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Abstract

This thesis investigates the use of the computerized video monitoring in
support of the diagnosis of obstructive sleep apnoea, which is characterized
by repetitive obstruction of the upper airways during sleep and resulted in
arterial oxyhaemoglobin desaturation, excessive arousals, unrefreshing sleep,
excessive daytime sleepiness, poor health-related quality of life, hyperten-
sion and severe life-threatening complications. According to recent research
findings, the best predictors of morbidity are nocturnal oxygen saturation
and movements during sleep. Although pulse oximetry is a well-established
technique to analyze oxygen saturation, video monitoring and interpretation
is less well developed due to the technical challenges of persistent occlusion,
obscuration of the body by the bedding, variation of human behavior and
the large volume of video data.

This work introduces a new automatic video monitoring technique for
breathing behavior anomaly detection and assisting in diagnosis of obstruc-
tive sleep apnoea. The algorithm utilizes infrared video information, imposes
few positional constraints on the patient, and deals with fully or partially cov-
ered bodies. A new motion detection model is presented to capture subtle
and cyclical breathing signals. A novel action template is introduced to cap-
ture the dynamic spatial-temporal shape of normal breathing activities for
action recognition, and adapts as the subject’s pose changes. The online-
constructed action template is used to classify an action as a normal breath-
ing episode, an apnoea episode or a body movement episode. Although the
presented approach is designed for diagnosis of obstructive sleep apnoea, it
could be utilized in other applications that require the analysis of breathing
behavior or monitoring subtle and cyclical activity.

This work also introduces two novel monocular video approaches (Match-
Pose and RTPose) for pose recognition of the covered human body. They
are recommended for different purposes: RTPose provides coarse pose esti-
mation and is computationally efficient; MatchPose produces fine pose esti-
mation but takes 0.4 seconds to process a 320× 240 frame. If full body pose
estimation is desirable, we recommend MatchPose. On the other hand, in
the interests of computational speed, we recommend incorporating RTPose
with motion information. The methods assume subjects lying horizontally.
In addition, a low variance error boosting algorithm is developed for training
head and upper leg pose templates.



In evaluation, we demonstrate that the breathing monitoring algorithm
achieves high accuracy using confusion matrix in recognizing abnormal breath-
ing activities and body movements and in classification of symptomatic and
non-symptomatic subjects, and that the two pose estimation algorithms are
able to identify human configurations with various poses and occlusion levels,
and they are not particularly sensitive to environmental settings, including
illumination and camera angle.
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Chapter 1

Introduction

This thesis investigates automated video monitoring of breathing activity
invariant to pose and occlusion, and pose estimation of the covered human
body, which has not been widely studied. The aim of this research is to de-
velop automated video approaches for diagnosis of obstructive sleep apnoea,
which requires analysis of breathing behavior and body activity during sleep.
In this introductory chapter, we present the motivation of this research, and
then give an outline of the contributions and structure of the thesis.

1.1 Motivation

Obstructive Sleep Apnoea (OSA) syndrome was first identified only 43 years
ago [59, 63]; its clinical importance is increasingly recognized. OSA is charac-
terized by repetitive obstruction of the upper airways during sleep, resulting
in oxygen de-saturation and frequent arousals. Importantly, OSA is a condi-
tion that not only presents with symptomatology troubling to the patient and
their family, but also has severe complications which may be life-threatening.
Reduction in cognitive function, cardiovascular diseases, stroke, decreased
quality of life, fatigue and excessive day time sleepiness are common among
OSA patients.

Although OSA is acknowledged as a worldwide problem, which in Western
countries affects around 4% of men and 2% of women [49, 63], the majority of
affected individuals remain undiagnosed. Some studies have suggested that
figures are much higher [112, 126, 145, 154]. Due to lack of awareness among
the general population and physicians, Hossain and Shapiro [72] suggested
that an estimated 80% to 90% of OSA suffers have not received a clinical
diagnosis.

The standard diagnostic tool for sleep apnoea is Polysomnography (PSG),
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which measures a wide range of parameters, including brain waves, eye move-
ments, muscle activity or skeletal muscle activation, heart rhythm, airflow,
respiratory effort, and blood oxygen saturation using a range of sensors.
However, PSG requires costly measurement devices and labor-intensive work
for the electrode hook-ups. Worse, it disturbs sleep and compromises results.
Thus, there is growing interest in alternative approaches to replace PSG in
the diagnostic assessment of patients with suspected sleep apnoea.

Instead of using the entire set of PSG, pulse oximetry (which measures
blood oxygen saturation levels) in conjunction with noninvasive video mon-
itoring has been utilized for diagnosis of OSA in the hospital. In principle,
the medical doctor identifies doubtful areas on the pulse oximetry trace and
reviews the video data during these identified periods. However, in practice,
the pulse oximetry traces of some OSA patients do not show any abnormal-
ities, and the medical doctor has to review the overnight video. Sivan et
al. [144] indicate that the results from traditional PSG are highly correlated
with the manually marked video test results. In addition, according to recent
research findings [15, 89, 123], the best predictors of morbidity in individual
patients, as assessed by improvements with CPAP (continuous positive air-
way pressure therapy), are nocturnal oxygen saturation levels of the blood
and movement during sleep.

However, video monitoring and interpretation of OSA is not well devel-
oped due to the technical challenges, including heavy occlusion and obscu-
ration of the human subject by bedding, variations in human size, sleeping
posture and breathing behavior, changes of the subject’s facing with respect
to the camera and difficulty in detecting breathing from video. Existing
video monitoring techniques [158] utilize patterned sheets and infrared light
to compute gross degrees of motion. However, gross motion suggests only
periods of time with movements rather than identifying what the activities
are, and therefore requires clinicians to review substantial amounts of video
data manually – a time-consuming and expensive process.

As a result, there is a practical demand for automated methods that
objectively and reliably detect OSA from video. There are two major ac-
tivities of interest: breathing activities, and body movements such as limb
movements.

1.1.1 Difficulties for Computer Vision Approaches

Automated video monitoring of covered human body movements and breath-
ing activity are both challenging tasks. For monitoring breathing activity,
existing computer vision approaches utilize thermal imaging [28, 111, 176] to
capture a breathing signal. However, there are strict positional constraints as
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these methods target the face. In addition, the regions of interest for these
methods must be unoccluded. Moreover, the expense of thermal imaging
technology is high.

Conventional motion detection approaches prove unsuitable for the cap-
ture of breathing movements. Background differencing fails because the
salient motion operates so slowly that it is swamped by noise; optical flow has
weaknesses with respect to cyclical movements, as an object that moves in a
straight line but oscillates forwards and backwards has low salience. To the
author’s best knowledge, there is no existing method to automatically ana-
lyze human breathing behavior from video, robust to occlusion and without
positional limitations.

Further difficulties include the varying appearance of breathing activity
due to changes of the pose and occlusion level, and variation in the region
of interest, since breathing movements may occur in different regions such
as the jaw, the chest area, the abdominal area or the shoulders. A detailed
discussion is given in chapter 3.

Regarding the monitoring of covered body activities, it is difficult to
obtain full body silhouettes due to partial and irregular movement during
sleep. Thus, the model-based framework that identifies body pose first and
analyzes activity using the estimated pose and detected motion is adopted.
The first task is therefore to estimate the covered body pose, which how-
ever remains a challenging task. Many existing approaches to pose estima-
tion make simplifications of the measurement problem, either using motion
data (e.g. [1, 45, 67, 146]) to extract silhouettes, or assuming knowledge
of appearance or color (e.g. [40, 95, 128, 136]), and the subjects tend to
wear close-fitting clothing (or even to be unclothed [40]) in order to ex-
tract such information more easily. These methods are too restrictive and
not applicable to the problem in the field of this study. Although there is
some published research investigating the monitoring of partially occluded
humans [69, 129, 153, 170], the methods examined do not deal with pose
estimation of consistently and almost wholly occluded subjects.

1.2 Aim and Objectives

The aim of this research is to investigate the use of computerized video
monitoring in support of the diagnosis of OSA. The primary objective is to
detect abnormal breathing episodes based on video analysis. This requires
the model also to distinguish breathing movements from other body move-
ments. The secondary is to perform on pose estimation of covered humans
to allow future work to recognize human activities during sleep.
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1.3 Contributions and Proposed Methods

The first contribution of this work is a novel automatic video monitoring
technique for breathing behavior anomaly detection, assisting in the diagno-
sis of OSA. The algorithm utilizes infrared video information, avoids impos-
ing positional constraints on the patient, and deals with a fully or partially
obscured patient body. A new motion detection model is introduced to cap-
ture subtle and cyclical breathing signals. Moreover, regarding action as
a spatial-temporal shape, a normal breathing action template is created to
model the shapes of normal breathing activities for action recognition. As
the subject changes pose over time, the shapes of normal breathing activities
change, which requires accompanying changes of the template. A dynamic
action template model of normal breathing behavior is presented, which is
used both to distinguish body movements from breathing episodes, and to
classify breathing episodes as either a normal breathing episode or an apnoea
episode. Although the approach is designed for diagnosis of OSA, it could
also be utilized in other applications that require the analysis of breathing
behavior or monitoring subtle and cyclical activity.

Apart from breathing activity, body movements such as limb movements
are also used for diagnosis of sleep apnoea. For example, periodic limb move-
ments during sleep are a common finding in patients with OSA [68, 82].

The second contribution is two novel monocular video algorithms, Match-
Pose and RTPose, to robustly locate a persistently and (fully or partially)
occluded prone human body pose, which allows future work to recognize hu-
man activities during sleep. They are recommended for different purposes:
if full body pose estimation is desirable, we recommend MatchPose; in the
interests of computational speed, we recommend incorporating RTPose with
motion information. The two pose estimation methods assume subjects lying
horizontally. They are demostrated to recognize poses of different obscured
subjects with various occlusion levels and poses, and the methods are not
particularly sensitive to changes of IR illumination and camera angle.

A robust Weak Human Model (WHM), which combines a number of ob-
scured part detectors to accommodate various levels of occlusion and body
postures, is introduced to effectively and efficiently identify a few upper body
poses. In MatchPose, WHM is combined with an improved pose matching
model (cwPose) to recover the full body pose of covered subjects. In RT-
Pose, WHM is integrated with an upper leg pose estimator (cwULeg), which
uses a novel representation to capture latent image features, and a new re-
inforcement tracker to reinforce both feature space and model parameter
space. Although the methods are designed for sleep study, they could also
be utilized in other applications that require the analysis of human poses and
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behavior in situations with heavy obscuration or persistent occlusion.
The third contribution is a low variance error boosting algorithm that

uses weight perturbation to reduce variance error, and is particularly effec-
tive when dealing with data sets, which have large numbers of features and
small number of instances. The algorithm is used to train the obscured head
template of WHM and upper leg pose templates of cwULeg.

The proposed methods for breathing monitoring and pose estimation
overcome the difficulties caused by poor quality image cues due to heavy
occlusion and obscuration, and to large variances in image features due to un-
predictable human behavior (e.g. when removing or pulling back the cover).

1.4 Ethical Validity, Systems and Tools

Research Ethics. Two NHS research ethics applications were made for
the project. The first one in March 2007, with REC reference number
07/Q2403/38 was not approved; the subsequent application in January 2008
was accepted, and in February 2008 Research Ethics approval was gained
from Derbyshire Research Ethics Committee (REC number 08/H0401/12).
Symptomatic and non-symptomatic volunteers were recruited to participate
the study; informed consent forms and related documents such as the infor-
mation sheets and GP letters are attached in Appendix E.

Systems and Tools. A video monitoring system has been installed in the
sleep study room situated on Carlton Coleby Ward in the United Lincolnshire
Hospital, UK in May 2008; testing of the system ends in September 2008.
Prior to the research ethics application approval, a temporary video moni-
toring system was installed in the author’s bedroom using camcorders and
tripods. All software is implemented in C#, Microsoft Visual Studio .Net.
Microsoft Directshow (DirectX) was used to decode video data, which was
recorded and compressed into the WMV9 format.

1.5 Thesis Outline

The remainder of this thesis is arranged as follows:

In chapter 2, the medical background of OSA is given, with a review of
current diagnostic techniques, followed by further discussion of existing ap-
proaches and potential techniques to monitor human breathing activities and
covered human body activities.
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In chapter 3, a new noninvasive real-time video monitoring technique is
introduced for detecting abnormal breathing activities and for assisting in
the diagnosis of OSA.

In chapter 4, an existing stylized pose detector [128] is reviewed and applied
to the covered human video data; the performance is shown to be extremely
poor due to the heavily obscured image features. Two markerless pose esti-
mation approaches without manual initialization are introduced to estimate
the pose of covered human subjects from image sequences. In evaluation, the
techniques are used to estimate the covered body pose with various postures
and obscuration levels.

In chapter 5, the contributions of this thesis are reviewed, and future areas
for consideration are discussed.
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Chapter 2

Background

This chapter describes the medical background of OSA and current diagnos-
tic techniques in section 2.1, and discusses techniques to monitor breathing
activities and the covered human body in section 2.2 and 2.3 respectively.

2.1 Obstructive Sleep Apnoea

OSA was first identified only 43 years ago [63] and its clinical importance
is increasingly recognized. OSA is one of the most common sleep disorders
and occurs with similar frequency to Type 1 diabetes and twice that of se-
vere asthma. It affects an estimated 4% of males and 2% of females in the
UK, although the prevalence is thought to be considerably higher in specific
groups and occupations, where the consequences can be fatal or lead to se-
rious injury if left undiagnosed and un-treated. It is now well established
that OSA is associated with an increased risk of cardiovascular disease, and
patients with sleep apnoea have a high prevalence of the risk factors that
comprise the metabolic syndrome, namely: central adiposity, dyslipidaemia,
high blood pressure, insulin resistance, and hyperglycaemia [32, 113, 125].

There are two types of apnoea: obstructive, in which air flow ceases but
movement of the chest wall (rib cage and abdomen) persists, implying res-
piratory effort in the face of a closed upper airway; and central, in which
both flow and movement cease, apparently because of cessation of the drive
to breathe. The primary focus of this research is on OSA, but this does not
mean that our algorithm is unsuitable for central apnoea or other breath-
ing disorder syndromes. The rest of this section describes the prevalence,
consequences and syndromes of OSA and existing OSA diagnostic tools.
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2.1.1 Prevalence - Underestimated and Undertreated

Although OSA is acknowledged as a worldwide problem, which in Western
countries affects around 4% of men and 2% of women [49, 63], the majority
of affected individuals remain undiagnosed. In the USA, about 70 million
Americans suffer from a sleep problem, nearly 60% of them have a chronic
disorder, and the second most common sleep disorder is OSA, which affects
about 18 million Americans; additionally, other sleep disorders add an esti-
mated $15.9 billion to the National Health Care Bill [137]. In the UK, sleep
disorders affect about 770,000 people [122].

Some studies have suggested that figures are much higher. Sjostrom et
al. [145] estimate 24% of men and 9% of women in the middle aged population
suffer from OSA, whilst Neven et al. [112] estimate that at least 45% of men
aged 35 and over suffer from clinically significant OSA. In Asia, a study
from Singapore [126] indicates that prevalence of OSA to be around 15% in
the country. Another study in India [154], the researchers found that the
prevalence of OSA was 7.5% in healthy urban Indian males between 35–65
years of age.

Due to lack of awareness among the general population and physicians,
Hossain and Shapiro [72] suggested that an estimated 80–90% of OSA suffer-
ers have not received a clinical diagnosis, and in the Wisconsin sleep cohort
study [173], 93% of women and 82% of men with moderate-to-severe sleep
apnoea did not receive diagnoses.

Thus, there is a growing interest in alternative approaches to the diagnosis
of OSA as substitutes for labor-intensive and time-consuming PSG.

2.1.2 Consequences of OSA Syndrome

Increases Risk of Heart Attack and Death. OSA increases a person’s
risk of having a heart attack or dying by 30% over a period of four to five
years, according to a new study [139], which includes 1123 patients referred
for sleep apnoea evaluation. All patients underwent an overnight sleep study
to determine if they had OSA, and over the next four to five years, they were
followed to see how many had any heart disease events (heart attack, coronary
angiography or bypass surgery) or died. The researchers indicated that sleep
apnoea triggers the body’s “fight or flight” mechanism, which decreases the
amount of blood pumped to the heart; consequently, repeated episodes every
night over several years can starve the heart of enough oxygen, when com-
bined with the body’s decreased oxygen intake due to the frequent breathing
stoppages. Another recent study [164] compared mortality in three groups:
113 patients with heart failure, but little or no OSA; 37 such patients with
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untreated moderate to severe OSA; and 14 with OSA treated with continuous
positive airway pressure, and the presence of untreated OSA seemed to dou-
ble mortality from heart failure over five years from 12% to 24%; there were
no deaths in the small group treated with continuous positive airway pres-
sure. Furthermore, there is evidence that treatment of OSA improves cardiac
function [86], and untreated OSA patients have a higher risk of recurrence of
atrial fibrillation after successful cardioversion than patients without known
OSA [85].

Earlier Death in Stroke Patients. Sleep related breathing disorders
(SRBDs), including Sleep Apnea, Cheyne-Stokes Respiration and Alveolar
Hypoventilation Syndrome, are both a risk factor for and are common in
patients with stroke, and it is found that SRBDs may have adverse impact
on survival and prognosis [93]. Stroke victims who have OSA die sooner
than stroke victims who do not have OSA, according to [140]. The researchers
followed 132 stroke patients over 10 years, and 23 of those patients had OSA.
The findings indicate the importance of a clinical trial for stroke patients with
OSA to see whether treating the sleep disorder will extend their lives.

Association with Eye Disease. Multiple studies have identified OSA as
an independent risk factor for the development of several medical conditions,
including high blood pressure, which are related to impairments or alter-
ations in a person’s vascular (circulatory) system. With their own complex
and sensitive vascular system, the eyes can be affected by systemic vascular
problems. According to [141], a variety of ophthalmologic conditions are as-
sociated with OSA, including floppy eyelid syndrome, glaucoma (the second
most common cause of blindness and the most common cause of irreversible
blindness), Nonarteritic anterior ischemic optic neuropathy (NAION), and
Papilledema.

2.1.3 Definition of the Syndrome

An Apnoea-Hypopnoea index (AHI) is generally used for evaluation of the
severity of OSA and is calculated as the average number of apnoeas plus
hypopnoeas, per hour of sleep. From [93], the clinical and research definitions
of apnoea (and associated hypopnoea) are described below:

Clinical Definition: Apnoea is defined as a cessation of airflow for > 10
seconds. The event is obstructive if during apnoea there is effort to breathe;
the event is central if during apnoea there is no effort to breathe. Several

10



clinical definitions of hypopnoea are in clinical use and there is no clear
consensus. An approved definition of hypopnoea is an abnormal respiratory
event with at least 30% reduction in thoracoabdominal movement or airflow
as compared to baseline lasting at least 10 seconds, and with ≥ 4% oxygen
desaturation.

Research Definition: Apnoea is defined as a clear decrease (> 50%) from
baseline in the amplitude of a valid measure of breathing during sleep lasting
at least 10 seconds (note, there is little differentiation between OSA or hy-
popnoea). Hypopnoea is defined as a clear decrease (< 50%) from baseline
that is associated with an oxygen desaturation of > 3% or an arousal.

The apnoea often ends with a loud snore or gasp, along with movements
of the whole body. This awakening is sufficient to make the patient’s throat
opening muscles work so (s)he can breathe in again, but (s)he usually falls
asleep again so quickly that (s)he does not remember it happening. In OSA,
this cycle repeats itself throughout the night as the muscles relax and the
throat blocks off again. During sleep, the intervals between the breaths
(apnoeic spells) or the reduction of the depth of breathing (hypopnoea) lead
to a decrease of the oxygen in the blood and will cause the afflicted person
to wake up many times during the night.

2.1.4 Existing Techniques for Diagnosis

The standard diagnostic tool in sleep medicine is Polysomnography (PSG),
as displayed in Figure 2.1. PSG measures a wide range of variables and
monitors body functions, including brain waves by electroencephalography
(EEG), eye movements by electrooculography (EOG), skeletal muscle acti-
vation by electromyography (EMG), heart rhythm by electrocardiography
(ECG), airflow by thermistor or pressure transducer, respiratory effort by
thoracic-abdominal bands, and blood oxygen saturation by pulse oximetry.

Flemons et al. [49] categorize general sleep monitoring techniques into
four types, including: Type 1 Monitoring (standard PSG), Type 2 Monitoring
that incorporates sleep staging and respiratory measures with a minimum of
seven channels, Type 3 Monitoring using at least three respiratory channels
(ventilation or airflow, heart rate or ECG, oxygen saturation) and Type 4
Monitoring utilizing at least one respiratory channel, usually either oxygen
saturation or airflow.
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Figure 2.1: Traditional Diagnosis Tools (a) PSG, (b) Portable PSG
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2.1.5 Limitations of Existing Techniques

Flemons et al. [49] point out two drawbacks of PSG. Firstly, thermistors
may not be significantly sensitive to detect hypopneas. Secondly, nasal pres-
sure can produce poor results if patients are mouth breathing. Furthermore,
PSG requires labor-intensive work to attach the sensors onto the patient’s
body and expensive equipment for diagnosis. It also provides an intrusive
monitoring environment, which disturbs sleep and compromises results; see
Figure 2.1. Thus, there is growing interest in alternative approaches to PSG.

Video monitoring in conjunction with pulse oximetry has been adopted
to assist diagnosis of OSA. According to recent findings [15, 89, 123, 144],
the best predictors of morbidity in individual patients, as assessed by im-
provements with Continuous Positive Airway Pressure (CPAP) therapy, are
nocturnal oxygen saturation and movement during sleep, rather than the
Apnoea-Hypopnoea Index, which is calculated as the average number of ap-
noeas plus hypopnoeas per hous of sleep. In [144], Sivan et al. showed that
the results from traditional PSG are highly correlated with the manually an-
alyzed video test results. The protocol is that the medical doctor identifies
doubtful areas on the pulse oximetry trace and reviews the video data during
these identified periods. However, the pulse oximetry traces of some OSA
patients show no abnormality. For example, the lung of the athlete works
so efficiently that the blood oxygen saturation sensed by the pulse oximetry
appears normal even though the subject suffers from OSA. In such cases, the
medical doctor has to review the overnight video.

Automated video monitoring and interpretation of OSA is under devel-
oped due to the computational complexity of video analysis. The current
approach for video analysis is for clinicians to review substantial amounts of
video data manually. Existing video systems in the sleep lab in United Lin-
colnshire Hospital, United Kingdom [158] utilize motion sensors, patterned
sheets and infrared light to detect gross degrees of motion, which suggest
periods of activity but do not identify what the activities are. Moreover,
as Matusiewicz and Gravill [107] pointed out, once the patterned cover is
removed by the patient the system fails to detect human activities, and pro-
duces useless motion information. Hence, clinicians still have to analyze
substantial amounts of video data, which is a time-consuming and expensive
process. In addition, the diagnosis is subject to human error and to the un-
certainty of subjective judgments. Hoffstein et al. [70] studied 25 cases, all
of whom had full nocturnal PSG, including the measurement of snoring, to
compare the subjective snoring count by two listeners during a 20 minute
segment. In 7 out of 25 patients, the difference in subjective snore counts
perceived by the listeners was larger than 25%.
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Figure 2.2: Existing Video Monitoring System [158] using Patterned Sheet

and Motion Detection

As a result, there is a practical demand for automated methods that
objectively and reliably analyze human action from video. The clinical ex-
perts from Lincoln County Hospital [107] identified two major themes for
monitoring: human breathing activities and body movements such as limb
movements. Both are challenging since the subject tends to be heavily and
persistently occluded. In the following two sections, potential or existing
techniques, including non-video approaches, are discussed for their suitabil-
ity to analyze human breathing activity and covered body activity during
the subject’s sleep.

2.2 Monitoring of Breathing Activities

Monitoring of breathing has broad applications such as polygraph (popularly
referred to as a lie detector), sleep studies, sport training, early detection of
sudden infant death syndrome in neonates, and patient monitoring. Current
breathing monitoring techniques can be categorized into two types: invasive
and non-invasive.

2.2.1 Contact Type Techniques to Monitor Breathing

The contact type approaches include thoracic-abdominal bands [80, 150],
which track changes in the body circumference during the respiratory cy-
cle, stick-on electrodes such as the Electrocardiogram (ECG) method [110],
the nasal temperature probe [149] and contact-type microphone for audio
analysis to monitor tidal volumes from human breathing activity [5, 78]. In
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a typical breath monitor, a thermistor, an accelerometer, or a contact-type
microphone must be attached directly to the person’s body, near the nose
and the mouth, or over the chest wall and the trachea.

The main disadvantage of all the aforementioned technologies is that they
require close contact with the subject, which in certain cases may be quite
uncomfortable and not practical. Apart from the invasive nature of these
monitoring equipments, which disturbs sleep and therefore compromises re-
sults, the thermistors used in PSG sense differences in temperature, but they
do not have a linear relationship with true airflow, and consequently may not
be sufficiently sensitive to detect hypopneas [49]. Furthermore, nasal pres-
sure gives a linear approximation to airflow but can produce false-positive
events and low quality signals if patients are mouth breathing [49]. Regarding
the thoracic-abdominal bands, if the tension on the strap is not calibrated,
the system will not track the respiration motion correctly, so that adjust-
ment may be necessary. In addition, measurements on patients with shallow
and abdominal breathing patterns may fail because the sensor cannot track
adequately in a reproducible manner if the chest displacements during nor-
mal breathing and breath-hold are not distinctly different. More seriously,
the invasive approaches very often fail to monitor continuously because the
devices can be pulled off by the subject during sleep unconsciously. For
example, in 48 percent of the cases (21 of 43 cases) in the clinical study con-
ducted in [118], the monitoring system failed to measure the physiological
values continuously enough to diagnose disease.

2.2.2 Existing Non-invasive Techniques and Drawbacks

Published non-invasive techniques include non-contact type audio analy-
sis [29, 120], vibration sensors [104, 134], and thermal imaging [111, 28, 176].
A major challenge for non-contact type audio analysis is the extraction of
breathing sounds from sensor signals contaminated by environmental noise.
Cheng et al. [29] developed a portable device (SOD) to detect snores, but the
SOD is not intended to be a diagnosis device for OSA. Instead, the device is
to be used as a precautionary measure for monitoring snoring at home, and
subjects whose snoring patterns are classified as possible OSA symptoms by
the device are suggested to consult doctors for further diagnosis. Although
the preliminary study [120] suggests that the bispectral analysis of snore
signals might be useful to distinguish apneic patients from benign patients,
it has not been proved that diagnosis can be obtained from the analysis of
audio monitoring of snoring.

A preliminary study of vibration sensors to monitor breathing activities
was conducted in [104]. The subject had the vibration sensor pad placed
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Figure 2.3: Positional limitations of thermal imaging techniques: (a) the

nasal area and the Segment of Carotid Vessel Complex [28]; (b) the subject’s

side face from a distance of six to eight feet [111]; (c) the frontal view of a

face for the periorbital regions and the nose region [176])

underneath their calf while they were lying on their back on a bed, and with
the subject lying on their stomach on the bed the sensor was placed under
their chest. Due to the expensive hardware, the positional and postural con-
straints and the physicians’ preferences for video monitoring, this technique
is not investigated further in this research.

Concerning thermal imaging techniques [28, 111, 176], the researchers
utilize thermal imaging to capture the human breathing signal. In [111], the
system captures the profile view of the subject’s side face from a distance
of 1.83 to 2.44 meter to monitor the air flow through the nose and mouth.
Chekmenev et al. [28] monitor the nasal area and the Segment of Carotid
Vessel Complex, and indicate that the temperature is relatively high around
the eye region, especially periorbit, a small area between the eye and bridge
of the nose. They measure the subject’s face and neck from a distance of one
meter due to the limitations of the existing optics of the camera. In [176],
the frontal view of the subject’s face is captured to monitor the periorbital
regions and the nose region. However, there are strict positional limitations
for targeting faces, as shown in Figure 2.3. Moreover, the regions of interest
for these methods need to be visible without occlusion. These requirements
are not easily fulfilled when monitoring humans during sleep; see Figure 2.4.
As a result, thermal imaging does not appear to be a suitable option.
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Figure 2.4: Unconstrained poses in monitoring breathing activity (for illus-

tration purpose, images are modified by adding brightness).

2.2.3 Related Computer Vision Methods

One of the objectives of this research is to detect abnormal breathing episodes
from video. However, this is a challenging task. To the author’s best knowl-
edge, barring the thermal imaging approaches discussed previously, there is
no existing method identified to deal with capturing and analyzing breathing
behavior from video. This is due to two major technical challenges: breathing
movements are so subtle that they are difficult even for human eyes to ob-
serve; and motion self-occlusion of the cyclical breathing movements, which
further increases the difficulty in action recognition (e.g., in hand gesture
recognition, waving the hand is often confused with moving the hand from
left to right only; in breathing monitoring, head movements can be confused
with apnoea over-breathing actions).

Capturing Breathing Signals. The first technical challenge is to capture
the breathing signals from video. Conventional motion detection approaches
such as differences of frames (DOF) have been proven to be unsatisfactory
in [169] and in our experiments (see chapter 3.2), because the frame to frame
motion of non-salient objects may be larger than that of salient objects, espe-
cially if the salient object is moving relatively slowly. In our case, the salient
object moves so slowly that noise generated by the sensor is comparatively
large.

Another traditional technique – optical flow is, however, extremely com-
putational expensive. In addition, Lipton [101] indicated that most optical
flow algorithms fail in largely homogeneous regions (ie. regions lacking tex-
ture). Furthermore, Wixson [169] stated that an object that moves in a
straight line but oscillates forwards and backwards, would have low salience.
These weaknesses of optical flow applied to large homogeneous regions, cycli-
cal movements and real-time performance make it unsuitable for this prob-
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lem domain as the subject is largely occluded by the blank cover, breathing
movement is cyclical, and the amount of video data to process is substantial.

Action Recognition. Assuming that breathing signals have been success-
fully captured, the next problem is to recognize abnormal breathing actions.
Over the past two decades, the number of papers within the field of action
recognition using computer vision has grown significantly. An important
distinction is to look at whether the recognition is static or dynamic, i.e.,
whether the recognition is based on one or more frames. The simple static
recognition approach is used mainly to recognize various postures, e.g., point-
ing, standing and sitting, or specially defined postures used in interfaces. As
there is no distinctive posture, which can represent an abnormal breathing
action like an apnoea episode, the simple static recognition approach is in-
applicable.

On the other hand, the approaches of dynamic recognition use temporal
characteristics in the recognition task. In 1975, Johansson [84] showed in
his moving lights displays (MLD) experiments that the actions of a human
may be recognized solely from sparse motion signals (of the lights). Recent
successful work in the area of action recognition [17, 43, 66, 88, 116, 172]
has shown that it is useful to analyze actions by treating a video sequence
as a three dimensional space-time volume (of intensities, gradients, optical
flow or other local features). These techniques are categorized and discussed
below.

Action Recognition using Optical Flow. Efros et al. [43] perform ac-
tion recognition by correlating optical flow measurements from low resolution
videos. However, the weaknesses of optical flow applied to large homogeneous
regions, cyclical movements and real-time performance make it unsuitable for
this problem domain.

Action Recognition using Silhouettes. Bobick and Davis [17] propose
a static vector-image as a temporal template to represent human movement,
where the vector value at each point is a function of the motion properties at
the corresponding spatial location in an image sequence, and they introduced
the global descriptors Motion History Image (MHI) and Motion Energy Im-
age (MEI) as spatiotemporal templates to be matched to stored models of
known actions. To construct action templates, MEI and MHI of pre-recorded
actions are collected to produce statistical models using 7 Hu moments [73];
to recognize an input action, a Mahalanobis distance is calculated between
the moment description of the input and each of the known movements.
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Figure 2.5: Motion History Images [17] for Action Recognition

However, the technique is view-sensitive, requiring the shapes of actions
in the same category to be similar and the shapes of actions in different
categories to be distinctive. In our domain, there is little constraint on the
subject’s sleeping posture and the “shape” of breathing varies. Moreover,
MEI and MHI are derived from DOF, which performs poorly in detecting
breathing signals because the movements are so subtle that noise generated
by the sensor are comparatively large (see section 3.2.1). Hence, Bobick
and Davis [17] suggested that a more robust motion detection mechanism is
required in situations where the test subject moves slowly.

In addition, a shortcoming of MHI is its lack of robustness against spatial
motion self-occlusion occurring during the same temporal window due to
overwriting. Valstar et al. [155] developed an extension of MHI – MMHI,
which aims at handling motion self-occlusion, by recording motion history at
multiple time intervals. However, their experimental results do not clearly
demonstrate the superior performance of MMHI with respect to MHI.

Gorelick et al. [66] also uses spatiotemporal volumes for action recogni-
tion, seeing human action as silhouettes of a moving torso and protruding
limbs undergoing articulated motion and computing the space-time saliency,
and three types of space-time structures are defined, including plateness,
stickness and ballness to represent actions; see Figure 2.6. The space-time
shapes are able to discriminate between different actions like dancing, jump-
ing or walking, but do not allow for detecting abnormalities of the same
action. Albu and Beugeling [3] built a 3D extension of MHI – VMHI as
motion representation to handle motion self-occlusion issue. However, as the
VMHI is still built based on the DOF technique, VMHI is not suitable for
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Figure 2.6: Action represented by Space-Time Shape Features [66]: (a) input;

(b) degree of frequency; (c) plateness and stickness. Fast moving hands are

identified as plates and appear in blue in (c); slow moving legs are identified

as vertical sticks in the temporal direction and appear in green in (c); ball

structure does not have any principal direction.

breathing monitoring; see section 3.2 for more details.

Action Recognition by Tracking Space-Time Interest Points. An-
other technique is to track space-time interest points [116] to generate spatial-
temporal “words” (using the bag of words representation originally developed
for text analysis domain). The geometric arrangement between visual fea-
tures is ignored, and a histogram of the number of occurrences of particular
visual patterns in a given image is computed to represent actions. In the
context of human action classification, the bag of words assumption – the
order of words in a text document can be neglected – translates into a video
representation that ignores the positional arrangement, in space and time, of
the spatial-temporal interest points. To represent motion patterns, Niebles
et al. [116] first extract local space-time regions using the space-time inter-
est point detector [42], and these local regions are then clustered into a set
of spatial-temporal words, called codebook. Then, probability distributions
are learned using Probabilistic Latent Semantic Analysis (pLSA) [71] or La-
tent Dirichlet Allocation (LDA) [16] to recognize and localize human action
classes in video sequences.

Regions with spatially distinguishing characteristics undergoing a com-
plex motion can induce a strong response to generate an interest point. How-
ever, this is unsuitable for our research, as generally the hospital cover/sheet
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does not contain distinctive patterns. A patterned sheets could be used, but
this makes the system less robust because if the cover is removed by the
patient during sleep, the system fails.

2.3 Monitoring of Covered Body Activities

Recognition of covered human body activity is a challenging task. Some
research work analyzes human activity without a priori shape models. In
monitoring covered body activities, it is difficult to determine the activity
based on pure motion because it is difficult to obtain full body silhouettes.
Thus, the common model-based framework that identifies body pose first and
analyzes the human activity using the estimated pose and detected motion
is adopted here.

2.3.1 Pose Estimation Techniques

A number of methods, which might be considered for pose estimation of
sleeping patients, are discussed here. Laser rangefinders are commonly used
in 3D object geometry capture. A barrier to adoption of this technology
is the safety for patients’ eyes, as lasers can be dangerous. Although some
laser rangefinders claim to be eye-safe, a technique must be thoroughly tested
before it is applied to patients. Apart from safety issues, the technique may
disturb the patient, the cost of laser rangefinders is high, and the processing
time to reconstruct 3D geometry is substantial.

The pressure sensitive mattress is an alternative non-intrusive approach
to identify occurrence of movements, and the technique has been proposed
for monitoring patients’ respiratory activities [105]. However, to the authors’
best knowledge, the pressure sensitive mattress approach has not been uti-
lized to analyze body movements. In this project, it is not adopted because of
the high development cost, which also requires additional hardware instead
of utilizing existing measurement equipment, such as a video monitoring sys-
tem.

An alternative approach is to investigate imaging modalities that might
see through the bed covering. X-ray is clearly too expensive and dangerous.
A thermal imaging system [135] has been evaluated for obtaining the covered
body posture in this work. It is found that, due to heat retention properties
of the bed clothes, the thermal imaging system often fails to locate a true
human posture because the heat tends to remain on the sheet or over the bed
after the body posture has changed. Figure 2.7 illustrates the issue, showing
thermal images with a leg movement. New technology of 3D camera such
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Figure 2.7: Thermal imaging fails to locate a true body posture because

the heat remains on the bed after movements. #71: an un-occluded leg

and a covered leg appear; #76: the image of the leg on the right indicates

the covered leg’s position, but the ghost on the left indicates the previous

location of the un-occluded leg; #77 and #78: strong noises appear due to

the remaining heat on the bed after movements of the occluded leg

as Swiss Ranger, which is only recently introduced these two years, might
be considered. However, as there was no such technique available in the
beginning of the research project and the cost of the equipment is high, this
technology is not adopted here.

This research addresses the problem of detecting and segmenting the cov-
ered human body using infrared vision. Difficulties arising from varying oc-
clusion by the bedding, the shifting of the cover surface with movements,
obscuration of the bodies’ edges by the cover, and wrinkle noises from the
cover, are compounded by human articulated deformation. Traditional com-
puter vision methods such as correlation, template matching, background
subtraction, contour models and related techniques for object tracking be-
come ineffective [22, 75] because of the large degree of occlusion for long
periods.

2.3.2 Related Computer Vision Approaches

Popular human pose estimation algorithms utilize various tracking algo-
rithms and sampling schemes such as mean field Monte Carlo [74] and an-
nealed particle filter [40] in combination with simple detection models like
rectangles of edges or motion. Assuming that there are clear image cues (for
simple detection models) and clean full body motion data (for dynamical
models in sampling), the subject pose can be estimated reliably in some sys-
tems. However, in real world applications, occlusion often occurs and these
assumptions often fail. As a result, recognizing the pose of a person who is
persistently under cover remains challenging.
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Figure 2.8: Fragmented Motion Data (upper column) and Raw Image (lower

column): motion of the covered subject is fragmented and noisy as movement

of the occluded subject also causes motion of the surface around rather than

the exact area of the object, making object segmentation more challenging.

Many existing approaches to pose estimation simplify the measurement
problem, either using motion data [1, 45, 67, 146] to extract silhouettes, or
assuming knowledge of appearance or color [40, 95, 128, 136], and the subjects
tend to wear close-fitting clothing (or even to be unclothed [40]) in order to
extract such information more easily. These methods are too restrictive for
this field of study. Although there is some published research investigating
the monitoring of partially occluded humans [69, 129, 153, 170], the methods
examined do not deal with pose estimation of consistently and almost wholly
occluded subjects.

Camouflaged Object Detection. As the human is obscured by the bed-
ding, to detect the pose of the subject under cover presents some similarity
to camouflaged object detection. Camouflaged objects generally attempt to
conceal themselves within the cover, and such targets are only visible while
in motion. Boult et al. [22] presented a surveillance system for perimeter
security using adaptive multi-background modelling, temporal adaption and
quasi-connected components techniques to detect the camouflaged targets.
Similarly, Huang and Jiang [75] presented an iterative method of weighted
region consolidation to track a camouflaged animal within an environment of
similar colors. They first detect the full body motion of the target based on
both spatial and intensity densities by locating pixels with high motion prob-
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abilities, and then enhance the moving object iteratively, i.e. to consolidate
the object region, by evaluating for each pixel its weighted overall neighbor-
hood intensity based on the pixel distances and intensity. The contour of
the object’s moving area is then constructed. However, in comparison with
camouflaged objects, motion tends to be irregular, noisy and fragmented (see
Figure 2.8) in our problem domain. Apart from partial and irregular move-
ment, movement of the covered object causes motion of the surface around
rather than the exact area of the object, making object segmentation more
challenging.

Dealing with Occlusion. Current research [27, 31, 46, 62, 114, 168] for
monitoring or tracking occluded human focuses on temporary rather than
persistent occlusion. Jaeggli et al. [81] developed a learned statistical model
to analyze human locomotion from a running or walking sequence when only
a subset of the features of interest can be observed; the model is used to
predict occluded features based on available features. However, the method
requires 2D trajectories of a number of un-occluded locations on the human
body, representing a period of specific types of actions, (i.e. running or
walking), to initialize the model. This is not applicable in our case, because
the body (barring the head) can be wholly covered, and un-occluded features
can be fairly limited.

There is some research on human detection in crowded scenes, in which
temporary and partial occlusion often occurs. Wu and Nevatia [170] combines
edgelet based part detectors, including head-shoulder, torso and leg, and a
full body detector to detect and track partially occluded humans. They learn
tree structured multi-view part detectors by a boosting approach proposed
by Huang et al. [76, 77], which is an enhanced version of Viola and Jones’s
framework [157]. The real AdaBoost algorithm [138] is used to build each
part detector, and they collect a large set of human samples, containing 1742
humans of frontal/rear view and 1120 side view, from which tree structured
detectors for multi-view humans are learned. Liebe et al. [99] presented
a framework to combine local and global cues for pedestrian detection in
crowded scenes and utilize full body silhouettes for chamfer matching [18,
20]. By applying a Canny edge detector and distance transformation [19],
they chamfer match the input silhouette area with 210 trained pedestrian
silhouettes (plus their mirrored versions) to determine if a person is detected.
However, the aforementioned approaches are used for human detection, and
do not deal with pose estimation.

Ramanan et al. [128] presented an approach to both track people and to
identify body poses on outdoor and indoor activity; the method can recover
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Figure 2.9: Person Model in [128] (a) the tree pictorial structure, (b) the

edge template of the lateral walking pose pictorial structure, (c) a learned

appearance template

when it loses track due to occlusion. The approach first builds an appearance
model of each person in the video, then tracks by detecting those models in
each frame. Two algorithms were developed to build appearance models: a
bottom-up approach groups together candidate body parts found throughout
a sequence; a top-down approach builds appearance models by detecting
lateral walking poses, and the human body is modelled as an articulated set
of rectangles, which is often called a pictorial structure [47, 48]; see Figure 2.9.

The bottom-up approach first detects candidate parts in each frame with
an edge based part detector, clusters the resulting image patches to identify
body parts that look similar across time, and then prunes clusters that move
too fast in some frames. The clustering of part detectors works well when
parts are reliably detected. However, building a reliable part detector is hard;
a well-known drawback of bottom-up approaches. An alternative strategy is
to look for an entire person in a single frame, but this is difficult because
people are hard to detect due to variability in shape, pose, and clothing;
a well-known drawback of top-down approaches. The top-down approach
detects a lateral walking pose by convolving the distance-transformed edge
image with a lateral walking pose edge template, as shown in Figure 2.9(b).
The edge pixels are quantized into one of 12 orientations and the chamfer cost
is computed separately for each orientation with the costs added together.
As the target is covered by the bedding in this research, the appearance of
body parts and the appearance of the cover are identical. Hence, appearance
modelling is ineffective.

In this work, Ramanan’s method – the stylized pose detector– is tested
on the covered human body sequences, but the results show that the method
performs poorly on persistently-occluded subjects. The method and the ex-
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perimental results are discussed in more detail in Chapter 4.

2.4 Conclusion

As the consequences of OSA can be fatal or lead to serious injury if left undi-
agnosed and untreated, there is a growing interest in alternative approaches
to diagnosis as substitutes for labor-intensive and time-consuming PSG.

Video monitoring has been adopted to assist diagnosis of OSA, but is
under developed due to its relative computational complexity. The current
approach to video analysis is for clinicians to review substantial amounts of
video data manually. As a result, there is a practical demand for automated
methods that support OSA diagnosis from video. The two requirements are
to monitor breathing and body movements.

Existing methods for action recognition using space-time shapes are in-
sufficiently robust to analyze breathing activities. Another popular approach
is to track body parts and then use the obtained motion trajectories to per-
form action recognition. Such approaches cannot be adopted for breathing
monitoring in OSA analysis because prior robust identification of body parts
is difficult to achieve and model-based approaches tend to be view dependent.

Traditional methods such as correlation, template matching, background
subtraction, contour models and related techniques are ineffective because
of the large degree of occlusion for long periods. Although there is some
published research investigating the monitoring of partially occluded humans,
the methods examined do not deal with pose estimation of consistently and
almost wholly occluded subjects.

Having reviewed the action recognition and pose recognition literature,
we conclude that no existing models are suitable for monitoring of breathing
behavior or monitoring of human activity for persistently occluded subjects
from video.
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Chapter 3

Abnormal Breathing Detection

In this chapter, a new noninvasive real-time video monitoring technique is
introduced for detecting abnormal breathing activities and assisting in di-
agnosis of OSA, using infrared video information. A novel motion model
is presented to detect subtle and cyclical breathing signals from video, and
an adaptive model of dynamic patterns is developed to construct an action
template online. The classes of actions include normal breathing episodes,
apnoea episodes, body movement episodes and deep breathing episodes. The
proposed technique avoids imposing positional constraints on the patient, al-
lowing patients to sleep on their back or side, with or without facing the
camera, fully or partially occluded by the bed clothes. Furthermore, shallow
and abdominal breathing patterns do not adversely affect the performance
of the proposed approach.

The organization of the chapter is as follows. An analysis of breathing
behavior is given in Section 3.1, followed by the discussion of potential rel-
evant computer vision techniques in Section 3.2. The proposed algorithm
is introduced in Section 3.3. Section 3.4 shows the experimental results on
fifteen simulated video clips and four clinical video clips, which demonstrate
that the model achieves high accuracy in recognizing abnormal breathing
activities and other body movements. Section 3.5 concludes the chapter.

3.1 Analysis of Breathing Behavior

To recognize abnormal breathing activities, it is necessary to differentiate
body movements (such as movements of the head, torso, arm or leg), from
breathing activities, allowing further discrimination of normal and abnor-
mal breathing status. Thus, we first analyze human breathing behavior in
contrast to general body movement.
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Figure 3.1: Cyclical Moving Flow in a Breath

Subtle and Inconspicuous Movement. Even for humans, it is difficult
to observe human breathing movements in high resolution video sequences.
Breathing is a subtle and relatively inconspicuous less noticeable movement
compared to other body movements.

Cyclical Movement. Knowing that an object’s motion is periodic is a
strong cue for object and action recognition [33]. A key characteristic of
breathing activity is cyclical motion: the elements of the entire surface move
forward and backward approximately to their previous position in a breathing
cycle (see Figure 3.1). In contrast, elements tend to move toward different
positions for general body movements.

Given the subtlety of breathing activities and the heavy level of motion
self-occlusion, the proposed method needs to be capable of integrating minor
movements across multiple frames of video.

Changing Spatiotemporal Shape. As the subject changes pose over
time, the spatiotemporal shape of breathing movements changes, requiring
the combination of adaptive patterns.

3.2 Related Work

While motion representation is identified by Moeslund and Granum [109]
as an essential component of tracking, it can also serve higher-end purposes,
such as activity recognition and abnormal event detection. Recent successful
work in the area of action recognition [17, 43, 66, 88, 172] has shown that it
is useful to analyze actions by treating a video sequence as a three dimen-
sional space-time volume (of intensities, gradients, optical flow or other local
features).
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A crucial issue is how to choose the features to be employed in action
recognition. Features may be based on only static cues (shape and appear-
ance), or only dynamic cues (motion), or on both. Importantly, in our prob-
lem domain, breathing movements occur in different regions such as the jaw,
the chest area, the abdominal area or the shoulders according to the indi-
vidual breathing behavior and lying posture at the time, which makes the
problem more challenging. In our experiments, we observe that some subjects
tend to breathe with chest movements and others with tummy movements.
In addition, when the subject lies on the side, breathing with shoulder move-
ments often occurs. As there are large variances on individual’s breathing
behavior, the subject’s appearance and the camera views to the subject, ro-
bust and unconstrained monitoring is required. Therefore, static cues do not
appear as suitable choices. In this research, only dynamic cues (motion) are
utilized for analyzing breathing patterns.

Three major issues are identified to investigate: motion capture of subtle
and self-occluded breathing movements; motion quantization; adaptive ac-
tion template model for dynamic breathing patterns and activity recognition.
Relevant work for each issue is discussed below.

3.2.1 Motion Detection

1 Difference of Frames

A generally adopted front end motion detection method is Difference of
Frames (DOF) as formulated in Equation 3.1.

D(x, y, t) = |I(x, y, t)− I(x, y, t− k)| (3.1)

where I(x, y, t) is the intensity of each pixel at location x, y at frame/time t,
k is the selected time interval among frames to compare, and D(x, y, t) is the
difference of two frames representing pixels of motion. If k = 1, D(x, y, t) is
the difference of consecutive frames. A conventional method is to threshold
the difference to produce a binary map.

B(x, y, t) =

{
1 if D(x, y, t) > α
0 otherwise

(3.2)

where α is a selected threshold.

DOF is commonly used as the front end method for motion detection and
further motion models for activity recognition, such as spatiotemporal tem-
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plates Motion History Image (MHI) T1(x, y, t), Motion Energy Image (MEI)
T2(x, y, t) [17] and Volumetric Motion History Image T3(x, y, t) [3], which are
described below.

2 Motion History Image Template

T1(x, y, t) =

{
τ if B(x, y, t) = 1

max(0, T1(x, y, t− 1)− 1) otherwise
(3.3)

where τ is the length of the temporal window capturing the motion. T1(x, y, t)
is a function of motion history at (x, y) and the result is a scalar-valued image
where more recently moving pixels are brighter.

3 Motion Energy Image Template

In contrast to MHI, MEI results in a binary image that highlights the re-
gions in the image where any form of motion was present since the beginning
of the action.

T2(x, y, t) =
τ−1⋃
i=0

B(x, y, t− i) (3.4)

where τ is the specified length of the temporal window.

4 Volumetric Motion History Image Template

Volumetric Motion History Image (VMHI) [3] is a 3D extension of the
MHI. Given sequences of binary silhouettes B as computed in Equation 3.2,
VHMI is formulated as follows.

T3(x, y, t) =

{
B(x, y, t)∆B(x, y, t+ 1) if consB(x, y, t) 6= consB(x, y, t+ 1)

1 otherwise
(3.5)

where consB(x, y, t) denotes the one pixel thick contour of the binary silhou-
ette B(x, y, t), and ∆ is the symmetric difference operator. (The symmetric
difference of two sets S1, S2 is the set of all x such that x ∈ S1 or x ∈ S2 but
not both.)
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The DOF technique was briefly evaluated for breathing detection, experi-
menting with different values of k (time interval) and α (the pixel threshold).
However, DOF fails to capture continuous motion of breathing due to occlu-
sion by the bed cover, subtle changes and cyclical operations of breathing
movements, and obtains a number of false positive detections from image
noise, as illustrated in Figure 3.2. Only motion of large actions like deep
breathing can be detected. Failure of the frontend motion capture approach
renders further motion models like MHI, MEI or VMHI, feature extraction
or activity recognition techniques ineffective.

Typical approaches for suppressing false positive detection are based on
the aspect ratio, size, or magnitude of the frame-to-frame flow or normal flow.
However, these approaches have been proven to be unsatisfactory in [169]
because the frame to frame motion of the non-salient objects may be larger
than that of the salient objects, especially if the salient object is moving
relatively slowly. In our case, the salient object moves so slowly that noise
generated by the sensor is comparatively large.

Optical flow is another common technique for motion detection, however,
it is extremely computationally expensive. In the context of object detec-
tion, optical flow estimation requires hundreds or thousands of operations
per pixel [157]. In addition, Lipton [101] indicated that most optical flow
algorithms fail in largely homogeneous regions (i.e. regions lacking texture),
and Gao et al. [58] also indicated that optical flow estimation in texture-less
patches would be erroneous. As the subject is covered by the bed clothes,
the regions of interest tend to be textureless.

Wixson [169] stated that an object that moves in a straight line but
oscillates forwards and backwards, such as taking two steps forward and
then one backward, would have low salience, and therefore optical flow is
not suitable for detecting cyclical movements. Furthermore, optical flow
approaches are highly susceptible to image noise [33], and video sensors in
the infra-red band contain higher noise levels than in the visible band [133].
These weaknesses make optical flow unsuitable for this problem domain.

The first challenge in this research is to develop a suitable front end mo-
tion detection technique to capture continuous motion information of breath-
ing activities, overcoming difficulties caused by heavy occlusion by the cover,
inconspicuous frame to frame differences and motion self-occlusion. The pro-
posed method is described in section 3.3.1.

3.2.2 Motion Quantization

The study of human motion from video sequences is mostly driven by appli-
cations in security. Some major surveillance-related themes address human
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activity identification [43, 66], gait-based biometrics [21], object classifica-
tion [33], and real-time abnormal event detection [58]. An emerging area
of interest for vision-based human motion analysis is the field of perceptual
human computer interfaces, addressing gesture recognition. The main goal
in these applications is to detect and recognize either the motion, action
or gesture performed by the human, or the human subject herself from her
motion-based signature, and pre-trained motion descriptors or templates are
commonly built for recognition.

The main goal of this chapter is not only to recognize the activity as
a breathing action or a body action, but also to learn individual normal
human breathing patterns online by quantifying and monitoring the subject’s
performance over time, and to detect the abnormal motion as a quantifiable
deviation from the normal breathing patterns. However, to the best of the
author’s knowledge, motion analysis for performance quantification is still a
fairly unexplored field in computer vision.

Cutler and Davis [33] introduce self-similarity matrices to detect and
characterize the periodic motion for tracking and classifying objects. Given
image sequences It(x, y), they first produce a segmented foreground object
Ot using motion, and compute the object’s self-similarity St1,t2 by comparing
differences of images at time t1 and t2 within the bounding box Bt1 of the
segmented object Ot1 ; see equation 3.6. They determine if an object exhibits
periodicity based on the 1-D power spectrum of St1,t2 for a fixed t1 and all
values of t2.

St1,t2 =
∑

(x,y)∈Bt1

|It1(x, y)− It2(x, y)| (3.6)

If the subject stays in the same position and thus we assume that the
bounding box includes the entire image, the equation to generate self-similarity
is equal to computing the degree of differences of frames with various time
intervals k. However, in the previous section it has been found that DOF fails
to detect breathing movements even with manipulation of k values. Similarly,
VMHI [3] is inapplicable here due to failure of DOF.

3.2.3 Activity Recognition

In the specific problem domain of monitoring human breathing activities
during sleep, one has to deal with heavy occlusion by the bed cover, high
variability of appearance according to the occlusion status, large variances of
human breathing behavior on areas of movements (chest movements versus
abdominal movement), strength (shallow versus deep) and length of breath-
ing periodicity, motion self-occlusion of breathing patterns and substantial
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changes of camera views as the subject may sleep on his or her back or either
side and face toward the camera or back toward the camera.

The aim of this chapter is to recognize and classify the motion event as a
normal breathing event, a deep breathing event, an apnoea event or a body
movement event. Due to the large variances in individual breathing pat-
terns, subject appearance and camera view with respect to the subject, it is
not practical to pre-train a general normal breathing template appropriate
for everyone, and thus supervised approaches such as pre-training key pose
templates [103] or motion descriptors [43] do not represent suitable options.
Similarly, model-based approaches with a priori shape models [2, 130], fo-
cusing on the relative motion and prior identification of body parts, cannot
be adopted because prior robust identification of body parts is difficult to
achieve.

3.2.4 Online Training and Adaptive Action Template

Some recent research work has explored unsupervised model-free methods for
motion analysis [66, 115, 116, 172]. These propose feature based methods,
which extract space-time interest points from image sequences as a collec-
tion of spatial-temporal words to categorize human actions. Yilmaz and
Shah [172] utilize a sequence of the points on the outer boundary of the
object with respect to time to generate a spatiotemporal volume in (x, y, t),
differential geometric properties of which (e.g. peaks, pits, valleys and ridges)
are used to generate actions descriptors. Gorelick et al. [66] extracts silhou-
ettes of subjects over time to compute space-time saliency and orientation
for action classification. Niebles and Li [115] use both static shape features
by shape context [152] as well as space-time features by a space-time interest
point detector [42] for human action categorization. In a later work [116],
Niebles et al. abandon static shape features and extract space-time regions
using only space-time interest points [42], and cluster these regions into a
set of spatial-temporal words, called codebooks, to code actions. For the
space-time interest point detector, any region with spatially distinguishing
characteristics undergoing a complex motion can induce a strong response.

The aforementioned approaches do not deal well with persistent heav-
ily occluded subjects because the point correspondence between consecutive
frames or silhouette extraction are difficult and spatially distinguishing fea-
tures are rarely available from occluded (texture-less) subjects in our problem
domain. Furthermore, shapes of breathing actions appear different over time,
requiring accompanying changes in the learned patterns. Therefore, there is
a need for an adaptive approach to capture dynamic breathing patterns and
deal with heavily occluded subjects.
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3.3 Proposed Method

This section presents a new video monitoring approach for anomalous breath-
ing behavior detection. Instead of using local features or static image signals
such as edges or raw pixel values, the motion dynamics is selected as the
fundamental cue providing robustness to large variances of poses and heavy
occlusion; see Figure 2.4. Hence, no positional constraint on the patient is
imposed (other than by the orientation and position of the bed), allowing
patients to sleep on their back or side, with or without facing the camera.
Moreover, no limitation on the level of occlusion is applied, and therefore the
proposed technique also deals with the fully or partially occluded subject.
Infrared video sensors are used to avoid disturbing the subject’s sleep.

The functionalities of the proposed model include: capturing continuous
signals of breathing movements, continuously learning a normal breathing
pattern online, detecting abnormal events when a deviation from the learned
normal breathing patterns occurs, and classifying the activity as a body
movement episode, a normal breathing episode, a deep breathing episode
or an over-breathing episode (the latter is a typical event in the end of an
apnoea episode and therefore is also referred to as an apnoea episode in this
work).

3.3.1 Motion Detector for Breathing Analysis

The first challenge in this research is to capture breathing movements; these
are subtle and cyclical with complete motion self-occlusion, which makes
them hard to detect. As the breathing movement is so subtle, the difference
over consecutive frames for each pixel is so small that, if the DOF technique
is used, the value of α in Equation 3.2 must be decreased to such a small
value (e.g. α = 1) to detect these differences, that noise detection becomes
excessive particularly as infra-red sensors suffer from high noise levels [133].
In addition, the subject is occluded by the pattern-less hospital cover, which
makes the problem more challenging. An illustration is given in Figure 3.2.
A low frame rate of seven frames per second (fps) is used, as at a higher rate
(15 fps), no difference can be detected. However, the frame rate must be
sufficiently high to monitor the entire breathing cycle.

The design of the proposed motion detector is inspired by “the visual
staying phenomenon” of human vision‘. A persistent luminous impression is
created, stored for a while and continuously but slowly updated. The persis-
tent luminous impression is similar to the concept of background modelling.
Background modelling has been mainly applied for foreground object segmen-
tation rather than motion detection. As the output of background modelling
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Figure 3.2: Top row: original images; middle row: DOF Results using α = 1;

bottom row: DOF Results using α = 2: with a low frame rate (7fps) and

lowest possible α value, DOF can detect breathing movement, but the output

signal is swamped by noise.

is change detection rather than true motion detection, and is highly suscepti-
ble to non-motion pixel change due to noise and lighting changes, one effective
method of foreground object extraction is to suppress the background points
in the image frames [60]. Normally, the maintained background model is
updated over time to avoid accumulated errors.

In contrast, a Persistent Luminous Impression Model (PLIM) is created in
this research to extract real-time motion information rather than to segment
the foreground object. The PLIM is designed to utilize accumulated errors
to enhance breathing signals and to differentiate between breathing activity
and body movement. Some existing background models are briefly discussed
below, followed by the details of the proposed PLIM, motion detector and
motion quantization models.

1 Existing Adaptive Background Models

A simple background model [106] checks whether each pixel remains un-
changed for some time, and if a time threshold is exceeded, the observed
pixel in the current frame is included into the background; otherwise the
pixel is considered as either a moving object or noise. The background model
IB(x, y, t) is formulated below.
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IB(x, y, t) =
p− c
p

IB(x, y, t− 1) +
c

p
I(x, y, t) (3.7)

where c is the number of consecutive frames during which a change is observed
and is reset to zero each time the pixel becomes part of the background; p
is the adaptation time or insertion delay constant. The moving object is ex-
tracted at pixels (x, y) for which the relationship |I(x, y, t)− IB(x, y, t)| > L
is satisfied, where L is the global threshold value.

The background model can also be updated periodically using a tempo-
ral median filter [142] with the result that all static objects are eventually
incorporated into the background. In [98], the background models a mean
Im(x, y, t)∗ and standard deviation Iσ(x, y, t)∗ for each pixel:

Im(x, y, t)∗ = αIm(x, y, t− 1) + (1− α)Im(x, y, t) (3.8)

Iσ(x, y, t)∗ = αIσ(x, y, t− 1) + (1− α)Iσ(x, y, t) (3.9)

where 0 < α < 1 defines the speed of adaptation, and if the difference be-
tween the input frame I(x, y, t) and the mean Im(x, y, t)∗ is large compared
with Iσ(x, y, t)∗, the probability of classifying the pixel (x, y) as background
is decreased.

There are more complicated background modelling methods that model
each pixel as a mixture of Gaussians [147] or as a mixture of uniform distri-
butions [11]. This multi-modal background representation is commonly used
for backgrounds with frequent changes, such as outdoor applications with
vegetation and illumination issues, or indoor applications with light reflec-
tion problems. Such methods tend to be computationally expensive. As in
this research the environment is indoor and there is no reflection or chang-
ing illumination problem for infrared video sensors, multi-modal background
modelling approaches are not needed.

2 Persistent Luminous Impression Model

The proposed Persistent Luminous Impression Model (PLIM) is designed
to reinforce cyclical breathing motion signals spatially and body motion sig-
nals temporally, while suppressing video sensor noise, and is able to capture
continuous real-time breathing signal as displayed in Figure 3.3. In addition,
a motion quantization index is created based on this model.
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Figure 3.3: Activity maps by the proposed PLIM, effectively rendering clean

breathing movements across a breathing cycle.

At frame/time 0, the PLIM P (x, y, t) is initiated with the image values
of frame 0.

P (x, y, 0) = I(x, y, 0) (3.10)

At time t, the updated PLIM P (x, y, t) is given by:

∆(x, y, t) = I(x, y, t)− P (x, y, t− 1) (3.11)

P (x, y, t) = P (x, y, t− 1) +

{ 1 , ∆(x, y, t) > 0
0 , ∆(x, y, t) = 0
−1 , ∆(x, y, t) < 0

(3.12)

3 PLIM Activity Map

The PLIM activity map A(x, y, t) is defined as:

A(x, y, t) =

{
1 if I(x, y, t)− P (x, y, t) > α
0 otherwise

(3.13)

where α is the detection threshold, a parameter of the model.

The PLIM plays an important role in monitoring of human breathing
activities because it allows subtle and cyclical breathing motion signals to
be detected, and makes the spatial and temporal magnitude of non-cyclical
motion signals significantly larger than cyclical motion ones, allowing body
movements to be distinguished from breathing episodes. The proposed PLIM
activity map is able to extract clean motion data and monitor entire breath-
ing cycles; see Figure 3.3.
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Figure 3.4: et spectrum and characteristics for action recognition: the dura-

tion d and peak value h of each hill shape can be used to distinguish breathing

action from large body action like body rotation (see section 3.3.5 for a sim-

ple action recognition model). However, small body movements can still be

confused with apnoea episodes, and a more sophisticated action recognition

model is introduced.

4 Motion Quantization

An activity index, et, is defined for motion quantization, as the number
of set pixels in the activity map at time t:

et = #(A(x, y, t) > 0) (3.14)

An action is characterized by the shape of the spectrum of et values. Fig-
ure 3.4 illustrates a period of et values in an experimental video data. The
duration, d, and the maximum value, h of et, for each hill shape are used
as criteria to distinguish breathing motion from other motion. The d and
h for an abnormal breathing event such as an apnoea episode is relatively
small compared to other body movements because of the subtle trajectory
of breathing motion, causing a small difference (small h), and the cyclical
breathing motion, reducing the duration of motion (small d) due to the con-
vergence of the current frame and the PLIM. In addition, from the shape of
the spectrum, we can not only recognize other2 as a body movement, but
also further identify other2 as a body rotation event rather than movement
of a body part such as the head or the arm.

However, a simple action recognition model based on the analysis of the et
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spectrum cannot be fully relied on to distinguish abnormal breathing events
from body movements, because small movements like slight head movements
can cause similar et events to apnoea episodes. As a result, a more so-
phisticated online training model for building templates of normal breathing
activities in real-time is further introduced in the next section.

3.3.2 Adaptive Action Template to Capture Normal

Breathing Patterns

There are four statuses defined in the proposed model: normal breathing
status, deep breathing status, apnoea status and other body movement sta-
tus. While the status is “normal breathing”, according to the level of et,
an adaptive action template is built to represent dynamic forms of normal
breathing activities. The normal breathing action template is modified over
time until an abnormal event occurs (high et detected). This novel technique
is proposed to both assist classification of the current movement as a breath-
ing action event or a body movement episode, and to classify the breathing
activity as an extreme apnoea episode, a moderate deep breathing episode
or a normal breathing episode.

1 Temporal Aggregation of Spatial Shapes

As shown in Figure 3.5, the real motion produced by breathing move-
ments during normal breathing periods is comparatively low, and therefore
the informative features for each spatial action shape are limited. Hence, the
initial simple design is to aggregate spatiotemporal features by combining 2D
motion shapes within normal breathing periods, and produce a spatiotem-
poral shape of normal breathing activities.

T (x, y, ts, te) =
te⋃
t=ts

A(x, y, t) (3.15)

where A(x, y, t) is the activity map defined in equation 3.13, ts is the de-
tected beginning of a period of continuous normal breathing cycles, te is the
detected end of a period of continuous normal breathing cycles, and ts, te are
formulated in section 3.3.5; see Figure 3.5.

Although the Motion Detector using PLIM effectively filters out most
of the sensor noise and captures real body movements, the level of noise
in our clinical experimental data is still problematic; see Figure 3.6. The
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Figure 3.5: Normal Breathing Template Construction: a simple temporal ag-

gregation model to combine spatial shapes for a continuous normal breathing

period.

simple approach to template construction described above is susceptible to
corruption by sensor noise and fails to generate an action template. A more
sophisticated approach is described in the next section.

2 Adaptive Construction of Dynamic Patterns

As the subject tends to change his/her pose during sleep, the spatiotem-
poral shape of breathing actions change over time too. Therefore, the tem-
plate model is adaptively modified over time to capture the dynamic patterns.

Firstly, a blank template is created, and when the status switches to
normal breathing, the adaptive construction is triggered to update the tem-
plate and proceeds until the status changes to any other status. Moreover,
if the abnormal episode is a breathing event, the template is retained and
is used for adaptive construction when the status changes back to normal
breathing. On the other hand, if the abnormal episode is an other body move-
ment, the template is discarded since the shapes of breathing action change
in the mean time, and a new template is created when next entering normal
breathing status. In contrast, for breathing events, the subject will return to
his/her original position as analyzed in section 3.1.

The adaptive action template construction algorithm needs to not only
capture limited and changing shapes of breathing activities, but also identify
redundant information and discard noise. Figure 3.6 illustrates the captured
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Figure 3.6: Motion captured with sensor noise: a simple temporal aggrega-

tion model suffers from high level of infrared sensor noise, and therefore a

more sophisticated adaptive template model is introduced.

motion with some noise. As noise is random and less repetitious than breath-
ing signals, signals appearing once are not included in the template, while
repeating signals are retained. Signals that stop repeating are discarded
gradually, and the template is updated with the newest repeating signals.
Furthermore, if the data in the template is insufficient (q < λ: q is the
template quality index, and λ is the template validity threshold criterion
described in the next section), all data is retained as it is more important
to accumulate data than to avoid noise. An adaptive action template in a
clinical video sequence is shown in Figure 3.7.

A template with gradient values, Tg(x, y, t), is built with the value of
individual data point scaled to the range [0, 255], and the final template is
T (x, y, t).

Tg(x, y, t) =

{ 255 if A(x, y, t) = 1 ∧ Tg(x, y, t− 1) > 0
δ if A(x, y, t) = 1 ∧ Tg(x, y, t− 1) = 0

Tg(x, y, t− 1)− ε if A(x, y, t) = 0 ∧ qt−1 > λ ∧ Tg(x, y, t− 1) > 0
0 otherwise

(3.16)

T (x, y, t) =

{
1 if Tg(x, y, t) > δ
0 otherwise

(3.17)
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Figure 3.7: An adaptive action template in a clinical video data: as the

normal breathing template adapts over time, the template at four different

times, appearing differently, is selected for illustration purpose.

where δ = 100, ε = 4, λ = 0.00117WH are empirically determined. The
template quality threshold λ is also ultimately used to determine whether the
template contains sufficient information to be used for action classification.

3 Evaluation of Constructed Dynamic Templates

When the subject has a shallow breathing pattern, the action template
generated has few features and provides a poor reference standard. A tem-
plate quality index q is used to evaluate the effectiveness of a constructed
template T (x, y, t) to determine if the template is usable for further action
recognition; q being the number of features in the template:

q = #(T (x, y, t) > 0) (3.18)

If q < λ, the template is discarded (λ = 0.00117WH is determined
empirically, where video frames were acquired with resolution of W×H), and
the system automatically switches to an alternative novel action recognition
model, which is described in section 3.3.5.

3.3.3 State Algorithm for Action Segmentation

Although normal breathing may be barely perceptible in the et spectrum,
motion events manifest as observable perturbations; see Figure 3.4. We seg-
ment motion events by identifying the start and end time, ts and te, where
the activity index et rises above and subsequently falls below thresholds,
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described below. The sequences between motion events, where the activity
index is very low, correspond to periods of normal breathing. We therefore
use a two state algorithm, which switches between the normal breathing state
and the motion event state. It is possible to classify motion events using only
the duration and peak values from the corresponding section of the spectrum,
but this is insufficient to distinguish some movements (e.g. slight head move-
ments) from apnoea episodes. A more sophisticated approach using online
breathing templates is introduced in the next section.

3.3.4 Action Recognition by Template Matching

When a large movement other than a normal breathing action is detected ac-
cording to the et value (see section 3.3.5), the status is switched from a normal
breathing episode to an unknown episode, the online construction process for
the normal breathing template is terminated, and action recognition models
are activated to recognize the new action. If the normal breathing template
is usable according to the template quality index q, a template matching
model is executed for action recognition.

A template matching model (cwMatch) is introduced below to classify
the unknown action, using the recent normal breathing template, as a ”Deep
Breathing”, “Apnoea” or “Body Movement” event. Below, we first discuss
shape comparison methods and the reason why such techniques are inappli-
cable to this problem, and then introduce cwMatch.

1 Shape Comparison is Not Usable

Shape comparison has been used to classify distinctive actions by mea-
suring similarity (or dissimilarity) between shapes of actions. Existing meth-
ods to measure similarity matrices include normal cross-correlation [65], the
Hausdorff distance [14, 79], color indexing [12] and absolute correlation, as
presented in equation 3.6. Cross-correlation gives a more robust measure of
the correspondence between two matrices than absolute correlation. How-
ever, due to the high computational cost, normal cross-correlation is rarely
adopted [117]. The Hausdorff distance measures the degree of mismatch be-
tween two sets (A,B) by measuring the distance of the point of A that is
farthest from any point of B and vice versa; unlike most methods of com-
paring shapes there is no explicit pairing of points of A with points of B.
The time complexity of a Hausdorff distance measurements for two point
sets of size p and q is O((p+ q)log(p+ q))[79]. Regarding the color indexing
technique, it is not suitable for night vision applications.
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Figure 3.8: Various measurements (T : template and A current activity).

similarity (T ∧ A) using the overlap 3; similarity ratio (T∧A
T∨A = 3

2+3+4
); dis-

similarity (∼ T ∧ A = 4) and (T∧ ∼ A = 2).

Table 3.1: Measurements for Abnormal Events

Abnormal Events DBreath Apnoea Body(S) Body(M) Body(L)

Similarity T ∧ A ↑ ↑ l l l
Dissimilarity ∼ T ∧ A ↓ ↑ ↑ ↑ �
Dissimilarity T∧ ∼ A ↓ ↓ l l l
Similarity Ratio T∧A

T∨A
↑

↑+↓+↓
↑

↑+↑+↓
l

l+↑+l
l

l+↑+l
l

l+�+l

cwMatch: w1 = T∧A
T

↑ � l l l
cwMatch: w2 = ∼T∧A

A
� ↑ ↑ ↑ �

cwMatch: s = w2

w1
� ↓ ↑ ↑ �

T : action template of normal breathing; A: current movement; DBreath:

Deep breathing episode; Body(S): minor body episode such as head move-

ment; Body(M): medium body episode; Body(L): large body episode such as

body rotation.
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The aim here is to recognize the action rather than to simply measure
the similarity between shapes, and the shapes between different action classes
(e.g. “Deep Breathing” and “Apnoea”) may not appear markedly different.
To illustrate that shape comparison is insufficient for this problem domain,
an illustration is given in Figure 3.8 with Table 3.1 listing the orientations of
different measurements, including a similarity measurement between the ac-
tion template T and current activity A, two dissimilarity measurements and a
measurement of the similarity degree, for five action types. It shows that ac-
tion classification cannot be based on shape comparison measurements either
using the similarity (as in correlation approaches) or using the dissimilarity
(as in Hausdorff distance methods) because different actions are confused.
We tested the degree of similarity, and using this measurement alone, there
were many cases of confusion between “Deep breathing” and “Apnoea” and
between “Body Movement” and “Apnoea”. In addition, the value fluctuates
a lot for the same action type in individual video clip and among different
video clips.

2 A Template Matching Model

A template matching method, cwMatch, is introduced here. Importantly,
the output matching score s is designed to enhance the discriminative power
of the action classifier. In our experiments, s is consistent over time for
individual action classes and across different subjects and environmental set-
tings (e.g. camera view angles and illuminations), and the values of s for the
three action classes – ”Deep Breathing”, “Apnoea” and “Body Movement”
are distinct.

Given the latest normal breathing template trained T , and the current
activity map A at time t, the template matching score s is formulated as
the ratio s = w2/w1, where w1 is the ratio of the overlap between the action
template and the current activity to the action template, and w2 is the ratio
of the current activity not on the template to the entire current activity
(see equation 3.19, 3.20 and 3.21). The matching score s is then utilized to
determine the type of current event.

w1 =
#(T ∧ A)

#T
(3.19)

w2 =
#(∼ T ∧ A)

#A
(3.20)

where ∼ T is the complement of T .
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s = w2/w1 (3.21)

The action is determined by the category s falls into. Two parameters
γ1, γ2 are used to separate “Deep breathing”, “Apnoea” and “Body Move-
ment” events.

action =

{ o1 if s ≥ γ1

o2 if γ2 ≤ s < γ1

o3 if s < γ2

(3.22)

where o1 represents a body movement event; o2 represents an apnoea event;
o3 represents a deep breathing event; γ1, γ2 are defined empirically (γ1 =
0.03, γ2 = 0.004).

In this model, w1 represents the degree of the cyclical movement detected
whereas w2 represents the degree of the non-recurrent movement. Table 3.1
lists rough scales of w1, w2, s for five action types, showing that s has different
values for the three action classes–“Deep Breathing”, “Apnoea” and “Body
Movement”. This model is insensitive to the parameter values. In addition,
the time complexity of the method is O(p) where p ≥ q, which is much more
efficient than cross-correlation or Hausdorff distance measurements.

3.3.5 Parameter Definition and Deviation Detector

This section defines the model parameters for status switching and the simple
action recognition model. Furthermore, an alternative approach to eliminate
the occurrences of other body movements when the breathing template is
invalid (see Equation 3.18), is presented here.

1 State Transition Rules

For set T and natural number n, define the order function O(T, n) to be
the nth smallest element of T :

O(T, n) = ti : ti ∈ T ∧#{t : t ∈ T, t ≤ ti} = n (3.23)

The algorithm enters the normal breathing state, at time ts, when the
activity index et drops below the activity threshold θs for n = 10 (not neces-
sarily consecutive) time-steps; see figure 3.9:

Ts = {t : et ≤ θs ∧ t > tm} (3.24)
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Figure 3.9: Illustration of the Important State Switching Points: t1s, t
2
s are the

previous and new starting points to construct templates of normal breathing

action; te is the time to terminate the construction process; tm is the time to

process template matching by comparing the action template T (x, y, t1s, te)

and the spatial shape A(x, y, tm) of the action at time tm.

tnews = O(Ts, n) (3.25)

where tm, representing the time at which the last motion event was ana-
lyzed, is initialized to zero and subsequently updated as below. The thresh-
old θs = 0.0033WH is determined empirically.

The algorithm moves from the normal breathing state to the motion event
state at time te, when the activity index et exceeds the adaptive threshold
θe. This is initialized to θe = 2.2λ at frame 0 and when a new template
is constructed after a body movement, and then updated every 25th frame
using:

θe = max(νqt, 2.2λ) (3.26)

where ν = 1.3 is empirically determined. Thus, θe detects a significant
rise (30%) above the periodically sampled expression of the online normal
breathing template, with a minimum threshold of 2.2λ to deal with the case
of shallow breathing. Thus, the normal breathing state terminates when a
sudden increase in activity with a rapid deviation from the learnt cyclical
breathing patterns is detected.

The motion event is evaluated at time tm on the fifth time step with the
activity index above the threshold after the motion event state is entered:
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Tm = {t : et ≥ θe ∧ t > te} (3.27)

tm = O(Tm, n/2) (3.28)

2 Simple Action Recognition Model

When the normal breathing patterns are insufficient for template match-
ing (e.g. due to shallow breathing), qt < λ, a simple alternative approach is
used to identify body movements and apnoea episodes, based on the duration
d of the episode and the activity index et. This model classifies abnormal
events into three categories: o1 represents a body movement event; o2 repre-
sents an apnoea event; o3 represents a deep breathing event. The character-
istics of et spectrum for other body movement events include relatively high
peak values and long duration. Hence, the model is formulated as follows.

d = tnews − tolde (3.29)

action =

{ o1 if etm ≥ θm ∨ d ≥ θd
o2 if d ≥ θd

2

o3 otherwise
(3.30)

where thresholds θm, θd are formulated as follows.

θm = κWH (3.31)

θd = βF (3.32)

where video frames were acquired at F frames per second, with resolution of
W ×H (κ = 0.26, β = 4.6 are defined empirically).

3.4 Evaluation

The proposed action recognition technique is used to identify normal breath-
ing episodes, over-breathing episodes and body movement episodes. Over-
breathing episodes occur at the end of every apnoea episode, and conse-
quently the proposed method uses over-breathing actions to identify apnoea
episodes. Body movement is used as an indicator of waking-up by clinicians
to assess sleeping quality. If a body movement follows an over-breathing
event, it supplies additional evidence of an apnoea episode. Consequently, the
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evaluation of the proposed technique is based on detection of over-breathing
episodes, whether or not they are followed by the body movement episodes.
However, body movements without over-breathing are not classified as ap-
noea episodes.

3.4.1 Experiments on Simulated Data

The simulated data allows us to test a number of scenario with various oc-
clusion levels, body poses, body movements (e.g. minor head movement,
limb movement, body rotation and slight torso movement), breathing be-
havior (e.g. shallow vs. heavy breathing, mouth breathing, chest breathing,
and abdominal breathing) and sequences of linking events (e.g. apnoea–body
movement and body movement–apnoea). To evaluate the proposed method,
15 video clips were filmed, each containing simulated apnoea episodes and
other movements.

Experimental Setup. Two SONY infrared camcorders (DCR-HC-30E)
were utilized, with three different shooting angles, at 15 frames per sec-
ond and a resolution of 320 × 240. The video data was first captured with
the WMP9 compression algorithm, to minimize storage size, and then de-
compressed for off-line analysis. In order to simulate the environment for
diagnosis of sleeping disorders, there was no visible lighting in the filming
room and the subjects were covered by a sheet. The experimental data was
collected from two subjects with three main postures (i.e. lying on the back,
sleeping on one side and facing the camera, sleeping on the other side with
their back facing the camera). The data was also collected on different days,
from multiple camera positions, with the subjects wearing different clothing.
Activities, such as normal breathing, obstructive apnoea and body move-
ment, were simulated by the subjects. Furthermore, one of the subjects has
shallow breathing patterns.

To produce a reference standard, the experimental video contents were
manually marked by human observation to define the events including the
frame numbers of the beginning and end of each event. That is, the ob-
server specifically identifies the start and end frame of abnormal movements,
including apnoea episodes and body movement episodes. In addition, deep
breathing action is marked as a normal breathing activity and not regarded
as an abnormal action episode. The manually analyzed results are then used
to compare with the outputs of the proposed method.

49



Experimental Results. The results of the method are lists of episodes
with the associated beginning and end frame numbers for individual abnor-
mal events–namely apnoea and body movement. These episodes are com-
pared to the reference standard generated by human observation. Figure 3.10
and Figure 3.11 present the experimental results of the proposed method and
manually observation on all fifteen video clips. The use of the stabilizing fac-
tor n, designed for switching status from “not normal breathing” to “normal
breathing”, as illustrated in Figure 3.9, causes a fairly consistent “overshoot”
of duration ≈ n, at the ends of abnormal events. This is reasonable and con-
sistent with the design of the proposed model.

Figure 3.12 shows the quantitative classification results in the form of
a confusion matrix [90], which has been used to evaluate action recogni-
tion methods in recent research work [43, 100, 116]. The rows are ground
truth; the columns are the proposed model results; the main diagonal shows
the fraction of frames correctly classified for each class, and each row repre-
sents the probabilities of that class being confused with all the other classes.
The results show that the diagonal average of the confusion matrix is 0.955,
demonstrating that the method achieves high accuracy in recognizing abnor-
mal breathing activities and body movements.

The method misses apnoea episodes occurring right after an other body
movement episode, as shown in video clip 8 it treats the two episodes as one,
since action recognition of abnormal events is computed based on the first
activity, and after an abnormal action is recognized, the method searches
for the next normal breathing episode instead of conducting further action
recognition. On the other hand, if minor movements happen right after
an apnoea episode (e.g. in video clip 11 and frequently occurring in the
clinical data), the proposed method recognizes the entire session as an apnoea
episode. In such cases, the human observer also defines the entire session as
an apnoea episode.

According to Matusiewicz, MD [107], body movement, which indicates
waking-up, is unlikely to happen just before an apnoea event because apnoea
does not occur when the patient is awake. On the contrary, apnoea makes
patients wake up unconsciously and may trigger a body movement directly
after the apnoea event. In other words, the weakness of the system illustrated
in clip 8 should not occur in clinical practice.

Figure 3.13 and Figure 3.14 illustrate the analysis results of three video
samples. In the upper area, the spectrum of spatiotemporal motion quanti-
zation values et is presented with the episode number marked; the lower area
shows the action detected and overall working flows. There are 7 episodes
in Figure 3.13. Episode 1 is recognized as a normal breathing period, and
during this period a spatiotemporal normal breathing template is continu-
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Figure 3.10: Experimental Results of 11 simulated video clips: constant

differences occur at the end points of individual abnormal events between the

proposed method and the reference standard because of the stabilizing factor

n designed for switching status from “not normal breathing ”to “normal

breathing ”.
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Figure 3.11: Experimental Results of four simulated video clips: constant

differences occur at the end points of individual abnormal events between the

proposed method and the reference standard because of the stabilizing factor

n designed for switching status from “not normal breathing” to “normal

breathing”.

Figure 3.12: Confusion Matrix of Action Classification on Simulated Data:

the rows are ground truth; the columns are the proposed model results; the

main diagonal shows the fraction of frames correctly classified for each class,

and each row represents the probabilities of that class being confused with

all the other classes.

52



Figure 3.13: Illustration of one experimental analysis output.
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Figure 3.14: Illustration of two experimental analysis outputs.
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ously developed. Episode 2 and 3 are abnormal events, both recognized as
apnoea episodes by template matching using the template built in episode 1.
Episode 4 is identified as a normal breathing episode and a new breathing
template is built in this period. The template is then utilized for template
matching in the subsequent abnormal event, episode 5, which is identified as
a body movement episode. Afterwards, a normal breathing status is detected
and the system restarts building a new template of normal breathing activity
in episode 6. Later, the template from episode 6 is utilized to define episode
7 as an apnoea episode.

3.4.2 Experiments on Clinical Data

Experimental Setup. A video system is installed in the sleep lab of Lin-
coln County Hospital. The video system contains three infrared cameras:
two on each side of wall targeting on the upper body of the patient from
different angles and one on the ceiling capturing full body view. The design
is intended to both support the development of intelligent video approaches,
and to ensure that clinical data is soundly captured. In the experiments, the
ceiling mounted camera is used for monitoring full covered body activity, and
the other two for monitoring breathing activity.

Three symptomatic subjects (one severe and two moderate) and twenty
non-symptomatic subjects were recruited to spend one night sleeping in the
sleep lab for eight hours video recording. For the symptomatic data, five
video clips are randomly sampled from the eight hour recordings of the se-
vere OSA patient; four video clips are randomly sampled from the moderate
and minor OSA sufferers (two from each). Each clip lasting 15 minutes,
containing 22500 frames. On the other hand, six video clips are randomly
sampled from non-symptomatic data of six different subjects. To produce
a reference standard, the data were manually marked by the author, who
was trained by three Medical Experts from Lincoln County Hospital – Ma-
tusiewicz, S.(Medical Doctor), Gravill, N.(Consultant Clinical Scientist) and
Barnes, R.(Chief Clinical Physiologist), to identify apnoea (and hypopnoea)
episodes using the over-breathing events. As the obtained ethical application
does not include PSG, PSG can not be used in our experiments. Hence, it is
suggested that an embletta (a portable PSG) is included for future research,
in order to produce a more reliable reference standard.

According to the reference standard, we define an event to be correctly
recognized if the majority of frames covered by the estimated event have
the correct labelling, an admittedly generous test, and a confusion matrix
is generated, of which the main diagonal shows the proportion of events
correctly classified for each class.
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Figure 3.15: Confusion Matrix on Clinical Data.

Experimental Results. In simulated data, the evaluation focuses on clas-
sification on events. There are two aspects to evaluate the performance of the
proposed method, i.e. accuracy on classification of events versus classification
of symptomatic and non-symptomatic subjects. Regarding the accuracy on
classification of events, Figure 3.15 presents the experimental results in the
form of confusion matrix. The diagonal average of the confusion matrix is
0.94, which demonstrates that the proposed vision analysis model achieves
high accuracy in recognizing individual events for real clinical data. Some
template matching outputs are shown in Figure 3.16.

However, the results show that there are slight confusions between body
movement events and apnoea episodes, which points out a limitation of the
proposed technique for future improvements. The simple action recognition
model is less robust than the template matching model, but it is utilized when
the template contains insufficient data, which occurs in two situations. The
first situation is a combination of considerably low illumination and a subject
with shallow breathing pattern, which can be solved by adjusting illumination
level. The second situation is that if the timing for action recognition occurs
right after the non-repetitious data thrown away by the adaptive template
construction algorithm and the speed to discard the non-repetitious data
is faster than the individual breathing repetitious cycle, the simple action
recognition tends to be activated as well. As a result, more complex noise
reduction techniques could be investigated for future research.

Classification of Symptomatic and Non-symptomatic Subjects. The
Apnoea-Hypopnoea index (AHI) is generally used for evaluation of the sever-
ity of OSA in PSG studies, and is calculated as the average number of
apnoeas plus hypopnoeas, per hour of sleep. According to Matusiewicz
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Figure 3.16: Template Matching Screenshots: given the timing t of template

matching, each row contains raw image I, current motion vector M , online

constructed action template T , matching result at time t (yellow: ∼ T ∧M ;

blue: T∧ ∼ M ; white: T ∧M); the upper 3 rows are apnoea episodes and

the lower 3 rows are body movement episodes.
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and Gravill [107], it is normal for non-symptomatic subjects to have a few
apnoea episodes during sleep, and generally the pulse oximetry traces of
non-symptomatic subjects also show a small number of oxygen desaturation
episodes (ODI<5/hour). The distinction between symptomatic subjects and
non-symptomatic subjects is that the number of apnoea episodes is consider-
ably higher for the former (the greater the number is, the more severe OSA
patients suffer).

We report the number of abnormal episodes detected in individual clinical
video clips, to show that the proposed algorithm is able to calculate an index
(VAHI) which reflects the severity of the subject OSA: see Table 3.2. We
treat detected deep breathing episodes as potential hypopnoea events, and
sum up the number of apnoea episodes and 0.5×the number of deep breathing
episodes, and divide the total by the ratio of the length of the video clip to
an hour; we formulate the VAHI as follows.

V AHI = (#Apnoea+ 0.5#DeepBreathing)/(V ideoLength) (3.33)

Table 3.2 shows that the VAHI values of the symptomatic video clips are
distinct from the non-symptomatic ones. In one clip, a non-symptomatic
subject had a disturbed sleep and showed a number of body movement
episodes and nine apnoea episodes (of which five are minor body movements
but misclassified as apnoea episodes, and the other four are over-breathing
episodes; this is normal as noted above). Due to limited time and the num-
ber of the symptomatic subjects, a model to classify symptomatic and non-
symptomatic subjects is not built in this research, and we therefore suggest
further investigation on classifying symptomatic and non-symptomatic sub-
jects and stratifying symptomatic subjects for future work.

3.4.3 Model Parametrization and Sensitivity

Model parametrization is a common issue in computer vision, and the choice
of the parameter values may significantly affect the performance of the algo-
rithms. This section discusses the sensitivity of the proposed algorithm with
regard to the control parameters, including α used in motion detection, λ as
the template quality threshold, γ1, γ2 as the action classification threshold, ν
as the model switch control parameter, n as the stabilizing factor, and κ, β
for simple action recognition model.

The proposed method was tested over a range of different parameter val-
ues; combinations tested are listed in Table 3.3. In the demonstration sys-
tem, the combination (α = 10, λ = 0.00117WH, γ1 = 0.03, γ2 = 0.004, ν =
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Table 3.2: VAHI Values

OSA Apnoea DB Body Video Length VAHI

Symptomatic Vid1 Severe 11 47 2 15:00 138

Symptomatic Vid2 Severe 32 74 12 15:00 276

Symptomatic Vid3 Severe 20 79 11 15:00 238

Symptomatic Vid4 Severe 32 40 8 15:00 208

Symptomatic Vid5 Severe 33 68 33 15:00 268

Symptomatic Vid6 Moderate 81 59 12 15:00 442

Symptomatic Vid7 Moderate 1 37 2 15:00 78

Symptomatic Vid8 Moderate 67 67 16 15:00 402

Symptomatic Vid9 Moderate 27 60 6 15:00 228

Non-symptomatic Vid1 N/A 0 17 0 15:00 34

Non-symptomatic Vid2 N/A 0 3 0 15:00 6

Non-symptomatic Vid3 N/A 9 14 17 15:00 64

Non-symptomatic Vid4 N/A 1 0 1 15:00 4

Non-symptomatic Vid5 N/A 0 10 0 15:00 20

Non-symptomatic Vid6 N/A 0 13 1 15:00 26

OSA severity obtained from the ODI value from pulse oximetry; DB: Deep

breathing; Body: Body Movement; Video Length (mm:ss).
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Table 3.3: Values of Model Parameters

α λ γ1 γ2 ν n κ β

8 ∼ 10 11.7∆ .03 .004 1.3 10 .26 4.6

10 10.5 ∼ 16.5∆ .03 .004 1.3 10 .26 4.6

10 11.7∆ .05 ∼ .025 .004 1.3 10 .26 4.6

10 11.7∆ .03 .003 ∼ .005 1.3 10 .26 4.6

10 11.7∆ .03 .004 1.3 8 ∼ 12 0.26 4.6

10 11.7∆ .03 .004 1.3 10 .1 ∼ .3 4 ∼ 5

∆ = 0.0001WH, W:Width of a frame; H: Height of a frame.

1.3, n = 10, κ = 0.26, β = 4.6) is adopted, and the same model parameter
values were used on both simulated data and clinical data with different en-
vironmental settings (e.g. illumination, camera view and camera distance to
the subject). Overall, the proposed method is not particularly sensitive to
the parameter values. We discuss the important parameters below.

The front end motion detector parameter α influences the motion detec-
tion results. When α is small (e.g. α = 6), more motion is captured, as is
noise; when α is too high, all motion is filtered out. As a result, the selection
of α is important and can influence the settings of other parameters such as
λ. A range of values were tested (8 ∼ 10), and a large value (α = 10) is
chosen to filter out high infrared noise.

Another important parameter, λ, determines whether to use cwMatch
instead of the simple action recognition model. Compared to the simple
model, cwMatch is more robust and accurate, but cannot be used if the
online template contains insufficient information. A range of λ values were
tested (0.00105 ∼ 0.00165), and the lowest effective value (λ = 0.00117)
was selected in order to activate cwMatch as often as possible. As when λ
is too low, the template quality cannot be guaranteed, and the algorithm
becomes susceptible to “shallow breathing in a high noise environment”,
and the action template tends to collect more noise than breathing actions.
Other parameters (γ1, γ2, ν, n, κ, β) are set using the mean of the valid range,
to obtain the best results on three short simulated video clips.

To summarize, an heuristic selection of parameter values was used, and
more automatic determination of parameter values should be considered for
future study.
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3.5 Conclusion

This chapter presented novel approaches for detecting breathing signals and
recognizing abnormal breathing activity from video, to assist in diagnosis
of OSA. The proposed methods utilize infrared video information and avoid
imposing positional limitations. The technique is real time and robust to
heavy occlusion, variances of human breathing behavior and subject appear-
ance, and substantial changes of camera view with respect to the subjects.
Furthermore, shallow and abdominal breathing patterns do not adversely
affect the performance of the proposed approach, and this technique is not
susceptible to illumination changes.

The contributions of this chapter include a novel front end motion detec-
tion method to capture real time signals of breathing movements of covered
human from video, and a model-free approach for extracting global patterns
of motion and quantization of human breathing movement; these patterns
are captured as spatiotemporal templates. The method contains an online
breathing pattern template construction algorithm, an abnormal event de-
tector, which detects when a quantifiable deviation from the latest normal
breathing template occurs, and a novel action recognition model to classify
action events, including apnoea episodes, deep breathing episodes, and body
movement episodes. Importantly, the normal breathing activity template,
which is utilized for action recognition, adapts over time to accommodate to
changes in the shapes of normal breathing activities.

The method is shown to have good performance on a limited set of clinical
data, and a larger set of simulated data. For future work, more clinical
data collection and experimental analysis on symptomatic subjects will be
conducted. Furthermore, investigation of automated methods to obtain key
parameter values should be included.

Monitoring of breathing has broad applications such as polygraph, sleep
studies, sport training, early detection of sudden infant death syndrome
in neonates, and patient monitoring. Although the presented approach is
mainly targeted at diagnosis of OSA, it could be utilized in other applica-
tions that require the analysis of breathing behavior, monitoring subtle and
cyclical activity, or capturing adaptive patterns.
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Chapter 4

Pose Recognition of Covered

Human Body

This chapter presents two automated noninvasive video monitoring approaches
to recover the human pose in conditions with persistent heavy obscuration,
allowing for further analysis of covered human activity. There is some clin-
ical evidence that the analysis of body pose or movement may be relevant
to the diagnosis of OSA. For example, periodic limb movements during sleep
are a common finding in patients with OSA [68, 82]. Although the current
work does not extend to detection of OSA episodes, it is of interest as a
background for future work in that area.

The structure of the chapter is as follows. Section 4.2 describes an existing
stylized pose matching model, and presents experimental results on covered
human body data. The limitations of this model motivate section 4.4–4.5,
which introduce a weak human model to accommodate large variances in
appearance and to efficiently produce upper body pose candidates, a new
robust pose matching method, and a fast real time simple pose estimation
method. In evaluation, section 4.6 presents the experimental results, and
section 4.6.3 shows the statistical test results. Section 4.7 concludes the
chapter.

4.1 Introduction

Estimating human body posture is important for automatic recognition of
human activities, with broad applications ranging from human computer in-
terfaces, video data mining, automated surveillance, sport training to medical
diagnosis. There has been considerable work in pose recognition in recent
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years. The posture of subjects with well-represented appearance or silhouette
can be estimated reliably in some systems. However, recognizing the pose of
a person who is persistently under cover remains challenging. Many exist-
ing approaches to pose estimation make simplifications to the measurement
problem, either using motion data (e.g. [1, 45, 67, 146]) to extract silhou-
ettes, or assuming knowledge of appearance or color (e.g. [40, 95, 128, 136]),
and the subjects tend to wear close-fitting clothing (or even to be unclothed
[40]) in order to extract such information more easily. Such methods work
well given clear image cues (for simple detection models) and clean full body
motion data (for dynamical models in tracking).

However, in real world applications, partial occlusion often occurs and
these assumptions often fail. Apart from partial occlusion, it is likely that
limited motion information is available from partial and irregular movements,
which seriously affects the usability of the aforementioned methods. Al-
though there is some published research investigating the monitoring of par-
tially occluded humans [69, 129, 153, 170], the methods examined do not
deal with pose estimation of consistently and almost wholly occluded sub-
jects. The aforementioned methods are therefore too restrictive for our field
of study. Traditional computer vision methods such as correlation, template
matching, background subtraction, contour models and related techniques
for object tracking are proven ineffective in [22, 75]. The goal of this work
is to estimate human poses in conditions of persistent heavy occlusion with
irregular movements; see Figure 4.1. The level of occlusion may vary between
partially covered, near fully covered and uncovered. In addition, we do not
require the subject to be uncovered when (s)he first appears in the scene nor
do we require manual initialization.

The principal sources of difficulty in performing this task include: (a)
large variances of the image features/appearance of the subject according to
the occlusion level, (b) appearance data such as skin color, head-shoulder
contour, body outline and ridges of the legs being inaccessible, (c) motion
data being partial, irregular and obscured by the cover, (d) obscuration of
the bodies’ edges by the cover, and (e) strong wrinkle noises from the cover.

4.1.1 Relevant Work

In section 2.3, related computer vision approaches are discussed. In this
chapter, a stylized pose matching model by Ramanan et al. [128], which is
effective in detecting and tracking human poses both indoor and outdoor,
is reviewed and tested on the covered human video data. The experimental
results are poor. Due to persistent occlusion and heavily obscured image fea-
tures, the technique tends to be deceived by wrinkle noise, and completely

63



Figure 4.1: Limited Motion and Raw Image: the motion data of a covered

sleeping subject is irregular, partial, fragmented and noisy.

fails to identify obscured human poses. Additional experiments were con-
ducted using a later model by Ramanan [131]–the iterative parsing method,
which iteratively learns better image features to improve pose estimation,
but the pose estimation outcomes are worse, showing that the two exist-
ing methods are completely unsuitable to this problem domain. Details of
Ramanan’s approaches [128, 131] are given in section 4.2.

4.1.2 Proposed Methods

A weak human model (WHM) is introduced to efficiently produce hypotheses
of the upper body parts from obscured human subjects. A new pose matching
model, (cwPose), is integrated with WHM to identify the human pose. As
the pose matching model, named MatchPose (=WHM+cwPose), takes 0.4
second to process a frame, a real time simple pose model, named RTPose,
is also proposed. This integrates WHM with an upper leg pose estimator,
a new representation extracting latent features from obscured legs, and a
method to reinforce both model parameter and feature space using linking
hypotheses.

In evaluation, the proposed methods are compared with Ramanan’s ap-
proaches [128, 131]. Regarding computational speed, without code optimiza-
tion, the system runs near to real time (it takes 0.1 second to process a
320 × 240 frame with a P4 2.4GHz CPU on average for the RTPose model
and 0.4 second for the MatchPose model).
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Figure 4.2: Diagram of the two proposed pose recognition methods.

4.2 Ramanan Approaches

Ramanan et al. [128] developed an automatic system to detect and track the
poses of humans from a video sequence by learning their appearance. The hu-
man body is modelled as a “puppet” of rectangles connected at joint points,
which is often called a pictorial structure [47, 48]. As model-based tracking
is easier with a better model, Ramanan refines the generic appearance model
by learning the appearance template for each person.

Ramanan’s approach has two stages: first it builds a puppet model of
each person’s appearance, and then tracks by detecting those models in each
frame. Two approaches are used to learn appearance templates: a bottom-
up method and a top-down method. The bottom-up approach first detects
candidate parts in each frame with an edge-based part detector, then clusters
the resulting image patches to identify body parts that look similar across
time, prunes clusters that never move or move too fast in some frames, and
groups together candidate body parts found throughout a sequence.

The top-down approach detects stylized lateral walking poses with legs
in the form of a distinctive scissor pattern using the tree pictorial structure
and the chamfer template matching technique [152] with specified global
constraints, which enforce separation of the left and right legs, and also
similar appearance based on the L2 distance between color histograms. The
sample with the lowest cost is kept to build a discriminative appearance
model for tracking, by building quadratic logistic regression classifiers in
RGB space for each limb using all pixels inside the estimated limb rectangle
as positives and all non-person pixels as negatives.

In our problem domain, as the appearance of the subject’s body is oc-
cluded by the cover and available body motion is partial and irregular, the
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Figure 4.3: Person Model in Ramanan’s method: (a) a tree pictorial structure

parameterized by probability distributions capturing the geometric arrange-

ment of parts (the directed arrows between parts) and local part appearances

(the vertical arrows into the shaded nodes) (b) the edge template of a generic

lateral walking pose pictorial structure (c) a learned appearance template

bottom-up approach and building an appearance model do not appear suit-
able options. Hence, the focus is on the stylized pose matching model using
the generic edge template, and the details of the approach are reviewed in
this section, including the pictorial structure and chamfer matching. The
technique is evaluated with covered human body video data, and the exper-
imental results with an analysis of the limitations of the approach are given
in section 4.2.3.

4.2.1 Pictorial Structure for Pose Recognition

The human body is represented using a pictorial structure [47, 48], displayed
as a graphical model in Figure 4.3(a). Similar to the partitioned sampling
scheme [41], the torso is localized first and then the remaining limbs are found
in a directed search scheme, which suffers from the drawback that if the torso
localization is poor, the resulting appearance and localization estimates for
the limbs will suffer.

Ramanan’s stylized person detector uses a single frame pictorial structure:

P (X1:N , I|C1:N) =
N∏
i

P (X i|Xπ(i))P (I|X i, Ci) (4.1)

where the superscripts are used to denote body parts (i ranges over the torso
plus left/right upper/lower arms/legs). The term π(i) denotes the parent
of part i, following the tree in Figure 4.3(a). The variable X i is a 3-vector
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capturing the position (x, y) and orientation θ of part i. P (X i|Xπ(i)) is the
standard geometric likelihood in a pictorial structure; P (I|X i, Ci) is the local
image likelihood. Ci is the part appearance template.

Modify the Geometric and Image Likelihood Terms. Importantly,
Ramanan et al. modify the geometric and image likelihood terms to look
for stylized poses. For P (X i|Xπ(i)), they manually set the kinematic shape
potentials to be uniform within a bounded range consistent with walking
laterally, as in Figure 4.3(b), and force the upper legs to be between 45
and 15 degrees with respect to the torso axis. Also, they measure the local
image likelihood P (I|X i, Ci) using shape matching cost functions by cham-
fer matching the rectangular edge template. They convolve the distance-
transformed edge image [18, 152] with the stylized pose edge templates, and
to exploit edge orientation cues, they quantize edge pixels into one of 12
orientations, compute the chamfer cost separately for each orientation with
the manually set rotated edge templates, and add the costs together.

They look only at the configurations where all the limbs have high like-
lihoods (low matching costs) and generate 2000 samples per image from the
posterior using the pictorial structure method [47]. Then, the samples are
re-scored under two global constraints: (1) forcing similar appearance of left
and right legs by computing the disparity in leg appearances using the L2

distance between the color histograms and (2) discarding samples where the
leg endpoints are within a distance of each other. Ultimately, the sample
with the lowest cost is kept to build a discriminative appearance model for
tracking using the temporal pictorial structure.

P (X1:N
1:T , I1:T |C1:N) =

T∏
t

N∏
i

P (X i
t |X i

t−1)P (X i
t |X

π(i)
t )P (It|X i

t , C
i) (4.2)

where the subscripts are used to denote frames t ∈ {1 . . . T}, and P (X i
t |X i

t−1)
is a motion model for an individual part.

4.2.2 Shape Matching: Chamfer Matching

Object recognition can be achieved based on the object’s color, texture and
shape; in the absence of color and texture information as in this problem
domain, we must rely on shape alone. Shape matching is a key problem in
digital image analysis, and computing the distances between shapes is in prin-
ciple a global operation. However, global operations are prohibitively costly.
Therefore, algorithms that consider only small neighborhoods are necessary.
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Thayananthan et al. [152] reviewed shape matching methods and compared
two shape context approaches and the chamfer matching technique, showing
that chamfer matching is more reliable given significant background clutter
or variations in scale and shape.

Chamfer matching was first proposed in [13] and later refined in [18, 121]
to detect objects based on global shape features. Given a set of trained
shape templates, chamfer matching searches the image for locations where
these templates are best matched to the image content. To search for a
certain object, Borgefors [18] suggests that the template should be an ideal
outline of that object, rather than edges extracted from an image.

Object shapes are compared using a distance transform (DT), which ap-
proximates global distances by propagating local distances. i.e. distances be-
tween neighboring pixels. Matches of a template to the distance-transformed
image are found by shifting the template over the image and computing, at
each location, the average distance value of all pixels that are covered by the
template.

Chamfer Distance Function. Two binary images, consisting of feature
and non-feature points U = {ui}ni=1 and V = {vj}mj=1, are to be matched, and
the feature can be any feature visible in both images, e.g. edges, corners,
bright spots, or areas with a certain texture. A distance transformation is
first applied to the no-feature image, also called the pre-distance image, to
assign each non-feature pixel a value that is a measure of the distance to the
nearest feature pixel and set the feature pixels to zero. The chamfer distance
can then be computed as the average of DT values at the template point
coordinates:

dcham(U ,V) =
1

n

∑
ui∈U

min
vj∈V
|ui − vj| (4.3)

To reduce the effect of outliers and missing edges, the cost can be com-
puted by using the mean of thresholded distances.

dcham(U ,V) =
1

n

∑
ui∈U

max(min
vj∈V
|ui − vj|, τ) (4.4)

As the edge points are influenced by noise, Borgefors [20] indicated that it
is a waste of effort to compute exact distances from inexact edges and showed
the 3–4 DT to be good enough compared to the Euclidean distance. The
propagation can be done either in parallel or sequentially. 3–4 DT is adopted
in both [128] and this work; the algorithms are described in Appendix B.
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Figure 4.4: Edge Orientation Cues and Distance-Transformed Images: (a)

raw image, (b) combined edge orientation, (c–f) individual edge orientation

vectors, (g) DT vector based on vector(e), (h) DT vector based on vector(f)

Using Distance Transformed Images. The advantage of matching a
template with the distance transformed image rather than with the orig-
inal edge image is that the resulting similarity measure is smoothed, and
the influence of outliers can be reduced by using a truncated distance for
matching.

Using Edge Orientation. The original chamfer matching method and
some extensions [13, 18, 61] do not make use of edge orientation information.
Thayananthan et al. [152] pointed out that the discriminative power of the
cost function can be enhanced by exploiting edge orientation cues of the
pre-distance image. In their work, the edge orientation of each pixel in the
pre-distance image is discretized into 8 regions, producing 4 DT vectors.
The chamfer matching cost is then computed as the sum of DT values in
individual DT images at the template point coordinates.

Given the number of edge orientations, J , to exploit and the template
point coordinates, U , the modified chamfer cost function can be formulated
as follows.

dcham =
∑
x,y∈U

J/2∑
j=1

DTx,y(j) (4.5)

Ramanan et al. [128, 131] used Thayananthan et al.’s approach, and quan-
tized edge pixels into one of 12 orientations. Figure 4.4 shows a raw image
captured in the sleep lab with an edge image highlighting four different edge
orientations, four separate edge orientation vectors, and two DT vectors.
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4.2.3 Experimental Results on Covered Human Data

Results of Ramanan’s Method. The MATLAB code was downloaded
from Ramanan’s homepage [132] to test the original stylized pose detector
on covered human video data. Experimental results are displayed in Fig-
ure 4.5, showing the pose estimation outputs (the mode of the posterior),
the posterior and the estimated pixels of the torso, lower arms and lower
legs. As the technique is designed for un-occluded human detection, the re-
sults are extremely poor in application to obscured covered human subjects.
In addition, the method segments hardly any pixels for the lower legs; see
Figure 4.5(d).

To illustrate the challenge of obscuration and occlusion by the cover,
figure 4.6 compares an un-occluded edge vector from an image used in [128]
and an occluded edge image used in this research, showing that the edges
of the covered body outline are not only limited but also very noisy. As a
result, Ramanan’s detector is seriously influenced by strong wrinkle noise
generated by the cover and heavily obscured image features. In addition,
the computational cost of Ramanan’s detector is high – around 3 minutes to
process one 320×240 frame using PC with P4 2.4GHz CPU and 1G memory.

Results of a Ramanan’s Improved Approach. In [131], Ramanan in-
troduced an iterative parsing approach to improve pose estimation by iter-
atively learning better and better features using local features. To explore
if this enhanced version is suitable for our problem domain and if boosting
local features helps, additional experiments were conducted. The technique
is briefly described below.

Regarding pose estimation as inference in a probabilistic model, an it-
erative parsing process is developed for sequentially learning better features
tuned to a particular image in order to improve pose estimation. The tech-
nique matches an edge-based deformable model to the image to obtain (soft)
estimates of body part positions. Then, the algorithm uses the estimated
body part positions to build a rough region model for each body part and
the background, i.e. a color model for each part and the background. After-
wards, the algorithm builds a region-based deformable model that looks for
possible torsos. Soft estimates of body position from the new model are then
used to build new region models, and the process is repeated.

The method is tested with covered body images, and Figure 4.7 dis-
plays the pose estimation results, which are even worse than the original
Ramanan’s approach.
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Figure 4.5: Results of Ramanan et al.’s Method [128]: (a) input images, (b)

torso pixels, (c) lower arm pixels, (d) lower leg pixels, (e) posterior, (f) mode

of posterior.
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Figure 4.6: Comparison of occluded and un-occluded image feature: (a) Un-

occluded human used in [128], (b) Un-occluded edge cue, (c) Covered human,

(d) Noisy and obscured edges

Figure 4.7: Results of Iterative Parsing Technique [131]: (a) inputs (b) the

first edge-based parse (c) the second parse using region features from first

parse (d) the best-scoring pose
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Analysis. Appearance modelling is inappropriate in identifying the cov-
ered body pose since the appearance of the covered parts are identical due
to the cover; the appearance of an individual body part may vary if par-
tially covered, and the appearance model changes over time according to the
occlusion status (covered, partially covered or un-covered).

In addition, chamfer matching is susceptible to cluttered schemes; Gavrila [61]
indicates that in cluttered scenes, the chamfer cost function typically has sev-
eral local minima, and it is necessary to use a subsequent verification stage.
As the covered body scene is heavily cluttered, containing strong wrinkle
noise from the bedding and a limited number of weakly represented edges
of the body, chamfer matching technique cannot be applied directly to the
problem domain. In summary, novel methods are required.

4.3 The Weak Human Model

The initial set of hypotheses of the head and torso are proposed by a weak
human model (WHM), which comprises a novel obscured head model, a
novel obscured shoulder detector, a novel obscured torso model and a novel
hip joint detector, and adopts the pictorial structure as the basic human
representation. This section first introduces three image processing methods
for feature extraction and then presents the four novel body part detectors.

4.3.1 Feature Extraction

As the subject is occluded and the image features are obscured by the cover,
extracting informative features and excluding noise are key to pose recogni-
tion. An edge box map technique is introduced to abstract the scene and
detect the torso; two edge detectors are built to effectively extract geometric
information.

1 Coarse Horizontal Oriented Edge Detector

We first attempt to extract important edges from the outline of the human
body while discounting the wrinkles in the sheet. General edge detectors such
as Sobel, Prewitt, Kirsch Compass and Laplacian [161] inevitably produce
noisy information from wrinkles. Due to the horizontal layout of the bed,
an oriented horizontal edge detector is used here to effectively detect object
edges aligned with the body, and to remove noise.

In addition, in order to improve edge quality, a gaussian blur filter is
applied and the image is down-scaled before processing. This discounts subtle
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Figure 4.8: Comparison of general edge detectors and the proposed coarse

horizontal oriented edge detector

noise and accommodates variance in the local feature representation due
to obscuration, and increases computational speed. Figure 4.8 compares
different edge detectors over a sample image, showing that the proposed
approach outperforms others in both producing the outline of the human
body and removing noisy edge information.

The horizontal oriented edge detector is a 2D convolution filter. Given
an input image I(x, y), the horizontal edge detector produces an edge vector
I1(x, y), which is used for head detection and as an input for an edge box
map method (see the next section).

I1(x, y) = I(x, y)⊗G1(w, v)

=
m∑

w=−m

n∑
v=−n

I(x+ w, y + v)G1(w +m+ 1, v + n+ 1) (4.6)

where ⊗ is the convolution operator; the convolution mask G1(w, v) is a
(2n+ 1)× (2m+ 1) matrix and set as:

G1(w, v) =

 −1 −1 −1 −1 −1 −1 −1
0 0 0 0 0 0 0
1 1 1 1 1 1 1

 (4.7)

2 Edge Box Map
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Figure 4.9: Edge Box Maps for Shape Abstraction: the torso can be detected

under occlusion from the subject’s arms, hands and the cover by utilizing the

edge box maps.

As the targeted human body is covered, a portion of the geometric infor-
mation is lost or even distorted. In order to deal with the issue of discontin-
uous and scattered edges, an edge box map approach is developed for further
shape abstraction. Figure 4.9 displays two edge box maps calculated from
edge images, which extract edge information from the original images in the
left column. Each edge box thresholds a count of edges within the box. The
resulting edge box maps are then utilized by the torso detector to find the
covered torso part.

Given a (m × n) horizontal oriented edge image I1(x, y) and the size of
an edge box (s× s), the edge box map B(a, b) is formulated below.

f(x, y) =

{
1 if I1(x, y) ≥ ν
0 otherwise

(4.8)

B(a, b) =

{
1 if

∑as−1
x=(a−1)s

∑bs−1
y=(b−1)s f(x, y)/(ss) ≥ δ

0 otherwise
(4.9)

3 Coarse Vertical Oriented Edge Detector

The horizontal edge detector is augmented by a coarse vertical oriented
edge detector, which provides auxiliary cues for detection of the shoulders
and head; see Figure 4.11(c).

I3(x, y) = I(x, y)⊗G2(w, v)

=
m∑

w=−m

n∑
v=−n

I(x+ w, y + v)G2(w +m+ 1, v + n+ 1)(4.10)
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where ⊗ is the convolution operator; the convolution mask G2(w, v) is a
(2n+ 1)× (2m+ 1) matrix and set as:

G2(w, v) =



−1 0 1
−1 0 1
−1 0 1
−1 0 1
−1 0 1
−1 0 1
−1 0 1


(4.11)

4.3.2 Obscured Head Detection

There has been considerable work on face detection in computer vision re-
search over the past ten years; most face detection systems impose postural
constraints, requiring frontal view faces or some part of the face like the eyes
and nose to be visible. However, patients sleeping with unconstrained poses
and under the cover may have the face occluded, or may present half or less
of the face when they sleep on the side. Therefore, a head detector robust to
occlusion and various body postures is necessary.

Here, a head detector invariant to facial direction and partial occlusion
by hands, shoulders or the cover is introduced. In order to accommodate
large variances in the head posture and appearance, the detector constitutes
four sub-models, utilizing different coarse features with different rules. The
structure is somewhat similar to the cascade classifiers introduced by Viola
and Jones [157] for real time face detection. Below, we first give a brief
description of Viola and Jones’s approach, and explain the differences of the
new classifier structure.

A Cascade Classifiers by Viola and Jones
In general, classifiers with more features achieve higher detection rates

and lower false positive rates, but require more time to compute. To achieve
rapid face detection, Viola and Jones introduced an attentional cascade of
classifiers, which achieves increased detection performance while radically re-
ducing computational time, by using boosted simple classifiers to reject many
of the negative sub-windows while detecting almost all positive instances; see
Figure 4.10 (a). Each stage in the cascade reduces the false positive rate and
is trained by adding features until the target detection and false positive
rates are met (these rates are determined by testing the detector on a vali-
dation set). A one feature classifier achieves 100% detection rate and about
50% false positive rate; a five feature classifier achieves 100% detection rate
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Figure 4.10: Cascade Structure: (a) Boosted Cascade with Single

Model [157], (b) Proposed Cascade with Diverse Models

and 40% false positive rate; a 20 feature classifier achieve 100% detection
rate with 10% false positive rate. Such a process is similar to a degenerate
decision tree.

Stages are added until the overall target for false positive and detection
rate is met. To detect frontal upright faces, they trained a face detection
cascade, containing 38 stages with 6,061 features, and the number of fea-
tures in the first five layers of the detector is 1, 10, 25, 25 and 50 features
respectively. The remaining layers have increasingly more features. Each
classifier was trained with the 4,916 hand labelled faces scaled and aligned
to a base resolution of 24 × 24 pixels (plus their vertical mirror images for
a total 9,832 training faces) and 10,000 non-faces (also of size 24× 24 pixels
using a variant of Adaboost [51].

However, there are some disadvantages of this approach. Firstly, the time
and manual effort on the training process are enormous, e.g. for building a
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frontal face detector, 38 stages are trained. More importantly, there is a
generalization issue to accommodate large variances in head postures and
image features. As a result, a cascade with diverse models is proposed in the
next section.

B Structure of the Proposed Head Detector
The proposed cascade contains four simple head detectors, which evaluate

various types of inputs in different models, and can quickly filter out non-
head areas while accommodating variations in input data. The cascade allows
training data in a low 14 × 14 base resolution, contains significantly less
layers in the cascade, and accommodates large variations in input features.
Moreover, the training process is robust, without much human intervention,
and is computationally efficient. Without code optimization, on a 2.8Ghz
Pentium 4 processor, the head detector can process a 320 × 240 image in
≤ 0.01 seconds (using greedy search and jumping, described below).

The scheme is illustrated in Figure 4.10 (b). Model1 is an iterative boost-
ing head detector, containing only 3 stages; Model2 is a simple edge clustering
model for head detection; Model3 is a simple detector of the top of the head;
Model4 is an obscured shoulder detector. Each model is described in the
following sections.

Following Ramanan’s method, the four head detection models are com-
bined together using weighting functions, and the overall weighting function
of the head detector can be formulated as follows.

w(Xh) =

{
w(I1, X

h)w(I2, X
h)w(I3, X

h) if D(Xh, Xsho) 6= 0
w(I1, X

h)w(I2, X
h)(w(I3, X

h) + w(I3, X
sho)) otherwise

(4.12)
where w(I1, X

h), w(I2, X
h), w(I3, X

h), w(I3, X
sho) are the weighting functions

of individual models, D(Xh, Xsho) is the Euclidean distance between the joint
points of Xh and Xsho; I1 is an image observation by the coarse horizontal
oriented edge detector (see Equation 4.6); I2 is an image observation by the
Prewitt kernels [119], a contrast enhancement filter and a binary filter; I3

is an image observation by the vertical oriented edge detector (see Equa-
tion 4.10) and a binary filter. Figure 4.11 displays the three different image
observations, I1, I2, I3, for head detection.

1 Model1: Iterative Boosting Head Detector

The first model developed is a head detector, reflecting the fact that the
head is generally the most easily detected body part of a sleeping subject.
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Figure 4.11: Image observations for head detection: (a) Horizontal oriented

edge image I1 (b) image by Prewitt kernels and a contrast enhancement

filter I2 (c) Vertical oriented edge image I3 (d) Definition of potential areas

of shoulders S1, S2, S3, S4, and the top of the head Rt to the head region Rh

Figure 4.12: Initial training data forM1: the data format is a 14×14 matrix

using the intensity values of edge images I1
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Following Viola and Jones’s approach [157], we used machine learning algo-
rithms to train a head template invariant to head poses and partial occlusion.
We introduce a low variance error boosting algorithm and an iterative boost-
ing cascade. This method reduces human intervention and manual effort on
training process. Without building an enormous number of stages, a simple
3-layer cascade classifier is iteratively constructed. Each boosting model con-
sists of ten C4.5 decision trees [127], with the features automatically selected.
To keep this chapter concise, the low variance error boosting algorithm and
associated experiments are presented in Appendix C.

The initial training set consists of 30 hand labelled heads (class T), in-
cluding 15 frontal and 15 side views, scaled and aligned to a base resolution
of 14× 14 pixels, together with 10 randomly selected non-head images (class
F); see Figure 4.12. All data was collected from a single video clip.

The first layer classifier M1 was trained using the 40 training samples,
and tested using the same video clip. Next, we randomly selected 10 false
positive instances generated by M1 into the training data of class F. The
second layer classifier M2 was then trained using the obtained 50 images.
Another randomly selected 10 false positive instances generated byM1∧M2

were added into training data of class F. Using the collected 60 instances,
the third layer classifier M3 is trained. Figure 4.13 illustrates the iterative
construction scheme. The weighting function of the iterative boosting head
detector can be formulated as follows.

w(I1, Xh) =

{
1 if M1 → T ∧M2 → T ∧M3 → T
0 otherwise

(4.13)

Importantly, we employ coarse edge information to avoid the influence of
different facial appearance, expression and direction. This helps to identify
the most important patterns. The benefits of this are: (1) the base resolution
of the data is reduced (14× 14 versus 24× 24 in [157]); (2) the training data
is significantly condensed (40 images versus 19,832 images in [157]); and (3)
the number of layers in the cascade is greatly decreased (3 versus 38 in [157]).
The ultimate result is that the computational cost is reduced from 0.06 to
0.01 seconds per frame.

Furthermore, the iterative construction of the boosting classifiers allows
patterns and rules to be continuously refined by focusing on the false posi-
tive instances from the previous learning experience. This method utilizes a
relatively small number of instances to build the machine learning models,
and moreover all training data is selected from one single video clip with one
subject. In evaluation, the experimental results show that the head detec-
tor works robustly in all 32 test video sequences from eight different people,
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Figure 4.13: Iterative Construction of Boosting Cascade

which were recorded with four different filming angles in two different envi-
ronments under two different illumination settings.

2 Model2: Simple Edge Clustering Model

The second measurement model filters out regions with low levels of edge
response. The function w(I2, X

h) indicates the number of edges in the region
exceeding a threshold α.

w(I2, X
h) =

{
1 if

∑
(x,y)∈h2 I2(x, y) > α

0 otherwise
(4.14)

where α = ς×area of Xh (ς=0.1, which is determined empirically using train-
ing data); I2 is an image observation by the Prewitt kernels [119], a contrast
enhancement filter and a binary filter (see Figure 4.11(b)).

3 Model3: Simple Detector of the Top of the Head

A simple head detector evaluates a region according to the edge response
of the top of the head. Given a potential head region Rh, we evaluate the
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top of the head Rt as illustrated in Figure 4.11(d), and define the confidence
weight w(I3, X

h) of the head:

w(I3, X
h) =

∑
(x,y)∈Rt

I3(x, y) (4.15)

where I3 is an image observation by the vertical oriented edge detector (see
Equation 4.10) and a binary filter.

4 Model4: Obscured Shoulder Detection

A commonly adopted method for shoulder detection is a head-shoulders
contour matching model [95, 96, 170], which chamfer matches pre-trained
head-shoulder contour shapes. However, the shape matching methods are
susceptible to cluttered scenes and not suitable for the obscured body, as we
showed in section 4.2.3. A novel obscured shoulder detector is presented here.
There are two distinctive shoulder postures – the frontal posture and the side
posture. The frontal posture is detectable by the roughly symmetric (ob-
scured) two-side shoulders, but the appearance of the shoulder from the side
view is not conspicuous. Hence, we create a weighting function w(I3, X

sho)
for potentially heavily obscured frontal shoulders. We define four regions
(S1, S2, S3, S4) with potentially two shoulder areas; see Figure 4.11(d).

Given a head hypothesis Xh with its topleft coordinate (x, y)Xh
, height

hXh
and weight wXh

, we define (S1, S2, S3, S4) as follows.

wSi
= wXh

/2, hSi
= hXh

(4.16)

(x, y)S1 = (xXh
− wXh

/4, yXh
− hXh

) (4.17)

(x, y)S2 = (xXh
, yXh

− hXh
) (4.18)

(x, y)S3 = (xXh
− wXh

/4, yXh
+ hXh

) (4.19)

(x, y)S4 = (xXh
− wXh

/4, yXh
+ hXh

) (4.20)

To characterize roughly symmetric shoulders, a pair of shoulder features
(a1, a2) is obtained from the four edge representation indices (c1, c2, c3, c4) of
the four potential areas (S1, S2, S3, S4).

ci =
∑ ∑

(x,y)∈Si

I3(x, y) (4.21)
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The shoulder weighting function is designed to characterize the symmetry
of the shoulders (using the symmetric orientation index ∆ = |a1−a2|) and the
strength of feature response levels (a1, a2). The shoulder weighting function
w(I3, X

sho) is formulated as follows.

w(I3, X
sho) =

{ a1+a2

∆
if a1 ≥ 0 ∧ a2 ≥ 0 ∧∆ > 0

1 if a1 ≥ 0 ∧ a2 ≥ 0 ∧∆ = 0
0 otherwise

(4.22)

where ∆ is created to represent symmetric orientation level.

∆ = |a1 − a2| (4.23)

(a1, a2) is formulated as follows.
if c1 ≥ β ∧ c3 ≥ β,

(a1, a2) = (c1 − β, c3 − β) (4.24)

otherwise, if c2 ≥ β ∧ c4 ≥ β,

(a1, a2) = (c2 − β, c4 − β) (4.25)

otherwise, if max(c1, c2) ≥ β ∧max(c3, c4) ≥ β,

(a1, a2) = (max(c1, c2)− β,max(c3, c4)− β) (4.26)

otherwise,
(a1, a2) = (−1,−1) (4.27)

where β = 18 is determined empirically from the training data.

To illustrate the above function, where higher weight is given to in-
stances with higher symmetrical orientation (∆ ↓) and stronger edges level
(a1 ↑, a2 ↑), some examples of experimental results are listed in Table 4.1.
Importantly, w(I3, X

sho) = 0 does not necessarily mean that the shoulders
are not in the frontal posture because they may be obscured. However, when-
ever the shoulders are clearly detectable, we utilize the shoulder information
I3 to assist in the estimation of the neighboring nodes, i.e. Xh and X tor.

4.3.3 Obscured Torso Detection

The appearance of the torso varies considerably according to the level of
occlusion by the cover, the hands or the arms. Hence, to accommodate large
variance in the appearance of the torso, we develop two measurement models,
including a new obscured torso detector and a novel hip joint detection model.
In addition, three classes are defined for the output of the torso detector: type
1 – 45 degree head to torso; type 2 – 90 degree head to torso; type 3 – 135
degree head to torso. The algorithm is described as follows.
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Table 4.1: Experimental Results on Shoulder Detection

c1 c2 c3 c4 a1 a2 ∆ Importance w(I3, X
sho)

23 29 37 10 5 19 14 1.71

10 35 34 17 16 17 1 33

18 27 9 37 9 19 10 2.8

17 7 26 27 -1 -1 0 0

*Two figures (a1, a2) are selected from (c1, c2, c3, c4), shown in Bold.

Obscured Torso Detection Algorithm

If w(I3, X
h, Xsho) > 0, indicating that clear shoulders are visible

w(X tor) = w(I3, X
h, Xsho)

output Type 2.
Otherwise, X tor′ = arg max(w(Itor, X

tor))
If X tor′ ∈ {Type 1, Type 3}, then compute the weight of the hip joint to the torso

If w(I3, X
tor′ , Xhip) < τ ∧ w(I3, X

tor′′ , Xhip) > ϕ
(where X tor′′ =Type 1 if X tor′ =Type 3; otherwise X tor′′ =Type 3
, and τ, ϕ are defined in equation 4.31 and 4.32)

w(X tor) = w(Itor, X
tor′′)

output X tor′′

Otherwise
w(X tor) = w(Itor, X

tor′)
output X tor′

1 Obscured Torso Detector

The core idea of the torso recognition algorithm is to search for a relatively
smooth region within a reasonable distance and angle from the head, i.e. an
area near to the head with a low interior edge box count. Itor is the edge
box map introduced in section 4.3.1, and the detection is as defined below;
see Figure 4.14.

w(Itor, X
tor) = (

∑
(a,b)∈Xtor

B(a, b))−1 (4.28)

2 Obscured Hip Joint Detector
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Figure 4.14: Edge box maps: regions with high w(Itor, X
tor) are highlighted

If the estimated torso from the previous section is Type 1 or Type 3,
we assume both that the person is lying on his/her side and that the im-
age observation of the hip joint to the torso is detectable. Similar to the
design concept of the obscured shoulder detection model, three sub-regions
{Jlp}p=1,2,3 are defined to search for the potential hip joint according to the
estimated torso type l, in order to accommodate variances of the hip joint’s
position and obscuration by the cover. Figure 4.15 illustrates the image
observation I3 and the corresponding hip joint sub-regions.

w(I3, X
tor, Jlp) = w(Jlp) =

∑
(x,y)∈Jlp

n(x, y) (4.29)

w(I3, X
tor, Xhip) =

{
max(w(J11), w(J12), w(J13)) if X tor = Type1

max(w(J31), w(J32), w(J33)) if X tor = Type3

(4.30)
We assume that w(I3, X

tor, Xhip) ∼ N (mj, σ
2
j ), and the two parameters

in the Obscured Torso Detection Algorithm in section 4.3.3 are defined as
follows.

τ = mj − 2× σj (4.31)

ϕ = mj (4.32)

4.3.4 Use Temporal Coherence

Spatio-temporal approaches have been shown to be useful in overcoming self-
occlusion and image noise in recent research [94, 97, 143]. These methods
exploit temporal coherency of feature points. In contrast, we exploit the
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Figure 4.15: Estimated Pose and Image Observation for Hip Joint Detectors

Figure 4.16: Temporal coherence on patterns.

property of temporal coherence on system states rather than features, con-
structing temporally coherent patterns. The advantage is that using tem-
poral coherence in feature development risks transition errors from observed
data to estimated states, whereas applying temporal coherence directly to
system states avoids such risks.

On each time-step, t, the algorithm evaluates multiple hypotheses for the
head position, {Xh

i }, and torso position, {X tor
j }, and a single hypothesis

for the upper legs position, gt. The strongest hypothesis at time t is Xt =
(Xh

t , X
tor
t , gt). If hypothesis Xt yields a reasonably consistent position over

a sufficiently long time period, then detection with Xt is declared. We use a
threshold for head displacement, ρ, and a minimum stable period, τ .

Let k be a count of consecutive stable iterations; initialize k=0. On
each iteration, t, if |Xh

t − Xh
t−1| < ρ, increment k by 1; otherwise, set k=0.

Declare detection using Xt when k > τ . An illustration is given in Figure 4.16
(ρ = 0.3, τ = 3 are used in our experiments).
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Figure 4.17: Results of the search algorithm

4.3.5 Search Method: Greedy Search with Jumping

As the availability of spatial features can be variable and the true hypothesis
can be heavily occluded, the coarse-to-fine search strategy [50] sometimes
misses detection. Hence, we conduct the search in an independent greedy
manner every frame both to collect as much information as possible and to
avoid filtering out the true hypothesis due to sampling (for head detection,
the greedy search is on the right hand side, 2

5
of each frame).

In order to reduce the computational cost, we construct a jumping mecha-
nism, which forces the greedy search to skip neighbor rows below a detected
point. Importantly, the jumping function is combined with the computa-
tionally efficient head detector model (section 4.3.2), which finds an opti-
mal position in the local area. Therefore, skipping can be conducted with-
out missing targets and reduces computing time. Moreover, compared with
post-processing hypotheses after search using the weighted mean, the mode
or clustering [170], the jumping function avoids a merging process and saves
effort on both searching and post-processing. Some results are presented in
Figure 4.17.

Given an M × N region of interest and the current position (x, y), the
next search position for the head (a, b) can be formulated as follows. (k =3
is used based on our experiments).
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Figure 4.18: Pose Pictorial Structure: (a) Ramanan’s Template Representa-

tion (b) Modified Template Representation

(a, b) =

{ (x+ 1, y + k) if(x, y) ∈ {Xh}
(x+ 1, y) if(x, y) /∈ {Xh} ∧ (x+ 1) < M
(0, y + 1) otherwise

(4.33)

4.4 Robust Pose Matching Method (Match-

Pose)

We introduce an enhanced pose matching algorithm, cwPose, for obscured
human pose estimation, by improving the chamfer cost formula and Ra-
manan’s template representation to overcome the issues of weakly represented
image features and strong noise due to heavy occlusion. Although cwPose
significantly improves pose estimation, it is still susceptible to strong noise.
Hence, we combine it with WHM, which substantially reduces the search
space by generating soft estimates of upper body parts, with cwPose as a
subsequent tuning-up function to find the local minimum in a constrained
space.

4.4.1 Modified Pose Matching Algorithm (cwPose)

The cwPose method is adapted from Ramanan’s method to: two major mod-
ifications – the chamfer matching cost formula and the representation of the
templates.

Improved Chamfer Cost Function. The first improvement is to exploit
the edge orientation of the template and to compute matching cost on the
correlated DT vectors. We improve the cost function by focusing on the
specific strongest edge orientation information related to the template.
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Figure 4.19: Results of Improved Pose Matching Model: (a) inputs (b) edge

orientations (c) the best scoring pose (d) top 25 poses are highlighted in

white, with the best scoring pose highlighted in red
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Thayananthan et al. [152] improved chamfer matching by utilizing edge
orientation information of pre-distanced images, and computed the cost as
the sum of DT values for individual edge orientations at the template coordi-
nates, but did not exploit edge orientation of feature points in the template;
see Equation 4.5. Instead of summing across all orientations, we first identify
the edge orientations of template features, and select the closest-correlated
DT vector(s) for individual features. This focuses on closely-related informa-
tion and filters out possible noise and distraction. For example, given four
DT vectors, (DT (0 ◦), DT (45 ◦), DT (90 ◦), DT (135 ◦)), if the edge orientation
of the template feature point is 20 ◦, the correlated DT vectors, DT (0 ◦) and
DT (45 ◦), are selected to compute the chamfer matching cost.

If there are two DT vectors selected, instead of summing across these,
the strongest representation (the lowest DT cost) is chosen. For example,
if the template feature point is 20 ◦, the chamfer matching cost is equal to
min(DTx,y(0

◦), DTx,y(45 ◦)). This adopts the strongest possible performance
of the matched point instead of its average performance.

The modified cost function is:

dcham =

{ ∑
x,y∈U DTx,y(k

◦) if k ◦ = θ ◦∑
x,y∈U min(DTx,y(k

◦), DTx,y(l
◦)) if k ◦ < θ ◦ < j ◦

(4.34)

where U is the set of the template coordinates; θ is the edge orientation of
the feature point (x, y).

Modified Template Representation. Only the outside borders of the
body parts are used to match in order to capture relatively reliable edge
features, and to avoid the large amount of noise generated by the cover. The
modified representation of a person template is displayed in Figure 4.18.

Improved Pose Estimation Outcomes. Figure 4.19(c) shows the esti-
mation results of cwPose. The experimental results show a small improve-
ment in covered body pose estimation compared to Ramanan. Although the
overall pose estimation performance is still poor and often misled by strong
wrinkle noise, Figure 4.19(d) shows the correct pose is likely to be among
the top 25.

4.4.2 The Integration Framework of MatchPose

Following Ramanan, MatchPose adopts the pictorial structure [47, 48]. It
localizes the head first and then finds the remaining limbs in a directed search
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scheme; see Equation 4.1. MatchPose integrates WHM and cwPose by using
the cost function of cwPose and the weighting function of WHM. It first
uses WHM to quickly identify soft estimates of weighted head and torso
hypotheses, then uses cwMatch to match the best candidate (hard estimate)
for each soft estimate, and re-evaluates each hard estimate by deducting its
weight by WHM from its cost by cwPose. The output pose is the pose with
the lowest total cost of the head, torso, upper right leg, upper left leg, lower
right leg and lower left leg. The detailed integration algorithm of MatchPose
is described in Algorithm 1.

As chamfer matching is computationally costly, the drawback of Match-
Pose is the processing speed. It takes 0.4 seconds to match a 320×240 frame
with a P4 2.4GHz CPU. Hence, we also propose a real time simple pose
estimation algorithm in the next section.

Algorithm 1 MatchPose Integration Algorithm

1. use WHM to conduct a directed search for the head and torso

1.1 Obtains multiple pairs of weighted head and torso {Xh, X tor}
2. Measure the chamfer cost of Xh and reset the costs c(Xh) as

2.1 c(Xh) = ccwPose(X
h)− wWHM(Xh)

where ccwPose(X
h): the matching cost by cwPose; wWHM(Xh): the weight by WHM.

3. select the head(s) {Xh∗} with the lowest cost

3.1 {Xh∗} = arg minXh c(Xh)

4. use {Xh∗} to sample torsos {X tor} obtained by WHM

4.1 select {X tor∗} within a distance tolerance d to Xh∗

5. Measure the chamfer cost of {X tor∗} and reset the costs of sampled torso hypotheses as

5.1 c(X tor) = ccwPose(X
tor)− wWHM(X tor)

where ccwPose(X
tor): the cost by cwPose; wWHM(X tor): the weight by WHM.

6. select the torso(s) {X tor∗} with the lowest cost

6.1 {X tor∗} = arg minXtor c(X tor)

7. use {X tor∗} and cwPose to search for Legs

8. choose the pose(s) with the lowest cost.

4.5 Real Time Simple Pose (RTPose)

As an alternative to MatchPose, a real-time simple pose estimation approach,
RTPose, is proposed here. This combines WHM with an upper leg pose
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Figure 4.20: Relationship between two model parameters: (a) Markov Net-

work (b) Reinforcement network

estimator, a new representation to extract latent features from obscured legs,
and a reinforcement model. In this section, we first describe the reinforcement
model, then the upper leg estimator and the integration framework.

4.5.1 Reinforcement by the Linking Parameters

In order to deal with heavy occlusion, we propose a modified network that
reinforces both the model parameter X i and associated feature spaces {Ii} by
its adjacent parameter Xj and a search framework that aggregates detections
over time to produce a more reliable hypothesis.

In tracking human poses, a common representation of human configura-
tion is a Markov Network [74, 171], which is similar to the temporal pictorial
structure except that in the Markov Network the edges linking between body
parts (model parameters) are undirected instead of directed; see Figure 4.20
(a). The joint posterior distribution of the Markov network is

P (X1:N |I) ∝
∏

(i,j)∈E

P (X i|Xj)
N∏
i

P (I|X i) (4.35)

where E is the set of all undirected links; P (X i|Xj) models the constraints
between two adjacent body parts (the shape model); and P (I|X i) is the local
image likelihood.

Reinforced feature space and model parameters. To enforce the de-
tection in obscured space, we propose a modified network by both adding
auxiliary image observations {I ik}k=1:M for each model parameter X i and
adding relationships θji(X

j, {I ik}) between the adjacent model parameters
and the image observations (details are given in the next section). As the
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features are weakly represented in our problem domain, the reinforcement by
linking hypotheses performs better than mere selection of hypothesis. Using
weighting functions rather than posterior distributions, we not only reinforce
the model parameter by the adjacent model parameter but also reinforce the
obscured feature space in order to generate an accurate model parameter.
The weighting function of the proposed model is formulated as follows, and
Figure 4.20(b) illustrates the relationship between adjacent model parame-
ters of the modified network.

w(X1:N , I1:M) =
∏

(i,j)∈E

w(X i, Xj)
N∏
i

(
M∏
k

(wi({I ik}, X i)− θji(Xj, {I ik})))

(4.36)

1 Head Tracker: reinforced features and hypotheses

To estimate the model parameter Xh at time t, we reinforce the image
observations {Ihk } for Xh using the known adjacent model parameter X tor at
time t−1. As in Ramanan, the image likelihood term is modified. The mea-
surement of the local image likelihood P (Ihk |Xh) uses the weighting function
of the sub-head detector, and the new link θji(X

j, {I ik}) zeros the confidence
weights of a portion of features within the region A derived from xj, to de-
crease the likelihood of Xh occurring in the area derived from X tor, that is
(wi({I ik}, X i)− θji(Xj, {I ik})).

Three image observations Ih1 , Ih2 and Mt are first extracted for head track-
ing. Ih1 is image observation by Prewitt edge detector, Ih2 is image observation
by the coarse horizontal oriented edge detector, and Mt is the motion cue
based on images processed by a convolution filter; sequences of processed im-
ages are used to compute Difference of Frames (DOF). The convolution filter
for image preprocessing is formulated as follows. An example of DOF using
raw images is illustrated in Figure 4.21(d), which contains comparatively less
information than Figure 4.21(c). Given an input image I(j, k),

I(j, k)′ = I(j, k)⊗ q(w, v) =
K∑

w=−K

K∑
v=−K

I(j − w, k − v)q(w, v) (4.37)

where 2K + 1 =size of q(w, v) and q(w, v) is set to

q(w, v) =

 −1 −1 −1
0 0 0
1 1 1

 (4.38)
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Figure 4.21: (a) input raw images (b) images by a convolution filter (c) DOF

outputs using the processed images by convolution filter (d) DOF output

using raw images.

To estimate Xh
t , we produce reinforced observations Ih1′ , Ih2′ and M ′

t from
Ih1 , Ih2 and Mt using the adjacent model parameter at time t− 1, X tor

t−1. We
zero the confidence weights of features within the regionA derived from X tor

t−1.
For edge maps (Ih1′ , Ih2′), A is defined as a vertically expanded area of X tor

t−1 to
reduce noise; for M ′

t , A is the area of X tor
t−1 (see Figure 4.22 for the reinforced

features). Next, we sample instances within the area with high likelihood at
the previous frame. We then use the edge clustering model (see section 4.3.2)
to search the area over Ih1′ and M ′

t , producing two weight maps. We select two
hypotheses Xh

1 and Xh
2 with the highest confidence weight from the two maps

respectively. Importantly, we argue that appearance features like Ih1′ should
be weighted much more than motion information like M ′

t , because motion
may be caused by the cover surface movement or hand movement. Hence,
the hypothesis Xh

2 derived from motion cannot be relied on to define the
state, but can assist in improving the hypothesis and to activate inspection
of different evidence. We measure the distance betweenXh

1 andXh
2 to confirm

the precision of Xh
1 . If |Xh

1 − Xh
2 | < α, where α is the tolerance, we define

Xh
t = Xh

1 ; otherwise, we produce an auxiliary hypothesis Xh
3 using Ih2′ and

Xh
t−1 with the appearance model and define the state h∗t as the average of

Xh
3 , Xh

1 and Xh
2 . The initial set of hypotheses Xh and X tor are proposed by

WHM.

2 Torso Tracker

A motion event is a mixture of target movement and occluding object
movements. Motion detected in the target will be used to update the hy-
pothesis; motion by occluding objects will not. With regard to the torso,
occluding object movements include arm movement and cover surface move-
ment where the subject may pull or remove the cover. We estimate a new
torso hypothesis based on motion, a latent image observation Itor, previous
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Figure 4.22: (a) raw image (b) system output (c) image observation Ih1 by

Prewitt edge detector (d) reinforced feature space Ih1′ with the associated

hypothesis Xh
1 (e) motion data Mt (f) reinforced motion data M ′

t with the

associated hypothesis Xh
2 (g) auxiliary image observation I2 (h) reinforced

auxiliary image observation Ih2′ with its associated hypothesis Xh
3 .

Figure 4.23: (a) edge box map with Xh
t (b) reinforced edge box map

torso hypothesis X tor
t−1, the previous adjacent model parameter Xh

t−1 and the
current adjacent model parameter Xh

t :
When motion detected within the region of the previous torso hypothesis

X tor
t−1 is over β percentage, it suggests the hypothesis may need updating. To

confirm a torso activity occurred, we check if motion occurs within the region
of Xh

t−1 over γ percent. If true, we then adjust the torso hypothesis based on
the two types of image observations. Firstly, we compute the intersection of
the motion data and a vertically expanded area A derived from X tor

t−1 using
ζ. Denoting the intersection as D, we generate a temporary torso hypothe-
sis using the center of D: X tor′

t = D. Secondly, we produce a latent image
observation, edge box maps, as in Fig 4.23 (a) and reinforce the feature by
zeroing the confidence weights of features within a region B, where B is a ver-
tically enlarged area of Xh

t . Thirdly, we input the reinforced features and the
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Figure 4.24: (a) Representation of upper-legs pose model (b) Some edge box

maps.

Figure 4.25: 10 upper-legs pose templates.

current head hypothesis Xh
t to an obscured torso measurement model [159]

and generate another torso hypothesis X tor′′
t . Then, we compare the distance

between X tor′
t and X tor′′

t and define X tor
t as follows (% is a distance tolerance.)

X tor
t =

{
X tor′
t X tor′′

t , if(|X tor′′
t −X tor′

t | > %)
X tor′′
t , otherwise

(4.39)

4.5.2 Coarse Upper Leg Pose Recognition

Existing approaches for locating legs use cues like silhouettes, ridges, color
blobs, parallel edges, or cone / rectangle shape edge pixels, and assume that
these features are easily detectable. However, such an assumption is not
applicable to our problem domain. Here, we introduce a novel representation
for obscured upper leg pose recognition. The representation model contains
12 features {ek} to represent the sum of edge boxes in individual subparts
{Lk} in a given edge box map, where k = 1 to 12.

To test the novel representation, we manually collect 26 images to produce

96



a training dataset to construct 10 different pose templates. Furthermore,
instead of collecting images for all poses, we collect images for template T3,
T5, T8 and T9, and use mirror projection theory to produce training data
for symmetric templates T4, T6, T7 and T10. In training, we use the low
variance error boosting introduced in Appendix C as the learning method
for generating a number of classifiers, and the classifiers are built into a
binary tree structure. In testing, we apply the model to a new dataset,
which includes a number of poses and movements.

4.5.3 The Integration Framework of RTPose

RTPose integrates WHM with the novel upper leg pose estimator and the
reinforcement tracker. It localizes the head and torso in a undirected search
scheme (a Torso-to-Head Backward Selector is added here to aid WHM),
and localizes the upper leg in a directed search scheme. RTPose first uses
WHM to identify multiple weighted head and torso positions, then selects
the strongest torso candidate, uses a Torso-to-Head selector to choose a head
hypothesis, and uses the obtained torso and upper leg pose estimator to
identify upper leg pose. The output is the obtained head, torso, upper leg
pose; the head and torso are further refined over time by the reinforcement
tracker. The Torso-to-Head Backward Selector is described below, and the
integration algorithm of RTPose is presented in Algorithm 2.

Algorithm 2 RTPose Integration Algorithm

1. use WHM to conduct a directed search for the head and torso

1.1 Obtains multiple pairs of weighted head and torso {Xh, X tor}
2. Select the torso(s) {X tor∗} with the highest weight

2.1 {X tor∗}k=1:N = arg maxXtor wWHM(X tor)

where wWHM(X tor) is the weight by WHM.

3. Set the torso hypothesis X tor∗ as the average of the set

3.1 X tor∗ = {X tor∗}k=1:N

4. Conduct Torso to Head Backward Selector

4.1 Select the head hypothesis Xh∗

5. torso to leg search: use X tor∗ and the upper leg detector

5.1 obtain X leg∗

Output Xh∗, X tor∗, X leg∗ for detection

6. use the reinforcement model on Xh∗, X tor∗
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Figure 4.26: (a)Head hypotheses {Xh} by head detectors (b)Head to torso

search: {Xh, X tor} (c)Compare {X tor} and choose the strongest one as X tor∗.

(d)Torso to head search: output hypothesis (Xh∗, X tor∗).

Torso to Head Backward Selector. Obtaining the strongest torso candi-
date X tor∗, we compute the distance between the joint location o of the torso
X tor∗ to the centers {ck} of the head hypotheses {Xh}. We then choose the
head hypothesis Xh∗ with the closest distance to o as the radius rk of the
head Xh

k as follows.
p = arg min

k
(||o− ck| − rk|) (4.40)

Xh∗ = Xh
p (4.41)

Figure 4.26 illustrates an example of the undirected head and torso model,
showing that the backward voting function chooses a head hypothesis in a
related reasonable location, and hence Xh

3 will not be selected. Also, the
resulting head-torso pair (Xh

2 , X
tor
1 ) may not be identical to the original head-

to-torso pairs, i.e. (Xh
1 , X

tor
1 ) or (Xh

2 , X
tor
2 ).

4.6 Evaluation

This section describes the experimental setup and evaluation data (section 4.6.1)
and compares the experimental results of the three different methods (Ra-
manan, RTPose, MatchPose), in section 4.6.2. Statistical significance test
results are presented in section 4.6.3.

4.6.1 Experimental Setup and Data

Non-visible infrared is adopted, and the infrared video frames were acquired
at 15 fps using a SONY infrared camcorder (DCR-HC-30E) at a resolution
of 320× 240. A short video clip for training the boosting templates of head
and upper leg pose was captured using the environmental setting and the
subject as illustrated in Figure 4.27(a).
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Table 4.2: Evaluation Data Distribution

Systematically Sampled Randomly Sampled for Evaluation

Cover 7048 513

No Cover 433 42

High illumination 6837 461

Low illumination 644 94

Total 7481 555

The testing video clips were captured on eight subjects with various
height, weight, gender and skin color. 32 video clips were filmed in three
environments with different illumination and camera angle settings. The
experimental data contains a number of unconstrained poses and various oc-
clusion levels (i.e. fully covered, partially covered and without cover). From
the 32 testing video clips, we randomly select 18 video clips, containing 22443
frames. For a quantitative evaluation, we first systematically sample frames
at 0.3 second intervals, obtaining 7481 frames, and then randomly sample
555 frames for evaluation. The evaluation data can be categorized in various
classes based on the illumination and occlusion; the distribution of each class
is listed in Table 4.2.

To produce a reference standard, all evaluation frames were manually
marked for individual body parts using Adobe Photoshop, and following
Ramanan [128], we define a part to be correctly localized when the majority
of pixels covered by the estimated part have the correct labelling.

As Ramanan’s approach is completely inapplicable in this problem do-
main (see section 4.2.3 for experimental results on covered human body),
we re-implement the algorithm by removing its global constraints and ap-
pearance modelling to improve the usability in evaluation. Two articulated
models were used in MatchPose and Ramanan to represent the human con-
figuration: a two-leg human model and a one-leg human model. The two-leg
human model has six parts, corresponding to the head, torso and two parts
per leg; the one-leg human model has four parts, corresponding to the head,
torso and two parts for the leg. The decision of which model to use is based
on the chamfer matching cost of the torso hypotheses (by selecting the model
with the lowest cost). In addition, to generate the part templates, we man-
ually marked the location of each part in twenty images.
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4.6.2 Experimental Results

We compare RTPose and MatchPose with Ramanan using the recognition
rate, which is obtained by calculating how often individual parts are correctly
localized. The recognition rates of the head, torso, upper legs and lower leg
pose are presented in Table 4.3.

The experimental results show that RTPose and MatchPose achieve high
recognition rates and are not sensitive to illumination changes. The two
proposed methods outperform Ramanan’s method. Some randomly selected
outputs of RTPose and MatchPose are displayed in Figure 4.27, 4.28, 4.29
and 4.30 with misdetection examples by Ramanan in Figure 4.31 and by both
methods in Figure 4.32. Figure 4.27 shows RTPose outputs of body postures
with different occlusion levels – near-complete occlusion, partial occlusion
and no occlusion. Figure 4.28 presents the RTPose outputs of various sub-
jects different from the training video clip. Some results of MatchPose are
shown in Figure 4.29 (with a different environment setting from the training
data) and Figure 4.30 (with subjects different from the training data).

To summarize, RTPose is computationally efficient (able to process 30
frames per second), provides coarse pose estimation and can be improved by
adding more leg pose templates; MatchPose produces fine pose estimation
but requires 0.4 seconds for every 320×240 frame, which can be improved by
adding tracking algorithms. The methods assume subjects lying horizontally.
I n cases with heavy obscuration with strong noise, we observe that RTPose
performs better because it utilizes latent features without shape matching
and is better able to deal with less numerous and weaker features; pose
matching methods however misdetect strong noise. Figure 4.31 shows the
edge orientations of a heavy obscuration case and the erroneous detection by
Ramanan, and some misdetections by MatchPose and RTPose are displayed
in Figure 4.32. Thorough statistical tests were conducted and discussed in
the next section.

4.6.3 Statistical Significance Test

To analyze whether there are significant differences in the performance of the
methods, statistical significance tests were conducted. We first describe the
statistical test method, and then present the results.

1 Statistical Test Method – McNemar’s test

To investigate what statistical test is more suitable to determine whether
one method significantly performs better than another, Dietterich [38] eval-
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Table 4.3: Recognition Rates

All Images Head Torso RUL LUL RLL LLL

RTPose 0.89 0.95 0.74 0.71 N/A N/A

MatchPose 0.90 0.90 0.72 0.77 0.61 0.72

Ramanan 0.66 0.59 0.5 0.38 0.26 0.52

High Illumination Head Torso RUL LUL RLL LLL

RTPose 0.88 0.95 0.72 0.7 N/A N/A

MatchPose 0.89 0.87 0.73 0.76 0.65 0.72

Ramanan 0.57 0.31 0.31 0.21 0.07 0.41

Low Illumination Head Torso RUL LUL RLL LLL

RTPose 0.93 0.97 0.81 0.74 N/A N/A

MatchPose 0.94 0.98 0.67 0.8 0.5 0.74

Ramanan 0.71 0.78 0.63 0.49 0.39 0.59

Cover Head Torso RUL LUL RLL LLL

RTPose 0.90 0.96 0.75 0.70 N/A N/A

MatchPose 0.90 0.89 0.71 0.77 0.63 0.73

Ramanan 0.69 0.54 0.48 0.38 0.18 0.51

No Cover Head Torso RUL LUL RLL LLL

RTPose 0.8 0.93 0.7 0.8 N/A N/A

MatchPose 0.94 0.97 0.75 0.8 0.45 0.69

Ramanan 0.53 0.8 0.6 0.37 0.6 0.53

RUL: right upper leg; LUL: left upper leg; RLL: right lower leg; LLL: left

lower leg.
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Figure 4.27: RTPose Outputs: (a) various poses with the same subject and

environment setting as the training data (b) various occlusion levels with

different environment setting from the training data
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Figure 4.28: RTPose Outputs of eight different subjects, excluding the one

used in the training video clip.
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Figure 4.29: MatchPose Outputs of various poses are highlighted with white

rectangles (and red rectangles if multiple configurations are obtained with the

minimum chamfer matching cost), using the same subject as in the training

video clip
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Figure 4.30: MatchPose Outputs on eight subjects, different from the one in

the training video clip.
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Figure 4.31: Edge Orientations of Heavily Obscured Data and Erroneous

Detection by Ramanan.

Figure 4.32: Misdetections by (a) MatchPose and (b) RTPose.
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uated five statistical tests, including McNemar’s test, the resampled paired
t test, the k-fold cross-validated paired t test, the 5x2cv paired t test and a
simple test based on measuring the difference between the error rates of two
algorithms. These statistical tests were compared experimentally to deter-
mine their probability of incorrectly detecting a difference when no difference
exists (type I error). Dietterich suggested that McNemar’s test is the only
test with acceptable Type I error for algorithms that can be executed only
once. Hence, McNemar’s test is adopted in this work; a brief description is
given below.

To compare two algorithms A and B, a contingency table is constructed
using the number of their misclassifications.

#misclassifications by both #misclassifications by A only
#misclassifications by B only #misclassifications by neither

The following notation is used.

n00 n01

n10 n11

where n = n00 + n01 + n10 + n11 is the total number of testing examples.
McNemar’s test is based on a X 2 test for goodness-of-fit that compares

the distribution of counts expected under the null hypothesis to the observed
counts. The null hypothesis is that the two algorithms have the same error
rate, so that n01 = n10; the expected counts under the null hypothesis are:

n00
n01+n10

2
n01+n10

2
n11

Then, the statistic ( (|n01−n10|−1)2

n01+n10
) is approximately distributed as X 2 with

one degree of freedom, incorporating a continuity correction to account for
the fact that the statistic is discrete while the X 2 distribution is continuous.
If the two algorithms have the same error rate, then the probability that
this quantity is greater than X 2

1,0.95 = 3.841459 is less than 0.05. Hence, we
can determine that the two algorithms have statistically significant different

performances if ( (|n01−n10|−1)2

n01+n10
> 3.841459).
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2 Statistical Test Results

The three paired methods were compared, including “RTPose vs Ra-
manan”, “MatchPose vs Ramanan”, and “RTPose vs MatchPose”, using
different types of data (all images, high illumination, low illumination, with
cover, without cover). The head, torso and a lower body part (LUL) were
selected for statistical tests. Full statistical test results are presented in Ap-
pendix D, and the results are summarized in Table 4.4. The results show
that RTPose and MatchPose outperform Ramanan.

There is a tradeoff between RTPose and MatchPose: RTPose runs real-
time but does not provide lower leg pose; MatchPose provides fine pose es-
timation but costs 0.4 seconds to process a frame. Hence, if full body pose
estimation is desirable, we recommend MatchPose. On the other hand, in
the interests of computational speed, we recommend incorporating RTPose
with motion information. Overall, for diagnosis of obstructive sleep apnoea,
MatchPose is recommended to obtain fine pose estimation of obscured body
for further activity recognition.

4.7 Conclusion

We have presented two monocular-video approaches for markerless pose esti-
mation from a consistently fully or partially covered human without manual
initialization: a robust pose matching model (MatchPose) that includes a
novel weak human model (WHM) to accommodate the large variance of im-
age features and a modified pose model (cwPose) adapted from a lateral
walking pose detector [128] for people tracking; and a real time simple model
(RTPose) containing WHM, a novel upper leg pose estimator, and a rein-
forcement tracker.

Experimental results demonstrate that the proposed two algorithms are
able to identify the human configuration with various poses and occlusion
levels, and they are recommended for different purposes. For diagnosis of
OSA, we recommend MatchPose to obtain fine pose estimation of obscured
human body for further activity recognition. In the future, we propose fur-
ther investigation of obscured leg pose recognition, activity recognition using
the obtained pose with motion, tracking, and the use of pose analysis in
identifying OSA.
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Table 4.4: Significance Performance Test Results

Head Torso

Rank 1 2 3 1 2 3

All MA ≈ RT RA RT MA RA

HighI MA ≈ RT RA RT MA RA

LowI MA ≈ RT RA MA ≈ RT RA

Cover MA ≈ RT RA RT MA RA

NCov MA RT RA MA ≈ RT RA

LUL

Rank 1 2 3

All MA RT RA

HighI MA RT RA

LowI MA ≈ RT RA

Cover MA ≈ RT RA

NCov MA = RT RA

The algorithms are ranked in this table. Rank 1–3: Best–Worst; HighI: High

illumination; LowI: Low illumination; NCov: No cover; RT: RTPose; MA:

MatchPose; RA: Ramanan.
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Chapter 5

Conclusions

This thesis has investigated a new topic of video monitoring of breathing
activity invariant to pose, camera view and occlusion, and an under–studied
problem of pose estimation of covered human body. The thesis has made a
number of significant contributions to the field of activity recognition and
pose estimation. These contributions were required to build an automated
video monitoring system in support of the diagnosis of OSA.

This chapter summarizes the main contributions of the thesis. In addi-
tion, we provide suggestions for areas that warrant future attention.

5.1 Summary of Contributions

5.1.1 Monitoring of Breathing Activity

The literature review of Chapter 2 and 3 highlights the fact that to the
author’s best knowledge, there is no existing method suitable for video mon-
itoring of breathing behavior of sleeping subjects.

The work presented in this thesis has shown that it is possible to analyze
human breathing activity from video without special devices like thermal
cameras, or constraints on posture or clothing. A new approach for recog-
nizing abnormal breathing activity from video and assisting in diagnosis of
obstructive sleep apnoea is presented. This approach avoids imposing posi-
tional constraints on the patient, and deals with fully or partially covered
bodies. In addition, a novel motion detection model is built to capture sub-
tle and cyclical breathing movements from video. An online spatial-temporal
action template is introduced to capture the dynamic spatiotemporal shape
of normal breathing activity, and adapts as the subject’s pose changes. Fur-
thermore, an action recognition approach is presented to detect abnormal
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events and recognize abnormal breathing activities and limb movements.
This technique is real time and robust to heavy occlusion, variances of

human breathing behavior and subject appearances, and substantial changes
of camera view with respect to the subjects. Furthermore, shallow and ab-
dominal breathing patterns do not affect the performance of the proposed
approach, and this technique is not susceptible to illumination changes.

5.1.2 Pose Estimation of Covered Human Body

Many existing approaches to pose estimation make simplifications to the mea-
surement problem and work well given clear image cues (for simple detection
models) or clean full body motion data (for dynamical models). Although
there is some published research investigating the monitoring of partially
occluded humans, the methods examined do not deal with pose estimation
of consistently occluded subjects. To the author’s best knowledge, there is
no previously published method to estimate pose from persistently covered
human bodies.

This work introduces two novel monocular video approaches (MatchPose
and RTPose) for full body pose recognition of the covered human body. Both
methods are demonstrated to be able to recognize human poses with various
postures and occlusion levels. They are recommended for different data types
and purposes. For diagnosis of OSA, we recommend MatchPose to obtain fine
pose estimation of obscured human body for further activity recognition. In
the interests of computational speed, we recommend incorporating RTPose
with motion information.

A robust Weak Human Model is introduced to effectively and efficiently
identify the upper body poses from obscured human bodies, and a number
of novel body part detectors are presented. Shape matching methods are
reviewed, and a modification of the chamfer matching technique is presented
to improve shape matching in cluttered scenes. A cascade of diverse models,
an iterative boosting model, a low variance error boosting algorithm, and a
reinforcement network are developed to improve pose estimation of obscured
humans.

The pose estimation algorithms are not used in support of the diagnosis
of OSA for now, but we propose to use the algorithms in conjunction with
motion in future work, to develop a model-based action recognition approach
in order to identify the human activities of medical interest, such as limb
movements.
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5.2 Future work

Model parametrization is a common issue in computer vision. Hence, it would
be interesting to investigate automatic ways to obtain the parameter values.
Further investigation of heavily obscured leg pose estimation and activity
recognition using the obtained pose with motion can be fruitfully explored in
the future. The analysis of postural changes and activities may prove to have
diagnostic value in OSA and other conditions. It would also be interesting
to extend the current work in this thesis to a broader domain. One intuitive
extension would be to apply the newly developed methods to other breathing
monitoring problems such as polygraph, sport training, early detection of
sudden infant death syndrome in neonates, and patient monitoring, and to
other obscured human monitoring domains such as surveillance.
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Appendix A

Terms and Definition

• Sleep Apnea: A sleep disorder that causes breathing to stop during
sleep for anywhere from ten seconds up to several minutes.

• Oxygen Saturation: A measure of how much oxygen the blood is carry-
ing as a percentage of the maximum it could carry. It can be obtained
from pulse oximetry.

• CPAP (Continuous Positive Airway Pressure Therapy): A therapy de-
livers air into the patient’s airway through a specially designed nasal
mask or pillows. It is considered the most effective nonsurgical treat-
ment for the alleviation of snoring and obstructive sleep apnea.

• Polysomnography (PSG): A diagnostic test, which a number of sensor
leads are placed on the patient during sleep to record brain activity,
eye, jaw muscle and leg muscle movement, airflow, respiratory effort,
heart rhythm and oxygen saturation.

• Infrared: Infrared light lies between the visible and microwave portions
of the electromagnetic spectrum. It is used in night-vision equipment
when there is insufficient visible light available.

• Hypopneas: Reductions in airflow or respiratory effort during sleep.

• Thermal Imaging: An analogue pictorial representation or visualization
of temperature differences.
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Appendix B

3–4 DT Algorithms

In the binary image, each feature pixel is first set to zero and each non-feature
pixel is set to infinity.

1 Parallel DT
For iteration k, define the value vki,j of the pixel in position (i, j). (The

iterations continue until no value changes and the number of iterations is
proportional to the longest distance occurring in the image.)

vki,j = min(vk−1
i−1,j−1, v

k−1
i−1,j + 3,

vk−1
i−1,j+1 + 4, vk−1

i,j−1 + 3,

vk−1
i,j , vk−1

i,j+1 + 3,

vk−1
i+1,j−1 + 4, vk−1

i+1,j + 3,

vk−1
i+1,j+1 + 4)

(B.1)

2 Sequential DT
Forward:

for i = 2 . . . rows do
for j = 2 . . . columns do

vi,j = min(vi−1,j−1 + 4, vi−1,j + 3,

vi−1,j+1 + 4, vi,j−1 + 3, vi,j)
(B.2)

Backward:
for i = rows− 1 . . . 1 do
for j = columns− 1 . . . 1 do

vi,j = min(vi,j, vi,j+1 + 3, vi+1,j−1 + 4,

vi+1,j + 3, vi+1,j+1 + 4)
(B.3)
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Appendix C

A Low Variance Error Boosting

Algorithm

We introduce a robust variant of AdaBoost, cw-AdaBoost, that uses weight
perturbation to reduce variance error, and is particularly effective when deal-
ing with data sets, such as microarray data, which have large numbers of
features and small number of instances. The algorithm is compared with
AdaBoost, Arcing and MultiBoost, using twelve gene expression datasets, us-
ing 10-fold cross validation. The new algorithm consistently achieves higher
classification accuracy over all these datasets. In contrast to other AdaBoost
variants, the algorithm is not susceptible to problems when a zero-error base
classifier is encountered. The performance is analyzed by considering the
bias/variance decomposition of the classification error rate.

C.1 Introduction

A large number of studies have shown the effectiveness of ensemble learning
algorithms in improving classifier performance. Breiman [25] introduced the
Bagging algorithm, which forms an ensemble by aggregating multiple classi-
fiers, each of which is trained using a bootstrapped training set (randomly
sampled with replacement from the training set). This approach is very ef-
fective in reducing the variance of the ensemble classifier, and is particularly
useful if using “unstable” base classifiers such as decision trees or neural net-
works [24], that can produce convoluted decision regions which vary heavily
according to the selection of the training set. In contrast, Freund’s [52] Ad-
aboost ensemble algorithm uses weighted training samples, and the weights
are deterministically updated to emphasize misclassified instances from the
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training set. This allows even a relatively simple base classifier algorithm to
adjust for complex decision surfaces, allowing both the bias and the variance
to be reduced.

However, Boosting does have some known limitations, including that the
deterministic sampling does not necessarily optimize the rate of variance re-
duction, and issues that occur when zero-error or high error base classifiers
are created. The algorithm introduced in this work addresses these limita-
tions.

C.1.1 Related Work

The Boosting algorithm is extremely powerful, and consequently has received
a great deal of attention from the machine learning community, not least in
addressing some of the known limitations. Several authors have attempted to
integrate the stochastic element of bagging into a boosting framework. Fried-
man [54] proposed a stochastic gradient Boosting, which randomly draws
sub-samples of the training data (without replacement) at each iteration to
train individual base classifiers. The intention of this method is to use the
bootstrap sampling approach of Bagging to improve the variance reduction
of Boosting. However, it leads to a problem that using smaller sub-samples in
training base models causes the variance of the individual base classifiers to
increase. Webb [167] proposed a MultiBoost algorithm by combining a mod-
ified boosting algorithm with wagging. MultiBoost wraps Boosting inside
Bagging, utilizing the continuous Poisson distribution to generate a num-
ber of randomly weighted (sampled) data from the original training dataset
and then constructs bags of individual ensembles, each of which learns by
Boosting from the weighted samples (which in effect provide a randomized
weighting start-point for the Boosting algorithm). A detailed analysis is
given in section C.2.3.

AdaBoost and its variants typically impose a stopping condition on the
base classifier error rate. If this exceeds 0.5, they stop as the underlying the-
ory only guarantees decreasing ensemble error performance for base-classifiers
with better than random performance. This stopping criteria may be encoun-
tered due to the distortions introduced by the boosted weighting of some
instances. However, they also stop if the error rate hits zero – this is surpris-
ingly common in problems with low numbers of instances and large numbers
of variables, where it is in fact still useful to form ensembles to counteract
the high variance inherent in such a data set.

Early stopping of AdaBoost is a form of shrinkage, leading to low general-
ization and higher variance error. However, early stopping or low generation
problem occur in original AdaBoost Algorithm and its successors. Variants of
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AdaBoost that halt under these conditions include MadaBoost by Domingo
and Watanabc [39], LPBoost, TotalBoostv, TotalBoost

g
v, Brownboost [53],

BagBoosting [36], Logitboost [55], AdaBoost∗v and AdaBoostgv by Warmuth
et al [166]. Warmuth et al explicitly highlight early stopping as an important
issue for future research.

In the original AdaBoostM1 paper [52], Freund and Schapire pointed
out the main disadvantage of AdaBoostM1 that is unable to handle weak
hypotheses with error greater than 0.5. It halts induction when error is
greater than 0.5. To prevent early stopping, a variant of AdaBoostM1 is
proposed by Bauer and Kohavi [23] to overcome this weakness. If the error is
greater than 0.5, this variant of AdaBoostM1 throws away the base classifier
and bootstraps a new sample set from the original input training set with
identical weight 1 for every instance. It then re-builds a base classifier using
the new sample. Although this allows ensemble building to continue, and
may aid with variance reduction, it also discards the boosted weights which
are largely responsible for the bias reduction of AdaBoost. The model has
another weakness – if one of the base classifiers achieves zero error rate,
boosting stops, and furthermore the error free base classifier gets infinite
voting power and becomes the only voter, turning the ensemble to a single
classifier model.

Webb [167] addressed this latter issue by assigning the voting power of
the error free classifier a specific value, log(1010), and restarting the boost-
ing process using a new bootstrap sample from the original training set,
echoing Bauer and Kohavi’s approach to high errors. Webb then combines
the modified algorithm with wagging and introduces another boosting algo-
rithm, MultiBoost. However, these modified algorithms still suffer from low
generalization; detailed analysis is given in section C.2.3.

The importance of diversity in the pool of base classifiers has been dis-
cussed in a number of papers [6, 7, 35, 92, 102], showing that ensembles
that enforce diversity fare better than ones that do not. The motivation of
this work is to investigate a technique to overcome the low generalization
problem of boosting algorithms. We apply the proposed technique to three
boosting algorithms: the original AdaBoostM1, MultiBoost (Boosting with-
out stopping conditions) and Arcing (Another type of Boosting with stopping
conditions), and recommend the variant with highest performance.

C.1.2 Motivation

This research was motivated by the investigation of ensemble learning in the
classification of gene expression data, which typically is high dimensional with
a relatively low number of instances. We have observed that popular existing
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ensemble methods, including Bagging [25], Boosting (AdaBoostM1) [52] and
Arcing (ArcX4) [24] and MultiBoost [167], encounter specific problems in
processing such data sets which are not necessarily encountered in data sets
with lower dimensionality and more samples. In our experiments in the
classification of twelve gene expression data, we found that one or two error
free models often dominate the ensemble. A detailed analysis is presented in
section C.2.

The main contribution of this research is to introduce a weight pertur-
bation technique for boosting algorithms that increases the diversity of the
base models, so reducing variance, without damaging the bias performance,
and without allowing early stopping. The algorithm continues to perform,
and to improve performance, when error free classifiers are encountered. The
algorithm is also able to work with “unstable” (i.e. complex) classifiers such
as decision trees, which inherently have relatively low bias, and are less likely
to generate high error rate models than simpler base classifiers dealing with
boosted samples.

The algorithm maintains instance weights, like boosting, but it addition
to updating these to emphasize misclassified instances (thus reducing bias),
it uses an efficient resampling technique to perturb the weights – in effect,
bootstrapping from the weighted training set. This perturbation reduces
variance, and allows the algorithm to continue successfully even if a zero
error base classifier is encountered.

We have experimented with modified versions of Boosting, Arcing and
MultiBoost, generating three modified algorithms (cw-AdaBoost, cw-Arcing
and cw-MultiBoost). In evaluation, these algorithms were compared with
Bagging, Boosting, Arcing and MultiBoost, in the classification of 12 gene
expression datasets [8, 9, 10, 34, 37, 56, 57, 124, 156, 174, 175] utilizing the
10-fold cross validation technique. The experimental results show that the
modified algorithms achieve significantly better performance than the orig-
inal approaches. The cw-AdaBoost algorithm consistently achieves higher
accuracy over 12 gene expression datasets than the existing algorithms.

The outline of this appendix is as follows. In section C.2, four benchmark
algorithms (Bagging, Boosting, Arcing and MultiBoost) are described. Sec-
tion C.3 describes the new algorithms and the proposed modification tech-
nique, and section C.4 presents the experimental results. We conclude in
section C.5. A detailed presentation of experimental results is given in sec-
tion C.6.
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C.2 Analyses of Benchmark Ensemble Learn-

ing Algorithms

We have benchmarked the algorithm against the original AdaBoostM1, Multi-
Boost (a variant of Boosting that also tries to integrate the advantages of bag-
ging), and Arcing (Another type of boosting without stopping conditions).
We have experimented with variants of each of these algorithms using the
new resampling approach, and have also benchmarked against Bagging. The
study shows that the proposed modification improves all of these boosting
variants, but that the simple cw-AdaBoost (AdaBoostM1 integrated with
the new sampling algorithm) is most effective.

C.2.1 Bagging

Bagging [25] forms an ensemble by bootstrapping from the data set to build
individual base classifiers. These are combined using an un-weighted voting
mechanism, and the classification output is the most often predicted class
label. It is characteristic of Bagging that base models are constructed inde-
pendently. In other words, knowledge is not accumulated between iterations:
previously learned experience does not affect the learning process afterwards.

1 Bagging Algorithm:
Given a training set S : (x1, y1), . . . , (xM , yM) with labels yj ∈ Y = {1, . . . N},
a base learner I and the number of base models to build T, produce the Bag-
ging classifier C∗(x) by the following steps.
1. for i = 1 to T

1.1. Ś = bootstrap sample from S (i.i.d. sample with replacement)
1.2. build a base model Ci = I(Si)

2. C∗(x) = arg maxy∈Y (
∑

t:Ct(x)=y 1)

2 Weakness Analysis:
Bagging cannot reduce bias below that of the base classifiers.

C.2.2 AdaBoost (AdaBoostM1)

The breakthrough feature of boosting is the sequential development of base
classifiers. The algorithm assigns weights to instances; in particular, the
weights of misclassified instances are increased with each iteration, so that
increased attention is paid to correcting mistakes made on previous itera-
tions. The major difference between Bagging and Boosting is that individual

135



base models in Bagging are built independent to each other whereas base
models in Boosting are adaptively built. Freund and Schapire [52] proposed
several extensions of Boosting called adaptive Boosting, including AdaBoost,
AdaBoostM1, AdaBoostM2 and AdaBoost.R. In this research, we adopt Ad-
aBoostM1 as the benchmark Boosting method.

1 AdaBoostM1 Algorithm:
Given a training set S : (x1, y1), . . . , (xM , yM) with labels yj ∈ Y = {1, . . . N},
a base learner I and the number of base models to build T, produce the
Boosting classifier C∗(x) by the following steps.
1. Create a new set S1 with instance weight wk = 1 where k = 1 . . .M
2. for i = 1 to T

2.1. build a base model Ci = I(Si)
2.2. Ei = 1

M
(
∑

xk∈Si:Ci(xk)6=yk
wk)

2.3. if (Ei > 0.5) ∨ (Ei = 0), deduct 1 from i and abort loop.
2.4. Bi = Ei

1−Ei

2.5. for each xk ∈ Si, if Ci(xk) 6= yk, then multiply Bi to wk
2.6. Normalize weights

3. C∗(x) = arg maxy∈Y (
∑

t:Ct(x)=y log 1
Bt

)

2 Weakness Analysis:
AdaBoostM1 terminates when a base classifier with error greater than 0.5,
or equal to 0, is obtained. That is, the Boosting algorithm stops learning
when its performance on the training data is worse than by guessing, or it
achieves perfect performance. In the most extreme case, if the error is zero
on the first iteration then the algorithm constructs a single base classifier;
this happens surprisingly frequently in gene expression data analysis, where
the high input dimensionality and low number of instances often make it pos-
sible to achieve perfect performance on the training set. In such situations,
the Boosting algorithm is unable to construct an effective ensemble, and its
performance is drastically reduced; it has problems of low generalization and
high variance. In addition, AdaBoostM1 does not have any stochastic ele-
ment, and so although it achieves some variance reduction by virtue of the
diverse ensembles generated, this effect is sometimes more limited than it
might be.

C.2.3 Modified AdaBoostM1 and MultiBoost

MultiBoost [167] wraps Boosting inside Bagging and generates each bagged
ensemble by Boosting, in order to combine the advantages of Boosting in bias
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reduction and Bagging in variance reduction. The adopted boosting algo-
rithm is an AdaBoostM1 variant [23], which removes the stopping condition
when the error rate is greater than 0.5. Step 2.3 of the original AdaBoostM1
algorithm is modified to:

Modified AdaBoostM1 by Bauer and Kohavi [23]

2.3.1 If Ei > 0.5, set Si to a bootstrap sample from original S with weight 1
for every instance and go back to step 2.1 to restart building a classifier
(this step is limited to 25 times after which it exits the loop)

2.3.2 If Ei = 0, deduct 1 from i and abort loop

However, there is still early stopping issue in the modified AdaBoostM1
algorithm when an error free base classifier is obtained. Therefore, Webb
further modifies the boosting algorithm to remove the stop conditions when
Ei = 0. When Ei = 0, he assigns the voting power of the base classifier
to log(1010), resets instance weights to random weights using the continuous
Poisson distribution, and re-starts the training procedure.

1 MultiBoost Algorithm:
Given a training set S : (x1, y1), . . . , (xM , yM) with labels yj ∈ Y = {1, . . . N},
a base learner I, the number of base models to build T, and a vector of in-
tegers Vj specifying the iteration at which each subcommittee j > 1 should
terminate, produce the MultiBoost classifier C∗(x) by the following steps.
1. Create a new set S1 with instance weight wk = 1 where k = 1 . . .M
2. set j = 1
3. for i = 1 to T

3.1. if Vj = i,
3.1.1. reset Si to random weights drawn from continuous Poisson

distribution.
3.1.2. normalize weights
3.1.3. increment j by 1

3.2. build a base model Ci = I(Si)
3.3. Ei = 1

M
(
∑

xk∈Si:Ci(xk)6=yk
wk)

3.4. if Ei > 0.5,
3.4.1. set Si to random weights drawn from the continuous Poisson

distribution
3.4.2. normalize weights
3.4.3. increment j by 1
3.4.4. go to step 3.2
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3.5. if Ei = 0,
3.5.1. set Bi = 10−10

3.5.2. set Si to random weights drawn from the continuous Poisson
distribution

3.5.3. normalize weights
3.5.4. increment j by 1

3.6. Otherwise,
3.6.1. Bi = Ei

1−Ei

3.6.2. for each xk ∈ Si,
3.6.2.1. if Ci(xk) 6= yk, divide wk by 2Ei
3.6.2.2. otherwise, divide wk by 2(1− Ei)
3.6.2.3. if wk < 10−8, set wk to 10−8

4. C∗(x) = arg maxy∈Y (
∑

t:Ct(x)=y log 1
Bt

)

2 Weakness Analysis:
There are two problems with this design: first, the algorithm discards previ-
ously learned knowledge (in the form of Boosting weights) and restarts the
training procedure from scratch even when it has obtained a zero error on
the input training data; second, the algorithm sets Bi to 10−10 when an error
free base model is obtained. The latter seriously affects the performance of
the ensemble model, damaging its generalization performance, as such base
classifiers dominate the ensemble. This drawback is apparent in our experi-
mental results, showing that the algorithm performs very poorly in some of
the datasets, such as “colon tumor” and “prostate outcome.”

Furthermore, resetting the weights on each iteration of Bagging discards
the knowledge on weight setting gained during Boosting. We can expect each
run of Boosting to converge back towards approximately the same weights,
but the procedure is time-consuming. The experimental results are consistent
with our theory and show that MultiBoost improves more slowly than our
new algorithms. Fig C.1 shows the results on one gene expression dataset,
i.e. Breast Cancer, and illustrates the faster convergence of cw-AdaBoost
and cw-Arcing. In addition, we evaluate the performance of MultiBoost,
which sets Bi to a bigger value 10−8 when Ei = 0 to assign smaller decision
power to error free classifiers. The aim is to investigate if the performance
of MultiBoost can be improved. However, there is no clear improvement by
changing Bi value when Ei = 0. The results are displayed in Table C.1.
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Table C.1: MultiBoost Performance with different Bi

iteration 10 20 30 40

ProstateOutcome

MultiBoost(Bi = 10−10) 57.14 76.19 71.43 76.19

MultiBoost(Bi = 10−8) 52.38 76.19 71.43 76.19

cw-AdaBoost 100.00 100.00 95.24 95.24

BreastCancer

MultiBoost(Bi = 10−10) 83.51 86.60 87.63 91.75

MultiBoost(Bi = 10−8) 85.57 86.60 89.69 91.75

cw-AdaBoost 90.72 95.88 95.88 95.88

ColonTumor

MultiBoost(Bi = 10−10) 80.65 79.03 79.03 79.03

MultiBoost(Bi = 10−8) 80.65 79.03 79.03 79.03

cw-AdaBoost 93.55 93.55 93.55 91.94

Figure C.1: Fast convergence of cw-AdaBoost and cw-Arcing
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C.2.4 Arcing

There are two types of Arcing, i.e. Arc-fs using weighted voting and arcX4
using un-weighted voting. In this work, we adopt arcX4 because the arcX4
algorithm is suggested to have a slight edge in test set error results [24] on
smaller datasets, and the experimental datasets in this research tend to have
fewer instances. The framework of Arcing is similar to the one employed in
Boosting. They both proceed in sequentially self-adjusting steps. However,
there are three major differences between Arcing and Boosting: (1) Arcing
does not employ a stop condition; (2) Arcing adopts an un-weighted voting
system; (3) Arcing adapts its behavior based on the accumulation {Ek} of
its faults in history and examines all previous base classifiers’ faults when
constructing a new base classifier, whereas Boosting considers only the error
of the previous iteration’s base classifier.

1 Arcing Algorithm:
Given a training set S : (x1, y1), . . . , (xM , yM) with labels yj ∈ Y = {1, . . . N},
a base learner I and the number of base models to build T, produce the Arcing
classifier C∗(x) by the following steps.
1. Create a new set S1 with instance weight wk = 1 where k = 1 . . .M
2. Create a vector {Ek} where Ek = 0 and k = 1 . . .M
3. for i = 1 to T

3.1. build a base model Ci = I(Si)
3.2. for each xk ∈ Si, if Ci(xk) 6= yk, add 1 to Ek and set wk = 1 + Ek

4

3.3. Normalize weights
4. C∗(x) = arg maxy∈Y (

∑
t:Ct(x)=y 1)

2 Weakness Analysis:
A drawback of Arcing is its deteriorating performance and the decreasing
diversity of base models as more base models are built. Once a base classifier
exactly fits the training dataset, there will be no change in the accumu-
lated misclassification values {Ek}, and hence all instances’ weights remain
the same in building the next base model, due to the re-weighting func-
tion (wk = 1 + Ek

4). Thus, Arcing will continuously produce identical base
models once an error-free classifier is built. In the worst case, Arcing may
generate a basket of identical base classifiers. In other cases, after an error
free base classifier is trained, Arcing will continuously produce identical base
models until the maximum number of base models are built. Consequently,
the diversity of base models of Arcing gradually decreases after that point.
Our experimental results show that the accuracy of the entire Arcing model
deteriorates once this happens.
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C.3 Proposed Modification: cw-resampling

Boosting halts induction when the optimization problem becomes infeasible
[39] [166]. Bauer and Kohavi [23] and Freund and Schapire [52] addressed the
early stopping issue, but left open the question of iteration bounds for future
research. Although Webb [167] and Breiman [24] introduced the modified
boosting algorithms, MultiBoost and Arcing, to address stopping conditions
issues, these modified boosting algorithms still suffer from generalization is-
sues, as discussed above.

The proposed modification focuses on the optimization of boosting to
reduce variance, and on preventing the algorithms from failing when error
free classifiers occur. We therefore specify three key requirements of the
proposed modification.

1 Key Requirements of the Proposed Modification

First, instead of stopping, the algorithm should be able to continue op-
timization and build more classifiers when an error free model is obtained.
Second, the algorithm should be able to utilize the knowledge accumulated
during sequential learning. In other words, when Ei = 0, the ensemble does
not reset weights or restart from a bootstrapped set, which throws away the
knowledge learned. Third, the decision of an ideal ensemble model should
depend on a number of non-identical mature decision makers with low error
rate rather than a few decision makers.

2 Design

The proposed model uses a weight perturbation approach to effectively
resample around the weightings produced by boosting. This allows the al-
gorithm to continue adding base classifiers even if a zero base classifier is
discovered, and indeed to perform bias removal (by intermittent boosting
steps) in this circumstance. Furthermore, for robustness, the decision power
of base classifiers is based on their error rate rather than a fixed value. This
allows boosting models to benefit from variance reduction and alleviates the
overfitting problem. An illustration of the proposed design in comparison
with the existing boosting algorithms is presented in Fig C.2.

2 Implementation
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Figure C.2: Illustration of the proposed design and low generalization issues

of existing boosting methods: If C13 is an error free classifier, boosting

methods in the first group will produce only 13 classifiers no matter how

large the number of base models originally specified, and as C13 gains infinite

decision power, the decision of these ensembles is dominated by one base

classifier; boosting methods in the second group assign considerably high

decision power to the two error free models, C13, C15, and thus the decision

is dominated by these two base classifiers; boosting methods in the third

group continuously produce identical classifiers C13, and the decision of such

ensemble models is dominated by this one classifier; the proposed structure

generate diverse classifiers and an effective ensemble with 30 different and 18

mature decision makers.
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Figure C.3: Re-sampling Scheme

First, before training each base classifier we alter the instance weights
using the random resampling approach for weighted instances described be-
low; second, provided the base classifier performance is not zero we update
the weights using a boosting approach. Thus, even if the base classifier has
error zero, the algorithm continues to produce diverse classifiers. The weight
perturbation algorithm injects some randomness into the learning behavior,
without wholly discarding the knowledge built up in previous iterations of
boosting. It effectively bootstraps a new training set by sampling from the
weighted training set generated on the previous iteration (i.e. it uses the in-
stance weights to influence the selection frequency in bootstrapping). It thus
keeps the sequential adaptive learning strengths of boosting, while injecting
randomness to generate diverse classifiers and improve performance where
boosting would fail.

Importantly, the standard “fairly sampling” technique as used by Ad-
aBoost [23] and Bagging is not suitable here. The standard sampling tech-
nique resets every instance’s weight to 1 and then samples with replacement.
This throws away all knowledge learned, and re-starts learning from the
beginning, which loses the virtue of boosting algorithms. An extreme ex-
ample is MultiBoost, which resets weights both periodically and whenever
εi > 0.5∨εi = 0.5. Under situations without error free base models obtained,
MultiBoost has slower convergence and poorer performance than the new
variant, with less than 40 base classifiers, as shown in Fig C.1.

The weight perturbing algorithm is computationally efficient, with time
complexity O(n). It uses an array of cumulative weight bins, s, and an
array of cumulative random numbers, g, normalized to the same final sum.
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The new weights are assigned according to the number of random values
associated with the corresponding bin; see fig C.3. This is equivalent to
producing the new weights by weighted resampling with replacement but
has optimal time complexity. The new algorithms (cw-AdaBoost, cw-Arcing
and cw-MultiBoost) and the weight perturbing algorithm (cw-Resample) are
presented below.

C.3.1 cw-AdaBoost Algorithm

Given a training set S : (x1, y1), . . . , (xM , yM) with labels yj ∈ Y = {1, . . . N},
a base learner I, the number of base models to build T, and an integer R
(maximum number of times to perturb data; in experiments we use R=10),
produce the cw-AdaBoost classifier C∗(x) by the following steps.
1. Create a new set S1 with instance weight wk = 1 where k = 1 . . .M
2. for i = 1 to T

2.1. set r = 0
2.2. perturb Si using cw-Resample
2.3. build a base model Ci = I(Si)
2.4. increment r by 1
2.5. Ei = 1

M
(
∑

xk∈Si:Ci(xk)6=yk
wk)

2.6. if (Ei = 0) ∧ (r ≤ R), go to step 2.2.
2.7. if (Ei > 0.5) ∨ (Ei = 0), deduct 1 from i and abort loop.
2.8. Bi = Ei

1−Ei

2.9. for each xk ∈ Si, if Ci(xk) 6= yk, then multiply Bi to wk
2.10. Normalize weights

3. C∗(x) = arg maxy∈Y (
∑

t:Ct(x)=y log 1
Bt

)

C.3.2 cw-Arcing Algorithm

Given a training set S : (x1, y1), . . . , (xM , yM) with labels yj ∈ Y = {1, . . . N},
a base learner I, the number of base models to build T, and an integer R
(maximum number of times to perturb data; in experiments we use R=10),
produce the cw-Arcing classifier C∗(x) by the following steps.
1. Create a new set S1 with instance weight wk = 1 where k = 1 . . .M
2. Create a vector {Ek} where Ek = 0 and k = 1 . . .M
3. for i = 1 to T

3.1. set r = 0
3.2. perturb Si using cw-Resample
3.3. build a base model Ci = I(Si)
3.4. increment r by 1
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3.5. Ei = 1
M

(
∑

xk∈Si:Ci(xk)6=yk
wk)

3.6. if (Ei = 0) ∧ (r ≤ R), go to step 3.2.
3.7. for each xk ∈ Si, if Ci(xk) 6= yk,

3.7.1 add 1 to Ek
3.7.2 wk = 1 + E4

k

3.8. Normalize weights
4. C∗(x) = arg maxy∈Y (

∑
t:Ct(x)=y 1)

C.3.3 cw-MultiBoost

Given a training set S : (x1, y1), . . . , (xM , yM) with labels yj ∈ Y = {1, . . . N},
a base learner I, the number of base models to build T, a vector of integers
Vj specifying the iteration at which each subcommittee j > 1 should ter-
minate, and an integer R (maximum number of times to perturb data; in
experiments we use R=10), produce the MultiBoost classifier C∗(x) by the
following steps.
1. Create a new set S1 with instance weight wk = 1 where k = 1 . . .M
2. set j = 1
3. for i = 1 to T

3.1. set r = 0
3.2. perturb Si using cw-Resample
3.3. build a base model Ci = I(Si)
3.4. increment r by 1
3.5. Ei = 1

M
(
∑

xk∈Si:Ci(xk)6=yk
wk)

3.6. if (Ei = 0) ∧ (r ≤ R), go to step 3.2
3.7. if (Ei > 0.5) ∨ (Ei = 0), deduct 1 from i and abort loop
3.8. Bi = Ei

1−Ei

3.9. if Vj = i,
3.9.1. reset Si to random weights drawn from continuous Poisson

distribution.
3.9.2. normalize weights
3.9.3. increment j by 1

3.10. otherwise,
3.10.1. for each xk ∈ Si, if Ci(xk) 6= yk, multiply Bi to wk
3.10.2. normalize weights

4. C∗(x) = arg maxy∈Y (
∑

t:Ct(x)=y log 1
Bt

)
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C.3.4 cw-Resample Algorithm

Given a dataset S: a sequence of instances with weights:(i1, w1), . . . , (iM , wM),
we produce new dataset with the following steps.
1. Generate M random number: r1, . . . , rM
2. R =

∑
j=1...M rj

3. W =
∑

j=1...M wj
4. set a = 1 and b = 1
5. let g(a) = (

∑
j=1...a

rj
R

)×M
6. let s(b) = (

∑
j=1...bwj

7. if (a > M) ∧ (b > M), then terminate.
8. if g(a) < s(b),

8.1. select instance ib into the output dataset
8.2. increment a by 1
8.3. go to step 5

9. otherwise,
9.1. increment b by 1
9.2. go to step 5

C.4 Experiments

The experiments are conducted using 12 published gene expression datasets
[8, 9, 10, 34, 37, 56, 57, 124, 156, 174, 175], which are obtained from [151].
Details of the data cleaning process are given in the original paper. In
evaluation, Ambroise and McLachlan [4] recommend using 10-fold rather
than leave-one-out cross-validation for gene expression data analysis. In
this research, 10-fold cross validation is utilized and C4.5 decision tree al-
gorithm [127] is used as the base classifier. Furthermore, to investigate the
influence of the number of base models used, we evaluate the classification
accuracy of the ensembles with different numbers of base classifiers (from
10 to 70 classifiers in steps of 10). The experimental results show that the
modified algorithms all perform better than the corresponding original algo-
rithms. The cw-AdaBoost algorithm consistently performs best over all 12
gene expression datasets, and is our recommended variant. In order to com-
pare the performances of the seven algorithms on 12 datasets with different
number of iterations, we first generate the cross validated average accuracy
Ei of the algorithms on a specific iteration number i, to represent the average
performance of 7 algorithms with iteration i. Given Ai(m) is 10-fold cross
validation accuracy of the algorithm m with iteration i, Ei = Ai(m)/7. We
then create a performance index Pm to compare the relative performance of
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Table C.2: 10-fold Cross Validation Accuracy% for single dataset(Breast

Cancer)

base classifiers 10 20 30 40 50 60 70 Pm

Bagging 85.57 85.57 88.66 88.66 90.72 90.72 89.69 -0.71

Arcing 82.47 80.41 80.41 80.41 80.41 80.41 80.41 -8.52

Boosting 81.44 84.54 84.54 84.54 84.54 85.57 85.57 -4.83

MultiBoost 83.51 86.60 87.63 91.75 93.81 93.81 95.88 1.20

cw-Arcing 89.69 91.75 93.81 93.81 94.84 94.84 95.88 4.29

cw-AdaBoost 90.72 95.88 95.88 95.88 94.84 93.81 98.97 5.91

cw-MultiBoost 90.72 87.63 89.69 91.75 91.75 95.88 95.88 2.67

Average Ei 86.30 87.48 88.66 89.54 90.13 90.72 91.75

the algorithm m. (Pm = (
∑

i=10,20,..,70(Ai(m)−Ei))/7.) Table C.2 illustrates
the performance index on a single dataset, and Table C.3 displays the rel-
ative performance indices Pm on 12 gene expression datasets, showing that
the new methods (particularly cw-AdaBoost, which has the best results for
nine datasets, and the second best for two others) obtain consistently high
performance index values.

Using the Wilcoxon signed rank test to compare the performance of
cw-AdaBoost with cs-Arcing (the second best algorithm), we obtain the
Wilcoxon statistic W=52 with N=12 samples, yielding the z-value 2.02 >
1.96, and therefore conclude that the performance is significantly better
at the 97.5% one-sided confidence level. Stronger results are obtained in
comparing cw-AdaBoost with the algorithms, so that we conclude that cw-
AdaBoost has superior performance. (The 10-fold cross validation results on
the other 11 datasets are presented in the section C.6.)

A distinctive feature of gene expression data is that error free base model
can be generated, causing the low generalization issue discussed above. The
results are consistent with our theories, which are: (1) arcing keeps produc-
ing identical base models after an error free base model is built, and therefore
the diversity of base models of arcing deteriorates. Thus, the variance er-
ror increases afterwards; (2) the stopping condition of boosting terminates
further constructions of base classifiers and prevents further reduction of the
variance error; (3) the performance of the multiboost is adversely affected by
assigning log 1010 to the decision power of an error free base model, leading
to a small number of error free base classifiers domaining the decision output.
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Table C.3: Performance Index Pm on 12 Gene Expression Datasets

AML3 Brain Breast CNS Colon DLBCLt

Bagging -1.39 -1.22 -0.71 -0.34 -5.73 -1.83

Arcing -7.14 -2.37 -8.52 -9.63 -1.12 -7.77

Boosting -4.36 -4.08 -4.83 1.56 6.02 1.14

MultiBoost 3.37 -0.37 1.20 -0.82 -7.11 1.51

cw-Arcing 3.37 2.49 4.29 3.23 8.10 1.69

cw-AdaBoost 3.17 4.49 5.91 5.13 6.26 2.99

cw-MultiBoost 2.98 1.06 2.67 4.42 -6.42 2.25

Lung DLBCLo Prostateo MLL2 Prostatet Subtype

Bagging -0.72 -4.27 -15.86 -2.88 -0.94 0.61

Arcing -0.72 -9.20 -3.61 -1.87 -1.18 -6.56

Boosting -0.17 -2.20 -6.33 -0.87 -0.05 1.57

MultiBoost 1.02 0.90 -5.65 -1.47 -1.99 0.78

cw-Arcing 0.94 5.09 12.04 0.32 2.45 0.17

cw-AdaBoost 1.49 5.33 18.84 4.28 1.72 1.75

cw-MultiBoost 1.17 4.34 12.72 2.49 -0.62 1.66
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C.4.1 Variance and Bias

In this section we present an analysis of the bias and variance of the al-
gorithms, using the breast cancer dataset, and Kohavi and Wolpert’s [91]
approach to variance and bias decomposition. There are 97 instances with
835 attributes in the original breast cancer data set D. Utilizing Kohavi
and Wolpert’s approach [91], a sample of size 40 without replacement from
the original data D is taken to produce a training set source. From the re-
mainder, a test set of size 40 is sampled without replacement. There are
50 training samples to produce 50 trained ensemble models, which are then
applied to the test set, and the bias and variance are calculated from the
predictions on the test set.

Table C.4 tabulates the experimental results on the bias, variance and
error of the ensemble models. Fig C.4 illustrates the differences in the per-
formance of the original algorithms and the modified method. In general,
the results show that the modified algorithms perform well on both bias
and variance reduction. The top row, which compares bagging, boosting
and the new algorithm show that, for this data set, boosting and bagging
have equal performance on variance, but as expected boosting has lower bias.
The cw-AdaBoost algorithm matches this low bias, and is able to continue
boosting, further reducing the bias. The cw-AdaBoost algorithm also has
noticeably lower variance than either boosting or bagging, indicating that
the weight perturbation approach is highly effective. The second row show
that the standard arcing algorithm deteriorates after around 30 iterations, at
which point it keeps producing identical base models after an error free base
model is built, leading to growing variance error. Boosting similarly stops
improving after about 50 iterations. MultiBoost restarts learning every 10
iterations, and so it benefits from variance reduction in comparison to the
original Boosting algorithm, but converges slowly; the proposed modification
cw-MultiBoost variant achieves faster variance reduction.

C.5 Conclusion

This work has introduced modifications to three boosting methods to gener-
ate efficient boosting models for training high dimensional datasets with low
numbers of instances. Training this type of dataset (particularly with unsta-
ble base classifiers like decision tree) tends to generate error free base models
and causes malfunctions on conventional Boosting, Arcing, and MultiBoost,
leading to low generalization. The modified algorithms, which use a weight
perturbation method combined with sequential update, and discards the
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Table C.4: Bias2, V ariance and Error

Bias2 10 20 30 40 50 60 80

Bagging .1381 .129 .1307 .1281 .132 .1308 .1272

Boosting .113 .1102 .1079 .1118 .1063 .1076 .1079

cw-AdaBoost .1135 .1074 .1045 .1027 .1011 .0981 .0974

Arcing .1408 .1244 .1155 .1089 .1108 .1121 .1142

cw-Arcing .1269 .1094 .1063 .1057 .1064 .1038 .1053

MultiBoost .1292 .1137 .1098 .1058 .1067 .1038 .1017

cw-MultiBoost .1236 .1117 .1138 .1049 .1082 .1024 .1074

V ariance 10 20 30 40 50 60 80

Bagging .1662 .1549 .1542 .1523 .1492 .1483 .1467

Boosting .1596 .1495 .1464 .1453 .1448 .1453 .1453

cw-AdaBoost .1285 .11 .1015 .1012 .0997 .0978 .0937

Arcing .1636 .1529 .1519 .1608 .1717 .178 .1858

cw-Arcing .1191 .1163 .1155 .112 .112 .1122 .1117

MultiBoost .1695 .1413 .1359 .1291 .1283 .1259 .1239

cw-MultiBoost .1279 .1213 .1078 .1042 .1013 .1011 .0962

Error 10 20 30 40 50 60 80

Bagging .3077 .287 .2881 .2835 .2842 .2821 .2768

Boosting .2758 .2628 .2572 .26 .254 .2558 .2561

cw-AdaBoost .2446 .2196 .2081 .206 .2028 .1979 .193

Arcing .3077 .2804 .2705 .273 .286 .2937 .3039

cw-Arcing .2484 .2281 .2242 .22 .2207 .2182 .2193

MultiBoost .3021 .2579 .2484 .2375 .2375 .2323 .2281

cw-MultiBoost .254 .2354 .2239 .2112 .2116 .2056 .2056
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Figure C.4: Comparison on Bias2, V ariance and Error between the original

algorithms and the algorithms with the proposed modifications.
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stopping condition, allows ensemble generation to continue, further lowering
variance. We have introduced the cw-AdaBoost algorithm, which demon-
strates superior performance on 12 gene expression data where it performs
consistently well. We thus recommend it for wider use.
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C.6 Full Experimental Results

iteration 10 20 30 40 50 60 70

ProstateOutcome

Bagging 66.67 61.90 61.90 61.90 61.90 61.90 61.90
Arcing 66.67 76.19 76.19 80.95 80.95 71.43 71.43
Boosting 76.19 71.43 71.43 71.43 71.43 71.43 71.43
MultiBoost 57.14 76.19 71.43 76.19 76.19 76.19 76.19
cw-Arcing 90.48 95.24 90.48 90.48 90.48 85.71 90.48
cw-AdaBoost 100.00 100.00 95.24 95.24 100.00 95.24 95.24
cw-MultiBoost 80.95 95.24 95.24 85.71 95.24 95.24 90.48

AMLALL

Bagging 91.67 94.44 94.44 95.83 95.83 94.44 95.83
Arcing 88.89 88.89 88.89 88.89 88.89 88.89 88.89
Boosting 91.67 91.67 91.67 91.67 91.67 91.67 91.67
MultiBoost 95.83 100.00 100.00 100.00 100.00 100.00 100.00
cw-Arcing 98.61 100.00 98.61 100.00 100.00 100.00 98.61
cw-AdaBoost 100.00 98.61 98.61 98.61 98.61 100.00 100.00
cw-MultiBoost 97.22 100.00 98.61 100.00 98.61 100.00 98.61

Brain Tumor

Bagging 86.00 88.00 86.00 84.00 86.00 82.00 82.00
Arcing 82.00 84.00 84.00 84.00 84.00 84.00 84.00
Boosting 80.00 84.00 82.00 82.00 82.00 82.00 82.00
MultiBoost 72.00 82.00 88.00 88.00 88.00 90.00 92.00
cw-Arcng 82.00 86.00 90.00 90.00 92.00 90.00 90.00
cw-AdaBoost 88.00 92.00 92.00 88.00 92.00 90.00 92.00
cw-MultiBoost 80.00 84.00 92.00 90.00 88.00 88.00 88.00

ColonTumor

Bagging 82.26 82.26 79.03 79.03 80.65 80.65 80.65
Arcing 91.94 85.48 83.87 83.87 83.87 83.87 83.87
Boosting 90.32 90.32 91.94 93.54 93.54 93.54 93.54
MultiBoost 80.65 79.03 79.03 79.03 79.03 79.03 79.03
cw-Arcing 96.77 93.55 91.94 93.55 93.55 95.16 96.77
cw-AdaBoost 93.55 93.55 93.55 91.94 91.94 91.94 91.94
cw-MultiBoost 80.65 80.65 85.48 74.19 79.03 79.03 80.65
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DLBCLTumor

Bagging 93.51 92.21 92.21 92.21 92.21 92.21 92.21
Arcing 92.21 84.42 85.71 85.71 85.71 85.71 85.71
Boosting 96.10 96.10 96.10 94.81 94.81 94.81 94.81
MultiBoost 92.21 94.81 97.40 97.40 96.10 96.10 96.10
cw-Arcing 90.90 96.10 97.40 94.81 97.40 97.40 97.40
cw-AdaBoost 92.20 97.40 97.40 98.70 97.40 98.70 98.70
cw-MultiBoost 93.51 96.10 96.10 96.10 98.70 97.40 97.40

DLBCLOutcome

Bagging 79.31 87.93 89.66 94.83 91.38 93.10 94.83
Arcing 86.21 86.21 86.21 84.48 84.48 84.48 84.48
Boosting 89.66 89.66 93.81 93.10 93.10 93.10 93.10
MultiBoost 84.48 94.83 96.55 96.55 98.28 98.28 98.28
cw-Arcing 98.28 98.28 100.00 100.00 100.00 100.00 100.00
cw-AdaBoost 100.00 100.00 100.00 100.00 100.00 100.00 98.28
cw-MultiBoost 91.34 100.00 100.00 100.00 100.00 100.00 100.00

Lung Cancer

Bagging 97.24 97.24 97.24 97.24 97.24 97.24 97.24
Arcing 97.24 97.24 97.24 97.24 97.24 97.24 97.24
Boosting 97.79 97.79 97.79 97.79 97.79 97.79 97.79
MultiBoost 97.79 98.90 98.90 98.90 99.45 99.45 99.45
cw-Arcing 98.90 98.90 99.45 99.45 98.90 98.34 98.34
cw-AdaBoost 99.45 99.45 99.45 99.45 99.45 99.45 99.45
cw-MultiBoost 97.79 98.90 99.45 99.45 99.45 99.45 99.45

MLLLeukemia

Bagging 90.23 90.23 90.23 91.67 91.67 91.67 91.67
Arcing 91.67 93.06 93.06 91.67 91.67 91.67 91.67
Boosting 93.06 93.06 93.06 93.06 93.06 93.06 93.06
MultiBoost 93.06 93.04 91.67 93.06 93.06 91.67 91.67
cw-Arcing 95.84 95.84 95.84 93.06 93.06 93.06 93.06
cw-AdaBoost 95.84 100.00 95.83 98.61 100.00 98.61 98.61
cw-MultiBoost 91.67 94.44 98.61 95.83 97.22 98.61 98.61

CNS

Bagging 88.33 88.33 86.67 88.33 86.67 86.67 88.33
Arcing 78.33 78.33 78.33 78.33 78.33 78.33 78.33
Boosting 88.33 88.33 90.00 90.00 90.00 90.00 90.00
MultiBoost 85.00 86.67 85.00 86.67 86.67 90.00 90.00
cw-Arcing 86.67 91.67 93.33 91.67 91.67 91.67 91.67
cw-AdaBoost 91.67 91.67 95.00 93.33 93.33 93.33 93.33
cw-MultiBoost 93.33 88.33 91.67 93.33 93.33 93.33 93.33
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ProstateTumor

Bagging 94.92 95.48 95.48 95.48 94.92 94.92 94.92
Arcing 94.92 94.92 94.92 94.92 94.92 94.92 94.92
Boosting 96.05 96.05 96.05 96.05 96.05 96.05 96.05
MultiBoost 88.24 94.12 94.85 95.59 95.59 95.59 94.85
cw-Arcing 98.87 98.31 98.31 98.31 98.31 98.87 98.87
cw-AdaBoost 97.74 97.74 98.31 97.18 97.74 97.74 98.31
cw-MultiBoost 93.38 94.85 96.32 95.59 95.59 97.06 95.59

SubtypeALL

Bagging 89.91 91.13 91.13 91.13 90.83 91.13 91.13
Arcing 88.07 89.91 85.63 81.65 80.73 80.12 80.12
Boosting 89.30 92.05 92.97 92.05 91.74 92.66 92.35
MultiBoost 86.85 88.99 91.44 92.35 92.66 92.66 92.66
cw-Arcing 89.30 90.21 89.91 90.83 91.13 91.13 90.83
cw-AdaBoost 90.21 92.05 92.66 92.05 92.05 92.35 92.97
cw-MultiBoost 88.07 92.35 92.05 92.05 92.35 93.58 93.27
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Appendix D

Full Statistical Test Results

This appendix presents the detailed statistical test results summarized in
section 4.6.3. The three paired methods were compared, including “RTPose
vs Ramanan”, “RTPose vs MatchPose” and “MatchPose vs Ramanan”, using
different types of data (all images, high illumination, low illumination, with
cover, without cover). The head, torso and a lower body part (RUL) were
selected for statistical tests.

A1. All images – head detection: The contingency tables to compare
“RTPose vs Ramanan”, “RTPose vs MatchPose” and “MatchPose vs Ra-
manan” in detecting the head are:

47 15
186 307

28 34
28 465

47 9
185 313

The outcomes ( (|n01−n10|−1)2

n01+n10
= 143.65, 0.33 and 158.28) show that over-

all RTPose and MatchPose perform significantly better than Ramanan, and
RTPose and MatchPose have similar performance.

A2. All images – torso detection: The contingency tables to com-
pare “RTPose vs Ramanan”, “RTPose vs MatchPose” and “MatchPose vs
Ramanan” in detecting the torso are:

11 15
352 177

24 2
38 491

54 8
309 184

The outcomes ( (|n01−n10|−1)2

n01+n10
= 307.96, 30.77 and 284.31) show that overall

RTPose performs significantly better than Ramanan, MatchPose performs
significantly better than Ramanan, and RTPose performs significantly better
than MatchPose in detecting the torso.
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A3. All images – LUL detection: The contingency tables to compare
“RTPose vs Ramanan”, “RTPose vs MatchPose” and “MatchPose vs Ra-
manan” in detecting the left upper leg are:

140 23
205 187

34 129
95 297

112 17
232 193

The outcomes ( (|n01−n10|−1)2

n01+n10
= 143.48, 4.65 and 184) show that overall

RTPose performs significantly better than Ramanan, MatchPose significantly
better than Ramanan, and MatchPose significantly better than RTPose in
detecting the left upper leg.

B1. High illumination – head detection: The contingency tables to
compare “RTPose vs Ramanan”, “RTPose vs MatchPose” and “MatchPose
vs Ramanan” are:

45 10
98 308

27 28
24 382

40 11
103 307

The outcomes ( (|n01−n10|−1)2

n01+n10
= 69.69, 0.25 and 72.83) show that RTPose

and MatchPose both perform significantly better than Ramanan, and RTPose
and MatchPose have similar performance.

B2. High illumination – torso detection: The contingency tables to
compare “RTPose vs Ramanan”, “RTPose vs MatchPose” and “MatchPose
vs Ramanan” are:

10 13
202 236

23 0
37 401

49 11
163 238

The outcomes ( (|n01−n10|−1)2

n01+n10
= 164.4, 34.81 and 131.17) show that in

high illumination data RTPose performs significantly better than Ramanan,
MatchPose performs significantly better than Ramanan, and RTPose per-
forms significantly better than MatchPose in detecting the torso.

B3. High illumination – LUL detection: The contingency tables to
compare “RTPose vs Ramanan”, “RTPose vs MatchPose” and “MatchPose
vs Ramanan” are:

117 21
247 76

33 105
78 245

89 22
276 75
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The outcomes ( (|n01−n10|−1)2

n01+n10
= 188.79, 3.89 and 214.36) show that in

high illumination data RTPose performs significantly better than Ramanan,
MatchPose performs significantly better than Ramanan, and MatchPose per-
forms significantly better than RTPose in detecting the left upper leg.

C1. Low illumination – head detection: The contingency tables to
compare “RTPose vs Ramanan”, “RTPose vs MatchPose” and “MatchPose
vs Ramanan” are:

2 5
43 45

1 6
5 83

0 6
45 44

The outcomes ( (|n01−n10|−1)2

n01+n10
= 28.14, 0 and 27.88) show that in low illumi-

nation data RTPose performs significantly better than Ramanan, MatchPose
performs significantly better than Ramanan, and RTPose has similar perfor-
mance to MatchPose in detecting the head.

C2. Low illumination – torso detection: The contingency tables to
compare “RTPose vs Ramanan”, “RTPose vs MatchPose” and “MatchPose
vs Ramanan” are:

1 2
18 73

1 2
1 90

0 2
19 73

The outcomes ( (|n01−n10|−1)2

n01+n10
= 11.23, 0 and 12.12) show that in low illumi-

nation data RTPose performs significantly better than Ramanan, MatchPose
performs significantly better than Ramanan, and RTPose has similar perfor-
mance to MatchPose in detecting the torso.

C3. Low illumination – LUL detection: The contingency tables to
compare “RTPose vs Ramanan”, “RTPose vs MatchPose” and “MatchPose
vs Ramanan” are:

22 2
26 44

1 23
18 52

17 2
31 44

The outcomes ( (|n01−n10|−1)2

n01+n10
= 18.41, 0.52 and 23.89) show that in low illu-

mination data RTPose performs significantly better than Ramanan, Match-
Pose performs significantly better than Ramanan, and RTPose has similar
performance to MatchPose in detecting the left upper leg .
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D1. With cover – head detection: The contingency tables to com-
pare “RTPose vs Ramanan”, “RTPose vs MatchPose” and “MatchPose vs
Ramanan” are:

42 12
179 280

25 29
29 431

47 7
174 285

The outcomes ( (|n01−n10|−1)2

n01+n10
= 144.36, 0 and 152) show that RTPose per-

forms significantly better than Ramanan, MatchPose has similar performance
to RTPose, and MatchPose performs significantly better than Ramanan in
detecting the head from the data with occlusion.

D2. With cover – torso detection: The contingency tables to com-
pare “RTPose vs Ramanan”, “RTPose vs MatchPose” and “MatchPose vs
Ramanan” are:

11 12
343 147

23 0
38 453

54 7
300 152

The outcomes ( (|n01−n10|−1)2

n01+n10
= 306.8, 35.78 and 278.15) show that RT-

Pose performs significantly better than Ramanan, MatchPose performs sig-
nificantly better than Ramanan, and RTPose performs significantly better
than MatchPose in detecting the torso from the data with occlusion.

D3. With cover – LUL detection: The contingency tables to com-
pare “RTPose vs Ramanan”, “RTPose vs MatchPose” and “MatchPose vs
Ramanan” are:

137 17
181 178

31 123
90 269

105 16
213 179

The outcomes ( (|n01−n10|−1)2

n01+n10
= 133.92, 4.89 and 167.78) show that RT-

Pose performs significantly better than Ramanan, MatchPose performs sig-
nificantly better than Ramanan, and MatchPose performs significantly better
than RTPose in detecting the left upper leg from the data with occlusion.

E1. Without cover – head detection: The contingency tables to com-
pare “RTPose vs Ramanan”, “RTPose vs MatchPose” and “MatchPose vs
Ramanan” are:

2 6
17 16

3 5
0 34

2 1
18 21
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The outcomes ( (|n01−n10|−1)2

n01+n10
= 4.58, 4.84 and 13.69) show that MatchPose

performs significantly better than RTPose, MatchPose performs significantly
better than Ramanan, and RTPose performs significantly better than Ra-
manan in detecting the head from the data without occlusion.

E2. Without cover – torso detection: The contingency tables to com-
pare “RTPose vs Ramanan”, “RTPose vs MatchPose” and “MatchPose vs
Ramanan” are:

0 3
9 30

1 2
0 39

0 1
9 32

The outcomes ( (|n01−n10|−1)2

n01+n10
= 2.28, 0.21 and 4.88) show that MatchPose

performs significantly better than Ramanan, RTPose has similar performance
to Ramanan, and MatchPose and RTPose have similar performances in de-
tecting the torso from the data without occlusion.

E3. Without cover – LUL detection: The contingency tables to com-
pare “RTPose vs Ramanan”, “RTPose vs MatchPose” and “MatchPose vs
Ramanan” are:

2 6
24 10

3 5
5 28

7 1
19 15

The outcomes ( (|n01−n10|−1)2

n01+n10
= 9.68, 0.09 and 14.51) show that RTPose

performs significantly better than Ramanan, MatchPose performs signifi-
cantly better than Ramanan, and RTPose has similar performance to Match-
Pose in detecting the left upper leg from the data without occlusion.
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Appendix E

Auxiliary Forms and

Documents

A number of documents are attached, including

• Information Sheet for Symptomatic Volunteer

• Information sheet for Non-Symptomatic Volunteer

• General Consent Form for Symptomatic Volunteer

• General Consent Form for Non-Symptomatic Volunteer

• Audio and Video Consent Form

• GP Letter for Symptomatic Volunteer

• GP Letter for Non-Symptomatic Volunteer

• Questionnaire: to assess sleep quality of the volunteer and pre-classify
the volunteer as a normal participant or as a symptomatic patient

• Advertisement: to recruit volunteers
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Centre Number: ULHT 
Study Number: 08/H0401/12 

Information Sheet – Symptomatic Volunteer 
 

The Role of Movement Monitoring in the Assessment of Sleep Disorders – a pilot study 
 
You have been identified by your Medical Consultant as someone who could help us by 
taking part in this research study. Before you agree to take part you need to understand 
why the research is being done and what it would involve for you. Please take time to read 
the following information carefully. 
 
Part 1: What you need to know 
 
What is the purpose of the study? 
The idea of this research is to find out if computerised video recordings can be used to 
identify people who have sleep problems where they stop breathing (sleep apnoea). 
 
Why have I been invited to take part? 
You are being asked to participate as a member of a group of people who do have sleep 
apnoea, so we can compare the results of people who do not have the condition with 
those who do. 
 
Do I have to take part? 
No.  It is up to you to decide.  Read this information and if you are interested in taking part 
please ring the hospital on 01522 573684 to let us know. If you ring between 9:00 and 
13:00 Monday-Friday someone should be available to agree a time to ring you back to 
discuss the arrangements for the overnight study (an answer phone telling you it is the 
newborn hearing screening office will be heard at other times). We will ask you a few 
questions about your health to check you are suitable to be in the study and answer any 
questions you have.  If you are suitable and are still interested we will then ask you to sign 
a consent form to show you have agreed to take part. 
 
Even after you have signed the consent form you can change your mind and decide not to 
go ahead, without giving a reason. 
 
You can ring the number above to discuss anything about the research with one of the 
researchers. 
 
 
What will happen to me if I take part? 
If you agree to take part you will be given a date when you will spend a night at Lincoln 
County Hospital, sleeping in a normal bed in a single room (called a 'Sleep Study Room').  
You will wear the normal testing system that patients wear.  It is a small device which will 
record the oxygen level in your blood – using a little gadget that just shines a light through 
your finger (see picture). 
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NB This system is non-invasive i.e. you will NOT be required to have any injections. 
 
The research part will be done using 3 video cameras on the walls/ceiling with the pictures 
and sound stored on a computer system. The audio/video recording will be started by 
hospital staff once you are ready to settle down for the night.  You will be able to get up 
during the night e.g. to use the adjacent toilet facilities.  In the morning, you will be offered 
a drink, the testing equipment will be taken off and you can leave. 
 
What will I have to do? 
You will have been given details of where to go in the hospital and the date and time to 
attend. You will need to bring with you suitable nightwear ( e.g. pyjamas or tee shirt and 
shorts) and anything you would normally take with you for a night away (e.g. medication). 
After the night in the sleep study room you will not have to do anything else. 
  
What will happen to my details and the recordings? 
Your details will be kept confidential within the hospital and only the audio/video and 
oxygen level data will taken to the University identified by a study number.  The data will 
be kept safe and we won’t show it to anyone other than those involved with the research 
without asking your permission. At the end of the research we will send you a summary of 
what we have found if you want us to. 
  
The video data will be analysed by researchers at the University of Lincoln, using a special 
programme to see if they can tell the difference between people who are sleeping normally 
and those who have sleep apnoea (sleep apnoea is stopping and starting breathing during 
sleep).  How well the computer analysis works will be judged against the opinion of a 
doctor who knows about sleep apnoea and checked against the normal testing system. 
 
What about expenses? 
If you take part in the study you will receive £50 from the university in order to cover your 
expenses including your trips to the hospital. 
  
What are the possible disadvantages and risks of taking part? 
As a symptomatic volunteer we would expect to find evidence of sleep apnoea in your 
recordings. There is a however a very small chance of us seeing something else that may 
indicate another condition as well such as nocturnal seizures. If you have agreed to being 
informed of any such findings we will advise you of any such findings and provide your GP 
with any details that are requested. Such findings have the benefit of picking up such 
conditions early but may have implications for future employment, driving or insurance. 
 
What are the possible benefits of taking part? 
There are not intended to be any benefits for you in taking part in this study but the 
information we get from the study should help us to diagnose people with sleep apnoea in 
the future. As mentioned in the risk section we might find an unexpected condition which 
you could benefit from being picked up and treated early. 
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If the information in Part 1 has interested you and you are considering participating, please 
read the additional information in Part 2 before making any decision 
 
Part 2: Additional information 
 
What will happen if you wish to show anyone else my recording? 
Even though you will have signed a consent form before the video data is recorded we will 
not show any of the recording which will result in you being recognised to anyone not 
involved with the research without coming back to you to ask for your specific permission. 
If we do this we will explain why we wish to show the recording and you will have the 
opportunity to view the recording and you are free to refuse to give your consent. If you 
give your consent for the video to be used, you will be free to withdraw that consent at any 
time. Although we will respect your wishes and stop using the recording if you withdraw 
that consent, if the use has already resulted in publication then withdrawing consent may 
not be effective. 
 
What if there is a problem? 
Complaints 
If you have any concern about any aspect of the study, you should ask to speak to one of 
the research team who will do their best to deal with your concern (Dr Neil Gravill, 
Consultant Clinical Scientist at the hospital on 01522 573684 or Ching-Wei Wang, PhD 
Researcher at the university on 01522 837107). If you remain unhappy and you wish to 
complain formally, you can do this through the Research and Development Dept at the 
hospital or via the NHS Complaints Procedure. Details can be obtained from the hospital. 
 
Harm 
In the (extremely unlikely) event that something does go wrong and you are harmed during 
the research and it is due to someone’s negligence then you may have grounds for a legal 
action for compensation against United Lincolnshire Hospitals NHS Trust. The normal 
National Health Service complaints mechanism will still be available to you. 
 
What will happen to the results of the research study? 
The computer analysis work will be done by a research student at the university and will 
be used in their PhD thesis and the findings may also be published in scientific journals. If 
the research shows that the work is useful it may be used in a new piece of medical 
equipment. 
 
All research in the NHS is looked at by an independent group of people, called a Research 
Ethics Committee to protect your safety, rights, wellbeing and dignity. This study has been 
reviewed and given a favourable opinion by the Derbyshire Research Ethics Committee. 
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Centre Number: ULHT 
Study Number: 08/H0401/12 

Information Sheet – Normal Volunteer 
 

The Role of Movement Monitoring in the Assessment of Sleep Disorders – a pilot study 
 
You have shown an interest in taking part in this research study. Before you agree to take 
part you need to understand why the research is being done and what it would involve for 
you. Please take time to read the following information carefully. 
 
Part 1: What you need to know 
 
What is the purpose of the study? 
The idea of this research is to find out if computerised video recordings can be used to 
identify people who have sleep problems where they stop breathing (sleep apnoea). 
 
Why have I been invited to take part? 
You are being asked to participate as a member of a group of people who do not have 
sleep apnoea, so we can compare the results of people who do not have the condition with 
those who do. 
 
Do I have to take part? 
No.  It is up to you to decide.  Read this information and if you are interested in taking part 
please ring the hospital on 01522 573684 to let us know. If you ring between 9:00 and 
13:00 Monday-Friday someone should be available to agree a time for you to come up to 
the hospital to discuss the arrangements for the overnight study (an answer phone telling 
you it is the newborn hearing screening office will be heard at other times). At this visit we 
will ask you a few questions about your health to check you are suitable to be in the study 
and answer any questions you have.  If you are suitable and are still interested we will 
then ask you to sign a consent form to show you have agreed to take part. 
 
Even after you have signed the consent form you can change your mind and decide not to 
go ahead, without giving a reason. 
 
You can ring the number above to discuss anything about the research with one of the 
researchers. 
 
 
What will happen to me if I take part? 
If you agree to take part you will be given a date when you will spend a night at Lincoln 
County Hospital, sleeping in a normal bed in a single room (called a 'Sleep Study Room').  
You will wear the normal testing system that patients wear.  It is a small device which will 
record the oxygen level in your blood – using a little gadget that just shines a light through 
your finger (see picture). 
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NB This system is non-invasive i.e. you will NOT be required to have any injections. 
 
The research part will be done using 3 video cameras on the walls/ceiling with the pictures 
and sound stored on a computer system. The audio/video recording will be started by 
hospital staff once you are ready to settle down for the night.  You will be able to get up 
during the night e.g. to use the adjacent toilet facilities.  In the morning, you will be offered 
a drink, the testing equipment will be taken off and you can leave. 
 
What will I have to do? 
You will have been given details of where to go in the hospital and the date and time to 
attend. You will need to bring with you suitable nightwear ( e.g. pyjamas or tee shirt and 
shorts) and anything you would normally take with you for a night away (e.g. medication). 
After the night in the sleep study room you will not have to do anything else. 
  
What will happen to my details and the recordings? 
Your details will be kept confidential within the hospital and only the audio/video and 
oxygen level data will taken to the University identified by a study number.  The data will 
be kept safe and we won’t show it to anyone other than those involved with the research 
without asking your permission. At the end of the research we will send you a summary of 
what we have found if you want us to. 
  
The video data will be analysed by researchers at the University of Lincoln, using a special 
programme to see if they can tell the difference between people who are sleeping normally 
and those who have sleep apnoea (sleep apnoea is stopping and starting breathing during 
sleep).  How well the computer analysis works will be judged against the opinion of a 
doctor who knows about sleep apnoea and checked against the normal testing system. 
 
What about expenses? 
If you take part in the study you will receive £50 from the university in order to cover your 
expenses including your trips to the hospital. 
  
What are the possible disadvantages and risks of taking part? 
As a normal volunteer we would not expect to find any evidence of sleep apnoea in your 
recordings. There is a however a very small chance of us seeing something that may 
indicate this or another condition such as nocturnal seizures. If you have agreed to being 
informed of any such findings we will advise you of any such findings and provide your GP 
with any details that are requested. Such findings have the benefit of picking up such 
conditions early but may have implications for future employment, driving or insurance. 
 
What are the possible benefits of taking part? 
There are not intended to be any benefits for you in taking part in this study but the 
information we get from the study should help us to diagnose people with sleep apnoea in 
the future. As mentioned in the risk section we might find an unexpected condition which 
you could benefit from being picked up and treated early. 
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If the information in Part 1 has interested you and you are considering participating, please 
read the additional information in Part 2 before making any decision 
 
Part 2: Additional information 
 
What will happen if you wish to show anyone else my recording? 
Even though you will have signed a consent form before the video data is recorded we will 
not show any of the recording which will result in you being recognised to anyone not 
involved with the research without coming back to you to ask for your specific permission. 
If we do this we will explain why we wish to show the recording and you will have the 
opportunity to view the recording and you are free to refuse to give your consent. If you 
give your consent for the video to be used, you will be free to withdraw that consent at any 
time. Although we will respect your wishes and stop using the recording if you withdraw 
that consent, if the use has already resulted in publication then withdrawing consent may 
not be effective. 
 
What if there is a problem? 
Complaints 
If you have any concern about any aspect of the study, you should ask to speak to one of 
the research team who will do their best to deal with your concern (Dr Neil Gravill, 
Consultant Clinical Scientist at the hospital on 01522 573684 or Ching-Wei Wang, PhD 
Researcher at the university on 01522 837107). If you remain unhappy and you wish to 
complain formally, you can do this through the Research and Development Dept at the 
hospital or via the NHS Complaints Procedure. Details can be obtained from the hospital. 
 
Harm 
In the (extremely unlikely) event that something does go wrong and you are harmed during 
the research and it is due to someone’s negligence then you may have grounds for a legal 
action for compensation against United Lincolnshire Hospitals NHS Trust. The normal 
National Health Service complaints mechanism will still be available to you. 
 
What will happen to the results of the research study? 
The computer analysis work will be done by a research student at the university and will 
be used in their PhD thesis and the findings may also be published in scientific journals. If 
the research shows that the work is useful it may be used in a new piece of medical 
equipment. 
 
All research in the NHS is looked at by an independent group of people, called a Research 
Ethics Committee to protect your safety, rights, wellbeing and dignity. This study has been 
reviewed and given a favourable opinion by the Derbyshire Research Ethics Committee. 
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Centre Number: ULHT 
Study Number: 08/H0401/12  Trial Patient Identification Number: 

 
GENERAL CONSENT - Symptomatic Volunteers 

 
The Role of Movement Monitoring in the Assessment of Sleep Disorders – a pilot study 
Thank you for volunteering to help with this project. In order to study the changes that occur in the 
movement of people with sleep disorders it is important to learn about people with known sleep 
disorders. This form and the information sheet you will have been given is intended to confirm you 
understand what is involved and you are happy to participate. 

Please initial box to agree 
1. I confirm that I have read and understand the information sheet dated 

………………… (version .  ...........) for the above study.  I have had the 
opportunity to consider the information, ask questions and have had these 
answered satisfactorily. 

 

 
2. I understand that my participation is voluntary and that I am free to withdraw at 

any time, without giving any reason, without my medical care or legal rights 
being affected. 

 

 
3. I understand that anonymized data collected during the study may be looked at 

by responsible individuals from the University of Lincoln.  
 

 
4 Only Clinical staff from hospital will have access to my medical records.  

I give permission for these individuals to have access to my records. 
 

 
5. I am aware that participation will involve audio/video recording from which I 

may be recognisable.  I understand that these recordings, or extracts from 
them, will not be made available to anyone other than those described without 
my separate consent. 

 

 
6. I agree to my GP being informed of my participation in the study.    

 
7. If anything is found during the study that may suggest any possible medical 

condition I wish to be advised of this. Contact details given overleaf. 
 

 
8. I agree to take part in the above study.  

Please complete contact details overleaf if you wish to receive a summary of the findings of this 
work 
 
________________________ ________________ ____________________ 
Name of Volunteer Date Signature 
 
_________________________ ________________ ____________________ 
Name of Person taking consent Date Signature 
 
_________________________ ________________ ____________________ 
Name Researcher  Date  Signature 



Symptomatic Volunteer General Consent v 1.5 20/03/2008                                  page 2 of 2 

 
When completed,  copy for patient;  copy for researcher site file;  original to be kept in medical 
notes 
 
 
 
 
 
My contact details are as follows. 
 
Name:  ……………………………………………………………………………….. 
 
 
Address ……………………………………………………………. 
 
              ……………………………………………………………. 
 
              ……………………………………………………………. 
 
              ……………………………………………………………. 
 
 
Email address  ………………………………………………….… 
 
Phone ……………………………………………………………… 
 
 
 
I   would / would not    wish to receive a summary of the findings of this study. I understand this 
may not be available until 3 years time. 
 
I would wish to receive this as a     paper   /  electronic (email) copy 
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Centre Number: ULHT 
Study Number: 08/H0401/12  Trial Patient Identification Number: 

 
GENERAL CONSENT – Non-Symptomatic Volunteer 

 
The Role of Movement Monitoring in the Assessment of Sleep Disorders – a pilot study 
Thank you for volunteering to help with this project. In order to study the changes that occur in the 
movement of people with sleep disorders it is important to know about people without sleep 
disorders. This form and the information sheet you will have been given is intended to confirm you 
understand what is involved and you are happy to participate. 

Please initial box 
1. I confirm that I have read and understand the information sheet dated ………… 

(version .  ...........) for the above study. I have had the opportunity to consider 
the information, ask questions and have had these answered satisfactorily. 

 

 
2. I understand that my participation is voluntary and that I am free to withdraw at 

any time, without giving any reason, without my medical care or legal rights 
being affected. 

 

 
3. I understand that anonymized data collected during the study may be looked at 

by responsible individuals from the University of Lincoln.  
 

 
4. I am aware that participation will involve audio/video recording from which I 

may be recognisable.  I understand that these recordings, or extracts from 
them, will not be made available to anyone other than those described without 
my separate consent. 

 

 
5. I agree to my GP being informed of my participation in the study.    

 
6. If anything is found during the study that may suggest any possible medical 

condition I wish to be advised of this. Contact details given overleaf. 
 

 
7. I agree to take part in the above study.  

Please complete contact details overleaf if you wish to receive a summary of the findings of this 
work. 
  
Name of GP    Address of GP 
 
Address of  Volunteer (As registered with GP) 
 
________________________ ________________ ____________________ 
Name of Volunteer Date Signature 
 
_________________________ ________________ ____________________ 
Name of Person taking consent Date Signature 
 
_________________________ ________________ ____________________ 
Name Researcher  Date  Signature 
When completed,  copy for patient;  copy for researcher site file;  original to be kept in medical 
notes 
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My contact details are as follows. 
 
Name:  ……………………………………………………………………………….. 
 
 
Address ……………………………………………………………. 
 
              ……………………………………………………………. 
 
              ……………………………………………………………. 
 
              ……………………………………………………………. 
 
 
Email address  ………………………………………………….… 
 
Phone   ………………………………………… 
 
 
I   would / would not   wish to receive a summary of the findings of this study. I understand this 
may not be available until 3 years time. 
 
I would wish to receive this as a     paper   /  electronic (email) copy 
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Centre Number: ULHT 
Study Number: 08/H0401/12 
Trial Patient Identification Number: 

 
CONSENT FORM – Specific Use of Audio/Video  

 
The Role of Movement Monitoring in the Assessment of Sleep Disorders – a pilot study 
 
 
 

Details of Audio/Video Recording 
Recording Start Date:         /         /               Location: 
Recording reference No: 
Specific use required: 
 
 
 

Please initial box 

1. 
I confirm that it has been explained to me that I am being asked for my consent to allow 
the audio/video recording, or extracts from them, of my participation in the above project 
to be used for the specific purpose given above. 

 

 

2. I understand that my participation is voluntary and that I am free to withdraw at any time, 
without giving any reason, without my medical care or legal rights being affected.  

 

3. 
Whilst the researchers will respect my wishes and stop using the recording if I withdraw 
consent I understand that if the use has resulted in publication then withdrawing consent 
may not be effective. 

 

 
 
 
________________________ ________________ ____________________ 
Name of Patient/Participant Date Signature 
 
 
 
_________________________ ________________ ____________________ 
Name of Person taking consent Date Signature 
 
 
 
_________________________ ________________ ____________________ 
Name Researcher  Date  Signature 

 
 
 

 
 
 
When completed,  copy for patient;  copy for researcher site file;  original to be kept in medical notes 
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Lincoln County Hospital 
Greetwell Road 

Lincoln 
LN2 5QY 

 
Tel: 01522 512512 

www.ulh.nhs.uk 
 

 
 
 
 Re:  
 
  Participant’s Name 
  DOB 
  NHS No (if known) 
  Address 
 
 
The above patient of yours who is under the care of Dr S Matusiewicz, Consultant Respiratory Physician has 
agreed that we can inform you that they have volunteered as a Symptomatic Participant in the following 
Research Project: 
 
The Role of Movement Monitoring in the Assessment of Sleep Disorders – a pilot study 
 
Centre Number: ULHT 
Study Number: 08/H0401/12 
 
Which has been granted Ethics Committee approval by the Derbyshire Research Ethics Committee. 
 
Your patient will be spending a night in Lincoln County Hospital sleep lab where they will be monitored by 
a Pulse Oximeter as well as Audio & Video monitoring. The Video recording will be analysed and used to 
produce a template of sleep movement in the participants who have no history of sleep disorder. 
 
We would not anticipate any risks to your patient that you need to be aware of. Your patient’s care will not 
be changed by their involvement in this study. 
 
 
Yours sincerely 
 
 
 
 
 
Neil Gravill 
Consultant Clinical Scientist (Head of Clinical Measurement)  

LINCOLNSHIRE MEDICAL PHYSICS  SERVICES
LINCOLN DEPARTMENT 

Direct Line:  01522 573678    Fax:  01522 529858 
  Email: neil.gravill@ulh.nhs.uk 

Participant’s GP 
Practice address 
Practice address 
Practice address 
Practice address 
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Lincoln County Hospital 
Greetwell Road 

Lincoln 
LN2 5QY 

 
Tel: 01522 512512 

www.ulh.nhs.uk 
 

 
 
 
 
 Re:  
 
  Participant’s Name 
  DOB 
  NHS No (if known) 
  Address 
 
 
The above patient of yours has agreed that we can inform you that they have volunteered as a Non-
Symptomatic participant in the following Research Project: 
 
The Role of Movement Monitoring in the Assessment of Sleep Disorders – a pilot study 
 
Centre Number: ULHT 
Study Number: 08/H0401/12 
 
Which has been granted Ethics Committee approval by the Derbyshire Research Ethics Committee. 
 
Your patient will be spending a night in Lincoln County Hospital sleep lab where they will be monitored by 
a Pulse Oximeter as well as Audio & Video monitoring. The Video recording will be analysed and used to 
produce a template of sleep movement in the participants who have no history of sleep disorder. 
 
We would not anticipate any risks to your patient that you need to be aware of. We will not be looking to 
diagnose any medical condition in your patient, although we will advise you if any possible health issues are 
indicated during the study. 
 
 
Yours sincerely 
 
 
 
 
 
Neil Gravill 
Consultant Clinical Scientist (Head of Clinical Measurement)  

LINCOLNSHIRE MEDICAL PHYSICS  SERVICES
LINCOLN DEPARTMENT 

Participant’s GP 
Practice address 
Practice address 
Practice address 
Practice address 
 

Direct Line:  01522 573678    Fax:  01522 529858 
  Email: neil.gravill@ulh.nhs.uk 
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Centre Number: ULHT 
Study Number: 08/H0401/12 
Patient Identification Number for this trial: 

 
Questionnaire 

 
Project Title: The Role of Movement Monitoring in the Assessment of Sleep Disorders – a pilot study 
 
Please answer the following questions truthfully, to the best of your knowledge. The answers will be 
used to decide if it is appropriate for you to be included as a normal (non sleep apnoea) participant or 
as a symptomatic (sleep apnoea) patient for the purposes of this project. This questionnaire will be 
stored securely, together with your consent form in the hospital. Any of the information given to the 
university will be known only by your Patient Identification Number. 
 
 
Date of Birth    Weight   Height   Gender    
 
 
Do you snore regularly 
 
Do you suffer from insomnia or daytime sleepiness 
 
 
Are you aware of any sleep related disorder 
 
 
Score from Epworth Sleepiness Scale (attached) 
 
 
What is your average nightly sleep time (in hours) 
 
 
Do you have any of the following medical conditions: 
  

CONDITION YES NO 
Asthma   
Chronic Lung Disease   
Diabetes   
Thyroid Problems   
High Blood Pressure   
Cardiac(Heart) condition   

 
Do you take any regular Prescription Medication 
 
    Details   ……………………………………………………. 
 
 
________________________ ________________ ____________________ 
Name of Patient/Participant Date Signature 
 
_________________________ ________________ ____________________ 
Name of Person completing Date Signature 

Y / N

Y / N

Y / N

/ /

Y / N

M / F
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EPWORTH  SLEEPINESS  SCALE 
 
 
Name………………………………………………   
 
 
 

How likely are you to doze off or fall asleep in the situations described in the box below, in 
contrast to feeling just tired? 
 
This refers to your usual way of life in recent times. 
 
Even if you haven’t done some of these things recently try to work out how they would have 
affected you. 
 
Use the following scale to chose the most appropriate number for each situation:- 
 

 
0 = would never doze 
 
1 = Slight chance of dozing 
 
2 = Moderate chance of dozing 
 
3 = High chance of dozing 
 
 
 

Situation Chance of 
Dozing 

Sitting and reading 
 

 

Watching TV 
 

 

Sitting inactive in a public place (eg a theatre or a meeting) 
 

 

As a passenger in a car for an hour without a break 
 

 

Laying down to rest in the afternoon when circumstances permit 
 

 

Sitting and talking to someone 
 

 

Sitting quietly after a lunch without alcohol 
 

 

In a car, while stopped for a few minutes in traffic 
 

 

 
   TOTAL (Copy onto Questionnaire) 
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Sleep Volunteers Wanted 
 

 
Volunteers are required to participate in a research study 
– the role of movement monitoring in the assessment of 
sleep disorders. The purpose of this research is to 
investigate the use of computerised video monitoring in 
support of the diagnosis of sleep disorders.  
 
Your role would be to spend a night sleeping in the sleep 
laboratory at the Lincoln County Hospital. The overnight 
sleep will be captured by video cameras (with sound) and 
the recording will then be used as a normal sample data 
to compare against recordings from patients with sleep 
disorders.  
 
For further information  
 
 
 
 
Please contact: 
Ching-Wei Wang  
Email:  cweiwang@lincoln.ac.uk 
Phone: 01522 837107  


