
Priors for New View Synthesis

D.Phil Thesis

Robotics Research Group
Department of Engineering Science

University of Oxford

Supervisors:
Doctor Andrew W. Fitzgibbon

Doctor Ian D. Reid
Professor Philip H. S. Torr

Oliver J. Woodford
New College

August 16, 2009

Abstract

New view synthesis (NVS) is the problem of generating a novel image of a scene, given a set of calibrated

input images of the scene, i.e. their viewpoints, and also that of the output image, are known. The problem

is generally ill-posed—a large number of scenes can generate a given set of images, therefore there may

be many equally likely (given the input data) output views. Some of these views will look less natural to

a human observer than others, so prior knowledge of natural scenes is required to ensure that the result

is visually plausible. The aim of this thesis is to compare and improve upon the various Markov random

field and conditional random field prior models, and their associated maximum a posteriori optimization

frameworks, that are currently the state of the art for NVS and stereo (itself a means to NVS).

A hierarchical example-based image prior is introduced which, when combined with a multi-resolution

framework, accelerates inference by an order of magnitude, whilst also improving the quality of rendering.

A parametric image prior is tested using a number of novel discrete optimization algorithms. This

general prior is found to be less well suited to the NVS problem than sequence-specific priors, generating

two forms of undesirable artifact, which are discussed.

A novel pairwise clique image prior is developed, allowing inference using powerful optimizers. The

prior is shown to perform better than a range of other pairwise image priors, distinguishing as it does

between natural and artificial texture discontinuities.

A dense stereo algorithm with geometrical occlusion model is converted to the task of NVS. In doing

so, a number of challenges are novelly addressed; in particular, the new pairwise image prior is employed

to align depth discontinuities with genuine texture edges in the output image. The resulting joint prior

over smoothness and texture is shown to produce cutting edge rendering performance.

Finally, a powerful new inference framework for stereo that allows the tractable optimization of sec-

ond order smoothness priors is introduced. The second order priors are shown to improve reconstruction

over first order priors in a number of situations.

i

This thesis is submitted to the Department of Engineering Science, University of Oxford, in fulfilment of
the requirements for the degree of Doctor of Philosophy. This thesis is entirely my own work and, except
where otherwise stated, describes my own research.

Oliver Woodford
New College

c© Oliver J. Woodford 2009

ii

Acknowledgements

I owe a huge debt of thanks to the many people who have patiently supported me on this long journey.
To my excellent supervisors, Andrew Fitzgibbon, Ian Reid and Phil Torr, for their guidance and

inspiration, and for letting me find my own way.
To members of the Visual Geometry Group, and the wider Robotics Research Group, past and present

who have helped me both in my research and provided me with such an enjoyable and stimulating place
to work. There are too many to name, but Andrew Zisserman, Mark Everingham, Nick Apostoloff, David
Claus, Jamie Paterson, Josef Sivic, Aeron Buchanan and Ali Shahrokni deserve special mention for their
generous assistance, as do Mukta Prasad and Maria-Elena Nilsback for accompanying me throughout
my journey. Thanks also to the many visiting academics who have listened about and given feedback on
my research.

To Pushmeet Kohli and everyone else in the Oxford Brookes Computer Vision group for their help
and camaraderie.

To Vladimir Kolmogorov and Carsten Rother for being so generous with their software.
To Graham Jones and Lyndon Hill of Sharp Labs Europe, whose sponsorship through a CASE stu-

dentship made my research possible, and to the Engineering and Physical Sciences Research Council for
their funding.

I am grateful to all those people who have inspired my interest in Science and Engineering, especially
Tom Drummond, who introduced me to Computer Vision through an exciting Masters project.

Finally to my family and all my friends for their unwavering support. I especially thank Rachael for
her companionship, and my parents, for making me the man I am today.

iii

Contents

Table of Contents iv

Nomenclature viii

1 Introduction 1
1.1 New view synthesis . 1

1.1.1 The inverse problem . 2
1.1.2 Regularization using priors . 4

1.2 Motivation . 4
1.3 Challenges . 5
1.4 Contributions . 6

1.4.1 A comparison of priors and optimizers . 6
1.4.2 New prior models . 6
1.4.3 New optimization techniques . 7

1.5 Thesis outline . 8
1.6 Publications . 9

2 Background 10
2.1 Problem statement . 10

2.1.1 Inputs . 10
2.1.2 NVS approaches . 11

2.2 Bayesian framework . 13
2.3 Learning the prior . 13

2.3.1 Graphical models . 14
2.3.2 Meta-priors . 16

2.4 Energy minimization . 18
2.4.1 Simplifying assumptions . 18

2.5 Test sequences . 19
2.5.1 Quantitative error measurement . 21

3 Literature review 23
3.1 Inference algorithms . 23

3.1.1 Message passing algorithms . 23
3.1.2 Graph cuts . 25
3.1.3 Local approaches . 28

3.2 Surface geometry priors . 31
3.2.1 CRF on smoothness . 34
3.2.2 Occlusion models . 35
3.2.3 Backward transfer NVS . 35

iv

3.3 Image priors . 36
3.3.1 Pairwise priors . 36
3.3.2 Filter-based priors . 40
3.3.3 Sparse coding priors . 43
3.3.4 Example-based priors . 44

3.4 NVS state of the art . 48

4 A hierarchical texture prior 49
4.1 Introduction . 49
4.2 Computational strategy: single resolution . 50

4.2.1 Objective function . 50
4.2.2 Optimization . 53
4.2.3 Results and discussion . 56

4.3 Computational strategy: multi-resolution . 59
4.3.1 Previous work . 59
4.3.2 Implementation . 61
4.3.3 Results and discussion . 69

4.4 Conclusion . 74

5 Field of Experts prior 76
5.1 Field of Experts . 76
5.2 Energy minimization . 78

5.2.1 Optimization methods . 78
5.2.2 Iterated local search . 80

5.3 Experiments and Results . 84
5.3.1 Optimizer performance . 84
5.3.2 Prior performance . 87

5.4 Discussion . 92
5.5 Conclusion . 93

6 Pairwise clique priors 94
6.1 Optimization framework . 94

6.1.1 Data likelihood . 95
6.1.2 Minimizing out disparity . 96
6.1.3 Finding colour modes . 97
6.1.4 Graph clique potentials . 101

6.2 Pairwise prior functionals . 101
6.2.1 Parametric prior . 101
6.2.2 Non-parametric priors . 102

6.3 Experiments . 104
6.3.1 Sparse prior weight . 104
6.3.2 Quantitative results . 105
6.3.3 Qualitative results . 107
6.3.4 Methods for finding modes . 109
6.3.5 Robust photoconsistency kernel . 109

6.4 Conclusion . 109

v

7 Regularizing geometry 116
7.1 Objective function . 117

7.1.1 Data costs . 117
7.1.2 Prior term . 118
7.1.3 Computing colour . 119

7.2 Optimization . 120
7.2.1 Graph construction . 121
7.2.2 Label fixing . 126
7.2.3 Implementation details . 128

7.3 Experiments . 129
7.3.1 Label fixing methods . 129
7.3.2 Qualitative performance . 130
7.3.3 Incorporating visibility . 131
7.3.4 Incorporating variable colour . 131
7.3.5 Incorporating texture regularization . 135

7.4 Conclusion . 136

8 Second order smoothness priors 141
8.1 Objective function . 142

8.1.1 Data likelihood . 142
8.1.2 Surface smoothness . 142
8.1.3 CRF weights . 143

8.2 Optimization . 144
8.2.1 Graph construction . 145
8.2.2 Proposal generation . 146
8.2.3 Implementation details . 147

8.3 Experiments . 148
8.3.1 Number of unlabelled nodes . 150
8.3.2 Comparison of label fixing strategies . 150
8.3.3 Proposals . 153
8.3.4 Comparison of priors . 155
8.3.5 Visibility . 159
8.3.6 Multiple and arbitrary views . 159

8.4 NVS from stereo . 160
8.4.1 Implementation details . 160
8.4.2 Results . 162

8.5 Conclusion . 163

9 Conclusion 165
9.1 Comparison of results . 165

9.1.1 Quantitative comparison . 166
9.1.2 Partially occluded regions . 168
9.1.3 Disparity discontinuities . 168
9.1.4 Detailed texture . 168
9.1.5 Low contrast texture . 169
9.1.6 General vs. sequence-specific image priors . 169

9.2 Contributions . 171
9.2.1 Chapter 4 . 171
9.2.2 Chapter 5 . 171

vi

9.2.3 Chapter 6 . 172
9.2.4 Chapter 7 . 172
9.2.5 Chapter 8 . 173

9.3 Future work . 173
9.3.1 New prior models . 174
9.3.2 Wider variety of output images w.r.t. input sequence 175
9.3.3 Temporal consistency . 175
9.3.4 Higher-level cues . 175
9.3.5 Towards perfect NVS . 175

A Projective geometry 177
A.1 Projection . 177
A.2 Projection matrices . 178
A.3 Depth parametrization . 179

B A normalized cooling schedule 182
B.1 Problem statement . 182
B.2 Normalized temperature . 184
B.3 Updating T . 184

C Multi-modal Product of Experts 186

vii

Nomenclature

Notation

Notation Meaning
a, A, µ Italic Serif typeface indicates a scalar variable, or a function which returns a scalar

variable. N is the number of input images, excluding the reference image in stereo. p(·)
returns a probability.

a, A, µ Bold Serif typeface indicates vector (columnwise unless otherwise stated). Ai refer-
ences the ith element of A. x, p, q, r, and s represent 2-d locations in an image, pixel
centres being at integer locations.

Å A homogenized vector, such that Å =

[
A

1

]
.

A Typewriter typeface indicates a matrix. Σ is a covariance matrix. I is the identity
matrix. P is a 3× 4 projection matrix.

A Calligraphic typeface indicates a data structure or set. N is a set 2-d locations of pixels
in a neighbourhood or clique. X is the set of all pixels in an image.

A Blackboard typeface also indicates a data structure or set. N is a set of neighbour-
hoods. T is a set of image patch exemplars.

A Sans Serif typeface indicates a 2-d image-sized array with a scalar value per image pixel,
e.g. a dense label or depth map. D is a disparity map, for which D(x) is the value at x.

A Bold Sans Serif typeface indicates a 3-d image-sized array with a vector of values per
pixel, e.g. an RGB image. I∗ is the noiseless version of I, the latter being a real image.
I(x) and I(N) represent the image values for the location x and the neighbourhood
N respectively;

−−−→
I(N) is a vectorized, i.e. columnated, version of I(N). The colour at

non-integer locations of images is bilinearly interpolated.

πi(x, d) The projection function, which defines the projection into the ith input image, Ii, of a
pixel at location x and disparity d in the output or reference image.

ζ The partition function: the area of an unnormalized probability distribution.

ψ, φ Clique functionals of an MRF, the former in a probability, the latter in an energy, i.e.
φ(·) = − logψ(·).

| · | The magnitude or vector length operator. For a scalar, this returns the magnitude. For
any other variable, this returns the number of elements in that variable.

‖ · ‖α The Lα operator: ‖X‖α = α
√∑

iX
α
i . If α is absent it is the L2 operator.

[·] The Iverson bracket: [statement] = 1 if statement is true, 0 otherwise.

O(·) Order of magnitude or computational complexity.

viii

Acronyms

Acronym Meaning
n-d n-dimensional.
BP Belief propagation.
CRF Conditional random field.
FoE Field of experts.
ICM Iterated conditional modes.
ILS Iterated local search.
MC Monte Carlo—a sampling approach.
MRF Markov random field.
NVS New view synthesis.
PCA Principal components analysis.
PDE Partial differential equation.
PoE Product of experts.
RGB Red, green, blue—a 3-d colour space.
RMS Root mean squared.
SA Simulated annealing.
SSD Sum of squared differences.
TRW Tree-reweighted message passing.
YCbCr A 3-d colour space with one channel of intensity and two channels of chrominance,

often used in image and video compression.

ix

Chapter 1

Introduction

The aim of this thesis is to present research investigating the efficacy of “priors”, both old and new,

in improving solutions to the problems of new view synthesis (NVS) and stereo, the latter being an

intermediate step in some NVS approaches. This chapter gives a gentle introduction to the NVS problem,

what priors are, and why they are needed in this problem. Finally, a detailed outline of the rest of this

thesis is given.

1.1 New view synthesis

New view synthesis is the generation of a novel view (image) of a scene, given a set of other images

of that scene, i.e. images with viewpoints different from that of the view one wishes to reconstruct. In

addition to a set of input images, one needs to know the viewpoints of these input images, plus some

other details of camera calibration discussed in appendix A, relative to the output image’s viewpoint.

The problem is summarized in figure 1.1.

A calibrated camera allows one to determine the exact path in space of the light ray that was (or

would be, for the new view) measured at a given pixel of the image. For example, the ray that would

be measured by the pixel denoted x in figure 1.1 is marked by the red line passing through that pixel. If

all the rays required to construct the new view are collinear with rays that were measured in the input

images then the output image can be constructed directly from the input data. However, this situation

rarely arises without careful premeditation of the placement of input and output views.

In this thesis I assume the general case, where output rays are not collinear with input rays. In this

case, each output ray generates a line when projected onto each input image, as shown in figure 1.1.

1.1.1 The inverse problem 2

Figure 1.1: NVS problem. A visual representation of the NVS problem—several images of a scene are
given, whose viewpoints are known, and the viewpoint of a new, unknown image is also given. The aim
is to reconstruct the image of the scene from that new viewpoint using the images provided. The ray
measured by an output pixel, x, is shown in red, as are the resulting epipolar lines on the input images.

Figure 1.2: Photoconsistency. This figure demonstrates how the colour of the pixel at x in figure 1.1
is chosen using photoconsistency. Top row: Epipolar lines are sampled, at a range of depths along the
epipolar ray, across all (here, 26) input images, and stacked up row-wise, i.e. depth is along the horizontal
axis and input image along the vertical axis. Bottom row: The mean colour at each depth is computed,
as is a measure of how consistent the input samples at a given depth are with the mean colour at that
depth, indicated by the red line (higher is more consistent). The most likely colour is that which gives
the highest photoconsistency.

These lines are known as epipolar lines. The problem is therefore constrained to finding the colour of

each output pixel, based on the colour along the epipolar line in each of the input images.

1.1.1 The inverse problem

In order to infer the colour of an output pixel from a set of image samples along epipolar lines, one

must first infer something about the scene that created the input data, D (the input images). This scene

model, S, can then be used to generate the output image. Such a model might include the geometry and

reflectance properties of objects, the colour and position of light sources, even the refractive nature of

translucent solids and fluids. Whatever the form of scene model used, the task of inferring the model

1.1.1 The inverse problem 3

parameters from input data is known as an inverse problem, written as

f(S) = D (1.1)

where f(·) is the function or process that generates the input data from the scene model, and which needs

to be inverted. This function includes a model of the data measurement process, which can be assumed

to be noisy, i.e. imperfect. The noise model can be used to compute the likelihood of the measured data,

given a scene model, which is known as the data likelihood and written as p(D|S).

The maximum likelihood (ML) scene, SML, is that which maximizes the likelihood of the data, i.e.

SML = argmax
S

p(D|S). (1.2)

Data likelihood is usually based on the photoconsistency measure [SD97], which assumes that surfaces

are Lambertian, i.e. the same colour when viewed from any angle. Figure 1.2 shows how the most

photoconsistent (therefore the ML) colour is computed, for pixel x from figure 1.1. First, the input

images are sampled at a range of depths along the epipolar ray. Then the most photoconsistent colour

at each depth is computed, along with the photoconsistency of that colour; the method for doing this

depends on the noise model, but the mean colour is used here. The most photoconsistent colour is then

selected from all depths. Note that in figure 1.2(bottom), two very different colours vie for the label of

most photoconsistent.

The ML solution is typically used when the problem is well-posed. Hadamard [Had02] states that a

problem is well-posed if

1. a solution exits.

2. the solution is unique.

3. the solution depends continuously on the data.

However, as with most inverse problems, NVS is typically ill-posed—for a given set of input images there

can be many scene models which would produce that set [PTK85], and it can be seen from figure 1.2 that

a small change to the input images could change the most likely colour completely. It therefore violates

the second and third of Hadamard’s requirements.

1.1.2 Regularization using priors 4

1.1.2 Regularization using priors

A common approach to solving ill-posed problems is to regularize them by adding a term to the problem

which reduces ambiguity and improves robustness. Such a term can also encourage the solution to be

more likely a priori, which is to say more likely given what is known about the expected form of solutions

in general, based on prior knowledge. This kind of term or model is called a “prior”—developing and

studying the efficacy of a variety of such models in a variety of optimization frameworks is the main aim

of this thesis.

Prior knowledge can be incorporated into the problem using Bayes’ rule, which defines the posterior

probability of, in this case, the scene as

p(S|D) =
p(D|S)p(S)

p(D)
, (1.3)

based on the data likelihood, and the a priori probabilities of the scene, p(S), and the input data, p(D).

The standard approach is to find the most likely scene under this distribution, which is called the maxi-

mum a posteriori (MAP) solution, SMAP, thus

SMAP = argmax
S

p(S|D). (1.4)

An example of the improvement in image quality the MAP solution provides over the ML solution

is given in figure 1.3. Note that, while more plausible as a natural image, the MAP solution is not

guaranteed to be a better reconstruction of the true scene.

1.2 Motivation

I will motivate two things: first, the need for priors in regularizing the NVS problem; second, the need

for NVS algorithms as a whole. NVS, as an application, cannot fulfil its aim if the images generated are

not believable, and as figure 1.3 shows, a prior can make a huge improvement to the visual plausibility of

an image—the high-frequency artifacts of the ML image immediately mark it out to the human observer

as being artificial, while a cursory glance over the MAP image could easily leave the viewer thinking it

was a natural image.

What, then, are the applications for visually plausible NVS? Possible applications include:

1.3 Challenges 5

(a) ML solution (b) MAP solution*

Figure 1.3: ML vs. MAP solutions. Equivalent images for a given sequence rendered from (a) the ML
scene model, and (b) the MAP scene model using the Sampled prior described in chapter 6. *The image
is very close to, but not quite the optimal solution.

• Generating photorealistic videos of paths through buildings and outdoor scenes from a few

photos, for use in computer games, film post-production or architectural applications.

• For use in multi-camera setups filming one-off events, to move the viewpoint to any de-

sired position, e.g. in sports, especially for aiding refereeing decisions; film production,

especially for determining camera trajectory around a costly shot, such as an explosion, in

post-production.

• Generating a second, stereoscopic view of a scene for each frame in a video, to view old,

2-d film-footage on a 3-d display.

1.3 Challenges

The challenges to regularizing the NVS problem are two fold—developing a prior that 1) accurately

models the relevant statistics of natural scenes or images, but that also 2) yields a tractable problem for

which the MAP solution, or a good approximation thereof,1 can be found.

The prior model must be able to overcome the challenges presented by the data, namely the fact that

some scene points may be occluded in some of the input images, reducing the photoconsistency of the
1In this thesis “MAP solution” will generally refer to that solution with the highest MAP probability found, which might

not be a global optimum of this probability.

1.4 Contributions 6

true colour, and the multi-modal nature of photoconsistency over depth and colour, which can occur for

two main reasons:

• A fine textural detail is surrounded by a region of homogenous colour, such that both the

fine detail and the homogenous colour generate modes (as per the example pixel, x, shown

in figures 1.1 & 1.2).

• Scene points at two different depths along the same output ray are visible in most or all of

the input images, e.g. the edge of a foreground object in front of a background object.

These problems can generate both small and large scale errors in the ML image (as seen in figure 1.3(a)),

which the prior must be able to overcome.

Priors for NVS usually work on small neighbourhoods, called cliques, of pixels. The larger these

cliques are, the less tractable the optimization problem, or at least finding a good solution to the problem,

becomes. However, the smaller these cliques are, the less information there is with which to distinguish

between natural texture and artifacts. There is therefore a fine balance to be made between ability of a

prior to discriminate, and the tractability of the resulting optimization problem.

1.4 Contributions

I will now briefly outline the contributions made in this thesis; a more detailed account of the contribu-

tions appears in §9.2. The contributions can be split into three main categories, summarized below.

1.4.1 A comparison of priors and optimizers

Each chapter applies one or more different forms of prior to the NVS problem. In addition, one or more

optimizers are used to maximize the resulting posterior probability. Each chapter gives a detailed analysis

of the relative performance of the priors and/or optimizers used in that chapter. The final chapter then

compares the best algorithm from each chapter. This informs the reader as to which priors and associated

optimizers are most suited to the task of NVS.

1.4.2 New prior models

In addition to employing image priors from the literature, sometimes applied to the NVS problem for the

first time, new prior models are developed specifically for the NVS problem. In chapter 6 a texture prior

1.4.3 New optimization techniques 7

that operates on two-pixel cliques is developed, which is able to distinguish between real and artificial

texture discontinuities. In chapter 7 this prior is combined with a prior on the smoothness of the scene,

creating a joint prior on smoothness and texture. This latter prior is shown to produce cutting edge results

in reconstruction performance.

1.4.3 New optimization techniques

Several new optimization techniques are developed to minimize energies of both existing and new prior

models. In particular

• Chapter 4 introduces a hierarchical, exemplar library tree structure which, when intertwined

with a multi-resolution framework, speeds up optimization by a factor of around 30, whilst

also improving the output solution.

• Chapter 5 introduces an extension of Iterated Conditional Modes (ICM), Greedy ICM, and

a normalized cooling schedule (described in appendix B) to improve the efficiency of Simu-

lated Annealing (SA). Iterated Local Search (ILS) is also tested, with two novel perturbation

schemes, and a binary optimizer called “optimal splice” is developed to combine the result-

ing local minima in a fusion move framework.

• Chapter 6 introduces a fast, deterministic method for computing modes of photoconsistency

over colour.

• Chapter 7 develops an asymmetrical, geometrical occlusion model which contains only pair-

wise cliques, and a fusion move framework to optimize the resulting problem. Quadratic

Pseudo-Boolean Optimization (QPBO) is used as the binary optimizer, and two novel ex-

tensions to this are made which improve optimization performance. Triple cliques are intro-

duced in order to simultaneously optimize over depth and colour, and I show that these can

be decomposed into a set of pairwise cliques regardless of the form of clique functional.

• Chapter 8 creates an optimization framework for stereo that allows any ad hoc depth map

proposals to be combined in a principled way using both first and second order smoothness

priors, with a geometrical visibility model. Three example methods for generating depth

map proposals are given.

1.5 Thesis outline 8

1.5 Thesis outline

Chapter 2 describes the NVS problem in detail, defining the inputs and discussing the various scene

models available. Regularization is explained in a Bayesian framework, and the form and learning of

prior models discussed. The data likelihood term and its simplifying assumptions are described.

In chapter 3 I review the literature relevant to the work presented in this thesis, focussing first on

optimization techniques for inference, followed by the forms of statistical models currently used for

geometry and then image priors. I pay particular attention to those techniques and models which will be

employed and extended in this work.

Chapter 4 investigates improvements to the efficiency and efficacy of the example-based image prior

framework of Fitzgibbon et al. [FWZ05], which uses 5 × 5 pixel cliques. Three different ICM-based

optimization strategies are tested in a single resolution framework. A hierarchical, exemplar library tree

structure, which exploits the highly dependent nature of neighbouring pixels and also image patches at

different scales, is then created and embedded in a multi-resolution framework in order to accelerate and

improve the rendering. A detailed analysis of the improvements is given.

The Field of Experts (FoE) prior of Roth & Black [RB05], which again uses 5 × 5 pixel cliques,

is tested on the NVS problem in chapter 5. A discrete optimization framework is used, and several

different optimizers, which extend ICM, SA and ILS, are developed and tested. Experiments highlight

two properties of the prior undesirable for NVS, and these are discussed.

Chapter 6 marks a shift in the thesis to priors with smaller cliques, which are therefore easier to

optimize well. A fast, deterministic method for computing modes of photoconsistency over colour is

developed, to reduce the number of labels per pixel. Three different priors from the literature—the

sparse derivative prior of [TRF03], the global example-based prior of [FWZ05], and the local example-

based prior of [CB04]—are compared with a new example-based prior with discriminative local libraries

on the NVS problem.

In chapter 7 I regularize the implicit geometry of the scene, using priors from stereo2 to encourage

surface smoothness. An objective function with geometrical visibility reasoning and modulation of the

smoothness prior using a pairwise texture prior, to align depth and texture discontinuities, is introduced.

An optimization framework able to minimize the resulting, complex energy is developed, solving several

key challenges. Experiments test the various design choices made.
2Stereo is the problem of inferring a dense depth map of a scene, given two or more input images.

1.6 Publications 9

Chapter 8 moves fully into the stereo domain, developing a global optimization framework for depth

regularization using planarity preserving second order priors. The framework is based around a fusion

move approach which combines ad hoc depth map proposals in a sequence of binary optimizations. Three

example methods for generating depth map proposals are given. The framework is used to compare the

performance of both first and second order smoothness priors, with both truncated linear and truncated

quadratic priors. The resulting depth maps are then used to generate new views.

The thesis concludes in chapter 9 with a comparison of the best performing priors from chapters

4–7, a summary of the contributions made in the thesis, and a discussion of possible future avenues of

research.

1.6 Publications

The work presented in chapter 4 is based on work published at BMVC’05 [WF05]. Chapter 5 describes

work first published at BMVC’06 [WRTF06]. Chapter 6 presents work published at CVPR’07 [WRF07].

The work presented in chapter 7 was first published at BMVC’07 [WRTF07], but additionally incor-

porates improvements introduced at CVPR’08 [WTRF08]. The work presented in chapter 8 extends

work which won the Best Paper Prize at CVPR’08 [WTRF08]. In addition, I co-authored a paper at

ACCV’07 [SWR07] which extends the work of chapter 6 to video sequences, for temporally consistent

rendering.

Chapter 2

Background

This chapter describes the new view synthesis (NVS) and stereo problems, outlines the rendering ap-

proaches used in the literature, and describes the rendering framework used throughout this thesis. The

framework used is merely a means for demonstrating the efficacy of priors, and as such is kept as simple

as possible. This chapter also states the assumptions and restrictions made in this simplification.

2.1 Problem statement

The problem of new view synthesis, expressed most simply, is that of determining the colour of each

pixel in an output image, I∗0, where colour is a vector in the chosen colour-space, such that it reconstructs

the true view of a real-world scene.

2.1.1 Inputs

The inputs given are a set of images, {Ii}Ni=1, of the scene, and a set of associated projection functions,

{πi}Ni=1. A 2-d vector, x, denotes a pixel location in an image, I, the colour of which is written as

I(x); pixel colours at non-integer locations (i.e. locations not directly over the centre of a pixel) are

linearly interpolated from the image throughout this thesis; locations outside the image boundaries are

given a value of∞. The projection function πi(x, d) computes the 2-d projection into Ii of the 3-d point

defined by the pixel location x in I∗0, and its associated disparity, d. Appendix A gives an overview of the

projective geometry used in this computation.

2.1.2 NVS approaches 11

2.1.2 NVS approaches

Each pixel in the input and output images is generated by the ray that passes through the centre of that

pixel and through the centre of projection of that image. If a ray generated by a pixel in the output image

is collinear with a ray generated by an input image pixel, then, ignoring for the time being the effect of

occlusions, those two pixels are viewing the same ray of light and should therefore be the same colour.

Clearly if each output pixel ray is collinear with an input pixel ray then the problem is well defined, and

the output image can be constructed by rearranging the input pixels.

This is the approach of light field rendering [LH96], an approach that uses a grid of uniformly sam-

pled images to construct the 4-d plenoptic function of a scene, which then allows any view of the scene,

outside its convex hull, to be reconstructed. This method effectively captures all the rich illumination of

a scene and the reflectance properties of surfaces, but with the disadvantage that many carefully placed

input images are required to achieve this.

If not all output pixel rays are collinear with input rays (or if input images are very noisy), then in

order to reconstruct the full plenoptic function, or at least that part of it which is required, one must

infer physical properties of the scene in order to create a scene model capable of generating the plenoptic

function. Chai et al. [CTCS00] demonstrate that one can trade off sampling frequency against amount

of geometrical information in generating the same plenoptic function (assuming a Lambertian scene).

This observation characterizes the spectrum of NVS methods, first described by Shum & Kang [SK00],

which places NVS methods on a continuum, with no-geometry approaches such as the light field method

at one end, running through to geometry focused approaches, which either construct a 3-d model of the

scene and texture map it using the input images, or carve out a voxel1 based model, e.g. [KS99].

What is important to note is that Chai’s evaluation assumes that the geometrical information provided

is accurate, but in the NVS problem as stated here, all geometrical information must be inferred from the

input images. As Poggio et al. [PTK85] state, the problem of ascertaining geometry from a set of images

is ill-posed—there are many scenes that could generate the same set of images. Successful approaches

therefore assume as little geometry as possible.

In this work the sequences of images are relatively dense, such that there is a narrow baseline be-

tween neighbouring images. For such sequences there is not quite enough information to reconstruct the

plenoptic function without geometry, but moving to a full 3-d model is not suitable either. For example,
1A voxel is a 3-d pixel, essentially a small cube in space with an associated colour.

2.1.2 NVS approaches 12

Less geometry More geometry

Rendering with
no geometry

Rendering with
implicit geometry

Rendering with
explicit geometry

Light field

Mosaicking
Concentric mosaics

View-dependent geometry
View-dependent texture

View morphing

LDIsLumigraph Texture-mapped models

View interpolation

3D warpingTransfer methods

Figure 2.1: NVS continuum. A continuum of rendering frameworks for NVS, as viewed by Shum &
Kang [SK00]. Figure reproduced from [SK00].

fine details such as the fur on the monkey in figure 1.1 would be heavily aliased when reconstructed in

such a model using, for example, Kutulakos & Seitz’s space carving approach [KS99].

Rather, I focus on a class of methods between the two extremes, known as implicit geometry methods.

These methods forgo a full 3-d model, but infer some geometry in the image (i.e. 2-d) domain in order

to transfer colour from the input to output images, and as such suffer less from aliasing issues.

Forward transfer methods employ stereo techniques to evaluate a dense depth map for one or more

input images, and use this to project input pixels into output images. However, as the input pixels do

not generally coincide with output pixel centres, the question of how to interpolate output pixel colours

arises. Examples of forward transfer methods are given in [Sch96, ZK07].

Backward transfer methods evaluate a dense depth map for the output image and use this to sample

the input images at the locations of output pixels, hence avoiding the interpolation problem of forward

transfer methods. Examples of backward transfer methods are given in [IHA02, FWZ05].

This work will focus on the backward transfer method, which involves generating a disparity map,

D, in addition to the output image, I∗0, so that our scene model is S = {I∗0,D}. The disparity of an output

pixel at image location x is given by D(x). Some investigation into forward transfer methods is also

included, focussing predominantly on the stereo problem of determining the depth of input pixels; the

scene model is the same, but in this case one has a noisy version of the output image (I∗0) known as the

reference image, I0.

2.2 Bayesian framework 13

2.2 Bayesian framework

Ill-posed problems such as NVS require strong regularization, based on prior knowledge of what scene

models should be like—the prior.2 The topic of this thesis is an investigation into the forms of models

the prior can take. For this reason, the NVS problem is posed as one of finding the MAP solution to the

following posterior probability:

p(S|I1, .., IN) =
p(I1, .., IN |S)p(S)

p(I1, .., IN)
, (2.1)

To simplify the problem, it is usually assumed that the input projection functions, {πi}Ni=1, are noise-

less, hence they do not appear in the above formulation. A more advanced approach is to combine the

estimation of S and {πi}Ni=1 into a single framework.

The term p(I1, .., IN) depends only on input variables and is therefore constant. Our problem thus

becomes one of maximizing the quasi-probability

SMAP = argmax
S

q(S|I1, .., IN) (2.2)

q(S|I1, .., IN) = p(I1, .., IN |S)p(S). (2.3)

2.3 Learning the prior

The prior model, p(S), defines a probability distribution over all possible scenes. This section discusses

exactly where this distribution comes from.

There are three general approaches for generating the distribution, all of which involve first selecting

a form of model, Ψ, to use, with a set of free parameters, Θ, such that the probability distribution can be

written as

p(S) =
1

ζ(Θ)
Ψ(S,Θ), (2.4)

where ζ(Θ) is a normalization factor, sometimes known as the partition function, which is defined by

ζ(Θ) =
∫

Ψ(S,Θ) dS. (2.5)

2Defining regularization to be the prior term in a posterior probability is merely one interpretation (a Bayesian one) of the
regularization process, but has powerful repercussions.

2.3.1 Graphical models 14

For many forms of model, Ψ, computing ζ(Θ) (ζ for short) is intractable.3 Fortunately, when solving

equation 2.2, ζ is just a multiplicative constant, so will not affect the value of SMAP. As such, models

with no free parameters, i.e. non-parametric models, are often selected, or the parameters are either set

by the user or chosen to optimize some other, tractable score; such models will be described as “ad hoc”.

The second approach is to maximize the likelihood of a corpus of training data, {Ti}Ti=1,

Θ = argmax
Θ

1
ζ(Θ)T

T∏
i=1

Ψ(Ti,Θ), (2.6)

either by evaluating the likelihood over a discrete set of parameters and choosing the best, or using a

gradient-ascent-based approach. While the former method requires that ζ is tractable, the latter method

can be achieved by using various approximations to the gradient, e.g. [Hin02, Hyv05], that avoid com-

puting ζ or its derivative. Models generated using this approach shall be referred to as ML models.

The final approach is to marginalize out the unknown model parameters as follows

p(S) =
∫

1
ζ(Θ)

Ψ(S,Θ) · 1
ζ(Θ)T

T∏
i=1

Ψ(Ti,Θ) dΘ, (2.7)

producing what shall be referred to as “fully Bayesian” models, as they follow the Bayesian principle of

marginalizing out latent variables. This model adds another layer of generally intractable integration to

the model learning, and as such is avoided by current priors for NVS, and indeed for the priors introduced

in this thesis. As such, the approach is merely discussed here for completeness.

It should be noted that the choice of parameterized model, Ψ, is itself rather ad hoc, more so the

fewer learned (or marginalized) parameters the model has, so there is clearly a sliding scale from ad hoc

to either ML or fully Bayesian models.

2.3.1 Graphical models

Often probabilistic models, such as priors, over a set of variables, X = X1, .., Xn, model statistical de-

pendencies only over certain subsets of variables, known as cliques. These dependencies can be helpfully

expressed in the form of a graphical model [Bis06, Chapter 8], in which each node represents a variable

and each edge represents a dependency, indicating that the variables joined by the edge are in a clique
3Tractability includes computing a reasonable estimate using Monte Carlo integration [Mac03, Chapter 29] in a reasonably

short time frame.

2.3.1 Graphical models 15

together. Three kinds of graphical model are shown in figure 2.2. The first graph, figure 2.2(a), shows a

directed, acyclic model (no loops exist), also called a Bayesian network, in which edges indicate unidi-

rectional dependencies from parent to child variables, such that the complete model can be decomposed,

using the product rule of probability, as

p(X1, .., Xn) =
n∏
i=1

p(Xi|parents(Xi)). (2.8)

Importantly, this form of decomposition does not require a global normalization, therefore each of the

conditional probabilities can be trained independently. Indeed, the most likely value of each variable

can be computed even if the conditional probabilities are not normalized (i.e. only the shape of the

distribution is correct), making training much simpler.

A more general model is the undirected graph, shown in figure 2.2(b), which allows bidirectional

dependencies, a result of which is that the product rule cannot be applied to it. Instead, one turns to

the Hammersley-Clifford theorem [Bes74], which states that the probability can be decomposed into a

product of functionals over the cliques defined by the graph. Each edge in an undirected graph represents

a clique containing only the two end nodes, except when a larger set of nodes are all directly connected

to one another, in which case these nodes form a larger clique. If Xi represents the subset of variables in

the ith of C cliques then the complete distribution can be written as:

p(X1, .., Xn) =
1
ζ

C∏
i=1

ψi(Xi). (2.9)

Even if each of the clique functionals, ψi(·), are normalized distributions (not a necessary feature, though

it is necessary that they return non-negative values only), their product will not generally integrate to a

constant, so the overall distribution must be normalized by computing the partition function, ζ. An

upshot of the above decomposition is that cycles in the graph are now permissable, and for this reason

an undirected graphical model is also called a Markov random field (MRF). The downside is that the

parameters of all clique functionals must be trained together, as these parameters affect the value of ζ,

which itself does not generally have a closed-form solution,4 even if the integrals of each of the clique

functionals do, making the prior model learning process much less tractable. A further, important result
4A product of zero mean Gaussians is a useful exception, the normalization term being the sum of the determinants of the

covariance matrices.

2.3.2 Meta-priors 16

(a) Directed, acyclic graphical
model / Bayesian network.

(b) Undirected, cyclical graph-
ical model / Markov random
field.

(c) Factor graph representation
of (b).

Figure 2.2: Three kinds of graphical models. The dark grey node denotes an observed random vari-
able; all other random variables are unknown. Figure reproduced from [Rot07].

is that ψi(Xi) cannot be assumed to have the same distributional shape as p(Xi), a fact that can be

explained by reasoning that p(Xi) does not take into account any dependencies with other, overlapping

cliques.

The ambiguity in how to represent pairwise functionals between fully connected nodes has led to

the development of the factor graph [KFL01], shown in figure 2.2(c). This is a bipartite graph, with

circular nodes, representing variables, connected only to clique functionals, represented by square nodes,

indicating the cliques each variable is in.

The complexity of the prior model can be characterized by the size of the largest clique in the

model—a prior with only unary (single variable) cliques is a zeroth order prior, a prior with pairwise

cliques is a first order prior, and so on (i.e. order equals largest clique size minus one), with the term

“higher order prior” referring to second order priors or higher. Figure 2.3 shows the posterior MRF

models typical of low-level vision problems such as NVS; the cliques of the prior model connect the

unknown variables (light grey) together, while the data likelihood terms connect the unknown variables

to observed variables (dark grey).

2.3.2 Meta-priors

I use the term “meta-prior” to describe prior knowledge regarding the conditional relationship between

input data and output variables that are explicitly not noiseless reconstructions of the input data. This

is in contrast to traditional priors, which model the joint probability of the output data itself, and data

2.3.2 Meta-priors 17

(a) A pairwise MRF. (b) A higher order MRF.

Figure 2.3: Pairwise and higher order MRFs. Factor graphs of MRF models typical of low-level
vision problems such as NVS, showing (a) a model with only pairwise cliques, and (b) a model with
higher order (4 variable) cliques, with the cliques circled with dashed lines for clarity. Figure adapted
from [Rot07].

likelihood terms, which model the statistical relationship between input data and their hidden, noiseless

values (though knowledge of the noise model might also be called a meta-prior).

One example of a meta-prior is the conditional random field (CRF) [LMP01]. Given a set of ob-

served input data, V, let the aim be to infer some property of the data other than its noiseless value

(V∗), for example a class label, denoted X. The traditional approach is to learn a prior on the joint

probability of noiseless input data, and output data, p(V∗,X), then maximize the posterior probability∫
p(V|V∗)p(V∗,X)dV∗, which might be approximated by max

V∗
p(V|V∗)p(V∗,X). The CRF ap-

proach is to directly learn a model for the conditional relationship between input and output variables,

p(X|V), which greatly simplifies both learning and inference.

A useful aspect of NVS, which it has in common with other vision applications such as image in-

painting and texture synthesis, is that the input images are themselves examples of what the output should

look like. One can therefore learn the prior model from the input data itself (an approach used by many

of the priors discussed in this thesis), in which case what is considered to be a prior, p(X), is actually

conditioned on the input data, p(X|V), making it a meta-prior—the prior knowledge here is simply that

the input and output should share certain statistics which make them visually similar. Often such prior

models could equally have been learnt from other data (becoming normal priors), but their ability to

regularize the problem at hand may well be reduced. For the remainder of this thesis the notion of a

meta-prior shall simply be subsumed into the general class of priors.

2.4 Energy minimization 18

2.4 Energy minimization

When finding the MAP value of equation 2.9, one can ignore the partition function, ζ, as this is a

multiplicative constant which will not change the value of X that maximizes p(X). Furthermore, if the

clique functionals of equation 2.9 involve exponentials, such as Gaussians, or the inference algorithm to

be employed can only optimize over sums of functions, then it can be preferable to minimize the negative

log of the unnormalized probability, a value referred to as the energy:

E(X1, .., Xn) = −
C∑
i=1

log (ψi(Xi)) . (2.10)

Doing so casts our problem—finding the MAP solution to the probability given in equation 2.3—into the

familiar MRF (or CRF) energy minimization framework now standard in computer vision [KZ02, SP07]:

SMAP = argmin
S

E(S|I1, .., IN) (2.11)

E(S|I1, .., IN) = Ephoto(I1, .., IN |S)︸ ︷︷ ︸
data likelihood

+Eprior(S)︸ ︷︷ ︸
prior

(2.12)

2.4.1 Simplifying assumptions

The data likelihood term measures the likelihood of our input data in light of our scene model and a noise

model. For the purpose of this work—an investigation into priors for NVS, rather than NVS itself—the

data likelihood model is to be kept as simple as possible, allowing attention to be fully focussed on the

prior model. I therefore assume that a point in the scene, sampled by a camera from any angle (assuming

the point is still visible) will always, in the absence of sampling noise, give the same colour. Note

that this not only implies a Lambertian reflectance assumption, but also that there is no colour space

transformation (e.g. due to different exposure settings or white balance) between input images.

In terms of a noise model, it is assumed, as stated previously, that the given projective functions are

noiseless, and it is also assumed that sampling noise is independent and identically distributed (i.i.d.)

over the input image pixels. The data likelihood term can therefore be evaluated independently over each

of the input pixels, and summed, thus:

Ephoto(I1, .., IN |I∗0,D) =
N∑
i=1

∑
x∈Xi

f
(
Ii(x)− I∗0

(
π−1
i (x, Di(x))

))
, (2.13)

2.5 Test sequences 19

where f(·) is the data cost function defined by our noise model, Xi is the set of pixels in Ii, such that x

is a pixel in Ii, and Di(x) is the disparity of pixel x in Ii.

Computing Di(x) from D is non-trivial for several reasons:

• Since D is defined in continuous space the correspondences defined by D generally do not lie

on exact pixel locations in Ii, so that Di must be resampled, which causes errors, especially

around discontinuity boundaries.

• Several pixels in D may project onto the location x in Ii, requiring some form of occlusion

reasoning to evaluate Di(x).

• Di(x) will not have a value if no pixels in D project onto the location x in Ii.

For this reason, a further, standard assumption made is thatEphoto can be approximated by summing over

pixels in I∗0, rather than pixels in I1, .., IN , thus:

Ephoto(I1, .., IN |I∗0,D) =
∑
x∈X0

N∑
i=1

f (Ii (πi (x, D(x)))− I∗0 (x)) . (2.14)

As Gargallo & Sturm point out [GS05], this approach miscounts the contribution of each input pixel

to the overall probability, leading to errors in wide baseline situations. However, I shall employ it for

simplicity, and stick to narrow baseline sequences.

2.5 Test sequences

For consistent comparison of results throughout this work, I will use a fixed set of test sequences across

all chapters, each of which have particular characteristics that make them challenging for NVS algo-

rithms. These sequences, shown in figure 2.4 along with the ML output images (assuming i.i.d. Gaussian

noise, as in chapters 4 & 5), are as follows:

• Monkey – A sequence of 27 still photos, taken from [FWZ05], calibrated using Bou-

jou [2d303]. The output image reconstructs a 200 × 200 pixel region of an input image

from four neighbouring views (N = 4). Challenges are occlusion of the background around

the arm, fine detail of the fur in the silhouette of the arm, and low contrast stochastic texture

on the face.

2.5 Test sequences 20
M

on
ke

y

(a) Ground truth (b) ML image (c) Diff. between (a) & (b)

Pl
an

t

(d) Ground truth (e) ML image (f) Diff. between (d) & (e)

E
dm

on
to

sa
ur

us

(g) Example image (h) Dino1 ML image (i) Dino2 ML image

Figure 2.4: Test sequences. This figure shows the various image sequences that will be used to test the
NVS algorithms presented in this work. The top two rows show the Monkey [FWZ05] and Plant [WF05]
sequences respectively, containing (a & d) the ground truth image to be reconstructed in a leave-one-out
test, (b & e) the maximum likelihood reconstruction, and (c & f) the difference between ground truth and
the ML image. The bottom row shows the Edmontosaurus [WRTF06] sequence, containing (g) an image
from the input sequence (a 63 frame video), and (h & i) maximum likelihood reconstructions of sections
of output frames from a novel “steadicam” (where the camera trajectory has been smoothed) version of
the original video sequence, which will be called Dino1 and Dino2 respectively.

2.5.1 Quantitative error measurement 21

• Plant – A sequence of 12 still photos, taken from [WF05], calibrated using Boujou. The

output image reconstructs a 180×180 pixel region of an input image from four neighbouring

views (N = 4). Challenges are fine features surrounded by regions of homogenous colour

(e.g. ‘ribs’ on leaves; stalk), fine details of the feathers, occlusions to the left of the toy head,

high frequency specularities on the toy body, and the low contrast stochastic texture of the

baize background.

• Dino1 – A 63 frame video sequence, taken from [WRTF06], calibrated using Boujou. The

output image is a 120 × 120 pixel image from a novel viewpoint, generated as part of a

“steadicam” version of the original video, whereby the camera trajectory has been smoothed.

The image is of a similar resolution and distance from the scene as the input views, and is

generated using six neighbouring views (N = 6). Challenges are fine features surrounded by

regions of homogenous colour (e.g. cabinet door frame, objects in cabinet), and the complex

occlusion boundary of the dinosaur neck vertebrae.

• Dino2 – Similar to Dino1, except that the output image is a different, 200 × 200 pixel

region of a different frame of the novel, steadicam video trajectory. Challenges are noisy

input data (input images are highly compressed; some input frames are motion blurred/out

of focus; camera calibration is possibly poor for some frames), and fine features surrounded

by regions of homogenous colour (e.g. brickwork).

In addition, all the ML images suffer from the single pixel artifacts associated with the random possibility

of an incorrect colour being more likely, given the data.

In chapter 8 some Middlebury stereo sequences [SS08] are also used. All the sequences used are

made up of RGB images with 256 grey levels per channel, the difference in value between consecutive

grey levels being 1.

2.5.1 Quantitative error measurement

Quality of reconstruction can be determined either in terms of visual plausibility, i.e. how real an image

looks to a human observer, or in terms of difference from ground truth. Because the former measure is

more subjective, it will be evaluated qualitatively. The latter will be evaluated quantitatively, using two

measures: r.m.s. error and proportion of gross errors. Ground truth is only available for the Monkey and

2.5.1.1 R.m.s. error 22

Plant test images, so the measures will be applied to only these two sequences.

2.5.1.1 R.m.s. error

R.m.s. error is the “root mean squared” error. If I is the output image and J is the ground truth, then the

r.m.s. error is computed as

εrms =

√
1
|X |

∑
x∈X
‖I(x)− J(x)‖2, (2.15)

where X is the set of all pixels in I.

2.5.1.2 Gross errors

Gross errors are the number of pixels that are grossly wrong, given as a percentage of the total number

of pixels. The measure is computed as

εge =
100
|X |

∑
x∈X

[
‖I(x)− J(x)‖2 > 1000

]
, (2.16)

where [·] is the Iverson bracket.5

2.5.1.3 Difference images

Difference images presented in this thesis, e.g. in figure 2.4(c & f), are not renderings of I− J, but rather

of a transformation of this image which plots zero difference as white, positive intensity6 differences as

blue, negative ones as red, and differences in chrominance as green. Darker colour indicates a larger

difference. This allows one to distinguish between different types of artifact, e.g. when a region is

predominantly lighter in one image than another, or when a feature is smaller in one image, rather than

shifted slightly.

5The Iverson bracket: [statement] = 1 if statement is true, 0 otherwise.
6The intensity of a colour image is taken to be the Y channel of the image in YCbCr colour space.

Chapter 3

Literature review

In this chapter I review the priors used in Computer Vision literature which might be useful for NVS,

and also the types of inference algorithms which can be used to optimize the resulting problems. The

first section gives an overview of inference techniques available, the second reviews the prior models

commonly used to regularize scene geometry, and the final section looks at the various priors used to

model the likelihood of natural images.

3.1 Inference algorithms

As discussed in the previous section, there are generally two inference problems in Bayesian frameworks—

that of learning the prior, and that of inferring the optimal (in case of this thesis, MAP) output solution,

given the prior and input data. Knowing what inference tools are available, and how effective they are,

is key to understanding how well different prior models can be learned and applied. This section gives a

brief overview of the inference algorithms commonly used in Computer Vision applications.

3.1.1 Message passing algorithms

Message passing algorithms are the class of algorithms based on Pearl’s “Belief Propagation” (BP) algo-

rithm [Pea88], which compute the marginal, in the case of sum-product BP, or min-marginal in the case

of max-product BP, probabilities of variables by iteratively sending messages along the edges of a graph-

ical model until convergence. Each message is a distribution, e.g. a histogram, parameterized function

or mixture of Gaussians [SIFW03], over values of the target variable. The original BP sent messages

3.1.1.1 Optimality 24

between pairs of variables, permitting only pairwise interactions; in developing factor graphs, Kschis-

chang et al. [KFL01] generalized the method to higher order cliques by sending messages from variables

to factors and vice-versa. There are no constraints on the form of clique functionals. The MAP solution

is indicated by the maximum min-marginal probability of each variable, obtained using max-product

BP; when minimizing energy instead of maximizing probability, the max-product algorithm becomes

the min-sum algorithm, the minimum final energy value of each variable indicating the MAP solution.

3.1.1.1 Optimality

BP has been proven [KFL01, Pea88] to give the optimal MAP solution for any factor graph without loops,

reached after a maximum of two sequential1 message-passing iterations. There are no optimality guaran-

tees for BP applied to loopy graphs, or even guarantees that the messages will converge—oscillations can

occur. However, it has been found that, in practical vision applications, messages do tend to converge,

and do so on a reasonable solution. Additionally it has been proven that convergent solutions on graphs

with a single loop are optimal also [Wei00].

The “Junction Tree” algorithm [LS88] allows graphs with loops to be solved optimally, by trans-

forming the loopy graph into a tree. However, this can greatly increase clique size, e.g. a regular grid

connected graph would be converted to a single clique. “Generalized Belief Propagation” [YFW00]

sends messages not only between connected nodes but also between regions of nodes, improving the

solution converged to.

3.1.1.2 Efficiency

A single iteration of BP has complexityO(MNk), whereM is the number of nodes,N the number of la-

bels and k the clique size. Several approaches have been used to increase the efficiency of the algorithm,

including the use of a multi-resolution framework to speed mixing and therefore convergence [FH06],

and, for certain forms of clique functional, the use of the distance transform [FH06, LRHB06] to speed

up message computation. For problems with clique functionals that do not involve products of differ-

ent input variables, Potetz [Pot07] shows how constraint nodes can be used to reduce complexity to

O(kMN2).

1Messages can either be sent synchronously between nodes, or sequentially, starting from a designated root node and moving
along the graph in order.

3.1.1.3 Tree-reweighted message passing 25

3.1.1.3 Tree-reweighted message passing

Tree-reweighted message passing (TRW) [WJW03] is another algorithm for MAP estimation on loopy

graphs. Based on BP, rather than simply apply the algorithm to the loopy graph, it decomposes the

problem into tree-structured subproblems that sum (in the case of energy minimization) to the original

problem, which are then solved optimally using BP. In order to achieve consensus between subproblems,

the energy distributions for a given variable are averaged between subproblems, then the subproblems

re-solved and so on. Wainwright et al. [WJW03] update all variables simultaneously, leading to a non-

convergent algorithm, but prove that if the subproblems agree then the optimal solution has been found.

Kolmogorov proposed a modification whereby the variables are updated sequentially and the subprob-

lems re-solved in between, calling this TRW-S, which he proved converged to give a local minimum

energy, additionally providing a lower bound on the energy, giving some indication of the solution’s op-

timality.2 Recently Komodakis et al. [KPT07] showed how the projected subgradient method can be used

to find the optimal lower bound on energy using this decomposition approach, finding better minima as

a result. Their algorithm has the additional benefit that it only requires the MAP solution of each sub-

problem for each update, so that other optimizers and forms of subproblem can be employed for reasons

of efficiency or to increase the tightness of the bound.

3.1.2 Graph cuts

It has been shown [GPS89, KZ04] that the max flow/min cut algorithm of Ford & Fulkerson [FR56] can

be used to find the optimal MAP solution to certain binary3 MRF (and CRF) problems, in a framework

now commonly known as “graph cuts”—specifically, Kolmogorov & Zabih [KZ04] proved that only

energies that can be written as

E(X) =
∑
i

φi(Xi) +
∑
i<j

φij(Xi, Xj), Xi ∈ {0, 1} ∀ i (3.1)

and for which all pairwise terms satisfy the submodularity constraint,

φij(0, 0) + φij(1, 1) ≤ φij(0, 1) + φij(1, 0), (3.2)

2When the lower bound is equal to the energy of the final solution then that solution is a global optimum.
3A binary problem, sometimes also referred to as a boolean problem, is one in which each variable has only two possible

discrete states.

3.1.2.1 Extensions to non-submodular energies 26

can be minimized (optimally) using graph cuts.

3.1.2.1 Extensions to non-submodular energies

In the case that one or more pairwise terms are non-submodular, the minimization problem becomes

NP-hard and cannot be solved by graph cuts. However, a graph-cuts-based construction called “Roof

Duality” [HHS84], introduced to the Computer Vision community [KR06b, RKLS07] under the name

“Quadratic Pseudo-Boolean Optimization” (QPBO), is able to label some (including all or none) of the

variables of a non-submodular problem, with certain properties:

[P1] All nodes labelled by QPBO are part of a global optimum labelling.4

[P2] QPBO returns the same result for equivalent problems that are parameterized differently.

[P3] Let X′ be the output of QPBO, with unlabelled nodes set to zero. Then E(X′) ≤ E(0).

Two extensions to QPBO which improve the output labelling have been proposed. The “probe”

method [BHT06] (QPBOP [RKLS07]) of Boros et al. can label additional nodes optimally, but requires a

number of graph solves which is at worst exponential in the number of unlabelled pixels. The “improve”

method (QPBOI) [RKLS07] of Rother et al. can label all remaining nodes sub-optimally, in a time

linear in the number of unlabelled nodes, which generally produces a lower energy than simply fixing

unlabelled variables to a default value.

3.1.2.2 Extensions to higher order problems

Since graph cuts can only optimize energies which can be expressed by equation 3.1, any higher order

cliques must be decomposed into a set of pairwise terms. This has been shown to be possible, first for

triple cliques which project5 onto submodular pairwise terms [KZ04], and consequently for cliques of

all sizes [FD05], again only where the cliques project onto submodular pairwise terms. Unfortunately,

not only does the set of pairwise edges and vertices generated generally grow exponentially with clique

size, but the submodularity constraint becomes more limiting the larger the clique [FD05]. However,

it has recently been shown that not only do higher order Potts models [KKT07] and truncated linear
4A global optimum labelling is one which has the lowest energy of all possible labellings. Note there may be more than one

of these.
5The projection referred to here reduces higher order cliques to pairwise cliques by fixing all but two variables to each of

their possible values in turn.

3.1.2.3 Extensions to multi-label problems 27

kernels [KLT08] fulfil the submodularity constraint, but that they also require only two extra graph

vertices per clique, regardless of clique size.

3.1.2.3 Extensions to multi-label problems

Multi-label problems, where each variable has a discrete set of possible values represented by labels,

are much more common than binary problems in Computer Vision. Graph cut algorithms have been

developed to tackle certain types of multi-label problems. The approach of Ishikawa [Ish03] transforms

a pairwise multi-label problem into a pairwise binary problem; the resulting graph is only submodu-

lar if each pairwise energy is convex w.r.t. each variable, when the other variable is fixed to any value.

Schlesinger & Flach [SF06] generalize this transformation, which they call “K to 2”, to support a wider

class of pairwise energies. Boykov et al. [BVZ01] solve multi-label problems through a sequence of bi-

nary optimizations between the current solution and a set of input labellings, or moves; the submodularity

constraint requires that the moves are either each uniform (“α-expansion”) or the same as the current so-

lution but for the variables that have two particular labels, whose labels are swapped (“αβ-swap”), and

that the pairwise terms are metric and semi-metric [BVZ01] respectively, constraints consequently gen-

eralized in [KZ04]. While the binary optimizations are optimal, the final solution is a local minimum

w.r.t. the moves, but, since the moves are large scale, the local minima found tend to be good solutions in

practice. Veksler [Vek07] combines the exact and approximate approaches to create another approximate

algorithm called “αβ range moves” which optimizes truncated convex priors even more effectively.

With the introduction of QPBO, the constraints on both exact and approximate multi-label ap-

proaches due to the submodularity constraint are removed. Raj & Zabih [RSZ06] first used QPBO with

the α-expansion approach, successfully—for their MRI reconstruction problem they quote a maximum

of 2% unlabelled variables per optimization. Using QPBO removes the constraint on pairwise energies,

consequently allowing arbitrary moves generally,6 a fact noted by Lempitsky et al. [LRB07], who call

the resulting sequence of binary optimizations “fusion moves”, generalizing α-expansion and αβ-swap

in the process. Property P3 of QPBO, known as the “autarky” property [RKLS07, page 2], ensures that

α-expansion using QPBO is convergent, regardless of the proportion of variables that are labelled. Re-

cently Kohli et al. [KSR+08] used QPBO and QPBOP to solve non-submodular multi-label problems in
6Arbitrary (i.e. non-uniform) moves have always been permitted using α-expansion, simply by reparameterizing the α

(move) labels for each variable individually, as shown to good effect in [WS06], but the constraints on pairwise terms have
meant that such moves could rarely be used.

3.1.2.4 Efficiency and efficacy 28

a single optimization using the K to 2 transformation [SF06].

3.1.2.4 Efficiency and efficacy

Due to the popularity of the graph cuts algorithm, much work has gone into making it and its extensions

fast. Boykov & Kolmogorov [BK04] developed an implementation of the max flow/min cut algorithm

that performs well on graphs from standard Computer Vision applications, with a compute time for

image denoising that is empirically linear in the number of nodes. Kohli et al. [KT05] developed a

framework that enables fast re-solving of graphs that have been modified slightly, with several applica-

tions including the acceleration of α-expansion [AKT08], something also tackled by the development of

the graph-cuts-based “Fast PD” algorithm [KTP07], as well as the “LogCut” algorithm [LRB07], which

uses QPBO to optimize over ranges of labels rather than single labels, effectively reducing computation

time exponentially with the number of labels.

The efficacy of α-expansion graph cuts has been compared to those of several other optimizers on

some typical Computer Vision problems [KR06a, SZS+06, TF03]. Szeliski et al. [SZS+06] showed that

on regular grid graphs, α-expansion performs similarly to TRW-S, both of which reach a lower energy

than BP, while Kolmogorov & Rother [KR06a] show that on highly connected graphs, such as those used

in stereo with occlusions, α-expansion performs significantly better than other algorithms.

3.1.3 Local approaches

I classify local optimization approaches as those which require a concept of current state, and develop

a solution iteratively from this point. Unlike the above methods (which will be referred to as global

optimization methods, despite their general lack of optimality), such approaches do not generally place

any limit on clique size, either theoretically or practically (computation time is linear in clique size, for

linear clique functionals), but they do tend to find poor, local minima.

3.1.3.1 Gradient descent

If the output variables are continuous and the clique functionals of the model are partially differentiable,

then the gradient of the energy w.r.t. each variable can be computed (given a current solution), and a

gradient descent (or ascent, in the case of maximizing probability) approach used to find an equilibrium

solution to the problem. Such approaches will deterministically find a solution whose gradient is zero,

3.1.3.2 Coordinate descent 29

which will generally occur at a local minimum.

The level sets method [Set98] reparameterizes the problem, embedding the state space into a higher

dimensional space (e.g. a parameterized 2-d surface is embedded in a 3-d space, the surface being repre-

sented by an isocontour in this higher-dimensional space), and uses gradient descent in this hyperspace

to find the solution. The benefit of this approach is that it allows topological changes of the current state

which could not otherwise be parameterized.

3.1.3.2 Coordinate descent

Coordinate descent approaches are those which sequentially minimize subsets of variables, conditioned

on the current state of the rest of the variables. The minimization can be local or global but, as it

cannot increase the energy, the cycle over subsets of variables can be repeated until convergence. The

most common of these approaches is “Iterated Conditional Modes” (ICM) [Bes86], which sequentially

globally minimizes the energy for each variable individually, conditioned on the rest. If subsets of

variables are independent of each other (i.e. do not have a clique in common), then these variables can

be updated simultaneously using ICM. The minimum number of such subsets depends on the size and

connectivity of the cliques, but, in the particular case that the variables form a bipartite graph, one can

update half the variables conditioned on the other half, followed by the reverse.

Factor graphs, as shown in figure 2.2(c), are bipartite graphs, but it should be noted that the variables

themselves do not form a bipartite graph. However, it is sometimes the case that the functionals of each

clique in such a graph contain one or more latent, variable parameters of the model which are dependent

solely on the output variables and on which the output variables solely depend, so that the factor graph

can be decomposed in the fashion shown in figure 3.1. The bipartite graph formed in this decomposition,

with latent parameters in one set, and output variables in another, can be optimized using ICM with two

steps per cycle. This special case is similar to Expectation Maximization (EM) [DLR77], in which the

E-step evaluates the expected value7 of the parameters, given the current state of the variables, then the

M-step maximizes the likelihood of the variables given the current parameters.
7The expected value is generally a real value, so is only useful if the parameters are continuous variables. In the case of

discrete parameters, the ML value can be used instead, making this ‘EM-style’ ICM.

3.1.3.3 Avoiding local minima 30

a b

Figure 3.1: EM suitable decomposition. If the functionals of the factor graph shown in (a) use a latent,
variable parameter (dark grey) to generate the dependencies between clique output variables (light grey),
such that it can be decomposed as shown in (b), then the MRF represented by this graph is suitable for
optimization using EM if the parameters are continuous, or two step ‘EM-style’ ICM if not.

3.1.3.3 Avoiding local minima

The local inference methods discussed in this section deterministically find a local minimum, starting

from some initial state. If there exist many local minima then these methods are likely, without a good

initialization, to get stuck in one of them. Several approaches are commonly used to avoid these local

minima. The first, “Simulated Annealing” (SA) [KGV83], specifically the version of Geman & Ge-

man [GG84], can be seen as an extension of both ICM and Gibbs sampling [GG84], which generates

random samples from a joint distribution by sequentially drawing from conditional distributions. In SA,

a temperature parameter, T , makes each conditional distribution more peaked around the maximum as

T → 0, as follows

p(Xi = x|X6 i) =
exp (−E(X6 i, Xi = x)/T)∑
y exp (−E(X6 i, Xi = y)/T)

, (3.3)

where X6 i is the vector X, excluding the ith variable, Xi. In practice, the value for each variable is

drawn from this distribution (either synchronously or sequentially) using the Monte Carlo (MC) ap-

proach of proposing a random new value, x, for Xi, then accepting it according to the Metropolis al-

gorithm [MRR+53]—letting e = E(X) and e′ = E(X6 i, Xi = x), the new label is always accepted if

e′ < e, otherwise it is accepted with probability exp((e − e′)/T). T is slowly reduced according to a

user-defined cooling schedule. When T = 0, SA becomes ICM, but at higher temperatures, because the

draws are random, the algorithm can jump out of local minima.

Another, common approach is to use a multi-resolution framework, whereby each scale of the prob-

lem is initialized with the solution to a coarser scale approximation of problem, where there are gener-

ally fewer local minima to get stuck in. A related approach is Blake & Zisserman’s “Graduated Non-

3.2 Surface geometry priors 31

state

co
st

state

co
st

perturbation

a b

Figure 3.2: Avoiding local minima. (a) The GNC algorithm [BZ87] solves a series of problems, each
less convex, but closer to the original problem, initializing the succeeding problem with the previous
solution, in order to avoid local minima. A multi-resolution framework is very similar in this respect. (b)
ILS [LMS02] searches through the space of local minima by perturbing the current solution, then using a
deterministic algorithm to reach a local minimum, and iterating this process, keeping track of the lowest
minimum found.

Convexity” (GNC) algorithm [BZ87], which creates a one parameter family of cost functions, the func-

tion at one end of the scale being convex, and at the other being the original objective function; the

convex problem is solved, and the solution is used to initialize the next problem in the family, and so on

until the original objective function is solved, as shown in figure 3.2(a).

“Iterated Local Search” (ILS) [LMS02] uses the fact that there are many times fewer local minima

than possible solutions (given a deterministic, local minimizer), so searching in the space of local minima

is more efficient. These local minima are themselves searched locally, as shown in figure 3.2(b), by

perturbing the current solution slightly (enough to jump into a nearby convergence basin), computing the

new local minimum, then iterating this process, always starting from the lowest cost solution found to

date.

3.2 Surface geometry priors

Surface geometry, or smoothness, priors are used to regularize the estimated surface geometry of a scene,

usually extracted from images. The form of the prior depends heavily on the parametrization of the

surface; here I concentrate on parameterizations which generate a dense depth map for a reference input

image, as these have been shown to be suitable for NVS [Sch96, Sze99, ZK07]. In such depth maps,

each pixel in the reference image is given a value of depth or disparity perpendicular to the image plane,

3.2 Surface geometry priors 32

which defines the location of the visible surface along the ray associated with that pixel, and is either

computed per pixel, or a plane is assigned to entire image regions. These depth maps are generally the

product of surface reconstruction [Gri81, BZ87] algorithms, where noisy depth samples, extracted from

image features through stereopsis [MP79] on two or more images, given sparsely or per pixel, are to be

regularized and interpolated between (in the case of sparse samples), or the more general dense stereo

problem [SS02], in which each pixel has a data-likelihood cost distribution over depth, and these costs

are to be minimized while generating a plausible surface.

The per-pixel depth maps are smoothed by regularizing the first or second derivatives of depth or dis-

parity. Early algorithms [Gri81, Ter83, Hor86, BZ87, Gen88] penalized the square of the second deriva-

tive, which is called the thin plate model, and can be shown to encourage planarity (see appendix A).

The convex nature of the quadratic kernel generates a preference for many small changes in gradient

over one large one, which has the effect of smoothing over surface discontinuities. This effect was

overcome with the introduction of penalty functions which become concave at a certain gradient thresh-

old [Ter85, BZ87, SS96], known as discontinuity preserving kernels, such as the truncated quadratic

kernel which created what Blake & Zisserman [BZ87] called the weak plate model. These early al-

gorithms all used local inference algorithms for optimization, using GNC [BZ87] and multi-resolution

strategies [Ter83, Gen88] to avoid local minima.

In the approaches that followed, priors on the first derivative of disparity became more popular [Bar87,

FK98, ADSW02, SFVG06], primarily due to reasons of computational efficiency, even though the op-

timizers remained local. These priors encourage surfaces to be parallel to the image plane (i.e. fronto-

parallel), and are known, similarly to the quadratic and truncated quadratic kernels, as the thin membrane

and weak membrane models respectively. First-order priors became more entrenched with the develop-

ment of DP [Bel96, GLY95, Vek05], graph cuts [BVZ01, IG98, KZ01, RC98] and BP [SZS03, FH04a]

based stereo algorithms, as these optimizers find much better minima, but also become much more

costly with larger cliques. The kernel also changed, with truncated linear and Potts models becoming

more common, for two reasons: firstly, graph-cuts-based [BVZ01, KZ01, WQ05] stereo algorithms tend

to use α-expansion, which cannot optimize convex kernels [BVZ01]; secondly, the Middlebury stereo

evaluation framework [SS08] introduced by Scharstein & Szeliski [SS02], on which such algorithms are

currently judged, only penalizes the number of gross disparity errors, and the top performing methods

generally use such kernels, suggesting they perform better under this metric. The result is that the output

3.2 Surface geometry priors 33

(a) (b) (c)

Figure 3.3: Stereogram of Ishikawa & Geiger. (b) shows a stereogram, with the centre image being
the right view, and the outer images being the left view, allowing viewing by either crossing or diverging
one’s gaze. (a) shows one of two surface hypotheses that the human visual system hallucinates, while (c)
shows a lower energy hypothesis under a convex fronto-parallel prior. Figure reproduced from [IG06].

depth maps tend to be more piecewise-fronto-parallel, with few to no areas with any gradient—clearly

not an accurate model of the real world.

It has been noted that not only do such first order priors not model surfaces in the real world

well [LZ06], but that they also do not model the prior used by the human visual system [IG06]. While

first order priors are adequate in textured areas, which generate local regions of high data-likelihood over

depth, Ishikawa & Geiger [IG06] showed, through the use of special stereograms (see figure 3.3), that in

textureless regions the human visual system will hallucinate surfaces of zero Gaussian curvature,8 tending

to generate more planar surfaces, while a first-order prior will generally not (as shown by figure 3.3).

Attempts have been made to model surfaces more accurately, while using the powerful graph cuts

and BP optimizers, but these attempts have all employed pairwise cliques rather than the higher order

cliques required for a true second order prior. Such attempts include layered [BSA98, BT99, TSA01]

and segment-based [TSK01, BG04, HC04, KSK06, YWY+06, BG07] approaches, which segment the

reference image, and enforce the constraint that such regions be planar. The pairwise regularization of the

latter algorithms encourages neighbouring regions to be coplanar, while the former algorithms effectuate

the same simply by iterating the segmentation and plane fitting processes. Li & Zucker [LZ06] retain the

pixel-based model while incorporating both second and third order priors, therefore merely encouraging

planarity when there is ambiguity, rather than enforcing it across entire regions. However their algorithm

precomputes local surface normals and in fact optimizes a first-order prior on the normals, which is an

approximation to the true problem. The reason for the current absence of true higher order priors, despite

their improved scene modelling capability, can be found in the literature: [LZ06], on using triple cliques,

“such an endeavour quickly makes the problem computationally infeasible”,
8Gaussian curvature of a point on a surface is the product of the principal curvatures, so a zero Gaussian curvature surface

will have no curvature in at least one direction.

3.2.1 CRF on smoothness 34

and [BV06] on graph cuts,

“it is not clear if [triple cliques] can be used to encode a higher order smoothness”.

Indeed, it has recently been shown [Koh07] that a second order smoothness prior generates non-submodular

terms, precluding optimization using graph cuts.

3.2.1 CRF on smoothness

The canny reader will note that discontinuities in a disparity map, D, are generally aligned with colour

(or texture) discontinuities of the corresponding noiseless reference image, I∗0. In a true Bayesian stereo

framework this dependency between output variables would be modelled using a prior over the joint

distribution, p(D, I∗0). However, very few dense stereo algorithms [SFVG04] attempt to generate I∗0; the

usual, implicit assumption is that the input reference image, I0, is noiseless, i.e. I∗0 = I0. The joint prior

is therefore replaced with the conditional probability p(D|I0), creating a CRF framework.

Writing the MRF clique functional for a given neighbourhood,N , of the smoothness prior asψ(N ,D)

= S(D(N)), the majority of CRF models [GP87, Fua93, BT99, BVZ01, ADSW02, KZ02, SZS03,

SFVG04, SP07] simply modulate this functional with a weight based on an image feature in that neigh-

bourhood, thus

ψ(N ,D, I0) = W (I0,N) · S(D(N)), (3.4)

whereW (I0,N) is said weight. The commonest image feature used inW (·) is the magnitude of the local

image gradient of that neighbourhood, parallel to the neighbourhood [Fua93, BT99, BVZ01, ADSW02,

KZ02, SFVG04, SP07]. The form of W (·) is generally hand-picked, but Scharstein & Pal [SP07]

learn ML weights for a range of image gradient magnitudes, given a Potts smoothness model, us-

ing a gradient ascent approach. Other image features have also been used, such as the output of the

Canny edge detector [GP87], or an image over-segmentation [SZS03]. The latter model’s smoothness

constraint is strengthened if the pixels in N are part of the same segment, encouraging discontinu-

ities to align with segment boundaries. Note that this contrasts with the segment-based stereo meth-

ods [TSK01, BG04, HC04, KSK06, YWY+06, BG07], which force discontinuities to align with segment

boundaries.

3.2.2 Occlusion models 35

3.2.2 Occlusion models

An important aspect of stereo frameworks, though affecting the data likelihood term rather than the

prior, is the use of an occlusion model to determine when a correspondence is not visible in an input

image. The data term assumes that a point on a surface will be the same colour when viewed from

all angles, but for non-Lambertian reflectance properties (which are generally ignored) and sampling

noise, generally with a distribution peaked around zero. However, it may be the case that such a point

may be visible in some views, but not in others, because it is occluded by another part of the scene, in

which case the colour sampled at the location of the correspondence will be that of an entirely different

scene point. Data likelihood distributions are therefore often a mixture of a Gaussian or other such

distribution modelling sampling noise, and a uniform (for a naı̈ve prior on the colour of outliers) [Sze99]

or other [SFVG04, SFVG06] distribution modelling the likelihood of occlusion and any other form of

outlier, the result being an energy cost function that is robust to outliers. There is effectively an implicit,

latent, visibility variable for each input sample [BR96], whose value is determined by photoconsistency.

A more successful approach to modelling occlusions has been to make explicit the visibility vari-

ables, and determine these either geometrically, by warping the depth map into each input view [KZG03,

SLKS05, WQ05, BG07], or by constructing a generative colour model of occluding surfaces [SFVG04,

SFVG06]. One can also apply a smoothness prior to visibility across each input image [SLKS05]. Opti-

mization of visibility is achieved either in an EM algorithm, iterating between optimizing visibility and

optimizing depth [SFVG04, SFVG06, SLKS05], or synchronously with depth [KZG03, WQ05, BG07].

While the latter approach is less prone to fall into local minima, it has been shown to be practically

limited to optimization using graph cuts [KR06a].

Modelling occlusions, and other outliers, in this principled way not only improves the quality of

results, but has also been shown to reduce the need for a surface smoothness prior [WQ05].

3.2.3 Backward transfer NVS

In addition to regularizing the explicit geometry of a reference view, which can be used for forward trans-

fer NVS, some stereo algorithms have been repurposed to the task of regularizing the implicit geometry

of an output image in backward transfer NVS. As the PDE-based multi-resolution stereo algorithm of

Strecha et al. [SFVG04] explicitly reconstructs a noiseless version of the reference image, the authors

convert the algorithm simply by setting the reference image to be a new view; a colour-based occlusion

3.3 Image priors 36

model is used to reject outliers. Criminisi et al. [CSB+07] use a scanline-based algorithm which does

model occlusions geometrically, but is limited to two input views, and enforces the ordering constraint

on correspondences. Both these algorithms use first order priors on smoothness.

3.3 Image priors

Image priors model the likelihood of images—images here meaning natural images, i.e. photographs of

real world scenes—using models and parameters measured or learned a priori, i.e. before solving the

problem at hand. They generally do this by modelling the local statistics of images, that is to say the

statistics of patches within images, and as such can generally be written as a product of functionals over

cliques of pixels, such as the following MRF formulation:

p(I) =
1
ζ

∏
N∈N

ψ (I(N)) , (3.5)

where each clique, represented by the neighbourhood of pixels, N , is a sub-window, or patch, of the

image, I, and the set of all cliques, N, is generally the set of all overlapping patches in the image.

Note that in equation 3.5 the clique functional, ψ(·) does not differ between cliques—this gives rise to

translational invariance of the prior, a feature common to most image priors.

The relative computational tractability and efficacy of the optimization of first order priors over

higher order priors has, similar to geometry priors, encouraged a wealth of priors of this form. How-

ever, image texture can also exhibit higher order textural structure, as demonstrated by the patches in

figure 3.4(b), which is not well modelled by first order priors. This has given rise to many higher order

priors also, modelling the spatial statistics of image patches (figure 3.4(c) indicates that histogram-based

models are not suitable), and consequently showing a greater capability to distinguish natural texture

from noise or errors. In the next section I review the models used for pairwise priors (plus some other,

related low-order priors), and in following sections I describe the three main types of higher order prior

(typically |N | > 3): filter-based, sparse coding and example-based.

3.3.1 Pairwise priors

The majority of pairwise image priors are derivative priors—priors on the magnitude of the colour dif-

ference between neighbouring pixels, the neighbourhoods generally being the set of all 1× 2 and 2× 1

3.3.1 Pairwise priors 37

a b c

Figure 3.4: Random vs. natural image patches. (a) Patches drawn randomly from the space of all
possible image patches. (b) Natural image patches manually selected from the test images of §2.5 to
show texture commonly found in natural images. (c) The patches from (b) with their pixels rearranged in
a random order. Colour histograms for these patches will exactly match the histograms for their partner
patches in (b).

−150 −100 −50 0 50 100 150
10

0

10
1

10
2

10
3

10
4

−150 −100 −50 0 50 100 150
10

0

10
1

10
2

10
3

10
4

a b

−150 −100 −50 0 50 100 150
10

0

10
1

10
2

10
3

10
4

10
5

−300 −200 −100 0 100 200 300
10

0

10
1

10
2

10
3

10
4

c d

Figure 3.5: Image derivative statistics. Histograms of first order image derivatives (horizontal and
vertical combined) for each colour channel (indicated by the corresponding line colour) for each of the
three images in figure 2.4(a): (a) Plant, (b) Monkey and (c) Edmontosaurus, and (d) for a 400 × 400
random image, similar to the patches shown in figure 3.4(a). The Gaussian distribution that best fits the
mean histogram over all channels is also shown (in black).

3.3.1 Pairwise priors 38

patches in an image (known as the 4-connected neighbourhood), defined by

p(I) =
1
ζ

∏
x∈X

ψh

(
‖I(x)− I(x + [1, 0]>)‖

)
· ψv

(
‖I(x)− I(x + [0, 1]>)‖

)
. (3.6)

Often the horizontal and vertical clique functionals, ψh and ψv, are the same, giving the prior rota-

tional invariance, as well as translational. The earliest such priors used Gaussian clique functionals,

e.g. [MS85], penalizing the square of the intensity gradient, which, as with the thin membrane model for

geometry, over-smooths colour discontinuities.

It was later shown that the statistics of derivatives, indeed of any derivative-like filter, of natural im-

ages are not at all Gaussian [Fie87, Sim97]—they’re highly kurtotic,9 as shown in figure 3.5. Parametric,

highly peaked, heavy-tailed distributions have therefore more recently been used as the form of the clique

functionals [LZW02, TRF03, FSH+06], in order to match the statistics of natural images, creating what

is sometimes called the sparse derivative prior. Being concave rather than convex,10 such priors tend to

encourage intensity gradients to concentrate in small areas, rather than to spread out, preserving texture

discontinuities while generally encouraging piecewise constant colour. Levin et al. [LZW02] used a

clique functional of the form ψ(x) ∝ exp(−x0.7), with an additional, quadruple clique term modelling

the likelihood of intensity corners, for the purpose of extracting from a superposition of two images the

original images, using BP for inference. They then used lookup-table-based functionals on both deriva-

tives and also gradient angles (necessitating the use of triple cliques), learned directly from the input

data, to inpaint holes in images using BP [LZW03], giving the results shown in figure 3.6. While the

pairwise priors perform well at continuing the simple image structure of figure 3.6(b), they struggle to re-

produce the texture seen in figure 3.6(d). Tappen et al. [TRF03] used the same form of clique functional

as [LZW02] (without the corner term) for single image super-resolution and Bayer pattern demosaicing,

again using BP for inference. Levin & Weiss [LW04] extended [LZW02] for the purpose of separating

reflections and shadows from images, approximating the sparse clique functional with a mixture of two

Laplacian distributions. This approximation makes the partition function of the posterior tractable, al-

lowing simultaneous optimization of the prior parameters and the output images in an EM framework.

Fergus et al. [FSH+06] use a zero mean Mixture of Gaussians (MoG) model for the clique potentials in

their blur kernel estimation framework, also giving a tractable partition function, which is required for
9Kurtotic is an adjective used to describe distributions with a high degree of kurtosis, this being the sharpness of a distribu-

tion’s peak relative to its tails, measured as the fourth moment of the distribution divided by its squared variance.
10As most kernels are symmetric about zero their convexity is determined over the range (0,∞).

3.3.1 Pairwise priors 39

a b c d

Figure 3.6: Inpainting using a sparse derivative prior. (a,c) Input images, with regions to be inpainted
shown with diagonal black & white stripes, and (b,d) the corresponding output images, inpainted using
the method of Levin et al. [LZW03], using a prior on image derivatives and also gradient angles. Images
reproduced from [LZW03].

their variational Bayes approach,11 using coordinate descent for inference.

Two pairwise alternatives to the derivative prior are to use clique functionals that are functions over

both colours in each clique, i.e. take into account the mean colour as well as the difference, and also to

use neighbourhoods that are arbitrarily connected, i.e. pixels in a given neighbourhood are not neces-

sarily adjacent to each other. Gagalowicz & Ma [GM85] use both approaches in their texture synthesis

algorithm, modelling textures with a description vector made up of a set of 2-d histograms, one for each

type of two pixel neighbourhood, defined by a unique offset [i, j]> between the two neighbours, up to a

certain size. The energy of a texture image is given by the squared error of its description vector from

that of the training texture, which can be written as

E(I) =
∑
i

∑
j

∑
s

∑
t

(
|X | ·Hij(s, t)−

∑
x∈X

[I(x) = s] · [I(x + [i, j]>) = t]

)2

, (3.7)

where i,j are pixel offsets, s,t are intensity values, [·] is the Iverson bracket, and Hij is the empirical,

normalized 2-d distribution of values for a given neighbourhood (defined by offset [i, j]>), learned from a

training texture. This approach was later simplified [ZVG00] by reducing the number of neighbourhoods

used to a sparse set, and using only 1-d histograms on intensity difference. Note that the approach is not

an MRF formulation, but a prior on a global statistic, which creates a single clique encompassing the

whole image. Cremers & Grady [CG06] used a related approach in an MRF framework for denoising

binary (i.e. two tone) textures, relaxing the global constraint to a set of much weaker local constraints.
11Variational Bayes [Mac03, Chapter 33] approaches do not seek to find the maximum of the joint posterior distribution, as

per MAP approaches, but rather to model the posterior distribution itself. Variables are then set to either the mean or mode of
their marginal probabilities, computed from the posterior.

3.3.2 Filter-based priors 40

All these arbitrarily connected pairwise models have been limited to texture denoising and synthesis, as

the pairwise statistics for specific textures are much more constrained than for natural images as a whole,

which may contain a range of textures drawn from a huge set. However, recent work [LH08] has used

arbitrarily connected triple cliques for image denoising.

While pairwise (first order) priors can clearly model piecewise smooth images well, they are not

suited to modelling the complex textures generally found in natural images (see figure 3.4) as fig-

ure 3.6(d) shows. In order to distinguish natural images from the unnatural, random images of fig-

ure 3.4(a), whose pairwise cliques are in themselves plausible in natural images, but for their frequency

(as evinced in figure 3.5, a property not taken into consideration by MRF models), the pairwise mod-

els must heavily penalize colour discontinuities, regardless of whether they form part of some plausible

larger scale image structure. The result is regularization that overly smooths images and fails to recon-

struct complex texture. As a result, many researchers have turned to MRFs that incorporate higher order

models of images.

3.3.2 Filter-based priors

The first type of higher order image priors to appear is what shall be referred to as “filter based”—the

clique functional of equation 3.5 can be written as a product of M subfunctions, fm : R → R+, over

responses to a set of corresponding filters, Jm, thus

ψ (I(N)) =
M∏
m=1

fm

(
J>m
−−−→
I(N)

)
, (3.8)

It can be seen that the pairwise derivative priors described above are actually a specific class of filter-

based prior in which the filters are the numerical first derivative filters. Geman & Reynolds [GR92]

extended this by using second and third order derivative filters to regularize the reconstruction of blurry

or noisy images. They again employed a concave kernel, theirs of the form f(x) ∝ exp(1/(1 + |x|)), in

their clique functionals to preserve discontinuities, encouraging images of constant intensity gradient or

constant gradient variation, depending on the derivative used. Second derivatives were additionally used

in two of the sparse derivative prior methods described above [LZW02, LZW03].

However, as the filters become larger, so too does the range of potential filters, and the question

arises as to which filters should be used. Zhu et al. [ZWM98] attempted to address this with their

3.3.2.1 Products of Experts 41

FRAME framework, which selects a small number of filters from a larger, hand-crafted set, by greedily

minimizing entropy. These filters can be up to 33× 33 pixels in size, i.e. |N | = 1089. Rather than using

parameterized subfunctions, a discrete histogram is learnt for each filter, again by minimizing entropy

(which turns out to be equivalent to ML learning), such that each fm is a lookup table. Not only is

inference, which is based on Gibbs sampling, in this framework very slow, but the results on image

denoising [ZM97] are well below average.

3.3.2.1 Products of Experts

Hinton [Hin99] noted that functions, such as the subfunctions, fm, of equation 3.8, which are multi-

plied together can model concomitant constraints—one near-zero value from a subfunction will make

the whole clique probability small. This means that each subfunction can be an expert in a single fea-

ture that marks the input data as unlikely. In the case of filter-based priors, the filter response is the

feature, indicating that the filters, Jm, of equation 3.8 should each be crafted to recognize a feature that

is unlikely. In the previous filter-based methods, filters had always been selected on the basis that they

recognize features that are likely. In his approach, which he called “Products of Experts”, Hinton pro-

posed to learn the experts themselves, thus solving the problem of filter selection. However, as discussed

in §2.3, when model parameters are learnt, the partition function must be taken into account, and, as

discussed in §2.3.1, when a distribution is made up of other distributions multiplied together, the parti-

tion function for the complete distribution is not generally tractable. For this reason, Hinton developed a

gradient-ascent-based approach to ML learning which avoids explicit computation of the partition func-

tion by approximating the gradient of likelihood w.r.t. the model parameters, using a technique he called

“contrastive divergence” [Hin02].

A PoE model was first used in an image prior by Welling et al. [WHO02]. They modelled the

probability of natural image subwindows, with a single clique encompassing the whole subwindow, such

that the filters, Jm, were the size of the subwindow. It is well known that the frequency response of an

arbitrary linear filter of zero mean,12 applied to natural images, is highly kurtotic [Bad86]. For this reason

the distribution over each subspace was modelled using Student’s t-distribution (a parametric, kurtotic
12The authors of [WHO02] subtract the mean from each of their training patches to avoid learning a D.C. offset, producing

a set of derivative like filters.

3.3.2.1 Products of Experts 42

a

b c

Figure 3.7: Learned filters. A selection of the linear filters of the (a) PoE model of [WHO02], and
(b) the FoE model of [RB05], learned on greyscale 5 × 5 and 15 × 15 patches respectively, reproduced
from [RB05], and (c) a selection of the sparse coding bases learned, using the method of [AEB06], on
greyscale 8× 8 patches.

distribution), producing the following joint probability model:

p (I(N)) =
1
ζ

M∏
m=1

(
1 +

1
2

(
J>m
−−−→
I(N)

)2
)−αm

, (3.9)

with Θ = {Jm, αm}Mm=1 being the parameters to be learned. The authors learned 99 experts with a

10 × 10 filter (and therefore neighbourhood) size, and used this model to denoise larger images in an

MRF framework, by approximating ψ (I(N)) of equation 3.5 with p (I(N)) given above. As discussed

in §2.3.1, this approximation cannot be assumed to be valid. Roth & Black [RB05] addressed this issue

by giving ψ (I(N)) the identical form as p (I(N)) in equation 3.9, then learning the parameters, Θ,

for a set of 24 5 × 5 experts by maximizing the likelihood of a set of 15 × 15 training images, rather

than patches, in what they call the “Field of Experts” (FoE) framework. The resulting model generated

cutting edge results in image denoising, and also showed impressive results in image inpainting, given

the general nature of the prior.13 Figure 3.7 demonstrates the difference in filters learned using the PoE

and FoE models of [WHO02] and [RB05] respectively, showing that there is some difference in the

filters and therefore the shape of the two resulting distributions. This suggests that p (I(N)) is a poor

approximation to the optimal ψ (I(N)) of equation 3.5. Improvements have since been made to the

learning of Θ for both models [WF07], by using a zero mean MoG model in place of the t-distribution,
13Most inpainting algorithms use a prior trained on a very similar image or texture to that being inpainted, while the FoE

model is learned over a varied set of natural images.

3.3.2.2 Inference 43

allowing an approximation of ζ to be quickly computed, and also by rotating the coordinate frame of a

given set of filters, a transformation which does not change ζ, in order to further improve the likelihood

of the training set.

The filters of all the above PoE and FoE models are learned on intensity (i.e. single channel) im-

ages. They have been used to denoise and inpaint colour images [RB05], by treating each colour

channel as an independent image. An attempt has been made to learn an FoE model explicitly over

colour images [MCSF06], but the computational complexity of the full learning procedure for the higher-

dimensional filters required was sufficiently costly that the authors reverted to hand-selected filters, based

on a principal components analysis (PCA) decomposition of image patches. Despite that, they showed

improved denoising results by exploiting the correlation between colour channels.

3.3.2.2 Inference

A range of inference algorithms have been used to optimize problems using these priors, amongst them

SA [GR92], Gibbs sampling [ZWM98] (for sampling from the posterior distribution, rather than finding

the maximum) and gradient descent [ZM97, RB05, WF07]. In the PoE model of [WHO02], inference

was achieved by optimizing the probability of each overlapping output patch independently, using an

iterative adaptation of Wiener filtering, then averaging the results. This approach can be considered

to be employing a mean field approximation to the MRF probability given in equation 3.5. All these

approaches are prone to find quite poor, local minima, but as discussed in §3.1, more powerful inference

techniques are limited to smaller cliques. For this reason the FoE model was also learned on 2 × 2

cliques [LRHB06], allowing the resulting energy to be optimized using BP [LRHB06, Pot07].

3.3.3 Sparse coding priors

Sparse coding priors [AEB06, EA06, OF97] are based on the observation that an image patch can gen-

erally be represented by the superposition of a sparse set of basis patches modelling common image

features. Such a model is believed to be a potential strategy for image formation in the human visual

system [OF97]. Regularization can therefore be achieved by minimizing the difference between an im-

age patch and its optimal reconstruction from the basis patches [EA06], producing the following clique

functional

ψ (I(N)) = exp
(
−min

αN

(
‖FαN −

−−−→
I(N)‖2 + µ‖αN ‖0

))
, (3.10)

3.3.4 Example-based priors 44

where F is a matrix with basis patches along the columns and αN is a vector of weights for the basis

patches which reconstruct the output neighbourhood,N . The vector αN is a latent variable that must be

optimized in the MAP estimation, and the second term,14 ‖αN ‖0, regularizes this variable, making it as

sparse as possible; µ is a fixed weight on the regularization.

A useful aspect of the sparse coding framework is that, even though the partition function is in-

tractable, it can safely be ignored because without it the optimal parameters will not revert to some

trivial solution (unlike the filter-based priors, whose learned filters would become a vector of zeros),

so learning the basis patches, F, is much easier. Aharon et al. [AEB06] develop an iterative learning

framework which updates F and αN (for the training data) simultaneously, using a method they call

K-SVD. They generate an overcomplete basis, of which a subset of patches are shown in figure 3.7(c),

demonstrating the qualitative difference between the sparse coding patches, which represent likely image

features, and FoE filters, which distinguish unlikely features.

A downside to using the sparse coding prior for inference is that there are extra parameters to op-

timize in the energy minimization. Inference for the non-differentiable objective function given above

is achieved using an EM algorithm [EA06], whereby each of the αN are optimized first using a greedy

algorithm, then I(N) is optimized, and the process is repeated until convergence. The prior has been

applied to both image denoising [EA06] and image compression [AEB06] with excellent results. Inter-

estingly, for denoising, the authors of [EA06] also tried simultaneously learning F on the noisy image as

they denoised it, and for reasonable noise levels this approach proved as effective as using the pre-learned

basis, more so for scenes with a high-level of uncommon texture.

3.3.4 Example-based priors

Example-based priors are so called because the clique functionals of equation 3.5 are a based on a set

of experts, each of which is a function of the difference of the output image neighbourhood from an

exemplar patch. These priors might also be referred to as “Sum of Experts” (SoE) models, in contrast

to the PoE models described earlier, as the responses of the experts are summed (or the maximum value

output) rather than multiplied. The clique functional will therefore return a high response as long as at

least one of the experts returns a high response, allowing the experts to be expert in different features,

each of which make the input data likely. This contrast with the experts in unlikely features of PoE
14The L0 operator defines 00 = 0, and is more strictly written as lim

p→0
‖X‖pp. It is therefore equal to the number of non-zero

entries in the vector.

3.3.4 Example-based priors 45

models is summarized well by Welling [Wel07]:

“Metaphorically speaking, a single expert in a [SoE model] has the power to pass a bill

while a single expert in a [PoE model] has the power to veto it”.

Clique functionals of example-based priors can generally be written as

ψ (I(N)) =
M∑
m=1

fm

((
µm −

−−−→
I(N)

)>
Σm
(
µm −

−−−→
I(N)

))
, (3.11)

with µm being a mean vector for a given expert, Σm being a covariance matrix for the expert and fm :

R+ → R+ being the response function of the expert. As each expert is modelling a high probability

part of the space of patches, an intuitive way of achieving this is to have each vector, µm, be a particular

example of a likely image patch, and have the expert functions encourage lower inputs.

One of the earliest example-based priors, by Popat & Picard [PP93], was a MoG model for use in

texture synthesis, compression and classification. The model was learned on a set of n × n (coinciding

with the size of neighbourhood, N) image patches from an input texture, by clustering the patches into

M clusters, then independently computing the parameters for each Gaussian based on the patches in each

cluster, but limiting Σm to a diagonal matrix. Rather than learning Gaussian experts, two later texture

synthesis algorithms, by Efros & Leung [EL99] and Wei & Levoy [WL00], introduced the idea of using

Gaussian kernel density estimation to model the distribution, based on a large set of exemplar patches;

each exemplar patch is the mean, µm, of an expert, Σm is some fixed value which applies weights to

pixels of each patch (weighting centre pixels more in [EL99], uniform, i.e. Σm = I, in [WL00]). This

not only negates the need for learning, but, by using many more experts, also allows a much richer

distribution to be modelled, especially in regions of patch-space where there are very few exemplars.

Both these approaches [EL99, WL00] also replaced the sum of equation 3.11 with a maximum, which is

then able to go inside the exponent (and minus sign, becoming a minimum) of the kernel, generating the

following clique functional:

ψ (I(N)) = exp
(
− min
m∈{1,..,M}

(
µm −

−−−→
I(N)

)>
Σm
(
µm −

−−−→
I(N)

))
. (3.12)

Using this form of functional over that of equation 3.11 has several consequences. Computation is faster

(for a given M) as the exponent is now computed only once per clique, and it can also be accelerated

3.3.4 Example-based priors 46

by using tree structures to find the closest exemplar [WL00]. The distribution’s partition function is not

tractable, and its shape is much flatter (note that I(N) identical to an uncommon exemplar has the same

likelihood as I(N) identical to a very common exemplar), but since in an MRF the optimal ψ(I(N)) is

not necessarily the same shape as p(I(N)), the effect of this is difficult to judge.

The clique functional of equation 3.12 has since been used, often with slight variations, in many other

applications. Freeman et al. [FPC00, FJP02] use the prior for single image super-resolution, by matching

band-passed patches of an upsampled input image to exemplars for which high-frequency versions are

known; the corresponding high-frequency exemplars are then integrated into the output image, with

the additional constraint that the overlapping boundaries of these exemplars match well. Hertzmann et

al. [HJO+01] use the prior to transform an output image based on an input image and a pair of images

which represent an analogous transformation, basing the exemplars on concatenated patches (luminance

only) from the analogous pair. Fitzgibbon et al. [FWZ05] use the prior for NVS, constructing a library,

T, of exemplars from all the patches in the input images. As with [WL00, FJP02], they set Σm = I,

allowing the clique functional to be expressed more familiarly as

ψ (I(N)) = exp
(
−min
T∈T
‖
−→
T −

−−−→
I(N)‖2

)
. (3.13)

A drawback of this approach is its high computational cost, given a large T and lack of patch search

acceleration.

Example-based priors have also been successfully applied to large scale (i.e. large hole) inpaint-

ing [CPT03], and constrained texture synthesis [KEBK05]. Criminisi & Blake [CB04] demonstrate near

realtime, cyclopean view synthesis, based on the work of [FWZ05], but constraining the texture library,

T, for each output pixel independently, to be the patches that straddle the corresponding epipolar lines of

that pixel in the input images; in addition, it allows output patches to be split in two, using an alpha matte,

and each half to be regularized independently, for improved performance over discontinuity boundaries.

These priors have even been extended to 3-d, for use in video completion [WSI04] and solid texture

synthesis [KFCO+07], demonstrating the flexibility of this model. While not itself a prior, the “Image

Epitome” [JFK03] provides a means to compute and efficiently store a compact, redundancy-free set of

experts (exemplar patches, µm, and diagonal covariance matrices, Σm) learned from a larger, redundant

set of input patches, in the form of a small image—the experts are all the overlapping patches in the

image.

3.3.4.1 Inference 47

3.3.4.1 Inference

Where the MRF forms a regular four-connected grid [FPC00, FJP02], then optimization of these priors

using BP is feasible. However, in most cases the neighbourhoods overlap much more; for example, in

the case of the 5 × 5 patches used in [FWZ05], each clique contains 25 variables, each of which are

in 24 other cliques also, creating a problem that it is computationally infeasible to solve using a global

inference method. Several algorithms therefore approximate the MRF of equation 3.5 with a Bayesian

network [PP93, EL99, WL00, HJO+01, FJP02, CPT03]15:

p(I) =
∏
x∈X

p (I(x)|I(Nx)) , (3.14)

where Nx is a neighbourhood of pixels around x that appear earlier than x in the list, X , of all pixels,

thus allowing sequential (e.g. in raster scan order [PP93, WL00, HJO+01, FJP02], or order determined

at runtime [EL99, CPT03]), optimal assignment of values to variables. A benefit of this approach, which

was discussed in §2.3.1, is that the conditional probabilities extracted directly from a joint distribution

learned over patches of the same size will have the correct shape, removing the need to learn clique

functionals on images rather than patches (which no patch-based method does anyway).

Those algorithms which do not approximate the problem are forced to use local inference methods,

generally finding quite poor local minima. Fitzgibbon et al. [FWZ05] use an ad hoc algorithm loosely

based on ICM, while others [JFK03, KEBK05], noticing that pixels sharing a clique are completely

decoupled from each other given the expert (allowing the decomposition of figure 3.1), use an EM-style

algorithm.

Multi-resolution frameworks have been employed in many of these algorithms [PP93, WL00, HJO+01,

KEBK05], not only to improve the minima found, but also to reduce the effect of the ordering of pix-

els in the Bayesian Network methods, and to allow smaller patches at each scale for the same effective

regularization as a large patch at a single scale, making the algorithms more efficient.
15In fact, several of these approaches are ad hoc, and do not actually refer to the MRF [WL00, HJO+01, CPT03] I attribute

to them, while [PP93] explicitly seeks to model their problem using the Bayesian network.

3.4 NVS state of the art 48

3.4 NVS state of the art

I conclude with a recap of the current state-of-the-art priors for NVS. The majority of priors for NVS

regularize geometry, either that of a known reference view [Sch96, Sze99, ZK07] for forward transfer

NVS, or that of the output view itself [SFVG04, CSB+07]. The priors used are universally first order,

either encouraging fronto-parallel surfaces [Sch96, Sze99, SFVG04, CSB+07] or enforcing a piecewise-

planar reconstruction [ZK07], neither of which are accurate models for real world scenes. Optimization

methods for the backward transfer methods are PDE [SFVG04] or scanline-based [CSB+07], creating

the problem of weak inference.

Recently, image priors have been used to regularize the texture of the output image in backward

transfer NVS [FWZ05, CB04]. While a promising approach, these priors require large cliques in order to

distinguish between natural and unnatural texture, and are hampered by the optimization of the resulting

objective functions.

The aim of the work presented in this thesis is to develop NVS (and stereo) frameworks that both

differentiate the natural from the unnatural, i.e. regularize well, and are tractable, i.e. optimize well.

Chapter 4

A hierarchical texture prior

4.1 Introduction

This chapter is concerned with efficient optimization of the non-parametric texture prior introduced by

Fitzgibbon et al. [FWZ05]. As discussed in §3.3.4, this higher order, example-based prior has a good

ability to distinguish between natural and unnatural texture, but suffers from two drawbacks: current

inference techniques can only find a local solution, requiring that the initial estimate to be close to the

optimal solution, and inference is extremely slow, due to the high cost of evaluating the texture energy.

I investigate three different improvements to the optimization algorithm used in [FWZ05], evaluating

(a) Ground truth image. (b) Single resolution
approach—1900s to render.

(c) Multi-resolution
approach—58s to render.

Figure 4.1: Multi-resolution gains. (a) Ground truth for the plant sequence. (b) Image rendered in
1900 seconds using a single resolution approach – the image has an r.m.s. error of 12.3, and 8.83% gross
pixel errors from ground truth. (c) Image rendered using a multi-resolution approach, in only 58 seconds
– the image has an r.m.s. error of 10.4, and 7.45% gross pixel errors.

4.2 Computational strategy: single resolution 50

their impact on speed and efficacy. I also investigate how a multi-resolution strategy can be employed

to further overcome both drawbacks of this prior, by improving the quality of solution found, as well as

accelerating the optimization, as shown in figure 4.1.

In §4.2 I outline the objective energy and optimization algorithms used at each scale of the algorithm,

and compare these algorithms in a single resolution framework. In §4.3 I describe how scale-space is

employed to reduce the problem size, and how the construction of an exemplar hierarchy can be used to

constrain the size of the texture library at the finer scales of the multi-resolution approach. Qualitative and

quantitative evaluations of the algorithms’ performance are presented, and comparisons made between

the single and multi-resolution framework.

4.2 Computational strategy: single resolution

This section introduces the objective energy and optimization algorithms used in a single resolution

strategy, which will then form the building block of the multi-resolution algorithm.

4.2.1 Objective function

First I will present the energy that is to be minimized, and the way in which the problem state-space is

discretized.

4.2.1.1 True objective energy

The energy functional of the non-parametric prior of Fitzgibbon et al. [FWZ05] is a prior on image

texture, which regularizes only the output image, and is defined as

Eprior(I∗0,D) = Etexture(I∗0) =
∑
N∈N

min
T∈T
‖
−→
T −

−−−−→
I∗0 (N)‖2, (4.1)

where N is the list of output pixels in an n × n patch, such that
−−−→
I∗0(N) is a vector of the colours of

those pixels and N is the set of indices of all overlapping n × n patches in I∗0, and T is a texture library

containing all the overlapping n×n patches in the set of input images,
−→
T being a vectorized patch from

this library. This is exactly the form of the prior used in this chapter.

For the sake of computational speed I assume that sampling noise is Gaussian, and that there will be

no sampling outliers due, for example, to occlusions or specularities. This gives the data likelihood term

4.2.1.2 Minimizing over disparity 51

the following form:

Ephoto(I1, .., IN |I∗0,D) = λd

∑
x∈X0

N∑
i=1

‖Ii (πi (x, D(x)))− I∗0 (x)‖2. (4.2)

where λd is a parameter that weights the influence of the data likelihood term relative to the prior, and

can be considered to be a noise parameter. The total energy is that defined by equation 2.12.

4.2.1.2 Minimizing over disparity

It can be seen that disparity appears only once in the objective function, in equation 4.2, and that the

value D(x) affects only the data likelihood of the pixel at x. The authors of [FWZ05] use this fact to

minimize out D from the problem in a costly pre-processing step, which is discussed in chapter 6, giving

a set of colour modes to choose from for each pixel. In this case the problem becomes one of finding the

I∗0 that globally minimizes E(I∗0).

In this chapter I do the opposite, which is to minimize out colour (given by I∗0), and formulate the

problem as one of optimizing over disparity. The reasons for this are two-fold. Firstly, the multi-

resolution strategy employed makes use of the disparity map, D. Secondly, given the Gaussian noise

model, it is orders of magnitude faster to do this in a pre-processing step rather than to minimize out

disparity. In fact, this improvement in efficiency was first made by Yao & Cham [YC04] in their own

adaption of the NVS algorithm of [FWZ05], but, as disparity does not otherwise factor in their method,

they take only the modes of Ephoto over disparity, rather than the whole distribution.

It is trivial to show that the colour, I∗0 (x), that minimizes Ephoto at a pixel, x, given a disparity D(x),

is given by the mean of input samples, thus:

I∗0 (x) =
1
N

N∑
i=1

Ii (πi (x, D(x))) . (4.3)

I assume that the palette of colours computed over all disparities is sufficient to reconstruct the image,

I∗0, which minimizes the overall energy, E(I∗0,D), and therefore parameterize colour by the function of

disparity given above. An interesting implication is that although the optimization is over the disparity

map, D, the objective is to find the D that generates the correct I∗0, rather than to find the correct D itself.

4.2.1.3 Disparity discretization 52

4.2.1.3 Disparity discretization

The disparity space is discretized so that discrete optimization algorithms can be used in the inference

stage—these can avoid some of the local minima found by continuous-space algorithms. This is done by

setting a minimum and maximum disparity for the image (dmin and dmax respectively), either defined by

the user or computed from the 3-d point correspondences found by the structure from motion algorithm

used to calibrate the input images—the disparities of these points in the coordinate frame of I∗0 can be

computed, and some factor1 of the minimum and maximum amongst these used as bounds. The disparity

range is then regularly discretized into NL disparity labels, where NL is chosen such that the maximum

distance between neighbouring disparity labels for any given pixel when projected into any of the input

images is no greater than half a pixel in the horizontal and vertical directions.

The label given to pixel x, L(x) ∈ {0, .., NL − 1}, therefore defines the disparity at x thus:

D(x) = d(L(x)) = dmin + L(x)
dmax − dmin

NL − 1
. (4.4)

The set of labels over all pixels forms a labelling, L.

While the search spaces when optimizing over I∗0 and D are Rchannels×width×height and Rwidth×height

respectively, the latter being much smaller, once these spaces have been discretized in a pre-processing

step the latter approach generally generates an order of magnitude more labels per pixel. However, the

increase in computation time caused by the increased label count is negligible in comparison to the time

saved in generating the labels (using the method of [FWZ05]).

4.2.1.4 Approximate objective function

As in [FWZ05, YC04], the objective function has been transformed from one over the continuous, joint

space of colour and disparity, to one over discrete labels:

E(I∗0,D|I1, .., IN) −→ E(L|I1, .., IN). (4.5)

For the continuous values of I∗0 and D which map onto a labelling, L, the energies are identical; however,

only a tiny proportion of possible values of I∗0 and D will have such an exact mapping. The assumption

1In this work dmin and dmax are computed as 0.8 and 1.2 times the minimum and maximum disparities of the point corre-
spondences respectively.

4.2.2 Optimization 53

made here is that the minimum of E(L|I1, .., IN) is close to the minimum of E(I∗0,D|I1, .., IN).

It is possible to cache the values of colour and Ephoto for each of the labels at each pixel, using

equation 4.3 and equation 4.2 respectively. This generates the data structures C and Ep, where

C(x, l) =
1
N

N∑
i=1

Ii (πi (x, d(l))) (4.6)

Ep(x, l) = λd

N∑
i=1

‖Ii (πi (x, d(l)))− C(x, l)‖2 (4.7)

The objective function of equation 2.12 can now be phrased as the following function over L:

E(L|I1, .., IN) =
∑
x∈X0

Ep(x, L(x)) +
∑
N∈N

min
T∈T
‖
−→
T −

−−−−−−−−→
C(N , L(N))‖2 (4.8)

where
−−−−−−−−→
C(N , L(N)) is the vector of colours of the neighbourhood of pixels, N , given the neighbour-

hood’s labelling, L(N). The labelling, L, effectively defines a slice through the colour cube, C, shown

in figure 4.2, such that the output image, I∗0, can be written as

I∗0 = C(X0, L). (4.9)

Figure 4.2 provides visualizations of the two cached data structures, C and Ep, showing that, whileEphoto

values in textured areas, e.g. along the top cube face, show clear minima, minima in textureless areas,

e.g. on the right side cube face, are more ambiguous.

4.2.2 Optimization

Now I will describe the algorithms used to minimize the energy defined above.

4.2.2.1 Algorithms

In the section above the problem was defined as one of choosing a disparity label for each pixel in I∗0.

It can be seen from equation 4.1 that the objective function contains cliques of size n × n (where n is

typically greater than two) such that, as n increases, it quickly becomes impossible to cache the values

of Etexture for all labellings (NL
n2

labellings) of a given clique, let alone use a global inference algorithm

to minimize the energy.

4.2.2.1 Algorithms 54

Figure 4.2: Cached C and Ep . Visualizations of the two cuboid data structures used in my objective
function, equation 4.8—C (left), containing colour values for each output pixel at each disparity, and Ep
(right), containing values of Ephoto for the same. Ep has been coloured blue for low values through to
red for high values and the scale has been altered for improved visualization.

As such, Fitzgibbon et al. [FWZ05] employ an ad hoc, discrete inference algorithm which can be

viewed as an approximation of both ICM [Bes86] and EM [DLR77]. Briefly, their approach iterates two

steps: 1) for each overlapping n × n patch, excluding its centre pixel, the closest patch in the library is

found, then 2) each pixel is simultaneously updated to the label which is closest to a linear combination

of the previous iteration’s colour (which approximates Ephoto) and the colour of the centre pixel of the

closest library patch (or exemplar) centred on that pixel (found in the previous step). Drawbacks of this

approach are its synchronous updates, which can lead to oscillations between labellings, the fact that

only one of the n2 cliques each pixel is a factor in is used to update its label, allowing updates to actually

increase the energy, and the way in which Ephoto is merely approximated.

In this chapter I will compare three inference approaches, all of which differ from that above, but

which offer improvements in certain respects. These algorithms are as follows:

Iterated Conditional Modes (ICM): The label of each output pixel is updated sequentially, such

that the energy, E(L|I1, .., IN), conditioned on that pixel, is minimized, thus

L(x) = argmin
l∈{0,..,NL−1}

E({L(X\x), l}|I1, .., IN), (4.10)

4.2.2.1 Algorithms 55

where the backslash operator indicates that the set to the left of the operator excludes the value to the

right, e.g. X\x is the set of all pixels, excluding the pixel x. This cycle over all pixels is repeated until

convergence (to a local minimum). In practice the conditional Etexture energy need only be computed for

those patches which overlap the pixel being conditioned on, but this still requires n2 patch searches per

pixel update, compared to the one patch search per pixel of the inference approach of [FWZ05]; however,

all the drawbacks of the latter approach are overcome.

Approximate ICM (AICM): As per ICM, except that the conditional energy is approximated by

being conditioned only on the texture patch centred on x, defined by the neighbourhood Nx, so that the

update equation becomes

L(x) = argmin
l∈{0,..,NL−1}

Ep(x, l) + n2 min
T∈T
‖
−→
T −

−−−−−−−−−−−−−−−→
C(Nx, {L(Nx\x), l})‖2. (4.11)

The Etexture term is multiplied by the number of cliques that pixel x is in, so as to approximate the

true conditional texture energy generated by the n2 cliques. This approach is the most similar, of those

employed here, to that of [FWZ05], differing in that it updates pixels sequentially, ensuring conditional

energies are calculated on an up-to-date labelling, that the colour of each patch’s centre pixel in Etexture

is taken into consideration in the patch search, and that the true value of Ephoto is used. As this approach

is not guaranteed to converge, the iterations are halted if the sum of conditional energies defined by

equation 4.11 rises from one iteration (i.e. cycle through all pixels) to the next.

Expectation Maximization Style (EMS): This approach follows [FWZ05], and also the texture

synthesis methods of [KEBK05, KFCO+07], in first finding the exemplar which minimizes Etexture for

each output image patch, in the E-step, then simultaneously choosing the label of each pixel which

minimizes the energy, in the M-step, given the exemplars found in the E-step, in an EM-style2 algorithm.

A new, latent data structure, B, is created, which stores, for every pixel, x, the exemplar,3
−→
Bx, found in

the E-step for the output patch centred on x, thus:

−→
Bx = argmin

T∈T
‖
−→
T −

−−−−−−−−−−→
C(Nx, L(Nx))‖2. (4.12)

2Since exemplar indices are not continuous variables, the ML value is computed in the E-step, rather than the expected
value, as discussed in §3.1.3.2, making this algorithm EM-style ICM.

3In reality, B stores, in B(x), the exemplar’s index into the patch library, from which the exemplar,
−→
Bx, can easily be

reconstructed.

4.2.2.2 Implementation details 56

The M-step for a given pixel is defined as

L(x) = argmin
l∈{0,..,NL−1}

Ep(x, l) +
∑

y∈Nx

‖By(x)− C(x, l)‖2, (4.13)

where By(x) is the pixel of the patch
−→
By which maps onto pixel x in the output image. The method

stops when L does not change from one iteration to the next. In contrast to the approach of [FWZ05], the

E-step includes the centre pixel of each patch, and the M-step uses every patch that each pixel overlaps

with, as well as an accurate value for Ephoto.

4.2.2.2 Implementation details

The initial labelling chosen is that which minimizes Ephoto at each pixel, thus:

L(x) = argmin
l∈{0,..,NL−1}

Ep(x, l). (4.14)

In all three algorithms the label of a pixel depends only on a small number of cliques, such that the pixel

need only be updated if any of those cliques were updated in the previous iteration. This saves consid-

erable computation time, as the number of pixels which need updating generally decreases rapidly with

each iteration. In addition, the data structure, B, introduced for the EMS method, is actually recorded in

all three optimization methods, so that it can be used in the multi-resolution framework.

I set λd = n2/N , making the energy minimized invariant to both the number of input images used

and the size of the patch used for regularization. A more reasoned approach to setting the weight could

be used, such as learning the optimal value [LL08], but this is not the focus of this work. I use the same

patch size as that used by Fitzgibbon et al. [FWZ05], n = 5.

4.2.3 Results and discussion

Figure 4.3 shows the qualitative results on the four test sequences of the three energy optimization al-

gorithms used, while figure 4.4 gives some quantitative measures of their performance. The qualitative

results tend to bear out the following: that ICM produces the best results, visually, followed by EMS,

then AICM. This can be seen most clearly (where highlighted) under the arm in Monkey, on the lower

left leaf in Plant, the cabinet door frame in Dino1 and the brickwork in Dino2. The exception to this

trend is the dinosaur’s snout in Dino2, which is reconstructed most pleasingly by AICM.

4.2.3 Results and discussion 57

ICM AICM EMS

Figure 4.3: Single resolution output images. Each row contains output images for one of the test
sequences, with the three columns containing the results of the different optimization algorithms, labelled
top. Differences across each row are highlighted with ellipses.

4.2.3 Results and discussion 58

ICM AICM EMS
0

100

200

300

400

500

M
ea

n
 e

n
er

g
y
 p

er
 p

ix
el

ICM AICM EMS
10

2

10
3

10
4

10
5

M
ea

n
 r

en
d
er

in
g
 t

im
e

(s
)

ICM AICM EMS
0

2

4

6

8

10

12

14

ǫ r
m

s

ICM AICM EMS
0

2

4

6

8

10

12

ǫ g
e

(a) Energy (b) Rendering time (c) R.m.s. error (d) Gross errors (%)

Figure 4.4: Quantitative results. Quantitative results for the three optimizers for (a) final energy per
pixel, (b) rendering time, (c) r.m.s. error and (d) gross errors. Results for (a) & (b) are averaged over the
four test sequences, while results for (c) & (d) are given separately for the Plant (dark grey) and Monkey
(light grey) sequences.

All the algorithms tend to fail to some degree in those areas (with the exception of ICM on the

cabinet door frame), as well as the background baize (texture is lost), the stalk and leaf just to the left of

the head in Plant, and the arch in Dino2, and all these areas tend to coincide with large scale errors in

the ML output (shown in figure 2.4). These large scale errors are generated either by occlusions in some

of the input images, by fine details surrounded by large homogenous regions, in regions of low contrast,

stochastic texture, or simply by noisy data (as in the case of Dino2). These large scale errors tend to

form local minima in Etexture—patches in the middle of an incorrect region look plausible, so changing

one pixel to the correct colour will generate a high frequency artifact, while pixels at the boundary are

in equilibrium from the pressure from both correct and incorrect regions to flip colour. As a result, the

optimization algorithms presented struggle to correct large scale errors.

The quantitative results, shown in figure 4.4, suggest a slightly different ordering, in terms of quality

of reconstruction (based only on the sequences with ground truth), with EMS just pipping ICM in both

overall r.m.s. error and gross errors, and AICM some way behind. However, the aim of these optimization

algorithms is to minimize energy, and in this regard ICM again performs best, with EMS performing 3%

worse overall, and AICM performing 14% worse.

In terms of speed, EMS is the fastest algorithm, with AICM 47% slower, and ICM is by far the

slowest algorithm, at 50 times slower than EMS. Therefore, while AICM can be rejected as being both

slower and a poorer minimizer than EMS, there is a trade-off to be made between speed and efficacy

when selecting between EMS and ICM. As the focus of this chapter is predominantly one of efficiency, I

will accept the small drop in quality in favour of a 50 times speed-up, and use EMS by preference in the

4.3 Computational strategy: multi-resolution 59

next section.

4.3 Computational strategy: multi-resolution

The single resolution algorithms of the previous section are extremely slow, taking between 0.05 and 2.5

seconds per output pixel to run to completion. Given that all the other data is cached, the step which takes

up the vast majority of this time is the patch lookup of theEtexture term. It is also possible for the solutions

of these approaches to be far from the global optimum if the initialization itself is far from the optimum,

as the optimization algorithms used are very local in nature. In this section I use a multi-resolution

framework that helps to avoid poor local minima, and directly incorporate into it a novel approach to

speeding up the patch search.

4.3.1 Previous work

It is necessary to briefly review previous work in multi-resolution and patch search acceleration, in order

to provide a point of reference for the contributions made in this section.

4.3.1.1 Multi-resolution

Multi-resolution approaches have been used in Computer Vision since at least the work of Marr & Pog-

gio [MP79]; indeed, they are extremely common in Computer Vision algorithms which employ example-

based priors [PP93, PL98, WL00, WSI04, LH05, KEBK05, KFCO+07]. The general strategy is to start

with a low resolution problem, solve this and upsample the solution in order to initialize a higher reso-

lution (finer scale) problem, which is then solved, and so on until the desired resolution is reached. The

reasons for using such a framework in these applications are four-fold:

• Better optimum – there are fewer optima at lower resolutions, so poor optima are more

likely to be avoided here and a good optimum propagated up to initialize the next scale,

where an optimum close to the initialization is found. Hence a good optimum can be propa-

gated up through all the scales.

• Faster convergence – long distance interactions are propagated faster at lower resolutions,

then propagated up through the scales, leading to improved initializations and therefore

faster convergence at the finer scales.

4.3.1.2 Fast patch search 60

• Smaller patches – the job of a large patch in enforcing large scale structure can be achieved

by a smaller patch at a lower resolution. In this way, coarse structure is added at the coarser

scales, while only finer details need be added at the finer scales, using much smaller patches.

• Smaller search space – solutions of coarser scales can be used to constrain the search space

at finer scales, allowing, for instance, fewer labels to be considered for each pixel.

4.3.1.2 Fast patch search

Much research has gone into speeding up the evaluation time for computing the sum of squared differ-

ences (SSD) between a patch and a library of patches. Some exact approaches have been developed in

the field of motion estimation for video compression, where accurate evaluation is important; one of the

fastest techniques amongst these uses the fast Fourier transform (FFT) [KDM02], an approach which

has also been employed for texture synthesis [KSE+03]. Greater speed-ups can be achieved where time

allows the offline construction of a data structure, such as a k-d tree, to enable efficient search. Nene

& Nayar [NN97] give a brief overview of these methods, saying that the majority become intractable in

high-dimensional search spaces, and propose a nearest-neighbour algorithm which overcomes this prob-

lem. This, along with approximate nearest-neighbour (ANN) search [AMN+98], which can perform

even faster4 when the exact closest exemplar is not required, has been used in various exemplar-based

Computer Vision algorithms [LLX+01, HJO+01, FJP02, WSI04, KFCO+07]. However, all these search

algorithms and structures are general, and do not, in themselves, make use of the properties inherent in

image patches.

Pixel values across an image patch are generally highly-correlated, and, as such, the vast majority of

information in these patches can be stored in a small number of dimensions, found using PCA. Several

patch-based algorithms use PCA [LLX+01, HJO+01, LH05, KFCO+07], then throw away the lowest

components in order to lower the dimensionality of the data while retaining a high proportion of the vari-

ance; this approach is usually used in combination with one of the search tree algorithms listed above.

Patches in an image are generally also highly correlated with each other, such that the libraries of patches

themselves can be compressed. Popat & Picard [PP93] developed a cluster-based texture synthesis al-

gorithm which parameterized their exemplar space into a much smaller, mixture of Gaussians (MoG)
4For a given dimensionality of exemplar, the exact nearest-neighbour algorithm of [NN97] has complexity O(n) while the

approximate method of [AMN+98] has complexityO(logn), where n is the number of exemplar points to be searched through.

4.3.2 Implementation 61

model with diagonal covariance matrices. Wei & Levoy [WL00] use tree-structured vector quantization

(TSVQ) for the same problem, to not only given them a reduced-size “codebook” of patches, but also

allow fast, approximate search of the codebook through the use of a binary tree (a 2-d k-d tree). Their

algorithm uses a multi-resolution framework, and the neighbourhoods used at each scale include pixels

from the scale below, exploiting the correlation between patches and their lower-resolution counterparts.

Liang et al. [LLX+01] exploit the same to speed up ANN search in their realtime, single-resolution5

texture synthesis framework.

4.3.2 Implementation

In the implementation presented here a multi-resolution framework with S scales is employed. At each

scale in the framework an energy similar to that given by equation 4.8 is minimized, using the methods

described for the single-resolution approach, but with different data structures for each scale, denoted by

the superscript index, s, where s = S is the coarsest (lowest resolution) scale and s = 1 is the finest

scale. The aim is that, by the final scale (s = 1), the initial labelling is closer to the global optimum,

and that the texture library for each output patch is constrained to be smaller than the original library, but

that the optimal exemplar for a given (optimal) output patch is in the constrained library. The following

sections explain the details of this framework.

4.3.2.1 Exploiting scale-space

The image rendered at scale s+ 1 is a factor of two smaller than that rendered at s in both the horizontal

and vertical directions. The downsampling is achieved by removing every second row and column of the

finer scale image, such that the centres of pixels at coarser scales map directly onto the centres of pixels

at finer scales. This simplifies the interpolation of data from each scale to the next, as only the removed

values need to be interpolated.

Given that each coarse-scale output pixel covers a large area in the input images, point samples of the

original input images will no longer be representative of the colour of this area as a whole. To overcome

this, a Gaussian stack [LH05] is created for each input image—the input image for s = 1 is the original

input image, while the input image used at each consecutive coarser scale (s + 1) is a Gaussian filtered

version of the image of the preceding, finer scale. The standard deviation of the filter used here is 1.
5Even though the algorithm of [LLX+01] is single-resolution in nature, the input exemplars and query vectors are hierar-

chically downsampled to reduce their dimensionality and therefore speed up the patch search for that single resolution.

4.3.2.1 Exploiting scale-space 62

The patches used at each scale remain n × n in size, despite the downsampling. The texture library

for a given scale, Ts, is constructed from the input images at that scale, which are not downsampled. To

account for this, pixels with offset [i, j] in an output patch (where i, j ∈ 0, .., n − 1) must be compared

with pixels offset by [2s−1i, 2s−1j] in the exemplars from the texture library. The reason that the input

images are not also downsampled (to generate a Gaussian pyramid instead) is that every fine scale ex-

emplar needs to have an exactly corresponding coarse scale exemplar for the patch search acceleration

(described in §4.3.2.2) to work well.

As an n × n patch covers a much larger area of the output image at a lower resolution, the regular-

ization at coarser scales can correct much larger scale errors in the output image. However, up to this

point, no information is being passed from one scale to the next, so the work done by the prior at coarser

scales has no impact on the final result. This is resolved by initializing the labelling at each scale but the

coarsest with the labelling of the previous scale, rather than using equation 4.14. The labelling of the

previous scale must first be upsampled to the correct size, using linear interpolation, then rounded to the

nearest label. Not only does the initialization propagate information on larger scale structures up through

the framework, but the linear upsampling of the previous labelling also constrains the initial labelling to

be smoother, introducing some implicit regularization of scene geometry.

As the input images have been blurred (i.e. low-pass filtered) at coarser scales, fewer disparity sam-

ples are required to build an accurate table ofEphoto values, Esp. As a result I decimate the disparity levels

at each coarser scale by a factor of two from the preceding, finer scale, by removing every second level,

such that NL
s = NL/2s−1. This reduction in the number of labels not only accelerates the construction

of Esp, but also speeds up the patch lookup of the conditional optimization approaches ICM and AICM,

as well as, though to a lesser extent, the M-step of the EMS method.

The number of labels can optionally be reduced further, at finer scales, by constraining the disparity

labels searched over for each pixel to be around the initialization value generated by the previous, coarser

scale. In this mode, which will be called “constrained disparity”, the number of labels is fixed to be

NL/2S−1 at every scale, with the disparity levels at all but the coarsest scale computed individually for

each pixel, and centred on the initialization disparity6 for that pixel. This can increase speed further, but

at the cost of fixing disparity in a coarse-to-fine manner, which can lead to errors if the wrong disparity

is chosen at a coarse scale.
6As label sets are defined per pixel, the labelling generated at the previous scale must first be converted to disparity, then

interpolated. However, rounding is no longer required, as the new labels then define offsets from this base initialization disparity.

4.3.2.2 Constraining the search-space 63

4.3.2.2 Constraining the search-space

In order to speed up the patch search at each resolution, I follow [WL00, LLX+01] in exploiting the

correlation between patches and their lower-resolution counterparts. However, in contrast to [WL00],

which uses the same codebook for every output patch at a given scale, the goal of the method presented

here is to constrain the set of exemplar patches searched over, for each output patch independently, based

on the closest exemplar patch found at the previous scale. This is similar to the approach of Liang et

al. [LLX+01], who constrain a search for the closest exemplar at full resolution to the k-approximate-

nearest-neighbours of the closest exemplar found at a lower resolution (each exemplar being represented

at every resolution); however, in our approach the closest exemplar used to constrain the search is at a

lower scale (not resolution), having been computed as a by-product of the optimization of the previous

scale.

I generate the library Tsx specifically for the output patch centred on pixel x of I∗0
s, using the index of

the closest exemplar to the same output patch of the previous scale, which will have been stored in Bs+1.

An “exemplar hierarchy”,H, is constructed, which returns, for each exemplar (defined by its index, i) at

one scale, a list of indices of exemplars, Hs(i), to search through at the next scale, such that the library

Tsx is defined as

Tsx =
{−→
T s(i)|i ∈ Hs

(
Bs+1(x)

)}
, (4.15)

where
−→
T s(i) is the ith exemplar in Ts. The exemplar hierarchy is therefore traversed a level at a time

for each output pixel simultaneously, as each scale of the problem is solved. The intertwining of the

search-tree structure and the multi-resolution approach in this way is a novel contribution of this chapter.

Each level of the exemplar hierarchy is formed by finding the nearest neighbours of each exemplar

at the previous scale, then using their equivalent versions at the current scale. The reason for not simply

using the nearest neighbours at the current scale is that small differences between coarse scale patches

can lead to large differences in their fine scale counterparts, therefore a small error at coarse scale could

lead to the required exemplar being missing from Tsx at the next scale.

As a small subset of input images from a much larger sequence are used for each output image,

the input images, and hence the texture library, will differ from output image to output image. An ANN

search tree takesO(dn log n) time to create [AMN+98], d and n being the dimensionality and number of

exemplars in the library respectively. Given that a single, brute-force closest patch search takes O(dn)

4.3.2.2 Constraining the search-space 64

time, and ANN search takes O(d log n) time at best,7 if n is much larger than the number of output

patches (which it is) then constructing a new search tree for each output image will not improve the

situation much—a factor O((1/m+ 1/n) log n) at best, m being the number of output patches.

The aim is therefore to construct the exemplar hierarchy only once, on the entire image sequence, but

one which can rapidly be pruned down to contain only exemplars from the relevant input images. This is

achieved by dissociating the exemplars from the hierarchy, and rather have a table, called a “cluster link

table”, linking a much smaller number of representative exemplars, from which the real hierarchy can

quickly be constructed once the input images are selected.

4.3.2.2.1 Clustering The representative exemplars are generated by clustering exemplars from across

the entire image sequence, making use of the correlation between patches, in the vein of [PP93, WL00].

This clustering is carried out independently at each scale.

Any clustering technique can be used to cluster the exemplars, but there is usually a trade-off between

speed (clustering time) and accuracy, in terms of how often the true nearest-neighbour is found when

traversing the exemplar hierarchy. Given that a single image sequence can be used to render many novel

views, a high one-off clustering cost is acceptable, so I aim for accuracy and use k-means clustering,

computing 220−2s cluster centres at each scale but the finest, for which no clustering is required. I use

approximately 20 exemplars per cluster for training at each scale, sampled uniformly over the entire

input image sequence. I initialize the cluster centres to random exemplar patches and run EM for 15

iterations, repeating this 5 times and choosing the set of cluster centres which give the lowest mean SSD

per patch from its associated cluster centre. The triangle inequality is used to accelerate the k-means

clustering [Elk03].

PCA is used to project the patches onto their principal components prior to clustering, keeping suffi-

cient dimensions to ensure that the maximum RMS reconstruction error over all training patches is less

than a grey-level per pixel. PCA not only reduces the dimensionality of the data, but generally allows

termination of SSD computation between cluster centres and training patches after fewer dimensions, as

a “not closest” decision can often be made earlier when the majority of information is stored in the first

few dimensions, making clustering faster. Only every tenth training patch is used in the PCA analysis.

In addition to the cluster centres, I compute the cluster index image for every input image at every

7According to [AMN+98], ANN lookup time is O(c logn), where c ≤ d(1 + 6d/ε)d, ε being the error tolerated distance
between actual and approximate nearest neighbours.

4.3.2.2 Constraining the search-space 65

scale once, directly after computing the cluster centres. These index images contain, for every patch in

the input image, the index of the cluster centre that patch is closest to. The cluster centres exist in the

lower dimensional, principal component space, therefore the input image patches are projected into this

space before being assigned to the cluster they are closest to (using the L2 norm).

Once the input images have been selected for a given output image, a cluster index image, Ks, for

each texture library, Ts (except the first, as this scale has not been clustered), can be generated from

the pre-computed cluster index images of the relevant input images. Figure 4.7 shows a visualization of

these index images.

4.3.2.2.2 Cluster link table Clusters contain similar exemplars, so a search of the nearest neighbours

of the exemplar Bs+1(x) could simply use exemplars in the same cluster. An exemplar hierarchy based

on this approach is shown in figure 4.5(a). However, as cluster index is a hard assignment for each

exemplar, exemplars which are very similar to Bs+1(x) but lie on the other side of a nearby cluster

boundary will be excluded from the search. Ideally one would overcome this by linking all neighbouring

clusters, i.e. generate the Delaunay triangulation of clusters, to form a cluster link table, but in high-

dimensional spaces this is intractable. Instead, I do the following: link each cluster to all clusters within

1.5 times the Euclidean distance of its closest neighbour (in the PCA-projected space); then make all

one-way links symmetrical. This generates the exemplar hierarchy shown in figure 4.5(b).

The nearest neighbours of Bs+1(x) are then approximated as those exemplars in the same cluster,

and also those exemplars in clusters linked to the cluster of Bs+1(x), thus:

Hs(i) =
{
Js+1(j)|j ∈ U s+1

(
Ks+1(i)

)}
, (4.16)

where Ks+1(i) is the cluster index of the ith exemplar, U s+1(i) returns a list of indices of clusters linked

to cluster i (including itself), and Js+1(j) returns the list of exemplars which have cluster index j, all at

scale s+ 1.

4.3.2.2.3 Upsampling exemplar indices At the coarsest scale the entire texture library TS must be

used for each output patch, but this library contains as many exemplars (ignoring boundary effects) as the

single resolution library, T, making the patch lookup as slow (ignoring the small effect on the conditional

ICM and AICM algorithms of having fewer labels) as for the single resolution framework, on a per pixel

4.3.2.2 Constraining the search-space 66

sc
al

e

1

2

3

a b

Figure 4.5: Exemplar hierarchy. Two 3-scale hierarchies with
different levels of connectivity. (a) Constrained libraries contain
all exemplars in the same cluster as the best match from the pre-
vious scale. (b) Constrained libraries contain all exemplars in all
clusters linked to (and including) the cluster of the closest match.

[0, 2s-2]

[2s-2, 0]

p q

r s

{p+[2s-2, 0],
 q-[2s-2, 0]}

{q-[0, 2s-2],
 s+[0, 2s-2]}

{r+[2s-2, 0],
 s-[2s-2, 0]}

{p-[0, 2s-2],
 r+[0, 2s-2]}

{p+[2s-2, -2s-2],
 q-[2s-2, 2s-2],
 r+[2s-2, 2s-2],
 s+[-2s-2, 2s-2]}

Figure 4.6: Upsampling Bs. In-
dices are extrapolated from near-
est known neighbours, and concate-
nated. Colours signify different
neighbourhoods.

Figure 4.7: Cluster index images. The cluster index images for the first input image from figure 4.10,
at scales s = S to s = 2 (the finest scale has no cluster index image), with each cluster index represented
by a random colour.

basis. Fortunately, due to downsampling, the coarsest scale has 4S−1 times fewer pixels. However,

a side-effect of the downsampling is that Bs+1 is one quarter the size of I∗0
s, therefore it needs to be

upsampled before it can be used to constrain the texture libraries at the next, finer scale.

Instead of having a downsampled exemplar index image, let us reparameterize Bs to be an image

at the resolution of the finest scale, but with known values only at pixels whose centres map directly

onto the centres of downsampled pixels (i.e. at locations 2s−1 pixels apart in both horizontal and vertical

directions). The values in Bs are integer indices into the space of exemplars, so they cannot simply

be interpolated. However, as these values give an index into an image (the texture library) at the same

resolution, one can extrapolate an individual index from a known pixel to an unknown one [i, j] pixels

away simply by adding [i, j] to the index (which is converted to a location vector first).

4.3.2.2 Constraining the search-space 67

Figure 4.8: Output images I∗0
S–I∗0

1. Images output at each scale of the multi-resolution framework,
from s = S (left) to s = 1 (right), for the plant sequence. The red square in each image indicates the
patch used at that scale to demonstrate patch search and the constrained texture libraries in figure 4.9 and
figure 4.10.

︸ ︷︷ ︸
a

︸ ︷︷ ︸
b

︸ ︷︷ ︸
c

Figure 4.9: Output patches and closest exemplars. Each row contains patches from a given scale, from
s = S (bottom) to s = 1 (top). Column (a) contains the output patch from I∗0

s highlighted in figure 4.8.
Column (b) contains the exemplar found to be closest to the output patch highlighted in figure 4.8 (at the
relevant scale), given by the index Bs(x) (where x is the location of the output patch in I∗0

s), and also
highlighted within the texture library, Ts, in figure 4.10. Column (c) contains 10 random exemplars from
the constrained texture library, Tsx, in order to show the variation within the constrained set of exemplars.

4.3.2.2 Constraining the search-space 68

Figure 4.10: Texture libraries TS–T1. Each row contains the input images filtered for each scale, from
s = S (bottom) to s = 1 (top), which also make up the texture libraries, Ts, at those scales. At each
scale, the exemplar found to be closest to the output patch highlighted in figure 4.8 (at the relevant scale),
given by the index Bs(x) (where x is the location of the output patch in I∗0

s), is highlighted by a green
circle centred on the exemplar. In addition, the exemplars in the constrained texture library, Tsx, are also
highlighted, with magenta dots on their centre pixels (except at the coarsest scale, where all exemplars
are in the texture library).

4.3.3 Results and discussion 69

For the locations in Bs I wish to assign values to, I extrapolate values from the nearest known pixels,

and concatenate these into a list of exemplar indices. Figure 4.6 gives an example of this upsampling:

the values p, q, r and s are the known exemplar indices in Bs, converted to index vectors giving the 2-d

location of the centre pixel of the exemplar in the texture library; the values of the blue-bordered pixels

are formed by concatenating extrapolated values of the closest known pixels, which are above and below,

the values of red pixels from the two pixels either side, and the green pixels from the pixels in the four

diagonal directions. Equation 4.15 can then be used to generate the libraries for these interpolated pixels

also, accounting for the fact that Bs(x) may contain multiple indices.

4.3.3 Results and discussion

Constrained disparity offers another trade-off between speed and efficacy, as shown in figure 4.15, but

this time more finely balanced: a 34% reduction in rendering time brings a 40% increase in energy. The

rise in energy is significantly higher in Ephoto than in Etexture, and figure 4.16 suggests the reason for this:

discontinuity boundaries are blurred in disparity-space (e.g. on the snout), and errors in disparity are

propagated up from coarser scales to form larger regions of error at finer scales (e.g. in the brickwork),

and these disparity errors constrain Ephoto as a result of the constraint on disparity; however, though the

colours have a higher data cost, the texture prior still does a good job of making the output look sensible.

The increase in energy using constrained disparity is accompanied by an increase in both measures of

visual fidelity (r.m.s. error and gross errors), and for these reasons constrained disparity is not used in

generating the following results.

A comparison of qualitative results using the single and multi-resolution frameworks (using EMS

and not constraining disparity), shown in figure 4.11, figure 4.12 and figure 4.13, clearly shows an im-

provement in quality when using the multi-resolution framework. This improvement is most obvious in

similar places to those that ICM improved over EMS in the single resolution framework—under the arm

in Monkey, on the lower left leaf in Plant, the cabinet door frame in Dino1, and now the snout and arch in

Dino2—but the results far surpass those of ICM in the single resolution framework. The multi-resolution

approach is much more effective at correcting the larger scale errors seen in the ML images of figure 2.4,

and this is due to the regularization at coarser scales working over a larger image area (with the same

patch size), and also the fact that there are fewer local minima to get trapped in at these scales.

However, two areas in which the multi-resolution framework still fails are background areas at occlu-

4.3.3 Results and discussion 70

(a) Multi-resolution I∗0 (b) Diff. of (b) from ground truth (c) Single res.

(C) Zoom from (c) (A) Zoom from (a)

Figure 4.11: Monkey sequence results. (a) Output image, I∗0, for the Monkey sequence, generated
using the EMS algorithm in multi-resolution framework. (b) The differences between (a) and the ground
truth image. (c) Results equivalent to (a) & (b) for the single resolution framework. (C & A) Zooms of
(c) and (a) respectively.

sion boundaries, and regions of low contrast, stochastic texture, both visible in figure 4.12. The former

class of errors can be attributed to our assumption that noise is Gaussian, without outliers. The latter

areas come down to the fact that these type of errors cannot be fixed at a coarse scale because the texture

simply does not exist at a coarse scale—the blurring and downsampling turns these regions into texture-

less areas, making the choice of disparity arbitrary, and these errors are propagated up to the finer scales,

where they are difficult to overcome.

The quantitative results (figure 4.14) show a decrease in r.m.s. error and gross errors of 15% and

4.3.3 Results and discussion 71

(a) Multi-resolution I∗0 (b) Diff. of (a) from ground truth (c) Single res.

(C) Zoom from (c) (A) Zoom from (a)

Figure 4.12: Plant sequence results. (a) Output image, I∗0, for the Plant sequence, generated using the
EMS algorithm in multi-resolution framework. (b) The differences between (a) and the ground truth
image. (c) Results equivalent to (a) & (b) for the single resolution framework. (C & A) Zooms of (c) and
(a) respectively.

20% respectively, but an increase in energy of 5%, moving to a multi-resolution framework. However,

it should be noted that the values of Etexture universally decrease; only those of Ephoto increase. This

suggests that a lower value of λd, weighting the prior more strongly against the data likelihood, might

bring the minimal energy labelling more into line with the minimum under the two measures of visual

fidelity.

As a side point, it is interesting to note that the exemplars indexed in Bs for a given output patch

centred on x do not necessarily come from the location in an output image that corresponds to x. For

example, the output patches selected in figure 4.8 reconstruct the left eye of the feathered toy, but the

closest exemplar found at the finest scale actually comes from the right eye, as shown in figure 4.10.

4.3.3 Results and discussion 72
D

in
o1

(a) Single resolution (b) Multi-resolution (c) Diff. between (a) & (b)

D
in

o2

(d) Single resolution (e) Multi-resolution (f) Diff. between (d) & (e)

D
in

o2
zo

om
s

D E D′ E′

Figure 4.13: Edmontosaurus results. Output images for the Dino1 (top row) and Dino2 (second row)
sequences, generated using the EMS algorithm in (a & d) a single resolution and (b & e) a multi-
resolution framework, and (c & f) the differences between the two images. Bottom row: Zooms of
the Dino2 results; (D & D′) are zooms of (d) while (E & E′) are zooms of (e).

4.3.3 Results and discussion 73

Single Multi
0

100

200

300

400

M
ea

n
 e

n
er

g
y

 p
er

 p
ix

el

Total Energy
Ephoto
Etexture
Single-res. Etexture

Single Multi
10

1

10
2

10
3

M
ea

n
 r

en
d

er
in

g
 t

im
e

(s
)

(a) Energies (b) Time

Single Multi
0

5

10

15

ǫ r
m

s

Plant

Monkey

Single Multi
0

2

4

6

8

10

ǫ g
e

Plant

Monkey

(c) R.m.s. error (c) Gross pixel errors

Figure 4.14: Single vs. multi-resolution. A quantitative comparison of single and multi-resolution
frameworks, using EMS optimization. (a) Various energies of the output image (per image pixel). (b)
Rendering time. (c) R.m.s. errors. (d) Gross errors. Results for (a) & (b) are averaged over the four test
sequences, while results for (c) & (d) are given separately for the Plant and Monkey sequences.

Unc.d. c.d.
0

100

200

300

400

500

600

M
ea

n
 e

n
er

g
y

 p
er

 p
ix

el

Unc.d. c.d.
0

10

20

30

40

50

M
ea

n
 r

en
d

er
in

g
 t

im
e

(s
)

Unc.d. c.d.
0

2

4

6

8

10

12

ǫ r
m

s

Unc.d. c.d.
0

2

4

6

8

ǫ g
e

(a) Energy (b) Rendering time (c) R.m.s. error (d) Gross errors

Figure 4.15: Quantitative effect of constrained disparity. Quantitative results for unconstrained
(unc.d.) and constrained disparity (c.d.) for (a) the final energy per pixel, (b) rendering time, (c) r.m.s.
error and (d) gross errors. Results for (a) & (b) are averaged over the four test sequences, while results
for (c) & (d) are given separately for the Plant (dark grey) and Monkey (light grey) sequences.

4.4 Conclusion 74

4.4 Conclusion

This chapter has achieved two things: 1) comparing three optimization algorithms, applied to this prob-

lem for the first time; 2) introducing a multi-resolution framework in which a search-tree structure is

traversed at a rate of one level per scale of the framework. In doing so, it has shown the following:

• While EMS minimizes the energy of this problem slightly less effectively than ICM, it is an

order of magnitude faster.

• A multi-resolution strategy with the patch library search constrained independently for each

output patch by results of the previous scale can increase the speed of rendering by an order

of magnitude.

• The regularization of coarser scales in a multi-resolution framework can fix more large scale

errors, improving output quality too.

Also shown are the main failure modes of the multi-resolution framework:

• Poor performance in reconstructing occluded background regions, due to an inability to

reject occluded input samples.

• Regions of low contrast, stochastic texture are not reconstructed, due to the texture only

existing at the finest scale, where it is too far from the initial estimate to be found.

These issues will be addressed in chapters 6 & 7.

The exemplar hierarchy presented here is very basic in form, and is by no means the most efficient

look-up structure possible—however, I believe that the concept has been proven, and that future research

may improve the approaches to produce even faster regularization.

4.4 Conclusion 75
O

ut
pu

ti
m

ag
e,

I∗ 0
Im

pl
ic

it
di

sp
ar

ity
,D

(a) Unconstrained disparity (b) Constrained disparity

Figure 4.16: Qualitative effect of constrained disparity. Column (a) shows the reconstruction without
constraining disparity, while column (b) shows the reconstruction with constrained disparity, with some
of the resulting artifacts highlighted. Top row: output image. Bottom row: output disparity map.

Chapter 5

Field of Experts prior

In the previous chapter I investigated the performance of a non-parametric, exemplar-based image prior.

In this chapter I investigate the performance of parametric image prior which also regularizes all n × n

patches in the output image.

Roth & Black [RB05] developed a parametric image prior based on a product of Student’s t-distributions

of filter responses, which they called “Field of Experts” (FoE), and used this prior for inpainting and de-

noising images. Here I apply the prior to the NVS problem for the first time. In doing so I also use and

improve an optimization technique called Iterated Local Search (ILS) [LMS02], which is relatively new

to the field of Computer Vision, and compare its performance to two, more commonly used, large clique

MRF optimizers: Iterated Conditional Modes (ICM) and Simulated Annealing (SA).

The chapter proceeds as follows. The first section introduces the parametric prior and defines the

resulting objective function. The following section describes the various optimization strategies used

to minimize the objective function. The third section presents results for both the relative performance

of the optimizers and the images rendered using the FoE prior. The results with regard to the prior are

discussed in the fourth section, before concluding in the final section.

5.1 Field of Experts

As discussed in §3.3.2.1, the FoE prior uses the same form of model as first used by Welling et al. (given

in equation 3.9), but learned on and applied to all n × n patches in a larger image, rather than on/to a

single n× n image, where n× n is the size of filter in each expert. The prior energy term can therefore

5.1 Field of Experts 77

Figure 5.1: FoE filters. A selection of 24 of the 72 filters applied to RGB colour images. Each row
shows the same eight greyscale filters applied to a different YCbCr colour channel, with the filters trans-
formed into RGB space.

be written as

Eprior(I∗0,D) = Etexture(I∗0) =
∑
N∈N

M∑
m=1

αm log
(

1 +
1
2

(
J>m
−−−−→
I∗0 (N)

)2
)
, (5.1)

where Θ = {Jm, αm}Mm=1 are the prior model parameters, Jm being a vectorized filter, and αm being

the weight of the expert, which is always positive.

Roth & Black [RB05] use contrastive divergence [Hin02] to learn the model parameters from a

diverse library of natural, greyscale images. As a result, it is a truly general image prior, unlike that of

the previous chapter, which must be constructed from a set of images similar to the output image. A

benefit of this is that the model parameters need only be learned once. Indeed, I use the parameters from

[RB05]—24 5× 5 experts—here.

As the parameters are learned for greyscale images, when generating colour images Roth & Black [RB05]

apply the prior separately to each channel of the image in YCbCr colour space. This effectively generates

a 72 expert model, but does not model any dependencies between the three channels, as can be seen from

figure 5.1.

I use the same Gaussian noise model as in the previous chapter, therefore data costs are again given

by equation 4.2. The total energy is given by equation 2.12.

5.2 Energy minimization 78

5.2 Energy minimization

As with the non-parametric prior of the previous section, the prior used here generates an objective

function containing large n×n cliques (5×5 cliques in the experiments here), which cannot be optimized

by global optimization methods. Local methods must therefore be used.

Roth & Black [RB05] use gradient descent in colour space to minimize the objective energy in their

denoising and inpainting problems. In these two problems the data costs are non-concave over colour,

so there will not be many local minima created by the data costs, allowing the problem to converge on

a good solution. In contrast, the data costs of the NVS problem are concave over colour, as Fitzgibbon

et al. [FWZ05] show by finding multiple modes over colour in their NVS framework. Using gradient

descent on such a problem would lead to the solution getting stuck in one of the many local minima

caused by this concavity.

An alternative approach, which is used here, as in the previous chapter, is to discretize the state space,

then use a coordinate descent method that globally minimizes the conditional energy of each pixel. As

gradient descent merely finds a local minimum of the same conditional energies, it generates more local

minima in the overall problem than the coordinate descent approach. The latter approach is therefore

more likely to find a better solution.

The state space discretization used is identical to that of the previous chapter—the problem is param-

eterized as one over disparity, and the disparity is discretized as described in §4.2.1.3, transforming the

objective energy as per equation 4.5. The colour and data cost of each label are again cached into the

data structures C and Ep using equations 4.6 and 4.7 respectively.

5.2.1 Optimization methods

Various coordinate descent optimization methods will be used to minimize the objective energy, as de-

scribed below. All these methods compute the conditional energies of pixels, written as E({L(X\x), l}|

I1, .., IN) for pixel x, but, as with the exemplar-based prior, the energy need only be computed for those

n2 cliques which contain pixel x.

In the previous chapter I used ICM and EM-style ICM for optimization, as well as an approxima-

tion to ICM (AICM) which reduced its high computational burden. EM cannot be used with the FoE

prior because there are no latent variables in the objective function given which the output variables are

independent of each other. However, the time to compute the parametric prior’s energy is much faster,

5.2.1.1 Iterated Conditional Modes 79

making optimization using ICM practical, and removing the need for the faster but less effective AICM.

A problem with the local optimizers seen in the previous chapter is their tendency to get stuck in local

minima. There this was overcome with a multi-resolution framework. Here the focus is on improving

the optimization at a single resolution. As a result, more advanced local optimizers than ICM are used

for comparison: SA and ILS.

The optimizers are described in more detail below.

5.2.1.1 Iterated Conditional Modes

The label of each output pixel is updated sequentially by minimizing its conditional energy, as per equa-

tion 4.10, and this is repeated until convergence. The order pixels are updated in can affect the solution

converged to. Here I try two different orders.

Raster ICM: Pixels are visited in raster scan order, down each column in order, from left to right.

The ordering reduces the number of cache misses in the computation, hence keeping computation time

low.

Greedy ICM: This novel algorithm visits pixels in a greedy order, updating the pixel that reduces

the energy most at every step. This requires that the current conditional energy distributions for all

pixels are kept cached, i.e. all cached at the start, then distributions for neighbours1 of each updated

pixel recomputed, and also means that pixels are visited in an unordered fashion, both of which increase

computation time.

In both cases the labelling is initialized to the ML solution, i.e. that which minimizes Ephoto.

5.2.1.2 Simulated Annealing

SA [KGV83, GG84] chooses a labelling for each pixel by sampling from its conditional probability

distribution, which can be derived from the conditional energy. In addition, the conditional probability

distribution is made dependent on a global control parameter, T , known as the “temperature”, as follows

p(L(x) = l|L(X\x)) =
exp (−E({L(X\x), l}|I1, .., IN))/T)∑NL
i=1 exp (−E({L(X\x), i}|I1, .., IN)/T)

(5.2)

The algorithm works by sampling all pixel labels from the above distribution, either synchronously or

sequentially, then lowering the temperature according to a cooling schedule and repeating the process.
1Neighbours in this context are pixels which share at least one clique with the pixel in question.

5.2.2 Iterated local search 80

At T = ∞ the distribution is uniform, and the algorithm is essentially a random search through all

labellings that will eventually find the global minimum. As T → 0 the mass of the distribution becomes

increasingly concentrated on the minimum energy label. It can therefore be seen that ICM is just a special

case of SA where the MRF is essentially frozen, yielding a local minimum close to the initial labelling.

The aim of this sampling with slow cooling (annealing) is to strike a balance between these two

extremes of computational expense and local optimization. The stochastic nature of the sampling process

allows the labelling, L, to hop out of local minima, while the annealing causes the energy gradient

to remain effective in gradually reducing the labelling energy towards what is hoped to be the global

minimum.

In the implementation used here pixels are updated sequentially, in raster scan order, and the cooling

schedule is given by

T tn =
(

exp
(
tmax − t
0.3tmax

)
− 1
)
· 80

exp(1/0.3)
. (5.3)

where T tn is the temperature at time (or iteration) t, on a normalized scale described in appendix B, and

tmax is the number of iterations used. In addition, samples are drawn by computing each conditional

distribution in its entirety, then sampling randomly from this, rather than using the traditional Metropolis

algorithm2 [MRR+53] approach; the reason for this is discussed in appendix B.

After tmax iterations, Raster ICM is applied to the solution to ensure that the final solution is at a

local minimum. The labelling is initialized to a random solution drawn from a uniform distribution over

all labellings.

5.2.2 Iterated local search

ILS [LMS02] is a relatively new optimizer to the field of Computer Vision, introduced in 2006 by Cordón

& Damas [CD06] for image registration, and Woodford et al. [WRTF06] for NVS, though a similar idea

based around a genetic algorithm was presented for image restoration [HD91] in 1991.

At its core, ILS makes use of any local optimizer which finds a local minimum labelling, L∗, deter-

ministically, given an initial labelling, L. For example, in this work I will be using Raster ICM. Such a

function reduces many labellings to the same local minimum labelling, therefore the space of local min-

imum labellings, L∗, is much smaller than the space of all labellings, L, as well as having a considerably
2The Metropolis algorithm is an example of Monte Carlo (MC) sampling in which a value, l, is proposed for a given label,

L(x), and accepted with probability min(exp((e− e′)/T), 1), where e = E(L|I1, .., IN) and e′ = E({L(X\x), l}|I1, .., IN).

5.2.2.1 Kicks 81

lower average cost per labelling. The approach of ILS is to search the former space, in contrast to SA,

which traverses the larger latter space.

The aim of ILS is to search the space of L∗ locally, in a pseudo-gradient-descent manner. Since

the gradient of this space cannot be computed easily, random steps are made and accepted only if they

turn out to be downhill steps. The steps are made by stochastically perturbing, or “kicking”, the current

solution. The full algorithm is described in pseudo-code below.

ITERATEDLOCALSEARCH

1 L0 ← GENERATEINITALSOLUTION

2 L∗0 ← LOCALSEARCH(L0)

3 repeat

4 L1 ← KICK(L∗0) � Perturb the current labelling

5 L∗1 ← LOCALSEARCH(L1) � Locally minimize the perturbed labelling

6 L∗0 ← LOWESTENERGY(L∗0, L
∗
1) � Select the lowest energy labelling

7 until termination condition met

8 return L∗0

For the purposes of this work the termination condition is met when the total energy decrease over the

last five iterations is less than 0.001%. As with ICM, the labelling is initialized to the ML solution.

5.2.2.1 Kicks

The kick plays a pivotal role in the efficiency of ILS. A good kick heuristic should perturb the labelling

far enough to be in the convergence basin of a new local minimum, but not so far that it is effectively

randomly restarting the algorithm, and in a direction that is likely to lead to a lower energy minimum. In

this work I compare and combine two different kicks, as follows.

Blowtorching: This kick perturbs labels by sampling them simultaneously from the same distri-

bution as used by SA, defined in equation 5.2. However, a high temperature, T = 100 log(
∑

x

∑
l

exp(−Ep(x, l))/(NL · |X |)), is used, for one iteration only, and, in order to reduce computation, only

pixel labels deemed to be incorrect are perturbed. Candidate pixels for this process are chosen using the

FoE energy of equation 5.1, which provides an energy for each patch in an image—the 25% of pixels

whose average clique energies are greatest are selected, as demonstrated in figure 5.2(b & c), as these are

the least natural pixels (based on prior knowledge) in the image.

5.2.2.1 Kicks 82

(a) Current I∗0 (b) Etexture per pixel (c) Perturbed pixels

(d) Proposed I∗0 (e) Splice fragments (f) New I∗0

Figure 5.2: ILS with a blowtorch kick. This figure demonstrates one iteration of ILS, in particular
with a Blowtorch kick. (a) The current lowest energy output image, I∗0, a local minimum. (b) The current
image overlaid with the FoE energy, Etexture, contributed by each pixel. The FoE energy associated with
each clique is averaged over all the pixels in the clique. Greyscale indicates a lower energy; red indi-
cates a higher one. (c) The 25% of pixels with the highest FoE energy are perturbed by simultaneously
sampling from their conditional distributions, raised to a high temperature (i.e. almost uniform). The
other 75% of pixels are darkened for clarity. (d) The perturbed labelling is then optimized using Raster
ICM to find a new local minimum, which is the proposed I∗0 (with differences from (a) highlighted;
ellipse colour is purely for clarity). (e) Pixels with different labels between the current and proposed
labellings are found (dark pixels; light pixels show those pixels which share a clique with at least one
dark pixel) and segmented into fragments (not shown). Any fragments which produce a lower energy
with the proposed labelling (red pixels) are spliced into the current labelling, generating a new lowest
energy I∗0 (f).

Disparity smoothing: This kick leverages the fact that most artifacts in the ML images occur when

smooth surfaces are given incorrect disparity labels. Kicking the labelling to a smoother disparity solu-

tion will therefore stand a good chance of generating a lower energy local minimum. The smoothing is

achieved using a square, 2-d median filter on the labelling L∗0, with a filter side length which alternates

between 3 and 5 pixels long each iteration that this kick is used.

Combined: Combined ILS uses a Disparity smoothing kick for one iteration followed by a Blow-

5.2.2.2 Optimal splice 83

torching kick for one iteration, and so on.

5.2.2.2 Optimal splice

A consequence of both the kicks described above is that the differences between L∗0 and L∗1 (from line

6 of the ILS pseudo-code) tend to be fragmented, surrounded by areas of identical labelling. The lower

energy labelling of L∗0 and L∗1 is then used as the current solution, but it may be that for some fragments the

labelling L∗0 might be better, while for others L∗1 might be better, so the piecemeal approach to updating

misses an opportunity for further optimization—the good parts of the two solutions could be combined.

Two multi-label optimization approaches that combine pairs of solutions are genetic algorithms

(GA), e.g. [HD91], which randomly swap regions of labels between two labellings, and graph-cuts-

based fusion move approaches, e.g. [BVZ01], which select a label for each pixel from one of the two

input labellings such that the energy of the output labelling is minimized. The latter approach cannot

operate on the large cliques of the problem presented here, while the former approach does not guarantee

to lower the energy, so is not suitable for a gradient descent approach such as ILS. However, it is possible

to splice together regions of the two input labellings, similar to GA, while ensuring that the energy does

not increase, thus creating a fusion move approach, in a method I introduce here called “optimal splice”.

Continuing with the genetic metaphor, the genes to be spliced are the distinct fragments of differences

between L∗0 and L∗1. A fragment is defined to be the largest group of pixels, P , grown from a seed pixel,

for which L∗1(p) 6= L∗1(p),p ∈ P and all the pixels share a clique with at least one other pixel in

P , such that each of the fragments can be swapped between L∗0 and L∗1 independently. For fixed size

neighbourhoods, as in this case, fragments can be segmented quickly using morphological operations on

the binary image, L∗0 6= L∗1.

The optimal splice is achieved by selecting for the output labelling each gene or fragment from

whichever of L∗0 and L∗1 generates the lower energy. The energy of a particular fragment, P , in a given

labelling, L, is defined by

E(L(P)) =
∑
p∈P

Ep(p, L(p)) +
∑
N∈NP

M∑
m=1

αm log
(

1 +
1
2

(
J>m
−−−−−−−−→
C(N , L(N))

)2
)
, (5.4)

where NP is the set of neighbourhoods which contain at least one pixel in the set P .

The function LOWESTENERGY in line 6 of the ILS pseudo-code is thus replaced with the new func-

5.3 Experiments and Results 84

tion, OPTIMALSPLICE, described in pseudo-code below.

OPTIMALSPLICE(L∗0, L
∗
1)

1 B← L∗0 6= L∗1

2 P← COMPUTEFRAGMENTS(B)

3 for each P ∈ P

4 if E(L∗0(P)) > E(L∗1(P))

5 L∗0(P)← L∗1(P)

6 return L∗0

It is important to note that if the two input labellings to OPTIMALSPLICE are local minima found

using ICM, no further local optimization is required on the output labelling, as it will also be a local

minimum. This results from the independence of the fragments—no changed fragment changes the

neighbourhood, and therefore the ‘local minimum’ status, of another fragment, and since all fragments

start as local minima in both labellings, they must also therefore end that way, regardless of how they are

swapped between labellings.3

One iteration of the ILS algorithm is illustrated in figure 5.2, using the Blowtorch kick as an example.

5.3 Experiments and Results

This section presents results comparing the performance of the various optimizers described, and the

quality of images generated using the parametric Field of Experts prior. The value of λd, the noise

parameter, used in these experiments was λd = 1/32N , selected using a visual evaluation of results

using Raster ICM and a range of values for λd, some of which are shown in figure 5.4.

5.3.1 Optimizer performance

All the optimizers described were run on the four test problems. SA was run for a range of values of

tmax. The results for final energy and time taken to render the image, averaged over the four sequences,

are shown in figure 5.3.

The first thing to notice is that the number of iterations, tmax, has a huge impact on the performance

of SA—tmax = 20 gives the highest energy of all methods and tmax = 500 gives the lowest, with energy
3Any splicing of fragments is therefore a local minimum. Optimal splice simply finds the lowest energy one possible.

5.3.1 Optimizer performance 85

Raster Greedy 20 50 100 200 500 Blowtorch Disp. smooth Combined

1

2

4

6

8

10

ICM SA (tmax) ILS

Energy

Time

Figure 5.3: Optimization results This bar graph shows the final energy achieved by each of the de-
scribed optimizers, with SA being run for a range of tmax, and also the time taken by each optimizer.
Results have been averaged over the four test problems. Both energy and time have been linearly nor-
malized so that the lowest and highest values in each case are transformed to 1 and 10 respectively, and
values are plotted on a log scale.

gradually decreasing in between, while time gradually increases over the same range, with tmax = 500

taking longest by some distance. Figure 5.5(b) shows the decrease in final energy with tmax across the

four test sequences. The rate of decrease in energy decreases as tmax increases, indicating that there is

a diminishing rate of return with each extra iteration. Figure 5.5(a) validates the method given in ap-

pendix B for setting temperature according to a normalized schedule, by showing that the desired and

achieved normalized temperatures closely match, after a period of ‘burn in’ during which the tempera-

tures are initially aligned. It also shows how the energy decreases over time, with the occasional increase

in energy hinting at the algorithm’s stochastic nature.

Returning to figure 5.3, it can be seen that Greedy ICM is both slower than Raster ICM (in fact, it

is almost six times slower), and also generates a higher energy on average; it does find a lower energy

for one of the four sequences. The message seems to be that the greedy approach leads to a different

local minimum, but one that is no more likely to be lower than using Raster ICM. Given that the latter

approach is much faster, it is the obvious choice for a local search algorithm in this application.

For the ILS approaches, the Disparity smoothing method is faster than the Blowtorch method, and

generates a lower energy. The Combined approach is comparable in speed to the Blowtorch method,

but generates the lowest energy of all three methods. Figure 5.6 gives ILS results for each of the test

sequences individually, and shows that the Disparity smoothing method converges in the fewest number

of iterations in all cases, indicating why it is faster. Whilst this approach generates a lower energy than

5.3.1 Optimizer performance 86

(a) λd = 1/N (a) λd = 1/32N (a) λd = 1/1024N

Figure 5.4: Varying λd . The effect of different values of λd, effectively varying the strength of the FoE
prior, on the Plant sequence, using Raster ICM for optimization.

0 100 200 300 400 500
0

20

40

60

80

100

Iteration

N
o
rm

al
iz

ed
 t

em
p
er

at
u
re

 /
 N

o
rm

al
iz

ed
 e

n
er

g
y

Energy

Target temperature

Achieved temperature

20 50 100 200 500
0

1

2

3

4

5

6

7

8

9

Total iterations

F
in

al
 e

n
er

g
y

 (
%

 >
 l

o
w

es
t)

Monkey

Plant

Dino1

Dino2

a b

Figure 5.5: SA quantitative results. (a) A graph showing desired and achieved temperatures, on the
normalized scale described in appendix B, at each iteration of SA carried out on the Plant sequence, with
tmax = 500. Also shown is the energy at the end of each iteration, normalized to the range [0, 100]. (b) A
graph showing the final energy achieved by SA against the number of iterations used, tmax, for each of
the four test sequences. The energy is shown as a percentage increase over the energy achieved with
tmax = 500.

Blowtorching on all but the Plant sequence, the Combined approach generates the lowest energy on all

sequences, combining, as it does, the benefits of both approaches, and it also converges faster than the

Blowtorch method on half the sequences.

5.3.2 Prior performance 87

0 5 10 15 20

1.455

1.46

1.465

1.47

x 10
5

Iteration

E
n

er
g

y

Blowtorching

Disparity smoothing

Combination

0 10 20 30 40 50

2.394

2.395

2.396

2.397

2.398

2.399

2.4

2.401

x 10
5

Iteration

E
n

er
g

y

Blowtorching

Disparity smoothing

Combination

(a) Monkey results (b) Plant results

0 5 10 15 20 25 30 35
8.06

8.08

8.1

8.12

8.14

8.16

8.18

8.2

8.22

8.24
x 10

4

Iteration

E
n

er
g

y

Blowtorching

Disparity smoothing

Combination

0 10 20 30 40

1.345

1.35

1.355

1.36

1.365

1.37

1.375

1.38

1.385

1.39

x 10
5

Iteration

E
n

er
g

y

Blowtorching

Disparity smoothing

Combination

(c) Dino1 results (d) Dino2 results

Figure 5.6: ILS quantitative results. Graphs of energy over time for each of the three ILS kick methods
on each of the four test sequences (a–d).

5.3.2 Prior performance

The performance of the prior is judged by generating output images for the four test sequences using

three of the optimizers: Raster ICM, Combined ILS and SA with tmax = 500. Quantitative results are

given in table 5.1. These indicate that the image quality improves when using Combined ILS over Raster

ICM, but then decreases by a greater amount when switching to SA (even though the latter produces a

lower energy solution).

The output images themselves tell a similar story. Figure 5.7 shows results for the Dino1 and Dino2

sequences. Of the Dino1 results, Combined ILS is the only one to fix the cabinet frame. On Dino2,

Raster ICM leaves many artifacts of a few pixels across (seen in the zoom), which Combined ILS is

5.3.2 Prior performance 88

Monkey Plant
εrms εge εrms εge

Raster ICM 5.26 0.93 12.65 9.21
Combined ILS 4.92 0.76 12.39 8.93
SA (tmax = 500) 7.11 2.53 15.01 11.36

Table 5.1: Rendering performance. A table of quantitative results for the quality of images rendered
for Monkey and Plant sequences.

able to correct, as shown in the zoom—the brickwork and outer arch are reconstructed much better, but

there are also larger, unnatural looking, horizontal and vertical edges. These unnatural edges occur more

frequently in the SA output, giving many diagonal discontinuity boundaries (where data cost distributions

tend to be multi-modal) a sawtooth appearance, and texture such as brickwork is also smoothed out.

While the result using Combined ILS for Dino1 looks good, the jagged edges on the bridge of the snout

and edge of the arch in Dino2 make that result look very unnatural.

For the Monkey sequence, shown in figure 5.8, Combined ILS again fixes a few small artifacts in

the image generated by Raster ICM, producing what is a pleasing result, save for the occlusion artifacts

under the monkey’s arm. SA finds a solution that smoothes over the texture of the monkey’s fur, as well

as background image under the monkey’s arm, but does so in a way that is difficult to spot at a glance.

It generates more visible artifacts in the black stitching on the monkey’s face. None of the approaches

reproduce the low contrast texture on the monkey’s face.

On the Plant sequence, shown in figure 5.9, the image rendered using Combined ILS corrects some

artifacts of the Raster ICM output (as shown in the zoom), but some of the leaf ‘ribs’ still contain gaps,

especially in the partially occluded region under the feathers, and the prior fails to reconstruct the stalk

to the left, and the low contrast texture of the baize background. The results using SA remove much of

the ribs of the leaves, making them more homogenous and highlighting the FoE prior’s preference for

textureless images. The zooms in figure 5.9 demonstrate the effectiveness of the Disparity smoothing

kick. Small artifacts caused by disparity errors in otherwise smooth areas are corrected by this kick,

removing the artifact and generating a lower prior energy. The approach encourages smooth surfaces,

thus implicitly encoding a geometry prior of sorts. In contrast, the result of SA generates surfaces that

are less smooth than those of Raster ICM.

5.3.2 Prior performance 89

Dino1 Dino2 Zoom of Dino2

R
as

te
rI

C
M

C
om

bi
ne

d
IL

S
SA

(t
m

ax
=

50
0)

Figure 5.7: Edmontosaurus results. Output images for the Dino1 and Dino2 sequences, with blue
ellipses in the Dino1 results and a zoom of the Dino2 results to highlight errors.

5.3.2 Prior performance 90

I∗0 Difference from ground truth
R

as
te

rI
C

M
C

om
bi

ne
d

IL
S

SA
(t

m
ax

=
50

0)

Figure 5.8: Monkey results. Output images and differences from ground truth for the Monkey sequence.
Some artifacts are highlighted symmetrically across output and difference images for clarity.

5.3.2 Prior performance 91

I∗0 Difference from ground truth Zooms of I∗0 and D

R
as

te
rI

C
M

C
om

bi
ne

d
IL

S
SA

(t
m

ax
=

50
0)

Figure 5.9: Plant results. Output images and differences from ground truth for the Plant sequence, with
a zoom of the output image, and the corresponding section of the disparity labelling. Some artifacts are
highlighted symmetrically across output and difference images for clarity.

5.4 Discussion 92

5.4 Discussion

There are three main points of interest which arise from the results. Firstly, that minimizing energy ‘too

much’ can actually reduce the quality of the images. This is, of course, very dependent on the value of

λd, which, given that it was set based on results produced using Raster ICM (a very local optimizer), was

certainly set too high in light of the results. However, it is also, I believe, a function of the form of the

prior, as discussed below.

The second point is that the prior prefers textureless, or homogenous,4 patches. This is highlighted in

figure 5.2(b)—the lower left leaf has a section of ‘rib’ missing, which the prior marks as likely because

it blends in with the rest of the leaf, while the correct part of the ribs (which are textured) are marked as

unlikely (high cost).

In fact, the FoE prior, as learned by Roth & Black [RB05], is a unimodal distribution with all homoge-

nous patches (and no others) at the mode. This can be shown as follows. Each expert is a t-distribution

on the response to a linear filter, which is a unimodal distribution whose mode is at zero. Any patch that

is orthogonal to the linear filter will generate a zero response, so be at the mode. Since these unimodal

distributions are multiplied together, if any patches are at the mode of every expert distribution they must

also be at the mode of the overall distribution, and, since each expert can only decrease moving away

from the mode, their product can only decrease also, therefore that distribution must itself be unimodal.

It now remains to be shown that homogenous patches are the only patches that are at the mode of

every expert. Roth & Black [RB05] learn zero-mean filters, i.e.

∑
i

Jm(i) = 0, ∀m ∈ {1, ..,M}. (5.5)

If H is a homogenous patch of intensity h, it then follows that

J>m
−→
H =

∑
i

Jm(i) · h = h
∑
i

Jm(i) = 0, (5.6)

therefore homogenous patches must be at the mode of every expert distribution. The reason one can

be sure that no other patches are is that rank([J1, ..,JM]) = 24 for the 25-d filters learnt by Roth &

Black [RB05], therefore only one linear set of patches can be orthogonal to all filters, which can only be

the linear set of homogenous patches.
4By homogenous I mean that every pixel in the patch has exactly the same colour.

5.5 Conclusion 93

Given that the prior encourages homogenous texture, in situations where there are two almost equally

photoconsistent colours for a given pixel the prior will choose that which makes the texture homogenous.

Such an effect is seen in the Plant sequence (figure 5.9), where the leaf ‘ribs’ are replaced with the colour

of the surrounding region. In this situation, a prior which gives the natural ribs a higher texture cost than

homogenous texture will always generate such errors when the difference in data costs between the two

colours is small, suggesting that the value of λd might have to be lowered to such a degree to stop this

that other, genuine artifacts would not fixed. By contrast, the multi-modal prior of the previous chapter

avoided this problem by making such patches equally likely. Appendix C describes a modification to

the prior model of equation 5.1, introduced in [WRTF06], that allows multi-modal distributions to be

modelled.

The final point of interest is that the prior aligns texture edges to the horizontal or vertical. If a

texture discontinuity must exist then the robust nature of the t-distribution kernel encourages it to cover

a smaller area, even if the resulting edge is of greater intensity. The reason for the aligned structure of

such sharp edges is that fewer n × n patches will overlap the edge in this formation than in any other,

reducing costs further. In the areas where this occurs, which tend to be partially occluded areas, the data

costs do not discourage it because there are two likely colours, one at the background disparity and one

at the foreground disparity.

5.5 Conclusion

This chapter has applied the general, parametric, Field of Experts prior to the task of NVS. In doing so it

has introduced a relatively new, large clique, MRF optimizer—Iterated Local Search, novel approaches

to perturbing the current solution, and a simple, deterministic method for fusing two solutions of a such

a problem which guarantees to not increase the energy. This and two other, standard, large clique MRF

optimizers were compared in the context of this problem.

The FoE prior was found to have two main drawbacks when applied to NVS: it can over-smooth

images, and it can generate unnatural looking, sawtooth edges. Using ILS with Disparity smoothing kicks

was found to mitigate these effects somewhat by finding solutions that are qualitatively more plausible,

albeit of a higher energy.

Chapter 6

Pairwise clique priors

The previous two chapters have investigated the performance of large, 5 × 5 clique priors, and shown

that such priors pose a challenge to optimize. This chapter marks a shift in the thesis towards lower order

priors, which can be optimized more readily.

This chapter details work on developing a pairwise image prior that operates on 2×1 image patches,

and can therefore leverage the power of global energy minimization approaches such as BP, TRW and

graph cuts, while still being able to distinguish natural texture from unnatural texture. Various priors will

be tested within a single optimization framework, therefore the optimization framework is introduced in

the first section, followed by the forms of pairwise prior to be tested in the second section. The final two

sections look at the NVS results using the various priors, and draw conclusions from these.

6.1 Optimization framework

The powerful optimizers mentioned operate on discrete labelling problems, so the original objective

energy of equation 2.12 once again undergoes a discretization, similar to equation 4.5, though the exact

mapping of label, L(x), to colour, I∗0 (x), and disparity,D(x), is different, and is discussed further below.

This problem is then stated as a sum over unary and pairwise cliques, which make up the data likelihood

6.1.1 Data likelihood 95

and prior terms respectively, thus:

E(I1, .., IN |L) = Ephoto(L|I1, .., IN) + Etexture(L), (6.1)

Ephoto(L|I1, .., IN) =
∑
x∈X0

φx(L(x)), (6.2)

Etexture(L) =
∑

{p,q}∈N

φpq(L(p), L(q)). (6.3)

In particular, in this problem the neighbourhoods, N, will be the set of all patches in the image with the

form {x,x + [0, 1]>}, {x,x + [1, 0]>}, {x,x + [1, 1]>} or {x,x + [1,−1]>}. This makes the problem

a regular 8-connected graph, pixels being connected to their eight immediate neighbours. The unary and

pairwise functionals, {φx}x∈X0 and {φpq}{p,q}∈N, are effectively 1-d and 2-d lookup tables that can be

precomputed from the respective data likelihood and prior terms, which are discussed below.

The objective function will be optimized using TRW-S [Kol06], an implementation of which is

publicly available [Kol05]. This algorithm has been shown to have leading performance on regularly

connected, low-level vision problems [SZS+08], along with α-expansion graph cuts [BVZ01], but it

additionally does not place any constraints on the form of energy, unlike the latter. TRW-S generates a

lower bound on the energy which is nondecreasing with each iteration, therefore the algorithm can be

terminated when this value is equal to the lowest energy found, as the solution that generates this energy

is a global optimum. If the algorithm has not converged after 100 iterations it is terminated, and the

current lowest energy solution output.

6.1.1 Data likelihood

Returning to the continuous problem over I∗0 and D, let us write Ephoto as

Ephoto(I1, .., IN |I∗0,D) = λd

∑
x∈X0

f(I∗0 (x), D(x)), (6.4)

f(I∗0 (x), D(x)) =
N∑
i=1

ρd (Ii (πi (x, D(x)))− I∗0 (x)) , (6.5)

where λd is a noise parameter and ρd(·) is the photoconsistency kernel which models the noise. Work

in previous chapters assumed that all surfaces were Lambertian and visible in all input views, which,

given the assumption of i.i.d. Gaussian noise, produced a kernel of ρd(∆I) = ‖∆I‖2. In this chapter,

6.1.2 Minimizing out disparity 96

following Strecha et al. [SFVG06], it is rather assumed that input samples are generated either by an in-

lier process—Lambertian reflectance from a visible surface—or by an outlier process, such as occlusion

or specular reflectance. Inliers follow the noise model, which is again taken to be i.i.d. Gaussian, while

outliers are assumed to come from a uniform distribution. A sample is determined to be an inlier or an

outlier according to which distribution maximizes its likelihood. This generates the robust, truncated

quadratic kernel:

ρd(∆I) = min
(
‖∆I‖2, κ

)
, (6.6)

where κ is a truncation threshold. The intention of using such a robust kernel is to not unduly penalize

the correct colour and disparity if it happens to be occluded in some, even a majority of the input images.

The threshold value chosen for the experiments is κ = 502c, where c is the number of colour channels.

6.1.2 Minimizing out disparity

The computational complexity of TRW-S for this problem isO(nM2), n being the number of pixels and

M being the number of labels per node. This quadratic dependence on the number of labels contrasts

with the linear dependence of previous optimization approaches used in this thesis, and generates a

need to reduce the number of labels as much as possible, in order to make the problem computationally

tractable.

A standard approach to reducing the number of labels is to take them to be the modes of a distribu-

tion [FWZ05, YC04], rather than regularly sampling a distribution. In this way the important parts of the

distribution are kept, while the redundant parts are removed.

The quadratic kernel used previously was convex, generating a single minimum over colour for

equation 6.5 at each disparity. The label space was discretized over disparity, using the cost minimizing

colour at each disparity, effectively generating the following overloaded cost function:

f(D(x)) = min
I
f(I,D(x)). (6.7)

Yao & Cham [YC04] used the modes of the above distribution in their NVS framework. Fitzgibbon et

al. [FWZ05] defined a different overloaded cost function, preferring to minimize out disparity, thus:

f(I∗0 (x)) = min
dmin<d<dmax

f(I∗0 (x), d), (6.8)

6.1.3 Finding colour modes 97

then found modes in the resulting R3 space (in the case of RGB colour). I follow this latter approach, for

several reasons:

• Disparity is not involved in the regularization, as the priors involved are image priors—

colour, by contrast, is. It is therefore more important for the labels to represent the distribu-

tion over colours well. Equally, if the same colour minimizes equation 6.5 at several values

of D(x) then choosing modes over disparity would generate redundancy in the label set.

• As the new photoconsistency kernel of equation 6.6 is concave, equation 6.5 can now have

several minima at different colours for a givenD(x), the less photoconsistent of which might

be more plausible in the context of the surrounding texture. It is therefore important to have

all these colours represented, rather than one per disparity.

• Fitzgibbon et al. [FWZ05] showed that there are far fewer modes over colour than over

disparity, for a convex kernel. Figure 6.1(b) demonstrates that this is also the case for the

truncated quadratic kernel used here. Therefore, in order to minimize the number of labels

generated it is preferable to use modes over colour.

In practice the disparity range searched over, (dmin, dmax), is discretized into a set of disparities, D, using

the discretization described in §4.2.1.3.

6.1.3 Finding colour modes

Fitzgibbon et al. [FWZ05] use gradient descent in RGB space to find the colour modes for each output

pixel, starting from 20 random colours, as shown in figure 6.2(a). As the truncated quadratic kernel used

here has zero gradient in the truncated region (equating to the region outside the outer-most iso-surface

in figure 6.2), many of the starting points do not move, hence generate random colour modes. A better

approach in this case is to start from 20 random input sample colours, as shown in figure 6.2(b), as these

points are guaranteed to be inside the non-truncated region. However, this does not overcome the main

drawbacks of this approach, which are its large computational burden1 and ability to miss modes.

In this section I introduce two novel contributions which allow the modes of the distribution to be

found both faster and completely reliably. The first is to develop a deterministic algorithm for extract-

ing all the modes of f(I∗0 (x)) given a suitable superset of colours—the modes of {f(I∗0 (x), d)}d—

1On today’s hardware, finding modes using this method takes 0.01–0.1 seconds per pixel.

6.1.3 Finding colour modes 98

a b

Figure 6.1: Data likelihood. (a) The Plant sequence ground truth image with a pixel highlighted (by the
cyan crosshairs). (b) A visualization of the data likelihood of the highlighted pixel from (a), computed as
exp(−f(I, d)), over disparity and the principal component of colour, computed from the input samples.
Also shown are the min-marginals (blue lines), obtained by minimizing out disparity and colour as per
equations 6.7 and 6.8 respectively.

a b c

Figure 6.2: Finding colour modes. Iso-surfaces of f(I∗0 (x)) in RGB space (top) for the pixel high-
lighted in figure 6.1(a), and the modes found (bottom), ordered in ascending order of cost, using the
following approaches: (a) gradient descent from 20 random starting points, (b) gradient descent from 20
random input samples, and (c) using the method introduced in §6.1.3. The location of modes in RGB
space are indicated by grey crosses, while the steps taken in the gradient descent approaches are indicated
by the black lines, with starting points circled.

6.1.3.1 Enumerating colour modes at each disparity 99

for any photoconsistency kernel, ρd(·). The second is to provide a means of finding every mode of

{f(I∗0 (x), d)}d for the truncated quadratic kernel.

Writing I for I∗0 (x), let I ′ be a mode of f(I). The requirement of a mode is

f(I ′) < f(I ′ + δI) (6.9)

for all sufficiently small δI ∈ R3. From equation 6.8 it is possible to define the disparity at which the

mode I ′ can be found, thus

d′ = argmin
d∈D

f(I ′, d). (6.10)

Consider that if

f(I ′, d′) ≥ f(I ′ + δI, d′), (6.11)

then equation 6.9 cannot be true. As a result, it can be seen that a colour mode over all depths has the

following properties:

[P1] It must necessarily be a colour mode of the disparity d′.

[P2] The disparity d′ must also be the disparity at which f(I ′, d) is lowest.

A deterministic method of finding colour modes is therefore:

1. For each discretized disparity di, enumerate all colour minima of f(I, di).

2. For each such minimum, denoted (I ′, di), reject it as a mode if f(I ′, di) > mind∈D f(I ′, d).

6.1.3.1 Enumerating colour modes at each disparity

The problem of enumerating all colour minima of f(I, d) at a given disparity, d, depends on the form

of the photoconsistency kernel, ρd(·). For example, a quadratic kernel is trivially shown to have a single

mode: the mean of input samples. This closed form computation means that modes over colour for this

kernel can be computed quickly and reliably using the algorithm described above. Indeed, the reliability

of this method in finding modes over colour depends only on the ability to find them first at each disparity.

It is therefore generally optimal for all convex kernels, which produce a single minimum at each depth,

as those modes can always be computed using a standard gradient-based optimizer.

6.1.3.1 Enumerating colour modes at each disparity 100

The kernel used here is concave, and can therefore generate multiple minima at each disparity. How-

ever, given a set of inlying input samples (i.e. samples in the quadratic region of the kernel), the cost

minimizing colour (a local minimum) can be computed as the mean of these samples. The test of a mode

for this particular kernel is therefore that the mode’s colour is the mean of the inlying input samples for

that colour. This is to say that a mode, I ′, for a pixel x at disparity d, satisfies

I ′ =
∑N

i=1 Ii (πi (x, d)) · [‖Ii (πi (x, d))− I ′‖2 < κ]∑N
i=1[‖Ii (πi (x, d))− I ′‖2 < κ]

. (6.12)

In previous work [WRTF07] the modes were found using an iterative, mean shift algorithm, starting

from the mean of every pair of input samples (i.e. N2 colours). However, it is possible for this method to

occasionally miss modes. To be sure of finding every mode, the approach used here is to test whether the

mean of a given subset of input samples is a mode, for every possible combination of input samples, i.e.

2N colours. While the complexity is now exponential in N , for the small number of input images used

here (4–6), computational cost is similar to the previous method. In addition the approach is not iterative,

and certain combinations of input samples are rejected prior to computing the mean and performing the

test of equation 6.12, using the methods described below.

Colour modes which have only one inlier (i.e.
∑n

k=1[‖Ii (πi (x, d)) − I ′‖2 < κ] = 1) exhibit no

consistency between input images. While they may provide the correct colour, this only occurs when

that colour is only ever visible in one view at most, which is rarely the case. Sample combinations with

fewer than two samples are therefore ignored.

The diameter of the convex portion of the truncated quadratic kernel in colour space is 2
√
κ. Any

pair of input samples further than this distance apart, i.e. for which

‖Ii (πi (x, d))− Ij (πj (x, d)) ‖2 > 22κ (6.13)

cannot therefore both be inliers of the same mode. All pairs which satisfy the above criterion can be

precomputed in O(N2) time, and sample combinations which contain any of these sample pairs can be

ignored.

6.1.4 Graph clique potentials 101

6.1.4 Graph clique potentials

The above procedure is used to find the modes of f(I∗0 (x)) for each pixel—the number of modes, and

therefore labels, will vary from pixel to pixel. The colour of each mode is stored in the colour data

structure, C, such that C(x, L(x)) returns the colour of the mode indicated by the label L(x) for pixel

x, and the output image, I∗0, is generated using equation 4.9.

Given the label colours, the graph clique potentials are cached for every combination of input labels

prior to solving equation 6.1 using TRW-S. Each entry in the unary potential tables is computed as

φx(L(x)) = λd min
d∈D

N∑
i=1

ρd(Ii (πi (x, d))− C(x, L(x))). (6.14)

Each potential in the pairwise potential tables is computed as

φpq(L(p), L(q)) = gpq(C(p, L(p)), C(q, L(q))). (6.15)

where gpq(·) is the cost function resulting from the pairwise image prior. The forms that this cost

function takes are the subject of the next section.

6.2 Pairwise prior functionals

This section describes the various pairwise prior functionals that will be investigated in the following

section. The first prior is a parametric, filter-based prior, while the following three priors are all non-

parametric, example-based priors, each using different exemplar libraries.

6.2.1 Parametric prior

The parametric prior used here models the sparse nature of the response to a derivative filter in images,

discussed in §3.3.1. I use the model proposed by Tappen et al. [TRF03], which gives each pairwise the

clique the same cost function,

g(I, J) = ‖I − J‖0.7. (6.16)

This prior, which is the only one to be tested that is not learned/constructed from the input image se-

quence, will be referred to as “Sparse”.

6.2.2 Non-parametric priors 102

6.2.2 Non-parametric priors

The non-parametric priors used are based on the distance-to-closest-exemplar models of [EL99, WL00,

CB04, FWZ05], generating the following cost function:

gpq(I, J) = min
T∈Tpq

‖
−→
T −

−−−→
{I, J}‖2, (6.17)

where Tpq is a patch library specific to the neighbourhood {p,q}. I use three types of patch library, as

follows.

6.2.2.1 Global library

The first set of patch libraries are created from the set of all patches in the input sequence with the same

shape as the output patch, as per [EL99, WL00, FWZ05]. Each of the four different neighbourhood

shapes therefore has an associated patch library, denoted T[0,1], etc. according to offset of the second

pixel from the first. The texture library for each clique functional, gpq(·), is then assigned as follows.

Tpq =

T[0,1] if p− q = [0, 1]>

T[1,0] if p− q = [1, 0]>

T[1,1] if p− q = [1, 1]>

T[1,−1] if p− q = [1,−1]>

(6.18)

This prior will be referred to as “Global”.

6.2.2.2 Local library

The second set of patch libraries are created from the set of all patches from constrained regions of the

input sequence which again have the same shape as the output patch. The regions are constrained to

those input image pixels around the epipolar lines cast by the two output pixels in the neighbourhood,

as illustrated in figure 6.3, in a similar fashion to the approach used in [CB04]. Specifically, for the

neighbourhood {p,q}, the corresponding constrained region in the ith input image is given by the set of

input image pixels which satisfy

min
d∈D

min (‖x− πi(p, d)‖∞, ‖x− πi(q, d)‖∞) < 0.5 + ϕ, (6.19)

6.2.2.2 Local library 103

Figure 6.3: Local and sampled patch libraries. The patch libraries Txx+[1,0]> , where x is the pixel
indicated in figure 6.1(a), for the Local and Sampled priors. The Local library, with ϕ = 3, consists of
all 2 × 1 patches in the coloured (i.e. non-greyscale) regions of the input images. The Sampled library
consists of all samples from the points indicated by conjoined black dots, which trace out the epipolar
lines of the two pixels in the neighbourhood. The libraries are a concatenation of libraries from individual
input images.

(a) Global patch library (b) Sampled patch library

Red Green Blue Red Green Blue

Figure 6.4: Patch library histograms. Representations of patch libraries Txx+[1,0]> , where x is the
pixel indicated in figure 6.1(a), for the (a) Global and (b) Sampled priors. The libraries are sets of 6-d
exemplars (in the case of RGB images) that are represented here by three 2-d histograms, one over each
colour channel—the intensities of the two pixels in each exemplar are represented along the vertical and
horizontal axes respectively. As Etexture is a function of the nearest exemplar, not the exemplar density,
the histograms are binary, with black indicating there is at least one exemplar at that location, white
otherwise.

6.2.2.3 Sampled library 104

where x is an input image pixel and ϕ is a scalar value controlling the dilation of the region. The prior

will be tested with ϕ = 0 (meaning that only patches which intersect an epipolar line are included), 1

and 3; as ϕ becomes larger, the patch libraries become more similar to those of the Global prior. This

prior will be referred to as “Local”.

6.2.2.3 Sampled library

The final set of patch libraries are created from the following set of colour samples:

Tpq = {{Ii(πi(p, d)), Ii(πi(q, d))}d∈D}Ni=1 (6.20)

Each sample point pair is a projection of a fronto-parallel output patch at some disparity into the input

sequence. The samples mark out the epipolar lines of the two output pixels, as shown in figure 6.3.

Unlike the previous two priors, this prior uses input image samples from non-integer locations, just like

the samples used to compute the colour modes—indeed, the samples are in fact the same. The projection

and sampling of output patches in input views to generate an exemplar library is a novel contribution of

this work. The resulting prior will be referred to as “Sampled”.

6.3 Experiments

In this section I detail the experiments performed to compare priors.

6.3.1 Sparse prior weight

A brief investigation into a suitable value for the objective function parameter λd (the data cost weight),

was carried out by computing results over a range of values, some of which are shown in figure 6.5.

What can be seen from this figure is that results for the Sampled prior (bottom row) are fairly stable over

λd. This is due to the multi-modal nature of the distribution modelled by the texture library, which aims

to give all patches a zero cost, such that the weight on this cost has no effect once this is achieved. The

effect is clearly demonstrated in figure 6.7(c), where all but the few pixels around rendering errors have

near zero cost. A value of λd = 1 was used for this prior and all other exemplar-based priors.

Results with the Sparse prior (top row of figure 6.5) are much more sensitive to noise because far

fewer patches (only those with uniform colour) generate zero cost, as can be seen in figure 6.7(b). The

6.3.2 Quantitative results 105

Values given
per output
pixel:

Prior com-
putation
time (ms)

Energy minim-
ization (% >
lower bound)

Monkey
εrms

Monkey
εge

Plant
εrms

Plant εge

Sparse 0.32 4.6× 10−4 5.79 1.41 13.05 9.43
Global 3100 0.0040 5.49 1.24 13.09 9.30
Local, ϕ = 0 2.9 0.078 5.73 1.28 13.83 9.94
Local, ϕ = 1 3.9 0.051 5.47 1.14 13.49 9.53
Local, ϕ = 3 7 0.022 5.49 1.17 13.16 9.29
Sampled 0.41 0.040 5.18 0.92 11.8 8.41

Table 6.1: Quantitative results. A table of quantitative results for all pairwise priors.

result is that too low weights can over-smooth the image, while too high weights will leave artifacts

uncorrected. A value of λd = 1/4 for the Sparse prior was found to strike a reasonable balance between

these two extremes. These weights were used in the remaining experiments.

6.3.2 Quantitative results

The four priors were compared on six quantitative measures: the time taken to cache all the prior term

costs, the energy of the solution found using TRW-S, given as a percentage increase over the lower bound

also found, and r.m.s. and gross pixel errors for the Monkey and Plant sequences. Where appropriate,

measures have been averaged over output pixels and across the four sequences. The results are shown in

table 6.1, with image quality results summarized by the bar chart of figure 6.6.

6.3.2.1 Computational performance

In terms of time taken to cache the prior clique energy tables, the parametric Sparse prior is fastest,

and the Global prior, which uses a very large exemplar library, is the slowest by between two and four

orders of magnitude; the other exemplar-based methods are slightly slower than Sparse, and decrease in

speed as the library size increases. TRW-S then takes around 0.55ms per pixel to optimize the resulting

problem for all of the priors, which is to be expected as the problems are all the same size. In terms of

minimization performance however, the Sparse prior energies generated are closest to their lower bounds,

and an order of magnitude better than the Global prior which follows. The remaining priors are another

order of magnitude worse than the Global prior, but all priors generate energies within a small fraction

of a percent of their lower bounds, indicating that TRW-S is capable of finding good minima on this

problem.

6.3.2.1 Computational performance 106

Sparse, λd = 4 Sparse, λd = 1/4 Sparse, λd = 1/128

Sampled, λd = 4 Sampled, λd = 1 Sampled, λd = 1/128

Figure 6.5: Prior weights. A range of values for λd were tested with the Sparse (top row) and Sampled
(bottom row) priors and the results compared, in order to select a reasonable value.

Monkey r.m.s. error Monkey gross errors (%) Plant r.m.s. error Plant gross errors (%)
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Sparse
Global
Local, ϕ = 0
Local, ϕ = 1
Local, ϕ = 3
Sampled

Figure 6.6: Normalized results. A visual representation of the quantitative image quality results from
table 6.1, linearly normalized so that the highest value in each category is 1.

6.3.3 Qualitative results 107

In terms of image quality, figure 6.6 shows that the Sampled prior performs considerably better than

the other priors at all four measures. The relative performance of the Local prior with different values of

ϕ is interesting. There is a trade-off to be had between having a library that is large enough to contain

the correct patch, but small enough to distinguish it from most other, wrong patches. On the Plant

sequence the results improve as ϕ increases, while on the Monkey sequence they peak at ϕ = 1. No real

conclusions can be drawn about the relative performance of the other priors.

6.3.3 Qualitative results

I will now look at the qualitative results, focussing on some particular areas of reconstruction.

6.3.3.1 Large scale errors

The local optimization algorithms of previous chapters struggled to fix large scale errors in the ML

images without the help of a multi-resolution strategy. Figure 6.7 shows results on a large scale error

(seen in (a))—the cabinet frame in the Dino1 sequence. Both the Sparse and Global priors fail to correct

the error, while the Local and Sampled priors succeed. As TRW-S is able to find good minima, one can

be reasonably sure that the artifacts are a result of the priors not being able to differentiate between the

correct and incorrect patches. The Sparse and Global priors do not have clique-specific prior functionals,

so the functionals must accept a wide variety of patches, including patches which will be wrong in a

given location, while the clique-specific Local and Sampled priors can afford to be more discriminative.

This effect can be seen in the texture library representations of figure 6.4, which show that the Sampled

prior library is much sparser, and will therefore apply a high cost to many more patches, than the Global

prior library.

The snout of the Dino2 sequence, shown in figure 6.8, is another area of large scale error. Again,

the clique-specific Local and Sampled priors perform much better, correctly reconstructing most of the

bridge of the snout. It is also interesting to note that the Sparse prior (B) generates a much more

piecewise-constant image, with fewer gradients, while the Global prior (A) generates an image with

sharper edges.

The Plant and Monkey sequences (figures 6.10 and 6.11 respectively) contain errors which only the

Sampled prior succeeds in fixing—the ‘ribs’ on the leaves of the former, and an area of fur in the upper

right corner of the zooms of the latter. A potential reason for this is that the output images, which

6.3.3.2 Occluded regions 108

are generated from bilinearly interpolated samples of input images, tend to have smoother gradients in

textured regions than the input images themselves. This effect can be seen by comparing the leaf and

feathers in figure 6.9(c & d). The Sampled prior, whose patch libraries are also generated from bilinearly

interpolated samples, will therefore match the correct patch well, while the Local prior libraries will

contain the less smooth input image patches, hence match less well. The Local prior will therefore tend

to discourage regions of high image gradient where a suitable, homogenous alternative (with reasonable

data likelihood) exists.

An area that all the priors, including Sampled, fail to reconstruct correctly is the stalk to the left of

the plant sequence, shown in zoom 2 of figure 6.10.

6.3.3.2 Occluded regions

A failure mode of all the image priors tested here is the reconstruction of texture in partially occluded

regions. An example of this is seen under the Monkey’s arm, in the zooms of figure 6.11—dark vertical

lines are filled in with the surrounding, lighter colour. Another example is seen on the leaf below the

blue feathers in Plant, in zoom 2 of figure 6.10—the pink ribs of the leaf are replaced by the surrounding

green colour in the partially occluded region.

Even with the robust, truncated quadratic photoconsistency kernel to reject outliers caused by, amongst

other things, occlusions (which has some effect, as discussed in §6.3.5) the correct colour has a cost suf-

ficiently high for it to be replaced by another colour with a lower cost, which will generally come from

outside the occluded region.

6.3.3.3 Textured regions

Another failure mode of this approach, which occurs with all priors, is the generation of artifacts in

textured regions. The low contrast, stochastic textures on the Monkey’s face (figure 6.11) and the baize

background of Plant (figure 6.10) are smoothed into a homogeneous region, lacking the original detail,

as shown by the zooms in figure 6.9. In the brickwork of the Dino2 sequence (zooms of figure 6.8),

which is higher contrast, regular texture, some of the mortar between bricks is lost.

Looking at the respective implicit disparity maps shown in figure 6.12 reveals that there are high

frequency changes in disparity in the regions of failure (most pronounced at the top left of the Plant

sequence (b)). One can be certain that the surfaces being reconstructed are in actual fact much smoother

6.3.4 Methods for finding modes 109

than this (indeed the baize of Plant and brickwork of Dino2 are planar), a fact which could be leveraged

to correct the errors through the additional use of a geometry smoothness prior.

The difficulty with incorporating both geometry and texture priors in the framework presented here

is memory use. One must store a separate edge cost matrix, φpq(·) for each clique {p,q}—in order

for these matrices to fit in memory each edge can have of the order of only 100 label combinations,

i.e. an average of 10 labels per node. This provides the potential for a few colour modes at each pixel,

but not enough for modes spaced densely over disparity (required for regularization of disparity). This

means, due to the computational expense required by TRW-S, one can only regularize over either depth

or colour, but currently not both.

6.3.4 Methods for finding modes

In §6.1.3 I introduced a new method for finding modes of data likelihood over colour. Figure 6.13(A &

B) shows a comparison of results using modes generated with this method, and also the gradient-descent-

based method of Fitzgibbon et al. [FWZ05]. Not only is the new approach 30 times faster (though the

code is more heavily optimized), but, because it finds all modes reliably, it does not suffer from the

pixelwise artifacts seen in (A), where the correct colour mode has been missed by the mode-finding

algorithm.

6.3.5 Robust photoconsistency kernel

In this chapter a robust photoconsistency kernel is introduced. The difference that the robust kernel

makes can be seen by comparing figure 6.13(B & C). Using the truncated quadratic kernel (C) generates

slightly fewer artifacts in partially occluded regions than the quadratic kernel. This is to be expected, as

the robust kernel truncates the effect of colour outliers generated by occlusions, not only allowing the

correct colour to be a mode, but also to have a low cost. However, the majority of partially occluded

regions are still incorrectly rendered, as discussed in §6.3.3.2.

6.4 Conclusion

This chapter has shown that the global energy minimization algorithm, TRW-S, is able fix large areas

of error that the local optimization algorithms of previous chapters failed to correct (in single resolution

6.4 Conclusion 110

frameworks). In doing so, it has compared the performance of standard pairwise parametric and non-

parametric image priors, and shown that the fact that powerful optimization techniques can, in practice,

only be applied to two-pixel patches poses a problem, as such small cliques tend to lack the ability to

distinguish between natural and unnatural texture, which is required for good regularization.

The discriminative power of example-based priors can be improved by restricting the training data

for the prior to local regions within the sequence. This improves the results and confers a further, con-

siderable speed advantage. I have shown how to construct a clique-specific patch dictionary that shows

leading edge results for a pairwise image prior, by sampling input images at the projected locations of

fronto-parallel patches from the output view. At first sight, such a library might simply appear to encode

the prior that 2-pixel cliques are fronto-parallel in the new view. However, at occlusion boundaries the

library contains examples of the transition across that boundary, permitting the correct, discontinuous (in

disparity space) reconstruction with a low cost, as seen in figure 6.7(c).

In addition, I have introduced a fast, reliable algorithm for enumerating all modes of data likelihood

over colour, even with the non-convex, truncated quadratic kernel.

Failure modes of all the priors, including the Sampled prior, are the occasional generation of artifacts

in occluded areas and on smooth, textured surfaces. It is believed that the incorporation of disparity

regularization could fix these, a problem which will be tackled in the next chapter.

6.4 Conclusion 111

(a) ML result (b) Etexture for Sparse prior (c) Etexture for Sampled prior

(d) Sparse (e) Global

(f) Local, ϕ = 1 (g) Sampled

Figure 6.7: Dino1 results. (a) The ML result for the Dino1 sequence, and the same image with values
of Etexture using the (b) Sparse and (c) Sampled priors superimposed—red is highest cost, greyscale is
lowest; a log scale is used, and ranges are different between (b) & (c). (d)–(g) Output using the four
pairwise priors on the Dino1 sequence.

6.4 Conclusion 112

(a) Global (A) Global zoom (B) Sparse zoom

(c) Local, ϕ = 1 (C) Local zoom (D) Sampled zoom

Figure 6.8: Dino2 results. Results on the Dino2 sequence for the remaining two priors not shown in
figure 6.5, and a zoom for all four priors.

(a) Ground truth (b) Sampled output (c) Ground truth (d) Sampled output

Figure 6.9: Texture loss. Examples of low contrast, stochastic texture in the (a) Monkey and (c) Plant
sequences, and their reconstructions ((b) & (d) respectively) using the Sampled prior.

6.4 Conclusion 113

Zoom 1 Zoom 2

Sp
ar

se
G

lo
ba

l
L

oc
al

,ϕ
=

3
Sa

m
pl

ed

Figure 6.10: Plant results. Results of all four pairwise priors on the Plant sequence, with two zooms
highlighting areas in which the priors perform differently.

6.4 Conclusion 114

Zoom
Difference of zoom
from ground truth

Sp
ar

se
G

lo
ba

l
L

oc
al

,ϕ
=

1
Sa

m
pl

ed

Figure 6.11: Monkey results. Results for all four pairwise priors on the Monkey sequence, with a zoom
and its difference from ground truth.

6.4 Conclusion 115

a b c

Figure 6.12: Implicit disparity. Implicit disparity maps, with each disparity value generated asD(x) =
argmind∈D f(I∗0 (x), d), for the (a) Monkey, (b) Plant and (c) Dino2 sequences.

(a) Modes found as per [FWZ05]

(c) Quadratic kernel

A

B

C

Figure 6.13: Modes and kernels. (a) Output using the Sampled prior on the Plant sequence, with modes
found using gradient descent as per [FWZ05], initialized from random input samples, which took 48ms
per pixel. (c) Output for the Sampled prior with a quadratic kernel, i.e. κ =∞. (A) A zoom of (a). (B) A
zoom of figure 6.10(d), with modes found using the deterministic approach introduced in §6.1.3, which
took 1.6ms per pixel. (C) A zoom of (c), with some differences from (B) highlighted.

Chapter 7

Regularizing geometry

In the previous chapters, I have investigated the use of image priors to regularize the NVS problem. This

chapter introduces regularization of the geometry of a scene to this framework, in the form of a prior

on the smoothness of the implicit disparity of an output image. In addition, I use the explicit model of

geometry to determine occluded pixels, and use this to reject the colour of occluded pixels as a factor in

the colour of each output pixel, rather than relying on the robust data likelihood kernel of chapter 6.

Smoothness priors have been used widely by the stereo community, and as such there has been much

research into forms of these priors, as well as the algorithms used to optimize the resulting objective func-

tions. Geometrical visibility reasoning has also been used, though to a lesser degree, due to the difficulty

in optimizing the resulting objective function. Some stereo algorithms have already been repurposed to

the task of backward transfer NVS, as discussed in §3.2.3.

In this work I take a recently introduced stereo algorithm [WQ05], which employs a general geo-

metrical occlusion model (i.e. no ordering constraint), and adapt it to the NVS domain, requiring that a

number of nontrivial problems be addressed. The primary contributions are 1) simultaneously solving

for depth and colour, with occlusion modelling, and 2) replacing the CRF with the efficient texture prior

introduced in the previous chapter. This is the first NVS method to use a general geometrical occlusion

model in a global optimization framework, and the first to combine this with a texture term.

The chapter proceeds as follows: in §7.1 I define the objective function to be optimized, which

incorporates regularization of smoothness and texture, as well as the geometrical occlusion model; §7.2

then describes the optimization algorithm developed to solve this problem; the final sections present and

evaluate the results, before concluding.

7.1 Objective function 117

7.1 Objective function

As with the previous approaches, I cast this problem into an energy minimization framework, with the

energy again defined at a high level by equation 2.12. In contrast to the previous chapter, however, I do

not minimize disparity out of the energy, but rather keep an explicit record of the scene geometry, in the

form of the disparity map, D, as per chapters 4 & 5. The disparity map is necessary for two reasons: it

is used to determine which input image samples are occluded, in the data likelihood term, and it is also

regularized by the prior term.

7.1.1 Data costs

As before, I assume that sampling noise is i.i.d. Gaussian noise. However, rather than assuming that there

are no outliers due to occlusions or specularities, as in chapters 4 & 5, or using a robust kernel to reject

outliers, as in chapter 6, I determine which input samples are occluded directly from the explicit disparity

map, D. A boolean indicator variable, Vi(x), indicates whether the output pixel x, when projected into

the ith input image at disparity D(x), is visible (Vi(x) = 1) or not (Vi(x) = 0).

The value of Vi(x) is computed using the asymmetrical occlusion model of Wei & Quan [WQ05]—

if there is another output pixel, p, which projects to the same point1 in Ii as pixel x, and for which the

projected depth is less than that of x then Vi(x) = 0. The depth of output pixel x in the coordinate frame

of Ii, which shall be written as Zi(x), is computed as

Zi(x) = Pi
3

x/D(x)

1/D(x)

1

 , (7.1)

where Pi
3 is the third row of the projection matrix P0→i, as defined in equation A.11. Therefore

Vi(x) = 1− max
p∈X0

[‖πi (x, D(x))− πi (p, D(p))‖∞ < 0.5] · [Zi(p) < Zi(x)] . (7.2)

Occluded input samples should not be included in the evaluation of photoconsistency cost as they

are not a noisy measure of the colour of the correct surface point. However, if there is no cost associated
1I define ‘same point’ to mean within half a pixel in both horizontal and vertical directions. This measure is an approxima-

tion, as a pixel’s projected footprint will vary according to its position and disparity. While a more accurate definition could be
employed, this one was found to work suitably well.

7.1.2 Prior term 118

with an occluded input sample then the objective energy will encourage occlusions where there are none,

as this has a lower cost; indeed, occlusions will be encouraged wherever the photoconsistency cost for

an input sample is higher than the occlusion cost. For this reason, occluded samples are given a penalty

cost, ν, and the photoconsistency cost is truncated to a value of κ or less, where κ < ν in order to avoid

encouraging occlusions. The data cost is therefore defined as

Ephoto(I1, .., IN |I∗0,D) = λd

∑
x∈X0

N∑
i=1

f (Ii (πi (x, D(x)))− I∗0 (x), Vi(x)) , (7.3)

f(∆I, V) = V · ρd(∆I) + (1− V) · ν, (7.4)

ρd(∆I) = min
(
‖∆I‖2, κ

)
. (7.5)

7.1.2 Prior term

Unlike the priors used in previous chapters, the one used in this chapter is a joint prior over both I∗0 and D.

It is a combination of a smoothness prior found in stereo algorithms, as described in §3.2, and the image

prior developed in the previous chapter. For reasons of optimizability (as with the previous chapter), the

prior will be first order, with cliques defined over all 2× 1 and 1× 2 patches in the image, thus

Eprior(I∗0,D) =
∑
x∈X0

φ({x,x + [1, 0]>},D, I∗0) + φ({x,x + [0, 1]>},D, I∗0), (7.6)

ignoring boundary effects. Following CRF-based stereo frameworks, the clique energy takes the form

φ({p,q},D, I∗0) = W (I∗0, {p,q}) · S(D(p), D(q)). (7.7)

The second term is the geometry regularization, or smoothness, term, which in this chapter is chosen to

be a truncated linear kernel on the first derivative of disparity, thus:

S(D(p), D(q)) = min (|D(p)−D(q)| , δs) , (7.8)

where δs is a discontinuity preserving threshold. The first term of equation 7.7 modulates the smoothness

term according to some function of the reference image, and is equivalent to the CRF terms of some stereo

methods, e.g. [BVZ01, KZG03, SZS03, SP07]. This generally discourages disparity discontinuities from

crossing areas of constant colour by aligning them with high image gradients. When I∗0 is fixed, as in

7.1.3 Computing colour 119

the case of stereo, this works well, but when I∗0 is strongly dependent on D, as in the case of NVS,

the disparity discontinuities themselves generally generate strong image gradients in I∗0, thus creating a

circular effect which reinforces the location of a discontinuity even if it is actually wrong. However, the

example-based image prior, “Sampled”, from the previous chapter can differentiate between plausible

and implausible strong image gradients, discouraging discontinuities only where they generate texture

not seen in the input sequence. This prior is therefore used as the modulating term here, thus:

W (I∗0, {p,q}) = 1 + λt min
(

min
T∈Tpq

‖
−→
T −

−−−−−−−→
I∗0 ({p,q})‖2, δt

)
, (7.9)

where Tpq is a patch library specific to the neighbourhood {p,q}, generated as described in the previous

chapter, and λt and δt are two model parameters.

7.1.3 Computing colour

NVS differs from stereo in that one is optimizing over both colour and disparity, as opposed to just

disparity, generating a continuous 4-d search space per pixel (disparity plus 3 colour channels). As with

previous chapters, to aid the optimization this space is discretized into a set of labels. As disparity plays

a key role in both the prior and data terms I use the discretization introduced in §4.2.1.3, generating a set

of labels spaced equally over disparity and inferring colour directly from the disparity; this also enables

the use of optimization frameworks commonly used in stereo. However, in contrast to those chapters, the

colour of pixel x is computed, again assuming i.i.d. Gaussian noise, as the mean of visible (as opposed

to all) input image samples, thus:

I∗0 (x) =
∑N

i=1 Vi(x)Ii (πi (x, D(x)))∑N
i=1 Vi(x)

. (7.10)

The value of I∗0 (x) computed above may not necessarily be that which minimizes equation 7.3, given

D(x), especially as Ephoto is already robust to outliers through the truncation term, κ. However, if one

assumes that all visible samples are a good match (i.e. inliers, as they should be for the correct solution),

then equation 7.10 will give the colour that minimizes theEphoto term; conversely, if some visible samples

are outliers (e.g. actually occluded) then this colour computation will increase Ephoto more than when

using the optimal colour. Therefore, equation 7.10 increases the importance of the visibility constraint.

Making colour a function of disparity allows the complete objective energy to be written in terms of

7.2 Optimization 120

Zi(x) := Pi
3

 x/D(x)
1/D(x)

1

Vi(x) := 1− max

p∈X0
[‖πi (x, D(x))− πi (p, D(p))‖∞ < 0.5] · [Zi(p) < Zi(x)]

I∗0 (x) :=
∑N

i=1 Vi(x)Ii (πi (x, D(x)))∑N
i=1 Vi(x)

ρd(∆I) := min
(
‖∆I‖2, κ

)
f(∆I, V) := V · ρd(∆I) + (1− V) · ν

Ephoto(I1, .., IN |D) := λd

∑
x∈X0

N∑
i=1

f (Ii (πi (x, D(x)))− I∗0 (x), Vi(x))

W (I∗0, {p,q}) := 1 + λt min
(

min
T∈Tpq

‖
−→
T −

−−−−−−−→
I∗0 ({p,q})‖2, δt

)
S(D(p), D(q)) := min (|D(p)−D(q)| , δs)

φ({p,q},D, I∗0) := W (I∗0, {p,q}) · S(D(p), D(q))

Esmooth(D) :=
∑
x∈X0

φ({x,x + [1, 0]>},D, I∗0) + φ({x,x + [0, 1]>},D, I∗0)

E(D|I1, .., IN) := Ephoto(I1, .., IN |D)︸ ︷︷ ︸
data likelihood

+ Esmooth(D)︸ ︷︷ ︸
smoothness cost

Figure 7.1: Energy function. The energy E(I∗0,D|I1, .., IN) can be minimized as a function of the new-
view disparity map, D—I∗0 and the latent visibility variables can written as a function of D and the input
variables. The term Eprior has been changed to Esmooth to indicate that the prior regularizes smoothness,
albeit weighted by a texture term.

D only, as shown in figure 7.1. However, the difference with this new energy is that colour is no longer

a precomputed property of the label, but is rather a function of the entire labelling.

7.2 Optimization

The previous chapters have shown that powerful optimization is key to extracting maximum benefit

from a given prior. The choice of optimizer in this chapter is governed by the desire to incorporate a

geometrical occlusion model into the objective energy. As Kolmogorov & Rother [KR06a] empirically

show, graph cuts outperforms other optimizers, such as TRW and BP, on the highly-connected graphs

generated by a geometrical occlusion model. Indeed, this is precisely the optimizer used in the stereo

7.2.1 Graph construction 121

approach [WQ05] on which this work is primarily based. For this reason, the optimization strategy

developed in this chapter uses QPBO (an extension of graph cuts) in a fusion moves approach.

The fusion moves [BVZ01, WRTF06, WS06, LRB07] approach to multilabel optimization is to re-

duce it to an iterative sequence of binary problems, each of which combines, or fuses, a proposal solution

with the current solution. The binary optimization must not increase the energy of the current solution,

thus guaranteeing that the energy monotonically decreases with each iteration. In the case that the binary

optimization is optimal [BVZ01, WS06], the final solution (after convergence) is assured of being less

than one fusion move from the global optimum. In the stereo framework, and indeed with the approach

presented here, the proposal label represents a fronto-parallel plane, Dp, which is fused with the current

disparity map, Dt, to generate a new disparity map Dt+1. This is achieved by taking each pixel in Dt+1

from either Dt or Dp, as controlled by a binary indicator image B with elements B(x):

Dt+1 = B · Dt + (1− B) · Dp, (7.11)

where dot indicates elementwise multiplication. Each iteration therefore becomes a question of solving

the following binary optimization problem:

B = argmin
B

E(B · Dt + (1− B) · Dp | I1, .., IN). (7.12)

7.2.1 Graph construction

This section details the graph cuts construction used to solve the binary optimization problem defined by

equation 7.12.

7.2.1.1 Incorporating visibility

Several graph-cuts-based stereo algorithms [KZ02, WQ05, BG07] have included geometrical visibility

reasoning. However, none of these algorithms has included nodes that explicitly represent the visibility

of each reference image pixel in each of the other views. In the case of NVS, the values of these variables

are necessary for computing the colour of each output pixel, so it is preferable to have visibility nodes

in the graph. Indeed, having visibility nodes actually simplifies the graph construction of [WQ05], as

figure 7.2 shows, removing the need for higher order cliques (and the resulting approximations) in the

construction. This section describes the construction introduced here, first in the context of a stereo

7.2.1.1 Incorporating visibility 122

problem.

When solving the binary optimization problem of equation 7.12, one can precompute all the possible

occlusions between all the pixels. For a given pixel, x, let Lx
ab be the list of pixels which occlude

pixel x at the disparity indicated by B(x) = a when their own disparities are indicated by B(Lx
ab) =

b. The data cost for pixel x, given by equation 7.4, is therefore only a function of the values of B

for the variables {x,Lx
00,Lx

01,Lx
10,Lx

11}; unfortunately this forms a clique of arbitrary size. Wei &

Quan [WQ05] notice that, by separating the data cost into two cliques, one for B(x) = 1 and one

for B(x) = 0, the cliques become smaller, though still arbitrary in size, containing only the variables

{x,Lx
00,Lx

01} and {x,Lx
10,Lx

11} respectively. Figure 7.2(b) gives an example of a four node clique

generated in this way, though [WQ05] actually make approximations to avoid cliques larger than size

three. The cost for one of these cliques is given by

φ1
xi(B({x,Lx

10,Lx
11})) =

0 if B(x) = 0

ν else if anyB(Lx
10) = 0

or any B(Lx
11) = 1

ρd (Ii (πi (x, Dt(x)))− I∗0 (x)) otherwise

(7.13)

What is apparent from the equation above is that there are only three possible costs, indicating that a

pairwise clique (which can model four costs) should be sufficient to model them. This can be achieved

by introducing a visibility node, V a
i (x), representing the visibility of pixel x at the disparity given by

B(x) = a projected into the ith input view, and replacing the middle condition with “else if V a
i (x) = 0”,

so that the costs above can be modelled by the black edges in figure 7.2(c).

The visibility node will automatically have value 1 (visible), as this offers the lowest cost. If a pixel

in {Lx
a0,Lx

a1} occludes it, let’s say pixel p in Lx
ab, then there must be an edge connecting nodes p and

V a
i (x) which has a high (> ν) cost if V a

i (x) = 1, B(p) = b and zero cost for other permutations. To

avoid this high cost, V a
i (x) = 0 when p (or any other pixel in {Lx

a0,Lx
a1}) occludes the corresponding

input sample, ensuring the occlusion cost, ν, is paid in the data cost edge instead. These visibility costs,

represented by the blue lines in figure 7.2(c), are therefore never paid, but enforce the occlusion constraint

described in §7.1.1. This construction is very similar to the large clique Potts model construction of

[KKT07].

This graph construction can generate non-submodular edges. If the pixel p (from above) is in Lx
a1,

7.2.1.2 Incorporating variable colour 123

p r sq

01 2

p r sq

la
be
ls

1 2 1 2

p r sq

(a) A simple stereo
problem

(b) Construction of [WQ05] (c) Construction introduced here

Figure 7.2: Stereo graph construction. (a) A simple, 2-d, binary label, stereo problem in which the
reference view (labelled 0) has four pixels (p–s), generating the four rays emanating from its optical
centre, and there are two other input views (1 & 2) with three pixels each. The current disparity map for
the reference image, Dt, is indicated by purple squares, while the proposal disparity map being fused, Dp,
which is fronto-parallel, is indicated by green squares. (b) A factor graph representation of the graph that
Wei & Quan [WQ05] would construct for the problem in (a), but for their approximations. The nodes
(circles) represent the binary label variables of the reference image pixels. Red lines connect nodes to
geometry regularizing factors, while black and blue lines, which represent data and occlusion interactions
respectively, connect nodes to data cost factors, one for each reference image pixel at each disparity (top
row for purple labels; bottom row, green) projected into each of the two other views (labelled 1 & 2 for
one pair of factors). (c) The construction introduced here for the problem in (a), in which the binary
visibility variable for each data cost is explicitly represented by a node (grey circles). Lines represent
pairwise factors (cliques), the colours indicating the purpose of each clique as before.

then only the state V a
i (x) = 1, B(p) = 1 has a high cost, breaking the submodularity constraint of

equation 3.2. If the values associated with either of the two labels are swapped (e.g. V a
i (x) = 1 is made

to mean occluded) to make the edge submodular, then edges generated by pixels in Lx
a1 immediately

become non-submodular. The construction of [WQ05] suffers from the same problem; they approximate

the energy to remove the non-submodularities. The approach used here is to leave the energy unchanged,

but employ QPBO instead of graph cuts to deal with the non-submodularity.

7.2.1.2 Incorporating variable colour

While the construction above works well for stereo problems, the NVS problem is somewhat more

complex—both the data costs of equation 7.3 and the smoothness costs of equation 7.6 are a function of

colour, which itself is a function of visibility. One approach to dealing with this, similar to that used by

Strecha et al. [SFVG04], is to use a two-step approach to the binary optimization of equation 7.12, first

optimizing disparity (and visibility) with the current colour, then updating colour using equation 7.10.

While similar to EM, the colour computation step can actually increase the energy, and the approach

suffers from the local optimality of EM. A preferable approach is to incorporate the variability of colour

7.2.1.2 Incorporating variable colour 124

directly into the QPBO graph construction, allowing a more optimal solution to be found at each iteration.

However, in taking this approach, all the good work in removing higher order cliques from the stereo

construction is negated by the reappearance of higher order cliques in the NVS construction, as shown

in figure 7.3(a)—data costs generate cliques of size 1 +N , while the smoothness prior generates cliques

of size 2 + 4N .

The solution developed here is to use a hybrid of the two-step and single graph approaches—where

possible, the variability of colour is modelled in the graph, and where the cliques are too large, the

colour of each pixel at each disparity is fixed to the value computed using visibilities generated in the

previous iteration (computed from Dt). Colours for all pixels are then updated at the end of the iteration,

based on the new visibilities (computed from Dt+1). A “too large” clique is deemed to be one that

cannot generally (without placing constraints on the clique energies) be converted to a set of pairwise

edges. Freedman et al. [FD05] suggest that this is the case for cliques above size three, but Kolmogorov

& Zabih [KZ04] give a decomposition which holds for any triple clique. They claim only that the

decomposition works for submodular triple cliques,2 so I show in figure 7.4 that the decomposition holds

for all cliques, albeit generating non-submodular pairwise cliques in some cases, but, as QPBO is being

used in the optimization, this is not of primary concern.

Limiting cliques to size three means that all data costs can be modelled exactly for N = 2. However,

if a visibility node has no occlusion constraint edges attached to it then its value cannot vary and it can

be removed from the graph, reducing the size of certain data cost cliques and hence allowing many to be

modelled exactly for N > 2, as shown in figure 7.3(b).

Let φaxij be the clique functional representing the data cost for B(x) = a, where V a
i (x) and V a

j (x)

both have the potential to vary. The entries of the energy table are given by

φaxij(B(x), V a
i (x), V a

j (x)) =

0 if B(x) = a∑N
k=1 f(Ik (πk (x, Dt(x)))− I∗0 (x), V a

k (x)) otherwise
(7.14)

where I∗0 (x) is computed separately for each combination of visibilities using equation 7.10. The pair-

wise cliques resulting from a single visibility having the potential to vary is constructed similarly.

It should be noted that the submodularity of these data cost cliques is not guaranteed, and also that

it is possible for an entry in the table representing one or two occlusions to generate a lower energy than
2A submodular triple clique is one which can be decomposed into a set submodular pairwise cliques.

7.2.1.2 Incorporating variable colour 125

aux

A B

DC
(a) Exact construction (b) Approximate soluble solution

Figure 7.3: NVS graph construction. Graph constructions similar to those in figure 7.2, but for a
two pixel new view with N = 3. (a) The higher order clique construction required to exactly solve
equation 7.12. Dashed lines represent higher order cliques which contain all the nodes encircled. The
smoothness term (red clique) depends on both the colour and disparity of each pixel in the neighbour-
hood, so is a function of all visibility and pixel disparity nodes (i.e. size 2 + 4N). The data costs (black
cliques) depend on the disparity of a particular node and the colour at the disparity being modelled,
which is a function of all visibility nodes of that pixel at that disparity (i.e. size 1 +N). (b) The soluble
approximation to (a), containing only pairwise cliques. Surface smoothness costs use a fixed approxima-
tion of pixel colour in equation 7.9, becoming a pairwise clique as in stereo. All visibility nodes with no
occlusion interactions can be removed as the image samples associated with those nodes will always be
visible, reducing some of the data cost cliques in size. Cliques of size 1, 2 and 3 are modelled exactly
using the graph structures in corners A, D and C respectively. In particular, the triple clique energy is
decomposed into 6 pairwise terms as described in [KZ04], which also generates an additional, latent
node, aux. Cliques of size 4 (corner B) or larger use a fixed approximation of pixel colour, generating
pairwise edges as in stereo.

+ + + + + =

+ + + + + =

B-D

0 0 0 0

F-H

0 0 0 0

0 0 0 0

0 0 0 0

E-F 0 0

G-H 0 0

0 0

0 0

0 0 0 0

0 0

0 0 0 0

0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0

C-A

0 0 0 0

C-A C-A C-A

G-E G-E G-E G-E

0 0 0 0

0 0 0 0

0 0

0 0

0 0

0 0

A 0 0

0 0 0 0

0 0

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

E-A

E-A

E-A

E-AF-B

F-B

F-B

F-B

B-A B-A

B-A B-A

D-C D-C

D-C D-C

A

A-π

A A

A A

A A

A A

A A

A-π

A-π A-π

π π

π π

π

π

π

π

A+
2π B+π

C+π

E+π

H+π

A

C

E

G

D

B

F

D

F

G H

B-D

F-H

B-D

F-H

B-D

F-H

C-G D-H

C-G D-H

C-G D-H

C-G D-H

E-F

G-H

E-F

G-H

E-F

G-H

H+πH+π

H+πH+π

H H

H H

H H

H H

H H

H H -π -π

-π -π

-π

-π

-π

-π

A-π B

D-π

F-π

A

C

E

C

B

E

D

F

G HH-
2πG-π

π ≥ 0 :

π < 0 :

π = (A + D + F + G)
- (B + C + E + H)

Add auxiliary variable, l Decompose clique
to 6 pairwise edges

using one of two
decompositions given
below, depending on :

j

i k

j

i k

l

Ei,j,k =

Ei,j,k(0,0,0) Ei,j,k(0,0,1)

Ei,j,k(0,1,0) Ei,j,k(0,1,1)

Ei,j,k(1,0,0) Ei,j,k(1,0,1)

Ei,j,k(1,1,0) Ei,j,k(1,1,1)

=

A B

C D

E F

G H

≡

A0 A1

C0 C1

E0 E1

G0 G1

B0 B1

D0 D1

F0 F1

H0 H1

min
l

l = 0 l = 1{ {

if X = min(X0, X1)

∀ X ∈ {A, B, C, D,
E, F, G, H}

Figure 7.4: Triple clique decomposition. Kolmogorov & Zabih [KZ04] show how a submodular triple
clique can be decomposed into 6 pairwise edges, with the addition of an extra, latent graph node. This
figure shows that their decomposition holds for non-submodular triple cliques also, by showing that the
resulting 4 variable energy tables for the two values of π satisfy the required constraint (in the red dashed
box) independent of the form of the input triple clique energy table.

7.2.2 Label fixing 126

the entry representing no occlusions. In the latter case, it is possible for a visibility node to be set to 0

when the associated image sample is not genuinely occluded, leading to the objective energy not being

correctly modelled. In the case that a visibility node, V a
i (x), has only one interacting pixel, say p, the

data cost clique can be connected directly to the nodeB(p) instead of V a
i (x), thus avoiding the problem.

However, in the case that a visibility node has two or more interacting pixels the issue remains.

If, after the removal of unnecessary visibility nodes, some data costs generate cliques larger than

size three then the colour of I∗0 for the relevant pixels is fixed at its current value (based on visibilities

computed from Dt) and the data costs modelled using pairwise edges as per the stereo problem, with

energies given by equation 8.10. These cliques are submodular, and the attached visibility nodes cannot

be set to 0 without a genuine occlusion occurring.

Smoothness cliques are assumed to always be larger than size three, so the current colour approxi-

mation is automatically used in equation 7.9, generating a single pairwise edge for each prior neighbour-

hood. However, the smoothness modulating term of equation 7.9 has no guarantees on submodularity,

therefore these smoothness edges are not guaranteed to be submodular either.

7.2.2 Label fixing

The sections above describe the QPBO graph constructed to solve the binary optimization problem of

equation 7.12. It was noted that occlusion constraints, data cost triple cliques and even smoothness

constraints may generate non-submodular edges, as a result of which the binary labelling, B, output by

QPBO may contain some unlabelled nodes. These unlabelled nodes must be set to 0 or 1 in a postprocess-

ing step in order to generate Dt+1 using equation 7.11, and furthermore, in order to ensure convergence

of the algorithm, the labels should be chosen to ensure that E(Dt+1|I1, .., IN) ≤ E(Dt|I1, .., IN). This

section discusses the ways in which this label fixing can be done. Note that, while there are many more

nodes (e.g. visibility nodes) involved in the QPBO optimization, the aim is only to find the values of

B, i.e. the labels for the nodes corresponding to pixel disparities, so these are the only nodes whose la-

bels are fixed. When computing the energy of a labelling, the values of the visibility variables can be

computed directly from the disparity using equation 7.2.

There are several approaches to fixing labels that have already been proposed in the literature.

QPBO-F Fix to current [WRTF07]: fix unlabelled nodes to 1, the current best labelling.

QPBO-L Lowest energy label [LRB07]: fix unlabelled nodes collectively to whichever of 0 or 1

7.2.2 Label fixing 127

gives the lowest energy.

QPBOP Probe: probe the graph, as described in [BHT06, RKLS07], in order to find the labels

of more nodes, that form part of an optimal solution.

QPBOI-F Fix to current and improve: fix unlabelled nodes to 1, and transform this labelling using

QPBOI [RKLS07].

I introduce two new approaches to label fixing which are based on the optimal splice technique of

§5.2.2.2. That technique split the two labellings into independent regions, and independently selected

the label, 0 or 1, which gave the lowest energy for each region. The unlabelled nodes of B can similarly

be split into independent regions, growing each region from a seed unlabelled node by adding all nodes

that share a clique with the seed node, then repeating the process for all new unlabelled nodes in the

region, and so on. Given an ordered list of cliques containing ordered node indices this process can be

achieved inO(|B|) (i.e. linear) time. A looser constraint than regions being independent is regions being

strongly connected. Nodes in two different strongly connected regions (SCRs) can share a clique, but the

dependence between the two regions can only be unidirectional; in practice (in this application) SCRs are

almost always independent. This is relevant because the SCRs can be computed in O(|B|) time [BJ89]

without the ordering preprocess, making them an efficient approximation to independent regions. The

two new approaches to fixing labels are therefore:

QPBO-R Lowest cost label per region: split unlabelled nodes into SCRs, as per [BJ89]. For each

SCR, independently select the labelling, 0 or 1, which gives the lowest total energy for

cliques connected to that region.

QPBOI-R Improve lowest cost label per region: Label nodes as per QPBO-R, then use QPBOI to

transform this labelling.

All the described methods ensure convergence, because they are all guaranteed3 to have an equal or

lower energy than the output of QPBO-F, which is itself guaranteed not to increase the energy as a result

of the autarky property described in §3.1.2.
3In fact the approximation of independent regions with SCRs used here can theoretically lead to an increase in energy, but

only a small one, and this has proved extremely rare in practice.

7.2.3 Implementation details 128

7.2.3 Implementation details

The disparity proposals, Dp, for each fusion move are fronto-parallel planes, as per [WQ05]. Doing

so not only keeps the smoothness costs (ignoring the modulation term) submodular [BJ01], but also

reduces the number of non-submodular visibility constraints [WQ05]. The disparities of these fronto-

parallel planes are discretized as described in §4.2.1.3. Each cycle of the optimization algorithm fuses

each of the NL proposals to the current solution once, in order, from front to back (dmax to dmin). The

reason for the ordering is that it improves the quality of the fixed colour approximation introduced in

§7.2.1.2 by allowing occluding pixels to be fixed first so that the visibility variables are more accurate

for the occluded pixels which follow.

The algorithm runs through three complete cycles over disparity only, rather than stopping at con-

vergence. The reason for this is that convergence is not guaranteed as updating colour can increase the

energy. Three cycles are chosen simply because most details are fixed at this point, and to continue would

provide diminishing returns. In addition, the first cycle through disparity does not use any visibility rea-

soning in computing Ephoto, i.e. Vi(x) is assumed to be 1 in equation 7.3, though it is used to update

colour. The visibility reasoning adds considerable complexity to the graphs solved in equation 7.12,

increasing the number of unlabelled nodes returned by QPBO, leading to poor minima being reached.

Initially removing the visibility reasoning allows a reasonable intermediate solution to be generated,

from which to start optimization of the true objective function.

The various parameters of the energy function given in figure 7.1 are made to be functions of the

sequence-dependent variables N , c (number of colour channels) and d (the difference in disparity be-

tween consecutive disparity labels), with a view to making them invariant to these values. The constant

values in these functions, which are fixed for all experiments, were chosen after a coarse grid search over

parameter space and qualitative inspection of the results, giving the parameter values in table 7.1.

I use Kolmogorov’s [Kol07] implementations of QPBO, QPBOP and QPBOI, which use a max-flow

algorithm described in [BK04]. Both QPBOP and QPBOI methods make use of tree-recycling [KT05]

for a fast implementation; the number of graph solves is at most linear in the number of unlabelled nodes

for QPBOI, but exponential for QPBOP, though it should be noted that QPBOP labels nodes optimally,

rather than approximately, as with QPBOI.

7.3 Experiments 129

Parameter κ ν δs λd δt λt

Value c(12.5N/(N − 1))2 κ+ 1 1.9d 10δs/κN 5000c 6/δt

Table 7.1: Parameter settings. Values of the constant parameters in the objective function, where c is
the number of colour channels in the input sequence, and d is the constant disparity spacing between the
discrete proposal depths, which varies between input sequences.

QPBO-F QPBO-L QPBOI-F QPBOP QPBO-R QPBOI-R

Monkey
Time (s) 391 363 373 523 364 374
Energy 6.3 2.9 3.1 0 1.3 0.4

Plant
Time (s) 1407 1368 1288 5115 1326 1236
Energy 5.0 5.5 2.0 0 4.8 2.9

Dino1
Time (s) 232 233 234 1464 232 246
Energy 2.0 1.3 0.4 0 0.9 0.076

Dino2
Time (s) 562 569 571 n/a 576 601
Energy 1.4 1.7 0 n/a 0.80 1.0

Table 7.2: Label fixing methods. Quantitative results for the label fixing methods described in §7.2.2
on the four test sequences. The methods were evaluated on the time taken to generate an output image,
and the energy of the final solution, given as a percentage increase above the lowest energy for each
particular sequence. Results for QPBOP on the Dino2 sequence are not available as the computation
takes too long.

7.3 Experiments

This section examines the impact of the contributions made in this chapter.

7.3.1 Label fixing methods

Each of the label fixing methods described in §7.2.2 was used to render each of the four test sequences.

Table 7.2 gives the quantitative performance of these algorithms, in terms of the time taken4 and the

energy achieved. From the results it is clear that QPBOP takes the longest time by some considerable

margin—one of the runs did not even finish—but also generates the lowest energy. This is to be expected,

as it finds the globally optimal solution of each binary problem, but requires a number of re-solves of the

graph exponential in the number of unlabelled nodes. However, it should be noted that generating a lower

energy in each binary optimization does not guarantee a lower final energy; a lower energy intermediate

solution can lead to a higher energy local minimum of the multi-label problem. For example, for Dino2,

QPBO-F generates a lower energy than QPBO-L, despite the latter being guaranteed to find an equal or

lower energy than the former on a given binary problem.
4The time includes that time taken to sample input images, construct the binary graphs and solve them using QPBO, as well

as the post-processing label fixing step.

7.3.2 Qualitative performance 130

Apart from QPBOP, the other algorithms take approximately the same time to run. In terms of energy

minimizing performance, QPBO-F and QPBO-L perform worst on two sequences each, while QPBOI-F

and QPBOI-R perform best on two sequences each. However, QPBOI-R wins by a significant margin

on the Monkey sequence, and the “Improve” step of each binary optimization is guaranteed to start from

an equal or lower energy user-defined labelling than QPBOI-F. Given the trade-off between speed and

efficacy, QPBOI-R is chosen as the optimizer for all results shown.

7.3.2 Qualitative performance

Let us now look at the qualitative results generated using this framework, focussing on some particular

areas of reconstruction.

7.3.2.1 Large scale errors

Making use of a global optimizer, this framework is able to correct the “usual suspect” large scale errors

of the test sequences. Both the ‘ribs’ of the leaves, and the stalk are both correctly rendered in the Plant

sequence, as shown in figure 7.6. Figure 7.8 presents the output for the Dino1 and Dino2 sequences,

showing the cabinet frame of Dino1 (a), and also the bridge of the Edmontosaurus’s snout (c) (zoomed

in figure 7.13(C)) are both correctly rendered also, for the most part—the snout does contain some nicks.

7.3.2.2 Occluded regions

In partially occluded regions such as below the feathers in figure 7.6(Zoom 2) and under the monkey’s

arm in figure 7.5(Zoom 1), the occluded texture is reconstructed faithfully.

7.3.2.3 Fine details

A failure mode of this framework is the difficulty it has in aligning discontinuity boundaries in the

output disparity maps with the true disparity boundary around fine structural features. In this situation

artifacts, in the form of obviously incorrect edges, are generated, which only occur when using geometry

regularization. Examples of this include the monkey’s fur, as shown in figure 7.5(Zooms 1 & 2), and a

vertebra in Dino1, as shown figure 7.9(a & b). The issue is caused by the smoothness prior’s preference

for shorter discontinuity boundaries, which the texture term of equation 7.9 was incorporated into the

energy to overcome, so it may be that more optimal parameters could reduce the effect.

7.3.2.4 Textured regions 131

7.3.2.4 Textured regions

Regularizing geometry allows areas of texture that were poorly reconstructed by the image priors of pre-

vious chapters to be correctly reconstructed. By assigning all the brickwork of Dino2 the same disparity,

the mortar is rendered correctly, as shown in figure 7.9(c & d), while the high frequency detail of a

portion of the baize background of the Plant sequence is revealed by correctly assigning disparity to the

region, as shown in figure 7.13. Some detail of the fur on the monkey’s face (figure 7.5) is also revealed.

7.3.3 Incorporating visibility

In this chapter the decision was made to include a geometrical occlusion model in order to penalize

occlusions. The effect of this design choice is illustrated in figure 7.10, which shows the results on

the Plant sequence with and without the occlusion model, i.e. Vi(x) = 1 in equation 7.3 in the latter

case, though colour is still computed using the true value of Vi(x). Artifacts are highlighted in the

result generated without visibility reasoning (top left), which do not appear when visibility reasoning

is included. An inspection of the disparities, D, for the two results indicates that the artifacts result

from errors in the disparity map. These disparity errors generate more occlusions (bottom row)—by

discouraging occlusions, the visibility model reduces this kind of artifact.

However, in certain situations the wrong disparity will be chosen in order to avoid occlusions when

using visibility reasoning. An example of this is the reconstruction of the baize background of the Plant

sequence; it is correctly reconstructed, for the most part, without visibility reasoning, but with visibility

reasoning the cost of occlusions that would be generated by the stalk to the lower left of the image causes

a large section of the background to be given the wrong disparity, and hence smooth over the low contrast

texture of the baize.

7.3.4 Incorporating variable colour

A contribution of the work presented here has been to develop a means of incorporating the variability of

pixel’s colour, depending, as it does, not only on its own disparity, but also the disparity of other pixels

which may occlude it, into the binary graph solved in each fusion iteration, as described in §7.2.1.2. To

ascertain its impact I compare results with and without variable colour included in the graph, i.e. data

costs are based on the current I∗0 in the latter case.

7.3.4 Incorporating variable colour 132

I∗0 Difference from ground truth
Z

oo
m

1
Z

oo
m

2

Figure 7.5: Monkey results. Output image for the Monkey sequence, with zooms to highlight areas of
interest. The image has an r.m.s. error of 4.14, and 0.35% gross errors.

7.3.4 Incorporating variable colour 133

I∗0 Difference from ground truth
Z

oo
m

1
Z

oo
m

2

Figure 7.6: Plant results. Image and disparity output for the Plant sequence, with zooms to highlight
areas of interest. The image has an r.m.s. error of 9.77, and 6.47% gross errors.

7.3.4 Incorporating variable colour 134

(a) Ground truth (b) I∗0 (c) Diff. (a) & (b) (d) D

Figure 7.7: Texture reconstruction. A zoom of a section of baize in the Plant sequence, showing (a)
the ground truth texture, (b) the reconstructed texture and (c) its difference from the ground truth, and
finally (d) the reconstructed disparity of the zoomed region.

a

b c d

Figure 7.8: Edmontosaurus results. Output images, I∗0 (a & c) and disparities, D (b & d) for the Dino1
and Dino2 sequences respectively.

a b c d

Figure 7.9: Edmontosaurus zooms. Zooms of Dino1 I∗0 (a) and D (b), and Dino2 I∗0 (c) and D (d).

7.3.5 Incorporating texture regularization 135

Figure 7.11 demonstrates the qualitative effect of incorporating variable colour on the Monkey se-

quence with both two and four input images (N = 2 & N = 4 respectively). In the case of N = 2,

using the fixed colour approach (top left) generates many artifacts, while incorporating variable colour

(top right) generates a much improved image. However, by the time N = 4 (bottom row), the additional

complexity of the variable colour construction has a much less significant impact on image quality.

Figure 7.12 shows the quantitative effect of incorporating variable colour, in the form of graphs of en-

ergy and no. unlabelled pixels over time (in terms of iteration number), for the Monkey sequence images

shown in figure 7.11. The first loop through the discrete set of disparities does not incorporate visibility

constraints, therefore also does not incorporate variable colour, so the first NL iterations5 generate the

same result for both fixed and variable colour constructions. Interestingly, even though the graphs con-

tain some non-submodular edges at this stage, they do not generate any unlabelled nodes (figure 7.12(b

& d)). However, the energy can increase between iterations, as seen in figure 7.12(a & c), as I∗0 is updated

after each fusion.

AfterNL iterations, Ephoto is computed with visibility reasoning, causing the total energy to increase.

From this point on, for N = 2 (figure 7.12(a)) the energy decreases at a much faster rate for the variable

colour construction, despite it generating many more unlabelled nodes (figure 7.12(b)), while for N = 4

the energy and no. unlabelled nodes (figure 7.12(c & d)) are much more similar for the two constructions,

with the variable colour construction generating a slightly lower energy.

As the fixed colour approach updates disparity and colour alternately, it is prone to fall into local

minima where the current disparity matches the current colour, but the proposed disparity does not. The

variable colour approach, by updating disparity and colour simultaneously, does not get stuck in these

minima. It is known in stereo that there are fewer local minima of photoconsistency over disparity the

more input images there are [OK93], which explains why this impact of the variable colour construction

is more prominent for lower N .

7.3.5 Incorporating texture regularization

Equation 7.9 incorporates the pairwise image prior introduced in the previous chapter, in order to mod-

ulate Esmooth. Figure 7.13 demonstrates the effect of this design choice by comparing results generated

with this modulating term (C), with those generated using no modulation (a, A), and the CRF weight (b,
5The number of discrete disparities can change withN , as the maximum distance between samples in each new input image

is different for a fixed NL.

7.4 Conclusion 136

B) described in [KZ02]. Without modulation, discontinuity edges arrange themselves in order to mini-

mize photoconsistency, with no concern as to the visual quality of the edge itself. This generates very

obvious and unnaturally shaped edges, as seen in figure 7.13(A). Incorporating a modulation term com-

monly used in stereo does not improve matters, because it causes discontinuities to align themselves with

the very edges caused by the incorrect discontinuity in the first place. However, the “Sampled” image

prior is able to distinguish between likely and unlikely edges, allowing the reconstruction to correctly

set the discontinuity boundary at the edge of the Edmontosaurus’ snout, as shown in figure 7.13(C) and

figure 7.8(d).

7.4 Conclusion

This chapter has confirmed the common suggestion that graph-cut stereo methods can be applied to the

task of new-view synthesis. While straightforward in principle, this repurposing presents a number of

technical difficulties, the solutions to which are the main contributions of this chapter:

• It has shown how the asymmetrical occlusion model of [WQ05] can be constructed without

approximations, albeit generating non-submodular cliques.

• It has shown that the triple clique decomposition of [KZ04] is valid for non-submodular

cliques.

• It has shown how colour and disparity can be optimized simultaneously for NVS within the

fusion move framework.

• It has shown that the “Sampled” pairwise texture prior can be used to regularize disparity

discontinuity boundaries in place of the CRF terms used in stereo, which are not available

in NVS.

• It has introduced two new label fixing approaches for post-processing the output of QPBO.

The results demonstrate that an explicit disparity model with global, geometric occlusion reasoning can

correctly reconstruct texture in both unoccluded and partially occluded regions, and validate the design

choices and contributions made in this chapter.

7.4 Conclusion 137

With visibility constraint Without visibility constraint
I∗ 0

D
V

is
ib

ili
ty

Figure 7.10: Effect of the visibility constraint. First column: The output image, I∗0, disparity map, D,
and a map of the number of visible input samples per pixel (darker means fewer visible samples) for the
Plant sequence, with the visibility constraint. Second column: Equivalent results without the visibility
constraint, i.e. all samples are assumed to be visible when computing Ephoto. Artifacts are highlighted
in the output image (top right). Note that the colour update of equation 7.10 is still computed using
visibilities.

7.4 Conclusion 138

Fixed colour Variable colour

N
=

2
N

=
4

Figure 7.11: Incorporating variable colour. The columns show the effects of using fixed colour and
variable colour (as described in §7.2.1.2) on I∗0 for the Monkey sequence. Rows show results for N = 2
(top) and N = 4 (bottom).

7.4 Conclusion 139

10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5
x 10

7

Iteration

E
n

er
g

y

Fixed colour

Variable colour

10 20 30 40 50 60
0

20

40

60

80

100

Iteration

N
u
m

b
e
r

o
f

u
n
la

b
e
ll

e
d
 n

o
d
e
s

(%
)

Fixed colour

Variable colour

(a) Energy vs. iteration, N = 2 (b) No. unlabelled vs. iteration, N = 2

20 40 60 80 100
0

1

2

3

4

5

6

7
x 10

7

Iteration

E
n

er
g

y

Fixed colour

Variable colour

20 40 60 80 100
0

2

4

6

8

10

Iteration

N
u
m

b
e
r

o
f

u
n
la

b
e
ll

e
d
 n

o
d
e
s

(%
)

Fixed colour

Variable colour

(c) Energy vs. iteration, N = 4 (d) No. unlabelled vs. iteration, N = 4

Figure 7.12: Quantitative effect of incorporating variable colour. Graphs (a) & (b) show the effects
of using fixed colour and variable colour (as described in §7.2.1.2) on energy and no. unlabelled pixels
per iteration respectively, for the Monkey sequence with N = 2 (NL = 20). Graphs (c) & (d) show the
equivalent results for N = 4 (NL = 39). The fixed and variable colour methods are identical for the first
NL iterations, as visibility reasoning, and therefore variable colour, is not used in the optimizations of
these iterations, as discussed in §7.2.3.

7.4 Conclusion 140

(a) δt = 0 (b) CRF weight of [KZ02]

A B C

Figure 7.13: Effect of texture term. This figure shows the effect of changing the modulation of the
smoothness term, given by equation 7.9, on I∗0 of the Dino2 sequence. (a) The output using δt = 0, i.e. no
modulation. (b) The output replacing equation 7.9 with the CRF weight from [KZ02]. (A)–(C) Zooms
from (a), (b) and figure 7.8(b) respectively.

Chapter 8

Second order smoothness priors

This chapter looks at priors for forward transfer methods of new view synthesis (NVS)—those methods

which infer the geometry of the input views, and use this geometry to project the input views directly

into the output view. The problem posed here is therefore one of inferring the geometry of known views,

i.e. the dense stereo problem, and the priors assessed will be those that regularize geometry. Projecting

the depth-mapped input images into new views is also demonstrated.

The previous chapter investigated regularizing geometry in a graph-cuts-based framework with vis-

ibility reasoning, for a new view. In doing so it introduced several key tools than can be of use in the

original stereo problem also, namely the construction of triple cliques and an occlusion model consisting

only of pairwise cliques. This chapter uses this same framework for the stereo problem, but extends the

smoothness prior to a second order prior, which permits planar surfaces with zero cost. Such priors were

initially popular in the stereo literature, but quickly lost favour to the computationally more tractable first

order prior. The main contributions of this chapter are to show that such second order priors are not only

tractable, but generate better results.

The chapter is organized as follows: the objective function is defined in the first section, the optimiza-

tion framework is described in the following section, then follows an experiments section to evaluate the

disparity maps generated, followed by a section on using the disparity maps for forward transfer NVS,

and finally the conclusion.

8.1 Objective function 142

8.1 Objective function

In previous chapters the scene model has been S = {I∗0,D}, and priors have regularized either I∗0 or both

I∗0 and D together. The stereo problem is different from NVS because one is given a reference view, I0,

which is a noisy version of the output image, I∗0. In the previous chapter it was shown that incorporating

a variable I∗0 into a graph-cuts-based stereo framework creates several complications, resulting from the

need to have a joint prior, p(I∗0,D). The vast majority of stereo methods ([SFVG04] is a rare exception)

assume that I∗0 = I0 in order to avoid this problem, allowing the prior to take the form p(D|I0), creating a

CRF that regularizes only geometry. In this chapter I make the same approximating assumption, making

the scene model S = {I0,D}, and the objective energy a function of disparity only, thus

E(D|I0, .., IN) = Ephoto(I1, .., IN |I0,D) + Esmooth(D|I0). (8.1)

I will now define the constituent parts of this energy.

8.1.1 Data likelihood

The data likelihood term used here, including the occlusion model, is identical to that of the previous

chapter, save for the form of photoconsistency kernel given in equation 7.5, which is changed to

ρd(∆I) = − log
(

1 + exp
(
−‖∆I‖

2

σd

))
, (8.2)

where σd is a noise parameter. This kernel is also a robust measure of photoconsistency (with a maximum

value of zero), but is based on a contaminated Gaussian [Sze99].

8.1.2 Surface smoothness

The surface smoothness prior takes much the same form of the previous chapter, being a sum over a set

local neighbourhoods, N, of a smoothness cost, ρs, modulated by a CRF term, W , thus

Esmooth(D|I0) =
∑
N∈N

W (I0,N) · ρs(S(N ,D)). (8.3)

The CRF term modulates the smoothness term according to some function of the reference image, condi-

tioning smoothness on I0—this term is discussed further below. The function S : R|N | 7→ R is generally

8.1.3 CRF weights 143

a derivative of disparity. The commonly used first derivative is given by

S({p,q},D) = D(p)−D(q), (8.4)

N being the set of all 2×1 and 1×2 patches in the image. This derivative permits fronto-parallel surfaces

without penalty.

The assumption that surfaces in the scene are generally fronto-parallel is clearly false when one

considers that a rotation of viewpoint immediately changes the assumption. Instead it is preferable to

permit all planar surfaces without penalty, which can be achieved by using the second derivative of

disparity (see appendix A). The full second derivative consists of the derivatives dxx, dxy and dyy. While

numerical computation of the derivatives dxx and dyy leads to triple cliques, dxy leads to a quadruple

clique and is therefore ignored, with the effect that a slightly larger class of surfaces are unpenalized (see

appendix A). The second order prior used in this chapter is therefore defined as

S({p,q, r},D) = D(p)− 2D(q) +D(r), (8.5)

where the neighbourhoods,N = {p,q, r}, are from the set of all 3×1 and 1×3 patches in the reference

image.

The kernel placed on the derivative response is generally given by

ρs(s) = σs

(
min

(
|s|
σs
, 1
))γ

(8.6)

where γ = 1 or 2 and σs is a discontinuity preserving threshold, creating the truncated linear and trun-

cated quadratic kernels respectively.

8.1.3 CRF weights

The CRF weights W (I0,N) are set to encourage disparity edges to align with edges in the reference

image, I0. I use the method of Sun et al. [SZS03], and strengthen the smoothness constraint if the

pixels in N are part of the same segment of an over-segmentation of I∗0, encouraging discontinuities to

align with segment boundaries. Note that this contrasts with the segment-based stereo methods [TSK01,

BG04, HC04, KSK06, YWY+06, BG07], which force discontinuities to align with segment boundaries.

8.2 Optimization 144

aux

aux

a b

Figure 8.1: Graph construction. (a) The pairwise graph for the problem in figure 7.2(a), with the
visibility constraint construction (blue lines) introduced in the previous chapter, and a first order smooth-
ness prior (red lines). (b) The pairwise graph for the same problem, using a second order smoothness
prior which generates six edges and an extra node (labelled aux) per clique. Note, however, that one
smoothness edge (that edge between the two central nodes) is shared between neighbouring cliques. The
visibility construction has also been simplified by removing visibility nodes (grey) which have fewer
than two interacting pixels.

Here mean-shift [CM02, hs = 4 and hr = 5] is used to segment the reference image and one of two

weights is assigned to each neighbourhood, depending on whether or not it overlaps a segmentation

boundary. Precisely, if L is the map which assigns to each pixel its segmentation label, then

W (I0,N) =

λh if L(p) = L(q) ∀ p,q ∈ N

λl otherwise.
(8.7)

8.2 Optimization

The above definesE(D|I0, .., IN) as a function of a real-valued disparity image, D. This section describes

how I solve the following optimization problem:

D = argmin
D

E(D|I0, .., IN) (8.8)

In order to optimize the energy over the real-valued space, I follow the fusion move approach used in the

previous chapter, reducing it to a sequence of binary problems which fuse a proposal disparity map, Dp,

to the current estimate of the disparity, Dt, in an optimization problem given by equation 7.12.

8.2.1 Graph construction 145

8.2.1 Graph construction

The graph used to solve the binary optimization problem of equation 7.12 makes use of two contributions

from the previous chapter—the pairwise geometrical occlusion model, and the triple clique decomposi-

tion for non-submodular cliques. Figure 8.1(a) recalls the construction introduced in that chapter for

the simple stereo problem of figure 7.2(a), with the novel visibility nodes. As with the NVS problem,

visibility nodes with fewer than two interactions can be removed, with data costs being added either to

the unary cost of the relevant disparity node in the case of no interactions, or to an edge connecting said

disparity node to that of the interacting pixel in the case of one interaction. Figure 8.1(b) shows this sim-

plification, and also shows the pairwise decomposition (using the method of [KZ04], as per the previous

chapter) of the triple clique smoothness term of a second order prior.

There are three types of energy functional used in the graph: data cost, visibility constraint and

smoothness cliques. A data cost clique, φaxi, models the energy of equation 7.4 as follows

φaxi(B(x), V a
i (x)) =

0 if B(x) 6= a

ν else if V a
i (x) = 0

ρd (Ii (πi (x, d))− I0(x)) otherwise

(8.9)

d = (1−B(x)) ·Dp(x) +B(x) ·Dt(x). (8.10)

If ν > ρd(·) (which it is here) then the value of V a
i (x) will default to the lower energy state of 1. In order

to flip its state to 0 and ensure the occlusion cost is paid in the case of an occlusion, a visibility constraint

edge, φbapxi, for a pixel p which occludes V a
i (x) when B(p) = b must have the following costs:

φbapxi(B(p), V a
i (x)) =

Ω if B(p) = b and V a
i (x) = 1

0 otherwise
(8.11)

Ω > ν − ρd (Ii (πi (x, d))− I0(x)) . (8.12)

Note that the cost Ω is never actually paid. The entries of smoothness clique energy tables, which model

equation 8.3, are computed (for a second order prior, by way of example) as

φpqr(B(p) = p,B(q) = q,B(r) = r) = ρs

 p ·Dt(p) + (1− p) ·Dp(p)−
2q ·Dt(q)− 2(1− q) ·Dp(q)

+ r ·Dt(r) + (1− r) ·Dp(r)

 (8.13)

8.2.2 Proposal generation 146

Given that the proposal disparity maps, Dp, are general, no guarantees on the submodularity of this term

can be made, regardless of the order of the prior.

As the graph constructed is not guaranteed to be submodular the optimizer used here is again QPBO,

and the various label fixing strategies described in §7.2.2 are used and compared in §8.3.2.

8.2.2 Proposal generation

In α-expansion stereo methods [BVZ01, KZ02], as with the previous chapter, the proposal disparity at

each step is a fronto-parallel plane. As shown in [BVZ01], repeated fusion of these proposals leads to

a strong local optimum in the case of a first order prior. In the case of a second order prior, the nature

of these proposal disparity maps has a much larger effect on the generated disparity map, as shown

empirically in §8.3. As a result, I use a variety of schemes for generating the jth proposal disparity map

Dp
j , as follows:

SameUni Draw dj from a uniform distribution, and set Dp
j (x) = dj for all x, i.e. a fronto-parallel

plane at a random disparity.

SegPln Uses the ad hoc approach of segmentation-based methods [KSK06, YWY+06] to gen-

erate a set of piecewise-planar proposals, which are then cycled through continuously.

In this implementation, demonstrated in figure 8.2, the first stage of proposal genera-

tion involves a local window matching process [SS02] to generate an approximate (very

noisy) disparity map, by averaging the cost given by equation 8.2 over a pixel’s 5 × 5

neighbourhood, summed over input images, at a range of disparities, and selecting the

disparity which produces the lowest cost.

I then use two different image segmentation algorithms, one colour-based [CM02], and

one texture-based [FH04b], and 14 sets of parameters in total, to generate segmenta-

tions of I0, ranging from highly under-segmented to highly over-segmented. For each

segment in each segmentation, LO-RANSAC [CMO04] is used to find the plane that

produces the greatest number of inlying correspondences from the first stage (given a

suitable distance threshold), and set all the pixels in the segment to lie on that plane.

Smooth D
p
j (x) = (Dj(x+∆)+Dj(x−∆))/2, where ∆ = [0, 1] when j is odd, and ∆ = [1, 0]

when j is even.

8.2.3 Implementation details 147

Reference image Segmentations

Window matching output SegPln proposals

Figure 8.2: SegPln proposal generation. Top row: I0, and 3 of its 14 segmentations. Bottom row:
approximate disparity map from window matching, and 3 SegPln proposals generated by fitting planes
to each segment in the above segmentations.

These proposal methods represent the different approaches used by the main types of stereo algo-

rithms: the fronto-parallel proposals of SameUni are essentially those used at each iteration of an α-

expansion-based stereo algorithm (except drawn from a continuous, rather than discrete, space); SegPln

proposals are those used by segment-based algorithms; Smooth proposals, generated by a smoothing

operation on the current disparity map, can be viewed as a proxy for local methods such as gradient

descent. With QPBO-based fusion, one gains the benefits of all these algorithms—indeed, any stereo al-

gorithm available—without affecting the global optimum. For example, the SegPln proposals, the main

workhorse of our algorithm, are produced with a range of algorithms and parameter settings; in general

one can expect these disparity maps to be correct in some parts of the image, and for some parameter

settings, but that no settings can be found for which any algorithm works best. By fusing the proposals

in a well-defined energy minimization framework, the parameter sensitivity of these methods is turned

into an advantage: the algorithm selects the best parts from each proposal, at the pixel (as opposed to

segment) level.

8.2.3 Implementation details

Some further implementation notes will allow the reader to more accurately replicate this method.

The range of disparities searched over for a particular image sequence are normalized to [0, 1] prior

8.3 Experiments 148

to the evaluation of Esmooth, in order to make the objective function invariant to image baseline, camera

calibration and depth of field. The initial depth map, D0, is set to D0(x) = rand[0, 1] for each x

independently. Optimization is halted when the average decrease in energy over the last 20 iterations

drops below 0.01% of the current energy.

As the Smooth proposal only performs well when applying it to an approximately correct disparity

map, the proposal set is prefixed with two such disparity maps, generated from the fusion of the other two

proposal sets, followed by four iterations of smoothing, and this set is then repeated every six iterations.

The same parameter settings were used for all examples: ν = 0.01, σd = 30C, λl = 9N , λh =

108N , σs = 0.02, where C is the number of colour channels per input image. These settings were

obtained by visual evaluation of results on a small number of Middlebury images (although it must be

emphasized that they were not chosen with any reference to the Middlebury evaluation score) over a

range of parameter settings. The order of the prior was found not to change the relative performance of

parameter sets significantly.

8.3 Experiments

In this section I describe the experiments carried out to evaluate the efficacy of QPBO in optimizing

the non-submodular energy, the trade-offs of each of the QPBO labelling methods, the effect of using

different disparity proposals, and comparing the method presented, with its second-order prior, to the

same method with a first-order prior, and other, competing approaches to stereo through the Middlebury

evaluation framework [SS08]. Since no ground truth disparity is available for the sequences used up to

this point (for NVS), the experiments are carried out on some additional, Middlebury datasets [SS08],

shown in figure 8.3, for which ground truth disparity is available, as well as the Monkey and Plant

sequences. Each Middlebury sequence consists of two rectified views.

The optimization method used in each experiment is characterized by the order of the prior (“1op”

for first-order prior, etc.), the smoothness kernel (“linear” for γ = 1, “quadratic” for γ = 2), the set of

proposals, and the fusion strategy, e.g. “2op, linear, SameUni, QPBOI-R”, or “1op, quadratic, SegPln,

QPBOP”.

8.3 Experiments 149

Venus Teddy Cloth3

Figure 8.3: Middlebury sequences. The reference images for the three Middlebury sequences Venus,
Teddy and Cloth3, obtained from [SS08].

Linear kernel Quadratic kernel

Fi
rs

to
rd

er
pr

io
r

10
−2

10
0

10
2

0

1

2

3

4

5

6

7

8

Weight of prior

M
ea

n
no

. u
nl

ab
el

le
d

pi
xe

ls
 p

er
 fu

si
on

 (
%

)

SameUni
SegPln
Smooth

10
−2

10
0

10
2

0

1

2

3

4

5

6

7

8

Weight of prior

M
ea

n
no

. u
nl

ab
el

le
d

pi
xe

ls
 p

er
 fu

si
on

 (
%

)

SameUni
SegPln
Smooth

Se
co

nd
or

de
rp

ri
or

10
−2

10
0

10
2

0

5

10

15

20

25

Weight of prior

M
ea

n
no

. u
nl

ab
el

le
d

pi
xe

ls
 p

er
 fu

si
on

 (
%

)

SameUni
SegPln
Smooth

10
−2

10
0

10
2

0

10

20

30

40

50

60

70

Weight of prior

M
ea

n
no

. u
nl

ab
el

le
d

pi
xe

ls
 p

er
 fu

si
on

 (
%

)

SameUni
SegPln
Smooth

Figure 8.4: Unlabelled nodes. The average number of nodes unlabelled by QPBO across a range of
variables.

8.3.1 Number of unlabelled nodes 150

8.3.1 Number of unlabelled nodes

The aim of the first experiment was to determine whether optimization of the non-submodular pairwise

binary graph described in §8.2.1 (an NP-hard problem) was feasible using QPBO. The proportion of

pixels that are labelled by QPBO has a direct impact on the quality of the solution found—trivially, if no

nodes are labelled then (using QPBO-F) the final solution will be the same as the initial solution. It is

therefore important to have as many nodes labelled as possible.

I used QPBO-F in these experiments, but varied the proposal schemes, order of prior and prior kernel

to see what effect these had on the number of unlabelled nodes. I additionally varied the weight of the

prior term, Esmooth, with respect to the data term, Ephoto. The experiments were carried out on both the

Middlebury Teddy and Cones sequences [SS08], and results were averaged across both sequences and

the binary optimizations within each category.

Figure 8.4 shows the results of these experiments. When using the first order prior (top row) the

results are very similar for truncated linear and quadratic kernels, with <0.5% of nodes unlabelled with

SameUni proposals, around 2% with SegPln proposals and around 4% with Smooth proposals, with a

prior weight of 1 (i.e. the default weight). What is interesting, even surprising to note is the way each of

the proposal schemes affect the number of unlabelled nodes differently as the weight changes. Results

with a second order prior (bottom row) are significantly different. While the level of unlabelled nodes

for SameUni proposals remains in the order of 1%, SegPln proposals now generate the most unlabelled

nodes of the three proposal schemes, and significantly more than with a first order prior—over 20% with

a truncated linear kernel, and almost 70% with a truncated quadratic kernel. Additionally, variations

across prior weights are different again from those of the first order prior.

8.3.2 Comparison of label fixing strategies

With a relatively high number of unlabelled nodes when using a second order prior, it is clearly important

to try to fix them as effectively as possible. In the following experiments I again tested the six post-QPBO

labelling strategies described in §7.2.2, in the context of this problem. I used 2op, linear, and SegPln

settings as these give a level of unlabelled nodes that is high, but not prohibitively so (in the case of the

more costly strategies).

The first experiment involved trying all of the fusion strategies at each iteration, on exactly the same

binary optimization (the optimal labelling given by QPBOP was used to update D), and this was carried

8.3.2 Comparison of label fixing strategies 151

out on the Middlebury Teddy, Cones and Cloth3 sequences and the results concatenated. The speed of

the fusion strategy is important. Figure 8.5 shows (top) that QPBOP rapidly becomes several orders of

magnitude slower as the number of unlabelled pixels rises, while other methods show a more modest

increase over the same range; of these there is only a fractional difference in speed, though order of

fastest to slowest is consistently QPBO-F, QPBO-L, QPBO-R, QPBOI-F, QPBOI-R. Also important is

the energy reduction performance of each strategy—QPBOP, which gives an optimal solution, performs

best, while QPBO-F, with the simplest labelling strategy, is guaranteed to perform worst. Figure 8.5

also shows (bottom) how the other strategies perform relative to these two, by normalizing the energy

reduction between 0, representing the performance of QPBO-F, and 1, representing the performance

of QPBOP. The normalized energy reduction of the four remaining strategies were discretized into 20

equally sized bins, which (except the bin for 0–0.05) are shown in the stacked bar graph of figure 8.5.

The graph indicates that QPBOI-R achieves the largest energy reduction after QPBOP, based on it having

the largest mass towards the right of the graph.

The second experiment tested the performance of each strategy over an entire iterative optimization,

by running them individually until convergence on the same set of proposals. Table 8.1 shows the quanti-

tative results of this experiment on the Teddy sequence. In terms of performance, QPBOI-R registers the

lowest energy after QPBOP, in line with the previous experiment. In terms of time per fusion, QPBOP

is the slowest method by two orders of magnitude, but converges in the smallest number of iterations

and with the lowest average number of unlabelled nodes. The QPBOI methods are slower than the re-

maining methods, due to their costly graph resolving; however, QPBOI-F is more than twice as slow as

QPBOI-R, which was not predicted by the results of the previous experiment. This is most likely due

to its larger number of unlabelled nodes per fusion, which has a linear effect on the time taken to fix

unlabelled nodes—there is a trend for the methods which fix nodes better (i.e. generate lower energies)

to also generate fewer unlabelled nodes in successive iterations. QPBO-R is competitive with the other

non-QPBOI methods in terms of speed, while outputting a lower energy.

Considering the trade-off between time and efficacy, QPBOI-R was deemed the most suitable method

for this problem, and used in all further experiments save those involving a 2op quadratic prior—the

potentially high number of unlabelled pixels involved in the latter optimizations can make the QPBOI

method prohibitively expensive also, so QPBO-R was used in this case instead.

8.3.2 Comparison of label fixing strategies 152

QPBO-F QPBO-L QPBOI-F QPBOP QPBO-R QPBOI-R
Energy (% > QPBOP) 1.13 0.666 0.374 0 0.571 0.279
Fusion time (avg. secs.) 8.33 8.24 50.9 1680 9.77 17.3
No. iterations 42 44 45 37 42 42
Unlabelled (avg. %) 27.8 12.8 16.1 11.0 12.8 13.1

Table 8.1: Results of the various fusion strategies applied to the Teddy sequence using “2op, linear,
SegPln, QPBOI-R”.

5 10 15 20 25 30 35 40 45

10
1

10
2

10
3

10
4

No. unlabelled pixels (%)

F
u

si
o

n
 t

im
e

(s
)

QPBO−F

QPBO−L

QPBOI−F

QPBOP

QPBO−R

QPBOI−R

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

Normalized decrease in energy (0 = QPBO−F, 1 = QPBOP)

N
o

.
o

f
fu

si
o

n
s

(%
)

QPBO−L

QPBOI−F

QPBO−R

QPBOI−R

Figure 8.5: Label fixing. Top: Fusion times for individual binary optimizations with each of the six
label fixing methods of §7.2.2, plotted against number of unlabelled nodes. Bottom: A stacked histogram
of energy reduction performance for the four label fixing methods QPBO-L, QPBOI-F, QPBO-R and
QPBO-R, normalized between the performances of QPBO-F (0) and QPBOP (1).

8.3.3 Proposals 153

8.3.3 Proposals

In §8.2.2 three proposal schemes were introduced. Figure 8.6 demonstrates the effect of using these

proposals on the Venus sequence, under the various smoothness priors. The number in the bottom left

corner of each image is the number of fusion iterations used to generate that image (when the convergence

criterion was met). From these it can be seen that many more SameUni proposals (drawn from an

infinite set) are required before convergence, compared with the other approaches, making this a slower

approach. Also clear is that the output from the SameUni proposals is always piecewise-fronto-parallel,

regardless of the prior used, in spite of the fact that the lower energy final output of the Smooth proposals

(which incorporates the other two outputs) are only piecewise-fronto-parallel with the first order linear

prior, as one would expect. Since the disparity converges on a local minimum w.r.t. the fusion moves,

the moves themselves must create a convergence basin which includes only piecewise-fronto-parallel

solutions. Indeed, this can be seen to be the case when one considers the simple problem of figure 8.7—

given a fronto-parallel current solution and planar optimal solution, any intermediate solutions increase

the Esmooth cost, thereby creating an energy hump which cannot be overcome by any single fusion. This

suggests that the SameUni proposals are only suitable for use with a first order linear prior.

The output from SegPln proposals, with their planar segments which contain many small changes in

disparity instead of a few large ones, is forced to be as fronto-parallel as possible by the first order linear

prior, generating an output that is far from accurate. However, these proposals are favoured by both the

truncated quadratic first order prior and the two forms of second order prior, generating plausible results

that are incorporated into the output of the Smooth proposals also.

As well as combining the outputs from the SameUni and SegPln proposals, the Smooth proposals

also allow disparity gradient discontinuities to become smoother. This effect can be seen in figure 8.8,

in particular by comparing the output from the Smooth proposals (e) to pre-smoothed disparity (d), i.e.

fusion of SegPln and SameUni outputs, for the linear second order prior—gradient discontinuities (e.g.

top right & bottom centre of the surface) become more curved. What this shows is that the linear second

order prior, like the quadratic first and second order priors, does allow curved surfaces where the data

supports this, unlike the linear first order prior.

The success of both the SegPln and Smooth proposal schemes, in spite of occasionally high numbers

of unlabelled nodes, suggests that the optimization framework put forward here will work well with any

arbitrary proposals, and not just the three schemes put forward here as examples.

8.3.3 Proposals 154

SameUni SegPln Smooth

1o
p

lin
ea

r

185 40 22

1o
p

qu
ad

ra
tic

185 34 25

2o
p

lin
ea

r

185 37 24

2o
p

qu
ad

ra
tic

162 39 31

Figure 8.6: Venus results. Effect of proposals and the form of prior on D for the Venus sequence. The
number of fusions until convergence is shown in the bottom right corner of each image.

8.3.4 Comparison of priors 155

Current
solution

Optimal
solutionIntermediate solutions

0 0.5

0.5

0 0.5

0

0.5

0.5

0.5

pixels

la
be

ls

Ephoto

E = 1 + 0 E = 0.5 + 1 E = 0.5 + 2 E = 0 + 0

Figure 8.7: Energy hump. The current disparity estimate cannot move to the optimal disparity solution
with fronto-parallel proposals without going through one of the two intermediate solutions shown, but
these have a higher energy than the current solution. The current solution is therefore a local minimum
w.r.t. that form of proposal.

8.3.4 Comparison of priors

To evaluate the performance of second order priors it is important to compare their results with those of

first order priors, all generated using the same stereo framework presented here. Results with all four

forms of prior—1op linear, 1op quadratic, 2op linear and 2op quadratic—are given for three Middlebury

sequences: Venus (figure 8.6), Cloth3 (figure 8.8) and Teddy (figure 8.10).

The first thing to notice is that all results using a 1op linear prior are highly piecewise-fronto-parallel.

This results from the facts that the prior permits only fronto-parallel surfaces with zero cost, and that the

concave kernel prefers a large jump in disparity over many small ones, generating a highly unnatural

reconstruction.

The convex centre of the quadratic kernel overcomes this piecewise nature, preferring several smaller

jumps in disparity over a larger one. In the case of the first order prior this allows the generation of both

planar (figure 8.6) and curved surfaces (figure 8.8(b)). However, it should be noted that these non-fronto-

parallel surfaces must pay a smoothness cost, and this cost must be outweighed by the savings in data

cost of the surface over a fronto-parallel one. In the cases where the surfaces are not textured enough or

the surface gradient is too great the reconstruction inevitably reverts to piecewise fronto-parallel planes,

as shown in figures 8.9 and 8.11 respectively.

The second order prior can equally generate curved surfaces where the data costs favour this, but

additionally allows planar surfaces to be reconstructed in low texture and steep gradient regions, as seen

in figures 8.9 and 8.11, improving the results in these regions. The choice of kernel has a lesser impact

on second order priors (see figure 8.8), but the truncated linear kernel generates a more piecewise-planar

output than the quadratic kernel, which allows for slightly rougher surfaces at a fine scale. What is

8.3.4 Comparison of priors 156

(a) 1op linear (b) 1op quadratic

(c) 2op linear (d) 2op quadratic

(e) 2op linear pre-smooth (f) Ground truth (discretized)

Figure 8.8: Cloth3 results. Results for a region of the Middlebury Cloth3 sequence, displayed as a
shaded 3-d disparity surface.

8.3.4 Comparison of priors 157

1op quadratic SameUni 1op quadratic SegPln Ground truth disparity Reference image

1op linear Smooth 1op quadratic Smooth 2op linear Smooth 2op quadratic Smooth

Figure 8.9: Venus zooms. Zooms of the Venus sequence results, showing a textureless, slanted area that
the first order priors fail to reconstruct.

(a) Ground truth

(b) 2op linear no-vis

(c) Occlusions

(d) 1op linear

(f) 2op linear

(e) 1op quadratic

(g) 2op quadratic

Figure 8.10: Teddy results. Output disparities for the Teddy sequence.

8.3.4 Comparison of priors 158

Reference image Ground truth disparity

1op linear 1op quadratic

2op linear 2op quadratic

Figure 8.11: Teddy zooms. Zooms (stretched vertically) of the Teddy sequence results showing a highly
slanted, textured region which the first order priors fail to reconstruct.

0.5 1 1.5 2

5

10

15

20

Disparity error threshold

A
v

er
ag

e
n

o
.

p
ix

el
 e

rr
o

rs
 (

%
)

1op linear

1op quadratic

2op linear

2op quadratic

0.5 1 1.5 2
10

15

20

25

30

35

40

Disparity error threshold

A
v
er

ag
e

ra
n
k

1op linear

1op quadratic

2op linear

2op quadratic

Figure 8.12: Middlebury scores. Scores for different priors in the Middlebury stereo evaluation frame-
work.

noticeable with a truncated quadratic second order prior are that large scale artifacts can occur, e.g. to

the left of figure 8.10(g), due to problems in the optimization caused by the high number of unlabelled

pixels with this prior.

Figure 8.12 shows the quantitative results from the Middlebury evaluation framework for all com-

binations of smoothness prior order and kernel. Error rates at various error thresholds (left) show that

the 1op linear prior consistently performs worst, while the 2op linear prior performs best at all error

8.3.5 Visibility 159

thresholds save the lowest, at which 1op quadratic performs best—the performance of this latter prior

drops behind at higher thresholds due to the greater number of gross errors caused by the fronto-parallel

preference of the prior. The 2op quadratic prior is always a fixed distance behind the 1op linear prior, a

result of the extra gross errors caused by the optimization. Performance compared with other algorithms

(right) shows exactly the same in terms of the relative performance of the priors, but it also shows that,

while all priors perform worst at an error threshold of 1 (the default error threshold, which many algo-

rithms are tuned to perform well at), the performance of all priors but 1op linear improves more at lower

error thresholds than at higher ones, indicating their better sub-pixel accuracy in comparison to other

methods.

8.3.5 Visibility

Figure 8.10(c) highlights the benefits of a visibility constraint. It shows the visibility map for I1 of

Teddy—pixels deemed occluded according to the following disparity maps are painted (covering the

previous colour) in the following order: 2op linear prior without visibility constraint (b), red; 2op linear

prior with visibility constraint (f), blue; ground truth (a), black. Comparing numbers of red and blue

pixels one can see that the visibility constraint reduces the number of falsely occluded pixels—it essen-

tially encourages uniqueness of correspondences between input images. As unique correspondence is a

constraint on real-world scenes, incorporating such a constraint in a stereo framework produces better

results.

8.3.6 Multiple and arbitrary views

The formulation of our objective function allows for any number of input images to be used, and for

those images to have arbitrary viewpoints. This makes it suitable for generating disparity maps for NVS,

where there are generally multiple but arbitrarily placed input images are available. Results using the

2op linear prior are shown for two such sequences, Monkey and Plant, are shown in figure 8.13.

Figure 8.13(b) shows the output disparity for the image in (a), using only three input images. Having

this explicit geometry reconstruction allows the scene to be rendered from angles well outside the range

of the input images, as shown in (f). This can leave large holes where the scene was occluded in the

input view. In particular, the rendering in (f) shows that smooth, non-fronto-parallel surfaces such as the

leaves and even the nose of the toy have been faithfully reconstructed. There was little or no qualitative

8.4 NVS from stereo 160

improvement between N = 2 (shown) and N > 2, something I believe can be attributed to the fact that

three views are sufficient (in this case) to ensure that each pixel of I0 is visible in at least one other view.

However, should more views be required, figure 8.13(c), shows that, in practice, the time per fusion

iteration rises approximately linearly with N .

In contrast to the Plant sequence, the output disparity for the Monkey sequence, shown in fig-

ure 8.13(e) is highly fronto-parallel. This does not mean that a fronto-parallel solution is the lowest

energy solution possible—rather, it suggests that the other proposal schemes failed to generate more

likely proposals. Indeed, the highly textured nature of the monkey’s fur is not at all suited to the SegPln

scheme, which generates piecewise-planar solutions. It is possible that more advanced proposal schemes,

especially those that generate disparity maps using local optimization approaches (e.g. [SFVG04]), hence

find local optima which can then be fused, would generate better results. The current results do show that

fronto-parallel solutions do generate noticeable artifacts when rendered in a new view (e.g. the ledges

between different planes, visible to the right of the monkey’s head), underscoring the need for a second-

order prior.

8.4 NVS from stereo

Once disparity maps have been computed for every input image in a sequence, they can be used to

render new views of the scene. This section presents a simple approach for doing this, with a view to

demonstrating the quality of rendering achieved using a forward transfer approach with second order

smoothness priors. The rendering process is described below, followed by a presentation of the results

for the four test sequences.

8.4.1 Implementation details

A disparity map for each input image is computed using the framework described in §8.2, using the 2op

linear prior. The number of input images used (excluding the reference image) is the same as that used

for rendering output views, i.e. for the Monkey and Plant sequences N = 4, and for the Edmontosaurus

sequence N = 6.

The disparity maps define a regular surface mesh in 3-d space, which is triangulated and texture

mapped using the associated input image. Triangles that contain vertices that differ in disparity by more

than 10% of the total disparity range of the scene are discarded, thus avoiding connecting two surfaces

8.4.1 Implementation details 161

2 4 6 8

10

20

30

40

 N

M
ea

n
 t

im
e

p
er

 f
u
si

o
n
 (

s)

SameUni

SegPln

Smooth

(a) Plant reference image (b) Plant disparity, N = 2 (c) Fusion times vs. N

(d) Monkey reference image (e) Monkey disparity, N = 4

(f) Plant pop-out (g) Monkey pop-out

Figure 8.13: Multiple, arbitrary views. (a) The reference image, I0 for the Plant sequence, which has
arbitrary input views. (b) Output disparity, D, for the Plant sequence computed with N = 2, i.e. three
input images. (c) Graph of mean fusion times for each proposal scheme on the Plant sequence, as a
function of N . (d) & (e) I0 and D computed with N = 4 for the Monkey sequence. (f) & (g) Texture-
mapped regular meshes generated from I0 and D, then rotated considerably from the original viewpoint,
for the Plant and Monkey sequences respectively.

8.4.2 Results 162

Figure 8.14: New view generation. Intermediate stages for rendering the Plant output image. Top row:
Input disparity maps reprojected into the new view. Bottom row: Input images warped accordingly into
the new view. Images are ordered from left to right in terms of their proximity to the new view.

that are discontinuous. The mesh is then projected into the output view using Pi→0, which is computed

using equation A.8 but swapping P0 and Pi around. Values at the integer (i.e. pixel) locations in the new

view are linearly interpolated from projected values, which generally fall on non-integer locations.

The projected disparity maps and images for the Plant sequence can be seen in figure 8.14. The

black areas of the images are caused by no points projecting into this area—i.e. this part of the scene

was not visible in the input image. These areas can be reduced in size by combining the outputs of all

the input images in a composition step, which goes as follows: the input images are ordered according

to the closeness (in Euclidean distance) of their camera centres to that of the new view; the first image is

projected into the new view; any holes (black areas) are filled in by the projected second image, and so

on through all the input images.

With all the input image disparity maps precomputed, this rendering process can be extremely fast,

especially if modern graphics hardware is used.

8.4.2 Results

The resulting output images generated using this forward transfer approach are shown in figure 8.15,

with artifacts highlighted with red ovals and improvements highlighted with blue.

8.5 Conclusion 163

The images show that backward transfer NVS using accurate disparity maps, generated using a sec-

ond order smoothness prior, can correctly reconstruct the low contrast texture of both the baize back-

ground of the Plant sequence and the monkey’s face, and also reconstruct heavily occluded texture such

as the two areas of leaf highlighted in the Plant image.

However, the down-sides of this approach are that it can leave some areas blank if they have not been

seen in any of the input images (see the Plant output), and also that artifacts can appear at discontinuity

boundaries, especially when such boundaries are highly detailed, such as around the monkey’s fur, and

the vertebrae in Dino1.

8.5 Conclusion

This chapter has introduced a powerful framework for optimizing a second order smoothness prior in

stereo with geometrical visibility reasoning. It provides a means to combine arbitrary, ad hoc disparity

proposals in a reasoned way, minimizing a single objective energy.

I have compared the performance of four different priors within this framework, and demonstrated

that the second order prior with a linear truncated kernel, and its complementary optimization framework,

produces disparity maps that more accurately reconstruct the scene, especially in low texture or highly

slanted regions. I have shown that the algorithm can equally be applied to multi-view stereo with arbitrary

camera viewpoints and does so for a computational cost roughly linear in N . In addition I have shown

that the resulting disparity maps can be used to render accurate new views, which capture detailed texture

from the input views.

This work, in concentrating on the optimization of a second order prior, has paid scant attention to

the form of the data likelihood term, the use of a sampling-insensitive measure of photoconsistency, the

form of the contrast dependent weighting of the smoothness term (i.e. the form of the CRF), the learning

of optimal model parameters and the quality of the ad hoc proposals. I expect that improvements in these

areas will bring about significant increases in performance. In addition, the optimizer used, QPBO, is

relatively new to the field of Computer Vision, and therefore one can expect its performance to increase

significantly in the future with the development of further techniques to improve label fixing, to the extent

that the artifacts generated using a 2op quadratic prior may be overcome.

8.5 Conclusion 164

Output image Difference from ground truth
Pl

an
ts

eq
ue

nc
e

M
on

ke
y

se
qu

en
ce

E
dm

on
to

sa
ur

us
se

qu
en

ce

Dino1 output image Dino2 output image

Figure 8.15: Output images. Output images for the four test sequences rendered by warping the input
images using the computed disparity maps, with some points of interest highlighted.

Chapter 9

Conclusion

This chapter directly compares the priors for new view synthesis (NVS) investigated in chapters 4–8 of

this thesis, summarizes the contributions made, and outlines potential avenues for future research.

9.1 Comparison of results

Chapters 4–7 of this thesis investigated various different forms of prior for backward transfer NVS, while

chapter 8 looked at second order smoothness priors for forward transfer NVS, i.e. stereo. In this chapter

I compare results of the best performing prior and optimization strategy from each of those chapters,

which are as follows:

A – a hierarchical, example-based texture prior with 5×5 cliques, optimized in a multi-resolution

EM-style framework (from chapter 4).

B – the Field of Experts prior of Roth & Black [RB05] with 5× 5 cliques, optimized using ILS

with Combined kicks (from chapter 5).

C – the Sampled, example-based texture prior with 2×1 cliques, optimized using TRW-S (from

chapter 6).

D – a joint prior with 2 × 1 cliques, made up of a parametric prior on smoothness modulated

with the non-parametric Sampled texture prior, and optimized using QPBOI-R in a fusion

move framework (from chapter 7).

9.1.1 Quantitative comparison 166

Monkey Plant
0

2

4

6

8

10

12

14

ǫ r
m

s

ML

A

B

C

D

E

Monkey Plant
0

2

4

6

8

10

ǫ g
e

ML

A

B

C

D

E

ML A* B* C D E*

0.1

1

10

100

A
v

er
ag

e
re

n
d

er
 t

im
e

p
er

 p
ix

el
 (

m
s)

(a) R.m.s. error (b) Gross errors (%) (c) Render time per pixel

Figure 9.1: Quantitative reconstruction results. (a) R.m.s. error and (b) gross errors for reconstruc-
tions of the Monkey and Plant sequences, and (c) rendering time per pixel, averaged over the four test
sequences, for the ML solutions and those of the five priors A–E described in §9.1. *One-off model
learning/construction times not included.

E – a second order smoothness prior (2op) with 3 × 1 cliques and truncated linear kernel, opti-

mized using QPBOI-R in a fusion move framework, used to generate disparity maps for the

input images, which are then projected into the output view (from chapter 8).

A quantitative comparison of the algorithms described above is given in figure 9.1, while zooms of

output images highlighting qualitative differences between the algorithms are given in figures 9.2 & 9.3.

9.1.1 Quantitative comparison

Figure 9.1 compares the various algorithms on εrms and εge for the Monkey and Plant sequences, as well

as rendering time. All the priors offer a reduction in error rates over the ML solutions, suggesting that

improving the visual plausibility of an output image, or the geometrical plausibility of a depth map, is

likely to also make it a more accurate reconstruction of the actual scene. In terms of rendering time, the

hierarchical prior (A) and the Sampled prior (C) are roughly the same speed (around 25 times slower than

computing the ML solution), with the joint prior (D) an order of magnitude slower, and the FoE prior

(B) another order of magnitude slower than that. The 2op prior (E), with no optimization required during

rendering, is the fastest method—4 times slower than computing the ML, without hardware acceleration.

For the increase in rendering time, the FoE prior actually offers a decrease in quality over the 2op

prior, coming last of the priors in Plant sequence quality, while the Sampled prior comes last for the

9.1.1 Quantitative comparison 167
A

–
H

ie
ra

rc
hi

ca
l

ex
am

pl
e-

ba
se

d
pr

io
r

B
–

Fo
E

pr
io

r(
w

ith
IL

S
op

tim
iz

at
io

n)
C

–
Pa

ir
w

is
e

Sa
m

pl
ed

pr
io

r
D

–
Pa

ir
w

is
e

jo
in

tp
ri

or
E

–
2nd

or
de

rs
m

oo
th

ne
ss

pr
io

r

(a) Monkey zoom (b) Dino1 zoom (c) Dino2 zoom

Figure 9.2: Qualitative results. Zooms of results for three of the four test sequences, using (row-wise)
the priors A–D described in §9.1.

9.1.2 Partially occluded regions 168

Monkey sequence. The hierarchical prior is better in some measures, but only the joint prior offers a

universal improvement in quality for its slower rendering time, giving the lowest error rates across all

measures. There is therefore only a speed/quality trade-off between the hierarchical, joint and 2op priors

(and, of course, no prior), but, since the hierarchical and 2op priors require a substantial amount of time

to generate the exemplar hierarchy and input disparity maps (one-off costs) respectively, the joint prior

wins on both counts if only a handful of images will ever be rendered from a given input sequence.

9.1.2 Partially occluded regions

Partially occluded regions are shown in figure 9.2(a), to the left of the monkey’s head, and in figure 9.3(b),

beneath the feathers. Of the image priors, in the former case the hierarchical and joint priors reconstruct

the texture most successfully, while in the latter case only the joint prior correctly reconstructs the ribs

of the leaf, though at the cost of truncating some feathers. The 2op smoothness prior reconstructs the

texture as well or better in each case, but for holes left in the images where the scene is deemed to be

completely occluded.

9.1.3 Disparity discontinuities

Figure 9.2(b & c) shows some disparity discontinuities at the edge of the dinosaur’s vertebrae and snout.

On the snout, only the hierarchical prior gives a perfect reconstruction; the Sampled, joint and 2op priors

generate a small nick in the snout, while the FoE prior generates a sawtooth edge. Around the vertebrae

the 2op prior generates several artifacts, with performance less distinct between the other priors, though

the joint prior generates a textural discontinuity along the cabinet frame resulting from an incorrectly

located disparity boundary.

9.1.4 Detailed texture

High-frequency texture surrounded by homogenous texture tends to generate multi-modal data costs,

with both the correct and surrounding, homogenous colours having a high likelihood. This makes it easy

for texture priors to remove high-frequency, or detailed, texture. Examples are the brickwork for the

hierarchical prior (figure 9.2(c)), the items in the cabinet in figure 9.2(b) and the stalk in figure 9.3(a) for

both the FoE and Sampled priors, as well as a leaf ‘rib’ in figure 9.3(a) for the FoE prior. Since these

artifacts must generate disparity discontinuities, the joint prior framework of chapter 7 is able to avoid

9.1.5 Low contrast texture 169

them by encouraging surface smoothness, as is the 2op prior of chapter 8.

9.1.5 Low contrast texture

Regions of low contrast texture are shown on the monkey’s face in figure 9.2(a) and the baize background

of figure 9.3(c). The 2op prior renders both these regions very well, taking, as it does, texture directly

from the input images. Of the other priors, only the joint prior successfully renders a portion of the baize

background, while none of the priors manage to render the mottled fur on the monkey. This latter result

may be due to the input images not being identically exposed in that sequence, such that the variation

in colour across images for a given scene point is of a similar order to the variation of colour across the

texture.

9.1.6 General vs. sequence-specific image priors

General image priors, i.e. those learned from a varied set of natural images, were used in chapter 5,

in the form of the FoE prior of [RB05], and in chapter 6, in the form of the sparse derivative prior of

[TRF03], both of which also happen to be parametric, filter-based priors. Sequence-specific priors, i.e.

those learned from the input images of the sequence in question, were used in chapter 4, in the form of

the example-based prior of [FWZ05], and in chapter 6, again in the form of an example-based prior, but

with clique-specific exemplar libraries.

Both the FoE and sparse derivative priors are unimodal, encouraging homogenous texture. As the

data costs in NVS tend to be multi-modal, these priors select the colours which give the a piecewise-

constant reconstruction, with the effect that details seen in the input sequence, e.g. leaf ’ribs’ (figure 9.3(a)

and figure 6.10), are removed. By contrast, the example-based priors are multi-modal, allowing textured

and homogenous patches with equal cost when they both exist in the input sequence. The result is that

textured details seen in the input sequence are not removed, and also that the results are much more

robust to the strength of the data costs.

The results suggest that sequence-specific priors are preferable for use in NVS. This is to be expected,

given that they are more informed as to what the output images should look like than general priors.

However, they might prove to be over-specific in situations where the output view is markedly different

from input views. Forward transfer NVS has a definite advantage in this case, as no image prior is

necessary.

9.1.6 General vs. sequence-specific image priors 170
A

–
H

ie
ra

rc
hi

ca
l

ex
am

pl
e-

ba
se

d
pr

io
r

B
–

Fo
E

pr
io

r(
w

ith
IL

S
op

tim
iz

at
io

n)
C

–
Pa

ir
w

is
e

Sa
m

pl
ed

pr
io

r
D

–
Pa

ir
w

is
e

jo
in

tp
ri

or
E

–
2nd

or
de

rs
m

oo
th

ne
ss

pr
io

r

(a) Plant zoom 1 (b) Plant zoom 2 (c) Plant zoom 3

Figure 9.3: Plant results. Zooms of the Plant sequence results using (row-wise) the priors A–D de-
scribed in §9.1.

9.2 Contributions 171

9.2 Contributions

This thesis has introduced several key contributions, as well as some more minor ones, in the areas of

prior models for NVS, and optimization. These contributions are listed on a chapter by chapter basis.

9.2.1 Chapter 4

Chapter 4 investigated improvements to the example-based prior framework of Fitzgibbon et al. [FWZ05].

Optimization of the objective function was improved over that of [FWZ05] at a single resolution. Three

optimization techniques, including ICM and EM-style ICM, were compared, and the EM-style method

was found to give the best trade-off between speed and quality of reconstruction.

A novel, hierarchical, exemplar library tree structure was created, and traversed in a multi-resolution

framework at a rate of one level per scale, reducing rendering time by a factor of around 30. The

multi-resolution framework also improved the image quality by allowing larger scale features to be re-

constructed at coarser scales. However, the method failed to reconstruct low contrast texture, and also

texture in partially occluded regions.

9.2.2 Chapter 5

Chapter 5 investigated the performance of the general, parametric image prior, Field of Experts [RB05].

Several optimization techniques were tested. Greedy Iterated Conditional Modes (ICM), a novel adap-

tation of ICM which sequentially updates the node which gives the largest decrease in energy, was in-

troduced, but found to offer no improvement in minimization power over (standard) Raster ICM, while

being several times slower. A normalized cooling schedule (appendix B) was introduced for Simulated

Annealing (SA) which ensures that iterations of SA are used efficiently. Iterated Local Search (ILS) was

used with two novel perturbation methods, and the optimal splice method was developed to combine the

resulting local minima in a fusion move framework. While SA was found to minimize the energy best,

ILS was found to give the highest quality images.

The FoE prior itself was able to correct the high-frequency artifacts generated in the maximum likeli-

hood images, but was found to remove texture in regions where homogenous texture has a high likelihood

(along with the correct texture), and also to create strong vertical and horizontal edges at disparity discon-

tinuities. In addition, it was not able to reconstruct low contrast texture and texture in partially occluded

regions, as with the prior of the chapter 4.

9.2.3 Chapter 6 172

9.2.3 Chapter 6

Chapter 6 investigated the performance of a range of pairwise clique image priors, optimized using

TRW-S [Kol06]. The number of labels was reduced by minimizing out disparity and using modes over

colour, as per [FWZ05]. A fast, deterministic method for finding colour modes (with disparity minimized

out), given colour modes at each disparity, was developed. A deterministic method for finding colour

modes at a single disparity, given the robust, truncated quadratic kernel used to reject outliers, was also

introduced.

A new example-based prior (the Sampled prior) was introduced, which creates discriminative, clique

specific exemplar libraries by projecting the output patch into input images at a range of disparities (mak-

ing the assumption that the patch is fronto-parallel) and sampling. Despite the fronto-parallel assumption,

the libraries were found to differentiate well between patches across genuine disparity boundaries and

those across incorrect disparity boundaries.

The Sampled prior was shown to produce more accurate reconstructions than other pairwise priors,

and the use of a global optimizer was shown to fix large scale errors in the ML images, which the local

optimizers of previous chapters failed to correct. However, the prior failed to reconstruct low contrast

texture, and the robust kernel used was found to improve rendering in only a few partially occluded

regions.

9.2.4 Chapter 7

Chapter 7 used a prior on geometry to improve reconstruction. While not new in itself, several techniques

were introduced to incorporate geometrical visibility reasoning and optimize disparity and colour at the

same time (to a degree):

• A pairwise graph structure for asymmetrical geometrical visibility reasoning, building on

the higher order clique model of [WQ05].

• Modelling colour based on the visibility of up to two input samples, generating triple cliques

in the energy.

• Using the triple clique decomposition of [KZ04] for non-submodular cliques.

• Developing QPBO-R and QPBOI-R for improved labelling of nodes left unlabelled by

QPBO.

9.2.5 Chapter 8 173

In addition to this, the Sampled prior of the previous chapter was used to modulate the smoothness costs,

as a replacement for the CRF terms of stereo methods, in order to encourage disparity boundaries to align

with the true edges in the scene.

The resulting joint prior and optimization framework was found to correct even the largest scale

errors in the ML image, and correctly reconstruct partially occluded and also low contrast texture. Some

artifacts were generated around incorrect disparity discontinuities, but overall the performance of this

algorithm was the best tested.

9.2.5 Chapter 8

The focus of chapter 8 was to develop a tractable global optimization framework for a second order

smoothness prior. In doing so it used many of the developments introduced in the chapter 7, but addi-

tionally provided a framework for combining any set of ad hoc disparity proposals in a reasoned way.

Three example methods for generating such proposals were given, one of which novelly used a set of

under- to over-segmentations of the reference image to generate a set of piecewise-planar proposals.

Two types of kernel, truncated linear and truncated quadratic, were compared with both first and

second order priors. The first order, truncated linear prior was unable to reconstruct planar and curved

surfaces, while the other three priors were. Of those, the first-order, truncated quadratic prior was shown

to reconstruct slanted textureless surfaces and even highly slanted textured surfaces less accurately than

the second order priors. The second order, truncated quadratic prior was shown to present a difficult

optimization problem that led to artifacts being generated in the output. However, the second order,

truncated linear prior, combined with the optimization framework presented, was shown to improve on

stereo results using the first order priors predominantly in use today.

New views generated using the resulting disparity maps, in a forward transfer approach, were shown

to compare favourably with those results generated using the backwards transfer approaches, especially

in the reconstruction of low contrast texture, but also highlighted the failure modes of the approach—

leaving holes in the image and creating artifacts around discontinuity boundaries.

9.3 Future work

In this section I outline possible directions for future research.

9.3.1 New prior models 174

9.3.1 New prior models

This thesis has merely touched the surface of prior models available for image and geometry regulariza-

tion. Some other models, that have either come to light through the research presented here, or there was

not time to try, are:

• Sparse coding prior – This model, which was discussed in §3.3.3, has not yet been applied

to the NVS problem.

• Triple clique texture prior – Chapter 6 introduced a pairwise texture prior, while chapter 7

introduced a framework for optimizing energies with triple cliques. An obvious extension

would be to create a triple clique texture prior in the same way as the pairwise prior, then

optimize the energy using this new framework.

• Large clique joint priors – Chapter 7 introduced a joint prior over disparity and texture

with pairwise cliques. This idea of combining disparity and texture regularization in the

same model could be extended to large clique priors such as the example and filter-based

priors of chapters 4 & 5 respectively.

• Image epitome – As discussed in §3.3.4, the Image Epitome of Jojic et al. [JFK03] provides

a means of creating a redundancy-free exemplar library for example-based priors. A hier-

archical prior could be constructed using epitomes in exactly the same way as the exemplar

hierarchy of chapter 4, making inference even faster.

• Multi-modal colour filters for FoE – As discussed in chapter 5, the FoE prior as learned by

Roth & Black [RB05] is both unimodal and does not model dependencies between colour

channels (in YCbCr colour space). An FoE model that is both multi-modal (as discussed in

appendix C) and learned (including the filters) on colour images might overcome some of the

issues with the prior, especially if trained specifically on the input sequence. Such a model

was learned, with reasonable success, in work I published [WRTF06], but the gradient-

descent-based learning process has since proved to be unreliable, possibly due to there being

many local minima in parameter space. New, improved learning techniques [WF07] might

now make such an endeavour feasible.

9.3.2 Wider variety of output images w.r.t. input sequence 175

9.3.2 Wider variety of output images w.r.t. input sequence

The test sequences used in this thesis have output viewpoints which are a similar distance from the scene,

with a similar angle of view and resolution, to the input images, and which interpolate the input images

(i.e. have input views either side). This has constrained the evaluation of priors to a very limited class of

output view. It would be interesting to extend this evaluation to viewpoints which are further towards or

away from the scene, which have a different resolution, or which extrapolate the input views.

9.3.3 Temporal consistency

Many applications for NVS involve the rendering of videos from a sequence of stills or a video with

a different viewpoint or path. Recent research [SWR07] has shown that if frames are rendered inde-

pendently, e.g. using the methods presented here, the output images can look plausible by themselves,

but when played in a video any inter-frame differences in texture become very noticeable. A further

avenue of research, which has already been investigated by Shahrokni et al. [SWR07], is therefore into

prior models which encourage consistency between consecutive frames of video, known as “temporal

consistency”.

9.3.4 Higher-level cues

By dint of the fact that when looking at a scene through one eye, one is able to estimate depth and imagine

with reasonable accuracy what the scene would like from a different angle, it is clear that the human

vision system makes use of many higher-level cues, e.g. shading, prior knowledge of object sizes, etc., to

achieve this. Single view reconstruction algorithms, e.g. [PZF06, HEH08], are now being developed that

make use of such cues. Incorporating such cues into an NVS framework would undoubtedly improve

reconstruction, especially in situations where the input data is more sparse.

9.3.5 Towards perfect NVS

As well as the approaches mentioned above, I discuss here what other approaches might be considered to

achieve perfect NVS. This thesis has shown that regularizing geometry can improve reconstruction, but

that it also tends to generate errors around discontinuity boundaries. One way of improving this situation

is to allow semi-transparency around edges, through the use of an alpha-matte, to give better anti-aliasing

in these areas. This approach has recently been employed in stereo to good effect [BGRR09]. Another

9.3.5 Towards perfect NVS 176

approach, which would also improve texture reconstruction, would be to increase the resolution at which

geometry and texture are computed, allowing finer details to be reconstructed. There is already a great

deal of literature, e.g. [IP91, PCRZ07], in this area, which is known as multi-frame super-resolution.

Appendix A

Projective geometry

A.1 Projection

Input images are assumed to be generated by central projection of light rays onto the image plane—the

standard, pinhole camera model. The set of light rays passing through the camera centre are recorded on

a planar image sensor some distance from the centre, forming an image. The light ray that was measured

at each image pixel can therefore be defined by the line that passes from the centre of the pixel, through

the camera centre and out into space.

Let us define a Euclidean coordinate frame for space in the world, which is R3, such that each point

in space is defined by a vector, X = [X,Y, Z]>. Now let us assume that a camera centre sits at the

origin, [0, 0, 0]>, and that its image plane is the plane Z = 1. Points on the image plane can therefore

be parameterized by a 2-d vector, x = [x, y]>, with their equivalent coordinates in R3 defined by X =

[x, y, 1]> = x̊. Now the light ray that was measured at pixel [x, y]> can therefore be defined by the set

of points z[x, y, 1]> = [xz, yz, z]>, where −∞ < z < 1. Conversely, if there is a point in space and

one assumes that it lies on a ray passing through the camera centre, such that [X,Y, Z]> = [xz, yz, z], it

can be seen that z = Z, x = X/Z and y = Y/Z. This coordinate transformation defines the projection

of points in 3-d space onto the 2-d image plane, represented by the projection transform, π(·), thus

π

X

Y

Z

 =

 X/Z

Y/Z

 . (A.1)

A.2 Projection matrices 178

A.2 Projection matrices

Clearly our input images are in general viewed from different locations and orientations, such that the

parametrization of space described above can only hold for one image at a time. In order to overcome

this a coordinate transformation from some reference coordinate frame, “world coordinates”, to the co-

ordinate frame of the ith input image is defined. If X and Xi are coordinates in these frames respectively,

then such a transformation would look like

Xi = R(X−C), (A.2)

= R [I| −C] X̊, (A.3)

where R is a 3 × 3 rotation matrix representing the orientation of the image’s coordinate frame, and C

represents the coordinates of the image’s camera centre in world coordinates. Together, R and C are

known as the external camera parameters.

In addition to the external parameters there are internal camera parameters [HZ04, Chapter 6], which

relate to the focal length, pixel size, principal point and skew of the camera. These parameters are stored

in the calibration matrix K, a 3 × 3 upper triangular matrix, which further transforms the points in the

camera coordinate frame, thus

Xi = KR [I| −C] X̊ (A.4)

The projection matrix, Pi = KR [I| −C], a 3 × 4 matrix, therefore defines the full transformation

from world coordinates to camera coordinates, thus:

Xi = PiX̊. (A.5)

It is assumed that a projection matrix, Pi, for each input image, Ii, is given as an additional input.

These projection matrices can be measured or calculated using various approaches. In the case of this

work a structure from motion algorithm [FZ98] in commercial software [2d303] is used to calculate

the projection matrices from the input sequence. I assume that these projection matrices are noiseless;

an alternative approach is to infer both a dense scene reconstruction for NVS and the input projection

matrices from the input sequence in a single process.

The final input is the projection matrix of our output, or reference, view, P0, which is generated by

A.3 Depth parametrization 179

the user. One can convert from homogenous world coordinates, X̊, to homogenous reference camera

coordinates, X̊0, thus:

X̊0 =

 P0

0 0 0 1

 X̊, (A.6)

so the reverse transformation is simply

X̊ =

 P0

0 0 0 1

−1

X̊0. (A.7)

Substituting this in for X̊ in equation A.5 gives us the projection matrix, P0→i, which transforms

coordinates from the reference frame to the ith input frame:

P0→i = Pi

 P0

0 0 0 1

−1

. (A.8)

A.3 Depth parametrization

The coordinate transformation between cameras described in the previous section requires that point

coordinates are known in 3-d. Each pixel has a 2-d location on an image, but it was shown in §A.1 that

this location, along with the camera’s projection matrix, defines a ray in space; choosing a point along

this ray allows this point to be projected into another image.

Let us parameterize the distance along the ray belonging to pixel x in the reference frame by the

distance from the camera centre, perpendicular to the image plane, and call this distance the “depth”, z,

of the pixel. One can therefore write the position in Ii of any point along that ray as:

π
(
P0→i [xz, z, 1]>

)
=

 Pi
1 [xz, z, 1]> /Pi

3 [xz, z, 1]>

Pi
2 [xz, z, 1]> /Pi

3 [xz, z, 1]>

 (A.9)

=

 Pi
1

[
x, 1, z−1

]>
/Pi

3

[
x, 1, z−1

]>
Pi

2

[
x, 1, z−1

]>
/Pi

3

[
x, 1, z−1

]>
 (A.10)

A.3 Depth parametrization 180

where

P0→i =

Pi

1

Pi
2

Pi
3

 . (A.11)

The transformation from equation A.9 to equation A.10 shows that distance along a ray can just as easily

be parameterized by the “disparity”,1 d = z−1.

In this work I parameterize distance along a ray by disparity, rather than depth, for two reasons:

Regular samples Consider, without losing generalization to the real world, two 1-d images viewing a

2-d world, with projection from one view to the other given by:

 cos θ − sin θ C1

sin θ cos θ C2

 ≈
 1 −θ C1

θ 1 C2

 (A.12)

where θ is the angle between the optical axes, and C the translation vector between the two optical

centres, of the two images. As the images are close to each other, relative to the scene they are viewing,

θ and C2 are assumed to be small, hence the approximation. A ray cast through a pixel of the first image

is projected onto the image plane of the second image as follows:

x′ = π

 1 −θ C1

θ 1 C2

x

1

d

 (A.13)

=
x− θ + C1d

θx+ 1 + C2d
(A.14)

For a small C2, it can be seen that ∂x′/∂d ≈ constant, therefore equally spaced disparities will generate

approximately equally spaced image samples. As a result, certain regions of the image will not be over

sampled relative to others, so image sampling can be kept to a minimum.
1The term “disparity” is traditionally associated with the horizontal displacement of correspondences between stereo image

pairs, where it is actually proportional to the inverse of the scene “depth”. I generalize its definition to mean inverse depth in
all situations.

A.3 Depth parametrization 181

Correct smoothness costs Planes in space have zero second derivative of disparity, given a projective

camera:

n1

n2

n3

n4

·

xz

yz

z

1

= 0 (A.15)

d =
1
z

= −n1x+ n2y + n3

n4
(A.16)

∂2d

∂x2
= 0,

∂2d

∂y2
= 0,

∂2d

∂x∂y
= 0. (A.17)

The set of surfaces that only fulfil the constraints ∂2d
∂x2 = 0 and ∂2d

∂y2
= 0 are a superset of planar surfaces,

which includes any surface whose intersections with the planes passing through each image row and

column and the camera centre are straight lines. An example of a non-planar surface in this set is shown

in figure 3.3(c).

The full projection function for projecting pixels from I∗0 into Ii is therefore defined as

πi (x, d) = π

P0→i

x

1

d

 . (A.18)

Appendix B

A normalized cooling schedule

This appendix describes how a normalized temperature schedule is translated into an actual temperature

for each iteration of Simulated Annealing (SA).

B.1 Problem statement

Let X = X1, .., Xn be a vector of discrete variables, where the ith variable, Xi, can have an integer value

(or label) from 1 to N i
L, and where N i

L, the number of labels per variable, can vary between variables.

Let τ be the number of labels over all variables, thus

τ =
n∑
i=1

N i
L. (B.1)

The labelling, X, has an associated probability, written as a Gibbs distribution, thus

p(X) =
1
ζ

exp (−E(X)) , (B.2)

and the aim of SA is to find the most likely X.

The conditional probability of a particular label, Xi, having a value x, given the values of all the

other labels, written as X6 i, is given by the expression

p(Xi = x|X6 i) =
exp (−E(X6 i, Xi = x))∑N i

L
y=1 exp (−E(X6 i, Xi = y))

. (B.3)

B.1 Problem statement 183

SA sequentially draws a new value for each label, Xi, from this distribution raised to the power T−1, i.e.

p(Xi = x|X6 i)T
−1

=
1
Ai

exp (−E(X6 i, Xi = x)/T) , (B.4)

Ai =
N i

L∑
y=1

exp (−E(X6 i, Xi = y)/T) (B.5)

where T is called the “temperature”, and Ai is the area of the unnormalized conditional probability dis-

tribution of Xi, in a process known as Gibbs sampling. Traditionally, samples are drawn using Monte

Carlo (MC) methods—a new label is proposed, using some stochastic perturbation function, and ac-

cepted based on its likelihood compared to that of the current label according to the Metropolis algo-

rithm [MRR+53]. Specifically, if e = E(X) and e′ = E(X6 i, Xi = x), where x is the proposed label,

then the new label is always accepted if e′ < e, otherwise it is accepted with probability exp((e−e′)/T).

In this work the entire conditional distribution is computed, i.e. {p(Xi = x|X6 i)T
−1}N

i
L

x=1, and a value

drawn randomly from this.1 This alternative approach increases the computation time of a single iteration,

but unlike MC methods it doesn’t require a “burn in” period, therefore needs fewer iterations. Further-

more, computing the entire conditional distribution is required for the normalization process introduced

here.

A single iteration of SA goes through the entire labelling once, drawing the new labels with a fixed

value of T . A high value of T makes the distribution uniform, and as T → 0 the distribution becomes

more peaky, until it becomes a delta function on the most likely value. The algorithm is made up of sev-

eral such iterations, with the temperature gradually being reduced according to some cooling schedule.

A record is kept of the highest probability labelling found over the entire process. Generally, the slower

the cooling schedule, the better the solution found.

On a typical low-level vision problem a single iteration will take a long time, so it is important to

minimize the number of iterations required to find a good solution. The problem is knowing what is a

good temperature to start at—too low and the initial labellings will not vary enough to escape from local

minima; too high and iterations are wasted—and how fast the temperature should be reduced, both of

which depend on the values of E(X). I developed a normalized temperature scale in order to overcome

this problem.
1This achieves the same as the traditional MC approach after several iterations, with proposals drawn randomly from a

uniform distribution over all labels.

B.2 Normalized temperature 184

B.2 Normalized temperature

Let Tn be a normalized temperature that is on a scale from 0 to 100, such that at Tn = 100 all label values

are drawn from uniform distributions, while at Tn = 0 they are drawn from delta functions on the most

likely value. This normalized temperature is therefore a function of the shape of the distributions, and in

particular how uniform they are.

A good measure of the distribution shape for this purpose is the inverse of the height of the mode—

for a (discrete) delta function this will be 1, while for a uniform distribution it will be N i
L, the number of

labels. The sum of this measure over all variables, S, is computed as

S =
n∑
i=1

Ai

maxN
i
L

y=1 exp (−E(X6 i, Xi = y)/T)
(B.6)

=
n∑
i=1

Ai

exp
(
−minN

i
L

y=1E(X6 i, Xi = y)/T
) (B.7)

=
n∑
i=1

N i
L∑

x=1

exp
(
−M

i
x

T

)
, (B.8)

M i
x = E(X6 i, Xi = x)−

N i
L

min
y=1

E(X6 i, Xi = y)). (B.9)

The normalized temperature, Tn, is converted into a target value for S, written Sn. The normalized

temperature scale requires that at Tn = 100, Sn = τ , i.e. all distributions are uniform, and that at Tn = 0,

Sn = n, i.e. all distributions are delta functions. For temperatures in between, the values of Sn are

interpolated on a linear scale, so Sn can be written as the following function of Tn:

Sn = (Tn/100)× (τ − n) + n. (B.10)

B.3 Updating T

The temperature, T , needs to be set so that the actual sum, S, matches the desired sum, Sn. As the SA

algorithm is iterative, the temperature at time t, T t, is updated based on the previous values T t−1 and

St−1, the latter being computed in the course of the previous iteration, and also the target value Stn. St−1

B.3 Updating T 185

is given by

St−1 =
n∑
i=1

N i
L∑

x=1

exp
(
− M i

x

T t−1

)
. (B.11)

Let us write T t = T t−1 · δT , so that

Stn =
n∑
i=1

N i
L∑

x=1

exp
(
− M i

x

T t−1 · δT

)
, (B.12)

=
n∑
i=1

N i
L∑

x=1

exp
(
− M i

x

T t−1

)δT−1

, (B.13)

=
n∑
i=1

N i
L∑

x=1

exp
(
− M i

x

T t−1

)
· exp

(
− M i

x

T t−1

)δT−1−1

. (B.14)

I now approximate the above expression by replacing the actual value of the second exponential in

equation B.14 with the average value in each case. Specifically,

Stn ≈
n∑
i=1

N i
L∑

x=1

exp
(
− M i

x

T t−1

)
·

(
1
τ

n∑
i=1

NL∑
x=1

exp
(
− M i

x

T t−1

))δT−1−1

, (B.15)

≈
(
St−1

τ

)δT−1−1

· St−1. (B.16)

Some simple algebra then gives

δT−1 ≈ logStn − logSt−1

logSt−1 − log τ
+ 1, (B.17)

≈ logStn − log τ
logSt−1 − log τ

. (B.18)

The above approximation is then used to compute the actual temperature used at each iteration, thus

T t = T t−1 · logSt−1 − log τ
logStn − log τ

. (B.19)

Appendix C

Multi-modal Product of Experts

Chapter 5 identified a drawback of the Fields of Experts model of Roth & Black [RB05] being its uni-

modal nature. Indeed, any distribution modelled by the product of Student’s t-distributions of equa-

tion 3.9 will suffer from this problem. In [WRTF06] I introduced a modification to this model which

allowed it capture multi-modal distributions, as this appendix will now show.

The original product of t-distributions model, as introduced in [WHO02], referred to here as the

“standard” model, models the probability of a data vector, X, as

p (X) =
1
ζ

M∏
m=1

(
1 +

1
2

(
J>mX

)2
)−αm

. (C.1)

Let us take a toy, 2-d problem, where the probability distribution to be modelled is the shape of a

‘C’, as shown by the plot of the training data in figure C.1(a); the data is offset above and to the right

of the origin. The model parameters, Θ = {Jm, αm}Mm=1 (M = 40 here), are learned by seeking to

maximize the likelihood of the training data using contrastive divergence [Hin02]. The learned standard

model generates a unimodal distribution centred on the origin, as shown in figure C.1(a), producing a

poor reproduction of the original distribution.

The term J>mX in equation C.1 can be interpreted as the perpendicular distance of X from a hy-

perplane which passes through the origin and whose normal is defined by Jm. It is the constraint that

hyperplanes pass through the origin that makes the resulting distribution unimodal. One can allow experts

to use any hyperplane by concatenating the normal vector with an offset value, so that it’s dimensionality

becomes |X|+ 1, and homogenizing the data vector, thus: X̊ = [X>1]>. The resulting model, referred

APPENDIX C. MULTI-MODAL PRODUCT OF EXPERTS 187

(a) Training data

Pr
ob

ab
ili

ty
E

ne
rg

y

(b) Standard model (c) Offset model (d) Quadratic model

Figure C.1: A toy problem. (a) Training data drawn randomly from a toy 2-d probability distribution,
a PoE model of which is then learned from said data. (b–d) The probability and energy distributions of
the learned models given by equations C.1, C.2 & C.3 respectively (black is low, white is high).

to here as the “offset” model, is written as

p (X) =
1
ζ

M∏
m=1

(
1 +

1
2

(
J>mX̊

)2
)−αm

. (C.2)

Because experts in this model need not pass through the origin, distributions learned using this model

can be multi-modal, as demonstrated in figure C.1(c) (again a 40 expert model, learned using contrastive

APPENDIX C. MULTI-MODAL PRODUCT OF EXPERTS 188

divergence).

Experts thus far have used linear functions of X within each t-distribution. It may be the case that the

shape of the underlying manifold is better modelled by non-linear experts. Figure C.1(d) demonstrates

the output using a 40 quadratic experts model (again learned using contrastive divergence), referred to

here as the “quadratic” model, given by the equation below:

p (X) =
1
ζ

M∏
m=1

(
1 +

1
2

(
X̊
>
JmX̊

)2
)−αm

. (C.3)

While the offset and quadratic models have an improved ability to learn complex distributions, a

drawback of these multi-modal models is that they create many more local maxima of likelihood of the

training data in parameter space, making the gradient-descent-based contrastive divergence approach to

parameter learning find very poor parameters as a result, especially in the higher dimensional space of

5× 5 image patches.

Bibliography

[2d303] 2d3 Ltd. Boujou: Automated camera tracking, 2003. http://www.2d3.com.

[ADSW02] A. Alvarez, R. Deriche, J. Sánchez, and J. Weickert. Dense disparity map estimation re-
specting image discontinuities: A PDE and scale-space based approach. Journal of Visual
Communication and Image Representation, 13(1):3–21, March 2002.

[AEB06] M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An algorithm for designing overcom-
plete dictionaries for sparse representation. IEEE Transactions on Signal Processing,
54(11):4311–4322, November 2006.

[AKT08] K. Alahari, P. Kohli, and P. H. S. Torr. Reduce, reuse & recycle: Efficiently solving multi-
label MRFs. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Anchorage, Alaska, 2008.

[AMN+98] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal algo-
rithm for approximate nearest neighbor searching fixed dimensions. Journal of the ACM,
45(6):891–923, 1998.

[Bad86] R. Baddeley. Searching for filters with ‘interesting’ output distributions: an uninteresting
direction to explore? Network: Computation in Neural Systems, 7(2):409–421, February
1986.

[Bar87] S. Barnard. A stochastic approach to stereo vision. In Readings in computer vision: issues,
problems, principles, and paradigms, pages 21–25. Morgan Kaufmann Publishers Inc.,
1987.

[Bel96] P. N. Belhumeur. A Bayesian approach to binocular steropsis. International Journal of
Computer Vision, 19(3):237–260, August 1996.

[Bes74] J. Besag. Spatial interaction and the statistical analysis of lattice systems. Journal of the
Royal Statistical Society, Series B (Methodological), 36(2):192–236, 1974.

[Bes86] J. Besag. On the statistical analysis of dirty pictures. Journal of the Royal Statistical
Society, Series B (Methodological), 48(3):259–302, 1986.

[BG04] M. Bleyer and M. Gelautz. A layered stereo algorithm using image segmentation and
global visibility constraints. In Proceedings of the IEEE International Conference on Image
Processing, volume 5, pages 2997–3000, October 2004.

[BG07] M. Bleyer and M. Gelautz. Graph-cut-based stereo matching using image segmentation
with symmetrical treatment of occlusions. Signal Processing: Image Communication,
2:127–143, February 2007.

http://www.2d3.com

BIBLIOGRAPHY 190

[BGRR09] M. Bleyer, M. Gelautz, C. Rother, and C. Rhemann. A stereo approach that handles the
matting problem via image warping. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Miami, June 2009.

[BHT06] E. Boros, P. L. Hammer, and G. Tavares. Preprocessing of unconstrained quadratic binary
optimization. Technical Report RRR 10-2006, Rutgers Center for Operations Research,
April 2006.

[Bis06] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[BJ89] A. Billionnet and B. Jaumard. A decomposition method for minimizing quadratic pseudo-
boolean functions. Operations Research Letters, 8(3):161–163, June 1989.

[BJ01] Y. Y. Boykov and M. P. Jolly. Interactive graph cuts for optimal boundary and region
segmentation of objects in N-D images. In Proceedings of the 8th International Conference
on Computer Vision, Vancouver, Canada, volume 2, pages 105–112, 2001.

[BK04] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algo-
rithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(9):1124–1137, September 2004.

[BR96] M. J. Black and A. Rangarajan. On the unification of line processes, outlier rejection, and
robust statistics with applications in early vision. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 19(1):57–91, July 1996.

[BSA98] S. Baker, R. Szeliski, and P. Anandan. A layered approach to stereo reconstruction. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Santa
Barbara, pages 434–441, 1998.

[BT99] S. Birchfield and C. Tomasi. Multiway cut for stereo and motion with slanted surfaces.
In Proceedings of the 7th International Conference on Computer Vision, Kerkyra, Greece,
pages 489–495, September 1999.

[BV06] Y. Boykov and O. Veksler. Graph cuts in vision and graphics: Theories and applications.
In The Handbook of Mathematical Models in Computer Vision. Springer, 2006.

[BVZ01] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph
cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11):1222–1239,
2001.

[BZ87] A. Blake and A. Zisserman. Visual Reconstruction. MIT Press, Cambridge, USA, August
1987.

[CB04] A. Criminisi and A. Blake. The SPS algorithm: patching figural continuity and trans-
parency by split-patch search. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Washington, DC, volume 1, pages 342–349, June 2004.

[CD06] O. Cordón and S. Damas. Image registration with iterated local search. Journal of Heuris-
tics, 12(1):73–94, March 2006.

[CG06] D. Cremers and L. Grady. Statistical priors for efficient combinatorial optimization via
graph cuts. In Proceedings of the 9th European Conference on Computer Vision, Graz,
Austria, pages 263–274, 2006.

BIBLIOGRAPHY 191

[CM02] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5):603–619, 2002.

[CMO04] Ondřej Chum, Jiřı́ Matas, and Štěpán Obdržálek. Enhancing RANSAC by generalized
model optimization. In Proceedings of the Asian Conference on Computer Vision, vol-
ume 2, pages 812–817, January 2004.

[CPT03] A. Criminisi, P. Perez, and K. Toyama. Object removal by exemplar-based inpainting. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Madi-
son, Wisconsin, volume 2, pages 721–728, June 2003.

[CSB+07] A. Criminisi, J. Shotton, A. Blake, C. Rother, and P. H. S. Torr. Efficient dense stereo
with occlusions for new view-synthesis by four-state dynamic programming. International
Journal of Computer Vision, 71(1):89–110, January 2007.

[CTCS00] J.-X. Chai, X. Tong, S.-C. Chan, and H.-Y. Shum. Plenoptic sampling. In Proceedings of
the ACM SIGGRAPH Conference on Computer Graphics, pages 307–318, 2000.

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society, 39 B:1–38, 1977.

[EA06] M. Elad and M. Aharon. Image denoising via sparse and redundant representations over
learned dictionaries. IEEE Transactions on Image Processing, 15(12):3736–3745, Decem-
ber 2006.

[EL99] A. Efros and T. Leung. Texture synthesis by non-parametric sampling. In Proceedings of
the 7th International Conference on Computer Vision, Kerkyra, Greece, pages 1039–1046,
September 1999.

[Elk03] C. Elkan. Using the triangle inequality to accelerate k-means. In Proceedings of the 20th
International Conference on Machine Learning, Washington DC, USA, pages 147–153,
2003.

[FD05] D. Freedman and P. Drineas. Energy minimization via graph cuts: Settling what is possible.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San
Diego, volume 2, pages 3939–3946, 2005.

[FH04a] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient belief propagation for early vision. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
261–268, 2004.

[FH04b] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-based image segmentation.
International Journal of Computer Vision, 59(2):167–181, September 2004.

[FH06] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient belief propagation for early vision.
International Journal of Computer Vision, 70(1):41–54, 2006.

[Fie87] D. J. Field. Relations between the statistics of natural images and the response properties
of cortical cells. Journal of the Optical Society of America, 4(12):2379–2394, 1987.

[FJP02] W. T. Freeman, T. R. Jones, and E. C. Pasztor. Example-based super-resolution. IEEE
Computer Graphics and Applications, 22(2):56–65, March/April 2002.

BIBLIOGRAPHY 192

[FK98] O. D. Faugeras and R. Keriven. Variational principles, surface evolution, PDE’s, level set
methods, and the stereo problem. IEEE Transactions on Image Processing, 7(4):336–344,
March 1998.

[FPC00] W. Freeman, E. C. Pasztor, and O. T. Carmichael. Learning low-level vision. In Interna-
tional Journal of Computer Vision, volume 40, pages 25–47, October 2000.

[FR56] L. R. Ford and Fulkerson D. R. Maximal flow through a network. Canadian Journal of
Mathematics, 8:399–404, 1956.

[FSH+06] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman. Removing camera
shake from a single photograph. In Proceedings of the ACM SIGGRAPH Conference on
Computer Graphics, 2006.

[Fua93] P. Fua. A parallel stereo algorithm that produces dense depth maps and preserves image
features. Machine Vision Applications, 6(1), 1993.

[FWZ05] A. Fitzgibbon, Y. Wexler, and A. Zisserman. Image-based rendering using image-based
priors. International Journal of Computer Vision, 63(2):141–151, July 2005.

[FZ98] A. W. Fitzgibbon and A. Zisserman. Automatic camera recovery for closed or open image
sequences. In Proceedings of the European Conference on Computer Vision, pages 311–
326. Springer-Verlag, June 1998.

[Gen88] M. A. Gennert. Brightness-based stereo matching. In Proceedings of the 2nd International
Conference on Computer Vision, Tampa, pages 139–143, December 1988.

[GG84] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence,
6(6):721–741, November 1984.

[GLY95] D. Geiger, B. Ladendorf, and A. Yuille. Occlusions and binocular stereo. International
Journal of Computer Vision, 14:211–226, 1995.

[GM85] A. Gagalowicz and S. D. Ma. Sequential synthesis of natural textures. Computer Vision,
Graphics and Image Processing, 30:289–315, 1985.

[GP87] E. Gamble and T. Poggio. Visual integration and detection of discontinuities: The key role
of intensity edges. Technical Report AI Memo No. 970, MIT Artificial Intelligence Lab.,
October 1987.

[GPS89] D. M. Greig, B. T. Porteous, and A. H. Seheult. Exact maximum a posteriori estimation
for binary images. Journal of the Royal Statistical Society, 51(2):271–279, 1989.

[GR92] D. Geman and G. Reynolds. Constrained restoration and the recovery of discontinuities.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(3):367–383, 1992.

[Gri81] W. E. L. Grimson. From Images to Surfaces: A Computational Study of the Human Early
Visual System. MIT Press, 1981.

[GS05] P. Gargallo and P. Sturm. Bayesian 3D modeling from images using multiple depth maps.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San
Diego, volume 2, pages 885–891, June 2005.

BIBLIOGRAPHY 193

[Had02] J. Hadamard. Sur les problèmes aux dérivées partielles et leur signification physique.
Princeton University Bulletin, pages 49–52, 1902.

[HC04] L. Hong and G. Chen. Segment-based stereo matching using graph cuts. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC,
pages 74–81, 2004.

[HD91] Y. Hu and T. J. Dennis. MAP estimation in image restoration by a local search enhanced ge-
netic algorithm. In Proccedings of the 6th International Conference on Digital Processing
of Signals in Communications, pages 123–128, September 1991.

[HEH08] D. Hoiem, A. A. Efros, and M. Hebert. Closing the loop on scene interpretation. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Anchorage,
Alaska, 2008.

[HHS84] P. L. Hammer, P. Hansen, and B. Simeone. Roof duality, complementation and persistency
in quadratic 0-1 optimization. Mathematical Programming, 28:121–155, 1984.

[Hin99] G. E. Hinton. Products of experts. In Proceedings of the Ninth International Conference
on Artificial Neural Networks, Edinburgh, Scotland, pages 1–6, 1999.

[Hin02] G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural
Computation, 14(8):1771–1800, 2002.

[HJO+01] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin. Image analogies. In
Proceedings of the ACM SIGGRAPH Conference on Computer Graphics, pages 327–340,
2001.

[Hor86] B. K. P. Horn. Robot Vision. MIT Press, Cambridge MA, 1986.

[Hyv05] A. Hyvärinen. Estimation of non-normalized statistical models by score matching. In
Journal of Machine Learning Research, pages 695–709, 2005.

[HZ04] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, ISBN: 0521540518, second edition, 2004.

[IG98] H. Ishikawa and D. Geiger. Occlusions, discontinuities, and epipolar lines in stereo. In
Proceedings of the 5th European Conference on Computer Vision, Freiburg, Germany,
pages 232–248, 1998.

[IG06] H. Ishikawa and D. Geiger. Rethinking the prior model for stereo. In Proceedings of the
9th European Conference on Computer Vision, Graz, Austria, pages 526–537, 2006.

[IHA02] M. Irani, T. Hassner, and P. Anandan. What does the scene look like from a scene point? In
Proceedings of the 7th European Conference on Computer Vision, Copenhagen, Denmark,
2002.

[IP91] M. Irani and S. Peleg. Improving resolution by image registration. Graphical Models and
Image Processing, 53:231–239, 1991.

[Ish03] H. Ishikawa. Exact optimization for Markov random fields with convex priors. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 25(10):1333–1336, October
2003.

BIBLIOGRAPHY 194

[JFK03] N. Jojic, B. J. Frey, and A. Kannan. Epitomic analysis of appearance and shape. In Pro-
ceedings of the 9th International Conference on Computer Vision, Nice, France, pages
34–41, 2003.

[KDM02] S. L. Kilthau, M. S. Drew, and T. Möller. Full search content independent block matching
based on the fast Fourier transform. In Proceedings of the IEEE International Conference
on Image Processing, volume 1, pages 669–672, 2002.

[KEBK05] V. Kwatra, I. Essan, A. Bobick, and N. Kwatra. Texture optimization for example-based
synthesis. In Proceedings of the ACM SIGGRAPH Conference on Computer Graphics,
volume 24, pages 795–802, July 2005.

[KFCO+07] J. Kopf, C.-W. Fu, D. Cohen-Or, O. Deussen, D. Lischinski, and T.-T. Wong. Solid texture
synthesis from 2D exemplars. In Proceedings of the ACM SIGGRAPH Conference on
Computer Graphics, volume 26, August 2007.

[KFL01] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory, 47(2):498–519, February 2001.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220:671–680, 1983.

[KKT07] P. Kohli, M. P. Kumar, and P. H. S. Torr. P3 & beyond: Solving energies with higher
order cliques. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Minneapolis, 2007.

[KLT08] P. Kohli, L. Ladický, and P. H. S. Torr. Robust higher order potentials for enforcing label
consistency. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Anchorage, Alaska, 2008.

[Koh07] P. Kohli. Minimizing Dynamic and Higher Order Energy Functions using Graph Cuts.
PhD thesis, Oxford Brookes University, November 2007.

[Kol05] V. Kolmogorov. Tree-reweighted message passing algorithm for en-
ergy minimization – C++ implementation, 2005. http://research.

microsoft.com/research/downloads/download.aspx?FUID=

{D814ABFB-FC1F-47E6-B26F-DE896C374B41}.

[Kol06] V. Kolmogorov. Convergent tree-reweighted message passing for energy minimization.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10):1568–1583, Oc-
tober 2006.

[Kol07] V. Kolmogorov. Discrete MRF optimization software, November 2007. http://www.

adastral.ucl.ac.uk/˜vladkolm/software.html.

[KPT07] N. Komodakis, N. Paragios, and G. Tziritas. MRF optimization via dual decomposition:
Message-passing revisited. In Proceedings of the 11th International Conference on Com-
puter Vision, Rio de Janeiro, Brazil, 2007.

[KR06a] V. Kolmogorov and C. Rother. Comparison of energy minimization algorithms for highly
connected graphs. In Proceedings of the 9th European Conference on Computer Vision,
Graz, Austria, volume 2, pages 1–15, 2006.

http://research.microsoft.com/research/downloads /download.aspx?FUID={D814ABFB-FC1F-47E6-B26F-DE896C374B41}
http://research.microsoft.com/research/downloads /download.aspx?FUID={D814ABFB-FC1F-47E6-B26F-DE896C374B41}
http://research.microsoft.com/research/downloads /download.aspx?FUID={D814ABFB-FC1F-47E6-B26F-DE896C374B41}
http://www.adastral.ucl.ac.uk/~vladkolm/software.html
http://www.adastral.ucl.ac.uk/~vladkolm/software.html

BIBLIOGRAPHY 195

[KR06b] V. Kolmogorov and C. Rother. Minimizing non-submodular functions with graph cuts - a
review. Technical Report MSR-TR-2006-100, Microsoft Research, 2006.

[KS99] K. Kutulakos and S. Seitz. A theory of shape by space carving. In Proceedings of the 7th
International Conference on Computer Vision, Kerkyra, Greece, pages 307–314, 1999.

[KSE+03] V. Kwatra, A. Schödl, I. Essan, G. Turk, and A. Bobick. Graphcut textures: Image and
video synthesis using graph cuts. In Proceedings of the ACM SIGGRAPH Conference on
Computer Graphics, 2003.

[KSK06] A. Klaus, M. Sormann, and K. Karner. Segment-based stereo matching using belief prop-
agation and a self-adapting dissimilarity measure. In Proceedings of the International
Conference on Pattern Recognition, pages 15–18, 2006.

[KSR+08] P. Kohli, A. Shekhovtsov, C. Rother, V. Kolmogorov, and P. H. S. Torr. On partial optimality
in multilabel MRFs. In Proceedings of the 25th International Conference on Machine
Learning, Helsinki, Finland, 2008.

[KT05] P. Kohli and P. H. S. Torr. Efficiently solving dynamic Markov Random Fields using graph
cuts. In Proceedings of the 10th International Conference on Computer Vision, Beijing,
China, pages 922–929, 2005.

[KTP07] N. Komodakis, G. Tziritas, and N. Paragios. Fast, approximately optimal solutions for
single and dynamic MRFs. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Minneapolis, 2007.

[KZ01] V. Kolmogorov and R. Zabih. Computing visual correspondence with occlusions via graph
cuts. In Proceedings of the 8th International Conference on Computer Vision, Vancouver,
Canada, pages 508–515, 2001.

[KZ02] V. Kolmogorov and R. Zabih. Multi-camera scene reconstruction via graph cuts. In Pro-
ceedings of the European Conference on Computer Vision, volume 3, page 82, 2002.

[KZ04] V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts?
IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(2):147–159, 2004.

[KZG03] V. Kolmogorov, R. Zabih, and S. Gortler. Generalized multi-camera scene reconstruction
using graph cuts. In Energy Minimization Methods in Computer Vision and Pattern Recog-
nition, Lecture Notes in Computer Science, pages 285–300. Springer-Verlag, September
2003.

[LH96] M. Levoy and P. Hanrahan. Light field rendering. In SIGGRAPH96, 1996.

[LH05] S. Lefebvre and H. Hoppe. Parallel controllable texture synthesis. In Proceedings of the
ACM SIGGRAPH Conference on Computer Graphics, pages 777–786, 2005.

[LH08] Y. Li and D. Huttenlocher. Sparse long-range random field and its application to image de-
noising. In Proceedings of the 10th European Conference on Computer Vision, Marseille,
France, 2008.

[LL08] W. Li and B. Li. Joint Conditional Random Field of multiple views with online learning
for image-based rendering. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Anchorage, Alaska, 2008.

BIBLIOGRAPHY 196

[LLX+01] L. Liang, C. Liu, Y.-Q. Xu, B. Guo, and H.-Y. Shum. Real-time texture synthesis by patch-
based sampling. ACM Trans. Graph., 20(3):127–150, 2001.

[LMP01] J. Lafferty, A. McCallum, and F. Pereira. Conditional Random Fields: Probabilistic mod-
els for segmenting and labeling sequence data. In Proceedings of the 18th International
Conference on Machine Learning, Williamstown, USA, pages 282–289, 2001.

[LMS02] H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated local search. In Handbook of
Metaheuristics, pages 321–353. Kluwer, 2002.

[LRB07] V. Lempitsky, C. Rother, and A. Blake. LogCut – efficient graph cut optimization for
Markov Random Fields. In Proceedings of the 11th International Conference on Computer
Vision, Rio de Janeiro, Brazil, 2007.

[LRHB06] X. Lan, S. Roth, D. P. Huttenlocher, and M. J. Black. Efficient belief propagation with
learned higher-order Markov Random Fields. In Proceedings of the 9th European Confer-
ence on Computer Vision, Graz, Austria, pages 269–282, 2006.

[LS88] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical
structures and their application to expert systems. Journal of the Royal Statistical Society,
Series B (Methodological), 50(2):157–224, 1988.

[LW04] A. Levin and Y. Weiss. User assisted separation of reflections from a single image using a
sparsity prior. In Proceedings of the 8th European Conference on Computer Vision, Prague,
Czech Republic, pages 602–613, 2004.

[LZ06] G. Li and S. W. Zucker. Surface geometric constraints for stereo in belief propagation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New
York, pages 2355–2362, 2006.

[LZW02] A. Levin, A. Zomet, and Y. Weiss. Learning to perceive transparency from the statistics of
natural scenes. In Advances in Neural Information Processing Systems, pages 1247–1254,
2002.

[LZW03] A. Levin, A. Zomet, and Y. Weiss. Learning how to inpaint from global image statistics. In
Proceedings of the 9th International Conference on Computer Vision, Nice, France, pages
305–312, 2003.

[Mac03] D. Mackay. Information Theory, Inference and Learning Algorithms. Cambridge Univer-
sity Press, 2003.

[MCSF06] J. J. McAuley, T. S. Caetano, A. J. Smola, and M. O. Franz. Learning high-order MRF
priors of color images. In Proceedings of the 23rd International Conference on Machine
Learning, Pittsburgh, USA, pages 617–624, 2006.

[MP79] D. Marr and T. Poggio. A computational theory of human stereo vision. Philosophical
Transactions of the Royal Society of London, Series A, 204:301–328, 1979.

[MRR+53] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equation of state
calculations by fast computer machines. Journal of Chemical Physics, 21:1087–1092,
1953.

BIBLIOGRAPHY 197

[MS85] D. Mumford and J. Shah. Boundary detection by minimizing functionals. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, pages
22–26, 1985.

[NN97] S. Nene and S. Nayar. A simple algorithm for nearest neighbor search in high dimensions.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(9):989–1003, 1997.

[OF97] B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy
employed by V1? Vision Research, 37(23):3311–3325, 1997.

[OK93] M. Okutomi and T. Kanade. A multiple-baseline stereo. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 15(4):353–363, April 1993.

[PCRZ07] L. C. Pickup, D. P. Capel, S. J. Roberts, and A. Zisserman. Bayesian methods for image
super-resolution. The Computer Journal, 2007.

[Pea88] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kauffman, San Mateo, California, 1988.

[PL98] R. Paget and I. D. Longstaff. Texture synthesis via a noncausal nonparametric multiscale
Markov Random Field. IEEE Transactions on Image Processing, 7(6):925–931, June 1998.

[Pot07] B. Potetz. Efficient belief propagation for vision using linear constraint nodes. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis,
2007.

[PP93] K. Popat and R. Picard. Novel cluster-based probability model for texture synthesis, clas-
sification, and compression. In Proceedings of the SPIE Conference on Visual Communi-
cations and Image Processing, Boston, 1993.

[PTK85] T. Poggio, V. Torre, and C. Koch. Computational vision and regularisation theory. Nature,
317:314–319, 1985.

[PZF06] M. Prasad, A. Zisserman, and A. W. Fitzgibbon. Single view reconstruction of curved
surfaces. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, volume 2, pages 1345–1354, June 2006.

[RB05] S. Roth and M. J. Black. Fields of experts: A framework for learning image priors. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San
Diego, volume 2, pages 860–867, 2005.

[RC98] S. Roy and I. J. Cox. A maximum-flow formulation of the N-camera stereo correspondence
problem. In Proceedings of the 6th International Conference on Computer Vision, Bombay,
India, pages 492–502, 1998.

[RKLS07] C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szummer. Optimizing binary MRFs via
extended roof duality. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Minneapolis, 2007.

[Rot07] S. Roth. High-Order Markov Random Fields for Low-Level Vision. PhD thesis, Brown
University, May 2007.

[RSZ06] A. Raj, G. Singh, and R. Zabih. MRF’s for MRI’s: Bayesian reconstruction of MR images
via graph cuts. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, New York, pages 1061–1068, 2006.

BIBLIOGRAPHY 198

[Sch96] D. Scharstein. Stereo vision for view synthesis. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, San Francisco, pages 852–858, 1996.

[SD97] S. M. Seitz and C. R. Dyer. Photorealistic scene reconstruction by voxel coloring. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Puerto
Rico, pages 1067–1073, 1997.

[Set98] J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge University Press,
Cambridge, 1998.

[SF06] D. Schlesinger and B. Flach. Transforming an arbitrary minsum problem into a binary one.
Technical Report TUD-FI06-01, Dresden University of Technology, 2006.

[SFVG04] C. Strecha, R. Fransens, and L. Van Gool. Wide-baseline stereo from multiple views: a
probabilistic account. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Washington, DC, volume 1, pages 552–559, June 2004.

[SFVG06] C. Strecha, R. L. Fransens, and L. Van Gool. Combined depth and outlier estimation in
multi-view stereo. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, New York, pages 2394–2401, 2006.

[SIFW03] E. B. Sudderth, A. T. Ihler, W. T. Freeman, and A. S. Willsky. Nonparametric belief prop-
agation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, Madison, Wisconsin, volume 1, pages 605–612, 2003.

[Sim97] E. P. Simoncelli. Statistical models for images: Compression, restoration and synthesis. In
31st Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA., Novem-
ber 1997.

[SK00] H. Y. Shum and S. B. Kang. A review of image-based rendering techniques. In IEEE/SPIE
Visual Communications and Image Processing (VCIP) 2000, pages 2–13, 2000.

[SLKS05] J. Sun, Y. Li, S. B. Kang, and H. Shum. Symmetric stereo matching for occlusion handling.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San
Diego, 2005.

[SP07] D. Scharstein and C. Pal. Learning Conditional Random Fields for stereo. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, 2007.

[SS96] D. Scharstein and R. Szeliski. Stereo matching with non-linear diffusion. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, pages
343–350, 1996.

[SS02] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. International Journal of Computer Vision, 47(1):7–42, 2002.

[SS08] D. Scharstein and R. Szeliski. Middlebury stereo evaluation table and datasets, November
2008. http://vision.middlebury.edu/stereo/.

[SWR07] A. Shahrokni, O. J. Woodford, and I. D. Reid. Temporal priors for novel video synthesis.
In Proceedings of the 8th Asian Conference on Computer Vision, Tokyo, Japan, pages 601–
610, 2007.

http://vision.middlebury.edu/stereo/

BIBLIOGRAPHY 199

[Sze99] R. Szeliski. A multi-view approach to motion and stereo. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, volume 1,
pages 157–163, 1999.

[SZS03] J. Sun, N.-N. Zheng, and H.-Y. Shum. Stereo matching using belief propagation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 25(7):787–800, July 2003.

[SZS+06] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala, M. Tappen,
and C. Rother. A comparative study of energy minimization methods for markov random
fields. In Proceedings of the 9th European Conference on Computer Vision, Graz, Austria,
pages 16–29, 2006.

[SZS+08] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala, M. Tappen,
and C. Rother. A comparative study of energy minimization methods for markov random
fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(6):1068–1080,
June 2008.

[Ter83] D. Terzopoulos. Multilevel computational processes for visual surface reconstruction.
Computer Vision, Graphics and Image Processing, 24(1):52–96, October 1983.

[Ter85] D. Terzopoulos. Computing visible-surface representations. Technical Report AI Memo
No. 800, MIT Artificial Intelligence Lab., March 1985.

[TF03] M. F. Tappen and W. T. Freeman. Comparison of graph cuts with belief propagation for
stereo, using identical MRF parameters. In Proceedings of the 9th International Conference
on Computer Vision, Nice, France, volume 2, pages 900–906, 2003.

[TRF03] M. F. Tappen, B. C. Russell, and W. T. Freeman. Exploiting the sparse derivative prior for
super-resolution and image demosaicing. In Third International Workshop on Statistical
and Computational Theories of Vision, 2003.

[TSA01] P. H. S. Torr, R. Szeliski, and P. Anandan. An integrated Bayesian approach to layer
extraction from image sequences. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23(3):297–304, 2001.

[TSK01] H. Tao, H. S. Sawhney, and R. Kumar. A global matching framework for stereo computa-
tion. In Proceedings of the 8th International Conference on Computer Vision, Vancouver,
Canada, pages 532–539, 2001.

[Vek05] O. Veksler. Stereo correspondence by dynamic programming on a tree. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, San Diego, pages
384–390, 2005.

[Vek07] O. Veksler. Graph cut based optimization for MRFs with truncated convex priors. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Min-
neapolis, 2007.

[Wei00] Y. Weiss. Correctness of local probability propagation in graphical models with loops.
Neural Computation, 12(1):1–41, 2000.

[Wel07] M. Welling. Products of experts. Scholarpedia, 2(10):3879, 2007.

BIBLIOGRAPHY 200

[WF05] O. Woodford and A. W. Fitzgibbon. Fast image-based rendering using hierarchical image-
based priors. In Proceedings of the British Machine Vision Conference, volume 1, pages
260–269, 2005.

[WF07] Y. Weiss and W. T. Freeman. What makes a good model of natural images? In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, 2007.

[WHO02] M. Welling, G. Hinton, and S. Osindero. Learning sparse topographic representations with
products of student-t distributions. In Advances in Neural Information Processing Systems,
pages 1359–1366, 2002.

[WJW03] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. MAP estimation via agreement
on (hyper)trees: Message-passing and linear programming approaches. Technical Report
UCB/CSD-3-1269, Computer Science Division, University of California, August 2003.

[WL00] L.-Y. Wei and M. Levoy. Fast texture synthesis using tree-structured vector quantization. In
Proceedings of the ACM SIGGRAPH Conference on Computer Graphics, pages 479–488,
2000.

[WQ05] Y. Wei and L. Quan. Asymmetrical occlusion handling using graph cut for multi-view
stereo. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, San Diego, volume 2, pages 902–909, 2005.

[WRF07] O. J. Woodford, I. D. Reid, and A. W. Fitzgibbon. Efficient new view synthesis using
pairwise dictionary priors. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Minneapolis, 2007.

[WRTF06] O. Woodford, I. D. Reid, P. H. S. Torr, and A. W. Fitzgibbon. Fields of experts for image-
based rendering. In Proceedings of the 17th British Machine Vision Conference, Edinburgh,
volume 3, pages 1109–1108, 2006.

[WRTF07] O. J. Woodford, I. D. Reid, P. H. S. Torr, and A. W. Fitzgibbon. On new view synthesis
using multiview stereo. In Proceedings of the 18th British Machine Vision Conference,
Warwick, volume 2, pages 1120–1129, 2007.

[WS06] J. Winn and J. Shotton. The layout consistent random field for recognizing and segmenting
partially occluded objects. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, New York, 2006.

[WSI04] Y. Wexler, E. Shechtman, and M. Irani. Space-time video completion. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC,
volume 1, pages 120–127, 2004.

[WTRF08] O. J. Woodford, P. H. S. Torr, I. D. Reid, and A. W. Fitzgibbon. Global stereo reconstruc-
tion under second order smoothness priors. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, June 2008.

[YC04] J. Yao and W-K. Cham. An efficient image-based rendering method. In Proceedings of the
17th International Conference on Pattern Recognition, Cambridge, UK, volume 1, pages
88–91, 2004.

[YFW00] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Generalized belief propagation. In Advances
in Neural Information Processing Systems, pages 689–695, 2000.

BIBLIOGRAPHY 201

[YWY+06] Q. Yang, L. Wang, R. Yang, H. Stewénius, and D. Nistér. Stereo matching with color-
weighted correlation, hierachical belief propagation and occlusion handling. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, New York, pages
2347–2354, 2006.

[ZK07] C. L. Zitnick and S. B. Kang. Stereo for image-based rendering using image over-
segmentation. International Journal of Computer Vision, 75(1):49–65, 2007.

[ZM97] S. C. Zhu and D. Mumford. Prior learning and Gibbs reaction-diffusion. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 19(11):1236–1250, November 1997.

[ZVG00] A. Zalesny and L. Van Gool. A compact model for viewpoint dependent texture synthesis.
In Proceedings of the European Conference on Computer Vision, LNCS 2018/5, pages
124–143. Springer-Verlag, 2000.

[ZWM98] S. C. Zhu, Y. Wu, and D. Mumford. Filters, random-fields and maximum-entropy
(FRAME): Towards a unified theory for texture modeling. International Journal of Com-
puter Vision, 27(2):107–126, March 1998.

	Table of Contents
	Nomenclature
	Introduction
	New view synthesis
	The inverse problem
	Regularization using priors

	Motivation
	Challenges
	Contributions
	A comparison of priors and optimizers
	New prior models
	New optimization techniques

	Thesis outline
	Publications

	Background
	Problem statement
	Inputs
	NVS approaches

	Bayesian framework
	Learning the prior
	Graphical models
	Meta-priors

	Energy minimization
	Simplifying assumptions

	Test sequences
	Quantitative error measurement

	Literature review
	Inference algorithms
	Message passing algorithms
	Graph cuts
	Local approaches

	Surface geometry priors
	CRF on smoothness
	Occlusion models
	Backward transfer NVS

	Image priors
	Pairwise priors
	Filter-based priors
	Sparse coding priors
	Example-based priors

	NVS state of the art

	A hierarchical texture prior
	Introduction
	Computational strategy: single resolution
	Objective function
	Optimization
	Results and discussion

	Computational strategy: multi-resolution
	Previous work
	Implementation
	Results and discussion

	Conclusion

	Field of Experts prior
	Field of Experts
	Energy minimization
	Optimization methods
	Iterated local search

	Experiments and Results
	Optimizer performance
	Prior performance

	Discussion
	Conclusion

	Pairwise clique priors
	Optimization framework
	Data likelihood
	Minimizing out disparity
	Finding colour modes
	Graph clique potentials

	Pairwise prior functionals
	Parametric prior
	Non-parametric priors

	Experiments
	Sparse prior weight
	Quantitative results
	Qualitative results
	Methods for finding modes
	Robust photoconsistency kernel

	Conclusion

	Regularizing geometry
	Objective function
	Data costs
	Prior term
	Computing colour

	Optimization
	Graph construction
	Label fixing
	Implementation details

	Experiments
	Label fixing methods
	Qualitative performance
	Incorporating visibility
	Incorporating variable colour
	Incorporating texture regularization

	Conclusion

	Second order smoothness priors
	Objective function
	Data likelihood
	Surface smoothness
	CRF weights

	Optimization
	Graph construction
	Proposal generation
	Implementation details

	Experiments
	Number of unlabelled nodes
	Comparison of label fixing strategies
	Proposals
	Comparison of priors
	Visibility
	Multiple and arbitrary views

	NVS from stereo
	Implementation details
	Results

	Conclusion

	Conclusion
	Comparison of results
	Quantitative comparison
	Partially occluded regions
	Disparity discontinuities
	Detailed texture
	Low contrast texture
	General vs@let@token . sequence-specific image priors

	Contributions
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8

	Future work
	New prior models
	Wider variety of output images w.r.t@let@token . input sequence
	Temporal consistency
	Higher-level cues
	Towards perfect NVS

	Projective geometry
	Projection
	Projection matrices
	Depth parametrization

	A normalized cooling schedule
	Problem statement
	Normalized temperature
	Updating T

	Multi-modal Product of Experts

