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Abstract

We present a system that uses probabilistic methods for enhanced situational aware-

ness in marine environments. More specifically, we present significant contributions

in the areas of Simultaneous Localisation and Mapping (SLAM) from the robotics

community, and visual tracking from the computer vision community. We demon-

strate how these theoretical contributions can be applied to the practical problem of

marine surveillance.

Traditionally, SLAM has been used to produce static maps of the environment and

dynamic objects have either been filtered out and ignored, or detected and tracked

separately. In contrast, we show how dynamic objects can be included directly in the

SLAM estimate. We propose a hybrid representation that combines point features,

occupancy grids and cubic splines. The point features are used to represent small

stationary objects, the occupancy grid is used to represent landmasses and cubic

splines are used to represent the trajectories of dynamic objects.

We also present a new region-based, level-set framework, for visual tracking and

segmentation. In contrast to all previous methods, we use the pixel-wise posterior

when computing the foreground/background pixel membership, as opposed to the

traditional pixel-wise likelihood. We show that this approach produces better behaved

objective functions and hence provides more resilient visual tracking. We are able to

track twelve or more objects in real-time, simultaneously estimating their position,

rotation, scale, depth-ordering, figure-figure and figure-ground segmentations.

Finally, we describe a prototype system that combines our work on SLAM and visual

tracking, enabling a mobile vehicle to be used for marine surveillance. This system

produces a hybrid map of the environment that contains both metric and visual

information. The metric information represents the position, speed, shape and size of

objects. The visual information represents the appearance of objects and is acquired

using a high-performance pan-tilt device, which we have designed, built and tested.

We use the pan-tilt device to automatically make visual contact with all objects within

sensor range. The prototype system has been demonstrated protecting a river in the

Thames Estuary against potential security threats.



Preface

At the beginning of the 13th century mariners began plotting the first navigational

charts (Portolan charts). These charts were used in conjunction with the magnetic

compass to guide mariners safely from one port to the next, but relied on the mariners

being able to see distinguishable landmarks. During the 15th century the mariner’s

quadrant (an early type of sextant) was invented, allowing the altitude of the north

star (Polaris) to be measured and so it became possible to estimate latitude. Nearly

three hundred years later in 1764, John Harrison succeeded where others had failed

and devised a way of measuring longitude, the key component was his design for

a clock that remained accurate even at sea (the rolling motion of a boat renders

large pendulum based designs useless). By the end of the 18th century, your average

mariner was able to estimate their position anywhere on the globe to within a few

miles, using the sun, stars and a few man made instruments.

The second world war generated a need for detecting incoming hostile aircraft and

ships. In response, Radio Detection and Ranging (RADAR) was developed. The

principle of RADAR is to send out pulses of microwave radiation and to measure

the time-of-flight for reflections to be received back, enabling accurate measurements

of both the bearing and range of objects. There was also heavy development in the

area of Sound for Navigation and Ranging (SONAR), which measures the distance

between objects by timing sound waves in water or air. These technologies meant

that mariners were now able to accurately measure relative distances and bearings

between their own vessel and other objects.

Towards the end of the 20th century, the accurate measurement of time once again

played a huge role in position finding. In 1993 the 24th Navstar satellite was launched

and with four atomic clocks aboard, it completed the network of satellites that make

up the Global Positioning System (GPS). This system can accurately measure a

position anywhere on the globe to within a few metres and plays a huge role in

modern life.

A common theme throughout maritime history is the desire to accurately estimate

a vessel’s location and the locations of objects in the surrounding area. Modern day



requirements are even more challenging and expect an information rich representation

of the marine environment. Unmanned sensor networks are being deployed, generat-

ing the need for information engineering techniques to fuse incoming sensor data and

automatically drive active sensors e.g. pan-tilt camera(s).

One such example is port security, where a number of sensors (RADARs, cameras, hy-

drophones and transponders) are distributed between various land and marine based

platforms. The information from these sensors needs to be processed to form a single

coherent picture of the entire port area, so that security operators can make decisions

quickly without having to deal with huge volumes of raw sensor data.



Motivation

I am a keen sailor and on too many occasions have experienced first hand the pressure

building as you find yourself slowly losing control of a situation at sea. It normally

begins with tiredness and adverse weather conditions that make normal day-to-day

book keeping tasks difficult to stay on top of. Then something unexpected gets

thrown in: an unexpected or missing buoy or mark, an engine failure, a crew injury

or an equipment failure. Your attention gets shifted to the unexpected event and your

ability to process information relating to other events reduces. If you are unlucky,

then another event may go undetected, for example: drifting off course, an accidental

gybe1, failing to recognise a collision threat or simply forgetting to look where you

are going. This type of vicious cycle tends to worsen and often, an initially minor

event, escalates into a serious one.

The motivation behind this dissertation is to provide mariners with a tool set that

enhances their situational awareness and reduces their workload. The idea being that

by reducing their workload during difficult or challenging situations, it will reduce

the chance of a vicious cycle setting in and serious or potentially fatal accidents

from occurring. A secondary benefit is that the reduced workload can also increase

productivity for commercial, military or public services in the marine environment

e.g. harbour patrol, search and rescue, naval or coastguard activities.

Although my personal experiences are in the context of leisure sailing, accident in-

vestigation reports and articles in the press show that similar experiences are often

behind accidents and financial losses in the commercial, military and public sectors

of the marine industry.

1This results in a violent movement of the boom that can fatally injure crew members.
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Chapter 1

Introduction

1.1 Objective

The objective of this dissertation is to apply probabilistic methods to the marine

industry, with the goal of enhancing situational awareness. Specifically, we use the

idea of SLAM from robotics, and visual tracking from computer vision, to build an

enhanced map of the nearby environment. This enhanced map includes both metric

(positions/velocities/sizes) and visual (what it looks like) information, for stationary

surface objects, dynamic surface objects and landmasses. This has the benefit of

tying visual and metric information together, so that a marine operator can see at

a glance both where objects are in relation to a vessel and what they look like. In

general the vessel, which we will refer to as the vehicle, may also be dynamic. This

makes the problem significantly harder as the egomotion (the vehicle’s motion through

the environment) must be estimated in conjunction with the hybrid map. Although

this dissertation concentrates mainly on marine RADAR data and colour video, the

principles developed could be applied to a much broader variety of sensor modalities.

Our objective can be written down mathematically with the following probabilistic

statement:

P (X,M|Z) =
P (Z|X,M)P (X,M)

P (Z)
, (1.1)

where: X is the vehicle’s location and speed; M is the enhanced map i.e. the positions,

speeds, shapes, sizes and visual appearance of other objects in the environment and

1



Z is the collection of sensor data i.e. marine RADAR and colour video. For readers

not familiar with Bayes rule, Equation (1.1) will be explained in Chapter 2.

1.2 Challenges

Below is a list of the most significant challenges when estimating metric and visual

information, using a marine sensor platform i.e. a boat:

Dynamic platform: The sensor platform is moving, which means that the sensors’

egomotion needs to be estimated in conjunction with the metric information of the

surrounding objects. This is why a SLAM solution is required, as opposed to if the

sensors were stationary, in which case the objects could be mapped independently.

This also means that any visual tracking using pan-tilt devices needs to be stabilised

to compensate for the egomotion. This could be achieved with inertial sensing, visual

sensing or as we do in this dissertation, a combination of the two.

Dynamic environment: Typically, SLAM systems filter out responses generated by

dynamic objects in the environment so that the resultant map only contains stationary

objects. In contrast, this dissertation addresses the problem of including dynamic

objects directly within the SLAM estimation.

Intermittent measurements: Marine RADAR sensors often give intermittent re-

sponses from objects in the environment, especially in adverse weather. This means

that the estimation has to be able to fuse intermittent responses over long periods of

time.

Clutter: Marine RADAR also generates large amounts of clutter (false-positives);

therefore the estimation techniques need to be able to handle clutter without detri-

mental consequences to the quality of the estimated environment.

Agile motion: The objects we wish to visually track can exhibit agile motion in the

camera view both due to egomotion of the vehicle the sensors are mounted on, but

also due to the motion of the objects on the surface of the sea. This means that the

visual tracking technique used has to be able to handle agile motion.

Shape changes: In order to visually track an object for prolonged periods of time,

the system will need to be able to handle changes in the object’s projected shape in

the image. This is because the objects can carry out manoeuvers i.e. out-of-plane

rotations, which change their projected shape on the camera’s image plane.

2



Appearance changes: The visual appearance of objects can change over time, both

due to environmental lighting conditions and because a manoeuvering object causes

different aspects to be exposed or hidden e.g. a boat may be blue down one side and

red down the other.

Tracking drift: To combat the previous two challenges a solution is required that

performs online learning about the objects being tracked. Online learning introduces

the problem of tracking drift, which often results in tracking system failures.

Inter-object occlusion: If another object occludes the object being visually tracked,

then often either complete failure will occur or the tracker may end up tracking the

wrong object.

System integration: Considerable amounts of hardware and system integration

was required for the objective of this dissertation, which is notorious for generating

unforeseen problems.

Real-time: The solutions to the previous challenges have to be capable of processing

the incoming data in real-time, in order to be useful in the real-world. Unless other-

wise stated real-time is taken to be video rate, which we define as 30Hz or greater.

1.3 Contributions

Below is a list of the contributions found in this dissertation (in the order they appear):

SLAM in dynamic environments: Dynamic objects are incorporated in a SLAM

framework using sliding window estimation, reversible decision making and gener-

alised expectation maximisation. The temporal sliding window allows the system

adequate time to get model-selection, data-association and clutter rejection correct

before performing marginalisation. The results show that this allows a consistent

estimate to be maintained, even in the presence of dynamic objects and significant

amounts of clutter.

Hybrid representation: A hybrid representation is used to represent the marine

environment, with point features representing small stationary objects, an occupancy

grid representing landmasses and cubic splines representing the trajectories of dy-

namic objects. This hybrid representation is essential in providing a SLAM system

that actually works in the real environment. All too often SLAM systems model cer-

tain aspects of the environment using point features, where some other representation

3



would offer superior performance.

Cubic splines are used to represent trajectories: Cubic splines are used to

represent the trajectories of dynamic objects in the environment. This has three

key benefits: (i) the number of states that need to be estimated can be reduced by

representing a trajectory using spline sections; (ii) because the spline is continuous,

it becomes natural to handle asynchronous measurements running at different fre-

quencies rather than trying interpolate and/or extrapolate measurements to match a

time-step present in the estimation framework and (iii) the continuous output makes

it possible to re-render sensor data at a sub-scan resolution to compensate for the

egomotion during data-acquisition.

Pixel-wise posterior tracking: A new visual tracking method based on pixel-wise

posteriors, as opposed to pixel-wise likelihoods, is developed and quantitative results

show that it provides better behaved objective functions for visual tracking. This

tracking algorithm learns both the shape and appearance of an object online and

the problem of tracking drift is tackled. This allows previously unseen objects to be

tracked for long periods of time with minimal prior information.

Computing the depth-ordering of multiple objects: The pixel-wise posterior

tracking algorithm is generalised to handle multiple interacting/occluding objects.

A depth posterior is computed at each time-step, allowing the tracking algorithm to

account for inter-object occlusions. The method is able to simultaneously estimate the

position, scale, rotation, depth-ordering, figure-ground and figure-figure segmentation

for up to twelve interacting objects in real-time.

System integration: We combine the theoretical contributions using good practical

engineering, to produce a prototype system that can be used for situational awareness

in marine environments. This system was demonstrated live over a period of two days

to an audience of industry experts, governmental advisors, the navy, special forces,

the police and politicians. The system was demonstrated protecting a river in the

Thames Estuary against potential security threats.

Active vision system: Part of this real-world application was the design, build

and test of a high performance pan-tilt device. This device is capable of panning 360

degrees and fixating to 1/1000th of a degree within 600ms. This type of performance is

required to quickly saccade between objects in the environment, so visual information

can be acquired efficiently.

Real-time performance: All of the methods and techniques presented in this dis-
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sertation run in real-time i.e. 30Hz or greater on standard Personal Computer (PC)

hardware.

1.4 Preview

Figure 1.1 shows a screen shot from the prototype system developed using the meth-

ods presented in this dissertation. The left-hand pane shows the estimated metric

information and the right-hand pane shows the associated visual information. The

metric information is estimated using the hybrid mapping technique presented in this

dissertation. The overlay in the top-right of the left-hand pane shows the live feed

from the pan-tilt camera designed, built and tested as part of this DPhil. The pan-tilt

automatically makes visual contact with the surrounding objects and acquires visual

information. Closed loop control of the pan-tilt device, using the visual tracking

methods described in this dissertation, can be used to obtain stabilised video feeds

of objects of interest. These stabilised video feeds can then be used for further visual

processing, for instance a visual recognition module or for human classification.

Figure 1.1: A screen shot taken from the prototype system built using the methods
proposed in this dissertation. This system was demonstrated protecting a river in the
Thames Estuary.
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1.5 Outline

There are three main areas of contribution presented in this dissertation, which are

indicated using three parts:

• Part I: describes the theoretical contributions for estimating the metric aspects

of the environment.

• Part II: describes the theoretical contributions for visual tracking.

• Part III: describes how the theoretical contributions from Parts I and II are

integrated into a real system.

The specific chapter-by-chapter break down is as follows:

• Background Knowledge

– Chapter 2: introduces the notation, probabilistic rules and techniques

used within this dissertation.

• Part I: Estimating Metric Information

– Chapter 3: introduces the ideas behind SLAM and reviews the literature.

– Chapter 4: describes our novel use of sliding window estimation and

expectation maximisation to achieve reversible decision making. In partic-

ular, how to do reversible model-selection, reversible data-association and

clutter rejection, allowing us to include dynamic objects within the SLAM

framework.

– Chapter 5: describes our hybrid representation for the marine environ-

ment, with point features representing small stationary objects, an oc-

cupancy grid representing landmasses and cubic splines representing the

trajectories of dynamic objects.

• Part II: Estimating Visual Information

– Chapter 6: describes our novel method for visual tracking that uses pixel-

wise posteriors to represent the foreground/background pixel membership,

instead of the traditional pixel-wise likelihoods.
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– Chapter 7: describes how we extend our pixel-wise posterior tracking

method to deal with multiple interacting/occluding objects.

• Part III: System Integration and Conclusions

– Chapter 8: describes how we use good engineering practice to combine

our work on SLAM in dynamic environments and hybrid mapping, with

our visual tracking algorithms to build a real system. Part of this system

was the design, build and test of a high performance pan-tilt device.

– Chapter 9: concludes with a discussion and suggestions for future work.

1.6 Related Publications

• [Bibby & Reid, 2005] – Visual Tracking at Sea: This paper was a result

of my 4th year undergraduate work and used a modified version of mean-shift

tracking [Comaniciu et al., 2000] to track objects at sea. The unsatisfactory

performance of this approach partly motivated this dissertation.

• [Bibby & Reid, 2006] – Fast Feature Detection with a Graphics Pro-

cessing Unit Implementation: This paper presented a novel feature detec-

tor, which was comparable to the difference-of-Gaussian method used by [Lowe,

1999], but more suited to a graphics processing unit implementation and hence

very fast. This detector is no longer used in any of the methods in the disser-

tation and therefore not mentioned from here on to maintain clarity.

• [Bibby & Reid, 2007] – Simultaneous Localisation and Mapping in

Dynamic Environments: This paper describes our work on SLAM in dy-

namic environments, which will be presented in Chapter 4.

• [Bibby & Reid, 2008] – Robust Real-Time Visual Tracking using

Pixel-Wise Posteriors: This paper presents our novel method for visual

tracking using pixel-wise posteriors, which will be presented in Chapter 6.

• [Bibby & Reid, 2010a] – A Hybrid SLAM Representation for Dynamic

Marine Environments: This paper presents our hybrid representation for

SLAM in marine environments, which will be presented in Chapter 5.
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• [Bibby & Reid, 2010b] – Real-time Tracking of Multiple Occluding

Objects using Level Sets: This paper presents our work on visual tracking of

multiple interacting objects using pixel-wise posteriors, which will be presented

in Chapter 7.
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Chapter 2

Probabilistic Methods

2.1 Introduction

This dissertation shows how probabilistic methods can be used to enhance situational

awareness in marine environments. The emphasis being on probabilistic because the

methods used in this dissertation represent their results using probability distribu-

tions, as opposed to ‘point estimates’ or ‘best guesses’. Taking this approach adds

complexity both computationally and theoretically, but provides a principled way for

combining/fusing incoming information received at different times and/or from dif-

ferent sensors. For background reading on the principles behind these probabilistic

methods we recommend [Bishop, 2006; Thrun et al., 2005; Manyika & Durrant-Whyte,

1994].

This chapter covers the background knowledge required for the dissertation: Sections

2.2 and 2.3 cover the notation; Section 2.4 covers the probability rules that are used;

Section 2.5 introduces graphical models, which we use to represent the probabilistic

models; Section 2.6 introduces recursive Bayesian estimation; Section 2.7 introduces

the Kalman Filter [Kalman, 1960] (KF); Section 2.8 considers how probability distri-

butions can be represented using a computer and Section 2.9 finishes with a summary.

2.2 General Notation

Throughout this dissertation scalar values will be written in a normal lower-case

x whereas vector or multivariate quantities will be written in bold lower-case x.
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Matrices are represented using bold upper-case X and may be given a size e.g. X3×3

represents a 3-by-3 matrix. The identity matrix is predefined as I and will often be

specified with dimensions. Sets are always defined before use and are bold upper-

case, for example Mt = {m1
t , . . . ,m

N
t } defines a set of vector elements m1

t through

to mN
t . Sets-of-sets are also used, for example Y = {M1, . . . ,MT} defines a set of

set elements M1 through to MT . Subscripts are used to index elements into a set, for

example M1 is the first element of the set Y. Subscripts can also be used to index

into a vector, e.g. x1 is the first element of the vector x, or to index into a matrix

e.g. R1,2 is the first row and second column of the matrix R. Superscripts are used if

another index is required, for example if we are dealing with a set-of-sets then m1
2 is

the first element of the second sub set of Y. Sequences are used to represent a range

of values, for example t : 1 = {t, . . . , 1}; a typical use of a sequence would be to index

a set of elements, for example zt:1 = {zt, . . . , z1}.

2.3 Probability Notation

The probability of event X being true will be written as P (X). The probability of

X = x will either be written explicitly as P (X = x) or abbreviated for convenience

to P (x), as long as it does not confuse meaning. The probability that X = x given

that Z = z will be written as P (X = x|Z = z) or abbreviated to P (x|z). In a

similar fashion, the joint probability that X = x and Z = z will be written as

P (X = x, Z = z) or abbreviated to P (x, z). For continuous variables P (x) can be

interpreted as the probability density and will integrate to one i.e.
∫
x
P (x)dx = 1.

The particular form of distributions used in the text will either be specified in words

e.g. a non-parametric RGB histogram with 32 bins per channel or they may be

written out explicitly. Parametric Gaussian distributions are often used in the text

and are usually written using the following notation:

x ∼ N(x̃,Σ). (2.1)

We adopt a slightly different notation, which is more convenient when dealing with

least-squares derivations:
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P (x) ∝ exp(−1

2
‖x̃− x‖2

Σ), (2.2)

where: the ∝ represents the fact that the normalising constant has been omitted

for brevity; the x̃ represents the mean and the ‖e‖2
Σ notation represents the squared

Mahalanobis distance eTΣ−1e, where Σ is the covariance.

2.4 Probability Rules

Below is a list of probability rules that are repeatedly applied throughout this disser-

tation, for a full in context discussion, see [Bishop, 2006; Thrun et al., 2005].

Independence rule: Two probabilities are said to be independent if their joint

distribution factors as follows:

P (x, z) = P (x)P (z). (2.3)

Product rule: This is sometimes referred to as the chain rule and states that:

P (x, z) = P (x|z)P (z) = P (z|x)P (x), (2.4)

which can also be re-arranged to compute the conditional distributions:

P (x|z) =
P (x, z)

P (z)
(2.5)

and

P (z|x) =
P (x, z)

P (x)
. (2.6)
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Sum rule / marginalisation: This allows a variable to be marginalised (averaged)

out from a joint distribution:

P (x) =
∑

z

P (x, z) =
∑

z

P (x|z)P (z). (2.7)

Bayes rule: This can be written down directly from the product rule and states that:

posterior︷ ︸︸ ︷
P (x|z) =

likelihood︷ ︸︸ ︷
P (z|x)

prior︷ ︸︸ ︷
P (x)

P (z)︸︷︷︸
evidence

. (2.8)

Bayes rule forms the basis for a vast number of useful algorithms, including the ones

presented in this dissertation, it is at the heart of methods that coin the phrase

‘Bayesian’. The equation is broken into four components: (posterior) this is the

distribution that is normally required and represents how the belief in x changes

given that z has been observed; (likelihood) is the distribution of z given a particular

x; (prior) this is the prior belief of x without any influence of z; (evidence) this is the

marginal belief of z without the influence of x.

2.5 Graphical Models

Throughout this dissertation we use graphical models as a design tool to specify our

underlying probabilistic model(s). They allow careful design decisions to be made

using knowledge about the real-world before having to deal with the mathematics.

In particular, they allow one to model the process by which sensor data has been

generated.

Figure 2.1 illustrates two simple graphical models that are made up from the following

components: circular nodes representing continuous random variables (in this case

they are multi-variate variables); arrows representing the conditional relationships

between the random variables; shaded nodes representing observed random variables

and non-shaded nodes representing hidden random variables.

The joint distribution for a graphical model can written down by visiting each node

12
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z
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Figure 2.1: (a) Generative model and (b) Bayes rule has been used to do inference
on the generative model (the arrow is reversed).

and concatenating a product of P (parent|children), for Figure 2.1(a) this would be:

P (x, z) = P (z|x)P (x) (2.9)

and for Figure 2.1(b):

P (x, z) = P (x|z)P (z). (2.10)

Equations (2.9) and (2.10) both represent the same joint distribution P (x, z) and so

the graphical models in Figure 2.1 are both valid models for P (x, z). The difference

between Figure 2.1(a) and 2.1(b) becomes apparent when you actually give meaning

to the random variables x and z. If we define x to be the 2D position of a vehicle

and z to be a measurement of the position, then Figure 2.1(a) can be interpreted

as a generative model where the position x generates/causes the measurement z.

Written down mathematically this is Equation (2.9) and contains distributions that

we know (or can model) i.e. the likelihood P (z|x) (sensor model) and the prior

P (x). In contrast, Equation (2.10), corresponding to the graphical model in Figure

2.1(b), contains distributions that we cannot easily model i.e. the posterior P (x|z)

(which is actually what we want). By substituting (2.10) into (2.9) and dividing by

P (z) =
∑

x P (z|x)P (x) we get another form of Bayes rule:

P (x|z) =
P (z|x)P (x)∑
x P (z|x)P (x)

. (2.11)
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This now gives a distribution of the form P (wanted variable(s)|measured variable(s)),

where the wanted variable(s) is the 2D position x and the measured variable(s) is

the measurement z. Optimisation can be performed on this distribution to com-

pute the Maximum a Posteriori (MAP) estimate. In our example this would be

referred to as computing the MAP estimate for the vehicle’s 2D location x, given

the measurement z. This use of Bayes rule is known as inference because the con-

ditional relationship (arrow direction) has been changed so that the distribution

P (wanted variable(s)|measured variable(s)) can be inferred from the data. Similar

procedures are used throughout this dissertation and can be summarised using the

following four steps:

1. Draw a graphical model that represents the process by which measurements are

generated, this is known as a generative model.

2. Write down the joint probability distribution by concatenating the product of

P (parent|children).

3. Use the probability rules from Section 2.4 to manipulate the joint distribution

into a form where P (wanted variable(s)|measured variable(s)) = < exp >.

4. Optionally: Run an optimisation on < exp > to find the MAP estimate.

Note:- Step 4 is occasionally omitted and the distribution from Step 3 is used directly.

These four steps are straightforwardly written down, but can, for a particular prob-

lem, require significant time, effort and experience to implement. For instance, many

of the problems presented in this dissertation could be modelled using different gen-

erative models; selecting a particular one comes down to a combination of experience,

trial and error, and making steps 2, 3 and 4 feasible. Once a generative model has

been selected and steps 2 and 3 have been applied, it is often still a challenge to

perform the optimisation step. The optimisations in this dissertation always involve

multivariate variables (sometimes with over a thousand dimensions) and often con-

sist of a mixture of continuous and discrete values. Finding a global optimum may

be computationally intractable given the available computing power and so a combi-

nation of good engineering practice, approximations and simplifying assumptions is

required to produce systems capable of real-time performance.
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zt−1 zt

xt−1 xt

ut−1 ut

Figure 2.2: Markov process.

2.6 Recursive Bayesian Estimation

Figure 2.2 is a graphical model that represents a Markov process for the hidden vari-

able x given the observed odometry/control inputs u and the observed measurements

z. The joint distribution can be written down directly from the graphical model:

P (xt:0, zt:1,ut:1) = P (x0)
T∏

t=1

P (zt|xt)P (xt|xt−1,ut). (2.12)

The conditional relationships encapsulated within the graphical model (the arrows)

imply that this is a Markov process i.e. the system has no memory. This means that

the current position only depends on the previous position and the current odometry,

which can be written down mathematically as:

P (xt|xt−1:0,ut:1) = P (xt|xt−1,ut) (2.13)

and that the current measurements only depend on the current state

P (zt|xt:0) = P (zt|xt). (2.14)

If it is only the current state estimate xt that is required, which is often the case in

robotics, then this problem can be solved with recursive Bayesian estimation. This
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involves recursively applying the following two steps: a prediction step, where the

previous state is marginalised out:

P (xt|zt−1:1,ut:1) =

∫
P (xt|xt−1,ut)P (xt−1|zt−1:1,ut−1:1)dxt−1 (2.15)

and an update step, which incorporates the new measurement using Bayes rule:

P (xt|zt:1,ut:1) =
P (zt|xt)P (xt|zt−1:1,ut:1)

P (zt|zt−1:1,ut:1)
(2.16)

where

P (zt|zt−1:1,ut:1) =

∫
P (zt|xt)P (xt|zt−1:1,ut:1)dxt. (2.17)

2.7 Kalman Filtering

Equations (2.15)-(2.17) give the general form of recursive Bayesian estimation where

the probability distributions are left undefined. In the case that the prediction and

update probability distributions are modelled as Gaussians and have linear transition

models, then Equations (2.15) and (2.16) can be written down in closed form and

give the Kalman Filter [Kalman, 1960].

The Kalman Filter is optimal, in the sense that it minimises the mean squared error

and is guaranteed to converge if a process exhibits Gaussian noise and linear transition

models. However, if the prediction and update probability distributions are modelled

as Gaussians but have non-linear transition models then, at the expense of optimality

and guaranteed convergence, it is possible to use an extended form of the Kalman

Filter, commonly known as the Extended Kalman Filter (EKF). The EKF assumes

that the non-linear transition models can be approximated with a linearisation around

the current state estimate.

The compromise made when using the EKF is that the linear approximation removes

the guarantees of optimality and convergence. If the non-linearities are weak and

the linear approximations are good, then the results achieved may also be good. If
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however, the underlying functions are highly non-linear then the approximation could

be poor. One way to improve the quality of the estimate is to obtain a better linear

approximation, which can be achieved by relinearising at the new estimate and then

using this improved linearisation to recompute the estimate. This is the principle of

the Iterated Extended Kalman Filter (IEKF); relinearisation is computed K times

(K is the number of iterations in the IEKF). In practice, this simple extension to the

EKF can significantly improve the quality of the estimate, especially if the predicted

state is a long way from the true state.

For the Kalman Filtering equations refer to Appendix A and for more detail refer to

[Bar-Shalom & Fortmann, 1988; Bar-Shalom et al., 2002].

2.8 Representing Probability Distributions

The biggest implication of using probabilistic methods is that probability distributions

are used instead of ‘point estimates’ or ‘best guesses’. Representing these distributions

within a computer poses a number of challenges. We will now use a simple exam-

ple to illustrate the power of probabilistic methods and to consider how probability

distributions can be represented within a computer.

A Simple Example

Consider an autonomous vehicle (boat) that has been launched somewhere on a river

and has a map of the buoys on the river M but does not know its location x. The

vehicle processes information at discrete time-steps t and uses onboard sensor(s) to

make measurement(s) of the colour of any buoys it observes, giving an estimate of

where along the river the boat might be zt. The vehicle is also fitted with a ship’s log

and can make estimates of how far it has travelled between time-steps, for example

ut is the distance traveled between time-steps t − 1 and t. This type of problem is

known as Localisation within the robotics community. The graphical model is shown

in Figure 2.3 and can be solved using recursive Bayesian estimation, i.e. variations of

Equations (2.15) and (2.16).

Figure 2.4 shows a diagram of how the posterior distribution would evolve over three

time-steps: the vehicle is initially completely lost and then observes a red buoy, fol-

lowed by a green buoy and a yellow buoy at time-steps one, two and three respectively.
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To initialise the system at time-step zero a prior distribution is used; in this example

a uniform distribution1 is used to represent an equal chance of the vehicle being any-

where along the river. Now the boat moves forwards and at time-step one observes

a red buoy z1 and records the distance on the ship’s log u1. The algorithm applies

the prediction (2.15) and the update (2.16) to assign higher probabilities to distances

along the river where red buoys exist (four in total). The fact that the algorithm

uses a probability distribution to represent the distance x along the river, means that

it is able to model the possibility of the boat being at four different locations. The

boat moves again and at time-step two observes a green buoy z2; the algorithm can

incorporate this new information and update the estimate, there are now two loca-

tions that are more likely. Finally, the distance u3 is recorded and a yellow buoy is

observed z3, the estimate is updated and now there is a high probability that the

algorithm knows where along the river the boat is.

zt−1 zt

xt−1 xt

ut−1 ut

M

Figure 2.3: A simple example (Localisation).

This example illustrates that by using probability distributions, rather than ‘point

estimates’ or ‘best guesses’, the algorithm is able to maintain multiple hypotheses and

model the uncertainty associated with the variable x. The downside is that whereas

a ‘point estimate’ or ‘best guess’ is easily represented by a computer, it can be much

harder to represent probability distributions. Below is a selection of representations

commonly used:

EKF: One of the big downsides of using the EKF for this problem is that it models

the probability distributions using a unimodal Gaussian distribution and is therefore

1Often referred to as an uninformative distribution.

18



x

x

x

P
(.

..
)

P
(.

..
)

P
(.

..
)

x

First time-step (observed )

Second time-step (observed )

Third time-step (observed )

Map of buoys

x

P
(.

..
)

Zeroth time-step (initialisation)

Figure 2.4: An example of a probabilistic approach.

unable to model the possibility that the vehicle could be in several separate locations.

MHT: The unimodal limitations of the EKF can been removed by using a multi-

hypothesis EKF or multi-hypothesis tracker (MHT) [Reid, 1979], which allows multi-

ple solutions to be considered. This models the probability distribution as a mixture

of Gaussian components. This method would therefore be able to represent our ex-

ample in Figure 2.4 by having four separate Gaussian components mixed together.

Coarse grid / topological: Unlike the previous two continuous methods, a set

of discrete states are placed at interesting locations in the environment and then

the vehicle’s location x is treated as a discrete random variable. The probability

distribution is then represented using a non-parametric distribution over the discrete

states. If applied to our example this approach would use seven discrete states, one

for each buoy and the recursive estimation would compute a probability distribution

over these discrete states.
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Fine grid / metric: Similar to the coarse grid approaches x is represented using

discrete locations and directions; however, a much finer grid is used. This could be

applied to our example by discretising the continuous variable x, for example, into

one hundred discrete locations. Recursive estimation can then be used to compute a

distribution over these discrete states. This approach can handle general distributions

but is limited by the resolution of the grid and can be unfeasible for higher dimensional

problems.

Monte-Carlo localisation: The work of [Isard & Blake, 1998a] proposed a differ-

ent way to approximate probability distributions based on a set of weighted particles.

These particles and their weights are distributed such that their local density approx-

imates the density of the underlying probability distribution. [Isard & Blake, 1998a]

applied their idea to visual tracking and showed that they could achieve higher levels

of robustness compared with the unimodal Kalman Filter based approaches. This

could be applied to the example in Figure 2.4 and would use a number of particles to

capture the multiple modes present in the probability distribution.

In summary, there are many different ways of representing probability distributions

within the computer, each of which has different strengths and weaknesses. The EKF

for example is easy to implement and runs efficiently because the model comprises

a single Gaussian. If the true distribution is modelled well by a single Gaussian

then the EKF can do a good job; if however, the true distribution is non Gaussian,

like our example in Figure 2.4, then the EKF can perform very poorly. At the

other end of the scale are the Monte-Carlo based methods, which are able to model

arbitrary probability distributions and can therefore handle problems such as the one

in Figure 2.4. The downside is that Monte-Carlo methods suffer from the curse of

dimensionality and the number of particles required grows exponentially with the

number of dimensions modelled. Although work has been carried out to make more

efficient use of a given number of particles [Isard & Blake, 1998b; Montemerlo et al.,

2003] and to adapt the number of particles required [Fox, 2001]; unfortunately, the

number is often still too large for real-time performance.

In this dissertation we use a variety of different representations, including: uni-modal

Gaussians, multi-modal Gaussians, discrete non-parametric distributions and fine grid

metric representations.
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2.9 Summary

This chapter has introduced the notation, probability rules, graphical models, re-

cursive Bayesian estimation and how to represent probability distributions using a

computer. These basic tools will be used throughout this dissertation, both when es-

timating the metric information using our SLAM in dynamic environments and when

doing visual tracking using our pixel-wise posterior methods. We will now move

onto the first part of the dissertation, which looks at how we can estimate metric

information in the marine environment using sensors mounted on mobile vehicles.
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Part I

Estimating Metric Information

We will now look at how to estimate metric information using sensors mounted on

a mobile vehicle. In our practical experiments this vehicle is a boat; however, the

methods and theory presented in this part of the dissertation could be applied to a

wide variety of vehicles and sensors. At the heart of our solutions is SLAM [Smith

et al., 1988], which has been studied intensively in the robotics community since the

late 1980s. The idea behind SLAM is to use sensor(s) attached to a mobile vehicle to

automatically build a map of the environment and to simultaneously use that map to

localise the vehicle’s own position. The sensors used often include some combination

of: camera(s), laser range finder(s), SONAR sensor(s) and RADAR sensor(s). From

a theoretical standpoint, SLAM uses probabilistic methods to fuse incoming sensor

data and infer both the position of the vehicle and the positions of any objects in the

surrounding environment.
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Chapter 3

Simultaneous Localisation and

Mapping

3.1 Introduction

This chapter covers the background on SLAM that is required to understand and

implement our work on SLAM in dynamic environments in Chapter 4 and hybrid

mapping in Chapter 5. It begins in Section 3.2 by introducing the common notation.

Then Sections 3.3 and 3.4 look at two simpler problems: (localisation) which estimates

a vehicle’s location given a map of the environment and (mapping) which estimates

a map of the environment given accurate positions of the vehicle. This is extended

in Section 3.5 to the more general case of an unknown map and location, which

requires SLAM [Smith et al., 1988]. Sections 3.6, 3.7 and 3.8 describe three different

techniques, respectively, for solving the SLAM problem: (i) the recursive filtering

solution; (ii) Full-SLAM / Bundle Adjustment and (iii) Sliding Window SLAM, which

is the approach taken in this dissertation and captures the best aspects of recursive

filtering and Full-SLAM. Section 3.8 looks at the structure of the information matrix

and describes how marginalisation is performed in information form and Section 3.10

finishes with a summary.

3.2 Notation

Below is a summary of the notation used in this chapter:
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• xt: A state vector describing the vehicle’s pose at time t.

• ut: A control vector that was applied to vehicle at time t− 1 to take it to time

t.

• zt: A measurement made by the vehicle at time t of a landmark in the world.

• mk: A state vector describing the location of landmark k.

• X = {x0, . . . ,xt}: A set of vehicle poses.

• U = {u1, . . . ,ut}: A set of odometry.

• Z = {z1, . . . , zt}: A set of measurements.

• M = {m0, . . . ,mk}: A set of all landmarks.

3.3 Localisation

Localisation involves estimating a mobile vehicle’s location x using a map M of the

environment that is provided a priori, given measurements Z. The level of uncertainty

in the initial position can vary from being completely lost, to knowing where the

vehicle was t seconds ago and having some idea of how it has moved since then. The

example used in Section 2.8 from the previous chapter was a simple example of the

localisation problem.

Depending on the level of uncertainty, different approaches for localisation can be

taken, using different probabilistic representations and estimation techniques. For a

review of early work on localisation refer to [Borenstein et al., 1996]. One early so-

lution to the problem was developed by [Leonard & Durrant-Whyte, 1991] and used

artificial beacons to provide the map that the vehicle can then localise itself to. This

type of approach is very practical as the artificial beacons can be placed or tagged in

such a way that data-association is unambiguous, making the posterior a unimodal

distribution and therefore ‘easy’ to solve (for example using an EKF). This is essen-

tially how the GPS system works. Numerous approaches have been taken for solving

harder problems where multi-modal distributions are required. For instance, [Jens-

felt & Kristensen, 1999; Roumeliotis & Bekey, 2000] apply multi-hypothesis tracking

(MHT) [Reid, 1979], which allows multiple solutions to be considered. The work of

[Simmons & Koenig, 1995] used a coarse grid/topological representation applied to
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office environments where the discrete states were placed at corridor junctions and

encoded four discrete directions. A finer grid has been used by [Burgard et al., 1996]

where grid cells are 15cm × 15cm and encode 180 directions for a 4m × 7m room.

Monte-Carlo methods using particle filtering [Isard & Blake, 1998a] have been applied

to localisation by [Dellaert et al., 1999].

3.4 Mapping

Mapping is the complement of Localisation; the objective is to estimate a map M

of the surrounding environment, given that you accurately know the location of the

vehicle x when it makes an observation of the environment z using onboard sensor(s).

Figure 3.1 shows the graphical model that corresponds to the mapping problem, where

the key difference from localisation (shown in Figure 2.3) is that x is now observed

and M is unobserved; note that the motion model has been removed because x is

now given. Mapping is applicable if you have a method for measuring the absolute

position of the vehicle e.g. GPS and a compass.

zt−1 zt

xt−1 xt

M

Figure 3.1: Mapping

Mapping in the context of mobile robotics has also been studied for several decades.

For a good summary of the early work on mapping refer to [Borenstein et al., 1996].

A common approach to mapping is to use occupancy grids, which partition the world

into discrete grid cells and then estimate the probability that a particular grid cell is

occupied. Much of the original work on occupancy grids was down to [Elfes, 1987] and

[Moravec, 1988]. The objective of occupancy grid mapping is to compute the posterior

P (M|xt:1, zt:1), where M is the map consisting of N grid cells M = {m1, . . . ,mN}.
Unfortunately, the number of possible solutions to M grows exponentially with N
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e.g. for a 100 × 100 grid there would be 210000 combinations and so it has become

standard practice to make the simplifying assumption that neighbouring grid cells

are independent of one another i.e.

P (M|xt:1, zt:1) =
N∏

n=1

P (mn|xt:1, zt:1). (3.1)

The occupancy grid can then be updated by modeling the inverse sensor model

P (mn|xt:1, zt:1) and updating the grid cells independently, see [Thrun et al., 2005]

for full details. A more sophisticated method for computing occupancy grids using

the full posterior P (M|xt:1, zt:1) was proposed by [Thrun, 2002] but it requires batch

processing of the data and is not suitable for incremental updating. In Chapter 5

our hybrid representation uses an occupancy grid. We assume independent grid cells

because we need to be able to incrementally update the grid.

3.5 SLAM

SLAM is a generalisation of localisation and mapping to the case where both the

vehicle’s trajectory x and the map M are unknown. Figure 3.2 shows a graphical

model representing the SLAM problem, where both the x nodes and the M node

are now hidden random variables. The dotted line between xt−1 and M represents

the fact that there may be correlations between the vehicle pose and the map if

marginalisation (a prediction step) has been performed.

3.6 EKF SLAM

The first stochastic formulation of the SLAM problem was first proposed in [Smith

et al., 1988] and used an EKF to do the recursive Bayesian estimation. The concept is

to augment the vehicle state xv (where the vehicle is) with the states of any landmarks

xm (the map):
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Figure 3.2: SLAM

x
′
=




xv

xm1

. . .

xmN



, (3.2)

where N is the number of landmarks in the map. Likewise, the covariance P is also

augmented:

P
′
=

[
Pvv Pvm

PT
vm Pmm

]
, (3.3)

where Pvv is the covariance of the vehicle, Pmm is the covariance of the map and

Pvm is the correlations between the map and the vehicle. The prediction distribution

is of the same form as Equation (A.10), with the difference that the state transition

Jacobians ∆F
′
x and ∆F

′
u now have the form:

∆F
′

x =

[
∆Fx 0

0 I2n×2n

]
(3.4)

and
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∆F
′

u =

[
∆Fu 0

0 I2n×2n

]
, (3.5)

where ∆Fx and ∆Fu are the Jacobians before state augmentation; and the prediction

covariance has the form:

Q
′
=

[
Q 0

0 0

]
. (3.6)

This has the effect of applying the same motion model to the vehicle as would be

in pure localisation and applies a constant position, zero noise, motion model to the

landmarks (the map). This is the correct assumption if the landmarks are truly sta-

tionary; if however, any of the landmarks should move then this assumption will lead

to map corruption (we deal with this problem in Chapter 4). The update distribution

has the same form as Equation (A.11) except that the measurement model Jacobian

is now long and thin:

H
′
=
[
∆Hxv . . . ∆Hxmd

. . .
]
, (3.7)

where ∆Hxv is the Jacobian with respect to the vehicle, ∆Hxmd
is the Jacobian

with respect to the measured landmark and the data-association d selects the correct

landmark. Finally, the last modification is the method for adding a new landmark,

which uses the function xmN+1 = g(xv, z) to predict the new landmark location and

the Jacobian:

∆Gx =

[
IN×N 0

[∆Gxv0] ∆Gz

]
(3.8)

of g(xv, z) to initialise the new covariance:
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P
′+ = ∆Gx

[
P
′

0

0 R

]
∆GT

x . (3.9)

This process of adding new landmarks is added into the EKF algorithm (see Appendix

A) after the update step, which leads to the Extended Kalman Filter SLAM (EKF-

SLAM) algorithm.

The EKF-SLAM algorithm has been in common use since the original [Smith et al.,

1988] paper. One of the first applications to real-world problems was due to [Leonard

& Durrant-Whyte, 1991], who used artificial landmarks as beacons. Using the aug-

mented state representation introduces correlations between the vehicle and the map

Pvm and between landmarks and other landmarks Pmm. [Csorba, 1997] discussed

the importance of these correlations and showed how they are essential for consistent

estimation. [Csorba, 1997] also looked into the convergence properties of SLAM and

showed that the map covariance would never increase. A more critical look at the

consistency of the EKF-SLAM algorithm can be found in [Castellanos et al., 2004].

In particular, they use the Normalised Estimation Error Squared (NEES) (see [Bar-

Shalom et al., 2002]) to analyse the consistency of EKF-SLAM. We base some of our

analysis in Chapter 4 on this methodology.

[Leonard & Rikoski, 2001] show how decisions can be delayed within the EKF-SLAM

framework. They delay marginalising out old vehicle positions until they are no

longer involved in any active decisions, this has the effect of maintaining correlations

between the most recent pose and older poses. These correlations can then be used

to add constraints that involve more than one pose. This is particularly useful in the

example where you have a bearing only sensor and cannot initialise a new landmark

immediately; instead it is necessary to wait until the landmark has been observed

over a significant baseline and the depth can be estimated. This approach is similar

to the fixed-lag Kalman Smoother [Anderson & Moore, 1979]; however, [Leonard &

Rikoski, 2001] do not necessarily marginalise out old poses in the order that they were

added. It should also be pointed out that this has close relationships with the work

of [Sibley et al., 2007] on Sliding Window SLAM (see Section 3.8) and with our work

in Chapters 4 and 5.

[Dissanayake et al., 2001, 2002] introduce the idea of map management; in particular,

they show that a significant number of landmarks can be removed from the estimation
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whilst remaining consistent. The process for deleting a landmark is straightforward

for EKF-SLAM and involves deleting the rows and columns corresponding to the land-

mark from the state vector and the covariance matrix. Deleting landmarks from the

EKF in this way is equivalent to marginalising out the uncertainty in that landmark.

One of the downsides of EKF-SLAM is its quadratic computational complexity, due

to the inversion of the N ×N covariance matrix. In practice, this limits the standard

EKF-SLAM system to map sizes of around one hundred landmarks. Significant effort

has gone into pushing this boundary, starting with the work of [Leonard & Feder,

1999] who proposed the idea of decoupled stochastic mapping or sub-mapping as it

has become known. Considerable research effort has continued in the area of sub-

mapping [Guivant & Nebot, 2001; Williams, 2001; Leonard & Feder, 2001; Tardos

et al., 2002]. These methods do not overcome the quadratic complexity, but improve

the scaling of EKF-SLAM so that it can be applied to larger problems i.e. thousands

of landmarks.

Information Filters

The information filter can be considered the dual of the covariance filter (EKF), rather

than an estimated state vector x and covariance matrix P, an information vector y

and information matrix Y are maintained. The relationship between the information

filter and the covariance filter is:

Y = P−1

y = P−1x. (3.10)

In other words, the information matrix is the inverse of the covariance matrix and

the information vector is the state vector projected using the information matrix.

There have been numerous approaches to SLAM that use this information form,

for example [Csorba, 1997; Newman & Durrant-Whyte, 2001; Eustice et al., 2005;

Dellaert & Kaess, 2006; Sibley et al., 2007]. There are also many approaches, which

use the information form to reduce the complexity of the problem. [Thrun et al.,

2004] proposed the sparse extended information filter, which essentially removes very

weak links in the information filter making it more efficient to solve. [Paskin, 2003]

proposed an efficient factorisation of the posterior using thin junction trees, again
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to improve efficiency. Throughout this dissertation, our SLAM algorithms use the

information form of the SLAM problem to do the underlying estimation, this will be

discussed further in the following two sections.

3.7 Bundle Adjustment / Full SLAM

z2 z3

x2 x3

u2 u3

M

z1

x0 x1

u1

z5 z6

x5 x6

u5 u6

z4

x4

u4

Figure 3.3: Full SLAM

Each iteration of “standard” EKF-based SLAM provides a MAP estimate for the state

at the current time-step. Modern understanding of this recognises that previous poses

have been marginalised out. In contrast, Full-SLAM [Thrun et al., 2005; Dellaert &

Kaess, 2006] finds the MAP estimate of the entire pose history. This is akin to

bundle-adjustment techniques from photogrammetry [Triggs et al., 2000; Hartley &

Zisserman, 2004], and has the advantage that more accurate solutions can be found

since optimisation is performed over past and future data. It does of course suffer

from the problem of growth without bound in the state size. Figure 3.3 shows the

graphical model corresponding to a Full SLAM solution, where the entire trajectory

(seven poses) are estimated together.

The next section will introduce a Sliding Window SLAM technique proposed by

[Sibley et al., 2007] that captures benefits of Full-SLAM without the unbounded

growth in state size. First, however, let us review the least-squares derivation that

forms the basis for both Full-SLAM [Thrun et al., 2005; Dellaert & Kaess, 2006] and

Sliding Window SLAM [Sibley et al., 2007].
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We will make two simplifying assumptions: (i) only one observation per time-step

and (ii) known data-association i.e. which landmark generated a given measurement

(we will relax these assumptions in Chapter 4). The joint probability of X, M, U

and Z can be factorised, using the conditional structure depicted by the graphical

model in Figure 3.3, as follows:

P (X,M,U,Z) = P (x0)P (M)
T∏

t=1

P (zt|xt,M)P (xt|xt−1,ut), (3.11)

where:

• T is the number of time-steps.

• P (x0) is the prior on the vehicle state, which has a mean x̃0 and covariance P0.

• P (M) is the prior on the map, which is normally taken to be the uninformative

uniform distribution.

• P (zt|xt,M) is the measurement model i.e. the probability of the measurement

zt given the vehicle pose xt, the map M and the correct data-association.

• P (xt|xt−1,ut) is the motion model i.e. the probability of the new pose xt given

the last vehicle pose xt−1 and the odometry ut.

If we take P (M) to be the uninformative uniform distribution then (3.11) reduces to:

P (X,M,U,Z) = P (x0)
T∏

t=1

P (zt|xt,M)P (xt|xt−1,ut). (3.12)

Let us now also make Gaussian assumptions and define the prior term, motion model

and measurement model respectively as:
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x0 = x̃0 + p0 ⇔ P (x0) ∝ exp(−1

2
‖x̃0 − x0‖2

P0
) (3.13)

xt = f(xt−1,ut) + qt ⇔ P (xt|xt−1,ut) ∝ exp(−1

2
‖f(xt−1,ut)− xt‖2

Qt
) (3.14)

zt = h(xt,M) + rt ⇔ P (zt|xt,M) ∝ exp(−1

2
‖h(xt,M)− zt‖2

Rt
) (3.15)

where p0, qt and rt are normally distributed, zero mean, noise vectors with covariances

P0, Qt and Rt respectively. We can now perform inference on the graphical model in

Figure 3.3 to find the MAP estimate {X̂, M̂} = arg max{X,M} P (X,M|U,Z). This

can be done by minimising the negative log of the joint distribution (3.12):

{X̂, M̂} , arg min
{X,M}

(− log(P (X,M,U,Z))). (3.16)

By substituting Equations (3.13), (3.14) and (3.15) into (3.16) we get a non-linear

least-squares problem of the form:

{X̂, M̂} , arg min
{X,M}

{
‖x̃0 − x0‖2

P0
+

T∑

t=1

(
‖f(xt−1,ut)− xt‖2

Qt
+ ‖h(xt,M)− zt‖2

Rt

)}
. (3.17)

Let us now linearise the non-linear terms and re-write as a matrix equation:

{X̂, M̂} , arg min
{X,M}

{
‖−δx0 − {x0 − x̃0}‖2

P0
+

T∑

t=1

(
‖{Ft−1δxt−1 − δxt} − {xt − f(xt−1,ut)}‖2

Qt
+

‖{Htδxt + JtδM} − {zt − h(xt,M)}‖2
Rt

)}
, (3.18)

where Ft−1 is the Jacobian of f(.) with respect to xt−1, Ht is the Jacobian h(.) with

respect to xt and Jt is the Jacobian of h(.) with respect to M. We can now factorise
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and write a standard least-squares matrix equation:

ATΣ−1Aδ = ATΣ−1b, (3.19)

where A is a matrix of Jacobians, Σ is a covariance matrix, b is an error vector and δ

is the correction vector for the state. For a simple example illustrating the structure

of A, Σ−1, b and δ, refer to Appendix B, or for a more detailed explanation refer to

[Dellaert & Kaess, 2006]. The matrix ATΣ−1A is known as the Hessian matrix and

for SLAM problems where X and M are observable it will form a positive definite

matrix i.e. vTATΣ−1Av > 0 for all non-zero vectors v. This means that δ can be

solved for using a Cholesky decomposition of the Hessian and a back substitution.

The state is then updated as follows:

{X,M} = {X,M}+ δ, (3.20)

and the Jacobians forming the matrix A are recomputed, the process is then repeated

until the solution converges. The Cholesky decomposition and back solve can either

be achieved using standard dense matrix arithmetic or by using direct sparse methods

[Davis, 2006; Dellaert & Kaess, 2006]. We have implementations for both approaches,

but find in general that optimised dense matrix approaches are faster for the size of

problems we deal with. If however, the problem size is above five to six hundred

states then the overhead of the sparse methods is worth considering.

3.8 Sliding Window SLAM

Sliding Window SLAM [Sibley et al., 2007] is essentially a compromise between tradi-

tional filtering solutions (e.g. EKF-SLAM) and Full-SLAM. The idea is that marginal-

isation is postponed for t − τ time-steps leaving a temporal sliding window during

which pose estimation is computed. This effectively allows the benefits of a Full-

SLAM solution to be obtained for states that lie within the temporal sliding window.

In our work we take advantage of the optimisation over the trajectory history not

only to improve the pose estimates, but crucially in order to allow reversible data-

association and model-selection to take place. Full details of this will be presented
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Figure 3.4: Sliding Window SLAM (τ is the beginning of the sliding window).

in Chapters 4 and 5, but first we will review the two governing equations of sliding

window SLAM which are: (i) an optimisation step

{x̂τ :T , M̂} = arg max
{xτ :T ,M}

(
P (xτ ,M|z1:τ ,u1:τ )

T∏

t=τ+1

P (zt|xt,M)P (xt|xt−1,ut)

)
(3.21)

and (ii) a marginalisation step

P (xτ+1,M|z1:τ+1,u1:τ+1) =

∫
P (xτ+1,xτ ,M|z1:τ+1,u1:τ+1)dxτ . (3.22)

The term P (xτ ,M|z1:τ ,u1:τ ) is the prior used at time T and is just the posterior at

time τ i.e. the distribution of vehicle pose and map at the beginning of the temporal

sliding window. In practice this is only recalculated when τ > 0, before that time the

distribution of initial vehicle pose P (x0) is used and the marginalisation step is left

out.

The Best of Both Worlds

It is interesting to consider what happens to the sliding window method if: (i) the

window length only covers a single pose i.e. τ = T − 1 and (ii) the window length

covers all time i.e. τ = 0. Let us consider the first case, if we substitute τ = T − 1
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into Equations (3.21) and (3.22) then we get:

{x̂T−1:T , M̂} = arg max
{xT−1:T ,M}

(P (xT−1,M|Z1:T−1,U1:T−1)P (zT |xT ,M)P (xT |xT−1,uT ))

(3.23)

and

P (xT ,M|Z1:T ,U1:T ) =

∫
P (xT ,xT−1,M|Z1:T ,U1:T )dxT−1, (3.24)

which is equivalent to the IEKF [Bar-Shalom & Fortmann, 1988; Bar-Shalom et al.,

2002]. Let us now consider what happens if τ = 0 (note that τ = 0 and that if τ ≤ 0

then P (x0) is used for the prior and the marginalisation is left out):

{x̂0:T , M̂} = arg max
{x0:T ,M}

(
P (x0)

T∏

t=1

P (zt|xt,M)P (xt|xt−1,ut)

)
, (3.25)

which is nothing other than Full-SLAM/Bundle Adjustment. This shows that the

sliding window estimator really does give us the best of both worlds; by selecting the

length of the temporal sliding window we can go from computing the IEKF solution

for a single pose and the map all the way to the Full-SLAM solution over all time-steps

[Thrun et al., 2005].

3.9 The Information Matrix

We will now consider the relationship between the Hessian in the least-squares for-

mulation (ATΣ−1A in (3.19)), the information matrix in the information formulation

(3.10) and the covariance matrix in the covariance formulation (3.3). In statistics,

the Cramer Rao lower bound [Scharf & McWhorter, 1993] states that the inverse of

the Fisher Information matrix Y (x) gives a lower bound for the covariance matrix of

an unbiased estimator x̂ i.e.
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covx̂(x̂) ≥ Y (x)−1, (3.26)

where A ≥ B means that A − B is positive semidefinite. Therefore if the Cramer

Rao lower bound is reached, then given that we have normally distributed zero mean

variables the following condition is satisfied:

P−1 = Y = ATΣ−1A

where ATΣ−1A is the approximation to the Hessian calculated when solving the least-

squares problem (3.19). This is why the information matrix Y in the information filter

version of SLAM [Eustice et al., 2005] and the Hessian in the least-squares formulation

of SLAM [Sibley et al., 2007] are equivalent to the inverse of the covariance matrix P in

the more traditional Kalman filter based SLAM systems. Interestingly, as explained

fully in [Dellaert & Kaess, 2006], the non-zero elements of the information matrix

Y correspond to links in the Markov Random Field (MRF) that is equivalent to

the graphical model in Figure 3.3. Each of these links represent a constraint or

relationship between two nodes in the MRF, e.g. a measurement equation linking a

vehicle pose to a landmark or an odometry equation linking one vehicle pose to the

next. Figure 3.5 shows the structure of the information matrix and MRF for a simple

2D example: Yv is block tridiagonal and represents the information from odometry

between vehicle poses; Ym is block diagonal and represents the information about

landmarks in the map and Yvm and YT
vm represent the information associated with

measuring a landmark from a given pose.

Marginalisation in Information Form

Equation (3.22) is the marginalisation of the oldest pose in the temporal sliding win-

dow. Given that we are using a least-squares formulation i.e. a uni-modal Gaussian

distribution, it is possible to do the marginalisation analytically in information form.

It is well known that it is possible to decouple states y1 from a system of equations

of the form:
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Figure 3.5: Shows the structure of the information matrix (left column) and the cor-
responding MRF (right column) for a simple 2D example. The triangles represent
vehicle poses, the squares represent landmark locations (these triangles and squares
are the nodes of the MRF) and the dotted lines represent constraints, which corre-
spond to non zero elements in the information matrix.

[
A B

BT D

][
y1

y2

]
=

[
b1

b2

]
(3.27)

using the Schur Complement method (see [Triggs et al., 2000] for details). The idea is

to pre-multiply both sides of the equation with the matrix [I 0;−BTA−1 I], which

results in a system of equations where y2 can be solved independently of y1 i.e.

[
A B

0 D−BTA−1B

][
y1

y2

]
=

[
b1

b2 −BTA−1b1

]
. (3.28)

The term D−BTA−1B is known as the Schur Complement and corresponds to the

information matrix for the decoupled system. If this system of equations represents a

least-squares problem as described in Section 3.7, then this is equivalent to marginal-

ising out the random variables y1. Let us now consider what happens to the structure

of D − BTA−1B as old poses are marginalised out. Figure 3.6 shows the effect of

marginalising out poses one-by-one. The first row shows the situation before any

marginalisation. The second row corresponds to marginalising out x0, which results
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in no change of structure in the information matrix (because no features were ob-

served from this pose) but does introduce a prior on the vehicle state x1. Then in

the third row x1 has been marginalised out and a link has been introduced between

x2 and m0, which is also seen in the Yvm block of the information matrix (this extra

link and the prior on x2 and m0 is explained by the prior term in Equation (3.21)).

As poses x2 and x3 are marginalised out more links are again introduced between the

oldest pose and the landmarks; links are also introduced between landmarks that are

no longer observed from the oldest pose. In practice, we use the prior term (3.13)

in our least-squares formulation to represent the prior term (3.22) in the sliding win-

dow. To maintain probabilistic correctness only equations containing the pose being

marginalised out should be included in the system (3.27) and then the modified system

(3.28) should be solved for y2.

In practice, we store the information matrix that corresponds to the prior term (3.22)

separately. This prior information matrix has non-zero elements corresponding to

the poses, landmarks and links that have been shaded grey in Figure 3.6. We then

add in the information corresponding to the measurement equations and odometry

equations that are associated with the poses being optimised in the temporal sliding

window.

3.10 Summary

This chapter has introduced SLAM both in covariance form and information form. It

has shown how SLAM can be solved recursively using the EKF or in batch form using

non-linear least-squares. A temporal sliding window framework was introduced, which

can be used as a compromise between the recursive methods and the batch methods

whilst maintaining real-time performance. In the next chapter, we will show how

the use of a temporal sliding window allows us to do reversible decision making and

how this can be used to achieve more robust data-association and to include dynamic

objects in the SLAM estimation.
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Figure 3.6: Illustrates how the information matrix (left column) and MRF (right
column) change as poses x0 (row 2), x1 (row 3), x2 (row 4) and x3 (row 5) are
marginalised out. The light grey region indicates the nodes that are involved in the
prior term (3.22) in Equation (3.21).
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Chapter 4

SLAM in Dynamic Environments

4.1 Introduction

We have now covered the necessary background on probabilistic methods and SLAM

and will now introduce the first contribution of the dissertation, which is how to

include dynamic objects directly in a SLAM system.

Previous chapters have made the assumption that landmarks are always stationary

and eluded to the problems of inconsistency if in fact some of them are dynamic.

[Wang et al., 2003] have tackled this problem by detecting moving objects in the

environment and tracking them separately with EKFs. [Hähnel et al., 2003] use

expectation maximisation to compute a posterior for each scan element as to whether

it is stationary or dynamic. Having successfully classified dynamic scan elements, they

remove them before performing localisation and mapping and hence obtain improved

localisation and better maps. They demonstrate their system in environments with

large portions of dynamic data e.g. busy corridors. [Wolf & Sukhatme, 2004] keep

two complementary maps one for stationary aspects of the environment and one for

dynamic aspects. These maps are represented using occupancy grids (see Section

3.4) and enforce mutual exclusion, in other words a grid cell can only be stationary or

dynamic, but not both. They demonstrate good results and show that by excluding

dynamic grid cells they are able to build better maps. In contrast to these methods,

we include dynamic objects directly within the augmented SLAM representation.

This means that our method is not only keeping correspondences between dynamic

objects over time, but it also uses the correlation in the SLAM filter to help the

estimate of the dynamic objects’ and the vehicle’s trajectory.
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In order to include dynamic objects directly in the SLAM representation we must be

able to solve the model-selection problem. The estimator constantly needs to answer

the question: is a landmark moving or is it stationary? Although there are methods

for doing model-selection in recursive filtering frameworks, such as interacting multi-

ple model estimation or generalised pseudo-Bayesian estimation [Bar-Shalom et al.,

2002], these methods always have some lag before the model-selection parameter(s)

converge to the correct steady state. This means that for a period of time the fil-

ter could classify a target as dynamic when it is stationary or vice-versa. This is

potentially catastrophic for SLAM, because incorrectly modeling a dynamic or sta-

tionary landmark will lead to biased measurements and hence map corruption and

inconsistency.

We propose a framework that combines sliding window SLAM [Sibley et al., 2007]

(as described in Section 3.8) and generalised expectation maximisation [Neal & Hin-

ton, 1998]. This allows us to include reversible model-selection and data-association

parameters in the estimation and hence include dynamic objects in the SLAM map

robustly. The key to our method is the use of a temporal sliding window optimisa-

tion, which delays the point when information is marginalised out (3.22), allowing

the filter a period of time to get the model-selection and data-association parameters

correct before marginalisation. Although something similar could be achieved with a

more traditional EKF using delayed decision making [Leonard & Rikoski, 2001], the

difference is that our method uses reversible as opposed to delayed decision making i.e.

decisions can change many times in light of new information before being committed

to the estimate.

The adverse effects of poor data-association in SLAM, namely inconsistent estimates

and divergence, are normally unacceptable and hence a suitable method must be se-

lected. A common approach is the chi-squared Nearest Neighbour (NN) test, which

assumes independence between landmarks and then probabilistically chooses the best

measurement which falls within the gate of an individual landmark. This method

can work well for sparsely distributed environments with good sensors; however, once

the proximity between landmarks approaches the sensor noise, or clutter is present,

ambiguous situations arise and a more sophisticated method is required. One such

method is Joint Compatibility Branch and Bound (JCBB) [Neira & Tardos, 2001],

which takes into account the correlations between landmarks by searching an in-

terpretation tree [Grimson, 1990] for the maximum number of jointly compatible

associations. This method produces very good results when ambiguities are present,
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but still suffers from problems in the presence of clutter and is slow for large numbers

of measurements. More recently, the data-association problem has been treated as a

discrete optimisation over multiple time-steps [Wijesoma et al., 2006]. We also treat

data-association as a discrete optimisation, but include model-selection and propose

an alternative method that uses sliding window optimisation and generalised expec-

tation maximisation [Neal & Hinton, 1998](more specifically an approximate method

called classification expectation maximisation [Celeux & Govaert, 1992]).

This chapter will begin in Section 4.2 by describing our method for doing SLAM with

reversible data-association; Section 4.3 extends this to SLAM in dynamic environ-

ments; Section 4.4 compares our methods to an IEKF with either NN or JCBB for

data-association and demonstrates the system working on real-world data and finally

Section 4.5 finishes with some concluding remarks.

4.2 Reversible Data-Association

The previous chapters have covered the necessary background knowledge, let us now

introduce the first of the algorithms presented in this dissertation. We first relax our

assumption of known data-association and introduce integer data-association param-

eters D , {d1, . . . , dt}, which assign measurement zt to landmark mdt . By combining

sliding window estimation and least-squares with generalised expectation maximisa-

tion, we can estimate both the continuous state estimates {X̂, M̂} and the discrete

data-association parameters D.

Figure 4.1 illustrates the graphical model that corresponds to the joint distribution

of the relaxed problem:

P (X,M,D,U,Z) = P (x0)P (M)P (D)
T∏

t=1

P (zt|xt,M, dt)P (xt|xt−1,ut). (4.1)

What we are really after is the MAP estimate P (X,M|U,Z), whereas what we have

is P (X,M,D,U,Z) where D is considered a nuisance parameter. The Bayesian

approach for dealing with this is to use the sum rule to marginalise out D i.e.

43



zt−1 zt

xt−1 xt

ut−1 ut

dtdt−1

M

Figure 4.1: A graphical model representing SLAM with reversible data-association
(note:- square boxes indicate discrete variables).

P (X,M|U,Z) =
∑

D

P (X,M,D|U,Z). (4.2)

Unfortunately, in practice this summation is computationally intractable because the

number of permutations of D grows exponentially with the length of the temporal

sliding window. A more tractable solution is to use the expectation maximisation

algorithm [Dempster et al., 1977; Dellaert, 2002] to estimate P (X,M|U,Z). If we let

Θ = {X,M} and Ψ = {U,Z} then we would like P (Θ|Ψ) as opposed to P (Θ,D|Ψ).

The expectation maximisation algorithm achieves this by recursively applying the

following two steps:

• E-Step: Calculate P (D|Θk,Ψ).

• M-Step: Θk+1 = arg maxΘ

(∑
D P (D|Θk,Ψ) logP (Θ|D,Ψ)

)
.

A simplification that is often applied to make the M-Step even more tractable is

the ‘winner-take-all’ approach, also known as classification expectation maximisation

[Celeux & Govaert, 1992; Meila & Heckerman, 1998], which assumes P (D|Θk,Ψ) to

be a delta function centred on the best value of D, reducing the algorithm to:

• E-Step: Dk+1 = arg maxD P (D|Θk,Ψ).

44



• M-Step: Θk+1 = arg maxΘ P (Θ|Dk+1,Ψ).

Finally, it has been shown that it is not necessary to complete the maximisation, but

that a single step where P (Θk+1|Dk+1,Ψ) >= P (Θk|Dk,Ψ) is not only sufficient for

convergence but often improves the rate of convergence [Neal & Hinton, 1998]. For

probabilistic correctness it is necessary to use the joint distribution over landmarks

and a single pose during the E-Step i.e. JCBB. In practice this is very slow for large

numbers of measurements and so we also include in our results an implementation

which makes an extra assumption of landmark independence during the E-Step i.e.

chi-squared NN. In practice this method gives a significant improvement over other

methods (which do not use reversible data-association) without the full cost of JCBB.

It is also interesting at this point to draw on the similarity between this approach

and iterative closest point [Besl & Mckay, 1992]; the significant difference is that

our method uses the underlying probability distribution (Mahalanobis distances) to

find the most likely correspondences, as opposed to the closest in a euclidean sense.

Algorithm 1 gives a summary of our method.

Algorithm 1: SLAM with reversible data-association.

P = P0; x0 = x̃0; M = []; D = [];
for t=[0:T] do

DoVehiclePrediction();
while |δ|∞ > ε do

D̂ = DoDataAssociation();
AddAnyNewLandmarks();
Compute A, Σ and b;
Solve for δ in ATΣ−1Aδ = ATΣ−1b;
{x̂τ :t, M̂} = {x̂τ :t, M̂}+ δ;
Compute the covariance matrix P;

end
if τ > 0 then

Compute y2 and D−BTA−1B using Schur Complement method (see
Section 3.9);

end

end

4.3 SLAM in Dynamic Environments

We will now introduce our method for SLAM in Dynamic Environments (SLAMIDE).

Let us start by relaxing the problem even further by: (i) introducing model-selection
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parameters VT , {v0
T , . . . , v

k
T}, which consist of a binary indicator variable per land-

mark taking the value stationary or dynamic with probability p, 1− p respectively

and (ii) extending the state vector for each landmark to include velocities ẋ. Fig-

ure 4.2 is a Bayesian network that shows our formulation of the SLAMIDE problem,

where the most significant changes from normal SLAM are:

• The map becomes time dependent M , {M0, . . . ,Mt}.

• Model-selection parameters VT , {v0
T , . . . , v

k
T} are introduced.

• Data-association parameters D , {d1, . . . , dt} are introduced.

zt−1 zt

xt−1 xt

ut−1 ut

Mt−1

dtdt−1

Mt

VT

Figure 4.2: A graphical model representing SLAMIDE (note:- square boxes indicate
discrete variables).

The corresponding joint distribution P (X,M,D,V,U,Z) from Figure 4.2 is:

P (X,M,D,V,U,Z) = P (x0)P (M0)P (D)P (VT )×
T∏

t=1

P (zt|xt,Mt, dt)P (xt|xt−1,ut)P (Mt|Mt−1,VT ), (4.3)

where:
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• P (VT ) is a prior on the model-selection parameters.

• P (Mt|Mt−1,VT ) is the motion model for the map given the current estimate

of the model-selection parameters. We use constant position for stationary

landmarks and constant velocity with noise in ẋ for dynamic landmarks.

Following the same principles used in our reversible data-association method and

including the extra nuisance parameter V we propose the following five steps to solve

the optimisation:

1. Dk+1 = arg maxD P (D|Θk,Vk,Ψ)

2. Θk+1 = arg maxΘ P (Θ|Dk+1,Vk,Ψ)

3. Mk+1′ = arg maxM P (M|Xk+1,Dk+1,V = dyn,Ψ)

4. Vk+1 = arg maxV P (V|Xk+1,Mk+1′ ,Dk+1,Ψ)

5. Θk+1 = arg maxΘ P (Θ|Dk+1,Vk+1,Ψ)

Step 1: performs the data-association using either NN or JCBB. In practice this is

actually also computed at every iteration in Steps 2, 3 and 5.

Step 2: is a least-squares optimisation for the vehicle poses and landmark states

using the new data-association. The main purpose of this optimisation is to refine

the predicted vehicle and landmark locations using the new measurements. In practice

this step is particularly important if the vehicle prediction is poor (large odometry

noise), because large vehicle uncertainty gives rise to an ambiguous situation where

it is hard to differentiate between vehicle and landmark motion.

Step 3: optimises for the landmark states assuming all landmarks are dynamic whilst

holding the vehicle poses constant. The reason the vehicle poses are held constant is

to remove any ambiguity between vehicle and landmark motion. This is reasonable if

most of the landmarks maintain their model-selection between time-steps and hence

the Xk+1 given by Step 2 is close to the optimal answer.

Step 4: takes the answer from Step 3 and computes the MAP estimate for VT using

a recursive Bayesian filter; where the likelihood model is a Gaussian on the average

velocity with σ=2.0m/s and µ=0 and the prior P (VT ) for landmark j is:
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P (vjT = stationary) =





0.6 if vjT−1 = stationary,

0.4 if vjT−1 = dynamic,

which is based on VT−1 the model-selection parameters chosen at the last time-step.

Step 5: is a least-squares optimisation with the new model-selection and data-

association parameters (using the answer from Step 2 as the starting point for opti-

misation). This step refines the estimate from Step 2 taking into account any changes

in model-selection to give the final estimate for this time-step.

In practice this whole process only requires a few least-squares iterations, typically:

two in Step 2; one in Step 3 and two or three in Step 5; Step 1 and Step 4 are solved

directly. See Algorithm 2 for a summary in pseudo-code.

Map management: When adding a new landmark we initialise its model-selection

probability to 0.5 (to reflect the uncertainty in whether it is dynamic or stationary)

and add a very weak prior of zero initial velocity. This weak prior is essential to

make sure that a landmark’s velocity is always observable and hence our system of

equations is positive definite. We also remove any dynamic landmarks that are not

observed within the temporal sliding window, this is done for two reasons: (i) real-

world objects do not obey a motion model exactly and so errors accumulate if you

predict for too long and (ii) if you continue predicting a dynamic landmark and hence

adding noise, then at some point measurements begin to get incorrectly associated to

it due to the Mahalanobis test.

4.4 Results

We use two simple 2D environments, which cover 400m by 400m, one with 15 land-

marks and the other with 20 landmarks. In both environments the vehicle moves

between three waypoints at 5m/s using proportional heading control (maximum yaw

rate 5◦/sec) and provides rate-of-turn, forwards velocity and slip as odometry with

covariance Q. It has a range bearing sensor with a 360◦ field-of-view, 400m range

and zero mean Gaussian noise added with covariance R. The second environment

is used for the dynamic object experiment where we progressively change stationary

landmarks to dynamic landmarks, which move between waypoints using the same
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Algorithm 2: SLAMIDE

Π = P−1
0 ; P = P0; x̃ = x0; X̂ = x0;

M = []; D = []; V = [];
for t=[0:T] do

DoVehiclePrediction();
V=dyn;
DoMapPrediction();
while |δ|∞ > ε1 do

D̂ = DoDataAssociation();
Compute A, Σ and b;
Solve for δ in ATΣ−1Aδ = ATΣ−1b;
{X̂k+1

τ :t , M̂
k+1} = {X̂k

τ :t, M̂
k}+ δ;

Compute the covariance matrix P;
end
V=DoModelSelection();
while |δ|∞ > ε2 do

D̂ = DoDataAssociation();
AddAnyNewLandmarks();
Compute A, Σ and b;
Solve for δ in ATΣ−1Aδ = ATΣ−1b;
{X̂k+1

τ :t , M̂
k+1} = {X̂k

τ :t, M̂
k}+ δ;

Compute the covariance matrix P;
end
if τ > 0 then

Compute x̃ and Π using Schur Complement method (see Section 3.9);
end

end
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control scheme, speed and rate-of-turn as the vehicle.

We compare our method using either NN or JCBB for data-association against an

IEKF with either NN or JCBB. All experiments are 60 time-steps long and use a

chi-squared threshold of υTS−1υ < 16, a temporal sliding window length of 6 time-

steps, odometry noise (all noise quotes are for 1σ) of 0.1m/s on forwards velocity

and 0.01m/s on slip, measurement noise of 1m for range and 0.5◦ for bearing, a

maximum number of 8 iterations, the same stopping condition and the same initial

vehicle uncertainty. The reason we use such a large chi-squared threshold is because

for any significant angular uncertainty linearising the prediction covariance can cause

all measurements to fall outside their data-association gates.

In order to compare the performance of the algorithms we use two metrics: (i) the

percentage of correct data-association, which we define to be the percentage of correct

associations between time-steps with respect to the total number of potential correct

associations and (ii) the percentage of consistent runs. We use the following test to

determine whether a run is consistent – compute the Normalised Estimation Error

Squared (NEES), see [Bar-Shalom et al., 2002], which is defined as D2
t = (xt −

x̂t)
TP−1

t (xt − x̂t) and then for each time-step perform the corresponding chi-squared

test D2
t ≤ χ2

r,1−α where r is the dimension of xt and α is a threshold (which we take

to be 0.05). The probability of this test failing k times out of n can be computed

from a binomial distribution, which we use to threshold on the number of times the

test can fail before we are 99% certain that a run is inconsistent.

We have carried out three Monte-Carlo simulation experiments (where each point on

the graphs has been generated from 100 runs):

Figure 4.3 - Noise in rate-of-turn odometry: Performance was tested without

clutter against increasing noise in rate-of-turn odometry from a one sigma of 1◦ to

60◦. The IEKFJCBB and our RDJCBB both perform perfectly with data-association

but start becoming inconsistent more often for higher noise levels. As expected our

RDNN outperforms the IEKFNN and matches the performance of IEKFJCBB up to

around 25◦ of noise; this is interesting because it shows the RDNN could be used as

a faster alternative to IEKFJCBB for medium noise problems.

Figure 4.4 - Number of clutter measurements: Performance was tested with a

noise of 1◦ for rate-of-turn odometry against increasing clutter from 0 to 100 clutter

measurements within the sensor range. This is where the real benefit of reversible

data-association becomes apparent. All algorithms tested use the same map manage-
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ment scheme, which is to remove landmarks that are not observed for three consecu-

tive time-steps after they have been added to the map. In the traditional IEKF this is

done by simply removing them from the state vector and covariance matrix (marginal-

isation); whereas with our scheme if the information is removed before marginalisation

i.e. the temporal sliding window is longer than the time required to carry out map

management then there is no effect on the estimate. This is clear from Figure 4.4 as

both of our methods maintain their consistency with increasing clutter as opposed to

the IEKF based methods which tail off.

Figure 4.5 - Percentage of dynamic objects: Performance was tested without

clutter and with a noise of 1◦ for rate-of-turn odometry against an increasing percent-

age of dynamic objects from 0 to 100 percent. The figure clearly shows that using

SLAMIDE to include dynamic objects allows us to navigate in regions with dynamic

objects. We maintain a good level of consistency for up to 90% of dynamic objects at

which point the performance degrades until at 100% every run is inconsistent, which is

because the system is no longer observable i.e. there are ambiguities between vehicle

and landmark motion.

Timing results: With 20 measurements per time-step and a temporal sliding win-

dow length of 6 time-steps on a 3.6GHz Pentium 4 the IEKF and SLAM with re-

versible data-association run at approximately 30Hz and SLAMIDE runs at about

3Hz. We believe this can be significantly improved upon as we have yet to fully

optimise the code, for instance we currently do a dense solve for P = Y−1 which is

a bottleneck (this could be heavily optimised or possibly avoided completely). Also,

once a landmark has been created and passed the map management test, it always

remains in the estimate; however, sliding window estimation is constant time if you

choose to marginalise out landmarks i.e. maintain a constant state size. The next

chapter introduces a hybrid representation of the map, which allows the SLAMIDE

system to update in real-time.

Real-world experiment: We will now show how the system performs on real-world

RADAR data taken using a millimetre wavelength RADAR with an 800m range,

mounted on a boat moving around in Portsmouth harbour. Figure 4.6 shows an

aerial view of the area, the salient points of interest are: several pier structures and

a large patch of moored boats.

Figure 4.7 shows the raw RADAR data after automatic gain control and clutter

removal, it should be pointed out that there is still a significant clutter density. The

RADAR sensor is continually rotating and sends out directional pulses of microwave
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Figure 4.3: Comparison for increasing odometry (rate-of-turn) noise.

radiation (azimuths), objects in the environment may reflect some of this energy and

by accurately measuring the time-of-flight it is possible to estimate the range of the

object. Typically the RADAR used in these experiments exhibits five to ten thousand

individual range bearing measurements per scan (after pre-processing), rotating at

0.67Hz this generates approximately five thousand range bearing measurements per

second. This large number of incoming measurements is first clustered using mean

shift into small clusters and then the cluster centres are fed into the SLAMIDE system

as measurements.

Figure 4.8 shows an example of the output of the SLAMIDE algorithm: the light blue
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Figure 4.4: Comparison for increasing clutter.

ellipses represent the land mark covariances; the faint blue ellipses are landmarks that

are classified as clutter (but not yet deleted from the estimate); the green line is the

vehicle’s trajectory; the yellow lines are the trajectories of dynamic objects and the

red dots are landmarks that are no longer observed in the temporal sliding window.

Figure 4.9 shows the output with the clutter hidden, the SLAMIDE algorithm does

an excellent job of successfully removing clutter before it gets marginalised into the

estimate. Finally, Figure 4.10 shows the output from the SLAMIDE system overlaid

on the original aerial view, illustrating that the system does an excellent job of esti-

mating the egomotion of the vessel using raw RADAR alone (no GPS or compass);

the system closely matches the rigid pier structure protruding into the river.
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Figure 4.5: Comparison for an increasing percentage of dynamic objects.

4.5 Conclusions

This chapter has described a method that combines sliding window optimisation

and least-squares together with generalised expectation maximisation to do reversible

model-selection and data-association. This enables dynamic objects to be included

directly in the SLAM estimate, as opposed to other techniques which typically de-

tect dynamic objects and then either treat them as outliers [Wolf & Sukhatme, 2004;

Hähnel et al., 2003] or track them separately [Wang et al., 2003]. Simulation re-

sults show that: (i) our SLAMIDE algorithm significantly outperforms other meth-

ods which treat dynamic objects as clutter; (ii) our method for computing reversible
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Figure 4.6: Aerial view of Portsmouth harbour.

data-association remains consistent when other data-association methods fail and (iii)

our reversible data-association provides excellent performance when clutter is present.

Aside from simulation we have also shown our algorithms running on real RADAR

data with very good results. We can tell using satellite imagery as ground truth that

the system is able to accurately estimate the egomotion. The system correctly clas-

sifies the dynamic objects and is able to fuse intermittent measurements over longer

periods of time.

In summary, this chapter has described a method for including dynamic objects di-

rectly into the SLAM estimate as opposed to treating them as outliers. This has

benefits for navigation and path planning; interestingly it also helps with localisa-

tion in highly dynamic environments, especially during short periods of time when

stationary landmarks are not observed. From a practical perspective there are three

problems with the method proposed in this chapter:

1. The land mass is represented using point features. This is achieved by first

clustering the incoming raw RADAR data into small clusters and then using

the centres of these clusters as the measurements in the SLAMIDE system.
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Figure 4.7: Raw RADAR data after pre-processing.

The problem is that large RADAR responses corresponding to land mass will

be broken into many small clusters and that these clusters are not guaranteed

to fall at the same locations from one scan to the next. This has two negative

effects: firstly, the non repeatable cluster centres will inevitably reduce the

quality of the estimate and secondly, large landmasses become expensive to

represent in the SLAMIDE map because they have to be represented using

many small point features.

2. Dynamic object trajectories are expensive in the SLAMIDE estimation because

each dynamic object has a fully correlated pose and velocity estimate for each

time-step in the temporal sliding window. This is the direct consequence of

including dynamic objects directly in the SLAM estimate and proves computa-

tionally expensive.

3. The rotating RADAR sensor acquires data continuously but the algorithm only

represents the vehicle’s pose at discrete time intervals. This presents a problem

for the generative model in Figure 4.2, which assumes that measurements are

acquired at exactly the same discrete time intervals as the pose estimates. This
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Figure 4.8: The output from SLAMIDE (with clutter displayed).

is handled by ignoring the egomotion of the RADAR sensor during a single

scan acquisition. A better way of dealing with this would be to extrapolate the

measurements to the nearest discrete time-step using the current estimate for

the egomotion.

The next chapter deals with these issues by having a hybrid map representation

that uses the point features described in this chapter along with an occupancy grid

to efficiently represent landmasses, and cubic splines to represent dynamic object

trajectories and the egomotion of the vehicle.
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Figure 4.9: The output from SLAMIDE (with clutter hidden).

Figure 4.10: The output from SLAMIDE overlaid on the satellite ground truth.
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Chapter 5

Hybrid Mapping

5.1 Introduction

The previous chapter presented our approach for doing SLAMIDE, which extended

the augmented state representation to include dynamic objects. We showed how the

basic algorithm could be applied to real marine RADAR data by making some rather

simplistic assumptions i.e. the world can be represented using point features and

the egomotion during RADAR acquisition can be ignored. These sort of assump-

tions are often applied to theoretical frameworks to get them working on real data.

This chapter deals with practical aspects and careful implementation details required

to produce a system that works reliably in the ‘real-world’. This is non-trivial and

requires significant amounts of domain knowledge, good underlying representations,

carefully selected heuristics and non-trivial tuning. Our ‘real-world’ scenario is the

marine environment observed from a small boat using RADAR. This challenging en-

vironment contains landmasses, stationary objects and dynamic objects, and it is

desirable to model them all within a single framework. To add to the difficulty, the

marine RADAR sensor is prone to poor angular resolution, reflections, interference

and clutter. Following our approach from the previous chapter, we tackle these diffi-

culties using sliding window estimation and reversible decision making, and we add

hybrid mapping. The temporal sliding window provides a fixed period of time during

which the estimated landmasses, stationary and dynamic objects, and the egomotion

trajectory can be refined, as well as allowing reversible data-association and model-

selection. This is crucial to the success of the system because it is only possible

to make the correct decision about the true origin of a measurement (clutter, small
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stationary object, landmass or dynamic object), when given enough time to observe

temporal characteristics.

The first shortcoming of the method presented in the previous chapter is that point

features can not directly represent large objects e.g. landmasses. This is tackled by

using a heuristic clustering method to represent these large objects as a mixture of

point features. The problem with this approach is that the clustering method will not

produce the same cluster centres for different scans, leading to poor data-association

and therefore a reduction in overall accuracy. We address this problem by using

occupancy grids [Moravec & Elfes, 1985; Elfes, 1989; Burgard et al., 1999] (see Section

3.4). This allows us to deal with objects of arbitrary size and shape probabilistically,

by breaking them into small grid cells and then computing the posterior probability

that a grid cell is occupied. The second problem is that a pose is dropped at every

time-step for all dynamic objects, resulting in the system quickly falling below real-

time performance for any significant number of dynamic objects. We tackle this

problem by using a cubic spline representation for the trajectories of dynamic objects

and the egomotion. This allows the trajectories to be automatically compressed based

on their kinematics. In other words, if a dynamic object moves in a straight line for

five minutes, the system can represent this using the equivalent of only two poses,

one at the beginning and one at the end of the trajectory. In practice the kinematics

are rarely that simple and so the system finds the appropriate compromise, which

typically results in around a 70-80% reduction in the number of states required in

the estimation process. The third problem with the methods in the previous chapter,

which is also common to the majority of work in this research area, is that the sensor

is treated as a synchronous snapshot of the world, whereas in reality the sensor

data is actually acquired whilst the vehicle is moving. This results in errors in the

estimate, which is seen in the results section as shadowing in the occupancy grid

(caused by measurements falling into the wrong grid cell). Our spline representation

allows us to compensate for this by re-rendering the sensor data to account for the

egomotion undergone during the sensor acquisition period. The temporal sliding

window is used to continually refine the egomotion trajectory and the occupancy grid

(similar to [Thrun et al., 1998]) using generalised expectation maximisation [Neal &

Hinton, 1998; Dempster et al., 1977]. This improves the estimate of the egomotion,

the occupancy grid and the dynamic objects as well as providing the necessary time

required to get data-association and model-selection correct.

The notion of hybrid mapping is becoming increasingly popular, with [Pandey et al.,
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2007] incorporating features within an occupancy grid framework and [Nieto et al.,

2004] breaking the occupancy grid into triangular patches and using feature based

methods to estimate their positions. Our method of using cubic splines to represent

trajectories within a SLAM system is the first of its kind and provides an elegant

and compact way of representing trajectories in a continuous manner. The closest

related work is [Pedraza et al., 2007], which uses Bezier splines to represent stationary

objects i.e. walls and corridors. In contrast, our method uses splines to represent the

trajectories of dynamic objects and hence the spline parameter represents time. This

has three major advantages: (i) the number of parameters required for the spline is

less than having a pose at each time-step; (ii) the continuous nature of the spline

makes it trivial to add measurements to the system at arbitrary times, making it

easy to use asynchronous measurements from sensors running at different frequencies

and (iii) it is now possible to compute a position/velocity at any point in time along

a trajectory, which allows sensor scans to be re-rendered at a sub-scan resolution to

compensate for the egomotion during the period the scan was acquired.

This chapter begins in Section 5.2 by introducing the notation and showing how to

use a hybrid map with SLAM; Section 5.3 explains how to use cubic splines within

the framework; Section 5.4 shows the results of using the system on real RADAR

data and analyses the effect of the cubic spline representation and finally Section 5.5

concludes.

5.2 Hybrid SLAM in Dynamic Environments

We will now introduce our method for Hybrid SLAM in Dynamic Environments

(HSLAMIDE). The most significant changes from traditional SLAM are: (i) we use a

hybrid representation using occupancy grids, cubic splines and point features; (ii) the

map becomes time dependent and (iii) model-selection parameters are introduced.

For simplicity we will begin by explaining the system without using cubic splines and

then in Section 5.3 we will demonstrate how to retrofit splines to the system. Below

is a list of the notation we will be using:

• τ : The beginning of the temporal sliding window.

• T : The end of the temporal sliding window.

• xt: The state vector at time t describing the vehicle’s pose (location and orien-
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tation [x, y, θ]).

• ut: The control vector (odometry [ẋv, ẏv, θ̇v] in vehicle coordinates where ẋv is

in the direction the vehicle is pointing) that was applied to vehicle at time t−1

to take it to time t.

• St = {zt, rt}: A complete RADAR scan obtained at time t. This is decomposed

into range-bearing measurements zt and a residual RADAR scan rt.

• zt: Range-bearing measurements extracted from the RADAR scan St based on

a constraint on the permissible object size.

• rt: The residual RADAR scan after the range-bearing measurements have been

extracted.

• mk: State vector describing the location of object k.

• O: The occupancy grid representing landmasses.

• Mt = {m1
t , . . . ,m

k
t }: The set of all objects at time t.

• Xτ :T = {xτ , . . . ,xT}: The set of vehicle poses.

• Uτ :T = {uτ , . . . ,uT}: The set of odometry.

• Zτ :T = {Sτ , . . . ,ST}: The set of all measurements i.e. the residual RADAR

scans plus the extracted range-bearing measurements.

• Mτ :T = {Mτ , . . . ,MT}: The map consisting of stationary and dynamic objects.

• Dτ :T = {dτ , . . . ,dt}: The data-association.

• V = {v1, . . . ,vk}: The model-selection parameters.

Figure 5.1 is a graphical model that shows our formulation of the HSLAMIDE prob-

lem. The joint distribution corresponding to Figure 5.1 is:
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P (Xτ :T ,O,Mτ :T ,Dτ :T ,V,Uτ :T ,Zτ :T ) =

P (xτ )P (O)P (Mτ )P (Dτ :T )P (V)×
T∏

t=τ+1

{
P (zt|xt,Mt,dt)P (xt|xt−1,ut)×

P (Mt|Mt−1,V)P (rt|xt,O)

}
, (5.1)

where:

• P (xτ ) is the Gaussian prior on vehicle state at the beginning of the temporal

sliding window, which has a mean x̃τ and covariance P0
τ .

• P (O) is the prior on the occupancy grid at the beginning of the sliding window

and is taken to be 0.4 for each grid cell.

• P (Mτ ) is the Gaussian prior on the map and is treated independently for each

object i.e.
∏K

1 P (mk
τ ).

• P (Dτ :T ) is the prior on the data-association and is taken to be the uninformative

uniform distribution.

• P (V) is the prior on the model-selection parameters and assumes that new

objects are dynamic (refer to Step 3 of the algorithm for details).

• P (zt|xt,Mt,dt) is the Gaussian measurement model for objects in the map i.e.

the probability of the measurement zt given the vehicle pose xt, the map M

and the data-association dt.

• P (xt|xt−1,ut) is the Gaussian motion model i.e. the probability of the new

vehicle pose xt given the last vehicle pose xt−1 and the odometry ut.

• P (Mt|Mt−1,V) is the Gaussian motion model for the map given the current

estimate of the model-selection parameters. We use a constant position model

with zero noise for stationary objects and three constant velocity models with

noise in ẋ and ẏ for dynamic objects.

• P (rt|xt,O) is the Gaussian measurement model for a single residual RADAR

scan i.e. the probability of the RADAR scan rt given the vehicle pose xt and

the occupancy grid O.
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Figure 5.1: A graphical model representing HSLAMIDE.

Solving (5.1) with a single optimisation is intractable and so we propose the following

steps based on generalised expectation maximisation [Neal & Hinton, 1998] to solve

the optimisation in real-time (see Chapter 4 for details):

1. D
′
= arg maxD P (X,O,M,D,V,U,Z)

2. {X′
,M

′} = arg max{X,M} P (X,O,M,D
′
,V,U,Z)

3. V
′
= arg maxV P (X

′
,O,M

′
,D

′
,V,U,Z)

4. O
′
= arg maxO P (X

′
,O,M

′
,D

′
,V

′
,U,Z)

Note:- The subscript τ :T has been dropped from all terms to save space and the ′

notation indicates the new estimate. We will now explain in detail each of the steps.

Step 1: performs the data-association using a probabilistic data-association filter

[Bar-Shalom & Fortmann, 1988] with an initial Mahalanobis gate of four and a uni-

form distribution modeling the outlier process. This method allows uncertainty in

data-association to be modelled and adds robustness to outliers.

Step 2: is a least-squares optimisation for the vehicle trajectory and the objects in

the map. Taking the logarithm of (5.1) we can write:
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{X′
,M

′} = arg min
{X,M}

{
‖x̃τ − xτ‖2

P0
τ

+
K∑

k=1

∥∥m̃k
τ −mk

τ

∥∥2

Pkτ
+

T∑

t=τ+1

{
‖fx(xt−1,ut)− xt‖2

Q0 + ‖g(rt,O)− xt‖2
B +

K∑

k=1

(∥∥fm(mk
t−1, vk)−mk

t

∥∥2

Qk
vk

+
∥∥∥h(xt,m

dkt
t )− zt

∥∥∥
2

R

)}
}
, (5.2)

where ‖x̃τ − xτ‖2
P0
τ

is the Gaussian prior on the vehicle’s position/velocity at the

beginning of the temporal sliding window.
∥∥m̃k

τ −mk
τ

∥∥2

Pkτ
is the Gaussian prior

on the object’s position/velocity at the beginning of the temporal sliding window.

‖fx(xt−1,ut)− xt‖2
Q0 is the motion model taken to be constant velocity with co-

variance Q0. ‖g(rt,O)− xt‖2
B is the registration between a single RADAR scan rt

and the occupancy grid O, giving an estimate of the vehicle’s pose (location and

orientation [x, y, θ]) with covariance B. This registration is computed using our

pixel-wise posterior based registration technique that will be described in Chapter 6.∥∥fm(mk
t−1)−mk

t

∥∥2

Qk
vk

is the motion model of an object, which can be one of four mo-

tion models: stationary with zero uncertainty or constant velocity with three different

levels of covariance Qk
vk

. Finally,
∥∥∥h(xt,m

dkt
t )− zt

∥∥∥
2

R
is a range-bearing measurement

model with covariance R for the measurement zt.

Step 3: computes the model-selection parameters V
′

and is computed using the

following discrete Bayesian update:

P (vk|mk
t ) =

P (mk
t |vk)P (vk|mk

t−1)

P (mk
t )

. (5.3)

P (vk|mk
t−1) is initially set to [0.1, 0.3, 0.3, 0.3] where the first element corresponds to

the stationary model and then the next three consecutive elements correspond to

increasing amounts of motion model noise. The term P (mk
t |vk) is the likelihood for

a given model and is a Gaussian on velocity with standard deviations of [1, 5, 10, 20]

knots for the four models respectively. We then take the MAP estimate for use in the

motion model. It is worth noting that once the stationary model is selected there is

no way to go back to dynamic, since the stationary motion model is a hard constant
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position and hence any subsequent velocities are zero (in practice this is dealt with

by adding a new dynamic landmark).

Step 4: re-renders the occupancy grid based on the updated vehicle trajectory X
′

and the RADAR scans {rτ , . . . , rT}. This step is implemented using the Graphics

Processing Unit (GPU) and makes the standard assumption of independence between

grid cells (3.1), see Section 3.4 and [Thrun et al., 2005] for details. The posterior for

each grid cell is computed using floating point textures and fragment shaders on

the GPU. The benefit of this is that several minutes worth of RADAR data can be

re-rendered within a few milliseconds on standard hardware. Our underlying cubic

spline representation (see Section 5.3) allows us to re-render at a sub-scan resolution

i.e. we can compensate for the egomotion of the vehicle during the time taken to

acquire a RADAR scan.

Multi-threading: In practice this whole process is implemented in four separate

threads: thread one computes Steps 1,2 and 3; thread two computes Step 4; thread

three computes the registrations required for Step 2 and thread four performs pre-

processing and clustering on the RADAR scans.

New objects: These are added as part of the data-association step. A new object

must have a Mahalanobis distance of at least sixteen from every existing object. The

reasoning behind this is that we want to be absolutely sure that the measurement

generating a new object was not generated from an object in the system. Once a

new object is detected, it is then added using the predicted object location (given the

vehicle pose and the measurement) and the corresponding uncertainty.

Object deletion: We have two criteria for deleting objects: (i) if no measurements

are associated to it within the temporal sliding window and (ii) if the measurement

density is less than 30% during the first 10 seconds of an object’s life.

Object merging: Because we use a probabilistic data-association filter it is possible

that two initially separate objects can converge to the same trajectory by sharing mea-

surements. We deal with this problem by measuring the sum-of-squared differences

between overlapping trajectories and if sufficiently small we merge the two objects.
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5.3 Cubic Splines as a Continuous Trajectory Rep-

resentation

We will now introduce the novel idea of using cubic splines to represent trajectories.

The key concept is to represent a trajectory [x0, . . . ,xt] as a set of cubic spline sections,

which requires a significantly smaller parameter set compared with the requirement

for a full representation. For instance, if a 2D vehicle is moving with a constant

rate of change of acceleration for 2 seconds and its fastest sensor runs at 100Hz (e.g.

an inertial sensor), then those two hundred poses (200 poses × 3 parameters/pose

= 600 parameters) can now be represented by 12 spline parameters i.e. 2% of the

original size. This huge compression then allows us to solve much larger temporal

sliding window lengths. The second major benefit is that the trajectory now has

a continuous representation rather than discrete time-steps, which makes it easy to

deal with asynchronous measurements/constraints within the system. Figure 5.2

illustrates the difference between a traditional approach and our method using splines.

The top graphical model represents a traditional approach, where for each incoming

measurement Z = [z1, . . . , z5] (e.g. a RADAR, SONAR or laser scan) there is a

corresponding pose in the state vector X = [x1, . . . ,x5]. In contrast, our method uses

a cubic spline section described by the two knots [Y0,Y1] to represent the poses. This

has two consequences: (i) each measurement constraint in the original graphical model

is now projected into two constraints, one for each knot and (ii) the motion model

constraints are now represented by a single constraint between the knots. We will

now explain how the top graphical model can be solved using linear algebra and then

elaborate on how to introduce cubic splines, highlighting the required modifications.

The Traditional Solution

The joint distribution for the top graphical model is:

P (X,Z) = P (x0)
5∏

t=1

P (zt|xt)P (xt|xt−1), (5.4)

where P (x0) is the prior, P (zt|xt) is a Gaussian measurement model and P (xt|xt−1)

is a Gaussian motion model. Let us now take the logarithm of (5.4) to obtain a
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Figure 5.2: Graphical models: (top) a traditional formulation and (bottom) our
method using splines.

non-linear least-squares problem:

X = arg min
X

{
‖x̃0 − x0‖2

P +
T∑

t=τ+1

(
‖f(xt−1)− xt‖2

Q + ‖h(xt)− zt‖2
R

)
}
, (5.5)

where f(.) is the motion model with covariance Q and h(.) is the measurement model

with covariance R. This minimisation can be solved by linearising the non-linear

terms and re-writing as a matrix equation:

X̂ = arg min
X

{
‖δx0 − {x0 − x̃0}‖2

P +

T∑

t=1

(
‖{Ft−1δxt−1 + δxt} − {xt − f(xt−1)}‖2

Q +

‖{Htδxt} − {zt − h(xt)}‖2
R

)}
, (5.6)

where Ft−1 is the Jacobian of f(.) with respect to xt−1 and Ht is the Jacobian h(.)

with respect to xt. Equation (5.6) can be factorised and written as a system of linear

equations (ATΣ−1Aδ = ATΣ−1b); for a detailed look at this process refer to Section

3.7.
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Using Cubic Splines

Each cubic spline is constructed with N piecewise third-order polynomials passing

through control points (knots) [Y0, . . . ,YN ]. These knots are parametrised by their

position yn = {xn, yn, θn} and velocity ẏn = {ẋn, ẏn, θ̇n}. If p is a parameter in the

range [0 . . . 1] and n references one of the N spline sections then a single spline section

is defined as:

ssn(p) = an + bnp+ cnp
2 + dnp

3

where

an = yn

bn = ẏn

cn = 3(yn+1 − yn)− 2ẏn − ẏn+1

dn = 2(yn − yn+1) + ẏn + ẏn+1.

Let us now consider the vehicle’s trajectory as a spline. Given the spline parameters

Φ = {Y0, . . . ,YN} and a time t we can write a function that returns the vehicle’s

state:

s(t,Φ) =



xn(p)

yn(p)

θn(p)


 =



axn + bxnp+ cxnp

2 + dxnp
3

ayn + bynp+ cynp
2 + dynp

3

aθn + bθnp+ cθnp
2 + dθnp

3




n =

⌊
t

λ

⌋

p =
t

λ
− n, (5.7)

where λ is the number of time-steps per spline section, which for simplicity is assumed

constant, and the function b.c computes the greatest integer less than the argument.

In practice we allow λ to change and so solving for n and p turns into a binary search.

We also require the Jacobian of s(t,Φ) with respect to Φ:
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St =
∂s(t,Φ)

∂Φ
=



k 0 0 l 0 0 m 0 0 n 0 0

0 k 0 0 l 0 0 m 0 0 n 0

0 0 k 0 0 l 0 0 m 0 0 n




where

k = 1− 3p2 + 2p3

l = p− 2p2 + p3

m = 3p2 − 2p3

n = −p2 + p3.

The Jacobian St only depends upon the scalar value p and is therefore suitable for a

look up table implementation.

To modify (5.5) and (5.6) to a spline representation we make the direct substitution

X = Φ,xt = s(t,Φ) and include St to project any Jacobians with respect to xt onto

the spline parameter set Φ, here are the modified versions:

Φ = arg min
Φ

{
‖x̃0 − s(0,Φ)‖2

P +

T∑

t=τ+1

(
‖f(s(t− 1,Φ))− s(t,Φ)‖2

Q + ‖h(s(t,Φ))− zt‖2
R

)}
. (5.8)

and

Φ̂ = arg min
Φ

{
‖S0δΦ− {s(0,Φ)− x̃0}‖2

P +

T∑

t=1

(
‖{HtStδΦ} − {zt − h(s(t,Φ))}‖2

R +

‖{Ft−1St−1δΦ− StδΦ} − {s(t,Φ)− f(s(t− 1,Φ))}‖2
Q

)}
. (5.9)
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Consequences Of The Spline Representation

By parameterising a set of poses with a cubic spline section, we are setting a hard mo-

tion model (fixed rate of change of acceleration
...
x) for each spline section i.e. between

the knots. This is acceptable as most vehicles in the ‘real-world’ have significant

amounts of inertia and are therefore likely to obey relatively smooth trajectories, at

least on some scale. This fact is used in typical Kalman Filter style solutions to give

a prior on the likely motion a vehicle might undergo. Our cubic spline representation

assumes a fixed rate of change of acceleration along the spline section and is there-

fore able to deal with constant position, constant velocity, constant acceleration and

constant rate of change of acceleration motion models. Therefore our cubic spline

method is able to not only capture the dynamics of our marine vessel, but also the

large majority of vehicles that are typically modelled in the robotics community.

Let us now consider two cases: (i) what happens along a spline section and (ii) what

happens at the knots. The hard motion model is enforced along the spline section

implicitly because of the cubic spline representation. At the knots, we fix x and
.
x

to be equal (C1 continuity) but allow
..
x and

...
x to change to anything i.e. a uniform

probability distribution over
..
x and

...
x.

Knot Placement

The ideal way to place the knots is at moments in time where
..
x and/or

...
x change.

We currently deal with this problem by initially over representing the trajectory with

a knot for every pose (the traditional solution) and then removing those where
..
x

and
...
x are sufficiently similar. Therefore, knots only remain where they are required

to accurately represent the trajectory and the system will automatically place the

correct number of knots based on the current environmental conditions e.g. more in

a rough sea than in a calm sea. We explore the effect of this in more detail in the

subsequent results section.

5.4 Results

We have tested the system on RADAR data obtained from a 50 minute voyage on a

small boat using a Garmin GMR18. Figure 5.3 shows a sample of the raw RADAR

data. We use a sliding window length of 90 seconds to achieve the temporal fusion
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of the RADAR data. Figures 5.4 and 5.5 show examples of the typical output of

the system. The occupancy grid is drawn in the background and overlaid with the

stationary and dynamic objects (each object in the system is given a unique identifier).

The dynamic objects are represented by cubic splines, which are drawn in black and

the covariance (which can be computed for any time along the spline) is drawn at

regular intervals in a light grey.

The left-hand column of Figure 5.8 shows the results obtained if the occupancy grid

is only fused once at the head of the temporal sliding window, as it would be in

a filtering style solution to the problem. There are three clear inadequacies visible

in the figure: (i) the occupancy grid exhibits incorrect shadowing effects (caused by

RADAR data falling into the wrong grid cell); (ii) the range-bearing measurements

extracted from the RADAR sweeps have large amounts of noise and (iii) the system

suffers from false-negatives and false-positives. All of these problems stem from a

poor estimate of the egomotion. In contrast, the right-hand column of Figure 5.8

shows the results of our proposed method using a 90 second temporal sliding window

to continually re-estimate the occupancy grid, egomotion, dynamic objects, model-

selection and data-association. The results are that: (i) the occupancy grid is clear

and sharp, giving a good representation of the surrounding environment; (ii) the

range-bearing measurements have significantly less noise on them, making it easier

to obtain better estimates of the trajectories of dynamic objects and (iii) because of

the reduced noise in the range-bearing measurements the model-selection is better at

correctly classifying the objects.

Figure 5.6 shows how a sampled spline trajectory from the voyage degrades as an

increasing number of knots are removed. The figure is generated by placing a knot

at every time-step (equivalent to the traditional representation), then progressively

removing one knot at a time based on which will have the smallest effect (see Section

5.3) and then computing the RMS error between the traditional trajectory and the

one using the spline. The figure shows that 80-90% of the knots can be removed before

seeing a significant hit in the quality of the trajectory (we have observed similar results

in terms of the quality of the occupancy grid against knot reduction). It is worth

noting at this point that errors of 1m are small given the 10m vessel and the RADAR

sensor which has a range of 2.8km and a resolution of approximately 9m.

Figure 5.7 shows the distribution of the compression ratio (percentage of knots re-

moved with respect to the full representation) for the spline trajectories, this distribu-

tion is generated using samples taken from the 50 minute voyage at 2 second intervals.
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The results are that on average the spline trajectories are achieving a compression

ratio of 70-90%, which matches well with the sampled trajectory in Figure 5.6. This

gives an indication that the automatic knot removal procedure is leaving knots at the

correct locations and shows that a significant compression is achieved resulting in a

smaller system to solve and hence reducing the required computation.

Figure 5.9 shows the results from an 18 minute voyage. At the beginning of the

run the output from the system is manually aligned to an Admiralty chart1. This

area of coast is protected by a sea-wall, which the RADAR clearly picks up, making

the manual alignment to the chart straightforward. After 18 minutes the output

from the system remains well aligned with the ground truth. This shows that the

HSLAMIDE is doing a good job of estimating the egomotion, even though it is using

RADAR as the only sensor. We also have the ability to align the output of the system

using a GPS sensor and a compass sensor. With this particular example we are able

to localise the vehicle’s position more accurately using the HSLAMIDE system and

manual alignment, than by using the GPS and compass.

5.5 Conclusions

We have demonstrated how hybrid mapping and sliding window estimation can be

used to make a SLAM system that works in complicated dynamic environments using

noisy sensors. Our hybrid mapping gives a rich representation of the underlying

environment, with an occupancy grid to represent land masses, point features to

represent smaller stationary objects and cubic splines to represent the trajectories

of dynamic objects. We have also shown how cubic splines can easily be retrofitted

to an estimation framework containing dynamic objects and how this achieves state

compression, makes it easy to deal with asynchronous measurements from sensors

running at different frequencies and allows us to re-render sensor data to compensate

for the egomotion during the sensor acquisition period. This hybrid mapping system

allows us to do SLAM in dynamic environments that were too difficult for the method

presented in the previous chapter.

The key differences of this method compared to previous work are: (i) the hybrid

representation provides a way of combining the strengths of various methods (giving

something greater than the sum of its parts); (ii) cubic splines are used to compress

1Admiralty charts are nautical charts issued by the United Kingdom Hydrographic Office
(UKHO).
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Figure 5.3: The raw RADAR data from the GMR18.

trajectories and provide a continuous representation; (iii) the spline representation

allows RADAR scans to be re-rendered at sub-scan resolution, compensating for the

egomotion between time-steps and (iv) the occupancy grid can be re-rendered within

the temporal sliding window giving superior results compared with a filtering style

solution.

The system is useful when dealing with RADAR data because: (i) intermittent mea-

surements are fused making them clearly visible as stationary objects; (ii) clutter is

rejected; (iii) dynamic objects are automatically tracked with the appropriate motion

model and (iv) measurements are fused within an occupancy grid to give a clearer

picture of the surrounding environment.

This chapter and the last have shown how dynamic objects can be incorporated

directly within the SLAM map and how hybrid mapping techniques can be used to

obtain a more efficient/sensible representation of the environment. This allows us to

obtain a real-time metric estimate of the marine environment surrounding a boat.

The next part of the dissertation shows how computer vision can be used to obtain
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Figure 5.4: The system in action – the occupancy grid represents land masses, point
features are used for stationary objects and cubic splines are used to represent the
trajectories of dynamic objects.

stabilised video streams of the objects in the environment. These stabilised video

streams can then be used to enrich the metric estimate as presented in this chapter,

with visual information.
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Figure 5.5: Example of spline representation in the system.
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Figure 5.6: Quantitative analysis of how trajectories degrade as they are represented
using fewer and fewer knots.
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Figure 5.7: Quantitative analysis of the amount of trajectory compression achieved
during the experiment.
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Figure 5.8: Qualitative evaluation: (left) re-rendering turned off and (right) re-
rendering turned on.
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Figure 5.9: Qualitative evaluation of an 18 minute voyage: (left) raw RADAR data
and (right) the output from HSLAMIDE is manually registered to a nautical chart
(the top-row) at the beginning of the voyage and the alignment is still good (the
bottom-row) at the end of the voyage.
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Part II

Estimating Visual Information

So far we have shown how to estimate the metric aspects of the environment around

a marine vessel using Hybrid SLAM in Dynamic Environments. This gives us an

estimate of the positions, speeds, sizes and shapes of nearby objects and landmasses.

This part of the dissertation is about visual tracking, which given a series of video

frames, ‘tracks’ object(s) from one frame to the next, computing their position, ro-

tation, scale and potentially other parameters. We present a new method for visual

tracking that uses a region-based, level-set framework. The significant difference be-

tween our method and all others is that we use the pixel-wise posterior when computing

the foreground/background pixel membership, as opposed to the traditional pixel-wise

likelihood. We use the superior performance of our tracker to control a high perfor-

mance pan-tilt-zoom device. Specifically, we use the computed position to control the

pan-tilt axes and the computed scale to control the zoom axis. This gives us stabilised

video sequences of objects in the environment, which can be used to enrich the met-

ric estimate with visual information. We will now describe our two new methods for

visual tracking, which use pixel-wise posteriors as opposed to pixel-wise likelihoods.
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Chapter 6

Pixel-Wise Posterior Tracking

6.1 Introduction

Not only do we require fast and reliable visual tracking for the objective of this dis-

sertation, but it is a prerequisite for a vast number of other applications in computer

vision. Though it has been the subject of intense effort over the last two decades,

it remains a difficult problem for a number of reasons. In particular, when tracking

previously unseen objects, many of the constraints that give reliability to other track-

ing systems – such as strong prior information about shape, appearance or motion –

are unavailable. For further reading on the vast quantities of work relating to visual

tracking refer to [Yilmaz et al., 2006] and [Moeslund et al., 2006]1.

One of the earliest approaches to visual tracking, originally proposed by [Lucas &

Kanade, 1981], is template tracking. It has been used extensively in one form or

another for over two decades (see [Baker & Matthews, 2004] for an excellent sum-

mary). The idea behind template tracking is to extract a template (a rectangular

region of pixels) in one image and to warp the template into another image so that

the Sum-of-Squared Differences (SSD) between pixel values is minimised. The un-

derlying optimisation uses image derivatives to drive the warp to a local minimum.

One of the key features of using a template is that it encodes both the pixel locations

and colours. This makes it possible to compute the tracking parameters to sub-pixel

accuracy. A significant weakness of the approach is that an accurate template must

be maintained over time, which is difficult for anything but planar objects.

1This survey covers the period of 2000-2006 in the application area of human motion tracking.
It lists more than three hundred papers.
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A significant step away from template tracking was made by [Kass et al., 1988]. Rather

than tracking a template corresponding to an object, they tracked the boundary

between the object and the background. This was achieved using an active contour

to represent the boundary. One typical use of active contours is to align them to

edges in the image, by using a 1D search along the direction normal to the contour

(similar to the 1D search used by [Harris, 1993]). A problem with this approach is

that natural images typically contain many edges that do not belong to the object

of interest, which act as distractors. This was tackled by [Isard & Blake, 1998a] by

using a non-parametric method, known as particle filtering, to represent multi-modal

distributions. The ability to model the distractors using multi-modal distributions

added robustness to the tracker, making it possible to track objects that template

tracking alone would fail on.

More recently, probability distributions have been used to model an object’s appear-

ance. This is referred to as region-based tracking and is considered more robust than

templates or edges for many applications. [Comaniciu et al., 2000] showed how mean-

shift, a ‘local’ non-parametric mode finding technique, could be used to align a region

to the image. The objective function used for this alignment measured the similarity

between the modelled appearance distribution and the observed empirical distribu-

tion. In contrast to template tracking and active contours, an elliptical region is used

and rather than taking a template or using edges, the pixel values are used to build a

non-parametric distribution (a colour histogram). This non-parametric distribution

is somewhat weaker than a template, in the sense that it does not contain spatial

information and yet captures more information than edges alone.

A key problem with both template tracking and mean-shift is how to adapt the

appearance models i.e. the template or colour histogram, over time. Both methods

assume a very simplistic segmentation of the object from the background, either a

rectangular or elliptical region. In order to track objects for long periods of time it is

crucial that the appearance model can be adapted. In all but the simplest cases this

requires a good segmentation of the object from the background, otherwise pixels that

belong to the background are incorporated in an object’s appearance model or vice-

versa. The result is that the tracker ‘drifts’ away from the object over a period of time

and eventually fails; this is commonly referred to as tracking drift. Although active

contours have a much better notion of shape than template tracking or mean-shift,

they lack a region-based representation.

One region-based technique that has shown considerable promise for its ability to per-
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form tracking and segmentation within a unified framework is the use of an implicit

contour (level-set) to represent the boundary of the object [Osher & Paragios, 2003;

Paragios & Deriche, 2000; Goldenberg et al., 2001]. As well as handling topological

changes seamlessly, tracking using level-sets can be couched in a fairly standard prob-

abilistic formulation [Cremers, 2006; Cremers et al., 2007], and hence can leverage the

power of Bayesian methods.

In this chapter, we present a novel probabilistic framework for combined tracking and

segmentation, which, as well as capturing all of the desirable properties of level-set

based tracking, is very robust and runs in a few milliseconds on standard hardware.

We base our framework on a generative model of image formation that represents the

image as a bag-of-pixels [Jebara, 2003]. The advantage of such a model – in common

with other simpler density-based representations such as colour-histograms – is the

degree of invariance to viewpoint this confers.

Like [Cremers, 2006], we derive a probabilistic, region-based, level-set framework,

which comprises an optimal rigid registration, followed by a segmentation to re-

segment the object and account for non-rigid deformations. Aside from issues of

speed (which are not addressed in [Cremers, 2006]), there are a number of key differ-

ences between [Cremers, 2006] and our work, some of which stem from the generative

model we use for image data (see Section 6.3). Firstly, our derivation gives a proba-

bilistic interpretation to the Heaviside step function used in most region-based level-

set methods [Chan & Vese, 2001; Cremers, 2006]. Secondly, given this interpretation

we propose a pixel-wise posterior term, as opposed to a likelihood, which allows us

to marginalise out model parameters at a pixel level. As we show in Section 6.3, this

derives naturally from our generative model, and is a subtle but absolutely crucial dif-

ference between our method and others e.g. [Cremers, 2006; Paragios & Deriche, 2000;

Goldenberg et al., 2001], as our results show in Section 6.8. Thirdly, in contrast to

[Chan & Vese, 2001; Cremers, 2006] and similar to [Freedman & Zhang, 2004; Zhang

& Freedman, 2005], we assume a non-parametric distribution for image values as op-

posed to a single Gaussian (for an entire region). The superior performance of our

method is particularly noticeable when using non-parametric distributions and much

less noticeable when using smooth Gaussian distributions (as presented in [Cremers,

2006]). Finally, we introduce a prior on the embedding function which constrains

it to be an approximate signed distance function. We show that this gives a clean

probabilistic interpretation to the idea proposed by [Li et al., 2005] and avoids the

need for reinitialisation of the embedding function that is necessary in the majority
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of level-set based approaches.

Our work also bears some similarity to [Yilmaz, 2007], who sought the rigid transfor-

mation that best aligns a fixed shape-kernel with image data using the Bhattacharyya

coefficient. This work extended the pioneering work of this type [Comaniciu et al.,

2000; Collins, 2003] to handle translation+scale+rotation as opposed to translation

only or translation+scale. In contrast to [Yilmaz, 2007], however, we allow the shape

to change online using an implicit contour and propose a novel framework using

pixel-wise posteriors, which removes the cost of building an empirical distribution

and testing it with the Bhattacharyya coefficient. This has a second hidden benefit

as it avoids the need to build a ‘good’ empirical distribution given limited data; we

find in practice this gives a significant improvement over [Comaniciu et al., 2000;

Collins, 2003; Yilmaz, 2007].

Unlike [Cremers, 2006], [Freedman & Zhang, 2004; Zhang & Freedman, 2005] use a

non-parametric distribution for image data. They derive contour flows based on both

KL-divergence and the Bhattacharyya coefficient. Though they demonstrate that

both are effective for tracking, they do not model rigid transformation parameters

explicitly. They must recompute their non-parametric distributions at every iteration,

and – as we show in Section 6.8 – objectives based on the Bhattacharyya coefficient

are inferior to the one we propose.

Within our framework (and other similar work), because the segmentation is per-

formed rapidly and reliably online, the appearance and shape models of the object

can be updated over time without suffering from the significant problems of tracking

drift that plague other algorithms. Our framework is general enough to be extended

to various types of prior information and various imaging modalities, but in this

dissertation we restrict ourselves to the problem of tracking the 2D projections of

either 2D or 3D objects in ordinary colour video. In summary, the key benefits of

our method are: (i) an extensible probabilistic framework; (ii) robustness - given by

pixel-wise posteriors and marginalisation; (iii) real-time performance; (iv) excellent

cost function characteristics; (v) no need to compute empirical distributions at every

frame; (vi) online learning (i.e. adaption of appearance and shape characteristics);

(vii) flexibility to track many different types of object and (viii) high invariance to

view and appearance changes.

The remainder of this chapter is organised as follows: Section 6.2 describes the rep-

resentation of the object being tracked; Section 6.3 derives a probabilistic framework

from a simple generative model; Section 6.4 outlines the level-set segmentation; Sec-
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tion 6.5 shows the registration process; Section 6.6 describes our method for dealing

with tracking drift; Section 6.7 outlines the online learning process; Section 6.8 shows

our results and Section 6.9 concludes with a summary and discussion.

6.2 The Representation

W
(x

,p
)

Ωf

Ωb

C

P (y|Mf) P (y|Mb)

Figure 6.1: Representation of the object, showing: the contour C, the set of fore-
ground pixels Ωf , the set of background pixels Ωb, the foreground model P (y|Mf ),
the background model P (y|Mb) and the warp W(x,p).

We represent the object being tracked by its shape C, its location in the image

W(x,p) and two underlying appearance models: one for the foreground P (y|Mf ) and

one for the background P (y|Mb). Figure 6.1 illustrates this with a simple example.

Shape: is represented by the zero level-set C = {x|Φ(x) = 0} of an embedding

function Φ(x) [Osher & Paragios, 2003; Cremers et al., 2007]. In our case, the shape

C is a 2D contour and the embedding function Φ(x) is a 3D function represented

on a discrete grid of x values. Figure 6.2 shows examples of embedding functions

and their corresponding level-sets for a variety of different shape contours. Given the

shape contour C, the pixels Ω in the object frame are segmented into two regions:

one for the foreground Ωf and one for the background Ωb.

Location: is described by a warp W(x,p) that takes a pixel location x in the object

frame and warps it into the image frame according to parameters p.
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Figure 6.2: A selection of object shapes and their corresponding level-sets: (left
column) shows the 2D shape contour C and (right column) shows the corresponding
3D embedding function Φ(x) and the level-set Φ(x) = 0.
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Appearance models: P (y|Mf ) and P (y|Mb) are represented with RGB histograms

using 32 bins per channel. The histograms are initialised either from a detection

module or a user inputted initial bounding box. The pixels inside the bounding box

are used to build the foreground model and the pixels from an inflated bounding box

are used to build the background model. The two initial distributions are then used

to produce a tentative segmentation, which is in turn used to rebuild the model. This

procedure is iterated until the shape converges (similar to [Rother et al., 2004]). Once

tracking commences, the appearance models and shape C are estimated (adapted)

online, as described in Section 6.7.

In summary, we use the following notation:

• x: A pixel location in the object’s coordinate frame.

• y: A pixel value (in our experiments this is a RGB value).

• I: The image.

• W(x,p): Warp with parameters p.

• M = {Mf ,Mb}: Model parameter either foreground or background.

• P (y|Mf ): Foreground model over pixel values y.

• P (y|Mb): Background model over pixel values y.

• C: The contour that segments the foreground from the background.

• Φ(x): Shape kernel (in our case the level-set embedding function).

• Ω = {Ωf ,Ωb}: Pixels in the object frame [{x0,y0}, . . . , {xN ,yN}], which are

partitioned into foreground pixels Ωf and background pixels Ωb.

• Hε(z): Smoothed Heaviside step function.

• δε(z): Smoothed Dirac delta function.

6.3 The Generative Model

Figure 6.3 illustrates the simple generative model we use to represent the image

formation process. This model treats the image as a bag-of-pixels [Jebara, 2003] and
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can, given the model M , the shape Φ and the location p, be used to sample pixels

{x,y}.

Φ p M

x y

Figure 6.3: Generative model representing the image as a bag-of-pixels.

Although the resultant image would not look like the true foreground/background

image to a human (the pixels would be jumbled up), the colour distributions cor-

responding to the foreground/background regions Ωf/Ωb would match the models

P (y|Mf ) and P (y|Mb), see Figure 6.4 for an example. It is this simplicity that gives

more invariance to viewpoint and allows 3D objects to be tracked robustly without

having to model their specific 3D structure.

Figure 6.4: Showing the effect of using a bag-of-pixels model: (left) original image
and (right) pixels sampled from the foreground and background colour distributions.
Both of these images would have an equal chance of being sampled from our generative
model.

The joint distribution for a single pixel given by the model in Figure 6.3 is:

P (x,y,Φ,p,M) = P (x|Φ,p,M)P (y|M)P (M)P (Φ)P (p). (6.1)

We now divide (6.1) by P (y) =
∑

i={f,b} P (y|Mi)P (Mi) to give:
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P (x,Φ,p,M |y) = P (x|Φ,p,M)P (M |y)P (Φ)P (p), (6.2)

where the term P (M |y) is the pixel-wise posterior, of the model M , given a pixel

value y:

P (Mj|y) =
P (y|Mj)P (Mj)∑

i={f,b} P (y|Mi)P (Mi)
j = {f, b}. (6.3)

Using this posterior is equivalent to applying Bayesian model-selection to each indi-

vidual pixel2. We are interested in finding the pose p and the shape Φ, where the

model parameter M can be considered a nuisance variable. The Bayesian way of

dealing with nuisance variables is to marginalise them out using the sum rule. We

take this approach to obtain the pixel-wise posterior of the shape Φ and the location

p given a pixel {x,y}:

P (Φ,p|x,y) =
1

P (x)

∑

j={f,b}
{P (x|Φ,p,Mj)P (Mj|y)}P (Φ)P (p). (6.4)

Note that the pixel-wise posterior and marginalisation are the subtle but crucial

differences to the work in [Cremers, 2006], which lacks the marginalisation step and

uses a pixel-wise likelihood P (y|M). We show in Section 6.8 that our formulation

yields a much better behaved objective. We consider two possible methods for fusing

the pixel-wise posteriors: (i) a logarithmic opinion pool (LogOP):

P (Φ,p|Ω) =
N∏

i=1




∑

j={f,b}
{P (xi|Φ,p,Mj)P (Mj|yi)}



P (Φ)P (p) (6.5)

and (ii) a linear opinion pool (LinOP):

2It is also the distribution that would be computed in the E-Step of an EM solution to the
problem.
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P (Φ,p|Ω) =
N∑

i=1




∑

j={f,b}
{P (xi|Φ,p,Mj)P (Mj|yi)}



P (Φ)P (p). (6.6)

The logarithmic opinion pool is normally the preferred choice and is most similar to

previous work [Cremers, 2006; Cremers et al., 2007]. It assumes pixel-wise indepen-

dence; whereas the linear opinion pool is equivalent to marginalising over the pixel

locations – this is allowed as our bag-of-pixels generative model treats pixel locations

as a random variable. We continue our derivation assuming a logarithmic opinion

pool for clarity, but also include results using a linear opinion pool for completeness.

For more information on opinion pools refer to [Manyika & Durrant-Whyte, 1994].

Note the term 1
P (x)

has been dropped as it is constant for all pixel locations and we

only seek to maximise P (Φ,p|Ω).

6.4 Segmentation

The typical approach to region-based segmentation is to take a product of the pixel-

wise likelihood functions
∏N

i=1 P (I(xi)|Mi), over the pixel locations xi, to get the

overall likelihood P (I|M). This can then be expressed as a summation by taking logs

and optimised using variational level-sets [Osher & Paragios, 2003; Cremers et al.,

2007]. In contrast to these methods, our derivation leads to pixel-wise posteriors and

marginalisation (6.5), a subtle but important difference.

For the remainder of this section, in order to simplify our expressions (and without loss

of generality), we assume that the registration is correct and therefore xi = W(xi,p).

We now specify the term P (xi|Φ,p,M) in (6.5) and the term P (M) in (6.3) :

P (xi|Φ,p,Mf ) =
Hε(Φ(xi))

ηf
P (xi|Φ,p,Mb) =

1−Hε(Φ(xi))

ηb
(6.7)

P (Mf ) =
ηf
η

P (Mb) =
ηb
η
, (6.8)
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where

η = ηf + ηb, ηf =
N∑

i=1

Hε(Φ(xi)), ηb =
N∑

i=1

1−Hε(Φ(xi)). (6.9)

Equation (6.7) represents normalised versions of the blurred Heaviside step functions

used in typical region-based level-set methods and can now be interpreted probabilis-

tically as model specific spatial priors for a pixel location x. Equation (6.8) represents

the model priors, which are given by the ratio of the area of the model specific region

to the total area of both models. Equation (6.9) contains the normalisation constants

(note that η = N).

We now specify a geometric prior on Φ that rewards a signed distance function:

P (Φ) =
N∏

i=1

1

σ
√

2π
exp−(|OΦ(xi)| − 1)2

2σ2
, (6.10)

where σ specifies the relative weight of the prior. This gives a probabilistic interpre-

tation to the work in [Li et al., 2005]. The term |OΦ(xi)| is the magnitude of the

gradient at point xi and for a signed distance function should equal one everywhere.

Maintaining a signed distance function is desirable as it has good properties when

performing the registration step, which will be described in the next section. Sub-

stituting (6.7), (6.8), (6.9) and (6.10) into (6.5) and taking logs, gives the following

expression for the log posterior:

log(P (Φ,p|Ω)) ∝
N∑

i=1

{
log (P (xi|Φ,p,yi))−

(|OΦ(xi)| − 1)2

2σ2

}
+

N log

(
1

σ
√

2π

)
+ log(P (p)), (6.11)

where

P (xi|Φ,p,yi) =
PfHε(Φ) + Pb(1−Hε(Φ))

Pf
∑
Hε(Φ) + Pb

∑
(1−Hε(Φ))
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and

Pf =P (yi|Mf ), Pb = P (yi|Mb), Φ = Φ(xi).

Given that we are about to optimise with respect to Φ, we can drop the last two

terms in (6.11) and by calculus of variations [Evans, 2002] express the first variation

(Gateaux derivative) of the functional as (see Appendix C for details):

∂ log(P (Φ,p|Ω))

∂Φ
=

δε(Φ)(Pf − Pb)
PfHε(Φ) + Pb(1−Hε(Φ))

− 1

σ2

[
O2Φ− div

(
OΦ

|OΦ|

)]
,

(6.12)

where O2 is the Laplacian operator and δε(Φ) is the derivative of the blurred Heaviside

step function, i.e. a blurred Dirac delta function. Interestingly, δε(Φ) can now be

interpreted as a way of expressing uncertainty on the contour C. If we were to use

Gaussian uncertainty for the contour, then the region-based uncertainty would be

expressed in terms of erf(Φ) instead of Hε(Φ) (we do not explore this any further in

this dissertation). We seek ∂ log(P (Φ,p|Ω))
∂Φ

= 0 by carrying out steepest-ascent using

the following gradient flow:

∂Φ

∂t
=
∂ log(P (Φ,p|Ω))

∂Φ
. (6.13)

In practice this is implemented using a simple numerical scheme on a discrete grid.

All spatial derivatives are computed using central differences and the Laplacian uses

a 3×3 spatial kernel. We use σ =
√

50 and a time-step ∆t = 1 for all experiments.

For stability ∆t
σ2 < 0.25 must be satisfied (see [Li et al., 2005] for details).

6.5 Registration

It is possible to pose the tracking problem directly in a segmentation framework

[Freedman & Zhang, 2004]. Instead, like [Cremers, 2006] we model the frame-to-frame

registration explicitly, by having the level-set in the object frame and introducing

a warp W(x,p) into (6.11). The main benefits of this approach are: (i) control
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over the interaction between registration (tracking) and segmentation (local shape

deformation); (ii) by registering the embedding function first, fewer iterations are

required to take account of shape changes (in fact we find one per frame is adequate

for our sequences). We now drop any terms in (6.11) that are not a function of p in

preparation for differentiation:

log(P (Φ,p|Ω)) ∝
N∑

i=1

{
log (P (xi|Φ,p,yi))

}
+ log(P (p)) + const. (6.14)

If we now take P (p) to be the uninformative uniform distribution (i.e. no motion

model) and compute the MAP estimate by maximising with respect to p, then we

can write:

p = arg max
p

{
N∑

i=1

logP (xi|Φ,p,yi)
}
. (6.15)

Using the short-hand P (. . .) = P (xi|Φ,p,yi) we can differentiate once with respect

to p to obtain the Jacobian:

G =
∂ logP (. . .)

∂p
=

1

P (. . .)

∂P (. . .)

∂p
(6.16)

and a second time to obtain the Hessian:

∂G

∂p
=

−1

P (. . .)2

∂P (. . .)

∂p

T ∂P (. . .)

∂p
+

1

P (. . .)

∂2P (. . .)

∂p2
. (6.17)

Referring back to (6.4) we can break the term ∂P (...)
∂p

into two components:

∂P (. . .)

∂p
= JnBn, (6.18)

where
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Jn =
∂Hε

∂Φ

∂Φ

∂W

∂W

∂p
= δε(Φ)OΦ(xn)

∂W

∂p
(6.19)

and

Bn =
Pf − Pb

PfHε(Φ) + Pb(1−Hε(Φ))
. (6.20)

The second term in (6.17) will contain second-order derivatives of the level-set em-

bedding function Φ(xn). Given that this function is approximately a signed distance

function due to (6.10) i.e. zero curvature near the contour, we can approximate

(6.17) by its first term only. This enables us to use an approximate3 version of the

second-order Newton optimisation scheme:

∆p =

[
N∑

i=1

B2
i J

T
i Ji

]−1 N∑

i=1

JTi Bi. (6.21)

Equation (6.21) is then used to update the parameters p by composing W(xi,p) with

W(xi,∆p)−1, analogous to inverse compositional tracking [Baker & Matthews, 2004].

For this reason the warp must form a group [Baker & Matthews, 2004]; however,

this is acceptable as many common useful transformations in computer vision do

form groups, for instance: translation, translation+scale, similarity transforms, affine

transforms and homographies.

6.6 Spatial Drift Correction

Having the object represented by its location p and shape Φ leaves an ambiguity

where it is possible to explain rigid transformations of the shape either with p or

Φ. Ideally, any rigid motion would be explained solely by p; however, over time

the shape Φ slowly incorporates a rigid transformation. We tackle this problem by

keeping the top, bottom, left and right borders4 (Bt, Bb, Bl, Br) balanced and the

3This would be exact if we perfectly maintained a signed distance function.
4Smallest distances between the contour and the corresponding side of the foreground box.
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minimum border distance equal to four pixels. This keeps the object contour at

an appropriate size and centred within the foreground box. We use the following

proportional controllers:

Tx = max(−Lt,min(Kt(Bl −Br), Lt))

Ty = max(−Lt,min(Kt(Bt −Bb), Lt))

S = max(−Ls,min(Ks(Bdes −Bmin), Ls)) (6.22)

where

Bmin = min(Bl, Br, Bt, Bb)

to build a drift correction warp:

Wdc =




1 + S 0 Tx

0 1 + S Ty

0 0 1


 . (6.23)

This warp is applied to the level-set Φ and the pose parameters p to compensate for

spatial drift. The parameters Lt = 0.4 and Ls = 0.1 are the saturation limits, Kt = 1

and Ks = 0.005 are the gains for the translation and scale controllers respectively

and Bdes = 4 is the desired minimum border distance. Figure 6.5 gives an example

of how the drift correction works.

6.7 Online Learning

Once registration and segmentation are completed, both the foreground and back-

ground models are adapted online. This is achieved using linear opinion pools with

variable learning rates αi, i = {f, b}:
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Figure 6.5: Diagram showing how the spatial drift correction works. Starting with the
top-left arrangement, three warps are applied. This gradually equalises the borders
and makes them equal to Bdes.

Pt(y|Mi) = (1− αi)Pt−1(y|Mi) + αiPt(y|Mi), i = {f, b}. (6.24)

In all experiments αf = 0.02 and αb = 0.025. For shape adaptation we control the

evolution rate of the level-set using the time-step ∆t.

6.8 Results

We have tested our system extensively on live video and on a variety of recorded

sequences, which include objects that exhibit rapid and agile motion with significant

motion blur, varying lighting, moving cameras, and cluttered and changing back-

grounds. Figure 6.6 shows a qualitative evaluation of our method on three sequences.

The first is a speedboat undergoing a 180◦ out-of-plane rotation – note how the shape

is adapted online. The second is a person jumping around – note the motion blur and

shape adaptation. Finally, the third is a hand being tracked from a head mounted

camera past a challenging background that has a similar appearance to the object.
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Figures 6.10-6.14 show a selection of different types of objects that we have success-

fully tracked.

Figure 6.6: Qualitative evaluation: (top) a speedboat undergoing a 180◦ out-of-plane
rotation illustrating shape adaptation; (middle) a person jumping around with sig-
nificant motion blur and (bottom) a hand being tracked in front of a challenging
background.

To perform a quantitative evaluation we have analysed the characteristics of the

underlying cost function for our technique and compared this with competing alter-

natives on a set of pre-recorded video sequences. Figure 6.7 shows still images taken

mid-sequence from a subset of these sequences; the minimum length is 400 frames and

the total number of frames is over 20,000. To facilitate visualisation of the results

we use a 2D rigid transformation + scale, considering each of the four dimensions

separately. The competing cost functions considered correspond to the following al-

ternative methods of tracking: level-set methods based on likelihoods [Cremers, 2006;

Paragios & Deriche, 2000], mean-shift [Comaniciu et al., 2000; Collins, 2003; Yilmaz,

2007], inverse compositional [Baker & Matthews, 2004] and distribution based track-

ing [Freedman & Zhang, 2004; Zhang & Freedman, 2005].

A good cost function has a single extremum at the true location. A poor one has

multiple extrema and any local optimisation technique is liable to fall into one of these,

which in practice is often the start of tracking failure. For each video frame and each

dimension (translation in x and y, rotation and scale) we compute the objectives for
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Figure 6.7: A selection of video frames from the data sets: (1st row) lifeboat, Coca-
Cola mug, a face and a hand filmed from a head mounted camera and (2nd row) a
hand using a mouse, a speedboat, a person from the caviar data set [Fisher, 2004]
and a tractor. The white contour indicates the current segmentation and the two
black boxes indicate the object’s coordinate frame.

the competing cost functions at 40 evenly spaced points over an interval centred at the

true state. We then extract all local extrema from these objectives and examine how

they are distributed across the interval. To summarise this information we compute

a distribution for each dimension and each cost function, using our collection of over

20,000 frames. Figure 6.8 shows a diagram of how the distribution of extrema is

generated. The ideal distribution would be a delta function centred on the true state

i.e. no chance of a local extremum away from the true optimum; whereas a good

distribution would be peaky around the true state and have low probability of local

extrema within the region it will be required to converge from. A bad distribution

would be relatively flat with high probability of local extrema over the entire space,

such as the one illustrated in Figure 6.8. The particular cost functions we consider

are:

• LogPWP: Pixel-wise posteriors fused using a logarithmic opinion pool.

• LinPWP: Pixel-wise posteriors fused using a linear opinion pool.

• LogLike: Log likelihood, used in most level-set work [Cremers et al., 2007;

Cremers, 2006; Paragios & Deriche, 2000].

• BhattF: Bhattacharyya coefficient:

B(Ωf ) =
∑V

j=1

√
P (yj|Mf )P (yj|Ωf ), used by [Comaniciu et al., 2000; Collins,

2003; Yilmaz, 2007].
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• BhattFB: Bhattacharyya coefficient with a background model:

B(Ωf ,Ωb) =
∑V

j=1

√
P (yj|Mf )p(yj|Ωf ) +

∑V
j=1

√
P (yj|Mb)P (yj|Ωb).

• BhattFBM: Bhattacharyya coefficient with a background mismatch:

B(Ωf ,Ωb) =
∑V

j=1

√
P (y|Mf )p(y; Ωf )−

∑V
j=1

√
P (yj|Mf )P (yj|Ωb), suggested

by [Zhang & Freedman, 2005].

• Ideal SSD: Sum of squared pixel differences using the ideal template i.e. the

template extracted at the current location p. This is essentially what you

would get if you had the perfect generative model giving the true pixel value

at each pixel location, including the noise. This of course is never going to be

achievable, but has been included as a useful benchmark and gives an indication

of what effect incorporating texture may have.

Note:- V is the number of pixel values i.e. 32 × 32 × 32; P (y|Ωi) i = {f, b} is

the empirical density built from the pixels Ωi and when computing Bhattacharyya

coefficients we weight the contribution of each pixel according to our shape kernel,

which is identical to Yilmaz’s work [Yilmaz, 2007].

Figure 6.9 shows distributions generated from over 20,000 real video frames for: trans-

lation in x, translation in y, scale and rotation.

• Translation in x and y: Our method has narrower distributions near the

true state than all methods apart from ideal SSD and is significantly better

than the log likelihood used by [Cremers, 2006]. Unlike the other methods, it

also exhibits virtually no extrema outside a ±5 pixel region – this means that

our method will converge to within ±5 pixels of the true state from anywhere

within the ±20 pixel space we have evaluated.

• Scale: The Bhattacharyya method and Bhattacharyya with background mis-

match both have poor localisation in scale, which is in agreement with the find-

ings of many authors. The log likelihood also poorly localises scale compared

with our pixel-wise posterior based methods.

• Rotation: All Bhattacharyya methods and the log likelihood are poor at cor-

rectly localising the rotation. The straight Bhattacharyya coefficient for exam-

ple has more than a 1% chance of exhibiting extrema anywhere in the rotation

space, at a 30Hz frame rate this corresponds to approximately 1 frame in every

3 seconds of video. It is worth noting that the side lobes (at approximately
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25◦) exhibited by our methods and ideal SSD, are due to the self similarity

corresponding to fingers in the hand sequences.

Experimentally we were unable to make the log likelihood successfully track several

of our sequences, which is confirmed by its poor performance in Figure 6.9. One

possible explanation is that in other work [Cremers, 2006; Cremers et al., 2007; Para-

gios & Deriche, 2000], a single Gaussian parametric model is used. This implicitly

enforces a smooth, unimodal distribution for the joint likelihood. Non-parametric

representations do not exhibit these properties; however, they are better at describ-

ing complicated distributions and therefore desirable. The reason that our method

can deal with these distributions is because of the normalising denominator in (6.3)

and the marginalisation step in (6.4). These two steps prevent individual pixels from

dominating the cost function, hence making it smoother and more well-behaved.

The work of [Freedman & Zhang, 2004] and its subsequent improvement [Zhang &

Freedman, 2005] use distribution matching techniques to incorporate non-parametric

distributions into a level-set framework. These methods, similar to the Bhattacharyya

based methods, involve computing the empirical densities at every iteration of the

optimisation, whereas our method avoids this extra cost. Not only is our method

superior to these approaches in terms of cost functions (see Figure 6.9), but it is com-

putationally cheaper to evaluate as it does not require empirical distributions. This

is a significant benefit because it not only reduces the cost per iteration, but avoids

the issue of having to build ‘good’ distributions. One explanation for the difference

between the performance of these methods and ours, is that it is hard to build ‘good’

empirical distributions in real-time and most methods rely on simple histograms. Al-

though this could be improved with Parzen or NP windowing techniques [Kadir &

Brady, 2005], it would almost certainly sacrifice real-time performance.

Timing

All terms in (6.21) include δε(Φ(xi)) (blurred Dirac delta function). This means

that an individual pixel’s contribution to the optimisation diminishes the further

from the contour it is. An efficient implementation, therefore, recognises this. Our

implementation ignores pixels outside a narrow band and for an object size of 180×180

runs in 500µs on a P4 3.6GHz machine. On average the system runs at a frame rate

of 85Hz for the complete algorithm and if shape and appearance learning are turned

off (i.e. rigid registration only) it averages 230Hz.
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6.9 Conclusions

We have proposed a novel probabilistic framework for robust, real-time, visual track-

ing of previously unseen objects from a moving camera. The key contribution of our

method and reason for its superior performance compared with others, is the use of

pixel-wise posteriors as opposed to a product over pixel-wise likelihoods. In contrast

to other methods [Cremers, 2006; Cremers et al., 2007], we solve the registration using

Gauss Newton, which has significant practical benefits, namely: (i) the difficulty as-

sociated with step size selection is removed and (ii) reliable and fast convergence. We

have demonstrated the benefits of our method both qualitatively and quantitatively,

with a thorough analysis of pixel-wise posteriors versus competing alternatives using

over 20,000 video frames. Our results demonstrate that using pixel-wise posteriors

provides excellent performance when incorporating non-parametric distributions into

region based level-sets. It not only offers superior cost functions, but avoids the need

for computing empirical distributions [Comaniciu et al., 2000; Freedman & Zhang,

2004; Zhang & Freedman, 2005; Yilmaz, 2007] and is therefore faster.

One of the failure modes of this tracker is if an object with similar appearance oc-

cludes/interacts with the object being tracked. The result is the tracker will often be

seduced away from the true object and either fail completely or end up tracking the

wrong object. The next chapter describes how a more complicated generative model

can be used to deal with multiple interacting objects that occlude each other.
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Figure 6.8: A diagram showing how the distribution of extrema is generated. For
each video frame all extrema are extracted from the cost function and binned into
40 evenly spaced bins over an interval centred at the true state. These are then
accumulated over all video frames into a normalised distribution. Finally, we take
the log of this distribution to make visualisation easier.
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Figure 6.9: Quantitative Analysis: log probability distribution of extrema in the cost
functions generated from 20,000 frames of real video data.
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Figure 6.10: Tracking faces montage.
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Figure 6.11: Tracking hands montage.
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Figure 6.12: Tracking people montage.
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Figure 6.13: Tracking animals montage.
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Figure 6.14: Tracking boats montage.
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Chapter 7

Tracking Multiple

Interacting/Occluding Objects

using Pixel-Wise Posteriors

7.1 Introduction

While the previous chapter dealt with tracking a single object, this chapter will

introduce a generalised model that allows us to track multiple objects in real-time.

One approach that has demonstrated significant success in representing the presence

of multiple objects, in an image or video, is that of a layered or 2.5D representation

[Nitzberg & Mumford, 1990; Wang & Adelson, 1993; Jepson et al., 2002; Tao et al.,

2000; Jojic & Frey, 2001; Reid & Connor, 2005]. The image formation process is

modelled by multiple layers at different depths, with the background layer being

furthest away and then a number of different object layers organised according to

their relative depths in the scene. This representation is able to directly model the

occlusion process, assuming that objects do not interlock with each other.

This chapter presents a fully probabilistic, generative model for the image formation

process, which captures the essence of a layered representation and adds the power,

speed and resilience of pixel-wise posteriors. Following the previous chapter, we use

implicit contours (level-sets) to represent the boundaries of the objects being tracked

[Osher & Paragios, 2003; Paragios & Deriche, 2000; Goldenberg et al., 2001; Chan &

Vese, 2001; Cremers, 2006] and pixel-wise posteriors to give better behaved objective

functions and hence resilience to noise. The result is, to our knowledge, the first
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system that can simultaneously estimate the position, scale, rotation (and potentially

other parameters), depth-ordering, figure-figure and figure-ground segmentation for

up to twelve occluding/interacting objects, in real-time, using standard PC hardware.

It is not obvious from the previous chapter how multiple occluding objects should be

handled and so the key contribution of this chapter is: solving the non-trivial task of

tracking multiple occluding objects using pixel-wise posteriors. In particular: (i) we

begin with a more sophisticated generative model, which directly models the process

of inter-object occlusion; (ii) we take the Bayesian approach and marginalise out

all nuisance parameters when inferring the best configuration over the multi-object

space; (iii) we show how to introduce motion models; (iv) we compute a posterior

over the depth-ordering of multiple objects and (v) we demonstrate the ability to

track through complete occlusions in challenging situations.

Given our generative model, we are able to perform inference and an optimisation at

each frame to find the MAP estimate for the configuration of the multiple objects.

An alternative to this approach, which has been used successfully for multi-object

tracking, is the use of a non-parametric representation, in particular, the various

methods based on particle filtering [Isard & MacCormick, 2001; Vermaak & Doucet,

2003; Khan et al., 2004]. A significant advantage of these methods is that you only

need to sample a particle distribution and weight each particle by the likelihood

function, which in practice is often easier to implement than a direct optimisation.

The downsides are that often a very large number of particles is required to achieve a

good approximation of the true posterior and that given this approximation it is not

always obvious how to interpret the particle set.

An important aspect to any multi-object tracking system is probabilistic exclusion,

which was first demonstrated in a particle filtering context by [MacCormick & Blake,

1999]. Probabilistic exclusion enforces that a single measurement should not be al-

lowed to explain multiple objects, which in practice ensures that several objects do

not incorrectly get assigned to the same data. The generative model we propose

enforces this directly by only allowing a pixel to be generated from a single object.

Our method only needs an initial bounding box to start tracking an object and

therefore has to estimate everything about the objects and their interactions from the

incoming video data. In contrast, if 3D models for the objects are available before

tracking commences, then it is possible to estimate the full 3D poses of the objects

and hence compute occlusion/visibility directly from their 3D structure [Drummond

& Cipolla, 2000; Schmaltz et al., 2007]. This can offer superior performance and
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accuracy; however, there are many real-world scenarios where this information is not

available before tracking commences and so a method such as ours is required that

can be initialised without prior knowledge of 3D structure.

The remainder of this chapter is organised as follows: Section 7.2 describes the rep-

resentation of the objects being tracked; Section 7.3 describes our generative models

and their corresponding probability distributions; Section 7.4 outlines our method for

tracking; Section 7.5 shows our results and Section 7.6 concludes with a summary

and discussion.

7.2 The Representation

Figure 7.1 illustrates how we represent each of the K objects being tracked by their

shape Cj, their location in the image W(xn,pj) and two underlying appearance

models: one for the foreground P (y|M = mf
j ) and one for the background P (y|M =

mb
j).

Shape: This is represented by the zero level-sets Cj = {x|Φj(x) = 0} of the embed-

ding functions Φj(x) [Osher & Paragios, 2003; Cremers, 2006]. This is identical to

the approach in the previous chapter except there is now a level-set for each object

being tracked.

Location: This is described by a warp W(xn,pj) that takes a pixel location xn in

object j’s coordinate frame and warps it into the image frame according to parameters

pj. Again this is identical to the approach in the previous chapter except there is

now a set of pose parameters for each object being tracked.

Appearance models: Each object j has a pair of colour models P (y|M = mf
j )

and P (y|M = mb
j), one for its foreground pixels and one for the nearby background

pixels. We use a local background model for each object being tracked, as opposed

to a single model shared between objects. We have tried both approaches and we

have found that a local background model per object is crucial to the success of the

algorithm. This is because the background can vary significantly over the image and

successful tracking requires that each object is segmented from the local background

i.e. nearby background pixels.

Regions: This is the most significant difference from the previous chapter. The

area in each object’s coordinate frame is broken into multiple regions R. For a single

object there would simply be two regions: foreground and background. Extending
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Figure 7.1: Representation for three objects showing: the three pairs of colour models
P (y|M = mj) where j = {1, 2, 3}; the three warps into the objects’ coordinate frames
W(xn,pj); the three contours Cj corresponding to the shapes of the three objects

and the eight potential regions: H̃3H̃2H̃1, H̃3H̃2H1, H̃3H2H̃1, H̃3H2H1, H3H̃2H̃1,
H3H̃2H1, H3H2H̃1 and H3H2H1, which correspond to different types of overlap for
example H̃3H̃2H̃1 is the background region and H3H̃2H1 is the region where object 1
and object 3 overlap in the image.

to two objects there are four regions: background, object 1, object 2 and the overlap

between object 1 and 2. In general, for K objects there are 2K regions required to

cover all possible types of interaction (occlusion). Figure 7.1 shows an example of

three interacting objects with their eight potential regions. The notation Hj and

H̃j can be interpreted as: foreground of object j and not foreground of object j

respectively, for example H3H2H1 is the foreground of objects 1,2 and 3, in other

words the region where these three objects overlap. In summary, we use the following

notation:

• N : The number of pixels.

• K: The number of objects.

• x = {x1, . . . ,xN}: The set of pixel locations in the object’s coordinate frame.
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• y = {y1, . . . ,yN}: The set of pixel values (in our experiments this is a RGB

value).

• I = {{x1,y1}, . . . , {xN ,yN}}: Image within the objects’ coordinate frames.

• j = {1, . . . , K}: Object index where K is the number of objects being tracked.

• W(xn,pj): Warp with parameters pj corresponding to object j.

• Mn = {m{b,f}1 , . . . ,m
{b,f}
K }: Model parameter either background or foreground

for one of the K objects, there are 2K models.

• D: The discrete depth-ordering of the foreground objects, there are K! possible

orderings.

• Rn: The region that the pixel xn has been generated from. With K objects

there are 2K possible regions.

• Cj: The contour that segments the foreground object j from the background.

• Φ,p = {{Φ1,p1}, . . . , {ΦK ,pK}}: Shape kernels (level-set embedding func-

tions) and pose parameters.

• Hε(z): Smoothed Heaviside step function, where ε is the smoothing parameter.

• δε(z): Smoothed Dirac delta function, where ε is the smoothing parameter.

• Hj = Hε(Φj(W(xn,pj))): Shorthand for the smoothed Heaviside step function

applied to object j’s shape kernel.

• H̃j = 1−Hε(Φj(W(xn,pj))): Shorthand for one minus the smoothed Heaviside

step function applied to object j’s shape kernel.

7.3 The Generative Models

We will now consider two different approaches for modeling the relative depth-ordering

of the objects. The first assumes that each pixel belonging to an object carries its

own relative depth. This is a very general model and allows objects to interact in

complicated ways, for example meshing hands. The second approach is more restric-

tive and assumes that each frame carries a relative depth. This is more in keeping
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with the traditional layered representations and means that the pixels belonging to

an object all share a common relative depth.

Figure 7.2 shows generative models that correspond to the two approaches and have

the following variables: Φ is the shape kernels, one per object; p is the set of param-

eters describing the rigid transformations from each object’s coordinate frame to the

image frame; D is the discrete depth-ordering of the objects (there are K! orderings);

Mn is the appearance model (there are 2K appearance models); Rn is the region the

pixel is generated from (there are 2K regions); yn is the pixel colour and xn is the

pixel location. The difference between the two models is that the one on the left

includes Dn within the plate, meaning that depth is treated as a local (pixel-wise)

parameter, whereas the other model treats D as a global (frame-wise) parameter.

Φ p

xn Rn

Mn

yn

N

Dn Φ p D

xn Rn

Mn

yn

N

Figure 7.2: Generative models representing the image as a bag-of-pixels: (left) the
discrete depth-ordering is a local parameter and (right) the discrete depth-ordering
is a global parameter (note:- the gray polygon denotes a plate over the N pixels in
the objects’ coordinate frames).

The intuition behind these graphical models is that given the shape Φ, the pose p

and the depth-ordering D, you can first sample a particular appearance model Mn,

then sample a region Rn where the appearance model is present and finally sample a

{xn,yn} pixel pair, which tells you where the pixel is xn and what colour it has yn.

If you were to sample from this generative model N times, then you would end up

with an image that is representative of the original apart from the fact that pixels

within an object’s contour are jumbled up, which is because we are modeling the

colour distributions P (yn|Mn) rather than the specific spatial arrangement of pixels.

The joint distribution for a single pixel given the left-hand generative model is:
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P (xn,yn,Φ,p, Rn,Mn, Dn) = P (Φ)P (p)×
P (xn|Φ,p, Rn)P (Rn|Dn,Mn)×

P (yn|Mn)P (Mn|Dn)P (Dn). (7.1)

By performing inference we can obtain the MAP estimate of P (Φ,p, Dn|I) and com-

pute the best shape, pose and discrete depth-ordering to explain the observed image

data. The way that we achieve this is to first condition on xn and yn, where P (xn)

is constant and

P (yn) =
∑

Mn,Dn

P (yn|Mn)P (Mn|Dn)P (Dn). (7.2)

Then second, marginalise over Rn and Mn to give us the pixel-wise posterior:

P (Φ,p, Dn|xn,yn) =
1

P (xn)P (yn)
P (Φ)P (p)×

∑

Rn,Mn

P (xn|Φ,p, Rn)P (Rn|Dn,Mn)×

P (yn|Mn)P (Mn|Dn)P (Dn). (7.3)

Finally, we take the product over the pixel sites to get the posterior given the image

I:

P (Φ,p, D|I) = P (Φ)P (p)
N∏

n=1

1

P (yn)
×

∑

Rn,Mn

P (xn|Φ,p, Rn)P (Rn|Dn,Mn)×

P (yn|Mn)P (Mn|Dn)P (Dn). (7.4)

The corresponding posterior taking D as a global parameter is:
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P (Φ,p, D|I) = P (Φ)P (p)P (D)
N∏

n=1

1

P (yn)
×

∑

Rn,Mn

P (xn|Φ,p, Rn)P (Rn|D,Mn)×

P (yn|Mn)P (Mn|D), (7.5)

where there is now a single D for all pixels in the current frame (see the right-hand

generative model in Figure 7.2).

The Probability Distributions

We will now explain each of the distribution terms which comprise (7.4) and (7.5) in

detail:

- P (xn|Φ,p, Rn): is the probability of the pixel location xn given the shape Φ, the

pose p and the region Rn, which can be written in terms of the blurred Heaviside step

function Hj and one minus the blurred Heaviside step function H̃j. For K objects

there are 2K regions, so for example with 3 objects there are 8 regions, which take

the form:

P (xn|Φ,p, Rn = 0) = H̃3H̃2H̃1/η0

P (xn|Φ,p, Rn = 1) = H̃3H̃2H1/η1

P (xn|Φ,p, Rn = 2) = H̃3H2H̃1/η2

. . .

P (xn|Φ,p, Rn = 7) = H3H2H1/η7, (7.6)

where the terms on the right-hand side follow a binary sequence (this is related to

the work on multi-phase level-sets [Vese & Chan, 2002]) and are normalised by ηr so

that the distributions sum to one.

- P (Rn|Dn,Mn): is the probability of a region Rn given a discrete depth-ordering Dn

and a model Mn. This is computed using a ratio of region areas, an example using

the object arrangement in Figure 7.1 would be:
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P (Rn = 7|Dn,Mn = mf
3) = η7/(η4 + η5 + η6 + η7). (7.7)

- P (yn|Mn): is the probability of the colour yn given the model Mn (represented

using a colour histogram).

- P (Mn|Dn): is the probability of a model Mn given a discrete depth-ordering Dn.

This is computed using a ratio of region areas, an example using the object arrange-

ment (depth-ordering) in Figure 7.1 would be:

P (Mn = mf
3 |Dn) = (η4 + η5 + η6 + η7)/η, (7.8)

where η is the sum of ηr over all regions, which equals the number of pixels N .

- P (Dn) and P (D): are the prior distributions on the discrete depth-orderings. They

are taken to be the uninformative uniform distribution.

- P (Φ): is the prior on the shape Φ, which we take to be:

P (Φ) =
N∏

n=1

1

σ
√

2π
exp−(|OΦ(xn)| − 1)2

2σ2
, (7.9)

where σ specifies the relative weight of the prior. This is identical to the prior term

used in the previous chapter and automatically maintains approximate signed distance

functions for the level-set embedding functions.

- P (p): is the prior on the pose p, which is either taken to be the uninformative

uniform distribution or a motion model P (pt|pt−1), which will be described in Section

7.4.

Note:- It should be pointed out that when substituting these distributions into Equa-

tions (7.4) and (7.5) several expressions cancel, simplifying the final implementation

(exact details skipped for brevity).
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7.4 Tracking

Given the posterior distributions (7.4) and (7.5) our objective is to compute the MAP

estimate for the pose p, the shape Φ and the discrete depth-ordering D. Ideally these

would be maximised jointly, but the high dimensionality of the joint space makes this

prohibitively expensive and so as an approximation we break the problem into five

steps: (i) a rigid registration to account for any rigid motion between frames; (ii) a

segmentation to account for any local shape deformation; (iii) a posterior over depth-

ordering, holding the pose and the shape constant; (iv) updating the appearance

models and (v) drift correction. We will now explain each of these five steps in

greater detail.

Rigid Registration and Motion Modeling

If we begin by taking P (pt|pt−1) to be the uninformative uniform distribution (i.e.

no motion model), then the MAP estimate for p:

p = arg max
p

{
N∑

n=1

logP (Φ,p, D|xn,yn)

}
(7.10)

can be solved (similar to Section 6.5) with an approximate version of the second-order

Newton optimisation scheme:

∆p =

[
N∑

n=1

B2
nJ

T
nJn

]−1 N∑

n=1

JTnBn, (7.11)

where

Jn =
∂Hε

∂Φ

∂Φ

∂W

∂W

∂p
= δε(Φ)OΦ(xn)

∂W

∂p
(7.12)

and Bn is scalar value, which is obtained by differentiating (7.3) with respect to

p. Although the exact derivation of Bn is skipped for brevity it should be pointed
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out that the differentiation of (7.3) leads to a sum of positive and negative weights,

where the weights are related to the likelihoods P (yn|Mn) and the region probabilities

P (xn|Φ,p, Rn).

Let us now introduce a constant velocity motion model P (pt|pt−1) with Gaussian

noise, which will add an extra term to (7.10) and modify (7.11) to include prior

terms:

∆p =

[
N∑

n=1

B2
nJ

T
nJn + JTp Jp

]−1

(
N∑

n=1

JTnBn + JTp Bp), (7.13)

where Jp represents the Jacobian due to the prior information and Bp is the error

vector for the prior. This equation has the property that as an object becomes

gradually occluded, the Bn terms will reduce, increasing the relative weight of the

prior. At the point an object becomes completely occluded the Bn terms will be zero

and (7.13) will reduce to a motion model prediction equation. Note:- The terms Jn

and Jp remain constant with respect to the shape and can therefore be precomputed

for efficiency during the registration step (refer to [Baker & Matthews, 2004] for

details).

Depth-Ordering

We have two methods of dealing with the depth parameter depending on whether we

treat it as a local (pixel-wise) or a global (frame-wise) parameter. Treating it as a

local parameter means we can maximise for Dn within the registration step (7.10) by

performing a pixel-wise maximisation over Dn:

p = arg max
p

{
N∑

n=1

max
Dn
{logP (Φ,p, Dn|xn,yn)}

}
. (7.14)

This method picks the best Dn out of the K! choices at each pixel and therefore has

no consistency at the frame level. The benefit of this approach is that it can deal with

objects interacting in complicated ways, for example: a pair of hands meshing fingers.

The downside of this approach is that it is often easier to choose an incorrect depth-

ordering than it is to explain the image data correctly, which results in increased
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sensitivity to noise and a tendency to assume interacting pixels are occluded, when

they are not. The alternative to this is to treat D as a global parameter and assume

that objects do not interlock (we show in Section 7.5 that this increases resilience to

noise). We first compute the following posterior over the K! depth-orderings:

P (D|Φ,p, I) =

P (D)
N∏

n=1

1

P (yn)

∑

Rn,Mn

P (xn|Φ,p, Rn)P (Rn|D,Mn)P (yn|Mn)P (Mn|D) (7.15)

and then use the MAP estimate for D when optimising for the pose p and shape Φ

in the next frame.

Grouping

An efficient implementation must address the problem of exponential growth in K!.

We deal with this by forming groups of objects, so that the amount of inter-object

overlap within a group is maximised, subject to a maximum group size of three. The

depth posterior is then computed on a per group basis. The result is that depth

posteriors are only calculated where they are most necessary. Figure 7.9 shows a

typical example of how objects are grouped, with the white lines representing the

object groups. By limiting the maximum group size to three, we are able to track

twelve or more objects comfortably in real-time.

Segmentation, Appearance Learning and Drift Correction

The methods for segmentation, appearance learning and computing drift correction

are the same as the approach taken in the previous chapter, except that the level-

set evolution in the segmentation step and appearance learning are modulated by a

parameter λn, which effectively turns off learning in areas where objects overlap. The

parameter λn is defined as the probability that objects do not overlap at a given pixel,

which is computed directly using the P (Rn|Φ,p,xn) terms.
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7.5 Results

We will first quantitatively evaluate the performance of the local vs. global depth pa-

rameter as described in Section 7.4. To test their performances against each other, we

have generated a simple simulation containing three objects that repeatedly cross each

other in different ways, we then add varying amounts of Gaussian noise to the pixel

colours (see Figure 7.3). Given that we have the ground truth for the sequence, we are

able to compute the normalised pose error
∑F

i=1

∑K
j=1(pij − p̂ij)

TR−1(pij − p̂ij)/K/F

i.e. a normalised error between the estimated pose and the true pose, where R−1 =

diag[1, 1, 100, 180/π] and F is the number of frames1. Figure 7.4 demonstrates that

superior performance is achieved in the presence of noise using the global parameter.

This is no surprise given that the global parameter is a simpler model than the local

parameter, yet both can explain the data exactly. It is also worth noting that using

a motion model (MM) confers a measurable improvement in performance.

Figure 7.3: The simulation: these objects move around (translation, scale and rota-
tion), overlapping each other in different ways. This shows varying amounts of noise,
corresponding to standard deviations of 0, 40, and 70 pixels (from left to right).

Figure 7.5 illustrates that marginalising out nuisance variables to obtain the pixel-

wise posterior (7.3) achieves superior resilience to noise compared with optimising the

joint (7.1) directly. This graph was generated using a similar simulation to Figure

7.3 but with only a single object. The difference in performance is significant.

We will now qualitatively look at three sequences, the first is 1600 frames long and

consists of three distinctive shapes that are translating, rotating and scaling, as well

as occluding each other in different ways. Figure 7.6 highlights a small section of

this sequence where all three objects interact. In particular, the green object passes

behind the blue object (frame 1147), which then passes behind the red object (frame

1151), resulting in the green object being completely occluded and the blue object

1The purpose of R−1 is to normalise the pose dimensions so that an angle measured in radians
can be compared against a scaling factor or a translation measured in pixels.
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only being visible through the hole in the red object (frame 1157). Finally, by the

end of the sequence (frame 1172) all objects have been successfully tracked through

the occlusion.

The second sequence is 800 frames long and shows a typical security video taken in a

shopping centre [Fisher, 2004] (see Figure 7.7). Our method successfully tracks four

people as they walk from one end of the corridor to the other, occluding each other

in different ways and crossing over completely between frames 0 and 207. In frame

369, a man in a striped shirt can be seen approaching from the right, then in frame

401 (zoomed in) he crosses behind the people we are tracking. At this point the

green object shrinks to accommodate the unmodelled occlusion event, if we had been

tracking the person in the striped top this would not have been the case, because the

occlusion would have been modelled within the system.

Finally, the third sequence is 2000 frames long and shows a person carrying out actions

that may be similar to those required for a human machine interface, see Figure 7.8.

We successfully track both hands and the face for the duration of the sequence. As

an example application, the tracker has been used to anonomise the face using the

estimate for the shape and the pose. Frame 609 shows both hands occluding the face,

sweeping from top to bottom. This is the sort of behaviour that would often break

a tracking system. Frames 1231 to 1258 show the person rolling their hands one in

front of the other, again behaviour that would often break a tracking system.

The depth-ordering is shown in the results by drawing the objects according to the

MAP depth-order, which means that the coloured contour for an object will be hidden

if it is behind another object. Generally the system gets the depth-ordering correct,
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Figure 7.4: Comparison of global vs. local depth parameters, with and without a
motion model (MM). The vertical regions in the plots at standard deviations of 40
and 70 correspond to catastrophic failures in tracking.
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but occasionally makes mistakes if the appearance of the objects being tracked are

similar. For an example consider frame 912 in Figure 7.8, where the person’s hands

overlap and the system makes a mistake about the correct depth-ordering. Although

these mistakes are sometimes made, it is not necessarily detrimental to tracking be-

cause if the objects have similar appearances then the incorrectly classified pixels will

have a weak influence during the registration stage.

Figures 7.10-7.12 show a selection of applications of the multi-object tracker to real-

world examples. Figure 7.10 shows an application of the tracker to a marine environ-

ment where we track a selection of dinghys in a race and their safety boat. Figure

7.11 shows the tracker being used to track ice hockey players. Figure 7.12 shows the

tracker being used to track every football player on a pitch, which is impressive for

the following reasons: (i) no prior on human shape or appearance is used; (ii) no

geometric information regarding the pitch is used and (iii) a detector is only used to

initiate new tracks and not to correct tracking mistakes. Throughout the sequence

the frame rate is always greater than 25 frames per second and averages 40 frames per

second. Each of these figures display a stabilised video of the objects being tracked.

These are shown as small tiles, which are overlaid on the video with a blue border.

7.6 Conclusions

We have presented a tracking method that represents multiple interacting/occluding

objects with a probabilistic generative model. This model includes the discrete depth-

ordering for the objects, their locations in the image represented by rigid transforma-

tions and their shapes represented with implicit contours. We show how to efficiently
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Figure 7.5: Comparison of optimising the marginal (7.5) vs. the joint distribution
(7.1), with and without a motion model (MM).
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1140 1147

1151 1157

1168 1172

Figure 7.6: Tracking three distinctive shapes. The frame number is in the bottom
right, the coloured contours show the objects’ pose and shape estimates and the
coloured arrows show the objects’ estimated velocities.

perform inference on this generative model and compute the MAP estimate for the

poses, shapes and discrete depth-ordering of the objects. By using implicit contours

and a novel second-order registration scheme, we are able to compute this inference

in real-time i.e. 30Hz. A key aspect to the success of the system is the fact that we

marginalise out all nuisance parameters analytically, leading to pixel-wise posterior

terms as opposed to pixel-wise likelihoods. We demonstrate using quantitative re-

sults that this provides superior resilience to noise in the image. We have explored

two possible methods for representing the discrete depth-ordering, one based on a

local (pixel-wise) parameter and the other on a global (frame-wise) parameter. We

show quantitatively that the global parameter provides greater performance in dif-

ficult conditions. We have also shown how motion models can be included within

our second-order registration step and how this enables the system to track complete

occlusions. The system has been tested on a variety of challenging video sequences.

This concludes the second part of the dissertation, which has proposed two novel
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methods for visual tracking based on pixel-wise posteriors as opposed to pixel-wise

likelihoods. These methods can be used to acquire stabilised video streams of objects

of interest with minimal prior information about the object itself (just a bounding

box). The next part of the dissertation will describe how these methods can be com-

bined with our HSLAMIDE to obtain an information rich estimate of the environment

surrounding a marine vessel.
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Figure 7.7: Tracking four people in a corridor [Fisher, 2004]. The frame number is in
the bottom right, the coloured contours show the objects’ pose and shape estimates
and the coloured arrows show the objects’ estimated velocities. The white dashed
box in frame 369 shows the zoomed in area that is used for subsequent frames.

126



0000 0260

0609 0912

1231 1249

1250 1258

Figure 7.8: Tracking face and hands sequence. The frame number is in the top left,
the coloured contours show the objects’ pose and shape estimates and the coloured
arrows show the objects’ estimated velocities. The face has been anonomised using
the output from the tracker.
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Figure 7.9: Shows the system tracking twelve interacting/occluding objects in real-
time. The white lines show the current grouping of objects, which is used to limit
the exponential growth when computing depth-orderings.
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Figure 7.10: Tracking boats.
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Figure 7.11: Tracking ice hockey players.
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Figure 7.12: Tracking football players.
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Part III

System Integration and

Conclusions

The first two parts of this dissertation have shown how we can estimate metric and

visual information using marine RADAR and colour imagery. This part of the dis-

sertation will describe how these theoretical contributions can be combined to form

an integrated system, which can be used for enhanced situational awareness in ma-

rine environments, and finishes with a concluding discussion of the dissertation. The

aim of the system integration was to produce a prototype marine surveillance system,

which used a mobile vehicle (a boat with RADAR and a Pan-Tilt-Zoom (PTZ) cam-

era) to secure a pre-defined area in the marine environment. This prototype system

was demonstrated live to an audience of industry experts, governmental advisors, the

navy, special forces, the police and politicians, over a period of two days and was set

up to secure the entrance of a river in the Thames estuary.
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Chapter 8

Integration

8.1 Introduction

The first part of the dissertation described how SLAM can be extended to handle

dynamic objects and how a novel hybrid representation can be used to efficiently

represent the marine environment. A key benefit of this approach is that a mobile

vehicle can be used to estimate metric information, which has significant advantages

for marine applications. Unlike terrestrial surveillance applications where sensors can

nearly always be placed at suitable fixed geographical locations, marine surveillance

suffers from the limit of the coast-line when placing fixed sensors.

The second part of the dissertation introduced a novel approach for doing robust, real-

time visual tracking using pixel-wise posteriors as opposed to the traditional pixel-wise

likelihoods. By using a mobile vehicle and visual tracking with PTZ camera(s) the

effective visual range for marine surveillance can be extended. This has the significant

advantage that visual contact can be made earlier, giving the operators more time to

make decisions.

This chapter describes a prototype system that can protect a pre-defined area in the

marine environment from potential security threats (see Appendix D for a detailed

concept). This system uses the metric methods presented in Part I and the visual

methods presented in Part II, to produce a real-time map of the marine environment

that contains both metric and visual information. Automatic visual contact is made

using the PTZ camera and the acquired visual information is automatically associated

with objects in the metric map. This means that an operator is able to quickly cross

reference metric information to visual information and vice-versa. The result is that
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the system can be used to very quickly establish not only where objects are and what

they are doing, but also what they look like. We have demonstrated that by using

sensors mounted on a mobile vehicle (Part I of the dissertation) and visual tracking

(Part II of the dissertation) it is possible to provide enhanced situational awareness

in marine environments.

This chapter begins in Section 8.2 with an overview of the prototype system; Sec-

tion 8.3 describes the design of a high performance PTZ device; Section 8.4 gives a

brief overview of the user interface; Section 8.5 takes the reader through an example

application of the system and Section 8.6 finishes with conclusions.

8.2 System Overview

The prototype system was distributed over three geographical locations: the sensor

platform / mobile vehicle, which was a 10m yacht fitted out with the sensors; the

control centre, which was a land based installation that had the main user interface

and the mobile security asset, which was a 4.5m Rigid Inflatable Boat (RIB) fitted

out with a cut down user interface. Figure 8.1 shows pictures of these locations.

The key benefits of distributing the system over different locations are: (i) the sensors

can be placed at the optimum location for the task at hand; (ii) the decision makers

can be located in a comfortable shore based control centre and (iii) the operators of

the mobile security asset benefit from a reduced workload by shifting all planning and

decision making to the shore based control centre.

Figure 8.2 shows how the prototype system is broken into five layers of system com-

ponents: (i) the sensors; (ii) data acquisition and control; (iii) ship based processing;

(iv) a data link and (v) shore based processing. All high level data exchange is done

using the User Datagram Protocol (UDP) over Ethernet. We will refer to this process

as distributing data or communication. We will now describe each of the layers in

more detail.

The Sensors

The system uses five main types of sensor:

• RADAR: We use a standard X-band yacht RADAR. This device has an angular
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The sensor platform (a 10m yacht) The security asset (a 4.5m RIB)

The control centre

Figure 8.1: Geographical locations.

resolution of 3.6 degrees and has a maximum and minimum range of 48 nautical

miles and 20m respectively. We limit the range at 1 nautical mile giving an

effective range resolution of approximately 6m. Like all low-end marine RADAR

products, the device suffers from significant amounts of clutter (false-positives).

• PTZ: This pan-tilt-zoom device was designed, built and tested as part of this

DPhil. It is able to rotate 360 degrees and fixate to 1/1000th of a degree within

600ms. These impressive performance characteristics allow us to use the sensor

to quickly saccade from one object to another, taking pictures and videos that

are then used to enrich the metric information with visual information. This

device will be explained in greater detail in Section 8.3.

• Inertial Measurement Unit (IMU): This is a miniature attitude and head-

ing reference system. It uses Micro-Electro-Mechanical Systems (MEMS) in-

ertial sensors and magnetometers to estimate the 3DOF attitude and heading
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Figure 8.2: System components.
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at 100Hz. We use this sensor for two purposes: (i) to stabilise the PTZ and

(ii) as a heading reference unit. The sensor has a dynamic performance error

of approximately 2 degrees RMS. The heading reference can optionally be fed

into the HSLAMIDE system; otherwise, the estimated map is manually aligned

with a marine chart.

• GPS: This sensor uses satellites to measure its absolute position to within a

few meters anywhere on the globe. We have an option of feeding this into the

HSLAMIDE system; otherwise, the estimated map is manually aligned with a

marine chart.

• Automatic Identification System (AIS): This is a marine transponder sys-

tem that has to be fitted to all ships with a gross tonnage of 300 or more tons

and to all commercial passenger vessels. Each transponder broadcasts the ves-

sel’s Maritime Mobile Service Identity (MMSI) number along with the position,

course, speed and other data. We associate this data with the objects in the

hybrid map and use it to automatically tag vessels that we know about.

Data Acquisition and Control

The GPS, AIS and IMU sensors all have serial interfaces, which are brought into

processing units, accurately timestamped and then distributed to multiple clients.

The raw RADAR video is digitised using a PC and a video digitiser, and then dis-

tributed. The PTZ device is controlled by our PTZ controller, which deals with all

analogue interfacing, control and inertial stabilisation. The PTZ controller has a

simple communication interface to the higher level processes.

Ship Based Processing

The system on the boat runs both SLAM in dynamic environments using hybrid map-

ping (as presented in Chapters 4 and 5) and visual tracking (as presented in Chapters

6 and 7). The system automatically uses the PTZ camera to make visual contact and

build a visual database of objects within sensor range. This visual database is a set of

short video sequences that are automatically associated to objects in the metric map.

The result is a hybrid map of the environment that contains both metric and visual

information. This is hybrid map is then sent back to the shore based installation over
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a wireless link, where the operators can interact with the data and control the PTZ

camera.

Data Link

The data link was implemented using 802.11n wireless technology and could maintain

a throughput of 20Mbps-100Mbps over a distance of 2 nautical miles (3.7km), with

an average round trip time of 5ms and near zero packet loss. This meant that we

were able to send video from the PTZ back to shore at > 30Hz and control the device

remotely with a maximum latency of 10ms.

Shore Based Processing

A shore based control centre was used to display the main user interface on a series

of large high definition screens. The operators of the system were situated in the

comfortable environment of the control centre, where it was much easier to make de-

cisions. It is also possible to fully simulate the system at the shore based installation,

which is useful for development and testing.

8.3 The Pan-Tilt-Zoom Device

A significant advantage of the prototype system is that visual contact is made auto-

matically using a PTZ camera. This means that the operators can see at a glance

where objects are, what they are doing and what they look like. From a practical

point of view this requires a PTZ device that can quickly saccade between objects

and perform precise closed loop visual tracking. To meet these requirements we have

designed, built and tested a PTZ device, which can deliver high velocities, high accel-

erations and accurate positioning. The design can be broken into four different areas:

(i) system; (ii) mechanical; (iii) electrical and (iv) software. We will now describe the

high-level system and software design, for more details regarding the mechanical and

electrical design refer to Appendices E and F.

Figure 8.8 shows a system diagram of the active components that make up the PTZ

device. These components can be grouped into four groups: (i) payload; (ii) pan-tilt;

(iii) embedded controller and (iv) inertial sensing. We will now describe each of these

groups in more detail.
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Payload

The payload gives colour imagery over Gigabit Ethernet and uses a servo controlled

(zoom, focus and iris) lens. The camera is a Gigabit Ethernet camera that streams

uncompressed 640×480 colour video frames at up to 90fps1. The lens has three axes,

which are DC motor driven and use potentiometers to feedback their positions. It

has a horizontal field-of-view that can be varied between 35.3◦ at the wide end, down

to 2.2◦ at the telephoto end, with an aspect ratio 4/3. We designed a lens controller

based around an Atmel ATMega128 microprocessor that implemented Proportional-

Integral-Derivative (PID) control for the three axes of the lens and communicated with

the embedded PTZ controller over a proprietary serial link. The PID parameters

were manually tuned to make each axis critically damped. The camera and lens

assembly was calibrated at different zoom motor positions assuming a pin-hole camera

model. To obtain a camera calibration matrix for a given zoom position, we fitted a

parametric curve for the focal length against the motor position, which allowed us to

interpolate between our calibrated zoom positions. We found that it was satisfactory

to ignore radial distortion given that we were using the camera to obtain bearings of

objects and to do closed loop visual control, which does not require sub-pixel level

accuracy in the calibration. The payload components were housed in a waterproof

enclosure for mounting on the pan-tilt device, see Figure 8.3.

Pan-Tilt

We follow the principles set out in [Murray et al., 1992] and use two Harmonic Drive

actuators to drive our pan-tilt. These actuators use an ingenious gearbox design to

achieve: zero backlash, high gear ratios and high torques in a small package. Figure

8.4 shows an exploded assembly view of a Harmonic Drive gearbox. A gear reduction

is achieved as the flexi-spline ‘walks’ one tooth at a time around the outer circular

spline. This walking action is generated using a wave generator, which is an elliptical

cam that creates a wave on its outer ring and hence in the flexi-spline. This wave

has been precisely calculated to make the flexi-spline shift by one tooth at a time

around the outer circular spline. The flexi-spline has a large percentage of its teeth

meshed with the outer ring at any one time, which enables much larger torques to be

applied than traditional gearboxes. This meshing occurs under pressure, providing

zero backlash. The high torques translate into high accelerations for our pan-tilt,

1Typically after all visual processing has taken place we achieve frame rates of 40-60fps.
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allowing us to quickly saccade the camera from one object to the next. The zero

backlash meant that we could be very precise when pointing the camera. The input

drive is generated using Electronically Commutated (EC) Servo motors with 8000 line

incremental optical encoders to measure their position. Figure 8.5 shows the pan-tilt

device and Appendix E has a selection of the mechanical drawings.

Embedded Controller

The PTZ controller consisted of: an embedded Linux processor, two motor controllers,

a network hub, power distribution and power conditioning, see Figure 8.6. The em-

bedded Linux processor ran a cut down Linux kernel with custom built hardware

and drivers. It was responsible for taking in high-level commands, inertial data and

motor feedback, calculating stabilisation parameters, running tight PID control loops

and communicating with the motor controllers. Communication with the motor con-

trollers was carried out using the CANOpen protocol over an industrial Controller

Area Network (CAN) bus. Features of this communication protocol were: event

driven prioritised messaging and heartbeat monitoring to catch any breaks in com-

munication and to apply an emergency stop. The two motor controllers ran PID

control loops for velocity and current. The motors were controlled in velocity mode

as this is more suited to smooth, closed loop, visual tracking than sequential position

demands. All PID loops were hand tuned starting with the motor controllers’ low-

est level current and velocity control loops, and finishing with the embedded Linux

processors’ position/velocity/stabilisation control loops.

Inertial Sensing

The system was stabilised using a 3-axis attitude and heading sensor based on MEMS

inertial sensors and magnetometers. The output from the sensor was an estimate of

the 3DOF orientation. Figure 8.7 shows the kinematic chain used to model the

camera’s motion, where: Rwp is the world to sensor platform transformation given

by the IMU; Rpp is the platform to pan-tilt transformation, which describes the fixed

rotation between the IMU and origin of the pan-tilt coordinate frame; Rpc is the pan-

tilt to camera rotation given by the motor encoders and Rwc is the world to camera

transformation, which must remain constant to stabilise the camera. The forward

kinematics can be written down from Figure 8.7 as:
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Gigabit Ethernet Camera Clear Window

Figure 8.3: Payload with the lid off to show internal components.

Wave GeneratorFlexi-SplineCircular Spline

Figure 8.4: A Harmonic Drive gearbox (taken from www.directindustry.com).
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Figure 8.5: The pan-tilt device.
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Figure 8.6: The embedded pan-tilt-zoom controller.
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Rwc = RpcRppRwp (8.1)

and can be rearranged to obtain the reverse kinematics:

Rpc = RwcR
T
wpR

T
pp. (8.2)

Before calculating Rpc any external demands, for example from the visual tracking,

were first added to Rwc. Rwp was the current estimate from the IMU and Rpp was

calibrated once in a separate experiment. After calculating Rpc, the pan and tilt

errors were extracted from the rotation matrix and used to drive the PID control

loops.

World Platform Pan Tilt
Rwp Rpp

Rwc

Camera
Rpc

Figure 8.7: Kinematic chain.

8.4 User Interface

Figure 8.9 shows an example of the user interface. The general layout is broken

into three areas: (the metric map) is displayed in the left-hand pane and shows

the estimated object locations overlayed on a marine chart; (the object database)

is displayed in the right-hand pane and shows a list of objects with their visual

appearance and metric statistics and (the live PTZ view) is in the top-right of the

left-hand pane and shows the current view from the PTZ device. The user is free to

select objects either from the metric map or the object database, which means they

can easily cross reference metric information to visual information and vice-versa.

The metric map shows: the vehicle’s location with a cubic spline trajectory; stationary

objects’ locations; dynamic objects’ locations with cubic spline trajectories; object

IDs; landmasses; the direction of the Wi-Fi link to the shore based installation; the
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Figure 8.8: PTZ system diagram.
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PTZ field of view and any user defined zones.

The object database shows each object’s: ID; classification, which can be friend, foe

or don’t know; location, based on predefined zones; range and bearing; speed and

heading; Closest Point of Approach (CPA) and Time to Closest Point of Approach

(TCPA). The CPA and TCPA are useful when using the system for collision avoidance

purposes as they tell you how close an object will get and when they will be closest,

providing a way of shortlisting potential collision threats.

Figure 8.10 shows a close up of the live PTZ view and consists of: the pan and tilt

scales, where each tick mark is one degree; a box and contour around the object being

tracked; a stabilised view of the object being tracked; the current mode of operation

for the visual control loop; the output from the IMU and a graphic to show the current

pan and tilt values in relation to the boat’s heading. During the live demonstrations,

control of the PTZ could either be taken on the sensor platform or from the shore

based control centre.

Stationary ObjectDynamic Object Object IDMode

Object
Database

Historical
Video

Live PTZ View

Metric
Statistics

Alarms

Statistics

Exclusion
Zone

Own Ship’s PositionPTZ Field of View

Colour
Coded

Cursor
Position

Wireless
Link

Area of
Play

Figure 8.9: The user interface.

8.5 An Example Application

The prototype system was developed and tested over a period of three months and

demonstrated live to an audience, over a period of two days. The demonstration was
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Figure 8.10: A close up of the live PTZ view.

set up to secure the entrance of a river in the Thames estuary. Figures 8.11 to 8.18

show a story board that takes the reader through an equivalent chain of events to

those demonstrated. This story board has been created using the system’s simulation

mode to provide a clear view of how the system operates.

The aim was to protect a group of vessels operating within a pre-defined area of play,

which is denoted using a green polygon, see Figure 8.11. The method for protection

is to keep track of all vessels that enter a pre-defined exclusion zone, denoted with

a red polygon, see Figure 8.11. Figure 8.12 shows the system a short while into the

demo: the system is automatically making visual contact and populating the object

database with visual information. Objects 11, 12 and 13 are all currently heading

for the exclusion zone. In Figure 8.13, object 12 has reached the exclusion zone

and the system generates an alarm, shown in the bottom left of the screen. The

user now takes control of the system and requests a live feed of object 12; the PTZ

automatically follows object 12, see Figure 8.14. The user can use this live feed

to make a decision (classification) regarding the potential level of threat the object

presents, see Figure 8.15. In Figure 8.16 both object 12 and 13 have been classified
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as foes and a security asset (object 19) has been sent to intercept. Figure 8.17 shows

the security asset intercepting the potential threats and in Figure 8.18 the user has

taken manual control of the PTZ to take a closer look at the interception.

The live demonstration showed exactly this sequence of events. The audience were

all situated in the control centre during the demonstration. After the rehearsed

demonstration was carried out, the audience were allowed to operate the system

themselves.

8.6 Conclusions

This chapter has given an insight into the practical engineering steps taken to apply

the theoretical research presented in Chapters 4, 5, 6 and 7 to a real-world problem.

We spent three months developing the technology from the lab into a real system,

which was demonstrated live to an audience, protecting a river in the Thames Estuary

from potential security threats.

The system was distributed over three geographical locations including two dynamic

marine platforms i.e. boats. The whole system was networked using a combination

of wired Ethernet, a high capacity 802.11n wireless link and Very High Frequency

(VHF) telemetry. The data processing was carried out on everything from ATMEL

microprocessors up to high performance quad core PCs. The software varied from

basic PID control loops implemented in low-level C, up to probabilistic algorithms

implemented in C++ and exceeded 200,000 lines of code including comments. Various

mechanical and electrical components were designed, built and tested; including a

high performance PTZ mechanism (some design elements are included in Appendices

E and F).

In summary, as well as the theoretical contributions described in this dissertation, we

have also undertaken a significant amount of practical work. This has given us the op-

portunity to demonstrate the use of new research technology on real-world problems.

This enables us to not only scientifically validate our research, but also to demonstrate

its practical applications. The next chapter will conclude the dissertation.
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Figure 8.11: Overview of the zones: (red polygon) exclusion zone and (green polygon)
area of play.

Figure 8.12: The system is automatically making visual contact and populating the
object database with visual information.
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Figure 8.13: Alarm generated as an object hits the exclusion zone.

Figure 8.14: Using the system to obtain more information on the potential threat.
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Figure 8.15: Classifying the object as a foe.

Figure 8.16: A security asset is sent to intercept.
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Figure 8.17: Interception.

Figure 8.18: Using the PTZ to watch the interception.
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Chapter 9

Conclusions

This dissertation has shown how probabilistic methods can be used to enhance sit-

uational awareness in marine environments. Specifically, we have shown how metric

methods from the robotics community can be combined with visual methods from

computer vision, to produce a hybrid map of the nearby environment using a mobile

vehicle. This hybrid map provides users with the ability to quickly cross reference

visual information (what an object looks like) with metric information (where they

are and how they are moving) and vice-versa. We will now go through the specific

contributions made and ideas for future work.

9.1 Estimating Metric Information

We have shown how it is possible to simultaneously estimate the position, shape and

speed of stationary objects, landmasses and dynamic objects in a marine environment.

The most common way to deal with dynamic objects within the robotics community

is to estimate the mobile vehicle’s location and then to track them separately. This

has also been the common approach within the marine community. Typically GPS

and compass information is used to estimate the mobile vehicle’s location and then

independent Kalman Filters are used to track the dynamic objects. In contrast, we

have shown how dynamic objects can be incorporated directly within a SLAM frame-

work using sliding window estimation, reversible decision making and generalised

expectation maximisation. The temporal sliding window allows the system adequate

time to get model-selection, data-association and clutter rejection correct before per-

forming marginalisation. We have shown that this allows a consistent estimate to
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be maintained even in the presence of dynamic objects and significant amounts of

clutter.

We have also introduced a hybrid representation for the marine environment, with

point features representing small stationary objects, an occupancy grid representing

landmasses and cubic splines representing the trajectories of dynamic objects. This

was crucial in providing a SLAM system that actually works in our real environ-

ment, where simply using point features alone was unfeasible. Part of this hybrid

representation uses cubic splines to represent the trajectories of dynamic objects in

the environment. This had three key benefits: (i) the number of states that need to

be estimated was reduced by representing trajectories using spline sections; (ii) be-

cause the spline is continuous, it was natural to handle asynchronous measurements

running at different frequencies rather than trying to interpolate and/or extrapolate

measurements to match a time-step present in the estimation framework and (iii) it

makes it possible to re-render sensor data at a sub-scan resolution, to account for the

egomotion of the sensor platform during data acquisition.

Estimating Metric Information – Future Work

The experiments carried out for this dissertation were limited to a single sensor plat-

form i.e. a single 10m boat. A natural course for future research would be to extend

this to multiple sensor platforms, with the objective of producing a single hybrid map

of the shared environment. This would involve the combination of cooperative SLAM

techniques (for example [Walter & Leonard, 2004]), sliding window estimation for

reversible decision making and hybrid mapping.

The current system loosely ties visual information with the estimated metric map. A

more thorough approach would use this visual information to help with ambiguous

data-association when estimating the metric map. Equally the metric information

could be used to help disambiguate interactions/occlusions during visual tracking, by

using the metric depth estimates as a prior when estimating the depth-ordering.

One potential use of the final system is in GPS denied environments. Given the hybrid

map and a crude idea of where in the world you are, it is relatively straightforward

to manually align the estimated data to some underlying geographical source e.g. a

marine chart or satellite image. Currently this feature is supported using an intuitive

user interface. However, this process could be automated using localisation techniques

available in the robotics community. This would provide interesting research as the
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localisation would be to a completely different type of map, created using different

types of sensors, at a different time. We believe that even though the maps would

be of different types, there could be enough mutual information to localise one with

respect to the other.

Although we haven’t discussed FAST-SLAM [Montemerlo et al., 2002, 2003] yet in

the dissertation, it is worth considering it as an alternative framework for doing the

metric estimation. FAST-SLAM refers to the methods that use Rao-Blackwellized

particle filtering to solve the SLAM problem. In particular, because of the large

dimensionality of the problem, the SLAM posterior is factored into two distributions.

One distribution is over the vehicle’s trajectory and is represented using weighted

particles and the other distribution is over the landmark locations and is represented

using independent Gaussians. Each weighted particle also has its own estimate for

the data-association, which allows uncertainty in data-association to be modelled.

This gives significant advantages over methods that compute a single fixed solution

to the data-association at each time-step. Each particle maintains an entire trajectory

history (similar to Full SLAM) and yet has the computational complexity of a filtering

solution. At a glance, it looks as if FAST-SLAM harnesses the benefits of a Full SLAM

solution without the computational burden. However, although each particle has an

entire trajectory estimate, at some point in the past all particles will share a common

trajectory estimate up to that point in time (due to particle resampling). This has

similarities to the temporal sliding window we use in this dissertation; however, the

point at which decisions become fixed is harder to define and will be related to the

number of particles and the resampling process. The ability for each particle to carry

its own data-association, model-selection and map would be an alternative way of

doing the estimation for SLAMIDE and would be interesting for further research.

9.2 Estimating Visual Information

We have made two contributions to visual tracking based upon our novel idea of

pixel-wise posteriors, as opposed to pixel-wise likelihoods. The first method uses

a simpler graphical model that can deal with a single object being tracked. The

second method generalises the problem to more complicated graphical models that

can handle multiple interacting/occluding objects.

We began by presenting a new visual tracking method based on pixel-wise posteriors,

as opposed to pixel-wise likelihoods. Quantitative results show that this provides
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better behaved objective functions for visual tracking than the current state-of-the-

art. This tracking algorithm learns both the shape and appearance online and tackles

the problem of tracking drift, allowing previously unseen objects to be tracked for

long periods of time. We have also shown how the algorithm can be generalised using

more complicated graphical models to handle multiple interacting/occluding objects.

A depth posterior is computed at each time-step, allowing the tracking algorithm to

account for inter-object occlusions. The method is able to simultaneously estimate the

position, scale, rotation, depth-ordering, figure-ground and figure-figure segmentation

for up to twelve interacting/occluding objects in real-time.

Estimating Visual Information – Future Work

Currently the algorithm uses implicit contours (level-sets) to represent the 2D image

projection of either a 2D or 3D object. It would be interesting to see whether a

3D implicit contour representing the 3D object shape directly could be learned over

time, whilst simultaneously tracking an object. Alternatively, whether a prior over

the space of 2D projections for a particular object could be learned online. Either

of these approaches could have the potential to improve resilience during challenging

parts of a sequence, by having a tighter prior over the potential image projections an

object can exhibit.

The approaches taken in this dissertation would fall into the category of a region-based

tracker. An alternative and popular approach is template based tracking (see [Baker &

Matthews, 2004] for an excellent summary of past work). There are situations where

a template based tracker would outperform the methods proposed in this dissertation

(although, they are often quite artificial). It would be very interesting to try and

develop a tracking framework that combines the benefits of region-based tracking

with those of template tracking. We believe that such a framework could leverage

the resilience of region-based tracking and, when possible, obtain the accurate results

possible with template tracking.

The current system assumes that all pixels belonging to a single object are generated

from a single distribution. It would be interesting to consider learning multiple distri-

butions for different regions of an object, for example one distribution for someone’s

face and another for their hair. This could be achieved using a similar framework

to the multi-object tracking presented in Chapter 7. Multi-phase level-sets could be

used to represent an object using more than one region and then each region could
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have its own appearance model.

There are three parameters that need to be set with our method for visual track-

ing. They correspond to the learning rates for the: foreground model, background

model and shape contour. Currently these parameters have been hand tuned once

to perform best (on average) over the different types of video sequences we have.

Ideally, these three parameters would change dynamically throughout a sequence to

prevent learning occurring during times of confusion or if the object is lost. This

would increase the resilience of the tracker.

This dissertation concentrated solely on colour imagery, a natural extension would be

to use different appearance models to handle different types of image modality, for

example infra-red or night vision. It would also be desirable to track on the combined

image modalities e.g. colour vision plus infra-red, which could make tracking more

resilient, as it would be able to capture the benefits of the different image modalities.

We currently use the OpenCV face detector [Viola & Jones, 2001] to automatically

initialise the visual tracker on peoples’ faces. A more useful detector for the appli-

cations of this dissertation would be a marine object detector. This would allow the

system to automatically go into closed loop visual tracking.

The current system has an online appearance model that is constantly being updated

to deal with any changes in appearances. The system does not keep a historic record

of previous appearances. This would be a useful feature as it would enable the system

to re-initialise on an object after a tracking failure or when the PTZ is sent back to

look at an object it has previously observed.

The notion of an online object recognition system would be very valuable and would

greatly benefit the current system. It may be possible to couple the recognition,

detection and/or tracking using a common framework.

9.3 System Integration

We have shown how good practical engineering can be used to combine the theoretical

contributions presented in this dissertation into a real system. The prototype system

can be used for situational awareness in marine environments. It was demonstrated

live over a period of two days to an audience of industry experts, governmental ad-

visors, the navy, special forces, the police and politicians. The system was used to

protect a river in the Thames Estuary against potential security threats. A com-
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ponent of this system was the design, build and test of a high performance pan-tilt

device, which is capable of panning 360 degrees and fixating to 1/1000th of a degree

within 600ms. This type of performance is required to quickly saccade between ob-

jects in the environment so that visual information can be acquired efficiently. All

of the methods and techniques that have been presented in this dissertation run in

real-time i.e. 30Hz or greater on standard PC hardware.

System Integration – Future Work

One aspect of our final system was the 802.11n wireless link, which involved steerable

high gain directional antennas. If the techniques presented in this dissertation were

extended to multiple dynamic platforms, then there would be the need for a self

organising wireless network. The 20Mbs-100Mbs link we were fortunate enough to

use in this dissertation would be unavailable for more general deployments. This

would create a need for producing a single hybrid map using sensors deployed on

different platforms, whilst using minimal bandwidth between the platforms. This

challenge alone could provide an interesting avenue for research in trying to find the

optimal solution, subject to limited communications between sensor platforms. This

has recently been looked at by [Nettleton et al., 2003] and [Reece & Roberts, 2005].

The method for controlling the PTZ device to make automatic visual contact simply

chooses the next object to look at based on the time since it was last observed.

This very simple method of camera control is inefficient in terms of the amount of

movement required from the PTZ. It would make an interesting research problem to

first define an expression for the efficiency of the PTZ camera and secondly to solve

the expression to find the optimal solution. The definition of efficiency would be

dependent on different quantities, including the information in the current estimate

of the environment, the amount of energy used by the PTZ, the general wear and tear

of the mechanical components and which objects the user is particularly interested

in. Some recent examples of work in this area are [Sommerlade & Reid, 2008] and

[Soto et al., 2009].

The current method for stabilising the camera uses a relatively low cost IMU sensor,

which has a typical dynamic error of 2 degrees RMS. This is satisfactory only for

objects that are relatively close (<1km). It would be interesting to consider how the

full frame motion video could be used to help with the stabilisation problem. For

instance, the horizon and/or full frame tracking could be used to help stabilisation.
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This would require a very tight control loop between the visual processing and the

embedded PID control loops.

The sensors and the platform were manually located in the environment to try and

get the best use of sensor range and field-of-view. This could be automated either

partially or fully by considering what would make the optimal sensor placement given

the physical constraints.

Conclusion

We have presented a system that uses probabilistic methods for enhanced marine

situational awareness. We have made significant contributions in the areas of SLAM

and visual tracking, and demonstrated how these theoretical contributions can be

applied to the practical problem of marine surveillance, see Figure 9.1. The result is

not only a significant amount of academic work, but also a system that is useful for

‘real-world’ problems.
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Figure 9.1: A collection of images to summarise the dissertation.
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Acronyms

AIS Automatic Identification System.

CAN Controller Area Network.

CPA Closest Point of Approach.

EKF Extended Kalman Filter.

EKF-SLAM Extended Kalman Filter SLAM.

GPS Global Positioning System.

GPU Graphics Processing Unit.

HSLAMIDE Hybrid SLAM in Dynamic Environments.

IEKF Iterated Extended Kalman Filter.

IMU Inertial Measurement Unit.

JCBB Joint Compatibility Branch and Bound.

MAP Maximum a Posteriori.

MEMS Micro-Electro-Mechanical Systems.

NN Nearest Neighbour.

PC Personal Computer.

PID Proportional-Integral-Derivative.

PTZ Pan-Tilt-Zoom.
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RADAR Radio Detection and Ranging.

RIB Rigid Inflatable Boat.

SLAM Simultaneous Localisation and Mapping.

SLAMIDE SLAM in Dynamic Environments.

SONAR Sound for Navigation and Ranging.

SSD Sum-of-Squared Differences.

TCPA Time to Closest Point of Approach.

UDP User Datagram Protocol.

VHF Very High Frequency.
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Appendix A

Kalman Filtering Equations

Section 2.6 introduces recursive Bayesian estimation and shows how a prediction

distribution (2.15) and an update distribution (2.16) can be used to probabilistically

estimate the state of a system, given a sequence of measurements. We will now

consider two special cases of recursive Bayesian estimation that are used extensively

to model real-world processes:

A.1 The Kalman Filter

If the prediction distribution has the form:

P (xt|xt−1,ut) ∝ exp(−1

2
‖xt − Fxxt−1 − Fuut‖2

FuQFTu
), (A.1)

where Fx is a linear state transition matrix, describing how xt−1 will evolve to xt, Fu

is the input transition matrix and FuQFT
u is the input noise covariance Q mapped

into state space; and if the measurement distribution has the form:

P (zt|xt) ∝ exp(−1

2
‖zt −Hxt‖2

R), (A.2)

where H is the linear measurement matrix and R is the covariance of the measurement

noise. Then the linear Kalman Filter equations can be written down as:
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Prediction:

x̂∗t = Fxx̂t−1 + Fuut (A.3)

P∗t = FxPt−1F
T
x + FuQFT

u (A.4)

Update:

x̂t = x̂∗t + Wv (A.5)

Pt = P∗t −WSWT (A.6)

where:

v = zt −Hx̂∗t (A.7)

S = HP∗tH
T + R (A.8)

W = P∗tH
TS−1 (A.9)

where x̂t−1 represents the previous estimate, x̂∗t represents the predicted estimate

and x̂t represents the updated estimate. Likewise, Pt−1 represents the covariance of

the previous estimate, P∗t represents the covariance of the predicted estimate and Pt

represents the covariance of the updated estimate.

A.2 The Extended Kalman Filter

If the prediction distribution has the form:

P (xt|xt−1,ut) ∝ exp(−1

2
‖xt − f(xt−1,ut)‖2

∆FuQ∆FTu
), (A.10)

where f(. . .) is the non-linear state transition model and the measurement distribution

has the form:

P (zt|xt) ∝ exp(−1

2
‖zt − h(xt)‖2

R), (A.11)

where h(. . .) is the non-linear measurement model. Then the equations corresponding

to the EKF are:
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Prediction:

x̂∗t = f(x̂t−1,ut) (A.12)

P∗t = ∆FxPt−1∆FT
x + ∆FuQ∆FT

u (A.13)

Update:

x̂t = x̂∗t + Wv (A.14)

Pt = P∗t −WSWT (A.15)

where:

v = zt − h(x̂∗t ) (A.16)

S = ∆HP∗t∆HT + R (A.17)

W = P∗t∆HTS−1 (A.18)

where the ∆ symbol represents the Jacobian e.g. ∆Fx is the Jacobian of f(. . .) with

respect to x and ∆Fu is the Jacobian of f(. . .) with respect to u.
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Appendix B

Least-Squares SLAM Example

Section 3.7 describes least-squares SLAM. We will now give an example of the struc-

ture of Equation (3.19). Let us consider the structure of A, Σ−1, b and δ for a simple

example with four time-steps {t = 0, 1, 2, 3}, where the vehicle observes landmarks

{m0,m1,m0} at time-steps {t = 1, 2, 3} respectively:

A =




−I

F1 −I

F2 −I

F3 −I

H1 J1

H2 J2

H3 J3




(B.1)

Σ−1 =




Π−1

Q−1
1

Q−1
2

Q−1
3

R−1
1

R−1
2

R−1
3




(B.2)
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b =




x− x̃

x1 − f(x0,u1)

x2 − f(x1,u2)

x3 − f(x2,u3)

z1 − h(x1,M)

z2 − h(x2,M)

z3 − h(x3,M)




δ =




δx0

δx1

δx2

δx3

δm0

δm1




(B.3)
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Appendix C

Calculus of Variations

We will now show how to differentiate the summation term in Equation (6.11) in

Chapter 6:

N∑

i=1

{
log (P (xi|Φ,p,yi))−

(|OΦ(xi)| − 1)2

2σ2

}
(C.1)

where

P (xi|Φ,p,yi) =
PfHε(Φ) + Pb(1−Hε(Φ))

Pf
∑
Hε(Φ) + Pb

∑
(1−Hε(Φ))

and

Pf =P (yi|Mf ), Pb = P (yi|Mb), Φ = Φ(xi),

with respect to Φ using calculus of variations [Evans, 2002] to express the first vari-

ation (Gateaux derivative) of the functional as:

∂ log(P (Φ,p|Ω))

∂Φ
=

δε(Φ)(Pf − Pb)
PfHε(Φ) + Pb(1−Hε(Φ))

− 1

σ2

[
O2Φ− div

(
OΦ

|OΦ|

)]
, (C.2)

where O2 is the Laplacian operator and δε(Φ) is the derivative of the blurred Heaviside

step function, i.e. a blurred Dirac delta function. Let us begin with the following

differential:
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∂ log (P (xi|Φ,p,yi))
∂Φ

=
1

P (xi|Φ,p,yi)
∂P (xi|Φ,p,yi)

∂Φ
(C.3)

where

∂P (xi|Φ,p,yi)
∂Φ

=
{
Pf
∑
Hε(Φ) + Pb

∑
(1−Hε(Φ))− PfHε(Φ)− Pb(1−Hε(Φ))

}
δε(Φ)(Pf − Pb)

{Pf
∑
Hε(Φ) + Pb

∑
(1−Hε(Φ))}2 .

(C.4)

Substituting (C.4) back in to (C.3) and simplifying gives:

∂ log (P (xi|Φ,p,yi))
∂Φ

=

δε(Φ)(Pf − Pb)
PfHε(Φ) + Pb(1−Hε(Φ))

− δε(Φ)(Pf − Pb)
Pf
∑
Hε(Φ) + Pb

∑
(1−Hε(Φ))

. (C.5)

Using the following three conditions:

Hε(Φ) >=0
∑

Hε(Φ) >>Hε(Φ)
∑

(1−Hε(Φ)) >>(1−Hε(Φ)), (C.6)

we can approximate (C.5) by dropping the second term:

∂ log (P (xi|Φ,p,yi))
∂Φ

=
δε(Φ)(Pf − Pb)

PfHε(Φ) + Pb(1−Hε(Φ))
. (C.7)

We have now differentiated the first term in (C.1). The second term:
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(|OΦ| − 1)2

2σ2
(C.8)

can be differentiated with respect to Φ using the Euler-Lagrange equation:

∂f

∂Φ
= O · ∂f

∂OΦ
(C.9)

and the following two identities:

|OΦ| =
√

OΦ · OΦ (C.10)

and

∂|OΦ|
∂OΦ

=
OΦ

|OΦ| . (C.11)

Substituting (C.8) into (C.9) gives us:

∂ (|OΦ|−1)2

2σ2

∂Φ
= O · (|OΦ| − 1)

σ2

OΦ

|OΦ|

=
1

σ2

[
O2Φ− div

(
OΦ

|OΦ|

)]
. (C.12)
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Appendix D

Prototype System – Design

Concept

Figure D.1 shows a mock up of what the shore based control centre for a port might

look like. At the front of the room is a tactical display that summarises the general

situation and provides those in charge with enough information to assign particular

problems to individual operators. The operators each have a workstation, which

allows them to concentrate on a smaller subset of the information being processed

by the system, so that they can make informed decisions about how to deal with

a particular problem. To complement the shore based facility there would also be

several security assets afloat, for example small RIBs or harbour patrol vessels. Each

one of these security assets would have a similar system aboard, that gives them

access to the situational awareness information most relevant to their own tasks i.e.

details of nearby objects.

Figure D.2 shows a close up of the tactical display in the shore based station. The

centre of the screen shows the system’s current estimate of what is going on in the

port: the green symbols represent known objects that are behaving correctly; the

red symbols represent unknown objects that may pose a security threat to the port

and the yellow symbols represent the security assets that are under the control of the

port security team. The sides of the screen show live videos of interesting objects,

which are automatically acquired using distributed cameras and smart visual tracking

techniques. In the example in Figure D.2, there are two unknown objects that could

pose a threat to the port, each of these would be assigned to one of the operators to

deal with.
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Figure D.1: The control room with the tactical display at the front and four operators’
workstations.

Figure D.3 shows the view of an operator’s workstation. In this particular case, the

operator has been assigned a security threat to deal with and they have used the

system’s smart visual tracking capabilities to acquire enough visual information to

identify the object as suspicious. Now that the operator has classified the object, he

can assign a security asset (harbour patrol vessel) to go and question the security

threat’s intent. The assignment and instruction of how to get to the security threat

are automatically transferred to the security asset, so that the planning can be done in

the comfort of the shore based installation rather than on a boat, which may already

be dealing with difficult conditions.

Figure D.4 shows the view from within a security asset, where the information re-

garding the security threat has automatically been transferred to their system. They

can see what the security threat looks like and route information on how to navigate

to it is automatically transferred to their navigation system, so they do not have to

worry about planning the journey.
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Figure D.2: The tactical display.

Figure D.3: An operator’s workstation.
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Figure D.4: A view from inside one of the security assets.
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Appendix E

PTZ Design – Mechanical

Figure E.1: Assembly – Pan-Tilt.
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Figure E.2: Assembly – Base.

Figure E.3: Part – Base – Bottom Plate.
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Figure E.4: Part – Base – Tube.

Figure E.5: Part – Base – Top Plate.
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Figure E.6: Assembly – Tilt Box.

Figure E.7: Part – Tilt Box – Bottom.
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Figure E.8: Part – Tilt Box – Motor Side.

Figure E.9: Part – Tilt Box – Bearing Side.
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Figure E.10: Part – Tilt Box – Top.

Figure E.11: Part – Tilt Box – Face Plate.
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Figure E.12: Assembly – Camera Mount.

Figure E.13: Part – Camera Mount – Bottom.
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Figure E.14: Part – Camera Mount – Motor Side.

Figure E.15: Part – Camera Mount – Spigot Side.
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Figure E.16: Part – Camera Mount – Top.

Figure E.17: Part – Spigot.
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Appendix F

PTZ Design – Electrical
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Figure F.1: Wiring – Embedded Controller.
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Figure F.2: Wiring – Embedded Controller – Detailed.
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Figure F.3: Wiring – Payload.
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Appendix G

Prototype System – Software

The software for the prototype system was broken down into separate processes.

Each process would perform multiple tasks and communicate to other processes using

interfaces, see Figure G.1. The interfaces used in the system were:

• PTZInterface: This carried commands to control the PTZ along with position,

velocity and stabilisation feedback.

• NavDataInterface: This carried various forms of low-level navigation data

from the GPS, IMU and AIS.

• VisionInterface: This carried the live video stream from the PTZ camera,

managed which user had control of the PTZ and fed back any tracking infor-

mation.

• FusionInterface: This fed back the hybrid map and object database, and

allowed remote users to interact with the system.

• WifiStabInterface: This exchanged the vehicle’s estimated location and head-

ing, so that the steered antenna could point at the land based control centre.

The current antenna direction was fed back and displayed on the hybrid map

to show the user that the antenna was pointing correctly.

• RConsoleInterface: This gave remote access to low-level configuration, log-

ging and timing information in any of the processes. It allowed an operator with

access to any point on the network to maintain and monitor remote processes.
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• RJoystickInterface: This gave remote control of a joystick, allowing one user

at a time to control the PTZ. This user could be at any point on the network

and during the demonstration was either on the sensor platform or in the shore

based control centre.

• OSIInterface: This was the data exchange with the third party asset tracking

software.

• NetTesterInterface: This was a utility to test network connectivity and per-

formance under different types of load. This was used extensively in the devel-

opment of the wireless telemetry link.

The processes on the system were:

• pPTZServer: This was compiled for an embedded Linux platform, it re-

sponded to remote requests and ran a 100Hz control loop to stabilise the PTZ.

• pNavDataProcessor: This collected navigation data from various serial inter-

faces and pushed the data onto the Ethernet for collection by multiple clients.

• pWifiStab: This took the vehicle’s estimated location and heading and com-

puted the required azimuth for the antenna, so that it would point back to the

land based installation. The antenna steering hardware was controlled using a

proprietary serial protocol.

• pVision: This performed the visual tracking presented in Chapters 6 and 7

and used this to do closed loop visual tracking with the PTZ. Other features

of this software included the use of the OpenCV face detector [Viola & Jones,

2001] for automatic initialisation of faces and an experimental object database

using random ferns [Ozuysal et al., 2007] so objects could be recognised at a

later date.

• pFusion: This used the methods presented in Chapters 4 and 5 to produce

a hybrid map of the environment. It also generated an object database which

included visual information received from pVision. This is where the PTZ was

controlled from in the automatic and semi-automatic modes.

• pVisionRemoteControl: This allowed remote control of pVision and was

used during development and testing.
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• pRFusion: This gives a remote interface to pFusion and was used to display

information at the land based control centre. Users are able to interact with

the system and any requests are forwarded to pFusion.

• pOSI: This is a piece of third party software for asset control and tracking.

• pNetworkTester: This was used to test and benchmark network performance.

• pRConsole: This gave remote access to configuration, logging and timing

information in any of the other processes.
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