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Abstract

Many scene understanding tasks are formulated as a labelling problem that tries
to assign a label to each pixel of an image. These discrete labels may vary de-
pending on the task, for example they may correspond to di�erent object classes
such as car, grass or sky, or to depths or to intensity after denoising. These
labelling problems are typically formulated as a pairwise Markov or Conditional
Random Field, modelling the dependencies of labels of pairs of variables in the
local neighbourhoods. However, these pairwise models are very restricted in their
expressivity. They can not model rich natural statistics and induce desired com-
plex structures in the output labelling. In this thesis we propose global structured
formulations beyond pairwise models, showing that they are very useful in com-
puter vision, furthermore that they can still be learnt and optimised e�ciently.

First we propose a model, which generalises existing approaches for semantic
object class segmentation, formulated in terms of pixels, segments or groups of
segments. The proposed method e�ciently integrates the strengths of these di�er-
ent approaches, capturing discriminative information across di�erent scales. Next
we show how the standard approaches for the semantic object class segmentation
problem can be improved by the inclusion of costs based on high level statistics,
including object class co-occurrence, which capture knowledge of scene semantics,
for example that motorbikes and cows are unlikely to occur together in an image.
Then we propose a novel latent random �eld support vector machine for object
detection with a convex mrf regularization and suggest a way to include this
information in the object class segmentation formulation. Finally we propose a
model that jointly estimates labellings of multiple domains over a product space
of labels. We demonstrate the usefulness of this model on the problem of joint
object class semantic segmentation and dense 3D stereo reconstruction and show
that this approach signi�cantly outperforms existing methods. We show that
all proposed models can be optimised e�ciently using powerful graph cut based
move making algorithms.
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Chapter 1

Introduction



Scene understanding tasks can be formulated as a labelling problem that tries
to assign a label to each unobserved hidden discrete variable. The labels corre-
spond to various estimated properties of an image and may be for example an
object class label (road, car, sky, building, ..) in the case of object class image
segmentation [88], a depth label in the case of dense stereo reconstruction [54],
a real pixel intensity in the case of image denoising [2], or a location of the pic-
torial structures [57]. The labels for the problems, where multiple labels have to
be assigned, are typically conditionally dependent on each other and the output
labelling tends to be highly structured. The most natural way to deal with this
problem is to incorporate all conditional dependencies in one global probabilistic
framework and solve the whole labelling jointly. However, the number of pixels
in the image may grow to millions and conditional dependencies may be very
complex, and that makes inference in many computer vision problems very hard
to solve.

The standard way to deal with this problem is to model the dependencies
of labels of pairs of variables in the local neighbourhoods. The most common
models are known as pairwise Conditional Random Fields (crf) (or their spe-
cial case Markov Random Fields (mrf)). They have become very popular for
solving several computer vision problems such as semantic object class segmen-
tation, image denoising or dense stereo reconstruction. However, these pairwise
models are very restricted in their expressivity. They cannot model rich natu-
ral statistics and induce desired complex structure such as connectivity, label set
consistency or planarity of the output labelling. Enforcing these properties would
require incorporation of conditional dependencies more general than pairwise and
optimisation methods for the general case are infeasible.

In this thesis we show that crfs with cliques of higher order than pairwise
dependencies inducing complex structured properties useful in computer vision
can still be solved e�ciently using graph cut based methods with relatively low
impact on the memory consumption and computational cost. We demonstrate the
usefulness of our proposed models on several scene understanding problems such
as object class semantic segmentation, dense 3D stereo reconstruction, object
detection and localization.
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1.1. Labelling Problems in Computer Vision

In the next sections of this chapter we explain the basics of st-min cut, crfs
and their standard max-�ow optimization algorithms. In chapter 2 we show how
to formulate crf problems that contain discriminative features across multiple
scales. We demonstrate that our model is a generalization of the most popular
models used for object class segmentation. We show that our proposed model can
be optimised using e�cient graph cut based algorithms. In chapter 3 we explain
how models with label set preferences based on co-occurrence statistics can be
formulated and optimised. In chapter 4 we propose a novel deformable template
model for object detection and localization with mrf priors on the deformation
�eld. We also show how the detector responses can be included in the crf for
object class segmentation. In chapter 5 we propose a model that jointly estimates
labels for multiple domains and demonstrate its usefulness on the joint estimation
of object class semantic segmentation and dense stereo reconstruction. In the last
chapter 6 we conclude and suggest new directions for future research.

1.1 Labelling Problems in Computer Vision

In this section we introduce the principles behind Markov and Conditional Ran-
dom Field and describe standard inference techniques, that will be used later in
this thesis.

1.1.1 Markov and Conditional Random Fields

Discrete Labelling problems involving a large number of hidden variables are
typically formulated using probabilistic frameworks called Markov Random Fields
(mrfs), which model the conditional dependencies between unobserved hidden
variables.

Let us consider the problem of assigning one label from the discrete set of
labels L = {l1, l2, . . . , lL} for a discrete random variable per image pixel. We use
X = {X1, X2, . . . , XN} to denote the set of random variables corresponding to
the image pixels i ∈ V = {1, 2, . . . , N}. The neighbourhood system N of the
random �eld is de�ned by the sets Ni, ∀i ∈ V , where Ni denotes the set of all
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1.1. Labelling Problems in Computer Vision

neighbours of the variable Xi. A clique c is a subset of random variables Xc ⊆ X

which are conditionally dependent on each other. Any possible assignment of
labels to the random variables will be called a labelling denoted by x, which takes
values from L = LN .

The posterior distribution Pr(x|D) for given data D over the labellings of the
crf is a Gibbs distribution and can be written as:

Pr(x|D) =
1

Z
exp(−∑

c∈C
ψc(xc)), (1.1.1)

where Z is a normalising constant called the partition function, and C is the set of
all cliques [61]. The term ψc(xc) is known as the potential function of the clique
c ⊂ V where xc = {xi : i ∈ c}. The corresponding Gibbs energy is given by:

E(x) = − log Pr(x|D)− log Z =
∑

c∈C
ψc(xc). (1.1.2)

The number of variables in each clique xc is called the order of the potential
ψc(xc). The most probable or Maximum a Posteriori (map) labelling x∗ of the
random �eld is de�ned as:

x∗ = arg maxx∈L Pr(x|D) = arg minx∈L E(x). (1.1.3)

Optimisation methods typically �nd the most probable solution by �nding the
labelling with the minimal energy. As the partition function is constant and
thus does not a�ect the solution of the optimisation problem, we shall drop the
partition function Z from future equations for compactness.

1.1.2 Pairwise Random Fields

Most labelling problems in vision are formulated as a pairwise mrf, whose energy
can be written as the sum of unary and pairwise potentials as:

E(x) =
∑

i∈V
ψi(xi) +

∑

i∈V,j∈Ni

ψij(xi, xj). (1.1.4)
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1.2. Graph Cut based Inference for CRFs

The unary potentials ψi(xi) of the mrf are typically de�ned as the negative log
likelihood of variable Xi taking label xi, while the pairwise potentials typically
encode a smoothness prior which encourages neighbouring pixels in the image
to take the same or similar label. The pairwise nrf su�ers from a number of
problems stemming from its inability to express high-level dependencies between
pixels. Despite these limitations, it is widely used and very e�ective.

In mrfs only the unary potentials depend on the data. mrfs globally con-
ditioned on the data are called Conditional Random Fields (crfs) [61]. This
distinction is rather philosophical, crfs follow the same principles as mrfs in
the early vision [6], and the optimization problems for crf and mrf are exactly
the same. In fact for the most part this thesis is concerned with the minimisation
of discrete random �eld energy functions and the probabilistic interpretation only
becomes important if one wants to estimate the crf parameters.

1.2 Graph Cut based Inference for CRFs

Although the problem of �nding the map labelling is np-hard in general, for
certain families of energy functions it can be solved exactly in polynomial time.
One of those families are crfs whose graphs form a tree, which can be solved
using Belief Propagation [107]. This property does not apply for many computer
vision problems, for which the task is to label each pixel in an image and the
corresponding graph is a lattice. In this case submodular functions are widely
used since they are also exactly solvable in polynomial time.

The binary energy function E(x) is said to be submodular if, for each pair of
binary variables xi, xj ∈ x, and each labelling of the remaining variables x̄ij =

x \ {xi, xj}:

E(0, 0, x̄ij) + E(1, 1, x̄ij) ≤ E(0, 1, x̄ij) + E(1, 0, x̄ij). (1.2.1)

Currently the best minimization algorithm [72] can solve general binary submod-
ular problems in O(n6 +n5Q), where Q is the time taken to evaluate the function
and n is the number of variables. This optimisation method is computationally
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1.2. Graph Cut based Inference for CRFs

expensive for computer vision problems with a very large number of nodes. How-
ever, it can be shown [37], that all submodular pairwise energies can be optimised
by solving the corresponding st-mincut (also called graph cut) problem, which
we explain next.

1.2.1 The st-Mincut Problem

In this section we provide a formulation of the st-mincut problem. Consider the
directed weighted graph G(V, E,C) with non-negative edge weights, where V is
the set of vertices and E the set of edges with corresponding edge costs C. The
number of vertices is denoted as n = |V | and the number of edges as m = |E|. In
the st-mincut problem there are two special terminal vertices called the source s

and the sink t.
The st-cut is the partition of the set of vertices into two subsets S and T =

V −S, such that s ∈ S and t ∈ T , and the corresponding cost of the cut is de�ned
as:

CS,T =
∑

i∈S,j∈T

cij. (1.2.2)

The st-mincut problem is a problem of �nding the partition with the lowest cost
of the corresponding mincut:

(S∗, T ∗) = argmin
S,T

CS,T , (1.2.3)

where T = V − S. Using the variable xi = δ(i ∈ T ), where δ(·) is the Kronecker
δ-function, the st-mincut problem is equivalent to:

x∗ = argmin
x

∑

(s,i)∈E

csixi +
∑

(i,t)∈E

cit(1− xi) +
∑

(i,j)∈E,i,j 6∈{s,t}
cij(1− xi)xj. (1.2.4)

According to the max-�ow min-cut theorem by Ford and Fulkerson [30], in a �ow
network the minimum cut is equal to the maximum amount of �ow passing from
the source to the sink. Let us assume all vertices are connected to the source and
the sink and (i, j) ∈ E =⇒ (j, i) ∈ E (for all non-existing edges we add an edge
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1.2. Graph Cut based Inference for CRFs

with the weight 0). Then the equivalent max �ow problem is de�ned as:

max
∑

i∈V fsi (1.2.5)

s.t. 0 ≤ fij ≤ cij, ∀(i, j) ∈ E (1.2.6)
∑

j∈N(i) fji − fij = 0, ∀i ∈ V \ {s, t}, (1.2.7)

where fij is the �ow from node i to node j, cij is called the capacity of an edge and
N(i) is the set of neighbouring vertices connected by an edge to node i. The �rst
set of constraints guarantee that the �ow is non-negative and does not exceed the
capacity of an edge and the second set of constraints guarantee the conservation
of �ow for nonterminal vertices. Given a �ow fij the residual capacity rij of an
edge (i, j) ∈ E is de�ned as:

rij = cij − fij + fji. (1.2.8)

A residual graph for Gf (V,E, R) is a graph with the same set of vertices and
edges with corresponding residual capacities as weights. An augmented path is a
path from the source to the sink along the nonzero edges in the residual graph.
If such a path does not exist, the graph is split into two disjoint sets S connected
to the source and T to the sink, which are the solutions of the corresponding
min-cut problem.

The most common method for �nding the solution of the max �ow problem
is the augmenting paths algorithm, which iteratively �nds the augmenting path
of the residual graph and pushes the �ow through it, until no such path exists.
Various augmenting path algorithms di�er only in the strategy of �nding the
augmenting paths [30, 21, 10].

7



1.2. Graph Cut based Inference for CRFs

1.2.2 Exact map Estimation for 2-label crfs

As we already mentioned, all binary pairwise submodular functions can be solved
using st-mincut. Let us consider the pairwise energy

E(x) =
∑

i∈V
ψi(xi) +

∑

i∈V,j∈Ni

ψij(xi, xj)

=
∑

i∈V
(g1

i xi + g0
i (1− xi)) +

∑

i∈V,j∈Ni

(g00
ij (1− xi)(1− xj)

+ g01
ij (1− xi)xj + g10

ij xi(1− xj) + g11
ij xixj), (1.2.9)

where each unary cost gl
i is taken if xi = l ∈ {0, 1}, and each pairwise cost glk

ij is
taken if xi = l and xj = k. The pairwise cost can be written as:

ψij(xi, xj) = Kij + g′ixi + g′jxj + cij(1− xi)xj + cijxi(1− xj) (1.2.10)

where:

Kij = g00
ij (1.2.11)

g′i =
g10

ij + g11
ij − g01

ij − g00
ij

2
, (1.2.12)

g′j =
g01

ij + g11
ij − g10

ij − g00
ij

2
, (1.2.13)

cij =
g01

ij + g10
ij − g00

ij − g11
ij

2
. (1.2.14)

By the de�nition of the submodular functions cij ≥ 0. By applying this transfor-
mation to the energy function and summing up all constant terms to K and all
linear terms to cixi for each i:

E(x) = K +
∑

i∈V
cixi +

∑

i∈V,j∈Ni

cij(1− xi)xj + cijxi(1− xj). (1.2.15)

Let cit = ci and csi = 0 if ci ≥ 0, and cit = 0 and csi = −ci otherwise. Then
cixi = citxi for ci ≥ 0 and cixi = −csi + csi(1 − xi) otherwise. Because the
constant term does not have any e�ect on the argument of the minimum of the

8



1.2. Graph Cut based Inference for CRFs

Figure 1.1: A graph construction for the pairwise crf with pairwise potentials
between x1 and x2, and between x2 and x3.

energy function, the optimisation problem becomes:

x∗ = argmin
x

∑

i∈V
csixi + cit(1− xi)

+
∑

i∈V,j∈Ni

cij(1− xi)xj + cijxi(1− xj). (1.2.16)

This formulation is equivalent to the st-min cut problem (1.2.4) with one vertex
per variable xi with cij as the set of edge costs. Each xi = 0 if xi ∈ S, and
xi = 1 otherwise. The equivalent graph construction is given in Figure 1.1. This
transformation into a pairwise graph is not unique; we have given a transformation
with symmetric pairwise edges. Also note that the graph construction can be
swapped by swapping the values 0 and 1 of the source and the sink.

The class of functions solvable using max-�ow algorithm can be extended to
energy functions of orders higher than 2, for which each clique potential ψc(xc)

can be written as:
ψc(xc) = min

zc
ψp

c (xc, zc), (1.2.17)

where zc is the set of binary auxiliary variable and ψp
c (xc, zc) is a pairwise submod-

ular function. Potentials satisfying this property are called graph-representable.
The most probable labelling is found by solving a submodular pairwise crf prob-

9



1.2. Graph Cut based Inference for CRFs

lem:

x∗ = arg min
x

∑

c∈C
ψc(xc) = arg min

x

(
min

z

∑

c∈C
ψp

c (xc, zc)

)
. (1.2.18)

It has been shown that all binary submodular functions of order 3 [55] and several
families [55, 31, 50, 81, 49] of submodular functions of higher order than 3 can
be transformed into a corresponding pairwise submodular problem. However, the
exact characterisation of graph-representable binary functions is not known.

1.2.3 Exact map Estimation for the n-label crfs

The map estimation for certain classes of multi-label crfs [46, 83, 75] can be
also solved exactly by solving one st-mincut. This is done by designing an encod-
ing [75], in which each state of the multi-label variable corresponds to the state of
the multiple binary variables. The edges in the graph are designed in such a way
that the cost of each possible cut is equal to the corresponding crf energy under
the chosen encoding scheme. Thus by �nding the best cut, the minimal energy
is found and the solution can be obtained by inverting the encoding scheme.

One such graph construction was proposed by Ishikawa [46] to solve multi-
label problems exactly for pairwise energies with convex priors over ordered sets of
labels, where the pairwise energy is called convex [46], if ψij(li, lj) = f(li− lj) and
f(.) is a discrete function, satisfying f(i+1)−2f(i)+f(i−1) ≥ 0. The encoding
uses |L| binary variables xi to represent the state of the |L|-label variable yi as
follows:

yi = 1 ⇐⇒ {x1
i = 0, x2

i = 1, x3
i = 1, x4

i = 1, .., x
|L|
i = 1}

yi = 2 ⇐⇒ {x1
i = 0, x2

i = 0, x3
i = 1, x4

i = 1, .., x
|L|
i = 1}

yi = 3 ⇐⇒ {x1
i = 0, x2

i = 0, x3
i = 0, x4

i = 1, .., x
|L|
i = 1}

..

yi = |L| ⇐⇒ {x1
i = 0, x2

i = 0, x3
i = 0, x4

i = 0, .., x
|L|
i = 0}.

This encoding is also called the battleship1 encoding. To disallow all other states
1The shape of the graph construction reminds one of a battleship.
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1.2. Graph Cut based Inference for CRFs

of binary variables, su�ciently large pairwise edges cxj+1
i xj

i
= K for each j ∈

{1, 2, ..|L| − 1} are used, where K → ∞, guaranteeing xj+1
i = 0 =⇒ xj

i = 0.
The unary potential for each variable yi can be included in the graph under this
encoding as a set of edges:

csxj
i

= K (1.2.19)

cxj
i xj+1

i
= ψu(yi = j) ∀j = 1, ..|L| − 1 (1.2.20)

c
x
|L|
i t

= ψu(yi = |L|). (1.2.21)

Intuitively the cost is taken when there is a transition 0/1 between xj
i and xj+1

i .
To guarantee the positivity of the edges each unary cost can be increased by the
same su�ciently large constant. This transformation does not change the optimal
labelling.

The pairwise potential ψ(yi, yk) is encoded using edges between corresponding
binary variables xi and xk. Assuming yi = li and yk = lk, the directed edge cxj

i xm
k

is cut if j ≤ li and m > lk or j > li and m ≤ lk. Thus the cost of the cut under
the battleship encoding is:

C(xi,xk) =
li∑

j=1

|L|∑

m=lk+1

cxj
i xm

k
+

|L|∑

j=li+1

lk∑

m=1

cxm
k

xj
i
. (1.2.22)

Under the constraint C(xi,xk) = f(li − lk) the second di�erence of this function
can be shown [46] to be:

(f(li− lk +1)− f(li− lk))− (f(li− lk)− f(li− lk−1)) = c
x

lk
k

x
li
i

+ c
x

li
i x

lk
k

. (1.2.23)

Thus the capacities for the pairwise edges can be set to:

cxj
i xm

k
= cxm

k
xj

i
=

f(li − lk + 1)− 2f(li − lk) + f(li − lk − 1)

2
. (1.2.24)

The resulting cost for any cut is the same as the corresponding crf energy.
All edges are non-negative if f(·) is convex. See [46] for more details. The
equivalent graph construction is given in Figure 1.2. The class of pairwise multi-
label problems that are exactly solvable in polynomial time using the max-�ow
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1.2. Graph Cut based Inference for CRFs

Figure 1.2: A graph construction for the multi-label problem with convex prior
using the battleship encoding [46].

algorithm can be extended to multi-label submodular functions [83], de�ned as
functions satisfying:

ψ(l1, l2) + ψ(l1 + 1, l2 + 1) ≤ ψ(l1 + 1, l2) + ψ(l1, l2 + 1) (1.2.25)

for each pair of variables xi, xj ∈ x and each pair of labels l1, l2 ∈ L \ {lL}.

1.2.4 Approximate map Estimation for crfs

The optimisation problem for �nding the map labelling for many practical multi-
label computer vision problems is np-hard and approximation algorithms have to
be applied. Several methods for general pairwise crfs have been proposed. These
algorithms can be divided into three classes. Relaxation methods [84] formulate
the problem as an integer program and relax non-convex constraints. The �nal
labelling is obtained using one of the appropriate rounding schemes such as [48].
Message passing algorithms [107, 52] iteratively update their beliefs in each label
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1.2. Graph Cut based Inference for CRFs

based on messages from their local neighbours. The last class of algorithms for
approximately solving of crfs are move making algorithms.

Move making algorithms iteratively project the problem into a smaller sub-
space of possible solutions containing the current solution. The solution of each
subproblem proposes optimal moves which guarantee that the energy decreases
after each move and must eventually converge. The move is optimal in a sense
that it leads to the largest decrease in the energy under the move space being
considered. The performance of move making algorithms depends dramatically
on the size of the move space. The iterated conditional modes [4] (icm) method
allows in each iteration to change a label of one variable to one that reduces the
overall energy. The method can be used for arbitrary crfs, but its move space is
very small and, thus tends to get stuck in poor local minima. Graph-Cut based
move making algorithms [11] project the problem into a submodular binary one,
solvable using max-�ow algorithms. Unlike (icm) their move space is exponential
in the number of variables and, if applicable, they have been found to outperform
other algorithms in terms of speed and energy [53, 81].

The swap and expansion move algorithms can be encoded as a vector of binary
variables t ={ti, ∀i ∈ V}. The transformation function T (xp, t) of a move algo-
rithm takes the current labelling xp and a move t and returns the new labelling
x induced by the move. In an αβ-swap move every random variable xi whose
current label is α or β can transition to a new label of α or β. One iteration of
the algorithm involves making moves for all pairs (α, β) ∈ L2 successively.

The transformation function Tαβ(xi, ti) for an αβ-swap transforms the label
of a random variable xi as:

Tαβ(xi, ti) =





α if xi ∈ {α, β} and ti = 0,

β if xi ∈ {α, β} and ti = 1.
(1.2.26)

Optimal αβ-swap moves cannot be e�ciently found for all general crf energies.
One su�cient condition is the semi-metricity of the pairwise potentials. Pairwise
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1.2. Graph Cut based Inference for CRFs

potentials are called semi-metric [11] if for all pairs of labels la, lb ∈ L:

ψp(la, la) = 0 (1.2.27)

ψp(la, lb) = ψp(lb, la) ≥ 0. (1.2.28)

Trivially,

ψp(la, lb) + ψp(lb, la)− ψp(la, la)− ψp(lb, lb) = 2ψp(la, lb) ≥ 0, (1.2.29)

thus the αβ-swap projection is submodular and is solvable using graph cut.
In an α-expansion move every random variable may either retain its current

label or transition to label α. One iteration of the algorithm involves making
moves for all α ∈ L successively. The transformation function Tα(xi, ti) for an
α-expansion move transforms the label of a random variable xi as:

Tα(xi, ti) =





α if ti = 0

xi if ti = 1.
(1.2.30)

A su�cient condition for the submodularity of the projection is the metricity of
the pairwise potentials. Pairwise potentials are called metric, if they are semi-
metric and for any la, lb, lc ∈ L:

ψp(la, lb) + ψp(lb, lc) ≥ ψp(la, lc). (1.2.31)

Let the current labels of two nodes be lb and lc. The submodular condition for
the α-expansion move energy for the label la is:

ψp(la, lb) + ψp(lc, la)− ψp(la, la)− ψp(lb, lc)

= ψp(la, lb) + ψp(lc, la)− ψp(lb, lc) ≥ 0. (1.2.32)

Thus, under the metricity condition the move energy is submodular and solvable
using graph cut.

Typical pairwise potentials for most computer vision problems enforce local
smoothness of the labelling. They usually take the form of either a Potts model

14



1.2. Graph Cut based Inference for CRFs

ψp(la, lb) = Kδ(la 6= lb) for unordered sets of labels, where δ(.) is Kronecker's δ-
function, or a truncated convex prior ψp(la, lb) = K min(f(|la−lb|), T ), where f(.)

is a convex function and T an optional truncation parameter. Both of these forms
satisfy (semi-)metric conditions and thus αβ-swap or α-expansion algorithms can
be applied.

Move making algorithms with binary move energies have been generalised
to multi-label range swap move energies [104, 58] for pairwise potentials with
truncated convex priors, allowing each pixel currently taking a label from a given
range to change its label to any other label from that range. The transformation
function of αβ-range move is de�ned as:

Tαβ(xi, ti) =





α if xi ∈ [α, β] and ti = 1,

α + 1 if xi ∈ [α, β] and ti = 2,

..

β if xi ∈ [α, β] and ti = β − α + 1.

(1.2.33)

where the pairwise cost is convex over the range [α− β, β − α]. The range move
subproblem is solvable using graph cuts [46] as it is explained in the previous sec-
tion 1.2.3. An expansion version of this range move algorithm allowing each pixel
to keep its old label has been proposed in [58]. The move energy in each iteration
is over-estimated by a convex function and Ishikawa's standard construction is
applied [46]. The authors showed that this inference scheme leads to the same
bound on the solution for convex truncated models as the linear programming
(lp) relaxation [84]. This result is important because the lp solution is prac-
tically not useful for computer vision problems due to its high computational
cost.
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Chapter 2

Associative Hierarchical crfs for
Object Class Segmentation



Object class image segmentation (see �gure 2.1) aims to assign an object label to
each pixel of a given image. Over the last few years many di�erent methods have
been proposed for this problem. They can be broadly categorised on the basis of
their choice of the quantisation (partitioning) of the image space1. Some methods
are formulated in terms of pixels [88] (representing the �nest quantisation), others
used segments [3, 32, 108], groups of segments [74], or intersections of multiple
segmentations [73], while some have gone to the extreme of looking at the whole
image in order to reason about object segmentation [62].

In this chapter we present a model together with an e�cient optimisation
technique that contains the above mentioned previous methods as special cases,
thus allowing for the use of holistic models that integrate the strengths of these
di�erent approaches.

2.1 Pixels vs Segments

Each choice of image quantisation comes with its share of advantages and dis-
advantages. Pixels might be considered the most obvious choice of quantisation.
However, pixels by themselves contain a limited amount of information. The
colour and intensity of a lone pixel is often not enough to determine its correct
object label. Ren and Malik's [76] remark that `pixels are not natural entities;
they are merely a consequence of the discrete representation of images' captures
some of the problems of pixel-based representations.

The last few years have seen a proliferation of unsupervised segmentation
methods [15, 24, 86], that perform an initial a priori segmentation of the image,
applied to object segmentation [3, 32, 108, 40, 80, 108], and elsewhere [43, 91].
These rely upon an initial quantisation over the image space, typically based
upon a segmentation of pixels based upon spatial location and colour/texture
distribution.

Based upon the assumption that the quantisation is correct a segment based
conditional random �eld (crf) is de�ned over the image, and inference is per-

1We use the phrase �quantise the image� as opposed to �segment the image� in order to
emphasise that a `quantum' of the image space need not just be a collection of pixels. It could
represent a sub-pixel division of the image space.
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2.1. Pixels vs Segments

Figure 2.1: Schematic description of the object class image segmentation problem.
Given a set of training images with the corresponding ground truth the task is to
build a classi�er that will label a test image.

formed to estimate the dominant label of each segment. This quantisation of
the image allows the computation of powerful region-based features which are
partially invariant to scale [105].

2.1.1 Use of Multiple Quantisations

Segment based methods work under the assumption that some segments share
boundaries with objects in an image. This is not always the case, and this as-
sumption may result in dramatic errors in the labelling (see �gure 2.2). A number
of techniques have been proposed to overcome errors in the image quantisation.
Rabinovich et al. [74] suggested �nding the most stable segmentation from a large
collection of multiple segmentations in the hope that these would be more con-
sistent with object boundaries. Larlus and Juri [62] proposed an approach to the
problem driven by object detection. In their algorithm, rectangular regions are
detected using a bag-of-words model based upon a�ne invariant features. These
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2.1. Pixels vs Segments

Figure 2.2: Multiple unsupervised image segmentations. (a) Original image. (b)-
(d) Unsupervised image segmentations with di�erent image quantisations. (b), (c)
and (d) use three di�erent unsupervised segmentations of the image, in this case
mean-shift, with di�erent choices of kernel, to divide the image into segments.
Each segment is assigned the label of the dominant object present in it. It can be
seen that quantisation (b) is the best for tree, road, and car. However, quantisa-
tion (d) is better for the left person and the sign board.

rectangles are re�ned using graph cuts to extract boundaries in a grab-cut [78]
like approach. Such approaches face di�culties in dealing with cluttered images,
in which multiple object classes intersect. Pantofaru et al. [73] observed that al-
though segments may not be consistent with object boundaries, the segmentation
map formed by taking the intersections of multiple segmentations often is. They
proposed �nding the most probable labelling of intersections of segments based
upon the features of their parent segments. This scheme e�ectively reduces the
image quantisation level. It results in more consistent segments but with a loss in
the information content and discriminative power associated with each segment.

Another method to overcome these issues was proposed by Kohli et al. [51].
By formulating the labelling problem as a crf de�ned over pixels, they were
able to recover from misleading segments which spanned multiple object classes.
Further, they were able to encourage individual pixels within a single segment to
share the same label by de�ning higher order potentials (functions de�ned over
cliques of size greater than 2) that penalised inconsistent labellings of segments.
Their method can be understood as a relaxation of the hard constraint of previous
methods, that the image labelling must follow the quantisation of the image space,
to a softer constraint in which a penalty is paid for non-conformance.

Given the dependence of previous methods on the image partitioning (quan-
tisation), the key question to be asked is: What is the correct quantisation of an
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2.1. Pixels vs Segments

image and how can we �nd it? This is a di�cult question to answer. As we ex-
plore the quantisation hierarchy from coarse to �ne, we observe that while larger
segments are perceptually more meaningful and easier to label correctly, they are
less likely to lie inside a single object. Indeed pragmatically, it appears that the
�nding of an ideal quantisation may not be possible, and that segmentation of
di�erent objects in the image may require di�erent quantisations (see �gure 2.2).

In this chapter we propose a novel hierarchical crf formulation of object
class segmentation that allows us to unify multiple disparate quantisations of the
image space, avoiding the need to make a decision of which is most appropriate.
It allows for the integration of features derived from di�erent quantisation levels
(pixel, segment, and segment union/intersection). We will demonstrate how many
of the state-of-the-art methods based on di�erent �xed image quantisations can
be seen as special cases of our model.

Inferring the Maximum a Posteriori solution in this framework involves the
minimisation of a higher order function de�ned over several thousand random
variables. We show that the solutions of such di�cult function minimisation
problems can be e�ciently computed using graph-cut [10] based move-making al-
gorithms. However, the contribution is not limited to the application of the novel
hierarchical crf framework to object class segmentation. We also propose new
sophisticated potentials de�ned over the di�erent levels of the quantisation hier-
archy, and evaluate the e�cacy of our framework on some of the most challenging
data sets for object class segmentation, and show that it outperforms state-of-
the-art methods based on individual image quantisation levels. We believe this
is because: (i) Our methods generalise these previous methods allowing them to
be represented as particular parameter choices of our hierarchical model. (ii) We
go beyond these models by being able to use multiple hierarchies of segmentation
simultaneously. (iii) In contrast to many previous methods that do not de�ne
any sort of cost function, or likelihood, we cleanly formulate the CRF energy of
our model and show how it can be minimised.
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2.2. CRFs for Object-Class Segmentation

2.1.2 Hierarchical Models and Context

The use of context has been well documented for object recognition and seg-
mentation. It is particularly useful in overcoming ambiguities caused by limited
evidence; this often occurs in object recognition where we frequently encounter
objects at small scales or low resolution images [44]. Classical Markov and Con-
ditional Random Field models exploit context in a local manner by encouraging
adjacent pixels or segments to take the same label. To encode context at dif-
ferent scales Zhu et al. [109] introduced the hierarchical image model (HIM)
built of rectangular regions with parent-child dependencies. This model captures
large-distance dependencies and is solved e�ciently using dynamic programming.
However, it supports neither multiple hierarchies, nor dependencies between vari-
ables at the same level. To encode semantic context and to combine top-down
and bottom-up approaches Tu et al. [99] proposed a framework in which they
showed that the use of object speci�c knowledge helps to disambiguate low-level
segmentation cues.

Our hierarchical crf model uses a novel formulation that allows context to be
incorporated at multiple levels of multiple quantisation, something not previously
possible. As we will explain in section 2.5 it leads to improved segmentation
results, while keeping the inference tractable.

2.2 CRFs for Object-Class Segmentation

Most pixel labelling problems in vision are formulated as a pairwise crf whose
energy can be written as the sum of unary and pairwise potentials as:

E(x) =
∑

i∈V
ψi(xi) +

∑

i∈V,j∈Ni

ψij(xi, xj). (2.2.1)

The unary potentials ψi(xi) of the crf are de�ned as the negative log likelihood
of variable Xi taking label xi, while the pairwise potential encodes a smoothness
prior which encourages neighbouring pixels in the image to take the same label,
resulting in a shrinkage bias [51].

The pairwise crf formulation su�ers from a number of problems stemming

21



2.2. CRFs for Object-Class Segmentation

from its inability to express high-level dependencies between pixels. Despite these
limitations, it is widely used and very e�ective. Shotton et al. [88] applied the
pairwise crf to the object class segmentation problem. They de�ned the unary
likelihoods potentials using the result of a boosted classi�er over a region about
each pixel, that they called TextonBoost and were able to obtain good results.

2.2.1 The Robust PN model

The pairwise crf formulation of [88] was extended by [51] with the incorporation
of robust higher order potentials de�ned over segments. Their formulation was
based upon the observation that pixels lying within the same segment are more
likely to take the same label. The energy of the higher order crf proposed by [51]
was of the form:

E(x) =
∑

i∈V
ψi(xi) +

∑

i∈V,j∈Nl

ψij(xi, xj) +
∑

c∈S
ψh

c (xc), (2.2.2)

where S is a set of cliques (or segments), and ψh
c are higher order potentials

de�ned over them. Their higher order potentials took the form of a Robust PN

model de�ned as:
ψh

c (xc) = min
l∈L

(γmax
c , γl

c + kl
cN

l
c(xc)), (2.2.3)

satisfying γl
c ≤ γmax

c , ∀l ∈ L, where N l
c(xc) =

∑
i∈c δ(xi 6= l) is the number of

inconsistent pixels with the label l.
The potential takes cost γl

c if all pixels in the segment take the label l. Each
inconsistent pixel is penalised with a cost kl

c. The maximum cost of the potential
is truncated to γmax

c . By setting γl
c = 0 ∀l ∈ L this potential penalises inconsis-

tent segments and thus encourages label consistency in segments. The weighted
version of this potential is:

ψh
c (xc) = min

l∈L
(γmax

c , γl
c +

∑

i∈c

wik
l
cδ(xi 6= l)), (2.2.4)

where wi is the weight of the variable xi.
This framework enabled the integration of multiple quantisations of the image

22



2.2. CRFs for Object-Class Segmentation

Figure 2.3: Existing models as special cases of our hierarchical model. The
lowest layer of the image represents the pixel layer, the middle layer potentials
de�ned over super-pixels or segments, and the third layer represents our hierarchi-
cal terms. (a) shows the relationships permitted in a pixel-based crf with Robust
PN potentials. (b) shows relationships contained within a super-pixel-based crf
(the directed edges indicate the one way dependence between the labellings of pixels
and super-pixels). (c) Our hierarchical crf. See section 2.3.

space in a principled manner. However unlike our work, their choice of potential
was independent of the choice of label and only encouraged pixels within the same
segment to take the same label. Similarly, their model is unable to encode the
conditional dependencies between segments. These potentials greatly increase
the expressiveness of our model, as detailed in section 2.3.

2.2.2 The Robust PN-Based Hierarchical CRFs

The higher-order PN potentials of (2.2.4) are equivalent to the minimisation of a
pairwise graph de�ned over the same clique xc and a single auxiliary variable x(1)

c ,
that takes values from an extended label set LE = L ∪ {lF}. The cost function
over xc ∪ {x(1)

c } takes the form:

ψp
c (xc, x

(1)
c ) = φc(x

(1)
c ) +

∑

i∈c

φc(x
(1)
c , xi). (2.2.5)

where the unary potential over x(1)
c , φc(x

(1)
c ) associates the cost γl

c with x(1)
c taking

a label in L, and γmax
c with x(1)

c taking the free label lF . The pairwise potentials
φc(x

(1)
c , xi) are de�ned as:

φc(x
(1)
c , xi) =





0 if yc = lF or x(1)
c = xi

wik
x
(1)
c

c otherwise.
(2.2.6)
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Then
ψh

c (xc) = min
x
(1)
c

ψp
c (xc, x

(1)
c ). (2.2.7)

By ensuring that the pairwise edges between the auxiliary variable and its chil-
dren satisfy the constraint ∑

i wik
l
c ≥ 2φc(l),∀l ∈ L, we can guarantee that the

labels of these auxiliary variables carry a clear semantic meaning. If this con-
straint is satis�ed an auxiliary variable may take state l ∈ L in a minimal cost
labelling, if and only if, the weighted majority of its child nodes take state l.
State lF indicates a heterogeneous labelling of a segment in which no label holds
a signi�cant majority. We now extend the model to include pairwise dependencies
between auxiliary variables:

E(x) =
∑

i∈V
ψi(xi) +

∑

i∈V,j∈Ni

ψij(xi, xj)

+ min
x(1)

( ∑

c∈S
ψp

c (xc, x
(1)
c ) +

∑

c,d∈S
ψcd(x

(1)
c , x

(1)
d )

)
. (2.2.8)

These pairwise terms can be understood as encouraging consistency between
neighbouring cliques. This framework can be further generalised to a hierar-
chical model where the connection between layers takes the form of (2.2.5) and
the weights for each child node in φc(.) are proportional to the sum of the weights
in the �base layer� belonging to the clique c.

The energy of our new hierarchical model is of the form:

E(x) =
∑

i∈V
ψi(xi) +

∑

i∈V,j∈Ni

ψij(xi, xj) + min
x(1)

E(1)(x,x(1)), (2.2.9)

where E(1)(x,x(1)) is recursively de�ned as:

E(n)(x(n−1),x(n)) =
∑

c∈S(n)

ψp
c (x

(n−1)
c , x(n)

c ) +
∑

c,d∈S(n)

ψcd(x
(n)
c , x

(n)
d )

+ min
x(n+1)

E(n+1)(x(n),x(n+1)). (2.2.10)

Where x(0) = x refers to the state of the base level, and x(n) for n ≥ 1 the state
of auxiliary variables.

The inter-layer potential between between two layers of auxiliary variables
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takes the form of weighted Robust PN :

φc(x
(n−1)
c , x(n)

c ) =





0 if x(n)
c = lF or x(n)

c = x(n−1)
c

w
x

(n−1)
c

kl
c otherwise, where l = x(n−1)

c ,
(2.2.11)

where the weights are summed up over the base layer as:

w
x

(n−1)
c

=
∑

i∈x
(n−1)
c

wi. (2.2.12)

2.3 Relation to Previous Models

In this section, we draw comparisons with the current state-of-the-art models
for object segmentation [32, 73, 74, 108] and show that at certain choices of the
parameters of our model, these methods fall out as special cases (illustrated in
�gure 2.3). Thus, our method not only generalises the standard pairwise crf
formulations over pixels, but also the previous work based on super-pixels and
(as we shall see) provides a global optimisation framework allowing us to combine
features at di�erent quantisation levels.

We will now show that our model is not only a generalisation of crfs over
pixels, but also of two classes of pre-existing model: (i) crfs based upon disjoint
segments [3, 32, 108] (see �gure 2.3(b)), and (ii) crfs based upon the intersection
of segments [73].

2.3.1 Equivalence to CRFs based on Segments

Let us consider the case with only one segmentation and potentials de�ned only
over this layer. In this case, c ∈ S are disjoint (non-overlapping)2. To ensure
that x(1)

c 6= lF ,∀c ∈ C, we assign a high value to γmax
c →∞,∀c ∈ C. As only the

potential ψp(xc, x
(1)
c ) acts upon xi : i ∈ c, all pixels in c will take the same label. In

this case, the optimal labelling will always be segment consistent (i.e. the labelling
2This is equivalent to the case where only one particular quantisation of the image space is

considered.
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of pixels within any segment is homogeneous) and the potential ψp
c (xc, x

(1)
c ) can

now be considered as a unary potential over the auxiliary (segment) variable x(1)
c .

This allows us to rewrite (2.2.8) as:

E(x(1)) =
∑

c∈S(1)

ψc(x
(1)
c ) +

∑

c,d∈S(1)

ψcd(x
(1)
c , x

(1)
d ) (2.3.1)

which is exactly the same as the cost associated with the pairwise crf de�ned
over segments with ψc(x

(1)
c = l) = γl

c as the unary cost and ψcd(·) as the pairwise
cost for each segment. In this case, our model becomes equivalent to the pairwise
crf models de�ned over segments [3, 32, 74, 108].

2.3.2 Equivalence to Models of Segment Intersec-
tions

Let us now consider the case with multiple overlapping segmentations and poten-
tials de�ned only over this layer. If we set wik

l
c = γmax

c , ∀i ∈ V , l ∈ L, c ∈ S, then
x(1)

c 6= lF only if xi = x(1)
c ,∀i ∈ c. In this case, only the potentials ∑

c3i ψ
p
c (xc, x

(1)
c )

act on xi.
Consider a pair of pixels i, j that lie in the same intersection of segments i.e.

{c ∈ S : c 3 i} = {c ∈ S : c 3 j}. Then, in a minimal labelling, either ∃x(1)
c = xi,

and hence xj = x(1)
c = xi, or ∀c 3 i : x(1)

c = lF . In the second case there are no
constraints acting on xi or xj, and a minimal cost labelling can be chosen such
that xi = xj.

Consequentially, there is always a minimal cost labelling consistent with re-
spect to the intersection of segments, in this sense our model is equivalent to that
proposed in [73].

2.3.3 Robustness to Misleading Segmentations

As discussed before, the quantisation of image space obtained using unsupervised
segmentation algorithms may be misleading since segments may contain multi-
ple object classes. Assigning the same label to all pixels of such segments will
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result in an incorrect labelling. This problem can be overcome by using segment
quality measures proposed by [74, 76] which can be used to distinguish the good
segments from misleading ones. These measures can be seamlessly integrated in
our hierarchical framework by modulating the strength of the potentials de�ned
over segments. Formally, this is achieved by weighting the potentials ψh

c (xc, x
(1)
c )

according to a quality sensitive measure Q(c) for any segment c.

2.4 Inference for Hierarchical CRFs

It has been experimentally shown [53, 81], that for most computer vision prob-
lems graph cut [10] based move making algorithms [11] tend to outperform other
approaches in terms of speed and quality.

In this section we show how to �nd the optimal move if we allow in each
α-expansion iteration all variables in the base layer to either keep their old label
or change their label to α, and all variables in the auxiliary layers to either keep
the old label, change their label to lF or change the label to α. It can be shown,
that if the hierarchy is well-founded [81] this kind of move is not optimal only
for the hierarchical energy over |L| + 1 labels but also over higher order energy
(2.2.9). See [81] for more details.

The move energy will be encoded using one binary variable ti for each variable
xi in the base layer encoding two possible states {α, xi} of base layer variables after
the move, and two binary variables a(n)

c , b(n)
c for each variable x(n)

c in the auxiliary
layer encoding three possible states {α, lF , x(n)

c } of auxiliary layer variables after
the move, where xi and x(n)

c are the states of the corresponding variables before
the move.

The transformation function for the base layer variables is encoded the same
way as standard α-expansion:

Tα(xi, ti) =





α if ti = 0

xi if ti = 1.
(2.4.1)
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Figure 2.4: A graph construction for the α-expansion move of the inter-layer
connection between a) base layer and the �rst auxiliary layer, b) between two
auxiliary levels. The colour of variables ti and b(n)

c corresponds to the label before
the move. Each variable a(n)

c is connected to each of the variables ti respectively
a

(n−1)
i in the clique of the previous level, each variable b(n)

c is connected to each
of the variables ti respectively b

(n−1)
i in the clique of the previous level. Edges

modelling corresponding inter-layer connection are bold.

The transformation function for the auxiliary variables is encoded as:

Tα(x(n)
c , a(n)

c , b(n)
c ) =





α if a(n)
c = 0 and b(n)

c = 0

x(n)
c if a(n)

c = 1 and b(n)
c = 1

lF if a(n)
c = 1 and b(n)

c = 0.

(2.4.2)

To disallow the combination a(n)
c = 0 and b(n)

c = 1, we add an edge K(1−a(n)
c )b(n)

c

with su�ciently large K →∞. The energy is additive, thus we can �nd equivalent
graph constructions for each term separately.
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2.4. Inference for Hierarchical CRFs

2.4.1 Graph Construction for the Inter-layer Po-
tential

Let us �rst assume none of the variables currently takes a label α or lF and
consider the inter-layer term between the base layer xc and the �rst auxiliary
layer:

ψp
c (xc, x

(1)
c ) = φc(x

(1)
c ) +

∑

i∈c

φc(x
(1)
c , xi), (2.4.3)

where

φc(x
(1)
c , xi) =





0 if x(1)
c = lF or x(1)

c = xi

wik
x
(1)
c

c otherwise.
(2.4.4)

The move energy of this potential is:

ψp
c (tc, a

(1)
c , b(1)

c ) =





φc(α) +
∑

i∈c wik
α
c ti if a(1)

c = 0 and b(1)
c = 0

χc(x
(1)
c ) +

∑
i∈c wik

x
(1)
c

c (1− ti)δ(xi = x(1)
c ) if a(1)

c = 1 and b(1)
c = 1

φc(lF ) if a(1)
c = 1 and b(1)

c = 0,

(2.4.5)
where χc(x

(1)
c ) = φ(x(1)

c ) +
∑

i∈c wik
x
(1)
c

c δ(xi 6= x(1)
c ). The move energy can be

transformed into:

ψp
c (tc, a

(1)
c , b(1)

c ) = φc(α) + χc(x
(1)
c )− φc(lF ) (2.4.6)

+
∑

i∈c

wik
α
c ti(1− a(1)

c ) + (φc(lF )− φc(α))a(1)
c

+
∑

i∈c

wik
x
(1)
c

c δ(xi = x(1)
c )(1− ti)b

(1)
c + (φc(lF )− χc(x

(1)
c ))(1− b(1)

c ).

The equivalence can be shown by checking the value of the transformed move
energy for each combination of a(1)

c and b(1)
c . The move energy is pairwise sub-

modular and thus represents our inter-layer potential. The graph is equivalent to
the Robust-PN graph construction in [51].

For the inter-layer potential between two auxiliary layers x(n) and x(n−1) where
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2.4. Inference for Hierarchical CRFs

n > 1, the pairwise cost becomes:

φc(x
(n)
c , x

(n−1)
d ) =





0 if x(n)
c = lF or x(n)

c = x
(n−1)
d

wdk
x
(n)
c

c otherwise.
(2.4.7)

The condition x(n)
c = x

(n−1)
d is satis�ed if both auxiliary variables satisfy a(n)

c =

a
(n−1)
d and b(n)

c = b
(n−1)
d . A label of a child is not consistent with a label α if

a
(n−1)
i = 1, a label of a child is not consistent with an old label if b

(n−1)
i = 0.

Thus, the move energy of this potential is:

ψp
c (a

(n−1),b(n−1), a(n)
c , b(n)

c ) =





φc(α) +
∑

i∈c wik
α
c a

(n−1)
i if a(n)

c = 0 and b(n)
c = 0

χc(x
(n)
c ) +

∑
i∈c wik

x
(n)
c

c (1− b
(n−1)
i )δ(x

(n−1)
i = x(n)

c )

if a(n)
c = 1 and b(n)

c = 1

φc(lF ) if a(n)
c = 1 and b(n)

c = 0,

(2.4.8)

where χc(x
(n)
c ) = φ(x(n)

c ) +
∑

i∈c wik
x
(n)
c

c δ(x
(n−1)
i = x(n)

c ). Similarly to the previous
case the move energy can transformed into:

ψp
c (a

(n−1),b(n−1), a(n)
c , b(n)

c ) = φc(α) + χc(x
(n)
c )− φc(lF )

+
∑

i∈c

wik
α
c a

(n−1)
i (1− a(n)

c ) + (φc(lF )− φc(α))a(n)
c

+
∑

i∈c

wik
x
(n)
c

c δ(x
(n−1)
i = x(n)

c )(1− b
(n−1)
i )b(n)

c

+ (φc(lF )− χc(x
(n)
c ))(1− b(n)

c ). (2.4.9)

The graph constructions for both cases of inter-layer connection are given in
�gure 2.4.
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2.4. Inference for Hierarchical CRFs

Figure 2.5: A graph construction for the α-expansion move of the pairwise poten-
tial on the auxiliary level if the label before the move was a) the same, b) di�erent.
The colours of variables ti and b(n)

c correspond to the label before the move. Edges
modelling corresponding pairwise potentials are bold.

2.4.2 Graph Construction for the Pairwise Poten-
tials of the Auxiliary Variables

A su�cient condition for the graph-representability of the pairwise potential, that
is given in [81] takes the form:

ψp
cd(x

(n)
c , x

(n)
d ) =





0 if x(n)
c = x

(n)
d

K
2

if (x(n)
c = lF and x

(n)
d 6= lF ) or (x(n)

c 6= lF and x
(n)
d = lF )

K if x(n)
c 6= x

(n)
d 6= lF .

(2.4.10)
In case x(n)

c = x
(n)
d the move energy of the pairwise potentials between auxiliary
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variables is:

ψp
cd(a

(n)
c , b(n)

c , a
(n)
d , b

(n)
d ) =





0 if a(n)
c = a

(n)
d and b(n)

c = b
(n)
d

K
2

if (a(n) 6= a
(n)
d and b(n)

c = b
(n)
d )

or (a(n) = a
(n)
d and b(n)

c 6= b
(n)
d )

K if a(n)
c 6= a

(n)
d and b(n)

c 6= b
(n)
d .

(2.4.11)

This move energy can be transformed into a pairwise submodular one as:

ψp
cd(a

(n)
c , b(n)

c , a
(n)
d , b

(n)
d ) =

K

2
a(n)

c (1− a
(n)
d ) +

K

2
(1− a(n)

c )a
(n)
d

+
K

2
b(n)
c (1− b

(n)
d ) +

K

2
(1− b(n)

c )b
(n)
d . (2.4.12)

The equivalence can be shown by checking all possible combinations of a(n)
c , b(n)

c ,
a

(n)
d and b

(n)
d .

In the case that x(n)
c 6= x

(n)
d the move energy of the pairwise potential between

auxiliary variables becomes:

ψp
cd(a

(n)
c , b(n)

c , a
(n)
d , b

(n)
d ) =





0 if a(n)
c = a(n)

c and b(n)
c = b

(n)
d = 0

K if a(n)
c = a

(n)
d and b(n)

c = b
(n)
d = 1

K
2

if (a(n) 6= a
(n)
d and b(n)

c = b
(n)
d )

or (a(n) = a
(n)
d and b(n)

c 6= b
(n)
d )

K if a(n)
c 6= a

(n)
d and b(n)

c 6= b
(n)
d ,

(2.4.13)

and the equivalent pairwise submodular move energy is:

ψp
cd(a

(n)
c , b(n)

c , a
(n)
d , b

(n)
d ) =

K

2
a(n)

c (1− a
(n)
d ) +

K

2
(1− a(n)

c )a
(n)
d +

K

2
b(n)
c +

K

2
b
(n)
d .

(2.4.14)
Note that the equivalence holds only for 3× 3 allowed con�gurations of a(n)

c , b(n)
c ,

a
(n)
d and b

(n)
d . Graph constructions for both cases x(n)

c = x
(n)
d and x(n)

c 6= x
(n)
d are

given in �gure 2.5.
All the previous constructions were made under the assumption that none

of the variables already takes the label α or lF . If a variable in the base layer
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2.5. Potentials for Hierarchical CRFs

already takes the label α, the problem is equivalent to changing each ti to 0 in
all pairwise submodular expressions. If the variable in the auxiliary layer already
takes the the label α, both a(n)

c and b(n)
c have to be changed to 0 in all derived

expressions. In the case that the auxiliary variable takes the label lF , the variable
can take only label α and label lF after the move and thus b(n)

c has to be changed
to 0. Setting the label of any variable to 0 is equivalent to tying it to the sink
or equivalently changing each incoming edge to this variable to the edge going
to the sink. Setting the label of any variable to 1 is equivalent to tying it to the
source or equivalently changing each outgoing edge of this variable to the edge
going to the source. The in�nite edge between a(n)

c and b(n)
c is not necessary if

the hierarchy is well-founded, see [81] for more details.

2.5 Potentials for Hierarchical CRFs

Having described the de�nition and intuition behind the PN -based hierarchical
crf framework, in this section we describe the set of potentials we use in the
object-class segmentation problem. This set includes unary potentials for both
pixels and segments, pairwise potentials between pixels and between segments
and connective potentials between pixels and their containing segments.

In the previous sections we decomposed the energy (2.2.10) into a set of po-
tentials ψc(xc). In this section we will decompose them further, writing ψc(xc) =

λcξc(xc), where ξc is a feature based potential over c and λc its weight. Initially
we will discuss the learning of potentials ξc(xc), and later discuss the learning of
the weights λc.

For our application we used potentials de�ned over a three-level hierarchy. We
refer to elements of each layer as pixels, segments and super-segments respectively.
Unsupervised segments are initially found using multiple applications of a �ne
scale mean-shift algorithm [15]. �Super-segments� are based upon a coarse mean-
shift segmentation, performed over the result of the previous segmentations.
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2.5. Potentials for Hierarchical CRFs

2.5.1 Features

Several well-engineered features were experimentally found to be more discrimi-
native then the raw rgb values of pixels. In our application we use textons [69],
local binary patterns [71], multi-scale [8] dense sift [67] and opponent sift [100].
Textons [69] are de�ned as a clustered 16-dimensional response to 16 di�erent �l-
ters - Gaussian, Gaussian derivative and Laplacian �lters at di�erent scales. Local
binary pattern [71] is a 8-dimensional binary feature consisting of 8 comparisons
of the intensity value of the center pixel with its neighbours. The sift [67] fea-
ture contains the histograms of gradients of 4 × 4 cells quantised into 8 bins.
The resulting 128 dimensional vector is normalised to 1. Opponent sift [100]
is a variant of coloured sift and is built of separate histograms of gradients
for 3 channels in the transformed colour space. All features except local binary
patterns are quantised to 150 clusters using standard K-means clustering.

2.5.2 Unary Potentials from Pixelwise Features

Unary potentials from pixelwise features are derived from TextonBoost [88], and
allow us to perform texture based segmentation, at the pixel level, within the same
framework. The features used for constructing these potentials are computed on
every pixel of the image, and are also called dense features. TextonBoost esti-
mates the probability of a pixel taking a certain label by boosting weak classi�ers
based on a set of shape �lter responses. The shape �lters are de�ned by a tex-
ton t and rectangular region r. Their response v[t,r](i) for a given point i is the
number of textons t in the region r placed relative to the point i. Corresponding
weak classi�ers are decision stumps, which split on a shape �lter response and
one of a set of thresholds. The most discriminative weak classi�ers are found
using multi-class Gentle Ada-Boost [95].

We observed that textons were unable to discriminate between some classes
of similar textures. This motivated us to extend the TextonBoost framework by
boosting classi�ers de�ned on multiple dense features (such as colour, textons,
histograms of oriented gradients (hog) [18], and pixel location) together. Gener-
alised shape �lters are de�ned by feature type f , feature cluster t and rectangular
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region r. Their response vf
[t,r](i) for given point i is the number of features of type

f belonging to cluster t in the region r placed relative to the point i. The pool
of weak classi�ers contains decision stumps based on the generalised shape �lters
against a set of thresholds θ. See [95, 88] for further details of the procedure. Our
results show that the boosting of multiple features together results in a signi�cant
improvement of the performance (note the improvement from the 72% of [88] to
81% of our similar pixel-based crf in �gure 2.10). Further improvements were
achieved using exponentially instead of linearly growing thresholds and Gaussian
instead of uniform distribution of rectangles around the point. The potential is
incorporated into the framework in the standard way as a negative log-likelihood.

2.5.3 Histogram-based Segment Unary Potentials

We now explain the unary potential de�ned over segments and super-segments.
For many classi�cation and recognition problems, the distributions of pixelwise
feature responses are more discriminative than any feature alone. For instance,
the sky can be either `black' (night) or `blue' (day), but is never `half-black' and
`half-blue'. This consistency in the colour of object instances can be used as a
region based feature for improving object segmentation results. The unary poten-
tial of an auxiliary variable representing a segment is learnt (using the normalised
histograms of multiple clustered pixelwise features) using multi-class Gentle Ada-
Boost [95], where the pool of weak classi�ers is as above, comparing the percent-
age of features of the cluster t of the feature f with one of the thresholds θ. The
selection and learning procedure is identical to [95].

The segment potential is incorporated into the energy as:

φc(x
(1) = l) = λs|c|min(−Hl(c) + K, αh), (2.5.1)

φc(x
(1) = lF ) = λs|c|αh, (2.5.2)

where Hl(c) is the response given by the Ada-boost classi�er to clique c taking
label l, αh a truncation threshold and K = log

∑
l′∈L eHl′ (c) a normalising constant.

For our experiments, the cost of pixel labels di�ering from an associated seg-
ment label was set to kl

c = (φc(x
(1) = lF )− φc(x

(1) = l))/0.1|c|. This means that
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up to 10% of the pixels can take a label di�erent to the segment label without
the segment variable changing its state to lF .

2.5.4 Pairwise Potentials

The pairwise terms on the pixel level ψij(·) take the form of the classical contrast
sensitive potentials.

ξp(xi, xj) =





0 if xi = xj,

g(i, j) otherwise,
(2.5.3)

where the function g(i, j) is an edge feature based on the di�erence in the intensity
of colours of neighboring pixels [9]. It is typically de�ned as:

g(i, j) = θp + θv exp(−θβ||Ii − Ij||2), (2.5.4)

where Ii and Ij are the colour vectors of pixel i and j respectively. These encour-
age neighbouring pixels in the image (having a similar colour) to take the same
label. We refer the reader to [9, 78, 88] for details.

To encourage neighbouring segments with similar texture to take the same
label, we used pairwise potentials based on the squared Euclidean distance of
normalised histograms of colour between corresponding auxiliary variables:

ξp
cd(x

(1)
c , x

(1)
d ) =





0 if x(1)
c = x

(1)
d ,

g(c, d)/2 if (x(1)
c = lF and x

(1)
d 6= lF )

or (x(1)
c 6= lF and x

(1)
d = lF ),

g(c, d) otherwise,

(2.5.5)

where g(c, d) = |h(x(1)
c )−h(x

(1)
d )|22 and h(·) is the normalised histogram of colours

of given segment.
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2.6 Learning Weights for Hierarchical CRFs

Having learnt potentials ξc(xc) as described earlier, the problem remains of how to
assign appropriate weights λc. This weighting, and the training of crf parameters
in general is not an easy problem and there is a wide body of literature dealing
with it [5, 41, 40, 92]. The approach we take to learn these weights uses a coarse
to �ne, layer-based, local search scheme over a validation set.

We �rst introduce additional notation: V(i) will refer to the variables contained
in the ith layer of the hierarchy, while x(i) is the labelling of V(i) associated with
a map estimate over the truncated hierarchical CRF consisting of the random
variables v′ = {v ∈ V (k) : k ≥ i}. Given the validation data we can determine a
dominant label Lc for each segment c, such that lF = l when ∑

i∈l ∆(xi = l) =

0.5|c|, and if there is no such dominant label, we set Lc = lF .
We note that at a given level of the hierarchy, the label of a clique x(i)

c must
correspond to the dominant label of this clique in the ground truth (or lF ) for its
pixels to be correctly labelled. Based on this observation, we propose a simple
heuristic which we optimise for each layer.

At each layer, we seek to minimise the discrepancy between the dominant
ground truth label of a clique lc, and the value x(i)

c of the map estimate. Formally,
we choose parameters λ to minimise

C(x(i)) =
∑

c∈V(i)

∆(x(i)
c 6= lc ∧ lc 6= lF ). (2.6.1)

We optimise (2.6.1) layer by layer. The full method is given in algorithm 1, where
we use λ

(i)
1 to refer to the weighting of unary potentials in the ith layer, λ

(i)
2 the

weight of the pairwise terms and λ
(i+1)
h a scalar modi�er of all terms in the (i+1)th

layer or greater. Θ is an arbitrary constant that controls the precision of the �nal
assignment of λ.

An alternative and elegant approach to this is that of [27] which we intend to
investigate in future work.
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Algorithm 1 Weight Learning Scheme.
for i from n down to 1 do

s1, s2, sh, d1, d2, dh = 1
while s1, s2 or sh ≥ Θ do
for t ∈ {1, 2, h} do

λ
′(i)
t ← λ

(i)
t + dtst

Perform MAP estimate of xi using λ′t instead of λt

if C(xi) has decreased then
λt ← λ′t

else
st ← st/2, dt ← −dt

end if
end for

end while
end for

2.7 Experiments

We evaluated the performance of our framework on four data sets: Corel, Sowerby,
PASCAL VOC 2008 [22] and MSRC-21 [88].

MSRC-21 The MSRC segmentation data set contains 591 images of resolu-
tion 320 × 213 pixels, accompanied with a hand labelled object segmentation
of 21 object classes. Pixels on the boundaries of objects are not labelled in
these segmentations. The division into training, validation and test sets occu-
pied 45%, 10% and 45% of the images. Methods are typically compared using
global criteria or average-per-class recall criteria (see �gure 2.10 for details). For
these experiments, the hierarchy was composed of 3 pairs of nested segmenta-
tions. The parameters of the mean-shift kernels were chosen as (6, 5), (12, 10);
(6, 7.5), (12, 15); and (6, 9), (12, 18). The �rst value refers to the planar distance
between points, and the second refers to the Euclidian distance in the luv colour
space. Quantitative comparison of performance with other methods is given in
�gure 2.10. Qualitative results are given in �gure 2.6.

Corel The Corel segmentation data set contains 100 images of resolution 180×
120 pixels of natural sceneries, with a hand labelled object segmentation of 7

object classes. The division into training and test sets occupied 50% and 50%
the images. The same parameters as for MSRC data set have been used due to
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an insu�cient amount of data. Unlike in MSRC dataset, segment-based methods
performed better than pixel-based (see �gure 2.11 for more details). Qualitative
results are given in �gure 2.7.

Sowerby The Sowerby segmentation data set contains 106 images of resolution
96×64 pixels of road scenes, with a hand labelled object segmentation of 7 object
classes. The division into training and test sets occupied 50% and 50% the images.
Similarly to Corel data set, the same parameters as for MSRC dataset have been
used due to an insu�cient amount of data. Segment-based methods perform
better than pixel-based (see �gure 2.12 for more details). Small classes performed
very badly due to insu�cient amount of training and test data. Qualitative results
are given in �gure 2.8.

PASCAL VOC 2008 This data set was used for the PASCAL Visual Ob-
ject Category segmentation contest 2008. It is especially challenging given the
presence of signi�cant background clutter, illumination e�ects and occlusions. It
contains 511 training, 512 validation and 512 segmented test images of 20 fore-
ground and 1 background classes. The organisers also provided 10, 057 images for
which only the bounding boxes of the objects present in the image are marked.
We did not use these additional images for training our framework. For this data
set we used a two-level hierarchy. The methods are evaluated using intersection
vs. union criteria [22] that penalises the performance of classes i and j given a
mislabelling of i as j (see �gure 2.13). Note that this is not equivalent to the
percentage of pixels correctly labelled. Quantitative comparison of performance
with other methods is given in 2.13. Qualitative results are given in �gure 2.9.
The only comparable methods used classi�cation and detection priors trained
over a much larger set of images. Note that the reported results are from the
actual challenge. For more recent results see chapter 4.

The hierarchical crf signi�cantly outperformed crf approaches at single
scale (pixels, segments) on all data sets. Experimentally, the approach was robust
to the choice of the parameters and typically the same parameters performed well
on all data sets. This suggests that the improvement of the performance comes
from the incorporation of the di�erent discriminative cues across multiple scales.
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2.8 Conclusions

We have presented a generalisation of many previous super-pixel based methods
within a principled CRF framework. Our approach enabled the integration of
features and contextual priors de�ned over multiple image quantisations in one
optimisation framework that supports e�cient map estimation using graph cut
based move making algorithms. In order to do this, we have examined the use
of auxiliary variables in crfs which have been relatively neglected in computer
vision over the past twenty years.

The �exibility and generality of our framework allowed us to propose and use
novel pixel and segment based potential functions and achieve state-of-the-art
results on some of the most challenging data sets for object class segmentation.
We believe that use of the hierarchical crf will yield similar improvements for
other labelling problems.
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Original Image Pixel-based crf Segment-based crf Hierarchical crf Ground Truth

Figure 2.6: Qualitative results on the MSRC-21 data set comparing non-
hierarchical (i.e. pairwise models) approaches de�ned over pixels (similar to Tex-
tonBoost [88]) or segments (similar to [108, 73, 80] described in section 2.3)
against our hierarchical model. Regions marked black in the hand-labelled ground
truth image are unlabelled.
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Original Image Pixel-based crf Segment-based crf Hierarchical crf Ground Truth

Figure 2.7: Qualitative results on the Corel data set comparing approaches de�ned
over pixels or segments against the hierarchical model.

Original Image Pixel-based crf Segment-based crf Hierarchical crf Ground Truth

Figure 2.8: Qualitative results on the Sowerby data set comparing approaches
de�ned over pixels or segments against the hierarchical model.
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Figure 2.9: Qualitative results on the VOC-2008 data set. Successful segmen-
tations (top 3 rows) and standard failure cases (bottom) - from left to right,
context error, detection failure and misclassi�cation.
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Figure 2.10: Quantitative results on the MSRC data set. The table shows % pixel recall
measure Nii/

∑
j Nij for di�erent object classes. `Global' refers to the overall error∑

i∈LNii∑
i,j∈LNij

, while `average' is ∑
i∈L

Nii

|L|
∑

j∈LNij
. Nij refers to the number of pixels of

label i labelled j. The comparison suggests that the incorporation of the classi�ers at
di�erent scales leads to a signi�cant improvement of the performance.
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Pixel-based CRF 76 72 80 85 88 83 75 57 35

Segment-based CRF 80 78 92 65 91 84 81 67 73
Hierarchical CRF 84 85 92 82 94 88 83 77 76

Figure 2.11: Quantitative results on the Corel data set. Segment-based method tend to
outperform pixel-based ones. Due to the insu�cient amount of data the performance
largely depends on the random split of the data. The same error measure as for the
MSRC dataset has been used. Combining classi�ers at di�erent scales led to an im-
provement of the performance.
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Figure 2.12: Quantitative results on the Sowerby data set. The segment-based method
tend to outperform pixel-based ones. Context-based pixel method could not capture small
objects due to the insu�cient size of the images. The same error measure as for the
MSRC dataset has been used. Similarly to other data sets, the hierarchical crf outper-
formed both approaches over single scale.
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Figure 2.13: Quantitative analysis of VOC2008 results [22] based upon performance
the intersection vs. union criteria (

∑
i∈LNii

|L|(−Nii+
∑

j∈LNij+Nji)
). Note that all other methods

used classi�cation and detection priors trained over a much larger data set that included
unsegmented images. The reported results are from the actual challenge, for recent
results see chapter 4.
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Chapter 3

Co-occurrence Statistics in CRFs



Standard approaches for the object class segmentation problem can be improved
by the inclusion of costs based on high level statistics, including object class co-
occurrence, which capture knowledge of scene semantics that humans often take
for granted: for example the knowledge that cows and crocodiles are not kept to-
gether and less likely to appear in the same image; or that motorbikes are unlikely
to occur near televisions. In this chapter we consider object class co-occurrence
to be a measure of how likely it is for a given set of object classes to occur to-
gether in an image. They can also be used to encode scene speci�c information
such as the facts that computer monitors and stationary are more likely to occur
in o�ces, or that trees and grass occur outside. The use of such costs can help
prevent some of the most glaring failures in object class segmentation, such as
the labelling of a boat surrounded by water mislabelled as a book.

As well as penalising strange combinations of objects appearing in an image,
co-occurrence potentials can also be used to impose minimum description length
(MDL) prior, that encourages a parsimonious description of an image using fewer
labels. As discussed eloquently in the recent work [13], the need for a bias towards
parsimony becomes increasingly important as the number of classes to be consid-
ered increases. Figure 3.1 illustrates the importance of co-occurrence statistics in
image labelling.

The promise of co-occurrence statistics has not been ignored by the vision
community. Rabinovich et al. [74] proposed the integration of such co-occurrence
costs that characterise the relationship between two classes. Similarly Torralba
et al. [96] proposed scene-based costs that penalised the existence of particular
classes in a context dependent manner. We shall discuss these approaches, and
some problems with them in the next section.

3.1 CRFs and Co-occurrence

To model object class co-occurrence statistics a new term K(x) is added to the
energy:

E(x) =
∑

ψc(xc) + K(x). (3.1.1)
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(a) (b) (c) (a) (b) (c)

Figure 3.1: Best viewed in colour: Qualitative results of object co-occurrence
statistics. (a) Typical images taken from the MSRC data set [88]; (b) A labelling
based upon a pixel based random �eld model [59] that does not take into account co-
occurrence; (c) A labelling of the same model using co-occurrence statistics. The
use of co-occurrence statistics to guide the segmentation results in a labelling that
is more parsimonious and more likely to be correct. These co-occurrence statistics
suppress the appearance of small unexpected classes in the labelling. Top left: a
mistaken hypothesis of a cow is suppressed Top right: Many small classes are
suppressed in the image of a building. Note that the use of co-occurrence typically
changes labels, but does not alter silhouettes.

The question naturally arises as to what form an energy involving co-occurrence
terms should take. We now list a set of desiderata that we believe are intuitive
for any co-occurrence cost.

(i) Global Energy: We would like a formulation of co-occurrence that allows
us to estimate the segmentation using all the data directly, by minimising a single
cost function of the form (3.1.1). Rather than any sort of two stage process in
which a hard decision is made of which objects are present in the scene a priori
as in [96].

(ii) Invariance: The co-occurrence cost should depend only on the labels
present in an image, it should be invariant to the number and location of pixels
that object occupies. To reuse an example from [97], the surprise at seeing a polar
bear in a street scene should not vary with the number of pixels that represent
the bear in the image.

(iii) E�ciency: Inference should be tractable, i.e. the use of co-occurrence
should not be the bottle-neck preventing inference. As the memory requirement
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of any conventional inference algorithm [90] is typically O(|V|) for vision problems,
the memory requirement of a formulation incorporating co-occurrence potentials
should also be O(|V|).

(iv) Parsimony: The cost should follow the principle of parsimony in the
following way: if several solutions are almost equally likely then the solution that
can describe the image using the fewest distinct labels should be chosen. Whilst
this might not seem important when classifying pixels into a few classes, as the
set of putative labels for an image increases the chance of speckle noise due to
misclassi�cation will increase unless a parsimonious solution is encouraged.

While these properties seem uncontroversial, no prior work exhibits property
(ii). Similarly, no approaches satisfy properties (i) and (iii) simultaneously. In
order to satisfy condition (ii) the co-occurrence cost K(x) de�ned over x must
be a function de�ned on the set of labels L(x) = {l ∈ L : ∃xi = l} present in the
labelling x; this guarantees invariance to the size of an object:

K(x) = C(L(x)) (3.1.2)

Adding the co-occurrence term to the standard crf cost function 3.1.1, we have:

E(x) =
∑

c∈C
ψc(xc) + C(L(x)). (3.1.3)

To satisfy the parsimony condition (iv) potentials must act to penalise the
unexpected appearance of combinations of labels in a labelling. This observation
can be formalised as the statement that the cost C(L) is monotonically increasing
with respect to the label set L i.e. :

L1 ⊂ L2 =⇒ C(L1) ≤ C(L2). (3.1.4)

The new potential C(L(x)) can be seen as a particular higher order potential
de�ned over a clique which includes the whole of V , i.e. ψV (x).
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Method Global energy
(i)

Invariance
(ii)

E�ciency
(iii)

Parsimony
(iv)

Unary ([96]) 3 7 3 7
Pairwise ([74, 32, 97]) 3 7 7 3
Hard decisions ([17]) 7 � 3 �
Our approach 3 3 3 3

Figure 3.2: A comparison of the capabilities of existing image co-occurrence for-
mulations against our new approach. See section 3.1.1 for details.

3.1.1 Prior Work

There are two existing approaches to co-occurrence potentials, neither of which
uses potentials de�ned over a clique of size greater than two. The �rst makes
an initial hard estimate of the type of scene, and updates the unary potentials
associated with each pixel to encourage or discourage particular choices of label,
on the basis of how likely they are to occur in the scene. The second approach
models object co-occurrence as a pairwise potential between regions of the image.

Torralba et al. [96] proposed the use of additional unary potentials to capture
scene based occurrence priors. Their costs took the form:

K(x) =
∑

i∈V
φ(xi). (3.1.5)

While the complexity of inference over such potentials scales linearly with the size
of the graph, they are prone to over counting costs, violating (ii), and require
an initial hard decision of scene type before inference, which violates (i). As it
encourages the appearance of all labels which are common to a scene, it does not
necessarily encourage parsimony (iv).

A similar approach was seen in the Pascal VOC2008 object segmentation
challenge, where the best performing method [17], worked in two stages. Initially
the set of object labels present in the image was estimated, and in the second
stage, a label from the estimated label set was assigned to each image pixel. As
no cost function K(·) was proposed, it is open to debate if it satis�ed (ii) or (iv).

Several researchers ( [74, 32], and independently [97]) proposed co-occurrence
as a soft constraint that approximated C(L(x)) as a pairwise cost de�ned over a
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fully connected graph that took the form:

K(x) =
∑

i,j∈V
φ(xi, xj), (3.1.6)

where φ was some potential which penalised labels that should not occur together
in an image. Unlike our model (3.1.3) the penalty cost for the presence of pairs
of labels, that rarely occur together, appearing in the same image grows with
the number of random variables taking these labels, violating assumption (ii).
While this serves as a functional penalty that prevents the occurrence of many
classes in the same labelling, it does not accurately model the co-occurrence
costs we described earlier. The memory requirements of inference scales badly
with the size of a fully connected graph. It grows with complexity O(|V|2) rather
than O(|V|) with the size of the graph, violating constraint (iii). Providing the
pairwise potentials are semi-metric [11], it does satisfy the parsimony condition
(iv).

To minimise these di�culties, previous approaches de�ned variables over seg-
ments rather than pixels. Such segment based methods work under the assump-
tion that some segments share boundaries with objects in the image. This is
not always the case, and this assumption may result in dramatic errors in the
labelling. The relationship between previous approaches and the desiderata can
be seen in �gure 3.2.

Two e�cient schemes [19, 45] have been proposed for the minimisation of the
number of classes or objects present in a scene. While neither of them directly
models class based co-occurrence relationships, their optimisation approaches sat-
isfy the desiderata proposed in section 3.1.

Hoiem et al. [45] proposed a cost based on the number of objects in the scene,
in which the presence of any instance of any object incurs a uniform penalty cost.
For example, the presence of both a motorbike and a bus in a single image is
penalised as much as the presence of two buses. Minimising the number of objects
in a scene is a good method of encouraging consistent labellings, but does not
capture any co-occurrence relationship between object classes.

If we view Hoiem's work as assigning a di�erent label to every instance of an
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object class, their label set costs take the form:

C(L(x)) = k||L(x)|| (3.1.7)

In a recent work, independently appearing at the same time as ours, Delong et al.
[19] also proposed the use of a cost over the number of labels present. In general
their approach allowed a penalty cost to be taken if any label from a certain
subset of labels is present in an image. They proposed an ingenious use of this
cost to combine probabilistic formulations such as Akaike's information criteria,
or the Bayesian Information Criteria to e�ciently solve a long standing problem
in motion segmentation. See also [93] for discussion of this problem. The general
form of their costs is:

C(L(x)) =
∑

L⊆L
kLδ(L(x) ∩ L 6= ∅), (3.1.8)

where δ() is the Kronecker indicator function.
Note that the costs of [19] and [45] both satisfy the inequality:

C(L1 ∪ L2) ≤ C(L1) + C(L2), (3.1.9)

where L1 and L2 are any subsets of labels of L. Consequentially, their models are
unable to express to co-occurrence potentials which say that certain classes, such
as the previously mentioned example of polar bear and street, are less likely to
occur together than in separate images.

3.1.2 Inference on Global Co-occurrence Poten-
tials

Consider the energy (3.1.3). The inference problem becomes:

x∗ = arg minx∈L|V|
∑

c∈C ψc(xc) + C(L(x))

s.t. x ∈ L|V|, L(x) = {l ∈ L : ∃xi = l}. (3.1.10)
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In this section we show that the problem of minimising this energy can be solved
e�ciently using move-making αβ-swap and α-expansion moves [11], where the
number of additional edges of the graph grows linearly with the number of vari-
ables in the graph. In contrast to [74], these algorithms can be applied to large
graphs with more than 200, 000 variables.

3.1.3 αβ-Swap Moves

Move making algorithms iteratively project the problem into a smaller subspace
of possible solutions containing the current solution. Solving this sub-problem
proposes optimal moves which guarantee that the energy decreases after each
move and must eventually converge. The performance of move making algorithms
depends dramatically on the size of the move space. The expansion and swap
move algorithms we consider project the problem into a two-label sub-problem
and under the assumption that the projected energy is pairwise and submodular,
it can be solved using graph cuts. Because the energy (3.1.3) is additive, we
derive graph constructions only for the term C(L(x)). The �nal graph is the
merger of the graph for optimising the standard crf [11] and the derived graph
construction for the co-occurrence term.

The swap and expansion move algorithms can be encoded as a vector of binary
variables t ={ti, ∀i ∈ V}. The transformation function T (xp, t) of a move algo-
rithm takes the current labelling xp and a move t and returns the new labelling
x induced by the move.

In an αβ-swap move every random variable xi whose current label is α or β

can transition to a new label of α or β. One iteration of the algorithm involves
making moves for all pairs (α, β) ∈ L2 successively. The transformation function
Tαβ(xi, ti) for an αβ-swap transforms the label of a random variable xi as:

Tαβ(xi, ti) =





α if xi ∈ {α, β} and ti = 0,

β if xi ∈ {α, β} and ti = 1.
(3.1.11)

Consider a swap move over the labels α and β, starting from an initial label
set L(x). We assume that either α or β is present in the image. Then, after a
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swap move, the labels present must be an element of S which we de�ne as:

S = {L(x) ∪ {α} \ {β}, L(x) ∪ {β} \ {α}, L(x) ∪ {α, β}} . (3.1.12)

Let Vαβ be the set of variables currently taking label α or β. The move energy
for C(L(x)) is:

E(t) =





Cα = C(L(x) ∪ {α} \ {β}) if ∀i ∈ Vαβ , ti = 0,

Cβ = C(L(x) ∪ {β} \ {α}) if ∀i ∈ Vαβ , ti = 1,

Cαβ = C(L(x) ∪ {α, β}) otherwise.

(3.1.13)

Note that, if C(L) is monotonically increasing with respect to L then, by de�ni-
tion, Cα ≤ Cαβ and Cβ ≤ Cαβ.

Let t′ = arg mint E ′(t) be the optimal move for standard pairwise move energy
E ′(t) without co-occurrence. The optimal move with co-occurence can be found
as:

t∗ = arg min
t

(E ′(t′) + Cαβ, E ′(0) + Cα, E ′(1) + Cβ), (3.1.14)

where 0 and 1 are uniform vectors composed entirely of 0 or 1 respectively. If
the solution t′ contains both 0s and 1s, it must also be the best mixed solution
including co-occurrence term and the optimal move can found by comparing its
energy with co-occurrence with energies of homogenous moves. If the solution t′

is composed solely of 0s or 1s, due to the parsimony condition

∀t : E(t′) ≤ E(t) =⇒ E ′(t′) + Cα ≤ E ′(t) + Cαβ (3.1.15)

and thus the optimal move is the minimum of the homogenous moves. Note, that
this approach can be used only if the parsimony condition is satis�ed.

Even though there exists an e�cient solution similar to the one in [19] to
�nd the optimal αβ-swap move for energies with co-occurrence, for illustration
we also derive its graph construction e�ciently solvable using graph cuts. It will
give us an intuition about the construction of the α-expansion move.

Lemma 1 For a function C(L), monotonically increasing with respect to L, the
move energy can be represented as a binary submodular pairwise cost with two
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Figure 3.3: Graph construction for αβ-swap and α-expansion move. In αβ-swap
variable xi will take the label α if the corresponding ti are tied to the sink after the
st-mincut and β otherwise. In α-expansion variable xi changes the label to α if it
is tied to the sink after the st-mincut and remains the same otherwise. Colours
represent the labels of the variables before the move.

auxiliary variables zα and zβ as:

E(t) = Cα + Cβ − Cαβ + min
zα,zβ

[
(Cαβ − Cα)zβ

+ (Cαβ − Cβ)(1− zα) +
∑

i∈Vαβ

(Cα,β − Cα)ti(1− zβ)

+
∑

i∈Vαβ

(Cαβ − Cβ)(1− ti)zα)

]
. (3.1.16)

Proof. See appendix. This binary function is pairwise submodular and thus can
be solved e�ciently using graph cuts.

3.1.4 α-Expansion Moves

In an α-expansion move every random variable may either retain its current label
or transition to label α. One iteration of the algorithm involves making moves for
all α ∈ L successively. The transformation function Tα(xi, ti) for an α-expansion
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move transforms the label of a random variable xi as:

Tα(xi, ti) =





α if ti = 0

xi if ti = 1.
(3.1.17)

To derive a graph-construction that approximates the true cost of an α-expansion
move we use the decomposition

C(L) =
∑

B⊆L

kB, (3.1.18)

where kB ≥ 0. In general any cost C(L) can be decomposed uniquely into the
sum over subsets recursively as:

kB = C(B)− ∑

B′⊂B

kB′ . (3.1.19)

This will allow us to decompose the move energy into the part depending only
on the presence of the label α and the part depending only on the presence of all
other labels after the move. We do not assume all costs kB are non-negative.

As a simplifying assumption, let us �rst assume there is no variable currently
taking label α. Let A be the set of labels currently present in the image and δl(t)

be set to 1 if label l is present in the image after the move and 0 otherwise. Then:

δα(t) =





1 if ∃i ∈ V s.t. ti = 0,

0 otherwise.
(3.1.20)

∀l ∈ A , δl(t) =





1 if ∃i ∈ Vl s.t. ti = 1,

0 otherwise.
(3.1.21)

The α-expansion move energy of C(L(x)) can be written as:

E(t) = Enew(t)− Eold

=
∑

B⊆A∪{α}
kB

∏

l∈B

δl(t)− C(A). (3.1.22)

Ignoring the constant term and decomposing the sum into parts with and without
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terms dependent on α we have:

E(t) =
∑

B⊆A

kB

∏

l∈B

δl(t) +
∑

B⊆A

kB∪{α}δα(t)
∏

l∈B

δl(t). (3.1.23)

As either α or all subsets B ⊆ A are present after any move, the following
statement holds:

δα(t)
∏

l∈B

δl(t) = δα(t) +
∏

l∈B

δl(t)− 1. (3.1.24)

This equality can be checked for all three cases, where either δα(t) or ∏
l∈B δl(t)

or both are equal to 1. Replacing the term δα(t)
∏

l∈B δl(t) and disregarding new
constant terms, equation (3.1.22) becomes:

E(t) =
∑

B⊆A

kB∪{α}δα(t) +
∑

B⊆A

(kB + kB∪{α})
∏

l∈B

δl(t)

= k′αδα(t) +
∑

B⊆A

k′B
∏

l∈B

δl(t), (3.1.25)

where k′α =
∑

B⊆A kB∪{α} = C(B ∪ {α})− C(B) and k′B = kB + kB∪{α}.
E(t) is, in general, a higher-order non-submodular energy, and intractable.

However, when proposing moves we can use the procedure described in [70, 79, 58]
and over-estimate the higher order components K(A, t) =

∑
B⊆A k′B

∏
l∈B δl(t) of

the cost of moving from the current solution. For any l′ ∈ A we can overestimate
K(A, t) by:

K(A, t) ≤ K(A \ {l′}, t)
+ δl′(t) min

S⊆A\{l′}

∑

B⊆S

(k′B∪{l′} − k′B)

= K(A \ {l′}, t) + k′′l′δl′(t), (3.1.26)

where k′′(l′) is always non-negative for all C(L) that are monotonically increasing
with respect to L. By applying this decomposition iteratively for any ordering of
labels l′ ∈ A we obtain:

K(A, t) ≤ K +
∑

l∈A

k′′l δl(t). (3.1.27)

The constant term K can be ignored, as it does not a�ect the location of the
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optimal move. Heuristically, we pick l′ in each iteration as:

l′ = argmin
l∈A

min
S⊆A\{l}

∑

B⊆S

(k′B∪{l} − k′B). (3.1.28)

In many practical cases the co-occurrence cost is de�ned as the sum of positive
costs of subsets of L, for example all pairs of labels, as:

C(L) =
∑

B⊆L

kB, s.t. kB ≥ 0. (3.1.29)

In the case that k′B stays non-negative for all B ∈ L, the over-estimation can be
done as:

EB(t) = k′B
∏

l∈B

δl(t) ≤ k′B
∑

l∈B

ρB
l δl(t), (3.1.30)

where ρB
l ≥ 0 and ∑

l∈B ρB
l = 1. In practice, to obtain a symmetrical over-

estimation of energy, we set ρB
l = 1/|B|. The moves for the �rst order occurrence

costs [19] are exact. For second order co-occurrence between labels currently
present in the image, the moves removing one of the labels of each pair are over-
estimated by a factor of 2. This gives us an intuition why our approximation is
appropriate and, in practice, the solution often contains the same label set as in
the globally optimal solution (see section 3.2).

Lemma 2 For all C(L) monotonically increasing with respect to L the over-
estimated move energy can be represented as a binary pairwise graph with |A|+ 1

auxiliary variables z as:

E ′(t) = min
z

[
k′α(1− zα) +

∑

l∈A

k′′l zl +
∑

i∈V
k′α(1− ti)zα

+
∑

l∈A

∑

i∈Vl

k′′l ti(1− zl)

]
, (3.1.31)

where Vl is the set of pixels currently taking label l.

Proof. See appendix. This binary function is pairwise submodular and thus can
be solved e�ciently using graph cuts.

For co-occurrence potentials monotonically increasing with respect to L(x)

the problem can be modelled using one binary variable zl per class indicating
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3.2. Experiments

the presence of pixels of that class in the labelling, in�nite edges for xi = l and
zl = 0 and hyper-graph over all zl modelling C(L(x)). The derived α-expansion
construction can be seen as a graph taking into account costs over all auxiliary
variables zl for each move and over-estimating the hyper-graph energy using unary
potentials. Consequentially, the only e�ect our approximation can have on the
�nal labelling is to over-estimate the number of classes present in an image. In
practice the solutions found by expansion were generally local optima of the exact
swap moves.

Similarly to αβ-swap moves there exists a slightly simpler solution [19] for the
optimisation of binary over-estimated move energy (3.1.22). The problem can be
solved without the part of move energy k′αδα(t) corresponding to the cost taken,
if label α is introduced to an image after the move, and then the energy after the
move is compared the the original energy and the move accepted if the energy
has decreased. The proof of equivalence of this approach is similar to the one
in [19].

3.2 Experiments

We performed a controlled test evaluating the performance of crf models both
with and without co-occurrence potentials. As a base line we used the segment-
based crf and the associative hierarchical random �eld (ahrf) model proposed
in the previous chapter 2. On the voc data set, the baseline also makes use of
the detector potentials of [60].

The costs C(L) for the msrc dataset were created from the training set as
follows: let M be the number of images, x(m) the ground truth labelling of an
image m and

z
(m)
l = δ(l ∈ L(x(m))) (3.2.1)

an indicator function for label l appearing in an image m. The associated cost
was trained as:

C(L) = −w log
1

M


1 +

M∑

m=1

∏

l∈L

z
(m)
l


 , (3.2.2)

where w is the weight of the co-occurrence potential. The form guarantees that
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3.2. Experiments

(a) (b) (c) (a) (b) (c)

Figure 3.4: Best viewed in colour: (a) Typical images taken from the voc-
2009 data set [88]; (b) A labelling based upon a pixel based random �eld model [59]
that does not take into account co-occurrence; (c) A labelling of the same model
using co-occurrence statistics. Note that the co-occurrence potentials perform in
a similar way across di�erent data sets, suppressing the smaller classes (see also
�gure 3.1) if they appear together in an uncommon combination with other classes
such as a car with a monitor, a train with a chair or a dog with a bird. This results
in a qualitative rather than quantitative di�erence.

C(L) is monotonically increasing with respect to L. To avoid over-�tting we
approximated the potential C(L) as a second order function:

C ′(L) =
∑

l∈L

cl +
∑

k,l∈L,k<l

ckl, (3.2.3)

where cl and ckl minimise the mean-squared error between C(L) and C ′(L).
On the msrc data set we observed a 3% overall and 4% average per class

increase in the recall and 6% in the intersection vs. union measure with the
segment-based crf and a 1% overall, 2% average per class and 2% in the inter-
section vs. union measure with the ahcrf.

On the voc dataset, due to the fact that the data set is unbalanced (all images
contain the class background, and 22% contain the class person, while only 2.8%

contain the class train) and a di�erent performance criterium, the cost C(L) was
learnt as a sum of costs for each pair of classes, if they appeared together in the
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solution as:
C(L) = −w

∑

k<l∈L
ckl, (3.2.4)

where ckl were learnt as:

ckl = min(− log(P(k|l) ∨ P(l|k)), T )

= min(− log(P(k|l) + P(l|k)− P(k|l)P(l|k)), T ), (3.2.5)

P(k|l) = P({k,l})
P({l}) , P(L) =

∑M

m=1

∏
l∈L

z
(m)
l

M
and T is the threshold for the maximum

cost.
This heuristically motivated cost ensures that if one class only occurs when

another is present, as for example, cow only occurs when grass is present in the
image, then the second order co-occurence cost between these classes will be 0.
The comparison on the voc2009 data set was performed on the validation set, as
the test set is not published and the number of permitted submissions is limited.
Performance improved by 3.5% in the intersection vs. union measure used in the
challenge. The performance on the test set was 32.11% which is comparable with
current state-of-the-art methods. Results for both data sets are given in tables
3.5 and 3.6.

By adding a co-occurrence cost to the crf we observe constant improve-
ment in pixel classi�cation for almost all classes in all measures. In accordance
with desiderata (iv), the co-occurrence potentials tend to suppress uncommon
combination of classes and produce more coherent images in the labels space.
This results in a qualitative rather than quantitative di�erence. Although the
unary potentials already capture textural context [88], the incorporation of co-
occurrence potentials leads to a signi�cant improvement in accuracy.

3.3 Conclusion

The importance of co-occurrence statistics is well established [96, 74, 17]. In
this work we examined the use of co-occurrence statistics and how they can
be e�ciently incorporated into a global energy or probabilistic model such as a
conditional random �eld. We have shown how they can naturally be encoded
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Figure 3.5: Quantitative results on the MSRC data set. The table shows % pixel
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Figure 3.6: Quantitative analysis of VOC2009 results on validation set, inter-
section vs. union measure, de�ned as True Positive

True Positive + False Negative + False Positive . In-
corporation of co-occurrence potential led to labellings, which visually look more
coherent, but are not necessarily correct. Quantitatively the performance improved
signi�cantly, on average by 3.5% per class. For recent result see chapter 4.

by the use of higher order cliques, without a signi�cant computational overhead.
Whilst the performance improvements on current data sets are slight, we believe
encoding co-occurrence will become increasingly important in the future when,
rather than attempting to classify 20 classes in an image we have to classify
20, 000. Even with a false positive rate of 1% this would still give 200 false
positives per image. Co-occurrence information gives a natural way to tackle this
problem.

Appendix

Lemma 1 Proof. First we show that:
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Eα(t) = min
zα

[(Cαβ − Cβ)(1− zα) +
∑

i∈Vαβ

(Cαβ − Cβ)(1− ti)zα]

=





0 if ∀i ∈ Vαβ : ti = 1,

Cαβ − Cβ otherwise .
(3.3.1)

If ∀i ∈ Vαβ : ti = 1 then ∑
i∈Vαβ

(Cαβ − Cβ)(1 − ti)zα = 0 and the minimum cost
cost 0 occurs when zα = 1. If ∃i ∈ Vαβ , ti = 0 the minimum cost labelling occurs
when zα = 0 and the minimum cost is Cαβ − Cβ. Similarly:

Eβ(t) = min
zβ

[(Cαβ − Cα)zβ +
∑

i∈Vαβ

(Cα,β − Cα)ti(1− zβ)]

=





0 if ∀i ∈ Vαβ : ti = 0,

Cαβ − Cα otherwise .
(3.3.2)

By inspection, if ∀i ∈ Vαβ : ti = 0 then ∑
i∈Vαβ

(Cα,β − Cα)ti(1− zβ) = 0 and the
minimum cost cost 0 occurs when zβ = 0. If ∃i ∈ Vαβ , ti = 1 the minimum cost
labelling occurs when zβ = 1 and the minimum cost is Cαβ − Cα.

For all three cases (all pixels take label α, all pixels take label β and mixed
labelling) E(t) = Eα(t)+Eβ(t)+Cα+Cβ−Cαβ. The construction of the αβ-swap
move is similar to the Robust PN model [51]. ¤

See �gure 3.3 for graph construction.

Lemma 2 Proof. Similarly to the αβ-swap proof we can show:

Eα(t) = min
zα

[
k′α(1− zα) +

∑

i∈V
k′α(1− ti)zα

]

=





k′α if ∃i ∈ V s.t. ti = 0,

0 otherwise .
(3.3.3)

If ∃i ∈ V s.t. ti = 0, then ∑
i∈V k′α(1 − ti) ≥ k′α, the minimum is reached when

zα = 0 and the cost is k′α.
If ∀i ∈ V : ti = 1 then k′α(1 − ti)zα = 0, the minimum is reached when zα = 1

and the cost becomes 0.
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For all other l ∈ A:

Eb(t) = min
zl

[
k′′l zl +

∑

i∈Vl

k′′l ti(1− zl)

]

=





k′′l if ∃i ∈ Vl s.t. ti = 1,

0 otherwise .
(3.3.4)

If ∃i ∈ Vl s.t. ti = 1, then ∑
i∈Vl

k′′l ti ≥ k′′l , the minimum is reached when zl = 1

and the cost is k′′l .
If ∀i ∈ Vl : ti = 0 then ∑

i∈Vl
k′′l ti(1 − zl) = 0, the minimum is reached when

zl = 1 and the cost becomes 0.
By summing up the cost Eα(t) and |A| costs El(t) we get E ′(t) = Eα(t) +

∑
l∈A El(t). If α is already present in the image k′α = 0 and edges with this weight

and variable zα can be ignored. ¤
See �gure 3.3 for graph construction.

63



Chapter 4

Latent Random Field SVMs for
Object Detection



Object detection is typically formulated as a problem where the objective is to
�nd all instances of objects of a given class and enclose each one of them by
a tight bounding box. Several methods [14, 102, 39] follow the bag-of-words
(bow) approach designed for the scene classi�cation problem and are learnt using
support vector machines (svm) and evaluated on the sliding window across the
image. These methods get good results on classi�cation of boxes but struggle to
localize objects exactly.

Dalal and Triggs [18] proposed a method to deal with this problem using the
classi�er learnt directly on raw non-clustered features - histograms of oriented
gradients (hog) over cells composing the bounding box, e�ciently matching ob-
ject shape with the learnt rigid template of edge directions. This method was
originally applied to pedestrian detection, but it turned out to be competitive
with other methods for a wide range of object classes with distinctive shapes. On
the other hand it struggled on data sets containing images with large intra-class
variability or images taken from varying view points.

To overcome this problem, Felzenszwalb et al. [25] proposed a star-shaped
part based model allowing a predetermined number of rigid parts to change their
relative location with respect to the centre of the object. Star-shaped models, or
pictorial structures, have a long history in vision [29, 23, 106, 26, 57]. However,
the contribution of [25] was in the learning. They formulated the problem as a
latent svm [1], which is a subclass of structured svms [98, 92], learning both the
weights of the classi�er and the location of rigid object parts as latent variables.
Large intra-class variance was modelled by splitting training samples based on
their aspect ratio and training a classi�er for di�erent aspect ratios independently.

Motivated by this work, we propose a new latent variable svm allowing for
any deformations of the template, expressed in terms of a deformation �eld.
Rather than restrict ourselves to a star-shaped model, we take inspiration from
recent advances in convex and biconvex models [46, 33], that show inference in
these models can be very e�cient, to make a lattice-connected part-based model.
Furthermore we show how to learn several models not expressible using only local
deformations for the case where one model is not enough. We propose tractable
optimisation for learning parameters of the model and for evaluation.
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4.1 Previous Work

First we describe the formulation of Dalal and Triggs [18]. The linear support
vector machine (svm) classi�er response for a given image sub-window is based on
histograms of oriented gradients (hog) evaluated on a regular grid of n = nx×ny

(in general overlapping) cells, where each cell is a rectangular region of a �xed
size Sx × Sy centred at the point ci = [xi, yi]. Let h(ci) be the corresponding
histograms of gradients with m directions over the cell, centred at the point ci,
and h(c) the concatenated histograms over all cells. The linear discriminant
function takes the form :

H(c) = w∗ · h(c) + b∗ =
n∑

i=1

m∑

j=1

w∗
ijhj(ci) + b∗, (4.1.1)

where H(c) > 0 indicates a positive detection, negative otherwise. The weights
w∗ and bias b∗ are trained by solving the optimization problem using M training
samples with ground truth labels zk ∈ {−1, 1} as:

(w∗, b∗) = arg min
(w,b)

λ||w||2 +
M∑

k=1

ξk (4.1.2)

s.t. ∀k ∈ {1..M} :

ξk ≥ 0

ξk ≥ 1− zk
(
w.h(ck) + b

)
,

where h(ck) are the concatenated histograms of k-th training sample and λw is
the regularisation strength.

The rigid formulation can be extended [25] to a more �exible one using mi-
svm [1] or Latent svm [25], two equivalent formulations, that were discovered
independently. The classi�er takes the form:

H(x) = max
z∈Z(x)

w∗ · Φ(x, z) + b, (4.1.3)

where z is the set of latent variables, Z(x) their possible set of states, and Φ(x, z)
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the feature vector. The model is typically trained by alternating between esti-
mating the state of latent variables given the weight vector w∗ and estimating
optimal weights w∗ and bias b given the state of latent variables.

4.2 Deformable Template with mrf Priors

In this work we are inspired by recent advances in biconvex models for optical �ow
and propose a model that allows the deformation of an object using deformation
�eld d = [dx,dy] containing an optic �ow like deformation parameters [dx

i , d
y
i ] for

each cell centre. This can be thought of a set of latent variables (as in the Latent
crf). However, the form of prior we shall choose will be much richer than in [25]
and a generalisation in that we will allow for a general pairwise convex crf to
form the latent �eld.

Formally, the deformation can be de�ned by a deformation function Dd(c)

transforming each cell centre relative to its size as :

Ddi(ci) = Ddi([xi, yi]) = [xi + dx
i Sx, yi + dy

i Sy]. (4.2.1)

We restrict deformations dx
i and dy

i to the interval Lx = (−dx
max, d

x
max) and Ly =

(−dy
max, d

y
max) respectively. The deformation �eld can be trivially extended to

allow any scale or a�ne deformation. However, this would increase the complexity
of the optimisation and evaluation of the classi�er.

The deformation �eld d is treated as a set of latent variables jointly esti-
mated with the parameters (weights and bias) of the svm classi�er. To penalise
improbable deformations the regularisation term is introduced.

The classi�er for our deformable template then takes the form :

H(c) = max
d

(
w∗.h(Dd(c)) + b∗ −R(d)

)
, (4.2.2)

where R(d) is the regularisation term for deformation �eld d. The regularisation
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term takes the form of the pairwise Markov Random Field (mrf) cost :

R(d) = θu

n∑

i=1

ψu(|di|) + θp

n∑

i=1

∑

l∈Ni

ψp(|di − dl|), (4.2.3)

where Ni is the neighbourhood of i-th cell and ψu is the unary potential favouring
lower deformations and ψp pairwise potential enforcing neighbouring patches to
take similar deformations and also guaranteeing that a change in cell ordering
becomes very improbable. The unary potential ψu can be any nondecreasing
function with respect to the deformation. The pairwise potential ψp(.) is a convex
function over an ordered set [46].

The optimisation problem for learning the weights w∗ and the bias b∗ becomes:

(w∗, b∗) = arg min
(w,b)

λ||w||2 +
M∑

k=1

ξk (4.2.4)

s.t. ∀k ∈ {1..M} :

ξk ≥ 0

ξk ≥ 1− zk max
d

(
w.h(Dd(ck)) + b−R(d)

)
.

So far we have considered h(·) to be just hogs. However, the discriminative
power of the classi�er can be increased by the incorporation of the bag-of-words
model (bow) using visual words [14, 102, 39].

We shall use a hierarchical structure with multiple layers of cells at di�erent
resolutions forming a spatial pyramid [63], where each cells is connected to its
neighbours on the same layer and to its parent and children. We use the same
inconsistency cost on deformation between parent and child as the pairwise cost
between neighbouring cells on the same layer.

4.3 Learning the Parameters of the Deformable
Model

The optimisation problem (4.2.4) for the training stage is non-convex. However,
in this section we show, that if the pairwise regularisation cost is convex over an
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ordered set of discrete deformations [46], the whole optimisation problem is tri-
convex with respect to the weights w with the bias b, deformation �eld component
dx and deformation component dy. That means, that given two of these three
components, estimation of the third one is convex. Thus, we can approximately
solve the problem by repeatedly �xing two components and estimating the third.

First, the problem of �nding the optimal weight vector w and bias b, given
the deformation �elds d̂k for each training example becomes:

(w∗, b∗) = arg min
(w,b)

λw||w||2 +
M∑

k=1

ξk (4.3.1)

s.t. ∀k ∈ {1..M} :

ξk ≥ 0

ξk ≥ 1− zk
(
w · h(Dd̂k

(c)) + b−R(d̂k)
)

and can be solved using any standard svm algorithm [7, 85, 47]. The problem of
�nding the optimal deformation �eld d∗ for each training example given current
weights ŵk becomes:

d∗ = arg max
d

(
ŵk · h(Dd(c))−R(d)

)
(4.3.2)

= arg min
d

n∑

i=1

ψu(|di|) +
n∑

i=1

∑

l∈Ni

ψp(|di − dl|)

− ŵk.h(Dd(c)).

The last term can be decomposed into functions of deformations di for each cell
which do not depend on each other as:

ŵk.h(Dd(c)) =
n∑

i=1

m∑

j=1

ŵijhj(D
di(ci)). (4.3.3)

By de�ning ψd(di) =
∑m

j=1 ŵijhj(D
di(ci)) the optimisation procedure to �nd the

optimal deformation �eld becomes :

d∗ = arg min
d

n∑

i=1

(ψu(|di|)− ψd(di)) +
n∑

i=1

∑

l∈Ni

ψp(|di − dl|),

which is the standard max-a-posteriori (map) estimation of the pairwise mrf
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problem with |Lx||Ly| labels. This problem can be solved by estimating dx and
dy iteratively using graph cut [10] with Ishikawa's graph construction [46].

The whole optimisation procedure starts by initializing the deformation �eld
equal to zero and iteratively estimating the optimal weights and the bias given the
deformation �eld of each training sample and vice versa. Each step is guaranteed
not to increase the objective function (4.2.4) and thus the iterative procedure has
to converge. The optimisation problem during the testing phase is equivalent to
the second part of the training phase and is solved in a similar manner.

4.4 Kernelising the Deformable Template Model

The deformable template model can be kernelised using any positive de�nite
kernel K(x, y). According to the representer's theorem, for every positive de�nite
kernel K(x, y) there exist a function Φ(x), in general in�nite dimensional, such
that K(x, y) = Φ(x)Φ(y). The classi�er then becomes:

H(c) = max
d

(
w∗.Φ(h(Dd(c))) + b∗ −R(d)

)
. (4.4.1)

The optimisation takes the form:

(w∗, b∗) = arg min
(w,b)

λ||w||2 +
M∑

k=1

ξk (4.4.2)

s.t. ∀k ∈ {1..M} :

ξk ≥ 0

ξk ≥ 1− zk max
d

(
w.Φ(h(Dd(ck))) + b−R(d)

)
.

Even though for many kernels the �nite dimensional approximation [103, 68] of
the mapping function Φ(.) can be found, for many other kernels there is no good
approximation. However, for the standard kernel svm it can be shown [36] that
the solution can be found in the form H(c) =

∑M
k=1 αkK(h(c),h(ck)), where

h(ck) are the training samples, which for nonzero αk are called support vectors.
As we show next, for our deformation template model these will correspond to
deformed training samples.

70



4.5. Learning of Di�erent Viewpoints or Poses

Given a deformation �eld d the optimisation problem becomes a standard
kernel svm. The classi�er then becomes a function of deformed training samples:

H(c) = max
d

(
M∑

k=1

αkK(h(Dd(c)),hS(ck)) + b∗ −R(d)

)
, (4.4.3)

where hS(ck) = h(Dd̂k
(ck)) is k-th training sample deformed by d̂k.

The estimation of the deformation �eld given a classi�er H(c) becomes:

d∗ = arg min
d

n∑

i=1

ψu(|di|) +
n∑

i=1

∑

l∈Ni

ψp(|di − dl|)

−
M∑

k=1

α̂K(h(Dd(c)),hS(ck)),

where α̂K(h(Dd(c)),hS(ck)) is a higher order potential over all nodes in the
graph. This makes the inference problem intractable. If we restrict ourselves to
kernel functions decomposable to a weighted sum of kernel functions Ki(·, ·) over
each cell:

K(h(c),hS(ck)) =
n∑

i=1

βiKi(h(ci),h
S(ck

i )), (4.4.4)

where Ki(·, ·) can be an arbitrary positive de�nite kernel over bins within the
same cell, we can still solve the optimisation problem of �nding the optimal d∗

e�ciently the same way as for the linear kernel. The property (4.4.4) is trivially
satis�ed for any additive kernel K(·, ·), such as intersection or quasi-linear χ2-
kernel. More general kernel functions Ki(·, ·) can be useful for large cells in the
spatial pyramid with histograms of visual words [14, 102, 39] and the relative
weights βi can be learnt using Multiple kernel learning [101] as in [102].

4.5 Learning of Di�erent Viewpoints or Poses

The proposed deformation model can not deal with large changes of view point or
pose. This problem can be treated by splitting each class into several sub-classes,
each representing di�erent view, aspect ratio or pose, and then training classi�ers
for each subclass (mode) independently [25]. Positive detections are given if any
of the trained detector responses are above a certain threshold. This is equivalent
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4.5. Learning of Di�erent Viewpoints or Poses

Figure 4.1: Qualitative results on the INRIA data set. Red boxes are the root
bounding boxes and yellow boxes are individual cells on the base layer. The de-
formation �eld tries to align the box to both �t the data while keeping locally con-
sistent structure. Good localisation of the person with the original bounding box
typically results in lower defomations, while the data-�tting term becomes more
important if the root box is not su�ciently good. Only the strongest response for
each image is displayed to avoid confusion.

to the classi�er response de�ned as :

H(c) = max
t

H t(c). (4.5.1)

where H t(c) is the t-th classi�er response. This approach can not recover from
the wrong initial split of the data. Thus instead of �xing the split, we jointly
estimate a set of classi�ers and the assignment of samples to classi�ers.

If the number of models is too high, the amount of data may become insuf-
�cient and training may over-�t the data. To deal with this kind of problem
we take advantage of feature sharing between models. Intuitively, some of the
features, e.g. histograms of dense features, tend to be shared between di�erent
models of the same object class (whilst some other features e.g. hog feature
are not). To induce feature sharing we introduce a regularisation term between
the weights of the models of a given class and in the case of a linear kernel the
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4.6. Object Detectors in crfs for Object Class Segmentation

a) b)

Figure 4.2: Trained svm weights ((a) positive, b) negative) of the base layer of
the deformable template for object detection of a person on INRIA data set using
one model. High positive weight implies that the edge is important for successful
detection. High negative weight means, that the existence of such edge suggests
the object of interest is not present.

optimisation problem takes the form:

(w∗,b∗) = arg min
(w,b)

λw

∑

t

||wt||2 +
M∑

k=1

ξk + λs

∑

t,t′ 6=t

||P (wt)− P (wt′)||1(4.5.2)

s.t. ∀k ∈ {1..M} :

ξk ≥ 0

ξk ≥ 1− zk max
t,dt

(
wt.h(Ddt

(ck)) + bt −R(dt)
)

,

where w is the concatenated vector of weights of each model wt, b the vector of
biases bt, λs the strength of regularisation between models and P (wt) projection
into the subset of the weights on which we would like to induce the feature sharing.
Equivalently we can formulate the optimisation problem for the kernel version.
To solve this optimisation problem we can use stochastic gradient decent [7, 85]
in a similar fashion as is applied to the multi-class svm formulation [16] in [85].
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4.6. Object Detectors in crfs for Object Class Segmentation

4.6 Object Detectors in crfs for Object Class
Segmentation

Object detections contain information, such as shape, which are not included
in the traditional crfs for object class segmentation. Thus, incorporation of
these cues should lead to the improvement of the segmentation method. Another
problem of crfs is the impossibility of recovering di�erent instances of an object
class. In this section we propose a new formulation that jointly estimates the
pixel labelling and all instances of objects of each class.

map estimation can be understood as a soft competition among di�erent
hypotheses (de�ned over pixel or segment random variables), in which the �-
nal solution maximizes the weighted agreement between them. These weighted
hypotheses can be interpreted as potentials in the crf model. In object class
recognition, these hypotheses encourage: (i) variables to take particular labels
(unary potentials), and (ii) agreement between variables (pairwise, hierarchical).
In this section we introduce an additional set of hypotheses representing object
detections for the recognition framework.

Some of the object detection approaches [25, 62] have used their results to
perform a segmentation within the detected areas1. This approach would include
both the true and false positive detections, and segment them assuming they all
contain the objects of interest. There is no way of recovering from these erroneous
segmentations. Our approach overcomes this issue by using the detection results
only as hypotheses that can be rejected in the global crf energy. In other words,
all detections act as soft constraints in our framework, and must agree with
other cues from pixels and segments before a�ecting the object class segmentation
result.

Let D denote the set of object detections, which are represented by bounding
boxes enclosing objects, and corresponding scores that indicate the strength of
the detections. We de�ne a novel clique potential ψd over the set of pixels xd

belonging to the d-th detection (e.g. pixels within the bounding box), with a
score Hd and detected label ld. Figure 4.3 shows the inclusion of this potential

1As evident in some of the pascal voc 2009 segmentation challenge entries.
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4.6. Object Detectors in crfs for Object Class Segmentation

Figure 4.3: Inclusion of object detector potentials into a crf model. We show a
pixel-based crf as an example here. The set of pixels in a detection d1 (corre-
sponding to the bicyclist in the scene) is denoted by xd1. A higher order clique is
de�ned over this detection window by connecting the object pixels xd1 to an auxil-
iary variable yd1 ∈ {0, 1}. This variable allows the inclusion of detector responses
as soft constraints. (Best viewed in colour)

graphically on a pixel-based crf. The new energy function is given by:

E(x) = Epix(x) +
∑

d∈D
ψd(xd, Hd, ld), (4.6.1)

where Epix(x) is any standard pixel-based energy. The minimization procedure
should be able to reject false detection hypotheses on the basis of other potentials
(pixels and/or segments). We introduce an auxiliary variable yd ∈ {0, 1}, which
takes value 1 to indicate the acceptance of d-th detection hypothesis. Let φd be a
function of this variable and the detector response. Thus the detector potential
ψd(.) is the minimum of the energy values provided by including (yd = 1) and
excluding (yd = 0) the detector hypothesis, as given below:

ψd(xd, Hd, ld) = min
yd

φd(yd,xd, Hd, ld). (4.6.2)

We now discuss the form of this function φd(·). If the detector hypothesis is
included (yd = 1), it should: (a) encourage consistency by ensuring that labellings
where all the pixels in xd take the label ld should be more probable, i.e. the
associated energy of such labellings should be lower; (b) be robust to partial
inconsistencies, i.e. pixels taking a label other than ld in the detection window.
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4.6. Object Detectors in crfs for Object Class Segmentation

Such inconsistencies should be assigned a cost rather than completely disregarding
the detection hypothesis. The absence of the partial inconsistency cost will lead
to a hard constraint where either all or none of the pixels in the window take
the label ld. This allows objects partially occluded to be correctly detected and
labelled.

To enable a compact representation, we choose the potential ψd such that the
associated cost for partial inconsistency depends only on the number of pixels
Nd =

∑
i∈xd

δ(xi 6= ld) disagreeing with the detection hypothesis. Let f(xd, Hd)

de�ne the strength of the hypothesis and g(Nd, Hd) the cost taken for partial
inconsistency. The detector potential then takes the form:

ψd(xd, Hd, ld) = min
yd

φd(yd,xd, Hd, ld) = min
yd

(−f(xd, Hd)yd + g(Nd, Hd)yd),

(4.6.3)
where φd(yd,xd, Hd, ld) = −f(xd, Hd)yd + g(Nd, Hd)yd.

A stronger classi�er response Hd indicates an increased likelihood of the pres-
ence of an object at a location. This is re�ected in the function f(·), which should
be monotonically increasing with respect to the classi�er response Hd. As we also
wish to penalize inconsistency, the function g(·) should be monotonically increas-
ing with respect to Nd. The number of detections used in the crf framework
is determined by a threshold Ht. The hypothesis function f(·) is chosen to be a
linear truncated function using Ht as:

f(xd, Hd) = wd|xd|max(0, Hd −Ht), (4.6.4)

where wd is the detector potential weight. This ensures that f(·) = 0 for all
detections with a response Hd ≤ Ht. We choose the inconsistency penalizing
function g(·) to be a linear function on the number of inconsistent pixels Nd of
the form:

g(Nd, Hd) = kdNd, (4.6.5)

where the slope kd was chosen such that the inconsistency cost equals f(·) when
the percentage of inconsistent pixels is pd, and is given by:
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4.7. Inference for Detector Potentials

kd =
f(xd, Hd)

pd|xd| . (4.6.6)

Sliding window detectors detect only a bounding box and not the exact set of
pixels xd belonging to the object. We follow the approach used by submissions
in the pascal voc 2009 segmentation challenge and explicitly identify which
regions of the box are likely to belong to the object. This provides us a more
precise set of object pixels. We can either estimate the foreground and back-
ground using local colour model [78] or with pose-based approaches [77] that use
a generatively trained likelihood of pixels belonging to the foreground depending
on the relative location of pixels within the box. If detectors estimate foreground
pixels themselves [65], they may be applied directly. Note that equation (4.6.1)
could be de�ned in a similar fashion over superpixels.

4.7 Inference for Detector Potentials

We now show that our detector potential in equation (4.6.3) can be converted
into a form solvable using α-expansion algorithms [11]. In contrast, the related
work in [35] su�ers from a di�culty to optimize energy. The detector potential
ψd(·) can be rewritten as follows:

ψd(xd, Hd) = min
yd∈{0,1}

(−f(xd, Hd)yd + kdNdyd)

= min
yd∈{0,1}

(−f(xd, Hd)yd + kd

∑

i∈xd

δ(xi 6= d)yd). (4.7.1)

Now we show that for both cases α = ld and α 6= ld the α-expansion move energy
can be represented using one auxiliary variable. Similarly to previous chapters,
we use the standard transformation function for the α-expansion:

Tα(xi, ti) =





α if ti = 0

xi if ti = 1.
(4.7.2)
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Consider the case where α 6= ld. The move energy for the detector potential
ψd(xd, Hd) is:

ψd(t, yd) = −f(xd, Hd)yd + kd

∑

i∈xd

ydδ(xi 6= ld) + kd

∑

i∈xd

δ(xi = ld)(1− ti)yd

= −f ′(xd, Hd)yd + kd

∑

i∈xd

δ(xi = ld)(1− ti)yd, (4.7.3)

where f ′(xd, Hd) = f(xd, Hd) − kd
∑

i∈xd
δ(xi 6= ld). The move energy is directly

in the form of a pairwise submodular function and thus can be solved using graph
cut.

For the second case where α = ld we use the encoding ȳd = 1− yd. The move
energy for the detector potential ψd(xd, Hd) is:

ψd(t, ȳd) = −f(xd, Hd)(1− ȳd) + kd

∑

i∈xd

ti(1− ȳd). (4.7.4)

The move energy is also directly in the form of a pairwise submodular function
and thus the optimal α-expansion move can be found using graph cut. In both
of these constructions the state of detection yd can be recovered (in the �rst case
directly, in the second case yd = 1− ȳd). If any variable xi = α before the move,
it is equivalent to ti = 0 and dropping the corresponding term from the equation
(4.7.4). The equivalent graph constructions for both cases are given in �gure 4.4.

4.8 Experiments

We tested the deformable template detector on the INRIA person dataset [18].
This dataset contains 1832 training images and 741 test images of pedestrians
and cyclists in an urban environment. We formed a three level spatial pyramid
of cells with one cell in the top layer, 2× 2 on the second and 4× 10 on the base
layer. The base layer contained 2× 2 subcells containing histograms of oriented
gradients, normalised by a sum of gradient responses for each direction in a 3× 3

window around the cell. Other two layers contained histograms of visual words of
SIFT [67] and Local Binary Patterns [71]. We used the linear kernel on the hog
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Figure 4.4: A graph construction for the α-expansion move of the detector poten-
tial a) if ld 6= α, b) ld = α. In both of the cases the state of the detection yd can be
recovered. The colour of variables ti corresponds to the label before the move. The
colour of the variable yd respectively ȳd corresponds to the label of the detection
ld.

features and the intersection kernel approximation [102] on the bag-of-words. All
training boxes were extended by one sixth of their size in height and one third
of their size in width to capture edges at the extremities of the object and local
context.

In the �rst round of training, negative samples were picked randomly. In
the next two rounds we retrained the model by bootstrapping with hard false
positives in the training set [18]. The deformation �eld was included in the
last round of bootstrapping. The positive and negative weights of the trained
model are shown in Figure 4.2. During testing the response of the deformable
classi�er was evaluated on the top 200 windows per image chosen based on the
classi�er response without deformation. Non-maxima suppression was performed
on the resulting set of detections. We tried to train one, and two separate models
initialized by clustering feature vectors of the positive samples. Using two models
did not lead to signi�cant performance boost. Qualitative results are given in
Figure 4.1. We evaluated our performance in recall at a false positive per window
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rate (fppw) of 10−4 used also in [18]. We improved our baseline hog result 87.2%

(89% reported in [18]) to 88.1% using two models. However, the deformable
template using one model achieved 92.1%, while two models got only 91.5%.
These results suggest that the deformable model is partly able to capture small
variations between the models. It should be mentioned that the evaluation criteria
largely depend on the number of tested windows per image and chosen non-
maxima suppression scheme. Thus, the result may not be comparable for di�erent
setups and only the relative di�erence between models matters.

We included the state-of-the-art detectors [102, 25] in the crf framework
for object class segmentation. We tested our framework on the pascal voc
2009 data set. Qualitative results in the intersection vs. union measure on the
test set are shown in Figure 4.6. Our approach provides very precise object
boundaries and recovers from many failure cases. For example, bird (second
row), car (third row), potted plant (fourth row) are not only correctly identi�ed,
but also segmented with accurate object boundaries. Quantitative results on
this data set are provided in Figure 4.5. We compare our results with the 5 best
submissions from the 2009 challenge, and achieve the third best average accuracy.
Our method shows the best performance in 3 categories, and a close 2nd/3rd in
10 others.

4.9 Summary

We proposed a new latent svm for object detection with an mrf prior on the de-
formation �eld, that generalises previous work in pictorial structures. We showed
how this model can be learnt and optimised e�ciently. We showed how to extend
this method to multiple models sharing subsets of features. Experimental valida-
tion on INRIA data set suggested that the incorporation of the deformation �eld
leads to a quantitative and qualitative improvement of results. We presented
a principled way to integrate detectors with the crf framework, which led to
signi�cant improvement of the performance. Unlike many existing methods, our
approach supports the robust handling of occluded objects and false detections
in an e�cient and tractable manner. As a future work we would like to �nd the
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Figure 4.5: Quantitative analysis of voc 2009 test dataset results [22] using the
intersection vs union performance measure. Our method is ranked third when
compared with the 5 best submissions in the 2009 challenge.

characterisation of a general class of kernels, for which the corresponding inference
problem to estimate the optimal deformation �eld would still be tractable.
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(a) (b) (c) (a) (b) (c)

Figure 4.6: (a) Original test image from pascal voc 2009 dataset [22], (b) The
labelling obtained by [59] without object detectors, (c) The labelling provided by
our method which includes detector based potentials. Note that no groundtruth
is publicly available for test images in this dataset. Examples shown in the �rst
�ve rows illustrate how detector potentials not only correctly identify the object,
but also provide very precise object boundaries, e.g. bird (second row), car (third
row). Some failure cases are shown in the last two rows. This was caused by
either incorrect grab-cut solution, by a missed detection or incorrect detections
that are very strong and dominate all the other potentials. (Best viewed in
colour)
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Chapter 5

Joint Object Class Segmentation
and Dense Stereo Reconstruction



The problems of object class segmentation [88, 59], which assigns an object label
such as road or building to every pixel in the image and dense stereo reconstruc-
tion, in which every pixel within an image is labeled with a disparity [54], are
well suited for being solved jointly. Both approaches formulate the problem of
providing a correct labelling of an image as one of Maximum a Posteriori (map)
estimation over a Conditional Random Field (crf) [61], which is typically a
Potts or truncated linear model. Thus both may use graph cut based move mak-
ing algorithms, such as α-expansion [11], to solve the labelling problem. These
problems should be solved jointly, as a correct labelling of object class can help
depth labelling, and stereo reconstruction can improve object labelling. Indeed
it opens the possibility for the generic stereo priors used previously to be en-
riched by information about the shape of speci�c objects. For instance, object
class boundaries are more likely to occur at a sudden transition in depth and
vice versa, while the height of a point above the ground plane is an extremely
informative cue regarding its object class label; e.g. road or sidewalk lie in the
ground plane, and pixels taking labels pedestrian or car must lie at a constrained
height above the ground plane, while pixels taking label sky must occur at an in-
�nite depth (zero disparity) from the camera. Figure 5.1 shows our model which
explicitly captures these properties.

Object recognition provides substantial information about the 3D location
of points in the image. This has been exploited in recent work on single view
reconstruction [42, 75, 34, 66], in which a plausible pop-up planar model of a
scene is reconstructed from a single monocular image using object recognition
and prior information regarding the location of objects in typically photographed
scenes. Such approaches only estimate depth from object class, assuming the
object class is known. As object recognition is itself a problem full of ambiguity
and often requiring knowledge of 3D such a two stage process must, in many
cases, be suboptimal.

Other works have taken the converse approach of using 3D information in
inferring object class; [44] showed how knowledge of the camera viewpoint and
the typical 3D location of objects can be used to improve object detection, while
[64] employed Structure-from-Motion (SfM) techniques to aid the tracking and
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detection of moving objects. However, neither object detection nor the 3D re-
construction obtained gave a dense labelling of every pixel in the image, and the
�nal results in tracking and detection were not used to re�ne the SfM results.
The CamVid [12] data set provides sparse SfM cues, which have been used by
several object class segmentation approaches [12, 89] to generate pixel based im-
age labelling. In these the object class segmentation was not used to re�ne the
3D structure.

Previous works have attempted to simultaneously solve the problems of object
class detection and 3D reconstruction. [45] �tted a 3D model to speci�c objects,
such as buses or cars within an image by simultaneously estimating 3D location,
orientation and object class, while [20] �tted a 3D model of a building to a set
of images by simultaneously estimating a wire-frame model and the location of
assets such as window or column. In both of these papers the 3D models are
intended to be plausible rather than accurate, and these models are incomplete,
they do not provide location or class estimates of every pixel.

None of the discussed works perform joint inference to obtain dense stereo
reconstruction and object class segmentation. In this work, we demonstrate that
these problems are mutually informative, and bene�t from being solved jointly.
We consider the problem of scene reconstruction in an urban area [64]. These
scenes contain object classes such as road, car and sky that vary in their 3D
locations. Compared to typical stereo data sets that are usually produced in con-
trolled environments, stereo reconstruction on this real world data is noticeably
more challenging due to large homogeneous regions and problems with photo-
consistency. We e�ciently solve the problem of joint estimation of object class
and depth using modi�ed variants of the α-expansion [11], and range move algo-
rithms [104, 56].

No real world data sets are publicly available that contain both per pixel ob-
ject class and dense stereo data. In order to evaluate our method, we augmented
the data set of [64] by creating hand labeled object class and disparity maps
for 70 images. These annotations have been made available for download1. Our
experimental evaluation demonstrates that joint optimisation of dense stereo re-

1http://cms.brookes.ac.uk/research/visiongroup/files/Leuven.zip
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Figure 5.1: Graphical model of our joint crf. The system takes a left (A) and
right (B) image from a stereo pair that has been recti�ed. Our formulation cap-
tures the dependencies between the object class segmentation problem (E, �5.1.1)
and the dense stereo reconstruction problem (F, �5.1.2) by de�ning a joint en-
ergy on the recognition and disparity labels both on the unary/pixel (blue) and
pairwise/edge variables (green) of both problems. The unary potentials of the
joint problem encodes the fact that di�erent objects will have di�erent height dis-
tributions (G,eq. (5.2.1)) learned from our training set containing hand labeled
disparities (�5.4). The pairwise potentials encode that object class boundaries,
and sudden changes in disparity are likely to occur together, but could also en-
code di�erent shape smoothness priors for di�erent types of object. The combined
optimisation results in an approximate object class segmentation (C) and dense
stereo reconstruction (D). See �5.2 and �5.3 for a full treatment of our model
and �5.5 for further results. Best viewed in colour.
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construction and object class segmentation leads to a substantial improvement in
the accuracy of the �nal results.

The structure of the chapter is as follows: In section 5.1 we give the generic for-
mulation of crfs for dense image labelling, and describe how they can be applied
to the problems of object class segmentation and dense stereo reconstruction.
Section 5.2 describes the formulation allowing for the joint optimisation of these
two problems, while section 5.3 shows how the optimisation can be performed
e�ciently. The data set is described in section 5.4 and experimental validation
follows in 5.5.

5.1 Overview of Dense CRF Formulations

Our joint optimisation consists of two parts, object class segmentation and dense
stereo reconstruction. Before we formulate our approach we give an overview of
the typically used random �eld formulation for both problems and introduce the
notation used in section 5.2. Both problems have previously been de�ned as a
dense crf where the set of random variables Z = {Z1, Z2, . . . , ZN} corresponds to
the set of all image pixels i ∈ V = {1, 2, . . . , N}. Let N be the neighbourhood
system of the random �eld de�ned by the sets Ni, ∀i ∈ V , where Ni denotes
the neighbours of the variable Zi. A clique c ∈ C is a set of random variables
Zc ⊆ Z. Any possible assignment of labels to the random variables will be called
a labelling and denoted by z, similarly we use zc to denote the labelling of a
clique. In �gure 5.1 E and F depict this lattice structure as a blue dotted grid,
the variables Zi are shown as blue circles.

5.1.1 Object Class Segmentation using a CRF

The problem of object class segmentation is formulated as in the previous sections
as �nding a minimal cost labelling of a crf. In this chapter we use the notation:

EO(x) =
∑

i∈V
ψO

i (xi) +
∑

i∈V,j∈Ni

ψO
ij(xi, xj) +

∑

c∈C
ψO

c (xc), (5.1.1)
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5.1. Overview of Dense CRF Formulations

to di�erentiate between the crf for object class segmentation and the crf for
the dense stereo reconstruction problem.

5.1.2 Dense Stereo Reconstruction using a CRF

We use the energy formulation of [11, 54] for the dense stereo reconstruction part
of our joint formulation. They formulated the problem as one of �nding a minimal
cost labelling of a crf de�ned over a set of random variables Y = {Y1, . . . , YN},
where each variable Yi takes a state from the label space D = {d1, d2, . . . , dm}
corresponding to a set of disparities, and can be written as:

ED(y) =
∑

i∈V
ψD

i (yi) +
∑

i∈V,j∈Ni

ψD
ij (yi, yj). (5.1.2)

The unary potential ψD
i (yi) of the crf is de�ned as a measure of colour agreement

of a pixel with its corresponding pixel i from the stereo-pair given a choice of
disparity yi. The pairwise terms ψD

ij encourage neighbouring pixels in the image
to have a similar disparity. The cost is a function of the distance between disparity
labels:

ψD(yi, yj) = f(|yi − yj|), (5.1.3)

where f(.) usually takes the form of a linear truncated function f(y) = min(k1y, k2),
where k1, k2 ≥ 0 are the slope and truncation respectively. The unary (blue cir-
cles) and pairwise (green squares) potentials are shown in �gure 5.1 F. Note that
the disparity for a pixel is directly related to the depth of the corresponding 3D
point. To partially resolve ambiguities in disparities for low textured objects a
Gaussian �lter is applied to the unary potentials.

5.1.3 Monocular Video Reconstruction

With minor modi�cation, the formulation of 5.1.2 can also be applied to monoc-
ular video sequences, by performing stereo reconstruction over adjacent frames
in the video sequence (See �gure 5.3). Under the simplifying assumption that
the scene remains static, the formulation remains the same. However, without a
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Figure 5.2: An illustration of how 3D information can be reconstructed from a
stereo camera rig. Also shown, the relation between disparity (the movement of
a point between the pair of images) and height, once ground plane is known.

Figure 5.3: An illustration of how 3D information can be reconstructed from the
monocular sequence. Details of the conversion of the monocular 3D reconstruc-
tion problem into the standard stereo reconstruction are given in the �5.1.3.
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�xed baseline between the camera positions in adjacent frames the estimation of
disparities, and the mapping of disparities to depths is more complex.

We �rst pre-process the data, by performing sift matching [67] over adjacent
frames, before using Ransac [28, 94] to simultaneously estimate the fundamental
matrix, and a corresponding set of inliers from these matches. The fundamental
matrix gives us both the epipoles2 and the epipolar lines, and this allows us
to solve the stereo correspondence e�ciently by searching along corresponding
epipolar lines for a match [38]. Given two images 1, and 2, we write x, x′ for
a pair of matched points in images 1 and 2 respectively, and use e, e′ for the
epipoles present in each image. The disparity d is estimated as:

d = | |e− x| − |e′ − x′| | . (5.1.4)

Note that we compute the disparity between pixels in a particular frame with
those in its previous frame. As the camera moves forward into the image, this
guarantees that every unoccluded pixel can be matched. Matching pixels from
the current frame against the next would mean that pixels about the edge of the
image could not be matched. As with standard stereo reconstruction, the unary
potential of a particular choice of disparity, or equivalently a match between two
pixels, is de�ned as the pixel di�erence in RGB space between them.

Converting Monocular Disparity to Stereo Disparity Unlike conven-
tional stereo, disparities in our video sequence are not simply inversely propor-
tional to distances, but also depend on other variables. There are two reasons for
this:

• Firstly, the distance traveled between frames by the camera varies with the
speed of the vehicle and this implies that the baseline varies from frame to
frame.

• Secondly, when the epipole lies in the image the camera can not be ap-
proximated as orthographic. The e�ective baseline, which we de�ne as the
component of the baseline normal to the ray, varies substantially within an

2The epipoles typically lie within the image as the camera points in the direction of motion.
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5.1. Overview of Dense CRF Formulations

image from pixel to pixel.

We will describe how disparities in the monocular sequence correspond to dis-
tances, and use this to map them into standard form stereo disparities. This
allows us to reuse the joint potentials learned for the stereo case, and to directly
evaluate both approaches by comparing against the same ground truth.

We de�ne a ray λr, as the set of all values taken by a 3D unit vector r,
multiplied by a scalar λ ∈ <. We de�ne the baseline Bf as the 3D distance
traveled by the camera between a pair of frames f and f + 1 3. We let θ be the
angle between B and r. Then we de�ne e the epipole, as the intersection point
of the baseline and the image plane, and x as the point in the image that the ray
λr passes through. Given a disparity d of a point on the ray, the distance s of
that point from the camera is:

s = K|(Bf − (Bf · r)B0)|/d
= K|Bf |

√
1− cos2 θ/d

= K|Bf || sin θ|/d,

(5.1.5)

where K is a constant based on the internal properties of the camera and B0 =

Bf/|Bf | is the unit vector in the direction of Bf .
Noting that |e− x| ∝ tan θ, i.e. γ|e− x| = tan θ for some value γ, and that

| sin θ| =
√

tan2 θ
1+tan2 θ

, we have

s = K|Bf |
√√√√ γ2(e− x)2

1 + γ2(e− x)2
/d. (5.1.6)

Solving s for a conventional stereo pair gives the related equation [54]

s = K|B′|/d′, (5.1.7)

where K is the same constant based on intrinsic camera parameters, |B′| is the
distance between the pairs of cameras, assumed to be constant and orthogonal
to the �eld of view of both cameras, and d′ is the stereo disparity. Matching the

3This value is a part of the standard Leuven data-set, see �5.4, and does not require esti-
mating, in our application, see �5.5.
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two equations, and eliminating s, we have

d′ =
|B′|
|Bf |

d√
γ2(e−x)2

1+γ2(e−x)2

. (5.1.8)

In case the movement of the camera is very close to translation, orthogonal to
the image plane, γ is su�ciently small and the disparity can be approximated by:

d′ ≈ |B′| d
|Bf | γ |e− x| . (5.1.9)

Given this relationship, unary potentials de�ned over the monocular disparity d,
can be mapped to unary potentials over the conventional stereo disparity d′. This
allows standard stereo reconstruction on monocular sequences to be performed
as in section 5.1.2, and joint object class and 3D reconstruction from monocular
sequences to be performed as described in the following section.

5.2 Joint Formulation of Object Class Labelling
and Stereo Reconstruction

We formulate simultaneous object class segmentation and dense stereo recon-
struction as an energy minimization of a dense labelling z over the image. Each
random variable Zi = [Xi, Yi]

4 takes a label zi = [xi, yi], from the product space
of object class and disparity labels L×D and correspond to the variable Zi tak-
ing object label xi and disparity yi. In general the energy of the crf for joint
estimation can be written as:

E(z) =
∑

i∈V
ψJ

i (zi) +
∑

i∈V,j∈Ni

ψJ
ij(zi, zj) +

∑

c∈C
ψJ

c (zc), (5.2.1)

where the terms ψJ
i , ψJ

ij and ψJ
c are a sum of the previously mentioned terms ψO

i

and ψD
i , ψO

ij and ψD
ij , and ψO

c and ψD
c respectively, plus some terms ψC

i , ψC
ij , ψC

c ,
which govern interactions between X and Y. However, in our case ED(y) (see
�5.1.2) does not contain higher order terms ψD

c , and the joint energy is de�ned
4[Xi, Yi] is the ordered pair of elements Xi and Yi.
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as:
E(z) =

∑

i∈V
ψJ

i (zi) +
∑

i∈V,j∈Ni

ψJ
ij(zi, zj) +

∑

c∈C
ψO

c (xc). (5.2.2)

If the interaction terms ψC
i , ψC

ij are both zero, then the problems x and y

are independent of one another and the energy would be decomposable into
E(z) = EO(x) + ED(y) and the two sub-problems could each be solved sepa-
rately. However, in many real world data sets such as the one we describe in
�5.4, this is not the case, and we would like to model the unary and pairwise
interaction terms so that a joint estimation may be performed.

5.2.1 Joint Unary Potentials

In order for the unary potentials of both the object class segmentation and dense
stereo reconstruction parts of our formulation to interact, we need to de�ne some
function that relates X and Y in a meaningful way. We could use depth and
objects directly, as it may be that certain objects appear more frequently at
certain depths in some scenarios. In road scenes we could build statistics relative
to an overhead view where the positioning of the objects in the ground plane may
be informative, since we expect that buildings will lie on the edges of the ground
plane, sidewalk will tend to lie between building and road which would occupy the
central portion of the ground plane. Building statistics with regard to the real-
world positioning of objects gives a stable and meaningful cue that is invariant to
the camera position. However models such as this require a substantial amount
of data to avoid over-�tting.

We need to model these interactions with limited data. We do this by re-
stricting our unary interaction potential to only modelling the observed fact that
certain objects occupy a particular range of real world heights. After calibration
we are able to obtain the height above the ground plane via the relation:

h(yi, i) = hc +
(yh − yi)b

d
, (5.2.3)

where hc is the camera height, yh is the level of the horizon in the recti�ed image
pair, yi is the height of the ith pixel in the image, b is the baseline between the
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stereo pair of cameras and d is the disparity. This relationship is modeled by
estimating the a priori cost of pixel i taking label zi = [xi, yi] by

ψC
i ([xi, yi]) = − log(H(h(yi, i)|xi)), (5.2.4)

where
H(h|l) =

∑
i∈T δ(xi = l)δ(h(yi, i) = h)∑

i∈T δ(xi = l)
(5.2.5)

is a histogram based measure of the naive probability that a pixel taking label l

has height h in the training set T . The combined unary potential for the joint
crf is:

ψJ
i ([xi, yi]) = wu

OψO
i (xi) + wu

DψD
i (yi) + wu

CψC
i (xi, yi), (5.2.6)

where ψO
i , and ψD

i are the previously discussed costs of pixel i being a member
of object class xi or disparity yi given the image. wu

O, wu
D, and wu

C are weights.
Figure 5.1 G gives a graphical representation of this type of interaction shown as
a blue line linking the unary potentials (blue circles) of x and y via a distribution
of object heights.

5.2.2 Joint Pairwise Interactions

Pairwise potentials enforce the local consistency of object class and disparity
labels between neighbouring pixels. The consistency of object class and disparity
are not fully independent, an object classes boundary is more likely to occur
here if the disparities of two neighbouring pixels signi�cantly di�er. To take this
information into account, we chose tractable pairwise potentials of the form:

ψJ
ij([xi, yi], [xj, yj]) = wp

OψO
ij(xi, xj) + wp

DψD
ij (yi, yj)

+wp
CψO

ij(xi, xj)ψ
D
ij (yi, yj),

(5.2.7)

where wp
O, wp

D > 0 and wp
C are weights of the pairwise potential. Figure 5.1 shows

this linkage as green line between a pairwise potential (green box) of each part.
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5.3 Inference for the Joint CRF

Optimisation of the energy E(z) is challenging. Each random variable takes a
label from the set L×D consequentially, in the experiments we consider (see � 5.4)
they have 700 possible states. As each image contains 316×256 random variables,
there are 700316×256 possible solutions to consider. Rather than attempting to
solve this problem exactly, we use graph cut based move making algorithms to
�nd an approximate solution.

Graph cut based move making algorithms start from an initial solution and
proceed by making a series of moves or changes, each of which leads to a solution of
lower energy. The algorithm is said to converge when no lower energy solution can
be found. In the problem of object class labelling, the move making algorithm α-
expansion can be applied to pairwise [11] and to higher order potentials [49, 51, 59]
and often achieves the best results; while in dense stereo reconstruction, the
truncated convex priors (see � 5.1.2) mean that better solutions are found using
range moves [56, 104] than with α-expansion.

In object class segmentation, α-expansion moves allow any random variable
Xi to either retain its current label xi or transition to the label α. More formally,
given a current solution x the α-expansion algorithm searches through the space
Xα of size 2N , where N is the number of random variables, to �nd the optimal
solution, where

Xα =
{
x′ ∈ LN : x′i = xi or x′i = α

}
. (5.3.1)

In dense stereo reconstruction, a range expansion move de�ned over an ordered
space of labels, allows any random variable Yi to either retain its current label yi

or take any label l ∈ [la, la + r]. That is to say, given a current solution y a range
move searches through the space Yl of size (r + 1)N , which we de�ne as:

Yl =
{
y′ ∈ DN : y′i = yi or y′i ∈ [l, l + r]

}
. (5.3.2)

A single iteration of α-expansion, is completed when one expansion move for
each l ∈ L has been performed. Similarly, a single iteration of range moves is
completed when |D| − r, moves have been performed.
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5.3.1 Projected Moves

Under the assumption that energy E(z) is a metric (as in object class segmen-
tation see �5.1.1) or a semi-metric [11] (as in the costs of �5.1.2 and �5.2)
over the label space L × D, either α-expansion or αβ swap respectively can be
used to minimize the energy. One single iteration of α-expansion would require
O(|L||D|) graph cuts to be computed, while αβ-swap requires O(|L|2|D|2) result-
ing in slow convergence. In this subsection we show how graph cut based moves
can be applied to a simpli�ed, or projected, form of the problem that requires only
O(|L| + |D|) graph cuts per iteration, resulting in faster convergence and better
solutions. The new moves we propose are based upon a piecewise optimisation
that improves in turn �rst object class labelling and then depth.

We call a move space projected if one of the components of z, i.e. x or y,
remains constant for all considered moves. Alternating between moves in the
projected space of x or of y can be seen as a form of hill climbing optimisation in
which each component is individually optimised. Consequentially, moves applied
in the projected space are guaranteed not to increase the joint energy after the
move and must converge to a local optima.

We will now show that for energy (5.2.2), projected α-expansion moves in
the object class label space and range moves in the disparity label space are of
the standard form, and can be optimised by existing graph cut constructs. We
note that �nding the optimal range move or α-expansion with graph cuts requires
that the pairwise and higher order terms are constrained to a particular form.
This constraint allows the moves to be represented as a pairwise submodular
energy that can be e�ciently solved using graph cuts [55]; however, neither the
choice of unary potentials nor scaling the pairwise or higher order potentials by
a non-negative amount λ ≥ 0 a�ects if the move is representable as a pairwise
sub-modular cost.
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5.3.2 Expansion Moves in the Object Class Label
Space

For our joint optimisation of disparity and object classes, we propose a new
move in the projected object-class label space. We allow each pixel taking label
zi = [xi, yi] to either keep its current label or take a new label [α, yi]. Formally,
given a current solution z = [x,y] the algorithm searches through the space Zα

of size 2N . We de�ne Zα as:

Zα =





z′ ∈ (L ×D)N : z′i = [x′i, yi] and
(x′i = xi or x′i = α)





. (5.3.3)

One iteration of the algorithm involves making moves for all α in L in some order
successively. As discussed earlier, the values of the unary potential do not a�ect
the sub-modularity of the move. For joint pairwise potentials (5.2.7) under the
assumption that y is �xed, we have:

ψJ
ij([xi, yi], [xj, yj]) = (wp

O + wp
CψD

ij (yi, yj))ψ
O
ij(xi, xj) + wp

DψD
ij (yi, yj)

= λijψ
O
ij(xi, xj) + kij. (5.3.4)

The constant kij does not a�ect the choice of optimal move and can safely be
ignored. If ∀yi, yj λij = wp

O + wp
CψD

ij (yi, yj) ≥ 0, the projection of the pairwise
potential is a Potts model and standard α-expansion moves can be applied. For
wp

O ≥ 0 this property holds if wp
O + wp

Ck2 ≥ 0, where k2 is de�ned as in �5.1.2. In
practice we use a variant of α-expansion suitable for higher order energies [81].

5.3.3 Range Moves in the Disparity Label Space

For our joint optimisation of disparity and object classes we propose a new move
in the project disparity label space. Each pixel taking label zi = (xi, yi) can either
keep its current label or take a new label from the range (xi, [la, lb]). To formalize
this, given a current solution z = [x,y] the algorithm searches through the space
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Zl of size (2 + r)N , which we de�ne as:

Zl =





z′ ∈ (L ×D)N : z′i = [xi, y
′
i] and

(y′i = yi or y′i ∈ [l, l + r])





. (5.3.5)

As with the moves in the object class label space, the values of the unary potential
do not a�ect the sub-modularity of this move. Under the assumption that x is
�xed, we can write our joint pairwise potentials (5.2.7) as:

ψJ
ij([xi, yi], [xj, yj]) = (wp

D + wp
CψO

ij(xi, xj))ψ
D
ij (yi, yj) + wO

d ψO
ij(xi, xj)

= λijψ
D
ij (yi, yj) + kij. (5.3.6)

Again, the constant kij can safely be ignored, and if ∀xi, xj λij = wp
D+wp

CψO
ij(xi, xj) ≥

0 the projection of the pairwise potential is linear truncated and standard range
expansion moves can be applied. This property holds if wp

D + wp
C(θp + θv) ≥ 0,

where θp and θv are the weights of the Potts pairwise potential (see �5.1.1).

5.4 Data set

We augment a subset of the Leuven stereo data set5 of [64] with object class
segmentation and disparity annotations. The Leuven data set was chosen as it
provides image pairs from two cameras, 150cm apart from each other, mounted
on top of a moving vehicle, in a public urban setting. In comparison with other
data sets, the larger distance between the two cameras allows better depth res-
olution, while the real world nature of the data set allows us to con�rm our
statistical model's validity. However, the data set does not contain the object
class or disparity annotations, we require to learn and quantitatively evaluate the
e�ectiveness of our approach.

To augment the data set all image pairs were recti�ed, and cropped to 316×
256, then the subset of 70 non-consecutive frames was selected for human anno-
tation. The annotation procedure consisted of two parts. Firstly we manually
labeled each pixel in every image with one of 7 object classes: Building, Sky, Car,

5http://www.vision.ee.ethz.ch/~bleibe/cvpr07/datasets.html
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Road, Person, Bike and Sidewalk. An 8th label, Void, is given to pixels that do
not obviously belong to one of these classes. Secondly disparity maps were gen-
erated by manually matching by hand the corresponding planar polygons, some
examples of which are shown in the �gure 5.4 A, B, and D.

We believe our augmented subset of the Leuven stereo data set to be the
�rst publicly available data set that contains both object class segmentation and
dense stereo reconstruction ground truth for real world data. This data di�ers
from commonly used stereo matching sets like the Middlebury [82] data set, as it
contains challenging large regions which are homogeneous in colour and texture,
such as sky and building, and su�ers from poor photo-consistency due to lens �ares
in the cameras, specular re�ections from windows and inconsistent luminance
between the left and right camera. It should also be noted that it di�ers from the
CamVid database [12] in two important ways, CamVid is a monocular sequence,
and the 3D information comes in the form of a set of sparse 3D points with
outliers6. These di�erences give rise to a challenging new data set that is suitable
for training and evaluating models for dense stereo reconstruction, 2D and 3D
scene understanding, and joint approaches such as ours.

5.5 Experiments

For training and evaluation of our method we split the data set (�5.4) into three
sequences: Sequence 1, frames 0-447; Sequence 2, frames 512-800; Sequence 3,
frames 875-1174. Augmented frames from sequence 1 and 3 are selected for
training and validation, and sequence 2 for testing. All void pixels are ignored. We
quantitatively evaluate the object class segmentation by measuring the percentage
of correctly predicted labels over non-void pixels in the test sequence. The dense
stereo reconstruction performance is quanti�ed by measuring the number of pixels
which satisfy |di − dg

i | ≤ δ, where di is the label of i-th pixel, dg
i is corresponding

ground truth label and δ is the allowed error. We increment δ from 0 (exact) to
20 (within 20 disparities) giving a clear picture of the performance. The total

6The outlier rejection step was not performed on the 3D point cloud in order to exploit large
re-projection errors as cues for moving objects. See [12] for more details.
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Figure 5.4: Qualitative object class and disparity results for Leuven data set.(A)
Original Image. (B) Object class segmentation ground truth. (C) Proposed
method Object class segmentation result. (D) Dense stereo reconstruction ground
truth. (E) Proposed method dense stereo reconstruction result. (F) Stand alone
dense stereo reconstruction result (LT). Best viewed in colour.

Figure 5.5: Monocular results. (A) Original Image. (B) Object class segmenta-
tion ground truth. (C) Proposed method Object class segmentation result. (D)
Dense stereo reconstruction ground truth. (E) Proposed method dense stereo
reconstruction result. (F) Stand alone dense stereo reconstruction result (LT).
The quality of reconstruction improves with the distance from the epipole. Best
viewed in colour.
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Figure 5.6: Quantitative comparison of the performance of disparity crfs. We
can clearly see that our joint approach �5.2 (Proposed Method) outperforms stan-
dard dense stereo approaches based on the Potts [54] (Potts Baseline), Linear
truncated models described in �5.1.2 (LT Baseline) and Linear truncated with
Gaussian �ltered unary potentials (LT Filtered). The correct pixel ratio is the
proportion of pixels which satisfy |di − dg

i | ≤ δ, where di is the disparity label
of i-th pixel, dg

i is corresponding ground truth label and δ is the allowed error.
See �5.5 for discussion.

Figure 5.7: Quantitative comparison of the performance of disparity crfs, on
monocular sequences. As with the stereo pair, we can clearly see that our joint
approach �5.2 (Proposed Method) outperforms the stand alone approaches with
baseline Potts [54] (Potts Baseline), Linear truncated potentials �5.1.2 (LT Base-
line) and Linear truncated with Gaussian �ltered unary potentials (LT Filtered).
The correct pixel ratio is the proportion of pixels which satisfy |di−dg

i | ≤ δ, where
di is the disparity label of i-th pixel, dg

i is corresponding ground truth label and δ

is the allowed error. See �5.5.4 for discussion, and �gure 5.4 to compare against
conventional stereo.
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Stand alone 95.7 96.7 99.8 93.5 99.0 60.2 59.3
Joint approach 95.8 96.7 99.8 94.0 98.9 60.6 59.5

Table 5.1: Quantitative results for object class segmentation of stand alone and
joint approach. The pixel accuracy (%) for di�erent object classes. The `global'
measure corresponds to the total proportion of pixels labeled correctly. Per class
accuracy corresponds to recall measure commonly used for this task [88, 89, 59].
Minor improvement were achieved for smaller classes that had fewer pixels present
in the data set. We assume the di�erence would be larger for harder data sets.
Class person was removed from evaluation due to insu�cient statistics on the test
set.

number of disparities used for evaluation is 100.

5.5.1 Object Class Segmentation

The object class segmentation crf as de�ned in �5.1.1 performed extremely well
on the data set, better than we had expected, with 95.7% of predicted pixel labels
agreeing with the ground truth. Qualitatively we found that the performance
is stable over the entire test sequence, including those images without ground
truth. Most of the incorrectly predicted labels are due to the high variability of
the object class person, and insu�cient training data to learn their appearance.
Quantitative comparison of the stand alone and joint method is given in table
5.1.

5.5.2 Dense Stereo Reconstruction

The Potts [54] and linear truncated (LT) baseline dense stereo reconstruction
models described in �5.1.2 performed relatively well, with large δ, considering
the di�culty of the data, plotted in �gure 5.6 as `Potts baseline' and `LT baseline'.
We found that on our data set a signi�cant improvement was gained by smoothing
the unary potentials with a Gaussian blur7 before incorporating the potential in

7This is a form of robust measure, see �3.1 of [82] for further examples.
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the crf framework with linear truncated model, as can be seen in �gure 5.6 `LT
Filtered'. For qualitative results see �gure 5.4 E.

5.5.3 Joint Approach

Our joint approach de�ned in sections �5.2 and �5.3 consistently outperformed
the best stand-alone dense stereo reconstruction as can be seen in �gure 5.6.
Improvement of the object class segmentation was less dramatic, with 95.8% of
predicted pixel labels agreeing with the ground truth. We expect to see a more
signi�cant improvement on more challenging data sets, and the creation of an
improved data set is part of our future work. Qualitative results can be seen in
�gure 5.4 C and E.

5.5.4 Monocular Reconstruction

Reconstruction from a monocular sequence is substantially harder than the cor-
responding stereo problem. Not only does it su�er from the same problems of
varying illumination and homogeneous regions, but the e�ective base-line is sub-
stantially shorter making it much harder to recover 3D information with any
degree of accuracy, particularly in the region around the epipole (see �5.1.3 and
�gure 5.5). Despite this, plausible 3D reconstruction is still possible, particularly
when performing joint inference over object class and disparity simultaneously,
quantitative results can be seen in �gure 5.7. Note that the joint optimisation
of monocular disparity and object class out performs the pre-existing methods
(LT Baseline and Potts Baseline) over conventional two camera stereo data, and
is comparable to the two camera results on LT �ltered. In �gure 5.5 qualitative
results can be seen. As expected, these show the quality of reconstruction im-
proves with the distance from the epipole. Consequentially, one of the regions
most successfully reconstructed is marked as void in the two camera disparity
maps, as it is not in the �eld of view of both cameras. This suggests that the
numeric evaluation of �gure 5.7 may be overly pessimistic.
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5.6 Conclusion

Traditionally the prior in stereo has been �xed to some standard tractable model
such as truncated linear on disparities. Within this work we open up the intrigu-
ing possibility that the prior on shape should take in account the type of scene
and object we are looking at. To do this, we provided a new formulation of the
problems, a new inference method for solving this formulation and a new data
set for the evaluation of our work. Evaluation of our work shows a dramatic im-
provement in stereo reconstruction compared to existing approaches. We assume
statistically signi�cant gain can be achieved also for object class segmentation,
but it would require more challenging data set. The method can be applied to
any other scenes where mutual information between 3D location and object label
is present. Within this chapter we have focussed on road scenes. Here the object
label strongly in�uences the depth label once we consider a parametrization in
terms of height above the road plane. So far we have not considered learning the
relation of the smoothness term for depth to object class, for instance the fact
walls might be vertical etc. This would be an interesting line for future work.
This work puts us one step closer to achieving complete scene understanding,
and provides strong experimental evidence that the joint labelling of di�erent
problems can bring substantial gains.

104



Chapter 6

Conclusion and Future Work



6.1 Summary

This thesis is a step towards complete scene understanding, proposing new struc-
tured models for labelling problems and e�cient algorithms to do inference on
them. The work goes beyond standard pairwise conditional random �elds, typ-
ically used for most labelling tasks. We showed, that for all proposed complex
structured formulations e�cient graph cut based inference is applicable. The pro-
posed models have been successfully applied to semantic object class segmenta-
tion, object detection and dense 3D stereo reconstruction yielding state-of-the-art
results for several standard data sets.

The main contributions of this dissertation are:

(i) A new associative hierarchical model that enforces consistency between poten-
tials on di�erent scales. We showed that the proposed model is a generalisation
of most of the standard methods used for semantic object class segmentation.
We proposed novel potentials for this task and an e�cient graph cut based move-
making algorithm to deal with the optimisation problem. Published at ICCV'09
and UAI'10.

(ii) A method to include co-occurrence statistics in the crf framework. Our
formulation satis�es all the desired properties of incorporation of such statistics,
such us incorporation as a weak constraint, invariance to size and preference of
parsimonious solutions. We showed how the model can be e�ciently optimised
using graph cut based move making algorithms. In practice incorporation of
the co-occurrence statistics leads to qualitatively better results. Published at
ECCV'10 (Best paper award) and as an invited paper at IJCV'11.

(iii) A novel latent �eld svms for object detection with convex mrf prior on
deformation �eld of the deformable template, that seems to be a natural gener-
alisation of the common methods used for this task. We showed how the latent
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variable model can be learnt e�ciently. Incorporation of detector responses in
the crf framework for the object class segmentation problem led to a signi�cant
improvement of the performance. Published at ECCV'10.

(iv) A novel formulation that models jointly the problem de�ned over multiple
domains with a product space of labels. We proposed e�cient projected-move in-
ference to deal with these problems. We demonstrated the usefulness of this model
on the joint estimation of dense 3D stereo reconstruction and object class seg-
mentation. The method signi�cantly outperforms existing approaches for dense
stereo reconstructions of road scenes. Published at BMVC'10 (Best paper award)
and as an invited paper at IJCV'11.

6.2 Future work

This thesis dealt with some of the structures in Conditional Random Fields, that
are desired to be enforced or induced in the solution of the labelling problem. A
natural extension of this work is to analyze other useful properties in computer
vision, such as shape, motion or symmetry, and propose new probabilistic for-
mulations and inference methods to deal with them. Based on the experimental
results, the representation of several cues in one probabilistic framework seems to
be the promising direction to formulate complex computer vision problems and
we believe this is just the beginning of an exciting journey into global structured
models towards scene understanding.
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