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Abstract 

An investigation into detection and classification of vehicles and pedestrians from 

video in urban traffic scenes is presented. The final aim is to produce systems to 

guide surveillance operators and reduce human resources for observing hundreds of 

cameras in urban traffic surveillance. Cameras are a well established means for 

traffic managers to observe traffic states and improve journey experiences. Firstly, 

per frame vehicle detection and classification is performed using 3D models on 

calibrated cameras. Motion silhouettes (from background estimation) are extracted 

and compared to a projected model silhouette to identify the ground plane position 

and class of vehicles and pedestrians. The system has been evaluated with the 

reference i-LIDS data sets from the UK Home Office. Performance has been 

compared for varying numbers of classes, for three different weather conditions and 

for different video input filters. The full system including detection and 

classification achieves a recall of 87% at a precision of 85.5% outperforming 

similar systems in the literature. 

To improve robustness, the use of local image patches to incorporate object 

appearance is investigated for surveillance applications. As an example, a novel 

texture saliency classifier has been proposed to detect people in a video frame by 

identifying salient texture regions. The image is classified into foreground and 

background in real- time. No temporal image information is used during the 

classification. The system is used for the task of detecting people entering a sterile 

zone, a common scenario for visual surveillance. Testing has been performed on the 

i-LIDS sterile zone benchmark data set of the UK Home Office. The basic detector 

is extended by fusing its output with simple motion information, which significantly 

outperforms standard motion tracking. Lower detection time can be achieved by 

combining texture classification with Kalman filtering. The fusion approach 



running on 10 frames per second gives the highest result of F1=0.92 for the 24 hour 

test data set. 

Based on the good results for local features, a novel classifier has been 

introduced by combining the concept of 3D models with local features to overcome 

limitations of conventional silhouette-based methods and local features in 2D. The 

appearance of vehicles varies substantially with the viewing angle and local features 

may often be occluded. In this thesis, full 3D models are used for the object 

categories to be detected and the feature patches are defined over these models. A 

calibrated camera allows an affine transformation of the observation into a 

normalised representation from which ‗3DHOG‘ features (3D extended histogram 

of oriented gradients) are defined. A variable set of interest points is used in the 

detection and classification processes, depending on which points in the 3D model 

are visible. The 3DHOG feature is compared with features based on FFT and simple 

histograms and also to the motion silhouette baseline on the same data. The results 

demonstrate that the proposed method achieves comparable performance. In 

particular, an advantage of the proposed method is that it is robust against miss-

shaped motion silhouettes which can be caused by variable lighting, camera quality 

and occlusions from other objects. 

The proposed algorithms are evaluated further on a new data set from a 

different camera with higher resolution, which demonstrates the portability of the 

training data to novel camera views. Kalman filter tracking is introduced to gain 

trajectory information, which is used for behaviour analysis. Correctly detected 

tracks of 94% outperform a baseline motion tracker (OpenCV) tested under the 

same conditions. A demonstrator for bus lane monitoring is introduced using the 

output of the detection and classification system. The thesis concludes with a 

critical analysis of the work and the outlook for future research opportunities. 
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1. Introduction 

“Concern for man and his fate must always form the chief interest of all 

technical endeavours. Never forget this in the midst of your diagrams 

and equations.” 

- Albert Einstein 

1.1. Video Analytics for Traffic Management 

Intelligent image detection systems are part of a centralised approach to modern day 

traffic management. This has arisen from the need for more cost effective and 

efficient monitoring of traffic. In turn, this has increased the scope for automatic 

analysis of urban traffic activity from CCTV in recent years. This increase can be 

contributed in part to the additional numbers of cameras and other sensors, 

enhanced infrastructure and consequent accessibility of data. Also the advancement 

of analytical techniques to process the video (and other) data together with 

increased computing power has enabled new applications. Video analytics is 

defined as computer vision based surveillance algorithms and systems to extract 

contextual information from video. The main concept is to aid human operators in 

observing video data. This can allow online and post-event detection of events of 

interest, which is useful for traffic management due to additional data available. The 

current main bottleneck of surveillance is the limitation of human resources for 

observing hundreds of cameras. Automatic pre- processing allows efficient 

guidance for the operators to pick cameras to view and accumulate statistics, with 

the aim to improve traffic flow. Video cameras have been deployed for a long time 

for traffic and other monitoring purposes, because they provide a rich information 

source for human understanding. Video analytics may now provide added value to 
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those cameras by automatically extracting relevant information and easing the 

bottleneck of operators viewing all cameras. 

With 1200 cameras and over 100 monitors it is not feasible to continuously 

monitor every CCTV camera installed within Transport for London‘s (TfL) road 

network which demonstrates the bottleneck described above. In fact, it has been 

shown that for manual monitoring the accuracy of detection significantly decreases 

over time. Therefore, the development of a technology that provides automatic and 

relevant real- time alerts to Traffic Co-ordinators can have an immediate and long 

term impact on traffic management through the implementation of responsive traffic 

strategies. 

In urban environments, there are several monitoring objectives that can be 

supported by the application of computer vision and pattern recognition techniques. 

These include the detection of traffic violations (illegal turns, one way streets, etc) 

and the identification of road users. For the latter task, the most reliable approach to 

date is either through recognition of the number plates (ANPR) or radio frequency 

transponders, which of course cannot be used for pedestrians or bicycles. 

Nevertheless ANPR tends to be only effective for specialised camera views 

(zoomed on plates) and cannot provide wide-area observation or the measurement 

of the interactions between road users, etc. that may be possible with computer 

vision using standard cameras. Thus, for the monitoring objectives outlined above, 

the detection and classification of road users is a key task. However, using general 

purpose surveillance cameras, this is a demanding challenge. The quality of 

surveillance data is generally poor and the range of operational conditions (night-

time, low angle and changeable weather that affects the auto-iris) require robust 

techniques. The significant difference between traffic surveillance and generic 

object recognition is important for the understanding of the methods used. Object 

recognition tasks typically focus on high resolution images  (mega pixel range) with  
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Figure 1 Illustrations of camera installations in London and the resulting views. 

few constraints on the viewing angle. The Visual Object Classes (VOC) challenge 

(Everingham et al., 2009) gives precise definitions for classification, detection and 

segmentation problems. The computational cost for classifying those unconstrained 

images is usually high. 

In contrast to the above, traffic surveillance systems deal with low camera 

resolution. Many current installations include analogue PAL and NTSC cameras, 

which only provide a limited amount of visual detail of road users. The monitoring 

objectives generally require real-time processing, which limits the complexity of 

proposed approaches. The scenes are usually more constrained than object 

recognition, with cameras mounted on poles above roads (illustrated in Figure 1). 

Cameras are typically assumed to be stationary, on a 'home' position, unless 

operators take control over a camera. Many algorithms use this assumption to 

extract information when no operator is observing the camera and information may 



CHAPTER 1 INTRODUCTION 1.2 Scope and Outline 

 - 4 -  

be lost otherwise. This is significant added value for existing installations. In 

general, this surveillance task itself is not as well defined as it is for example for 

image retrieval, and no scientific benchmarking challenge has yet taken place. 

Prospective users of this technology have to evaluate such technology on a per case 

basis. 

In early 2006, TfL launched the Image Recognition and Incident Detection 

(IRID) project. This project was tasked to review the current image processing 

market and see how it met TfL‘s detection requirements. Testing was carried out on 

the following criteria: congestion, stopped vehicles, banned turns, vehicle counting, 

subway monitoring and bus detection (Cracknell, 2007, Cracknell, 2008). Results 

from this testing show good performance in congestion detection (80% precision), 

but poor performance in tracking based detection (~20% precision), clearly showing 

limitations in capability. This PhD project was sponsored by TfL to investigate low 

level imaging techniques for urban traffic monitoring. Robustness is an important 

consideration to overcome the limitations of currently available systems and to aid 

TfL‘s traffic managers in their task of Keeping London Moving. 

1.2. Scope and Outline 

This thesis focuses on video analysis from urban traffic management cameras. To 

address the bottleneck of a limited number of operators, algorithms are to be 

developed for the detection and classification of vehicles from currently installed 

CCTV cameras in London. This provides different challenges than highway 

monitoring, which will be described in more detail in the literature review. The 

cameras can be assumed stationary and in home position if no operator is taking 

control of them. 

Based on requirements of TfL, five generic classes are identified for the 

classifier: 
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 Bus/Lorry 

 Van 

 Car/Taxi 

 Motorbike/Bicycle 

 Pedestrian. 

Portability of the system between cameras is essential, as extensive setup or training 

for every single camera is not feasible. Camera ground plane calibration can be 

assumed to be provided, as maps of roads are available or can be quickly generated 

manually. A demonstrator for tracking and some behaviour analysis is in the scope 

of the thesis, whereas more complex analysis of the generated meta data will be 

future work. 

Literature relevant to traffic monitoring in urban and highway scenes 

together with generic visual surveillance technology is reviewed in chapter 2. The 

general framework used throughout the thesis will be introduced in section 2.6 

based on the literature. Vehicle detection and classification is first solved by motion 

estimation and 3D models for vehicles in chapter 3. The motion estimation is state 

of the art for stationary surveillance cameras. The 3D model approach allows 

portability between cameras and the estimation of real world coordinates of 

vehicles. Camera calibration is sufficient to use the models for any view. However, 

the classification relies on motion silhouettes (binary mask) which is noisy and can 

be affected by camera shake, shadows, occlusion and so on. 

The robustness of motion silhouettes is limited, as only very little 

information of the input image is available in the binary mask. The appearance 

information of objects is unavailable to the classifier. The use of local image 

patches for appearance modelling is investigated in chapter 4 to overcome the 

mentioned problems. In particular, the scenario of human intrusion detection for 

fence monitoring is solved. Local image patches with fast Fourier transform (FFT) 
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features show good performance for discriminating people from background based 

on appearance in single frames. 

Local appearance from the previous chapter is integrated with the 3D 

framework in chapter 5. This on the one hand uses the complete image information 

allowing it to work on still images and on the other hand provides portability due to 

the novel integration with 3D models. For features, FFT as before, histogram and 

histogram of oriented gradients (HOG) are used. In this way, the approach moves 

beyond the traditional concept of motion estimation by incorporating concepts of 

the object recognition domain into video surveillance. The algorithm implicitly 

handles variable viewpoints of vehicles and camera resolutions based on a single 

training set. 

The proposed algorithms are evaluated in more detail in chapter 6. 

Portability and occlusion performances are evaluated on a new data set. Tracking is 

incorporated into the framework and a demonstrator for bus lane monitoring is 

introduced. The thesis concludes with chapter 7 with a critical discussion of the 

work presented and the outlook for future work. Additional implementation details 

of the proposed framework and tables not included in the main text are available in 

the appendix. 

1.3. Contribution 

A comprehensive review of visual traffic analysis systems and related methods of 

computer vision is presented in chapter 2. The main gaps in literature identified are 

firstly the classification of vehicles based on richer information than the motion 

silhouette size. Secondly, coverage for urban environments is historically less than 

for highways. This section will introduce the contributions of the thesis in respect to 

the literature and the problem definition in section 1.2. 
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The issue of portability and vehicle classification with motion silhouettes is 

addressed in chapter 3 resulting in three main contributions. Firstly the use of 3D 

models for road user classification. In particular, matching those 3D models with 

closed contours extracted from motion foreground is novel. Several methods for 

background refinement are available. All main road users are detected and classified 

with a single framework. The second contribution is a unified framework for the use 

of 3D models, which will allow seamless integration of appearance later on. The 

third contribution is the system evaluation on a public data set. Evaluation results 

are presented on the i-LIDS data set from the UK Home Office which can be 

licensed by research institutions and manufacturers (iLIDS, nd). This will provide 

the baseline for the following chapters. 

For chapter 4, the contribution is three-fold addressing the evaluation of 

local appearance features in 2D for visual surveillance applications. Firstly a novel 

saliency classifier is proposed for human intrusion detection in still images. People 

are not assumed upright, as is the case for most pedestrian detectors in the literature 

e.g. (Dalal and Triggs, 2005, Jones and Snow, 2008). Salient objects are detected in 

real- time, based on spectral texture features of local image patches. The basic 

classifier is extended with a novel fusion of the saliency and a simple inter-frame 

difference motion mask. A second extension uses Kalman filtering and allows 

motion silhouettes to initialise tracks to reduce detection time. The second 

contribution is the testing of the algorithms on the i-LIDS sterile zone data set (full 

24 hours), which is used to benchmark visual surveillance systems. Comparative 

results with the state of the art OpenCV blob tracker are provided. Finally, detailed 

runtime and complexity analysis for the framework is presented. 

The integration of chapters 3 and 4 addresses the issue of using appearance 

features for vehicle classification, which leads to the following contributions in 

chapter 5: Firstly, the 3D spatial models are extended to incorporate the location of 
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interest points from which local features are extracted. The local features are 

alternatively constructed from histograms of oriented gradients (HOG), standard 

image histograms or FFT features. The combination of 3D interest points and HOG 

is hence introduced as the novel 3DHOG feature. Image patches are arranged on a 

3D surface rather than a 2D grid, which preserves the advantages of both 3D model 

and local features. Performance is evaluated, comparing 3DHOG with FFT and 

histogram-based local features. The second contribution is a training and 

classification framework based on the 3DHOG feature, which allows classification 

using a variable number of interest points (previous approaches required a fixed 

number of interest points). This framework therefore seamlessly handles variable 

visibility due to vehicle orientation and occlusion by always providing the same 

normalised model match response. This approach works independently of motion 

silhouettes and can be applied to stationary objects, still images or moving cameras 

and is therefore in principle less likely to be affected by motion segmentation 

issues. The third contribution is an extensive evaluation of the proposed method on 

the i-LIDS data set providing comparative results for chapter 3. 

The algorithms proposed are tested to demonstrate capabilities in 

portability, under occlusion, with tracking and behaviour analysis in chapter 6. The 

first contribution is the evaluation on a new data set and comparison with an 

industrial tracker. The novel viewpoint of a high resolution camera is handled 

outperforming the industrial classifier. The second contribution is the extension of 

the 3D vehicle detector and classifier by tracking on the ground plane. A variable 

sample rate Kalman filter is introduced to accommodate missed observations. The 

classification of vehicles is used during tracking due to the novel approach of 

classifying before tracking. The evaluation framework of (Yin et al., 2007) is used 

to generate rich performance figures based on ground truth containing image 

bounding boxes. The performance of the 3D model based ground plane tracker is 
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compared to a state of the art blob tracker. The final contribution of the chapter is 

the introduction of a bus lane monitor to generate alarms for prohibited vehicles 

entering a restricted zone. 

In summary, the central contribution is the integration of local features 

with 3D models for object detection and classification (3DHOG). 3D models and 

local features are evaluated independently in the surveillance domain first. The 

3DHOG algorithm is then tested for urban traffic analysis scenarios and its 

properties are investigated. The next chapter will discuss related work as 

background for the remainder of the thesis. 
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2. Review 

2.1. Introduction 

This chapter will focus on recent approaches for road side cameras in urban 

environments used by human operators, to provide automated solutions to the 

monitoring problems introduced in chapter 1. A previous survey (Kastrinaki et al., 

2003) focused on highway surveillance and on-vehicle systems. A more 

comprehensive review of on-vehicle vision systems for driver assistance and 

autonomous driving can be found in (Sun et al., 2006) and a conference paper (Sun 

et al., 2004). A review of general surveillance systems is provided in (Kumar et al., 

2008) and (Valera and Velastin, 2005) with a particular focus to distributed 

surveillance systems. Figure 2 shows some example camera views from the i-LIDS 

data set (iLIDS, nd) provided by the Home Office of the United Kingdom. 

The remainder of the chapter is organised as follows. First, deployment of 

systems for video analytics is considered in section 2.2. The generic elements of 

traffic analysis systems are introduced with examples in section 2.3. Considering 

complete systems in section 2.4, the full surveillance task from reading a video 

stream to classifying vehicles and event recognition is described. Detailed 

discussions and the outlook for future research are provided in section 2.5. The 

chapter concludes with an overview of the thesis in respect to the review in section 

2.6. 
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 a)  b)  

 c)  d)  

 e)  f)  

 g)  h)  

Figure 2 Example frames from the i-LIDS parked car data set (iLIDS, nd). a,b) sunny 

conditions with shadows and reflections on cars c) image saturation in the upper 

part of the image d) detail of a light car in the saturated area where only dark 

elements remain visible e) interlacing artefacts are commonly dealt with by removing 

every second video line and therefore halving the resolution f) raining condition with 

reflections g) rain during dusk h) headlight reflections during night. 
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2.2. Video Analytics deployed in the Traffic Domain 

This section reviews applications and existing systems for traffic monitoring. The 

first part in section 2.2.1 will focus on vehicle counting, which is mainly applied to 

highway scenes. Automatic number plate recognition is a very specialised 

application typically used for tolling and discussed in section 2.2.2. The most 

challenging and least solved problem holding the highest research potential is 

incident detection in section 2.2.3. 

2.2.1. Vehicle Counting 

The problem of vehicle counting is most commonly solved by deploying inductive 

loops. Those loops provide high precision, but are very intrusive to the road 

pavement and therefore come with a high maintenance cost. Most video analytics 

systems on highways focus on counting and possibly classification to allow for 

more detailed statistics (Traficon, nd, Citilog, nd, Ipsotek, nd, Autoscope, nd, CRS, 

nd). Some systems have also been adapted for urban environments, with cameras 

mounted on high poles. This provides a higher viewing angle, which limits the 

occlusion between densely spaced vehicles, which results in similar conditions to 

highways. However, those highly mounted cameras are specifically for video 

analytics, because standard CCTV cameras for human operators are mounted lower. 

2.2.2. Automatic Number Plate Recognition 

ANPR is a very specialised and well researched application for video analytics. 

There is a vast range of companies e.g. (CRS, nd, Virage, nd) providing solutions 

for tolling, congestion charging, vehicle identification or vehicle tax verification. 

Cameras are highly zoomed to provide a high resolution image of the number plate, 

but therefore losing the context of the scene. Active infrared lighting is often used 

to exploit the reflective nature of the number plate. The task is simplified by the fact 
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that the number plate is intended to be communicated and uniquely identifiable. 

Toll stations of freeways have dedicated lanes with cameras, where registered users 

can pass slowly without stopping. In contrast, inner city congestions charge systems 

(e.g. Stockholm, London, Singapore) have to be less intrusive and operate on the 

normal flow of passing traffic. Point to point travel time statistics are obtained from 

re- identification of vehicles with time stamps across the road network. 

2.2.3. Incident Detection 

Work on incident detection focuses on a higher level of scene understanding than 

the two above approaches. Examples for highways are the detection of accidents 

(Traficon, nd, Citilog, nd, Ipsotek, nd, Autoscope, nd, CRS, nd) and stopped 

vehicles. Tunnel surveillance also focuses on smoke detection for warning of tunnel 

fires. Hard shoulder running has been rolled out as a pilot in the UK including video 

analytics from (Ipsotek, nd). The hard shoulder of a motorway is turned into a 

running lane during peak time, which requires reliable inspection for obstacles and 

monitoring for incidents during operation. 

Urban environments involve a much wider range of incident detection 

systems and require an even higher level of scene understanding. Congestion 

detection is being rolled out in London (Cracknell, 2008) based on existing CCTV 

cameras including systems from (Ipsotek, nd). Existing systems could not 

demonstrate acceptable results for practical deployment for other scenarios at the 

time of the study. Detection of illegal parking is the objective for one data set from 

i-LIDS (iLIDS, nd). A high level of position accuracy is required for illegal turning, 

bus lane monitoring and box junctions. Those target applications also require 

classification of vehicles like in chapters 3 and 5 and significant context information 

from a zoomed out camera. A system for detecting ‗car park surfing‘ is available 

from  (Ipsotek, nd),  which  monitors  if  pedestrians  move  from  car  to car. This is 
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Figure 3 Block diagram for a top-down surveillance system. The grouping of pixels in 

the foreground mask into silhouettes that represent objects is done early with a 

simple algorithm without knowledge of object classes. 

regarded as usual behaviour before a theft to identify target vehicles. The next 

section will focus on algorithmic aspects of systems, whereas section 2.4 will revisit 

applications in respect to the literature. 

2.3. Elements of Traffic Analysis Systems 

In this section, generic elements required in a traffic analysis system will be 

introduced. To structure the presentation, the literature has been grouped into top-

down and bottom-up approaches. A typical video analytics application uses a 

pipeline of foreground estimation (section 2.3.1), classification (section 2.3.2) and 

tracking (section 2.3.4). See Figure 3 for a block diagram. A statistical model 

typically estimates foreground pixels, which are then grouped with a basic model 

(e.g. connected regions) and propagated through the system until the classification 

stage e.g. (Gupte et al., 2002, Morris and Trivedi, 2006a, Hsieh et al., 2006, Bloisi 

and Iocchi, 2009, Creusen et al., 2009, Gao et al., 2009b). Classification then uses 

prior information (previously learned or pre-programmed) about the object classes 

to assign a class label. For the remainder of the review, this class of algorithms will 

be  referred  to  as  'top-down'  or  'object-based',  because   pixels  are  grouped  into 
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Figure 4 Block diagram for a bottom-up surveillance system. Local image patches 

are first extracted from the input image and classified as being a specific part of a 

trained object class. Those identified parts are combined into objects based on the 

class through a grouping or voting process. Advanced tracking concepts (Leibe 

et al., 2008b) allow this grouping to be performed in the spatial- temporal domain, 

which directly produces an object trajectory rather than frame per frame object 

detections. 

objects early during the processing. In contrast, a 'bottom-up' approach is defined as 

one which detects and classifies parts of an object first (block diagram in Figure 4). 

This initial classification of the parts uses learned prior information about the final 

object classes, e.g. an image area is classified to be a car wheel or a pedestrian head 

based on previously learned appearances of wheels and heads. The combination of 

those parts into valid objects and trajectories is the final step of the algorithm e.g. 

(Leibe et al., 2004, Leibe et al., 2008b, Opelt et al., 2006b). This type of approach 

is typically used in generic object recognition. In the next section, the top-down 

approach will be described in more detail, including Foreground Segmentation and 

Top-Down Vehicle Classification. This is followed by relevant Bottom-up 

Classification approaches for traffic surveillance. The last section considers 

Tracking, which can equally be applied to both classification methods. 
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2.3.1. Foreground Segmentation 

Foreground estimation and segmentation is the first stage of many visual 

surveillance systems. The foreground regions are marked for processing in the 

subsequent steps. The foreground is defined as every object, which is not fixed 

furniture of a scene where fixed could normally mean months or years. This 

definition conforms to human understanding, but it is difficult to implement 

algorithmically. There are two main different approaches to estimate the 

foreground, which both use strong assumptions to comply with the above definition. 

Firstly, a background model of some kind can be used to accumulate information 

about the scene background of a video sequence. The model is then compared to the 

current frame to identify differences (or ‗motion‘), provided that the camera is 

stationary. This concept lends itself well for computer implementation, but leads to 

problems with slow moving traffic. Any car should be considered foreground, but 

stationary objects are missed due to the lack of motion. The next sections discus 

different solutions for using motion as the main cue for foreground segmentation. 

The second approach performs segmentation based on whole object appearances 

(see section 2.3.1.6). This approach can be used for moving as well as for stationary 

cameras, but requires prior information for foreground object appearances. 

2.3.1.1. Frame Differencing 

Possibly the simplest method for foreground segmentation is frame differencing. A 

pixel by pixel difference map is computed between two consecutive frames. This 

difference is thresholded and used as foreground mask. This algorithm is very fast, 

however, it can not cope with noise, abrupt illumination changes or periodic 

movements in the background like trees. In (Park et al., 2007), frame differencing is 

used to detect street parking vehicles. Special care is taken in the algorithm to 

suppress the influence of noise. Motorcycles are detected in (Nguyen and Le, 2008) 

based on frame differencing. However, using more information than just the last 
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frame for subtraction is preferable. This leads to the background subtraction 

techniques described in the next sections. 

2.3.1.2. Background Subtraction 

This group of background models estimates a background image which is 

subtracted from the current video frame. A threshold is applied to the resulting 

difference image to give the foreground mask. The threshold can be constant or 

dynamic as used in (Gupte et al., 2002). The methods described below differ in the 

way the background picture is obtained. 

2.3.1.2.1. Averaging 

In the background averaging method, all video frames are summed up. The learning 

rate specifies the weight between a new frame and the background. This algorithm 

has little computational cost, however, it is likely to produce tails behind moving 

objects due to contamination of the background with the appearance of the moving 

objects. (Gupte et al., 2002) and (Huang and Liao, 2004) use the instantaneous 

background, which is the current frame with detected objects removed. The regions 

of detected objects are filled with the old background pattern. By averaging the 

instantaneous background instead of the current frame, the tails generated by 

moving objects are reduced. The feedback of the motion mask could however lead 

to erroneous background estimations, if the threshold is set poorly. A dynamic 

threshold is applied to reduce this problem of never updating a region detected as 

foreground. Other papers report the use of averaging, usually for computational 

reasons: (Kanhere et al., 2005, Chen and Zhang, 2007, Kanhere, 2008, Kanhere and 

Birchfield, 2008) 
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2.3.1.2.2. Single Gaussian 

To improve robustness, a single Gaussian model can be used for the background. 

Instead of only the mean value as for averaging, the variance of the background 

pixels is calculated additionally. This results in a mean image and variance image 

for the background model. A new pixel is classified depending on the position in 

the Gaussian distribution, which is the statistical equivalent to a dynamic threshold. 

(Kumar et al., 2003, Morris and Trivedi, 2006a, Morris and Trivedi, 2006b, Su 

et al., 2007) use a single Gaussian background model. 

2.3.1.2.3. Mode Estimation 

(Zheng et al., 2005) use the mode of the temporal histogram of every pixel to 

estimate the background image, which is a non parametric method. The mode 

estimation takes place in a constant time window. Robustness to illumination 

changes and long term operation are not demonstrated in the paper. The described 

algorithm took 230 seconds for processing 600 frames on a Pentium 4 at 3 GHz and 

1 GB RAM. For the mode in the histogram to correctly represent the background, 

the background has to be visible dominantly during the observation period to 

produce a dominant peak in the histogram. This is a similar assumption as for a 

Gaussian Mixture Model (GMM) and holds for typical traffic surveillance 

applications, but fails for parked vehicles or heavy congestion. However, the 

algorithm is sensitive to the bin size. If the size is too small and the input pixel 

values vary over several bins, no distinct peak would appear. The GMM (see 

section 2.3.1.3) in comparison is a parametric method and models the width of the 

distributions. The individual Gaussians conceptually represent the bins in the 

histogram. A Gaussian filter is applied to the histogram in (Song and Tai, 2008). 
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2.3.1.2.4. Kalman Filter 

A Kalman filter can be used to estimate the background image, where the colour of 

each pixel is modelled by one filter. The foreground can be interpreted as noise for 

the filter state. However, illumination changes are non Gaussian noise and violate 

basic assumptions for the use of Kalman filters. (Messelodi et al., 2005a) proposes a 

Kalman filter approach which can deal with illumination changes. The illumination 

distribution over the image is estimated and used to adjust the individual Kalman 

filter states. The foreground estimation was tested in (Messelodi et al., 2005b) 

indicating superior performance compared to the Kalman filter based algorithm 

proposed in (Boninsegna and Bozzoli, 2000). 

2.3.1.2.5. Wavelets 

A wavelet based background model is introduced in (Gao et al., 2009b) in the 

context of urban traffic surveillance. The evaluation indicates better performance 

than the GMM (Stauffer and Grimson, 1999), however the test data is very limited 

in size. 

2.3.1.3. Gaussian Mixture Model 

The GMM was introduced in the seminal paper of (Stauffer and Grimson, 1999) 

and (Stauffer and Grimson, 2000). Each pixel is modelled as a mixture of two or 

more Gaussians and updated online. The stability of the Gaussian distributions is 

evaluated to estimate if they are the result of a more stable background process or a 

short term foreground process. Each pixel is classified to be background if the 

distribution representing it is stable above a threshold. The model can deal with 

lighting changes and repetitive clutter. The computational complexity is higher than 

standard background subtraction methods. Two images per Gaussian distribution 

used (typically 3 to 5) have to be kept in memory, which leads to 50MB for a 

720x576 colour frame. (Veeraraghavan et al., 2002) uses the GMM for observing 
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an intersection. (Martel-Brisson and Zaccarin, 2007) extend the GMM to deal with 

shadows (see section 2.3.1.5). For an introduction to Gaussian mixture models see 

(Power and Schoonees, 2002). The implementation of (KadewTraKuPong and 

Bowden, 2001) is available in the OpenCV library (OpenCV, nd) and is commonly 

used in research. Many researchers have adapted this model for traffic analysis 

(Veeraraghavan et al., 2002, Zhang et al., 2008b, Bloisi and Iocchi, 2009, Wang 

et al., 2009b, Johansson et al., 2009). The limitation of the approach remains the 

computational complexity and therefore higher time requirements compared to the 

simpler approaches in section 2.3.1.1 and 2.3.1.2. 

An alternative to the GMM is given by (Tanaka et al., 2007). A Probability 

Density Function (PDF) is used to detect objects in the picture. No explicit 

background image is kept. A pixel process is estimated for every pixel. Based on 

the estimated PDF, the probability for an observed pixel to occur is calculated. If 

the probability is high, nothing unexpected happened and the pixel is assumed to be 

background. If the probability is low, the pixel is assumed to be foreground. The 

algorithm is very cost effective, as only an estimation for a Gaussian Mixture Model 

is calculated. The computation for every frame involves only an update and not a 

recalculation of the model. At a resolution of 320x240, the algorithms takes less 

than 80 ms on a Pentium 4 at 3.3 GHz and 2.5GB RAM to segment a new video 

frame. 

2.3.1.4. Graph Cuts 

The foreground segmentation problem can be represented as a graph of a Markov 

Random Field (MRF). Every pixel of the images is represented by a node in the 

graph. The vertices between nodes and sources are set to a weight related to the data 

(data constraint). Sources represent the labels for a pixel, in this case foreground 

and background. Vertices between nodes are used to introduce a smoothing 

constraint. The graph cut separates source and sink nodes completely and leaves the 
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nodes connected to either to indicate that this pixel corresponds to the respective 

label. The advantage of graph cuts is that the optimal solution can be found in 

polynomial time. (Boykov and Veksler, 2005) give a general introduction to graph 

cuts. Applications for image restoration, stereo imaging and video blending are 

mentioned. (Torr, 2007) is a tutorial for applications of graph cuts. Recent 

applications use graph cuts for scene understanding from moving vehicles (Sturgess 

et al., 2009). A new more general Marginal Probability Field (MPF) has been 

introduced in (Woodford et al., 2009). MRF is a special linear case of this new 

MPF. 

2.3.1.5. Shadow Removal 

An evaluation of moving shadow detection is given in (Prati et al., 2003). The 

authors grouped the literature into four different categories. The first category is 

statistical non- parametric (SNP) which considers the colour consistency of the 

human eye to detect shadows. An example of this is (Cucchiara et al., 2001) which 

is used in several traffic systems (Zhang et al., 2008b, Johansson et al., 2009). The 

statistical parametric (SP) approach imposes additional spatial constraints to SNP. 

Two different deterministic non- model based approaches are described which use a 

combination of statistical and knowledge based assumptions. No single approach 

performs best, furthermore, the type of applications determines the best suited 

algorithm. Deep cast shadow positions are predicted in (Johansson et al., 2009) 

based on GPS location, time information and 3D vehicle models. With this 

additional prior information, qualitative improvements are demonstrated, but no 

quantitative evaluation is provided. 

A shadow removal technique using Gaussian Mixture Models (GMM) is 

introduced in (Martel-Brisson and Zaccarin, 2007). Instead of using colour 

consistency, the authors use the stability of states in the GMM to determine 

shadows. In contrast to the two groups of states in (Stauffer and Grimson, 1999), 
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one background state, several shadow states and several foreground states are used. 

The concept assumes, that shadow states are less stable than background states but 

more stable than foreground states. Converged shadow states are copied into a 

Gaussian mixture shadow model (GMSM) to prevent them from being overridden 

by foreground states. This model calculates the shadow volume in the RGB space 

rather than assuming it to be a cylinder like for the colour consistency assumption in 

(Cucchiara et al., 2001). 

2.3.1.6. Object based Segmentation 

Object based segmentation relies on object detection to identify the foreground. In 

this section, methods are considered which detect objects in a holistic way by 

searching for full objects. (Sullivan et al., 1996) convert the wire frame of a 3D 

vehicle into a gradient image by assigning a triangular grey level profile to every 

edge. The projected image is compared to the gradient image of the camera to find a 

match. This work has been followed up in (Hu et al., 2004, Lou et al., 2005, 

Remagnino et al., 1998, Zhang et al., 2008c). Optical flow is used in addition to 

wire frames in (Ottlik and Nagel, 2008) to segment vehicles in the image. 

Different methods are proposed to find correspondences between 3D 

model projections and new images. (Messelodi et al., 2005b) generates the convex 

hull for 3D vehicle models in the image. The ratio between convex hull overlap of 

model and image normalized by the union of both areas generates a matching score. 

Similar 3D vehicle models are matched with a motion segmented input video in 

(Song and Nevatia, 2007) for detection. An extension is provided in (Johansson 

et al., 2009), which also adapts the size of vehicles. A method for rendering 3D 

vehicle models for matching at new viewing angles is proposed in (Guo et al., 

2008). 

An approach with edges is used in (Kim and Malik, 2003). Horizontal and 

vertical edges are grouped into vehicles using a probabilistic framework. The 
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grouped vehicles are used for tracking in a highway surveillance application. All 

methods employing 3D modelling trade off additional prior information against 

higher computational complexity. A constant background colour is assumed for 

highway scenes in (Yoneyama et al., 2005). This allows vehicle detection by simply 

taking the difference between the mean colour and a pixel. The approach would not 

work in urban environments with street clutter. 

2.3.2. Top-Down Vehicle Classification 

Classification is the task of assigning a new instance to a group of previously seen 

instances called the class. The classifier needs information about a new instance 

which is usually referred to as features. Features are extracted from the whole object 

according to top-down methods discussed earlier. In section 2.3.2.1 a selection of 

possible features is described. A machine learning algorithm is trained with 

instances of known classes (hence this is referred to as supervised learning) to 

extract discriminative information from the features (see section 2.3.2.2). The 

classifier then uses this learned information to assign a class label to a new instance. 

2.3.2.1. Features 

Classification and tracking relies on a feature extraction process, which ideally 

produces similar values for the instances of a given class throughout the video 

stream. This section gives an overview of different kinds of features, grouped by the 

support in the image as either a binary foreground region, the contour of this region 

or larger image patches. 

2.3.2.1.1. Region based 

Region based features are usually extracted from the whole image region of an 

object. In video sequences, this is mainly the area of the foreground silhouette 

extracted by the foreground segmentation algorithm. Image moments are often used 
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to generate a feature vector for the silhouette. Without any feature generation, the 

convex hull of the silhouette (binary mask) can be used for comparison. (Messelodi 

et al., 2005b, Song and Nevatia, 2007, Johansson et al., 2009) use such an approach 

for region matching. (Gupte et al., 2002, Zhang et al., 2007a) use length and height 

to classify vehicles on a highway. Rule based approaches are common, e.g. (Hsieh 

et al., 2006) use size and a linearity feature for vehicle classification. The linearity 

feature is a measure for the roughness of the vehicle silhouette. (Huang and Liao, 

2004) use size, area and length with a set of rules to classify vehicles in a highway 

scene. Occlusions between vehicles can produce similar effects on the silhouette, 

which is demonstrated in (Zhang et al., 2008b) where a similar measure is used for 

occlusion reasoning. For vehicle classification, (Morris and Trivedi, 2006a) and 

(Morris and Trivedi, 2006b) use 17 different region features including 7 moments 

for 7 classes. A comparison between image based features (IB) like pixels and 

image measurements features (IM) like region size is given. Both feature types are 

used with Principal Component Analysis (PCA) and Linear Discriminant Analysis 

(LDA) as dimensionality reduction technique. IM with LDA was used for the final 

algorithm as it gave the best performance. The features are classified using a 

weighted k- nearest neighbour algorithm (section 2.3.2.2.4). A Kalman filter 

(section 2.3.4.1.1) is used to track the foreground regions based on the centroids. 

The evaluation on a 24 hour test sequence recorded by the authors shows a 

classification accuracy of 74.4% for independent tracking and classification. The 

accuracy can be increased to 88.4% by combining tracking and classification and 

therefore rejecting single miss- classification. Further work of the authors 

incorporates HOG features for in- vehicle systems (Gandhi and Trivedi, 2007). In 

(Alonso et al., 2007), initial bounding boxes for vehicles are generated based on 

edges, which assumes that street clutter does not exhibit similar edge patterns. The 

bounding boxes are verified by symmetry and corner detection inside this region. 
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2.3.2.1.2. Contour based 

Contour based features only take the edge of a silhouette into account. The distance 

between contour points is used as a similarity measure. Processing is performed on 

closed contours as extracted from video sequences. The contour including edges is 

used in (Hu et al., 2004, Lou et al., 2005, Remagnino et al., 1998). 

A common problem when dealing with contours is occlusion between 

vehicles, especially in urban environments. An algorithm proposed in (Zhang et al., 

2008b) can resolve occlusions between two vehicles by considering convexity of 

the shape. The convex outline of a contour of two vehicles will have dents, which 

can be identified to separate two vehicles, if the occlusion is not severe. The contour 

signature is used in (Zhang et al., 2008a) for vehicle classification from side views. 

2.3.2.2. Machine Learning 

Machine learning techniques are used to generate a discriminative classifier from 

training data and to assign class labels to unseen data. An important property of the 

learning technique is the supervision during learning. This describes the amount of 

labelling information required of the training data. Labelling can range from simply 

tagging an image with a class to completely segmenting the image manually and 

labelling individual parts of objects. Weak supervision might involve unlabelled or 

wrongly labelled images. Ground truth is similar information and required for 

evaluation. The classifier output for test data is then compared to this manually 

generated ground truth. Large amounts of ground truth are required to provide 

evaluation with high statistical confidence. Section 2.5.2 will look into common 

data sets, which is important to share the effort in generating this ground truth. A 

good overview of machine learning techniques can be found in (MacKay, 2003). In 

the next sections, first distance measures and clustering for training are introduced 

before discussing different classifier architectures. 
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2.3.2.2.1. Distance Measures 

Features are commonly represented as vectors in an N- dimensional feature space. 

This representation allows the definition of a distance (i.e. difference) between two 

vectors, which can be used during clustering and especially classification to 

measure similarity between features. Many distance measures are available with 

various properties. Firstly, the Manhattan distance calculates the sum of the 

absolute difference along every coordinate axis between the vectors. This results in 

the least computational effort but complex mathematics. Secondly, the Euclidean 

distance (Gao et al., 2009a) returns the geometric distance between two vectors. 

Due to the square and square root, computational complexity is increased. It is 

possible to normalise the Euclidean distance along every axis to reduce the effect of 

non spherical point clouds. The Mahalanobis distance is similar to a normalised 

Euclidean. The variance of the data along a coordinate axis is used for 

normalisation. The covariance matrix of the data needs to be calculated for this 

reason. This normalisation transforms the data cloud into a spherical shape. This 

distance is used for the training in chapter 5. For histogram comparison, the 

Bhattacharyya distance is used in (Acunzo et al., 2007). The 2 - distance is used in 

(Ma and Grimson, 2005) as a distance measure. It has similar properties to the 

Mahalanobis distance, however, it does not require the calculation of the covariance 

matrix. The paper describes a system for distinguishing between two classes of 

vehicles. The vehicles are presented centred in the image and at the same scale at 

high resolution to the algorithm which is a high degree of supervision. A set of 

modified SIFT features (Scale Invariant Feature Transform in section 2.3.3.1.2) is 

calculated on edge points to give a rich representation for the image. Generated 

feature vectors are labelled according to the training vector with the smallest 2 - 

distance. A constellation model is used to find the most probable vehicle class based 

on the positions of the observed feature vectors. This was evaluated for two separate 



CHAPTER 2 REVIEW 2.3 Elements of Traffic Analysis Systems 

 - 27 -  

cases of binary classification. In the first case, 50 cars and 50 minivans were 

randomly chosen from the sample pool for training. The testing was performed on 

200 samples from each class taken from their own data. About 98% accuracy is 

reported for that case. The test between sedans and taxis resulted in a slightly lower 

accuracy. More detailed results are given for different shape models of the 

probabilistic framework (refer to section 2.3.3.3 for shape models). 

2.3.2.2.2. Dimensionality Reduction 

For feature vectors, not all dimensions are necessarily statistically independent. 

Dimensionality reduction can be applied to reduce the data to the significant 

dimensions and in this way speed up processing or simplify classification. The 

classic method is Principal Component Analysis (PCA). This technique performs an 

orthogonal coordinate transformation of the feature space. The eigenvectors of the 

covariance matrix of the training data with the highest eigenvalues are used as new 

coordinate axes. This transformation ensures that the largest data variance is 

represented along the coordinate axes. Neglecting small eigenvalues which 

correspond to less significant deviations in the data reduces the dimensionality of 

the feature space. (Zhang et al., 2005) uses this concept with SIFT feature vectors to 

generate PCA- SIFT features. PCA has been applied directly on candidate images 

for vehicle detection at night- time in (Thi et al., 2008, Robert, 2009a, Robert, 

2009b). (Morris and Trivedi, 2006a) use Linear Discriminant Analysis (LDA), 

which is a similar concept, for vehicle classification. (Chen and Zhang, 2007) use 

Independent Component Analysis (ICA) which separates the data into independent 

sources in addition to the orthogonal coordinate base of PCA. The paper introduces 

a vehicle classification algorithm. Standard foreground segmentation is performed 

to get bounding boxes of vehicles. The pixel values inside the bounding boxes form 

the feature vector. Independent Component Analysis (ICA) is performed on the 
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training images to reduce the dimension of the feature space. This is similar to the 

image based feature (IB) described in (Morris and Trivedi, 2006b) in section 

2.3.2.1.1. To assign one of the three class labels to new feature vectors during 

operation, three one class Support Vector Machines (SVM) are used (see section 

2.3.2.2.4). The SVMs are trained with 50 vehicles each. Three tests are conducted 

with 150 sample vehicles randomly chosen from the author‘s own sample pool. The 

reported performance is 65% recall at 75% precision. The ICA based algorithm is 

shown to outperform a Principal Component Analysis (PCA) based baseline 

algorithm, however, (Thi et al., 2008, Robert, 2009a, Robert, 2009b) report much 

higher performance with their PCA based approach. 

Several non- linear embedding methods are compared in a review (van der 

Maaten et al., 2009): Isomap, Maximum Variance Unfolding, Kernel PCA, 

diffusion maps, Locally Linear Embedding (LLE), Laplacian Eigenmaps, Hessian 

LLE, Local Tangent Space Analysis, Locally Linear Coordination LLC, and 

manifold charting. 

2.3.2.2.3. Clustering 

Clustering is performed on the training data. If the training data only contains object 

features, unsupervised clustering would need to identify the number of classes or 

clusters in the data and the correspondence of the training samples to those clusters. 

As this general clustering problem has not been solved satisfactorily, k- means 

clustering is commonly performed. This clustering technique groups the training 

samples into a specified number of groups based on the distance between features. 

(Morris and Trivedi, 2006a) uses this clustering technique for vehicle classification. 

Lighting conditions are clustered in (Acunzo et al., 2007). Hierarchical clustering 

builds a cluster tree, which allows cutting off branches at different levels and sizes. 
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Metrics other than the final cluster number can be used for this cutting, which 

allows more flexibility. 

A related technique is the generation of a codebook or alphabet for object 

classification. This is usually applied if several local feature vectors are used to 

specify an object. The class label for every feature vector is known from 

supervision or from a previous clustering of the objects. The distance between 

feature vectors is used to group them together. Every group of feature vectors is 

replaced by one codebook entry holding all class labels of the individual vectors. 

This approach can increase the speed of the final classifier and reduce the amount of 

training and data storage, as shown in (Leibe et al., 2004, Opelt, 2006, Leibe et al., 

2008b) for bottom-up object detection. The same concept is termed 'visual 

dictionary' in (Serre et al., 2007) and used for vehicle classification in (Wijnhoven 

et al., 2008, Wijnhoven and de With, 2009, Creusen et al., 2009). 

2.3.2.2.4. Classifiers 

Classifiers map a new unknown object instance with extracted feature vector to a 

known class or perhaps no class. This mapping process depends on what was 

previously learned from training data. Different ways for generating and performing 

this mapping are outlined in the next sections. 

Nearest Neighbour Classifier 

The nearest neighbour classifier is the simplest non parametric classifier for a 

feature vector. The distance between a new feature vector and every vector of the 

training set is calculated. Any distance measure can be used for that purpose. The 

class label of the closest training vector is assigned to the new vector. To improve 

robustness, the k- nearest neighbour algorithm can be used. The class label for the 

new class is determined by the k- nearest training vectors. Both methods require 
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many distance calculations and do not scale very well for large training sets in terms 

of computational complexity and memory requirements. There is no time 

requirement for training, however, the classification time increases with the training 

size. (Morris and Trivedi, 2006a, Hsieh et al., 2006) use this method to classify 

vehicles based on binary foreground features. In the seminal paper for SIFT (Lowe, 

1999), corresponding interest points are found using the nearest neighbour 

algorithm in the feature space. A further extension is the weighted k- nearest 

neighbour algorithm. For this case, the class membership is defined by weights 

which results in a softer decision boundary. (Morris and Trivedi, 2006b) use this 

algorithm to improve robustness against outliers. 

Support Vector Machines 

An introduction and review of kernel based learning used for Support Vector 

Machines (SVM) can be found in (Muller et al., 2001). SVM perform classification 

using linear decision hyper-planes in the feature space. During training, the hyper-

planes are calculated to separate the training data with different labels. (Dalal and 

Triggs, 2005, Chen and Zhang, 2007, Serre et al., 2007, Thi et al., 2008, Wijnhoven 

and de With, 2009, Creusen et al., 2009) use a SVM for vehicle classification. If the 

training data is not linearly separable, a kernel function can be used to transform the 

data into a new vector space. The data has to be linearly separable in the new space. 

Support vector machines scale well for large training sets. The complexity for 

training increases with the number of training samples, however, the classification 

is independent of it. The generic approach does not provide confidence measures 

for the classification. There are extensions which derive a confidence based on the 

distance of a feature vector to the hyper-planes, which is not always reliable. 
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Probabilistic Frameworks 

Given that real world measurements have uncertainty, probabilistic frameworks 

estimate the (posterior) probability based on observed data and prior knowledge. 

For example, the posterior probability of a vehicle belonging to class A is calculated 

from the image data and the prior knowledge of how frequent vehicles of class A 

are observed. The vehicle detection system presented in (Song and Nevatia, 2007) 

uses a Bayesian framework with Markov chain Monte Carlo sampling. First, a 

foreground map is computed using background subtraction. A proposal map is 

computed from the foreground map, indicating likely vehicle centroids. The 

distance of points from the boundary of the foreground map indicates the likelihood 

in the proposal map. A Bayesian problem is formulated for the vehicle positions. 

The proposal eliminates overlapping vehicles in 3D space and is evaluated by the 

match between foreground map and projection silhouettes of the 3D models. A 

Markov chain Monte Carlo (MCMC) algorithm is used to search for several good 

solutions. The MCMC generates new states by changing the number of vehicles, the 

positions and orientations. Tracking between frames is performed by a Viterbi 

optimisation algorithm which finds the optimal track through the set of solutions for 

every frame. Other works (Kim and Malik, 2003, Hsieh et al., 2006) use 

probabilistic frameworks for vehicle detection and tracking. 

2.3.3. Bottom-up Classification 

This section discusses literature for bottom-up approaches. An introduction to this 

concept, which is traditionally used for generic object recognition is given in (Pinz, 

2005). As discussed at the beginning of section 2.3, this involves detecting parts of 

objects and classifying them, before they are grouped to objects. The next section 

introduces interest point descriptors, which are used to extract discriminative 

features from images patches. Section 2.3.3.2 covers the learning technique of 
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boosting, which has proved to be very powerful when used with interest points. 

Sections 2.3.3.3 and 2.3.3.4 introduce spatial models for interest points. 

2.3.3.1. Interest Point Descriptors 

Interest points (also referred to as key points) are image positions, from which 

features are extracted. Those points may be uniformly sampled in the image space 

(Dalal and Triggs, 2005, Dalal et al., 2006), in a 3D surface space (chapter 5) or 

defined by a saliency detector as in Harris corners, Difference of Gaussians (Lowe, 

1999), Hessian (Bay et al., 2006), etc. A comprehensive comparison of local patch 

features can be found in (Mikolajczyk and Schmid, 2005, Zhang et al., 2007b), 

including a temporal extension in (Wang et al., 2009a) where it is shown, that the 

performance of interest point descriptors is mostly independent of interest point 

detectors. 

2.3.3.1.1. Basic Patch Based Descriptors 

The simplest patch based feature vector is the collection of values of the image 

pixels. In (Agarwal et al., 2004) this approach is used to generate an alphabet of 

patches for object classification. The distance measure between patches is defined 

by the cross- correlation of them. The correlation function is very sensitive to size 

and illumination changes of the image. This fact encourages other feature 

transformations which can deal with changing conditions. The following paragraphs 

introduce several solutions. 

Using a histogram rather than pixel values allows for more spatial 

invariance. The seminal paper for those concepts is (Lowe, 1999) followed up by 

many other algorithms (Dalal and Triggs, 2005, Mikolajczyk and Schmid, 2005, 

Bay et al., 2006). 

Binary edges can provide normalised input for feature descriptors. 

Illumination conditions are mostly removed during edge detection. (Opelt et al., 
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2006a, Opelt, 2006, Ma and Grimson, 2005, Kim and Malik, 2003) use the Canny 

edge detector to generate features. 

2.3.3.1.2. Scale Invariant Feature Transformation (SIFT) 

The Scale Invariant Feature Transformation (SIFT) was introduced in the seminal 

paper of (Lowe, 1999). The local features generated are invariant to image scaling, 

translation and rotation and partially invariant to illumination changes and affine 

projection changes. The feature vectors are generated at maxima of the scale space 

of the gradient input image. In addition to the 160- dimensional feature vector, the 

characteristic scale and orientation of every interest point is calculated. 

Conceptually, a SIFT feature uniquely describes the appearance of salient points in 

the image, which will remain salient even if the image is resized, rotated or the 

illumination is changed. The SIFT features can be used to find point to point 

correspondences in two different images of the same object. (Opelt et al., 2006a) 

combines SIFT features and other local features for generic object recognition. 

(Zhang et al., 2005) uses a derivation of SIFT, the PCA-SIFT (Principal Component 

Analysis- SIFT) for generic object recognition. The local features are used in 

combination with global edge features in an AdaBoost (adaptive boost) classifier. 

Modified SIFT descriptors are used in (Ma and Grimson, 2005) to generate a rich 

representation of vehicle images. (Gao et al., 2009a) uses re-identified SIFT interest 

points between frames for tracking vehicles in urban scenes. 

2.3.3.1.3. Speeded Up Robust Features (SURF) 

The SURF descriptors are introduced by (Bay et al., 2006). The descriptor aims for 

applications of correspondence finding between images, as in SIFT and similar 

descriptors. However, the design focuses on computational speed hence allowing 

loss of performance. The use of box filters instead of Gaussian filters in the case of 
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(Lowe, 1999) reduces computational complexity. Haar wavelet responses in sub- 

regions around an interest point are used to generate the feature vector, which can 

be calculated with integral images in this way. 

2.3.3.1.4. Histograms of Oriented Gradients (HOG) 

The concept of grids of Histograms of Oriented Gradients (HOG) was introduced 

by (Dalal and Triggs, 2005). To calculate the feature vector, the gradient input 

image window is divided into a grid of cells. For every cell, a histogram of the 

gradient orientation in pixels is calculated. The histogram represents an eight 

dimensional local feature vector. The vectors of all cells are concatenated to give 

one global feature vector for the image window. In the original paper, this vector is 

used to detect pedestrians. This concept is extended to vehicle detection in chapter 5 

by introducing 3DHOG which uses 3D model surfaces rather than 2D grids of cells. 

This allows for the algorithm to resolve scale and use a single model for variable 

viewpoints of road users. 

2.3.3.1.5. Other Descriptors 

There have been a wide range of other descriptors introduced in the literature. The 

Boundary Fragment Model (BFM) is introduced in the seminal paper of (Opelt 

et al., 2006b). The model uses only segments of contours for generic object 

recognition. The idea of local interest point features as used in (Lowe, 1999, Leibe 

et al., 2004, Crandall et al., 2005, Opelt et al., 2006a) is extended to boundary 

elements. The Chamfer distance measure is used to generate a codebook of 

fragments in training and to classify newly seen boundary fragments to codebook 

entries. The use of a Canny edge detector to generate the boundary fragments 

allows the model to be used with still images. 
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Another extension of the SIFT descriptor is gradient location and 

orientation histogram (GLOH) in (Mikolajczyk and Schmid, 2005). A larger feature 

vector with finer quantisation than SIFT is extracted and the dimensionality is 

reduced using PCA based on a large training set. 

2.3.3.2. Boosting 

Boosting is a method to improve the performance of a simple (possibly poor) 

classifier. It is very popular in conjunction with local feature descriptors to also 

improve computational speed by selecting an optimal subset of input features. 

Adaptive Boosting (AdaBoost) was first introduced in (Freund, 1995) as an 

extension to boosting. An introduction to AdaBoost is given in (Freund and 

Schapire, 1999). AdaBoost uses weak classifiers, which only need to perform better 

than random. Weights for those weak classifiers are learned during training. Every 

round of training changes the weights of training images to force the classifier to be 

trained on difficult examples. The weighted weak classifiers result in a final strong 

classifier. The basic AdaBoost algorithm performs binary classification and is 

robust against over fitting. The original paper (Viola and Jones, 2004) uses a 

cascade of AdaBoost classifiers with underlying Haar filters for face detection. The 

success of this face detector increased the popularity of AdaBoost for computer 

vision. The same authors used a temporal extension of their algorithm for pedestrian 

detection in road surveillance (Jones and Snow, 2008). (Zhang et al., 2005) perform 

generic object recognition with a binary multi layer AdaBoost network. In (Opelt 

et al., 2006a, Opelt et al., 2006b), binary AdaBoost is used for generic object 

recognition where boosting automatically performs the feature selection. An 

extension to multiple classes and incremental learning is introduced in (Opelt et al., 

2006c, Opelt, 2006). (Khammari et al., 2005) uses boosting of gradient features to 

detect vehicles in road scenes. (Acunzo et al., 2007) uses a boosted classifier for 

illumination condition detection (day, night, etc). 
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2.3.3.3. Explicit Shape 

Explicit shape implies direct modelling the spatial relationship between parts of 

objects detected. Various different models for the shape are introduced here with 

relevance for traffic surveillance. 

2.3.3.3.1. k- fans 

The k-fan model was first introduced in (Crandall et al., 2005) to schematise part 

based object recognition. The parts of an object are divided into reference nodes and 

regular nodes of a graph. The parameter k represents the number of reference nodes. 

Every reference node has a spatial relation to every other node in the graph. By 

changing k from 0 to the total number of nodes, the spatial prior can be changed 

from no shape modelled to a full rigid structure. Most shape models are related to k- 

fans. (Kim and Malik, 2003) use a 1-fan model to group edges of a highway scene 

into vehicles. The camera calibration is used to model the 3D appearance of 

vehicles. (Ma and Grimson, 2005) use a constellation model similar to 1-fan for 

vehicle detection based on Scale Invariant Feature Transformation (SIFT) features. 

The HOG (Dalal and Triggs, 2005) and 3DHOG (chapter 5) algorithms use a fully 

connected graph. 

2.3.3.3.2. Implicit Shape Model (ISM) 

The implicit shape model (1- fan) is introduced in (Leibe et al., 2004) and explained 

in more detail in (Leibe et al., 2008a). Image patches at key points of objects are 

learned during training. In addition to the object label, a probability density function 

for the relative position in the object is provided. The evidence for object positions 

is accumulated based on those positions through generic Hough voting. In the case 

of Hough transform for line detection, every pixel of the image contributes to 

possible lines in the angle and position space. If many pixels vote for one angle and 
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one position, this line is detected. A similar concept is used for object voting in 

(Lowe, 1999). Every detected SIFT interest point votes for its corresponding object 

centroid in x-y voting space. The maximum in this space defines the detected and 

classified object at a position. This method is extended using different features and 

distance measures in (Leibe et al., 2004, Leibe et al., 2005, Leibe et al., 2007, 

Cornelis et al., 2008, Leibe et al., 2008b, Opelt et al., 2006a, Opelt et al., 2006b, 

Opelt et al., 2006c). 

A similar approach is used in (Agarwal et al., 2004), however, the relations 

between detected parts are used to generate a feature vector. Both methods use pixel 

values of the image patches. A good example for bottom-up surveillance based on 

ISM is (Leibe et al., 2008b), where road users are tracked from a static urban 

surveillance camera. The framework was first introduced in (Leibe et al., 2007) 

based on a generic object detector (Leibe et al., 2004) with implicit shape model for 

vehicle detection from a moving camera. This work shows how bottom-up object 

detection approaches can be used for traffic analysis. The algorithm is demonstrated 

to perform, in urban environments, similar to the state of the art on moving stereo, 

while most foreground segmentation methods discussed in section 2.3.1 would not 

work for such a scenario. The limitations of this approach are lower detection ratios 

compared to typical bottom-up approaches and higher computational complexity. 

2.3.3.3.3. Alphabets 

The concept of alphabets is introduced to reduce the number of training samples. 

Instead of using every single feature vector from training, similar vectors are 

combined. The resulting entry holds a list of class labels and could take several 

positions in a shape model. This concept is used in (Leibe et al., 2005, Ma and 

Grimson, 2005, Opelt, 2006, Wijnhoven et al., 2008, Wijnhoven and de With, 2009, 

Creusen et al., 2009). 
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2.3.3.4. Object Classification without Explicit Shape Structure 

A solution for generic object recognition without shape structure is given in (Opelt 

et al., 2006a) and commonly referred to as 'bag of words' (0- fan). A large set of 

different key point features is extracted from images. An AdaBoost classifier is 

trained with those features. This training procedure automatically selects the most 

discriminative features for the final classifier. An additional boosting layer is 

introduced in (Zhang et al., 2005). This second layer uses global features to 

improve the classification. 

2.3.3.4.1. Object Recognition with Hierarchy 

The introduction of hierarchy in object recognition is mainly related to biological 

research. For example, (Ullman, 2007) discusses the structure of the human visual 

cortex and derives a tree style object hierarchy. The features of objects are based on 

image patches. (Serre et al., 2007) present something that is more relevant for 

computer vision applications. There, a complete object recognition and 

segmentation system is implemented using a visual cortex structure. Four layers are 

used, which perform simple filtering, complex searching and a repetition of those 

two. A comparable result to state-of-the-art computer vision is achieved with that 

biologically inspired system. This concept is used in traffic surveillance in 

(Wijnhoven and de With, 2007, Wijnhoven et al., 2008, Creusen et al., 2009, 

Wijnhoven and de With, 2009). A standard foreground estimation method and 

motion tracker (no details are provided) generate vehicle images, which are passed 

through a sequence of simple and complex layers represented by Gabor filters and a 

support vector machine (SVM) classifier. A different appearance classifier is 

trained for every 90 degree of viewing angle. In contrast, the algorithm in chapter 5 

can operate on arbitrary viewing angles. On the same data set, (Wijnhoven and 

de With, 2007) outperform (Ma and Grimson, 2005). The authors have moved this 
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concept towards a bottom-up approach in (Wijnhoven et al., 2008, Wijnhoven and 

de With, 2009, Creusen et al., 2009). Feature vectors are now extracted from 

interest point locations rather than a uniform density over the whole image patch. 

2.3.4. Tracking 

Tracking is used to measure vehicle paths in video sequences. This is performed in 

two steps: Firstly, features for the object or foreground regions are generated in 

every video frame (see section 2.3.2.1). Secondly, a data association step has to 

provide correspondences between the regions of consecutive frames based on the 

features and a dynamic model. Temporal consistency constraints are required to 

avoid confusion of tracks and to smooth noisy position outputs of detectors. The 

data association step can use the same distance measure as machine learning 

algorithm, see section 2.3.2.2.1. The classification result and location in the image 

is typically included in the feature for this association. The next sections discuss 

motion models for tracking in traffic applications and possible data association 

based on prediction. 

2.3.4.1.1. Kalman Filter 

The Kalman filter was originally introduced in (Kalman, 1960) and has been 

successfully used in many applications including missile tracking. The optimal state 

of a linear time invariant motion model is estimated assuming Gaussian process and 

measurement noise. The prediction stage of the Kalman filter is used to extrapolate 

the position of objects in a new frame based on a constant velocity constraint. The 

prediction can be associated with new measurements or can be used to trigger 

detectors. A correction step uses the detection as measurement and updates the filter 

state. This concept is used in (Morris and Trivedi, 2006b, Messelodi et al., 2005b, 

Rad and Jamzad, 2005, Song and Nevatia, 2007, Johansson et al., 2009, Bloisi and 
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Iocchi, 2009) for tracking. Kalman filters propagate a single object state between 

frames compared to multiple hypotheses for particle filters in the next section. The 

extended Kalman filter (EKF) can facilitate non- linear models. 

2.3.4.1.2. Particle Filter 

The particle filter is a generalisation of the Kalman filter introduced in (Gordon 

et al., 1993). A recent tutorial (Doucet and Johansen, 2009) reviews the filter and 

relevant concepts. It allows for multiple hypotheses to be propagated between 

frames by modelling arbitrary probability density functions by sample particles. 

This overcomes the constraint of a single Gaussian distribution of Kalman filters. 

(Isard and Blake, 1998) introduced the particle filter into the computer vision 

domain. The filter is used for traffic videos in (Nummiaro et al., 2003, Bardet and 

Chateau, 2008, Mauthner et al., 2008, Nguyen and Le, 2008, Wang et al., 2009b, 

Gao et al., 2009a). 

2.3.4.1.3. Spatial- Temporal Markov Random Field 

The Spatial- Temporal Markov Random Field (S-T MRF) is introduced by (Kamijo 

et al., 2000, Kamijo et al., 2001a, Kamijo et al., 2001b) for vehicle tracking in 

urban traffic scenes. The input image of resolution 640 x 480 is divided into blocks 

of 80 x 60 pixels. Every block is represented by a node in a S-T MRF, which is 

modelled as a graph like in section 2.3.1.4. The S-T MRF is used to generate 

vehicle labels for the blocks. Adjacent blocks as well as blocks in consecutive 

frames are considered neighbours for the model. A solution for the object map 

(nodes of the S-T MRF) of the current frame is found based on the current image, 

the previous image and the previous object map. The result is used in a Hidden 

Markov Model (HMM) to detect events like vehicle passes or collisions. (Kamijo 
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and Sakauchi, 2002, Kamijo et al., 2004) is an extension to the earlier work 

introducing incident detection in tunnels. 

2.3.4.1.4. Graph Correspondence 

A system for region tracking based on graph correspondence is introduced in 

(Gupte et al., 2002) for vehicle tracking. Every region in a frame is represented by a 

node in the graph similar to MRF. One vertex leaving every node is generated for 

two consecutive frames. The destination node of the vertex is determined by the 

best overlap score of the image regions. Due to this bidirectional structure of the 

graph, splitting and merging of region during tracking can be handled. To avoid 

conflicts in the graph, adding conflicting vertexes is suppressed. (Huang and Liao, 

2004, Veeraraghavan et al., 2002) use the graph correspondence for vehicle 

tracking and classification. In (Taj et al., 2008), vehicle and pedestrian tracking is 

evaluated on the CLEAR data set (CLEAR, 2007) and uses greedy graph 

correspondence tracking based on (Shafique and Shah, 2005). Dynamic 

programming approaches can be used to find an optimal path through nodes of 

several frames. (Song and Nevatia, 2007) uses the Viterbi algorithm to find the 

optimal vehicle constellations over several frames. 

2.3.4.1.5. Event Cones 

The concept of event cones to find space time trajectories is introduced in (Leibe 

et al., 2007). Every object observation in a frame is assigned an event cone, which 

in turn represents a volume of possible object positions in the future and the past. 

The shape of the cone is determined by the dynamic model of the object, similar to 

Kalman filters. Object detections of all frames are accumulated to allow a 

probabilistic framework with an optimisation step to select the optimal set of 

trajectories to explain the full history of observations. This allows tracks to be split 
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retrospectively, which is traded off against optimisation of a growing data set for 

long video sequences. In addition, a real time scene understanding system might be 

presented with a continuously changing interpretation of the past video. 

Performance of this approach is demonstrated for an urban surveillance task in 

(Leibe et al., 2008b, Cornelis et al., 2008). 

2.4. Complete Traffic Analysis Systems 

This section covers traffic surveillance systems which could be used in a control 

room environment for traffic management. By distinguishing between urban and 

highway scenes, a higher coverage of highway applications in the literature is 

shown similar to the deployment discussed in section 2.2. This is partly due to the 

easier conditions on a highway with usually more homogeneous and constant flow 

than in urban areas. In addition, the distance between vehicles is larger and reduces 

the amount of occlusion. Figure 2 on page 11 shows some challenging examples 

from an urban environment. 

2.4.1. Urban 

The challenge for monitoring urban traffic is the high density of vehicles and the 

low camera angle. The combination of both leads to a high degree of occlusion. In 

addition, the clutter on the streets increases the complexity of scenes. The literature 

is divided up into 2D approaches, which operate in the domain of the camera view 

and 3D approaches (section 2.4.1.2) that employ some degree of 3D modelling or 

reconstruction. Both demonstrate comparable performance. 

2.4.1.1. Analysis in the Camera Domain 

This section deals with systems that work directly in the camera coordinate domain. 

An early real time monitoring system for intersections is proposed in 

(Veeraraghavan et al., 2002). A standard Gaussian Mixture Model is used for 
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foreground segmentation. Tracking of foreground regions is done with graph 

correspondence. The tracked objects are classified into pedestrians and vehicles 

based on the main orientation of the bounding box. Example images for different 

weather conditions are shown; however, there is no quantitative evaluation of the 

performance of the system. A support vector regression based background model is 

used in (Wang et al., 2006). Shape based data association in tracking feeding back 

to the detection shows to significantly improve the results. A multi agent framework 

performs tracking under occlusions in (Guha et al., 2006). Tracking performance of 

61% is reported on 30 minutes of the authors‘ surveillance video. 

A system for detecting parked vehicles is introduced by (Park et al., 2007). 

Camera homography is used to generate a normalised ground plane view. Based on 

a frame differencing motion map, parking in and out conditions are calculated. A 

state machine is used to track the speed changes of vehicles until stopping to 

generate those conditions. The system is evaluated with 24 hours of video data from 

two different sites. A good detection rate of 94.7% is reported on their own data. 

Interest points are tracked independently at urban intersections in (Saunier 

and Sayed, 2006). This provides robustness against errors in the background 

estimation and can deal with changing viewing angle, as no prior assumption to the 

constellation of feature points is made. The tracking performance is between 85% 

and 94% depending on the data set. Whole vehicle parts rather than individual 

points are tracked with particle filters in (Mauthner et al., 2008) operating on very 

low resolution images. 

Finally, there are two papers looking at specialised urban traffic 

applications. (Nguyen and Le, 2008) focuses on motorcycle tracking with multi- 

modal particle filters. A recall rate for counting of 99% is demonstrated for videos 

from Vietnam. In an urban setting in Venice, boats are tracked in (Bloisi and Iocchi, 

2009). GMM is combined with optical flow and a Kalman filter to track and count 
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boats along the Grand Canal. Counting accuracy is 94% for a 2 hour sequence, 

which is particularly challenging due to waves on the water. 

2.4.1.2. 3D Modelling 

Systems in this section use explicit 3D modelling. A real time system is introduced 

in (Messelodi et al., 2005b) to track and classify vehicles at intersections. 3D 

models are used to initialise an object list for every fifth frame based on the convex 

hull overlap of model projection and motion map. Camera calibration is required for 

this operation. A feature tracker follows the detected objects along some frames 

before a new initialisation takes place. The tracker is used to speed up operation, as 

the 3D operation would not be fast enough to operate on every frame in real time. 

The objects are classified into 8 classes based on a two-stage classifier. The first 

stage evaluated the convex hull, the second layer uses pixel appearance (colour) for 

classes with similar convex hull. The performance is evaluated on 45 minutes of 

video data from two different sites. The total classification rate is given with 91.5% 

for the test data of the authors. 

The use of 3D wire frame models for vehicle detection and classification 

was proposed in (Sullivan et al., 1996, Tan et al., 1998). First, a hypothesis for a 

vehicle position is generated in a search window. To do that, 1D profiles along the 

three axes of cars (horizontal forward, sideways and vertical) are correlated with 

trained templates. The hypothesis is verified by correlating the gradient input image 

with the wire frame image. The wire frame image is generated using the camera 

calibration to project the wire frame and replacing every line with a three pixel wide 

triangular grey level profile. This line of research is followed up in (Remagnino 

et al., 1998, Hu et al., 2004, Lou et al., 2005). A similar work using optical flow to 

find detection regions is presented in (Ottlik and Nagel, 2008) with previous work 

in (Dahlkamp et al., 2006, Dahlkamp et al., 2004). The 3D wire frames of vehicles 

are used in a Hough transform to provide additional cues for vehicle detection. Only 
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4 vehicle models are provided, which leads to a low detection rate of 65% on video 

data from (Nagel, nd). 

(Song and Nevatia, 2007) use a Bayesian framework with Markov chain 

Monte Carlo sampling. A proposal map is computed from the foreground map, 

indicating likely vehicle centroids based on a constant size vehicle model. The 

evaluation on two video sequences shows detection rates of 96.8% and 88%. The 

method is extended to predict (and hence remove) shadow projections. However, 

only shadows from known lighting conditions can be dealt with, e.g. sun light. This 

work is extended in (Johansson et al., 2009) by incorporating multiple vehicle 

models but requiring manual setup of vehicle orientation. The performance of this 

algorithm is not evaluated quantitatively. 

There is a completely different 3D approach presented in (Kim and Malik, 

2003). An edge detector is applied in an entry window to the side view highway 

image to retrieve horizontal and vertical lines of vehicles. Those line features are 

grouped together, using a probabilistic method, to form vehicles based on a 3D line 

model. Once vehicles are detected in the entry window of the scene, they are 

tracked using cross correlation between frames. The detection rate compared to 

hand counting is reported to be 85%. 

The problem of collision detection in urban intersections is tackled in 

(Atev et al., 2005; Atev and Papanikolopoulos, 2008). Multiple cameras, calibrated 

according to (Masoud and Papanikolopoulos, 2007) with road primitives, are used 

to identify 3D ground plane locations of vehicles by projecting all foreground 

masks to the road plane. 85% of 273 vehicles are detected successfully on the 

authors‘ data. 
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2.4.2. Highways 

Observing highway scenes usually gives the advantage of high camera angle and 

homogeneous traffic flow. A comprehensive review (Kastrinaki et al., 2003) 

focuses on this topic. Newer references are discussed here and divided up into 

detection (section 2.4.2.1) and classification (section 2.4.2.2). 

2.4.2.1. Detection 

A region- based vehicle detection and classification system is proposed in (Gupte 

et al., 2002). The main focus of the paper is on detection with effort put in a fast 

background estimation using the instantaneous background to get good 

segmentation. Tracking is performed using graph correspondence based on motion 

silhouette overlap. The proposed classifier uses two classes (cars, non cars) with 

size based features. The camera calibration is required to normalise those features. 

On the 20 minutes validation sequence, 70% of vehicles are correctly classified. 

Tracking using particle filters is introduced in (Wang et al., 2009b). The system is 

motivated by generic surveillance, but results are shown for their own highway 

video sequence. A Markov chain Monte Carlo particle filter (MCMC PF) is used in 

(Bardet and Chateau, 2008) to track vehicles detected with simple frame 

differencing as background model. On a short 50 frame sequence, up to 89% of 

vehicles are tracked correctly. 

The traffic system proposed in (Hsieh et al., 2006) allows vehicle detection 

and classification into four classes. The camera is assumed to be in axis with the 

highway. This assumption allows the estimation of the lane centres by using the 

tracks (by Kalman filter) of vehicle centroids. The lane centres are used to calculate 

the lane division lines. Those lines are used to separate vehicle blobs merged due to 

shadows. The detected vehicles are classified based on size and the linearity feature. 

This ad hoc feature is a measure of the roughness of the blob. A Bayes classifier 

based on the Mahalanobis distance between feature vectors with constant prior is 
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used for classification. The performance is evaluated on 10 minutes of video data 

from three different sites. The reported detection accuracy is 82%. Out of the 

detected vehicles, 93% are classified correctly using cues from multiple frames. 

Higher detection accuracy is reported in (Wang et al., 2004), however, the test 

video exhibits less occlusion. A rule based framework to deal with shadows and 

occlusions is introduced in (Su et al., 2007). A recall of 95.6% is reported on 500 

frames from a proprietary video of non occluded vehicles on a highway. 

In contrast, vehicle detection from cameras on the roadside using height 

features is introduced in (Kanhere et al., 2005) and followed up in (Kanhere, 2008, 

Kanhere and Birchfield, 2008). With camera calibration, the height of interest 

points is estimated throughout the video based on a foot point constraint of the 

bottom of a motion silhouette. This allows effective grouping of points into cars and 

trucks. The segmentation and tracking performance exceeds 90%. 

2.4.2.2. Classification 

(Rad and Jamzad, 2005) propose a system to track and classify vehicles on 

highways. Vehicles are first classified into three classes based on the width of the 

bounding box and the travelling speed. The classified bounding boxes are tracked 

using a Kalman filter. The reported tracking error rate is 5.4%. 

(Huang and Liao, 2004) describe a motion segmentation and classification 

algorithm. Seven vehicle types are classified from side view motorway images. 

Blob features like length and compactness are used with a rule based classifier. The 

instantaneous background update model is used. Merged blobs of different vehicles 

are separated using dense optical flow fields. However, this method only works if 

there is a speed difference between occluding vehicles. The performance is 

evaluated with a test sequence lasting for 463 seconds which results in 91% overall 

classification rate. 
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2.5. Discussion 

This section will discuss challenges in the field of traffic surveillance, especially in 

the urban domain. One major aspect is common data sets, which are analysed in 

section 2.5.2. Future research directions are given in section 2.6 in relation to this 

thesis. 

Classical visual surveillance approaches of background modelling and 

tracking have been successfully applied for highway surveillance (Bardet and 

Chateau, 2008, Morris and Trivedi, 2006b, Kanhere and Birchfield, 2008). There 

are attempts to overcome the problem of occlusion and shadows for that type of 

scene. Urban environments are more challenging due to denser traffic, variable 

orientation of vehicles at intersections and lower camera position. More advanced 

approaches have been suggested including 3D models (Lou et al., 2005, Messelodi 

et al., 2005b), shadow prediction (Song and Nevatia, 2007, Dahlkamp et al., 2006), 

appearance models (Kim and Malik, 2003, Ma and Grimson, 2005), etc. Algorithms 

developed for the generic object recognition domain have been applied and show 

promising results in the urban traffic domain (Leibe et al., 2008b, Wijnhoven and 

de With, 2007, Wijnhoven and de With, 2009). 

2.5.1. Challenges 

From an application perspective, the main technical challenge is the diversity of 

camera views and operating conditions in traffic surveillance. In addition, a large 

variety of observation objectives like vehicle counting, classification, incident 

detection or traffic rule enforcement can be useful. This has generated a large and 

diverse body of work, where it is difficult to perform direct comparison between 

proposed algorithms. It would be beneficial for the community to define a set of 

clear tasks like it has been done in object recognition with (project PASCAL, nd). 

The main contribution of a challenge like this is a public data set. The next section 
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introduces a few available data sets. One possible reason for the lack of a common 

framework is the diversity of traffic rules, car classes, etc. around the world. 

Research seems always tailored to local environments, even if it only means 

adopting vehicle classes according to local traffic regulations. There is very limited 

literature dealing with night time (Robert, 2009a) and difficult light (Johansson 

et al., 2009). To cover all possible situations, there might be the requirement for a 

bank of detectors, which are switched based on illumination (Acunzo et al., 2007, 

Thi et al., 2008). 

The main technical challenge in urban environments is occlusions and 

dense traffic. There are many solutions for occlusion handling in highway scenes 

(Hsieh et al., 2006, Su et al., 2007, Kanhere and Birchfield, 2008) for relatively 

sparse traffic, which can not necessarily be transferred to urban environments. The 

introduction of 3D models shows promising results and allows occlusion prediction 

or at least modelling of a non overlapping 3D constellation of vehicles for a given 

scene. 

2.5.2. Data Sets 

Public data sets and evaluation would allow the field to objectively compare 

algorithms. In addition, labelled training data is essential for the training of machine 

learning algorithms discussed in section 2.3.2.2. Unfortunately, most authors use 

their proprietary data, which is rarely made available on the web. Even with videos 

available, ground truth is scarcer and very often application dependent. The i-LIDS 

data set (iLIDS, nd) is an attempt by the UK Home Office to benchmark visual 

surveillance systems based on requirements of end users. One scenario deals with 

illegally parked cars in urban roads and consists of 24 hours of video. There is only 

event based ground truth, which is of limited use for evaluation of low level 

algorithms. Tracking ground truth is available for parts of those videos through 
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(CLEAR, 2007) with a vehicle and pedestrian tracker evaluated in (Taj et al., 2008). 

Greyscale images of urban intersection from a long distance high vantage point 

view are provided at (Nagel, nd) and are used in (Dahlkamp et al., 2004, Dahlkamp 

et al., 2006). Image patches used in (Ma and Grimson, 2005) are available
1
 as 

Matlab data files. Similar image patches are used repeatedly in (Creusen et al., 

2009, Wijnhoven et al., 2008, Wijnhoven and de With, 2009, Wijnhoven and 

de With, 2007) but no direct download is provided. Data for more general visual 

surveillance with some traffic related scenes is available from (VISOR, nd). 

2.6. Future Research and Thesis Outline 

A comprehensive review of computer vision technology for traffic analysis systems 

with a specific focus on urban environments was presented in this chapter. Research 

is expanding from the highway environment to the more challenging urban domain. 

This opens many more application possibilities with traffic management and 

enforcement. Traditional methods use background estimation and perform top-

down classification, which can raise issues under urban conditions. Methods from 

the object recognition domain (bottom-up) have shown promising results, but not 

sufficient reliability yet. Clearer definitions of scenarios and applications are 

required to generate a more consistent body of work, which uses common data for 

comparable evaluation. Better fusion of top-down and bottom-up algorithms will be 

beneficial. 

There is a larger body of work dealing with vehicle detection than with 

classification. For many applications, knowing the class of road users is essential. 

Some combined detectors and classifiers have been proposed (Leibe et al., 2008b, 

Wijnhoven and de With, 2009, Lou et al., 2005). Future classifiers should be able to 

take tracking prediction into account. According to several studies (Wang et al., 

                                                 
1 http://people.csail.mit.edu/xiaoxuma/proj/ 
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2006, Morris and Trivedi, 2006a), the combination of both improves the results. 

The 3DHOG algorithm introduced in chapter 5 is a good example for an appearance 

based classifier, which can incorporate tracking predictions as initial hypotheses for 

new frames. The task of classification of vehicles should be pursued in order to 

increase the capabilities to the level of detection and tracking. 

After the low level detection and tracking is tackled, there is significant 

potential for traffic rule enforcement. Current systems mainly focus on basic 

counting in highway and urban scenes. More sophisticated analysis of road user 

interaction is desirable in urban environment, especially including cyclists and 

pedestrians. Intelligent traffic light timing could benefit from a measurement of the 

state (position, velocity, class, etc.) of all road users at an intersection. The currently 

common installations of inductive loops in many cities cannot provide such 

comprehensive data. 

A unified framework for detecting and classifying all road users is 

introduced in chapter 3 and used throughout the remainder of the thesis. The use of 

3D models is introduced in general and combined with traditional background 

estimation. The classification task is the main objective for the algorithms 

presented. Local appearance models will be considered for a human detector in 

chapter 4 as a representative bottom-up method. The 3DHOG classifier in chapter 5 

is integrated with the unified classification framework. This structure allows the 

guidance of the classifier with hypotheses generated from tracking information. A 

module hierarchy and parameters of the implemented framework are provided in 

appendix A. 
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3. Motion Silhouette Classifier 

3.1. Introduction 

This chapter presents work done by the author to detect and classify vehicles and 

pedestrians (called collectively ‗road users‘) in urban traffic scenes. The problem 

tackled is road user classification on a per frame basis of a video stream. Every 

frame is treated independently for classification and no reasoning about the 

movement of road users is performed. Silhouettes (closed foreground regions) 

extracted by foreground analysis are the input to the classifier. The classification 

process is based on 3D models for road users. Related work has been introduced in 

chapter 2 with a specific focus on 3D model based methods in section 2.4.1.2 on 

page 44. Because of the overall context of CCTV monitoring, the detection of the 

system can be restricted to specific region(s) of the camera view (also referred to as 

―region of interest‖). The framework introduced for using 3D models and 

evaluation is also used for the work described in a subsequent chapter where a more 

sophisticated detection mechanism is proposed and evaluated. 

The following assumptions are made: Every silhouette corresponds to one 

road user being fully visible. This implies no occlusion in the scene and between 

road users. The orientation of the road users on the ground plane throughout the 

scene remains approximately constant, which implies that road users follow a 

straight road. The viewing direction of road users towards the camera can change, 

however, particularly if vehicles move from the back to the front of the camera 

view. The assumption of constant orientation clearly does not hold for pedestrians, 

who could be walking in any direction on the road. However, because of their 

posture (walking) and size (on typical road monitoring  CCTV),  the  appearance  of 
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Figure 5 Example views from the i-LIDS data set with detected vehicles and 

pedestrians. The left image also shows an ambiguous foreground region (thin blue 

outline) on the top left, which was classified as class „other‟ and that consequently, 

has no wire frame. The outlines of regions of interest R  are shown as dark red 

rectangles on the road. 

their silhouettes does not change significantly with direction and so it turns out that 

what seems as an unrealistic assumption does not have a major effect on the 

detection of pedestrians, as will be shown later with the results. Every region of 

interest R  in Figure 5 can be associated with a different orientation. These regions 

R  are a binary image mask defined manually for road areas where detection and 

classification will take place. 

There are five classes used for the classifier as indicated in chapter 1 plus 

an additional class for objects not belonging to any defined class.  

 Bus / Lorry 

 Van 

 Car / Taxi 

 Motorbike / Bicycle 

 Pedestrian 

 Other (class for objects not belonging to any of the above classes). 
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The rest of the chapter is organised as follows. Section 3.1.1 gives an overview of 

the method. The detector is introduced in section 3.2. Section 3.3 covers the 

classifier and models used. The evaluation of the proposed system is given in 

section 3.4. Finally, a summary can be found in section 3.5. 

3.1.1. Outline of the Proposed Approach 

In the system introduced later in this chapter, background estimation generates 

foreground silhouettes. Silhouette centroids are used to generate road user 

hypotheses. A classifier verifies a hypothesis of a road user being present in the 

scene by matching silhouettes with road users‘ models. This is done by placing 

candidate 3D models on the scene‘s ground plane and projecting it to the camera 

view. A match measure is calculated for every hypothesis by comparing the model 

with the foreground silhouette. Every model is placed on a grid of positions on the 

ground plane to produce the match measure for every silhouette. This represents an 

algorithm based on image measurement features, which are better than image 

features according to Morris and Trivedi, 2006b (see discussion in section 2.3.2.1 

on page 23). The highest match measure indicates the most likely position of the 

road user given the silhouette. The highest match measures of different classes are 

compared to make a decision about the class of a silhouette. Silhouettes with low 

match measures for all classes are classified as being of the class ‗other‘ (see 

example in Figure 5). To use the 3D models, cameras are calibrated by means of a 

map and a minimum of five corresponding points with the image. A system block 

diagram is shown in Figure 6, where each block will be explained individually in 

the next sections. 

The ground plane orientation of all road users is assumed to be more or 

less fixed, as pointed out earlier. One ground plane orientation is defined for every 

region of interest. A single object is assumed for every silhouette  (i.e.  no  overlap).  
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Figure 6 Block diagram of the detection and classification system 

With those assumptions, the score is a size and overlap measure between the 

detected silhouette and a projected silhouette from the wire frame mask of the 

candidate model. 

3.2. Detection 

The detector uses background estimation to extract motion silhouettes from a video 

frame. Those silhouettes will later be used by the classifier. See the detector part of 

Figure 6 for a block diagram. Every block of the detector is described in more detail 

in this section, followed by the classifier in section 3.3, which takes the silhouettes 

as input. This structure will be expanded by a tracker in chapter 6, but will keep the 

same generic structure. 
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De-interlacing input filter 

Surveillance videos are commonly captured with analogue cameras producing 

interlaced video signals. This process captures different parts of a video frame at 

slightly different times, which causes blurry boundaries for moving objects. To 

rectify the zigzag boundary artefacts generated for moving objects, a pre-processing 

step linearly interpolates odd video lines between even lines. In this way, the 

original size ratio of the images is preserved for camera calibration and human 

viewing. Alternative methods remove odd video lines completely, which causes the 

image to appear squashed. Performance results will be presented with and without 

de-interlacing filtering.  

Background estimation (GMM) 

A Gaussian Mixture Model implementation (KadewTraKuPong and Bowden, 2001) 

from the OpenCV library (OpenCV, nd) was used. The GMM, first introduced in 

the seminal paper of (Stauffer and Grimson, 1999), is used to generate an initial 

foreground mask. The software is set to estimate five Gaussians using a background 

threshold of 0.7 , which is the default value. The temporal window size, which is 

the inverse of the learning rate, is chosen at 50 to allow fast adaptation to 

illumination changes. With this value, stationary changes are in practice 

incorporated into the background within 15 seconds. The outdoor scene recorded 

with an auto iris function of the camera requires fast learning to accommodate 

illumination changes. Large objects in the scene can change the overall illumination 

conditions due to this gain control. 

Shadow removal 

The foreground pixels are post processed with the constant chromaticity shadow 

removal algorithm presented in (Cucchiara et al., 2001). Every foreground pixel is 
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removed from the foreground mask, if its shadow condition is true: The pixel colour 

in the background image (most stable Gaussian from GMM) is compared to the 

pixel colour in the current image. For the comparison, both colour values are 

transformed into the HSV (Hue, Saturation, and Value) colour space. Value 

reductions down to 55% of the current pixel with respect to the background pixel 

are considered shadows, and the pixel is removed from the foreground mask. This 

algorithm assumes that for shadowed surfaces hue and saturation stay constant and 

only the value changes (all compared to the background image). This assumption 

holds for light shadows as seen in overcast condition if the camera is not saturated.  

Connected components 

Binary masks connected components are extracted from the final foreground mask. 

The purpose is to generate silhouettes, which are connected components and will be 

processed by the classifier later. Each silhouette is denoted by S . A filter operation 

is used to produce a set of final silhouettes S  considering size and location with 

respect to the region of interest R  as explained below. This set of final silhouettes 

S  is used as input for classification. The length operator  L S  of a silhouette 

computes its perimeter in pixels. The area operator  A S  computes the number of 

foreground pixels in a silhouette. The overlap ratio operator  ,S R  defined below 

gives the overlap of a silhouette with the region of interest R  (e.g. red outlines in 

Figure 5): 

  
 

 

A
,

A

S R
S R

S



  (1) 

To be considered for classification, silhouettes S  have to satisfy that their length is 

greater or equal than a threshold 
L  and that the overlap is greater or equal than a 

threshold 
O . Values of 200pixelL   and 0.25O   are used for the experiments. 

Then: 
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Figure 7 Example pictogram structure of the detector corresponding to the block 

diagram in Figure 6. The mean background images of the GMM modes are shown 

along the bottom, followed on top by the foreground mask and connected 

components S . 

     L ,L OS S S R     S  (2) 

The length threshold 
L  should be made equal the smallest road user in the scene. 

This means, that smaller silhouettes corresponding to noise are filtered out. If the 

value is chosen too large, smaller road users might be wrongly filtered out. The 

choice of overlap threshold 
O  only affects the silhouettes entering at the edge of 

the region of interest R . Practically, road users are fully contained in the region of 

interest R  for most of the time, where the choice of overlap threshold 
O  has no 

effect. The data flow of the detector is illustrated in Figure 7 as a pictogram. 

3.3. Classification 

This step classifies each silhouette from the detection to be one of the set of road 

user types shown in Figure 8. This will be achieved by finding the match between 

the projected model and a silhouette. The classifier is divided into four steps shown 

in the classifier block diagram in Figure 6: ground plane hypothesis  generation,  2D  
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Figure 8 Wire frame models 
iF  used for classification. Refer to Table 1 for model and 

class correspondences. 

model projection, overlap of model with silhouettes and maximum search. This 

section follows this structure. 

Ground plane hypothesis generation 

The camera requires calibration to be able to operate in the ground plane space and 

to use 3D models. The algorithm of (Tsai, 1986) is used to obtain the ground plane 

calibration for the camera using a map of the road and defining at least five 

corresponding points between the map image and the camera image. Based on the 

calibration, ground plane coordinates  , ,x y zg  can be converted to image 

coordinates. Back projection from the image to the ground plane implies that points 

are located on the ground plane in 3D world space. 
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First, ground plane hypothesis are generated for the silhouettes. The 2D 

image centroid c  of every silhouette S  belonging to S  are back projected to the 

ground plane (i.e. implying zero height) giving ground plane centre r . This 

projection of the centroid c  introduces position noise, as the silhouette centroid c  

may not lie in the ground plane. This is dealt with by generating several hypotheses 

around the ground plane centre. Those additional hypotheses also compensate for 

noisy centroid c  estimations due to shadows. A full set of hypothesised ground 

plane road user positions  p hH  is generated by placing a regular square grid of 

points around the ground plane centre r  where p  is the index of the grid positions. 

The grid parameters were optimised for the experiments: the total grid width was 7 

metres containing 7 rows and 7 columns. The grid width has to be sufficiently large 

to compensate for ground plane centre estimation noise of large models (e.g. bus). If 

this grid size is chosen too small, large models will not be matched at the correct 

location. To limit computational time, the number of rows and columns was chosen 

as low as possible. If the number of rows and columns is chosen low, the 

localisation of road users will be coarse. 

2D model projection 

The 2D projection generates model masks ,p iM  for every ground plane hypothesis 

ph . Figure 8 shows the full set of wire frame models  iFF  used for 

classification, where the model index i  is in the range of 0 to 9 (see Table 1). The 

model dimensions are based on current vehicle manufacturers‘ information. The 

model mask is generated by  

  , SIL ,p i i pM F h , (3) 

where  SIL ,i pF h  is the projection of model 
iF  at ground plane location ph  

according to the following two steps: Every model point of wire frame 
iF  is 

projected to the camera view (mask image) and the projected wire frame is drawn in  
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Table 1 Class configuration table T  showing correspondences between model ID i  

and class ID j  (note that a class may correspond to more than one model) 

 

Figure 9 Illustration of the projection process of models. The wire frame of models is 

projected to the camera view and flood filled. 

the mask image between the projected points. The binary mask ,p iM  is generated by 

flood filling the projected wire frame. This process is illustrated in Figure 9. The 

above algorithm changes model masks‘ size and shape implicitly according to the 

ground plane location. 

Model ID i  
Wire frame 

Model 
Model name Class ID j  Class name 

0 0F  Pedestrian1 
0 Pedestrian 

1 1F  Pedestrian0 

2 2F  Bicycle0 1 Bike 

3 3F  Hatchback 

2 Car / Taxi 4 4F  Limousine 

5 5F  Minivan0 

6 6F  Van0 
3 Van 

7 7F  Minibus0 

8 8F  Bus1 
4 Bus / Lorry 

9 9F  Bus0 

   -1 Other 
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3F  Ground plane 

location
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,p iM  
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Figure 10 Illustration of model matching process. The normalised overlap between 

silhouettes and model mask is calculated. 

Match measure as overlap of model with silhouette 

A measure of quality of fit between the silhouette S  and model masks ,p iM  is 

defined by the normalised overlap area  , ,p iM S : 

  
 
 

,

,

,

A
,

A

p i

p i

p i

M S
M S

M S


 


 (4) 

which is similar to the approach presented in (Messelodi et al., 2005b). The area of 

the intersection of both masks is divided by the area of the union of both masks, 

which results in a match measure in the range  0,1 . Figure 10 gives an illustration 

of the overlap calculation. 

Maximum search for best fitting model 

Perform a global search of ground plane positions ( , )x yg  and model indices i  to 

find the best fit 
S
  for every silhouette S  

  ,
,

max ,S p i
p i

M S    (5) 

where 
Sg  and 

Si  are the arguments that generated the maximum 
S
  i.e.  

  ,
,

, arg max ,S S p i
p i

i M S g . (6) 
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Figure 11 Match measure for one silhouette S . The upper left image shows the 

silhouette and best fitting model 
Si  at ground plane position ( , )x y . Top right: the 

winning match surface  ,max ,p i
i

M S  with data points. Bottom: Cross- section 

through every model's match surface  , ,p iM S along the minimum and maximum 

decay direction at ( , )x y . The legend label ID corresponds to the model index i  in 

Table 1.  

The overlap response is illustrated in Figure 11. Note the well shaped peak of the 

overlap function in respect to the ground plane positions ph . The peak is elliptic 

rather than circular, which can be observed by the different gradients in the bottom 

graphs in Figure 11. This can be expected due to the perspective angle of the 

camera. A shift along the x-axis (sideways on the road) produces a large horizontal 

shift in the image, which generates a sharp drop in overlap (bottom right graph). A 

shift along the y-axis (along the road) produces a less distinct vertical shift in the 

image, which causes a slower drop and therefore lower accuracy (bottom left 

S
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graph). The lower the camera angle, the less accurate the y-axis measurement 

becomes. 

Finally, the configuration table T  in Table 1 is used to retrieve the class 

index 
Sj  for the model 

Si  as there can be many models for one class to allow for 

intra class variability 

  TS Sj i . (7) 

A silhouette S  is promoted into a detected road user D , if it was classified as being 

of a known class, i.e. has sufficient fit 
S
  to model 

Si . The set of detected road 

users  DD  is the final output of the algorithm. A threshold 
P  is applied to the 

quality of fit 
S
  of every silhouette S  to deal with silhouettes, which do not match 

any class: 

  ,S PS S   D S . (8) 

The threshold was optimised as 0.48P   to provide an even balance between 

missed road users and wrongly detected road users. For completeness, the 

intermediate results and internal steps of the whole classification algorithm are 

illustrated as a pictogram in Figure 12 showing mask and silhouette images. 
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Figure 12 Illustration of data flow for the classification framework. This corresponds 

to the classifier block in Figure 6. One example silhouette S  with centroid c  in 

green is shown. The map on the bottom left illustrates the ground plane hypotheses 

ph  as green crosses. The model projected on the red position results in the red 

flood filled model mask M , shown as example for a single hypothesis. The 

normalised overlap operation  , ,p iM S  is illustrated in the middle of the classifier 

for the example silhouette S  and model mask M .  

3.4. Evaluation 

The proposed system has been evaluated on video from the i-LIDS data sets (iLIDS, 

nd). The set of ground truth  GTGT  was partly provided by i-LIDS (ground 

truthed by NIST) in Viper format (Viper,) consisting of bounding boxes and class 

labels for road users. It had to be converted from NTSC to PAL indexing and was 

extended for pedestrians. The classifier produces bounding boxes and class labels 

for classified road users D  also in Viper format. The next section introduces the 

metrics used, followed by the data set in section 3.4.2. Section 3.4.3 gives results 

for vehicle only detection and classification. Joint operation of all road user classes 
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is evaluated in section 3.4.4. Experiments to asses the influence of weather 

conditions are shown in section 3.4.5. 

3.4.1. Metrics 

Every classified road user D , is matched with the best overlapping bounding box 

GT  of the ground truth GT . The entry in an extended confusion matrix depends on 

the class labels. A general confusion matrix for N  classes (
1 2 NC ,C , ,C ) is shown 

in equation (9). If no overlapping road user GT  is found in the ground truth, the 

classified road user D  is entered in column FP (false positive). All non matched 

road users in the ground truth GT  within the region of interest are entered in row 

FN (false negatives). All the metrics used for evaluation can be derived from an 

extended confusion matrix. To allow evaluation of the detector in addition to the 

classifier, row FN (false negative) and column FP (false positive) are added to the 

confusion matrix. 

 

1 2

1 1,1 1,2 1, 1, 1

2 2,1 2,2 2, 2, 1

,1 ,2 , , 1

1,1 1,2 1,

Groundtruth                        

C C C FP

C

C
Detected

C

FN 0

N

N N

N N

N N N N N N N

N N N N

c c c c

c c c c

c c c c

c c c







  

 (9) 

The metrics used for the evaluation of the whole system (detector and classifier) 

will be precision, recall and the F1 measure. The definitions are taken from the i-

LIDS trial (iLIDS, nd) specifications. Precision P  and recall R  are calculated 

independently for every class Ci
 and jointly for all classes. The following 

definitions are used for i-LIDS: 

 
TP

R
TP FN




 (10) 
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TP

P
TP FP




 (11) 

 
 

1

1 RP
F

R P









 (12) 

The recall bias  can be set according to the application. The values for the above 

equations can be read from the confusion matrix (9). The true positive (TP) for any 

class Ci
 is the corresponding diagonal element ,i ic . The ground truth for recall is 

the column sum of all classes. The number of detections used for precision is the 

row sum of all classes Ci
. Equations (10) to (12) can be expressed in terms of the 

confusion matrix from equation (9) with a matrix element defined as ,i jc . The total 

number of classes is N . The recall ,S iR  of the whole system (index S ) per class Ci
 

and the precision ,S iP  of the whole system per class Ci
 are defined as follows: 
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Joint values for recall 
SR  and precision 

SP  for all classes can be calculated by 

summing up all diagonal elements and the corresponding rows or columns. Every 

class has an implicit weight according to the number of occurrences. 
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Precision ,C iP  for the classifier only (index C ) per class Ci
 can be calculated by 

ignoring the column for FP. This equation deals with the classification result of 

correct detected objects only. The classifier recall 
C CR P  when considering all 

classes jointly. The recall ,C iR  and precision ,C iP  for the classifier per class and the 

joint precision 
CP  are defined as: 
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. (19) 

Finally, precision 
DP  and recall 

DR  can be calculated for the detector only (index 

D ). The classification performance is ignored by summing over all classes to 

calculate the true positives. The column sum is used for recall and the row sum is 

used for precision. Once again, the values can be calculated for each class 
iC  ( ,D iP , 

,D iR ) or jointly for all classes (
DP , 

DR ). 
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This full set of metrics allows comparison with many published results. Often in the 

literature only a subset of those metrics is provided in a single paper. These metrics 

allow comparison of different aspects of the proposed algorithm with the 

corresponding publications. 

3.4.2. Data set 

The i-LIDS data sets (iLIDS, nd) are licensed by the UK Home Office for image 

research institutions and manufacturers. Each data set comprises 24 hours of video 

sequences under a range of realistic operational conditions. They are used by the 

UK government to benchmark video analysis products. They are useful for 

evaluating and comparing algorithms by the computer vision community and there 

is a gradual increase in take-up. Out of the Parked Car data set, what i-LIDS calls 

―scenario 1‖ was chosen, because it complies with the assumptions in section 3.1 

and provides road users with large scale variations. Refer to Figure 5, Figure 13 and 

Figure 14 for example views. There is no public data set commonly used for urban 

traffic analysis. This makes direct comparison of reported results difficult. One 

contribution in this chapter is the use of this public data set to allow quick future 

comparison of systems in the same environment. Approximately one hour of video 

for sunny, overcast and changing conditions has been selected for the evaluation: 

(PVTRA10xxxx) 1a03, 1a07, 1a13, 1a19, 1a20, 1a21, 2a04, 2a05, 2a06, 2a08, 2a09, 

2a10, 2a11 and 2a15. The recordings use a camera with an auto iris function that 
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keeps the average illumination of the view constant. Large vehicles with a 

predominant colour can cause adjustments in the iris and noticeable changes in the 

background. In addition, the overcast videos contain saturated areas in the middle 

and far end of the view. These are useful challenges to test the limit of the proposed 

approach(es). 

Some ground truth usable for the tests (the data is normally used for event 

detection tests) was provided with the data set, however it had to be converted and 

extended. This limited the total length of video used for the evaluation. The total 

number of vehicle and pedestrian appearances is 782 as in Table 4. The proportions 

for each class are as follows: 47% car/taxi, 31% pedestrian and 8% each for van and 

bus/lorry and 6% for motorbike/bicycle. 

3.4.3. Detection and Classification without Pedestrian Models 

This section provides results for the proposed system without pedestrian models. 

The pedestrian model has been removed for this section just to make the results 

comparable to state of the art solutions in the literature, which usually do not 

consider pedestrians. The author‘s results compare to the state of the art, but for 

practical reasons are not evaluated on the same data for vehicle detection and 

classification. Using the shadow removal filter without the de-interlacing filter 

gives the best performance. Comparison of the filters is provided at the end of this 

section with a detailed analysis in section 3.4.4. Table 2 shows an extended 

confusion matrix including FP (false positives) and FN (false negatives) for the 

evaluation of detector and classifier and Table 3 shows results for the classifier and 

details per class. All values are normalised to the ground truth count per class 

displayed at a bottom row. The overlap indicates the overlap between ground truth 

bounding box and detection bounding box, which is obtained as the bounding box 

of the detected wire frame model. The whole system evaluates to a recall R  of 87%  
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Table 2 Confusion matrix and overall silhouette classifier performance for vehicle 

only operation using shadow removal 

 

Table 3 Confusion matrix for the silhouette classifier using shadow removal and per 

class evaluation 

at a precision P  of 85.5%. The classifier achieves a precision 
CP  of 92.9%. The 

detector has a recall 
DR  of 93.7% at a precision 

DP  of 92%. For qualitative results, 

refer to Figure 13 for true positive examples and Figure 14 for wrong classification. 

The higher number of false positives for the class bike is due to pedestrians being 

classified as bikes. At this stage, no pedestrian model was used and all the motion 

silhouettes resulting from pedestrians in the scene should have been classified as 

belonging to class ‗other‘. 
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Figure 13 Examples of correct detections and classification of vehicles using the 

silhouette classifier with shadow removal filter 
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Figure 14 Top: Two examples for false positives due to pedestrians being detected 

as bike and as car due to occlusion in a group. The bottom left image shows a car 

being misclassified as bike as it turns into the car park. The last image shows a 

missed car due to its similar colour compared to the saturated road area 
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3.4.3.1. State of the art literature 

Direct comparison of quantitative results with the literature is difficult due to the 

lack of a common data set for vehicle classification. A detailed introduction to state 

of the art algorithms has been given in section 2.4 on page 42. The total recall R  

and precision P  of the proposed system appears to outperform the following 

systems in terms of their reported results on their own data sets. The first reference 

is (Messelodi et al., 2005b); with a system performance of 82.8% for detection and 

classification of urban road users into 8 classes is reported. All the following 

systems use highway imagery, which highlights the lack of work of vehicle 

classification using urban data. Total system R  65% at P  75% for classifying 150 

car samples into 3 classes after detection and tracking is achieved in (Chen and 

Zhang, 2007). On 20 minutes test video, 70% of vehicles are classified (cars/non 

cars) after detection and tracking in (Gupte et al., 2002). A classifier accuracy of 

74.4% is reported for a 24 hour test sequence in (Morris and Trivedi, 2006b) using 

3 classes. The same authors extended the system to 7 classes with a classification 

accuracy of 88.4% in (Morris and Trivedi, 2006a). 

3.4.3.2. Input filter comparison 

Results of the algorithm proposed in this thesis are compared for four different 

scenarios using input filters for shadow removal and de-interlacing. The effect of 

using different combinations of those filters is shown in Figure 15. Shadow removal 

is essential for good performance, whereas de-interlacing has a negative effect. This 

is partly due to smoother outline of silhouettes and the additional noise introduced 

in the background modelling from the interpolation process. The de-interlacing 

filter will be more important in chapter 5 where the appearance of road users is used 

for classification. The next section discusses all four cases in more detail when 

pedestrian detection is also considered. 
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Figure 15 Performance comparison for the classification framework without 

pedestrian models using 4 different filter algorithms: shadow removal (Sr), shadow 

removal with de-interlacing (Sr+Di), de-interlacing (Di) and no filter (-). The left 

diagram shows system recall R , precision P  and classifier precision 
CP . The right 

diagram indicates the detector recall 
DR  and precision 

DP  
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Figure 16 Two example views of the classification framework including pedestrian 

models for two different filter configurations from top: shadow removal (Sr) and 

bottom: shadow removal with de-interlacing (Sr+Di). The car at the bottom left is 

missed, because of a tighter silhouette of the car in addition to the saturation 

artefact. 

3.4.4. Detection and Classification with all Road User Models 

This section shows results for the proposed algorithm, when all road users are 

classified with the same framework. Results are given for the same four filter 

configurations (i.e. a) shadow removal, b) shadow removal with de-interlacing, c) 

de-interlacing and c) not filters) introduced in the last section with a qualitative 

comparison in Figure 16 and Figure 17. Best performance can be seen for shadow 

removal. 
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Figure 17 Two example views of the classification framework including pedestrian 

models for the remaining filter configurations top: de-interlacing (Di) and bottom: no 

filter (-). Too large silhouettes (their perimeters shown in blue) can be observed when 

shadow removal is not carried out, causing missed vehicles and wrong 

classifications (last two columns). 
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Table 4 Confusion matrix of the motion silhouette classifier when using the shadow 

removal filter including overall performance figures for pedestrians 

 

Table 5 Classifier and class wise performance figures for the motion silhouette 

classifier when using the shadow removal filter 

3.4.4.1. Shadow removal filter 

The framework used with the shadow removal filter gives the best performance for 

road user classification. Refer to Table 4 for an extended confusion matrix with 

overall performance figures and to Table 5 for class wise results. Very good 

classification performance is observed for the vehicles classes, whereas confusion 

occurs between bikes and pedestrians. This is due to very similar motion silhouettes 

of both road users, especially in the far region of the camera view when bicycles are 
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Table 6 Confusion matrix and system performance of the motion silhouette classifier 

for shadow removal and de- interlacing filter 

seen front on (see Figure 13). The higher false positive rate for the bike class 

observed earlier for the classifier without pedestrian models (Table 2) does not 

appear here, as a pedestrian model was used. The low detection performance of 

pedestrians is due to their non-rigid nature. The basic cube-like models do not 

match motion silhouettes of pedestrian as well as they do cars, which required the 

detection threshold to be halved for pedestrians. In addition, the interlacing of the 

cameras does affect smaller object more, which explains the performance increase 

of pedestrians when using a de-interlacing filter in the next section. However, using 

a single algorithm for all road users is beneficial in terms of system complexity. 

3.4.4.2. Shadow removal and de-interlacing filter 

The framework with both input filters indicates best performance for pedestrians. 

The confusion matrix in Table 6 shows system recall 82% for pedestrians, which is 

an improvement of 11% compared to shadow removal filtering only. The additional 

de-interlacing filter allows a better match of motion silhouettes compared to the last 

section. However, the classification performance for vehicles degraded, particularly 

the recall of vans from 84% to 63%. 
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Table 7 Confusion matrix for the motion silhouette classifier with de-interlacing 

filtering and with no filter. More tables for those cases are provided in appendix C.1. 

3.4.4.3. De-interlacing filter and no filter 

For these experiments, only the de-interlacing filter or no filters were used. In both 

cases, the performance is significantly worse than the experiments that include the 

shadow removal filter, which can be observed in Table 7. Compared to the best 

performance in section 3.4.4.1, recall drops by 11.7% to 67.8% and precision drops 

by 10.5% to 73.4%. This is due to oversized motion silhouettes, which can be seen 

in Figure 17. Therefore, this demonstrates that shadow removal is essential for this 

framework to perform well. 

3.4.5. Influence of Weather Conditions 

Robust operation under varying realistic weather conditions is important. This 

section compares the performance of the classifier without pedestrian model for 

sunny, overcast and changing conditions. Direct comparison is given in Figure 18 

indicating that the approach performs best for sunny conditions. This may be due to 

the high contrast in the videos and therefore good foreground estimation. The 

following sections give more details about each condition. Some performance tables  
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Figure 18 Performance comparison for the motion silhouette classifier under three 

different weather conditions 

have been omitted here for space reasons and are provided in appendix C.1. 

3.4.5.1. Sunny conditions 

The best individual performance is achieved for sunny conditions, with the 

confusion matrix shown in Table 8. Many researchers have reported that sunny 

conditions degrade system performance due to shadows. This unexpected case of 

sunny conditions outperforming overcast conditions for classification may be 

explained by the dynamic range of the images. The high contrast and the deep 

shadow can be seen in examples of Figure 19. The sun allows a precise detection of 

the outline of road users; however it includes a deep shadow. The classifier can deal 

with that shadow as the silhouette is only extended in a single direction which 

reduces the overlap match measure for all models but keeps the ordering. In 

contrast, the lower dynamic range and the tendency of image saturation for overcast 

conditions introduce more noise to the road user‘s silhouette. This noise has a 

greater variability on the size of the silhouettes which can then lead to matching of a 

wrong model. However, due to the shadow, the mean overlap measure of the 

winning class in sunny conditions is 0.65, lower than the corresponding figure in 

overcast conditions (0.69). This means that the accuracy of the detected location for 

road users under sunny conditions is lower compared to overcast conditions. 
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Figure 19 Sunny examples top: true positive, bottom: false positive car and missed 

car 

 

Table 8 Confusion matrix for sunny conditions 
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Figure 20 Overcast examples top: two correct frames and bottom: one misclassified 

frame and one wrong detection due to saturation in the image. 

3.4.5.2. Overcast condition 

The performance for overcast conditions is second best after sunny. The confusion 

matrix in Table 9 shows many false positives for bikes. The false positives are 

observations of pedestrians, which should have been classified as ‗other‘. The miss 

classifications are mainly due to missed foreground areas due to saturation and low 

dynamic range of the scene. Refer to Figure 20 for examples. 
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Table 9 Confusion matrix for overcast conditions 

3.4.5.3. Overcast changing to sunny 

The worst performance can be observed for changing conditions. During those 

sequences, the sun appears several times which causes the auto iris of the camera to 

adjust. This produces ambiguous foreground silhouettes for short periods of time 

resulting in lower performance. Refer to Table 10 for the extended confusion matrix 

for this case with example views in Figure 21. The low performance of vans is due 

to their predominant white colour, which causes reduced foreground areas during 

times of saturation. This problem can be dealt with by exploiting the constraint that 

the same road users are present in the scene for many frames. Temporal filters and 

tracking are discussed in chapter 6. 
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Figure 21 Changing weather examples: Two correct frames at the top and two 

misclassified frames at the bottom. 

 

Table 10 Confusion matrix for changing conditions 
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3.5. Summary 

This chapter presented a new algorithm for road user detection and classification 

using 3D models. The target application is urban traffic analysis which has different 

requirements compared to highway surveillance. 3D models based on car 

manufactures‘ dimensions are projected onto the image plane to search for a 

silhouette match measure (maximum). This match measure produces a distinctive 

peak at the right ground plane position and distinguishes different classes. This 

method has the potential of being useful for different applications (e.g. assembly, 

intelligent spaces) to generate camera specific object templates for visual matching 

and searching. 

Evaluation was performed on the public i-LIDS data sets. Results have 

been provided for several input filters and weather conditions. Good overall 

performance of a recall of 79.5% at a precision of 83.9% is achieved for the whole 

detection and classification algorithm. The classifier achieves a high precision of 

89.8% which is higher than reported results in the literature, but evaluated on 

different data sets. The lack of a common data set makes a direct comparison really 

difficult. The good performance can be contributed to the prior knowledge of 3D 

shape and therefore the knowledge of expected motion silhouettes. The simple 

camera calibration used here allows the application of the same models to be used 

across cameras. The full model incorporates vehicles and pedestrians into the same 

framework. This gives slightly lower performance (precision 89.8%) compared to 

the classifier without pedestrian models (precision 92.9%). Some confusion can be 

observed between bicycles and pedestrians, where 49% of bicycles are classified as 

pedestrians. This is due to their similar size and motion silhouette. The evaluation 

of input filters indicates that shadow removal filtering gives the best overall 

performance while de-interlacing improves pedestrian detection. Regarding weather 

conditions, the best classification performance of 98.2%P   is achieved for sunny 
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conditions outperforming overcast conditions and changing conditions. This result 

is due to the higher contrast and therefore less noise of the silhouettes in sunshine. 

As the author‘s classifier can deal with deep shadows, this condition gives the best 

results. 

The described algorithm using 3D models could be compared to a method 

fitting ellipses to detected silhouettes. Those ellipses could be changed in size 

according to the camera perspective, which appears to be a simpler algorithm to 

give arguably similar results but no ground plane road location of road users. The 

setup of the above would; however, require more specialist knowledge and require a 

new setup for every camera. In contrast, the proposed algorithm uses a single set of 

models (3D volumes for road users) for all cameras. The dimensions are taken from 

real car dimensions in metres, which does not require any domain knowledge of 

computer vision. To set up a new camera, the camera calibration is simply obtained 

by clicking corresponding points on a road map and image. 

The method is ultimately limited by the quality of the motion silhouettes. If 

the noise or imperfections of the silhouettes exceed the size variations between 

models, the classification will be erroneous. New vehicle shapes with similar size 

will not degrade performance. This is because the overall match between models 

and silhouettes might be lowered, but the rank order which determines the class 

would not be affected. 

Personally, during this initial period of my research, I improved my 

understanding of the scientific method to investigate and evaluate methods and 

developed an appreciation of real world surveillance video data. The challenges 

faced when processing the size and variety made me shift my focus from expert like 

systems (rule based) as proposed in this chapter toward learning based methods like 

the next chapters. In this way, the variety and challenges of the data can be 

automatically tackled, provided that representative training data can be gathered. 
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The remainder of the thesis is dedicated towards more robust detection and 

classification of road users. 3D models show good performance, but the use of 

motion silhouettes alone is a distinct limitation for robustness and occlusions. This 

requires a radical change of concept to focus on incorporating local feature 

information into the classifier to have additional information (such as texture and 

appearance) apart from the motion foreground, which has shown limitations 

particularly during changing weather conditions. Local features indicated good 

performance in (Ma and Grimson, 2005) and are commonly used in object 

recognition style approaches e.g. (Leibe et al., 2007, Leibe et al., 2008b). The next 

chapter will focus on evaluating local features for surveillance tasks by considering 

the seemingly simple problem of detecting human intrusion in sterile zones. Those 

concepts will afterwards be integrated with the 3D framework presented in this 

chapter to generate what the author will call 3DHOG features in chapter 5 in an 

effort to overcome the limitations of the classifier presented here. In this way, the 

appearance of road users will be incorporated into the 3D models. 
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4. Local Features for Human 
Detection 

4.1. Introduction 

The previous chapter illustrated how motion (foreground) cues can effectively be 

used for road user classification. The summary then identified some shortcomings 

of estimating motion foreground. The use of local features (such as edges, textures, 

etc.) might be a way of overcoming these limitations. So, this chapter describes 

work done by the author to identify ways in which such local texture features 

(extracted in patches) can be used to detect intrusion in sterile zones under a range 

of environmental conditions. The work incorporates appearance into the models and 

moves away from the motion approach. This means that segmentation and object 

detection could take place using individual images (a task normally carried out 

without any apparent difficulty by human beings). The integration of both concepts 

(motion and local features) is then demonstrated in chapter 5. In this chapter the 

author takes a seemingly simple scenario (something one would assume would have 

been fully solved by now): the detection of people entering a sterile zone. This is a 

common task for surveillance e.g. a fence along a railway line, warehouse 

perimeters or similar. Such scenes contain a protected area typically with a physical 

barrier (e.g. fence) and a restricted (sterile) zone bordering the barrier. The author 

also uses the training and stringent testing framework given by the i-LIDS sterile 

zone test data set of the United Kingdom Home Office (iLIDS, nd). This data set is 

associated with a formal process of benchmarking commercial automatic 

surveillance systems and contains a wide range of environmental conditions 

(spanning all seasons and all weathers) as well as intrusion situations (walking, 
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crawling, running, rolling, etc.) in two camera views, referred to in here as View1 

and View2 (Figure 22). The i-LIDS programme was inspired by a government need 

(informed by CCTV users) to rank systems so that those with an appropriate level 

of performance could be recommended to government departments, such as police 

forces. At the same time, the i-LIDS data set provides a common set of data that 

researchers can use to compare results. Although some of its definitions of what 

constitute true and false detections might seem arbitrary and even idiosyncratic, in 

this work we fully adopt the i-LIDS definitions so that researchers and even end-

users could consider our results in that common context. The main challenge for the 

academic and industrial communities in such scenarios is to demonstrate robust 

operation over a wide range of environmental conditions. Those conditions include 

camera shake, illumination changes, auto iris (adaptive gain), 24 hour operation, 

rain, snow, wild animals, etc. Commonly used methods like motion estimation have 

problems dealing with those conditions. Those problems arise from the need of such 

methods to maintain and continuously update a background model, which often 

assumes a static camera view. Such limitations might be overcome by finding a 

method able to detect regions of interest (in this case intruders) on single images. In 

this context, it is observed that in many cases sterile zones contain greenery, gravel 

(railway) or other mostly homogeneous surfaces within which intrusion takes place. 

The author therefore formulates the intrusion detection problem as one of detecting 

―saliency‖, where saliency refers to a local significant difference in local texture 

features (in this case corresponding to the intruder). Later in the next chapter it will 

be explored, how the use of local features might improve the detection of road users 

in urban conditions. 

Thus, this chapter presents a new texture saliency classifier for intrusion 

detection in still images. Salient objects are detected in real- time, based on spectral 

texture features of image regions. This means in practice,  that  people  are  detected 
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Figure 22 Examples of the i-LIDS data set showing the two camera views, different 

environmental conditions (falling snow in the middle left) and ways the fence is 

approached. 

due to their texture difference compared to their surrounding texture. The basic 

detector is then extended with a combination of the texture saliency and an inter-

frame difference motion mask so as to improve robustness. A further extension uses 

Kalman filtering and allows motion silhouettes to initialise tracks so as to reduce 
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detection time (this is particularly relevant to the i-LIDS benchmark that allows 

only up to 10 seconds to detect an intruder, no matter how slowly the intruder is 

moving). The algorithms are tested on the i-LIDS sterile zone data set and 

comparative results with the state of the art (at the time the work was done) 

OpenCV blob tracker are presented. 

The remainder of this chapter is organised as follows: The next section 

discusses relevant work. The intrusion detector is introduced in section 4.3. 

Extensions to the detector are introduced in section 4.4. Section 4.5 describes the 

data set and provides details on the implementation including timing analysis. Full 

results are provided in section 4.6. Section 4.7 concludes the chapter. 

4.2. Related Work 

The most relevant literature on intrusion detection (i.e. object detection) can be 

divided into two categories: Methods exploiting temporal consistency by modelling 

background and methods operating on single frames. The first methods are usually 

fast to compute, but robustness to realistic conditions is limited. The proposed 

solution belongs to the second group, which gains robustness by solving the harder 

problem of foreground reasoning when considering single frames only. The recent 

body of pedestrian detectors like HOG (Dalal and Triggs, 2005), AdaBoost (Jones 

and Snow, 2008) or edgelets (Wu and Nevatia, 2005) are not applicable, because 

pedestrians are assumed to be upright. In the data set used here, people are also 

crawling, rolling sideways, etc. which breaks this assumption. 

A common solution for utilising temporal consistency is to generate a pixel 

wise background model with which to estimate motion foreground and perform 

tracking. The background model can be a mixture of Gaussians as in the 

OpenCV1.0 blob tracker (OpenCV, nd). A background model based on the mode in 

the temporal histogram is given in (Zheng et al., 2005). The disadvantage of using a 
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histogram is the slow adaptation for changed background when a high mode is 

established. The seminal papers of (Stauffer and Grimson, 1999, Stauffer and 

Grimson, 2000) introduce a Mixture of Gaussians background model per pixel to 

deal with multiple background illumination characteristics by trading off 

computational speed and memory size. This approach generally provides good 

results for outdoor scenes. (Sheikh and Shah, 2005) consider a probabilistic 

approach to model regions of pixels jointly. This allows the local spatial structure to 

be considered in a Markov Random Field (MRF). (Monnet et al., 2003) use 

Principal Component Analysis (PCA) and an auto regressive model to predict a 

dynamic scene. This work is extended by (Culibrk et al., 2009) who estimate stable 

texture regions. Periodically changing backgrounds are modelled in (Colombo 

et al., 2007) to incorporate periodic distractions like escalators into the background 

model. A model based on texture blocks is proposed in (Heikkila and Pietikainen, 

2006) and used for tracking in (Takala and Pietikainen, 2007). Pixel and block 

based approaches are combined in (Chen et al., 2007) for a hierarchical method. 

All background modelling approaches are affected by camera shake or fast 

scene changes which are typical for realistic conditions. Detection based on single 

frames may overcome those problems, however it increases the difficulty of 

detection as there is no temporal information available. Regression trees are used in 

(Davies and Lienhart, 2006) to classify pixels into road and non road for vehicle 

mounted cameras, assuming known road and non road seed areas. This does not 

require an offline training phase but has additional input from a laser range scanner. 

Based on training and structure from motion (Sturgess et al., 2009) propose a 

segmentation system using graph cuts for road scene understanding. Texton, colour, 

location and HOG (Histogram of Oriented Gradients) descriptors are used in a 

boosting framework. A review of invariant pattern features is given in (Zhang and 

Tan, 2002); these are commonly used for classification of images and content based 
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retrieval. Recent work by (Shotton et al., 2009) uses Textons to segment a single 

image and perform multi object recognition based on initial training. 

4.2.1. Overall Approach 

A new texture saliency classifier is proposed here for intrusion detection in still 

images. Intruders are detected because of their differing texture compared to the 

surrounding texture in the image. This is achieved through the analysis of the 

texture of local image patches in a video frame (the use of local patches is then 

taken forward, as discussed in the next chapter, to the more general problem of road 

user detection and classification). Thus, to analyse local texture the input image is 

divided up into patches, for which individual spectral texture features are generated. 

To identify image areas with similar texture, the patches are clustered in spatial and 

feature space. Comparing the texture features of those clusters gives an indication 

of homogeneity of the image (or conversely, of saliency), if some clusters‘ features 

significantly differ from the rest. Those differing clusters (i.e. the corresponding 

image patches) are likely to correspond to intruders and are labelled as 

―foreground‖ (or salient) and grouped into objects. In this way, image patches are 

evaluated for saliency within a single frame based on the overall homogeneity of 

the image. Object detections (intruders) per frame are remembered over time to 

build trajectories of object centres in the image space, which are then evaluated to 

determine if an intrusion condition has occurred. An intrusion takes place, if an 

object approaches the barrier. How this is defined and used will become clearer 

later. 

The detection approach does not rely on temporal consistency of the frames. 

In this way, the algorithm is robust to camera shake, illumination changes and 

similar practical issues discussed earlier. In addition, complexity and runtime is still 
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low and no training is required, which is a typical limitation of single frame 

detectors, e.g. (Dalal and Triggs, 2005, Shotton et al., 2009). 

In a second variant of the algorithm, information is fused from the above 

basic detector and an interframe mask (that indicates possible motion by identifying 

significant changes in illumination in consecutive frames). For a region of the 

image to be labelled as foreground, the basic algorithm concentrates only on 

patches with significant interframe difference. The combination aims at adding 

robustness against distracting appearances (e.g. fence shadows) that mainly only 

affect texture and also against camera shake/illumination changes that mainly only 

affect the differencing mask. To decrease the alarm response time of the system, a 

Kalman filter is then introduced. The i-LIDS trial specification defines a hard ad-

hoc time limit for alarms of 10 seconds after the first appearance of an intruder. 

This is probably driven by end-user demands and it means that a detected event is 

only a true positive if detected within that time, otherwise it becomes a false 

positive. By tracking partly visible people at the edge of the camera with a Kalman 

filter based on motion, this early evidence allows faster alarm triggers within the 

specified time. Having outlined the approach, in what follows, more detailed 

descriptions of the algorithm are given. 

4.3. Intrusion Detector 

This section describes the author‘s intrusion detector based on texture saliency. 

Section 4.3.1 discusses the five steps of foreground estimation and shows how the 

spectral features of image patches are used to detect salient texture foreground 

regions. Those regions are then combined into objects, for which trajectories are 

built as described in section 4.3.2. The last section also describes the rules used to 

trigger intrusion alarms based on the trajectories. 
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Figure 23 Block diagram of the intrusion detector 

4.3.1. Foreground Estimation 

Potential intruding objects are estimated from foreground that corresponds to 

inhomogeneities of local texture features in a single image. These potential objects 

are then passed to the intrusion rule described in section 4.3.2. The spatial 

distribution of features for local image patches in a single frame is analysed for 

saliency. No temporal background information needs to be maintained. To do this, 

the input image is first divided into patches, for which texture features are 

calculated. The foreground estimation using this local texture is performed in five 

steps shown as blue blocks in Figure 23: 

 Local patch generation from region masks 

 Fourier transform of individual patches 

 Noise reduction and feature generation from frequency spectrum 

 Clustering 

 Classification of patches into foreground and background 

Those steps are each described in detail in the next sections after discussing the 

acquisition of input images first. 

A practical specification of i-LIDS is that it has to process analogue (PAL) 

video signals in real-time and activate a physical relay on detection of an intrusion. 

A demonstrator system was then built consisting of a video player (the original 

Quick Time MJPEG i-LIDS sequences were converted to MPEG-2 mpg files and 
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played using a hard disc-based commercial player with a standard composite 

(CVBS) video output). This output was then fed to a frame grabber based on a 

Philips TM-1300 Trimedia DSP (Digital Signal Processor) set to digitize the video 

at a CIF (360x288) resolution. Because the i-LIDS dataset includes challenging 

night-time footage, a decision was made to use only the luminance channel (a 

similar argument can be made for weather conditions such as snow and fog that 

have very little chrominance). Therefore the CIF monochrome (256 levels) output 

of the frame grabber is passed (via the PCI bus) to the main algorithm that runs as a 

normal PC application, thus this digitised video feed is the main input to the 

algorithm described here. The monochrome input image is histogram stretched to 

ensure that the full dynamic range of the image is used during all lighting 

conditions. The original shape of the histogram is preserved during this 

transformation. This early normalisation increases the signal strength, which is 

important to produce consistent foreground detection. In what follows we will refer 

to this normalised image as simply the input image. 

4.3.1.1. Local patch generation from region masks 

 The i-LIDS data includes the characterisation of two distinct regions: the approach 

(in this case the grass) and the boundary (in this case the fence). Those two regions 

are defined by two binary pixel masks 
iR , which will drive the generation of two 

populations of local image patches from the input image. Those two populations 

will be analysed for saliency independently, which is why the region index i  is 

introduced to distinguish them. The region index i  has value 0 for the boundary 

(i.e. fence) and value 1 for the approach (i.e. grass). The masks 
iR  are taken 

directly from the sterile zone benchmark definition of i-LIDS (i.e. from the data set) 

and were not chosen by the author. Figure 24 shows an example of such a mask. 
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Figure 24 Example region mask 
1R  for the approach (green) 

Image patches ,i pP  are efficiently fitted to the region mask 
iR . The index 

p  enumerates patches for each region 
iR  independently. The fitting process starts 

by placing patches at the top left inside the mask and continues to the bottom right 

by populating the mask with patches. The number of patches fitted depends on their 

size and overlap, which will be discussed in the next paragraph. If the boundary of 

the region is not vertical, the fitting will produce an unaligned grid of patches, as a 

new row of patches always starts at the edge of the region mask 
iR , which can be 

seen in Figure 25. 

The patches ,i pP  are 16x16 pixels and have 20 percent overlap between 

them. The patch size is chosen as a power of 2 to enable the use of the Fast Fourier 

Transform (FFT). The size should be chosen to be as small as possible to allow for 

a fine foreground resolution. On the other hand, the patches have to be sufficiently 

large to capture texture information. For the specific camera views, it was found 

through evaluation, that 16x16 pixel patches are sufficient to detect intrusion 

reliably. Increasing the overlap of patches is another way of increasing the 

foreground resolution and practically the sensitivity to small objects. The upper 

limit for increasing the overlap is ultimately limited by the required frame rate. The 
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computation time of the algorithm increases with the square of the overlap, because 

the number of patches increases with the square of the overlap. Figure 25 shows a 

frame with patches ,i pP  for both masks 
iR  in different colours. The overlap can be 

best observed for patches in the bottom row highlighted by blue arrows. 

 

Figure 25 Input frame with overlapping patches ,i pP  

4.3.1.2. Fourier transform of individual patches 

To capture the texture and generate features of image patches ,i pP , Fast Fourier 

Transform (FFT) is performed on each patch 

  , ,FFTi p i pP P . (24) 

 The centre of the spectral patch ,i pP  corresponds to the highest frequency, whereas 

the border corresponds to the lowest frequency. How noise can be reduced from the 

spectrum is explained in the next section. 

4.3.1.3. Noise reduction and feature generation from frequency spectrum 

The spectral patches ,i pP  may contain noise, which may affect the foreground 

detection. This step first reduces noise and then calculates texture features for every 

image patch. Low frequencies contain the illumination conditions of the patch, 

which can differ significantly during night e.g. Figure 22 on page 91 on the far 
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right. The average brightness of a patch determines the DC (direct current) 

component and illumination gradients contain only low frequencies. On the 

contrary, high frequencies contain noise from the original (analogue) video feed. 

The random analogue noise (thermal noise) causes spatially small distortions also 

called snow (Ciciora et al., 2004). This is introduced into the video player, cables 

and capture card. Both low and high frequency components have to be removed 

from the spectrum ,i pP  resulting in a filtered spectral patch 
,

ˆ
i pP . To reduce all the 

above noise, band pass filtering is applied as follows: Pixels along the border of 

spectral patches ,i pP  are blanked (pixel value 0) to fully remove low frequencies 

and pixels in the centre of the patches are also blanked to fully remove high 

frequencies. The width of the outer border area to be blanked is 2 pixels; in addition 

the central square of 8 pixels width is removed. In this way, the noise is removed 

and texture information is preserved in the remaining filtered spectral patch 
,

ˆ
i pP . 

Changing the width of blanked pixels by one pixel does not impact on performance 

noticeably. An illustration of the filtered spectral patches 
,

ˆ
i pP  is given in Figure 26. 

 

Figure 26 Filtered Fourier spectrum patches 
,

ˆ
i pP  The spectral value range is 

normalised across regions to span the grey level range (the two regions are 

normalised independently for display purposes). The patches on the right illustrate 

the filtering by blanking the inner and outer area of the spectral patches 
,

ˆ
i pP . 
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To generate a scalar feature ,i pf  for each patch ,i pP , the sum of the all the 

elements of filtered spectral patch 
,

ˆ
i pP  is calculated by 

 , ,
ˆ

i p i pf P . (25) 

The feature ,i pf  can be used to discriminate people from background due to their 

different texture, while at the same time it gives a similar response over the whole 

background in typical sterile zone scenarios as defined by (iLIDS, nd). The example 

in Figure 27 shows the difference of feature value of the intruder compared to the 

grass background in the right area of the image. 

 

Figure 27 Scalar features ,i pf  (right) of image patches (left). The feature value range 

is normalised to span the full grey level range. The fence and grass region are 

normalised independently. The grass area shows an area distinctly different from the 

average, which corresponds to an intruder. The second example along the bottom 

illustrates, that the method is applicable for inhomogeneous illumination at night 

where intruders can be darker than the background. 
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4.3.1.4. Clustering features 

After calculating the feature for each image patch, salient patches i.e. patches 

containing intruders have to be identified for potential alarms. To find significantly 

large salient regions in the image, neighbouring patches ,i pP  are clustered with 

respect to their location and the feature scalar value ,i pf . The mean feature value of 

clusters ,i kf  is used to detect an intruder. By considering clusters rather than single 

patches, larger support for saliency is accumulated. This reduces the detection of 

outliers. In addition, whole objects or large object fragments are represented by 

clusters. For the clustering itself, a hierarchical cluster tree is generated to find N  

clusters ,i kC  with cluster index  1,k N  and the region index i (as we continue to 

maintain two separate populations of data). The choice of value of parameter N  

will be discussed in the next section. Ward's linkage algorithm (Ward, 1963) is used 

to combine clusters in the tree which effectively minimises the square of the 

Euclidian distance between elements in the clusters. The clusters of the example 

frame are illustrated in Figure 28 as dots with different colours, where the elevated 

clusters (red and green) in the right graph correspond to the intruder and will be 

classified as foreground in the next step. For every cluster ,i kC , the mean feature 

,i kf  is calculated by dividing the sum of features by the number of elements in the 

cluster 

 
, ,

,

,

, ,

i p i k

i p

i k

i p i k

f

f






P C

P C
. (26) 

The clusters for both regions (i.e. fence and grass) are illustrated in Figure 28. 
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Figure 28 Clusters ,i kC . The left image shows the clusters for the fence and the right 

image the clusters for the grass. Every image patch is represented by one dot, where 

the colour indicates the cluster label.  

4.3.1.5. Classification of patches into foreground and background 

The resulting clusters ,i kC  with mean features ,i kf  are now classified into 

foreground 
iF  and background 

iB . It is important to emphasise again, that this 

classification is based on the local texture feature statistic of a single frame. It is 

assumed that most of the image contains background and only a maximum of 

M patches are foreground 
iF . This is a valid assumption for typical sterile zone 

scenarios where a camera covers a large area with a limited number of people 

entering the scene. The i-LIDS trial allows for algorithm training, which could be 

used to find parameters. The values for patches in the foreground M  and the 

number of clusters N  empirically represent the scale and perspective of the camera 

view and can be obtained from analysing the scene by the following procedure: The 

smallest foreground object should occupy approximately one cluster. This results in 

15N   by estimating the ratio between the number of image patches ,i pP  for the 

smallest object and the total number of patches ,i pP  in region 
iR . The number of 

foreground clusters 4M   is calculated as the ratio between the smallest and 

largest object, please refer to Figure 22 on page 91 for examples of size variations.  

0, pf
1, pf
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The concept of the potential foreground 
iF  is introduced as an initial 

foreground guess to allow the calculation of background statistics (single Gaussian) 

without contamination of foreground clusters. Potential foreground clusters are then 

evaluated again this background statistic to confirm them as final foreground. The 

potential foreground 
iF  contains M  clusters with the highest mean feature ,i kf  

leaving all other clusters as background  , ,i i k i k i B C C F . As background 

statistic, the mean feature value 
if  of the background clusters and their variance 2

i  

is calculated, separate for both populations of data, i  by: 

  , ,meani i k i k if f C B  (27) 

  2

, ,vari i k i k if  C B . (28) 

The final foreground 
iF  consists of salient clusters of iF  fulfilling the following 

saliency condition 

  2

, , ,i i k i k i i k i if T f     F C C F  (29) 

with saliency threshold 5T  . This implies that the foreground patches have to 

have higher feature values than the background. The threshold was optimised for 

sample videos from the dataset‘s testing set. The choice of T  is not very sensitive, 

as T  is multiplied by the variance 2

i , which is recalculated and adapted to every 

frame. Figure 29 shows the final foreground 
iF  highlighted in the example frame. 
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Figure 29 Final foreground patches 
iF  detected in the example frame 

The approach for foreground evaluation is similar to the mixture of 

Gaussians as used in (Stauffer and Grimson, 1999) to model foreground and 

background. Their background threshold corresponds to the saliency threshold used 

here. The fact that the background is not modelled temporally here requires the 

threshold to be applied to the feature value rather than the distribution proportion. 

The use of a threshold like in (Stauffer and Grimson, 1999) would result in the 

foreground being always the same fraction of the whole image. The graphs in 

Figure 28 show similar absolute values for both fence and grass clusters, but the 

clusters of the person in the grass are significantly elevated above the background 

clusters. This shows that the feature value with respect to background statistics may 

be an indication for foreground. 

4.3.2. Intrusion Rule 

The intrusion rule part of the algorithm first generates objects from the foreground, 

computed as described in the previous section, and then evaluates their temporal 

trajectory to check for an intrusion condition. This process is illustrated as yellow 

blocks in Figure 23 on page 96. Firstly, spatially close foreground clusters are 
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merged into single objects O . This means, that foreground clusters with patches 

overlapping each other are merged. Large objects close to the camera are usually 

segmented with several clusters due to the camera perspective as discussed in 

section 4.3.1.4. This merging process addresses this problem. 

The positions of objects O  are logged over time to generate trajectories 

T . Those trajectories are analysed to detect genuine intrusions. Objects are 

associated with the closest trajectory based on the Euclidean distance in image 

coordinates. This is sufficient due to the low false detection rate of the intrusion 

detector and typical low number of trajectories. If there is more than one object in a 

frame, multiple trajectories are generated or updated, if some trajectories already 

exist. This simple accumulation of positions will be extended by a Kalman filter in 

section 4.4.2. All trajectories T  are considered for an alarm condition. The alarm 

rule requires a trajectory to have accumulated support from the texture saliency 

detection for 2 seconds and the horizontal motion component has to be consistently 

towards the barrier (i.e. left or right, depending on the side of the fence). For 

different camera setups, a different motion direction could be used (e.g. vertical for 

a barrier along the top). A longer time window would increase the performance due 

to the increased evidence of an intruder; however, the stringent time window 

defined by the i-LIDS specification requires raising alarms fast. The fence location 

(left or right) is obtained from the i-LIDS scenario definition together with the 

sterile zone masks. An example frame with intruder and trajectory is shown in 

Figure 30.  
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Figure 30 Intruder with trajectory T  for the example frame 

4.4. Detector Extensions 

Two extensions are made to the base intrusion detector. The first incorporates 

simple inter- frame difference motion estimation to reduce false detections by 

information fusion. The second introduces a Kalman filter to improve trajectory 

quality and shorten the alarm triggering time. The information fusion resulted in a 

significant performance increase, which may be due to the different noise 

dependencies. The extension with Kalman improved the time, but degraded 

performance in general as potentially noisy motion information was considered to 

start trajectories. 

4.4.1. Motion Extension 

The algorithm described in section 4.3.1 does not use any temporal information for 

detecting objects. The main reason for false detections is the existence of semi 

permanent objects in an image. Examples of those would be fence shadows, small 

clouds, etc. The algorithm can be improved by incorporating motion information 

and fusing the information with the result of texture analysis described from section 
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4.3.1. The motion extension incorporates temporal information by inter-frame 

differencing for pixel wise motion foreground estimation; please see Figure 31 for a 

block diagram (orange colour). 

 

Figure 31 Block diagram for the intrusion detection with motion extension in orange. 

The output of the motion estimation step is a final motion mask M  and is 

generated as follows. A dynamic threshold is applied to the absolute pixel-to-pixel 

frame difference of two consecutive frames, so that a fixed proportion of 10% of 

pixels are selected as interframe motion. This enforces that only part of a frame 

(e.g. a person if present) can be foreground at any given time, considering the 

scenario assumptions discussed in section 4.3.1. Consequently, significant global 

changes in image conditions (e.g. illumination change due to sun) can be dealt with 

by focusing on the most significant moving objects. If there are no moving objects, 

the interframe motion corresponds to uniform noise pixels which will then not be 

considered further due to their small size. Finally, morphological opening with a 

3x3 kernel is applied to eliminate such small noise and join up larger regions to 

result in the final motion mask M . This motion mask tends to contain only edges of 

moving objects loosing the middle section due to the crude interframe difference. 

The fusion will be able to use this mask M , because the fusion does not require 

complete coverage of the object, which is discussed in the next step. For 
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completeness, a pictogram of the intrusion detector with motion extension is shown 

in Figure 32 with an example of the motion mask at the bottom left. 

Information fusion 

On the one hand, motion information is affected by camera shake, fast changing 

illumination conditions, etc. which is typical for this application as pointed out in 

the introduction of this chapter. On the other hand, it is robust against the existence 

of stationary objects, which could affect the texture saliency detection only. The 

information fusion requires valid objects to contain at least 5 motion pixels inside 

the bounding box(es) of the object(s) detected by saliency. In this way, an object 

requires simultaneous detections from both algorithms. The texture saliency 

bounding box tends to always fully enclose the moving intruder due to the coarse 

structure of image patches and therefore encloses corresponding motion pixels 

comfortably. The number of motion pixels required was chosen as low as possible 

to avoid rejection of slowly moving intruders, but larger than the typical number of 

noise pixels in texture bounding boxes for the testing dataset. The fusion approach 

reduces false detections, as will be shown in the results section, as noise for 

appearance and motion is independent and therefore less likely to occur jointly. 

This allows lower detection thresholds for both detectors, which significantly 

reduces false negatives (missed intrusions) by simultaneously increasing the false 

positives (ambiguous alarms) of both detectors. The fusion of both algorithms 

eliminates those additional false positives and avoids an overall increase. 
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Figure 32 Pictogram of data flow of intrusion detection with motion extension. This 

corresponds to the block diagram in Figure 31 and uses the same colour code. The 

blue path gives an overview of the basic intrusion detection described in 4.3.1. The 

individual images are described in section 4.3.1. The orange path shows the 

extension with a motion mask M  included on the bottom left. 
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Figure 33 Block diagram for intrusion detector with Kalman Filter extension 

4.4.2. Kalman Filter Extension 

The algorithms described here so far suffer from a delay until the first detection of a 

person (i.e. latency). Very slow moving people stay partly occluded by the edge of 

the camera for a significant time which potentially delays detection. The second 

extension with a Kalman filter (Kalman, 1960) addresses this problem by allowing 

trajectories to be initialised purely by small motion regions. This motion estimation 

is very noisy. In contrast to the basic intrusion detection system, some filtering is 

required to provide consistency for trajectories. Please refer to Figure 33 for a block 

diagram and to Figure 34 for visual results. Examples in Figure 35 show people 

who may stay partly occluded until the latest possible alarm triggering time. The 

trajectory generation is now performed by a Kalman filter with a constant velocity 

model. First, silhouettes S  are extracted from the motion mask M  as connected 

components. This allows salient objects O  as well as silhouettes S  to update 

trajectories, but alarms still require saliency detection in addition to motion 

silhouettes at at least one point of a trajectory.  
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Figure 34 True positive examples of Kalman extension showing smooth trajectories. 

The second extension with a Kalman filter overcomes the problem of late detection 

by allowing trajectories to be initialised purely by motion. Note the person rolling 

sideways in the image on the left, which indicates the various ways the fence is 

approached in the i-LIDS data set. 

New trajectories are initialised for both of those inputs (motion silhouettes 

or objects). Allowing motion silhouettes S  to initialise trajectories T  requires 

motion silhouettes of minimum size   pixels to eliminate (analogue) video noise as 

discussed in section 4.3.1.3. Trajectories contain a sequence of object locations 

 ,x y  over time, where the centroid of a motion silhouette S  becomes the first 

object location in the trajectory. The saliency detector in comparison has a much 

higher precision and in practice does not require a minimum size filter. All 

trajectories T  have an associated Kalman filter. To update those filters, a 
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measurement  ,m mx yz  of an object location is required. To associate trajectories 

and objects, the distance between a Kalman filter prediction  ˆ ˆ,x y  and object 

locations is evaluated. The closest object is used for the update according to 

equation (30). Positions of salient texture objects O  are denoted  ,o ox y  and for 

motion silhouettes  ,s sx y  which defines the measurement selection as 

           
 

2 2 2 2
ˆ ˆ ˆ ˆ, i f min min

, e lse

o o o o s s
o s

s s

x y x x y y x x y y

x y


      

 



z . (30) 

The update with the motion silhouettes S  allows trajectories T  to start at the first 

appearance of a person at the edge of the camera and to fill temporal gaps in the 

saliency detection. The alarm delay time is thus reduced by this early detection of 

partly occluded people at the edge of the camera before the saliency detector 

triggers for the first time (see Figure 35). Saliency detection is mandatory for an 

alarm to be raised to overcome the limitations of motion only based systems 

discussed in section 4.2. 
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Figure 35 Comparison of alarm triggering time. The left column shows the frame 

when the system with Kalman filter triggered an alarm. The right column shows later 

alarms of the system without the filter, especially when intruders are partly occluded 

by the edge of the camera for a long time. 
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4.5. i-LIDS Testing 

This section describes the framework and implementation of the proposed 

algorithm. The system has been tested on the i-LIDS data set, which is described 

with the particular requirements for system design. A runtime analysis for the real- 

time performance of the system is provided. 

4.5.1. The Data 

The i-LIDS challenge aims at providing a benchmark for systems which is defined 

by end users of the technology. The fact that the problem definition and data is 

generated by users ensures relevance and applicability of tested systems. Each data 

set comprises 24 hours of video sequences (2.160.000 frames) under a range of 

realistic operational conditions. The data set is limited in terms of number of views; 

however, producing a new view with the same variation of conditions carries a 

significant cost. The sterile zone test data set is used, which consists of two views 

(one colour, one black&white) during day and night with various weather 

conditions (rain, snow, fast moving shadows, etc.). The test requires to raise one 

alarm for every intrusion event and to compare the response with the provided 

ground truth. According to i-LIDS specifications, a valid alarm has to be raised no 

later than 10 seconds after the first appearance of an intruder. Each of the two 

camera views (View1 and View2) is split into a sequence with alarms (208 total) 

and a sequence without alarms but with various distractions (birds, rabbits, etc.) 

recorded over the duration of a whole year. Refer to Figure 22, Figure 34 and 

Figure 35 for detection examples. 



CHAPTER 4 LOCAL FEATURES FOR HUMAN DETECTION 4.5 i-LIDS Testing 

 - 116 -  

 

Figure 36 Block diagram of system implementation with frame grabber, capture 

application and Matlab computer vision module. 

4.5.2. Framework 

The system was designed according to i-LIDS requirements receiving an analogue 

video input with 25 frames per second at PAL resolution and providing a relay 

alarm output (see Figure 36). For the tests, the video was played back to the 

computer with a hard drive video player as composite video signal. A Trimedia 

frame grabber (NXP, nd) was used to sample the video and provide it to a capture 

application. The image processing was performed in a Matlab library, which is 

compiled and dynamically linked to the capture application. The capture application 

provides access to the hardware and performs conditioning of the input frames e.g. 

by allowing full control of brightness and contrast. This application also contains 

the user interface for ground truth handling and setting up of experiments. The 

Matlab module contains the algorithm described in this chapter by taking frames as 

input and providing alarms and trajectories as outputs. 

4.5.3. Runtime Analysis 

The system was tested on a Pentium 4 with 2.4 GHz and 1GB RAM. Real- time 

performance of 9 to 10 frames per second can be achieved with an average 

processing time of 81ms. Figure 37 shows the capture application‘s execution time 

over 200 processed frames. Overhead for the frame grabber is not shown. There is a  
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Figure 37 Runtime analysis of the whole system implementation with average 

runtime of every module. 

little overhead for performing the Matlab call from the capture application of 1.1ms. 

The majority of time is spent for the patch analysis (FFT) and the subsequent 

clustering, classification and information fusion. The Kalman filter takes little time 

(0.5ms), but additional connected component analysis of the motion mask decreases 

the frame rate to 9 fps (from 10 fps) for the intrusion detector. 

4.6. Results 

This section describes the evaluation metrics, the baseline algorithm and gives 

qualitative results with analysis. 

4.6.1. Metrics 

The i-LIDS challenge defines event based evaluation, where only alarms reported 

within a window of 10 seconds of ground truth events are considered true positives 

(TP). Any alarms reported outside this window are false positives (FP). This is a 

somewhat arbitrary specification of the i-LIDS benchmark, especially as it does not 

consider the speed (e.g. slow) or location of an intruder. Later in this chapter, results 
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are reported for the 10 seconds window but also for a 20 seconds window to 

illustrate the effect of this metric. A person who might cause a second alarm due to 

a lost track would also count as false positive. Any missed person causes a false 

negative (FN). Recall R, precision P and F1 measure are calculated according to 

equations (10) to (12) on page 66. The recall bias   can have two values depending 

on the system‘s role, where higher values of   increase the weight on the recall. 

For a system to be considered for an operational role 0.65   to penalise excess 

false alarms, which could disturb operators. Systems for event recording use 

0.75   to focus on detecting intrusions more reliably with less penalty on false 

alarms. 

4.6.2. Baseline 

The baseline used is a standard Kalman filter blob tracker with Gaussian 

background modelling based on the OpenCV library (OpenCV, nd) blob tracker 

(parameters FG_1, BD_CC, CCMSPF, Kalman). This algorithm belongs to the first 

class mentioned in the related work section, which estimates a stationary 

background with a Gaussian mixture model (GMM). Connected components are 

extracted from the foreground mask. Blobs are tracked by mean shift and resulting 

trajectories are post processed with a Kalman filter. The intrusion rule framework 

from section 4.3.2 is then applied to the trajectories. The main reasons for false 

detections are camera shake, fast illumination changes due to clouds, birds and 

changes from black & white to colour of the camera. This tracker is not without 

limitation, but it has been exposed to many applications and the behaviour is well 

understood so that the performance figures can be interpreted more easily. 
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Figure 38 Performance for 10 seconds alarm window. Results are shown for alarming 

sequences, total per view including the non alarm sequences and total of the whole 

data set. 

4.6.3. Analysis 

Four algorithms are compared in this section (see Figure 38). The performance data 

is split into two camera views (View1, View2) and into sequences containing 

alarms and the total performance for the whole camera view. First is the baseline 

followed by the intrusion detector based on texture saliency. The final two 

algorithms incorporate the motion extension and the Kalman filter into the intrusion 

detector. All performance values are for operational alert 0.65   unless stated 

differently. The baseline system achieves 1 0.75F   in comparison to 1 0.78F   of 

the intrusion detector. This outperforms the motion tracker, however, there are 

errors related to texture when shadows of the fences are detected. Low image 

contrast is the most common error cause and the reason for lower performance on 

View2, see Figure 39 for false positives from texture and false negatives from low 

contrast. A high detection threshold is required to eliminate false positives. 
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Figure 39 The top left image shows a wrongly detected bird flying towards the fence. 

The top right images shows a false detection due to fast moving clouds present at 

the same time as fence shadows, both errors are caused by texture. The bottom 

images show missed intruders due to low lighting conditions at night. 

The intrusion detector with motion extension fuses information of those 

two approaches. It significantly outperforms both individual systems with 

1 0.89F   by exploiting the independence of the noise sources. A low threshold for 

saliency and motion detection allows reduction of false negatives from 35 to 17. To 

achieve this result, the saliency threshold was optimised resulting in 2T  , because 

lower thresholds produced arbitrary detection when no intruders were present in the 

image. With the fusion, the false positives are also reduced from 44 to 16. One 

disadvantage of the fusion is the increased time to generate an alarm which 

sometimes extends past 10 seconds for slow moving people. 
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Figure 40 Performance for 20 seconds alarm window. An improvement compared to 

10 seconds is noticeable for both intrusion detectors due to later correct detections 

of slow moving people. 

This increased alarm time inspired the second extension by using Kalman filtering 

and initialising tracks from motion silhouettes S  in the inter- frame difference mask 

M . It is the last system shown in the figures. The minimum silhouette size 5  , 

which is larger than the typical noise observed in the data (e.g. Figure 32). The 

performance of the Kalman filter extension is lower compared to the motion 

extension. This is due to a larger number of false positives particularly during the 

snow sequence. To keep those false positives down, the catch area for trajectories is 

kept small, which trades off some fragmented trajectories for people. Those 

trajectories are too short to alarm on which causes false negatives. The average 

alarm time in the 10 seconds window is lowered from 3.4 seconds for motion 

extension to 3 seconds for Kalman filtering, which was the aim of the extension. 
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Table 11 Detailed numbers of TP, FP and FN with F1 measures for all four systems 

with alarm window setting of 20 seconds. 

Performance figures improve for a larger alarm window of 20 seconds 

(Figure 40 and Table 11) which is caused by late correct detections. A late detection 

carries a high penalty according to the i-LIDS specification, as it is counted as false 

negative and false positive at the same time. The best overall performance is 

1 0.92F   for the intrusion detector with motion extension with the best 

performance for View1 of 1 0.95F  . View2 suffers from very low contrast, which 

is a particular problem for the detector; however, the motion extension improves the 

performance significantly by reducing the false positives from 30 to 7. 

Finally, the 1F  measure is compared for the two values of recall bias  . 

When using the event recording setting 0.75   the motion tracker performance is 

reduced by 0.3% . In contrast, the intrusion detector has increased performance of 

0.1% . The other two systems are not affected by   due to an even balance 

between false positives and false negatives in the results. 
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4.7. Summary 

This chapter proposed a new texture saliency classifier to detect objects in still 

images of the i-LIDS sterile zone data set. The intrusion detector has been 

implemented in C++ and Matlab to operate in real time from analogue video input. 

This approach overcomes the typical limitations of background modelling based 

solutions. The runtime of 9 frames per second of the implementation is discussed in 

detail. The detector outperforms the OpenCV blob tracker as baseline. A first 

extension with information fusion of appearance and motion increases the 

performance significantly to F1=0.92 on the 24 hour test data set. The second 

extension using a Kalman filter is used to improve alarm response times, however it 

degrades the overall performance due to more false positives. The false positives 

are caused by noisy motion based foreground estimation. The results demonstrate 

good performance for local features in surveillance tasks with minimal reliance on 

motion information.  

This part of the work was important because it gave rise to the concept of 

local feature patches which is carried forward to the work described in the next 

chapter, where it is combined with 3D spatial models. This allows the combination 

of operation on still images reducing reliance on motion estimation with 3D spatial 

modelling. This additional concept extends the application range from intrusion 

detection to vehicle classification. 
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5. 3DHOG Classifier 

5.1. Introduction 

This chapter describes the 3D extended Histogram of Oriented Gradients (3DHOG) 

classifier for vehicle and pedestrian detection. This new concept, developed by the 

author, extends 3D models from chapter 3 with the idea of local features evaluated 

in chapter 4. The overall concept including camera calibration remains the same as 

in chapter 3. The model matching process is changed and solved by also 

considering the appearance of objects. The spatial 3D models are combined with 

patch based appearance models to make the model matching independent of motion 

silhouettes (example results in Figure 41). Given a hypothesised (or known during 

training) object position and orientation on the ground plane, the model matching 

takes place in normalised 3D space. To do this, a 3D appearance representation of 

objects is constructed from 2D images for matching using pre-defined spatial 

models. Those 3D appearance representations are incomplete and only contain data 

from the visible part of objects in the 2D frame, which can vary depending on the 

view point. The classifier uses this incomplete representation of a new object to 

match it against a trained and complete 3D appearance model of the known classes. 

In this way, the classifier requires only a single but complete 3D appearance model 

(containing data from many viewing angles) to deal with any object view point. 
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Figure 41 Example views from the i-LIDS data set with detected and classified 

pedestrians and vehicles using 3DHOG 

Firstly, the spatial 3D models have to be extended to incorporate interest 

points
2
 on the surface of the models. Appearance information (local features) at the 

location of those interest points will be extracted to construct the appearance models 

and to classify newly seen objects. The local features themselves are constructed 

out of histograms of oriented gradients (HOG). The combination of those 3D 

interest points and HOG is hence introduced as the novel 3DHOG feature. 

Performance is evaluated, comparing 3DHOG with FFT and histogram-based local 

features. Given a hypothesised object location and orientation, the new feature 

allows model matching using a variable number of interest points (depending on 

visibility and self occlusion). Trained models can be matched against objects in any 

given viewing direction. The framework can deal with part occlusions e.g. by the 

edge of the camera, which is shown in section 6.2. 

The remainder of this chapter is organised as follows: The next section 

discusses related work. Section 5.3 describes the spatial models and how interest 

points are used in those models. Section 5.4 describes the appearance feature 

                                                 
2
 In this work, the term interest point is used to refer to a point or location, around which local 

features will be extracted (i.e. they define the location of an image patch for computing features). 

The location of the point is not directly determined from the image data, but defined by the models. 

This is a slightly different use than it is common in generic object recognition, where interest points 

are extracted from images by interest point detectors (e.g. Corners, SIFT, Hessian). 
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extraction process using the spatial models. The training of the appearance models 

is described in section 5.5. The classification framework (extended from section 

3.3) is given in section 5.6 with performance evaluation in section 5.7. The chapter 

is summarised in section 5.8. 

5.2. Related Work 

The process of classifying images or objects in images can be generally categorised 

either as ‗top-down‘ (usually visual surveillance) or ‗bottom-up‘ (usually object 

recognition) approaches, as outlined in chapter 2. For ‗top-down‘, the whole context 

is analysed simultaneously or used to verify a hypothesis during searching. Motion 

silhouettes are generated from background modelling and classification is 

performed based on motion silhouette measurement features (Morris and Trivedi, 

2006a, Song and Nevatia, 2007, Messelodi et al., 2005b). This approach is 

vulnerable to inaccurate foreground segmentation, which is inherent to urban 

environments due to low camera angles, occlusions, etc. The above 2D approaches 

can be extended to 3D for vehicle detection and classification as in Song and 

Nevatia, 2007, Messelodi et al., 2005b, Park et al., 2007, Ottlik and Nagel, 2008 

and chapter 3. 

In contrast to the above, ‗bottom-up‘ approaches are usually targeted at 

object categorisation and classification, especially of still images. A constellation 

model with SIFT features is used in (Ma and Grimson, 2005) for vehicle 

classification. The implicit shape model is used in (Leibe et al., 2005), (Leibe et al., 

2007) and (Leibe et al., 2008b) for pedestrian detection and shows the object 

recognition community moving towards surveillance applications (Liebelt et al., 

2008, Pingkun et al., 2007). ‗Top-down‘ and ‗bottom-up‘ approaches are combined 

by (Dalal and Triggs, 2005), using local features with 2D  fixed  spatial  constraints.  
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Figure 42 Overview of the algorithm. This block diagram outlines the relationship 

between the different stages of the algorithm. 

This is used for pedestrian detection and for action recognition with temporal 

extension in (Kläser et al., 2008, Wang et al., 2009a). 

5.2.1. 3DHOG Detector and Classifier 

The new approach takes the good results from 3D models into account (Song and 

Nevatia, 2007, Messelodi et al., 2005b) and incorporates local appearance features 

into the models. The whole framework is outlined in Figure 42 and follows four 

steps, which are described in the subsequent sections: 

 Defining spatial 3D models in section 5.3 describes how models from 

chapter 3 are extended to include interest point locations. 

 Extracting local features in section 5.4 deals with the feature extraction 

process based on the spatial models above. The feature extraction will 

then be used for both training and classification. 

 Training appearance models in section 5.5 shows how manually labelled 

training images are used to generate appearance data models from 

features. 

 Classification framework in section 5.6 brings all the above together: 

given a road user hypothesis from motion information as in chapter 3, 

the feature extraction uses the spatial models to generate local features 

for a new image. Those features are matched against the appearance 

models to provide match measures for the hypothesis. The process of 
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finding the maximum match measure of models gives the final 

classification result through the same process as chapter 3. 

The next paragraphs provide a conceptual overview of the proposed use of 3D 

spatial and appearance models to qualify the above four steps. The new method 

defines the local features and the spatial relationship between them in 3D world 

space. In this way, the appearance-based model matching can be performed in 3D 

space as outlined in the introduction. This is beneficial as it is a normalised space 

where scale is defined. It also allows a single complete appearance model to be used 

for any viewing angle. In general, the method of histogram of oriented gradients 

(HOG) using a planar 2D search window (Dalal and Triggs, 2005) is generalised to 

3D by conceptually ‗wrapping‘ the camera image around the models (Figure 43) 

like in (Starck and Hilton, 2005). Using calibrated cameras, obtained in a relatively 

straightforward way given a plan map of the scene, the scale of objects is 

determined directly, in contrast to the multiple scale search in (Dalal and Triggs, 

2005). The search space is now the ground plane as it was in chapter 3. By 

introducing a model match framework that deals with variable numbers of visible 

interest points, a single appearance model can be used to match objects from any 

angle. The trained classifier is portable between different cameras, only requiring 

the calibration of a new camera or a new camera position. This will be shown in 

section 6.2. 

The algorithm detects rigid vehicles and pedestrians in the same way and 

does not use special cases. Texture is used to generate local features which do not 

rely on potentially noisy motion information. This implies that the method could be 

applicable in cases where reliable motion information is not available, e.g. 

stationary objects, single frames and moving cameras. The match measure is 

calculated in feature space in contrast to chapter 3, where the calculation is based on 

visual overlap directly calculated from the motion silhouette. 
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Figure 43 3D spatial models taken from chapter 3 extended with interest points. The 

interest points are illustrated as cones, which signify the position and also normal 

direction of interest points. The diameter of the cone will later be used to visualise 

the interest point‟s weight. 

5.3. Defining Spatial 3D Models 

The road users‘ models from chapter 3 will be used as input to define interest point 

locations in model space. Those locations will then be used, as explained in the next 

section, to extract features. The positions of a set of interest points are defined to be 

on a grid, located on the faces (also known as polygons) of 3D models (Figure 43 

similar to chapter 3). The method, described in more detail next, is applied to all 

models and to keep the expressions succinct there is no model index subscript. An 

interest point in model space  , , ,x y zp e  is determined by its 3D location 

 , ,x y z  in model space and orientation  , ,x y ze e ee . A set of interest points 

  pP  on a face is defined on a regular grid with linear face density fd  around an 
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origin 
0p  (centre of the face). The direction of interest points p  is normal to the 

face. The function grid( ) produces the set of interest points P  as a two dimensional 

array of points filling the whole face (polygon): 

  0grid , fd pP . (31) 

To ensure good coverage for small faces of e.g. pedestrians, while also limiting the 

total number of interest points for large faces of e.g. buses, the face density fd  is 

adjusted according to face size fs  following equation (32) below. The face size fs  

is the maximum extent (largest dimension) of the face. A reference density 
0d  

corresponding to a reference size 
0s  is defined. If the face size fs  is smaller than 

the reference size 
0s , the face density is increased according to a growth parameter 

 . Vice versa, for large faces, the density decreases to avoid generating large 

numbers of interest points. The rate of increase or decrease of density is controlled 

by growth parameter  : 
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 (32) 

For the experiments 
0 4ms  , 0.35   and 

0 4d   interest points per metre were 

used. This trades off over sampling against very sparse interest points. In the case of 

low reference density 
0d  and therefore sparse interest points, image patches would 

need to be made large to cover the spatial model without gaps between patches. 

This would then in turn lead to global rather than local features and hence to loss of 

discriminating power. 

The sets of interest points on individual faces P  are combined to form a 

full set of interest points P , which contains all the interest points of a given model. 

A typical car contains 300 interest points in this set P . The full set P  contains 

interest points for any viewing direction of the model. This can be observed in 
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Figure 43, where interest points are displayed as cones. The orientation of the cone 

corresponds to the orientation vector e  of interest points p . 

5.4. Extracting Local Features 

Local features are extracted from input images, using interest points as defined in 

the previous section, given an object location in the image. The object location 

might be hand labelled during training or might be a hypothesis during 

classification of new images. This same feature extraction is used in both 

appearance model training (section 5.5) and classification (section 5.6). First, for a 

candidate object location, image patches are obtained for interest points that are 

sufficiently visible as explained in the next section. Feature vectors are then 

calculated from those patches, as explained in section 5.4.2. 

5.4.1. Extracting Normalised Image Patches 

The visibility of interest points is first confirmed, before image patches are 

extracted at interest point locations. The extraction process automatically resolves 

the scale (i.e. depth) and perspective distortion (orientation) of the observation and 

presents a constant size image patch for feature extraction. 

Visibility of interest points 

The locations of interest points in real world coordinates are used to extract visible 

image patches. A given object ground plane location  , , ,x y z rx  with ground 

plane orientation r  is required as input. Road users are assumed to be on the ground 

plane, which results in only one degree of freedom for the orientation angle r . 

Using this location x , points in the model coordinate system can be transformed to 

the real world coordinate system by adding the location x  to the model coordinates 

(Dunn and Parberry, 2002). All further descriptions will be in reference to the real 

world coordinate system. Let v  be the unit vector of the viewing direction in real 
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world coordinates of interest point p . The visible set of interest points  P P  is a 

subset of all interest points P  of a model determined by the visibility threshold 

0.65v   to ensure some minimum visibility: 

  , ,v   p e v pP P . (33) 

The above equation calculates the dot product between the direction e  of the 

interest point and the viewing direction v . The dot product will be 1, if both vectors 

are pointing in the same direction and the interest point is viewed head on. The 

product decreases, if the interest point is less aligned and is viewed further from the 

side. If the interest point direction is perpendicular to the viewing direction, the dot 

product will be 0 and the point will be invisible at the same time. 

Patch image extraction  

A set of 2D square image patches  II  in real world space is extracted for every 

visible interest point. Due to the perspective, this patch may not correspond to a 

square area in the original input image. An affine transformation will be estimated 

to map this distorted part of the input image to a square normalised patch in ground 

plane space. One square image patch I  is defined for every visible interest point 

p P  with constant pixel width pl     using constant 3D world resolution   

in pixels per metre and width   in metres, allowing some overlap of patches. 

Values for all parameters will be provided in the evaluation section 5.7. An affine 

transformation is used to map pixels of the input image with coordinates  ,u v  to 

patch images I  with coordinates  ,x y . This produces the set of visible image 

patches I  illustrated in Figure 45. The affine transformation between coordinates 

 ,u v  and  ,x y  used for image mapping is defined as 

 
0 1 2

3 4 5

u c x c y c

v c x c y c

  

  
. (34) 
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The transformation has 6 parameters  0 1 2 3 4 5, , , , ,c c c c c cc , which need to be 

calculated. By providing three corresponding points between both coordinate 

systems, the resulting set of 6 equations can be directly solved for the 6 parameters 

c . Figure 44 illustrates the transformation process in red. The next paragraph 

describes how the blue points are generated. 

 

Figure 44 Illustration of patch image extraction 

The corresponding points are generated by projection from real world 

space to image space. Visible interest points p P  specify the centres of 

corresponding image patches II . Four corner points 
1 4..   of image patch I  are 

calculated by generating a square shape with width   in a plane (2D) perpendicular 

to the orientation e  of interest point p . Corner points 
1 4..   can be projected to the 

camera image coordinates generating points 
1 4..  . The same projection as in 

section 3.3 on page 58 was used. The transformation parameters c  can be 

calculated from any 3 of the above point pairs. 

The cardinality Ic  of the set of extracted image patches I  is variable 

depending on the viewing direction of the model. The overall process can be viewed 

as one of wrapping the camera image around the model resulting in invariant 

representations for any 3D location and viewpoint. As a final step, histogram 

stretching is applied to the individual image patches in I  to achieve additional 
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illumination independence and normalisation. So at the end of this process we have 

a set of image patches I  with normalised images and we are now ready to extract 

features from those images, as explained in the next session. Please refer to Figure 

45 for an example of extracted image patches I . 

   
a)                                                            b) 

 

 
c) 

Figure 45 a) Input image and b) hatchback model. The radii of cones indicate the 

weights q  (described later) of interest points p . c) shows the set of extracted image 

patches II . 
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5.4.2. Generating Patch Features 

The image patches I  extracted as explained in the previous section are used to 

generate normalised feature vectors ˆ , 1..k k Icf  with examples shown in Figure 46. 

Those features are then used to train appearance models and also to classify new 

images in subsequent sections. Three alternative algorithms (HOG, FFT and 

Histogram) will be considered here and their performances will be compared in 

section 5.7. The length of feature vectors ˆ
kf  depends on the individual algorithm 

used, but the training and classification framework is independent of that length. 

The index k  of vectors ˆ
kf  enumerates the image patches I  from which features are 

generated. This is used to emphasise, that every patch I  is processed 

independently. Vectors 
kf  provided by any one of the available algorithms (HOG, 

FFT or Histogram) are normalised by the Euclidean norm for better performance, 

following (Dalal and Triggs, 2005): 

 ˆ k
k

k


f

f
f

 (35) 

5.4.2.1. 3D Histogram of Oriented Gradients (3DHOG) 

The generation of the feature vectors 
kf  for image patches I  is performed in the 

same way that (Dalal and Triggs, 2005) generate the vectors for single cells. First, a 

Sobel kernel  1,0,1  is used to compute the gradient image for all three colour 

channels independently. The angles are calculated in the range  0,2  as this is 

recommended for rigid objects like vehicles by the Dalal and Triggs. The 

alternative would be the interval  0, , which would consider gradients from light 

to dark identical to dark to light. A single histogram is generated for every image 

patch with   bins. The highest gradient magnitude of the three colour channels is 

used for the histogram. In the process described in section 5.4.1 earlier, the visible 

part of 3D models is used to extract warped 2D patches, which can be conceptually 

seen as ‗3D surface windows‘ generalising the concept of planar 2D windows in the  
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a) 

 

 
b)                                                             c) 

Figure 46 Feature vectors ˆ
kf  generated from the set of image patches I  in Figure 

45. a) 3DHOG features, b) spectral features (FFT) and c) image histogram. 

seminal paper of (Dalal and Triggs, 2005). Due to changes in the viewpoint of 

objects, the number of visible interest points changes according to equation (33). 

This directly changes the number of feature vectors 
kf  and therefore makes the 

concatenation to a single constant size feature vector impossible. This fact adds 
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complexity for the training and classification to allow for this variable number of 

feature vectors 
kf , which is efficiently dealt with by a new framework described in 

section 5.6. 

5.4.2.2. FFT feature 

Alternative features to HOG are used to compare performance between features and 

to demonstrate that the overall framework is not dependant exclusively on HOG. 

Features based on FFT have previously provided good performance for intrusion 

detection in chapter 4. Fast Fourier transform (FFT) features 
kf  are calculated from 

the spectra of image patches I . The DC (direct) component is removed to reduce 

the influence of illumination, as it was demonstrated in chapter 4. The remaining 

magnitude spectrum is used to fill a two dimensional histogram with   angle bins 

and   frequency bins. Every angle bin corresponds to a sector in the spectral image, 

whereas frequency bins correspond to annuli (see Figure 47). This approach is 

similar to using banks of Gabor filters and accumulating the responses into a feature 

vector. 

5.4.2.3. Histogram feature 

The grey level histogram is one of the simplest image features that can be used in 

the classification framework proposed here and thus it is used to compare with the 

performance of the 3DHOG and FFT features. The number of bins is  . Colour 

information is not used in the histogram, so that a general, colour independent 

model is learned for road user classes and described in the next section. 

So at this point we have three possible candidate features on which to test 

performance. The next section will deal with how these appearance features can be 

used to train a system to recognise given classes of road users. 
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Figure 47 Illustration of histogram in the FFT feature extraction process. The 

continuous red lines indicate the frequency borders, whereas the dashed blue lines 

indicate the angle borders. 

5.5. Training Appearance Models 

Annotated training images are used to generate training feature vectors 

(representing the appearance of image patches) to obtain trained appearance 

models. The annotations consist of road user positions in the training images. These 

appearance models are then used in the classification of new images. Training takes 

place using the following five steps (Figure 48): 

 Training data and annotation in section 5.5.1 defines the source of 

training data and the object location annotation required for training. 

 Feature extraction was covered previously in section 5.4 and generates 

feature vectors for the training data. 

 Gaussian appearance models in section 5.5.2 shows how Gaussian 

models are generated from feature vectors, so that distances can be 

calculated between the appearance models and newly seen images. 
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 Sigmoid parameters for model normalisation in section 5.5.3 provides a 

means of improving the appearance models by enforcing a normalised 

model match response over the whole training data for all interest points. 

 Interest point weights in section 5.5.4 describes a further improvement 

by weighting interest points according to their ability to localise objects. 

In this way, the match response of models for new images can be 

improved. 

The next sections are organised according to the steps above. 

 

Figure 48 Block diagram for the training of appearance models. Features are 

extracted from training videos given object location annotation and the 3D models 

with interest points. A Gaussian model and subsequently normalisation coefficients 

and weights are calculated from the features. 

5.5.1. Training Data and Annotation 

The training set comprises frame images from the i-LIDS data set with labelled road 

user locations. A set of model locations on the ground plane   xL  represents the 
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annotation for the training. Those positions x  were generated with the algorithm in 

chapter 3 for the training videos and manually refined, where necessary. 

Alternatively, the location of road users in training videos could be hand labelled. 

There are 20 to 30 labelled images for every type of road user model in the training 

data. It is important to ensure, as far as possible, that every interest point p P  of 

models will be visible in the training data, so that their appearance can be learned as 

described in the next section. 

5.5.2. Gaussian Appearance Model for Interest Points 

Interest point features (appearances) are modelled with single Gaussian 

distributions. The Mahalanobis distance measure can be used to compare features of 

new images with the model. The approach described in section 5.4 is used to extract 

feature vector samples for every visible interest point in a training frame at location 

x . Sample vectors per interest point p  are accumulated into sample set  ˆ fS  for 

each interest point. For the estimation of the mean μ  and covariance matrix Σ  of 

each interest point p , the training set S  is used. The covariance matrices Σ  are 

estimated to be diagonal matrices due to the typical low cardinality of S . The 

Mahalanobis distance measure  D M f  is used to compare newly seen visible 

feature vectors ˆ
kf  with the appearance model: 

      
T 1DM   f f μ Σ f μ . (36) 

The above equation will be used for classification and also for model refinement as 

discussed in the next sections. For a joint day/night classifier, the single Gaussian 

model could be expanded to multiple Gaussians to capture the potentially changed 

appearance of road users at night. 
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5.5.3. Sigmoid Parameters for Model Normalisation 

After estimating the Gaussian model for every interest point, the appearance model 

match performance of every individual point can be improved considerably by 

normalising their response to training images with a sigmoid function. Individual 

interest points have to be dealt with, because Support Vector Machine (SVM) 

classification as in (Dalal and Triggs, 2005) is not possible due to the variable 

number of visible interest points here. The variability stems from variable 

viewpoints of spatial models. As appearance match responses of different interest 

points can vary, the average response for different appearance models can be 

inconsistent. The normalisation with a sigmoid function addresses this limitation. 

First a surface of model match responses (distance surface) is generated by moving 

spatial models slightly away from training positions and checking the response as 

explained in the next section. This surface is then used to parameterise the sigmoid 

function as described in section 5.5.3.2. 

5.5.3.1. Distance surface at training position 

To generate a distance surface per interest point p , features are calculated with 

spatial models moved away from the exact training position. In this way, the change 

of appearance model match in respect to ground plane movements of spatial models 

is evaluated. Good interest points should exhibit a strong drop in match response 

when moved away from the training position. A regular grid of positions 
Mg  with 

max max..M M M   is generated for every position x  in training set L , similar to the 

hypothesis grid in section 3.3 on page 58. The size of the grid is set to 4m  with 9  

steps. This corresponds to a shift between grid points of approximately half an 

image patch and a total displacement of twice the patch size in every direction. 

Based on those dimensions, the location sensitivity of interest point appearance 

models can be assessed for normalisation in the next step and weight estimation as 

in section 5.5.4. The Mahalanobis distance  ˆDM Mf  in equation (36) between the 
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interest points‘ models ,μ Σ  and the extracted feature vectors ˆ
Mf  at model positions 

Mg  gives a distance surface 
MD  for every interest point p  at every training 

position x : 

  ˆDMM MD f  (37) 

A mean distance surface MD  (Figure 49) over all training samples xL  of interest 

points p P  is defined by the sum of all distance surfaces 
MD  generated from 

training samples xL  divided by the number of elements in training set L  

 
M

M 
D

D L

L
. (38) 

The above distance surface represents the average match response between the 

trained appearance model and the training data of an interest point. The next step 

will be to find parameters of a sigmoid function to normalise this response across all 

interest points. 



CHAPTER 5 3DHOG CLASSIFIER 5.5 Training Appearance Models 

 - 143 -  

 

Figure 49 Example average feature distance surface MD . The centre 
Cd  at position 

 0,0  corresponds to the training position x  and has usually the lowest value. The 

feature distance increases for coordinates further away from the training position. 

5.5.3.2. Sigmoid function 

A logistic sigmoid function is calculated to transform a given Mahalanobis distance 

measure between model and observation to fit a fixed response interval. This 

normalisation will be used during weight estimation in section 5.5.4 and then 

classification. A distance  ˆDMk kd  f  of visible feature vector ˆ
kf  is normalised to 

a match measure 
km  in the interval  0,1 : 

  sk km d  (39) 

The sigmoid function  s d  for the normalisation (logistics function) is defined as 

    

1
s

1
a b d

d
e





 (40) 

and uses two parameters a  and b . The parameters can be estimated from the 

distance surface MD  for every model. The proposed parameterisation places the 
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centre point of the distance surface 
Cd  at the middle of the sigmoid function (Figure 

50) with a match measure of  s 0.5Cd  . This results in 

 
2

C

a
d d




 (41) 

 
Cb d , (42) 

where 
Cd  is the centre point value of the distance surface 

MD  and d  in the mean 

value of the whole surface  mean Md  D . See Figure 49 for an example surface 

of an interest point. A full proof for equations (41) and (42) is included in Appendix 

section A.1 on page 190. By using the mean of all distance data points in equation 

(41) and therefore considering all data, a uniform drop of match measure 
km  is 

generated for different interest points when moved away from the training position 

x . The impact of feature outliers is limited due to the nature of equation (40), 

which is bound to the interval  0,1 . Any subset of interest points will provide the 

same match measure for appearance models after this normalisation, which is 

essential during self and part occlusion. The normalised match measure response 

MM  at training positions is given as 

  sM MM D , (43) 

where  s d  is the sigmoid function from earlier. An example output of the match 

measure 
MM  can be seen in Figure 51 showing a distinct peak, which is of the 

same height for all the interest points. 
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Figure 50 Estimated sigmoid function shown as a dashed line. The continuous line is 

the gradient of the sigmoid function defined by the centre value 
Cd  of the distance 

surface MD  and the mean distance d  of all grid points. 

 

Figure 51 Final match measure surface 
MM  after application of the sigmoid 

function. A distinct peak at the training position can be observed. This peak is set to 

the same value for all interest points of all models. 
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5.5.4. Interest Point Weights 

Relative weights are given to different interest points in order to favour those with 

good localisation performance and remove those with bad performance. The shape 

of the match measure response in the previous section is analysed for this task. For 

classification, the weight will be used to calculate a total weighted average match 

measure over visible interest points. To analyse the peak shape, a histogram 

 histh M
M

H M  of the match surface 
MM  is calculated where every bin h  

corresponds to a ring of the surface. Low variance of the match measures 
hΗ  inside 

such a ring is a good indicator for consistent and symmetric localisation 

performance. The interest point weight 
kq  is calculated from a weighted average of 

those variances using the element count 
hC  of histogram bins: 

 
var( )

1 h
k

h h

q
C

 
H

. (44) 

The above equation penalises (decreases) the weight of an interest point, if the 

match measure surface exhibits local maxima. To complete the training, the best 

80% of interest points are used for the classifier with q  as their weights. Refer to 

Figure 45 on page 134 for a car example with marked up interest points as cones, 

where the diameter of the cone corresponds to the weight 
kq .  

 Once the training has been completed, a classifier can use the trained data to 

classify previously unseen road users. How this is done is discussed in the next 

section. 

5.6. Classification Framework 

The classification uses feature extraction to compare the appearance of a new object 

against the trained appearance models. The classification framework used here is 

based on the framework described in chapter 3. The difference lies in the way 

models are matched against observations for every road user hypothesis. Feature 



CHAPTER 5 3DHOG CLASSIFIER 5.6 Classification Framework 

 - 147 -  

vectors are extracted according to what was explained in section 5.4. Those feature 

vectors are then matched against previously trained appearance models as described 

in section 5.5. The matching will be described in section 5.6.1 after a short 

overview of the overall classification framework. 

Background estimation with a Gaussian mixture model (KadewTraKuPong 

and Bowden, 2001) and shadow removal is used to generate motion silhouettes. For 

each silhouette, a grid of ground plane object hypotheses is generated from the 

centroid and scored by the classifier using equation (45) from the next section. 

Please refer to Figure 52 for a block diagram. The silhouettes are often noisy due to 

the challenging video data in urban environments with changing lighting conditions 

and low camera angle, but are a good indicator for the existence of a road user. 

(Example is shown in results of Figure 54). 

The classifier sweeps through models and locations by scoring hypotheses 

based on matching appearance models against new features to find the highest 

match measure above the detection threshold 
M . In the process, the 3DHOG 

framework is used to extract visible image patches and features for every hypothesis 

(i.e. ground plane location x ) as described in section 5.4. To handle variable 

visibility and occlusion, an average match measure per hypothesis is calculated 

according to equation (45) producing a match surface for hypotheses shown in 

Figure 53. To limit the search space, orientations of road users are assumed to align 

with the road direction, which is realistic for many road videos. The classification is 

performed on a per frame basis without tracking or temporal refinement. 
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Figure 52 Block diagram for the 3DHOG classifier. The general structure is identical 

to the motion silhouette classifier in chapter 3. 3DHOG features are extracted directly 

from the input frame based on the ground plane hypothesis. The match measure 

operates in appearance feature space in contrast to the image space for the 

silhouette classifier (please compare to Figure 6 on page 55). 

5.6.1. Match Measure between Model and Image 

The match measure is calculated from the comparison between new feature vectors 

and the trained appearance models by summation of the match measure responses 

of individual interest points. First, feature vectors ˆ
kf  are generated for visible 

interest points p P , where the spatial model location for the extraction is the 

ground plane hypothesis location. The index k  enumerates the visible interest 

points of the given hypothesis. Every feature vector ˆ
kf  is matched against its 

appearance model by calculating the distance  ˆDMk kd  f  according to equation 

(36). The distance is then normalised to a match measure  sk km d  according to 
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equation (40). At this point, the match measure 
km  of all visible interest points has 

to be combined to a single value m  for the whole spatial model. This is achieved by 

a weighted average 

 
k k

k

k

k

m q

m
q





, (45) 

where the weights 
kq  are as defined in section 5.5.4. An example of this match 

response for the different hypotheses on the ground plane is illustrated in Figure 53. 

The use of interest point appearance models in this section provides a method of 

appearance matching within the same classification framework as chapter 3. The 

evaluation in the next section will make a direct comparison between the two 

methods to later draw conclusions on their different properties. 

 

Figure 53 Example of car detection with occlusion of pedestrians showing a match 

measure surface with a good peak. 
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symbol value Unit 

  0.35  0,1  

0d  4 #InterestPoints/m 

v  0.65  0,1  

  32 Pixel/m 

  1 M 

  10  

  4  

M  0.38  0,1  

Table 12 Parameters used during evaluation of the 3DHOG classifier 

5.7. Evaluation 

Evaluation was performed on realistic (operational quality) videos for traffic 

surveillance. All three algorithms are compared to the motion silhouette baseline in 

section 5.7.1. Full performance including pedestrian detection is discussed in 

section 5.7.2 with analysis of parameter influence in section 5.7.3. Table 12 

provides a parameter list for the tests. The same part of the i-LIDS data sets that 

was used as described in section 3.4 has been used here. Approximately one hour of 

video for sunny, overcast and changing conditions was selected. Some illustrative 

examples are shown in Figure 54 and for classification problems in Figure 55. 
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Figure 54 True positive examples for vehicles and pedestrians using 3DHOG. 
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Figure 55 Two examples of errors generated with 3DHOG. Left: Missed car due to low 

contrast of the vehicle bonnet and roof. Right: Misclassified SUV as van due to 

similar size and appearance. 

5.7.1. Feature Comparison for Vehicle Detection and Classification 

Out of the three features discussed in section 5.4.2 (HOG, FFT, Histogram), the best 

performing algorithm is 3DHOG with a total recall of 77.3% at precision of 73.8% 

(Table 13) and classification accuracy of 87.9%. This compares to recall of 87% for 

a precision of 85.5% for the motion silhouette baseline from chapter 3 run on the 

same data set, but 3DHOG should be better at dealing with silhouette noise and 

particularly occlusion. A qualitative example for miss-shaped silhouette is shown 

later in Figure 57 on page 157 and the occlusion analysis is performed as part of the 

applications in section 6.2. The bounding box overlap of 3DHOG of 0.69 

outperforms the algorithm from chapter 3 with 0.67, which indicates better 

localisation performance for 3DHOG. The system using FFT features showed lower 

performance (Recall 48.4% at precision 42.3% from Table 15) similar to the 

histogram features (Recall 48.9% at precision 42% from Table 16). The localisation 

performance for those two features is identical with 0.64. From those numbers, it is 

clear (as the rest of the framework is the same) that the 3DHOG provides a more 

discriminative  and  descriptive  feature  than  the  FFT  and  the   Histograms.   The  
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Table 13 Extended confusion matrix for 3DHOG with total system performance 

 

Table 14 Classifier confusion matrix for 3DHOG and class wise results 

classification performance of 87.9% for 3DHOG compared to 56% indicates that 

gradient features are most descriptive for vehicle detection compared to FFT and 

histogram features. The classifier performance for 3DHOG in Table 14 shows a 

tendency for detecting smaller vehicles, which is highlighted by the low classifier 

recall rate of 43.9% for the bus/lorry class. This can be attributed to two effects. 

Firstly, the predominately frontal or rear view of vehicles, which allows a good fit 

of models from the next class of smaller vehicles. Secondly, there are only limited 

numbers of training samples for the larger vehicles in the data set. In contrast, the 

classifier recall for cars is 98.7% for the dominant class in the data set. 
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Table 15 Extended confusion matrix for FFT features with total system performance 

 

Table 16 Extended confusion matrix for histogram features with total system 

performance 

The confusion matrixes for FFT and Histogram features in Table 15 and 

Table 16 show a confusion of most classes with the class bike. This is due to the 

fact that a smaller model can be mistakenly fit more easily to an arbitrary image 

region resembling features of the model than a larger one. 3DHOG is sufficiently 

discriminative also for the smaller models as not to show such a dominant 

confusion. 
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Table 17 Extended confusion matrix for 3DHOG with total system performance 

including pedestrians 

 

Table 18 Classifier confusion matrix for 3DHOG and class wise results including 

pedestrians 

5.7.2. Simultaneous Operation for All Road Users 

Full quantitative performance figures for road user detection and classification 

(including pedestrians) are shown in Table 17 and Table 18. The overall recall 

degraded to 60.7% due to the non rigid nature of pedestrians, which increases the 

complexity for the detection task. The same effect can be observed for the motion 

silhouette baseline from  chapter  3.  In  contrast,  precision  is  not  affected  by  the  
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Figure 56 Left: Correctly classified lorry with 3DHOG despite shadows and oversized 

motion silhouette. Right: wrongly detected pedestrian at the front edge of a lorry due 

to vertical edges. 

addition of the pedestrian model. The localisation performance expressed with the 

overlap measure of 0.66 outperforms the motion silhouette baseline with 0.64. A 

qualitative comparison in Figure 57 highlights the advantage of 3DHOG in this 

case. The motion silhouette classifier exhibited confusion between pedestrians and 

bikes in Table 4 due to similar size. This issue does not arise with 3DHOG; 

however, wing- mirrors and front corners of lorries are misclassified as pedestrians 

due to a similar appearance (see Figure 56). This leads to a low systems recall of 

25.4% for lorries. Combining information from both classifiers could resolve some 

of the misclassifications due to the different failure modes. The classifier precision 

for cars, the predominant class in the data set, is 96.9%, which is slightly higher 

than the motion silhouette baseline with 96.6%. 

5.7.3. Influence of Patch Size 

This section analyses the sensitivity of the 3DHOG algorithm to the patch size. The 

size is reduced to 0.8m   at resolution 20Pixel m   and 0.5m   at 

16 P ixel m  . Figure 58 shows the change of performance for this parameter 

variation. The full list of confusion matrixes and performance figures is included  in  
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                                                               . 

Figure 57 Comparison of the 3DHOG classifier (left) with the motion silhouette 

classifier (right). The first image shows a position offset and wrong classification of 

the pedestrian of the silhouette classifier due to the tree shadow. In comparison, the 

3DHOG classifier correctly identifies the pedestrian within the silhouette and aligns 

the car better. The bottom images show a missed vehicle of the silhouette classifier, 

because the silhouette is too small due to the overexposed camera view. The 

pedestrian is detected as bicycle due to similar size. Both problems are resolved 

with the 3DHOG classifier. 

appendix C.2. The recall increases with larger patch size from 66.8% to 77.3% as 

the models become more discriminative. At the same time, the classification 

performance slightly degrades from 89.1% to 87.9% due to the larger number of 

detections, which represent harder cases, which were rejected for the small patch 

size previously. The overlap and therefore the location performance improves 

slightly from 0.68 to 0.69. Increasing the patch size further could mean that patches 

represent global rather than local appearance. 
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Figure 58 3DHOG performance figures for varying patch size to 0.8m   at 

resolution 20Pixel m   and 0.5m  at 16 P ixel m   

5.8. Summary 

A novel algorithm, 3DHOG, for detection and classification of road users in urban 

scenes was presented in this chapter. This is an extension to the HOG feature 

extraction by applying 3D spatial modelling to operate on still images and thus 

overcoming the reliability limitations of motion silhouettes. This single solution 

handles variable viewpoints for rigid vehicles as well as pedestrians. A training 

framework has been proposed generating weights for learned interest points for 

classification. Three algorithms for features based on HOG, FFT and simple 

histograms have been evaluated. The 3DHOG shows comparable performance to a 

baseline approach using motion silhouettes. The classifier sweeps the hypotheses 

space to find the best match between images (observation) and 3D models based on 

the average match measure between interest points and the training data. 

The next chapter will demonstrate applications of this classifier and show 

operation for occluded vehicles. The portability of the algorithm is evaluated by 

using the training data generated from the i-LIDS data set for classification of 

videos recorded with a high definition camera. 
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6. Applications 

6.1. Introduction 

This chapter focuses on applications and possible deployment of the proposed 

system in the traffic management domain. For this purpose, robustness of the 

proposed classifiers has been evaluated and extensions for tracking lead to a 

demonstrator for behaviour analysis. Firstly, section 6.2 considers portability 

between different cameras and operation under occlusions. To be of practical use, 

training data has to be usable between cameras to avoid lengthy re- training for 

every camera of a large network. Classification performance is evaluated on new 

data and directly compared to an industrial classifier. Following on, section 6.3 

introduces a tracker which is integrated with the framework. It also provides 

comparative evaluation with a state of the art blob tracker. The tracking increases 

the temporal context of the vehicle classifications to enable better conceptual 

analysis e.g. illegal turns, bus lane intrusion or vehicle interactions. A discussion 

and demonstrator for this behaviour analysis is given in section 6.4 with a summary 

in section 6.5. 

6.2. Occlusion and Portability 

This section demonstrates the portability of the proposed detector and classifiers 

between different camera views and with different resolutions. Due to the nature of 

both vehicle classifiers proposed, the only scene dependent information is the 

camera calibration. Re- training of an appearance classifier for every camera view 

does not scale well and is not feasible for large networks, like the network operated 

by TfL for traffic operations. 3DHOG generates image patches with a normalised 
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scale using the camera calibration. Those patches can then be used across cameras, 

which allows a trained classifier to be applied to novel camera views. A digital 

camera with progressive scanning and a high resolution of 1360x1024 is used for 

recording of the test video. This represents effectively four times as many lines 

compared to the interlaced video used for training in chapter 5. Vehicles are also 

closer to the camera in this scene which results in an order of magnitude size 

difference between vehicles from training and classification. In addition to this new 

size, the test data also contains occluded and partially visible vehicles to 

demonstrate the effectiveness under those conditions. The 3DHOG framework 

operates with visible interest points, whereas the number of those points can vary to 

allow for occlusions. The system performance is compared to an industrial state of 

the art vehicle classifier. This classifier however, is limited to a single view and 

single size of vehicles. All systems are tested on the same video data recorded from 

a two lane road with traffic lights. Each of the following videos comprises of about 

500 frames: 

 AVIFile_2009_05_16_08_59_32.avi 

 AVIFile_2009_05_16_09_01_29.avi 

 AVIFile_2009_05_16_09_02_40.avi 

 AVIFile_2009_05_16_09_03_57.avi 

 AVIFile_2009_05_16_09_05_49.avi 

Some frames contain artefacts from the wireless video transmission during 

recording. This can be noticed by a mixture of old and new images for one frame 

(e.g. Figure 59) and can be dealt with by the 3DHOG classifier. The industrial 

classifier does not detect vehicles in such damaged frames. Evaluation is provided 

for an industrial classifier as baseline in section 6.2.1, for the 3DHOG classifier in 

section 6.2.2 and for the motion silhouette classifier section 6.2.3. 
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Figure 59 Example images from the new data set containing a transmission artefact 

on the left. The right image shows the classified car, which is typically fully visible. 

Partly occluded cars (at the camera‟s edge) are mostly ignored. 

6.2.1. Industrial Classifier Results 

The industrial classifier used as baseline combines a support vector machine (SVM) 

with a windowing approach of the input image. A sliding window is moved across 

an input frame to detect and classify vehicles. This global appearance based 

approach is a good baseline for the local appearances used in 3DHOG. The 

manually verified results from this classifier are used as ground truth to compare 

with the two proposed classifiers (3DHOG, motion silhouette). The ground truth 

data comprises of the class label and the top left corner of the bounding box of 

vehicles. The width and height of the bounding boxes is fixed with 300 pixels, 

because no size information is available from the classifier. Refer to Figure 59 for 

example views. Partly occluded cars are ignored by the baseline, which requires a 

small region of interest for the classifiers described in this thesis (i.e. motion 

silhouette and 3DHOG). By considering the full frame, many of those partly 

occluded vehicles would be detected by the author‘s classifiers and reported as false 

positives (see Figure 61). In addition, some frames with transmission artefacts are 

not detected by the industrial baseline and are also reported as false positives of the 

author‘s methods. Full quantitative results are provided  in  Table 19  and  Table 20. 
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Table 19 Industrial classifier confusion matrix and full system (detection and 

classification) confusion matrix. Both matrixes are identical, as the system output for 

detection is used as ground truth. The classifier shows a strong misclassification of 

vans as lorries. 

    

Table 20 Industrial classifier total system performance and class wise evaluation 

The detection performance for the industrial classifier is 100%, because its results 

were used as ground truth. The classification performance, however, show a strong 

confusion between vans and lorries. 
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6.2.2. 3DHOG Results 

The results in this section are generated with the 3DHOG classifier from chapter 5. 

The training data is also taken from that chapter and only the camera was newly 

calibrated. There is a significant change in vehicle size and viewing angle between 

the data sets. The part of the i-LIDS data set used for training does not contain a 

view of the front and right corner of vehicles being visible as it is the case in this 

new data set. Example classification results are provided in Figure 60 and Figure 

61. The map for camera calibration was manually generated and is displayed with 

the result figures. The good match between wire frames and vehicles indicates that 

the calibration is sufficient for this application. Full performance results are given in 

Table 21 and Table 22, using the result of the previous section as ground truth. The 

3DHOG classifier (91.1%) outperforms the industrial baseline (80.3%) in total 

classification precision. This measure only considers detected vehicles, whereas 

some stationary vehicles were not considered (i.e. missed) by 3DHOG, leading to a 

low detection recall of 45%. This is due to the fact that 3DHOG takes vehicle 

hypotheses from motion estimation, which does no detect objects which are 

stationary for a longer time period. In contrast, some vehicles with transmission 

artefacts are correctly classified but deemed false positives, because of their absence 

in the ground truth. Qualitative evaluation of this is given in Figure 59 and Figure 

62. 
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Figure 60 3DHOG classification results of 4 separate frames. The blue outline shows 

the estimated motion foreground. The 3DHOG classifier produces the wire frame and 

the respective 3D location of the vehicle on the road map. Good localisation 

performance is demonstrated even for the third example containing a transmission 

artefact. 
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Figure 61 Two examples comparing the 3DHOG results with the industrial baseline in 

Figure 59. The left image shows correct detection despite the artefact. This example 

operates without region of interest, which is why the occluded vehicles are detected. 

The right image shows a later frame with active region of interest to remove 

occluded vehicles to avoid excessive false positives. 

    

Table 21 The 3DHOG classifier exhibits good performance. The high number of false 

negatives is due to stationary objects at the traffic lights, which are not picked up by 

the motion detection. Some detections reported as false positives were actually cars, 

but were not picked up by the industrial classifier used as baseline. Examples of 

both of those issues are illustrated in Figure 59. 
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Table 22 Total system performance for the 3DHOG classifier. The classification 

outperforms the industrial baseline. 

 

Figure 62 Example for partially occluded vehicles. This image illustrates that very 

limited visibility of vehicles is sufficient for detection and potentially classification. 

The algorithm for dealing with incomplete representations of objects is a core part of 

the 3DHOG classifier framework. Occlusion is resolved seamlessly in the same way 

as variable visibility of the 3D models depending on the camera view and vehicle 

orientation. 
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6.2.3. Motion Silhouette Results 

This section provides results for the motion silhouette classifier to compare to the 

two appearance based classifiers earlier. The parameters for the algorithms were 

unchanged from the previous setup in chapter 3 and the same camera calibration as 

for 3DHOG was used. A reduced region of interest was defined in the view, to 

approximately reflect the detection region of the ground truth reference. 

Quantitative results are provided in Table 23 and Table 24. The classifier precision 

with 77.3% is slightly lower than the industrial classifier (80.3%) and significantly 

lower than 3DHOG (91.1%). The appearance based systems seem to be able to 

exploit the higher resolution image compared to i-LIDS better than the motion 

based system. In addition, the location performance with overlap 0.22 is slightly 

lower than 3DHOG (0.24), which can be seen by slightly offset vehicle wire frames 

in the results (Figure 63 and Figure 64). 
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Figure 63 The motion silhouette classifier produces the wire frame and the 

respective 3D location of the vehicle on the road map. The wire frames are slightly 

offset and the last stopped van was missed due to ambiguous silhouette shape 

merging into the background, but correctly classified by 3DHOG (Figure 60). 
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Figure 64 Two examples comparing the motion silhouette results with the industrial 

baseline in Figure 59. The left image shows correct detection of the central car 

despite the artefact. This example operates without region of interest, which is why 

the occluded vehicles are detected. The silhouette based classifier does not classify 

occluded vehicles as well as 3DHOG, especially the location performance is worse. 

The right image shows a later frame with active region of interest to remove 

occluded vehicles to avoid false positives. 

    

Table 23 Confusion matrix for the silhouette classifier. The detection rate is lower 

than 3DHOG. This is due to ambiguous motion silhouettes for stopped vehicles 

merging with the background. Those silhouettes do not match a model well, but are 

sufficient for the 3DHOG classifier to start a search. 
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Table 24 Classification and full system performance for silhouette classifier. 

6.2.4. Comparison 

The best detection is provided by the industrial classifier, because a vehicle search 

is performed on every single frame independently of motion. For classification 

precision of detected vehicles however, 3DHOG (91.1%) outperforms the industrial 

baseline (80.3%) and motion silhouettes (77.3%). For the 3DHOG classifier, good 

operation on occluded vehicles and damaged frames is demonstrated, which are not 

considered in the baseline. There is strong confusion between vans and lorries for 

this baseline resulting in a classifier recall of 11% for this class. Considering the 

better class of cars, the classifier recall of 91.9% is still inferior to the 3DHOG 

classifier precision of 94.2% 

6.3. Tracking 

Following on from portability between cameras without needed retraining, this 

section will show the integration of a variable sample rate Kalman filter with the 

classification framework for tracking. Consistent location information over time can 

then be used for behaviour analysis, which the next section will look into. Tracking 

performance has been evaluated using the framework of (Yin et al., 2007) and 

compared to a state of the art OpenCV blob tracker (OpenCV, nd) operating  on  the  
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Figure 65 Block diagram of detector with 3D classifier and subsequent tracker. 

same video data. Previously, vehicle tracking in urban environments has been 

performed in (Song and Nevatia, 2007). However, only a single 3D model for cars 

is used to estimate a vehicle constellation per frame with optimisation solved with a 

Markov Chain Monte Carlo (MCMC) algorithm. The paper of (Morris and Trivedi, 

2006a) presents a combined tracking and classification approach for side views of 

highways which is an extension to (Morris and Trivedi, 2006b). Classification and 

tracking accuracy was increased by combining tracking and classification. A 

Kalman filter is used to track the foreground regions based on the centroids in the 

image plane only. The OpenCV blob tracker (OpenCV, nd) used as baseline here 

works in a similar fashion. 

The framework of detector and classifier as introduced in chapters 3 and 5 

is extended by a tracker illustrated in Figure 65. The ground plane positions and 

labels of classified vehicles are the input to a Kalman filter to provide temporal 

consistency and smoothing to the movements. An example result on footage from 

Transport for London is shown in Figure 66. The next sections will provide details 

on the Kalman filter and the evaluation framework before presenting the results. 
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Figure 66 Example of detection and classification with ground plane tracking. The 

wire frame projection in red is used to estimate the bounding box for tracked 

vehicles. The information can be used for an anonymised animation to overcome 

privacy limitations of video data. 

6.3.1. Kalman Filter 

Tracking introduces temporal consistency to the detection and classification result 

of the previous section. The classifier is extended by a Kalman filter with variable 

sample rate. The detector with joint classifier operating on single frames may reject 

valid vehicles in some frames due to noise, which requires the Kalman filter to 

operate on variable (longer) time intervals when no observation is available. 

Alternatively, the update step of the Kalman filter could be modified when no 

observation is available by setting the measurement noise to infinity (or a very large 

value), which in practice has a similar effect. The author chose to use variable time 

intervals to avoid numerical problems when inverting large noise matrices. 

Tracking is performed on the ground plane of the scene, which simplifies 

behaviour analysis like bus lane monitoring. The standard formulation of the 

Kalman filter for a constant velocity model of vehicles is used 

 1 withk k k k k k k k     x Fx Bu w z Hx v u 0  (46) 
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with state vector  
T

, , ,k x yv x v yx  and the measurement vector  
T

,k x yz . The 

transition matrix F  propagates the old state 
1kx  to the current state 

kx . The input 

vector 0k u , which means that there is no input to the system. The input matrix B  

specifies how the input influences the state update. The measurement matrix H  

transforms the state 
kx  to the output 

kz  (i.e. measurement). The constant process 

noise 
kw  and the measurement noise 

kv  are assumed Gaussian and have to be 

specified. All time and speed related constants for the filter are based on seconds 

rather than the sample rate or frame rate. The ground plane coordinates are in 

metres, all noise and position estimates are in metres or metres per second. The 

integration constant 
0T  from speed to position in the transition matrix F  is defined 

in seconds. 

 0

0

1 0 0 0

1 0 0

0 0 1 0

0 0 1

T

T

 
 
 
 
 
 
 
 

F . (47) 

The only requirement to operate the Kalman filter at variable sample rate is to 

update 
0T  in the transition matrix F  constantly. For prediction steps, 

0T  is the time 

between the last update step of the filter and the current time. The state prediction 

| 1
ˆ

k kx and the error covariance prediction | 1k kP  is therefore estimated for the correct 

time. If a measurement is available, the update step is performed with the same 

transition matrix F . If no measurement is available, no update is performed. Future 

prediction steps will be performed with increasing time 
0T  until an update takes 

place. Tracks can be discarded if the predicted error covariance | 1k kP  grows beyond 

a threshold. 

The parameters for the filter are as follows: The process noise w is set to 

1.1m s  for velocity and 0.7m  for position. Those values can be derived from the 

expected acceleration of vehicles. The measurement noise is 2mv  corresponding 

to the detection grid. The initial error covariance P  is set to 3m s  for velocity and 
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1m  for position. The initial position state corresponds to the detection position with 

zero velocity. The velocity is updated during the second detection using the first 

motion vector. Observations ,i km  are associated with tracks based on the distance 

,i jd  in equation (48) between the observation ,i km  and the prediction , | 1
ˆ

j k kx  

normalised by the diagonal elements of the predicted error covariance | 1k kP  of track 

j . A distance ,i jd  is calculated between prediction , | 1
ˆ

j k kx  of track j  and every 

observation ,i km . The observation with the smallest distance is then associated with 

track j . Changes in the model id (i.e. classification result) between the last 

observation of a track jid  and the current observation 
iid  are penalised, as the 

difference between ids increases the distance ,i jd  in equation (48). The total number 

of model ids is 10. This approach is possible because the system performs 

classification before the tracking. 

    
2 2

1 1 1
, 10i j i j x i j y i jd x x P y y P id id         

   
 (48) 

6.3.2. Evaluation Framework 

The object tracking performance is evaluated by comparing the tracker with a 

baseline tracker (OpenCV blob tracker)). The OpenCV tracker uses an adaptive 

mixture of Gaussians for background estimation, connected component analysis for 

data association and Kalman filtering for tracking blob position and size. The i-

LIDS benchmarking video data set is used for evaluation. Performance is evaluated 

on a subset (due to limited ground truth for tracking) of the previous chapter‘s data 

(PVTRA10xxxx): 1a03, 1a07, 1a13, 1a19, 1a20, 2a05, 2a10 and 2a11. Those videos 

contain overcast, sunny, changing weather conditions and camera saturation. The 

ground truth used for evaluation is provided with the i-LIDS data set. It is of limited 

duration within the videos and does not include pedestrians on the road. The 

evaluation was constrained to the two regions of interest on the road (dark red boxes 

in Figure 67) for both trackers. 
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Performance evaluation has played an important role in developing, 

assessing and comparing object tracking algorithms. (Lazarevic-McManus et al., 

2007) evaluated performance of motion detection based on ROC-like curves and the 

F-measure. The latter allows comparison using a single value domain, but is mainly 

designed to operate on motion detection rather than tracking. There is a significant 

body of work dealing with evaluation of both motion detection and tracking. 

(Needham and Boyle, 2003) proposed a set of metrics and statistics for comparing 

trajectories to account for detection lag, or constant spatial shift. However, taking 

only the trajectory (a set of points over time) as the input of evaluation may not give 

sufficient information about how precise the tracks are, since the size of the object 

is not considered. (Bashir and Porikli, 2006) use the spatial overlap of ground truth 

and system bounding boxes which is unbiased towards large objects. However they 

are counted per frame, which is justified when the objective is object detection. In 

object tracking, counting true positive (TP), false positive (FP) and false negative 

(FN) tracks is a more natural choice which is consistent with the expectations of 

video analytics end-users. Brown et al., 2005 suggest a framework for matching of 

system track centroids and an enlarged ground truth bounding box which favours 

tracks of large objects. 

The performance evaluation framework and implementation of Yin et al., 

2007 is used here. A rich set of metrics is proposed, such as Correct Detected 

Tracks, False Detected Tracks and Track Detection Failure to provide a general 

overview of the system‘s performance. Track Fragmentation shows whether the 

temporal and spatial coherence of tracks is established. ID Change is useful to test 

the data association module of the system. Latency indicates how quick the system 

can respond to an object entering the camera view, and Track Completeness how 

complete the object has been tracked. Metrics such as Track Distance Error and 
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Closeness of Tracks indicate the accuracy of estimating the position, the spatial and 

the temporal extent of the objects respectively. 

6.3.3. Results 

First, illustrative examples (Figure 67 to Figure 69) compare the tracker with the 

OpenCV baseline before providing the evaluation metrics. The full results in Table 

25 indicate that the proposed system outperforms the OpenCV tracker on high level 

metrics such as correct detected tracks, track detection failure, false detected tracks 

and track fragmentation. This can mainly be attributed to the additional prior 

information from using 3D models to classify the content of the input video. 

For metrics that evaluate the motion segmentation such as track closeness 

and distance error, both trackers have similar performance, which can be explained 

by the similar background estimation method. The track closeness of the proposed 

system is better than the baseline due to 3D models which are more robust against 

shadows, which can be observed for the bus in Figure 67 and the occluded car in 

Figure 68. The extent of the projected wire frame model is used as bounding box for 

the proposed system. The false detected tracks of the OpenCV tracker are high due 

to systematic detection of pedestrians, which cannot be classified. Both classifiers 

in chapters 3 and 5 exhibited low precision for bicycles when no pedestrian model 

was used due to the same reasons. Refer to Figure 69 for an example. The proposed 

system detected 94% of the ground truth tracks compared to 88% of the base line. It 

also has half of the track detection failures compared to the base line. The higher 

detection rate can be explained by a more sensitive background estimation setting, 

which produces more complete and additional noisy detections. However, the 

classification stage rejects many ambiguous detections. Id change can occur if a 

track of an object leaving is continued for a new object. This is worse for the 

proposed system compared to  the  OpenCV  tracker,  because  the  tracker  is  more  
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Figure 67 Correct detected tracks inside the active regions of interest (dark red 

boxes). Left: the proposed system with corresponding ground plane tracks. Right: 

OpenCV tracker result. Note the spatially fragmented tracks for the baseline in the 

first row and the correct number for tracks for the proposed tracker. 

persistent, occasionally wrongly continuing a track but therefore generating much 

less track fragmentations. The path information in image and ground plane 

generated by the tracker can be used for high level behaviour analysis. The next 

section will introduce possible applications. 
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Figure 68 In this frame, the second car is missed due to occlusion between the 

vehicles. The proposed tracker on the left correctly locates the first car. The OpenCV 

tracker merged both cars with a large bounding box at a central position. 

 

Figure 69 Pedestrians are correctly rejected as “other” class by the proposed tracker 

and detected by the OpenCV tracker. 
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Table 25 Tracking results 

6.4. Behaviour Analysis 

Behaviour analysis is the final step in most surveillance tasks and requires the 

highest level of conceptual understanding. For identifying incidents and 

interactions, a system requires information such as type of vehicles/people and their 

trajectories. The classifiers proposed in previous chapters with the tracking 

extension here can provide this information. 

There are many possible scenarios in traffic management which could 

benefit from this automated analysis. Congestion monitoring is a relevant topic in 

London and has been rolled out to over 100 cameras in the last year. The next level 

of complexity is classified counts of vehicles. More complex in terms of interaction 

of road users is bus lane intrusion of non authorised vehicles, stopping in box 

junctions when the exit is blocked and banned turns at intersection. All those 

applications can be tackled by applying alarm rules to observed trajectories of an 

automated system. 

Metrics 
proposed 

Tracker 

OpenCV 

blob Tr. 

Number of Ground truth tracks 100 100 

Number of system tracks 144 203 

Correct detected tracks 94 88 

Track detection failure 6 12 

False detected tracks 27 90 

Latency (frames) 5 5 

Track fragmentation 8 18 

Average track Completeness (time) 64% 55% 

ID change 10 3 

Average track closeness (bbox overlap) 54% 35% 

Standard Deviation of closeness 20% 13% 

Average distance error (pixels) 22 21 

Standard Deviation of distance error 19 15 
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Figure 70 Bus lane intrusion detection example. The restricted zone is marked as 

green region permitting only buses. Vehicles of a restricted class with tracks inside 

this region trigger alarms shown in red in the lower image. 

As a demonstrator for behaviour analysis, a bus lane intrusion monitor has 

been implemented. It is integrated as an output filter to the overall system and 

requires the setting of a monitoring region (see example in Figure 70 shown in 

green). This region is defined in the same way as the region of interest for the 

detector. In addition, a list of permitted classes is required to avoid alarms on buses, 

pedestrians or bikes. The green restricted region is applied to the ground plane 
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centre of vehicles rather than whole motion silhouettes. This is very beneficial in 

low angle urban camera views, where motion centroids and ground plane centres 

may differ significantly. If the region is defined along the edges of the lanes of a 

road, the majority of a high vehicle‘s silhouette might be outside this region as 

shown in the example. The ground plane centre however is correctly estimated 

within the road region according to the prior knowledge of the 3D scene. Correct 

operation for a bus and car is shown in Figure 70. Depending on further 

applications, many more monitoring tasks can be integrated into the framework due 

to a simple plug-in structure of the software (appendix A). 

6.5. Summary 

This chapter introduced application related issues for traffic surveillance systems in 

respect to the proposed system. Good portability between camera views has been 

demonstrated for a data set which was not part of the training. Superior performance 

compared to an industrial state of the art vehicle classifier is observed with a 

classifier precision of 95.1% for the car class. The data set and classification results 

were provided by the same company. Due to the zoomed view, significant 

occlusions occurred for vehicles. The classifier implicitly deals with occlusions in 

the same way as with visibility changes due to orientation. This enabled correct 

operation under those conditions. 

Following on from the robustness considerations, a tracking extension 

based on Kalman filters was proposed. The performance was evaluated with the 

comprehensive framework of (Yin et al., 2007). A baseline blob tracker was 

outperformed for most metrics demonstrating 94% correct detected tracks. The 

tracking information was then used to produce a behaviour analysis demonstrator. 

Examples for bus lane intrusions are shown. In addition, the framework allows 

integration of plug-ins for other monitoring objectives. 
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7. Conclusions 

7.1. Summary 

This thesis addressed computer vision algorithms for road user detection and 

classification. The aim was to provide more information to traffic managers, who in 

turn can improve the car travel experience in real-time or with strategic planning. 

Information from existing CCTV infrastructure is frequently lost due to a limited 

number of operators compared to cameras. This project was sponsored by Transport 

for London to investigate robust computer vision algorithm to support CCTV 

operators in the urban environments. For ease of reading, a short summary of the 

work is provided here. The next section will critically discuss the work and an 

outlook for further work will be provided in section 7.3. 

Based on the literature, a novel framework for road user classification 

using 3D models has been introduced. Camera calibration makes this framework 

portable between cameras without the requirement for retraining the classifier. 

Good performance is demonstrated on the i-LIDS data set provided by the UK 

Home Office. The system is limited by the quality of the extracted motion 

silhouette. To mitigate the strong dependence on the motion silhouette, the use of 

local image features was investigated. As a test case, a texture saliency classifier 

has been implemented, which uses features derived from the fast Fourier transform 

(FFT) from local image patches. The classifier operates on single frames to detect 

salient objects, which in the evaluation are people approaching a fence. Good real-

time performance figures are shown for the 24 hour sterile zone test of i-LIDS. The 

local features proposed are an effective way of exploiting appearance for visual 

surveillance. 
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This local feature concept was integrated into the earlier 3D framework to 

form the novel 3DHOG classifier. This algorithm integrates the advantages from 

both ideas by modelling road user appearance with local patches and spatially 

constraining them in real world space. The proposed framework allows for a 

variable number of features to be used, so that a single model for any viewing angle 

of a road user is sufficient. Depending on camera view and road user orientation, 

visible feature points are extracted and normalised using the 3D model and used for 

classification. In this way, training data is fully portable between camera views 

(scale, angle) and resolutions. Those capabilities have been demonstrated by 

evaluation on a new data set and comparison with an industrial single view 

appearance classifier trained on the new data set. The proposed system trained on i-

LIDS outperforms the industrial classifier, both tested on the new data set. Finally, a 

tracking extension with Kalman filters has been introduced. This enabled the 

implementation of a behaviour demonstrator, which uses trajectory and class 

information of road users to generate alarms for a bus lane monitor. 

7.2. Discussion 

The work started based on motion estimation, which is the state of the art in visual 

surveillance. A static camera assumption is essential for such a system. Following 

on from this initial approach, the use of local features incorporates appearance into 

the object models. This in turn removes the strong reliance on motion estimation to 

weaken the static camera requirements. The novel 3DHOG classifier can be applied 

to still images in a dense search or in a targeted search based on an initial 

hypothesis. This hypothesis can be generated from motion or by prediction of a 

tracker. In this way, the system can incorporate historical information during 

detection. This structure was identified in section 2.6 to be an essential element for 

traffic surveillance systems to increase robustness. 
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The use of local features increased the computational complexity of the 

classifier. This is due to the image patch warping and feature extraction during the 

model matching process. This task however, is highly parallel in nature and 

hardware accelerators (GPU) are designed to perform such operations in parallel. 

For a smaller number of image patches used for intrusion detection in chapter 4, 

real time performance on a standard PC is possible. Optimisation for specific 

scenarios or hardware configuration (e.g. GPU) is desirable for a final product 

based on the proposed system. 

Initial detection and hypothesis generation is based on motion silhouettes 

with the assumption that every silhouette contains one object. This is an essential 

assumption for the motion silhouette based classifier. The appearance based 

classification of 3DHOG would be able to detect several objects in a single 

silhouette. This could either be implemented through a multiple object search for 

every silhouette or by adding tracking predictions to the hypothesis list of a new 

frame. In this way, tracks will be continued and the hypotheses from motion 

silhouettes can start new tracks. 

Evaluation of the proposed algorithms is somewhat limited, which is 

typical for surveillance applications. Longer and more comprehensive video data 

for testing is desirable, but comes with the cost of ground truth generation. Ground 

truth, which is part of the i-LIDS data set, has been used and extended to match the 

requirements of the evaluation. In addition, a new industrial data set is used. A 

baseline industrial classifier was used to generate ground truth, which was then 

manually checked for classification accuracy. Overall, a good attempt has been 

made on evaluation, especially for the human intrusion with full 24 hours of video 

data; however, more data would always be desirable. 

An interesting consideration is the comparison of human observers and 

computer vision systems. It is clear, that even the latest technology as described in 
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this thesis is far inferior to human perception for object recognition, identification 

and scene understanding. Nevertheless, there is space for automatic video analysis 

for supporting human operators in specific tasks. As outlined in the introduction, the 

continuous observation of a camera can be performed automatically, but tires 

humans very quickly. The work presented in this thesis is therefore targeted at 

specific continuous observation tasks which are currently achievable with 

technology, which then alerts human operators to make a judgement or follow up 

incidents further. This aspect makes the technology particularly valuable for the 

human intrusion detection case presented in chapter 4. 

7.3. Future Work 

There is significant potential to improve and extend the algorithms presented in this 

thesis. For intrusion detection with local features, extensions for features and 

clustering can be considered. The current classifier uses a scalar feature value 

derived from the image spectrum to distinguish between foreground and 

background. A multi dimensional feature could improve performance, but would 

trade off computational speed at the same time. The current clustering of individual 

patches to objects can also be improved. Incorporating time and clustering in the 

spatio-temporal domain would reduce the effect of single frame noise. Motion 

estimation could also be included directly into the clustering: it is currently fused 

with the clustering result. The clustering itself can be improved by employing a 

spatial- temporal Markov random field (ST-MRF). This could incorporate 

smoothing and consistency constraints. 

For road user detection and classification with local features, there may be 

many ways of extending and improving the current systems. Firstly, the image 

patches could be extracted at several scales and the feature extraction could 

consider this whole image pyramid. The selection and weighting of interest points 
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could be performed by an Adaboost framework. A dense grid of interest points can 

represent the weak hypotheses. The final strong classifier would use the best subset 

of those points. This training methodology could benefit from additional negative 

training samples or could use the proposed concept of positive samples with 

position offsets to generate sharp location performance. 

Training data itself can be extended to incorporate more diverse conditions 

including night time. This might result in the need for modelling the appearance 

vectors with multiple Gaussians (GMM) rather than the current single Gaussian 

model. For computational efficiency, the spatial 3D models can be re-used between 

classes. In this way, every extracted feature patch would be compared with the 

trained appearance of several classes (e.g. bus, lorry) to generate a match measure 

for all those classes from only a single image feature extraction step. 

The search strategy for new object instances may be improved. The current 

grid approach can be replaced by mean shift or similar methods to provide faster 

convergence. Tracking information is very useful for this task to be incorporated as 

parameters into the search strategy. More advanced tracking techniques like particle 

filters can be integrated with the search framework to allow for multiple hypotheses 

tracking. Finally, the 3DHOG classifier could be applied to moving cameras for 

driver assistance inside vehicles. The homography of a vehicle mounted camera to 

the road surface remains approximately constant apart from short intervals for 

example when ascending onto a speed bump. A fixed window in front of the car 

could be searched in every frame to detect and classify road users. 

The assumptions required for surveillance systems using background 

estimation can limit the applications and robustness significantly. Background 

models cannot be generated from moving cameras. Surveillance systems in general 

could benefit from moving away from the use of background and motion estimation 

to more generic approaches. Full scene understanding and object recognition 



CHAPTER 7 CONCLUSIONS 7.4 Publications 

 - 187 -  

without strong constraints are undoubtedly harder tasks, but emerging technology 

mastering this will be able to enable more applications, which so far can only be 

solved by humans. 
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7.5. Personal Statement 

The work on this thesis and the exploration of the field of computer vision was 

enjoyable. It was very satisfying to be involved with practical issues of Transport 

for London and finding novel solutions for computer vision and transport problems. 

I would never want to do without my time here at Kingston University. 

 

„Wer fertig ist, dem ist nichts recht zu machen,                                      

Ein Werdender wird immer dankbar sein.“ 

- Johann Wolfgang von Goethe, Faust I 

“A mind once formed finds naught made right thereafter;                      

A growing mind will thank you evermore.” 

- translation G. M. Priest 
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A. Mathematical Proofs 

A.1. Sigmoid Parameters 

This section provides the proof for the parameter calculation of section 5.5.3.2 on 

page 143. A logistic sigmoid function is estimated to transform a given 

Mahalanobis distance measure 
kd  into a match measure 

km  in the interval  0,1 : 

  sk km d  (49) 

The sigmoid function  s d  is defined as 

    

1
s

1
a b d

d
e





 (50) 

and uses two parameters a  and b . The parameters can be estimated from the 

distance surface MD  for every model. The proposed parameterisation places the 

centre point of the distance surface 
Cd  at the middle of the sigmoid function (Figure 

71) with a match measure of  s 0.5Cd  . This results in 

 
2

C

a
d d




 (51) 

 
Cb d , (52) 

where 
Cd  is the centre point value of the distance surface MD  and d  in the mean 

value of the surface  mean Md  D . See Figure 49 on page 143 for an example 

surface of an interest point and Figure 71 for the resulting sigmoid function. 
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Figure 71 Estimated sigmoid function shown as a dashed line. The continuous line is 

the gradient of the sigmoid function defined by the centre value 
Cd  of the distance 

surface MD  and the mean distance d  of all values. 

Proof 

This proof shows how equations (51) and (52) provide the properties of  s d  as 

described above. The first constraint is  s 0.5Cd   to centre the sigmoid function, 

which enforces 

    

1 1
s

21 C
C a b d

d
e


 


 (53) 

The above function is smooth and strictly monotonic for 
Cd  and also for variations 

of parameter b . A valid solution for b  will therefore also be a unique solution. 

Equation (52) is the unique solution to equation (53) which is shown by inserting 

(52) in (53): 

     0

1 1 1
s q.e.d.

1 21 C C
C a d d
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ee


  


 (54) 
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The gradient of the sigmoid function at point  s 0.5Cd   (like before) defines the 

other parameter a . The gradient should be equal to the gradient of a line of the 

training data between the centre distance value 
Cd  at match measure 0.5km   and 

the mean of all distance values d  at match measure 0km  . This is illustrated as a 

continuous blue line in Figure 71. The gradient g  of this line is  

 
0.5

C

g
d d




, (55) 

which will be made equal to the gradient of the sigmoid function  s d . The 

gradient of the sigmoid function is calculated as first derivative of  s d  with 

respect to the distance d  
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. (56) 

Considering the gradient at the point 
Cd  and using the existing parameter 

Cb d , 

the gradient can be expressed as 
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. (57) 

The above gradient is then made equal to the line gradient g  from equation (55): 

 
4

a
g . (58) 

Using equation (55) and (58), the parameter a  is given by 
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 (59) 
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B. Plug-in Hierarchy and 
Parameters 

B.1. Overview of Modules 

Application Core application for detection and classification of vehicles 

 

-videoFilter Filters the input video before detector 

 InterlaceFilter Interlace filter for input video 
  

   

 

   

-detector Takes frame images and generates contour list 

 

DetectorStd Detector using standard OpenCV foreground estimation 

 

-dt-fgEstimator Generates a foreground mask for frame image 

 GMMHSV GMM with HSV shadow removal 
  

   

 

   

 

   

 

   

-classifier Takes contour list and tracks to generate object positions 

 

ClassifierStd Class for standard classifiers 

 

-cl-positionSearch Module to generate 3D hypothesis and find maximum score 

 

PositionSearchGrid Grid position search module 
  

   

PositionSearchTracking Tracker grid position search module 
  

   

 

   

-cl-matchMeasure Module to generate match measure for hypothesis based on models 

 

MatchLocalFeature Local feature score module 

 

-mm-

featureExtraction 
Module to extract feature vector from image patches 

 

FftFeature FFT feature extraction module 
  

   

HOGFeature HOG feature extraction module 
  

   

HistFeature Histogram feature extraction module 
  

   

 

   

 

   

MatchSilhouette Silhouette overlap score module 
  

   

 

   

 

   

 

file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23Application_d%23Application_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23InterlaceFilter_d%23InterlaceFilter_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23DetectorStd_d%23DetectorStd_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23GMMHSV_d%23GMMHSV_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23ClassifierStd_d%23ClassifierStd_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23PositionSearchGrid_d%23PositionSearchGrid_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23PositionSearchTracking_d%23PositionSearchTracking_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23MatchLocalFeature_d%23MatchLocalFeature_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23FftFeature_d%23FftFeature_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23HOGFeature_d%23HOGFeature_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23HistFeature_d%23HistFeature_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23MatchSilhouette_d%23MatchSilhouette_d
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-tracker Takes object positions of one or more classifiers to generate tracks 

 

TrackerBasic Class for basic tracker 
  

   

TrackerDummy Class for empty tracker 
  

   

TrackerFrame Class for frame tracker 

 

-tr-

filterGenerator 
Module to handle filter for tracking 

 KalmanFilterGenerator Class for Kalman filter handling 
  

   

 

   

 

   

 

   

-overlayWriter Auxiliary module for CV modules to save overlay images for objects 

 OverlayWriter Class to generate overlay output 
  

   

 

   

-resultWriter Takes track list and generates output from it 

 

BusLane Class for bus lane intrusion detection 
  

   

GPview Class for ground plane result writer 
  

   

Video3Dview Class for 3D video result writer 
  

   

ViperWriter Class for generating viper output 
  

   

 

   

 

   

B.2. Parameter List 

Application Core application for detection and classification of vehicles 

 

Parameter Type Short description 

-videoFilter string list Video filters used 

-detector string Detector to be used 

-classifier string Classifier to be used 

-tracker string Tracker to be used 

-resultWriter string list Track result writer to be used 

-video file name Input video file 

-framedivider number Divider of the input framerate for processing 

-screen-on boolean Show application windows 

-wait-time number Wait time in (0,50) ms 

-output file name Output video file 

-fourcc string 4 letter identifier for output codec 

-frames file name Frames of interest file 

-start-frame number Start frame in video 

-stop-frame number Stop frame in video 

file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23TrackerBasic_d%23TrackerBasic_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23TrackerDummy_d%23TrackerDummy_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23TrackerFrame_d%23TrackerFrame_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23KalmanFilterGenerator_d%23KalmanFilterGenerator_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23OverlayWriter_d%23OverlayWriter_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23BusLane_d%23BusLane_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23GPview_d%23GPview_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23Video3Dview_d%23Video3Dview_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23ViperWriter_d%23ViperWriter_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23Application_d%23Application_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23Application-videoFilter_d%23Application-videoFilter_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23Application-detector_d%23Application-detector_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23Application-classifier_d%23Application-classifier_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23Application-tracker_d%23Application-tracker_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23Application-resultWriter_d%23Application-resultWriter_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23Application-video_d%23Application-video_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23Application-framedivider_d%23Application-framedivider_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23Application-screen-on_d%23Application-screen-on_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23Application-wait-time_d%23Application-wait-time_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23Application-output_d%23Application-output_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23Application-fourcc_d%23Application-fourcc_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23Application-frames_d%23Application-frames_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23Application-start-frame_d%23Application-start-frame_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23Application-stop-frame_d%23Application-stop-frame_d
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-time-log boolean Activate time logging 

-videoFilter Filters the input video before detector 

 

InterlaceFilter Interlace filter for input video 

 

Parameter Type Short description 

-vf-algorithm number De- interlacing algorithm 

-vf-output file name Output video file 

-vf-fourcc string 4 letter identifier for output codec 

-vf-screen-on boolean Show detector windows 

-time-log boolean Activate time logging 
 

   

 

   

-detector Takes frame images and generates contour list 

 

DetectorStd Detector using standard OpenCV foreground estimation 

 

Parameter Type Short description 

-dt-output file name Output video file 

-dt-fourcc string 4 letter identifier for output codec 

-pixelspermetre number Scale of map image 

-calibration file name Camera calibration as xml 

-dt-roi string x3d file with ROI as line set 

-dt-min-roi-overlap number Minimum overlap to trigger silhouette 

-dt-screen-on boolean Show detector windows 

-dt-silhouette boolean Show silhouette in output image 

-dt-display-roi boolean Display region of interest in output 

-dt-fgEstimator string Name of foreground estimator to use 

-dt-segm-file file name File with segmentation information 

-dt-segm-generate boolean Flag to generate segmentation file 

-dt-min-length number Minimum length of contour 

-time-log boolean Activate time logging 

-dt-fgEstimator Generates a foreground mask for frame image 

 

GMMHSV GMM with HSV shadow removal 

 

Parameter Type Short description 

-dt-remove-shadow boolean Activate shadow removal module 

-dt-min-value-sim number Minimum vaule similarity for shadow 
 

   

 

   

 

   

 

   

-classifier Takes contour list and tracks to generate object positions 

 

ClassifierStd Class for standard classifiers 

 

Parameter Type Short description 

-cl-output 
file 

name 
Output video file 

-cl-fourcc string 4 letter identifier for output codec 

-pixelspermetre number Scale of map image 

-calibration 
file 

name 
Camera calibration as xml 

file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23Application-time-log_d%23Application-time-log_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23InterlaceFilter_d%23InterlaceFilter_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23InterlaceFilter-vf-algorithm_d%23InterlaceFilter-vf-algorithm_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23InterlaceFilter-vf-output_d%23InterlaceFilter-vf-output_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23InterlaceFilter-vf-fourcc_d%23InterlaceFilter-vf-fourcc_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23InterlaceFilter-vf-screen-on_d%23InterlaceFilter-vf-screen-on_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23InterlaceFilter-time-log_d%23InterlaceFilter-time-log_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23DetectorStd_d%23DetectorStd_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23DetectorStd-dt-output_d%23DetectorStd-dt-output_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23DetectorStd-dt-fourcc_d%23DetectorStd-dt-fourcc_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23DetectorStd-pixelspermetre_d%23DetectorStd-pixelspermetre_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23DetectorStd-calibration_d%23DetectorStd-calibration_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23DetectorStd-dt-roi_d%23DetectorStd-dt-roi_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23DetectorStd-dt-min-roi-overlap_d%23DetectorStd-dt-min-roi-overlap_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23DetectorStd-dt-screen-on_d%23DetectorStd-dt-screen-on_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23DetectorStd-dt-silhouette_d%23DetectorStd-dt-silhouette_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23DetectorStd-dt-display-roi_d%23DetectorStd-dt-display-roi_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23DetectorStd-dt-fgEstimator_d%23DetectorStd-dt-fgEstimator_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23DetectorStd-dt-segm-file_d%23DetectorStd-dt-segm-file_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23DetectorStd-dt-segm-generate_d%23DetectorStd-dt-segm-generate_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23DetectorStd-dt-min-length_d%23DetectorStd-dt-min-length_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23DetectorStd-time-log_d%23DetectorStd-time-log_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23GMMHSV_d%23GMMHSV_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23GMMHSV-dt-remove-shadow_d%23GMMHSV-dt-remove-shadow_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23GMMHSV-dt-min-value-sim_d%23GMMHSV-dt-min-value-sim_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23ClassifierStd_d%23ClassifierStd_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23ClassifierStd-cl-output_d%23ClassifierStd-cl-output_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23ClassifierStd-cl-fourcc_d%23ClassifierStd-cl-fourcc_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23ClassifierStd-pixelspermetre_d%23ClassifierStd-pixelspermetre_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23ClassifierStd-calibration_d%23ClassifierStd-calibration_d
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-cl-screen-on boolean Show classifier windows 

-output-dir directory Path to save output results 

-cl-output-match boolean Flag to save match numbers 

-cl-

positionSearch 
string Module to generate 3D hypothesis and find maximum score 

-cl-

matchMeasure 
string 

Module to generate match measure for hypothesis based on 

models 

-cl-calc-bbox boolean Flag to calculate 2D bounding box 

-cl-wireframe boolean Display wire frame of models 

-cl-label boolean Display class label for objects 

-cl-use-prediction boolean Use prediction to initialise classifier 

-cl-event-loop boolean Run event loop in classifier 

-time-log boolean Activate time logging 

-cl-positionSearch Module to generate 3D hypothesis and find maximum score 

 

PositionSearchGrid Grid position search module 

 

Parameter Type Short description 

-pixelspermetre number Scale of map image 

-calibration file name Camera calibration as xml 

-ps-rotation number Angle of fixed model orientation 

-ps-grid-width number Width of position grid (m) 

-ps-grid-rows number Number of rows in grid 

-ps-min-score number Minimum score for object detection (0..1) 
 

   

PositionSearchTracking Tracker grid position search module 

 

Parameter Type Short description 

-pixelspermetre number Scale of map image 

-calibration file name Camera calibration as xml 

-ps-rotation number Angle of fixed model orientation 

-ps-grid-width number Width of position grid (m) 

-ps-grid-rows number Number of rows in grid 

-ps-min-score number Minimum score for object detection (0..1) 
 

   

 

   

-cl-matchMeasure Module to generate match measure for hypothesis based on models 

 

MatchLocalFeature Local feature score module 

 

Parameter Type Short description 

-mm-featureExtraction string Module for feature vector extraction 

-pixelspermetre number Scale of map image 

-calibration 
file 

name 
Camera calibration as xml 

-mm-model-dir directory Directory with models 

-mm-patch-size number Size of patches in metres 

-mm-patch-resolution number Resolution of patches in pixels / metre 

-mm-dir-threshold number 
Minimal angle similarity of IP and camera 

(0..90) 

file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23ClassifierStd-cl-screen-on_d%23ClassifierStd-cl-screen-on_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23ClassifierStd-output-dir_d%23ClassifierStd-output-dir_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23ClassifierStd-cl-output-match_d%23ClassifierStd-cl-output-match_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23ClassifierStd-cl-positionSearch_d%23ClassifierStd-cl-positionSearch_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23ClassifierStd-cl-positionSearch_d%23ClassifierStd-cl-positionSearch_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23ClassifierStd-cl-matchMeasure_d%23ClassifierStd-cl-matchMeasure_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23ClassifierStd-cl-matchMeasure_d%23ClassifierStd-cl-matchMeasure_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23ClassifierStd-cl-calc-bbox_d%23ClassifierStd-cl-calc-bbox_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23ClassifierStd-cl-wireframe_d%23ClassifierStd-cl-wireframe_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23ClassifierStd-cl-label_d%23ClassifierStd-cl-label_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23ClassifierStd-cl-use-prediction_d%23ClassifierStd-cl-use-prediction_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23ClassifierStd-cl-event-loop_d%23ClassifierStd-cl-event-loop_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23ClassifierStd-time-log_d%23ClassifierStd-time-log_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23PositionSearchGrid_d%23PositionSearchGrid_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23PositionSearchGrid-pixelspermetre_d%23PositionSearchGrid-pixelspermetre_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23PositionSearchGrid-calibration_d%23PositionSearchGrid-calibration_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23PositionSearchGrid-ps-rotation_d%23PositionSearchGrid-ps-rotation_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23PositionSearchGrid-ps-grid-width_d%23PositionSearchGrid-ps-grid-width_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23PositionSearchGrid-ps-grid-rows_d%23PositionSearchGrid-ps-grid-rows_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23PositionSearchGrid-ps-min-score_d%23PositionSearchGrid-ps-min-score_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23PositionSearchTracking_d%23PositionSearchTracking_d
file:///C:/Documents%20and%20Settings/sergio/prog/development/01%20Basic%20approach/Module/help_small.xml%23PositionSearchTracking-pixelspermetre_d%23PositionSearchTracking-pixelspermetre_d
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-mm-patches-dir directory 
Directory to save X3D files of extraced 

patches 

-mm-normalise-patch boolean Flag to normalise input image patch 

-mm-min-ips number Minimum interest points required 

-mm-features-dir directory 
Directory to save X3D files of extraced 

features 

-mm-x3d-template 
file 

name 

Template for saving patches -mm-patches-

dir 

-frame-save-data number Frame to save any extra data for 

-mm-training-data 
file 

name 
File containing training data 

-mm-detailed-score directory Directory to save detailed score 

-mm-use-weights boolean Activate usage of IP weights 

-mm-descriptor-patch-

scale 
number Scale for interest point patches 

-mm-

featureExtraction 
Module to extract feature vector from image patches 

 

FftFeature FFT feature extraction module 

 

Parameter Type Short description 

-save-images boolean Save temporary images 

-frequency-bins number Bin in frequency histogram 

-angle-bins number Bin in angle histogram 
 

   

HOGFeature HOG feature extraction module 

 

Parameter Type Short description 

-angle-bins number Number of angle bins used 

-save-images boolean Save temporary images 
 

   

HistFeature Histogram feature extraction module 

 

Parameter Type Short description 

-angle-bins number Number of angle bins used 

-save-images boolean Save temporary images 
 

   

 

   

 

   

MatchSilhouette Silhouette overlap score module 

 

Parameter Type Short description 

-pixelspermetre number Scale of map image 

-calibration file name Camera calibration as xml 

-mm-model-dir directory Directory with models 
 

   

 

   

 

   

 

   

-tracker Takes object positions of one or more classifiers to generate tracks 

 
TrackerBasic Class for basic tracker 

 Parameter Type Short description 
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-tr-output file name Output video file 

-tr-fourcc string 4 letter identifier for output codec 

-pixelspermetre number Scale of map image 

-calibration file name Camera calibration as xml 

-tr-screen-on boolean Show tracker windows 

-time-log boolean Activate time logging 

-tr-max-predictions number Maximum number of position predictions 

-tr-distance-limit number Maximum track/object distance for assignment 
 

   

TrackerDummy Class for empty tracker 

 

Parameter Type Short description 

-tr-output file name Output video file 

-tr-fourcc string 4 letter identifier for output codec 

-pixelspermetre number Scale of map image 

-calibration file name Camera calibration as xml 

-tr-screen-on boolean Show tracker windows 

-time-log boolean Activate time logging 
 

   

TrackerFrame Class for frame tracker 

 

Parameter Type Short description 

-tr-output file name Output video file 

-tr-fourcc string 4 letter identifier for output codec 

-pixelspermetre number Scale of map image 

-calibration file name Camera calibration as xml 

-tr-screen-on boolean Show tracker windows 

-time-log boolean Activate time logging 

-tr-max-predictions number Maximum number of position predictions 

-tr-max-uncertainty number Maximum position uncertainty 

-tr-min-observations number Minimum observations for valid track 

-tr-filterGenerator string Module to handle filter for tracking 

-tr-

filterGenerator 
Module to handle filter for tracking 

 

KalmanFilterGenerator Class for Kalman filter handling 

 

Parameter Type Short description 

-time-log boolean Activate time logging 

-ft-process-noise-location number Process noise for location states 

-ft-measurement-noise-location number Measurement noise for location 

-ft-initial-error-location number Initial error estimate for location 

-ft-process-noise-speed number Process noise for speed states 

-ft-initial-error-speed number Initial error estimate for speed 

-ft-xy-distortion number Relative importance of y to x 

-ft-catch-area number Multiple of covariance for catch 

-ft-process-noise-angle number Process noise for angle state 

-ft-measurement-noise-angle number Measurement noise for angle 
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-ft-initial-error-angle number Initial error estimate for angle 

-ft-process-noise-angle-speed number Process noise for angle speed state 

-ft-initial-error-angle-speed number Initial error estimate for angle speed 
 

   

 

   

 

   

 

   

-overlayWriter Auxiliary module for CV modules to save overlay images for objects 

 

OverlayWriter Class to generate overlay output 

 

Parameter Type Short description 

-overlay-dir directory Directory for overlay images 

-output-pic string Extension for saved images 

-output-dir directory Path to save output results 
 

   

 

   

-resultWriter Takes track list and generates output from it 

 

BusLane Class for bus lane intrusion detection 

 

Parameter Type Short description 

-rw-output file name Output video file 

-rw-fourcc string 4 letter identifier for output codec 

-pixelspermetre number Scale of map image 

-calibration file name Camera calibration as xml 

-rw-screen-on boolean Show result writer windows 

-time-log boolean Activate time logging 

-rw-map file name Map file as background 

-rw-permitted-class string list Permitted class in the observation region 

-rw-observation-region file name x3d file with observation region 
 

   

GPview Class for ground plane result writer 

 

Parameter Type Short description 

-rw-output file name Output video file 

-rw-fourcc string 4 letter identifier for output codec 

-pixelspermetre number Scale of map image 

-calibration file name Camera calibration as xml 

-rw-screen-on boolean Show result writer windows 

-time-log boolean Activate time logging 

-rw-map file name Map file as background 

-rw-show-predicted boolean To active output of predicted positions 

-rw-show-catch boolean To active output of catch area 

-rw-show-confidence boolean To active output on map 

-rw-valid-only boolean Only show valid tracks 

-rw-redraw-wireframe boolean Redraw wire frame 
 

   

Video3Dview Class for 3D video result writer 

 

Parameter Type Short description 

-time-log boolean Activate time logging 
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-rw-template file name Template X3D to expand 

-rw-x3d-output file name Output X3D file 

-rw-include-other boolean Include detection of 'other' in output 

-rw-timer-interval number Interval for base timer in X3D 
 

   

ViperWriter Class for generating viper output 

 

Parameter Type Short description 

-time-log boolean Activate time logging 

-rw-viper-config file name Config Viper file to expand 

-rw-viper-output file name Output Viper file 

-rw-viper-save-invalid boolean Save invalid tracks as well 
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B.3. Setup GUI 

 

Figure 72 Snapshot of graphical user interface for parameter selection. Default 

values for parameters are displayed, selected modules can be configured and help is 

available for every element. 
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C. Additional Performance Tables 

C.1. Motion Silhouette Classifier 

This section provides additional performance tables for the motion silhouette 

classifier, which were not included in section 3.4 for space reasons. 

 

Table 26 Classifier confusion matrix and overall performance figures for the motion 

silhouette classifier with de-interlacing filter 

 

Table 27 Class wise performance figures for the motion silhouette classifier with de-

interlacing filter 
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Table 28 Classifier confusion matrix and overall performance figures for the motion 

silhouette classifier without additional filter 

 

Table 29 Class wise performance figures for the motion silhouette classifier without 

additional filter 

 

Table 30 Classifier confusion matrix and overall performance figures for the motion 

silhouette classifier under sunny conditions 
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Table 31 Class wise performance figures for the motion silhouette classifier under 

sunny conditions 

 

Table 32 Classifier confusion matrix and overall performance figures for the motion 

silhouette classifier under overcast conditions 

 

Table 33 Class wise performance figures for the motion silhouette classifier under 

overcast conditions 
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Table 34 Classifier confusion matrix and overall performance figures for the motion 

silhouette classifier under changing weather conditions 

 

Table 35 Class wise performance figures for the motion silhouette classifier under 

changing weather conditions 
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C.2. 3DHOG Classifier 

This section provides additional performance tables for the 3DHOG classifier, 

which were not included in section 5.7.3 for space reasons. 

 

Table 36 Confusion matrix and system performance for the 3DHOG classifier with 

patch size of 0.8m   at resolution 20Pixel m   

 

Table 37 Classifier confusion matrix and class wise performance for the 3DHOG 

classifier with patch size of 0.8m   at resolution 20Pixel m   
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Table 38 Confusion matrix and system performance for the 3DHOG classifier with 

patch size of 0.5m   at resolution 16 P ixel m   

 

Table 39 Classifier confusion matrix and class wise performance for the 3DHOG 

classifier with patch size of 0.5m   at resolution 16 P ixel m   
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