

The drawback of these approaches is that high dimensionality of observed 

features requires usage of many particles to sample a pose space with a sufficient 

density. Unfortunately, each particle comes with an increase in computational cost 

associated with the propagation of the particle according to a dynamical model and 

the evaluation of a likelihood function. In addition, a human body model has to be 

rendered and compared to extracted image descriptors for every particle. As a 

consequence, the optimisation process is expensive and requires good initialisation; 

and the problem always has many local minima. Another drawback of tracking in a 

high dimensional space is its sensitivity to the impoverishment sample problem, i.e 

a tendency of clustering particles on a very small region of the search space, 

therefore explicitly overconstraining the search space by decreasing the number of 

effective particles [King and Forsyth, 2000]. Further discussion about tracking 

frameworks can be found in [Wang and Rehg, 2006], where several common 

tracking schemes are evaluated quantitatively. 

2.3.2.2.2.  Example Based Approach 

Example-based methods are two-stage approaches that first collect an image 

database of silhouettes from various viewpoints with corresponding 3D poses to 

adequately cover the entire space of possible solutions. Then, the pose estimation is 
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conducted by similarity checking between the stored examples and a given image 

query.  

For a pose recovery from monocular images, a representative system was 

presented in [Poppe, 2007a], where silhouettes images are encoded as a variant of 

histogram of oriented gradients [Dalal and Triggs, 2005] and query matching is 

performed with an entire training set using the Manhattan distance. A 

computationally more attractive approach was introduced in [Shakhnarovich et al., 

2003], where parameter-sensitive hashing is applied on examples to speed up 

searching process. Another method was proposed by [Mori and Malik, 2006] in 

which the 2D joint locations in a query image are inferred according to stored 

examples using the technique of shape context matching in conjunction with a 

kinematic chain-based deformation model. Then the 3D posture is estimated based 

on the scaled orthographic projection algorithm introduced by [Taylor, 2000]. An 

alternative approach was proposed in [Agarwal and Triggs, 2006], where instead of 

explicitly storing and searching for similar training examples, a relevance vector 

machine [Tipping, 2000] is employed to learn a nonlinear regression of joint angles 

against histogram of shape context descriptors derived from silhouettes [Belongie 

et al., 2002]. As a result, a single compact model that has good generalisation to 

unseen examples is produced and employed for human pose estimation. A data-

driven iterative approach is presented in [Lee and Cohen, 2006], where pose 

candidates are generated in a Markov chain Monte Carlo search guided by image 

observations. 

When videos from multiple views are available, a human body posture can 

be inferred directly from a reconstructed 3D visual hull using a support vector 

machine trained on appearance-based shape descriptors [Cohen and Li, 2003]. 

The main limitation of these techniques is that a very large training set is 

required to provide satisfactory accuracy and generalisation properties.  
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2.3.2.2.3. Learnt Motion Model 

Human motion resides in a very high dimensional space because of its complexity 

and rich dynamic. However, many studies have revealed that the space of many 

activities is intrinsically a low dimensional nonlinear subspace embedded in the 

high dimensional space [Grochow et al., 2004, Elgammal and Lee, 2004a, Lee and 

Elgammal, 2006b, Urtasun et al., 2006a, Ek et al., 2007, Hou et al., 2007, Elgammal 

and Lee, 2009]. Therefore, the reduction of data dimensionality to constrain vision 

based reconstruction of human movement from a single camera has become a very 

active research topic. 

The pose recovery process shares some conceptual similarities with 

example based approaches. First, a low dimensional human body motion model is 

learned by reducing dimensionality of training MoCap data. Afterwards, the 

obtained model is used for pose estimation. Dimensionality reduction decreases 

computational and memory complexity of the pose estimation process in 

comparison to example based approaches. Moreover, it does not require an 

extensive training set of feasible human motions to generalise well to unseen data. 

In principle, the low dimensional representation can be exploited twofold for pose 

estimation. 

2.3.2.2.3.1. Direct Approach 

The straightforward approach is to use a directly learned model of human motion 

for inferring 3D poses.  

A pose inference is formulated as estimating an embedding point on the 

low dimensional manifold which is subsequently projected back to the pose space. 

In [Elgammal and Lee, 2004a], a view based low dimensional representation of 

activity is discovered using LLE. Afterwards, mapping functions (i.e. RBFN) are 

learned between obtained representations and both the visual input space and the 3D 



CHAPTER 2 State of the Art Review 2.3 Human Motion Analysis 

 - 96 -  

body configuration pose space. The body pose is recovered in a closed form in two 

steps by projecting a new observed silhouette to the learned representations of the 

activity manifold followed by interpolating the 3D pose. On the basis of this work, 

the authors in [Lee and Elgammal, 2006b] present a new generative model to 

represent shape deformations according to view and body configuration changes on 

a conceptual two dimensional torus manifold. Similarly to previous work, the 

activity model is extended with a RBFN mapping functions, i.e. a style adaptive 

mapping function from a visual space to the low dimensional space and standard 

mapping function from the embedded to the pose space.  

Another approach is to interpret a pose estimation procedure as an 

optimisation process. The space of human motion is parameterised by a set of linear 

subspace models obtained using PCA. Such parametric motion model is then used 

to formulate and restrict the tracking framework as a minimisation of differentiable 

objective function using a deterministic gradient descent optimisation [Urtasun 

et al., 2006b]. Alternatively, the parametric subspace model is used in construction 

of a generative human body motion model to constrain the solution space [Chen and 

Chai, 2009]. During pose inference the generative model is continuously deformed 

to best match 2D joint trajectories derived from monocular video sequences using a 

proposed gradient-based multi-resolution optimisation process. 

[Grochow et al., 2004] presents a probabilistic framework which is based 

on a learned model of human poses and an inverse kinematics system. The model is 

obtained using SGPLVM which provides the probability distribution over all 

possible 3D poses and constrains pose reconstruction from known 2D joint 

locations extracted from images. Since it is difficult to obtain a 2D skeleton from an 

image, [Ek et al., 2007] proposes a shared and generative activity model, which 

encapsulates silhouette observations, joint angles and their dynamics using 
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GPLVM. As a result, the 3D pose is inferred directly from the model given a query 

silhouette. 

2.3.2.2.3.2. Tracking Approach 

The low dimensional motion model can be also incorporated in a 3D visual tracking 

framework to reduce the state space of tracker and to provide powerful human 

motion priors for a pose recovery. As a result, a particle filtering with the reduced 

state space is faster since significantly fewer particles are required to adequately 

approximate the state space posterior distribution.  

For instance, [Elgammal and Lee, 2009] exploits a low dimensional torus 

manifold [Lee and Elgammal, 2006b] to constrain the particle filter tracker. Such 

torus is a natural continuous, low-dimensional representation of the joint (view and 

configuration) distribution which allows accurate 3D motion reconstruction. From a 

probabilistic perspective, the low dimensional model is learned using balanced 

GPDM [Urtasun et al., 2006a] or observation driven GPDM [Gupta et al., 2008] to 

ensure a continuous embedding of movement in the latent space for robust tracking 

and motion reconstruction. A conceptually equivalent approach is also presented in 

[Li et al., 2007c, Li et al., 2010], where the space of human motion is reduced using 

GCM [Li et al., 2007c] or LLC [Li et al., 2010] to provide prior information for a 

Multiple Hypothesis Tracker [Cham and Rehg, 1999]. In contrast, recent work [Guo 

and Qian, 2008] discovers two separate low-dimensional manifolds; one for 

silhouettes and one for 3D poses using GPLVM and balanced GPDM respectively. 

Then, bidirectional mappings between these two manifolds are established using a 

Bayesian mixture of experts [Xu et al., 1995] and relevance vector machine 

[Tipping, 2000]. The resulting motion model is used as a strong prior in the particle 

filter to explore the articulated space of human motion. 
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In [Hou et al., 2007], the problem of 3D pose estimation in a multiple view 

scenario is considered. First, the low dimensional embedding of example motions is 

learned using BC-GPLVM. Then, the latent space is partitioned into elementary 

motion sequences using an unsupervised EM clustering algorithm. The temporal 

dependencies between these elementary movements are efficiently captured by a 

Variable Length Markov Model. Tracking is then formulated in a particle filter 

based framework with a volumetric reconstruction algorithm to evaluate each 

candidate pose against image evidence captured from multiple views. 

The main limitation of all already discussed methods is that they take into 

account only one particular activity in the learning process. To handle multiple 

activities, [Darby et al., 2010] defines a number of activity models obtained with 

PCA, each composed of a pose space with a unique dimensionality and an 

associated dynamical model. Consequently, each learned model is capable to 

recover a particular class of activity. Finally, all activities models are combined in a 

new variant of an annealed particle filter to perform robust 3D human motion 

reconstruction. 

2.3.2.3.  Dataset and Metrics 

While research on articulated human motion and pose estimation has progressed 

rapidly in the last few years, a requirement for systematic quantitative evaluation of 

competing methods has emerged to establish the current state of the art. Although 

many datasets have been proposed (INRIA perception multi-cam dataset [Knossow 

et al., 2008], CMU MoCap dataset [CMU, 2010], CMU MoBo dataset [Gross and 

Shi, 2001]), HUMANEVA [Sigal et al., 2010] is the most extensive and established 

dataset for evaluation of human pose and motion estimation. The HUMANEVA 

dataset was collected using a hardware system in a laboratory setting. It provides: 

• Synchronised videos recorded simultaneously by 3 and/or 4 cameras. 
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• Ground-truth 3D motion of the body captured using motion capture system 

(MoCap). 

• 4 subjects (Figure 2.23) performing a set of 6 predefined actions in three 

repetitions (twice with video and motion capture, and once with motion capture 

alone). 

 

Figure 2.23. Four subjects available in HumanEva da taset. 

2.3.2.3.1. Human Body Pose Description 

In 3D pose recovery, a human body pose descriptor is usually based on an 

articulated hierarchical skeleton (Figure 2.24) which consists of joints and 

connecting rigid segments (i.e. bones) organised in a tree structure [Poppe, 2007b]. 

The joint is a connection point at which bone can rotate with respect to its parent. 

Lengths of bones are usually expected to satisfy the human body proportions, e.g. 

these defined by the Leonardo Da Vinci [Vinci, 1492]. In this thesis, the human 
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skeleton model is composed of 13 joints (Figure 2.24). During motion, the skeleton 

is constrained by the 3D body kinematics and dynamics as well as the specific 

dynamic of the action being performed.  

The learning of the prior model of human kinematics can be performed 

using data collected with marker-based human motion capture systems. The known 

correspondence between markers and joints together with the reconstructed 3D 

marker trajectories during movement provide the skeleton joint positions for each 

pose (15 dots in Figure 2.24). 

 

Figure 2.24. The Leonardo da Vinci human model and human skeleton model 

composed of 13 joints. The Leonardo da Vinci human model expresses the ideal 

human skeleton proportions of the body.  

In the hierarchical model, the global position of the human body is defined 

at the root of the hierarchy. All other joints are located relatively to the parent 

following a hierarchical kinematic chain (or kinematic tree). Any moving object, 

either the entire skeleton or a particular joint in the skeleton, has some degrees of 

freedom (DOF). The term ‘degree of freedom’ refers to the number of parameters or 

variables that are allowed to vary independently from each other [Good, 1973]. In 

human motion, degree of freedom describes the number of ways in which an object 

can move [Rose and Christina, 2005]. An object can have at most 6 degrees of 

freedom in the three dimensional space, since in each dimension there are two 
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possible types of movement: translation and rotation. When using a hierarchical 

model, joints are usually not allowed any translation. Here, apart from the root joint 

which has 6 DOFs, because it is responsible for moving the entire object in the three 

dimensional space, other joints have between one and three DOF and each DOF 

correspond to orthogonal rotation around one of the axis in a 3-dimensional space. 

The angle of each DOF is expressed either using Euler angles or quaternion. 

Moreover, each DOF can be constrained by minimum and maximum values using 

the human body kinematics constraints. The hierarchical skeleton model with the 

local angle representation for each joint allows to normalise the motion capture 

data. As a result, a human motion can be defined in a new coordinate system which 

is centrered on a moving person. This is crucial for extracting the intrinsic pattern of 

a motion, which is expected to be independent from the global position and rotation 

of the human with respect to the camera. 

Quaternion [Hamilton, 1844] is a 4-dimensional vector which expresses 

orientations and rotations of objects in three dimensions. Any 3-dimensional 

rotation is described by just one real value angle and a vector of 3 imaginary 

dimensions (Figure 2.25): 

 q a ix jy kz= + + +  (2.66) 

 In comparison to Euler angles, quaternions are simpler to compose and 

can be smoothly interpolated. Moreover, quaternions avoid the problem of gimbal 

lock, i.e. the loss of one degree of freedom in a 3-dimensional space when two 

gimbals are in the same plane (a gimbal is a pivoted support that allows the rotation 

of an object about a single axis).   

As a consequence, quaternions have the flexibility which make them 

particularly suitable for modelling local angles between joints in a skeleton 

according to a 3D kinematic tree. 
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Figure 2.25. a) a 4-dimensional quaternion 
�

(a,v ) ; b) a rotation of vector 
�
u  by the 

quaternion 
�

(a,v ) . 

The pre-processing of MoCap data is summarised as follows. First, all 

poses are converted into normalised poses [Elgammal and Lee, 2009], i.e. poses 

invariant to the subject’s global rotation and translation. Then, the three angles 

defining each joint position are computed and represented by a single quaternion. 

An articulated human skeleton is then parameterised as a high dimensional feature 

vector by simply concatenating quaternions one by one  for all joints in a single row 

vector. In this work, a 52-dimensional feature vector is constructed for each pose 

(13 joints multiplied by the 4-dimensional vector). 

2.3.2.3.2. Evaluation Metrics 

Various evaluation measures have been proposed for human motion tracking and 

pose estimation (see [Sigal et al., 2010] for overview). In this work, two metrics are 

exploited to evaluate estimated poses against motion capture data, which is our 

ground truth. Firstly, this thesis reports mean (over all angles) absolute difference 

errors between the true and estimated joint angle vectors (in degrees) to show 

performance independent on the skeleton limb sizes: 



CHAPTER 2 State of the Art Review 2.3 Human Motion Analysis 

 - 103 -  

 
1

1
( ) ( ' )mod180i i

i

MAE x x
=

° = − °∑
M

M
 (2.67) 

Secondly, Root-Mean-Square error (RMS) is computed to facilitate the 

comparison between the reconstructed body and the ground truth data when the 

properties of body models are known. This is performed using Procrustes Analysis 

[Seber, 2004], which determines a linear transformation (translation, rotation, and 

scaling) of the reconstructed body to best match the ground truth by minimising 

RMS. 

2.3.3. Action Recognition 

Vision-based human action recognition is a high level process of image sequence 

analysis. This is achieved by assigning action labels that best describe action 

instances, even when performed by different subjects under different viewpoints, 

and in spite of large differences in manner and speed. In this work, we adopt the 

three level hierarchy of [Moeslund et al., 2006] to define the following notions:  

• An action primitive (i.e. atomic action) is a simple motion pattern usually 

executed by a single person and typically lasting for a short duration (e.g. 

‘jumping’, ‘running’, ‘sitting’, ‘drinking’). 

• An action is a sequence of action primitives, which represent a more complex 

movement in a longer period of time (e.g. the ‘jumping hurdles’ action contains 

‘starting’, ‘jumping’ and ‘running’ action primitives). 

• An activity contains a number of successive actions performed by several 

humans who could interact with each other in a constrained manner (e.g. the 

‘hurdling race’ activity which involves several people performing the ‘jumping 

hurdles’ action followed by the ‘resting’ action). 

Most action recognition systems are composed of two pipelines: one for 

training (Figure 2.26) and one for classification (Figure 2.27). In the training phase 
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(Figure 2.26), first, relevant features are extracted from image sequences and used 

to produce a shape descriptor for each motion instance (section 2.3.3.1). Then, for 

each action, the shape descriptors are combined to create action models (section 

2.3.3.2). In the classification phase (Figure 2.27), videos are pre-processed in the 

same way as for training and compared with the learned action models to perform 

the semantic interpretation of the action (section 2.3.3.3).  

 

Figure 2.26. Training of action recognition framewo rk.  

 

Figure 2.27. A standard testing procedure for actio n recognition.  

In this section, a state-of-art review of the very active field of human action 

recognition is presented. Although the identification of a human activity from a 

single video is the ultimate goal, we also report schemes based on multi-camera 

frameworks. Note that we limit our scope of interest to the most established and 

popular approaches in the research community with a special focus on recognition 

of action primitives. Therefore, if it is not stated otherwise, the term ‘action’ refers 

to ‘action primitive’ in the rest of the dissertation. A much more detailed overview 

of current advances in the field is provided by the surveys [Moeslund et al., 2006, 

Turaga et al., 2008a, Poppe, 2010, Weinland et al., 2010a]. 

2.3.3.1. Feature Descriptors 

A variety of features has been used in the human action recognition task. Ideally, 

these should generalise over small variations in a person appearance, background, 
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and viewpoint and action execution. At the same time, the representations have to 

be sufficiently rich to allow for the robust classification of an action. The temporal 

aspect is usually essential in an action performance and, therefore, most features 

take the temporal dimension into consideration. Any feature descriptor is classified 

as either local or global representation.   

2.3.3.1.1. Local Feature Descriptors 

Local feature descriptors decompose an observed action into a collection of local 

patches, which capture shape and motion only in the neighbourhoods of pre-

selected points using some image measurements. These ‘interest’ points are 

locations in space and/or time where sudden changes of movement occur in the 

video. These locations are assumed to be the most informative for the recognition of 

a human action. The spatial and temporal sizes of a patch are usually determined by 

the scale of the interest point. As a result, before the computation of final local 

descriptors (section 2.3.3.1.1.2), a detector is applied to select spatio-temporal 

locations of the interest points and scales in a video by maximising specific saliency 

functions (section 2.3.3.1.1.1). An overview and broad evaluation of different 

detectors and local descriptors can be found in [Wang et al., 2009]. 

2.3.3.1.1.1. Detectors 

2.3.3.1.1.1.1. Harris Detector 

Harris detector is a combination of corner and edge detectors based on the local 

auto-correlation response function [Harris and Stephens, 1988]. The idea is to detect 

locations in a spatial image where the image values have significant variations in 

both directions. Laptev et al. proposes the Harris3D detector [Laptev and 

Lindeberg, 2003, Laptev, 2005], which is more attractive to the action recognition 

community, since it extends the Harris detector into the spatio-temporal domain. It 
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requires that a point will be considered as ‘interesting’ only if the image value in 

local spatio-temporal volume has large variations in the spatial as well as the 

temporal dimension. Points with such properties will be the spatial interest points 

with distinct location in the time corresponding to local spatio-temporal 

neighbourhoods with non-constant motion. The spatio-temporal extents of the 

detected points are estimated by maximizing the normalised spatio-temporal 

Laplacian operator over independent spatial and temporal scales. 

2.3.3.1.1.1.2. Cuboid Detector 

Cuboid detector is proposed by [Dollar et al., 2005] and it is based on the spatio-

temporal response function which is calculated at every location in the spatio-

temporal image volume. Interest points are local maxima of this function. The 

response function is calculated by applying separable linear filters to video 

sequences. This function is derived from the 2D Gaussian smoothing filter applied 

spatially and a pair of 1D Gabor filters applied only along the temporal dimension. 

2.3.3.1.1.1.3. Hessian Detector 

Hessian 3D detector [Willems et al., 2008] selects a set of spatio-temporal interest 

points which are at the same time scale-invariant (both spatially and temporally) 

and densely cover a video content. This is achieved by simultaneous localisation of 

points in the spatio-temporal domain and over both scales (spatial and temporal) 

using the determinant of the 3D Hessian matrix as a saliency measure. The Hessian 

detector is computationally very efficient since the determination of interest points 

is a non iterative procedure. Moreover, the authors use the approximate box-filter 

operations on an integral video structure to further speed up the detector. 
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2.3.3.1.1.1.4. Dense Sampling 

Dense sampling is a very naive approach, which extracts video blocks at regular 

positions and scales in space and time. There are 5 dimensions to sample from: two 

spatial dimensions, one temporal dimension and two scales (spatial and temporal). 

The spatial and temporal sampling of 3D patches is usually performed with overlap 

at multiple scales. 

2.3.3.1.1.2. Local Descriptors 

2.3.3.1.1.2.1. Cuboids 

The cuboids are extracted at interest point and contain the spatio-temporally 

windowed pixel values [Dollar et al., 2005]. They are inherently local in nature, and 

therefore capture the local appearance and motion information. The size of a cuboid 

is set to contain most of the volume of data that contributes to the response function 

at that interest point; specifically, the cuboid consists of all (grey scale) pixel values 

within an area of six times the scale at which it was detected. The cuboid descriptor 

can be the vector of: 

• flattened cuboid values, 

• a global histogram of cuboid values, 

• local histograms of cuboids values which are computed in partitioned regions of 

the cuboid.  

The dimensionality of the final descriptors is reduced using the PCA. 

[Ta et al., 2010a] uses cuboids to formulate the action recognition as a 

graph matching problem, whereas [Zhao and Elgammal, 2008] employs them to 

describe an action as a discriminative set of spatio-temporal key frames. 

Alternatively, [Ta et al., 2010b] combines cuboid descriptors with spatio-temporal 

relations among them to design the novel concept of a pair wise feature descriptor. 
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2.3.3.1.1.2.2. Histograms of Oriented Gradient 

Histograms of Oriented Gradient [Dalal and Triggs, 2005] (HOG) are based on 

evaluating well-normalised local histograms of image gradient orientations in a 

dense grid. The basic idea is that local object appearance and shape are often 

characterised sufficiently by the distribution of local intensity gradients or edge 

directions, even without precise knowledge of the corresponding gradient or edge 

positions. In practice this is implemented by dividing the gradient image window 

into small spatial regions (cells), for each cell accumulating a local 1-D histogram 

of gradient directions or edge orientations over the pixels of the cell. The vectors of 

all cells are concatenated to give one global feature vector for the image window. 

For better invariance to illumination, shadowing, etc., it is also useful to contrast-

normalise the local responses before using them. This is done by accumulating a 

measure of local histogram energy over somewhat larger spatial regions (blocks) 

and using the results to normalise all of the cells in the block.  

For example, [Kaâniche and Brémond, 2010] generates local motion 

signatures based on the schema: people detection/feature selection followed by 

HOG descriptor generation/tracking. Similarly to the cuboids [Zhao and Elgammal, 

2008], the HOG is used to represent an action as time series of a few snapshots of 

human-body parts in their most discriminative postures, relative to other activity 

classes (key poses) [Brendel and Todorovic, 2010]. In turn, [Kaâniche and 

Brémond, 2009] extends the HOG into the temporal domain by tracking 2D 

descriptors based on frame-to-frame HOG tracker using the extended Kalman filter. 

To characterise local motion and appearance, the HOG is combined with optical 

flow field [Roth et al., 2009] or histograms of optical flow accumulated in space-

time neighbourhoods of detected interest points [Laptev et al., 2008]. Eventually, 

the self-similarity descriptor is derived from the HOG to deal with view changes 

[Junejo et al., 2008]. 
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Alternatively, [Kläser et al., 2008] introduces the spatio-temporal HOG 

(HOG3D), which is based on histograms of 3D gradient orientations and generalises 

the HOG concepts to 3D, assuming videos as spatio-temporal volumes. Gradients 

are computed using the integral video representation. The descriptor, therefore, 

combines shape and motion information at the same time. A given 3D patch is 

divided into spatio-temporal cells. The corresponding descriptor concatenates 

gradient histograms of all cells and is then normalised. [Weinland et al., 2010b] 

uses a local partitioning of the dense HOG3D representation in a hierarchical 

classifier, which first performs a local classification followed by global, to provide 

robustness to both viewpoint changes and occlusions. 

The HOG has proved to be the very powerful feature descriptor [Wang 

et al., 2009] and showed satisfactory results even for extremely challenging film 

based datasets such as YouTube [Brendel and Todorovic, 2010, Ikizler-Cinbis and 

Sclaroff, 2010, Matikainen et al., 2010], Hollywood [Kläser et al., 2008, Satkin and 

Hebert, 2010, Wang et al., 2009] and UCF television [Wang et al., 2009, Weinland 

et al., 2010b]. 

2.3.3.1.2. Global Feature Descriptors 

Global feature descriptors are extracted from a region of interest centred on a 

person performing an action (so called bounding box of the action). As a result, 

usually input videos are pre-processed to segment the regions of interest, which are 

then encoded as a whole by taking into account all available pixel information. The 

segmentation can be performed using detection/localisation algorithms, background 

subtraction or tracking. In current action recognition research, it is assumed that the 

segmentation is a solved problem. The final feature vector is given by the 

normalised region of interest in the raster scan fashion where the dimension of 

vector is equal to the number of pixels in the entire region. 
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2.3.3.1.2.1. Silhouettes 

A binary silhouette (i.e. binary shape or contour) is a very simple image descriptor 

with a featureless interior of a person and uniform black background. Silhouette 

representation is insensitive to colour, texture, and contrast changes, but at the same 

time provide sufficient discriminative information for many action recognition 

frameworks [Chin et al., 2007, Wang and Suter, 2007a, Wang and Suter, 2007b, Lv 

and Nevatia, 2007, Tran and Sorokin, 2008, Wang and Suter, 2008, Jia and Yeung, 

2008, Fang et al., 2009, Vezzani et al., 2010, Zhang and Gong, 2010]. Although 

such approaches used pure silhouettes, in most cases silhouettes are converted to 

more discriminative features such as the temporal motion templates (section 

2.3.3.1.2.2) or the space-time local features (section 2.3.3.1.2.3) to take into account 

some temporal information. Alternatively, silhouettes are used for a volumetric 

reconstruction of data to form a 3D volume of human body [Weinland et al., 2007, 

Pehlivan and Duygulu, 2010]. 

2.3.3.1.2.2. Temporal Motion Templates 

Motion History Image [Bobick and Davis, 2001] (MHI) is the simplest temporal 

template motion feature, which represents an action by encoding a history of 

silhouette deformation over time using decaying weights. Conceptually, the MHI 

image contains the past images within itself, in which the most recent image is the 

brightest. To overcome limitations of the MHI, [Meng and Pears, 2009] proposes 

the Motion History Histogram by additionally storing frequency information as the 

number of times motion is detected at every pixel, further categorised into the 

length of each motion. 2D temporal templates can easily be extended into 3D to 

form the Motion History Volumes by considering voxels instead of pixels 

[Weinland et al., 2006b]. A binary version of MHI is called the Motion Energy 

Image [Bobick and Davis, 2001]. 
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2.3.3.1.2.3. Space-Time Local Features 

A silhouette is surrounded by a simple, closed contour. A more advanced 

representation of the silhouette is inferred by assigning to every internal pixel a 

value which depends on a relative position of that point within the silhouette 

[Gorelick et al., 2006]. This relationship is determined by placing a set of particles 

at the point which are then moved in the random walk until the contour is hit. 

Thanks to the statistics of this random walk, the final value of internal pixel 

corresponds to the mean time required for the particle to hit the boundaries of the 

silhouette. This mean time measure is computed by a partial differential equation, 

called the Poisson equation, with the silhouette contours providing the boundary 

conditions. 

The above spatial concept has been extended to the temporal domain 

[Gorelick et al., 2007]. A sequence of binary silhouettes can be considered as the 

space-time shape surrounded by a closed surface. As a result, particles can wander 

randomly in the spatio-temporal volume of data. This allows representing each 

silhouette by local space-time saliency and orientation features extracted from the 

solution of the Poisson equation of the corresponding volumetric surface, which 

implicitly takes into account the time domain. The final global descriptor for a 

given temporal range is obtained by calculating the weighted moments over these 

local features. 

2.3.3.1.3. Summary of Feature Descriptors 

Global descriptors are powerful and discriminative since they encode much of the 

information. However, they rely on robust detection/localisation, background 

segmentation or tracking to determine the region of interest and may not be 

appropriate in the presence of cluttered dynamic background and serious self 

occlusions. In contrast, local descriptors are more robust against noise, variations of 
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viewpoint and partial occlusions, although the extraction of a sufficient amount of 

relevant interest points is challenging and computationally expensive. Moreover, 

local descriptors usually required a set of empirical parameters. 

 

2.3.3.2. Action Descriptors 

2.3.3.2.1. Hidden Markov Model 

Hidden Markov Model [Rabiner, 1989] (HMM) is a statistical generative model in 

which the system being modelled is assumed to be a Markov process with an 

unobserved state, i.e. the state is not directly visible, but the output, dependent on 

the state, is visible. In action recognition, these hidden states correspond to different 

phases in an action.  HMM learns state transition probabilities that model the 

temporal extent of action and observation probability density distributions that 

model the observation process of hidden states. To keep the modelling of the joint 

distribution over representation and labels tractable, two independence statistical 

assumptions are introduced. First, the state transitions are conditioned only on the 

previous state, not on the state history. This is the Markov assumption. Secondly, 

observations are conditioned only on the current state, so subsequent observations 

are considered to be independent in time.  Training of the HMM is done efficiently 

using the Baum-Welch algorithm [Baum et al., 1970] (generalised case of the 

Expectation-Maximisation algorithm).  

For instance, [Feng and Perona, 2002] considers key poses as states, and 

sequences of movelet codewords to model dynamics between them using an HMM 

framework. In similar manner, a HMM is used to model temporal evolution of 

silhouettes [Vezzani et al., 2010] or dynamic textures patterns [Kellokumpu et al., 

2008]. Another interesting application is proposed by [Martinez-Contreras et al., 

2009], where HMM tracks the Self Organizing Map [Kohonen, 1982] behaviour on 
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the temporal sequences of MHI. In multi view settings, [Ahmad and Lee, 2008] 

represents an action with a set of multidimensional HMMs for multiple views using 

combined features of optic and shape flow in the spatial-temporal action boundary. 

Alternatively, [Weinland et al., 2007] proposes the exemplar-based HMM to model 

two independent random processes: one for the orientation of a subject relative to a 

camera, and the other for a most discriminative view independent poses taken by a 

performer during the various stages of an action. 

2.3.3.2.2. Conditional Random Fields 

Conditional Random Field [Lafferty et al., 2001] (CRF) is a generalisation of the 

HMM that allows observation and possible transitions to be arbitrary functions. 

Moreover, it is discriminative and can use multiple overlapping features. The model 

predicts the conditional probability of the states given multiple observations on 

different time scales. In contrast to the generative HMM, the CRF is trained to 

discriminate between action classes rather than learning to model each class 

individually. As a consequence, it avoids the independence assumption and can 

represent rich relationships among observations and long range dependencies. 

[Sminchisescu et al., 2006] uses the simple linear chain CRF, where the 

state dependency is a first-order, to recognise human motion and to show 

superiority of the method in comparison to the HMM. Another application of the 

CRF is presented in [Zhang and Gong, 2010], where the modified hidden CRF is 

used to model an action and a global optimal solution is guaranteed after the HMM 

pathing stage. In a multi view scenario, [Natarajan and Nevatia, 2008] introduces 

the two layer graph model of an action, where nodes in the top level correspond to 

events in each viewpoint and on the lower layer CRFs are used to encode the action 

and the viewpoint-specific pose observation. Finally, [Wang and Suter, 2007b] 

introduces the factorial CRF for an action recognition. 
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2.3.3.2.3. Bag of Words 

The Bag of Words [Schuldt et al., 2004, Dollar et al., 2005, Niebles et al., 2008, 

Junejo et al., 2008, Kaâniche and Brémond, 2009, Kaâniche and Brémond, 2010, 

Reddy et al., 2010, Brendel and Todorovic, 2010]  (BoW) is a simple and powerful 

approach for modelling an action as a large visual vocabulary (dictionary, 

codebook) of discriminative code words. This visual dictionary is formed by the 

vector quantization of local feature descriptors extracted from images using for 

instance the k-means algorithm [Kanungo et al., 2002]. Code words are then 

defined as the centres of the learnt clusters after pruning out the clusters with a too 

small number of members. Then each local descriptor is assigned to the closest code 

word. A sequence of images is summarised by the distribution of code words from 

the fixed codebook by computing a histogram of code word occurrences based on 

the assignment of local descriptors. Action classification is performed by 

constructing a feature vector for video based on the defined dictionary to relate 

“new” descriptors in query images to descriptors previously seen in training. 

Since BoW models discard the spatio-temporal layout of the local features 

which may be almost as important as the features themselves, the main line of 

research tries to reintroduce this information back into the BoW model.  For 

instance, Laptev et al. [Laptev et al., 2008] employs spatio-temporal grids to extend 

the BoW into the spatio-temporal domain. A conceptually different approach is to 

explore the spatio-temporal correlation between code words using the spatial 

correlogram and spatio-temporal pyramid matching [Liu and Shah, 2008] or relative 

location probabilities [Matikainen et al., 2010]. Alternatively, two codebooks are 

generated according to an appearance and a geometric similarity of spatio-

temporally related pairs of cuboids [Ta et al., 2010b]. As a result, each image is 

represented by two histograms of visual words which are combined into a single 

feature vector. Similarly, [Liu et al., 2008] also defines two vocabularies (i.e. 
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spatio-temporal cuboids and spin images), however here these features are fused in 

the weighted manner using the Fiedler embedding of a graph. Eventually, even a 

hierarchy of vocabularies is constructed using neighbourhoods of spatio-temporal 

features, where each code word encodes the interest point and a loose configuration 

of neighbours to capture space-time relationships between words at successively 

broader scales [Kovashka and Grauman, 2010]. 

Another issue with BoW is that the k-means algorithm only considers 

appearance similarity; therefore visual words are not necessarily semantically 

meaningful. To address this problem the feature space is clustered using 

Information Bottleneck [Liu and Shah, 2008] or KL-divergence [Liu et al., 2009] to 

obtain compact yet discriminative semantic vocabularies. 

2.3.3.2.4. Dimensionality Reduction 

Action video sequences are very high dimensional because of the human motion 

complexity. However, different instances of the given action reside only in a part of 

the entire feature space. This subspace can be considered as a nonlinear manifold 

embedded in a space of image frames. As a result, the discriminative and low 

dimensional manifold of the action can be discovered by a dimensionality reduction 

process. 

A naïve approach is to employ the linear PCA to discover a low 

dimensional representation of filtered images [Masoud and Papanikolopoulos, 

2003] or HOG descriptors [Lu and Little, 2006]. Alternatively, the locality 

preserving projection (LPP) is employed for producing low dimensional space of 

actions [Wang and Suter, 2007a, Wang and Suter, 2008, Fang et al., 2009] (LPP is a 

linear approximation of the nonlinear Laplacian Eigenmap [He and Niyogi, 2004a]). 

Since human motion is highly nonlinear, a nonlinear action manifold is obtained by 

applying the LLE on silhouettes [Chin et al., 2007], Isomap on the implicit function 
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distance representations [Blackburn and Ribeiro, 2007], or Isomap on the view 

invariant R-transform descriptors [Richard and Kyle, 2009]. Another approach for 

modelling nonlinearity of an action is to use the Grassmann and Stiefel manifold 

embeddings [Turaga et al., 2008b]. All these manifolds are learned in an 

unsupervised manner, which does not guarantee good discrimination between 

related action classes. To address this issue, [Jia and Yeung, 2008] proposes a novel 

dimensionality reduction method, called Local Spatio-Temporal Discriminant 

Embedding, which is tailored to the human action recognition task.  In principle, 

LSTDE projects data points of the same class close in the manifold and those of 

different classes far away, while temporal relations are modelled in subspaces of the 

manifold. 

2.3.3.2.5. Summary of Action Descriptors 

HMM and in particular CRF are excellent in modelling the temporal development 

of an action and allow making a probabilistic decision in the classification task. 

However, the process of model learning is challenging because of the curse of 

dimensionality associated with the space of features. In contrast, the learning 

process of BoW is extremely simple, but, at the same time, the obtained action 

model proves to be very discriminative and efficient. The main drawback of the 

BoW model is that it is not view and scale invariant; moreover it is a black box with 

neither rigorous spatial nor temporal structural information about action. On the 

other hand, not only dimensionality reduction models are easy to learn, but also 

they can simultaneously extract conceptually meaningful motion patterns from 

actions. As a consequence, these models are more intuitive and understandable for a 

user and, therefore, easy to analyse and process. However, similarly to BoW, the 

temporal aspect of the action is generally not taken into account during the 

dimensionality reduction process. 
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2.3.3.3. Classifiers 

The action models are used to ‘train’ a classifier which performs the final 

annotation of a new action. We will describe briefly three of the most popular 

approaches. 

2.3.3.3.1. Nearest Neighbour Classification 

The k-Nearest neighbour (NN) classifier uses some distance metric to assess 

similarity between the descriptor of an observed sequence and available training 

descriptors. The most common label among the k  closest training sequences is 

chosen as the classification decision. In order to always obtain a majority vote, k  is 

usually an odd number to prevent tie cases. This classifier is common for action 

models generated by a dimensionality reduction process [Masoud and 

Papanikolopoulos, 2003, Chin et al., 2007, Wang and Suter, 2007a, Blackburn and 

Ribeiro, 2007, Wang and Suter, 2008, Turaga et al., 2008b, Fang et al., 2009]. 

Usually a new instance of action is projected into the action manifold and similarity 

between the projection and the learned manifold is calculated. The NN classifier is 

also used in combination with the BoW by simply calculating a distance between an 

input descriptor and available code words in the dictionary [Dollar et al., 2005, Liu 

et al., 2008, Kaâniche and Brémond, 2009, Kaâniche and Brémond, 2010, Brendel 

and Todorovic, 2010]. Other approaches which exploit this metric include [Bobick 

and Davis, 2001, Weinland et al., 2006b, Gorelick et al., 2007, Zhao and Elgammal, 

2008, Tran and Sorokin, 2008, Pehlivan and Duygulu, 2010]. 

2.3.3.3.2. Probabilistic Classification 

Probabilistic classification matches an observed sequence to the trained model (for 

instance HMM or CRF) that maximises the observation probability. The probability 

of observing the given sequence is computed by the maximum a posteriori 



CHAPTER 2 State of the Art Review 2.3 Human Motion Analysis 

 - 118 -  

estimation [Weinland et al., 2007, Natarajan and Nevatia, 2008, Martinez-Contreras 

et al., 2009, Zhang and Gong, 2010, Vezzani et al., 2010] or using the efficient 

Viterbi algorithm [Feng and Perona, 2002, Sminchisescu et al., 2006, Lv and 

Nevatia, 2007, Kellokumpu et al., 2008, Ahmad and Lee, 2008]. 

2.3.3.3.3. Support Vector Machine 

Support Vector Machine (SVM) is a discriminative model which focuses on 

separating two [Boser et al., 1992, Cortes and Vapnik, 1995] or more classes [Hsu 

and Lin, 2002] using decision boundaries, rather than modelling them. It constructs 

the hyper plane or set of hyper planes in a high or infinite dimensional space to 

optimally separate data. Intuitively, good separation is achieved by the hyper plane 

that has the largest distance to the nearest training pattern of any class, since, in 

general, the larger the margin between classes the lower the generalisation error of 

the classifier. The feature vectors that constrain the width of the margin are called 

support vectors. Although SVM is applied in the original finite high dimensional 

space of features, it often happens that in that space the sets of features cannot be 

linearly separated. For this reason, SVM uses a kernel function to transform the data 

into a higher (and potentially infinite) dimensional space to make the linear 

separation possible. Many kernel mapping functions can be used; some of them are 

presented in section 2.2.2.2.2.1. For more details see [Burges, 1998]. 

SVM has been usually trained on BoW and has proved to be a very 

powerful classifier for action recognition [Laptev et al., 2008, Kläser et al., 2008, 

Junejo et al., 2008, Wang et al., 2009, Meng and Pears, 2009, Liu and Shah, 2008, 

Schindler and van Gool, 2008, Yeffet and Wolf, 2009, Ta et al., 2010b, Weinland 

et al., 2010b, Ikizler-Cinbis and Sclaroff, 2010, Satkin and Hebert, 2010, 

Matikainen et al., 2010]. 
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2.3.3.4.  Datasets and Metrics 

Since action recognition is a very dynamic area of research in the computer vision 

community, many datasets have been proposed to evaluate frameworks in different 

settings and scenarios. The most widely used datasets include: Weizmann [Gorelick 

et al., 2007], KTH [Schuldt et al., 2004], IXMAS [Weinland et al., 2006b], 

MuHAVi [MuHAVi, 2010], ViHASi [Ragheb et al., 2008], Hollywood [Laptev 

et al., 2008], YouTube [Liu et al., 2009], UCF television [Rodriguez et al., 2008] 

and UT-Iteraction [Ryoo and Aggarwal, 2009]. 

In this work, our contribution is validated on two well established datasets 

which are considered as the baseline for all action recognition frameworks. Both 

datasets will be described in the next sections followed by the description of the 

standard evaluation protocols used by the action recognition community. 

2.3.3.4.1.  Weizmann Dataset 

The human action dataset recorded by [Gorelick et al., 2007] consists of 9 different 

subjects repeating several times 10 actions in outdoor environment (walk, run, 

jump, gallop sideways, bend, one-hand wave, two-hand wave, and jump in place, 

jumping jack and skip). The backgrounds are static and foreground silhouettes are 

included in the dataset. The dataset is useful for the evaluation of view dependent 

frameworks, because the viewpoint of provided videos is static. Example frames of 

actions and subjects are presented in Figure 2.28. 
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Figure 2.28. Examples of different actions and acto rs in the Weizmann dataset. 

2.3.3.4.2. IXMAS Dataset 

IXMAS dataset is introduced by [Weinland et al., 2006b] and contains videos of 

actions captured from five viewpoints. A total of 12 persons perform 3 times each 

of 13 actions (check watch, cross arms, scratch head, sit down, get up, turn around, 

walk, wave, punch, kick, point, pick up, throw). In this dataset, actors' positions and 

orientations are arbitrary since no specific instruction was given during acquisition. 

As a consequence, the action viewpoints are random and unknown. The camera 

views are fixed, with a static background and illumination settings. Silhouettes and 

reconstructed 3D visual hulls are provided by the dataset. Example frames of 

actions and subjects are presented in Figure 2.29. 
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Figure 2.29. Examples of different actions, actors and views in the IXMAS dataset. 

2.3.3.4.3. Evaluation Protocols and Metric 

Different action recognition frameworks often use different experimental settings; 

therefore a direct comparison is not always straightforward. Popular evaluation 

schemas are divided into three groups: 

• The holdout validation – a dataset is split into two sets of videos and one of 

them is used for training, while another one for testing. This schema is used in 

[Schuldt et al., 2004, Lv and Nevatia, 2007, Laptev et al., 2008, Meng and 

Pears, 2009]. 



CHAPTER 2 State of the Art Review 2.4 Summary 

 - 122 -  

• The K -fold cross validation – a dataset is partitioned into K  groups of 

subject’s dependent videos. For each of the K  experiments, 1K −  subjects are 

used for training and the remaining one for testing. A final error is estimated by 

the average error rate over all experiments. This schema is used in [Liu and 

Shah, 2008, Liu et al., 2008, Zhang and Gong, 2010, Matikainen et al., 2010]. 

• The Leave-one-out cross validation – this schema is a special case of the K -

fold cross validation, where K  is chosen as the total number of subjects. For 

each of K  experiments, only action instances of one actor are used for testing 

and all remaining for training. A final error is estimated by the average error 

rate over all experiments. This schema is used in [Weinland et al., 2007, 

Gorelick et al., 2007, Wang and Suter, 2007a, Chin et al., 2007] [Kläser et al., 

2008, Junejo et al., 2008, Tran and Sorokin, 2008, Yan et al., 2008, Turaga 

et al., 2008b, Kellokumpu et al., 2008] [Roth et al., 2009, Richard and Kyle, 

2009] [Kaâniche and Brémond, 2010, Weinland et al., 2010b, Ta et al., 2010a, 

Ta et al., 2010b, Vezzani et al., 2010, Brendel and Todorovic, 2010, Kovashka 

and Grauman, 2010, Pehlivan and Duygulu, 2010]. 

Action recognition performance is measured by the average number of 

correctly classified actions in dataset over all subjects and views. In addition, 

detailed accuracy results are very often presented in a confusion matrix with respect 

to available actions. 

2.4. Summary 

In this chapter we outlined the background for the remainder of this thesis. We 

began with the theoretical foundations of dimensionality reduction. Then we 

reviewed algorithms of the two main strands of the current research and highlighted 

some of the strength and weaknesses of each group of dimensionality reduction 

methods. Afterwards, we discussed the main developments in the literature of 
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human motion analysis with a special attention to the usage of dimensionality 

reduction transformations. This is essential to establish the general background for 

the evaluation of our contributions. 

Although enormous effort has been already undertaken by the research 

community to design powerful dimensionality reduction tools to tackle a wide range 

of real-life problems, we have identified a few fundamental research gaps which we 

address in this dissertation in the following chapters.  
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3. Automatic Configuration of 
Spectral Dimensionality Methods 

3.1. Introduction 

Many real datasets are highly nonlinear and high dimensional. Since spectral 

methods can handle very large datasets with a reasonable computational cost, they 

have proved very popular (see section 2.2.2.2.2.2). However, the absence of explicit 

mapping between low and high dimensional spaces as well as manual tuning of 

parameters limits their usefulness. In this chapter we tackle these fundamental 

problems by proposing an advanced framework for the automatic configuration of 

spectral dimensionality reduction methods [Lewandowski et al., 2009, 

Lewandowski et al., 2010a]. This is achieved by introducing, first, the mutual 

information measure to assess the quality of discovered embedded spaces. 

Secondly, unsupervised graph-based Radial Basis Function network (G-RBFN) is 

designated for mapping between spaces where the learning process is derived from 

graph theory and based on Markov cluster algorithm. Exhaustive experiments on 

synthetic and real datasets demonstrate the effectiveness of the proposed 

methodology in a variety of applications, i.e. classification of hand written digits, 

face recognition and human pose recovery.   

The rest of the chapter is organised as follows. Section 3.2 investigates 

advantages and disadvantages of embedded based family of dimensionality 

reduction methods and some competitive proposals which address their limitations. 

The proposed framework is described in detail in section 3.3. Its evaluation is given 

in section 3.4. Finally, a summary can be found in section 3.5. 
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3.2. Related Work 

Spectral or embedding-based approaches model the structure of data by preserving 

some geometrical property of the underlying manifold. While the Isomap 

[Tenenbaum et al., 2000] method attempts to maintain global properties, LE [Belkin 

and Niyogi, 2002] and LLE [Roweis and Saul, 2000] aim at preserving local 

geometry which implicitly tends to keep the global layout of the data manifold. 

Since the brief description of these techniques is provided in section 2.2.2.2.2.2, 

here we focus on their limitations. 

The main shortcomings of spectral methods are that first the quality of 

embedded space is extremely sensitive to the required free parameters and, 

secondly, they do not provide any mapping function between the low and high 

dimensional spaces. Despite research being conducted to improve these methods 

[De Silva and Tenenbaum, 2003, De Ridder et al., 2003, Donoho and Grimes, 2003, 

He and Niyogi, 2004b, Yang, 2003, He et al., 2004, He et al., 2005, Choi and Choi, 

2007, Zhang and Wang, 2007, Kokiopoulou and Saad, 2007, Zheng et al., 2008, 

Yin et al., 2008b, Goldberg and Ritov, 2009, Wang and Li, 2009], they still rely on 

the emperical set of a few values, i.e. neighbourhood size, dimensionality of 

embedded space and mapping function parameters. 

3.2.1. Selection of Free Parameters 

 All spectral approaches have two essential free parameters (Figure 2.12):  

• the dimensionality of embedded space, d , 

• the neighbourhood size, K , 

which have to be specified apriori in order to perform dimensionality reduction.  
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3.2.1.1.  Dimensionality of Embedded Space 

The dimensionality d  is used to choose the appropriate number of eigenvalues and 

corresponding eigenvectors, which are solutions of the eigenvalue problem. The 

eigenvectors form the basis of the low dimensional space. The optimal value of d  

should satisfy the ‘principle of parsimony’ [Bell and Wang, 2000], thus, it should be 

set to the smallest possible number of dimensions which allows maximal 

preservation of the original information. Such optimal dimensionality is defined as 

the intrinsic dimension of the high dimensional data. More formally, a dataset 

X ⊂ D
ℝ  is said to have intrinsic dimensionality (ID) equal to d  if its elements lie 

entirely within a d-dimensional subspace of D
ℝ  (where <<d D ) [Fukunaga, 1982]. 

The estimation of the intrinsic dimensionality is a crucial problem, because 

knowing it the possibility of over- or under-fitting would be eliminated. In 

particular, if the number of dimensions is too low, important data features may be 

collapsed onto the same dimension. Therefore, the determination of d  is a very well 

studied problem in machine learning and many approaches have been proposed (see 

[Camastra, 2003] for a detailed review). They include: 

• projection methods, which use a low dimensional embedding to estimate ID: 

o eigenvalue-based estimator [Fukunaga and Olsen, 1971] (EE), 

o PCA estimator with cover sets [Fan et al., 2010], 

• geometric approaches, which investigate the intrinsic geometric structure of data 

in order to estimate ID:  

o packing numbers [Kegl, 2003], 

o analysis of a geodesic minimum spanning tree [Costa and Hero, 2004], 

o fractal-based method [Camastra and Vinciarelli, 2002], 

o neighborhood convex hull method [Li et al., 2007b], 
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• probabilistic methods, which make a distribution assumption on data to build 

the ID estimator: 

o maximum likelihood estimation [Levina and Bickel, 2005, MacKay and 

Ghahramani, 2005], 

o incising ball algorithm [Fan et al., 2009]. 

However, none of them has achieved consensus as the most accurate 

method. Projection methods [Fukunaga and Olsen, 1971, Fan et al., 2010] are based 

on a heuristic basis [Camastra, 2003], whereas fractal-based [Camastra and 

Vinciarelli, 2002] and packing numbers [Kegl, 2003] methods are designed for low-

dimensional datasets since their complexity grows exponentially with the dimension 

[Camastra, 2003]. In turn, the graph-based methods [Costa and Hero, 2004, Li et al., 

2007b] are sensitive to a required neighbourhood size parameter and tend to 

overestimate the ID as the neighbourhood size increases [Fan et al., 2010]. Finally, 

the maximum likelihood estimation assumes that a surrounding of any data points 

can be correctly approximated by a uniform probability distribution function 

[Levina and Bickel, 2005]. However, in very high dimensional spaces with a 

relatively small number of observations due to the dimensionality curse (section 

2.2), the assumption under which the method relies is not fulfilled [Ramos et al., 

2007]. In a similar vein, [Fan et al., 2009] is based on a uniformity assumption. As a 

consequence, in practice, the choice of ID estimation procedure depends very often 

on a particular application and the nature of exploited datasets. 

3.2.1.2.  Neighbourhood Size 

The selection of the optimal neighbourhood size is also a challenging problem. If it 

is too small, global feature information is lost since the manifold may be split into 

unconnected pieces. If it is too large, the LE and LLE assumption that a data point 

and its neighbours are locally linear is violated. In the case of Isomap, a large value 
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of K  introduces errors in geodesic distances. The main lines of research to discover 

the optimal value of K  are following: 

• Adaptive selection of local neighbourhood size for each data point.  

• Assessing directly the quality of embedded spaces by a quantitative measure in 

order to infer the global optimal value of the neighbourhood size. 

• Optimisation of already constructed neighbourhoods. 

3.2.1.2.1.  Adaptive Neighbourhood Selection 

The main idea behind these algorithms is to adaptively estimate the neighbourhood 

size of each data point separately by interatively adding/removing points to a 

considered neighbourhood until a defined condition is violated. 

For instance, [Wang et al., 2005] defines neighbourhood contraction and 

expansion procedures based on the estimation of local tangent space. However, the 

neighbourhood size parameter is indirectly replaced by several other user-specified 

parameters. [Mekuz and Tsotsos, 2006] overcome   this problem by 

proposing a parameterless estimation procedure where a neighbourhood 

incrementally grows as long as candidates agree with a locally computed linear 

tangent orientation based on the estimated intrinsic dimensionality. Alternatively, 

instead of using the Euclidean distance for determination of neighbourhood 

candidates, [Wei et al., 2008] exploits, first, the manifold ranking method [Zhou 

et al., 2003] to choose the best candidate and, then, constructs a suitable local 

tangent space. In contrast, [Zhan et al., 2009a, Zhan et al., 2009b] proposes an 

algorithm that expands neighbourhood for each data point by measuring local 

linearity of its neighbourhood patch on a manifold using PCA under the assumption 

that neighbourhood should be as large as possible.  
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3.2.1.2.2. Quantitative Evaluation of Embeded Spaces 

An alternative approach is to use a single global neighbourhood size for all points. 

This neighbourhood size parameter can be estimated automatically by assessing 

directly the quality of embedded spaces using a quantitative measure. The 

neighbourhood size, which leads to the best score for the corresponding embedded 

space, is chosen. Many measures have already been proposed, such as Residual 

Variance [Kouropteva et al., 2002, Samko et al., 2006], Spearman Rho [Samko 

et al., 2006, Karbauskait et al., 2007] and Procrustes Analysis [Goldberg and Ritov, 

2009].  

3.2.1.2.2.1. Residual Variance 

The residual variance [Kouropteva et al., 2002, Samko et al., 2006] expresses how 

well the distance information is preserved between two corresponding sets of 

variables X  and Y  consisting of N  examples each, i.e. it reflects the degree of 

linear relationship between these variables. The metric is expressed by the 

following formula and a value of 0 implies that there is no linear relationship: 

 2arg min(1 )XYrρ = −  (3.1) 

where XYr   is the standard linear Pearson's product-moment correlation between 

high and low dimensional spaces: 
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Here µ  and σ  denote respectively the mean and standard deviation of a dataset. 

3.2.1.2.2.2. Spearman’s Rho 

Spearman's rho [Samko et al., 2006, Karbauskait et al., 2007] measures the 

accuracy of the low-dimensional manifold in retaining the order of pair wise 

distances of data points of the high-dimensional. A value of 1 or -1 corresponds to 
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the highest correlation, whereas correlation is equal to zero implies no association 

between the two variables. In principle, SR is simply a special case of the Pearson 

product-moment coefficient in which variables ix and iy  are converted to rankings 

( )xr i  and ( )yr i  before calculating the coefficient. The Spearman rho is expressed by 

the following equation: 
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3.2.1.2.2.3. Procrustes Analysis  

The procrustes analysis measure [Goldberg and Ritov, 2009]  reflects the matching 

of two sets of variables X  and Y  in terms of distances. It determines how well a 

linear transformation (i.e. translation, reflection, orthogonal rotation, and/or scaling) 

of the points in one space conforms to the points in the other space. The smaller the 

value of the procrustes measure, the better the correlation between spaces: 

 [( ( ))( ( )) ]Ttrace X AY b X AY bρ = − + − +  (3.4) 

where A  is the Procrustes rotation matrix which is computed explicitly by the 

singular value decomposition of TX HY , where H  is the centering matrix [Sibson, 

1979]. The Procrustes translation vector b  is given by the difference between 

means of X  and Y  [Goldberg and Ritov, 2009]. 

3.2.1.2.3. Neighbourhood Optimisation 

This class of methods assumes that neighourhoods have already been found using 

any of the already discussed techniques. These neighbourhoods are then optimised 

to better represent the high dimensional data. For example, an approach based on 

path algebra of graph is investigated in [Wen et al., 2007], where better 

neighborhoods were obtained for Isomap by considering an implicit correlation 
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among data points. Alternatively, [Wen et al., 2008] applies locally estimated 

geodesic distances to refine the neighborhoods. 

3.2.1.2.4. Summary of  Neighbourhood Selection Procedures 

Although methods which adaptively select neighbourhood, show promising results 

[Wang et al., 2005, Mekuz and Tsotsos, 2006, Wei et al., 2008, Zhan et al., 2009a, 

Zhan et al., 2009b], their main drawback is very strong dependency on local 

constraints. Real datasets are high dimensional and nonlinear but, at the same time, 

a sampling density is usually poor because of the dimensionality curse (see section 

2.2). As a consequence, locally linear patches in such space as well as the estimated 

neighbourhoods tend to be very small and may produce disjoint graphs in different 

areas of a manifold. In such case, the global topology of the data manifold is 

completely lost during a dimensionality reduction process, since it has to be 

performed independently on each of the graphs. In addition, the assembled graph 

may provide less constraints for an optimisation process, since it may be not well 

connected. 

To overcome these limitations, a single global neighbourhood size for all 

points can be estimated, which reduces significantly the probability of generating 

disjoint graphs because of weak local costraints. K  nearest neigbhours can always 

be determined, even though they lie only on an approximately linear patch of a 

manifold. In such case, spectral methods are still capable to discover a meaningful 

low dimensional representation because the fully connected graph can be 

assembled.  

Neighbourhood optimisation techniques assume that initial neighourhood 

sizes have already been provided for each data point, thus they can be considered as 

the post processing optimisation step of any of the above methodologies. 
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3.2.2.  Design of Mapping Function 

An inherent limitation of spectral dimensionality reduction approaches is that they 

do not provide any explicit mapping function between low and high dimensional 

spaces. Such function is essential to allow a projection of data between spaces and 

an interpolation of the low dimensional representation to unseen examples. Among 

the different strategies that have been applied to address this issue (see section 

2.2.2.4 for overview), Radial Basis Function network [Poggio and Girosi, 1990] 

(RBFN) tackles this problem quite satisfactory by approximating the optimal 

mapping function [Elgammal and Lee, 2004a, He et al., 2004, Shi et al., 2005, 

Elgammal and Lee, 2007, Blackburn and Ribeiro, 2007, Ohbuchi et al., 2008, 

Lewandowski et al., 2009]. The entire process of learning RBFN has been 

summarised in section 2.2.2.4.4. However, peformance of the obtained RBFN relies 

on the careful selection of a few parameters which are usually chosen empirically. 

The RBFN structure is based on centres { | 1.. , }iC c i= = Z Z N≪ which 

summarise training data points in order to provide generalisation properties to the 

network. The performance and generalisation potential of RBFN critically depend 

upon the choice of these centres [Chen et al., 1991]. K-means clustering [Kanungo 

et al., 2002] and rival penalized competitive learning [Xu et al., 1993] are currently 

the most popular and well studied methods which address this task. 

3.2.2.1.  K-means Clustering 

The most common form of the K-means clustering algorithm [Kanungo et al., 2002] 

(KMC) uses an iterative refinement heuristic known as the Lloyd's algorithm 

[Lloyd, 1982]. It starts by random initialisation of centres and then two steps 

alternate points’ assignment and centres relocation. In the first step, all points are 

assigned to the closest centre to form clusters. Afterwards, means of obtained 
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clusters are computed and become new centres. These two steps are repeated until 

convergence of the following objective function: 
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= =
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 (3.5) 

The above equation corresponds to a minimisation of total intra-cluster variance in 

dataset. In terms of performance the algorithm is not guaranteed to return a global 

optimum. The quality of the final solution depends largely on the initial set of 

clusters. Moreover, a key drawback of the KMC algorithm is that it requires prior 

knowledge of the correct number of centres. 

3.2.2.2.  Rival Penalized Competitive Learning 

The rival penalized competitive learning [Xu et al., 1993] (RPCL) algorithm is 

capable of finding the optimal localisation of centres as well as their correct number 

Z  in an automatic way. First, Z'  centres are randomly initialised ( >>Z' Z ). 

Subsequently, in each iteration, the algorithm randomly selects a sample s  from the 

training set and moves the closest centre (the so called competition winner Wc ) 

towards the considered point s  by a weighted distance 1w . In the same step the 

second closest centre (or rival Rc ) is pushed away from the sample s  by a weighted 

distance 2w  (where 1 2w w>> ). Learning rates, i.e. 1w , 2w  are monotonically 

decreased after each iteration. The entire procedure is repeated until it converges or 

reaches a given threshold. This mechanism allows automatic determination of the 

centres’ positions by locating them at the core of data point clusters and gradually 

driving unrequired centres away from those clusters. The discussed procedure is 

illustrated in Figure 3.1. 
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Figure 3.1. Rival Penalized Competitive Learning: a ) the rival c R is pushed away from 

the cluster that the winner c W is approaching at each time step. b) The correct 

number of centres is determined by pushing away unn ecessary centre such as c 3. 
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3.3. Proposed Methodology 

We propose a general framework for the automatic configuration of spectral 

dimensionality reduction methods which contribute to the current state of the art by 

addressing two essential problems: the selection of the optimal neighbourhood size 

K  and the inherent absence of mapping function between spaces. First, we propose 

to estimate the optimal neighbourhood size by assessing the quality of discovered 

embedding spaces using the mutual information (MI) measure [Cover and Thomas, 

1991]. Secondly, we overcome the deficiency of mapping function by extending 

RBFN to design the optimal structure of the network in an unsupervised manner 

using spectral graphs which are constructed in the first step of the embedded based 

approaches. In principle, our framework can be applied to any spectral 

dimensionality reduction approach which shares the structure of the algorithm 

illustrated in Figure 2.12. This includes Isomap, LLE, LE and many of their 

extensions. In agreement with the previous research in the field (section 3.2.1.2), we 

assume that the intrinsic dimensionality d  (ID) is known or it is estimated using 

any dimensionality estimation technique (section 3.2.1.1). 

3.3.1. Mutual Information Measure 

The selection of the optimal neighbourhood size K  is still an open and challenging 

problem as discussed in section 3.2.1.2. Our proposed inference procedure follows 

the most promising line of research which focuses on estimating globally the 

neighbourhood size (section 3.2.1.2.2). Although many measures have already been 

proposed (section 3.2.1.2.2), experiments suggest that their accuracy depends not 

only on the choice of intrinsic dimensionality but also on the dataset nature. 

Consequently, they are not suitable when dealing with complex nonlinear high 

dimensional data of unknown nature [Lewandowski et al., 2009, Lewandowski 

et al., 2010a]. 
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The optimal neighbourhood size K  can be identified directly by assessing 

embedded space quality, by the following process: First, data are divided into 

training and testing sets. Then, for a given value of K , dimensionality reduction is 

applied on the training set and a mapping function is built between the original and 

embedded spaces. Finally, test data are projected into the low dimensional space 

and an error metric is calculated. This process is repeated for a range of K  values 

so that the optimal neighbourhood size is identified. 

Since this process requires calculating computationally expensive mapping 

functions for all possible values of K , quantitative metrics have been proposed to 

evaluate the quality of an embedded space without mapping. The standard 

procedure of optimal neighbourhood size estimation using a quantitative metric is 

summarised in the following pseudo-code (algorithm 1).  

Algorithm 1.  Estimation of optimal neighbourhood size 

Input:  high dimension dataset, maximum K  (maxK), ID estimate d  

Output:  optimal K  

Find minimum K  (minK) which produces a fully connected graph 

for each K  in range < minK, maxK > do 

      Reduce dimensionality of the dataset using a spectral method 

      Use metric to assess the quality of the embedded space 

end for 

Select optimal K  according to metric 

In our framework, we adopt an advanced metric to assess the quality of 

spaces. This metric can deal with features without any linear relationship. We 

propose to use the mutual information (MI) measure [Cover and Thomas, 1991] 

which has proved to be able to discover even marginal dependency between two 

spaces of variables, since, in contrast to linear correlation coefficients, it is also 
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sensitive to dependencies which do not manifest themselves in the covariance. MI is 

null if and only if the two random variables are strictly independent. The first idea 

would be to design a cost function directly in the spectral dimensionality reduction 

framework using MI; however since MI expresses relationship between two sets of 

variables rather than individual points, it is not an appropriate metric for that 

purpose. As a consequence, we propose to employ it in a post processing step to 

evaluate the quality of spaces. 

The most straightforward and widespread approach for estimating MI is to 

partition the data and approximate MI by the following finite sum: 
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 (3.6) 

where ( , )p i j  is the joint probability distribution function, and ( )xp i  and ( )yp j  are 

the marginal probability distribution functions of X  and Y respectively. This 

formulation is equivalently expressed as [Cover and Thomas, 1991]: 

 ( , ) ( ) ( ) ( , )I X Y H X H Y H X Y= + −  (3.7) 

where ( )H X  and ( )H Y  are the marginal entropies and ( , )H X Y  is the joint 

entropy of X  and Y .  

However, this standard approach can only be applied for 1= =D d , 

because the estimation of entropy is based on data binning. Since, in our 

framework, we need to estimate MI measure for higher dimensional variables 

( 1, 1> ≥D d ), we calculate the entropy using K-nearest neighbour statistics as 

proposed in [Kraskov et al., 2004]. Assuming that some metric is defined on the 

spaces spanned by X  and Y , all neighbours of a given data point iw  are ranked 

according to their distance to that point. As a consequence, the entropy 

( )H W ( { , }w x y∈ ) can be estimated by the average distance to the K-nearest 

neighbour, averaged over all iw . This leads to the following equation [Kraskov 

et al., 2004]: 



CHAPTER 3 Automatic Configuration of Spectral Dimensionality Methods 3.3 
Proposed Methodology 

 - 138 -  

 

 1

1 1

( ) ( ( ) 1) ( ) log log ( )
w

w
w d

i i

d
H W n i c iψ ψ ε−

= =

 
 
 

= + − − −∑ ∑
N N

N N
N

 (3.8) 

Here, ( )wn i  denotes the number of points whose distance from iw  is 

strictly less then ( )iε , i.e. count( ( )i jw w iε− < ), where ( )iε  is a distance between 

iw  and its Kth neighbour. In turn, ( )ψ ⋅  is the digamma function [Kraskov et al., 

2004], whereas wd  ( { , }w x y∈ ) denotes the dimension of w  and 
wdc  is the volume 

of the d-dimensional unit ball. Similarly, the joint entropy of X  and Y  for a given 

K  [Kraskov et al., 2004] is expressed by: 
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Combining equations (3.7), (3.8) and (3.9) results in the expression of 

multi-dimensional MI: 
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Although mutual information has never been used in this context, its 

multidimensional extension allows MI becoming an intuitive measure for analysing 

the mutual correlation between high and low dimensional spaces. 

3.3.2. Graph-based Radial Basis Function Network 

All spectral approaches suffer from the deficiency of lacking a mapping function. 

Very popular solution to this problem is to use RBFN based mapping [Elgammal 

and Lee, 2004a, He et al., 2004, Shi et al., 2005, Elgammal and Lee, 2007, 

Blackburn and Ribeiro, 2007, Ohbuchi et al., 2008]. However, this process relies on 

manual adjustment of RBFN structure according to data. In the case of standard 

KMC algorithm, it means that prior knowledge about the correct number of centres 

is required. 
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Our first attempt to automate the mapping learning process was to apply 

RPCL for training of RBFN in the context of manifold learning [Lewandowski 

et al., 2009]. However, RPCL, as KMC, depends on the initial random localisation 

of centres and relies on the Euclidean distance, which is not the most appropriate 

metric to model high dimensional relationships [Aggarwal et al., 2001]. In order to 

improve accuracy, we extend our idea of unsupervised mapping learning and 

propose to use the Markov cluster algorithm [Dongen, 2000] (MCL) to identify the 

suitable number and localisation of centres automatically by exploiting the 

adjacency graph constructed during spectral dimensionality reduction 

[Lewandowski et al., 2010a]. As a consequence, the novel graph-based radial basis 

function network is introduced (G-RBFN) which is tailored to spectral methods. As 

it will be demonstrated in the results section, the computational cost of the mapping 

learning process is greatly reduced and the obtained mapping exhibits better 

accuracy in comparison to standard approaches such as KMC and RPCL. 

At the heart of the MCL algorithm [Dongen, 2000] lies the idea of 

simulating flow within a graph: flows are promoted where current is strong and 

demoted where current is weak. Flow simulation is achieved by transforming a 

graph into a Markov graph using the standard definition of a random walk on a 

graph. Then, a flow is defined by two simple algebraic operations, i.e. expansion 

and inflation, which are applied connectively on a stochastic (Markov) matrix in the 

iterative estimation, so that the flow becomes thicker in regions of higher current 

and thinner in regions of lower current. The process converges quadratically in the 

neighbourhood of so called doubly idempotent matrices (idempotent under both 

expansion and inflation) [Dongen, 2000]. 

According to this paradigm, if natural groups are present in the spectral 

graph obtained in the first step of dimensionality reduction, then current across 

borders between different groups will wither away. As a result, a fully connected 
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graph is divided into few sub graphs (Figure 3.2), thus revealing the optimal 

number Z  as well as coordinates of clusters { | 1.. }.iC c i= = Z Application of this 

procedure enables the discovery of more representative clusters of high dimensional 

data and subsequently customises RBFN structure to dataset in an automatic and 

efficient manner. For instance, clusters obtained using KMC or RPCL mixes points 

from different branches of the manifold  (Figure 3.3a), thus a global structure is 

lost, whereas MCL clusters follow appropriately a high dimensional curvature of 

the dataset (Figure 3.3b),  

Once the clusters are determined, the learning process of RBFN follows 

the standard procedure described in section 2.2.2.4.4. 

 

Figure 3.2. 2D representation of successive iterati ons of flow simulation using the 

MCL process for discovery of the localisation and t he number of centres in RBFN. 

)b)a

 

Figure 3.3. Customisation of RBFN structure for swi ssroll using a) KMC/RPCL and b) 

MCL.  
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3.4. Evaluation 

The proposed framework was validated with both artificial and real datasets. 

Standard datasets were selected to extensively evaluate the performance and 

robustness of the proposed methodology in different scenarios.  

In this section, first, all datasets, which are used in the evaluation process, 

are introduced in section 3.4.1. Then, a setup of experiments is explained in section 

3.4.2.1 followed by a definition of performed experiments in section 3.4.2.2. 

Subsequently, sections 3.4.3, 3.4.4 and 3.4.6 provide results of experiments, 

whereas section 3.4.5 presents a practical application of the proposed methodology, 

i.e. 3D human pose recovery. Finally, the broad discussion about obtained results is 

provided in section 3.4.7. 

3.4.1. Datasets 

Figure 3.4 and Figure 3.5 illustrate the datasets used for evaluation.  

 

Figure 3.4. Datasets used in the experiments: from left to right, swissroll manifold, 

handwritten digits (the MNIST dataset) and face ima ges (the ORL dataset). 



CHAPTER 3 Automatic Configuration of Spectral Dimensionality Methods 3.4 
Evaluation 

 - 142 -  

 

Figure 3.5. Variety of actors from HumanEva dataset  which were used in the 

evaluation process. From left to right: S1, S2, S3.  

The swissroll dataset is a synthetic and nonlinear example of a two 

dimensional flat submanifold which lies in a three-dimensional space. The ideal low 

dimensional representation is a two dimensional rectungular structure, which is 

expected to be revealed by unrolling the three dimensional swissroll shape. This 

dataset exhibits significant disagreement between geodesic and Euclidean distances 

(Figure 3.4a). Two thousand points were randomly sampled from the manifold and 

used in all our experiments. In addition, we generated a second smaller dataset 

consisting of 1000 points (denoted by a star in our experiments) in order to compare 

Isomap results with those of the original Isomap paper [Tenenbaum et al., 2000]. 

The MNIST dataset [LeCun, 2000] consists of handwritten characters 

images containing digits from 0 to 9 (Figure 3.4b). The size of each image is 

28 28×  pixels, with 256 grey levels per pixel. Due to computational and memory 

constraints, in our experiments we used a subset of the MNIST database consisting 

of 6000 images. According to [Camastra and Vinciarelli, 2001], the optimum 

intrinsic dimensionality of handwritten digits is 7, whereas the upper bound of the 

intrinsic dimensionality as determined by EE equals 10. 
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The ORL (formerly Olivetti) face database contains 400 images of 40 

distinct subjects [Samaria and Harter, 1994] (Figure 3.4c). All images were 

captured against a dark homogeneous background with the subjects in an up-right, 

frontal position, with tolerance for some side movements. There are variations in 

facial expression (open/closed eyes, smiling/nonsmiling), and facial details 

(glasses/no glasses, different skin colours). The images are grey-scale with a 

resolution of 64 64×  pixels. The analysis of relation between recognition rates and 

dimensionality of embedded space in [Yin et al., 2008b] suggests a value of 10 as 

the optimal intrinsic dimensionality  for this dataset. The upper bound of the 

intrinsic dimensionality as determined by EE equals 40. 

The HumanEva (HE) dataset has been introduced in section 2.3.2.3. In this 

evaluation only sequences of “walking in a circle” are processed using the actors 

depicted in Figure 3.5. In all cases, trail 3 of subject 3 was used for training the 

spectral dimensionality reduction methods (S3T3). We chose frames 750 to 1750 to 

include a variety of walking postures. Testing was performed using three ground 

truth datasets and one dataset composed of pose estimates. Datasets were carefully 

selected to validate robustness of the framework with different actors, who differ in 

size, body shape, motion style and gender. The ground truth datasets consist of: 

frames 55 to 315 for male subject 3 in trail 1 (S3T1), frames 340 to 760 for male 

subject 2 in trial 1 (S2T1) and frames 1 to 400 for female subject 1 in trial 1 (S1T1). 

The last dataset is a set of body configuration estimates obtained through our auto 

calibration technique [Kuo et al., 2009] for subject 2 (S2EST) (see also section 

3.4.5.1 for details). Intrinsic dimensionality determined by EE equals 2 which is in 

agreement with other research on modelling walking action [Grochow et al., 2004, 

Elgammal and Lee, 2004a, Urtasun et al., 2006a, Darby et al., 2010]. 
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3.4.2. Experimental Framework 

The proposed methodology is evaluated through qualitative and quantitative 

analyses of performance using the representatives of the three main spectral 

families (section 2.2.2.2.2.2), i.e. Isomap, LLE and LE. 

3.4.2.1. Setup 

All experiments were performed using K  values in the range 4,30< > . The lower 

bound of the range corresponds to the minimum neighbourhood size, which allows 

generating a fully connected graph for the selected datasets. The upper bound is 

motivated by [van der Maaten et al., 2009]. Their exhaustive evaluation of spectral 

dimensionality reduction methods on various datasets (including MNIST and OCL) 

suggests that an upper bound of 15 neighbours allows obtaining the optimal results 

across most spectral methods. In our work, we took a conservative approach: this 

value was doubled to ensure that the neighbourhood range is sufficiently large to 

find the optimal neighbourhood size in all conducted experiments even for datasets 

not investigated by [van der Maaten et al., 2009]. In multidimensional spaces, 

geodesic distances are used, whereas on the plane we employ Euclidean distances 

as suggested in [Samko et al., 2006]. RBFN was trained from high to low 

dimensional space as described in section 2.2.2.4.4 and a resulting mapping 

function is given by the equation (2.62).  

3.4.2.2. Experiments 

First, we evaluate qualitatively the novel MI estimator against current approaches, 

i.e. residual variance (RV), spearman rho (SR) and Procrustes analysis (PA) 

measures. This is performed using the synthetic dataset for which the underlying 

structure is known so the quality of embedded space can be judged visually (section 

3.4.3). 



CHAPTER 3 Automatic Configuration of Spectral Dimensionality Methods 3.4 
Evaluation 

 - 145 -  

Then, two classical pattern classification problems, face and handwritten 

digit recognition, are considered in order to analyze the quantitative performance of 

the MI metric (section 3.4.4). We do not perform any pre-processing or 

normalisation of the data in order to prevent any information lost. It is important to 

note that, in this work, we did not focus on designing a state of art classification 

system, but on comparing existing metrics with the one we proposed using a 

standard classification framework based on a real application. 

In addition, we apply all measures in a pose recovery application (section 

3.4.5), where human motion is represented by motion capture data as described in 

section 2.3.2.3. In the first experiment, we consider the simplest scenario, in which 

we train and test with the same subject, i.e. S3, using different trials. This should 

allow finding the lowest bound of the reconstruction error which can be obtained 

within our framework. In the next two experiments, we evaluate our approach using 

MoCap data from subjects 2 (S2T1) and 1 (S1T1). Both datasets differ considerably 

from training set as actions are performed by very different subjects, see (Figure 

3.5). Since input data are ideal estimates, the reconstruction error should highlight 

differences introduced by variations of walking styles and body frames between 

testing and training characters. Afterwards, in the fourth experiment, we take the 

corrupted 3D pose estimates produced by our algorithm for subject 2 on a walking 

sequence (S2EST) and we refine them according to the framework (see section 

3.4.5). 

Finally, in the last experiment we show superiority of graph-based RBFN 

in comparison with standard RBFN (section 3.4.6). This is achieved by repeating 

the classification experiments with digits and faces recognition and pose recovery 

experiments using the new mapping function whose structure is inferred 

automatically from the spectral graphs. 
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3.4.3. Artificial Dataset Evaluation 

Table 3.1 presents the low dimensional spaces of the swissroll dataset produced by 

Isomap, LE and LLE using the estimated neighbourhood sizes calculated by RV, 

SR, PA and the proposed MI measure. 

Table 3.1. The low dimensional spaces of swissroll with estimated and recommended 

neighbourhood sizes for Isomap, LE and LLE accordin g to coefficients RV, SR, PA 

and MI. 

Method  
(recommended K)  

Coefficient 
(estimated K)  

Visualisation 

LLE (20)  

[Roweis and Saul, 

2000] 

residual variance 

(11) 

 

spearhman rho  

(22) 

 

procrustes analysis  

(8) 
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mutual information 

(20) 

 

LE (5–15) 

[Belkin and 

Niyogi, 2002] 

residual variance 

(8) 

 

procrustes analysis, 

mutual information  

(5) 

 

Isomap (–) residual variance 

 (21) 

 

spearhman rho,  

procrustes analysis, 

mutual information 

(18) 
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Isomap (7) 

[Tenenbaum et al., 

2000] 

 

(The swissroll dataset 

with 1000 points 

instead of 2000 points) 

residual variance 

 (9) 

 

spearhman rho  

(4) 

 

procrustes analysis, 

mutual information 

(7) 

 

In all cases, the MI measure was able to identify very good low 

dimensional representation of swissroll dataset, i.e. an embedded space which 

manages to unroll manifold and preserves local structure. Moreover, estimated 

values of K  using MI are in agreement with parameters which were recommended 

in the original papers [Tenenbaum et al., 2000, Roweis and Saul, 2000, Belkin and 

Niyogi, 2002]. Although other measures usually select reasonable low dimensional 

representations, their quality is not consistent. For instance, the local structure is 

distorted in most experiments involving RV/SR. Although PA seems to behave 

similar to MI, in the case of LLE the very different neighbourhood size returned by 

PA leads to the production of an embedded space of inferior quality. 
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3.4.4. Classification Evaluation 

In this experiment, grey-level images of digits and faces are vectorized using raster-

scan order into 784 and 4096 dimensional feature vectors respectively. The 

recognition of either digits or faces is performed according to the 10-fold cross 

validation strategy, where we divide a dataset into ten distinct partitions. For each 

partition, we reduce dimensionality of remaining dataset and train RBFN with the 

standard RPCL algorithm. Then, each partition is projected into the low 

dimensional space and classification is performed using a first nearest neighbour 

classifier (Ho, 1998). Finally, classification accuracy is calculated by averaging 

over the ten partitions. For each dataset, estimation of optimal neighbourhood size 

for dimensionality reduction is calculated using RV, SR, PA and MI. Moreover, the 

actual optimalK  (Opt) is calculated experimentally by an exhaustive evaluation of 

classification accuracy for all values of K  within the range 4,30< > (see section 

3.4.2). In addition, using the optimal value, we evaluate the classification accuracy 

of the scheme (Opt*) which includes graph-based RBFN (G-RBFN).  

Table 3.2 and Table 3.3 show the results of these experiments which were 

conducted with two sets of IDs as defined in section 3.4.1. Note that the huge 

computational cost of applying PA on the very high dimensional faces dataset 

(dimensionality of 4096) did not allow us to obtain the results for this measure 

using our processing capabilities (16-node cluster). 
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Table 3.2. Percentage accuracy of handwritten digit s recognition, where Opt is 

calculated experimentally using RBFN by exhaustive evaluation of all considered 

neibhourhood sizes, whereas Opt* corresponds to the  usage of graph-based RBFN 

% ID RV SR PA MI Opt Opt* 

Isomap 10 88 88 88 88 89 90 

LLE  62 63 59 78 78 82 

LE  79 79 80 80 80 84 

Isomap 7 85 82 84 85 85 87 

LLE  56 63 53 74 74 77 

LE  75 75 74 76 77 80 

Table 3.3. Percentage accuracy of faces recognition , where Opt is calculated 

experimentally using RBFN by exhaustive evaluation of all considered neibhourhood 

sizes, whereas Opt* corresponds to the usage of gra ph-based RBFN 

% ID RV SR PA MI Opt Opt* 

Isomap 40 

 

76 73 – 77 77 77 

LLE  78 78 – 80 80 80 

LE  67 67 – 67 68 73 

Isomap 10 

 

65 57 – 76 76 76 

LLE  55 55 – 61 62 62 

LE  62 50 – 63 63 63 

In agreement with our previous experiments, neighbourhood sizes 

estimated by the MI measure produce consistently better classifications than those 

suggested by other metrics regardless of the chosen intrinsic dimensionality. 

Moreover, the performance of nearest neighbour classifier is optimal or near-

optimal when using MI, for a given dimensionality reduction method. Results also 

reveal that unlike LLE and Isomap, LE is not very sensitive to neighbourhood size 
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selection. As expected, decrease of intrinsic dimensionality results in a decline of 

accuracy since more discriminative information is discarded during dimensionality 

reduction. Two dimensional visualisation of the best low dimensional space 

obtained with Isomap for the digit dataset is presented in Figure 3.6. 

 

Figure 3.6. Two dimensional visualisation of the be st low dimensional space 

obtained with Isomap for MNIST data subset. 

Although we used classification experiments to compare quantitatively the 

measures, our aim was not to produce a state of the art classifier, but to demonstrate 

that our innovations could be applied successfully to representatives of the three 

main spectral families, i.e. Isomap, LLE and LE. We would suggest readers with a 

special interest in classification to apply our advanced techniques to spectral 

methods which were developed especially to handle that task. They include 

discriminant Isomap [Yang, 2003], supervised LLE [De Ridder et al., 2003] and 

semi-supervised LE [Zheng et al., 2008]. 

Finally, the proposed G-RBFN (Opt*) achieves better classification 

accuracy in comparison to the standard RBFN (Opt) for all considered 

dimensionality reduction methods (Table 3.2 and Table 3.3). The efficiency 
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improvement is especially noticeable for large datasets like handwritten digits 

(Table 3.2), when the enormous graph can be assembled with distinctive groups of 

well connected points due to usage of the K -nearest neighbour procedure, which 

allows to form representative centres for the mapping. Further evaluation of the 

novel mapping function is provided in section 3.3.2. 

3.4.5. Application to Pose Recovery 

To demonstrate the performance of the proposed methodology for automatic 

configuration of spectral dimensionality reduction methods, it is applied to the 

refinement of 3D body pose estimates in pose recovery application. Here, a human 

motion is represented by a sequence of 52-dimensional feature vectors extracted 

from motion capture data as described in section 2.3.2.3. 

3.4.5.1.  3D Pose Recovery Framework 

Our proposed 3D pose recovery framework aims at estimating a 3D pose from 2D 

joint locations using a single uncalibrated camera [Kuo et al., 2009]. Figure 3.7 

shows an in-depth insight of this process.  

 

Figure 3.7. Generation of 3D body pose estimates. 

First, we assume that 2D joint positions of the human body have been 

extracted from a video sequence using any 2D pose recovery method (for instance 



CHAPTER 3 Automatic Configuration of Spectral Dimensionality Methods 3.4 
Evaluation 

 - 153 -  

[Kuo et al., 2008]). These 2D key points are employed to perform camera auto-

calibration for a set of key frames automatically selected in the sequence [Kuo 

et al., 2007]. This is an iterative process, which consists of two steps: 

• Selection of specific key frames by exploiting a human bipedal motion 

constraint that certain body joints become coplanar within a motion cycle. 

• Estimation of camera calibration parameters, i.e. focal length and camera 

relative position, using Tsai’s coplanar calibration method [Tsai, 1987]. 

In addition to the camera parameters and key frames identification, the 

process generates also a 3D coplanar model representing the 3D configuration of 

the set of coplanar body joints at these frames. The obtained 3D coplanar points 

correspond to shoulders (3 points) and hips (2 points) according to human 

biomechanics. Since sufficient knowledge has been accumulated, a pin-hole 

projection model is applied to reconstruct other parts of the 3D figure in the world 

space, i.e. limbs and head (Figure 3.8). The projection line of each key body point 

on the image is established using the estimated focal length. Their corresponding 

3D points are located on the projection lines according to the camera relative 

position and the body model. The body model is a 3D skeletal representation of the 

human body (see section 2.3.2.3). It is constructed from the calibrated 3D coplanar 

model with known body ratios. Since this problem is ill-constrained ( 2 3→ℝ ℝ ), 

multiple postures are generated. A pose selection mechanism is then required to 

extract the correct posture. In this experiment, we have chosen poses with the 

smallest error in comparison to the ground truth. 
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θ

 

Figure 3.8. Pin-hole camera model for 3D pose recon struction applied to the 

reconstruction of the left arm: P S and PE – shoulder and elbow image points, P’ S – 

known 3D shoulder coplanar point, P’ E1 and P’ E2 – two proposals for 3D elbow 

reconstruction by taking into account depth ambigui ty, L S_E - expected segment 

length between two successive key points, D ? – distance between 3D point and 

optical centre. 

In order to recover poses for other frames, another human bipedal motion 

constraint, i.e. the presence of a foot on the ground (so called static foot), is 

exploited to propagate the parameters of the pin-hole projection model from one 

frame to another. Human biomechanics reveals that at any moment at least one foot 

is in contact with the ground in most types of bipedal motion. This static foot exists 

because the body requires at least one limb to support its weight. Motion is 

achieved by switching weight support to the other foot. Both feet can only be off 

ground for a short moment if any, e.g. running. The static foot is identified 

effectively and accurately by comparing displacement of foot points between 

consecutive frames [Kuo et al., 2009]. The obtained static foot constraint is 
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exploited for pose recovery, since knowledge of the 3D posture at one frame also 

provides the 3D coordinates of one foot in the next frame. Therefore, these 

coordinates are used as the starting point of pin-hole pose reconstruction for the 

next frame. As a result, postures are propagated recursively forward and backward 

in time from the reconstructed key frames to their neighbouring frames. Since there 

are multiple key frames within a given sequence, a linear combination of the 

propagated postures from each key frame is calculated to generate the final one. 

Weights are introduced to penalise postures which are temporally further away from 

their key frames. 

3.4.5.2.  3D Pose Refinement Framework 

Because of the 2 3D D→  ambiguity, the pipeline described in the previous section 

as well as many other activity independent methods (section 2.3.2.1) produces 

imperfect 3D estimates of poses. The accuracy of this estimation can be 

significantly improved by incorporating learned prior models of activity into 

pipeline. The 3D pose refinement framework is presented in Figure 3.9 

[Lewandowski et al., 2009]. It is composed of two parts: activity learning, which is 

an automatic offline process, and the online procedure of pose refinement. 

 

Figure 3.9. Automatic refinement of 3D body pose es timates. 
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During the learning stage, the space of human motion is reduced following 

the procedure proposed in section 3.3.1 and the best low dimensional representation 

is chosen according to the quantitative metric. Then the obtained space is employed, 

first, for designing the structure of the RBFN and, subsequently, for training 

automatically the network in order to provide a bidirectional projection mechanism 

between spaces.  

The online module of the framework deals with the actual problem of 3D 

pose recovery. In principle, it can be applied to pose estimates produced by any 

activity independent method (section 2.3.2.1). In this experiment, we consider the 

output of algorithm described in the previous section 3.4.5.1 as a sequence of 3D 

pose estimates. In the refining process, an inaccurate 3D skeleton is projected into 

the embedded space using the corresponding mapping function. Then, this 

projection is associated to its nearest low dimensional training neighbour according 

to the Euclidean distance. Finally, the determined neighbour is projected back to the 

human motion space as the refined 3D pose estimate. 

3.4.5.3.  Results 

In the Table 3.4, the MAE angle error and the corresponding RMS error (see section 

2.3.2.3.2 for details about these metrics) are provided for all considered methods 

obtained in the second, third and fourth experiment using human motion capture 

data  (section 3.4.2.2). Detailed quantitative results of the first experiment are not 

provided, because all methods performed very well and the impact of 

neighbourhood size estimation on results is marginal. The errors for the embedded 

space calculated using the optimal K  (Opt) are compared with those obtained for 

the low dimensional space selected by the four quantitative measures. The actual 

optimal K  is calculated experimentally by an exhaustive evaluation of all spaces 

similarly like to the classification experiments. In addition, using the optimal value, 
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the pose recovery accuracy of the scheme, which includes graph-based RBFN (G-

RBFN) (Opt*), is evaluated. 

Table 3.4. Mean of absolute angle error (MAE) and s tandard deviation for the best 

low dimensional spaces according to four coefficien ts discovered by different 

methods for S2T1, S1T1 and S2EST datasets. S2EST co rresponds to the initial 

estimation error. The root mean square error (RMS) error in mm is depicted within 

bars. 

Second 

experiment 

with S2T1 

dataset 

 
 

  Isomap  LE  LLE  

Third 

experiment 

with S1T1 

dataset  

 

 

  Isomap  LE  LLE  
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Fourth 

experiment 

with 

S2EST 

dataset  

 

 

  Isomap  LE  LLE S2EST error 

Analysis of the different quantitative measures used to chooseK , 

demonstrates once again the superiority of MI in all conducted experiments. 

Although it does not always identify the optimalK , it outperforms the other metrics 

and systematically produces more stable and accurate results. In this evaluation both 

Isomap and LE seems to be less sensitive to the selection of K  than LLE. As 

expected, the accuracy of estimation decreases when subjects differ the most from 

the one used for training, however it is worth to point out, that all methods 

enhanced significantly the quality of pose estimates in the fourth experiment which 

validates the proposed refinement methodology. An example of low dimensional 

manifold discovered by Isomap is depicted in Figure 3.10. 

Similarly to the classification experiment (section 3.4.4), the proposed G-

RBFN (Opt*) outperforms the standard RBFN (Opt) for all considered 

dimensionality reduction methods. Further comparison of both mapping functions is 

presented in section 3.3.2. 



CHAPTER 3 Automatic Configuration of Spectral Dimensionality Methods 3.4 
Evaluation 

 - 159 -  

 

Figure 3.10. Representation of the best low dimensi onal manifold with corresponding 

poses discovered by Isomap according to the MI meas ure for training set S3T3. 

A more detailed comparison of pose estimates before and after refinement 

for the fourth experiment is shown in Figure 3.11 where Isomap was applied using 

the K  value predicted by MI. Since we use different subjects for training and 

testing, the quality of refinement cannot go over a certain threshold which expresses 

individual differences between walkers. Therefore, for some frames 350-410, 561-

568, 605-655 pose estimates are worst after refinement. However, in average, 

accuracy is improved significantly (30%) and our scheme provides much more 

stability in pose prediction: standard deviation drops from 4.5° (i.e. 41.6mm) to 0.5° 

(11.8mm).  Figure 3.12 illustrates the effect of our framework by showing refined 

poses against initial estimates and ground truth. 
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Figure 3.11. Refinement results of the dataset S2ES T for each frame. 

 

Figure 3.12. Refinement results; first row: ground truth with frame index; second 

row: estimated pose with initial MAE and RMS error;  third row: refined pose with 

output MAE and RMS error. As it can be noticed, on average, accuracy of estimation 

in the third row is improved significantly (~30%) i n comparison to the second one. 

Moreover, our scheme provides much more stability i n pose prediction. 
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3.4.6. Graph-based Mapping Evaluation 

Regarding the efficiency of graph-based RBFN, Table 3.2, Table 3.3 and Table 3.4 

show that this new scheme improves significantly the quality of the mapping 

produced by standard RPCL RBFN in all experiments. Further comparison between 

those two mapping methods is provided in Figure 3.13 and Figure 3.14, where 

classification accuracy and processing time are measured for various sizes of the 

digits dataset. Here, LE is used for dimensionality reduction as a representative of 

spectral methods. 

 

Figure 3.13. Classification accuracy comparisons be tween graph-based RBFN and 

standard RPCL RBFN according to digits dataset size  (ID = 10). 

 

Figure 3.14. Classification processing time compari sons between graph-based RBFN 

and standard RPCL RBFN according to digits dataset size (ID = 10). 
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First, whatever the size of the training set, classification accuracy using 

graph-based RBFN is higher than for standard RBFN. Moreover, graph-based 

RBFN is in the order of magnitude computationally more efficient (Figure 3.14). 

3.4.7. Discussion 

Consistently across all experiments, the MI metric demonstrates its accuracy in the 

identification of the optimal neighbourhood size. In contrast to other metrics, the 

proposed MI is validated successfully in various domains, including artificial data 

(section 3.4.3), face and handwritten digit recognition (section 3.4.4) and human 

pose recovery (section 3.4.5). This suggests that MI is very versatile since it is less 

sensitive than the other metrics to a dataset nature.   

In parallel, we prove the advantageous of G-RBFN over the standard 

RBFN in all conducted experiments. The superiority of the novel mapping function 

is especially evident for handwritten digits recognition (section 3.4.4) and human 

motion refinement (section 3.4.5.3), when the appropriate localisation of centres is 

significantly more challenging because of vast amount of training features and their 

high dimensionality. 

3.5. Summary 

In this chapter, a framework is proposed to automatically configure spectral 

dimensionality reduction methods. This is achieved twofold. 

First, we introduce the MI metric to estimate neighbourhood size. All 

experiments demonstrate that MI outperforms previously used metrics independent 

on the spectral methods and the dataset. Embedded spaces produced by MI are 

visually convincing. Moreover, our quantitative study, i.e. classification and pose 

recovery experiments, confirms its superiority:  low dimensional spaces selected by 

the MI measure consistently provide better accuracy regardless of the estimated ID. 
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Moreover, unlike PA, MI proved its ability to handle very high dimensional 

datasets.  

Secondly, we propose graph-based RBFN to provide mapping between 

embedded and data spaces using the efficient MCL algorithm, as part of the 

learning process of spectral dimensionality reduction methods. This scheme 

outperforms significantly standard RBFN mapping in both accuracy and 

computational efficiency. 

To conclude, the effectiveness of our contribution has been validated 

qualitatively and quantitatively in various domains. Results prove that the proposed 

MI-based neighbourhood selection procedure in combination with the graph-based  

RBFN allow to automatically configure the representative approaches (LLE, LE, 

Isomap) of the three main families of spectral dimensionality reduction methods. As 

a consequence, our flexible and unified methodology overcome limitations of 

embedded based approaches and thus may benefit to many areas where scientists 

face the problem of analysing high dimensional data. 
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4. Temporal Laplacian Eigenmaps 

4.1. Introduction 

The previous chapter demonstrates flexibility and usefulness of spectral 

dimensionality reduction methods for exploration of highly nonlinear and 

multivariate datasets.  Although the preservation of some geometrical property of an 

underlying manifold is a valid goal for various applications, there are many 

situations in which an alternative approach is desired. In particular, when dealing 

with multidimensional time series data, the temporal order which is imposed on 

observations is expected to be more intuitive and advantageous constraint for a 

dimensionality reduction process. 

A multidimensional time series is a collection of high dimensional data 

observations measured sequentially through the time, which are very often 

nonlinear. Time series data are widely available in different fields including 

medicine, finance, science, engineering and computer vision. Therefore modelling 

of time series data effectively becomes an essential challenge for the machine 

learning community. Since multidimensional time series can bear a lot of data 

variations, noise, redundancies and correlations hiding important relationships, it is 

extremely difficult to understand and process them. A dimensionality reduction 

process should eliminate these undesired properties from the time series, while 

ensuring the maximum possible preservation of original information. Analysis of 

time series using dimensionality reduction methods has only recently been 

investigated by the research community.  

The standard dimensionality reduction methods (section 2.2.2) are clearly 

inappropriate for this task, since they assume that the observed data samples are 
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independent, thus any temporal correlation between data samples is ignored. Since 

successive points at each time step of time series are expected to be highly 

correlated, a few temporal extensions of the standard methods were proposed 

including Spatio-Temporal Isomap [Jenkins and Mataric, 2004], Back-Constrained 

Gaussian Process Latent Variable Model [Lawrence and Quinonero-Candela, 2006] 

and Gaussian Process Dynamical Model [Wang et al., 2006]. Although, these 

approaches exploit some temporal constraints during a dimensionality reduction 

process, we will show that they are not designed to preserve the global topology of 

the time series manifold. As a result, they fail to produce a unique and informative 

low dimensional representation in the presence of data variations between time 

series. Moreover, they are computationally expensive and often require a set of 

empirically chosen parameters. These algorithms are discussed in details in the 

subsequent section 4.3. 

In this research, we address these limitations and contribute to the state of 

the art by introducing a novel spectral dimensionaliy reduction method, called 

Temporal Laplacian Eigenmaps [Lewandowski et al., 2010c] (TLE). Our proposed 

algorithm exploits temporal relationships and dependencies of time series as key 

constrains during the nonlinear dimensionality reduction process. In contrast to 

previous approaches, we introduce two types of constraints: temporal within time 

series and spatio-temporal between different time series. This is achieved by 

introducing two forms of intuitive temporal graphs which are incorporated into the 

LE framework. In addition, neighbourhood sizes of both graphs are derived 

automatically from data analysis.  As a consequence, our method aims at preserving 

a temporal structure of multivariate time series instead of the commonly used 

geometric structure. This fundamentally different concept allows automatically 

producing meaningful and generalised low dimensional representations tailored to 

multivariate time series data. Exhaustive experiments on a couple of computer 
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vision applications demonstrate the effectiveness of the proposed methodology for 

modelling different types of multidimensional time series and its superiority in 

comparison to other dimensionality reduction techniques in terms of accuracy and 

efficiency. In addition, its lower computational cost and generalisation abilities 

suggest it is scalable to larger datasets.  

The remainder of this chapter is organised as follows. The next section 4.2   

introduces formally the concept of multivariate time series. Then, section 4.3 

discusses the relevant work in the dimensionality reduction of time series data. The 

detailed information about basic version of Laplacian Eigenmaps and our temporal 

extension of Laplacian Eigenmaps are introduced in section 4.4. Then results of 

evaluation are presented in section 4.5. Section 4.6 concludes the chapter. 

4.2. Multivariate/Multidimensional Time Series 

A time series { | 1.. ,  , , 0}t tS y t y= = ∈ ∈ >Dt D Dℝ ℤ  is a sequential collection of 

observations generated by a dynamical system (i.e. time series source) for a specific 

phenomenon. Here, we define time as a set of discrete values which is indexed by 

t , whereas t  denotes the number of observations in the sequence S . If D  is equal 

to one then the time series is referred to as univariate/one-dimensional, and if it is 

greater than one the time series is referred to as multivariate/multidimensional 

[Hannan, 1970, Chatfield, 1996] (MTS).  

In this work, we are interested in modelling multivariate time series 

( 1>D ), since their high dimensionality creates challenges for machine learning and 

data mining algorithms. As a result, our space of high dimensional features is now a 

set of L  multivariate time series, each with  (l=1.. )lT L  features:  

 
| 1.. | 1.. , 1..

| 1..

{ } { }

{ , , 1, }
l lt

i i

l l t

i

Y s y

y y

= = =

=

= =
= ∈ > ∈

l

D

L L T

N D Dℝ ℤ
 (4.1) 
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where l  1 l==∑
L

N t . In addition, a set Y  may consist of MTS which are issued by 

different sources (for example 1S , 1O , 1P  in Figure 4.1b) and/or repetitions from a 

single source (for example 1S , 2S , 3S  in Figure 4.1a). The intra-data variations 

between MTS from different sources are not on the same scale as the inter-data 

variations from a single source. This can be conceptually expressed in terms of 

relative difference between dynamic time warping distances (DTW) (see appendix 

A.1) for any pair of time series: 

 1 2 1 1( , ) ( , )DTW S S DTW S O≪  (4.2) 

1D

2D

3D
4D

MD

1D

2D

3D
4D

MD

 

Figure 4.1. Example of multivariate time series dat a issued from a single source (a) 

or different sources (b). 

Finally, we define 'style' as the intra-data and inter-data variations between 

two or more time series representing a similar phenomenon. They may be produced 

by different sources and/or multiple repetitions (or cycles) from a single source. 

In the rest of the thesis, the term ‘time series’ refers to 

multivariate/multidimensional time series. Moreover, the term ‘time series 

repetitions’ bears on time series repetitions issued by single and/or multiple sources. 
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4.3. Related Work 

A presentation about relevant time series frameworks has been provided in section 

2.2.3. In this section, we discuss in more details the current state of the art methods 

for the dimensionality reduction of time series data. These approaches are used as 

references in the evaluation process (section 4.5). In addition, for completeness and 

clarity reasons, we provide short descriptions of three techniques in appendix A 

which are used in our implementation; although alternative approaches could be 

chosen. They are dynamic time warping distance (DTW) (A.1), optical flow (A.2) 

and Hausdorff distance (A.3). 

4.3.1. Spatio-Temporal Isomap 

The spatio-temporal Isomap [Jenkins and Mataric, 2004] (ST-Isomap) is an 

extension of standard Isomap algorithm designed for time series data. The structure 

of the algorithm remains the same (see section 2.2.2.2.2.2) with two extra steps 

added for temporal windowing and temporal augmentation of data. First, the input 

data is windowed into temporal blocks of a pre-defined size. As a result, some 

temporal history is introduced into each data point. Then, the standard local 

neighbourhood graph is constructed (section 2.2.2.2.2.2.1) and the corresponding 

matrix of distances between neighbouring points is computed using pre-processed 

data (section 2.2.2.2.2.2.2).  

The key novelty of ST-Isomap is a definition of adjacent temporal 

neighbours and K-nearest nontrivial neigbhours. Adjacent temporal neighbours are 

adjacent points in the sequential order of the current point, whereas K-nearest 

nontrivial neighbours are defined by Jenkins et al. as follows: 

“A point jy  to be a nontrivial match within the local neighbourhood of 

a point iy  if it is closest matching point on its trajectory through the 

neighbourhood” 
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These neighbours are used to empirically alter the original distances in the 

graph (matrix) of local neighbours to emphasise similarity between spatio-temporal 

related points using constant pre-defined factors. As the value of this factor 

increases, the distance between data pairs with spatio-temporal correspondences 

decreases and their similarity is strengthened. These spatio-temporal relationships 

are then propagated globally via a shortest-path mechanism and the dense matrix of 

distances between all points is genearated. Finally, the MDS (section 2.2.2.2.1.2) is 

applied on obtained matrix to produce d dimensional embedded space similarly to 

standard Isomap. 

The ST-Isomap algorithm has pioneered in research on dimensionality 

reduction of time series. However, a few important drawbacks limit its usefulness in 

many applications. First, ST-Isomap cannot discover the global temporal pattern of 

time series, since the temporal information is just employed to alter the geometric 

relationships between points. As a result, ST-Isomap conceptually still aims at 

preserving the global geometric topology of data instead of the temporal topology. 

In addition, the introduction of the temporal information into the geometric 

constraints requires two pre-defined constant factors. These factors, which have to 

be chosen manually, control similarity between data pairs with spatio-temporal 

correspondences. Another crucial disadvantage is the requirement of the prior 

knowledge about the number of the K-nearest nontrivial neighbours. In fact, the 

algorithm is very sensitive to this parameter. It fails to produce a meaningful 

representation whenever it is chosen inappropriately, especially if it exceeds the 

actual number of time series repetitions in data. Moreover, the naive procedure for 

selecting the nontrivial neighbours depends heavily on the size of the pre-defined 

searching window and does not take into account neither spatial nor temporal 

similarity between different time series. Finally, ST-Isomap inherits from its parent 
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method the computational complexity, thus the processing time grows cubically 

with the number of points in a dataset.  

4.3.2. Back-Constrained Gaussian Process Latent Variable Model 

Back Constrained GPLVM [Lawrence and Quinonero-Candela, 2006] (BC-

GPLVM) imposes high dimensional constraints on a latent space to enforce the 

local distance preservation and implicilty the temporal coherence of time series.  

Since the standard GPLVM (see section 2.2.2.3.2.2.2) focuses primarily on 

modelling the data global structure, there is no guarantee that the local temporal 

order of time series is retained in a latent space. The smooth mapping in GPLVM 

implies that dissimilar points in the data space remain distant in the latent space. 

However, there is no constraint to prevent two points which are nearby in the data 

space to be placed far apart in the latent space, thus creating discontinuities of time 

series in the low dimensional representation. As a consequence, GPLVM can be 

seen as a dissimilarity preserving method [Lawrence and Quinonero-Candela, 

2006].  

To tackle this problem and obtain a continuous representation of time 

series, BC-GPLVM constrains a latent space to be a smooth mapping from a data 

space, i.e. it forces two points to be always nearby in the latent space if their data 

space counterparts are also relatively close. Therefore, rather than maximising the 

likelihood (2.44) with respect to X  directly, each element of X  is replaced with 

the form of the kernel based regression mapping from the observed space to the 

latent space ( 1..m= d ): 

 
1

( ) ( , )im m i mj i j
j

x g y w y yκ
=

= =∑
N

 (4.3) 

where { | 1.. , 1.. }mjW w m j= = =d N  are the mapping parameters and κ  is the 

Gaussian RBF kernel (equation (2.12)). The maximisation of the likelihood (2.44) is 
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then performed with respect to the mapping parameters, W , and the 

hyperparameters, Φ , using the  posterior (2.51) with substituted (4.3). As a result, 

the learned model is composed of the dissimilarity preserving, probabilistic GP-

LVM mapping from a latent to data space, and the local distance preserving 

mapping from a data to latent space referred to as back-constrained mapping.  

During dimensionality reduction, BC-GPLVM takes only into account the 

local temporal ordering of time series. Although this constraint is not explicitly 

modelled, temporal sequences are mapped to smooth paths in a latent space, 

because consecutive points of time series tend to be similar. On the other hand, BC-

GPLVM cannot handle any spatio-temporal relationships between different time 

series, thus the global topology of time series is ignored during dimensionality 

reduction. As a result, BC-GPLVM is not able to discover the unique time series 

pattern in the presence of time series repetitions, in particular when generated from 

different sources [Urtasun et al., 2008]. In addition, BC-GPLVM is computationally 

expensive, since the processing time grows cubically with the number of points in a 

dataset and linearly with the number of iterations in the optimisation process. 

Finally, BC-GPLVM has two free parameters, the inverse width of the back 

constrained mapping, which controls the smoothness of mapping [Lawrence and 

Quinonero-Candela, 2006], and the number of representative variables for the 

sparse approximation of covariance matrix (see section 2.2.2.3.2.2.2). 

4.3.3. Gaussian Process Dynamical Model 

Gaussian Process Dynamical Model [Wang et al., 2006, Wang et al., 2008] 

(GPDM), augments SGPLVM [Grochow et al., 2004] (see section 2.2.2.3.2.2.2) 

with a dynamical model in a latent space to model time series observations. It 

comprises the GPLVM based generative nonlinear mapping from a latent to data 

space (equation (2.24)): 
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 ,( ; )i i y iy f x A ε= +  (4.4) 

and the nonlinear auto-regressive mapping on the latent space with first-order 

Markov dynamics: 

 1 ,( ; )i i i xx h x B ε−= +  (4.5) 

where ,y iε  and ,i xε  denote zero-mean, white Gaussian noise processes, whereas f  

and h  are nonlinear mappings parameterised by coefficients matrices A  and B  

respectively. Both mappings are expressed by linear combinations of often 

nonlinear basis functions ϕ : 

 ( ; ) ( )i i
i

f x A a xϕ=∑  (4.6) 

 ( ; ) ( )j j
j

h x B b xϕ=∑  (4.7) 

From a Bayesian perspective, the specific forms of functions f  and has 

well as the numbers of basis functions are incidental, and therefore should be 

marginalised out. With a zero mean and spherical Gaussian prior over the 

generative function parameters (equation (2.48)) and following the equation (2.49), 

the marginalisation over function f yields: 

 
1 2

22
1

( )
( | , ) ( | 0, ) exp( )

2(2 )

T
Y

Y j Y
j Y

W tr YW Y
p Y X y

π

−

=

ΣΦ = Σ = −
Σ

∏
ND

DDN
N  (4.8) 

where the kernel matrix YΣ over all points is defined by the equation (2.50) with the 

following kernel hyperparameters 2{ , , }Y Y Y Yα σ γΦ = . The scaling matrix 

1 2{ , ,..., }DW diag w w w=  accounts for different variances in the different data 

dimensions [Grochow et al., 2004, Wang et al., 2008].  

Similarly, the complete joint likelihood over the latent coordinates is 

obtained by marginalisation over the dynamic function h : 

 ( | ) ( , | ) ( | , ) ( | )X X X Xp X p X h dh p X h p h dhΦ = Φ = Φ Φ∫ ∫  (4.9) 

The incorporation of the first-order Markov dynamics (4.5) results in: 
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 1 1
2

( | ) ( ) ( | , , ) ( | )X i i X X
i

p X p x p x x h p h dh−
=

Φ = Φ Φ∏∫
N

 (4.10) 

Assuming a zero mean and spherical Gaussian prior over the generative 

function parameters B  in each column, the above equation is simplified to: 

 
1

1 2( 1) 2

( )1
( | ) ( ) exp( )

2(2 )

T
X O O

X

X

tr X X
p X p x

π

−

−

ΣΦ = −
Σ dd N

 (4.11) 

where { }| 2..O iX x i= = N . The kernel function of the matrix XΣ  is based on the 

equation (2.50) with the additional linear term and the following hyperparameters 

2{ , , , }X X X X Xα σ γ βΦ =  [Wang et al., 2008]: 

 

{ }

2( , ) exp( ( ) ( ))
2

| , 1.. 1

T TX
ij i j X i j i j X ij X i j

X ij

k x x x x x x x x

k i j

γκ α σ δ β= = − − + +

Σ = = −N
 (4.12) 

The learning process is performed using a two-stage maximum a posterior 

(MAP) estimation (see section 2.2.2.3.2.2.2) by maximising the likelihood (4.8) 

with respect to the latent positions, X , and all hyperparameters, using the following 

posterior: 

 ( , , , | ) ( | , ) ( | ) ( ) ( ) ( )X Y Y X Y Xp X W Y p Y X p X p p p WΦ Φ ∝ Φ Φ Φ Φ  (4.13) 

where uninformative priors are placed on the hyperparameters: 1( )Y Yii
p −Φ ∝ Φ∏  

and 1( )X Xii
p −Φ ∝ Φ∏  to discorage overfitting. In turn, the broad half-normal prior 

is placed on W [Wang et al., 2008]. The maximisation of the above posterior is 

equivalent to minimising the negative log posterior of the model with respect to X , 

XΦ , YΦ  and W : 
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This optimisation process is performed numerically (see section 2.2.2.3.2.2.2). 

The latent dynamical model favours preservation of local proximities 

between consecutive points, therefore a low dimensional representation respects the 

temporal continuity of time series data. On the other hand, similarly to BC-

GPLVM, GPDM cannot model any spatio-temporal relations between different time 

series, thus the global topology of time series does not constrain the dimensionality 

reduction process. As a consequence, GPDM cannot produce the unique time series 

representation in the presence of time series repetitions, in particular when 

generated from different sources [Urtasun et al., 2008]. Moreover, the inclusion of 

the latent dynamical model in the learning process results in a further cubical 

increase of the processing time in comparison to BC-GPLVM. Finally, GPDM has 

one free parameter, i.e. the number of representative variables for the sparse 

approximation of covariance matrix (see section 2.2.2.3.2.2.2). 

4.4. Proposed Methodology 

We introduce a novel parameterless nonlinear dimensionality reduction method to 

process efficiently multidimensional time series data. The Temporal Laplacian 

Eigenmaps is a powerful extension of the standard LE framework, which aims at 

preserving the temporal structure of the data manifold instead of its local geometry 

as basic LE does. This is achieved by extensively exploiting the key property of 

standard LE framework of preserving approximated distances between 

neighbourhood points in a low dimensional space. In principle, points closeness in 

the embedded space can be flexibly controlled by creating connections between 

corresponding high dimensional features in the Laplacian graph. Therefore, 

powerful temporal constraints are introduced based on the innovative concept of 

temporal neighbourhoods. These constraints encapsulate effectively spatio-temporal 

dependencies of time series, in particular when issued from various sources. We 
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propose to construct two complementary graphs from these temporal 

neighbourhoods which are simultaneously exploited to constrain an optimisation 

process. As a consequence, the proximity of points in the embedded space is 

governed by these graphs. This allows respecting the temporal consistency of each 

time series as well as modelling spatio-temporal similarity of time series repetitions 

during dimensionality reduction even in the presence of significant data variations.  

In this section, first, the standard Laplacian Eigenmaps method is 

comprehensively described (section 4.4.1). This is fundamental before introducing 

the proposed algorithm in section 4.4.2.  

4.4.1. Background of Laplacian Eigenmaps 

Laplacian Eigenmaps [Belkin and Niyogi, 2002, Belkin and Niyogi, 2003] is a 

nonlinear and unsupervised geometrically motivated dimensionality reduction 

method which is based on a simple intuition that nearby high dimensional input 

features should be mapped to nearby low dimensional output points. As a result, the 

algorithm aims at faithfully preserving locality structure of high dimensional data 

(Figure 4.2). 

−∞ +∞  

Figure 4.2. Laplacian Eigenmap aims at maintaining the local properties of high 

dimensional data. 
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4.4.1.1.  Justification 

The mathematical justification for the Laplacian Eigenmap actually involves an 

interconnection between several areas of mathematics such as differential geometry, 

spectral graph theory, partial differential equations and linear algebra. 

In principle, in the manifold learning setting, the underlying manifold is 

usually unknown. Therefore the functional form of the manifold need to be 

estimated using a high dimensional cloud of data points.  In the case of a compact 

infinitely differentiable manifold, such functional map applied on underlying 

manifold is given by the Laplace Beltrami operator [Belkin and Niyogi, 2002, 

Belkin and Niyogi, 2003, Zheng, 2008]. The Laplace Beltrami operator is a positive 

semi-definite self-adjoint operator and has a discrete spectrum on a compact 

manifold. It has been shown that the optimal embedding of a high dimensional 

manifold is equivalent to finding the nonzero eigenvalues as well as its 

corresponding eigenvectors associated with the Laplace Beltrami operator [Belkin 

and Niyogi, 2002, Belkin and Niyogi, 2003, Zheng, 2008].  

As a consequence, the objective of manifold learning is to compute the 

Laplace Beltrami operator on a continuous manifold. The problem is very 

challenging, since only a sparse cloud of high dimensional points is available. 

However, the Laplace Beltrami operator can be discretely approximated using heat 

diffusion equations on the Laplacian graph as it is presented in [Belkin and Niyogi, 

2002, Belkin and Niyogi, 2003, Zheng, 2008]. Based on spectral graph theory, such 

graph can then be represented as a local similarity matrix which reflects the degree 

to which points are near to one another. Spectral decomposition of this Laplacian 

matrix reveals the low dimensional structure of the underlying manifold. The 

convergence of eigenvectors of graph Laplacian associated to a point cloud dataset 

to eigenfunctions of the Laplace-Beltrami operator on continuous manifold has been 

proved mathematically [Belkin and Niyogi, 2007]. 
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4.4.1.2.  Algorithm 

The structure of Laplacian Eigenmaps is presented in the Figure 4.3 and was briefly 

described in section 2.2.2.2.2.2. Here, we investigate the algorithm in more details. 

Initially, the adjacency graph is constructed by putting an edge between 

nodes i  and j  if high dimensional points iy  and jy  are ‘close’ based on the K-

nearest neighbours or hyper sphere neighbourhood procedure (see section 

2.2.2.2.2.2.1 for details). Then, weights are assigned to the edges of the graph to 

express the geometrical relationship between corresponding points using the 

following heat kernel: 
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   if i and j connectedexp( )

otherwise0
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 (4.15) 

The optimal embedding is discovered by minimizing the following 

objective function (see also section 2.2.2.2.2.2.3): 
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 (4.16) 

subject to constraint to remove an arbitrary scaling factor in the embedding: 

 1Tx Mx=  (4.17) 

and constraint to remove translation invariance (to centre on the origin): 

 1 0Tx M =  (4.18) 

Matrix M  is a diagonal weight matrix with elements
1ii ijj

m w
=

=∑
N

. This 

matrix is interpreted as a measure of the empirical density of points around iy   (the 

degree of vertex importance). In turn, the Laplacian graph is given by a sparse semi 

definite positive matrix:  

 L M W= −  (4.19) 

The square matrix L  is symmetric and real, hence it is Hermitian, i.e. 

L L∗= , where ∗ denotes the conjugate transpose of the matrix. This is a sufficient 
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condition to apply a version of the Rayleigh-Ritz theorem [Ledermann and Vajda, 

1961], which characterises eigenvalues of Hermitian matrices as the solutions of a 

series of optimisation problems [Horn and Johnson, 1985]: 
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where 0 ....= ≤ ≤ ≤1 2 Dλ λ λ  are the eigenvalues of L , whereas 1 2, ,...,x x xD  the 

corresponding eigenvectors. Minimisation of equations (4.20)  subject to 

TX MX I=  (from (4.17) and (4.18)) is equivalent to the solution of generalised 

eigenvalue problem in the form (see also section 2.2.2.2.2.2.4) [Belkin and Niyogi, 

2002, Belkin and Niyogi, 2003]: 

 LX MXλ=  (4.21) 

where the obtained eigenvectors ordered according to their eigenvalues satisfy:  
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 (4.22) 

The final low dimensional coordinates X  are given by d  eigenvectors 

which correspond to the d  smallest nonzero eigenvalues. Note the bottom 1+d  

eigenvectors of L  can be determined without performing a full matrix 

decomposition [Bai et al., 2000]. Moreover, the matrix L  is extremely sparse, 

which results in substantial computational savings for large training sets. 

In the cost function (4.16), a large weight ijw  corresponds to small distance 

between the data pairs iy  and jy  according to equation (4.15). Hence, the 
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difference between their low dimensional representations ix  and jx  highly 

contributes to the objective function (4.16). As a consequence, nearby points in the 

high dimensional space are brought closer together in the low dimensional 

representation, so that local neighbourhood relations are correctly preserved by LE. 
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Figure 4.3. Successive steps of standard Laplacian Eigenmaps. 
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4.4.2. Temporal Laplacian Eigenmaps 

The proposed Temporal Laplacian Eigenmaps algorithm shares the processing steps 

with the embedding based approaches (section 2.2.2.2.2.2 and Figure 2.12). 

However, there are fundamental differences in the foundations of the algorithm. 

First, a neighbourhood for each data point is obtained automatically using the novel 

concept of temporal neighbours. Then, two sparse complementary graphs are 

assembled to encapsulate temporal constraints and employed in an extended 

optimisation process to discover embedding of high dimensional time series.  

4.4.2.1. Construction of Temporal Neighbourhoods 

The temporal similarity between data points is maintained implicitly during 

dimensionality reduction by building new types of neighbourhoods which express 

temporal dependencies. Since, temporal neighbours are placed nearby in the 

embedded space; there is no need to enforce any artificial constraints as in the ST-

Isomap framework. Two types of temporal neighbourhoods are proposed for each 

data point iP : 

• Temporal neighbours (T): the 2m  closest points in the sequential order of input 

(Figure 4.4a): 

 1 1{ ,..., , , ,..., }i i m i i mi iT P P P P P− +− +=  (4.23) 

• Spatio-temporal repetition neighbours (S): let's associate to each point, iP , 

2stemporal neighbours which define a time series fragment iF . The repetition 

neighbours, iS , of iP  are the centres of the iq  time series fragments, ,i kF , 

which are similar to iF  (Figure 4.4b): 

 ,,1{ ( ),..., ( )}
ii i qiS F C F C=  (4.24) 

where , ( )i kF C  returns the centre point of ,i kF . Note that by design repetition 

neighbours are assumed to be extracted from different repetitions of the current 
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MTS fragment. These repetitions of the same phenomenon are generated by 

either the same source or different sources. 

 

Figure 4.4. Temporal (a) and spatio-temporal repeti tion (b) neighbours (green dots) of 

a given data point, Pi, (red dots). 

The selection of the 2m  adjacent neighbours is straightforward since it is 

based on the data temporal order (equation (4.23)). In practise, this parameter is set 

to one ( 1=m ) to model the first-order Markov dependency between consecutive 

points in time series. The size of the repetition neighbourhood iq  corresponds to the 

number of times a state is repeated in the training set. The optimal repetition 

neighbourhood size as well as a selection of these neighbours is automatically 

determined using the following procedure (Figure 4.5 and Figure 4.6):  

1. Associate to each data point, iP , 2s  adjacent temporal neighbours to 

create the local fragment, iF , centred on iP . 

2. Calculate similarity between the local fragment iF  and fragments 

created by sliding a warping window through the entire training set. The 

similarity between fragments is measured with the DTW metric (see 

appendix A.1) and stored in a neighbourhood similarity matrix M  of 

size ×N N .  The pair wise similarity of points during computation of 

DTW can be measured using any distance, in particular Manhattan, 

Euclidean or Hausdorff (see appendix A.3) metric. If it is not explicitly 
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stated otherwise, the standard Euclidean distance is used in an evaluation 

process. 

3. Perform temporal windowing of the similarity matrix M  by applying a 

moving average filter on distances between fragments using a history 

window of size 2s: 

 
2 1

, ,
0

1
2i j i b j b

b

a m
−

− −
=

= ∑
s

s
 (4.25) 

4. For each data point iP , search for similar fragments, ,i kF , defined by a 

similarity greater than 0.75=b  standard deviations iσ  from the mean 

iµ  in the row i  of neighbourhood similarity matrix A : 

 ,{ | }i j i ik j a µ σ= < − b  (4.26) 

The value of b  was set a priori in all conducted experiments to represent 

a difference of 1.5  standard deviations between consecutive local 

extremas. Vast range of performed experiments using different datasets 

(see section 4.5) suggests that TLE is not sensitive to this value.  

5. Extract from each similar fragment, ,i kF , the data point which 

corresponds to iP , i.e. the centre of ,i kF . The extracted points define 

iP ’s temporal repetition neighbourhood. 

This procedure takes into account a spatio-temporal similarity between 

different time series to identify the optimal repetition neighbours. To facilitate this 

process and obtain the best possible results, a high level representation of data 

should change smoothly in local regions with the order of the input. This 

assumption is valid for time series, since successive data points in time series tend 

to be very similar, and likewise in the corresponding high level data representations. 

As a consequence, TLE can take advantage of any sequentially ordered input data to 

identify spatio-temporal dependencies by just pre-processing raw data into an 

appropriate domain specific feature representation. 
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Figure 4.5. Selection example of temporal (green) a nd repetition (orange) neighbours 

in the temporal Laplacian Eigenmaps using MoCap dat a (D=52). 



CHAPTER 4 Temporal Laplacian Eigenmaps 4.4 Proposed Methodology 

 - 184 -  

1
D

2
D

3
D

4
D

M
D

1
D

2
D

3
D

4D

M
D

1
D

2
D

3
D

4
D

M
D

Neighbourhood selection is performed for each data point

Neighbourhood similarity matrix (2 sources, a few repetitions)

192

High similarity

Low similarity

 

Figure 4.6. Example of neighbourhood similarity mat rix created by the TLE using two 

sources of MoCap data with a few repetitions each. Each local minimum 

corresponds to the most similar repetition neighbou r in relation to the reference 

pose (green) extracted from different repetitions o f the time series. 
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The introduced procedure has one free parameter s  which defines the 

length of the time series fragment used during DTW comparisons. However, the 

choice of this parameter is extremely simple and it is not critical, since the 

neighbourhood selection schema is quite insensitive to its value. First, assuming 

some basic prior knowledge about the dataset of interest, the upper value bound of 

this parameter could be estimated since it should not exceed the lengths of time 

series repetitions in the dataset. Secondly, the parameter value should be sufficient 

large to express ‘satisfactory’ local curvature of time series fragments. Although, 

the determination of the lower bound depends on the dataset and may be 

problematic, in practice, it does not have to be performed.  

In Figure 4.7, we present the percentage of correctly indentified repetition 

neighbours in relation to the values of the parameter s for human MoCap data. The 

depicted graph shows clearly a plateau for a very large range of parameter values. 

Performance in the right area of graph converges towards zero when s reaches the 

lengths of the time series repetitions in this dataset. As seen in Figure 4.7 any value 

between 9 and 72 is equally appropriate in terms of accuracy. Thus, in practice, by 

taking a conservative approach, the value can be set rougly as a half of any 

repetition length. However, when exact knowledge about lengths of repetitions is 

not available, the value can be intuitively suggested by a user. Note that due to 

computional cost of DTW alignment, the smaller values of parameter s  are 

advantageous when the processing time is an issue. In this research, we advise a 

default value of 10 for this parameter, which proves to work satisfactory for all 

conducted experiments whatever the dataset.  
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Figure 4.7. The relation between the percentage of correctly identified repetition 

neighbours and values of parameter s in the propose d neibhourhood selection 

procedure. 

4.4.2.2. Graphs Assembling 

The temporal neighbour relations are used in the construction of two temporal 

graphs { , }G T S= , where any two vertices are connected only when some temporal 

relation exists between these points. Weights W  are assigned to edges of each 

graph separately using the standard LE formulation (4.15): 

 
2

   if i and j are temporally correlatedexp( )

otherwise0

G i j
ij

y y
w

 − −= 


 (4.27) 

The difference between the standard LE graph, which was obtained with 

the K-nearest neighbour procedure, and our temporal graphs is illustrated in Figure 

4.8. In the case of standard LE, the temporal structure is not reflected in the graph 

when time series are generated from a single source (Figure 4.8a). Similarly, for 

time series issued from different sources, not only the temporal structure is lost but 

each time series is modelled almost separately, which may result in creating 

disjoints graphs when variations between time series are large (Figure 4.8c). In 
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contrast, our combined temporal graphs are capable to represent appropriately the 

temporal structure of the data in both cases (Figure 4.8b and Figure 4.8d), thus, they 

encode more powerful constraints for the dimensionality reduction process. 

Neighbourhood connections defined in the Laplacian graphs implicitly 

impose points closeness in the embedded space. Consequently, the temporal 

neighbours allow modelling a first-order Markov dependency of time series into the 

resulting embedding, whereas repetitions neighbours remove style variability by 

aligning time series in the embedded space.  
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Figure 4.8. Graphs constructed by standard Laplacia n Eigenmaps (left – red colour 

denotes K-nearest neigbhours) and proposed Temporal  Laplacian Eigenmaps (right 

– blue colour denotes temporal neighbours, whereas green colour illustrates 

repetition neighbourhoods) for: a,b) time series is sued from a single source, c,d) 

time series issued from different sources.  

4.4.2.3. Optimisation Process 

Following the standard LE formulation, we introduce an extended cost function to 

combine information from both graphs: 

 
2 2

, 1 , 1

1 1
2 2

ij ij

i j T i j S
i j i j

T T
T Sx x w x x w X L X X L Xε

= =

− −= + = +∑ ∑
N N

 (4.28) 

The objective of dimensionality reduction process is to minimise the above 

equation with respect to the embedded coordinates X  subject to constraints: 
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 argmin     X
T T

T SX L X X L X+  (4.29) 

 subject to  T T
T SX M X X M X I+ =  (4.30) 

where 11 22{ , ,..., }G G G
G nnM diag m m m=  is a diagonal matrix with entries: 

1
ijG

ii Gj
m w==∑

N
, and G G GL M W= −  is the Laplacian matrix. The minimum of the 

objective function is found by applying Lagrange multipliers [Mizrahi and Sullivan, 

1990] to equation (4.29) subject to the constraint expressed by equation (4.30): 

 ( , ) ( ) ( ( ) )T T
T S T SX X L L X I X M M Xλ λ∧ = + + − +  (4.31) 

 
( , )

( ) ( ) 0T S T S

X
L L X M M X

X

λ λ∂ ∧ = + − + =
∂

 (4.32) 

 ( ) ( )T S T SL L X M M Xλ+ = +  (4.33) 

The solution of minimisation problem is given by the embedded space X  

which is spanned by the eigenvectors which correspond to the d  smallest nonzero 

eigenvalues λ  obtained by the solution of the sparse generalised eigenvalue 

problem (4.33) [Arnoldi, 1951, Fokkema et al., 1999, Knyazev, 2002] based on the 

generalisation of the Rayleigh-Ritz theorem [Horn and Johnson, 1985] (see section 

4.4.1.2). 

4.4.2.4. Summary 

Since temporal relationship is a local property of data, TLE can be conceptually 

classified as a local nonlinear dimensionality reduction method similarly to the 

standard LE framework. However, whereas the latter focuses at preserving only 

local geometry, the former aims at maintaining the local temporal structure of high 

dimensional data, which implicitly tends to the preservation of the global temporal 

topology of the data manifold. As a result, our approach is able to extract a common 

temporal pattern and generate a distinctive data-driven representation of 

multivariate time series regardless of stylistic variations. Therefore, it is particularly 

suitable for time series data which include data repetition; otherwise, when applied 

on a single time series, it often behaves similarly to the standard LE.  
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Note that, style variability is actually not completely removed from the low 

dimensional representation but only considerably marginalised during the 

dimensionality reduction process. This is expected since according to equation 

(4.27), small distances between successive temporal neighbours result in 

corresponding large weights in a cost matrix and thus high contributions to the 

objective function (4.28). In contrast, weights between relatively distant spatio-

temporal repetition neighbours, which are responsible for expressing stylistic 

variability, are significantly smaller and thus proportionally less important. As a 

consequence, the temporal constraints dominate over spatio-temporal ones and thus 

allow the discovery of the unique low dimensional pattern of time series. Finally, 

thank to the sparse generalised eigenvalue problem, our method is computationally 

very efficient and guarantees globally optimal analytical solution in a non iterative 

manner.  

As we will show in the evaluation section (4.5), our method is superior to 

ST-Isomap and other time-series-oriented dimensionality reduction methods 

including BC-GPLVM and GPDM in the terms of efficiency and quality of 

produced embedded spaces.  

4.5. Evaluation 

The proposed method is validated with both artificial and real datasets. Different 

types of multidimensional series are chosen to extensively evaluate the performance 

and robustness of the proposed methodology in different scenarios.  

While we have implied that MTS are ordered along the time dimension, in 

practice TLE is a versatile framework and without modifying the algorithm core, it 

can be used for any MTS, no matter how they are ordered as long as the markovian 

property is preserved. This is achieved by simply pre-processing raw data to a 

feature representation which changes smoothly with the order of input. Such 
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representation facilitates the selection procedure of repetition neighbourhoods using 

the DTW metric (see section 4.4.2.1).  

First, all datasets used in this evaluation are introduced in section 4.5.1. 

Then, the setup of experiments is explained in section 4.5.2.1 followed by a 

description of performed experiments in section 4.5.2.2. Subsequently, the 

flexibility of TLE framework is demonstrated by modelling the temporal structure 

of motion capture data (section 4.5.5), raw videos (sections 4.5.7 and 6.4) and even 

the sequential change of the camera perspective in images (section 4.5.4). A 

practical application of the proposed methodology, i.e. view dependent action 

recognition, is presented in section 4.5.7. Finally, a broad discussion about obtained 

results is provided in section 4.5.8. 

4.5.1. Datasets 

Figure 2.28, Figure 3.5 and Figure 4.9 illustrate the datasets used for evaluation. 

a) b)

 

Figure 4.9. Datasets used in the qualitative experi ments: a) the mouse movement 

dataset and b) the 6 selected representative object s seen from different view angles 

(every 45 degrees) from the Columbia Image Library.  

The “two moons” dataset [Zhou et al., 2003] is a record of two successive 

sets of vertical mouse movements each forming a moon shape with a transition 
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between them (Figure 4.9a). This toy problem was introduced to evaluate spatio-

temporal properties of dimensionality reduction methods [Zhou et al., 2003, Jenkins 

and Mataric, 2004]. Although the input dimensionality of data is 2, the dataset is 

intrinsically a 3-dimensional [Jenkins and Mataric, 2004], since two distinct spatial 

motions are expected to be modelled separately with respect to the temporal cycle 

of the movement. This dataset consists of a single MTS source with a number of 

motion repetitions.  

The Columbia Object Image Library (COIL) is a database of colour images 

of 100 objects. These objects were captured from 72 views against a uniform black 

background by a fixed camera (every 5 degrees) [Nene et al., 1996]. All images 

were normalised to the size 128 128× . In our experiment, 6 representative objects 

were chosen according to a rough visual similarity of the global shape, although 

they significantly differ in appearance (objects: 27.car, 31.box_1, 39.container, 

46.cigarette_packet, 55.jar, 79.box_2, see Figure 4.9b). The sequential change of 

the object shape along the view circle can be considered as a multidimensional 

series, which we call a multidimensional view series (MVS). In such case, each 

object is considered to be a different source of MVS. In this dataset, two repetitions 

of each source are available in the ranges 0 ,180 )< ° °  and  180 ,360 )< ° °  

respectively. From a geometrical point of view, the second range is the repetition of 

the first one with the front-back inversion of the appearance (Figure 4.12c). All 

these images are expected to reside on a 1-dimensional manifold, since there is only 

one intrinsic dimension, i.e. the object orientation. However, in our experiment, this 

intrinsic structure is embedded into a 2-dimensional space to take into account the 

cyclic nature of the view change. As a result, an ideal visual low dimensional 

representation of this dataset is a unique circle pattern for all objects, since the view 

dimension is shared between all of them. This circle is expected to be parameterised 

by only one parameter, i.e. the view change (see Figure 2.9a). 
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The HumanEva (HE) dataset has been introduced in section 2.3.2.3. In this 

evaluation only sequences of “walking and jogging in a circle” are processed using 

the actors depicted in Figure 3.5. Training was performed using the longest 

available continuous sequence of valid MoCap poses for each subject as presented 

in Table 4.1. The walking and jogging actions were chosen, since their intrinsic 

dimensionality as well as their underlying manifold structure is well known and 

conceptually easy to justify. Both actions are cyclic, since the intrinsic joint 

configuration of human body recurs every two steps with both legs. Therefore, two 

successive steps are considered to be a single MTS which is repeated several of 

times in the action. Intuitively, any two steps correspond to a continuous curve in a 

human motion space, since there is only one degree of freedom, i.e. the innate 

state/configuration of the motion over time. As a consequence, the intrinsic 

structure of both actions is a 1-dimensional manifold embedded into a 2-

dimensional space to model the nonlinearity and cyclic nature of the action. A 

natural visual low dimensional representation of this struture is a smooth closed 2-

dimensional curve. It is worth to point out that both steps are usually highly 

symmetric, since the intrinsic configuration of joints is roughly the same for 

opposite limbs. For that reason, in the ideal case, the 2-dimensional curve 

representation is expected to have an axis of symmetry, such as an ellipse, where 

each half represents one step in the cycle. Finally, all subjects (i.e. sources of MTS) 

are expected to be modelled jointly along a unique ellipse like pattern, since the 

intrinsic content/configuration of the motion is the same, despite of the style 

variability in the execution. This ellipse is supposed to be parameterised by only 

one parameter, i.e. the intrinsic change of the body configuration (see Figure 2.9a). 

This analysis is in agreement with the value of intrinsic dimensionality determined 

by EE (see section 3.2.1.1) and consistent with other research on modelling walking 
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and jogging actions [Grochow et al., 2004, Elgammal and Lee, 2004a, Urtasun 

et al., 2006a, Darby et al., 2010].  

Table 4.1. The summary of frames which are used in a learning process. 

Action Name Frames Number of frames 

Walking Subject 1 in trial 3 16-1484 1468 

Subject 2 in trial 3 55-1498 1443 

Subject 3 in trial 3 52-1172 1120 

Jogging Subject 1 in trial 1 6-252 246 

Subject 2 in trial 1 6-795 789 

Subject 3 in trial 1 5-775 770 

The Weizmann dataset has been introduced in section 2.3.3.4.1. All 9 

subjects and 10 actions are used for the evaluation (a few examples are illustrated in 

Figure 2.28). Actions were manually segmented into 240 instances of primitive 

motions. Each atomic action is a single MTS, whereas each actor is regarded as a 

different MTS source. The intrinsic dimensionality of the dataset is 2 as evaluated 

by [Blackburn and Ribeiro, 2007]. 

4.5.2. Experimental Framework 

The proposed algorithm is evaluated through qualitative and quantitative analyses 

of performance. Results are compared with those produced by standard dimension 

reduction methods, i.e. LE, Isomap and BC-GPLVM, and their respective improved 

temporal versions, i.e. TLE, ST-Isomap and GPDM.  

4.5.2.1. Setup 

In order to evaluate embedding-based methods quantitatively a mapping function is 

required which allows projecting data between high and low dimensional spaces. 

The RBFN mapping was trained from a low to high dimensional space and then 
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inverted as described in section 2.2.2.4.4. The Gaussian basis function (equation 

(2.60)) is exploited in the learning process, because of its excellent approximation 

properties [Poggio and Girosi, 1990].  Note that our graph based extension of 

RBFN, which has been proposed in section 3.3.2, is not compatible with TLE. In 

contrast to standard spectral methods (see Figure 4.8a,c), the structure of TLE graph 

is very regular and uniformly spread across training data (see Figure 4.8b,d). As a 

consequence, it is not feasible to simulate neither strong nor weak flows in such 

graph to determine desired sub graphs, which become the cluster centres. For that 

reason, the standard RBF network is learned in all experiments. 

Unlike TLE and mapping-based approaches, all other embedding-based 

methods require manual parameter tuning. In this study, we used the default 

parameters provided with the Matlab implementations of BC-GPLVM [Lawrence 

and Quinonero-Candela, 2006] and GPDM [Wang et al., 2006]. In the case of 

spectral methods, extensive testing was conducted to determine the optimal settings 

for each experiment. In addition, the number of nontrivial neighbours required for 

ST-Isomap [Jenkins and Mataric, 2004] was calculated using the TLE estimation 

procedure when appropriate. 

4.5.2.2. Experiments 

First, we evaluate qualitatively our novel algorithm using two datasets for which the 

underlying structure is known so that the quality of the embedded space can be 

judged visually. Initially, we compare TLE against the most similar approach, i.e. 

ST-Isomap using the synthetic dataset of mouse motion (section 4.5.3). Afterwards, 

TLE and all baseline methods are evaluated in a more demanding experiment using 

a very high dimensional image dataset. Here, we show that TLE can take advantage 

of any sequential series of observations as long as the selection procedure of 

repetition neighbourhoods is feasible. The objective of this experiment is to 

discover a compact 1-dimensional joint view manifold of the 6 different objects, 
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where multivariate series corresponds to a sequential change of camera perspective 

for an object (section 4.5.4).  

Secondly, the quantitative and further qualitative comparison of TLE 

against state of the art approaches is provided in section 4.5.5. Here, time series are 

human motions which are represented by motion capture data as described in 

section 2.3.2.3. In order to make the quantitative comparison possible, the 3D pose 

refinement framework presented in section 3.4.5.2 is simplified. In this experiment, 

we consider three different subjects performing two actions (walking and jogging). 

In order to provide an exhaustive evaluation, around 6000 pose estimates in total are 

simulated by introducing a Gaussian noise to ground truth poses with an average 

error per joint of 80mm. This error corresponds to the average error of 3D pose 

estimates generated by the 3D pose recovery framework described in section 

3.4.5.1. In addition, we also provide results of the real 3D pose estimates produced 

by our algorithm as a reference (see section 3.4.5.1). 

Finally, we demonstrate practicality the generalisation potential of TLE in 

a challenging computer vision applications, i.e. pose recovery from multiple 

cameras (4.5.6) and view dependent action recognition from monocular videos 

(section 4.5.7). 

4.5.3. Qualitative Evaluation on Artificial Dataset 

Figure 4.10 shows the 3D spaces of the “two moons” dataset produced by ST-

Isomap, LE and TLE. Unlike standard LE, the other two methods successfully 

represent the activity as two periodic motions connected by a transition motion 

since both aims at preserving spatio-temporal properties of the data. Comparison of 

computation times (Figure 4.11) illustrates the superiority of TLE, which is almost 

9 times faster than ST-Isomap when the whole dataset is used.  
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This toy problem was introduced to evaluate the global spatio-temporal 

properties of dimensionality reduction methods [Zhou et al., 2003, Jenkins and 

Mataric, 2004]. Since neither BC-GPLVM nor GPDM can model any global spatio-

temporal relationships between time series, they are not taken into account in this 

experiment. 

 

Figure 4.10. The intrinsic representations of the " two moons" dataset which were 

discovered by: a) ST-Isomap, b) LE and c) TLE. 
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Figure 4.11. Computation time comparison between ST -Isomap and TLE. 

4.5.4. Qualitative Evaluation on Image Dataset 

In the first step, each image from COIL dataset is represented by a 16384-

dimensional vector in the grey level scale. Any series of observations ordered along 

a single dimension, such as time, may be thought of as a time series. In this 

experiment, the multidimensional series is defined as a sequential change of camera 
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perspective. Such type of series is refered to as a multidimensianal view series 

(MVS). 

The current temporal methods, such as ST-Isomap, BC-GPLVM and 

GPDM, consider such MVS as ordinary temporally correlated sequence of points. 

In contrast, the proposed TLE is more flexible and can take advantage of the 

sequential view change information to produce better low dimensional model by 

pre-processing the input data to facilitate the repetition neighbourhood selection 

procedure. 

Although the appearance of objects usually differs significantly, the global 

shape of many objects is similar and change smoothly along the view circle (Figure 

4.12a). As a consequence, MVS can be seen as the alteration of the global object 

geometry across different views. The global geometry of an object in an image can 

be represented as a contour of the object shape. Therefore, initially, the shape is 

extracted by thresholding pixel values of the grey level image to obtain a binary 

shape of the object (Figure 4.12b). The quality of shapes is improved by applying a 

combination of morphological operations, i.e. close, shrink, thicken and majority. 

The final contour of the object is generated by removing interior pixels using the 

morphological remove operation and tracing the obtained boundary (Figure 4.12c). 

As a result, each image is represented as a sequence of internal contour coordinates. 

Such representation of image changes smoothly accross different views (Figure 

4.12c) and, therefore, helps to select accurate and representative repetition 

neighbours for TLE. In order to deal with different proportions of shapes, a rigid 

point registration procedure [Myronenko et al., 2007] is employed, whereas a final 

comparison between pairs of shapes in the DTW alignment is performed using the 

median Hausdorff distance (see appendix A.3). An example of the neighbourhood 

similarity matrix constructed during dimensionality reduction using TLE is depicted 

in Figure 4.13. 
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a)

b)

c)

a)

b)

c)

a)

b)

c)

Single MTS Single MTS

 

Figure 4.12. Extraction of object contours in diffe rent views (every 45 degrees): a) 

original image; b) foreground mask and c) contour r epresentation. The full cycle of 

view consists of two time series repetitions. 
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Figure 4.13. Example of neighbourhood similarity ma trix created by the TLE for view 

series using the 6 objects with two repetitions eac h. Each local minima corresponds 

to the most similar repetition neighbour in relatio n to the reference object (green) 

extracted from different repetitions of the time se ries. 

Figure 4.14 presents a group of 1-dimensional joint view manifolds of 6 original 

image objects embedded in the 2-dimensional spaces discovered by: LE, BC-

GPLVM, ST-Isomap and TLE. Embedded spaces which are produced by Isomap 

and GPDM are similar to those obtained with LE and BC-GPLVM respectively. 
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Figure 4.15, Figure 4.16, Figure 4.17 and Figure 4.18 provide the detailed 

visualisation of the view manifold structures for the related spaces illustrated in 

Figure 4.14. The geometrically motivated LE as well as the locality preserving BC-

GPLVM fail to discover the structure of the view series (Figure 4.14a,b). Both 

embeddings are dominated by the inter-data variations of series issued from single 

sources. In order to also model intra-data variations of series between different 

sources, the spatio-temporal constraints are essential as seen in embedded spaces 

generated by ST-Isomap and TLE (Figure 4.14c,d). However, although parameters 

of ST-Isomap are set to optimal values using prior knowledge about the available 

series, the obtained low dimensional representation is still highly distorted because 

of object appearance variations. As a consequence, it is difficult to identify any 

global pattern in that space (Figure 4.17). In contrast, TLE produces a compact and 

consistent ellipse-like representation which meets our expectations (see section 

4.5.1). Figure 4.18 clearly shows that all the objects are arranged according to the 

view point in this representation, which is invariant to object appearance. 
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Figure 4.14. The 1-dimensional joint view manifold of 6 image objects from the COIL 

dataset embedded in the 2-dimensional space discove red by: a) LE; b) BC-GPLVM; 

c) ST-Isomap and d) TLE. Different colours correspo nd to series associated with 

different objects. 
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Figure 4.15. The 1-dimensional joint view manifold embedded in the 2-dimensional 

space discovered by LE with visualisation of corres ponding objects. 

 

Figure 4.16. The 1-dimensional joint view manifold embedded in the 2-dimensional 

space discovered by BC-GPLVM with visualisation of corresponding objects. 
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Figure 4.17. The 1-dimensional joint view manifold embedded in the 2-dimensional 

space discovered by ST-Isomap with visualisation of  corresponding objects. 

 

Figure 4.18. The 1-dimensional joint view manifold embedded in the 2-dimensional 

space discovered by TLE with visualisation of corre sponding objects. 
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4.5.5. Quantitative Evaluation using 3D Pose Refinement 

Framework 

The quantitative comparison between the proposed TLE and other state of the art 

methods is performed using the 3D pose refinement framework, which has been 

introduced in section 3.4.5.2. Here, human motion is represented by a sequence of 

52-dimensional feature vectors extracted from motion capture data as described in 

section 2.3.2.3. To measure performances, experiments are conducted using cross-

validation taking either one or two subjects for training leaving respectively two or 

one subjects for testing. Initial test pose estimates are simulated by introducing a 

Gaussian noise to ground truth poses (see section 3.4.1) thus, final quantitative 

results are calculated by averaging over 5 test sequences. In addition, the 

quantitative results are supported with the visual evaluation of the generated low 

dimensional spaces, since the ideal visual representation is known (see section 

4.5.1). 

In order to provide a fair comparison, first, the full offline learning pipeline 

presented in section 3.4.5.2 is used for calculating the average errors for LE and 

Isomap according to the MI metric. Subsequently, the framework is simplified by 

removing the quantitative measure block from the offline processing (see Figure 

3.9). Then, such simplified offline learning procedure is employed for the 

exhaustive search of parameter K  in LE and Isomap to identify the optimal solution 

which is used as a reference. The evaluation of TLE, ST-Isomap, BC-GPLVM and 

GPDM is performed on the simplified framework as well, since there is no need of 

estimating the K-nearest neighbour parameter. An example of neighbourhood 

similarity matrix generated during dimensionality reduction using TLE is depicted 

in Figure 4.6. The online refinement pipeline does not change (Figure 3.9), thus, 3D 

pose estimates are projected to the embedded space and the nearest neighbour is 

projected back to the posture space. 
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 Figure 4.19a,b,c and Figure 4.20a,b,c show that Isomap and LE are unable 

to recover the expected unified ellipse (see section 4.5.1) to represent the 2-subject 

walking/jogging cycle in the embedded space. In both cases, the obtained spaces are 

dominated by intra variations between the subject dependent series in agreement 

with previous experiment (section 4.5.4). Among temporal methods, BC-GPLVM 

and GPDM discover the closed 2-dimensional curve representations for each 

subject separately without space generalisation (Figure 4.19b,e and Figure 4.20b,e). 

Moreover, the symmetrical feature of the motion is not well preserved between 

succeeding steps (Figure 4.19b,e and Figure 4.20b,e). This implies that the simple 

constraint of temporal continuity is insufficient to model intra variations between 

series of different sources. In contrast, the incorporation of some spatio-temporal 

constraints using either ST-Isomap or TLE, allow generalising the space of the 

different MTS (Figure 4.19d,f and Figure 4.20d,f). However, the spaces discovered 

by ST-Isomap are distorted and not smooth even when the optimal parameters are 

provided, hence, accuracy results are unsatisfactory (Figure 4.19d and Figure 

4.20d). On the other hand, TLE produces the expected unique ellipse representation 

(see section 4.5.1) by embedding nonlinearly the common intrinsic dimension of 

motion and discarding style variability between different sources as well as 

different repetitions of the same source (Figure 4.19f and Figure 4.20f). 
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Figure 4.19. Embedded spaces for walking (2 subject s) using a) Isomap, b) BC-

GPLVM, c) LE, d) ST-Isomap, e) GPDM and f) TLE. 

 

Figure 4.20. Embedded spaces for jogging (2 subject s) using a) Isomap, b) BC-

GPLVM, c) LE, d) ST-Isomap, e) GPDM and f) TLE. 
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Figure 4.21. Embedded space for walking (2 subjects ) using TLE with visualisation of 

corresponding key poses. The red and blue dots corr espond to the poses of 2 

subjects depicted on the left, whereas 4 magenta do ts represent the reference poses 

selected from training set for visualisation purpos e. 
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These findings are supported by a quantitative comparison of the obtained 

accuracy (Figure 4.22). First, performance analysis confirms the generalisation 

abilities of the methods integrating temporal constraints since data from a second 

subject improves their accuracy (Figure 4.22). Conversely, performances of Isomap 

and LE worsen. Among the temporal approaches, BC-GPLVM and TLE benefit the 

most from additional training samples (accuracy 12%+ ). On the other hand, 

GPDM’s dynamic model seems to be able to optimise most of its parameters from a 

single subject. Consequently, TLE and BC-GPLVM are the most successful 

approaches. However, TLE not only displays the best performances and produces 

better quality embedded spaces (Figure 4.19b,f and Figure 4.20b,f), but it is also 

significantly faster by an order of magnitude, even when the cost of the proposed 

automatic parameter estimation procedure is added (Figure 4.23 last column). This 

is very important because this shows that, unlike BC-GPLVM, TLE has the ability 

to learn models from much larger training sets which should conduce to even better 

results. 

Note that the results reported in Figure 4.22 for Isomap and LE using a 

single subject for training are worse than those presented in the last experiment of  

Table 3.4 (second and third experiments in Table 3.4 are not comparable, because 

they were performed using perfect motion capture data without any noise, thus the 

better performance is expected). The reason of worse results in this experiment is 

that the more challenging and exhaustive evaluation is carried out according to the 

leave-one-subject-out procedure; for instance training is performed with the male 

subjects S2 and S3, while testing is done with the female subject S1 (see Figure 

3.5), or training with the short subjects S1 and S2 and testing using the tall subject 

S3 (see Figure 3.5).  
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Figure 4.22. Average refinement RMS error of cross validation for walking and 

jogging sequences using either one (blue) or two (g reen) subjects for training. Error 

for the optimal neighbourhood size for Isomap and L E is depicted within 

corresponding bars. 

 

Figure 4.23. Training times based on either 1 (blue ) or 2 subject (green) walking 

sequences (parameter estimation is manual for all e mbedding-based methods). 
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Finally, the error of the real 3D pose estimates obtained using our 3D pose 

recovery framework (section 3.4.5.1), when the action model is trained by TLE 

using 2 subjects, is equal to ~ 48mm (an improvement of 9% in relation to LE and 

4% in comparison to the best Isomap, see Table 3.4). An overall improvement of 

the refinement framework using the real noise generated by our 3D pose recovery 

framework is ~ 40%; whereas it is ~ 28% for artificially simulated noise in this 

experiment.  

The main motivation of this experiment was to provide a comprehensive 

evaluation platform for the quantitative comparison of the proposed TLE and the 

state of the art methods. In order to do that, a large testing dataset was simulated. 

Although we did not intend to design a state of the art pose recovery framework, we 

believe that our 3D refinement framework has the potential to produce even better 

pose estimates than those presented in Figure 4.22, when applied on real noise data.  

4.5.6. Application to Pose Recovery 

In the previous section, the proposed methodology was incorporated into the 3D 

human pose recovery framework (section 3.4.5.1) as the post processing step to 

refine pose estimates. Here, we demonstrate the another exemplary application by 

integrating TLE directly into a 3D pose recovery pipeline from multiple cameras.  

4.5.6.1.  3D Pose Recovery Framework 

The proposed 3D pose recovery framework aims at estimating a 3D human skeleton 

from a visual hull using multiple calibrated cameras [Moutzouris et al., 2011]. The 

entire process is summarised in Figure 4.24. 
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Figure 4.24. 3D pose recovery framework with a prio r model of human motion, which 

is learned from MoCap data using Temporal Laplacian  Eigenmaps. 

First, during the learning stage, the space of human motion is reduced by 

applying TLE as described in previous section 4.5.5. Subjects 1 and 2 are used for 

the training. Then, the RBFN mapping is learned to provide a bidirectional 

projection mechanism between spaces as explained in section 4.5.2.1. 

Let’s assume that human motion is observed by M  fixed and calibrated 

cameras located around a scene of interest. In addition, since we do not deal with 

the problem of global tracking, the global rotation and translation are assumed to be 

provided for every frame. The introduced framework exploits two 3D articulated 

human body models, i.e. skeleton (Figure 2.24) and volumetric (Figure 4.25a)  

representations. Since relations between body parts are known and both models are 

expected to satisfy the human body proportions, which were defined by Leonardo 

da Vinci (Figure 2.24), the transformation between them is straightforward. 

The actual process of 3D pose estimation (Figure 4.24) starts with the 

extraction of silhouettes in each camera using the standard threshold-based 

background subtraction technique. Then, the 3D visual hull is created from 

silhouettes shape (Figure 4.25b) according to the bounding edge method [Cheung 

et al., 2005]. This is achieved by computing the intersection of the M  visual cones, 

which are formed by projecting the contour of image silhouette into 3D space 

through a pin hole camera centre [Tsai, 1987] (Figure 3.8). For the current frame, 

the 3D skeleton is estimated by maximising the overlap between the current visual 

hull representation and predicted volumetric human body models. These predictions 
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are estimated by, first, projecting the 3D skeleton from the previous frame on the 

low dimensional space using trained RBFN. Then, this projection is associated to its 

closest low dimensional neighbour in the manifold. Finally, for the obtained low 

dimensional point, a set of neighbouring samples is selected based on K-nearest 

neighbours procedure ( {2,30}K ∈ ) and projected back to the human motion space 

as the predicted pose candidates for the current frame. 

 

Figure 4.25. a) A volumetric human body model; b) a  visual hull, which is extracted 

from silhouettes using the centre MC  of the pin hole camera model. 

4.5.6.2.  Results 

For testing, the first 100 frames of walking action are used from the Image & 

MOCAP Synchronized Dataset [HumanEvaI, 2010]. Note that the testing subject is 

completely different than those used for training. Figure 4.26 presents the mean 

average error between estimated positions of body joints and the ground truth for 

each frame. The error is reported using either two (green) or thirty predicted 

candidates (blue). We also provide the estimation error (red) without using low 

dimensional human motion model in order to demonstrate the practical advantage 

of applying TLE. Here, since pose candidates are not available, the human body 

volumetric model is fitted into the visual hull using an exhaustive and expensive 
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optimisation process, which aims at maximisation of the limbs overlap according to 

the hierarchical model structure. 
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Figure 4.26. The obtained average error of 3D pose recovery for each frame: the 

framework without TLE (red – 164mm); with TLE using  2 pose candidates (green – 

81mm) and using TLE and 30 pose candidates (blue – 48mm). 

Figure 4.26 shows clearly that when the process of pose estimation is not 

constrained, the average error drastically diverges over time. The incorporation of 

TLE into the pipeline prevents the accumulation of error and allows significantly 

improving the performance from initial 164mm to 48mm in the case of thirty 

predicted pose candidates (accuracy 71%+ ). 

4.5.7. Application to Action Recognition 

In the previous sections, we have demonstrated the superior performance of TLE. 

Here, we integrate our technique within a standard human action recognition 

framework [Blackburn and Ribeiro, 2007] to perform video annotation and 

demonstrate its generalisation potential in a challenging computer vision task, i.e.  

view dependent action recognition. Our action recognition framework consists of 
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two processes: offline generation of action descriptors (Figure 4.27) and online 

classification of new instances of actions (Figure 4.28). 

 

Figure 4.27. Process of learning action descriptor.  

 

Figure 4.28. Classification process of a new video.  

Let Y  denotes the set of N  videos defining an action primitive performed 

by different people. More formally, Y  is defined as { | 1.. }sY Y s= = sN , where s  

denotes the style index. Each frame y  of the video is represented by D  pixels of 

interest region (see section 2.3.3.1.2): { | , 1.. }s s s
i iY y y i= ∈ =D sTℝ  , where sT  is the 

number of frames in the sequence. A unified and compact action model,X , of 

dimension d D≪ , is defined by { | 1.. } sX X s= = sN , 

where { | , 1.. } s s s
i iX x x i= ∈ =d sTℝ . 

4.5.7.1. Pre-processing and Shape Representation 

In the first step, video pre-processing is performed to generate informative and 

discriminative features of observed human motion. The process starts with isolating 

foreground pixels in each frame using a simple background subtraction operation 

(the background of a scene is provided in the dataset). Then, in each frame, the 

moving foreground object is converted to a binary silhouette, whose quality is 

improved by applying the morphological open operation (i.e. holes are filled) 

(Figure 4.29b). All silhouettes are normalised to deal with translation and scale 

variations by using the largest silhouette square bounding box available within the 
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entire action dataset. As a result of this normalisation, any motion becomes relative 

to the internal deformation of the shape. 

Afterwards, silhouettes are converted to a grey level gradient using a 

signed distance function at each pixel [Elgammal and Lee, 2004a, Blackburn and 

Ribeiro, 2007]: 

 

( )    pixel inside contour 

( ) 0 pixel on contour   

( )     pixel outside contour

c

c

dist p

y p

dist p


= 
−

 (4.34) 

where the ( )cdist p  is the distance to the closest point on the contour with a positive 

sign inside the contour and a negative sign outside the contour. Such representation 

assigns highest values to the silhouette’s most medial axis points. The obtained 

shape representation is illustrated in Figure 4.29d,f. Grey scale images are used as 

high dimensional features in our framework (Figure 4.29f), whereas, the colour 

versions illustrate the effect on the silhouette’s medial axis (Figure 4.29e). The 

smoothing decreases the variance between subtle differences of similar shapes, such 

as those caused by clothing and hair variability, by emphasizing medial axis. Once 

the smoothing is completed, the intensity range in all images is re-scaled to a pre-

defined maximum value (e.g., 255).  

As a result of the pre-processing stage a static 2916-dimension feature 

vector is extracted for each frame y . In addition, to increase the discriminative 

power of each frame, an average optical flow computed by Lucas and Kanade 

method (see appendix A.2) (Figure 4.29c,e) is included as a dynamic characteristic.  
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Figure 4.29. Extraction of shape representation: a)  original video; b) binary silhouette 

with the bounding box; c) optical flow; d) implicit  distance function representation 

(colour scale) and e) implicit distance function re presentation (gray scale) with a 

dominant motion direction. 
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4.5.7.2. Learning of Action Descriptors 

A unique template model X  of observed motions for a specific action is discovered 

automatically by reducing the dimensionality of static features to 2 dimensions 

using TLE. A 4-dimensional action descriptor consists of the 2-dimensional 

template model of the action plus the 2-dimensional dominant direction of the 

motion obtained using optical flow. Thanks to the generalisation power of TLE, we 

produce a single unified descriptor per action instead of the action and subject 

dependent descriptors required by the standard framework [Blackburn and Ribeiro, 

2007].  

4.5.7.3. Manifold Mapping Function 

Our low dimensional action descriptor requires a mapping procedure between the 

original space Y  of motions and low dimensional space X  of the action model in 

order to generalise to unseen examples. Since a unique embedding of action is 

discovered, the difference of observed shape among different people with the same 

body configuration is reflected in a nonlinear mapping. This is addressed by 

learning the advanced RBFN, called generative decomposable model [Elgammal 

and Lee, 2004b], from the low to high dimensional space for each action model, 

which is inverted for the projection in the opposite direction as described in section 

2.2.2.4.4. This model explicitly decomposes the intrinsic body configuration as a 

function of time from other conceptually orthogonal aspects which affects 

observation such as shape and appearance variability. Following the approach of 

[Elgammal and Lee, 2004b], the generative mapping function is modelled using two 

factors: 

• Content B : a representation of the intrinsic body configuration which 

characterises motion as a function of time and it is invariant to person shape and 

appearance. 
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• Style S : a time-invariant person parameter which describes the person 

appearance, shape and execution style. 

In our framework, content is a continuous domain, while style is 

represented by the discrete classes present in the training data, thus intermediate 

styles can be linearly interpolated. As a result, the style continuity is approximated. 

The procedure of fitting the decomposable generative model to the data consists of 

two steps. First, a set of style-dependent functions are trained. Then, all functions 

are combined into a single style-independent projection function. 

Since mapping between the embedded action manifold and the observed 

space is highly nonlinear, generalised RBFN (see section 2.2.2.4.4) is applied to 

provide the style dependent nonlinear mapping function for each person s  in the 

training data following equation (2.62): 

 ( )s s sY X Aψ=  (4.35) 

where sA  is a ( 1)+ + ×Z d D  matrix of mapping coefficients, which encodes action 

content and style variability. The interpolation matrix ( )ψ i  is defined according to 

(2.64) by: 

 1 2( ) {[ ( ), ( ),..., ( ),1, ]}s s s s s
ZX X c X c X c Xψ ϕ ϕ ϕ= − − −  (4.36) 

where { | 1.. }jC c j= = Z  is a set of distinctive representative points along the 

embedded space and ( )ϕ i  is a radial basis function (see section 2.2.2.4.4). sA  is 

calculated by applying the Moore-Penrose pseudo-inverse on matrix ( )sXψ  and 

solving a linear system of equations: ( )s s sA X Yψ += , like in section 2.2.2.4.4. On 

the contrary to [Elgammal and Lee, 2004b], the manifold representation C  is 

computed directly as a mean style manifold due to the unified representation 

obtained using TLE. Next, it is transformed by a non-rigid point registration 

procedure [Myronenko et al., 2007] to better fit the data.  
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Given the learned nonlinear mapping coefficients sA  ( 1...s = sN ) the shape 

style parameters S  are decomposed by fitting an asymmetric bilinear model 

[Tenenbaum and Freeman, 2000] in the space of nonlinear mapping coefficients 

[Elgammal and Lee, 2004b]: 

 3B SΑ = ×  (4.37) 

where all coefficients sA  are arranged in an order three coefficient tensor Α  whose 

dimensionality is ( + +1)× × sZ d D N . S  ( ×s sN N ) denotes the mode-3 basis of Α , 

which represents the orthogonal basis for the style space, whereas B  contains the 

content bases for the mapping coefficient space ( ( ++1)× × sZ d D N ) . Mode-i i×  is a 

tensor multiplication as defined in [Lathauwer et al., 2000]. 

This decomposition is performed by representing the tensor Α  in a matrix 

form A , where first each coefficient matrix sA  is converted to a coefficient vector 

sa  of dimensionality   *( + +1)=aN D Z d  by column wise stacking (columns of the 

matrix are concatenated to form a vector). Afterwards, all coefficient vectors sva  

are arranged in the matrix A  of dimensionality ×a sN N . The style orthogonal 

factors are decomposed from the assembled matrix A  using Singular Value 

Decomposition: 

 ( )

T

T

A USV

B unstack US

S V

=
=

=

 (4.38) 

To avoid over-fitting, the dimensionality of style orthogonal space S  is 

reduced to retain a subspace representation by preserving 99% of the original 

information. The reduced dimensionality for tensors,  B S  are ( + +1) D× × sZ d n , 

×s sn N  respectively, where sn  denote the number of basis maintained for the style 

factor.  

As a result, the style-independent projection function, which generalise the 

space of the action descriptor (Figure 6.9d), is expressed by equation: 
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 ( ) 3( )sy x B sψ= ∗ ×  (4.39) 

where any image observation sy  is synthesized from the body configuration 

represented by an embedding coordinate x  using the estimated style vector s  of 

dimensionality sn  and the learned content tensor B . 

4.5.7.4. Action Classification Process 

Action recognition is accomplished by a nearest-neighbour classification scheme. 

First, a new instance of action is pre-processed and then projected into each action 

model using the corresponding generative decomposable model presented in the 

previous section 4.5.7.3. The similarity between the projection and the model is 

calculated using the sum rule of the following three metrics: the modified Hausdorff 

distance (see appendix A.3, equation (6.28)), curve dissimilarity function [Frenkel 

and Basri, 2003] and optical flow variation. 

Given a new instance of action 
Y , the corresponding embedded 

coordinates 
X  on the manifold and the person style parameter sɶ  are obtained by 

minimising the following reconstruction error: 

 ɶ ɶ
2

3,arg min ( ) ( )x s y x B sψ− ∗ × ɶ  (4.40) 

If the style vector, sɶ  is known we can obtain a closed form solution for ɶx  

and vice versa. This leads to an iterative procedure for estimatingsɶ and ɶx  

simultaneously until equation (4.40) converges [Elgammal and Lee, 2004b]. First, 

the style sɶ  is initialised using a mean style vector, which is derived from S . Then, 

the embedded coordinates ɶx  are computed by solving a linear system of equations 

using the Moore-Penrose pseudo-inverse (from equation (2.65)): 

 ɶ ɶ
3( ) ( )x y B sψ += × ɶ  (4.41) 

Coordinates of ɶx  are provided by the last d  rows of the matrix ɶ( )xψ . The 

optimal style sɶ  is assumed to be approximated as a weighed linear combination of 

style classes present in the training data: 
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In order to solve for the linear regression weights w , let’s assume that the 

observation ɶy  is drawn from a Gaussian mixture model centred at ɶ 3( ) ( )x B sψ ∗ ×  

for each style class s . Then, the observation probability given the content and style 

is expressed by: 

 ɶ ɶ ɶ ɶ
2

2
3( | , ) exp( ( ) ( ) / 2 )p y x s y x B sψ σ∝ − − ∗ ×  (4.43) 

and proportional style conditional class probabilities are defined by: 

 ɶ ɶ
ɶ ɶ

ɶ ɶ

( | , ) ( )
( | , )

( | , ) ( )
s

p y x s p s
p s x y

p y x s p s
=
∑

 (4.44) 

The new style sɶ  is estimated using equation (4.42) where 

sw  is set to 

ɶ ɶ( | , )p s x y . Given these two steps, both parameters, i.e. embedding coordinates ɶx  

and style vector sɶ , are optimised iteratively in the Expectation-Maximisation 

framework [Dempster et al., 1977]. In the E-step, the coordinates are computed 

given the style parameters, whereas in the M-step new style parameters are re-

estimated given the content coordinates. The procedure is repeated until 

convergence of equation (4.40) [Elgammal and Lee, 2004b]. 

4.5.7.5. Results 

Action recognition results are presented in Table 4.2 according to the leave-one-

subject-out cross validation (see section 2.3.3.4.3). Usage of TLE improves 

accuracy of the standard framework [Blackburn and Ribeiro, 2007] to 100% which 

has been the state of the art for this dataset since 2007. Other methods which 

generate low dimensional action representations are [Chin et al., 2007, Wang and 

Suter, 2007b, Wang and Suter, 2008, Fang et al., 2009]. However, all these methods 

do not model the temporal structure of actions during dimensionality reduction. 

Moreover, all methods require the exhaustive search of the optimal number of 

nearest neighbours in order to obtain satisfactory accuracy. Since TLE’s 
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generalisation property handles stylistic variations displayed by different people, 

this scheme is scalable to a larger subject population. An example of the 

neighbourhood similarity matrix constructed during dimensionality reduction using 

TLE is depicted in Figure 4.30, whereas a 3D visualisation of action manifolds is 

given in Figure 4.31. 

Table 4.2. Action recognition results in comparison  to previous results on the 

Weizmann dataset. 

Name  Accuracy  Comments 

Our TLE + [Blackburn and Ribeiro, 2007] 100.0% Model per action 

Blackburn [Blackburn and Ribeiro, 2007] 95.0% Model per action per subject 

Blank [Gorelick et al., 2007] 100.0% No action model 

Yeffet [Yeffet and Wolf, 2009] 100.0% Model per all actions 

Schindler [Schindler and van Gool, 2008] 100.0% Model per action 

Wang [Wang and Suter, 2008] 100.0% Model per all actions 

Ta [Ta et al., 2010a] 100.0% Model per action per subject 

Weinland [Weinland et al., 2010b] 100.0% Model per all actions 

Jhuang [Jhuang et al., 2007] 98.8% Model per all actions 

Wang [Wang and Suter, 2007b] 97.8% Model per action 

Roth [Roth et al., 2009] 97.0% Model per all actions 

Kellokumpu [Kellokumpu et al., 2008] 95.6% Model per action 

Junejo [Junejo et al., 2008] 95.3% No action model 

Brendel [Brendel and Todorovic, 2010] 95.0% No action model 

Ta [Ta et al., 2010b] 94.5% Model per all actions 

Chin [Chin et al., 2007] 93.0% Model per action 

Liu [Liu et al., 2008] 90.4% No action model 
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Fang [Fang et al., 2009] 89.5% Model per all actions 

Zhang [Zhang and Gong, 2010] 89.3% Model per all actions 

Vezzani [Vezzani et al., 2010] 86.7% Model per action 

Klaser [Kläser et al., 2008] 84.3% Model per all actions 

Dollar [Dollar et al., 2005] 80.0% No action model 

series

fragment

 

Figure 4.30. Example of neighbourhood similarity ma trix created by the TLE using 

the action ‘jack’ and 9 subjects with a few repetit ions each. Each local minima 

corresponds to the most similar repetition neighbou r in relation to the reference 

pose (green) extracted from different repetitions o f the time series. 
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Figure 4.31. Action manifolds generated by TLE with  reintroduced time dimension 

(for visualisation purpose only) to visualise the t emporal development of actions. 

Different colours correspond to different subjects used for learning.  

4.5.8. Discussion 

In all experiments, the proposed TLE discovers consistently more informative and 

intuitive low dimensional representations of MTS in comparison to the other state 

of the art methods. This is achieved by the innovative formulation of temporal and 

spatio-temporal constraints, which are incorporated into the LE framework.  

Analysis of results produced by BC-GPLVM and GPDM (sections 4.5.4 

and 4.5.5) confirms that both methods cannot cope with large stylistic variations of 

data during dimensionality reduction. The same conclusion was drawn by [Urtasun 

et al., 2008]. Our evaluation gives evidence that the simple temporal correlation 

between successive points is an insufficient constraint to preserve the global 

relationships between series during a dimensionality reduction. As a consequence, 

spatio-temporal constraints are essential to recover the meaningful global pattern of 

multidimensional series, especially with the increase of input dimensionality and 

data-inter/intra variations of MTS. For instance, although BC-GPVLM and GPDM 

produce reasonable low dimensional spaces in section 4.5.4 for motion capture data, 

they fail completely when applied on a much higher dimensional image dataset 
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(section 4.5.5). This can be explained by the fact that the number of training 

samples becomes insufficient to overcome the curse of dimensionality (see section 

2.2), when the problem complexity increases, due to more sources and larger 

stylistic variations between them. In contrast, thanks to defined spatio-temporal 

constraints, ST-Isomap and, in particular, TLE are capable to recover both the local 

and global pattern of multivariate series in both experiments. 

Although ST-Isomap may seem to be an alternative to our methodology, 

we show that TLE is superior in terms of performance and practicality (sections 

4.5.3, 4.5.4, 4.5.5). This implies that our fundamentally different concept of 

modelling spatio-temporal constraints is more advanced than what was proposed by 

Jenkins et al. Whereas, they use  a naive spatio-temporal approach for 

neighbourhood selection using distance based correspondence to alter the 

geometrically motivated cost matrix (according to section 4.3.1), we compose two 

temporal graphs directly from factual spatio-temporal relationships between 

neighbours in an automatic manner. Consequently, local temporal neighbours are 

placed nearby in the embedded space without enforcing any additional artificial 

constraints. Moreover, assuming that the intrinsic dimensionality is known (the 

standard assumption for all dimensionality reduction methods), our method is fully 

automatic and does not require any manual tuning of parameters. On the contrary 

ST-Isomap is sensitive to a set of parameters which has to be provided in advance: 

the crucial number of nontrivial neighbours for each point, two similarity factors, 

the size of temporal window and the size of temporal block for the pre-processing 

(see section 4.3.1).  

Assuming that the optimal parameters are provided, Table 4.3 provides 

insight into the computational complexities of the most time consuming algorithmic 

components for all considered temporal techniques. Table 4.3 as well as Figure 4.11 
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and Figure 4.23 confirm that TLE is much more efficient. Thus, it can be applied to 

much larger datasets of MTS than the other presented methods. 

Table 4.3. Computational complexity of temporal dim ensionality reduction methods, 

where N  denotes the number of points in a dataset, I denotes the number of 

iterations in an optimisation process and p denotes the ratio of nonzero elements in 

a sparse matrix to the total number of elements N . 

Method Computational complexity 

ST-Isomap 3( )O N  

BC-GPLVM 3( * )O I N  

GPDM 3 3( *( ))O I N N+  

TLE 2( * )O p N  

In the last experiment, TLE was applied successfully to modelling realistic 

MTS extracted from videos to perform view dependent action recognition (section 

4.5.7). The difficulty of this experiment is derived from a high dimensionality of 

feature vector, a large number of available sources and repetitions, significant 

stylistic variability between them and finally the considerable size of the whole 

dataset. Unfortunately, it was impractical to apply ST-Isomap, BC-GPLVM and 

GPDM in this application, because of their inherent limitations, which has been 

confirmed by the previous experiments, in particular: 

• the prohibitive computational complexity (Figure 4.23, Table 4.3), 

• the number of parameters to be set empirically (especially ST-Isomap – section 

4.3.1), 

• the poor generalisation properties which may suggest a very low recognition 

rate (for example, see ‘bend’ action in Figure 4.32 discovered by ST-Isomap 

and BC-GPLVM, or Figure 4.14). 
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Figure 4.32. Action ‘bend’ manifold discovered by a ,d) BC-GPLVM; b,e) ST-Isomap 

and c,f) TLE. In second row the time dimension is r eintroduced into the space to 

visualise the temporal development of the action. T he poor generalisation properties 

of a,d,b,e may suggest a very low recognition rate in comparison to c,f. 

4.6. Summary 

In this chapter, a novel embedded-based dimensionality reduction approach, called 

Temporal Laplacian Eigenmaps was proposed. It automatically discovers embedded 

spaces tailored to multidimensional time series, in particular, when data are 

generated from different sources.  

The main motivation of the algorithm is to exploit temporal coherence as a 

valuable clue in the dimensionality reduction process. This is achieved by inclusion 

of time series constraints in the form of temporal graphs, in the LE framework 

without requiring the manual tuning of parameters. Two types of constraints were 

proposed: temporal within time series and spatio-temporal between different time 

series. As a result, TLE is able to preserve implicitly the local and global temporal 

topology of the data instead of the local geometry. This means that TLE maintains 

the temporal continuity of time series during dimensionality reduction process and 
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suppress stylistic variations displayed by different sources of time series by aligning 

them in the low dimensional space. 

Qualitative and quantitative experiments in different domains proved the 

high quality of the generated low dimensional spaces. Moreover, the practicality of 

the algorithm was demonstrated in two important computer vision applications: 3D 

pose recovery and action recognition. These experiments demonstrated that the 

method is computationally efficient and has excellent generalisation properties. 
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5. Spatio-Temporal Gaussian 
Process Latent Variable Model 

5.1. Introduction 

Advances in data acquisition and storage capabilities during the past decades have 

led to more and more high dimensional datasets emerging in most branches of 

science. However, at the same time, the amount of available data samples is 

severely insufficient in relation to the sample dimensionality to cover adequately 

the complexity and richness of measured phenomena. As a consequence, scientists 

very often face the problem of the generalisation of the known data samples to the 

entire distribution of possibilities to obtain a reliable model of the observed 

phenomenon. This issue can be tackled effectively by nonlinear probabilistic 

dimensionality reduction (section 2.2.2.3). In contrast to deterministic 

dimensionality reduction methods (section 2.2.2.2), it allows not only eliminating 

redundancies and irrelevant information present in data while ensuring the 

maximum possible preservation of information, but it also approximates the 

underlying distribution of the observed space using only a small number of 

corresponding hidden variables. As a consequence, a continuous and generative 

model is created which exhibits excellent generalisation properties to unseen data. 

In addition, it can be learned successfully without over-fitting using significantly 

less data samples than space dimensions [Lawrence, 2004, Lawrence, 2005], which 

is a desired property for many real-life problems. For instance, a probabilistic and 

generative model of high dimensional data may be used in such applications as 

tracking, animation, pose recovery, robots controlling and classification.  
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Obviously, the same generalisation problems arise when dealing with 

multidimensional time series (MTS), thus, the probabilistic exploration of MTS is 

an appealing concept with a lot of potential applications including MTS 

classification. To the best of our knowledge, the probabilistic analysis of time series 

using dimensionality reduction transformation, which is constrained explicitly by 

MTS structure, has never been addressed by the research community. In this 

chapter, we propose a methodology which takes advantage of the MTS temporal 

structure in order to learn the probabilistic generative model tailored to the MTS 

space. 

On one hand, the previous chapter introduced a novel and powerful 

method, called Temporal Laplacian Eigenmaps (TLE). It allows the automatic 

recovery of low dimensional spaces tailored to multivariate time series (MTS), in 

particular generated from different sources. Although TLE proves its superiority in 

this challenging task in comparison to the other popular state of the art methods, it 

is a deterministic framework which does not model uncertainty of series space.  

On the other hand, GPLVM is a very attractive probabilistic alternative for 

nonlinear dimensionality reduction. It emerged in 2004 [Lawrence, 2004] and 

instantly made a breakthrough in dimensionality reduction research (see section 

2.2.2.3.2.2.2). The novelty of this approach is that in addition to the optimisation of 

low dimensional coordinates during the dimensionality reduction process as other 

methods do, it marginalises out parameters of a smooth and nonlinear mapping 

function from low to high dimensional space. As a consequence, GPLVM defines a 

continuous and generative low dimensional representation of high dimensional data, 

which is called latent space. Current GPLVM based approaches have proven to be 

effective in many tracking and animation applications (see section 5.2), when 

preservation of MTS variability is desired, assuming relatively small stylistic 

variations among MTS. However, extensive study of the GPLVM framework has 
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revealed some essential limitations of the basic algorithm. As we have seen in the 

previous chapter 4, the GPLVM family is not suitable for discovering a unified low 

dimensional representation of MTS in the presence of stylistic variations because of 

the absence of global spatio-temporal constraints (section 4.5). Another key 

drawback of GPLVM is its computationally expensive learning process (see 

sections 2.2.2.3.2.2.2 and 4.5.5) which may converge towards local minima 

[Urtasun et al., 2008]. Although these methods have been applied successfully in 

tracking and animation, they are clearly inappropriate in a context of MTS 

recognition based applications where the discovery of a unique content pattern is 

more valuable than modelling stylistic variations and usually learning is performed 

on large datasets.   

As we have seen in previous chapter 4, modelling of MTS is not a trivial 

problem because of the inherent complexity in terms of stylistic variations, 

redundancies and temporal correlations. In this chapter, we tackle this fundamental 

problem within a probabilistic framework by introducing a novel concept of spatio-

temporal interpretation of GPLVM. The main innovation is a combination of the 

generalisation potential of TLE with the probabilistic generative model of GPLVM 

to formulate a probabilistic nonlinear dimensionality reduction algorithm. We call it 

Spatio-Temporal GPLVM [Lewandowski et al., 2011] (ST-GPLVM). ST-GPLVM 

is capable of producing an underlying probabilistic model of MTS in the presence 

of stylistic variations. Our main contribution is an integration of a spatio-temporal 

'constraining' prior distribution over a latent space, which is inspired by TLE, within 

the likelihood optimisation process of GPLVM. As a result, a core pattern of 

multivariate time series is extracted with associated uncertainties of prediction, 

whereas style variability is marginalised. Qualitative and quantitative evaluations 

confirm the superiority of the concept for a classification of different types of MTS 

using the GPLVM framework. 
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The remainder of this chapter is organised as follows. The next section 5.2 

provides a brief review of the main variations of GPLVM and their applications. 

Then, the theory behind the concept is introduced in section 5.3. Eventually, 

evaluation results are presented in section 5.4 followed by the chapter summary in 

section 5.5. 

5.2. Related work 

GPLVM is a very flexible approach and it has been successfully applied in a range 

of application domains including pose recovery [Tian et al., 2005, Ek et al., 2007], 

human tracking [Urtasun et al., 2005, Urtasun et al., 2006a, Urtasun et al., 2006b, 

Hou et al., 2007, Jing et al., 2008, Moon and Pavlovic, 2008, Gupta et al., 2008, 

Zhang et al., 2010], computer animation [Grochow et al., 2004, Urtasun et al., 2008, 

Deena and Galata, 2009], robotics [Shon et al., 2006, Bitzer and Vijayakumar, 

2009], wireless telecommunication [Ferris et al., 2007], data visualisation 

[Lawrence, 2004], classification [Urtasun and Darrell, 2007] and modelling of 

deformable surfaces [Salzmann et al., 2008]. 

The standard formulation of GPLVM has been described in section 

2.2.2.3.2.2.2, whereas back-constrained (BC-GPLVM) and dynamic (GPDM) 

extensions in sections 4.3.2 and 4.3.3 respectively. In this section, we summarise 

the main limitations of the GPLVM framework (section 5.2.1) and discuss another 

interesting variant of GPLVM, called Locally Linear GPLVM [Urtasun et al., 2008] 

(LL-GPLVM), in section 5.2.2.  

5.2.1. Limitations of GPLVM methods 

The whole family of GPLVM based approaches shares some major limitations. 

First, they cannot extract the global pattern of MTS during dimensionality reduction 

especially in the presence of stylistic variations (section 4.5). Moreover, they are 
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computationally expensive [Lawrence, 2004, Lawrence, 2007, Urtasun et al., 2008] 

(see also section 4.5.5), with the processing time increasing cubically with the 

number of points in a dataset and linearly with the number of iterations in the 

optimisation process. Furthermore, the GP-LVM objective function is severely 

under-constrained in the general case [Ek et al., 2009] and, therefore, it is sensitive 

to local minima if the initialisation of the model is poor [Urtasun et al., 2008].  

Although GPLVM frameworks have been applied successfully in a variety 

of applications (see section 5.2), the above drawbacks prevent successful utilisation 

of the GPLVM framework for many MTS classification applications such as 

speech, gesture and action recognition where latent spaces should be inferred from 

large amount of time series data generated by different subjects and used to classify 

data produced by unknown individuals. 

5.2.2. Locally Linear GPLVM 

Locally Linear GPLVM [Urtasun et al., 2007, Urtasun et al., 2008] (LL-GPLVM) 

extends the concept of imposing high dimensional constraints over a latent space 

during optimisation process, which was introduced by BC-GPLVM (see section 

4.3.2). The main idea of LL-GPLVM is to exploit prior knowledge about the cyclic 

nature of human motion to enforce a cylindrical topology. This is achieved by two 

means. First, advanced similarity measures (i.e. kernels) are carefully designed to 

reflect prior knowledge in a back-constrained mapping function. In particular, two 

of the three latent dimensions are constrained by the extracted periodic phase of 

motion and compared during optimisation using a designed distance function on a 

unit circle. Similarly, the LLE based objective function (see section 2.2.2.2.2.2.3) is 

adjusted to consider the cyclic phase of motion and incorporated into the GPLVM 

framework to preserve a domain specific prior knowledge about observed data.  
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LL-GPLVM is very effective in a preserving style variability of cyclic 

motions, e.g. walking and running. However, in addition to the general 

disadvantages of GPLVM family (see previous section 5.2.1), LL-GPLVM comes 

with three additional important drawbacks. By design, it requires prior knowledge 

about the expected topology of an action, which is usually unknown, and the 

creation of constraints which support this topology. Moreover, the current 

implementation of constraints can deal with only cyclic types of human body 

motions. Finally, the LLE objective function is based on the empirical setting of the 

number of nearest neighbours. 

5.3. Proposed Methodology 

We propose a novel spatio-temporal formulation of GPLVM to extract the intrinsic 

structure and associated uncertainty of a MTS space. This is achieved by giving a 

Gaussian process prior to the generative mapping function from the latent variable 

space, X , to the observed space,Y , under constraints preserving the spatio-

temporal MTS patterns of the underlying manifold.  

A brief introduction of the methodology is given in section 5.3.1, whereas 

details are provided in section 5.3.2. Finally, section 5.3.3 summarises our 

contribution.  

5.3.1. Approach Outline 

The proposed methodology is summarised in Figure 5.1. Initially the spatio-

temporal constraints L  are constructed. These spatio-temporal constraints are 

founded on adaptation of temporal graphs (section 4.4.2.2), which have proved to 

be very powerful in modelling complexity and dependencies of MTS (chapter 4). 

They are exploited twofold. First they are used to better initialise the latent space by 

discovering a low dimensional embedded space which is close to the expected 
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representation. Secondly, they constrain the GPLVM optimisation process, in the 

form of spatio-temporal constraining prior distribution over a latent space, so that it 

converges faster and maintains the spatio-temporal topology of MTS.  The learning 

process is performed using two stage maximum a posteriori (MAP) estimation, 

which is standard for GPLVM (see section 2.2.2.3.2.2.2). The latent positions X, 

and the hyperparameters,Φ , are optimised iteratively until the optimal solution is 

reached under the introduced constraining prior ( | )p X L . The key novelty of the 

proposed methodology is its style generalisation potential. ST-GPLVM 

approximates a compact and coherent probabilistic distribution of MTS in the 

observed space by conserving simultaneously the local temporal correlation within 

each MTS and global spatio-temporal relationships between different MTS. As a 

consequence, the method is capable to identify common spatio-temporal patterns of 

MTS by discarding style variability among all conceptually similar series. 
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Figure 5.1. Spatio-Temporal Gaussian Process Latent  Variable Model pipeline. 

5.3.2. Spatio-Temporal Extension of GPLVM 

The proposed ST-GPLVM relies on a spatio-temporal constraining prior which is 

introduced into the standard GPLVM framework in order to maintain the temporal 

coherence and suppress the style variability of the MTS space.  

First, since neighbourhood graphs have been powerful in designing 

nonlinear geometrical constraints for dimensionality reduction using spectral based 

approaches (see section 2.2.2.2.2.2), we use constraints derived from graph theory. 

Here, in order to model effectively MTS, the temporal graphs, which have been 

proposed in section 4.4.2.2, are adopted to form automatically a novel conditioned 

prior ( | )p X L , where L  denotes the spatio-temporal constraints. Neighbourhood 
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connections in both graphs represent spatio-temporal dependencies of MTS (see 

section 4.4.2.1) and implicitly enforce point closeness in the latent space. 

Consequently, the temporal graph T  allows modelling the temporal continuity of 

MTS, whereas the repetition graph (also referred as spatial graph) S  marginalises 

style variability by aligning MTS in the latent space. The proposed prior probability 

of the latent variables, which forces each latent point to preserve the spatio-

temporal topology of the observed data, is expressed by: 

 
22

1 ( )
( | ) exp( )

22

Ttr X LX
p X L

σπσ
= −  (5.1) 

where T SL L L= +  combines information from both graphs, and GL  is the Laplacian 

matrix given by equations (see sections 4.4.2.2 and 4.4.2.3): 
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. σ  denotes a global scaling of the prior and controls the 'strength' 

of the constraining prior. Note that, although ( | )p X L  is not a proper prior, 

conceptually it can be seen as equivalent to a prior for a given set of constant 

weights L  in agreement with the notation of [Urtasun et al., 2008].  

The spatio-temporal formulation of GPLVM is introduced by designing an 

objective function, where the standard uninformative prior ( )p x  is replaced by the 

proposed conditioned instructive prior ( | )p X L  to form a new objective function: 

 ( , | , ) ( | , ) ( | ) ( )p X Y L p Y X p X L pΦ ∝ Φ Φ  (5.4) 

where graph-based spatio-temporal constraints  L  are imposed on the latent space. 

Although distance relation between neighbours (especially spatial ones) may be 

large in L  according to equations (4.19) and (4.27), it is infinite between 
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unconnected points. Therefore optimisation of the above objective function enforces 

implicitly closeness of temporally correlated points in the latent space. 

Maximisation of the new objective function (5.4) is equivalent to minimising the 

negative log posterior of the model: 

 1 2

( , ) ln ( , | , )

1
(( 1) ln 2 ln ( ) ( ))

2
T T

i
i

L X p X Y L

tr YY tr X LXπ σ− −

Φ = − Φ =

= + + Σ + Σ + + Φ∑DN D
 (5.5) 

Following the standard GPLVM approach, the learning process involves 

minimising equation (5.5) with respect to X  and Φ  iteratively using a numerical 

optimisation method until convergence (see section 2.2.2.3.2.2.2).  

ST-GPLVM is initialised using TLE which is able to preserve the 

constraints L  in a produced embedded space (see chapter 4). Consequently, 

compared to the standard usage of linear PPCA (see section 2.2.2.3.1), initialisation 

is likely to be closer to the global optimum. In addition, the enhancement of the 

objective function (2.51) with the prior (5.1) constrains the optimisation process and 

therefore further mitigates the problem of local minima. The topological structure in 

terms of spatio-temporal dependencies of MTS is implicitly preserved in the latent 

space without enforcing any domain specific prior knowledge. 

The proposed methodology can be easily applied to other GPLVM based 

approaches, such as BC-GPLVM (section 4.3.2) and GPDM (section 4.3.3). The 

extension of BC-GPLVM results in a spatio-temporal model (ST-BC-GPLVM) 

which provides explicitly bidirectional mapping between latent and high 

dimensional spaces, where the objective function is designated by substituting (4.3) 

into (5.4): 

 ( , | , ) ( | , ) ( | ) ( )p W Y L p Y W p W L pΦ ∝ Φ Φ  (5.6) 
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Alternatively, ST-GPDM produces a spatio-temporal model with an 

associated nonlinear dynamical process in a latent space, where the proposed prior 

(5.1) is integrated into objective function (4.13) resulting in: 

( , , , | , ) ( | , ) ( | ) ( | ) ( ) ( ) ( )X Y Y X Y Xp X W Y L p Y X p X p X L p p p WΦ Φ ∝ Φ Φ Φ Φ  (5.7) 

5.3.3. Summary 

The proposed ST-GPLVM is a continuous latent variable model, which 

approximates an underlying probability distribution of MTS in a high dimensional 

space. This is achieved by learning a probability density function which gives a 

natural measure of plausibility, assigning higher probabilities to MTS that are 

similar to those used for training. The learning process is constrained through a 

novel prior distribution in a latent space which takes into account the local temporal 

correlation between successive points in MTS and the global spatio-temporal 

relationships between different MTS. Note that the accurate initialisation of the 

model using TLE and the incorporated constraints reduce significantly the risk of 

converging towards local minima. Moreover, since the new objective function is 

more constrained, the processing time is reduced. Finally, the proposed extension is 

compatible with a sparse approximation of the full Gaussian process (see section 

2.2.2.3.2.2.2) which allows decreasing further processing complexity. 

As we will demonstrate in the evaluation section 5.4, the integration of 

spatio-temporal extension addresses some of the limitations of GPLVM family. In 

particular, it allows producing generalised latent spaces of MTS in the presence of 

stylistic variations, which is extremely important for classification of MTS, e.g. in 

action, gesture and speech recognition applications.  
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5.4. Evaluation 

The proposed approach was validated in terms of performance and robustness in 

two different domains, i.e. human body motion modelling and sign language 

recognition.  

In this section, first, two datasets, which are used in the evaluation process, 

are introduced in section 5.4.1. Then, the setup of experiments is explained in 

section 5.4.2.1 followed by a description of performed experiments in section 

5.4.2.2. Subsequently, sections 5.4.3 and 5.4.4 present experimental results. A broad 

discussion of the obtained results is provided in section 5.4.5. Finally, a practical 

application of the proposed methodology, i.e. view independent action recognition, 

is demonstrated in chapter 6. 

5.4.1. Datasets 

The HumanEva (HE) dataset has been introduced in section 2.3.2.3. In this 

evaluation, we consider three different subjects performing a “walking in a circle” 

action in trial 3. Each action comprises the 500 first frames of the longest available 

continuous sequence of valid MoCap poses, as seen in  Table 4.1. We do not use all 

available frames because of the high computional complexity of the standard 

GPLVM optimisation procces. Similarly to previous experiments in section 4.5.1, 

two successive steps are considered to be a single MTS, which is repeated a number 

of times in the action. Each subject corresponds to a different source of MTS. Since 

our goal is to model probabilistic distribution of human poses, as recommended by 

[Wang et al., 2006, Urtasun et al., 2006a, Wang et al., 2008], we reduce the 

dimensionality of a walking space to 3 dimensions to facilitate the learning process 

of the underlying probabilistic model. 

Flock Sign Language Dataset [Kadous and Sammut, 2005] consists of 95 

signs of the Auslan language which is used by the Australian Deaf and non-vocal 
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communities. Auslan is a dialect of British Sign Language. The dataset was 

collected by a two-hand system using the two Fifth Dimension Technologies data 

gloves (left photo in Figure 5.2) and two Ascension Flock-of-Birds magnetic 

position trackers (right photo in Figure 5.2). Each position tracker provides 6 

degrees of freedom (i.e. roll, pitch and yaw as well as x, y and z), whereas the 

gloves also provide information about all five fingers. As a consequence, each sign 

is represented by 11 channels of information per hand, which result in a sequence of 

22-dimensional feature vectors. All signs were collected from a single native signer 

in a longitudinal study over a period of nine weeks, thus nine sources of gestures are 

available. Each sign is considered to be a single MTS and is repeated three times, 

which results in 27 samples per sign in total. Due to the high flexibility of human 

hand, gestures exhibit large intra variations between repetitions, as well as various 

moving speeds. Intuitively, any gesture corresponds to a continuous curve in a hand 

gesture space, since there is only one degree of freedom, i.e. an innate configuration 

of hands over time. Gestures are embedded into a 2-dimensional space to model a 

nonlinearity of hand motion. Similarly to body motion capture data, the third 

dimension is added for a sign representation in a low dimensional space to facilitate 

a learning process of underylying probabilistic model.  

 

Figure 5.2. The Fifth Dimension Technologies data g love on the left [5DT, 2011] and 

the Ascension Flock-of-Birds magnetic position trac ker on the right [Inition, 2011]. 
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5.4.2. Experimental Framework 

The proposed methodology is evaluated through qualitative and quantitative 

analyses of performance using the original and extended formulation of the three 

main representatives of the GPLVM family, i.e. GPLVM (section 2.2.2.3.2.2.2), 

BC-GPLVM (section 4.3.2) and GPDM (section 4.3.3). Note that it does not make 

sense to incorporate our extension into LL-GPLVM, since the main objective of 

LL-GPLVM is to model distinctly style variability in a latent space, whereas the 

goal of our extension is to suppress style variability for the sake of generalisation to 

extract the intrinsic content pattern. 

5.4.2.1. Setup 

In all experiments, the computational complexity of the learning process is reduced 

using the sparse FITC approximation of covariance matrix (see section 

2.2.2.3.2.2.2). The back-constrained models use a RBF kernel (section 4.3.2). The 

global scaling of the constraining prior,σ , and the width of the back constrained 

kernel were set empirically for each experiment whenever appropriate. Values of all 

the other parameters of the models are estimated automatically using standard 

maximum likelihood optimisation during model training. 

5.4.2.2. Experiments 

First, our new approach is evaluated qualitatively through a comparative analysis of 

latent spaces discovered by standard non-linear probabilistic latent variable models, 

i.e. GPLVM, BC-GPLVM and GPDM and their spatio-temporal extensions, i.e., 

ST-GPLVM, ST-BC-GPLVM and ST-GPDM, where the proposed spatio-temporal 

constraints have been included (section 5.4.3). The evaluation is conducted using 

time series of MoCap data, i.e. repeated human motions, which are represented 

using quaternions as described in section 2.3.2.3. 



CHAPTER 5 Spatio-Temporal Gaussian Process Latent Variable Model 5.4 
Evaluation 

 - 244 -  

Then, the superiority of spatio-temporal extension is demonstrated 

quantitatively in a multivariate stream data classification task in the presence of 

large stylistic variations. In this experiment, time series are sequences of language 

signs, i.e. hand configurations over time, which were collected by a set of sensors 

attached to each hand of native signer. The objective is to perform accurate and 

automatic sign language recognition [Starner, 1995]. The evaluation is performed 

using the standard GPLVM, its back-constrained extension BC-GPLVM and finally 

the proposed spatio-temporal formulation, i.e. ST-GPLVM. Since, ST-BC-GPLVM 

produces similar spaces similar to ST-GPLVM according to the previous 

experiment (see for example Figure 5.3b,d and Figure 5.4b,d), it is not considered in 

this experiment. In addition, it was not possible to use GPDM and its spatio-

temporal extension in this experiment because of the prohibitive computational cost 

of the learning process (see Figure 4.23, Figure 5.3 and Table 4.3). In any case, it 

was not expected that a dynamical model would perform particularly well in a 

recognition based application, since it has never been used in this context by the 

research community.  

5.4.3. Qualitative Evaluation on Human Motion Dataset 

Similarly to other experiments on the human motion dataset (sections 3.4.5 and 

4.5.5), a human body movement is represented by a sequence of 52-dimensional 

feature vectors extracted from motion capture data as described in section 2.3.2.3. 

In this experiment, the number of inducing variables is set to 10% of the data for 

the FITC approximation (see section 2.2.2.3.2.2.2), whereas the global scaling of 

the constraining prior,σ , and the width of the back constrained RBF kernel were 

set empirically to 410  and 110−  respectively.  

The learned latent spaces for walking sequences with the corresponding 

first two dimensions and processing times are presented in Figure 5.3 and Figure 
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5.4. Qualitative analysis confirms the generalisation potential of the proposed 

extension. Standard GPLVM based approaches discriminate between subjects in the 

spatially distinct latent space regions (left column of Figure 5.3 and Figure 5.4). 

Moreover, action repetitions by a given subject are represented separately. In 

contrast, the introduction of our spatio-temporal constraint in objective functions 

allows producing consistent and smooth representation by discarding style 

variability in all considered models (right column of Figure 5.3 and Figure 5.4). In 

addition, the extended algorithms converge significantly faster than standard 

versions. Here, we achieve a speed-up of a factor 4 to 6. 

As seen in Figure 5.3 and Figure 5.4, our spatio-temporal extension is 

adaptable to three established variants of the GPVLM family, i.e. GPLVM, BC-

GPLVM and GPDM. There is no clear evidence about which spatio-temporal 

variant is best, since they are designed to tackle different type of applications. For 

instance, ST-GPDM may be superior when a dynamical model in a latent space is 

required, whereas ST-BC-GPLVM may be more valuable when a direct 

bidirectional mapping function between low and high dimensional spaces is needed. 

On the other hand, we will demonstrate that ST-GPLVM is a very attractive 

approach for MTS classification applications, such as hand gesture (section 5.4.4) 

and human action (chapter 6) recognition. 
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a) t=476min0 b) t=97min

c) t=1201min d) t=194min

e) t=6290min f) t=1588min

 

Figure 5.3. 3D models learned from walking sequence s of 3 different subjects with 

corresponding processing times: a) GPLVM; b)ST-GPLV M; c) BC-GPLVM; d) ST-BC-

GPLVM; e) GPDM and f) ST-GPDM. Warm-coloured region s correspond to high 

reconstruction certainty. 
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a) t=476min b) t=97min

c) t=1201min d) t=194min

e) t=6290min f) t=1588min

 

Figure 5.4. Projection of first 2 dimensions from 3 D walking models of 3 different 

subjects in Figure 5.3 with corresponding processin g times: a) GPLVM; b) ST-

GPLVM; c) BC-GPLVM; d) ST-BC-GPLVM; e) GPDM and f) ST-GPDM. 

5.4.4. Quantitative Evaluation on Sign Language Dataset 

Here, each sign is represented as a sequence of 22-dimensional feature vectors. 

Experiments are carried out according to the leave-one-source-out cross validation 

strategy (see section 2.3.3.4.3), where sources correspond to rounds of perfomed 

gestures, which were captured in a longitudinal study. A final error is estimated by 

the average error rate over all experiments. We use one sign repetition of each 

source for training, whereas testing is performed with all gesture repetitions. The 
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number of inducing variables is set to the length of shortest repetition of the 

considered sign for the FITC approximation (see section 2.2.2.3.2.2.2), whereas the 

global scaling of the constraining prior,σ , and the width of the back constrained 

RBF kernel were set empirically to 410  and 110−  respectively.  

Given a trained model, a gesture Yɶ  of unknown source is recognised by 

maximising the following introduced estimation likelihood: 

 ( | , , , ) ( | , , , ) ( | , , , )S DTWp Y X Y X p Y X Y X p Y X Y XΦ = Φ Φɶ ɶ ɶ ɶ ɶ ɶ  (5.8) 

where Sp  is the joint likelihood of frames in Yɶ  , which is derived from the standard 

equation (2.55): 

 
2

2 2 2
1

( )1
( | , , , ) exp( )

(2 ( )) 2 ( )
i i

S
i i i

y x
p Y X Y X

x x

µ
πσ σ=

−
Φ = −∏

YN

D

ɶ ɶ ɶ
ɶ ɶ

ɶ ɶ
 (5.9) 

whereas DTWp  is the probability of predicting the entire sequence Yɶ : 
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The means ( )Xµ ɶ  are the sequence of frames that the model would predict 

for a given Xɶ , whereas the variances 2( )Xσ ɶ  indicate the uncertainty of this 

prediction. The means ( )Xµ ɶ  and variances 2( )Xσ ɶ  are expressed by equations 

(2.56). DTW denotes the dynamic time warping distance (see appendix A.1), 

whereas 2σ  is the 'strength' of the constraining prior as defined in equation (5.1). 

The maximisation of the above posterior (5.8) is equivalent to minimisation of the 

following sum of negative log likelihoods: 

 S DTWL L L= +  (5.11) 
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Table 5.1 gathers the obtained results of sign language recognition for 

GPLVM, BC-GPLVM, ST-GPLVM and the current state of the art results for this 

dataset. First, the imposition of high dimensional constraints improves the 

recognition performance in comparison to the standard under-constrained GPLVM. 

Among extended methods, the increase of performance is especially noticeable for 

our proposed spatio-temporal formulation of GPLVM, which confirms the 

generalisation abilities of the proposed methodology. Unfortunately, it is not 

straightforward to compare our best results with the current state of the art, since 

not all approaches follow the same evaluation methodology. For instance, some of 

them use only a subset of the provided signs for evaluation, which makes a direct 

comparison very difficult. Nevertheless, our framework achieves the best 

performance when aiming at 25 signs, whereas in the case of the most exhaustive 

evaluations using all available signs, our ST-GPLVM still produces very 

competitive results. While all considered methods are tailored to hand gesture 

recognition and some of them rely dramatically on a set of parameters provided by 

the user, our methodology is general for MTS modelling, where all critical 

parameters are estimated automatically. In particular, the approach proposed by 

[Kadous and Sammut, 2005] is intrinsically of a highly supervised nature, since it is  

based on a set of pre-defined metafeatures designed for a specific application 

domain. Not only, this design process is extremely challenging [Kadous and 

Sammut, 2005], but Kadous’ algorithm is not deterministic because of embedded 

randomness and thus exhibits very high variation of results [Böhm et al., 2009]. In 

contrast, the nature of ST-GPLVM is fundamentally different, since training only 

relies on training set labels and when applied for classification task decisions are 

stable and repeatable. Note that the best results reported by [Kadous and Sammut, 

2005] are obtained when the powerful boosting classification is integrated 

[Schapire, 1999]. Therefore further improvement of our performance will be 
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possible, if a more advanced classification method is applied. Since our 

methodology is a general concept for MTS modelling, ST-GPLVM can be 

adaptable to a wide array of problems beyond hand gesture recognition, for instance 

video based action recognition (chapter 6). 

Table 5.1. Percentage accuracy of sign language rec ognition, where C – customised 

data models, S – large sensitivity to parameter cho ice, V – variation of results, P – 

probabilistic framework, D – deterministic framewor k, R – uncertainty regarding 

signs used for evaluation. 

Method Number of signs Accuracy Comment 

ST-GPLVM 95 ~91%~ P 

TLE 95 78%  D 

BC-GPLVM 95 ~52%~ P 

GPLVM 95 ~44%~  P 

Kadous [Kadous and Sammut, 2005] 95 ~93%~  C, V 

Kadous + Boosting  

[Kadous and Sammut, 2005] 

95 ~98%~  C, V 

Rozado [Rozado et al., 2010] 95 ~90%~ C, D 

Yang [Yang and Shahabi, 2007] 95 ~90%~ D 

Böhm [Böhm et al., 2009] 95 ~75%~ D 
 

ST-GPLVM 25 97%  P 

Weng [Weng and Shen, 2008a] 25 ~95%~ D, S 

Liu [Liu and Kavakli, 2010] 25 ~94%~ D, S 

Li  [Li et al., 2006] as evaluated by 

[Weng and Shen, 2008b] 

25 89% D 

Weng [Weng and Shen, 2008b] 25 ~89%~ D, S 
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Li [Li et al., 2007a] as evaluated by  

[Weng and Shen, 2008b] 

25 88% D 

 

ST-GPLVM 10 97%  P 

Seo [Seo et al., 2009] 10 ~98%~ P 

Siddiqi [Siddiqi et al., 2007] 10 ~96%~ P, R 

Bicego [Bicego et al., 2009] 10 ~87%~ P 

5.4.5. Discussion 

In all conducted experiments, the proposed spatio-temporal extension of GPLVM 

discovers a compact underlying probabilistic model of MTS space, where intra and 

inter variations between MTS are suppressed to improve generalisation properties. 

This is achieved by the innovative spatio-temporal constraining prior, which is 

imposed over a latent space within the optimisation process of GPLVM framework.  

In agreement with previous experiments (section 4.5), analysis of results 

produced by GPVLM, BC-GPLVM and GPDM (sections 5.4.3 and 5.4.4) confirms 

that these methods cannot handle stylistic variations of MTS during dimensionality 

reduction. The introduced spatio-temporal enhancement effectively overcomes this 

limitation and allows learning a unique generative model of MTS (Figure 5.3). In 

line with other research [Lawrence and Quinonero-Candela, 2006, Urtasun et al., 

2008], we have shown that incorporation of high dimensional constraints within the  

GPLVM framework is extremely important for a successful dimensionality 

reduction. However, our temporally motivated constraints are not only conceptually 

different, but significantly more powerful in modelling MTS as it has been shown 

qualitatively in section 5.4.3 and quantitatively in section 5.4.4. In particular, our 

constraints, which are derived from the temporal graphs (section 4.4.2.2), 

encapsulate both the local temporal and global spatio-temporal relations between 
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MTS, whereas BC-GPLVM tries to encourage only a temporal coherence of 

successive points using back-constrained mapping from a high to low dimensional 

space. In contrast to LL-GPLVM, we aim at suppressing style variability from MTS 

data in order to generate a unique low dimensional representation which is crucial 

in recognition based scenarios. Moreover, our constraints are data-driven, whereas 

constraints of LL-GPLVM are highly supervised, designated for a specific domain 

of cyclic activities, and prior knowledge about intrinsic structure of MTS space is 

required in order to perform dimensionality reduction. 

Among other limitations of GPLVM family (section 5.2.1), ST-GPLVM is 

computationally more attractive and more robust against local minima (see 

processing times in Figure 5.3). This relies, first, on an accurate initialisation of a 

latent space using TLE, which is more likely to be closer to the global optimum. 

Secondly, the ST-GPLVM objective function is more constrained, which further 

mitigates the problem of local minima.  

In order to further show the value of the proposed methodology in a real 

and challenging computer vision application, ST-GPLVM has been incoporated 

within a view independent action recognition framework which will be presented in 

chapter 6. 

5.5. Summary 

In this chapter, a novel spatio-temporal extension of GPLVM framework was 

proposed, which allows discovery of a smooth and unique low dimensional 

representation tailored to MTS with an associated uncertainty. As a consequence, 

ST-GPLVM can be deployed in various MTS classification applications such as 

speech, gesture and action recognition, which has not been possible until now. 

This is achieved by formulating a concept of spatio-temporal conditioned 

prior which is placed over a latent space and constrains the optimisation process of 
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GPLVM. The prior is derived automatically from two complementary temporal 

graphs which express the local temporal and global spatio-temporal dependencies 

between MTS. As a result, a unique and consistent probability distribution over the 

space of MTS is learned in the form of generative and continuous mapping function 

from a low to high dimensional space. 

In conclusion, qualitative and quantitative experiments proved the high 

quality and generalisation power of the generated low dimensional spaces. In 

particular, our proposed methodology has been successfully applied in a context of 

two real-life MTS classification applications, i.e. hand gesture (section 5.4.4) and 

human action (chapter 6) recognition, where the marginalisation of style variability 

is crucial. The very competitive results produced by the proposed methodology 

demonstrate its strength and potential. 
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6. Action Manifolds for View-
Independent Action Recognition 

6.1. Introduction 

Since video recording devices have become ubiquitous and have increasing impact 

on various aspects of our lives, the automated analysis of human action from video 

is now one of the most active areas of research in computer vision. This growing 

attention is driven by a broad spectrum of promising applications such as security 

and visual surveillance, content-based video analysis, behavioural biometrics, 

human-computer interactive applications and environments, robotics, indexing of 

film archives and animation in the entertainment industry (e.g. games and movies). 

However, action recognition is an extremely challenging problem due to 

large variability in a physical appearance and individual motion style, camera 

viewpoint, perspective and scene environment. Following the work of [Sheikh 

et al., 2005], we have identified three major sources that give rise to variation in 

observed features: 

• anthropometry - morphological and biomechanical differences between 

individuals induced by body size, body shape, gender, mood, etc. as well as 

motion execution variability [Easterby et al., 1982]. It has been shown that the 

same action performed multiple times by the same person, or by different 

people, exhibits significant inter and intra disparity [Parameswaran, 2004]. All 

these anthropometric factors are referred to as ‘style’ in the rest of the chapter. 

More formally, ‘style’ is defined as a variation of a given activity or movement 

which does not affect its intrinsic nature. 
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• viewpoint – an external factor not related to the observed type of action. It is the 

global position in a scene from which an action is recorded by a camera. If the 

camera is sufficiently far from the object of interest, its position can be defined 

on a sphere centred on the object (Figure 6.1a). However, in practice, in the 

context of action recognition within the application of visual surveillance and 

sport analysis, the static viewpoint is located within a height range which allows 

defining its position within a cylinder (Figure 6.1b). We assume that perspective 

effects are negligible. The variation of viewpoint leads to highly different image 

evidence of the same action. Note that the viewpoint and camera configuration 

are usually not available to an action recognition system. 

• execution rate – speed of movement while performing an action as well as a rate 

at which the action is recorded. They both have an important effect on the 

recorded temporal extent of an action. 

 

Figure 6.1. Spherical and cylindrical view models. 

Any robust action recognition system should be invariant to these factors, 

i.e. it should be able to generalise over variations of style, view and speed within 
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one class and distinguish between actions of different classes. This can be achieved 

by learning so called action models from pre-acquired training datasets. 

Subsequently, these action representations are used for classification of unseen 

action instances. However, the learning process is not trivial, since models have to 

be obtained from sparse training data in relation to the diversity of naturally 

plausible motions while avoiding over-fitting. Moreover, variability in human 

shape, appearance, posture, speed and individual style in a motion performance 

makes the unified description of a given action exceptionally difficult. In the case of 

a single uncalibrated camera, the lack of depth information and perspective effects 

make the problem of recognition even more demanding. Consequently, the task of 

action recognition from a single video is immensely challenging. 

In this research, an innovative action descriptor is introduced, which 

addresses all these fundamental problems and allows accurate classification of 

unseen actions recorded by a single uncalibrated camera [Lewandowski et al., 

2010b, Lewandowski et al., 2011]. The space of human motion is highly 

dimensional since the human body is a deformable object with no less than 244 

degrees of freedom [Zatsiorsky, 2002], anthropometric variability [Easterby et al., 

1982] and nonlinearity of human dynamics [Farnell, 1999]; however different 

instances of a given action reside only in a subspace of the entire feature space. Our 

innovative descriptor is learned by eliminating implicitly irrelevant factors, such as 

style and speed variability, to extract the intrinsic motion pattern of action during a 

dimensionality reduction process. Since temporal information is essential to 

characterise an action, the dimensionality reduction transformation takes into 

account local temporal and global spatio-temporal constraints to ensure uniqueness 

of the extracted motion pattern. This pattern is then generalised across different 

views to provide a compact and discriminative model of an action. As a 

consequence, we propose an intuitive and compact descriptor of human body 
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motion which has the form of the temporally constrained Action Manifold. It is 

learned automatically from labelled training data and encapsulates style, view and 

speed variability in a coherent torus-like two-dimensional manifold (e.g. Figure 

2.9c). The two intrinsic dimensions of each action correspond to style-invariant 

body configurations over time and view variability. The novel procedure which is 

used for generating this torus-like descriptor takes advantage of our contributions, 

which have been presented in chapters 4 and 5, and several other advanced 

techniques which have never been used in the context of view-independent action 

recognition. 

First, we propose a variant of Temporal Laplacian Eigenmaps (TLE) which 

is tailored to human action videos. Then, our proposed action descriptor is produced 

by applying this natural extension of TLE to view-dependent videos in order to 

produce a stylistic invariant embedded manifold for each view separately. 

Implicitly, during dimensionality reduction, the action execution rate is normalised. 

Then, all view-dependent manifolds are automatically combined to discover a 

unified representation which models the action independently from style, speed and 

viewpoint in a single 3-dimensional space. In order to project actions between 

original and low dimensional descriptor space, the manifold continuity is 

approximated by either a bidirectional nonlinear mapping function [Lewandowski 

et al., 2010b] or an underlying probabilistic model of action (chapter 5). The 

proposed descriptors are validated in a challenging real-life scenario of view-

independent action recognition using the IXMAS dataset (see sections 2.3.3.4.2 and 

6.3), which is composed of a variety of actions seen from arbitrary camera 

viewpoints. Experimental results demonstrate robustness of the descriptor against 

style, speed and view diversity during action recognition and match the 

performance of most accurate action recognition methods, while overcoming their 

limitations. 
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The structure of this chapter is organised as follows. First, action 

recognition frameworks, which have been introduced in section 2.3.3, are put into a 

context of modelling view variability. Then, using the IXMAS dataset as an 

example (section 2.3.3.4.2), we describe in section 6.3 the main properties of an 

action video dataset which are required for training our action models. Without any 

loss of approach generality, the IXMAS dataset is used for clarity of explanation in 

numerous figures to illustrate key aspects of the proposed methodology (section 

6.4). Furthermore, it is also used for the evaluation of our action descriptors in 

section 6.5. Subsequently, two procedures for automatic generation of either 

deterministic or probabilistic action manifolds are explained in sections 6.4.1 and 

6.4.2 respectively. Next, the proposed descriptors are incorporated in an action 

recognition framework, which is validated quantitatively on a real dataset of human 

actions in section 6.5. Finally, section 6.6 concludes the chapter. 

6.2. Related work 

A general overview of action recognition frameworks has been provided in section 

2.3.3 with a special focus on feature and action descriptors, classification methods 

and popular evaluation protocols. Here, we complete this earlier presentation by 

discussing previous work in terms of view-dependent and view-independent 

approaches. 

6.2.1.1. View-Dependent Frameworks 

View-dependent methods assume that all actions are recorded from a fixed 

viewpoint. The standard approach uses temporal templates such as Motion History 

Image [Bobick and Davis, 2001, Martinez-Contreras et al., 2009] or Motion History 

Histogram [Meng and Pears, 2009]. Actions have also been described in the space-

time domain. Local space-time features are extracted from the volumetric space-

time action shape derived from sequence silhouettes by solving the Poisson 
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equation [Gorelick et al., 2007]. Alternatively, the structure of local 3D patches is 

analysed by detecting interest points in the spatio-temporal domain and extracting 

local descriptors, such as cuboids [Dollar et al., 2005, Zhao and Elgammal, 2008, 

Ta et al., 2010a, Ta et al., 2010b] or histograms of oriented gradients [Kaâniche and 

Brémond, 2009, Roth et al., 2009]. Moreover, by taking into account dynamics, 

action descriptors can be defined in terms of chaotic invariant features from joint 

tracking [Ali et al., 2007]. This can also be achieved by modelling the temporal 

development of a view-dependent action using Hidden Markov Model [Kellokumpu 

et al., 2008, Vezzani et al., 2010] or Conditional Random Fields [Wang and Suter, 

2007b, Zhang and Gong, 2010]. Eventually, view-dependent action is represented in 

a low dimensional space [Wang and Suter, 2007a, Chin et al., 2007, Blackburn and 

Ribeiro, 2007, Wang and Suter, 2008, Jia and Yeung, 2008]. Although all these 

approaches have proved very accurate, the fact they rely on videos captured from a 

specific view limits their practicality in real world scenarios. 

6.2.1.2. View-Independent Frameworks 

View-independence has been addressed by two contrary approaches. In the first 

one, the view-independence is not directly modelled, since it is assumed that 

enough training data is available to adequately cover the entire space of plausible 

solutions. In particular, bag of words has proved to be effective in this category 

when applied on histograms of oriented gradients [Laptev et al., 2008, Kläser et al., 

2008, Brendel and Todorovic, 2010, Ikizler-Cinbis and Sclaroff, 2010, Matikainen 

et al., 2010, Satkin and Hebert, 2010]. However, these approaches do not model any 

intrinsic structure of action and their learning processes rely only on image 

evidence. As a consequence, the general robustness of such action models is limited 

by image variability and, therefore, in practice training and testing data are expected 

to have a common origin.  
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On the other hand, viewpoints can be modelled explicitly to allow view-

independency in an action representation. Many researchers focused on multiple 

camera systems to achieve view-invariant action recognition. For instance, 2D 

temporal templates are extended into 3D motion history volumes [Weinland et al., 

2007]. If point correspondences between actions are assumed to be known, then 

either epipolar geometry [Yilmaz and Shah, 2005] or projective invariants of 

coplanar landmark points are exploited [Parameswaran and Chellappa, 2006]. 

Alternatively, an action and its view variability are represented using Stiefel and 

Grassmann manifolds [Turaga et al., 2008b] or a circular representation of 

volumetric data [Pehlivan and Duygulu, 2010]. The main drawback of these 

methods is that, since they all require multiple cameras setups, they can only be 

applied in a controlled environment. 

More recently, research has tackled the task of action recognition from an 

arbitrary view, i.e. from a single video, where multi camera data are used for 

training. Typically, a database of exemplars from different views is created to 

recognise actions based on the best matching score. Normally silhouettes are used 

to represent an action. However their intrinsic ambiguity leads to a high density 

sampling of the view space [Ogale et al., 2005] or the requirement of supervised  

learning of a distance metric [Tran and Sorokin, 2008] to obtain accurate results. In 

contrast, richer action descriptors based on 3D exemplars represented by visual 

hulls and Hidden Markov Model allow reducing significantly the size of action 

templates [Weinland et al., 2007]. In this case, consequently, matching between 

observation and exemplars has to be performed in 2D by projecting visual hulls. 

Since such projection from high dimensional space to low dimensional maps to 

several possibilities, it impacts on the quality of the recognition rate [Weinland 

et al., 2007]. Junejo et al. [Junejo et al., 2008] propose to represent image sequences 

using self-similarity based descriptors which are fairly stable under view variation 
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and characterises well the dynamics of a scene. However, this approach relies on 

coarse localisation and tracking of people in the video [Junejo et al., 2008]. In [Yan 

et al., 2008], a video is represented by the combination of 3D visual hulls with 

spatio-temporal volumes to build 4-dimensional action feature models. 

Alternatively, a video can be described as a bag of spatio-temporal features called 

video-words (see section 2.3.3.2.3) by quantising extracted 3D points of interest 

[Dollar et al., 2005]. For instance, bag of cuboids is used to train a support vector 

machine [Liu and Shah, 2008] or a Feature-tree [Reddy et al., 2010], alternatively 

the support vector machine is trained on multiple features, i.e. cuboids and spin-

images [Liu et al., 2008]. In a similar vein, histograms of oriented gradients have 

been deployed [Kaâniche and Brémond, 2010, Weinland et al., 2010b]. Although 

these schemes perform accurate action recognition, the absence of generative action 

models limits their applicability and scalibility. Another interesting approach is to 

represent actions and view change as graphs. For instance, [Lv and Nevatia, 2007] 

introduce Action Nets that uses keyposes of actions rendered from multiple 

viewpoints for view-invariant action recogntion, where transitions between views 

and poses are encoded explicitly. In contast, in [Natarajan and Nevatia, 2008], a two 

layer graph model of an action is proposed where Conditional Random Fields are 

used to encode the action and the viewpoint-specific pose observation. 

Unfortunately, a large amount of motion capture data is required for training both 

approaches. 

The methods most closely related to our approach model actions by 

reducing dimensionality of each sequence to obtain view-invariant manifold 

representations. [Richard and Kyle, 2009] uses R-transform as a descriptor and 

Isomap for dimensionality reduction (see section 2.2.2.2.2.2), whereas [Elgammal 

and Lee, 2004b, Elgammal and Lee, 2009] choose an implicit distance function 

representation and locally linear embedding (see section 2.2.2.2.2.2). In these 
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approaches [Richard and Kyle, 2009, Elgammal and Lee, 2009], generative view-

independent functions are designed to interpolate between intermediate views. This 

generative function is extended to handle also stylistic variation of data [Elgammal 

and Lee, 2004b, Elgammal and Lee, 2009]. However, due to the limitations of the 

chosen dimensionality reduction methods, none of these approaches managed to 

produce consistent style invariant representations, i.e. representations which are 

valid for a variety of individuals. Consequently, the accuracy of their systems is 

limited. This problem can be addressed by applying non-rigid transformation 

[Myronenko et al., 2007] to artificially unify manifold representations of different 

people [Elgammal and Lee, 2004b, Richard and Kyle, 2009]. However, since such 

transformation affects manifold geometry, they may no longer reflect relationships 

between points in the high dimensional space. Alternatively, in [Elgammal and Lee, 

2009] the topological structure of a torus is artificially constrained on the manifold 

to explicitly deal with stylistic variation instead of being learned from the data. The 

problem within this approach is that it artificially enforced embedded representation 

may not adequately reflect relationships and intrinsic properties of high dimensional 

features. 

6.3. Dataset Characteristics 

Although, the proposed action manifolds can be used for classification of any 

monocular action video, the framework requires a specific type of video data for 

learning. First, the ideal dataset should provide a ‘satisfactory’ amount of training 

data for all actions, which may appear during the recognition process. Moreover, 

each action should be repeated a number of times by different subjects, thus 

providing ‘sufficient’ information for the framework to extrapolate stylistic 

variability to unknown subjects. Then, each action is expected to be recorded by 

synchronous multiple cameras in order to generalise view variability in action 
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descriptors. In practice, only a few viewpoints are required to allow reconstruction 

of 3D visual hulls [Cheung et al., 2005] for each action. They can latter be 

employed for synthesising more dense and evenly spread training data across 

different azimuths and elevations of views (see section 6.5.1) according to the 

cylindrical model (Figure 6.1b). 

In this research, without any loss of generality, the publicly available 

multi-view IXMAS dataset is used (section 2.3.3.4.2), since it is the only available 

currently dataset providing sufficient training data for view-independent action 

recognition applications. Moreover, it is considered as the well known benchmark 

for view-independent action recognition methods by the research community. This 

dataset comprises of 13 actions, performed 3 times by 12 different actors. Each of 

these 468 activity instances was recorded simultaneously by 5 calibrated cameras. 

This dataset is very challenging for two main reasons. First, it exhibits large style 

variability because of the number of available subjects, who perform action 

repetitions in a various ways. Secondly, since no specific instruction was given 

during acquisition, actors’ chose freely their positions and orientations for each 

repetition. As a consequence, the action viewpoints are arbitrary and unknown. 

6.4. Proposed Frameworks 

Our framework is based on a novel compact and discriminative action descriptor, 

called Action Manifold, which accounts for variability that arises when cameras at 

arbitrary positions capture different people performing the same action. The 

descriptor is learned on a set of videos of action primitives performed by a variety 

of individuals, each of them captured on their own by a set of calibrated and 

synchronised cameras. In addition, for each action, one video can be labelled as a 

good representative, i.e. the most visually discriminative one,in order to speed up 

the dimensionality reduction process as we will explain in section 6.4.1.1.3. Usually 
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the representative video is captured from a side view. Note that this is the optional 

step which simplifies processing requirements of the proposed prototype, however 

it can be easly automated (see section 6.4.1.1.3 for more details). We do not impose 

any restrictions regarding the number of video frames for a given action primitive. 

Moreover, an individual may perform an action several times in an arbitrary manner 

and at different speeds. Our action manifold is considered to be a high level 

semantic description of the action. Therefore, in agreement with current research in 

the field (see section 2.3.3.1.2), we assume that a person localisation and 

segmentation, as well as a temporal segmentation of action into primitives can be 

carried out sensibly by some low level pre-processing of video data. Testing is 

performed using examples of unknown action primitives performed by unknown 

people captured from an arbitrary and unknown view. Note that multi-camera setup 

is required only for the learning of action models, whereas the testing can be done 

using either single or multiple views. 

Let Y  denotes the set of N  videos defining an action primitive performed 

by different people and captured from different views. For a given view, action 

repetitions and variability of people define action style. Therefore, Y  is defined as 

{ | 1.. , 1.. } svY Y s v= = =s vN N , where s  denotes the style index and v  is the view 

class index. Each frame y  of a video is represented by D  pixels of region of 

interest (see section 2.3.3.1.2): { | , 1.. } sv sv sv
i iY y y i= ∈ =D svTℝ , where svT  is the 

number of frames in the sequence. A unified and compact action model,X , of 

dimension <<d D , is defined by { | 1.. , 1.. } svX X s v= = =s vN N , 

where { | , 1.. } sv sv sv
i iX x x i= ∈ =d svTℝ . 

The proposed descriptor is of either a deterministic or a probabilistic 

nature. First, the deterministic variant is introduced in section 6.4.1 [Lewandowski 

et al., 2010b] followed by the probabilistic formulation in section 6.4.2 
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[Lewandowski et al., 2011]. The summary of our contribution is given in section 

6.4.3. 

6.4.1. Deterministic Action Model 

The descriptor learning procedure is divided into two parts. First, view-dependent 

analysis of action data generates a style invariant action model for each view. This 

is performed using Temporal Laplacian Eigenmaps (chapter 4), which is capable to 

generalise a space of multidimensional time series (e.g. actions) in the presence of 

stylistic variations (i.e. different people perform repetitions of the same action). 

Then, these models are combined to produce a compact and view invariant model of 

the action. Finally, continuity of the descriptor is approximated by learning a 

generative decomposable model [Lee and Elgammal, 2006a]. Figure 6.2 

summarises the processing pipeline for the generation of a deterministic action 

model. 
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Figure 6.2. Description of the action recognition f ramework for the ‘point’ action. 
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6.4.1.1. View-Dependent Manifold 

6.4.1.1.1. Pre-processing and Shape Representation 

A frame of video is generally defined by grey scale or colour pixel values. This very 

high dimensional description makes the process of learning an activity model from 

a frame sequence costly and inaccurate. However, many studies (see section 

2.3.3.1.2) have revealed that a binary representation of moving objects, i.e. 

silhouettes, is sufficient to capture the activity described by a frame sequence. 

Consequently, we adopt the space-time extension of binary silhouette representation 

in our framework (see section 2.3.3.1.2.3). 

We extract the region of interest and corresponding binary silhouette sv
iy    

from each video by a standard background subtraction technique which models 

each pixel as a Gaussian in RGB space [Weinland et al., 2006b] followed by a 

frame cropping. When videos consist of multiple instances of a given motion, 

temporal segmentation is required to extract elementary motion segments svY  

[Cutler and Davis, 2000, Rui and Anandan, 2002, Weinland et al., 2006a]. Here we 

assume that videos have been segmented. 

All silhouettes are normalised to deal with translation and scale variations 

by using the largest silhouette square bounding box available within the entire 

action dataset. In order to improve the quality of the normalised silhouettes, two 

morphological operations, i.e. bridge and open, and a median filter are applied. 

Lengths of all sequences svY  are also normalised to match the length of the shortest 

sequence 'T  in the set Y  using standard bicubic spline interpolation to reduce 

computational cost by cutting the number of training and testing frames.  

A sequence of binary silhouettes can be considered as a space-time shape 

surrounded by a closed surface (Figure 6.3a, see also section 2.3.3.1.2.3). This 

allows representing each silhouette by a local space-time saliency feature (Figure 
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6.3c) extracted from the solution of the Poisson equation of the corresponding 

volumetric surface S  (Figure 6.3b), which takes into account the time domain 

[Gorelick et al., 2007]: 

 ( , , ) 1x yU p p t∆ = −  (6.1) 

with ( , , )x yp p t S∈ , where the Laplacian of U  is defined as xx yy ttU U U U∆ = + +  

subject to the Dirichlet boundary conditions ( , , ) 0x yU p p t =  at the bounding surface 

S∂ . The space-time saliency feature is defined by the function w  at every pixel 

( , , )x yp p t  in shape S  [Gorelick et al., 2007] according to the following equation: 

 
2

2

, )( ,

log(1 1.5 )
( , , ) 1

max log(1 1.5 )
x y

x yp p t S

U U
w p p t

U U
∈

+ + ∇
= −

+ + ∇
 (6.2) 

This representation assigns highest gradient values within fast moving 

limbs which are usually much more informative for identifying actions, whereas the 

torso has relatively smaller values inside (Figure 6.3c). As a consequence, such 

descriptor is significantly more powerful than binary representation [Gorelick et al., 

2007]. As shown later in section 6.4.1.1.3, this descriptor is also essential in the 

procedure allowing the selection of the TLE repetition neighbourhoods. The 

generated shape descriptor is 3364-dimensional (58 58×  pixels). 
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a)

b)

c)

wave kick walk

 

Figure 6.3. Extractions of shape representation for  ‘wave’, ‘kick’, ‘walk’ actions: a) 

space-time shapes; b) the solution to the Poisson e quation on space-time shapes; 

and c) the local space-time saliency features. The values in b,c are encoded using a 

colour spectrum from blue (low values) to red (high  values). 
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6.4.1.1.2. Dimensionality Reduction 

Even after the generation of shape descriptors, the high dimensionality of the 

feature space Y  prevents obtaining a descriptive action representation. 

Consequently, our model of action is produced by nonlinear dimensionality 

reduction of feature space using a variant of TLE (chapter 4), which is tailored to 

human action videos. The standard TLE extracts unique and descriptive pattern 

from MTS and, at the same time, suppresses stylistic variability. Moreover, MTS 

are implicitly aligned along the time axis as a result of spatio-temporal detection of 

repetition neighbours in different MTS. In the context of action recognition, any 

action primitive is considered to be a single MTS, whereas different subjects 

correspond to different sources of MTS. The alignment of MTS results in the speed 

normalisation of the action. Here, the standard TLE is extended by using a more 

advanced repetition neighbourhood estimation procedure which is designed to deal 

with human action videos. It is described in the subsequent section 6.4.1.1.3.  

The dimensionality reduction transformation is applied in each view 

independently, i.e. for each vY . As a result, a set of style-invariant but view-

dependent action models vX  is obtained. In this set, each action model is a 1-

dimensional manifold embedded in 2-dimensional space to model the nonlinearity 

of human motion. The intrinsic dimension of each action corresponds to innate 

configuration of motion over time. 

6.4.1.1.3. Selection of Repetition Temporal Neighbourhood 

Successful dimensionality reduction using TLE depends on the appropriate 

identification of repetition neighbours for each frame. The repetition temporal 

neighbourhood corresponds to the number of times an action is repeated in the 

training set. Although video lengths are normalised for each action, it cannot be 

assumed that these videos are synchronous. Firstly, they may start with different 
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postures and, secondly, due to style and speed variations, there may not be frame to 

frame correspondences between two action instances. Consequently, the estimation 

of the size and location of the repetition neighbourhood is essential. 

In order to take full advantage of the shape descriptors generated in section 

6.4.1.1.1, we propose an advanced method for automatic determination of repetition 

neighbourhoods which is tailored for dimensionality reduction of human action 

videos. This is achieved by adopting the action detection method proposed in 

[Gorelick et al., 2007] to formulate a procedure which is conceptually equivalent to 

the usage of DTW metric (see section 4.4.2.1). Since a high dimensional human 

motion pattern in a video is theoretically equivalent to a high dimensional curvature 

of time series fragment, the identification process of time series fragments can be 

seen as a detection process of similar motion patterns in each video of the training 

set in the context of human action data. Therefore, repetition neighbours can be 

extracted from each detected motion pattern in a manner similar to the one used in 

the case of time series fragments (section 4.4.2.1). This new schema can be 

straightforwardly deployed within the TLE framework without any modifications of 

the algorithm core. The key advantage of the new procedure is its computational 

efficiency in comparison to DTW (see section 6.4.1.1.4). 

 

Figure 6.4. Successive steps of the repetition neig hbourhood selection procedure 

tailored to human action videos. 

The adaptation of the motion detection procedure [Gorelick et al., 2007] to 

form the alternative variant of DTW metric for TLE is summarised as follows 
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(Figure 6.4). First, the local space-time saliency shape descriptor defined in section 

4.5.7.1 (Figure 6.5b) is extended with 6 local space-time orientation features 

(Figure 6.5c,d) [Gorelick et al., 2007]. This allows indentifying regions with 

vertical, horizontal, and temporal ‘plates’ and ‘sticks’ within bodies and define 

orientation local features. Figure 6.2 and Figure 6.5c,d illustrate examples of ‘plate’ 

and ‘stick’ local features for a good representative view. Blue, red, and green colour 

regions correspond to temporal, horizontal, and vertical directions of local ‘plates’ 

and ‘sticks’ within a human shape. These features are computed from the 

3 3× Hessian H of the solution to the Poisson equation (6.1) at every pixel 

( , , )x yp p t , where its eigenvectors correspond to the local principal orientation 

directions and the corresponding eigenvalues λ  are related to the local curvature in 

the direction of the eigenvectors. The ‘stick’ is the informative direction which 

corresponds to the third eigenvector of H , whereas the ‘plate’ corresponds to the 

first eigenvector. The space-time orientation feature is defined by the function w  at 

every pixel ( , , )x yp p t  in the shape S  [Gorelick et al., 2007] according to the 

following equation: 

 ( , , ) ( , , ) ( , , )ij x y i x y j x yw p p t R p p t D p p t= ∗  (6.3) 

where deviations jD  of the informative direction ( , , )x yv p p t  is measured by 

( , , )j x y jD v p p t e= ∗  with je  denoting the unit vectors in the direction of the 

principal axes ( {1,2,3}j ∈  respectively horizontal x , vertical y  and temporal t  

direction). In turn iR  is a continuous measure of ‘plateness’ (pl ) or ‘stickness’ (st ) 

at every space-time point ( { , }i st pl∈ ): 

 
2 1

3 2(1 )
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st pl

R e

R R e

α λ λ

αλ λ

=

= −
 (6.4) 

Further on, a space-time cube is associated to each frame svy  in a view-

dependent sequence vY  by sliding a warping window in time. The cube, i.e. the 
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global space-time descriptor, combines local shape and orientations features within 

a window using weighted moments of the form: 

 ( , , ) ( , , ) o q r
oqr x y x y x y x ym w p p t g p p t p p t dp dp dt

∞ ∞ ∞

−∞ −∞ −∞

= ∫ ∫ ∫  (6.5) 

where xp , yp  are pixels coordinates, ( , , )x yg p p t  denotes the characteristic function 

of the space-time shape, ( , , )x yw p p t  is one of the seven possible weighting 

functionswhich corresponds to local features, i.e. the space-time saliency feature 

(equation (6.2)) and 6 space-time orientations features  (equation (6.3)). As 

suggested in [Gorelick et al., 2007], spatial and time moments are considered up to 

order 2sm =  and 2tm =  respectively with o q sm+ ≤  and tr m≤  in equation (6.5). 

Each space-time cube is centred around its space-time centroid and uniformly 

scaled to preserve spatial aspect ratio. The dimensionality of each space-time cube 

equals 126 (7 ( 1) (0.5 ( 1) ( 2))t s sm m m× + × ∗ + ∗ + ). 

The obtained global space-time descriptor is a compact and temporally 

constrained representation of time series fragment. Since, now, each time series 

fragment is expressed by a single feature vector, the similarity between them is 

computed effectively using the standard Euclidean norm without the need of 

computationally expensive temporal alignment of points sequences like in DTW 

(see section 6.4.1.1.4). 

Therefore, a neighbourhood similarity matrix E  ( v vN N× ) of Euclidean 

distances is calculated between all space-times cubes among all sequences for a 

particular view (Figure 6.6 and right part of Figure 6.8). To emphasise continuity 

and temporal coherence of the underlying action between sequentially adjacent 

points in time, we perform temporal windowing of matrix E  by averaging distances 

through time within boundaries of each sequence similarly to the standard 

procedure (see section 4.4.2.1). This implicitly leads to introducing a temporal 

history into each data point.  
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Finally, for each cube we look for the most similar motion pattern in each 

different repetition of activity based on E  according to the standard procedure in 

section 4.4.2.1. The centre point of each most similar space-time cube becomes a 

repetition neighbour. 

Because of possible substantial differences in speed and imperfect 

segmentation of action, the repetition neighbours may still not align coherently 

along time which may result in distortions in the embedded space. To address this 

problem, we incorporate an optional neighbourhood refinement procedure. In 

principle, for given point P , we accept only these R  neighbours which are within a 

specific range from a corresponding point in each other sequence: 

 ( 1)* 1' { ' '}, 2.. , 2..i T j iT s sR P T R P T i N j N− += − ≤ ≤ + = =  (6.6) 

where 'T  is defined as 10% of the normalised sequence length T . 

The entire procedure of repetition neighbourhood estimation is performed 

only once per action for the most discriminative view 'vY . Since, all view-

dependent frames were captured at the same time instants (synchronised cameras), 

the temporal structure of an action is a view-independent property, which is valid 

across all views. Since our shape descriptor is derived from a silhouette, there is a 

view where image evidence facilitates the most the estimation of temporal 

constraints. For instance, action ‘point’ in the front view provides a very small 

amount of meaningful information about temporal structure of action, whereas the 

side view is significantly more informative (Figure 6.5). As it has been mentioned 

earlier, we assume that one view for each action in the training set is manually 

labelled as the most discriminative, for most actions it is intuitively the side view. 

The neighbourhood estimation procedure is then carried out on this view (Figure 

6.6). Afterwards, the obtained constraints in the form of temporal and spatio-

temporal neighbourhood relations are employed to determine neighbourhoods in all 

remaining views (Figure 6.7). 
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Note that the selection of the most discriminative view could be automated 

by applying the discussed neighbourhood selection procedure in each view 

independently and then choosing the neighbourhood consensus between them for 

each frame. Such automatic procedure for the automatic selection of most 

discriminative view can be considered as a future work. Here, in practice, the choice 

of the most discriminative view is a very intuitive and simple operation for a human 

user, who will have already generated the training dataset. Consequently, the 

manual option is applied in this work for two reasons. First, it reduces 

computational cost of the learning process. Secondly, it allows generation of 

visually convincing models which would not suffer from noisy neighbourhoods, 

which may sometimes be created as result of large disagreement between different 

views. 
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Figure 6.5. Original video (a), space-time saliency  features (b), space-time 

orientations of plates (c) and sticks (d) for the ‘ point’ action in the side and front 

view. The side view is a representative view, since  it exhibits more temporal 

information about the action (a larger variation of  colours in all local features).   
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Figure 6.6. Example of neighbourhood similarity mat rix created by the TLE using the 

action ‘sit down’ and 12 subjects with a 3 repetiti ons each for the side view. Each 

local minima corresponds to the most similar repeti tion neighbour in relation to the 

reference pose (green) extracted from different rep etitions of the time series. 
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Figure 6.7. Example of repetition neighbourhood in the front view obtained from the 

side view similarity matrix created by the TLE for the action ‘sit down’ using 12 

subjects with a 3 repetitions each (Figure 6.6). Ea ch local minima corresponds to the 

most similar repetition neighbour in relation to th e reference pose (green) extracted 

from different repetitions of the time series. 

6.4.1.1.4. Comparison of Repetition Neighbourhood Selection Procedures 

Figure 6.8 presents two examples of style invariant view-dependent manifolds of 

the ‘wave’ action (here front view) and the associated neighbourhood similarity 

matrices generated by the standard DTW based procedure (left) (section 4.4.2.1) 

and the proposed motion detection schema (right). These matrices are calculated for 

12 sources and 3 repetitions of each source. Darker colours correspond to small 

distances between time series fragments, whereas brighter colours express larger 
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dissimilarities. In principle, the ideal identification of the most similar time series 

fragments in different repetitions should result in a uniform spread of colours with 

clear local minima in approximately diagonal directions, which are used to extract 

repetition neighbours.  
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Figure 6.8. Neighbourhood similarity matrices for t he ‘wave’ action in the front view, 

which are computed using the standard DTW procedure  and the proposed motion 

detection procedure with the corresponding processi ng times and discovered style-

invariant view-dependent manifolds using TLE. 
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As seen in Figure 6.8, the DTW metric is not always capable of localising 

appropriate repetitions of the action, which results in the high variation of distances 

between time series fragments in the neighbourhood similarity matrix. In particular, 

one subject performs the ‘wave’ action in a completely different manner (red area in 

the matrix). The poorer performance of DTW is directly related to the high 

dimensionality of feature space ( 3364=D ). The process of DTW alignment is 

based on the Euclidean distance (see appendix A.1), however because of the 

‘concentration phenomenon’ (see section 2.2), this metric is not always suitable to 

measure similarity in very high dimensional spaces. This drawback in combination 

with natural style variability between subjects results in difficulties in assessing pair 

wise similarity between frames and implicitly makes the process of DTW alignment 

more problematic and inaccurate. In contrast, the proposed motion detection schema 

is more robust against style variability and capable of recognising similarity even in 

very challenging cases. Although, the final stage of this procedure also relies on 

Euclidean distance, the dimensionality of space-time cube ( 126=D ) is much lower 

than that of the shape descriptor ( 3364=D ), thus the metric is expected to be 

significantly more accurate in the evaluation of similarity.  

 Tables in Figure 6.8 summarises the number of identified repetition 

neighbours for each procedure after refinement using equation (6.6). Ideally, in the 

case of minor style variability and perfect frame to frame correspondence between 

different repetitions of action, we would expect to determine 35 neighbours for each 

frame (i.e. 12 sources multiple by 3 repetitions minus the current MTS fragment). In 

practice, a repetition neighbour may not exist for a given frame, because of style 

and speed variability between different repetitions. Nevertheless, in most cases, the 

more repetition neighbours are obtained after refinement, the more constraints are 

available and, therefore, the better is the alignment of time series fragments during 

dimensionality reduction. 
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Finally, as seen in Figure 6.8, both algorithms produce enough constraints 

for TLE to discover a unique representation of time series. However, besides better 

detection accuracy, the key advantage of the new procedure is its very low 

computational cost in comparison to the DTW. Here, we achieve a speed-up of a 

factor ~10. The processing times reported in Figure 6.8 take into account times for 

computing space-time features, neighbourhood similarity matrix and extraction of 

repetition neighbours. 

At the same time, we have shown another interesting property of the TLE 

framework. The proposed algorithm can discover a consistent and meaningful low 

dimensional representation even though for considerable number of points not all 

repetition neighbours are found (left table of Figure 6.8). 

6.4.1.2. View-Independent Manifold 

6.4.1.2.1. Generation of a View-Independent Topological Structure 

Discovery of a compact representation of any human activity requires modelling 

both the view and body configuration jointly in a single space. Here we assume that 

human motion is observed from different viewpoints along a view circle at fixed 

camera height (Figure 6.1b). Although such cylindrical setting appears limited, its 

robustness to view elevation variations, up to 45 degrees as shown in the 

experimental section, makes it appropriate for many real-life applications such as 

visual surveillance and sport analysis. It is important to note that this configuration 

is not critical to our framework since it can easily be extended to a full view sphere-

like model using training videos captured from different camera heights. 

In section 6.4.1.1.2, style invariant and speed normalised body 

configuration manifolds could be discovered for each view separately (Figure 6.9a, 

Figure 6.10b and Figure 6.11b). They are intrinsically 1-dimensional manifolds, 

which are embedded in 2-dimensional spaces to take into account the nonlinearity 
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of human motion. Since these embedded spaces share the same topology regardless 

of the view (see Figure 6.2, Figure 6.9a, Figure 6.10b and Figure 6.11b), for a given 

posture there is a unique correspondence on each of these manifolds. Consequently, 

the connection of those corresponding points in the order of view angle values 

creates a closed 1-dimensional manifold (topologically equivalent to a circle) which 

is the view-independent embedded space of the posture. Therefore, we define the 

unified representation of an action as the combined space of the two sets of 

continuous 1-dimensional manifolds, i.e. style invariant posture and view, which are 

placed orthogonally to each other and embedded nonlinearly in a 3-dimensional 

space (Figure 6.9c).  
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Figure 6.9. Generation of the style and view-indepe ndent manifold for the ‘point’ 

action: a) style-independent and view-dependent 2D manifolds; b) the set of aligned 

2D manifolds; c) the assembled style and view-indep endent 3D action manifold and 

d) approximation of the manifold continuity (see su bsequent section 6.4.1.2.2). 

The process of producing the unified manifold comprises two steps (Figure 

6.9). First, the view-dependent representations are combined (Figure 6.9b): the 

embedded spaces vX  are aligned with respect to a good representative 'vX  using 

Procrustes analysis [Wang and Mahadevan, 2008]. Since this is a rigid 

transformation of the spaces, the internal structure of each manifold is not changed. 

Secondly, each embedded representation vX  is aligned into a three-dimensional 
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structure according to the view angle parameter 0,2vµ π∈< > . The outcome of this 

procedure reveals a torus-like structure which encapsulates both style and view 

(Figure 6.9c). We called this structure a view and style-independent action 

manifold. This result is in line with previous work [Elgammal and Lee, 2009], 

where the usage of a torus is justified as an ideal representation for modelling both 

the viewpoint and the body configuration of different actions. However, while, in 

that work the topological correspondence between data points Y and an ideal torus 

is artificially enforced, our torus-like representation is data-driven and reflects the 

temporal structure of the view-dependent data. Therefore, in our approach all types 

of motions, i.e. periodic, quasi-periodic and non-periodic, see (Figure 6.10c and 

Figure 6.11c), are handled using the same framework. 

 

Figure 6.10. Training results for quasi periodic ac tion ”check watch”: a) training 

videos; b) style-independent low dimensional repres entation for each view; c) style 

and view-independent manifold. 
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Figure 6.11. Training results for non periodic acti on ”sit down”: a) training videos; b) 

style-independent low dimensional representation fo r each view; c) style and view-

independent manifold. 

6.4.1.2.2. Manifold Mapping Function 

In the previous section, we described how view descriptors could be combined to 

form anunique view-independent action manifold (Figure 6.9c). Since TLE is a 

spectral dimensionality reduction method, there is no generative mapping function 

between observed and embedded spaces. As a consequence, at this stage, the model 

is only defined on the training data (Figure 6.9c). In order to perform an accurate 

action classification, the descriptor has to be able to generalise to unseen examples 

by taking into account not only stylistic variations, but also view changes to avoid 

over-fitting. 

This is achieved by learning a decomposable generative model [Lee and 

Elgammal, 2006a], which approximates the continuity of descriptor space in the 

form of a powerful projection function between the low dimensional descriptor 

space and high dimensional observed space (Figure 6.9d). This model aims at 

separating the intrinsic action configuration from other factors such as motion style 

and view. The considered generative model is a generalisation over the model 
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described in section 4.5.7.3 where only style factor has been decomposed. 

Following [Lee and Elgammal, 2006a] approach, the generative mapping function 

is modelled using three factors: 

• Content B : a representation of the intrinsic body configuration which 

characterises motion as a function of time. It is invariant to either person or 

view. 

• Style S : a time-invariant person parameter which describes the person 

appearance, shape and motion style. 

• View point V : a time-invariant view parameter which characterises the view 

point from which the performed action is captured. 

In our framework, content evolves along a continuous manifold while style 

and view are represented by the discrete classes present in the training data. For the 

last two factors, intermediate states can be interpolated. As a result, we are able to 

approximate view and style continuity. In addition, we assume that both style and 

view factors are time-invariant, i.e. both parameters remain constant during any 

instance of an action. The procedure of fitting the decomposable generative model 

to the data consists of two steps. First, a set of style and view-dependent functions is 

trained. Then, all functions are combined into a single style and view-independent 

projection function. 

Since mapping between the embedded manifold and the original space is 

highly nonlinear, generalised RBFN (see section 2.2.2.4.4) is applied to provide the 

nonlinear view-dependent mapping. It is expressed by sN  style-dependent mapping 

functions using equation (2.62): 

 ( )sv sv svY X Aψ=  (6.7) 
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where svA  is a ( 1)+ + ×Z d D  matrix of mapping coefficients, which encodes style 

variability in the specific view. The kernel matrix ( )ψ i  is defined according to 

(2.64) by: 

 1 2( ) {[ ( ), ( ),..., ( ),1, ]}sv sv sv sv sv
ZX X c X c X c Xψ ϕ ϕ ϕ= − − −  (6.8) 

where { | 1.. }jC c j= = Z  is a set of distinctive representative points in each 

embedded space and ( )ϕ i  is a radial basis function (see section 2.2.2.4.4). svA  is 

calculated by applying the Moore-Penrose pseudo-inverse on matrix ( )svXψ  and 

solving a linear system of equations: ( )sv sv svA X Yψ += , like in section 2.2.2.4.4. In 

contrast to [Lee and Elgammal, 2006a], our unified manifold representation C  is 

data-driven and independent of the style and speed factors due to the usage of TLE 

in the generation of view-dependent low dimensional representations. It is obtained 

by calculating a mean style and view manifold, which is then transformed by a non-

rigid point registration procedure [Myronenko et al., 2007] to better fit the data.  

The final style and view-independent decomposable generative model is 

obtained by multi-linear tensor analysis [Vasilescu and Terzopoulos, 2003] in the 

space of nonlinear mapping coefficients [Lee and Elgammal, 2006a]. Each 

coefficient matrix svA  is represented as the coefficient vector sva  of dimensionality 

*( 1)= + +aN D Z d by column wise stacking (columns of the matrix are 

concatenated to form a vector). Afterwards, all coefficient vectors sva  are arranged 

in an order three coefficient tensor Α  whose dimensionality is × ×s v aN N N . The 

view and style orthogonal factors are decomposed from the assembled coefficient 

tensor Α  using higher order Singular Value Decomposition [Lathauwer et al., 

2000]: 

 1 2 3 1 2B S V F G S VΑ = × × × = × ×  (6.9) 

where S  ( ×s sN N ) is the mode-1 basis of Α , which represents the orthogonal basis 

for the style space. Similarly, V  ( ×v vN N ) is the mode-2 basis matrix which spans 
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the space of viewpoint parameters and F  ( ×a aN N ) represents the mode-3 basis for 

the mapping coefficient space. B  is a core tensor ( × ×s v aN N N ) which governs the 

interactions between orthogonal factors represented in the mode basis matrices. 

Coefficient eigenmodes G  is a new core tensor formed by 3G B F= ×  whose 

dimensionality is × ×s v aN N N . Mode-i i×  is a tensor product as defined in 

[Lathauwer et al., 2000]. To avoid over-fitting, the dimensionality of each 

orthogonal spaces is reduced to retain a subspace representation by preserving 99% 

of the original information. The reduced dimensionality for tensors ,  ,  ,  ,  B S V F G 

are × ×s v an n n , ×s sN n , ×v vN n  , ×a aN n , × ×s v an n N  respectively, where 

,  ,s v an n  n  denote the number of basis maintained for each factor.  

As the result, style-independent and view-independent projection function, 

which generalise the space of the action descriptor (Figure 6.9d), is expressed by 

equation: 

 ( ) 1 2( )svy x unstack G s vψ= ∗ × ×  (6.10) 

where image observation svy  is generated from the body configuration represented 

by an embedding coordinate x  using the estimated parameters of style s  and view 

v  given the learned core tensor G . 

6.4.1.3. Action Classification Process 

Action classification is performed by projecting an unknown motion sequence into 

each action descriptor using the generative decomposable model presented in the 

previous section 6.4.1.2.2. Then, the DTW distance (see appendix A.1) is calculated 

to measure similarity between the action projection and action model. 

Given a new instance of action 
Y , its length is first normalised as 

described in section 6.4.1.1.1. Then the embedded coordinates 
X  of the new action 

are obtained by least square solution of the following nonlinear system: 

 
 
 

,arg min ( )A X Y X Aψ−  (6.11) 
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Its minimum solution is found by determining and optimising coefficient 

matrix 
A  given a learned model and then projecting data by solving a linear system 

of equations using the Moore-Penrose pseudo-inverse: 

 
 
 
( )X Y Aψ
+

=  (6.12) 

Coordinates of 
X  are provided by the last d  rows of the matrix 
( )Xψ . In 

order to determine the optimal coefficient matrix 
A , we adopt an iterative 

procedure [Lee and Elgammal, 2006a]. First, we calculate a data driven mean view 

manifold C  over all aligned mean styles manifolds vC  to obtain a homeomorphic 

manifold [Lee and Elgammal, 2006a]. Then, the coefficient matrix is initialised by 

solving the following equation: 

 
 
( )A C Yψ +=  (6.13) 

Let’s ɶa  denote a vector obtained by column wise stacking of matrix 
A . 

Then given a mapping model, as described in the previous section 6.4.1.2.2, and 

any style vector,sɶ , and any view vector vɶ , we can define a coefficient vector ɶa  by 

the tensor product: 

 ɶ
1 2a G s v= × ×ɶ ɶ  (6.14) 

Mapping coefficients ɶ
sv

a  are optimised to reflect style and view of a new 

instance action 

sv

Y  by minimising the following error: 

 ɶ
, 1 2arg min   s v a G s v− × ×ɶ ɶ  (6.15) 

where G  is derived from learning (equation (6.9)). Since tensor G  represents the 

intrinsic body configuration ’content’ of the considered action and manages 

interactions between all factors, an accurate solution for style and view can only be 

reached for the same type of action. 

If the style vector, sɶ  is known we can obtain a closed form solution for vɶ  

and vice versa. This leads to an iterative procedure for estimatingsɶ and vɶ  
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simultaneously until equation (6.15) converges [Lee and Elgammal, 2006a]. In 

practice, we follow Lee’s approach where sɶ  is initialised with a mean style 

estimate. Since the view classes are discrete, we identify the closest view class and 

use it to estimate sɶ . Finally, vector ɶa  is unstacked to create matrix 
A ; then the 

action 
Y  is embedded into the low dimensional space using equation (6.12). 

6.4.2. Probabilistic Action Model 

The probabilistic formulation of action descriptors is achieved by feeding the 

extended version of ST-GPLVM (chapter 5) with the obtained topological structure 

from section 6.4.1.2.1, which encapsulates style, speed and view variability.  

6.4.2.1. View-Independent Manifold 

The learning pipeline of probabilistic action manifold is derived from the standard 

pipeline (Figure 5.1) and summarised in Figure 6.12. The latent space and 

parameters of ST-GPLVM model are optimised jointly under a new combined prior 

( | )p X L  to discover an underlying probabilistic model of action. This prior is 

derived by taking into account constraints associated with each view ( 1... vv N= ) 

and replacing the standard prior (5.1) in the objective function (5.4) with: 

 
22

1

( )1
( | ) exp( )

22

T
v v v

v

tr X L X
p X L

σπσ=

= −∏
VN

 (6.16) 

where L  is a block diagonal matrix formed by all vL : 

 

1

2

0 0 0

0 0 0

0 0 ... ...

0 0 ... v

L

L
L

L

 
 
 =
 
 
 

 (6.17) 
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View 1

Reduce dimensionality using TLE

Generate a view-independent topological structure

View 2 View Nv

Initialisation

Time series (videos)

Latent space
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temporal constraints for 
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Optimise using GPLVM objective function
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Figure 6.12. Pipeline for generation of probabilist ic view and style invariant action 

descriptor. 
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a) b)

c) d)

 

Figure 6.13. Probabilistic view and style invariant  action descriptors obtained using 

ST-GPLVM for a) sit down, b) cross arms, c) turn ar ound and d) kick. 

6.4.2.2. Action Classification Process 

The probabilistic descriptor handles naturally uncertainties inherent to actions 

performed by different people with different styles and in different views, therefore 

it is applied directly for action recognition using maximum likelihood estimation 

(equations (5.8)). 

6.4.3. Summary 

The proposed deterministic action manifold and its probabilistic extension possess 

all desired properties of a robust and descriptive action descriptor (see introduction 
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6.1). First, our action manifold is a unique and compact high level semantic 

description of  an action, which encapsulates anthropometric and view variability, 

as well as normalises implicitly execution speed. Secondly, it can handle any type 

of motion, i.e. periodic, quasi-periodic and non-periodic. Last but not least, thank to 

its generative abilities, the action model is capable to handle effectively previously 

unobserved subjects performing the action regardless of view. As we have seen in 

previous sections, the core of each descriptor learning procedure is founded on our 

earlier contributions, i.e. TLE (chapter 4) and ST-GPLVM (chapter 5). 

In order to evaluate the performance of our descriptors, an action 

recognition framework is designed which consists of two parts: offline training and 

online testing. During training, one descriptor for each action class is automatically 

generated. Then in testing, an instance of new action, which is performed by an 

unfamiliar individual in an unknown view is projected into each action manifold 

using descriptor based projection schema. Afterwards, a label is assigned to the new 

action according to the classification using either the nearest neighbour procedure 

for the deterministic model (section 6.4.1.3) or maximum likelihood estimation for 

the probabilistic formulation (section 6.4.2.2). 

As we will demonstrate in the evaluation section 6.5, our descriptors are a 

very attractive alternative to the current state of the art methods and achieve very 

competitive results in the challenging task of view independent action recognition. 

6.5. Evaluation 

6.5.1. Experimental Setup 

To obtain a dense set of action videos regarding viewpoints for the training of our 

action manifolds, we follow [Richard and Kyle, 2009] approach where the animated 

visual hulls are projected onto 12 evenly spaced virtual cameras located around the 

vertical axis of the subject. In line with other experiments made on this dataset [Liu 
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and Shah, 2008, Liu et al., 2008, Yan et al., 2008, Reddy et al., 2010, Kaâniche and 

Brémond, 2010], the top view is discarded from the evaluation. 

Two recognition tasks are evaluated using by either a single view or 

multiple views. In multiple views recognition, a simple majority voting rule is 

applied. Note that testing is performed with views which are not included in the 

training data. Moreover, these views differ significantly from those used for 

training, e.g. there is up to 45 degrees of view elevation. Following the original 

paper introducing the dataset [Weinland et al., 2007] as well as subsequent research 

[Yan et al., 2008, Tran and Sorokin, 2008, Weinland et al., 2010b, Kaâniche and 

Brémond, 2010], our recognition rates are computed by the leave-one-source-out 

method, i.e. at each run, one subject is selected for testing, whereas all remaining 

actors are used for descriptors learning (see section 2.3.3.4.3). A final error is 

estimated by the average error rate over all experiments.   

In the case of the learning probabilistic descriptor, the global scaling of the 

constraining prior and the number of inducing variables in FITC (see section 

2.2.2.3.2.2.2) are set to 410  and 25% of the data in each view respectively. Values 

of all the other parameters of the models are estimated automatically using 

maximum likelihood optimisation. 

6.5.2. Results 

Table 6.1 reports the current state of the art results and ours on this dataset where 

the top view has been discarded. Unfortunately, not only different approaches do 

not follow exactly the same evaluation protocol, but also the experimental settings 

differ in terms of considered number of actions and subjects. As a consequence, it is 

very difficult to draw any definitive conclusion based purely on those results. 
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Table 6.1. Average recognition accuracy over all ca meras (top view excluded) using 

either single or multiple views for testing. 

% Subjects|Actions 
Average accuracy 

Single view All views 

Probabilistic Action Manifold 12 13 76.2 85.6 

Deterministic Action Manifold 12 13 73.2 83.3 

Lv [Lv and Nevatia, 2007] 10 14 82.9 - 

Tran [Tran and Sorokin, 2008] 12 13 80.2 - 

Liu [Liu and Shah, 2008] 12 13 73.7 82.8 

Kaanische [Kaâniche and Brémond, 2010] 12 13 71.7 90.6 

Liu [Liu et al., 2008] 12 13 71.7 78.5 

Reddy [Reddy et al., 2010] 12 13 66.5 72.6 

 

Probabilistic Action Manifold 12 11 78.3 84.7 

Deterministic Action Manifold 12 11 74.7 83.1 

Weinland [Weinland et al., 2010b] 10 11 86.9 - 

Junejo [Junejo et al., 2008] 10 11 73.7 - 

Yan [Yan et al., 2008] 12 11 64.0 78.0 

Weinland [Weinland et al., 2007] 10 11 63.9 81.3 

First, the probabilistic formulation of our action descriptor obtains better 

performance than the deterministic variant. This is expected, since the probabilistic 

action model provides directly a continuous underlying distribution of the action 

space, which is used effectively to generalise space to unseen instances of actions 

regardless of view. In contrast, the continuity of deterministic framework is only 

discretely approximated using the generative decomposable model (section 
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6.4.1.2.2). Moreover, because of the unfavourable ratio between the number of 

available training samples and the dimensionality of the feature space, the learning 

of the decomposable RBFN model is a challenging process. In particular, a forward 

mapping from high to low dimensional space cannot be learned directly, therefore it 

is obtained by an analytical inversion of an inverse mapping from low to high 

dimensional space, which introduces another level of inaccuracy in the model. On 

the other hand, the probabilistic generative mapping is more robust against over-

fitting even in the case of data sample shortage in relation to the dimensionality of 

feature space [Lawrence, 2004, Lawrence, 2005]. 

The comparison with the current state of the art approaches reveals that our 

probabilistic descriptor displays very good performances either when all actions 

completed by all subjects are considered, i.e. 13, or only 11 actions, when the 

’point’ and ‘throw’ actions are discarded. Although [Tran and Sorokin, 2008] and 

[Weinland et al., 2010b] seem to obtain better results, both frameworks are actually 

trained and tested using the same views, whereas in our validation a testing view is 

completely unknown and thus different from the training views. As consequence, it 

is unclear how results of these two competitors [Tran and Sorokin, 2008, Weinland 

et al., 2010b] would extrapolate to the more complex scenario of action recognition 

in an unfamiliar view. In the light of those results, our descriptor exhibits an 

exceptional robustness not only to subject style variability but also to view 

variations in terms of azimuth and elevation angles. Note that results of [Lv and 

Nevatia, 2007] are reported only for a single sequence (out of three) per actor. This 

sequence was selected to achieve the best results, thus making a direct comparison 

impossible, since all repetitions are considered in our validation. Furthermore, some 

approaches [Weinland et al., 2007, Lv and Nevatia, 2007, Junejo et al., 2008, 

Weinland et al., 2010b] and especially two of our main competitors [Lv and 

Nevatia, 2007, Weinland et al., 2010b] use a smaller set of available subjects which 
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may further favour their approaches. Finally, results cannot be compared with 

[Richard and Kyle, 2009], because, instead of evaluating their method with original 

video data, they did it by using projections of the visual hulls. 

Figure 6.14 and Figure 6.15 present the confusion matrices of recognition 

for the ‘single view’ experiment, whereas Figure 6.16 and Figure 6.17 depict the 

confusion matrices for the ’all-view’ experiment using deterministic and 

probabilistic descriptor respectively. They reveal that our framework performed 

better when dealing with motions involving the whole body, i.e. ”walk”, ”sit down”, 

”get up”, ”turn around” and ”pick up”. Since temporal information is essential when 

dealing with highly dynamic motions and TLE aims at preserving temporal 

structure in each view, action manifolds of those activities are more representative. 

Due to more powerful generative abilities, the probabilistic descriptor outperforms 

the deterministic variant especially by reducing confusion between hand related 

motions. 

 

Figure 6.14. Class-confusion matrix using average r ecognition over single views for 

deterministic action manifolds. The average perform ance is 73.2%. 
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Figure 6.15. Class-confusion matrix using average r ecognition over single views for 

probabilistic action manifolds. The average perform ance is 76.2%. 

 

Figure 6.16. Class-confusion matrix using multiple views for deterministic action 

manifolds. The average performance is 83.3%. 



CHAPTER 6 Action Manifolds for View-Independent Action Recognition 6.5 
Evaluation 

 - 298 -  

 

Figure 6.17. Class-confusion matrix using multiple views for probabilistic action 

manifolds. The average performance is 85.6%. 

The best recognition rates for both descriptors are obtained for camera 2 

and 4 respectively (Figure 6.18 and Figure 6.19). This was expected, since both 

views are the most similar among those used for training. Moreover, when dealing 

with either different, i.e. camera 1, or even significantly different views, i.e. camera 

3, our framework still achieves reasonable recognition rates (Figure 6.18 and Figure 

6.19), which confirms the outstanding generalisation properties of the descriptors to 

view alteration. 
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Figure 6.18. Action recognition rates using single views for deterministic action 

manifolds. Average values are 71.6%, 74.9%, 65.8% a nd 80.6% for cameras 1 to 4, 

respectively. 

 

Figure 6.19. Action recognition rates using single views for probabilistic action 

manifolds. Average values are 75.0%, 78.6%, 69.9% a nd 81.4% for cameras 1 to 4, 

respectively. 

Table 6.2 provides insight into the approximated processing times of 

generating the proposed action descriptors (training) and recognising of a new 

action (testing) based on an unoptimised Matlab code and single 3Ghz CPU. First, 

the generation of deterministic descriptors is significantly more efficient than  

probabilistic ones because the deterministic learning process is solely analytical and 
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non iterative,. Since TLE is very efficient (Table 4.3), especially using the repetition 

neighbourhood selection procedure tailored to action videos (sections 6.4.1.1.3 and 

6.4.1.1.4), most of the training time is spent on the generation of shape descriptors 

(section 6.4.1.1.1) and the learning of generative decomposable model (section 

6.4.1.2.2). In contrast, the recognition phase in both descriptors involves 

computationally expensive optimisation procedure (sections 6.4.1.3 and 6.4.2.2), 

thus processing times are relatively large and proportional to the action lengths, 

especially for the probabilistic action model where a more complex and 

unconstrained problem is optimised. Finally, note that both frameworks were 

implemented in Matlab and a code optimisation was not our main concern. As a 

result, both frameworks should be considered as prototypes of solution, which 

validate successfully the proposed methodology, rather than the productive 

applications. A significant improvement of efficiency may be achieved by using a 

more advanced programming language like C++. Moreover, since a training of 

different models as well as recognition of different action primitives are 

independent processes, they can be easily parallelised using a cluster environment 

thus further reducing processing times. 

Table 6.2. Average processing time of generating mo dels and recognising actions 

using an unoptimised Matlab code and single 3Ghz CP U. 

Average time [hours] Deterministic 

Action Manifold 

Probabilistic 

Action Manifold 

Training per action model ~5 ~62 

Testing per action primitive ~7 ~11 

6.6. Summary 

In this chapter, our contributions from chapters 4 and 5, were applied in a realistic 

and challenging computer vision task, i.e. view-independent action recognition from 
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a monocular video. As a consequence, a novel human action recognition framework 

was proposed, which is based on intuitive and compact action descriptors, which 

reside in a low dimensional space. We introduced two action models, i.e. 

deterministic and probabilistic which represent any action independently from 

camera views, execution rates and individuals’ styles. The learning procedures 

involve the TLE, and ST-GPLVM, for the probabilistic model, in order to extract 

the descriptive action pattern, while maintaining appropriate adaptability to all 

forms of variations within the action class. 

Although the discussed methods cannot be compared purely on the 

reported action recognition performances, we believe that our action models are 

superior, especially in comparison to local feature based descriptors (section 

2.3.3.1.1) [Liu and Shah, 2008, Liu et al., 2008, Junejo et al., 2008, Reddy et al., 

2010, Kaâniche and Brémond, 2010, Weinland et al., 2010b]. Due to the sparsity of 

the data relative to the diversity of naturally plausible motions and the difficulty of 

acquiring larger amounts of appropriate training data, generative action models like 

ours seem to be more practical in real-life applications. This is because of their 

outstanding generalisation properties to previously unobserved styles, speeds and 

views as we have demonstrated in the evaluation (section 6.5). 

In conclusion, our contributions were proved to be applicable in a real 

application and obtained very satisfactory and promising results. In addition, since 

our action models are general, they should benefit many other applications beyond 

action recognition such as visual surveillance or sport analysis. 
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7. Conclusions 

This chapter concludes the dissertation. In section 7.1, we summarise briefly our 

contributions to the fields of machine learning/pattern recognition and computer 

vision. Then, a general discussion of our achievements is given in section 7.2. 

Afterwards, we highlight remaining open issues and limitations of the proposed 

solutions as well as a number of avenues for future research in section 7.3. Finally, 

closing remarks are provided in section 7.4. 

7.1. Summary of Contributions 

In this thesis, we explored comprehensively the field of dimensionality reduction 

with a special focus on computer vision applications.  

First, in chapter 2, we provided an extensive review and discussion of the 

main directions of research in dimensionality reduction and computer vision. A 

detailed analysis of both fields allowed uncovering some fundamental research 

problems which had not yet been solved satisfactory by the research community. 

Thus we decided to address them in this dissertation 

Our research began in chapter 3 with thorough examination of a family of 

powerful nonlinear spectral dimensionality reduction methods and study of their 

limitations, i.e. selection of free parameters and lack of generative abilities of 

unseen examples. We proposed a framework for the automatic configuration of 

spectral dimensionality reduction methods, which overcomes identified weaknesses 

(section 3.3). First, the mutual information measure was adopted to develop an 

automatic procedure for neighbourhood size selection (section 3.3.1). Then, we 

automated and adjusted a process of Radial Basis Function Network (RBFN) 

learning to design a generative mapping function between embedded and data 
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spaces (section 3.3.2). This was achieved by taking advantage of the efficient 

Markov Cluster algorithm and the graph constructed during the dimensionality 

reduction process. The combination of these two innovative ideas allowed 

proposing a flexible and unified methodology for the automatic configuration of 

spectral dimensionality reduction techniques, which should benefit areas wherever 

scientists face the problem of analysing high dimensional data. 

Then, since a key feature of many natural phenomena is that their course is 

expressed in the time domain, we examined issues related to the usage of 

dimensionality reduction techniques to time oriented data, i.e. multidimensional 

time series. Despite the huge research effort that has been dedicated to 

dimensionality reduction (section 2.2) the majority of work does not take into 

consideration appropriately the dynamic characteristics of many phenomena. To 

address this challenging research problem, in chapter 4, we proposed a novel 

spectral dimensionality reduction method, called Temporal Laplacian Eigenmaps 

(TLE), which exploits temporal coherence as an essential clue of the dimensionality 

reduction process. This was achieved by taking advantage of spatial and temporal 

coherency relationships between time series in order to extract the intrinsic 

parameterisation of the high dimensional time series space regardless of data 

variations. These time series constraints are expressed in the form of two 

complementary temporal graphs (sections 4.4.2.1 and 4.4.2.2), which are 

incorporated into the standard Laplacian Eigenmap framework (section 4.4.2.3) 

without requiring the manual tuning of parameters. Based on this original concept, 

the proposed method aims at preserving implicitly the local and global temporal 

topologies of observed spaces during dimensionality reduction instead of 

maintaining only geometry as it is usually the case. This allowed producing 

automatically meaningful and generalised low dimensional representations tailored 

to multidimensional time series data.  
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In some scenarios, in order to cover adequately the complexity and 

richness of measured phenomena, massive amounts of representative data are 

required to learn appropriate data-driven models. Since the capture of large quantity 

of data may be impractical, a solution may be to generalise known data samples to 

the entire phenomenon space to obtain a reliable model. In chapter 5, motivated by 

the spatio-temporal constraints of TLE, we introduced the concept of a spatio-

temporal conditioned prior which is placed over a latent space and constrains the 

optimisation process of Gaussian Process Latent Variable Model (section 5.3.2). As 

a consequence, a novel generative nonlinear dimensionality reduction algorithm, 

which is called Spatio-Temporal Gaussian Process Latent Variable Model (ST-

GPLVM), was proposed. This innovative approach is capable of approximating a 

compact underlying distribution of time series space in the presence of data 

variations. As a result, a core pattern of multivariate time series is extracted in the 

form of generative and continuous mapping function from a low to a high 

dimensional space with associated uncertainties of prediction.   

Finally, in chapter 6, we investigated further the practicality of our 

contributions from chapters 4 and 5 in a realistic and challenging real-life computer 

vision task of view-independent action recognition. As a consequence, a novel 

human action recognition framework was developed, which is based on devised 

deterministic (section 6.4.1) and probabilistic (section 6.4.2) variants of temporally 

constrained action manifolds. These descriptors encapsulate style, view and speed 

variability of any type of motion in a compact and consistent low dimensional 

representation. The key advantage of the introduced descriptors is their 

generalisation abilities to previously unobserved motions regardless of view. Very 

satisfactory and promising results confirmed the usefulness of our contributions in a 

real application and suggest many potential applications beyond computer vision. 
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7.2. Discussion 

The main emphasis of this thesis is the modelling of multidimensional time series 

data using an underlying low dimensional representation with applications to human 

motion analysis. Although chapter 3 did not directly address this issue, it was an 

essential step in our research. It allowed for a thorough insight into theoretical and 

practical aspects of spectral dimensionality reduction transformations and thus 

implicitly stimulated the proposal of TLE in chapter 4. In turn, chapter 5 with the 

introduced ST-GPLVM shows an attractive evolution of the TLE concept to the 

generative modelling of multidimensional time series data. Finally, the action 

recognition framework presented in chapter 6 was derived from the previous 

contributions (chapters 4 and 5) to demonstrate a deployment of proposed ideas in a 

real-life computer vision application of multivariate time series classification. 

Note that, to some extent, TLE and ST-GPLVM are competitive methods 

for dimensionality reduction of time series data. The choice of the algorithm is not 

straightforward and depends on the application as well as the amount of available 

training data. On one hand, although ST-GPLVM is significantly more 

computationally expensive than TLE, it exhibits better generalisation properties as 

seen in sections 5.4.4 and 6.5.2. On the other hand, TLE has superior scalability in 

terms of dataset size and dataset dimensionality. Moreover, in a combination with 

RBFN, it is often able to produce similar performances assuming that ‘enough’ data 

are collected for training. 

Performance of both approaches, i.e. TLE and ST-GPLVM, relies heavily 

on the appropriate identification of repetition neighbours in order to construct 

adequately spatio-temporal constraints between time series. Although we have 

proved that the DTW-based repetition neighbourhood selection procedure is 

capable to tackle effectively this issue in various applications, in some cases, it may 

be useful to customise it in order to take full advantage of a domain specific feature 
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representation. As seen in sections 4.5.4 and 6.4.1.1.3, the adaptation of procedure 

should not be a major issue since it does not require any modification of the 

dimensionality reduction method core.  

Other drawbacks of our approaches are inherited from their respective 

parents. Similarly to other spectral dimensionality reduction methods, TLE does not 

provide any inherent generalisation abilities to unseen data. As a consequence, in 

many situations, the additional post-processing step of RBFN learning is required, 

which increases the computational cost of model learning. In the case of ST-

GPLVM, it is computationally expensive by design, because of the reliance on an 

iterative optimisation process.  

In addition to these, an important limitation of our proposed view 

independent action recognition frameworks is that they assume the required video 

processing step can be solved satisfactorily, thus providing sufficient information 

for the machine learning and recognition processes. Unfortunately, this is usually 

only a valid assumption when dealing with data captured in a controlled 

environment: analysis of unconstrained videos is an open and difficult scientific 

challenge. Moreover, our proposed frameworks cannot deal with unknown actions; 

hence, our action recognition frameworks rely on training datasets which are 

composed of all possible actions, which may appear during the recognition phase. 

Although, we made significant steps towards solutions of a few essential 

problems in dimensionality reduction, i.e. the automatisation of dimensionality 

reduction process (chapter 3) and the deterministic/probabilistic parameterisation of 

time series data (chapters 4 and 5), we have certainly not provided a definitive 

solution but rather a solid and appealing foundations for further research and 

improvements. Similarly, our view independent action recognition framework in 

chapter 6, despite several advantages over existing approaches, has some 
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limitations. A few still open issues, suggestions of possible extensions, and the 

promising directions for further research are outlined in the next section 7.3. 

7.3. Future Work 

While the graph-based RBFN has been proved to be an efficient approach tailored 

to spectral dimensionality reduction methods, the selection of radial basis activation 

functions in a network design is still an open question. In this research, we chose 

the Gaussian basis function as suggested by [Poggio and Girosi, 1990]. However 

different basis functions, such as thin plate spline, multiquadratic, Cauchy and many 

others [Powell, 1987], may produce mapping functions which display different 

performances. Consequently, it would be interesting to examine the sensitivity of 

the graph-based RBFN to this choice. More fundamentally, since there is no general 

rule suggested in the literature about how to automate the basis function selection 

process, this is an area which would be worth investigating and could impact 

significantly on further improvement of generalisation capabilities of spectral 

dimensionality reduction methods. 

The proposed TLE maintains the temporal continuity of time series during 

dimensionality reduction process and suppress stylistic variations displayed by 

different sources of time series by aligning them in a low dimensional space. 

However, style variability is actually not completely removed from the low 

dimensional representation but only drastically marginalised during the 

dimensionality reduction process in order to extract the intrinsic pattern of time 

series data (see justification in section 4.4.2.4). Since the maintenance of style 

information may be advantageous in some applications, such as tracking, an 

interesting idea to investigate would be to model explicitely style variability along 

an extra dimension. This could be done by compensating the domination of the 

temporal constraints over spatio-temporal ones using a balancing mechanism 
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between constraints in the optimisation process. This would enforce equal 

importance in the preservation of both stylistic and temporal variations of time 

series. This is ongoing research and preliminary results are shown in [Martinez-del 

Rincon et al., 2011]. 

Although ST-GPLVM proved to be a powerful extension of the TLE 

concept and confirmed to be computationally more attractive than the standard 

GPLVM framework, it may still be impractical for large and high dimensional 

datasets. In addition, it requires empirical selection of a few parameters which 

introduces another level of complexity in its exploitation. One interesting 

possibility, which is worth of further study is a direct reformulation of TLE into the 

generative framework inspired by [Lu et al., 2007, Kanaujia et al., 2007]. As a 

consequence, TLE could be extended with a bi-directional probabilistic mapping 

between a latent and observed space, which reflects the underlying data distribution. 

Similarly to TLE, such enhancement would be parameterless and according to [Lu 

et al., 2007, Kanaujia et al., 2007] more efficient than GPLVM based approaches.  

Finally, the creation of a robust and full pipeline for view independent 

action recognition in a realistic visual surveillance scenario is a very ambitious 

project, which is well beyond the scope of a single PhD. This thesis demonstrates 

promising progress towards such a goal, however a number of simplifications and 

shortcuts had to be employed to obtain a running prototype system. Our main 

intention was to validate our contributions in a real computer vision application 

rather than building a productive application. First, we focused on a high level 

semantic description of an action. In line with other research in the field (section 

2.3.3.1.2), we assumed that localisation and segmentation of a moving person, as 

well as a temporal segmentation of action into primitives can be carried out sensibly 

by some low level pre-processing of video data.  
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In order to develop a full pipeline for action recognition from videos, the 

proposed framework should be extended by incorporation of some advanced 

techniques for video analysis, such as [Dalal and Triggs, 2005, Felzenszwalb et al., 

2010, Simonnet and Velastin, 2010] for person localisation in videos, [Stauffer and 

Grimson, 1999, Fuentes and Velastin, 2001] for background/foreground 

segmentation, [Yin et al., 2008a] for ghost removal and finally [Cutler and Davis, 

2000, Rui and Anandan, 2002, Weinland et al., 2006a] for the temporal 

segmentation of actions into primitives. A further interesting aspect to investigate is 

the usage of more advanced feature representation, such as optical flow [Efros et al., 

2003] or a variant of space-time interest points [Laptev and Lindeberg, 2003, 

Laptev, 2005, Dollar et al., 2005, Dalal and Triggs, 2005]. However note that a 

change of feature representation will impose the design of an appropriate 

neighbourhood selection procedure in TLE for the determination of repetition 

neighbours.  

Another software engineering problem is that the current prototype 

implementation of frameworks is computationally prohibitive for a productive 

application. Thus it would be desirable to redevelop the proposed methodologies 

using a more computationally efficient programming language like C++. In terms of 

scientific challenges, the frameworks could be extended to deal with complex 

actions by using action primitive models as a codebook in some sort of hierarchical 

classification schema. Alternatively, a high level fusion or voting module could be 

introduced which would allow for interaction recognition by combining 

independent classification results of each individual using action primitive models.  

In addition, in order to make an objective comparison between different 

algorithms, but without a loss of generality, we have used publicly available 

IXMAS database for the evaluation. Although, it is one of the most challenging 

datasets in view independent action recognition available for research community, it 
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is captured in a controlled environment, thus differs from real visual surveillance 

recordings. One of the essential tasks for future research should be an evaluation of 

the descriptors using a more realistic visual surveillance dataset in the recognition 

stage.   

7.4. Closing Remarks 

We believe that this thesis has contributed to the principles and practice of 

dimensionality reduction field and hopefully it is a significant step towards the 

applicability of dimensionality reduction to a wider range of scientific problems 

wherever there is a need to explore large volumes of multivariate data. The 

automatisation of spectral dimensionality reduction approaches simplify usage of 

these algorithms, and thus may help many scientists in taking advantage of a 

dimensionality reduction transformation to eliminate undesired properties of high 

dimensional data before applying domain specific processing. Similarly, wherever 

time is an essential characteristic of examined phenomena, we equipped scientists 

with two powerful methodologies for the deterministic or probabilistic 

representation of such multidimensional time series data using only key underlying 

parameters.  

Our contributions proved to be especially useful in two computer vision 

tasks, i.e. human pose recovery and action recognition, and inspired us to propose a 

promising and advanced view independent action recognition framework which 

may open the door to the longstanding aspiration of robust and automatic 

interpretation of human motion.  

Finally, the presented contributions are intended to motivate future 

research in the area of machine learning/pattern recognition with applications to 

computer vision problems and, hopefully, built a firmer foundation for a next 

generation of nonlinear dimensionality reduction methods for time series. 
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A. Appendices 

A.1. Dynamic Time Warping 

Dynamic Time Warping [Rabiner and Juang, 1993, Senin, 2008] (DTW) is an 

algorithm for measuring similarity between two time series (high dimensional 

curves) which minimises the effects of shifting and distortion in time by allowing 

“elastic" transformation of time series in order to detect similar shapes with 

different phases. 

Time
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Figure 7.1. Raw time series where arrows show desir able points of alignment. 

Given two time series ( )1 2, ,...,  ( )D
N iA a a a a= ∈ℝ  and 

( )1 2, ,...,  ( )D
M iB b b b b= ∈ℝ , optimal matching becomes the task of aligning two 

sequences of points in order to generate the most representative distance measure of 

their overall difference (Figure 7.1). The naive approach of aligning points is a plain 

linear matching, where every ith point of  the first curve matches with ith point of 

the second curve, and both curves are of equal length (Figure 7.2a). However, this 

procedure produces a poor similarity score. Alternatively, DTW allows for a 
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nonlinear (elastic) alignment of times series by minimizing the warping cost 

function (Figure 7.2b). As a result, a more intuitive similarity measure is obtained, 

which allows matching similar shapes even if they are out of phase in the time axis 

and/or they are not of equal size.  

 

Figure 7.2. Time series alignment: a) Linear matchi ng “one to one”, b) nonlinear 

matching by warping time axis. 

The algorithm starts by building the Euclidean cost distance matrix 

{ }
1.. , 1..ij i N j M

E e
= =

=  representing all pair wise distances between A  and B : 

 , 1.. , 1..ij i je a b i N j M= − = =  (6.18) 

Once the cost matrix is built, the algorithm finds the best alignment path 

(i.e. warping path) which satisfies the following criteria: 

• Boundary condition which assigns first and last elements of A  and B  to each 

other. 

• Monotonicity condition which preserves the time-ordering of points. 

• Continuity condition which limits the warping path from long jumps (shifts in 

time) while aligning sequences. 

Let’s an accumulated global cost matrix is denoted by P  where the first 

row and the first column are initialised according to the following equations: 

 1
1

(1, ) , 1..
j

k
k

P j e j M
=

= =∑  (6.19) 
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 1
1

( ,1) , 1..
i

k
k

P i e i N
=

= =∑  (6.20) 

then the cost function associated with a warping path is computed with respect to 

the distance matrix E  expressed by: 

 { }( , ) min ( 1, 1), ( 1, ), ( , 1) , 2.. , 2..ijP i j P i j P i j P i j e i N j M= − − − − + = =  (6.21) 

The final warping path in the global cost matrix P , i.e. the correspondence 

between elements of A  and B , is illustrated in Figure 7.3. The path is found by 

simple backtracking from the end point ( , )P N M  to the start point (1,1)P  following 

a greedy strategy. More information about DTW is provided by [Rabiner and Juang, 

1993, Senin, 2008]. 
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Figure 7.3. The optimal warping path aligning time series from the Figure 7.1. 

Since DTW is expensive to calculate, techniques to speed up similarity 

search have been introduced. The most popular include: 

• Global constraints like Sakoe-Chiba band [Sakoe and Chiba, 1990] and Itakura 

parallelogram [Itakura, 1990]. 

• Lower bounding techniques [Yi et al., 1998, Kim et al., 2001]. 
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A.2. Optical Flow 

Optical flow (image velocity) is a measurement of pixel change between 

consecutive image frames which are used as a rich source of information in many 

computer vision tasks including 3D shape acquisition, object recognition and scene 

understanding. The goal is to compute an approximation to the 2d motion field - a 

projection of the 3d velocities of surface points onto the image plane - from spatio-

temporal patterns of image intensity. A common starting point for differential 

optical flow estimation [Lucas and Kanade, 1981, Horn and Schunck, 1981, Nagel 

and Enkelmann, 1986] is to assume that pixel intensities are translated from one 

frame to the next using: 

 ( , , ) ( , , )x y x yI p p t I p dx p dy t dt≈ + + +  (6.22) 

where ( , , )x yI p p t  is image intensity as a function of space, t  denotes time, whereas 

dx and dy  are displacements of the pixel after time dt . Assuming that the 

displaced image is well approximated by a first-order Taylor series, the right side of 

equation (6.22) is expanded: 

 ( , , ) ( , , )x y x y x y tI p dx p dy t dt I p p t I dx I dy I dt+ + + ≈ + + +  (6.23) 

where x xI I p= ∂ ∂  and y y
I I p= ∂ ∂  are spatial partial derivative of the image, 

whereas tI I t= ∂ ∂  denotes the time partial derivative of the image. By ignoring 

higher-order terms in the Taylor series and then substituting the linear 

approximation (6.23) into (6.22) or more generally from an assumption that 

intensity is conserved ( , , ) 0x ydI p p t dt= , the gradient constraint equation is 

derived: 

 0x y tI dx I dy I dt+ + =  (6.24) 

After devision by dt , the 2d image velocity vector ( , )u dx dt dy dt=
�

 is obtained: 

 0x y t x x y y t t

dx dy
I I I I u I u I I u I

dt dt
+ + = + + = ∇ ⋅ + =

�
 (6.25) 



APPENDIX A APPENDICES A.2 Optical Flow 

 - 315 -  

and ( , )x yI I I∇ =  is the spatial intensity gradient. Of course, the above equation is 

heavily under constrained since we have two unknowns; therefore some additional 

constraints are required to solve it. 

One common way to further constrain u
�

 is to use gradient constraints from 

local neighbourhood pixels, assuming that they share the same constant 2D 

velocity. This is achieved by solving the basic optical flow equations for all the 

pixels in that neighbourhood using the weighted least squares estimator like in 

Lucas and Kanade method [Lucas and Kanade, 1981] (Figure 7.4). Alternatively, 

Horn and Schunck [Horn and Schunck, 1981] combines the gradient constraint 

(6.25) with a global smoothness term to constrain the estimated velocity field over 

image domain. Nagel and Enkelmann [Nagel and Enkelmann, 1986] extends that 

work and suggests an oriented-smoothness constraint in spatio-temporal domain, in 

which the optic flow is only smoothed in the direction perpendicular to the image 

brightness gradient, so that discontinuity boundaries are much better preserved.  

 

Figure 7.4. Estimation of the optical flow using Lu cas and Kanade method. 

The discussed approaches are well established algorithms for the optical 

flow estimation, however many other methods have been proposed. Further details 

and more comprehensive review can be found in [Barron et al., 1994, Beauchemin 

and Barron, 1995, Fleet and Weiss, 2006]. 
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A.3. Hausdorff Distance 

The Hausdorff distance is a simple metric for measuring similarity between two 

arbitrary high dimensional curves ( )1 2, ,...,  ( )D
N iA a a a a= ∈ℝ  and 

( )1 2, ,...,  ( )D
M iB b b b b= ∈ℝ . In contrast to the DTW, the computation of this metric 

does not involved determining an explicit correspondence of points. By definition 

the Hausdorff distance is the maximum distance of a sequence to the nearest point 

in the other sequence [Rote, 1991, Huttenlocher et al., 1993]. More formally, the 

Hausdorff distance between time series A  and B   is a maximin function, defined 

as: 

 ( , ) max{min{ }}
b Ba A

H A B a b
∈∈

= −  (6.26) 

It should be noted that the Hausdorff distance is oriented, i.e. asymmetric, 

which means that most of the time ( , )H A B  is not equal to ( , )H B A  (Figure 7.5). 

However, in a classification task, a distance is expected to be symmetric to 

adequately express similarity between two sequences. To tackle this problem a 

variant, called the symmetric median Hausdorff Distance, was proposed [Gorelick 

et al., 2007, Wang and Suter, 2007a]: 

 '( , ) median{min{ }}
b Ba A

H A B a b
∈∈

= −  (6.27) 

 ( , ) '( , ) '( , )H A B H A B H B A= +  (6.28) 

 

Figure 7.5. Hausdorff distance on toy example betwe en two sequences: standard 

definition based on equation (6.26) (left) and medi an variation based on equation 

(6.27) (right). 
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