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Abstract

Discrete energy minimization has recently emerged as an ispgensable tool for
computer vision problems. It enables inference of the maxiim a posteriori so-
lutions of Markov and conditional random elds, which can beused to model
labelling problems in vision. When formulating such problas in an energy min-
imization framework, there are three main issues that neea tbe addressed: (i)
How to perform e cient inference to compute the optimal soldion; (ii) How to
incorporate prior knowledge into the model; and (iii) How tolearn the parame-
ter values. This thesis focusses on these aspects and preseovel solutions to
address them.

As computer vision moves towards the era of large videos andapixel images,
computational e ciency is becoming increasingly importah We present two
novel methods to improve the e ciency of energy minimizatio algorithms. The
rst method works by \recycling” results from previous probdem instances. The
second simpli es the energy minimization problem by \reduag" the number of
variables in the energy function. We demonstrate a substaat improvement in
the running time of various labelling problems such as, intactive image and
video segmentation, object recognition, stereo matching.

In the second part of the thesis we explore the use of naturahage statis-
tics for the single view reconstruction problem, where theask is to recover a
theatre-stage representation (containing planar surfaseand their geometrical re-
lationships to each other) from a single 2D image. To this endve introduce a
class of multi-label higher order functions to model thesaagistics based on the
distribution of geometrical features of planar surfaces. ®also show that this
new class of functions can be solved exactly with e cient gieh cut methods.

The third part of the thesis addresses the problem of learrgnthe parameters
of the energy function. Although several methods have beemgposed to learn
the model parameters from training data, they su er from vaious drawbacks,
such as limited applicability or noisy estimates due to poaapproximations. We
present an accurate and e cient learning method, and demomtste that it is

widely applicable.
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Chapter 1

Introduction



Many problems in computer vision, such as image segmentatjcstereo matching,
object recognition, single view reconstruction, have begmosed as energy mini-
mization problems [16, 18, 36, 93,94, 95]. Such formulat®mvolve representing
the vision task in terms of an energy or cost function. An optnal solution to
the problem is then obtained by nding the minima of the energ function. This
approach is becoming increasingly popular due to the avdildity of e cient and
easy to use algorithms, such as graph cuts [1,17,31]. In thieesis, we focus on
various aspects of energy minimization approaches in therdext of computer vi-
sion problems. Speci cally, we are interested in image laliag problems, wherein

every pixel in the image is assigned a label from a given set.

1.1 Computer Vision as an Optimization

Problem

One of the main challenges in dealing with computer vision $&s is the size of
the problem. Let us consider the image segmentation probleas an example,
where the task is to assign every pixel in an image a label cesponding to the
segment it belongs to. Figure 1.1 shows an image used in [464 &s correspond-
ing segmentation into four regions, namely cow, grass, tigeand sky. Given a
640 480 image with each pixel taking one of four possible labelhie energy
function is composed of over 30000 variables, and there are over 1% pos-
sible labellings in the solution space. A certain cost or ergy value is associated
with each of these label assignments, and the lowest cost &ling corresponds
to the optimal solution. Naturally, searching for the best slution (also referred
to as the Inference problem) in such an extremely large space requires e cient
optimization algorithms.

Although the problem of nding the minima of a general energyfunction is
np-hard [18], there exist a number of powerful algorithms whitccompute the ex-
act solution for a particular family of functions in polynomal time. For instance,
max-product belief propagation algorithm exactly minimies energy functions de-

ned over graphs with no loops [75,115]. Similarly, certai®nergy functions can



1.1. Computer Vision as an Optimization Problem

(b)

Figure 1.1: (a) A natural image used in [46]; and (b) its segm#tion into regions,
namely cow, grass, trees, and sky, represented by four greale intensity values.
Each pixel in the image (a) can take any one of the four labelshich results in
over 138999 possible labellings. An energy value is associated with ddabelling,
and the segmentation in (b) is obtained by nding the labellng corresponding to
the lowest energy.

be minimized by solving a minimum cost st-cut (st-mincut) poblem [37,50,88,89].
In the rst part of this thesis, we extend the class of energyuinctions which can

be solved e ciently. We present novel techniques that impree the computational

and memory e ciency of algorithms for solving multi-label energy functions. Our

methods are motivated by the observations that the perfornrece of minimization

algorithms depends on: (i) the initialization used for the ariables; and (ii) the

number of variables in the energy function. We reuse resuliisom previous prob-

lem instances to initialize the variables in the new instare; and also compute
partially optimal solutions to reduce the number of unlabééd variables.

There are two other issues that need to be addressed when fatating vision
labelling tasks in an energy minimization framework: (i) Ho to model the prob-
lem; and (ii) How to set the parameter values in the energy fustion. The second
part of the thesis explores the possibility of including natral image statistics,
which have been shown to be e ective for many tasks [104, 114ijto the energy
function. We also show how the global minima of such energyrictions can be
obtained.

The last few years have seen a lot of attention being devoted the problem

of learning parameters of energy functions [62,71,84,9001117]. These methods
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learn the parameters using training data images and their o@sponding labels,
rather than make the user set them manually. However, the diof-the-art
parameter learning methods su er from various drawbacks. ey can lead to
poor accuracy due to noisy estimates, as noted in [84,97],require performing
inference for every training image repeatedly, which linst their applicability. In
the third part of the thesis, we present an e cient piecewisemethod to overcome
these drawbacks. Our method decomposes the original praiblénto a number of

smaller problems, and then performs e cient discriminatie learning.

1.2 Contributions

The main contributions of this thesis are summarized belowWe will discuss
the relevant contributions in detail at the end of every chafer, and present a

consolidated summary in section 6.1.

E cient Inference. As shown in section 1.1, energy functions de ned for com-
puter vision problems contain an extremely large number ofaviables. Searching
for optimal solutions in such a large space requires e ciennference algorithms.
We present three e cient techniques to improve the running ime of inference
methods. They are readily applicable for most of the populagnergy minimiza-
tion algorithms in computer vision. Methods optimized usig our techniques
provide the same solution as the standard methods, although a much shorter
time. Furthermore, all the optimality guarantees of the orginal methods are
retained. One of our techniques can be considered as an exsien of the work

in [39, 46] for the multi-label (.e. more than two labels) case.

Applications. We demonstrate the bene ts of our methods on various labatigy
problems such as, colour based segmentation, stereo matghiobject class cat-
egory segmentation, single view reconstruction, structardetection. Our results
in all these problems are signi cantly better than those reprted previously in

the literature. Examples of the labelling problems we corggr are shown in Fig-

!Labels are obtained from either manual or automatic annotaton of images. For example,
pascal voc dataset [19] provides high-quality manually annotated training data.
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building
tree

(b)

Figure 1.2: We show the bene ts of our methods on various imagdabelling prob-
lems: (a) Single view reconstruction, (b) Object class cajery segmentation, (c)
Structure detection. The rst row shows an example image, ahthe second row
shows the expected result, which corresponds to the minimuemnergy labelling.
In (a), the task is to assign one of the three geometric labelaamely ground,
vertical, sky, to every pixel in the image. Here we show an irga from the auto-
matic photo pop-up dataset [35]. In (b), we would like to reagnize which object
each pixel in the image belongs to. One of the images from thesrc dataset [95]
containing four object classes, building, car, road, trees shown here. In (c),
the task is to nd man-made structures (such as houses, catthals, buildings,
castles) in the image. An image from the man-made structureathbase [62] along
with the result (illustrated with white squares overlaid onthe image) is shown.

ures 1.1 and 1.2. We have also made implementation of our mets publicly
available? In fact, most of the researchers using-expansion, tree-reweighted
message passing, and belief propagation algorithms, carplexze the standard

implementations with our optimized versions easily.

Using Natural Image Statistics. It is well-known that natural image statis-
tics can be used to improve the results of many labelling prtgms [65,104,114].
We explore the use of these rich statistics for the problem @é&constructing a
scene from a single 2D imageWe encode these learnt statistics as terms in the

energy function that depend on more than two variables (refieed to as higher

2Seehttp://cms.brookes.ac.uk/research/visiongroup

3Note that this reconstruction problem is di erent from the t raditional one where most pixels
in the scene are assigned a 3D location. Here, the scene is apximated using three planes,
which correspond to ground, vertical, and sky [36].



1.3. Outline of the Thesis

order terms). Unlike the work of [43], we present a method tobtain an exact

solution for multi-label energy functions involving highe order terms.

E cient Learning. We present a widely applicable method for learning pa-
rameters of the energy function. Unlike the previous methad it is not limited
by the e ciency of the inference step in every iteration of tte learning algorithm.
Our approach can also be viewed as extending max-margin basearning meth-
ods [100,102] to a larger class of energy functions. Furth@sre, our method is

very easy to implement, and is suitable for multi-label engy functions.

1.3 Outline of the Thesis

In Chapter 2 we review the concepts of discrete optimizatiom the context of
computer vision problems. We explain how vision problems gde formulated us-
ing probabilistic models such as Markov and conditional ratom elds. We then
show that nding optimal solutions of such a model is equivant to minimizing an
energy function. We also provide details of popular (exactna approximate) en-
ergy minimization algorithms, explain under what conditims they can be applied,
and discuss their limitations. Finally, we provide examplk of energy functions for
various image labelling problems, such as segmentationgsto matching, single
view reconstruction.

Chapter 3 introduces our methods for e ciently solving muli-label energy
functions. Inspired by the dynamic computation paradigm, or rst method im-
proves the performance of the -expansion algorithm [18]. We reuse results from
previous problem instances to initialize the variables in aew (related) instance.
This makes solving the new problem instance much more comptibnally e -
cient. Our second method simpli es the energy function by $ang the easypart
of the problem e ciently. Our strategy of reusing computations is then used to
solve the remainder of the problem. We rst present our methas for functions
with energy terms containing one or two variables, and therhew extensions to
higher order terms. Many applications of these methods ardsa shown in this

chapter.
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In chapter 4 we address the problem of nding the exact soluin of multi-label
energy functions with higher order terms. We present a fram@rk to transform
a certain class of multi-label higher order functions to sead order boolean func-
tions, which can be minimized exactly using graph cuts. We stv a principled
way of including the rich statistics of natural images into he energy minimization
framework in the form of higher order terms. In the latter par of this chapter
we use these higher order terms to improve the quality of regstruction from a
single view of a scene.

Chapter 5 describes our method for learning parameters ofexgy functions.
We begin by discussing the pros and cons of two popular pargdis, namely (ap-
proximate) maximum likelihood [62,84] and max-margin [71,02], for estimating
the energy function parameters. We then describe our largeangin piecewise
learning method, which incorporates the bene ts of both thearadigms. Finally,
we show results on binary and multi-label energy functionsotdemonstrate that
our model is widely applicable.

In chapter 6 we give a summary of the work presented in this tkes, and
highlight our contributions. We also discuss promising aveles for future research.

Appendix A shows images from Middlebury-2005 [84] and manaue struc-

ture [62] datasets used in this thesis.

1.4 Publications

The rst version of the work presented in chapter 3 for pairwse energy functions
was published in CVPR 2008 [2]. An extension of this work forigher order
functions, also presented in chapter 3, appeared in Trangamns on PAMI [3].
The material presented in chapter 4 was published in CVPR 28(077]. The work
presented in chapter 5 appeared in CVPR 2010 [4].
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Random Fields



dom variables is to assign a label from the sé&t to each variable. Many computer
vision tasks, such as image segmentation [16], stereo mangh[86], object recogni-
tion [43,94,95], can be viewed as labelling problems. Typlty, in such scenarios,
the random variables correspond to pixels in an image, anddHabel set is de ned
according to the problem. For example, in the stereo matchinproblem, the la-
bels represent disparity values, as shown in Figure 2.1. lhd object recognition
problem, each label denotes an object, as shown in Figure .218 the latter part
of this chapter we will discuss the formulation of these apightions as labelling
problems.

Random elds provide an elegant probabilistic framework tanodel labelling
problems [29, 40, 70]. They provide a neighbourhood relatiship between vari-
ables, and incorporate not only (noisy) image measurementsut also a prior
model over the labelling space in a principled manner. L&t represent the neigh-
bourhood of the random eld, which is de ned by setN;;8i 2f 1;2;:::;ng. The
set N; denotes the set of all neighbours of the random variabl€;. In other
words, N; is the set of integers representing the indices of the neighlrs of the
random variable X;. Random elds are also able to model the complex interac-
tions between variables. Furthermore, it is possible to astate the uncertainty in
the labelling because the model is probabilistic. In this #sis, we are interested
in two types of random eld models, namely: (i) Markov random eld; and (ii)

conditional random eld.

2.1 Markov Random Fields

A Markov random eld (mrf ) models the joint probability of the labelling x
and the datay, denoted by Pr;y). According to the Bayes' rule, the joint

probability is equal to the product of likelihood and prior pobabilities as follows:

Pr(x;y) = Pr( yjx) Pr(x); (2.1.1)



2.1. Markov Random Fields

(@) (b) (c)

Figure 2.1: In the stereo matching problem, the task is to agg a disparity label
to every pixel, given a pair of images. In the Tsukuba image pa[72] shown
here, disparity gives the correspondence relationship beten pixels in left and
right images along every horizontal scan-line. (a) Imagedm left camera, (b)
Image from right camera, and (c) The disparity map of the lefcamera image,
are shown here. The lighter intensities in the disparity magc) denote larger
disparity values.

(b)

Figure 2.2: In the object recognition problem, the labels present object classes,
such as sky, road, car. (a) An image from thensrc dataset [95], and (b) The
corresponding object labelling are shown here. For instagmcthe region marked
in red denotes "building’, and the grey region is “sky'.

where Pr(yjx) is the likelihood and Pr(x) is the prior. Arandom eld that models
the joint distribution (2.1.1) is said to be Markovian if satis es the following

properties [40, 70]:

Pr(xijfx; 1] 2f1;2;:::;ng figg) = Pr( xijfxj :] 2N;g); 8i; (2.1.2)
Pr(x) > 0;8x 2L": (2.1.3)

The property (2.1.2) implies that the prior probability of the assignmentX; = x;
depends only on the labelling of its neighbouring random vables given byN;.

Figure 2.3 shows example of a Markov random eld with a neiglturhood system

10



2.1. Markov Random Fields

Figure 2.3: The graphical model representation of amrf [11] consists of two
kinds of nodes and undirected edges between them. The obsernodesY; rep-
resent the data, and are denoted by lled circles, while theitlden nodesX;
represent the random variables, and are denoted by un lledircles. The edges
between observed and hidden nodes represent the unary pdiais. The edges
connecting the hidden nodes represent the neighbourhoods®m in the ran-
dom eld. In this example, a hidden node is connected only tds immediate
neighbour, thus representing a clique of size two. Image actesy of M. Pawan
Kumar [56].

of size two.

The joint distribution of an mrf in (2.1.1) can be written as follows:

Pr(x;y) = exp( (Xc); (2.1.4)

whereCis the set of cliques formed by the neighbourhood systevh. For example,
the mrf shown in Fig. 2.3 contains cliques of size two involving ewepair of
variables connected to each other. The term¢(x.) is known as the potential
function of the cliquec, wherex, = fx;;i 2 cg. The term Z is the normalization
constanf, which ensures that the probabilities sum to one. For a painse mrf |

such as the one shown in Fig. 2.3, the probability (2.1.4) came re-written as:

exp( () | exp( ,ix);  (215)
(i )2E

1Y
Prix;y) = -
i2v

whereV = f1;2;:::;ng, andE is the set of edges between all pairs of neighbouring

! According to the Hammersley-Cli ord theorem [6, 33].
2We will discuss the role of the partition function later in Ch apter 5.

11



2.2. Conditional Random Fields

variables. The terms ;(x;) and j (x;; X;) are called as the unary and pairwise
potentials respectively. The Gibbs energyof a labelling x for this mrf is given
by:

X X
E(x) = i(Xi) + i (Xi3 %) (2.1.6)
i2v (i1 )2E

The unary potential ;(x;) models the likelihood of the label assignmerX; =
Xi, while the pairwise potential j (Xi;X;) models the cost of the assignment
X; = x; and X; = Xx;. From Fig. 2.3, note that ;(X;) represents the cost of the
edge connecting the observed nodé and the hidden nodeX;, and depends on
the data. On the other hand, j (X;; X;) represents the cost of the edge connecting
two hidden nodesX; and X, and is independent of the data. A pairwise potential
commonly used in computer vision problems takes the form obRs model, which
gives a low energy value wher; = X;, and penalizes with a high energy values

otherwise.

2.2 Conditional Random Fields

In many computer vision problems it may be necessary to uses#yved data for
computing the pairwise potentials. Consider the image segmtation problem as
an example (see Fig. 1.1). Constraining neighbouring pixeln the random eld

to take the same label results in a smoothly varying solutigrbut is not always
ideal. If two neighbouring pixels are very di erent in their colour intensity values
(or any other features), then they should be allowed to takei@rent labels. One

way to achieve this is by including the di erence between thentensity values
of the two pixels in the pairwise potential, thus making it d@endent on the
data. This idea of using data in the pairwise potential has en around for a few
years [16,81,95]. Based on the work by La ertgt al. [64], Kumar and Hebert [62]
formalized the resulting probabilistic distribution as a onditional random eld

(crf ) model in the context of computer vision problem$.

A crf can also be viewed as amrf globally conditioned on the data. It

3Energy function maps any labellingx 2 L" to a real number E (x).

4Kumar and Hebert [62] refer to their model as discriminativerandom eld. It is essentially
a conditional random eld model that uses a di erent scheme to learn the parameters of the
energy function.
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2.2. Conditional Random Fields

models the conditional probability of the labellingx given the datay, assuming

it satis es the Markovian property, i.e.
Pr(xijfx; :j 2f1;2;::0;ng figgy) =Pr(xijfx; :j 2Nig;y);8i:  (2.2.1)

The conditional distribution of a pairwise random eld is gven by:

Y Y
exp( i(xi)) exp( i (Xi;X%j)); (2.2.2)

i2v (i )2E

N|

Pr(xjy) =

whereZ is the normalization constant, and ;(x;) and j (x;; X;) are the unary and
pairwise potentials respectively, which both depend on dat This distribution
can also be written as an energy function (similar to (2.1.6j the mrf case).

In summary, Markov and conditional random eld models prouile a posterior
probability distribution ° of the labelling x, given datay. The best labelling of a
given random eld is obtained by maximizing the posterior pobability. This is
referred to as the problem of maximum a posteriorinjap) estimation. The max-
imization problem is equivalent to minimizing the correspoding Gibbs energy as
follows:

Xmap = arg min E(x): (2.2.3)
x2L

Before we discuss algorithms for ndingnap solution, we will review a couple of

relevant de nitions.

Energy Reparameterization. Energy functionsE; and E, are calledrepa-
rameterizationsof each other if and only if8x; E;(x) = E»(x) [14,47]. Note that
this simply means that all possible labellingg have the same energy under both
functions E; and E,, and does not imply that E; and E, are composed of the

same potential functions.

Energy Projection. A projection of any function f () is a function f P() ob-
tained by xing the values of some of the arguments df( ). For instance, xing

the value of the rst t variables of the energy functiorE (x1;X2;:::;%,) : L™ R

SNote that the posterior probability distribution in the cas e of anmrf is proportional to
the joint distribution.
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2.3. Maximum A Posteriori Estimation

produces the projectionEP(Xs1;Xi+2;:::;%,) - LT 1 R. In other words, we
obtain a new energy functionEP( ) of n t variables, by xing t of the variables

in the original energy functionE () of n variables.

2.3 Maximum A Posteriori Estimation

The most probable or Maximum a Posteriori fnap) solution can be found by
minimizing the corresponding Gibbs energy, as shown in (23. The problem
of minimizing this energy isnp-hard in general. However, there exist a num-
ber of powerful algorithms which the compute the exact solign for a particular
family of energy functions in polynomial time. Two such fanlies of energy func-
tions relevant to our work are: (i) Submodularenergy functions; and (ii) Energy
functions de ned on tree structuredmrf /crf . Submodular energy function min-
imization for certain random elds has been shown to be equalent to a graph
cut (speci cally st-mincut ) problem, which has several e cient polynomial time
algorithms [31,50,88]. Energy functions de ned on tree sictured random elds
can be solved by a dynamic programming algorithm presented {75]. In the
remainder of this section, we will describe these algorithsrand their extensions

proposed in the literature.

2.3.1 Submodular Energy Functions

Submodular energy functions are an important family of furteons which can be
minimized in polynomial time. They are discrete analogued @onvex functions,
and arise in various branches of applied mathematics such game theory, in-
formation theory, and queueing theory. Given arordering over the label setL,
a function f () is submodular if all its projections on two variables satiy the

constraint:

fP(a;p+ fP(a+1;b+1) fP(a;b+1)+ fP(a+1;b); 8a;b2L: (2.3.1)
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2.3. Maximum A Posteriori Estimation

When dealing with functions of binary random variables thisconstraint trans-
forms to:
fP(0;0)+ fP(1;1) fP(0;1)+ fP(1;0): (2.3.2)

One of the rst strongly polynomial time algorithms for this family was pro-
posed independently by [38] and [91]. However, this algdrih su ers from a very
high runtime complexity. Recent work by Orlin [73] has sucasfully reduced this
complexity to O (n®), wheren is the number of random variables in the problem,
but is still impractical for vision problems involving millions of random variables.
Certain submodular functions can be e ciently minimized by solving the st-
mincut problem [14,32,50,88]. For example, submodular functions$ ordef® at
most three involving binary random variables can be minimed in this way [8,50].
Several methods have been proposed to extend the class ofrgynéunctions that
can be posed as the shincut problem. Certain binary higher order function$
can be transformed into submodular functions of order two,ra thus minimized
e ciently [25]. Schlesinger and Flach [88] showed how to ceart a multi-label
submodular problem composed of unary and pairwise poteniganto an st-mincut
problem. Since many energy functions can be transformed tanary submodular
functions of order 2, solving this class of energy functioresciently is of great
importance. We will now explain an e cient graph cut (st-mincut ) algorithm

for addressing this problem.

2.3.2 Graph Cuts

With the introduction of e cient algorithms to solve the st- mincut problem,
graph cuts have become an indispensable tool in the comput@sion commu-
nity [16,17,99]. These algorithms have a low runtime compiigy, and thus allow
fast computation of the globally optimal solution of an impeotant class of en-
ergy functions, namely submodular energy functions. As wellixsee in the latter
sections, they can also be used to nd approximate solutioresf non-submodular

energy functions, with strong local optimality guarantee$18,42,53,57,109].

5The order of an energy function isk, if it can be written as a sum of potential functions,
each of which is de ned on at mostk random variables. For example, the order of (2.1.6) is 2.
"Potential functions composed of three or more variables.
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2.3. Maximum A Posteriori Estimation

source

Figure 2.4: The stimincut problem is de ned using a directed graph with positive
edge weights, such as the one shown here. It has two speciale®m sources and

sink t, such that there are no edges inte and out of t. The set of nodes in
V, is represented as grey circles, and the n-edges (node-ndaefjween them are
shown in yellow. The t-edges (node-terminal) are shown inder blue. The edge
weights are indicated by the thickness of the edges. An stic(shown in green)
separates the node se¥y into two disjoint sets { one containing the source and
the other containing the sink. Image courtesy of Yuri Boyko\15].

2.3.2.1 The st- mincut Problem

The st-mincut problem is de ned using a positively weighted directed grdp
G(Vq [f s;tg; E;; C). Here, Vy denotes the set of vertices (or nodes) an, de-
notes the set of directed edges in the graph. The functidd : E;! R species
the edge weights, and maps every edgej() 2 Ey, to a non-negative real number
cj . Graphs used in the stmincut problem have two special vertices called source
s and sinkt, such that there are no incoming edges to the source, and nagaing
edges from the sink. These special nodes are collectivelfereed to as terminals.
The edge set contains terminal edges (t-edges) and node exl¢ge-edges). The
terminal edges connect the terminal nodes to every node2 V,, and the node
edges connect a pair of nodds] 2 V, according to some neighbourhood struc-
ture. Let us consider the binary image segmentation probleras an example.
The nodes in the st-graph correspond to pixels in the imagena the terminals
represent the two labels, say 0 and &.The edge weights are set according to the

energy function de ned for the segmentation problem, as disssed in the latter

8We follow the convention of s representing label 0, andt representing label 1.
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2.3. Maximum A Posteriori Estimation

part of this chapter.

Figure 2.4 shows an example of an st-graph. Given such a graphan st-cut
is de ned as a partition of the node set/, into two disjoint sets Vg and VQ}, such
that Vg = Vg [V 4 (collectively exhaustive),vg\vgl = ; (mutually exclusive),
s2 Vg, andt 2 Vg. All the nodes in the setvg are assigned label corresponding
to the source, and those in the se‘t/& are assigned the sink label. The cost of the
st-cut Cvg;vé is given by: y

Cvovg = Gj : (2.3.3)
i2vgijavi
The cost of an st-cut is equal to the cost of its associated laling x, i.e. E(x).
Now, the stmincut problem is to nd the st-cut with the minimum cost. The
partitioning corresponding to the stmincut provides the minimum cost labelling
for the nodes inV,. According to the Ford-Fulkerson theorem [23], the stnincut
problem is equivalent to nding the maximum ow from the source to the sink

with the weights C as edge capacities.

2.3.2.2 The Max-Flow Problem

Given a graphG(V, [ s;tg; E;; C), the max- ow problem is to nd the maximum
ow f from the source to the sink, such that the following edge capity (2.3.4)

and mass balance (2.3.5) constraints are satis €d:

0 fy g 8(ij)2E; (2.3.4)

5 fij f; =0; 8i2Vg; (2.3.5)

J2N
wherefj is the ow along the edge from node to nodej, and N; is the set of
nodes in the neighbourhood system of node The residual capacityr; of an
edge (;j ), given a ow fj, is the maximum additional ow that can be passed
from nodei to nodej using the edgesi(j) and (j;i), i.e. rj = ¢ fj + fj.
Now, a residual graphG(f ), with respect to a ow f, consists of the noded/y,
and the edges with positive residual capacities. Aaugmenting pathis de ned

as a path from the source to the sink along unsaturated edgess. edges with

9Using the notation of [1,41].
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Source (0) Source (Q)

sink (1) 1 Sink (1)

Figure 2.5: Here we show a graph G containing two nodes and a,. The
edge weights are given by the numbers beside them. The edghsvan using
dotted lines are part of the stmincut , and the cost of this cutis 2+2+4 = 8.
We reparameterize this graph by adding a positive constant to the t-edges
of nodea, and obtain the graph G. Performing stmincut /max- ow on this
reparameterized graph results in an identical stincut . Thus, both the graphs
induce the same partitioning in the node set, although the sb of the st-mincut
is di erent in the two graphs. Image courtesy of Pushmeet Kdh[46].

positive residual capacities, of the residual graph.

Max- ow algorithms typically nd an augmenting path, send the maximum
possible ow through it, and repeat this process until no sut paths can be
found [17]. The sum of all the ows obtained at each step is thmaximum ow
for the graph. At the end of the process, certain edges will Isaturated, and the
graph will be partitioned into two sets, separating the souwre and the sink. In
other words, it produces an st-cut. It has been shown that thenaximum ow
value thus obtained is equal to the cost of the strincut for the graph [23]. Other
max- ow algorithms, such as push-relabel algorithm [30],Is0 provide e cient
ways for achieving this, and are described in the excellentobk by Ahuja et
al. [1]. In summary, after the max- ow algorithm has terminatel, the setV, is
partitioned into two sets: Vg (source set) ancl\/g1 (sink set), thus assigning labels

to all the nodes.

Graph Reparameterization. There are certain transformations, which do
not a ect the labelling obtained by performing the max- ow operation. Such
transformations only result in areparameterization of the graph. For example,

adding a constant value to the terminal edge weights;j and ¢; of any nodei does
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not a ect the labelling, as it only depends on the di erence bthe edge weights
(G Gt). We show this on an example taken from [46] in Figure 2.5. Atiwer

example of graph reparameterization is shown in Figure 3.2.

What can be solved?  We mentioned earlier that all the edges in an st-graph
must be non-negative. This naturally restricts the class aénergy functions that
can be represented and therefore solved using an st-graphe Wbw formalize this
class of stmincut solvable energy functions. For simplicity, let us considethe

pairwise energy function in (2.1.6):

X X
E(x) = i(Xi) + i (Xi5X)): (2.3.6)
i2v (i:j )2E

Furthermore, we assume that the random variableX; are binary valued® Fol-

lowing the pseudo-boolean notation in [14], we can re-wrignergy function (2.3.6)

ast
X
— 1 0
E(x) = iXi X
i2v X
00 01 10 11 .
* FoXixp g+ O i (2.3.7)
(i )2E

wherex; is the binary complement ofx;, i.e. x; = 1;if x; = 0 and vice versa. We
simplify this energy function for two binary variablesx;, x;, and the edge K] )

between them as follows:

Ply. " x. = 1y Oy 1y 0 00y y. 01y . 10y, . 11y .
EP(xisxg) = X+ Xt X X XXt XX XXy b XX
_  const 1, 11 o1 0 1 0, 00 o1
= oot i Xit Xt o pXp o o i X
o1, 10 00 11 :
ot i i XiXj; (2.3.8)

where €ONstis g constant. Note that the coe cients of the unary terms canbe
varied'? such that they are non-negative. It can be easily veri ed thiathe coe -

cient of the pairwise term will always be equal to J*+ {° 20 1. Given

10Note that these assumptions are not restrictive, as many mui-label higher order functions
can be transformed to binary pairwise functions &2.3.1).

'We denote i(0) as P and j (1;0) {° for brevity.

2For example, by rewriting the equation algebraically.
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Figure 2.6: Here we construct an st-graph corresponding tbe energy function
(2.3.8). In our notation, we assign label O if a node belongs the source set,
and label 1 otherwise. Thus, the cost for node taking label O (given by the
coe cient of the unary term x;) is added to the t-edge i t). All the other t-edge
costs are added in a similar fashion. The pairwise termx; represents the cost
of the assignmentx; = 1;x; = 0, and its coe cient is added to the n-edge (;i).
As there is no pairwise term for the assignment; = 0;x; = 1, the n-edge (] )
has no cost.

this form of the energy, we now construct the st-graph as shown Figure 2.6.
For this graph to be a valid st-graph, all the edge weights mtu¥e non-negative.
The t-edge weights can be modi ed (either algebraically orybgraph reparam-
eterization), such that they are positive. For the n-edgesot have non-negative
weights, the condition P*+ {° % & 0 must be satis ed, which is the
binary submodularity condition (2.3.2). This equivalenceof binary pairwise sub-
modular functions and stmincut was shown by Hammer [32] and Kolmogorov

and Zabih [50].

2.3.3 Solving Non-submodular Energy Functions

So far we have seen e cient algorithms for solving submodula&nergy functions.
However, most multi-label energy functions encountered ioomputer vision do
not satisfy the constraint (2.3.1), and thus are non-submadar. For instance, it
can be clearly seen that the Potts model potential j () de ned as:

8

2 0 if Xi = Xj,

i (Xis X)) = _ (2.3.9)
: otherwise,
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does not satisfy the constraint (2.3.1). Choosing= k andb= k+1in (2.3.1)

we get:

fP(kik+1)+ fP(k+1:k+2) fP(kk+2)+ fP(k+1:k+1): (2.3.10)

The lhs of equation (2.3.10) is equal to 2while therhs is equal to , making the
above condition false. A number of approximate or partiallyoptimal algorithms
have been proposed to solve this class of energy functiond, [118,47,48,54,76, 83,
111]. Some of these methods provide an approximate solutieither by optimizing
a related submodular energy function [76, 83], or by solving relaxation of the
problem [47,111]. The methods proposed in [14,54] providegbally optimal
solution for only a subset of the problem. The remaining pardf the problem is
then solved with message passing algorithms [47,75]. Boylet al. [18] proposed
e cient graph cut based -expansion and -swap algorithms for solving non-
submodular problems. We will provide an overview of these twalgorithms in

the remainder of this section.

Move making algorithms. The -expansion and -swap algorithms are
widely used for approximate energy minimization [18,99]. ey belong to the
class of move making algorithms. These algorithms work byasting from an
initial labelling x and making a series of moves (label changes) which lower the
energy iteratively. Convergence is achieved when the engrgannot be decreased
further. At each step, the algorithms search a move space tond the optimal
move{ one that decreases the energy of the labelling by the most auwnt. The
move search space must be as large as possible in order to meealgorithm
less likely to get stuck in local optima. Expansion and swaplgorithms achieve
this by using a search space that is exponentially large in ¢hnumber of variables
in the energy function. They perform this search e ciently or a certain class of
energy functions by solving an stnincut /max- ow problem.

The -expansion algorithm is an iterative procedure, which ndsan approx-
imate map estimate by solving a series of shincut problems. At each step, it
considers a label 2 L, and allows all the random variables to either retain their

current label or change to . This is done by solving an stmincut problem,
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which makes the binary decision of changing or retaining thiabel assignment.
One iteration of the algorithm involves performing expansins for all in some
order successively. The algorithm terminates when the emgrcannot be reduced
further for any . Boykov et al. [18] showed that -expansion is applicable if the
pairwise potential functions ; de ne a metric, e.g Potts model (2.3.9), trun-
cated linear model.

The -swap algorithm also nds an approximatemap estimate by solving a
series of stmincut problems. Unlike -expansion, it considers a pair of labels
;2 L together with all the variables currently assigned or . It then solves
an st-mincut problem, which can swap the label assignments of these vdulies.
The algorithm terminates when the energy cannot be reducedrther by swapping
labels for any pairs of labels; . These moves can be computed if; de nes a
semi-metric[18],e.g Potts model (2.3.9), truncated linear or truncated quadrac
models. We will revisit these move making algorithms and pvade more details

in Chapter 3.

2.3.4 Message Passing Algorithms

Message passing algorithms are another important class oétinods for addressing
the map inference problem. These algorithms work by passing messadetween
nodes representing the random variables of the model. BélReropagation (bp)
is a popular and well-known message passing algorithm forap inference. It
was originally proposed for a tree structured random eld, Wwere it is guaranteed
to produce the exactmap estimate in two iterations [75]. In the rst iteration,
messages are sent from the leaf nodes to the root, and in them®d iteration,
they are sent in the opposite directiort? For a general random eld (with loops or
cycles,e.g mrf shown in Fig. 2.3),bp is not guaranteed to converge. Variants of
bp have been proposed [20,27,112,116] to handle such modelsest algorithms
have no optimality guarantees, but can provide a good estirtea of the map
solution empirically, as noted in [99].bp messages can be computed using either

a max-product [11] or a sum-product [75,116] rule. In the forer case, we take

13Similar to forward-backward passes in dynamic programming

22



2.4. Example Vision Problems

the maximum over all possible label values and obtain th@ap estimate directly.
While, in the latter case, we take the sum of all possible labealues and obtain
a set of probability estimates, which can be used to get thmap solution.

Wainwright et al. [111] proposed another belief propagation variant called
tree-reweighted message passingw ), which was motivated by the problem of
maximizing a concave lower bound on the energy. Their algtrm begins by
selecting a set of trees from the random eld, and computes qvability distribu-
tions over each tree. These distributions are then used toweight the messages
being passed during looppp on each tree. The hope is that each step of loojp,
followed by reweighting increases the lower bound on the egg. Kolmogorov [47]
showed that thetrw algorithm is not guaranteed to achieve this, and proposed
a sequential extensiontfw-s ) to address this problem.trw-s processed nodes
in a scan-line order. Each node sent messages to its right amottom neighbours
in the forward pass, and its left and top neighbours in the b&evard pass. The
algorithm terminates when the lower bound cannot be incread further.

To summarize, there are many algorithms to solve thenap inference prob-
lem. E cient graph cut based methods minimize submodular eergy functions.
Energy functions arising out of tree structured graphs canésolved exactly with
message passing algorithms. All other classes of energyctions can be mini-

mized approximately or partially.

2.4 Example Vision Problems

We now look at two low-level vision problems, and discuss hothey can be

modelled in the energy minimization framework.

2.4.1 Image Segmentation

Consider the interactive image segmentation problem shown Fig. 2.7 [15, 16].
In this problem, the user marks red (foreground) and blue (lekground) strokes
or regions, and the goal is to solve a binarynrf problem to estimate the fore-

ground and background regions in the image. Note that our digssion here is
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Figure 2.7: Here we show two examples of interactive binamnage segmentation
problem. The red and blue strokes indicate the foreground drbackground seed
pixels respectively, which are marked by the user. These depixels are used
to compute thergb histogram distributions for the two regions. Note that the
images are colour coded to show the expected foreground (reaid background
(blue) regions. Image courtesy of Yuri Boykov [15].

focussed on the binary image segmentation problem. In Chapt3, we will re-
visit this problem using multiple labels,e.g as shown in Fig. 1.1. The energy
corresponding to the binary segmentation problem is giveryf2.1.6), where the
set of vertices corresponds to pixels in the image, and the ¢ edges is given by
the neighbourhood we choose. Here we use 4-neighbourhoodagxample,i.e.
every pixeli is connected to its 4 immediate neighbours { to the top, the ght,
the bottom, and the left ofi. The unary potentials (x;);i 2 V; are de ned using

rgb histogram distributions H,; a = f0; 1g; of the two segment labels as follows:

(xi) = logp(x; = ajH): (24.1)

The distributions H, are computed using the user-speci ed seed pixels (availabl
in the form of strokes or regions).

The pairwise potentials must ensure that we obtain a spatiBl continuous (.e.
smooth) segmentation, without speckles. This can be acheV using the Potts
model (2.3.9), which assigns a cost if neighbouring pixels take di erent labels,
and a cost O if they take the same label. This potential ignosemage edges, and
encourages pixels on either side of an edge to take the santeelas well. Boykov
and Jolly [16] introduced a data-dependent smoothness terto overcome this
problem. Similar potentials were later used by many resedwers [12,81,95,101].

The edge-preserving smoothness term takes the form of a Gexlieed Potts model
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de ned as:
2 .+ ,exp ZY 1 if X; 6 X;;
1 2 y
i (Xi%) = g 22 distj) - ! J (2.4.2)
-0 if Xi = Xj;

where i, , and are parameters of the model. The termg(i;j ) and dist(i;]j )
give the di erence inrgb values and the spatial distance respectively between pix-
elsi andj . It can be easily veri ed that this energy function satis esthe submod-
ularity condition (2.3.2), and therefore be minimized usig the st-mincut /max-
ow algorithm. More sophisticated priors, such as conneatity priors [110], shape

priors [44,66,67] can also be included in the energy funatio

2.4.2 Stereo Matching

Stereo matching is the process of taking two or more imadésand estimating
a 3D model of the scene by nding matching pixels in the imagesnd convert-
ing their 2D positions into 3D depths [98]. An example of thetereo matching
problem is shown in Fig.2.1. The results of stereo matchindgarithms are typi-
cally presented as a dense disparity map, where each pixeassigned a disparity
value, which indicates horizontal displacement the pixelds undergone from one
image to another. It can easily seen that disparity is inveety proportional to
distance from the observerj.e. depth [24,34,98]. The stereo matching problem
has been formulated as an optimization problem using an emggrfunction similar
to (2.1.6), where each pixel takes a disparity label [9, 166306].

In the energy function we describe here, the set of verticesreesponds to
pixels in the image, and the set of edges is given by 4-neighbblcood. The
unary potential is a similarity measure that compares the piel values in order to
determine how likely they are to be in correspondence. Thisaasure is computed
by considering either the pixel or a region of supporg.g 5 5 window, around it.
A few examples of similarity measures are squared intensitly erence, truncated
guadratics, entropy, Iter-bank responses. Interested aers are encouraged to

see Chapter 11 in [98] for more details of similarity measweThe pairwise term

Y For simplicity, we will focus on using two images in our discission here.
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is a Generalized Potts model (2.4.2), which encourages damipixels to take the
same label. This multi-label energy function can be minimé&d using the move

making or message passing algorithms discussed in this deap

2.5 Summary

In this chapter we presented a review of discrete optimizath concepts in the
context of computer vision problems. We introduced two pogar random eld

models, and showed that nding optimal solutions of these ndels is equivalent
to minimizing the corresponding energy functions. We alsorgvided details of

relevant energy minimization algorithms.
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Chapter 3

E cient Energy Minimization



3.1 Introduction

Many problems in computer vision such as image segmentatjostereo match-
ing, image restoration, and panoramic stitching involve iferring the maximum
a posteriori (map) solution of a probability distribution de ned by a discrete
mrf or crf [18,49,83,99]. Themap solution can be found by minimizing an
energy or cost function. Although, minimizing a generaimrf energy function
is an NP-hard problem [18], there exist a number of powerfullgorithms which
compute the exact solution for a particular family of energyunctions in poly-
nomial time. For instance, max-product (min-sum) belief pppagation exactly
minimizes energy functions de ned over graphs with no loogd.15]. Similarly,
certain submodular energy functions can be minimized by s@hg an st-mincut
problem [17,25, 37,50].

E cient approximation algorithms have also been proposed dr functions
which do not fall under the above classes [18,47,111]. Exg&én and swap
move making algorithms, sequential tree-reweighted meg®apassing fw-s ),
and belief propagation bp) are examples of popular methods for solving these
functions. They have been shown to give excellent results ¢ime discrete mrf s
typically used in computer vision [18,99]. However, thesdgmrithms can take a
considerable amount of time to solve problems which invole large number of
variables.

As computer vision moves towards the era of large videos andg-pixel im-
ages, computational e ciency is becoming increasingly imgrtant. Indeed, the
last few years have seen much attention being devoted to regilng the computa-
tional complexity of minimization algorithms [20, 39, 46, 8]. In this chapter we
make two contributions to improve the e ciency of energy minmization algo-
rithms. Our rst contribution is a method which works by recycling results from
previous problem instances, providing a simpler alternate to the recent work
of [53] on dynamic energy minimization. Our second contriltion is a method
which simpli es the energy minimization problem byreducingthe number of vari-

ables in the energy function, and can also be used to generatgood initialization
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for the dynamic -expansion algorithm byreusing dual variables.

Recycling Solutions. Our rst method is inspired by the dynamic compu-
tation paradigm [39, 46,53]. It improves the performance ahe -expansion
algorithm by recycling results from previous problem instaces. The idea of dy-
namic computation has been used in the recent work of [39, 4&) minimizing
submodular energy functions. In particular, [46] showed ko ow can be reused
in max ow algorithms, and [39] showed how cuts (or previousabelling) can be
reused. However, these methods are only applicable for theesial case of dy-
namic mrf st that are characterized by submodular energy functions. Ouwork
extends these methods to non-submodular multi-label engrdgunctions. It is
most similar to the interesting Fast-PD algorithm proposedby Komodakis et
al. [53], which generalizes the work of [46] and [52]. Fast-PDorks by solving the
energy minimization problem by a series of graph cut computians. This process
is made e cient by reusing the primal and dual solutions of tle linear program-
ming (Ip ) relaxation of the energy minimization problem, achieving substantial
improvement in the running time. Our modi ed dynamic -expansion algorithm
is conceptually much simpler and easier to implement than B&PD whilst giving
similar performance. Our method of initializing the -expansion algorithm can

make both methods orders of magnitude faster.

Simplifying energy functions. Most energy minimization problems encoun-
tered while solving computer vision problems are composed \eeasy and \ dif-
cult" components [48,54]. For instance, the variables labellday the gpbo
algorithm [14, 48] constitute the easy component, while theest constitute the
di cult component. The globally optimal labels for variables constituting the
easy component of thenrf energy function can be found in a few iterations of
the minimization algorithm, while those of the di cult part typically cannot be
found in polynomial time (in the number of variables). Energ minimization al-
gorithms generally do not take advantage of this decompogih, and process all
the random variables at every iteration.

We propose a novel strategy which solves a given discretef in two phases.

IMRFs that vary over time [39, 46].
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3.1. Introduction

1. Cow 2. Cow 3. Garden 4. Tsukuba 5. Venus 6. Cones
(@)

(b)
7. Cones 8. Plane 9. Bikes 10. Road 11. Building 12. Car

©

()

Figure 3.1: Some of the images (a,c) and their ground truth labellings,® used

in our experiments. 1-3 Colour-based segmentation problemwith 3, 4, 4 labels
respectively. 4-7 Stereo matching problems with 16, 20, &0 labels respectively.
8-12 Object-based segmentation problems with 4, 5, 5, 7, 8dls respectively.
(This gure is best viewed in colour.)

In the rst phase a partially optimal solution of the energy unction is com-
puted [14,48,54]. In such solutions, not all variables aressigned a label. How-
ever, the set of variables which are assigned a label, are rardgeed to take the
same labelling in at least one of the optimal solutions of thenergy function.
This is referred to as the property ofpartial optimality. Using the partial so-
lutions to x values of these variables results in grojection (cf. section 2.2) of
the original energy function [50]. In the second phase we nrimze this simpli-
ed energy which depends on fewer variables, and is conseqtigly easier and
faster to minimize compared to the original energy functian This approach is
applicable to many popular energy minimization approachesich as -expansion,
bp, Fast-PD and trw-s . We also show how to achieve a substantial speed-up in
the minimization of the simpli ed energy by reusing resultsfrom computations

performed to nd the partially optimal solution.

3.1.1 Outline of the Chapter

In section 3.2, we brie y review the notation and the algoribms for minimizing

multi-label energy functions [14,18,47,54]. Section 3.3gsents our two methods
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3.2. Preliminaries

to improve the running time of such algorithms. Speci callyit describes methods
to: (a) recycle the primal and dual solutions for obtaining ajood initialization for
the new problem instance; and (b) reduce energy functions@neuse the resulting
residual graphs. Our methods are also applicable for cemahigher order energy
functions, such as those containing the" model potentials proposed by Kohlet
al. [43]. We discuss this extension in section 3.4 using the ptem of interactive
texture based image and video segmentation as an example. Wso prove that
partially optimal solutions can be computed for this model.In section 3.5, we
evaluate the performance of our methods on the problems ofl@ar and object
based segmentation [16, 94, 95], and stereo matching [99]. few examples of
these problems are shown in Fig. 3.1. Summary and discussiare provided in

section 3.6.

3.2 Preliminaries

We denote each pixel in the image with a random variableX;, which takes a

assignment of labels to the random variables and takes vakiérom the setL",
where n is the number of pixels. For example, the label set correspds to
disparities in the case of stereo matching problem, and imagegments in the case
of colour-based segmentation problem. Fig. 3.1 shows a fefsmlte segmentation
and stereo matching problems we consider in this work.

Given a neighbourhood systenN , a cliquec is speci ed by a set of random
variables X such that 8i;j 2 c;i 2 N; andj 2 N;, whereN; and N; are the
sets of all neighbours of variableX; and X; respectively. An energy function

E:L"! R, which maps any labelling to a real numbeE (x), can be written as:

E(x) = § o(Xc); (3.2.1)
c2C

where C is the set of all cliques. The term ((X.) is known as the potential
function of the cliquec, wherex, = fx;;i 2 cg. Note that this is a generalization

of the unary and pairwise potential functions typically usd in computer vision.
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3.2. Preliminaries

The unary potential (X;) represents the cost of the assignmenX; = Xx;, and is
de ned by considering cliques of size 1.€. treating each pixel as a clique). The
pairwise potential j (X;;X;) represents the cost of the assignmeniX; = x; and
X; = X;, and is obtained by considering cliques of size 2. We will fi@lly explain

our methods using pairwise energy functions of the form:

E(x) = § i(Xi) + § i (Xi3%)); (3.2.2)
i2v (i;j )2E
whereV is the set of all random variables and is the set of all pairs of interacting
variables. In section 3.4 we will provide details of the pragsed methods for higher
order functions.

The unary potential ; can be obtained in many ways. For example, in a
colour-based image segmentation problem it is common to uthe rgb distribu-
tion for computing the potential. In a stereo matching probém the unary poten-
tials are typically obtained using a window-based correlain measure. Object-
based segmentation problems can learn the potential usinglaosting proce-
dure [103]. The exact form of all these potentials will be elgined in section 3.5.
The pairwise potential ; commonly takes the form of the Potts model (or its
contrast-sensitive variant [16]), and is given by:

8

2 0 if Xi = Xj,

i (Xisxj) = _ (3.2.3)

- otherwise.
The contrast-sensitive variant modulates the cost of two neighbouring nodes
taking di erent labels with the di erence in feature valuesand spatial distance
between the nodes. This is also referred to as an edge-presgy pairwise po-
tential, as two nodes lying on either side of an edge are lilgelo have di erent
feature values and thus can take di erent labels.

This fairly simple but e ective energy function in equation(3.2.2) cannot be
solved exactly. Recall X2.3.1) that multi-label energy functions can be solved

exactly i they satisfy the submodularity condition given by:

EP(a;b+ EP(a+1;b+1) EP(a;b+1)+ EP(a+1;b); (3.2.4)
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3.2. Preliminaries

for all a;b 2 L and for all its projections on two variables. HereEP() is a
projection of the original energy functionE( ). Choosinga= k andb= k+1 in
(3.2.4) we get:

EP(k;k+1)+ EP(k+1;k+2) EP(k;k+2)+ EP(k+1;k+1): (3.2.5)

In the case of the Potts model (3.2.3), thdhs of equation (3.2.5) is equal to
2 while the rhs is equal to making the above condition false. Thus, Potts
model is not submodular for multi-label energy functions, red hence cannot be
solved exactly [18,50]. Many algorithms have been proposed nd approximate
or partially optimal solutions of these energy functions 4, 18, 48,54,111]. We
provide a brief summary of some of these algorithms, whicherelevant to our

work, in the next section.

3.2.1 Approximate Energy Minimization

Approximate algorithms for solving multi-label energy futions can be broadly

classi ed into move-making and message passing algorithms

Move making algorithms. The -expansion and -swap algorithms are
widely used for approximate energy minimization [18,99]. ese algorithms work
by starting from an initial labelling x and making a series of label changes (moves),
which lower the energy at each step. An optimal move, which the move de-
creasing the energy of the labelling by the most amount, isdad e ciently at
every step from the largé move space. Convergence is achieved when the energy
cannot be decreased further.

The -expansion move allows any random variable to either retaits current
label or take a label . One iteration of the algorithm involves performing expan-
sion moves for all 2 L in some order successively. The iterations are repeated
until the energy cannot be decreased any further. Boykast al. [18] showed that
the optimal expansion moves for certain energy functions tie form (3.2.2) can

be computed in polynomial time by solving an st-mincut prol@m. They showed

2Exponential in the number of variables in the energy function.
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that if the pairwise potentials j de ne a metric, then the energy function (3.2.2)
can be minimized using -expansion. In other words, j; should satisfy the fol-

lowing conditions:

j(ab = 0 a=b; (3.2.6)
(@b = (b3 0; (3.2.7)
i (a;0) j(@b+ j(bo; (3.2.8)

for all a;b;c2 L.

The -swap move allows any random variable whose current label ior to
either take a label or . One iteration of the algorithm involves performing swap
moves for all pairs of labels; 2 L in some order successively. These iterations
are repeated until convergence. Optimal swap moves for eggrfunctions of the
form (3.2.2) can be computed in polynomial time if ; de nes asemi-metric, i.e.

satis es conditions (3.2.6) and (3.2.7) [18].

Message passing algorithms.  The other class of algorithms for approximate
energy minimization work by passing messages between nodegresenting the
di erent random variables of the model. Max-product beliefpropagation (bp)

is one such method fomap inference proposed by Pearl [75]. A message from
node X; to X; indicates how likely it is for X; to take a certain label from
Xi's perspective. Thebp algorithm was originally designed for tree structured
graphs where it is guaranteed to provide the exadamnap solution within two
iterations [75]. In the rst iteration the messages are sentrom the leaf nodes
of the tree towards the root. Messages are then sent from theat towards the

leaf nodes in the second iteration. After these iterationghe belief of taking a

i(xi = ) and the messages from all its neighbours corresponding twetlabell,,.
The node is then assigned a label according to its maximum kel This method is
not guaranteed to converge for the grid (loopy) graphs we usecomputer vision.
However, it has been applied to loopy graphs with some sucsg®0, 26, 27, 99].
In this case, the iterations are repeated until the rate of @nge of messages from

one iteration to the next falls below a certain threshold, ths resulting in an
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approximate solution.

Wainwright et al. [111] proposed the tree-reweighted message passimgy ()
algorithm, which decomposes the graph into a set of trees amperformsbp on
them. The messages being passed are reweighted with setsrobpbility distri-
butions over each tree. Theérw algorithm also computes the lower bound on the
energy, and aims to increase this bound in successive iteoats. Kolmogorov [47]
developed an improved sequential version afv , referred to astrw-s , by pro-
cessing the nodes in a scan-line ordarw-s has two useful properties: (a) The
lower bound estimate is guaranteed not to decrease in evetgration; and (b)
The lower bound estimate is guaranteed to converge, unlikdng original trw
algorithm. Other variants of message passing algorithms Y& also been pro-
posed [51,89,113].

3.2.2 Computing Partially Optimal Solutions

Certain algorithms for minimizing non-submodular functims (such as (3.2.3))
return a partial solution x 2 (L[f g)" of the energy [14,45,48,54,82]. Here,
the assignmentx; = implies that no label has been given to random variable
Xi. In other words, these algorithms assign labels to a subset the random
variables. Consider thegpbo algorithm [14, 48] as an example. It minimizes
energy functions composed of binary random variables, andturns a partially
labelled solutionx with the following property: there exists a global minimumx
of the energy function such thatx, = x, for all variables X, that are labelled, i.e.
Xp 6 . This property of a partial solution is calledweak persistency There are
certain partial solutions of the energy for which atronger condition calledstrong
persistencyholds true. The strong persistency property states that if aariable
Xp is labelled, then it is assigned the same label in all globalinima x of the
energy,i.e. Xp = X, for all x 2 f argmin, E(x)g.

Recently, there has been some interest in developing mettsotbr comput-
ing partially optimal solutions of multi-label energy fundions [45,54]. The work
of [45] addresses this problem by transforming the multi-teel energy function to

a function involving binary variables [37,88]. The resultig binary energy func-
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tion is then minimized by applying theqpbo algorithm. This approach produced
interesting results, but is computationally expensive. Ta method proposed by
Kovtun [54] to nd partially optimal solutions constructs a submodular subprob-
lem Py for each labell, 2 L. The random variables which are assigned label
lx after solving the subproblemP, have an optimality certi cate associated to
them. An additional advantage of this method is the submodakity property
satis ed by the subproblems, thus making them e ciently solable (cf. x2.3.1).
Partially optimal solutions obtained by the methods deschied here help us isolate
the variables which have been assigned a label, and reduce tbriginal energy

minimization problem.

3.3 E cient Multi-label Methods

We now present methods to improve the performance of algdrins for minimizing
multi-label energy functions arising from discretemrf s or crf s. For ease of
understanding, we explain the working of these techniques the context of the
-expansion algorithm. However, our methods are general amde applicable
to all popular algorithms such as -swap, bp, Fast-PD and trw-s  (sequential
trw ). Experimental results using all these algorithms are prested in the latter
sections. We also limit our discussion to energy functionstiv unary and pairwise
terms, e.g (3.2.2), in this section. Methods for higher order terms arpresented
in section 3.4.
The techniques proposed in this chapter are inspired from ¢hobservations
that the computation time of energy minimization algorithnms primarily depends
on: (a) The initialization used; and (b) The number of varialles involved in the

energy function. Thus, our primary goals are:

1. To generate a good initialization for the current problenmnstance, which
results in a reduction in the amount of computation requiredor solving the

problem.

2. To reduce the number of variables involved in the energy riation in an

e cient manner.
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3.3. E cient Multi-label Methods

3.3.1 Recycling Primal and Dual Solutions

We achieve our rst goal of obtaining a good initialization ly recycling results
from previous (related) problem instances. We call this mbbd for -expansion,
the dynamic -expansion algorithm. As discussed earlier (ck3.2.1), the -
expansion algorithm works by making a series of label charsgecalled moves,
which lower the energy at each step. This iterative algoritim starts with an initial
labelling. Each step considers a label 2 L, and solves the binary problem of
assigning variables this label or retaining their currentdbel. One iteration of
the method involves performing expansion moves for all thabbels in some order
successively. The iterations are repeated until the energyannot be reduced
further for any label . We denote the binary energy function corresponding to

a particular © ' move by E (x ), and is de ned as:

X X
E (x)= i () + i (X 3% (3.3.1)

i2v (i;j )2E
where x; ;x; 2 f0;1g, and correspond tox; and x; in the multi-label energy
function respectively. The assignmenk; = 0 implies that x; = in the multi-
label energy function, while the assignment; = 1 implies x; retains its current
label. The unary potential ; (x; ) is given by:

8

i(Xi = ) if Xi = O,

2
()= (3.3.2)
T =X it x =1,

wherex™" is the current label assignment foiX;. The pairwise potentials, for the

Potts model in (3.2.3), are de ned as:

8
% 0 if x; =0;%; =0,

i (X 1%) = : 1 (x®r xen) if x =1;x =1, (3.3.3)
- otherwise,

where (xf*'  xf) =1, if xf"" = x{, and O otherwise.
The above binary function is pairwise and submodular, if thgairwise po-

tentials of the original multi-label energy function sati$y the metric conditions:
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(3.2.6), (3.2.7), and (3.2.8). Thus, the binary energy funion (3.3.1) can be min-
imized exactly by solving the equivalent st-mincut problem(cf. x2.3.2.1). The
st-mincut problem is called the primal problem, and its solton, i.e. the labels
assigned to all variablesx; ;8i 2 V correspond to the primal solution. The st-
mincut is found by solving the dual problem of max ow on the sme graph. The
dual solution corresponds to the feasible ow solution of # max ow problem.

A new st-graph is built for solving each -expansion move.

Recycling Flow across lIterations. When solving an expansion move in a
particular iteration, we propose to recycle the ow from thecorresponding move

in the previous iteration to make the new computation fasterIn the rst iteration

The optimal expansion move for a given labd| is computed by solving the st-
mincut/max ow problem on the graph G!. Max ow problems corresponding to
all the labels are solved just as in standard-expansion. In iterationsu > 1 of the
algorithm, instead of creating a new graptG;' for a label expansion, we recycle
the corresponding graptG' ! from the previous iteration exploiting the fact that
the two graphs are similar. We use dynamic graph cuts technig proposed by
Kohli and Torr [46] to achieve this. Given the solution of themax ow problem
on a graph, their method e ciently computes the max ow in a modi ed version
of the graph. Inspired by this idea, we update the max ow sokion of the graph
G!' ! to obtain a good initialization for the graph G.

The dynamic update step involves changing the ows and the s&lual edge
capacities, such that all edges satisfy the capacity conaints. In other words, we
require that the ow in an edge is not more than its capacity. V¢ illustrate the
dynamic update step with an example in Fig. 3.2. It shows thease where the edge
capacity between two nodes changes from one iteration to d@her. This change
violates the capacity constraints of the edge, and is handldy reparameterizing
the graph such that the nal solution is not a ected. The time complexity of all
such updates is O (1), except for deleting an-degree node where it is On).3

After the update operations, the max ow algorithm is perfomed on the new

3A node is deleted by making the capacity of all the edges incient on it zero, which takes
O (1) time per edge.
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() (b) (c)

Figure 3.2: We illustrate the dynamic update step using a graph contamng two
nodesi and j. Consider the expansion move in iteratioru for label l,,. Per-
forming max ow computation on the graph corresponding to th move results in
a residual graph shown in (a). In this example we assume thaaghs G4 and
Gy, dier in the capacity of the edge(i;j ) by 3 units. Incorporating this di er-
ence in the residual graph (a) violates the capacity consimg i.e. residual edge
capacity of the edge is negative. The edge capacities are mawdn-negative by
reparameterizing the graph (cfx2.3.2.2), without a ecting the nal solution. The
graph is reparameterized by adding a constant= 1 to the capacity of the edges
(i;]), (s;i) and (j;t), and subtracting it from the capacity of the edg§;i), as
shown in (b). The new residual graph, which corresponds topaxsion move in
iteration u+ 1 for labell, is shown in (c). Max ow computation on this graph
is e cient [46]. Image courtesy of Pushmeet Kohli [46].

residual graph. The e ciency of this computation depends orthe number of
update operations performed (see Fig. 9 in [46]). In the wdrsase, when all
the edges are updated, this approach provides no speed-uplas as fast as the
standard algorithm. However, our method is guaranteed to g some speed-up,
because the number of changes in the graphs decrease in tletaterations [18].
An example of this is shown in Fig. 3.3, a plot of the humber ofibel changes,
which corresponds to the changes in the graphs, against thierations of the
-expansion algorithm. This leads to a decrease in the numbef update and
max ow computations over time. Hence, the optimal moves inhHese iterations
are computed e ciently.
For large problems,.e. when the number of labelsk, or the number of pixels,
n, is very large, maintaining multiple dual solutions may notbe viable due to

memory requirements. This issue can be overcome by workingtlwa projected
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Figure 3.3: The number of label changes in each iteration of theexpansion algo-
rithm. We use the stereo matching problem (Tsukuba image [Bés an example
here, and show that the number of label changes decreasefénldtter iterations.
Note that the number of label changes corresponds to the desiin the expansion
move graphs from one iteration to another, i.eGY ! to GY, 8 . Our strategy of
recycling graphs in these iterations leads to a signi canfpsed-up.

energy function obtained from a partially optimal solution (cf. section 3.3.2).
Thus our method is not only time-e cient but also memory-e c ient if the pro-
jected energy function involves a small subset of random vables. The recycle

scheme for singlenrf s is summarized as follows:

1. Construct graphsG;i = 1;:::;k = jLj, in the rst iteration.

2. Compute the max ow solutions to get the optimal moves.
3. For iterationsu > 1,

Update graphs from iterationu 1.

Compute the new max ow solutions for the residual graphs.

E ciently Solving Dynamic MRFs For dynamic mrf s [46,53], the task is
to solve a problem where the data changes from one problemtarsce to the next.
For instance, this occurs when solving a labelling problernahe image frames
of a video sequence. The conventional method to solve suchralgem is to use
the standard -expansion algorithm on each problem instances(@ each time
instance) independently. This method is ine cient, given hat the image frames

are highly correlated, and would require a lot of computatio time. We address
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this issue by recycling both the primal and dual solutions. fie primal solution is
generated by recycling the labelling of the previous probie instance, while the
dual solution is computed by recycling the residual graphsas¢ in the singlemrf
case). Intuitively, if the data changes minimally from one pblem instance to the
next, the solution of a particular problem instance provide a good initialization
for the subsequent one.

Consider a labelling problem de ned on a video sequence. Thst frame
in the video sequence is labelled using the singlef method described above.
The primal and dual solutions thus obtained are used to iniéilize the max ow/st-

mincut problems for the next frame. The labelling (primal slution) of a framet is

(dual solution) corresponding to the rst iteration for frame t are obtained by
dynamically updating the graphs from the last iteration forframet 1. With
these initializations the max ow problem for each label is@ved as in the single

mrf case. In summary,
1. Solve frame 1 as a ‘singlarf '.
2. For all framest> 1,

Initialize the labelling (primal) using the solution of framet 1.

Initialize the graph ow (dual) from the corresponding soldions for

framet 1.

Solve as a ‘singlenrf '

These techniques for -expansion provide similar speed-ups as the Fast-PD algo-

rithm [53] as shown in section 3.5.1.

3.3.2 Reducing Energy Functions

We now propose a method to simplify (or reduce the number of known variables
in) the mrf by solving the easypart. Our reduce strategy is applicable to many
popular energy minimization approaches such as-expansion, bp, trw-s and

Fast-PD, as illustrated in section 3.5. We also show how comfations performed
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Algorithm 1 : Pseudo-code for computing the partially optimal solution 6 an
energy function. An auxiliary problem P; for each labell; is formulated as an
st-mincut problem. The solution computed is used to projecthe energy function
E by xing the values of the labelled variables. After the iteation terminates we
obtain a new energy function,EP, comprising of all the unlabelled variables.
input X, L ="l kg E
output : Partially optimal solution

sj: Set of variables taking label; in the partially optimal solution;

EP E;

for | 1to kdo
P;  Auxiliary problem for label |;;
Sj SolveEP, P;) (cf. x3.3.2);
EP  Project(E®, s;);

end

during this procedure can be used to e ciently initialize the dynamic -expansion
algorithm described in the previous section.

As discussed earlier ¥3.2.2), there are two main algorithms for obtaining
partially optimal solutions of non-submodular multi-labé energy functions. It
would be interesting to compare these partially optimal sation algorithms for
the segmentation and stereo problems, but is beyond the s@pf our work. We
chose to use the algorithm proposed by Kovtun [54] becauseist an order of
magnitude faster than the gpbo-based method. The key step of the Kovtun
method is the construction ofk auxiliary problemsP,,, one for each label,, 2 L.
Kovtun showed that the solution of problemP,, could be used to nd variables
that have the persistency property (described ink3.2.2). Thus, by solving all
subproblemsP,,; 8l, 2 L, a partial solution which satis es strong persistency
can be obtained.

Speci cally, problem P, is the minimization of the following binary energy
function

X X
E™(xM) = m(x") + i O xim); (3.3.4)
i2v (i )2E
where x";x" 2 f 0;1g, and correspond tox; and x; in the multi-label energy
function respectively. The assignmenk" = 0 implies that x; = |, in the multi-

label energy function, while the assignment!” = 1 implies the optimal label for

42



3.3. E cient Multi-label Methods

Xi has not been assigned yet. The unary potential™(x") is given by:

8
2 (%= ln) i x™=0,

r(x") = _ (3.3.5)
: i(Xi |im|n) if Xim = 1,

wherel™ =argmini ¢ 1,4 (X = 1). For the case of Potts model, the pairwise

potentials are de ned as’

0 ifx™=0;x"=0,

p O = 0 XM =1xm =1, (3.3.6)

[ |

WA AR 00

otherwise.

E™(x™) de nes a submodular energy function and can be minimized lsolving
an st-mincut problem. Letx™ denote the optimal solution of the subproblem
Pm. We extract a partially optimal solution x 2 (L[f g)" of the multi-label

function E(x) as:

8
2 |, ifxM=0,

Xi = > (337)
- otherwise.

We repeat this process for all the labels, 2 L, and merge the solutions to obtain
the nal partially optimal solution of the original energy function E(x).

To make this procedure computationally e cient, we projectthe energy func-
tion after every subproblem computation. This involves xng values of all vari-
ables whose optimal labels have already been extracted frahe solution of pre-
vious subproblemP,,. This reduces the number of unknown variables in the
multi-label energy function and makes the computation of fasequent auxiliary
problems faster. We summarize this approach in Fig. 1. Our pe is that after
solving all auxiliary problems, we would be left with a projetion of the original
energy function which involves far fewer variables compateo the original func-
tion E(x). The experiments described in the next section omrf s commonly
encountered in computer vision con rm this behaviour.

The energy function projection obtained from the procedurdescribed above

corresponds to thedi cult component of the energy function. It depends on

4Although the algorithm proposed in [54] only handles Potts nodel energy functions, it can
be easily extended to general energy functions [55].
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the variables whose optimal labels were not found. Thus, theriginal problem

is now reduced to nding the labels of these variables. Thisao be done using
any algorithm for approximate energy minimization. Resul of this method are
shown in Table 3.2. In the rest of this section, we show how thiprocess can
be made more e cient by reusing the solutions of the auxiliay problems solved
during the partial optimality algorithm. Again, we will describe our approach

using the -expansion algorithm for ease of understanding.

Reusing solutions from the partial optimality algorithm. The remainder
of the original problem, which corresponds to the di cult part of the energy func-
tion, can also be solved e ciently. From (3.3.1) and (3.3.4)it can be seen that
the energy functions corresponding to the subproblems ofdhpartial optimality
and -expansion algorithms have the same form. Thus, we can potiatly reuse
the solutions of the partial optimality subproblems to makethe computation of
the -expansion moves faster. Speci cally, we use the dual ( ovgolutions of the
partial optimality problems to generate an initialization for the expansion moves
of the rst iteration of the -expansion algorithm (in a manner similar to that
described inx3.3.1).

As discussed before, the potential improvement in computan time depends
on the similarity of the two subproblems. Therefore, by makig the subproblems
of the partial optimality and the -expansion algorithms similar, we can improve
the running time. We note that for unassigned labels we haveme choice as to
their initialization, and a natural question arises as to whther any particular ini-
tialization is better. Consider the expansion and partial ptimality subproblems
with respect to a label 2L,ie. I, = in(3.3.5). From (3.3.2) and (3.3.5) it
can be seen that the unary potentials of the partial optimaty and -expansion
subproblems are identical if the current label assignmenbf X;, x4 = |min,
This can be done by initializing the labelling for the -expansion algorithm as:
X; = IMn wherel™ =argmin;;.  (x; = 1). The pairwise potentials may di er at
most by the constant for the casex; =1;x; =1 (cf. (3.3.3) and (3.3.6)). This
change makes the two problems similar, and potentially prades an improve-
ment in computation time using our reuse strategy. Experinmgal results shown

in Fig. 3.8 conrm this expected behaviour. Our proposed mébds| reduce
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reuseand recyclgcan be used jointly as follows:

1. Compute the partially optimal solution and project the emrgy function.
(Reduce

2. To label the remaining nodes using -expansion,

Initialize the labelling of each nodd to IM" = arg rlnzan i(xi = 1).

Update the residual graphs from thek auxiliary problems to construct

graphs for the rst -expansion iteration. Reusg

Restart the max ow algorithms to compute optimal moves, usig ow

recycling between expansion movesRécyclg

So far, we have seen e cient methods to minimize multi-labeénergy func-
tions composed of unary and pairwise potentials. Such engrfunctions are,
however, unable to capture the rich statistics of natural smes, making them
severely restrictive [65]. Higher order clique potentialswhich are de ned on
sets of interacting random variables, have been shown to ogeme this limita-
tion [42,43,65,74,79], but with a large computational cosypically. The following

section aims to address the computational issues of higheder energy functions.

3.4 Solving P" Potts Model E ciently

Consider the problem of minimizing energy functions whichontain higher order
clique potentials. Speci cally, we are interested in cligel potentials which take
the form of aP" Potts model introduced in [42]. TheP" Potts model potential
for cliques of sizen is de ned as:

8

2 K if Xi=|k;8i2C,

o(Xe) = . (3.4.2)

“  max Otherwise,
where nax > 8l 2 L. It can be easily veried that the standard Potts
model in (3.2.3) is a special case of this model with = 2 and ¢ = 0;8k.

Energy functions containingP" Potts model potentials can be solved using the

-expansion and -swap move making algorithms. The optimal expansion/swap
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3.4. SolvingP" Potts Model E ciently

move is computed by minimizing a binary energy function usgthe st-mincut
algorithm as shown in [42]. Although our methods are applitde to both these
move making algorithms, we describe them in the context of-expansion for ease
of understanding. The higher order binary energy functionaresponding to a

particular = ' move will be denoted byE, (x ). It is de ned as:

X X X
En(x )= () + i (XX )+ c(Xo); (3.4.2)
i2v (i;j )2E ,c_zcz
ji>

wherex; ;x; 2 f0;19, x, = fx; ;8 2 cg. The unary potential ; (x; ) and the

pairwise potential ; (x; ;x;) are given in equations (3.3.2) and (3.3.3) respec-

j
tively. The clique potential .(x.) forms aP" Potts model, and is given by:

8
% if x;, =0;8i 2 c,
c(Xe) = E if x, =1;8i 2 ¢, (3.4.3)
”  max oOtherwise,
where = if x'= 2L, foralli2c and = ,a otherwise. This move

energy function is submodular and can be solved using the rsincut algorithm
on the graph shown in Fig. 3.4. The reader is referred to [42jrfmore details of

the graph construction.

Recycling Solutions. Once the st-mincut graph corresponding to the higher
order move energy is built, our methods for recycling primaind dual solutions
(cf. x3.3.1) are directly applicable. When solving an expansionawe in a partic-
ular iteration, we recycle the ow from the corresponding mee in the previous

iteration to make the new computation faster.

Computing Partially Optimal Solutions. We now propose a method to
e ciently compute partially optimal solutions of energy functions containingP"
Potts potentials. As in x3.3.2, our method is based on the algorithm proposed

by Kovtun [54]. An auxiliary problem P, for labell,, 2 L, is the minimization
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Figure 3.4: Graph construction for computing the optimal -expansion move for
the P" Potts model is shown here. The nodes; Vv»; ; V,, represent the pixels in
the clique. There are also two auxiliary noddgls and M;. After the computation
of st-mincut, if v; is connected to the source ther;, = 0, and if v; is connected
to the sink thenx; = 1. The weights of the graph are given byy = max
andWe = max

of the following higher order binary energy function:

X X X
En(x™) = F(xi) + T ) + m(xm); (3.4.4)
i2v (i )2E c2C
jcj>2

wherex"; x" 2 f 0; 19, x{' = fx{"; 81 2 cg. Note that x{"; x" correspond tox; and

X;j respectively in the multi-label energy function. The unarypotential {"(x{")

and the pairwise potential j'(x";x") are given by equations (3.3.5) and (3.3.6)

respectively. TheP" Potts cliqgue potential '(x{') is de ned as:

8
% m if x™=0;8i 2 c,
mey,my — ; £ oM —1.0:
c(xc)—g oMk X =1:8i 2 ¢ (3.4.5)

max otherwise.

It can be easily veri ed that E{'(x™) is a submodular energy function [88]. We
now provide the relevant notation to prove Theorem 1 in [54)vhich leads to the

persistency property, for the case dP" Potts model.
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For every auxiliary problem P, we consider any ordering of the label set

a partial ordering on the set of label pairsg;a) 2 L L . The maximum and
minimum for any two label pairs ;&% and (b; ) are de ned as @;a) _ (b;1§) =
(a_b;d@_ ) and (a;ad) » (b;®) = (a” a%b”™ ) respectively. Similarly, the
maximum and minimum of any pair of labellingsx. and x? is denoted byxCWx‘g

Y : : :
andx. x2respectively. We also de ne thdowestoptimal labelling ™ as follows:

AN

Ko = X¢:

(3.4.6)
Xc=argmin x. E(X¢)

Using this notation, the submodularity condition in equaton (3.2.4) can be writ-
ten as:

Fxe)+ F(xQ  fxe” x)+ f(xc xQ: (3.4.7)
Let y™ 2 L" denote the partially optimal solution after solving the auxiary
problem corresponding to label,, (i.e. E{"(x)). In other words, the labelling
xi" = 0 is equivalent toy™ = |,, and x{" = 1 to the random variable X; retaining

the initial label.

Theorem 3.4.1 An arbitrary solution of the initial problem x = arg m)!n En(x)
. . i, Vv
satis es the following condition: x ~ ¢m = ¢m where §™ denotes the lowest

optimal labelling for the auxiliary problenP,,.

This theorem states that the lowest optimal labelling for a xel in the orig-
inal problem is not lower than the label given to the correspaling pixel in the
auxiliary problem solution. This allows us to assign optimialabels to all pixels
which take the labell, in the solution for the auxiliary problem P, thus showing
that the persistency property holds for our higher order emgy function. We use

the following Lemma to prove the theorem.

Lemma 3.4.2 Let ® be the lowest optimal labelling for a submodular problem,
. . L . \Y

and x be any arbitrary labelling satisfying the condition:x ~® 6 X, then

En(x ) >En(x " %)5

5The lemma can be proved easily using the subrvodularity condiion in equation (3.4.7) and
the de nition of lowest optimal labelling, i.e. En(x k) > E (k). See [54] for more details.
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Proof of Th. 3.4.1: Our proof is similar to that given in [54]. Let us assume

for any labelling x, x" ¢m 6 ¢m. From Lemma 3.4.2 it follows that:
EM(x~ ¢m) <E(X): (3.4.8)
The following inequality is obtained from equations (3.4)land (3.4.5):

dXe_ 91 (X (Xe_9T)  c(Xo): (3.4.9)
Also, from [54],
GG M) X)) g W) (Xisxg): (3.4.10)
Using inequalities (3.4.8), (3.4.9) and (3.4.10) it can beasily shown that,
En(x ™ §m) <En(x); (3.4.11)

which proves that any labellingx that does not satisfy the conditionx v gm =
¢m has a higher energy compared tg W?’", which is a solution containing the
auxiliary problem solution. |

Thus, the persistency property holds for our higher order emngy function.
We extract a partially optimal solution of the multi-label function E,(x) using
equation (3.3.7). The nal partially optimal solution is obtained by repeating

this process for all the labels, and merging the solutions.

3.5 Experiments

We evaluated our methods on a variety of multi-labeinrf problems such as stereo
matching [18], colour-based [16], object-based [94, 95hydatexture-based [42]
segmentation. The details of the unary and pairwise potertis of the energy

functions used for formulating these problems are given (V.

Colour-based Segmentation. For the colour-based segmentation problem,

we used the energy function de ned in [16]. The unary poterdls (x;);i 2 V;
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@) (b) © (d)

Figure 3.5: (a) The key frame of the "Dayton' video sequence, and (b) itegs
mentation. (c) An image from the msrc- 21 database, and (d) the brush strokes
marked by the user indicating the segment labels. The keynie segments and
brush strokes are used to learn the colour histogram modefglahe patch dictio-
naries.

as follows:

(xi) = logp(x; = ajH): (3:5.1)

The distributions H, are obtained using user-speci ed constraints. These con-
straints can be segmentation seeds marked by the user to iodie segment labels
(see Fig. 3.5(d)). The pairwise potentials encourage cogtious segments while
preserving the image edges [16], and take the form of a Geried Potts model

de ned as:

8
i (Xi;%)) = i A st i_f sl (3.5.2)
-0 if Xi = Xj;
where ;, , and are parameters of the model. The termg(i;j ) and dist(i;]j )
give the dierence inrgb values and the spatial distance respectively between
pixelsi and j. We used the following parameter values for all our experimts
with this energy function: ;=5; , =100 and =5. Segmentation results are

shown on the well-known garden image and a cow image used i8,&].

Stereo Matching. We used the pairwise energy function in [54] for the stereo
matching problem. The unary potentials of the energy are coputed with a
xed size window-based method. Windows of size 1515 centred over every
pixel i in the left image and its corresponding pixel in the right imge (for a
given disparity) are used. The cost of labelling pixel with this disparity is

given by the normalized sum of squared colour intensity diences between the

50



3.5. Experiments

left and right image window pixels. The pairwise potentialsake the form of a
Potts model (3.2.3). Stereo matching results are shown on Shkuba”, \Venus",
\Cones", \Teddy" images from the Middlebury stereo data set[86]. The Potts
model smoothness cost was set to 20 for all our experiments on this energy

function.

Object-based Segmentation. For this problem we used the energy function
de ned in [95]. The unary potentials of this energy are basedn shape-texture,

colour, and location features. It is given by:

iXi)= 1 7(X)+ co calXi)F 1 oi(Xi); (3.5.3)

where 1, ¢, | are model parameters. The component;(X;) is learnt using a
boosted classi er [103]. The classi er combines discrimative texture and shape
Iter response features and models the texture, layout, antextural context of
object classes. The colour component potentiaky (Xi) is computed using Gaus-
sian Mixture Models @mms) in the CIELab colour space. The location potential
1(X;) captures the relation between absolute location of the p&k and the object
class label. The reader is referred to [95] for more details computing these
potentials. The pairwise potentials take the form of a conaist sensitive Potts
model (3.5.2). We evaluated our algorithms on this energy figtion using images

from the msrc- 21 database.

Texture-based Segmentation. In this problem, the task is to segment an im-
age, given a set of distinct textures, such as texton histagms [92] or a dictionary
of rgb patches, together with their object class labels. The unarpotential is
speci ed by rgb distributions, while the pairwise potential is a contrast snsitive
Potts model (3.5.2), similar to the colour-based segmeniah example. The rich
statistics of natural images provide by texture informatio [68,107] are encoded
in the form of P" Potts higher order potential. Following the work of [42], we
represent the texture of each object class2 f 1;2;  ;ng, using a dictionary P

of n, n,rgb patches. The higher order potential .(xc) of a cliqgue patchc is
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Figure 3.6: Recycling primal and dual solutions for (a), (b) single andd) dynamic
mrf problems: Comparison of run-times of standard and dynamiensions of -
expansion, and Fast-PD are shown for (a) object-based segua¢ion problem:
"Building' image from the msrc- 21 data set [95], (b) stereo matching problem:
Tsukuba (Left image), and (c) colour-based segmentationgimem: cow video se-
guence [39,46]. In (a), (b) reusing the dual solution proves$ a speed-up of at least
4-10 times in subsequent iterations. In some cases, the reration of Fast-PD
was slightly slower compared to both versions ofexpansion algorithm, but the
overall computation time was better than “standard' and cqrarable to "dynamic'.
For example, times for the "Building' image are: Fast-PD: 85s, dynamic: 0.64s,
standard: 1.88s. Note that the run-times of Fast-PD and ourydamic version
are very similar in (a) and (b). In (c) the dynamic version rewses primal and
dual solutions from the previous frames in the video sequerend results in 3-4
times speed-up. We also show that the strategy of maintaigionly one graph
while recycling solutions (denoted by "1 Graph') providessigni cant speed-up
(see text).

given by: 8

(x0) 2 4G(c;9) if x; = s;8i 2 ¢ (3,54
X¢) = 5.
e z 4 otherwise,

where 3 and , are model parameters. The functiorG(c;s) is the minimum
di erence between thergb values of clique patchc and all patches in the dic-
tionary Ps. The patch dictionaries are learnt from a manually segmentiekey
frame in the case of video segmentatiorg.g Dayton sequence (Fig. 3.5(b)), or
user-marked brushed strokes in the case of an image segmgoia e.g Bench
image (Fig. 3.5(d)). We used patches of size 44, with the following parameters:
1=0:6;, ,=6; 3=0:6;, 4 =6:5and =5. More details of the higher order
potential can be found in [42].
The following sections describe the results of primal and dy and partially

optimal solution initializations. Standard, publicly available implementations are
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Figure 3.7: Comparison of run-times and solution energy of standard aretynamic
versions of -expansion and Fast-PD are shown for (a) "Building' image,bj
Tsukuba (Left image). Although there is a small change in egg after iteration 1,
Standard -expansion spends much more time compared to our Dynamic sien
to obtain a new lower energy solution. The time vs energy plar Fast-PD is
very similar to dynamic -expansion, except for iteration 1 in (a), where Fast-PD
takes 0.07 seconds more than our dynamic algorithm.

used for comparisoif. All experiments were performed on a Intel Core 2 Duo, 2.4
GHz, 3GB RAM machine. Source code for the proposed methodsaiailable at

http://cms.brookes.ac.uk/research/visiongroup

3.5.1 Dynamic -expansion

We now discuss the e ect of various primal and dual solutiomitializations on
the -expansion algorithm. We tested a simple of way of using theow/cut
from the solution of the previous expansion movei.¢. with a di erent label)
as an initialization for the current move. From (3.3.1) it can be observed that
the energy functions corresponding to two consecutive mavare substantially
di erent. Hence, this scheme provides no signi cant speedp. Fig. 3.6 con rms
this expected behaviour.

In Figures 3.6(a) and 3.6(b) we show the results of the proped ‘recycle'
strategy for two singlemrf examples. The primal and dual solutions are recycled
across iterations (cf.x3.3.1). The standard and dynamic versions take the same

time in the rstiteration, as no ow is recycled. In the subsejuent iterations, the

SWe thank V. Kolmogorov, N. Komodakis and M. Pawan Kumar for pr oviding the original
implementation of their methods for comparison.
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Time (in seconds)
-exp | dyn -exp|opt -exp
Dayton (3) | 1.31 0.49 0.21
Garden (4) | 1.20 0.44 0.19
Bench (3) | 1.76 0.59 0.38
Beach (4) | 1.59 0.51 0.25

Table 3.1: Running times (in seconds) for various examples (from [43{)sing the
P" Potts model. Results are shown for the-expansion algorithm. " -exp' refers
to the times obtained using the standard alpha expansionalthm and ‘dyn -
exp' refers to the dynamic version (which recycles primal dndual solutions).
‘opt -exp' refers to the optimized version which computes the paly optimal
solution followed by -expansion on the energy projection. It is observed that hot
“dyn’ and “opt' methods provide a speed-up of at least 3-6 ésncompared to the
standard method. The numbers in () denote the number of labéh the problem.

dynamic version provides a speed-up of 4-10 times. Similasults were observed
for other problems as well. The approach of initializing bdt primal and dual
solutions in a dynamicmrf was tested on the cow video sequence [39,46]. These
run-times for a sequence of 6 images are shown in Fig. 3.6(6ur initialization
method provides a speed-up of 3-4 times in this case. The ghapalso compare
the dynamic methods with Fast-PD [53]. Note that our methodsesulted in very
similar run-times compared to Fast-PD. Fig. 3.7 shows a comapison of run-time
and solution energy for standard and dynamic versions of-expansion. From
Fig. 3.6 and Fig. 3.7 we see that the speed-up achieved by oymdmic version
is due the fact that small changes in energy can be computedryee ciently.
Table 3.1 shows the speed-up obtained for the" Potts model. Our approach
provides a speed-up of at least 3-5 times compared to the stiamd -expansion

algorithm.

3.5.2 Using Partially Optimal Solutions

We now show the results of our partially optimal solution basd method (cf.
x3.3.2) on a variety of energy minimization algorithms for te problems de ned
above. Specically, -expansion,bp and trw-s algorithms are used in the ex-

periments. Optimized versions ofbp and trw-s refer to the computation of
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Time (in seconds)

-exp | Fast-PD | opt -exp| bp |optbp |tw-s | opttw-s
Colour-based Segmentation:
Cow (3) 2.53 1.31 0.21 9593 | 0.32 98.36 0.33
Cow (4) 3.75 1.72 0.38 108.32| 0.42 | 111.69 0.43
Garden (4) 0.28 0.14 0.04 5.59 0.17 5.89 0.21
Stereo:
Tsukuba (16) | 5.74 1.47 0.84 38.19 | 4.47 41.74 4.67
Venus (20) 11.87 3.07 3.03 67.04 | 14.97 | 71.46 16.02
Cones (60) 42.23 9.48 4.36 173.35| 29.41 | 182.66 30.70
Teddy (60) 44.25 9.56 8.27 172.30| 60.35 | 182.50 63.77
Object-based Segmentation:
Plane (4) 0.39 0.35 0.15 9.41 0.29 9.89 0.30
Bikes (5) 0.82 0.54 0.22 10.69 | 0.64 11.19 0.70
Road (5) 0.91 0.51 0.18 10.67 | 0.60 11.26 0.62
Building (7) 1.32 0.89 0.38 12.70 | 2.57 13.52 2.66
Car (8) 0.99 0.53 0.11 13.68 | 0.23 14.42 0.24

Table 3.2: Running times for various singlemrf problems: Comparison of
the run-times (in seconds) of the standard and optimized (ppversions of -
expansion ( -exp), bp, trw-s is shown. The optimized version refers to com-
puting the partial solution followed by solving the energygpection with the cor-
responding algorithm. The optimized versions are signi cdly faster in all the
examples. The speed-up obtained depends on the nature arzutly of the prob-
lem. The run-times shown for bothlbp and trw-s versions correspond to the rst
70 iterations. The number of iterations was chosen such thatceptable quali-
tative results (segmentation or stereo map) were obtainedrfall the problems.
Some of the smaller problems produce results after 30-4Qatens, while others
take 70-80 iterations. A better comparison of time vs energy shown in Fig. 3.7
and Fig. 3.10. The numbers in () denote the number of labels @ach problem.

partially optimal solution followed by running the correspnding algorithm on
the projected energy function. A comparison of the run-tirefor all these algo-
rithms is shown in Table 3.2. It is observed that our method dmeves a speed-up
is 10-15 times for most of the examples. In some casesg( Cow image with
3 labels), the speed-up is more than 100 times for optimizeergions oftrw-

s and bp algorithms. The amount of speed-up depends on the strengtli the
pairwise terms and the number of labels in the problem. The spd-up increases
with a decrease in both the number of labels and the strengthf ¢the pairwise
terms. This is because the pairwise potential of the partiadptimality auxiliary

problem (3.3.6) is closely related to that in the original ppblem (3.2.3). Images
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Figure 3.8: (a) The percentage of nodes labelled by the partially optihslution
algorithm by varying the smoothness cost for two energy ftinas. The Tsukuba
stereo matching problem with energy functions given in [S@nergy 1) and [99]
(Energy 2) is used as the example here. For the smoothness cos 20, only
13% of the nodes are labelled in the case of "Energy 2'. (b) Témergy function
in [99] (Energy 2) with smoothness cost = 20 is used for this experiment on the
Tsukuba sequence. The speed-up obtained by reusing the &wes the partially
optimal solution auxiliary problems (Par-opt) for this smothness cost is shown.
Reusing the ows provides a run-time improvement of at leasttimes in the last
two iterations, and more than 2 times overall improvement. &e that even when
the partially optimal solution algorithm fails, we obtain aigni cant speed-up.

with highly textured regions also show orders of magnitudegsed-up for segmen-
tation and stereo problems. Table 3.1 shows the speed-up aloted for the P"
Potts model for various examples (from [42]). Using partigl optimal solutions
provides a speed-up of at least 4-6 times compared to standar-expansion.

An analysis of the partially optimal solution algorithm shavs that in some
cases very few nodes may be labelled. One such case is whenstheothness
cost is very high, as shown in Fig. 3.8(a). For illustration purpses we chose
the Tsukuba stereo problem, which showed the most signi carchange in the
number of labelled nodes. We used two energy functions [59] ®n the stereo
problem to demonstrate the e ect of varying the smoothnessetm. The unary
potential in [54] is computed using a normalized cross colagion approach on
pixel windows of size 15 15, while [99] uses the sub-pixel window approach
proposed by [10]. The pairwise potential in both cases is thHotts model given
by (3.2.3). As the smoothness cost is increased, the percege of labelled nodes

decreases, and the projected component of the energy fupnatiremains large.
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@ (b) ©

Figure 3.9: A sample result of object-based segmentation is shown in @ane.
Some of the stereo matching results are shown in (b) Tsukubeft and (c) Teddy-
Left. The rst row shows the original images. The second rovhews the partially
optimal solution. The regions marked in red denote the unlallted pixels, which
have low texture detail. Our method provides more th& speed-up even when
majority of the nodes are unlabelled in the Teddy example. {iE gure is best
viewed in colour.)

The decrease is more dramatic using the energy function in9]9 This e ect is
perhaps because the partially optimal solution algorithmelies on strong unary
potentials. In the case of [99], a large smoothness term domaies the unary
potentials, and leads to many unlabelled nodes. Thus, onlysmall improvement
in run-time performance is achieved. However, our strategyf reusing the ow
from the partially optimal solution auxiliary problems always provides improved
performance in these cases (see Fig. 3.8(b)).

Segmentation and stereo matching results of some of the inesgused in our
experiments are shown in Fig. 3.9. Note that even when majtyriof the nodes are
unlabelled in the partially optimal solution, e.g Teddy sequence in Fig. 3.9(c),

our method provides more than 6 times speed-up. The proposetethod is not

57



3.5. Experiments

3.95

T T T T 4.9 T T
Energy-Optimized BP Standard
Energy-Standard - 48 & BP Optimized
3.9 Lower Bound-Optimized q bal Optimum |
Lower Bound-Standard AT 1
© 385 | © 46 %
o o H
— 3 i
x x 4.5
> 3.8 > i
=2 2 44
c 2
W 375 w431 e
42 ¢
3.7 ¢
4.1 ¢
365 L L L L L L L 4 L L L L
0O 02 04 06 038 1 12 14 16 0 0.5 1 1.5 2 25
Time (in seconds) Time (in seconds)

@) (b)

Figure 3.10: (a) Energy of the solution and lower bound obtained by runmn
trw-s algorithm on the Road image example [95]. Note that optimizéw-s
algorithm nds better energies (lower solution energy anddher lower bound) at
any given point in time. It also nds an optima in only 0.64 seonds. Standard
trw-s converged to this energy after 37.24 seconds. Thus, the optied version
is more than 50 times faster. (b) Solution energies obtainéy running standard
and optimizedbp algorithm on the Building image example [95]. Optimizeop
refers to the computation of partially optimal solution fdbwed by running thebp
algorithm on the projected energy function. It nds an energcloser to the global
optimum, while standardbp does not reach this energy even after 30 seconds.

only computationally e cient, but also provides a lower enegy solution empiri-
cally in the case otrw-s and bp. Furthermore, the optimality of the solutions is
not compromised. Fig. 3.10(a) compares the energies of th@wdions and lower
bounds obtained using standard and optimized versions toiv-s . The optimized
version using the energy function projection converges tbé global optima of the
energy in only 0.64 seconds. Fig. 3.10(b) compares the enesgof the solution
obtained using the standard and optimizedop algorithms. Optimized bp con-
verges to a low energy, although not the global optima, in (68seconds, while
standard bp converges to a much higher energy in 11.12 seconds. Standbpd
solves the original (large) problem and converges to a loagitima. On the other
hand, optimized bp solves the projected energy function de ned on a subset of
nodes and converges to a better local optima. Empirically, evobserve thatbp
is more likely to provide a better local optima on the smalleproblem (de ned
by the projected energy function), which is easier to solveompared to the orig-
inal large problem. The solutions corresponding to these emyies are shown in

Fig. 3.11. Note that the optimizedbp solution is closer to the global optima in
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@) (b) © (d)

Figure 3.11: (a) Building image [95], and (b) the global optimum solutiomom-
puted by thetrw-s algorithm. Solutions obtained using (c) standartp, and (d)
optimized bp with an 8-neighbourhood. Neither the optimized nor the stdard
versions converge to the optimal solution. However, optineédbp is closer to the
optima.

this case.

3.6 Summary

This chapter proposes techniques for improving the perfoance of algorithms for
solving multi-label mrf s. As there are no disadvantages in using them and many
advantages we would expect them to become standard. Our metis work by
recycling solutions from previous problem instances, aneducing energy func-
tions utilizing algorithms for generating partially optimal solutions. Our work
on recycling the dual (ow) solution for computing optimal label moves across
successive iterations of the -expansion algorithm results in a dynamic algorithm.
It can be seen as an extension of the work of [39,46] for minzimg multi-label
non-submodular energy functions. Experimental results st that our methods
provide a substantial improvement in the performance of -expansion,tw-s
and bp algorithms. Our method also provides similar or better pedrmance com-
pared to Fast-PD. We expect that our techniques for simplifypg energy functions,
and the subsequent recycling of computations performed dag this procedure
can also be used to make Fast-PD faster. The main contributie of this chapter

are:
1. Proposing novel e cient methods for solving multi-labelenergy functions.

2. Extending the work on dynamic graph cuts to a certain classf non-

submodular energy functions.
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3. Proving that partially optimal solutions can be computedfor P" Potts

model.

4. Demonstrating that our e cient methods are widely appliable.
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Chapter 4

Exact Inference for Higher Order

CRFs



In the previous chapter we have addressed the problem of eemnt approximate
inference for energy functions involving certain higher der potentials. This
chapter addresses the problem of exactly inferring thmap solution of such multi-
label higher order energy functions. We present a framewot® transform special
classes of multi-label higher order functions to submodulgecond order boolean
functions (referred to asF 2), which can be minimized exactly using graph cuts,
and we also characterize those classes. The basic idea is $e two or more
boolean variables to encode the states of a single multi-kelbvariable. There
are many ways in which this can be done and much interestingsearch lies in
nding ways which are optimal or minimal in some sense. We stly the space of
possible encodings and nd the ones that can transform the rabgeneral class

of functions to F2.

4.1 Introduction

Recall (x2.3.1) that a special class of functions callesubmodularfunctions can be

minimized globally in polynomial time. These functions areliscrete analogues of
continuous convex functions. The current best algorithm fogeneral submodular
function minimization has complexity O (0°Q + n®), where n is the number of

random variables andQ is the time taken to evaluate the function [73]. This
makes their use infeasible for problems in computer visionhweh, in general, in-

volve a large number of variables. However, certain subcées of submodular
functions can be minimized much more e ciently. For example boolean sub-
modular functions of ordet at most three can be minimized by solving an st-
mincut problem, for which e cient algorithms are known [8, 32, 50].Freedman

and Drineas [25] extended this work and proved that a subck®f submodular

boolean functions of order four or more can be minimized. Itag also shown that
multi-label crf s with convex energy functions of order two can be minimized i
polynomial time [37,88]. However, it has not been known whdhe analogue of
this is for higher order cliques. We aim to study this in the capter.

Most labelling problems in computer vision involve multihbelmrf s orcrf s[18,

IClique size in acrf corresponds to order of the energy function.
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86]. Furthermore, the use of higher order clique structurelsas proved bene -
cial [43,65,79] for solving certain computer vision prohies. However, e cient st-
mincut based algorithms used for minimizing submodular second erdboolean
functions are not directly applicable to these functions. Or work overcomes
this restriction by showing how we can transform some submalr multi-label
higher order functions to submodular boolean functions, tis enabling their exact
minimization. Before proceeding further, we brie y introduce our notation for
denoting di erent classes of energy functions. LeEX and F X denote the class of
submodular and non-submodular boolean energy functionsafler k respectively.
Similarly, let M ¥ and M ¥ denote the class of submodular and non-submodular

multi-label energy functions of orderk respectively.

A generic transformation framework. The basic idea of our framework is
to use two or more boolean variables to encode the states ofiagée multi-label
variable. While doing this, we have to ensure that the minimon cost labelling of
the boolean problem also encodes the minimum cost labellio§ the multi-label
energy function. There are several possible ways to encodmalti-label variable
using boolean variables. In the rest of the chapter, we useeherm encoding
to refer to the mapping between the labellings of a multi-laél variable and its
corresponding binary variables. The terntransformation refers to the conversion
of multi-label energy functions to functions of binary vambles.

It is important to study di erent transformations because the choice of trans-
formation dictates the size of the resulting boolean funain, and the class of
multi-label functions that can be transformed toF 2. For example, Ishikawa [37]
described a transformation that used boolean variables to encode a singldabel
variable. Using this transformation pairwise convex funabns of the di erence of
labels, which is a subclass d¥l 2, can be transformed toF 2. Later, Schlesinger
and Flach [88] gave a concise de nition of submodularity fqordered) multi-label
functions, and used 1 boolean variables to transform any function iV 2 to
F2. In this chapter, we study the space of all possible transforations and nd
the subclasses of multi-label functions that they can trafisrm to F2. In other
words, the transformations we develop will lead to submodail boolean functions

under some constraints. These constraints will serve to ata&terize the class of
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M  that can be minimized exactly.

The main novelties of our work are as follows:
A principled framework for transformingM ¥ functions to F 2.

The identi cation of constraints that enable the transformation of M ¥ of

any order into F2 in polynomial time.

The result that there exists no polynomial transformation fom submodular
multi-label functions of order four or more ¥ ¥ #) to submodular boolean

second order functions 2).

The use of higher order functions to improve the performanced single view

3D reconstruction algorithms [36].

4.1.1 Outline of the Chapter

In section 4.2 we describe the basic theory of pseudo-bowalezptimization and
its relation to minimizing multi-label higher order functions with st-mincut al-
gorithms. The problem statement is formalized in section &. Section 4.4 shows
how to encode multi-label variables using boolean (or bingr ones. A charac-
terization of multi-label higher order functions that can ke transformed toF 2 in
polynomial time is given in section 4.5. We describe the silegview 3D reconstruc-
tion problem, and provide details of our solution in sectior.6. In this section
we also present a comparison with the work of [36]. Other patial applications

of our work and directions for future research are discussau section 4.7.

4.2 Notation and Preliminaries

Let B denote the boolean sef0;1g, and R the set of reals. Let the vector
X =(Xq;:5 %) 2 B", andV = 1, 2;:::; ng, be the set of all boolean variables and
their indices respectively. A pseudo-boolean functioh : B" I R, is a function
which takes a boolean vector as an argument and returns a realmber. These

functions can be uniquely represented using a multi-linegrolynomial form [14].
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The following is an example of a pseudo-boolean function:
f(X1;X2;X3;Xa) =2 AXoXg + T X1X2X3; (4.2.1)

containing four boolean variables. Another useful represetion known as posi-
form involves the complementgx4; :::; X,) of variables. Such a representation for

the above example is:
(X1;X2; X3, X4) = 2+ 4X4 +4XoX4 + T X1 X0X3! (4.2.2)

An important property of the posiform representation is tha all the coe cients,

except the constant, are non-negative [14].

4.2.1 Graph Cuts for Energy Minimization

Here we recap some of the graph cuts and stincut concepts introduced in sec-
tion 2.3.2. We denote the stmincut graph with G= (V;E), which has directed,

non-negative edge weights and two special nodes, namelye thources and the

sink t representing labels 0 and 1 respectively. The stincut problem involves

nding the st-cut with the minimum cost. Any F2 function can be minimized
exactly by computing the stmincut in an equivalent graph [50]. The key idea
is to design a graph such that cuts in the graph correspond tabellings of the

binary variables, with the cost of the cut equal to the cost othe labelling (plus

a constant). We call this anequivalent graph

Consider a second order boolean energy:

Epn(x) = X Eun(x;) + X Eo(Xi; Xj); (4.2.3)
i2v (i;j )2E
where Ep(x;) and Ep(Xi;X;) represent the rst and second order terms of the
binary energy function respectively. Let ., be the cost of assignmenk; = a,
and ., be the cost of the assignmenk; = a;x; = b (a;b2 B). The graph
constructed for minimizing aF 2 function has a vertexi for each boolean random

variable x; 2 B. There is a mapping between st-cuts in the graph and label
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(a) (b) (c)

Figure 4.1: Converting an energy minimization problem to an stincut prob-
lem [50]. (a) and (b) show how unary potentials are represeat using edges in
the graph, while (c) shows the same for submodular pairwissemntials.

assignments. A node in the source set impliesx; = 0, while i in the sink set
implies x; = 1. We now show how to create the equivalent graphs for funas

belonging to the classef ! and F2.

The class Fl. The unary term Ey(x;) of the energy can be written asE(x;) =
poXi+ X If 1 0 0, we write the energy asEp(Xi) = ( i1 i0)Xi+ 0.
The minimization of this energy is equivalent to nding the $-mincut in the
graph shown in Fig. 4.1(a). Cutting the edgeg; i) is equivalent to the assignment

Xi = 1. Similarly, if .1 .0 < 0, we write the energy a£p(Xi) =( io i1)Xi+

i-1, and the corresponding graph is given in Fig. 4.1(b).

The class FSZ. The pairwise energyEn(Xi; Xj) = ij:00XiXj+ jj0aXiXj+ jj.10Xi X+
ij:11XiXj; can be written as: Ep(Xi; X)) = G XiXj +( 0 ij:00)Xi + ( ij 10
ia)X + oot a1 ij10. Wherecp = ( oot 0 g0 1) The

equivalent graph construction is given in Fig. 4.1(c). Sireecour overall goal is to
transform multi-label functions to FZ2, we do not focus onF 2 and higher order

functions [25, 50].

Multi-label functions. Let G, = (Vm; En) be a directed graph with a set of
vertices V, = f1;2;::;;mg, and edgesE,,. Let y; be a variable taking values
in some discrete spacé = f1;2;:::;1g, and lety = fy;;::5;yng. We use to

denote the set of higher order potentials whose sum de nesetenergy function.

The unary potential is denoted by .5, pairwise by j .., wherei;j 2 V,, and
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a;b2 L. Leti = ijixtix 2VE = Vg V iV (k times) and a = ajap:iay 2

LX =L L ::L (k times). Under this notation, a k™ order energy function is

written as:
X Y
Em(y) = i (vi; a); (4.2.4)
i2v) a2l k i2i;a2a
where 8
21 ify = a
(yi;a) = _ (4.2.5)
- 0 otherwise.

4.2.2 Submodular functions

Submodular functions are set functiond : 2" ! R, satisfying the following
condition:

FOX)+F(Y) FOX YY)+ F(X\Y); (4.2.6)

whereX andY are subsets of the sé¢, and[ and\ denote union and intersection
of sets respectively. We brie y describe how the above de tion of submodularity
maps to functions of boolean variables [50]. A function of enboolean variable
is always submodular. A function : B?! R of two boolean variabled x;; x; g is

submodular if and only if:

j:00t o1 j:o1t 10 (4.2.7)

A function : B" ! R, is submodular if and only if all its projections on 2
variables are submodular [14,50]. The submodularity conttins can be extended
to multi-label variables. Let L be a completely ordered set, where between every
pair of statesl; and |,, an ordering (above/below) is present. A function

L21 R, is submodular if:

il T (lrD)(1240) ity 1t (1) (4.2.8)

for all 14; 1, [88]. Using the work of Schlesinger [87] on permuted submdaiufunc-
tions we can nd an ordering (if it exists) for which the functons become submod-
ular. Thus, we can work with a notion of submodularity of muli-label functions

which is independent of the ordering of the labels. A functio : L™ ! R is
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submodular if and only if all its projections on 2 variables i@ submodular [22].

4.3 Problem Statement

The main goal of this chapter is to obtain a boolean second adfunction E(x),
equivalent to a given multi-label higher order functiorEp, (y), in polynomial time.

The boolean function also needs to satisfy the following cditions:

There is an encodingT : LVmi 1 BV which is 1-1 between the feasible
labellings ofx andy, and bijective between the set of optimal labellings of

the boolean and multi-label variables.

The minimum value ofE, (y) overy is equal to the minimum value ofE(x)
over X:

mxin Epn(x) = miyn En(y): (4.3.1)

The energy functions need not be equal at labellings that anmeot their

respective minima.
We also want to answer the following questions:

1. What is the class of multi-label higher order functions fowhich we will
always be able to nd an equivalent~2 function? We characterize the class

by nding the constraints on the potentials  of the function.

2. How can the boolean function with the smallest number of viables be

obtained?

We now summarize the three important steps in our algorithmbefore pro-

ceeding to explain them in detail.

1. A second order pseudo-boolean function is constructed ialin enforces 1-1

mapping between the feasible labellings gf and x (Seex4.4).

2. Encoding functions that can replace all occurrences wfin E,(y) using x

are computed (See4.5).
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3. We transform the problem of minimizing the multi-label eergy function

into that of minimizing a F2 function (Seex4.5).

For simplicity, we demonstrate our method on a specic 4-laél energy func-
tion. The algorithm is presented as an interplay between gpd constructions
and transformation of energy functions. As studied ix4.2.1, both operations are

closely related.

4.4 Boolean encoding for multi-label variables

In this section we propose a method to construct a second ordeseudo-boolean
function such that the labellings of the boolean variablesdve a 1-1 mapping with
the labellings of the original multi-label variables. For gample, in Fig. 4.2(a) we
show a graph constructioh to encode a 4-label variablg/, using three boolean

variablesf xq; X,; X3g. The encoding representing the change of variables is:

fyp=1g$%f x1=1;x,=1;x3=1g¢; (4.4.1)
fyp=29%f x1=0;x,=1;x3=1¢; (4.4.2)
fy1=3g38f x;=0;%x,=0;%x3=1g; (4.4.3)
fyp=4g%f x;=0;%x,=0;%x3=0g¢: (4.4.4)

Since three binary variables can take eight €} di erent labellings, the re-
maining four labellings (2 4) are not mapped to any labellings of;. In order
to ensure a bijective encoding between the binary variablesd the multi-label
variable, these labellings need to be made infeasible. Thian be achieved by
assigning a very high cost to the unused labellings. In the ate encoding the
unused labellings are given bxix,x3 = 010 101, 100 1103. Thus, we have the

following penalty term:
P(X) = (X1X2X3 + X1X2X3 + X1X2X3 + X1X2X3); (4.4.5)

where !1 . This can also be seen as using the following third order pdtya

2This is sometimes referred to as thebattleship construction.
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(@ (b)

Figure 4.2: (a) The battleship transformation [37,88,108]: The cuts inhe graph
are annotated by green arrows. Four possible cuts are showrdaach cut corre-
sponds to the assignment of one of the four labelsyto For example, if the edge
(X1; X2) is cut then the labelling forx;x,x3 is 011 and the corresponding labelling
for y, is 2. Overall, the four labels of a multi-label variablg, = f1;2;3;4g are
mapped to the labellings of three binary variablegx,x; = 111,011, 001; 00Q.
(b) The log transformation: The four labels ofy; = f1;2; 3; 4g are mapped to the
labellings (cuts) of two binary variablesix, = f11; 10; 01; 0Qg.

function: 0 1 0 1
123:000  123:001 0O O
123:010 123011 1 0
= (4.4.6)
123:100  123:101 11
1 0

123;110 123;111

It can be easily veri ed that the above function is submodula It has four (23 4)
penalty terms (corresponding tol values in (4.4.6)) to restrict the infeasible

labellings. The penalty function in (4.4.5) can be simpli @ to:
P(X)= X X2+ X 2X3; (4.4.7)

using simple boolean algebra. The two pairwise terms F(x) correspond to the
edges X»; x1) and (x3;Xp) with 1 costs in Fig. 4.2(a)®

A natural question to ask would be whether a di erent encodig is possible
for a 4-label problem. To address this question we considergF 4.2(b), where
two boolean variables are used to encode a 4-label problem.e\Weéfer to this

graph construction as thelog transformation, since it uses lod( boolean nodes

3In practice, we do not need an edge with in nite cost, but someedge having a cost greater
than the sum of all edge costs.

70



4.5. Encoding Functions

to encode anl-label variable. In this work, we chose a speci ¢ transfornt@n to
describe our algorithm. So from this point onwards, we will ppose algorithms
speci ¢ to the battleship transformation shown in Fig. 4.28). It can be shown

that this transformation handles the most general class ohergy functions [77].

4.5 Encoding Functions

Our overall goal is to transform a given multi-label higher aler energy function
into a boolean one. To do this, we need to de ne a boolean funmh which maps
the labels of the multi-label variable to that of the encodig boolean variables. We
refer to these functions agncoding functions They enable us to replace multi-
label variables in the energy function by boolean ones. Maopeecisely, anencoding
function is de ned asfy,.a(X1; X2; X3) : B3 1 B, such that fy,.a(X1; X2; X3) = 1,
wheny; = a, and 0 otherwise. The following example is shown to illustta the
key ideas.

Let us assume that the functionf,..(X1; X2; X3) IS linear* We assume the
following representation for the linear function using fouunknown parameters
Co; C1; Cp, and Cs:

fyia = Co+ CiXg + CoXa + CaXs! (4.5.1)

Returning to our example (4.4.1 4), the possible solutions for the tripletx;X,X3
are (1131011001 000). Wheny; = 1, X1XpX3 = 111. This can be written as
fya(Xa =1;x2=1;x3=1) =1 and fy,.1(X1;X2; X3) = O for other values of x4,
X, and x3. Since there are only four possible solutions for the boolesariables

X1X2X3, We obtain the following conditions:

O+ G+ G+ c=1;

fya(X1=1;x2=1;x3=1)

C+ C+c3=0;

fya(X1=0;%x2=1;x3=1)
b =006 =0ixa=1) = o+ ¢ =0;

fya(X1=0;%x2=0;%x3=0) = ¢ =0:

4The function fy, ., need not always be linearg.g the log construction has a bilinear encoding
function.

71



4.5. Encoding Functions

On solving the above linear system, we gdt,.; = X;. Using the same ap-

proach we solve foffy, .-, fy,.3 and fy, .4.

0 1 0 1 0 1
(yl;l) fyl;l X1
;2 fy,: Xy X
(Y1:2) _ yi2k _ 2 1 : (4.5.2)
(y1;3) fyi3 X3 X2
(y1:4) fyia 1 X3

With the encoding functions in place, we can nally addresshe energy trans-
formation problem. The main idea is straightforward; the ecoding functions are
used to replace all occurrences of the multi-label variable the energy function
by boolean variables. This substitution produces a pseudmolean higher order
function. We study this reduction and give a characterizatn of the class of
multi-label higher order energy functions that can be trarfermed to F2, and
thus be minimized exactly using graph cuts.

We rst show that it is possible to transform all functions in classM & to
functions in F2, if k 2. This is not a new result and follows from [87,88]. We
then go on to show that it is not possible to transform all funtions in M X to F?2

in polynomial time whenk 4.

The class M . We now show how to transform a rst order energy function
En(y), involving a single 4-label variabley;, to a rst order boolean energy
function E,(x), composed of three boolean variables = fxj;x,;X30. Let L =

f1;2;3;4g9. The energyE(y) can be written as:

X
Em(y) = 1a (Y1;@): (4.5.3)

a2l

We replace all occurrences of(y;; @) using the corresponding boolean functions
fy.a(X1; X2; X3) given in (4.5.2). This results in an energy function that deends

only on x as shown below:

Ep(X) = 11X1+ 12Xz X))+ 13(Xs X2)+  14(1  X3): (4.5.4)
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Since the above energy function belongs £, all multi-label rst order functions

can be minimized exactly.

The class M 2. Lety; andy, be two 4-label random variables in the following

second order energy function:

X
Em(y) = 12;ab (yl; a) (YZ; b) (455)
a;b2L

We transform this energy into a boolean energy functiok(x), involving triplets
(X1; X2; X3) and (x?; x9; x3) replacingy; andy, respectively. The encoding function
fi.a, given by (4.5.2), is used to replace(y;; a), resulting in the following boolean
energy function:

X
En(x) = § XiX)+ L (4.5.6)
ij 2f 1;2;3g

where = (125 12:(i+1) ] 12iG+1) T 126+1(j+1 ), and L, stands for
some rst order terms. According to [25, 32], if the coe ciets of all quadratic
terms in a boolean second order energy function are non-go&, then the energy
function is submodular. Thus, for the above energy functiom equation (4.5.6)

to be submodular, we need to ensure that; 0, i.e.
12ij 12;(i+1) j 12;i(j +1) + 12;(i+1)( j +1) O: (4-5-7)

Note that the above condition is nothing but the submodulaty condition for sec-
ond order multi-label functions (See (4.2.8)). Thus we pravthat all submodular
four-label second order functiondv 2 can be transformed toF 2. Similarly, we

can show that this approach generalizes to functions with me than four labels.

The class M 2. Here we focus on transforming energy functions involvingiguies
of size three. Lety,, Y, and y; be three multi-label variables in a third order en-

ergy function E,(y), given by:

En()= . 1mme (V1:8) (V21D (¥ 0): (4.5.8)

a;b;c
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) 123jik 0 123;(+1)(j+1) k 123;(i+1) jk 123;i(j +1) k

I 123;ij (k+1) 123,+)(j+1)(k+1) ¥ 123+n k) 128G +1)(k+D)
I 123ij 4 ¥ 123;(i+1)(j +1)4 123,(i+1) j 4 123 (j +1)4

I 123.4f ¥ 123,43+1)(j +1) 1234(i+1) | 123;4i(j +1)

I 1234t 123;(+1)4(j +1) 123;(i+1)4 | 123;i4(j +1)

i 123;i44 123;(i+1)44

i 123,44 123;4(i+1)4

i 123,44 123;44(i+1)
LO 123,444

Table 4.1: Coe cients in the third order binary energy function (equaion
(4.5.9)).

We use three boolean triplets X1; X»; X3), (X?;x3;x9) and (x?9x99xJ) to encode
Y1, Y2 and ys respectively. After replacing (y;; a) with f;., and applying algebraic

transformations we can rewrite the energy function using lmdean variables as:

X X
— 0,,00 0 0,,00
E(x) = ijk Xi X)X+ ij XiXj + ij XGXj +

i;j;k)%f 1;2;3g i;j 2f 1;2;3g ij 2f 1;2;3g

i Xix%) + iXj + x5 +
i;j %E 1;2;3g i2f 1;2;3g i2f 1;2;3g

00 .

X9+ Lo; (4.5.9)

i2f 1;2;3g

where the coe cients of the trilinear, bilinear and unary teems are functions of
, and are given in Table 4.1.

We observe that the transformed energy functiof (x), is of order three. We
are interested in reducing this energy function to a secondader one in order to
minimize it using any st-mincut algorithm. To do this we will rst transform
the above function involving the sum of rst order, second afer and third order
terms to a function involving only third order terms. We can dways rewrite a
rst order term, such asx;, asx;X,+ X1X, using simple boolean operations, where
X, can be any variable other thanx,. Similarly, it is also possible to rewrite a
second order term, such agix,, asX;X>X3 + X1X>X3. Thus, the above function

shown in (4.5.9) can also be written as a sum of third order bamy functions:

En(x) = ik abe (Xi38) (X% D) (xP0); (4.5.10)

i;j;k 2f 1,2;3g;a;b;c2B
where (xj;a) = x;, if a=1, and (xi;a) = x;, if a=0. Now, the function
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(4.5.10) is a sum of third order terms of the form:
En(Xi; X5 X0) = jiccane (Xi3@) (x730) (xQ50): (4.5.11)

If each third order function belongs to the clas§& 2, then we can obtain a graph
construction for the whole function using the techniques deribed in [25, 50].
However, the individual third order functions in (4.5.10) red not be submodular.
We use the following result from [22] to expresBp(x) as a sum of submodular

third order functions along with a constant.

Lemma 4.5.1 Let G be a function inM 2 de ned as a sum of third order func-

tions, as given below:

X
G= ijk ;abe (Yi3@) (Y550 (Yi; ©); (4.5.12)
i;j;k 2V m;a;b;c2L
where each jj .anc N€ed not be inM 3. Then, there exists an equivalent transfor-

mation satisfying the following condition:

Tikabe (Vi3@) (V530 (Vi ©) = iikane (Vir@) (¥ii D) (ki 0) +
Im ;ab (yl;a) (ym;b); (4-5-13)
I;m2f ik g
where Tk .anc IS @ function in M 3, and the sum of pairwise energy terms intro-

duced during the transformation is a constant.

Using this lemma, we transform our energy function in (4.50Q) as shown

below:

EC)= Tewe 008 05D (69 5 (45.14)

ik 2f 1;2;3g;a;b;c2B
where , a constant, refers to the spawned pairwise potentials dug the transfor-
mation, and all ~belong toF 2. Each individual Tk :anc in F3 is now transformed
to F2 using the method given in [25,50]. Note that the above transfmation
is only possible when the original multi-label energy funain, Ey(x) in (4.5.10),

belongs toM 2. We now provide the conditions which will ensure this. In orer to
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do this, we rst explain the notion of submodularity using the concept of deriva-
tives [22]. The derivative of ak™ order function ;. with respect to a variable

y; is given by®

2 ia haria) 1(a Laj+ nag g > 1

0 a = 1.

Derivatives can also be obtained with respect to several vables as shown below:

e T it g e Juinjk 2 (4.5.15)
The submodularity condition is equivalent to saying that the second derivative
of E(x) with respect to any two variablesx; and x; is less than or equal to zero,
for all values of the remaining variables [22]. Using this dtion, the energy

function in (4.5.10) is submodular, if the following condibn is satis ed:

X
ij * G ik O (4.5.16)

k2f 1;2;3g;ck2B
In summary, submodular multi-label third order functionsM 2 can be trans-

formed to F 2, if they satisfy the additional constraint (4.5.16).

The class M X. We now consider the problem of transforming fourth or higher
order functions. We will show that not all functions inM X; k 4, can be
transformed to the classF? in polynomial time. To prove this we need the

following lemma.

Lemma 4.5.2 The recognition of submodularity in quartic (degree 4) pdsirms

is co-NP-completé [28].

In other words, this lemma shows that it is a hard problem to sawhether a
general posiform, involving quartic or higher order termsge nes a submodular

function or not.

°Recall that a speci es the label taken by variabley; .
A problem X is co-NP if and only if its complement X is in NP.
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Theorem 4.5.3 There is no preserving transformation with respect t& ¢ (FX[

F&) for k 4, which works in polynomial timé unlessP = NP.

We say that a transformationT, : F¥ I F 2 is a preservingtransformation, if

it satis es the following conditions:
If f 2FX thenT(f)2F 2
If f 2F X then T(f) 2F 2.

Proof of Th. 4.5.3. If such a transformation exists, we can transform any
function in FX to F2. Since submodularity can be checked iR ? in polynomial
time®, this gives a way to check whether any function iff ¥ is submodular or not
in polynomial time, which is in contradiction with the Lemma4.5.2. |}

The above theorem states that it is not possible to transformall functions in
M ¥ to F2 in polynomial time. However, we show that a subclass ™ ¥ can still

be transformed toF 2.

Characterizing F2-transformable M ¥ functions:  We will now characterize
someM ¥ functions that can be transformed toF 2 function in polynomial time.
The characterization will be speci ed by a set of constrairst on the potentials of
the multi-label higher order functions. We will refer to these constraints as 0.
Using the derivative de nition of submodularity [22], the ©nstraints 0 that

will enable us to transformM K functions to F 2 functions are:
e O ) i 2 (4.5.17)

For illustrative purposes we now present the graph constrtion for functions
belonging to a subclass of th# X family. The functions belonging to this subclass

have the form: 8
_2 9121y <l (4.5.18)

ki ™ s .
~ 0 otherwise.

"We say that a transformation works in polynomial time when we can compute a second
order multi-linear polynomial expression for Ts(f) in O(n¥) time, where n is the number of
variables, andk is the order of the boolean function.

8The recognition of submodularity in F? can be done in polynomial time by checking the
coe cients of the quadratic terms [32].
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Figure 4.3: The graph construction for characterizing a generdd™ order multi-
label energy function. The variable is an auxiliary node that is connected td
boolean nodes and the source with the same edge castAs a result if all the

k boolean nodes take the lab8lthen the cost of the cut is 0. In all other cases
there is a uniform cost of . This can be seen as a generalization of the graph
construction given in [50].

The corresponding graph construction is shown in Fig. 4.3. &konnect a set of
encoding variables to an auxiliary nodez, and connectz to the source nodes
with edges having the same cost. It is important to observe the functionality
of z: for a group of variablesy;;j 2 i, if any variable y; takes a label less than a
speci ed labell; there is a penalty of . Our method can automatically nd the
required auxiliary nodes and various edge costs for the gfapeeded to minimize

any M X-function that satisfy constraints (4.5.17).

4.6 Application: Single View Reconstruction

We now show how the higher order functions characterized ime previous sec-
tion can be used to improve single view reconstruction ressl Given a 2D image
of a scene, the goal is to recover a theatre stage represeigtatcontaining ma-
jor surfaces and their geometrical relationships to eachlwr. Hoiemet al. [36]
formulated this as a classi cation problem, where every pet in the image is as-

signed one of the three labels, namely, support (surfacesatHie parallel to the
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(@ (b)

©

Figure 4.4: (a) Original image. (b) Triplets of vertically aligned supgpixels
are chosen from the superpixel segmented images. The laigsl for individual
triplet combinations are studied from several ground trutimages. Negative log-
likelihoods are computed for each of these triplets and usedthird order priors in
the labelling problem, formulated as an energy minimizatidask. (c) The three
columns, from left to right, show the unary likelihood imageof ground, vertical
and sky respectively.

ground plane), vertical (surfaces thatise from the ground plane), and sky. They
obtained impressive results by learning appearance basedaels of the three
classes. Their method works as follows. The given image istrsegmented into
superpixels [20] (see second column of Fig. 4.5), which pidw spatial support
for computing features like texture lter responses and vashing points. Using
boosted decision tree classi ers, geometrical likelihosdare computed for indi-
vidual superpixels (cf. Fig. 4.4). The nal geometrical lakelling is achieved using
these likelihoods along with pairwise smoothness priorsam energy minimization
framework.
In this work, we focus on improving the results in [36] usingrprs obtained
from natural statistics. Such priors can only be imposed tlmugh crf s with

higher order cliques [65,79]. The superpixels extractedofn the image act as
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4.6. Application: Single View Reconstruction

Figure 4.5: Original image, superpixel segmentation, ground truth labing, re-
sults from [36] and our results are shown (left to right). S¢et, highway, buildings
and road are the images in rows 1 to 4 respectively. (Best viein colour)

nodes (variables) in a higher ordecrf . The most probable labelling of the
superpixels is found by minimizing an equivalent energy fation. We minimize a
third order three-label energy function, where the three laels for each superpixel
correspond to ground, vertical and sky.

The unary likelihoods ;.5 of the energy function are computed using boosted
decision tree classi ers. Motivated by the work of [114], we compute the second
and third order energy terms using natural statistics. Yangand Purves [114]
study the distribution of geometrical features like size,/mpe and depth of planar
surfaces, from a large training database. Using a similar pmach, the second
order terms are computed by learning the statistics of all mghbouring superpixel
pairs in the training dataset.

As the images are generally taken by people standing on theognd, with the
optical axis approximately parallel to the ground, there is natural ordering of the

superpixels labels in the vertical direction. To capture ti$ ordering, we study the

http://www.cs.cmu.edu/  ~dhoiem/projects/software.html
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4.7. Summary

| Image | Results of [36]] Our method |

street 20.78 5.82
highway 19.47 7.32
buildings 31.94 13.36

road 18.52 10.82
college 29.47 13.26

Table 4.2: Here we show the error percentages obtained by our methodampar-
ison to [36]. It is computed using the ground truth providedhithe dataset. Note
that our method signi cantly improves the accuracy of singlview reconstruction.

distribution of the labelling of vertically-aligned supepixel triplets from several
ground truth labelled images. These statistics, in the fornof negative log likeli-
hoods, are shown in Fig. 4.4(b). The likelihoods are diregtlused as the higher
order potential jj .anc in the energy function. As an example, to see the e ective-
ness of natural statistics, consider the cost of the tripleflabelling [Top:Ground,
Middle:Vertical, Bottom:Sky] from the gure. Given the label ordering, this con-
guration is unlikely to occur naturally, and thus has a high cost. We use our
algorithm explained inx4.5 to construct the equivalent boolean graph. A simple
truncation method is used to remove the negative edges in tlggaph [83].

We observed signi cant improvement over the results of [36fas shown in
Fig. 4.5. The labelling accuracy is summarized in Table 4.2The accuracy is
reported in terms of the misclassi cation of individual piels in the image. In
Fig. 4.5 we show the original image, superpixel segmentatioresults using only
pairwise clique potentials, and our results using higher der clique potentials.
In the street image shown in the rst row of Fig. 4.5, the groud between the
two buildings is incorrectly labelled as vertical, when oml pairwise smoothness
prior is used. On the other hand, the usage of higher order prs results in the
correct labelling. The major advantage comes from the ahyi to impose priors
based on natural statistics. For example, in the second row &ig. 4.5, unary
potentials favour the labelling sky for the van due to its hig similarity to the
‘sky' region. However, our method using priors learned fromatural statistics

obtains the correct labelling.
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4.7. Summary

4.7 Summary

We presented a principled framework to transform a certainlass of multi-label
higher order functions to submodular second order booleamnictions, which can
be minimized exactly using graph cuts. Our key idea is to use/ or more boolean
variables to encode the states of a single multi-label vabke. Our transformations
can be used for other vision problems, such as stereo [37h@amic stitching [69],
image restoration. Recently, the transformation proposetly [37] was used to
develop a new move algorithm [108]. Similar techniques care lproposed for
the transformations proposed in our work. Our framework camlso transform
any higher order multi-label function, for instance, potetials learnt using the
elds of experts model [79], to a boolean second order furmti. If the resulting

second order boolean energy function is non-submodulargthwe can use&pbo

techniques [14]. The main contributions of this chapter are

1. A principled way to incorporate natural image statisticanto the single view

reconstruction problem, and to show that they can be solvedagently.
2. Demonstrating that our novel priors provide a signi cantimprovement.

3. Presenting the constraints that enable the transformatin of M ¥ into F2
in polynomial time, and thus extending the subclass of stincut -solvable

submodular energy functions.
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Chapter 5

E cient Piecewise Parameter

Learning



In the previous chapters we have addressed the problem ofarégnce in Con-
ditional Random Field models, assuming that the model paraeters are given
or set empirically. This chapter deals with the problem of l@ning the model
parameters e ciently from training data. Although several methods have been
proposed to deal with this problem, they su er from various dawbacks. Learning
the parameters involves computing the partition functionwhich is intractable for
several low-level vision problems. To overcome this, staté-the-art structured
learning methods frame the problem as one of large margin iesation. Iterative
solutions have been proposed to solve the resulting conveptimization problem.
Each iteration involves solving an inference problem overlahe labels, which
limits the e ciency of these structured methods. In this chater we present an
e cient large margin piecewise learning method which is wiely applicable. We
show how the resulting optimization problem can be reducedtan equivalent
convex problem with a small number of constraints, and solveusing an e cient

scheme.

5.1 Introduction

A Conditional Random Field (crf ) is de ned over a graphG = (V;E), where
V denotes a set of vertices ané is the set of edges, which speci es a pairwise
relationship between the vertices. The vertices represent discrete random vari-
ablesX = fX;; ;Xn0. A labelling of acrf corresponds to a classi cation
of the vertices by assigning a label to each vertex (variahlérom a set of la-
belsL = f1; ;Kg. In other words, a labelling is speci ed by a binary vector
X = fXq1; PX1K X201 ' Xn:k 9, WhereN is the number of verticesj.e. jVj =
N. Each binary indicator variablex;.x = 1, if the corresponding random variable
X; takes the labelk 2 L, and x;.x = O otherwise. Also, P K Xik = 1;8i. In the
context of the vision problems we have seen so far, the vesg correspond to
image pixels, and the labels can be image segments, dispardbject categories,

etc. Given some observed data (denoted iy ), a crf models the conditional

'Note that we have assumed a pairwisecrf . However, this assumption is not restrictive
since anycrf can be converted to an equivalent pairwisecrf , e.g using a method similar to the
one described in [116], and e cient inference algorithms ae available for many suchcrf s [63].
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probability of a labelling x as follows:

1Y > Y >
s~ expiix hi(D)) expXixXj: w ij (D)); (5.1.1)
Z( ) i2v (i )2E

k2L k;l 2L

Pr(xjD; )=

where = ( ; w) 2 RY ! are the parameters of thecrf . The vectorsh;(D)
and j (D) represent features for the vertex 2 V and the edge (] ) 2 E respec-
tively. The unary potential exp(x;.« ; h;(D)) denotes the cost of the assignment

Xi = k, while the pairwise potential exp&i.kXj:1 y i (D)) denotes the cost of the

assignment:X; = k and X; = |I. The normalizing factorZ( ) given by:
X Y o > Y o 0 >
Z( )= exp(Xi  hi(D)) expXiXjy w i (D)); (5.1.2)
yOL N i2v (iij )2E

k2L kil 2L

is the partition function. When using acrf model (with known priors), there
are two main issues that need to be addressed: (i) How to setetlvalue of the
parameters ; and (ii) How to perform inference in order to obtain the optmnal
labelling, i.e. the labelling with the maximum conditional probability Pr(xjD; ).
The latter issue has received great attention and severalfe@rence algorithms have
been proposed in the literature (for an overview, see [99ur work described in
the previous chapters also addresses the inference problddowever, parameter
estimation in acrf model still remains a challenging problem, with considerdo
progress being made in the past few years.

Consider the partition function in (5.1.2), which containsa sum over the
entire label spacd.N. To estimate the cost of computing the partition function,
let us assume arf de ned over a 300 200 image withjLj = 10. In this case,
the partition function is a sum of 1¢°% terms, and its computation is clearly
intractable. Hence, methods for estimating parameters of @f model must be
designed to overcome this issue. Based on the way in which thertition function
is handled, recent parameter learning methods can be brogdllassi ed into three
categories { maximum likelihood based methods [62, 84, 9%rge margin based

approaches [71,100,102], and other iterative methods [2Q7].

2Using the notation of [5].
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Owing to the intractability of computing the partition func tion Z( ) for com-
puter vision applications, maximum likelihood based methas resort to using
approximations, such as pseudo-likelihood [62], some fooflocal training [97],
mode of the model distribution [84], or sampling [80]. Whilghese likelihood
approximation methods have shown encouraging results, thean lead to poor
accuracy due to noisy estimates, as noted in [84,97]. Metl®dsing a large margin
approach pose parameter estimation as a convex optimizatiproblem2 The con-
vex problem is solved iteratively, and each iteration invets performing inference
for every training image, which can be computationally expesive. By restricting
themselves to a subset of random eld models, some method9(1102] provide
e cient solutions. The method proposed by Taskaret al. [102] uses approxi-
mate inference for multi-label problems, and exact inferee for binary labelling
problems in each iteration. Szummeet al. [100] use dynamic graph cuts [46] to
perform inference in successive iterations e cientl§.

Another large margin approach [71] uses the structured outip regression
formulation proposed by Tsochantaridiset al. [105]. The algorithm employs a
cutting-plane method to solve the quadratic optimization &gorithm. The model
parameters are updated using the most violated constraintin( this case, the
labelling with the smallest cost value) in every iteration.Finding the exact most
violated constraint is not tractable for random elds commaly encountered in
computer vision, thus approximation algorithms are used. ter iterative based
methods are either limited tocrf s with a few hundred nodes, thus impractical
for the labelling problems we consider [90], or require aniiial model with pre-set
parameters [117].

In summary, previous methods can lead to poor accuracy due aépproxima-
tions, or are restricted to a subset of random eld models. Waim to address
these issues in this chapter. To obtain an e cient and accuite learning scheme,
we decompose the random eld into tree-structured graphs, vere each graph

comprises of variableX; and its corresponding Markov blanket, which is the set

3Large margin based parameter learning approaches eliminatthe partition function by
considering the gain of the true labels over any other labelhg. We will discuss this in more
detail in x5.2.2.

“Note that this work can extended to a larger class of energy factions using our e cient
dynamic -expansion &3.3.1).

86



5.2. Preliminaries

of its neighbours. This decomposition results in an optima&ion problem with
a large number of constraints. We reduce this problem to an eigalent con-
vex problem with a small number of constraints, similar to tle approach of [60].
An e cient method to solve it using stochastic gradient desent is then proposed.
One of the main advantages of our method is the ease of traiginas demonstrated

in the sections to follow.

5.1.1 Outline of the Chapter

In section 5.2 we formulate the parameter learning problemWe also describe
two methods { pseudo-likelihood and max-margin learning {alated to our work.
Section 5.3 explains our piecewise large margin approach parameter learning.
Details of the optimization problem and the gradient desceérapproach are also
given here. Implementation details and experimental redsl on the man-made
structure [62] and Middlebury-2005 [84] datasets are shovimsection 5.4. In this
section we also present a comparison with other parameterataing methods.
Section 5.4.3 presents a few generalizations of our modelonCluding remarks

are provided in section 5.5.

5.2 Preliminaries

We begin by formulating the crf parameter estimation problem. The unary
and pairwise potentials are given by exp{x , hi(D)) and exp(Xi«Xj: « i (D))
respectively (from (5.1.1)). The unary and pairwise featw vectors (;(D) and

j (D)) can be de ned in many ways. For example, in case of the imagegmen-
tation problem, the unary feature vector of a vertex can be eoposed of functions
of the intensity, colour and texture, while the pairwise feture of an edge can be
a di erence of the feature vectors of the two vertices the eégconnects.

Given asetoftrainingdataD = fD™;m=1; ;Mg, along with their ground

truth labels X = fx™;m=1; ;Mg, the problem of parameter estimation is to
obtain a value for the parameter , such that the model assigns a high probabil-

ity to the correct labelling and a low one to all possible inaoect labellings. In
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@) (b) (©) (d)

Figure 5.1: We consider a binary image segmentation problem in this expia.
(a) Toy example of a3 3 image, (b) Ground truth labelling showing the two
segments { foreground (white) and background (black), and,d) Two incorrect
segmentations from the set of possib®¥ 1 segmentations. The training data
consists of images, their ground truth labels, and all the gmble incorrect la-
bellings.

the context of foreground-background segmentation probig an element of the
training set, D™, corresponds to an image, and the ground truth labels contai
binary values representing foreground or background at dapixel. The model
Is learnt such that we obtain a high probability to the corret segmentation and
a low one to all other possible segmentations. Fig. 5.1 shoadoy example of
a 3 3 image grid. Here, we consider a binary image segmentationoplem
and illustrate a training image, its ground truth segmentaion, and a few pos-
sible incorrect segmentations. The image and its ground tiln segmentation is
referred to as the positive training example, while the imagand an incorrect
segmentation is the negative training example. Note that # number of negative
examples is exponentially large. Pseudo-likelihood and Manargin learning are

two popular methods to learn the parameters in this setting.

5.2.1 Pseudo-likelihood

The maximum likelihood estimate of the parameters' (using equation (5.1.1))

is given by:

“zar max>M Xy “hi(D™)+ Xy > i (D™ logz™( ); (5.2.1)
g ik ki kX K] g ; (0.2

m=1 i2v (i )2E
koL kil 2L
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where m indexes over the training images and! denotes the number of train-
ing images. Solving this estimation problem for loopy randao elds commonly
encountered in computer vision is intractable, as discusbén x5.1.

A common approach to overcome this issue is the use of pseli#telihood [7]

to approximate the likelihood [12,62]. The estimation prolem now becomes:

R Y _
= arg max PL(i;D™M): (5.2.2)

m=1i2Vv

Here PL() is the pseudo-likelihood, and is given by:

X X
PLED™ = xfk th(D™+ ~ xBxXT 7 (O™ 2"+ b (5.2.3)

k2L jaN
k;l 2L
where
m — | X Y m o >p m Y m,m > my. 2
z; =log exp(xiy hi(D™)) Xix X i (B™); (5.2.4)
XM 2L k2L 2

is the local partition function, b is a constant, andN; is the Markov blanket at
vertex i, i.e. the set of its neighbours in the random eld model. For exanlp, in
the 4-neighbourhood case used farf based image segmentation, the Markov
blanket of a pixeli is the set of 4 pixels|above, below, left of, and right of the
pixel. This problem can be solved by gradient-descent likepproaches [62] or
auto-regression [12]. One of the main advantages of usingepdo-likelihood is
the asymptotic guarantee (.e. as the size of the data tends to in nity) that its
maximum matches that of the original likelihood. However, @rameter learning
methods using pseudo-likelihood can lead to poor accuraayadito noisy estimates,
as noted in [84,97].

Another approach to approximate the likelihood estimationin (5.2.1) is to
use the piecewise pseudo-likelihoogwpl ) model proposed by Sutton and Mc-
Callum [97]. Here, the likelihood is conditioned on all theariables in the factor
graph associated with the variable. Figure 5.2 illustratethe di erence between
pwpl and pseudo-likelihood models. They show interesting retulon linear-

chain crf s. However, it is not clear if this method generalizes to laegrandom
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@) (b)

Figure 5.2: Dierence between pseudo-likelihood (), in (a), and piecewise
pseudo-likelihood [97] pwpl ), in (b) is shown here. Inpl, a variable is condi-
tioned on all its neighbours in the Markov blanket, while ipwpl it is conditioned
only on the neighbours within a single factor. Figure takemom [97].

eld problems, involving millions of variables, commonly ocurring in computer

vision.

5.2.2 Max-Margin Learning

Taskar et al. [102] proposed an alternative approach to learn the paramees of
a random eld discriminatively. Consider the logarithm of the probability in

equation (5.1.1). It can be re-written, according to the nadtion in [5], as:
logPr(xjD; )= Fx logZ( ); (5.2.5)

where = ( ; «) with the operator (;) denoting vector concatenation. The
vector x contains the labels of all the variables in the random eld, ad the
matrix F is composed of unary and pairwise features.e. hj(D) and j (D).
Given a training image (D;®), the goal is to maximize the con dence in the true
label assignment® with respect to all other possible assignments 6 ®.5 This

gain of the true label assignmen® over a possible assignment is de ned by:

logPr(®®jD; ) logPr(xjD; )= F® Xx): (5.2.6)

SFor ease of understanding we describe this approach using ertraining image. It can be
easily extended to multiple images easilye.g by concatenation.
5This objective is similar to that in support vector machines [106].
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The problem of maximizing the gain of the true label assignme can be

formulated as the following quadratic program @p):
max s.t. FR x) "~ @®:x); kk 1 (5.2.7)

where the gain depends on the number of misclassi ed labetsx, and is denoted
by “(®;x). This optimization problem can be re-formulated as the ftbwing qp

by dividing through by and adding a slack variable for non-separable data:

min %k k’+ C; (5.2.8)
subject to F® x) “(®;x):;8x2LN: (5.2.9)

This quadratic program has a constraint for every possiblabel assignmenitx,

resulting in an exponentially large optimization problem.Taskar et al. [102] re-
placed the exponential set of linear constraints with a sig equivalent non-linear
constraint using max,,_~ X. Finding this single constraint involves performing
inference at every step of the algorithm. The advantage of manargin framework
is that it eliminates the partition function by using the gain (5.2.6). However,
it can be computationally expensive if the inference step toxd the constraint

cannot be performed e ciently.

In summary, pseudo-likelihood learning approximates thegptition function
and is easy to compute. However, it can lead to poor accuradyn the other hand,
max-margin learning eliminates the partition function, bu su ers from compu-
tational issues for certain random elds. Inspired by the stcesses of pseudo-
likelihood and max-margin learning, we present a new methpavhich has the
bene ts of the two approaches. We rst decompose the randomeld into dis-
tinct pieces(according to pseudo-likelihood structure), and treat edcpieceas an
individual training exemplar. We then perform e cient discriminative learning
(similar to the max-margin approach) with these exemplarsln other words, our
proposed approach is a max-margin piecewise learning methavhich exploits
the pseudo-likelihood graph structure. Our discriminatie approach is not only

e cient, but also applicable to any random eld model. We desribe the details

7Also referred to as the most violated constraint.
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of our method in the following section.

5.3 The Piecewise Model

Consider the pseudo-likelihood method to approximate theint likelihood of the
labelling discussed inx5.2.1. The joint likelihood of the image labelling is ap-
proximated as product of pseudo-likelihood terms de ned @v each pixel. The
pseudo-likelihood term for a pixei, denoted byP L(i; D™), is given by equation
(5.2.3). This term depends only on the labels taken by the peti and its imme-
diate neighbours,i.e. its Markov blanket. We can interpret pseudo-likelihood as
the (exact) likelihood of the vertexi in a new tree-structured graph consisting of
the pixel i and its Markov blanket. In our piecewise framework we consd each
of these new graphsas an individual training exemplar to learn the parameters.
The energy function de ned on the tree-structured graph foa vertexi, in vector
form, is given by:

E'(x)= “f(i;j;D;x)+ b; (5.3.1)

wherei is the set of all nodes in the tree-structured graph, = ( ; «);8k;1 2 L ;1
is the parameter vector, which is to be learnt, ang = fjjj 2 Nig, is the set of
neighbours of the vertexi. The feature vectorf(i;j; D;x) is formed by concate-
nating the unary and the pairwise features of all the nodes ithe tree-structured
graph. The number of possible labellings for each pseudkelihood tree structure
is given byjLj N», whereN, is the number of vertices in the tree. For example, the
number of vertices in the tree is 5 when using a 4-neighbourtd crf . Among
the set of possible labellings, one of them is the ground titutlabelling, which
is referred to as the positive training example. All the othelabellings form the
negative example set, which is exponentially large. Lé#l. and M denote the
number of positive and negative training examples in the emé training dataset
respectively. Furthermore, the feature vectors correspding to the m" positive

and the n!" negative training example are denoted bf" () and f"( ) respectively.

80ne for each pixel in the image.
9For brevity we have dropped the index m over training images.
10The operator (;) denotes vector concatenation.
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5.3.1 Parameter Learning

The parameter vector and the biasb should ideally satisfy the following margin

constraints:

“fN (i j;D;x)+ b 1, 8m2f1 ;Mg
(i j;D;x)+ b 1, 8n2f1l, ;M g (5.3.2)

These constraints ensure that the parameters discriminateetween the positive
and negative examples with respect to the quality functiorE'() in equation
(5.3.1). The most discriminative parameter vector is obtaied by maximizing the
margin. This is equivalent to minimizing k k?, the L? norm of the parameter
vector. However, it is not always possible to separate the @aby solving this
hard-margin optimization problem. It is common to introdue@ slack variables
in such cases [106]. The optimal parameter vector is then teaby solving the

following soft-margin optimization problem:

1 X X

( ;b)=argmin Zk k*+ C m+ n (5.3.3)
;b 2 m n

subject to fMG;j;D;x)+ b 1 ™M 8m; (5.3.4)

“f7(0;j;D;x)+ b 1+ "; 8n; (5.3.5)

™0 8m2f1l, ;M.gq; (5.3.6)

" 0 8n2f1 ;M g (5.3.7)

The tradeo between the accuracy and regularization of the grameter vector is
controlled by the user-de ned constantC 0. The slack variables " and "
denote the hinge loss for positive and negative examplespestively.

The above convex problem is seemingly easy to solve. Howewércannot
be solved e ciently because the inequality (5.3.5) specigjLjN? 1 constraints
for each tree-structured training example. Felzenszwalgt al. [21] and Kumar et
al. [60] proposed methods to address similar issues in othearl@ng problems.

An iterative method proposed for the supervised case in [2&pproximates the
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large optimization problem using a small subset of constras. The algorithm
alternates between two steps: (i) Given a current estimatef éthe parameters, a
subset of labellings that maximize ~ f" for each negative example is found using
max-sum belief propagation p) [75]; and (ii) Using the subset of labellings
obtained in step (i), a new parameter vector and bias are comafed. As noted
in [60], this method is susceptible to local minima and is hedy dependent on
obtaining a good initial estimate of the parameters. Recelyt Kumar et al. [60]
proposed an e cient algorithm to obtain the globally optimal solution to this
problem. The key step in their approach is reducing the origal large problem
to an equivalent one with a polynomial number of constraints We explain this

reduction step in the context of our learning problem in the ext section.

5.3.2 Constraint Reformulation

The main bottleneck in solving problem (5.3.3) is the inequigy (5.3.5), which
speci es an exponentially large number of constraints. Fogxample, consider a
stereo matching problem where every pixel in the image can hssigned any one of
25 disparity labels. Assuming that thecrf is de ned using the 4-neighbourhood
structure, each tree-structured negative exemplar resalin nearly 10 million con-
straints. The inequality (5.3.5) can be reduced to an equilent set of O (N,jLj %)
constraints, whereN, is the number of nodes in the pseudo-likelihood graph, and
jLj is the number of labels [60]. We begin by reformulating ineqlity (5.3.5) as

follows:

t"+b 1+ " (5.3.8)
t" Zf7(; j; D;x); 8n: (5.3.9)

In other words, we introducet”, which is an upper bound on the set of values
Zf(i; j; D;x);8n. We now show that this upper bound can be specied by a
polynomial number, speci cally O (N,jLj?), of constraints. We de ne variables

S} .y, UsingjLj constraints such that,

sh |>Xj ;|hj (D) + E| Xi:kXj:lij (D), 8Xj ;|;| 2L; (5310)

T3 Xk
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wherej 2 i f igandk 2 L. Note that i is the set of vertices in the pseudo-
likelihood graph. Since oneSj'.,. is de ned for eachj 2i f igandl 2L, the
number of constraints is O NyjLj ?). The smallest value ofSjl .. Which satis es
the above inequality is the message thgt passes ta when performing max-sum
bp on the pseudo-likelihood graph with potentials given in (3.1). Thus, the

upper bound is speci ed by:

X
" “xxhi(D)+ s"

Xk ?
j2vpf ig

8Xik:k2L; (5.3.11)

The inequality (5.3.5) can now be replaced by inequalitiess(3.9), (5.3.10),
and (5.3.11) in the soft-margin optimization problem (5.3). The original opti-

mization problem is now reformulated as:

; 1 2 X m X n
( ;b)=arg Tln §k ke+ C( o+ ); (5.3.12)

m m

s.t. Zf1(;j;D;x)+ b 1 ™ ™ 08m;
t"+ Db 1+ " " 0:8n;

n >y h. X n
t Xi.hi(D) + Si

Jl;Xi:k;
i2vpt ig
> > . . .
CXahp (D) + g XiwXja i (D); 8Xj.5n:

8Xik; N;

gn

13Xk

The number of constraints can be further reduced if the painse features
ij (x) are restricted to form a Potts model, as shown in [60]. In facthis is
applicable to other commonly used pairwise features such #@sincated linear,
and truncated quadratic models using the distance transfor technique of [20].
The optimization problem (5.3.12) can be solved using the dudecomposition
method as shown in [60]. We follow an alternative method analse the problem

in the primal itself.

Stochastic Gradient Descent. The form of the problem (5.3.12) is very sim-
ilar to the Support Vector Machine (svm) learning problem. Many methods exist
in literature to solve the svm learning problem. We use a Stochastic Gradient De-

scent algorithm because of its e ciency [13]. It is an iterate algorithm to solve
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linear svms, where every iteration consists of choosing a random tramg sample,
and updating the weight vector. The iterative updates are absen according to
the quasi-Newton method described in [13]. Empirically, wiound that using a
vanilla stochastic gradient descent provided a very simitaresult, but required a
larger number of iterations. The gradient at every step is eoputed by perform-
ing max-sum bp on the chosen training sample. We repeated the update step
over the entire training set a few times until convergence. e that any other
e cient online svm solver can be used instead of this gradient descent method.
We chose to use this algorithm owing to its theoretical and gpirical advantages
when solving max-margin problems similar to (5.3.12). Theeader is referred

to [78] for a discussion on these advantages.

5.4 Experimental Results

We evaluated the proposed learning framework on two publichvailable datasets,
namely man-made structure database [62] and the Middlebw3005 stereo vision
data in [84]1' Images from these datasets are shown in Appendix A. We compar

our results with those reported in [62, 71].

54.1 Man-made Structure Database

This dataset contains images of man-made structures, such laouses, cathedrals,
buildings. The task is to detect these structures in naturakcenes, and assign
structured or non-structured labels to the pixels in the image. The training and
the test set contain 108 and 129 images respectively. The iges are selected
from the Corel image database, and are of size 25884 pixels. Each image is di-
vided into non-overlapping 16 16 pixel-blocks, and each such block is assigned a
ground truth annotation (structured or non-structured) manually. The block-level
quantization introduces noise in the labels of the blocksilyg on object bound-
aries, which leads to errors in quantitative evaluation. Kmar and Hebert [62]

circumvent this problem by not counting a misclassi cationthat is adjacent to

We thank S. Kumar and Y. Li for help with datasets used in this work.
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a block with ground truth label structured as false positive. We follow the same
procedure in order to perform a fair comparison with their wdk. In all, the
training set contains 3004 structured and 36269 non-structured blocks. Each
pixel-block is represented as a node (random variable) in ehcrf  framework,

thus resulting in a 16 24 grid structure.

Feature computation. We used the feature set described in [62]. The unary
featureh; (D) of a node (pixel-block)i was computed using histograms of intensity
gradients at various scales. Each histogram count was weigti by the gradient
magnitude at that pixel. The histograms were also smoothedtalleviate the
problem of hard binning. The averagespikenesscomputed using central-shift
moments) of the smoothed histogram was used an indicator dfd structuredness
of the pixel-block. An orientation based feature obtained yppassing the abso-
lute di erence between the locations of the two highest peakof the histogram
through sinusoidal non-linearity was also used. Three seal (16 16, 32 32,
and 64 64 pixel windows) were considered to compute the features)cain each
scale, three moment and two orientation based features wecemputed. Two
features were additionally chosen from these multiscaleateres using highest
peaks from the histograms. A 14-dimensional vector is conged by taking the
rst two moments and orientation based features at each saal and the two ad-
ditional "peak’ features. The unary feature vector contas the 14 moment and
orientation features, their squares and all their pairwis@roducts. Thus, h;(D)
is a 119-dimensional unary feature vector. The pairwise fiee vector j (D) is

a di erence of unary feature vectorsh;(D) and h; (D).

Results. The weight vectors corresponding to the unary and pairwiseaétures
have 119-dimensions each. These were learnt using our prdse model §5.3).
The algorithm was run until convergence (on average 120 itgrons, depending on
the initialization). The learnt unary parameters are used & is, but the pairwise
terms are truncated using a common approximation [83] sucthat graph cut
inference is possible [17,50]. The qualitative results astown in Figure 5.3.
It can be observed that our performance is comparable to thease-of-the-art

results [62] on this dataset. Table 5.1 shows a quantitativevaluation of our
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(@) (b) (©)

Figure 5.3: Qualitative results on the man-made structure database. Vgbow (a)
the original image; (b) result of [62]; and (c) result of our rathod on three sample
images from this database. The white squares overlaid on theage denote the
presence of a structure. Our results correspond to an aveeafplse positive per
image of 1.40. It can be observed that our performance is cargble to, if not
better than, [62].

method in terms of false positive and detection rates. We aofin a similar false
positive rate and better detection percentage compared t®2]. However, our
approach is computationally e cient. Our training procedure takes 409 seconds
to converge compared to 627 seconds of their method on & IGHz Pentium
machine. Furthermore, our approach can be easily generaiz to multi-class

problems, as demonstrated in the following section.

5.4.2 Middlebury-2005 Dataset

This dataset contains 9 stereo pairs (left and right image®astitute a pair) in all.
The problem is to compute the disparity between the left andte right image,i.e.
for every pixel in the left image nd a corresponding pixel inthe right image.

Since ground truth disparities are not available for three fahe pairs (Computer,
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| Method | fp per image| dr % |
mrf shown in [62] 2.36 57.20
drf [62] 1.37 70.50
drf [61] 1.76 72.54
Our method 1.40 72.60

Table 5.1: Quantitative results on the man-made structure database. &/ ¢how the
average False Positivefp ) and Detection Rates ¢r ) on the test set containing
129 images. A comparison with both the Discriminative Rando Field (drf )

methods proposed in [62] and [61] is also shown. Bold fontslicate the lowest
false positive error rate or the highest detection rate. Netthat our performance
Is comparable to these methods. In fact, we provide a bettaftsé positive (per
image) measure and similar detection rate accuracy. Howeyeur method is
computationally e cient and scales well to multi-class prblems.

| Method | Art | Books | Dolls | Laundry | Moebius | Reindeer | Average |
Grid structure in [71] 1466 | 19.12 | 12.70 19.16 10.88 11.72 14.71
Long-range in [71] 12.11 | 15.68 | 12.14 15.82 10.80 15.26 13.64
Our method (without | 12.94 | 16.24 | 12.21 16.72 10.82 11.10 13.34
long-range edges

Table 5.2: Quantitative results showing the error rates measured asetipercentage
of bad pixels in the non-occluded regions on the Middleb#§05 database. We
compare our results with the models using the standard lossidtion (i.e. ignore
the pixels in the occluded region when comparing with groutndth result) in [71].
"Grid structure' refers to the model without long-range edg, and "Long-range’
is the one with these edges. Average denotes the averager eate over all the
images. Bold fonts indicate the best performance (or lowestror rate). Note
that our method shows better results than "Grid structurenoall the images, and
shows comparable performance to "Long-range' on most of theages.

Drumsticks, Dwarves), they were discarded for this perforance evaluation. We
used the other images, namely, Art, Books, Dolls, Laundry, bkbius, Reindeer, in
a leave-one-out training frameworki(e. for each stereo pair problem, we train the
model on all the other pairs). As noted in [71], these sceneeanore challenging
than the previous ones on the Middlebury Stereo Evaluationgge [86]. This
experimental setup is identical to that in [71]. The unary fatures are composed
of Birch eld-Tomasi matching costs for each disparity labke and the pairwise
term is a di erence of disparity labels. The number of dispaty levels for each
image pair is identical to that used in [71]. Inference is prmed on the learnt

energy function using the -expansion move making algorithm [18].
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Results. A quantitative evaluation of our method is shown in Table 5.2 Er-
ror rate is measured as the percentage of incorrectly lakedl pixels in the non-
occluded regions. Our piecewise method performs better thahe "Grid struc-
ture' model proposed in [71]. We achieve an average error eadf 1334 compared
to 14:71 of "Grid structure' model. As we do not use long-range edgé our
approach, we perform slightly worse than the "Long-range' aael. We believe

including these edges in our energy function will signi caty improve the results.

5.4.3 Discussion

In the formulation discussed so far, we restricted oursel@o decomposing &rf
into sub-graphs corresponding to the Markov blanket of a sge pixel. This is not
an inherent limitation of the framework. Any other tree structured sub-graph,
including scan-lines, can be solved in the same way. In thesases, our approach
will e ciently nd the most violating constraint using the t rick proposed by [60].
Under our formulation, each Markov blanket (or sub-graph)s an individual
training exemplar, and a unique slack variable corresponds each sub-graph,
while existing max-margin approaches treat the entire imagas a single exem-
plar [100]. Of the two approaches, ours should be more robust errors in data
annotation | for example consider the problem of learning malels for image
segmentation. In these problems [62,95], annotation of theining and test set
must be done by hand, and it is common to nd inaccurate grounttuth labelling
in large regions of the image, particularly near object bowlaries. Such data is
often inseparable in these regions, and global approachests as [100] can only
learn a limited amount from these images. By way of contrasgur decomposi-
tion of the image into sub-graphs allows us to disregard sométhese mislabelled

exemplars while learning from the remainder of the image.

5.5 Summary

This chapter presents a novel method to compute the paramegeof a Condi-

tional Random Field model. Inspired by the advantages of psdo-likelihood and
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max-margin learning methods, we propose a piecewise disgnative learning
framework. Our method rst decompose the random eld into sb-graphs, and
treats each sub-graph as an individual training exemplar. ¥then perform e -
cient discriminative learning with these exemplars. We shothe e ectiveness of
our approach on two publicly available datasets. The main otributions of the

chapter are:

1. Proposing a parameter learning method applicable for Ige random elds

commonly used in computer vision.

2. Demonstrating the e ciency of the method in terms of memoy and com-

putation.

3. Presenting an e cient max-margin based method for a largeclass of ran-

dom eld models.

4. Showing that our method is easily applicable for multi-lael problems.
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Discussion



In this thesis, we addressed three main issues that arise whi&rmulating la-
belling problems in an energy minimization frameworkyiz. (i) How to perform
e cient inference to compute the optimal solution; (ii) How to incorporate prior
knowledge into the model; and (iii) How to learn the paramets of an energy
function. Speci cally, our work is focussed on modelling coputer vision labelling
problems, such as image segmentation, stereo matching,géview reconstruc-

tion, object recognition.

6.1 Our Contributions

In Chapter 3, we presented methods to improve the e ciency oénergy mini-
mization algorithms. Our rst method works by recycling resilts from previous
problem instances. The second method simpli es the minimiation problem by
reducing the number of variables in the energy functions. Walso showed how
the reduction step can be used to generate e ective problemitializations. We
demonstrated that our methods for improving computationale ciency can be
used for a wide range of miniminization algorithms, such as-expansion, -
swap, bp, and trw-s . Our method for recycling solutions extended the work
on dynamic graph cut$ to certain non-submodular energy functions. We also
proved that our method for reducing the number of variablessiapplicable for an
important class of higher order energy functions. A substéial improvement in
the running time of many large labelling problems was dematnated.

In Chapter 4, we demonstrated how natural image priors can besed to
improve single view 3D reconstruction results. We introdwe a new class of multi-
label higher order functions to model these priors, and shed that the resulting
energy function can be solved exactly. There are three maimrdributions of
this work. Firstly, we presented a framework to transform again multi-label
higher order functions to boolean submodular second ordemictions, which can
be minimized exactly using graph cuts. Secondly, we extertl¢he sub-class

of submodular energy functions that can be formulated as stincut problems.

1Recall that the original dynamic graph cuts was only limited to binary submodular energy
functions.
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Thirdly, we introduced higher order potential for single véw reconstruction, based
on the distribution of geometrical features of planar surfzes.

In Chapter 5, we addressed the important problem of learnindpe parameters
of energy functions. Previous attempts to solve this probhe su er from various
drawbacks, such as limited applicability or noisy estimatedue to poor approxi-
mations. Our proposed method is applicable for any pairwiddarkov/conditional
random eld model, and shows impressive results on challang publicly avail-
able datasets. We can also interpret our approach as extendithe class of energy
functions where e cient max-margin learning methods are \able. We demon-
strated that our learning method can be used with equal easerfbinary and
multi-label energy functions. Lastly, we showed that our ntbod is e cient in

terms of memory and computational complexity.

6.2 Future Work

Recently, many new energy minimization algorithms have beeproposed in the
literature. New move making algorithms [57,59, 108] have texded the class of
energy functions e ciently solved by -expansion and -swap. There has also
been a renewed interest in proposing integer programminglagation methods
for discrete energy minimization [58]. All these methods pvide a very promis-
ing direction for solving a large class of energy functionsitiw approximation
guarantees. However, solving them for large computer visigoroblems can be
computationally expensive. It would be interesting to exmgre our proposed ideas
for making algorithms e cient in light of these recent advarcements.

We believe that our work on extending the sub-class of submaldr higher
order functions that can be solved exactly is of great intes¢ to the community.
However, there is still a large set of functions for which ndgorithms with poly-
nomial run-time exist. Existing algorithms can only provice a locally or partially
optimal solution. In fact, most of these algorithms provideno or very loose ap-
proximation guarantees. The development of exact or apprisration algorithms
with tighter bounds on the solutions for these problems renias a challenging

problem.
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Our work in chapter 5 is focussed on learning parameters of aipwvise random
eld. In the past few years there has been much interest in usy higher order
random elds, where the potentials can be functions of huneéds of random vari-
ables. These include potentials de ned on groups of pixelsuperpixels) [43, 63].
It is possible to learn parameters in this context by conventg these random elds
to equivalent pairwise models. However, such an approachlisited to a small
class of energy functions due to the lack of widely applicablnd e cient infer-
ence algorithms. Therefore, learning parameters in higherder energy functions
is still an interesting and challenging problem to be expled.

Another potential direction for future research is to learnthe structure of
the random eld. At the moment, we are imposing a structure orthe labelling
problem in terms of unary, pairwise, and higher order poterls. It would be
more appropriate to learn the order and structure of the ranoim eld from a set
of training data. There has been some work [90] in this areaubis limited to
very small random elds with a few hundred variables. It is nbclear if their
approach is scalable to the large models in computer visiomn the future, the
hope is to be able to give all our supervised training data to bhlack box, which
would come up with the best random eld structure for the taskand also provide

solutions for unseen (test) data.
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(@) (b) (©

Figure A.1: Images from Middlebury-2005 dataset used in our experimsnt
Chapter 5. (a) The left image, (b) The right image, and (c) Grond truth dis-
parity map for "Arts', "Books', "Dolls’, "Laundry', "Moebius', and "Reindeer' are

shown (top to bottom).
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Datasets

Figure A.2: Some of the images from man-made structure dataset used irr ou
experiments in Chapter 5. This dataset is available for doWad at: http:/
www.cs.cmu.edu/~skumar.
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