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Abstract

The aim of this thesis is to construct a realistic, freeform 3D model of an object from a
single view, given the knowledge of the class it belongs to. “Classes” can be–fruits (oranges,
apples etc.), flowers (lilies, hibiscus etc.), faces etc.

Single view reconstruction (SVR) is a severely under-constrained problem and relies on
cues like shading, texture, occluding contour etc. In this thesis, first the projective proper-
ties of image silhouettes are exploited to effectively constrain the problem. We show how
intuitive user-input and other image-based cues such as multi-local singularities (cusps)
and creases can be incorporated to add more definition to the model. The problem is then,
to find the smoothest surface, given the set of constraints. All the above constraints are
incorporated as linear constraints in the optimization of a quadratic objective. The resul-
tant framework is convex and can be solved easily. The parametric surface representation
used here can model objects of any topology: genus 0, 1 or higher.

An object class is strongly bound by characteristic shape, texture and a family of
deformations. Thus, class information is an important cue for SVR, like texture and
silhouette. Therefore, the problem of simultaneously reconstructing and learning class-
specific shape models from photo collections is addressed next. Only a single view of each
object instance is available, so this is an extension of the class-based SVR problem. Object
classes which can be represented as wireframes are addressed, e.g . lily petals. We show that
Non-Rigid Structure from Motion (NRSfM) can be extended to the scenario where each
image is of a different object instance. However, this requires a novel method of defining
correspondences. Instead of first finding correspondences and then employing existing
Non-Rigid Structure from Motion (NRSfM) techniques, we frame this problem as one joint
objective which integrates the correspondence finding problem with the other variables
of NRSfM. This is solved jointly and analytically with effective bundle adjustment. A
specialization of this method to stereo is shown to be an improvement over existing stereo
approaches and methods in fitting 3D active shape models.

Work of this nature depends on learning from training data and often requires user-
driven annotation. Minimal, intuitive annotation is used during the course of this work.
However, we also show how class-based information can also be used for the automatic de-
tection and segmentation of class instances. Local image-based information is used to learn
a classifier. This helps to differentiate between image edges lying on object class bound-
aries, from others. This learning is used to improve detection and segmentation techniques
such as Chamfer matching and ObjCut. As a result an end-to-end class-based SVR sys-
tem is built, which automatically detects, segments and subsequently reconstructions an
object class instance with the above-mentioned techniques.
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Chapter 1

Introduction

1.1 Goal

The aim of this thesis is to construct a plausible 3D model of an object, given only one view

of the object and the fact that it belongs to a certain class. The term class here refers to

the nature of the object, which is indicative of its properties like topology, shape, colour,

texture etc. Classes can be generic such as fish, building, trees etc., or more specific—

clown fish, dolphins, lilies, ivy leaves etc. Class-based information about the object should

encapsulate the answers to questions such as:

1. What does the typical object class instance look like?

2. How much and what kind of variation can be expected in the class? Which of a set

of plausible instances are actually valid?

There are two aspects to the problem of class-based reconstruction:

1. Learn a robust, flexible class model from examples. An object class model (or shape

model) is the gist of class-based information, that can be used to generate individual

3D models.

2. Use this class model to generate valid hypotheses for the 3D model given an image.
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Figure 1.1: Learning class models: A collection of photos of lilies downloaded from the web

is used to automatically learn a deformable shape model for the lily petal class. The wireframe

reconstructions of lily petals and interpolated surfaces are seen in the bottom row. The projection

of the wireframe upon the image is seen for visual evaluation of error in reprojection. The petal

surfaces are coloured according to their depth values (z coordinates) in the petal coordinate frame

for better shape perception.

Both aspects are relevant for research in class-based reconstruction. In figure 1.1 we show

an example of how an object class (lily petals) is automatically learnt from an unordered

photo collection. In figures 1.2 and 1.1 we show how such class models can be used to

automatically detect, segment and reconstruct object class instances.

Single view reconstruction depends on the use of available cues about the nature of

the object’s shape such as shading, texture etc. This thesis mainly focuses on how ‘object

class’ is one such cue that can provide prior knowledge on the object shape and appearance.

The object silhouette is another important image cue that constrains the family of possible

3D reconstructions to a plausible set. As a part of our work, we also show how an object’s

silhouette in a single image can be used to effectively model it in 3D. Figure 1.4 shows how

objects of varying topology and complexity can be modelled by exploiting their silhouette

information in novel ways.
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Figure 1.2: Class-based Single View Reconstruction I: Class models for classes such as bananas

and oranges are learnt for a wide variety of pose, illumination, object variation and occlusion.

This class model is used to automatically detect and segment the object instances. Given this

segmentation, simple silhouette-based reconstruction can be used to reconstruct the individual

instances automatically. Reconstructions for some example images are seen here. Information

about the class ‘orange’ is used to automatically locate, segment and subsequently reconstruct it.

1.2 Challenges

In the field of Computer Vision and Graphics, the reconstruction of three-dimensional mod-

els of objects from multiple images has been an extensively researched problem. Methods

like triangulation and space carving give us an estimate of the depth of a scene, in the

presence of multiple images and camera information. For one image however, triangula-

tion (or space carving) cannot be performed. An infinite number of 3D models can be

found which project to the object in the image.

In the absence of multiple images, other image cues such as shading, geometry, texture,

occluding contour etc. can still help in the retrieval of shape information. Again, a large

amount of work has been done in these areas. A drawback of many of these methods is

the need for elaborate, specific information, inevitably substituted by assumptions–such

as number and nature of light sources, reflectance models etc. in the case of shading, and,

nature and distribution of texture for texture-based cues.

Nevertheless such cues are crucial and information about the object class forms one such

potent source of information. Objects belonging to a certain class display characteristic

visual cues. Therefore, this field of work offers many potential interesting problems to

work on—how to learn object class appearance and shape characteristics from commonly

available examples in the world? How to use this knowledge to then detect, segment and



1.3 Motivation 5

(a) (b) (c)

Figure 1.3: Class-based Single View Reconstruction II: Given and image (a) and a class model

for lily petals (PCA bases derived from a set of 3D exemplars learnt from stereo, similar to [15]), we

can fit a global flower model to best fit the given image. The mesh (b) and surface (c) corresponding

to the reconstruction can be seen above in different views. First a global flower model with rigid

petals is fit so that the pose and a rough estimate of the petals is assembled to form a valid flower

projecting to the image. Subsequently, each petal is independently deformed to create the best

reconstruction for the given image.

make intelligent guesses about object shapes? This field of work has gained momentum

recently owing to renewed approaches based on geometry and machine learning.

1.3 Motivation

The general philosophy about reconstruction is: the more (images), the merrier (recon-

struction). A second image enables better reconstruction of a part occluded in one image.

Ambiguity and noise can be averaged out effectively too.

However, the importance of being able to guess accurately with minimal information—

the crux of single view reconstruction— cannot be overstated. Most 3D models are ac-

quired either thorough painstaking modelling on part of a user of a modelling system such

as CAD, or through measurement devices such laser range systems. Such software, hard-

ware and human effort is expensive. In many situations, acquiring multiple images is not

possible, or practical. Forensic data, virtual paintings (Van Gogh self-portrait), archive

photographs of people or towns form a few such examples. For many sketch-based mod-

elling methods the user wants to create rapid 3D prototypes with minimal input. Multiple
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(a) Teapot (genus 2)

(b) Ostrich (with concavities)

(c) An ensemble of models for ‘Alice in Wonderland’

Figure 1.4: Silhouette-based single view reconstruction: Silhouette-based information

can be used to create objects with holes (genus 2) such as the teapot (a) and those with con-

cave silhouettes such as the ostrich (b). A collection of objects modelled very simply (foxgloves,

hookah, caterpillar) can be used to create quick illustrations of storybook figures such as ’Alice in

Wonderland’ (c). (See fig 3.12 for more examples).
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illustrations involve a lot of input, making the modelling framework less worthwhile. This

is why the problem of single view reconstruction is relevant.

The goal of learning and using class-specific information is difficult to implement in

practice without targetting a very specific problem or approach. Humans are naturally

good at gleaning such information from the ample examples in the world around us. E.g .

we find it easy to predict human pose and shape from an image silhouette, predict a golf

ball’s shape from its shading and texture etc. Thus, the use of class-based information is

useful to create algorithms for guessing specific families of shapes well.

Human perception is prone to biases and faulty assumptions too, as is illustrated by

numerous examples of popular visual illusions. Therefore, in addition to being inspired by

the human ability at using class-specific information for this task, the real goal is also to

outperform them eventually. Then the methods could be used for testing the veracity of

human depth perception too.

1.4 Road Map

Chapter 2 reviews popular methods in the fields of single view reconstruction, surface

representations, deformable object modelling and object detection and segmentation in

our literature survey.

In Chapter 3, a method for single view reconstruction of objects from silhouette-based

information is presented. The method can model a variety of topologies, self-occlusion

and make use of image-specific information such as multi-local singularities, creases etc. as

shown in figure 1.4. Our surface is a solution to a convex optimization problem where all

the above information can be expressed as linear constraints.

Class-based single view reconstruction involves the learning of class-based information

and then using it to predict the best 3D model for a given image. We are particularly

interested in the first part of the problem and show how class-specific deformable shape

models can be learnt from a collection of images in Chapter 4, as illustrated in figure 1.1.
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When each object instance is a different class example, reliable point correspondences are

hard to find. However, the correspondence between higher-level components such as curves

(for a deformable lily petal class) can be used to learn deformation. The problem can be

framed as a combination of regularized reprojection error where all variables—cameras,

3D shape model and correspondences—can be jointly learnt.

Automation is one of the goals of this work. In Chapter 5, user annotation is eliminated

with the help of class-specific object detection and segmentation (see figure 1.2). Local

image-based information is used to learn a classifier that differentiates between edges on

an object class boundary from other less relevant ones. This learning can be used in state

of the art methods for improved object detection and segmentation. Given a segmented

object, methods from Chapters 3 and 4 can be used for automatic reconstruction.

Appendix A describes the user interface used to extract contours and annotate images.

1.5 Publications

Work from chapter 3 has appeared in Eurographics 05 [153] and also CVPR 06 [154].

The work in Chapter 4 is still under review. The work in Chapter 5 has appeared in

ICVGIP 06 [155].



Chapter 2

Literature Survey

This thesis deals with the problem of object reconstruction from single views based on

class-specific knowledge. The process of reconstruction involves: (i) applying class-specific

knowledge, (ii) input processing (e.g. object detection and segmentation), and, (iii) finding

a plausible 3D model for the given image. In this chapter we will take a quick tour of

existing methods for different aspects of the problem.

Overview: We discuss the various subjects pertinent to this thesis in their order of

relevance to the various chapters. First, the existing methods of single view reconstruction

of objects in the presence of specific cues (contour, geometry, shading etc.) are introduced

in § 2.1. This, along with the discussion of surface representations in § 2.2 is useful for a

better understanding of chapter 3 where we use image-based and user-driven information

to perform single view reconstruction from image silhouettes.

The goal of class-based single view reconstruction is associated with two problems: (i)

Defining and learning a class model, which is discussed in § 2.3.1, and (ii) Deploying class

models to reconstruct an object from a single view (discussed in § 2.3.2). In chapter 4, we

introduce our method for learning deformable class-based models from image collections.

To gain insight into this, methods for learning class-based models from multiple views are
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studied in § 2.4. We also use class information to automatically detect and segment class

instances, to eliminate the need for user annotation and help in creating an end-to-end

system for automatic single view reconstruction. This is described in chapter 5 and the

various existing avenues of methods in this area are discussed in § 2.5.

2.1 Image-based and user-driven cues for single view object

modelling

Even in the presence of multiple views, reconstruction is subject to ambiguity depending

on the quality of available calibration, correspondences etc. Naturally, single view recon-

struction is prone to much more ambiguity. In the absence of other information, an infinite

number of models can lay claim to the creation of any one given image. Single view re-

construction methods using local cues such as shading, texture, geometry, silhouette etc.

are prone to problems and therefore have to resort to various domain-specific assumptions,

user-input, topology information and global constraints for disambiguation. Class-based

learning can be used to provide such disambiguation cues in reconstruction. Object char-

acteristics such as topology can be constrained to create more plausible 3D models. In this

context we will now discuss the range of computer vision cues for deriving shape such as

occluding contours, geometry, shading, texture, and sketch-based modelling, followed by a

discussion of more global models such as those used in class-based reconstruction methods.

2.1.1 Shape from Contour

Koenderink [98] pointed out that the apparent curvature of the occluding contour is related

to local surface curvature by the following relation: for any vantage point and without any

restrictions on the shape of the rim1, a convexity of the contour corresponds to a convex

1Rim: closed curve on the surface where the rays from the camera centre are tangent to the surface



2.1.1 Shape from Contour 11

Figure 2.1: Figure from Terzopoulos et al . [191]: Given a squash image, user initializes spine.

A deformable generalized cylinder is deformed iteratively to generate a symmetric smooth squash

that correctly projects to the image.

patch on the surface and a concavity to a saddle shaped patch. Inflections of the con-

tour correspond to the flexional curves (also called parabolic curves) of the surface. This

important result cleared existing misconceptions at the time about the relation of image

silhouettes to occluding contours. The initial proof by Koenderink was for smooth sur-

faces in Euclidean spaces. This was extended to perspective projection by Lazebnik and

Ponce [108]. Koenderink’s work was revisited by Barrow and Tenenbaum [7], Giblin and

Weiss [72], Cipolla and Blake [30], among many others. [30] extended the relationship

between the apparent contour and the Contour Generator for dynamic scenes with per-

spective projection, to provide useful qualitative and quantitative constraints on surface

shape.

In as early as 1987, inspired by active contour models [96], Terzopoulos [191] (see

figure 2.1) proposed the idea of retrieving deformable parametric surface models for objects

of cylindrical topology from single monocular images. An approximate contour is initialized

around the object. Image-based forces latch this contour to the object silhouette and

simultaneously drive the spatial deformation of the corresponding 3D model, according to

variational principles [69]. The model undergoes this deformation in an iterative manner

and is forced to match its outline in the image as it develops. Symmetry is encouraged

with the use of appropriate terms instead of forcing parametric shape family. In their

optimization, a complex combination of non-linear functionals are used to model the image-
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based, axis aligning and model inflating forces. Optimizing the combination of these is

difficult and involves using iterative numerical integration schemes. Being non-linear this

optimization is sensitive to the initialization. A similar idea was used to find surfaces in

three-dimensional images by Cohen and Cohen [31].

2.1.2 Shape from Geometric Information

As early as the 70s, there was interest in using geometric information for scene under-

standing. Waltz [202] studied the use of pre-annotated information in the form of line

drawings in images, for scene understanding and shape recovery. Formalisms encoding all

possible configurations of lines, junctions and surface intensities of adjacent regions were

used in conjunction with the properties of inter-surface support and gravity to enumerate

all possible scene configurations and eliminate implausible ones. Combined with human

input and the use of shading and viewing position constraints, these rules were used to

recover scene structure. In the 1990s such methods were augmented by the use of more

geometric properties. Liebowitz et al . [115, 116, 118, 117] showed how simple properties

of objects in single images, such as perpendicularity and parallelism of lines, can be used

to derive the camera and subsequently metric reconstructions (up to scale) of piecewise

planar objects in the scene. Sturm and Maybank [185] used similar geometric constraints

to construct an interactive system capable of simultaneously calibrating and reconstructing

a piecewise planar object from an image. This algorithm is framed as a least squares fit-

ting problem between points and planes. Their method consists of an alternative iteration

between fitting planes in 3D and back-projecting image-based information to intersect the

model.

Criminisi et al . [43] (see figure 2.2) utilize similar geometric rules to reconstruct per-

spectively distorted images. However, they additionally use dimensions of known objects

to derive dimensions of other objects using relative measurements thus creating Euclidean

reconstructions of scenes and even hypothesize convincing models for renaissance paintings.
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(a) from Liebowitz et al . [116] (b) from Criminisi et al . [43]

(c) Image from [116] (d) Reconstruction of (c) from [116]

Figure 2.2: (a,c,d) Geometric properties such as parallel and perpendicular lines can be used to

compute vanishing points and then construct metric reconstructions of buildings. In the presence

of objects of known dimensions, knowledge of relative sizes can be used to retrieve a near accurate

euclidean reconstruction as seen in (b).

Figure 2.3: Image → superpixels → constellations → labelled based on models → 3D

scene; from Hoiem et al . [87]

The above methods need user annotation and input. Hoiem et al . [87] (see figure 2.3)

devise a method to remove this dependence and automatically produce texture-mapped

pop-up models of piecewise planar scenes. The algorithm uses colour and texture statistics

to group image pixels into superpixels and constellations. In addition to colour and texture,

their method uses location, shape and geometry to infer geometric labels (like ‘ground’,

‘sky’ etc.) for constellations using models learnt from training images. These labels are

then used to ‘cut and fold’ the image into a pop-up model. The automatic nature of
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this algorithm naturally means that good reconstruction is produced only for very simple

images. However, the information used by this approach is largely based on constellation

based methods ignoring the more geometric approaches preceding it.

The popular methods of producing piecewise planar reconstructions exploit the con-

straints provided by the join of different planes and constraints for creating pop-up models

but fail to incorporate other cues in the form of occluding contours and more global class-

based priors. Geometric information can be used to construct surfaces more generic than

Figure 2.4: Given a plane sheet of paper, and a smooth 3-D open curve in Cartesian XYZ space,

the paper is bent so that one edge conforms to the specified curve; from Gumerov et al . [83]:

just piecewise planar ones. Gumerov et al . [83] (see Fig. 2.4) show how the boundary of ap-

plicable surfaces2 can be exploited to fully recover geometric structure from a single image.

Given additionally some 3D correspondences of points in the image, or the 3D mapping

for part of the boundary of the surface, a set of nonlinear higher order partial differential

equations can be solved to compute a surface. Salzmann et al . [166] show similar results

for inelastic surfaces. In the presence of much more information such as camera calibration

and correspondences, they show that this can be solved in closed-form.

2Applicable surface: isometric surfaces with vanishing Gaussian curvature. These surfaces satisfy certain
families of partial differential equations. Paper is an example of an applicable surface.
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These theoretical and practical results enable us to easily reconstruct a variety of

primitives–paper, stiff leaves etc. assuming the image can be appropriately parsed, paving

the way for object specific reconstruction.

2.1.3 Sketch-based Modelling

Completely automatic modelling is ambitious and prone to error. Image-based cues can

be replaced by user-drawn forms of input. Sketch-based modelling methods, use intuitive

and approximate user input for rapid prototyping of objects and are important in graphics

and animation.

Figure 2.5: My implementation of [211] is used to reconstruct a teapot and jelly beans (compare

with our improvement in chapter 3, fig 3.12). Insertion of constraints by user is shown on the left.

The constraints are used to create a monge-patch representation of the teapot in 3D on the right.

Modelling even simple jelly beans requires considerable effort.
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(a) (b)

Figure 2.6: (a) Zhang et al . [211]: 3D modelling a Van Gogh painting using Zhang’s technique.

(b) sketch [210]: A series of strokes is drawn in the film plane in red (left). The salient vertex is

projected into the scene thus defining the placement of new geometry (green).

Zhang et al . [211] (see Fig. 2.6) proposed an approach for reconstructing high quality,

free-form, texture-mapped, 21
2D scene models (Monge patches [79]) from a single image

with arbitrary reflectance properties. It uses a set of user-specified inputs in the form of

positions and normals (seen in figure 2.5) to create a smooth 3D surface (by minimizing a

convex objective function) which satisfies these constraints. The use of hierarchical trans-

formation with adaptive resolution as prescribed by Szeliski [186] improves the computa-

tional speed. The technique is interactive and allows fast reconstruction. The speciality of

this system is the use of linear constraints and a convex objective function, which inspires

us greatly. The downside is that they construct a 21
2D representation of the scene.

sketch [210] was an important milestone. This gestural environment is used for rapidly

conceptualizing and editing approximate 3D scenes with minimal effort. The system al-

lows the user to create and transform objects (these are mostly made up of axis-aligned

line drawings) in a constrained way, thus eliminating the need for complex constrained

optimization for generation of models. The system stores the semantics of gestures and

relationships between objects in the world; such as positional relationship: The painting is

on a wall, therefore it must always be translated along the wall. With such relationships, it

is easy to build and modify a scene. Though simplistic in its approach and object classes,

this work was an inspiration for a range of subsequent work.

Following sketch, Igarashi et al . [89] (see figure 2.7) came up with the sketching
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(a) (b)

Figure 2.7: (a) Igarashi et al . [89]: The user drawing and 3D models produced by Teddy. (b)

SmoothSketch [95]: extends the the idea. Visible contours of a shape are used to infer the

hidden contours, including hidden cusps, and then create a fairly smooth 3D shape matching those

contours.

interface Teddy, for quick and easy design of freeform “rotund” models represented by

polygonal meshes. User-drawn 2D freeform strokes are used to construct a 3D polygonal

surface: it inflates the silhouette using silhouette-medial axis distances and constructs an

object of spherical topology. This is a good system for rapid prototyping. It has gestural

operations allowing for complex editing of an object. With simple strokes the user can

extend or scoop out parts of the object. The ad-hoc inflation process is designed for simple

silhouettes and complex topologies cannot be constructed.

Karpenko et al . [94] modified Teddy’s polygonal surface representation to variational

implicit surfaces and implement several new user-interaction elements to simplify the mod-

elling of interesting hierarchies. This representation of smoother surfaces has the side-effect

of rounding off sharp corners. Karpenko et al . [95] overcame the topological limitations

of Teddy by proposing SmoothSketch, a method that can handle complex surfaces (see

figure 2.7). Importantly, it allows the user to express complex notions such as cusps and

T-junctions and infers the correct parts of the hidden contour from incomplete user-drawn

silhouettes.

Sketch-based methods eliminate certain issues from the reconstruction process such

as reliability in feature detection. Also, there is scope to construct effective user-input

environments to ensure maximal output for minimal effort. In the absence of accurate

automatic systems, effective sketch-based input mechanisms are important for the purpose
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of single view reconstruction.

2.1.4 Shape from Shading (SFS)

Recovering shape from shading involves the use of varying shading on an object’s surface

to solve for its shape. By studying how an image is formed, we learn how to trace our way

back to the shapes which gave rise to them. Most methods of SFS assume Lambertian

reflection models i.e. gray level at a pixel depends on the light direction and the surface

normal without being affected by inter-reflections. Similarly the light is assumed to be

a point source. Despite simplistic assumptions, the problem of reconstruction is difficult

because for a given gray value at each pixel, surface orientation must be determined. The

solution is under-constrained and ambiguous. Horn et al . [88] discuss how to ascertain

the plausibility of the shading in an image, before trying to recover shape from it. The

SFS problem can be expressed as an energy minimization problem with the following

constraints: (1) Brightness constraint: the reconstructed shape should produce the same

brightness as the input image at each surface point, and (2) Smoothness constraint: ensures

the recovered surface is smooth and overcome problems due to noise. The shape at the

occluding boundary is given for initialization. Brooks and Horn [26] minimized this energy

function, in terms of the surface normal using Variational Calculus. Frankot and Chellappa

[63] enforced integrability to this work, in order to recover integrable surfaces. Surface

slope estimates from the iterative scheme were expressed in terms of a linear combination

of a finite set of Fourier basis functions. Their results showed improvements in both

accuracy and efficiency over Brooks’ algorithm. Szeliski sped it up using a hierarchical

basis pre-conditioned conjugate gradient descent algorithm in [187]. Alternative to the

smoothness constraint, Zheng and Chellappa [213] introduced the concept of intensity

gradient constraint, which specifies that the intensity gradients of the reconstruction and

input image should be similar. This is easier to implement, with no special requirements

and converges more quickly.
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In [148], Pentland used the linear approximation of the reflectance function in terms of

the surface gradient, and applied a Fourier transform to the linear function to get a closed

form solution for the depth at each point. The linear approximation can cause trouble,

when there are large non-linear terms.

It is useful to use more than one cue at a time, so that the one can help disambiguate

the results from the other. Shimshoni and Ponce [177] take on the problem of deciding

whether a given 2D line drawing comes from a valid polyhedron. Given an accurate

reflectance model for the surface (such as Lambertian), they fuse the problem of SFS with

the constraints of projected polyhedra to verify their silhouettes. Using the cues together

is a good idea, but the presence of local minima necessitates good initialization.

Despite many intelligent attempts, the problem is that the large number of assumptions

made by SFS techniques do not hold: e.g . surfaces are never really Lambertian, there are

multiple light sources and the methods are very sensitive to noise. Texture, despite also

being a local cue, has been a comparatively more effective cue to exploit for surface recovery.

2.1.5 Shape from Texture (SFT)

Gibson [73, 74] was one of the first to propose psychological theories about how the human

perception relies on gradients of features, stressing on the importance of gradient of texture

on receding planes. Given the frontal view of a texture element, its projected view from

the surface of an object, can be used to estimate surface shape. Witkin [205] pointed

out that the distorting effects of projection must be distinguished from texture properties

themselves and proposed a method for reconstruction of planar and curved surfaces. He

assumes orthographic projection and uniformity of texture in all directions (isotropy).

Kanatani [93] added an assumption of homogeneity of texture, i.e. constant number of

texels per unit area on the surface. However he showed how planar and curved surfaces

can be recovered under perspective projection using geometric properties of the surface.

Later, Forsyth [61] constructed a maximum a posteriori estimate of surface coefficients
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Figure 2.8: My implementation of [120] is used to reconstruct a golf ball and a strawberry using

normals derived from texture.

using the deformation of individual texture elements. This method does not need any

information about the boundary of the observed surface or the distribution of elements.

An inhomogeneous, marked Poisson point process is used to model the surface texture.

For generic orthographic view and texture, each texture element yields the surface gradient

unique up to a two-fold ambiguity. Each image texel can be expressed as an affine transform

(with a degree of freedom = 3) of the model texel. By assuming one of the texels as a

model texel, the transforms for the rest can be found. In order to recover the surface, the

texture imaging transformation is found at each of a set of scattered points up to a sign

ambiguity. Using priors over the surface surface with an Expectation-Maximization like

formulation, the ambiguity of each texture element’s transformation is removed, to yield

a smooth surface. Loh et al . [120] use a similar method to extend this for perspective

projection. Without any assumptions about the texture, they show how the frontal texel

can be estimated. A search is conducted over all possible frontal texels with imposed
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surface smoothness, to estimate a unique, consistent estimate of frontal texel and hence a

consistent surface shape (see figure 2.8). White and Forsyth [203] show that ambiguities

in estimation of texture normals can be broken using shading cues.

SFT methods have been more effective than SFS methods in general. There is however

the need for global models and other cues such as occluding contour. In general, research

in SFS/SFT methods have taken a backseat in recent times in favour of more class-specific

methods with global models and probabilistic treatments.

2.2 Surface representation

How a 3D object surface should be represented is an important question for the purposes of

computing and displaying the 3D object. There are several ways of grouping the forms of

surface representation: analytic vs. numerical, explicit vs. implicit, and so on. Depending

on the nature of the task and the limitations different surface representations may be

desirable.

Piecewise planar surfaces: Polygon meshes are one of the most popular methods of

surface representation. A smooth object surface is approximated by a discrete mesh of

polygons (usually triangles). A list of ordered vertices and faces represent the object.

Objects of arbitrary topology can be represented. The resolution of the mesh is often

decided by bounding the error in representation of the actual surface. The resolution may

be varied depending on surface complexity enabling more polygons in high curvature areas.

Alternatively, uniform resolution across the surface may be desired. Geometry images [82]

represent an irregular surface mesh by reparametrizing its characteristics such as the x, y, z

coordinates, normals etc. as the the r, g, b values of an equivalent regular grid-based image

representation. By finding an ideal cut and a parametrization, image-based compression

techniques can be used to store a model more efficiently without losing important surface

detail (an example is seen in figure 2.9). Availability of computing resources have made it
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Figure 2.9: Geometry images [82]: The high resolution 3D bunny (with 70K faces) can be

reparametrized by a mere 127 × 127 geometry image. The resulting 3D model approximates the

actual 3D bunny with reasonable accuracy.

possible to store arbitrarily high resolution models hierarchically that can be rendered and

edited at adaptive resolutions [47, 109].

Measures such as normals, second derivatives and curvatures are important for various

tasks, such as representation, shading etc., and can only be approximately computed for

such methods. Effective methods for creating, editing and fusing mesh-based models make

it popular with modelling methods such as Teddy [89] (see figure 2.7). Alternatively,

many modelling methods use other surface representations: parametric, implicit and point

clouds, for actual construction of an object. For final representation and rendering, all

other representations can be converted to meshes and vice versa ([58, 102]).

Monge patches: The surface may be treated as a depth map which depends on the x, y

values of the surface [79]. Such an explicit surface has the functional form z = f(x, y).

Such 21
2D surfaces are not fully freeform. E.g . a Monge patch cannot intersect a ray per-

pendicular to the x, y plane more than once, nor can it be tangential, as seen in figure 2.10.

This representation is simple to use and has been the basis of work such as Zhang et al .

[211] (see figures 2.5,2.6) and various work on retrieving shape from shading.
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Figure 2.10: (a) can be represented as a monge patch but (b) cannot. (b,c) can however, be

expressed as parametric surfaces. Each point on the parameter space (u,v) is associated with a

position on the surface r(u, v). The normal at r is given by n and the derivatives along u and v

are given by ru, rv

Geometric primitives For objects whose topological nature is known geometric primi-

tives may be used for effective representation. E.g . topologically cylindrical objects can be

represented by generalized cylinders. They are defined by the medial axis, and discs along

the axis length and normal to it, defining the surface around it. These have been popular

for defining axially symmetric objects. Terzopoulos et al . [191] (figure 2.1) use deformable

generalized cylinders to model simple objects from monocular views.

Volumetric primitives such as superquadrics [6, 147] have been used for representing



2.2 Surface representation 24

relatively simple, closed shapes. A 3D function with 6 degrees of freedom, it can be

expressed in implicit or parametric form. Deformations such as tapering, twisting and

bending can be added to represent more complex objects. Despite this flexibility, the

modelling power of methods such as generalized cylinders and superquadrics is limited.

Terzopoulos and Metaxas [190] add a local deformation field simulating forces and user-

interaction to enable representation of a wider range of models. Their surface was effectively

parametric, with a superquadric regularizer. In this scheme, complex topology would

require representation as a set of multiple superquadrics, somewhat like an articulated

model.

An interesting surface representation is that of ribbons [161]. They are plane shapes

obtained by sweeping a geometric figure (generator) along a plane curve (axis, or spine).

Blum, Brady and Brooks are three popular types of ribbons. Blum ribbons are obtained by

sweeping a disc; Brooks ribbons are obtained by sweeping a line segment making a constant

angle with the spine, while Brady ribbons are obtained by sweeping a line segment whose

extremities form a local symmetry (see figure 2.11). Each ribbon can only represent a

limited family of shapes, e.g . the Blum ribbon is equivalent to a generalized cylinder.

However, each type of ribbon (see [161]) has important properties that are important

for its generation and recovery from images. Two points on the boundary of a Blum or a

Brady ribbon which correspond to the same axis point form a local symmetry. Such ribbon

pairs can be found by testing all possible pairs of contour points for local symmetry, and

these ribbons pairs can in turn be grouped into ribbons. Blum and Brady ribbons can be

segmented using local symmetries (see Brady and Asada [21]). Ponce [151] proved several

properties of ribbons and showed that for the specific skew-symmetric class of Brooks

ribbons, contour curvature could be used as a local signature to characterize point pairs.

This is used to find (using methods from [140]), segment and even recover 3D structure

for this class of ribbons.
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(a) (b) (c)

Figure 2.11: Ribbons: Examples from Ponce [151]. (a) Blum ribbon: generated by sweeping

a disc along a plane curve. (b) A Brooks ribbon is generated by sweeping a line segment along a

plane curve. The angle between this line segment and the tangent to the curve is constant. (c) A

Brady ribbon is defined by local symmetries

Parametric surface: A surface can be represented as a function of a set of parameters

which adequately represent the surface dimensionality. For a 2D manifold, surfaces can

be made truly freeform by the following parametric representation [x, y, z]u,v = f(u, v).

Each point on the parametric grid represents a unique point on the surface and vice versa.

One of the advantages of parametric surfaces is the ease of evaluating measures such as

position, tangency and curvature at points along the surface, and ease of traversal along

the manifold. This representation has been used in a variety of work such as [191, 154].

Parametric surfaces are not capable of handling arbitrary surfaces and topologies without

the help of other constraints and modifications, but work such as [154] shows how this can

be done.

Non-uniform rational B-spline (NURB) surfaces and Bezier surfaces are special cases

of parametric representation where a surface is represented by a set of piecewise smooth

polynomial patches [59, 51]. Compared to polygonal meshes, each patch can be curved

and is a weighted combination of basis functions of a specific order (e.g . cubic splines)

and therefore a surface can be represented with higher accuracy and reduced storage.

Measures such as normals, curvature etc., can be more accurately computed making further

processing such as shading easier.
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Implicit surfaces: The relationship between the different coordinates of the object sur-

face can be expressed as a function f(x, y, z) = c. In implicit surfaces, it is not possible

to extract one coordinate as a closed-form function of the others. Therefore, the function

defines a potential field and the surface is the locus of a value in the potential field (given

by e.g . c = 0). For a closed surface all points on the inside of the surface may have c < 0

while points on the outside have c > 0. This easy representation of an object’s interior is

one of the advantages of this representation. This representation has been used by work

such as [181, 94] and is capable of representing variable topology easily. For example,

varying c can result in smooth topological variation. Surface editing is also made easy, e.g .

fusing two objects is equivalent to summing their potentials. Similarly, collision detection

is easier. The implicit function itself may be defined either by the analytic function shown

here, or by discrete samples and other procedural methods. For the purpose of visualiza-

tion the potential field is used to find a polygonal output (using e.g . the marching cubes

algorithm [121], or subdivision based algorithms [131]). Rendering can also be performed

without intermediate surface representation with the use of methods such as ray tracing.

Bloomenthal [16] provides a comprehensive survey of methods in implicit modelling.

2.3 Class-based Modelling

So far we have surveyed the range of single view reconstruction strategies depending on local

cues. To tackle ambiguities and noise, they sometimes make use of a global smoothness

prior [120, 203, 191]. In some examples, even scene constraints, such as support between

interacting objects and with the ground plane, have been used to effectively constrain

reconstruction [43, 87]. Despite such measures most methods we have discussed so far are

largely local and the obvious need for a higher level of class-based understanding has been

highlighted many times. In this context, we will discuss the role of class-based models for

shape recovery.
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2.3.1 Shape models

The simplest model of an object is a perfect sample denoted by a constant surface, e.g . the

mean or mode. This would be the compared with all new instances and their similarity

could be measured according to some distance measure. However, a model like this only

allows limited variation from the given sample—equal penalty for any dimension mismatch–

and therefore is often an incorrect model for variation. Therefore, more sophisticated

models representing plausible object variations are needed. A broad survey of existing

methods can be found in [33].

Hand-crafted models: Flexible models can be built from simple components–circles,

lines, arcs etc. The parts can move around relatively and undergo variations in scale,

orientation etc. Yuille et al . [209] model facial parts using parametrized circles and arc. An

approximate fit of the model to an image is refined by changing parts of the model. Black

and Yacoob [14] use a similar model for the purpose of tracking and recognizing human

expression. Such models capture detail for well known and expected shapes, but lack

generality and require a completely new manually-specified model for every application.

More recently, there has been work on modelling specific classes of objects like trees [142]

and flowers [90] (see Fig. 2.12). These methods use the intrinsic properties of flowers and

trees, to make the process of user-input and modelling easier.

Articulated models: are an effective way of representing a deformable model by slid-

ing or rotating joints connecting piecewise rigid components. Beinglass and Wolfson [10]

showed how articulated objects based on automatically detected interest points could be

used for object recognition. With the use of the Generalized Hough Transform, they show

how projective transformation can be handled. Connected sub-parts vote for each joint

they’re connected at, and the method attempts to handle occlusion too. Grimson and

Lozano-Pérez [81] also worked on similar lines by examining hypotheses on the basis of

local measurements (using his “interpretation tree” approach) while the articulated models
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Figure 2.12: Ijiri et al . [90]: The structural information of a lily is used to design an easy system

for user-based sketching and editing.

themselves are in the form of polyhedra (therefore restricted in shape). In modern times,

articulated models have been used in Pictorial Structures [52, 56] for object detection and

recognition.

Fourier shape models: Shapes are often represented over some low-dimensional sub-

space of bases. These bases can be the trigonometric functions that form the backbone

for Fourier expansion. By varying the parameters and the number of terms used, different

shapes can be generated and the complexity of the model controlled. Staib and Duncan

[184] (also see Scott [174]), recognize the need for global shape models as opposed to the

existing local techniques in use. They replaced traditional parametric models of limited

power such as cylinders, polynomials, superquadrics etc. with parametric Fourier shape

models. There are some knobs—e.g. curve complexity can be controlled by coefficient
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choices. Though such models can be proved equivalent to other statistical models, it is

harder to encode shape variations to reflect in the parameters of the trigonometric expan-

sion terms. Open boundaries pose one such problem. Another classic is the difficulty of

approximating sharp features with a limited number of terms.

Finite Element models: Finite element methods provide another method for mod-

elling objects as physical entities with internal stiffness and elasticity. Similar to Fourier

transforms, the shapes are represented as low-order frequency displacement eigenvectors

corresponding to vibration modes of the object (see Pentland and Sclaroff [146, 145], Ter-

zopoulos et al . [190]).

Local models of shape: Classes such as cloth are not stiff enough to be solved with

method such as [166, 83] and yet are not simple enough to be modelled by linear PCA

based models. In different attempt, Salzmann et al . [167] learn deformation models for

local patches instead of attempting to learn global models: the space of deformations of

smaller parts is smaller, making it easier to learn. The idea is to combine this prior over

the collection of patches forming a surface to retrieve a valid shape hypothesis. They are

forced to approximate their optimization at various levels, leading to a less than ideal

implementation of an ambitious formulation.

Statistical models of shape: Point Distribution Models (PDMs) [37] propose that any

class deformation can be expressed by a mean and modes of variation. Shapes are typically

represented by a set of representative ‘landmark’ points. Different shapes are aligned with

each other using algorithms such as Procrustes alignment [76], or Iterative Closest Point

algorithm [212]. A statistical method (such as PCA) is then used to extract a mean and

modes of variation representative of this class of objects from given samples (see [198, 139]).

PCA techniques are equivalent to fitting a Gaussian to the exemplar data. A limitation

of linear PDMs is that non-linear variations must be approximated by combining linear
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variations, which sometimes results in a non-optimal model. Also linear variations of the

bases may produce implausible object shapes or be unable to produce valid ones because

of the inaccuracy of linear models. Bregler and Omohundro [24] attempt to improve the

specificity of PDMs by deriving multiple subspaces from different clusters of training data

and constraining potential shapes to lie within the intersection of the potential subspaces.

Heap and Hogg [86] alternatively suggest using a two-level hierarchical implementation in

shape space to improve specificity, where the lower level accommodates sub-parts and their

individual PDMs.

Heap and Hogg [85] offer a clever workaround by transforming the space in which the

shapes are represented to account for the non-linearity. By transforming the Cartesian co-

ordinates for non-linear components of hand models to lie in a polar space, they are able to

model the nature of deformations more accurately. A polynomial regression generalization

of PDMs by Sozou et al . [183] allows landmark points follow polynomial paths (as opposed

to linear) with variation in shape parameters and thus capture more non-linearity. Subse-

quently they [182] also use a multi-layer perceptron to perform non-linear PCA which is

more effective in capturing non-linear variability. Inspired by Mika et al . [132], Romdhani

et al . [159] use a Kernel PCA approach to handle non-linearity in the presence of pose

constraints for reconstruction with multiple views. The optimization between a candidate

model and the target is now conducted in the feature space by using the kernel trick.

Cootes and Taylor [40] approximate the density estimate of the point samples (each

point is a shape sample) by a mixture of Gaussians. Though the model continues to be

linear, they are able to model complex variations in shape. Additionally they achieve higher

specificity by being able to more effectively specify invalid regions between valid regions.

Cootes et al . [39] extends this to include linear parametric models of shape variation which

now define a full diffeomorphic deformation field (similar to Bookstein [17]). Landmark

finding can be integrated into the process of constructing the warp field in each image thus

eliminating the need for explicitly specifying landmark points.
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2.3.2 Fitting models from image cues

Given a shape model, it must then be fitted to data by performing parameter estimation.

The problem can involve fitting a test shape in 3D, or, fitting an object in 3D from its

silhouette in 2D.

Fitting using contours (shapes) The development of active contour models helped

pave the way for more principled class-based approaches to the problem of contour-based

shape fitting.Active shape models [37] are associated with techniques of fitting parameters

of a learnt shape distribution to an image to retrieve a plausible shape reconstruction.

This can be done by minimizing the distance of a 3D candidate to either a test shape,

or its projection in the form of a test image silhouette. There are a large number of

unknowns: the correspondences, camera and pose parameters, and, the shape (and if

available, appearance) parameters. Because of the large number of unknowns involved an

iterative method of fitting is adopted. Given a PDM, Cootes and Taylor [37, 34] devise

an iterative method of (i) fitting the best 3D model given correspondences on a test image

contour, and, (ii) refining the correspondences by searching in the vicinity of the current

projected 2D model. Instead of treating each projected landmark point equally, local

statistical models are built along the normals to each landmark point in the projected 2D

models. This helps to improve the search for the optimal model during fitting. Cootes

and Taylor [38] also proposed the use of a multi-resolution technique for locating image

structure to make the search less susceptible to local minima.

There has been research beyond the field of active contour models. Effects of 3D

variation and deformation have been approximated by a wide variety of 2D methods in

object recognition. Gavrila [67] proposed the use of hierarchical template trees to handle

class-specific shape variation, though the generalization in shape attained by such methods

is limited to the template bank. Ferrari et al . [55] use contour segments which can be

relatively displaced to handle class-specific shape variation. Shotton et al . [178] recognize
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the importance of contour parts in the recognition of object parts in order to identify

instances of deformable objects. Fergus et al . [54] introduce the ‘constellation’ of parts idea

in recognition where the multi-part shape and appearance are learnt simultaneously while

additionally accounting for relative scales of parts. The distribution of the parts is jointly

Gaussian. Fischler and Elschlager [56]and subsequently Felzenswalb and Huttenlocher [52]

propose a similar but exactly optimizable framework for representing, sampling from, and

learning multi-part objects. Their parts now form a tree structured graph. This was

extended to work on k-fan graphs by Crandall et al . [42].

Most of the above methods deal with fitting 2D structures (or projections of known

3D structures) on 2D image information, but it is much harder to derive the 3D structure

corresponding to 2D information. However, the principle of ASMs is easily extensible to

the 3D reconstruction problem, as shown in the reconstruction of faces from occluding

contours by Keller et al . [97]. When the correspondences between the landmark points on

the 3D points are known for the 2D image, fitting the shape model is easy. The level of

difficulty increases progressively when this is not known, or when the object is occluded

and the scene is cluttered. Also if frontal views are not assumed, then unknown camera

parameters complicate the optimization further.

Fitting using appearance Active appearance models by Cootes and Taylor [35] propose

the use of appearance based cues in addition to shape cues for the purpose of deformable

model representation and fitting. Unlike shape, appearance is more susceptible to effects

such as illumination. However there is access to more information, helping tackle occlusion

and clutter better. As a direct consequence of capturing appearance, AAMs facilitate

the sampling of entire images instead of being limited to evaluate likelihoods of contours.

During training the effect of varying parameters to the error between hypothesized and

actual appearance is learnt. For effective fitting, residuals should be used accurately to

update parameters. AAM fitting is susceptible to local minima because of the complexity in

the problem. Cootes and Taylor [36] furthered their original work to allow constraints (such
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as those inserted by a user) to be inserted for more effective fitting. Lanitis et al . [106, 107]

proposed a compact parametrized model of facial appearance allowing parameters to be

recovered more easily.

Many of the above ideas were originally proposed for 2D deformable models. Cootes

et al . discuss problem of 3D modelling by treating shape reconstruction solely in terms of

novel view synthesis, bypassing the actual 3D reconstruction. A 2D AAM is maintained

for each training view. At test time, the nearest AAM (in terms of pose) is chosen to fit

the given image.

In the context of this thesis, 3D deformable model fitting to 2D images is relevant.

Many of the ideas proposed above can be directly extended for building 3D models. An

extension of the basic AAM method was demonstrated by Blanz, Vetter and Romdhani

[15, 160] in their work on single view face reconstruction. They fit a 3D statistical model

of shape and texture to best fit the appearance and shape in a 2D image and power this

by more effective parameter fitting methods. Solem and Kahl [181] extend the ASM/AAM

techniques for reconstruction using level-set techniques. They fit multi-stage shape and

appearance models like ASMs but they target richer information in faces such as eyebrow

contours etc. This naturally involves more annotation but results in smaller surface repre-

sentations, computation times and robustness to illumination effects such as specularities.

The surface is fit to inferred 3D features and constrained fitting of surface models results

in regularized surfaces.

There has been a vast variety of methods in class-based model shape and appearance

fitting. There are many challenges such as representing and fitting models of varying

number of variables such as a 3D shape which has variable number of vertices, or combined

optimization of all parameters (such as simultaneously determining correspondences and

reconstruction), coming up with better model representations, etc.



2.4 Using multiple views for class-based reconstruction 34

2.4 Using multiple views for class-based reconstruction

Rigid structure from point matching The first solution to this problem assumes

known correspondences across an image collection and a simplistic orthographic projection

model (see Tomasi and Kanade [193]). By exploiting the rank constraints on the generative

process behind the images, the solution can be found by a simple matrix factorization

of the tracking matrix. Any factorization of the form product = factor1 ∗ factor2 is

vulnerable to ambiguities such that, product = factor1 ∗ λ ∗ λ−1 ∗ factor2. In the case

of orthographic projection this ambiguity is resolved relatively simply. Several variations

and flavours of this original method have been proposed. Iterative methods have been put

together to extend this result to para-perspective [150] and fully perspective [188] cameras

to obtain reasonably good local solutions if initialized well by affine systems. Even an online

version, with every image updating the factorization in a relatively quick step instead of

an expensive global factorization, was proposed by Morita and Kanade [135]. In order to

accommodate several rigid objects, Costeira and Kanade [41] relax the rigidity constraint

and use a permutation based method to group the tracking matrix into submatrices, each

corresponding to an object. Beardsley et al . [9] note that most methods for projective

structure recovery operate in a batch mode, thus making computations expensive. They

propose a sequential method instead that recovers structure as each image is captured. For

path planning operations, such as those required in robot navigation, this is useful.

Ideas for efficient calibration from unordered image sets put forth by Schaffalitzky

and Zisserman [170] were put together in systems such as Photosynth [180]. Photosynth

shows how several views of the same rigid structure (e.g. “Pantheon”, “Half-dome”) can be

interrelated via the common coordinate system of a 3D reconstruction. Advanced methods

for tracking objects in scenes [4] have further enabled us to perform rigid structure from

motion (SFM) in video sequences effectively. In order to recover metric reconstruction,

some absolute measurements from the real world must be used.
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Rigid structure from curve matching In the absence of surface correspondences,

then, how may the problem be approached? One solution is to move from zero-dimensional

point matching to one-dimensional curve or line matching. Lazebnik and Ponce [108]

point out that more complex geometric entities such as curve correspondences provide

much richer information about 3D shape than point correspondences. The difficulty with

curve correspondences, however, is a variant of the aperture problem: although the curve

is in correspondence as a whole, individual points on the curve are not naturally in cor-

respondence. Measures such as curvature provide poor matching constraints as curvature

can change drastically under projection (consider a smooth helical segment which is imaged

with a cusp). Projective concepts such as bi-tangency do provide extra correspondences,

but again these are few. Furukawa et al . [66] address the problem of estimating rigid struc-

ture and motion from the apparent contours across successive image frames. A RANSAC-

based voting approach is used to identify a set of ‘frontier points’ or correspondences across

images, and simultaneously estimate camera configurations.

Existing work on curve matching uses the constraints associated with rigid-body as-

sumption to constrain the matching. Schmid and Zisserman [171] showed how the use

of 2 and 3 view matching tensors allows correspondence transfer: a point on one curve

which is not parallel to an epipolar line induces a point match on the corresponding curve

in a second view, and constrains the local matching homography allowing surface texture

adjacent to the curve match to resolve ambiguities. Rigid curve matching in multiple (> 3)

views is addressed by Berthilsson et al. [12] who introduce a bundle adjustment strategy to

allow curve correspondences to vary along the image curves. Kaminski and Shashua [92]

derive constraints on algebraic curves from multiple views, while Martinsson et al. [126]

combine curve fitting and reconstruction for planar curves.

Non-rigid structure from point matching The introduction of non-linearity in the

SFM problem introduces extra variables (i.e. extra factors in the factorization approach)

such as a shape model and fitting parameters. The 3D shape in each view is modeled as a
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linear combination of basis shapes, denoted B1..K . The shape in each input view is given

by linear combination coefficients α, possibly with associated transformation parameters–

s, R,T. Most methods in NRSfM need a set of point correspondences across images (or

video). A set of P point correspondences over N input images is represented as 2P × N

measurement matrix W, which concatenates the 2D points wpn. Either factorization or

bundle adjustment upon the least squares error function can be performed to derive the

solutions. To derive the W, most methods exploit the temporal smoothness to constrain

correspondences and camera motion between successive frames [23, 22, 45, 194]. Naturally,

this is susceptible to problems typical of tracking such as lost tracks, unreliable correspon-

dences and occlusions and clutter. Torresani et al . [195] show how rank bounds can be used

to constrain low level motion in images (as shown by Irani [91]) thus augmenting available

point tracks. In a problem parallel to non-rigid structure from motion (NRSfM), Bascle

and Blake [8] use factorization to separate pose and expression from images for animation.

They assume known bases which is equivalent to solving only a subset of the actual prob-

lem. However, we are usually interested in finding all the unknowns. The recovery of the

unknown model parameters (α) was initially cast as a matrix factorization problem (for

scaled orthographic projection this is a three stage factorization as shown by Bregler et al .

[23]). However, more recent work has cast it as a maximum a-posteriori (MAP) estimation

of the parameters [45] or maximum likelihood distribution fitting [194]. The optimization

for the latter case can be performed by either coordinate descent based methods [194],

or by bundle adjustment based approaches [189, 197]. For the weak perspective camera

model and linear bases Xiao et al . [207] improve upon the coordinate descent method of

[22, 195, 194] by giving a closed-form solution for this case. They point out that to tackle

ambiguity both rotation constraints as well basis constraints. An interesting aspect of work

in this area is the progression in the use of priors. The completely model-free work by Bre-

gler et al . [23] was appended with simple quadratic smoothness priors on bases in [195].

Torresani et al . [194] use a PPCA model on latent parameters and bases for a more compact
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formulation that can be approximately solved using Expectation-Maximization[13].

2.5 Object detection and segmentation

Segmentation is often a precursor to other image-processing and vision tasks such as image

matting, scene augmentation and semantic interpretation, and is considered intertwined

with the process of object detection and recognition.

2.5.1 Low-level algorithms (bottom-up)

Feature-based segmentation: Assuming some image representation (RGB, HSV etc.),

one of the most basic methods involves deciding whether a pixel belongs to the foreground

or background, based on its colour or texture with little acknowledgement of spatial rela-

tionships. Assuming that an object (or its parts) has consistent texture and colour, simple

thresholding or the clustering based methods such as K-means [122] or mean-shift (see

Comaniciu and Meer [32]) can be applied to segment the image. Many clustering methods

have been investigated in the past (ISODATA, competitive learning [199], fuzzy kmeans,

tree-based, multi-scale, adaptive kmeans) but the local nature of the observations limits

the performance of these methods. The input can be made a bit more sophisticated by

using local filter responses and using morphological or histogram based methods such as

the watershed algorithm [175] for segmentation.

Incorporating spatial consistency: In addition to proximity in feature space, we also

want segmented parts of an object to be spatially close on the image. Various methods

based on region growing and split-and-merge techniques have been considered. In addition

to taking local features into account such methods encourage spatial consistency thereby

improving performance in the presence of noise, occlusion etc.

Smoothness and continuity of segmentation can also be imposed effectively in graph

based segmentation approaches. Right from the 1970s graph theoretic approaches such
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as MRFs3 and variational formulations (Mumford and Shah [138]) have been popular for

solving the problem of segmentation. In graph-based approaches, the image is modelled as

a graph where the pixels (or features) form the nodes and the linking edges denote weights

expressing some similarity function. The challenges involve formulating the problem cor-

rectly and then finding the right algorithms to solve it. Segmentation involves creating

partitions by breaking edges, the total weight of which is called the cut. Wu and Leahy

[206] originally devised a clustering method based on optimizing this cut for undirected

graphs. Shi and Malik [176] retrieve more balanced partitions by considering a normalized

objective which aims to minimize the similarity across different partitions of graph and

maximize it within the same partition. The resulting unbiased unsupervised hierarchi-

cal partitioning (clustering) problem is approximately solved as a generalized eigenvalue

problem.

In the modern day, Graph Cuts form the backbone of most popular segmentation

methods. For sub-modular energies exact global optima can be found, thereby allowing

objective evaluation in contrast to other existing algorithms. Boykov and Jolly [19]

addressed the problem of segmenting monochrome images by taking a set of hard and

soft constraints to solve for a globally optimal segmentation. The hard constraints can be

background and foreground seed constraints, and also to build foreground and background

intensity distributions. This can be used to exactly optimize the energy function (Gibbs

energy) to quickly segment images with a minimal amount of user input or correction.

The energy consists of (1) an evaluation of the fit of opacity distribution alpha to the data

given the model, and (2) a smoothness term for consistent labelling in regions of similar

gray-level. GrabCut [163] adds an iterative procedure that alternates between estimation

and parameter learning. First a “hard” segmentation is obtained using iterative graph

cuts. This is followed by border matting to allow mixed pixels near the hard segmentation

3A Markov Random Field (MRF [70]) is a stochastic process in which the conditional probability for
the labelling of a particular pixel is only a function of the neighboring pixels of its clique and not the entire
image. For a reasonably broad class of sub-modular functions MAP (maximum a-posteriori) estimates of
graph labelling can be found by various methods (min-cut [60, 20], push-relabel [75] , Liu and Yang [119]).
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boundary. Segmentation can be subsequently improved in a real-time fashion with a small

number of edits and re-use of existing computations (as shown by Dynamic Graph Cuts

[101]).

The basic model remains a very simple combination of unary likelihoods and a Potts-

model based pairwise prior. Therefore the ability to model complex objects is limited to

user-input seeds and the sophistication of foreground and background models built from

them. Complex topologies or images could take a large number of edits without providing

the exact desired segmentation.

2.5.2 Higher-level algorithms

In many real life applications there is a need to segment complex objects in the presence

of noise, clutter and occlusion. Though pixel level information can be replaced by more

robust shape and texture cues from the neighbourhood, there is a need to incorporate

higher-level class-specific information and long range relationships for representation and

segmentation of complex objects. The use of approaches like CRFs (Conditional Random

fields [104]) allows for inclusion of more complex energy terms (such as data-dependent

pairwise terms which is neither a prior nor a likelihood) and has been used in a variety of

work such as [103, 173].

Borenstein and Ullman [18] discussed the concept of class-specific segmentation as op-

posed to existing bottom-up segmentation methods. They use known object shape char-

acteristics and handle deformation using a fragment based representation. The fragment

dictionary is matched to a test image to maximize a combination of matching score and

inter-fragment consistency score, so the final segmentation has the object shape charac-

teristics. Agarwal and Roth [5] advance this by actually learning the spatial layout from

data. Although local consistency of fragments is checked, there is no global framework to

check for object consistency thereby being unable to guarantee valid class detections.



2.5.2 Higher-level algorithms 40

Shape based segmentation Leibe and Schiele [110] improve upon [18] by introducing

a global shape consistency. Instead of directly training a classifier on appearance code-

books as [5], they use a probabilistic voting scheme to generate an object hypotheses and

category-specific segmentation. So far, basic bottom-up information is ignored, making

the segmentation unfaithful to important image detail.

Object detection has used a combination of shapes and texture for object representation

([67, 196, 192]) in addition to incorporation of spatial relationships ([56, 53, 54, 143, 178]).

Though these primarily provide detections, the localization can be incorporated into the

CRF formulations for segmentation, e.g. foreground-background constraints for an auto-

mated GrabCut style algorithm [163]. ObjCut by Kumar et al . [103] tries to do this

by combining the bottom-up information of traditional CRF approaches with a top-down

Pictorial Structure model and a latent variable model for object pose. In addition to ef-

fectively segmenting complex articulated objects, the method is able to provide reliable

detections alongside.

Shotton et al . [179] proposed Textonboost which uses a boosted combination of texton

features (jointly modelling shape and texture) in a CRF framework. It learns from positive

and negative examples and is able to learn a discriminative model. Training and inference

can be performed quickly, allowing the use of large datasets. Although their method

produced good segmentation and recognition results, the rough shape and texture model

caused it to fail at object boundaries. The problem of extracting accurate boundaries

of objects is considerably more challenging. The joint modelling of shape, texture and

edges allow simultaneous recognition and segmentation, but the lack of explicit object

articulation or semantic context information leads to inaccurate segmentation.

Winn and Shotton [204] propose a new method for recognition and segmentation espe-

cially in the presence of occlusion. A dense part labelling allowing for asymmetric spatial

constraints is used to create a layout consistent framework. Their expansion move algo-

rithm allows for a very unique form of deformation of object part, but the ability to handle
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complex pose variation is again limited.

Levin et al . [113] tackle the inadequacies in segmentation by exclusively top-down

and bottom-up methods. Principled training is conducted for their joint top-down and

bottom-up method by training the entire framework together instead of separate modules.

This results in a more compact shape representation as opposed to other methods such

as ObjCut [103]. However, their method relapses into the use of pixel-intensity based

similarity measures instead of texture etc. and the quest for jointly training the framework

limits the ability to handle minimal variation in pose.

Superpixel-based segmentation Some methods adopt a more modular approach to

segmentation where they want to consider pre-partitioned parts of the image for the pur-

pose of segmentation. By learning CRFs over higher level features such as image superpixels

instead of pixels, more complex relationships can be modelled and learnt. Russell et al .

[165] use multiple instances per image to learn visual words for object classes and then

derive the correct final segmentation in an unsupervised way. In a supervised approach,

Parikh et al . [144] learn spatial context (co-occurrence, relative location and scales) be-

tween different object categories from over-segmented images for scene understanding. This

can be deployed for recognition and segmentation of images.

Higher order energy and large cliques Many methods have tried to incorporate

higher-level in the form of class-specific models or special connectivity priors into graph

cut based algorithms. Ability to specify long range relationships can help model complex

objects. Such relationships can be captured by a fully connected graph, but such graphs

are complex to define and expensive to solve even at small sizes. There has been some

progress on solving MRFs with larger cliques for segmentation. Roth and Black [162] show

how generic image priors can be learnt over images with larger cliques using a Products-

of-Experts framework (similarly approximate methods for efficient belief propagation over

graphs with large cliques and real valued variables have been demonstrated by Lan et
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al . [105] and Potetz et al . [152]). Kohli, Ramalingam and others [100],[157] show a class

of energy functions for which multi-label segmentations can be computed optimally and

efficiently over graphs with higher order cliques.

2.5.3 Edge and boundary detection methods

An object can be located in an image by accurately detecting its boundary. The basic image

representation and edge finding approach used for subsequent analysis are important and

many papers have been written on doing these better. Usually edges are detected using

methods (Sobel, Laplacian, zero finding or Canny) prone to noise, smoothing and clutter

due to the use of local information. Therefore it may be difficult to find a closed contour

for an object and make object segmentation difficult.

The development of active contour models opened a new approach of boundary detec-

tion based on curve initialization followed by iterative optimization based on image forces

designed so that the contour converges on the object boundary. Kass et al . [96] proposed

one landmark idea for active contours–‘snakes’. The object boundary is represented by a

curve (which may be open or closed) which is ‘attracted’ to image features such as edges.

Desirable priors such as smoothness can be incorporated in the objective in order to com-

bat noise, smoothing and clutter based problems. The objective function tends to be a

complex nonlinear function, whose local optima correspond to the curve (snake) latching

on interesting image features.

Berger [11] devised ‘growing snakes’ which allows the snake to extend at its ends and

minimize the objective. The snake can subdivide, grow and parts of it may ‘die’. Higher

energy bits can be discarded during the process leading to some robust solutions despite

bad initialization, however there is high processing cost. Gradient vector flow snakes (Xu

and Prince [208]) calculate the field of forces over the image at some resolution and drive the

snake towards object boundary while ensuring that it is smooth. The diffusion operations

used to calculate these fields claim to be effective even when the snake is far from the
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actual object. The drawback with finding local solutions with respect to snakes is their

dependence on initialization and the image complexity. Also, smoothness priors can cause

the snake to contract, due to which additional complex priors such as inflationary forces

([31]) have to be introduced. Regardless of these problems, this remains a popular idea,

used extensively (see [168, 169, 29, 71]). Implicit functionals have been used to enable

active contours to handle topological challenges as shown by Morse et al . [136].

Other methods in interactive segmentation are live wire [50] and intelligent scissors

[137]. As opposed to snakes, these methods find globally optimal solutions. Given a fixed

starting point, these methods solve a dynamic program over an image-based graph to

calculate an active boundary that can be varied in length, complexity (knot points) etc.

A detailed discussion about this method can be found in Appendix A.

Edges express an image concisely and therefore are important for the purpose of bound-

ary finding. In the past algorithms have used edges without taking their neighbourhood

information into account. In recent times however, many learning algorithms therefore

have been proposed which deal with the end-to-end goal of integrating edge-based cues

with object detection and segmentation.

Mikolajczyk et al . [133] use scale-invariant texture-based cues to recognize objects in the

presence of ambiguous texture and clutter. Ferrari et al . [55] use contour segments derived

from simple hand-drawn examples to detect objects with strong contour characteristics.

The problem is formulated as one of finding object like shapes from an image-based contour

network. Shotton et al . recognize the importance of contours for object recognition by

integrate them in their feature set for recognition (see [178, 179]).

A common problem with edge finding and linking algorithms is that at best, one often

only gets contour segments for objects. Ren et al . [158] advocate the use of piecewise

linear curves defining a CRF and curvilinear continuity to form the energy. Upon opti-

mizing this missing parts can be completed. Constrained Delaunay triangulation is used

to generate potential completions, which seems like a slightly ad-hoc choice of algorithm,
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but demonstrates good results.

Martin et al . [125] use a supervised approach to detect boundaries in natural scenes

using features based on brightness, colour and texture. A linear combination of the cues is

used to capture the characteristic features displayed by object boundaries and a thorough

investigation of these features is conducted at each pixel for all orientations and scales. A

similar approach can be found in our work in Chapter 5. Dollar et al . [46] reiterate the

inadequacy of traditional edge finding methods and stress the need to engage middle and

high level information for this purpose. A supervised approach is used to learn discrimi-

native models with probabilistic boosted tree classifiers. They argue in favour of finding

edges that are relevant to the category/purpose at hand and accordingly their approach

performs well for specific classes (though badly for generic image edges).

McHenry et al . [128] propose an interesting method for finding glass . They use the

reflective and refractive properties of glass for segmenting it in images to hand-select fea-

tures around glass edges (like colour, blurring, overlay consistency of internal and external

regions, texture distortion and highlights). These are used to train a hierarchy of classifiers

(single or multiple classifiers like SVMs) to identify glass edges. A global integration step

follows, which merges fragments connected by a path. Active contour models like snakes

that are attracted to the identified glass-edges are used to identify support regions as po-

tential glass objects. More recently, Mairal et al . [123] proposed the use of a multi-scale

discriminative framework based on learning sparse representations for class-specific edge

detection which can be used to improve existing contour-based classifiers. They propose

a multi-scale method to learn discriminative dictionaries from local edge and appearance

cues. The formulation demonstrates both sparse reconstruction (based on l0 and l1 regu-

larization constraints) and inter-class discrimination components. The use of sparse PCA

techniques ensures fast updates and efficient optimization. The final classification is re-

trieved by building a linear classifier over each dictionary’s reconstruction error at multiple

scales and sparsity constraints.



2.5.3 Edge and boundary detection methods 45

Class-specific analysis combining various local and global cues, has seen increasing use

in object detection and segmentation is therefore relevant to our work.



Chapter 3

Single View Reconstruction of

Curved Surfaces

In this chapter we will show how silhouette-based user-driven cues from a single image can

be exploited to effectively reconstruct fully freeform 3D models of various topologies.

3.1 Introduction and overview

The reconstruction of 3D objects from a single view is a severely under-constrained prob-

lem and has been of interest to researchers in vision and graphics. Image-based cues–

texture, shading, silhouette etc., must be employed to extract plausible shape from this

image. Due to the need for many complex assumptions, cues from shading and texture (see

§ 2.1.4,2.1.5) cannot be used in most realistic situations. Comparatively, silhouette-based

cues (§ 2.1.1 and 2.1.2) are easily employed with fewer assumptions.

The SVR problem can be framed as finding the most plausible 3D surface projecting

to the given image silhouette. We show how silhouette-based cues can be used to find a

closed, freeform 3D model of any topology given a single image. We also show how image-

based cues such as singularities (cusps), object creases etc., and intuitive user-driven cues
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can be inserted to model the object realistically.

Overview: This chapter is organized as follows. We will state the goal of single view

reconstruction (SVR) mathematically as a constrained optimization problem in § 3.2. We

introduce the surface representation in § 3.3 and the problem objective in § 3.4. We state

the different kinds of constraints that can be imposed on such a surface in § 3.5. We first

show how image-based silhouette constraints can be used to constrain the problem in § 3.6.

We then show how the object can be inflated using a variety of methods in § 3.7. Complex

viewpoints gives rise to image-based singularities, also known as cusps. These can be used

to add important detail to the model as shown in § 3.8. Our freeform surface can be used

to model objects of any topology as discussed in § 3.9. This is finally followed by the

implementation details § 3.10 and the summary § 3.11.

3.2 Goal

Given a single image, we want to construct a plausible 3D model of the object. This is a

severely under-constrained problem and there are an infinite number of candidates for the

3D shape. We describe the basic framework for obtaining a smooth 3D object from an

image.

Given an image, any candidate 3D model must project to the 2D silhouette (see fig-

ure 3.1). There are an infinite number of candidates despite this constraint. Generally

speaking we also want the 3D model to be as smooth as possible given the constraints.

In the absence of specific information, this forms the following regularized objective: find

the smoothest 3D surface obeying a set of image-based and user-specified constraints. To

discuss this in detail, we need to formulate the problem mathematically. To do this, we

first need to find a representation for the surface.
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(a) (b)

Figure 3.1: “Lifting” 3D models from images: (a) Orthographic projection of the desirable
3D model to the given image is shown. (b) Close-up of a part of the surface at the Contour
Generator (CG). Normals (in red) are plotted at the point of tangency of the CG with
the viewing direction whose rays are plotted in blue.

3.3 Surface representation

Following Terzopoulos et al . [191] we use the parametric surface representation (see § 2.2),

r : [0, 1]2 7→ R
3 since this allows us to model truly 3D freeform surfaces. The continuous

surface S is denoted as a function of the parameters as shown:

r(u, v) = [x(u, v), y(u, v), z(u, v)]> . (3.1)

The surface (also called Geometry Image, see [82], § 2.2) is represented by three M×N

matrices, one for each coordinate: X, Y, Z, representing the surface defined along a dis-

cretized sampling of the parameter space. M,N are the number of samples along the

parameters (u, v) of the surface required to represent surface detail adequately. When

solving for the surface, the same matrices can be reshaped columnwise into vectors x,y, z.

These vectors can again be stacked into a single vector of unknowns g =
[
x> y> z>

]>
.
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This is useful as a single vector representation for the surface coordinates.

For ease of notation any vertical constant u curve on the parameter space is called a

longitude, while a horizontal, constant v line is called a latitude. For e.g . the longitude

u = u1consists of all points whose parametric values are: u = u1, v ∈ [0, 1].

Later in this chapter, we will introduce the concept of “identification” of curves in the

parameter space. Two curves are said to be identified when they overlap so that their

corresponding points have exactly the same 3D coordinates. In addition, the derivatives

defined on the curves must be smooth across their seam. This is a particularly useful

concept in representing complex topology.

3.4 Smoothness

We need a metric to define smoothness on the surface. This is important in order to

regularize the surface in the absence of other constraints. The surface is computed by

minimizing a smoothness objective function. Here, smoothness is measured by the thin-

plate bending energy (3.2) of [186, 211, 80] as:

E(r) =

1∫

0

1∫

0

‖ruu‖
2 + 2‖ruv‖

2 + ‖rvv‖
2 du dv, (3.2)

subject to the constraint that the surface’s contour generator projects to the given image

contour. Each term in equation 3.2 can be expanded using 3.1 as shown below.

r2
uu = x2

uu + y2
uu + z2

uu. (3.3)

This can be done for the other terms similarly. Central difference approximations are used

for the first and second derivatives on the surface, and are represented by appropriate ma-

trix operators [211]. Thus the derivative terms at a point (i, j) are discretely approximated
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as

Xu(i, j) =
1

2N
(X(i+ 1, j) − X(i− 1, j)) First derivative, (3.4)

Xuu(i, j) =
1

4N2
(X(i+ 1, j) − 2X(i, j) + X(i− 1, j)) Second derivative, (3.5)

ignoring issues brought up by curve parametrization for the moment. The vector of

derivatives required to discretely evaluate (3.2) is conveniently represented [211] as a con-

stant (MN ×MN) sparse matrix Cu, so that xu = Cux. Second derivatives are similarly

represented by Cuu, Cuv and Cvv, so the bending energy of (equation 3.2), can be expressed

in discrete form as:

ε(x) = x>(C>uuCuu + 2C>uvCuv + C
>
vvCvv)x, (3.6)

E(g) = ε(x) + ε(y) + ε(z) (3.7)

= g>
Cg, | C is square of side 3MN. (3.8)

Without constraints on the surface, E(r) is minimized by the trivial solution r(u, v) = 0.

Also the resultant model may not produce a projection consistent with the image given to

us. Imposing constraints generates more plausible shapes.

3.5 Constraints

We define constraints which impose one of the following on the surface: (i) position, (ii)

normal, and, (iii) partial position.

Position constraints: are of the form:

r(u, v) = [x(u, v), y(u, v), z(u, v)]> , (3.9)

for known values of u, v and the 3D position coordinates.
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Normal constraints: require the surface normal at (u, v) to equal a supplied normal n.

The normal to r at a point is the unit vector along ru × rv. We can impose this as a pair

of linear constraints in r as follows:

n =
ru × rv

‖ru × rv‖
(3.10)

⇒ n·ru(u, v) = 0, (3.11)

n·rv(u, v) = 0. (3.12)

Partial position constraints: do not impose constraints on all 3 co-ordinates simul-

taneously. Sometimes we have only partial information at a point and therefore only a

subset of the coordinates of a 3D position are available. E.g . only the z component could

be constrained at a parametric point (u, v).

For all of the above, the constraints are linear in g and are easily represented as a

separate constraint equation. Each of the constraints is linear and forms rows of A,b

where g is the vector holding the surface coordinates:

Ag = b. (3.13)

This linearity is important because it leads to a simple quadratic minimization of a

convex function as shown in (3.14-3.20)

Before describing the optimization itself, we will show how to extract constraints from

readily available information. Depending on how they arise these constraints are either:

• image-based from the silhouette, or

• user-defined inflation

We now show how the silhouette constraint may be represented in a way that is linear in

the unknown: g.
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Apparent contour (s)

2D Image u=1

Contour Generator Domain (d)

u=0.25 u=0.750

v
=
1 C.G. (c)

3D surface

(a) (b) (c)

Figure 3.2: Reconstruction of 3D surface from apparent contour constraints: (a) The

apparent contour s is marked on the input image. (b) If optimizing parametrization-invariant

curvature, we would be at liberty to place the contour generator’s domain (see § 3.6) anywhere in

the parameter space, provided topological constraints are maintained. In practice we minimize an

approximation to curvature. (c) Reconstructed surface, with contour generator c superimposed.

3.6 The Silhouette Constraint

The object silhouette is an important readily available image-based constraint. The object

silhouette (refer to [99] for an in-depth study) is the image of the Contour Generator (CG).

The CG is a 3D curve on the surface (red curves in figure 3.1, also in 3.2 column (c)), at

which the viewing direction is tangent to the surface. If the surface is viewed in the direction

of r from the camera center, then the surface appears to fold, or to have a boundary or

contour generator. The CG’s domain is a curve in the (u, v) parameter space (figure

3.2(b)) . If that curve is d = {dt = (ut, vt)|0 ≤ t ≤ 1} then the CG is ct = r(ut, vt). We

are given an image silhouette s = {st|0 ≤ t ≤ 1} i.e. s is the infinite set of 2D points on

the silhouette (see figure 3.2(a)) and we are assuming it is parametrized by the same curve

parameter t as the CG domain.

So far, our constraints have been associated with their corresponding (u, v) parameters.

For the general 3D surface representation we have just discussed, this mapping is not
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available for the silhouette constraint. We show that the object’s silhouette is a curve for

which the mapping may readily be obtained. The discontinuity curves of [211] therefore

fade in their importance for demarcating objects.

The silhouette constraints can be summed up as follows:

• The candidate 3D model must project to the 2D apparent contour.

• At the CG, the surface must also be tangent to the viewing direction.

We continue to assume orthographic projection like Zhang et al . [211]. For the moment

let’s assume that the surface does not exhibit self-occlusions along the silhouette. At

each point on the 2D silhouettes, we can compute the 2D unit normal (nx, ny). Under

orthographic projection along Z, the corresponding 3D normal at the CG n, must have

a Z component of zero. Therefore, the 3D normal at t is given by nt = (nx, ny, 0). This

means we know the surface normal at any point on the contour generator, so the (infinite)

set of linear constraints which force the silhouette of the 3D surface r to coincide with s

are:

( 1 0 0
0 1 0 ) r(ut, vt) = st [Projection], (3.14)

n>
t ru(ut, vt) = 0 [Normal], (3.15)

n>
t rv(ut, vt) = 0 [Normal]. (3.16)

There is a freedom in the parametrization, so that the curve in (u, v) space which is

the pre-image of the contour generator can be chosen.

If we were minimizing curvature, we would be at liberty to choose any re-parametrization

of (u, v) without changing the energy or loss of generality. This means that (ut, vt) in the

above constraints are known points. In reality, our energy E(r) (3.2) is an approximation

to surface curvature. We use this freedom to identify arbitrary longitudes (constant u)

curve in (u, v) as the domain of the CG and fit the surface, subject to that constraint. For
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the case of a cylinder from a simple viewpoint, curves of constant u in the (u, v) are chosen

as the domain of the CG—see the vertical bold lines in figure 3.2. In particular we choose

the uniformly spaced curves u = ul = 1
4 , u = ur = 3

4 , to coincide with the CG.

3.6.1 Are Silhouette Constraints Enough to Model an Object?

In a discrete setting, each segment of the contour generator is a set of 2D points. Let us

consider just the left segment, corresponding to u = ul. The 2D curve is approximately

arc-length sampled at n points, giving 2D points {(sj , tj)}
n
j=1, with associated 2D nor-

mals (pj, qj). If we let (il, j) in general be the integer grid coordinates corresponding to

parameter space location (ul, v), then we may write the above constraints in terms of our

discretization as:

X(il, j) = sj, j = 1..n (3.17a)

Y(il, j) = tj, j = 1..n (3.17b)

pjXu(il, j) + qjYu(il, j) = 0, j = 1..n (3.17c)

pjXv(il, j) + qjYv(il, j) = 0, j = 1..n (3.17d)

amounting to 4n linear constraints on X and Y (remembering that Xu is linear in X etc.). By

reshaping matrices appropriately, these may be rewritten as a matrix equation of the form

Alg = bl, where Al is of size 4M ×MN . We can repeat this process for the other contour

generator segment, giving constraints Arg = br. Stacking these matrices, and others we

shall see later, into a single large matrix yields the complete set of linear constraints Ag = b

as previously mentioned in (3.13). E(g) is then minimized as shown below: our objective

function is quadratic and constraints are linear:

min
g

1

2
g>

Cg, subject to Ag = b. (3.18)
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We can formulate a Lagrangian for the problem as shown:

E(g) =
1

2
g>

Cg + λ
> (Ag − b) . (3.19)

Optimizing the Lagrangian for this quadratic programming problem is equivalent to

solving the linear matrix equation given by






C A
T

A 0











g

λ




 =






0

b




 , (3.20)

which can be readily achieved using sparse methods. The four constraints expressed in

( 3.14), ( 3.15) and ( 3.16) constrain the x and y coordinates of the surface only. Our

approximation to curvature in the form of the bending energy does not couple the z energy

to that of the x and y terms, meaning that a surface which projects correctly to the apparent

contour but has z(u, v) = 0 ∀u, v is a trivial solution to this problem. In order to avoid

this we need to “inflate” the surface and flesh it out into a plausible model.

3.7 Inflation: for shaping the object

Inflation can be performed in the following two ways:

• One method is to model the inflationary force as a function, incorporated in the

objective function. Optimizing the objective function, will automatically inflate the

surface.

• Alternatively, full or partially supplied 3D points can be used to supply constraints to

the object causing inflation. We use this method in our work because of its simplicity

in optimization. These may be derived from image information or can be user-driven.

Inflation constraints can be of two types:

1. Interpolation constraints: The surface is nailed to a few points at certain locations.
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2. Approximation constraints: The surface is encouraged to pass close to certain points.

Given a few constraints of either type, the rest of the surface adjusts itself to form the

smoothest surface given the objective function. A detailed discussion of such constraints

follows.

3.7.1 Interpolation constraint

An interpolation constraint is of the form:

r(uk, vk) = rk,

for given (uk, vk, rk). The subscript indicates that there might be several such constraints.

Constraints may also be supplied on just a single component of a point’s position, such

as its depth, z(uk, vk) = zk. For example, we may insist that the surface passes through

the plane z = 1 at (u, v) = (1
2 ,

1
2), and the plane z = −1 at (u, v) = (0, 1

2). Each of these

constraints may again be expressed as linear functions of the surface discretization g. We

now take a look at some kinds of interpolating constraints.

3.7.1.1 Inflating from Adjacent Edges of the Silhouette (cylindrical inflation)

A Generalized Cylinder is a surface which is cylindrical about a virtual freeform 3D

curve/spine (see § 2.2). If the longitude u = 0 is identified (as explained in §3.3) with

the longitude u = 1 the resultant surface will be of cylindrical topology, where the spine

can be parametrized along its length by v. One such example is the vase shown in figure 3.1.

The silhouette provides a frontal cross-section that can be used to guess the inflation for

the object. Note however, that we do not enforce the contour generator of the object to

be parallel to the image plane. This generalized cylinder can be completely determined

given the radius along its spine. Assuming frontal projection, the left (u = 0.25) and right



3.7.1.1 Inflating from Adjacent Edges of the Silhouette (cylindrical inflation)57

(u = 0.75) parts of the silhouette can be sampled at uniform speed to find corresponding

points in v that define the diameter of this cylindrical object, as computed below:

radius(v) =
1

2
‖silhouette(0.25, v) − silhouette(0.75, v)‖

=
1

2
‖x(0.25, v) − x(0.75, v), y(0.25, v) − y(0.75, v)‖, |assume CG lies in plane z = 0 .

This radius can be used as an inflation constraint on diametrically opposite longitudes

(u = {0, 0.5}) for each value of v. Depending on the complexity of the object, inflation

can be done at select v points or all along the spine, as shown in figure 3.3.This method

has some similarity to the process of inflation proposed by Terzopoulos [191].

300 400 500 600 700
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Inflation at the two red dots: Inflating all along the spine:
z(0.5, 0.5) = radius(0.5) z(0.5, v) = radius(v)
z(0, 0.5) = −radius(0.5) z(0, v) = −radius(v)

Figure 3.3: Inflating with adjacent parts of silhouette. The silhouette position and normal

constraints are superimposed on the reconstructions. The inflation constraints are in bright red.
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3.7.1.2 Inflating by Distance Transform

When faced with objects that don’t belong to the cylindrical topology, we need methods

that will require minimal user input. At the same time, we want to use the dimensions

of the object to guess its inflation. The distance transform of an object’s silhouette acts

a measure of an object’s size. At any given point on the image p = (x, y), the distance

transform is defined as its distance to the closest silhouette point (st, 0 ≤ t ≤ 1), as shown:

DT(p) = min
t

‖p − st‖. (3.21)

Assuming the object is uniformly spread out in space, the maximum value of the distance

transform is indicative of the amount of inflation required to make a realistic reconstruction

of the object. In Figure 3.4, the distance transform of one silhouette marking for a teapot

(sans handle) can be seen. A select few points as shown in Figure 3.4 are chosen for

inflation. The value of the distance transform at these locations on the object’s projection

is used for inflating the object. It is possible to compute the distance transform of all pixels

in the image with respect to the (closed) boundary. However the total distance transform is

rarely smooth and therefore we avoid using all points on it for inflation purposes. We then

inflate select points on the image by their distance transform (see Fig. 3.4). The constraint

can be a position or a partial position constraint. Igarashi et al . [89] use a similar inflation

mechanism in Teddy (see § 2.1.3).

As seen in the figure, the annotations are users clicks in the (x, y) space. Inflation

constraints must always be enforced on (u, v). Therefore, a mapping (x, y) → (u, v) is

needed. At the outset, this mapping is unavailable. The following two step process is

needed:

• We use the image-based silhouette constraints (projection and normal) as shown in

equations (3.14-3.16) to compute r with z = 0. We now have a mapping from (u, v) to

r = (x, y, z). With this we can compute the parameter values at which to insert the
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User-selected points Surface resulting from it

Figure 3.4: Inflation using the distance transform

inflation constraints arising from the distance transform. Given a user click (x1, y1),

we can retrieve the corresponding (u1, v1) from the initial surface.

• Partial (optionally full) point constraints in z can then be used in addition to the

framework with existing constraints to inflate the object:

z(u1, v1) = DT([ x1
y1 ]),

z(0.5 + u1, v1) = −DT([ x1
y1

]),

x(u1, v1) = x1 (optional),

y(u1, v1) = y1 (optional).

The system is solved again to find the 3D model. The resultant model will adhere to

the given constraints and therefore no further iterations are necessary. This method

is similar to the scheme of inflation used by Garish et al . [89] and works well for

rotund objects. Rotund objects are loosely defined as objects with simple silhouettes
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with few concavities and spherical topology.

3.7.1.3 Inflation Curves

We have shown how cylindrical and distance transform based inflation can be done for ob-

jects with simple silhouettes. Assumptions about object shape being generalized cylinders

work well for inflating a number of simple objects as shown in the illustration from “Alice

in Wonderland”, in the gallery (see figure 1.4).

We often want to reconstruct objects that are complex and not simply rotund or topo-

logically cylindrical. Intuitively, complex objects are composed of simple parts such as

generalized cylinders. Therefore one solution for reconstruction of a complex object is

to individually reconstruct each generalized cylinder part and stitch them all together to

create the larger model. However, we would like to keep the elegance of our existing frame-

work in which the surface is solved for, as a whole, without building individual components.

Even while treating the surface as one whole, we can use the part based information to

perform intelligent, selective, part-based inflation, removing the need for stitching. For

example, the teapot can be split into a spout, belly and lid as shown in figure 3.5 (a). The

blue inflation curves in figure 3.5 (b) denote the hypothetical silhouettes of each part in the

image used for inflation, while the red curve denotes the actual teapot silhouette used to

provide the silhouette constraints for the actual reconstruction. Each part is a generalized

cylinders, but when used for inflation together, they yield this complex teapot.

• Hypothetical silhouettes of the sub-objects (could be spherical, toroidal or cylindrical

but represented as generalized cylinders) in the image are identified (see blue curves

in figure 3.5).

• The inflation constraints are determined as the radii along the corresponding parts

of the silhouette along the spine for each part. This yields us a set of inflation

constraints of the form z(xi, yi) = ri. For example, the pair of blue curves denoting

the hypothetical spout silhouette are used to measure the radius of the spout along
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(a) Intuitive decomposition of teapot (b) red silhouette and blue inflation curves

Figure 3.5: User-assisted inflation: The parts of a teapot are used to intelligently inflate

different parts of it. These inflation constraints are used to reconstruct the entire teapot at once

instead of selectively reconstructing and stitching together the parts.

its hypothetical spine. The spout’s spine itself lies at the midpoint of a warp between

equidistant points along the pair of the blue curves.

• The (u, v) locations of the resultant inflation constraints (radii along the spine) are

unknown (similar to discussion in §3.7.1.2). Unlike the silhouette constraint, we do

not have the freedom to assign an arbitrary (u, v) parameter curve to these inflation

constraints, so the system is solved first with the silhouette constraint only (resulting

in a flat teapot), yielding a mapping from image locations (xi, yi) to parameter

locations (ui, yi)∀i. The mapping is used to identify the locations for the inflation

constraints z(ui, vi) = ri, which can be augmented to the constraint set to yield a

realistic inflated object as seen in figure 3.5.

Our approximation of curvature is handy for this form of two stage surface computation.

Since our smoothness is uncorrelated over x, y, z we can solve for x and y only, in the first

step to find the mapping. This can quicken our computation because we are dealing with

smaller matrices.

On the other hand, because of the simple approximation of the bending energy to

curvature, the resulting surface behaves like a fishnet stocking wrapped around an invisible
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model. Our methods of inflation are useful for simple problems. However, with complex

silhouettes, when the actual 3D form of the object becomes complex, problems with the

approximation to curvature, come to the fore. In such cases, the surface can spill over the

contour, as shown in figure 3.6. The contour generator limits the surface to be on its inside

in its image projection. However, it is difficult to constrain our equations to obey this

physical phenomenon. It is necessary to make some modifications to handle this spillage.

3.7.1.4 Spillage issues

The resultant surface computed from the above methods behaves like a stocking wrapped

tightly around an invisible object. This could result in a certain amount of surface spillage

as seen in figure 3.6 (a). This is because

1. Even though the silhouette constraint guarantees that the surface is locally consistent

with the image silhouette, it does not prevent unconstrained parts of the surface

spilling out into the background. Ensuring the whole surface lies within the silhouette

is not trivial to implement.

(a) While the surface at the contour generator can be encouraged to be locally

convex by constraining its Gaussian curvature, spillage can still occur away

from it.

(b) The intrinsic annotation is a set of silhouettes which may not be closed. Thus,

defining the inside and outside of the object is difficult. We can insist on closed

silhouettes thus removing this issue. Each point on the surface is projected to

the image and a check is performed to see if this point lies within the intricate

polygon defined by the silhouette. This is an expensive operation. Despite

being limited to the silhouette, the surface mesh does not necessarily look more

plausible, often being distorted and unreal.

2. If our curvature measure were perfect, high curvature regions resulting from silhou-
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ettes could be discouraged.

3. We have a fixed parameter assignment resulting from many heuristics. This com-

pounds the problem. Iterative reassignment of parameters to constraints can ame-

liorate the problem.

It is important to remember that even if some of the above problems were fixed, we might

not be able to effectively find the perfect model. The image of a model such as the current

teapot, need not come from an object which minimizes curvature in the first place. In the

absence of better information, we use it to regularize our shape but we may be far from

perfect in doing so.

It is possible to correct this spillage by further constraining these surfaces. The user uses

his mouse to drag and drop the surface from a point of spillage (figure 3.6 (b), red circle) to

a position inside the silhouette where that point on the surface is expected to be (figure 3.6

(b), red asterisk). This does not interfere with any of the previously inserted silhouette

constraints, but only indicates how the parameter lines must move in order to prevent

spillage. By clicking on the spilled surface, the user selects the parameter lines at that

point. Dragging and dropping it in the interior of the object’s silhouette introduces partial

position constraints on the x and y values at the selected parametric points corresponding

to the spillage. This additional constraint ensures that the spillage is corrected without

undue influence on the 3D shape as seen in figure 3.6 (c).

3.7.2 Approximation constraints

For the vase in figure 3.2, the inflation constraints provided were interpolation constraints

which assumed the surface is topologically cylindrical. In this case, its axis of revolution is

also parallel to the image plane. The simple strategy for inflation ensures that the silhou-

ette constraints (see § 3.6) are met. The reconstruction, produced by these constraints,

expressed at particular parameter locations, depends on the (u, v) locations. But for simple

surfaces the sensitivity to choice of (u, v) is generally low, as seen in §3.9.1 and figure 3.11.
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(a) Spillage in different views

(b) Drag and drop correction (c) Final output

Figure 3.6: Occurrence of spillage and fixing it

For more complex surfaces however, or where there is significant foreshortening, it is useful

to supply approximation constraints. Approximation constraints cause the surface to

pass near certain 3D points, for example, by minimizing an additional energy term of the

form:

αk‖r(uk, vk) − rk‖
2.

The factor αk controls the extent to which each constraint should be satisfied. A col-

lection of such constraints may be represented as the quadratic term ‖Mg−m‖2 (embedded
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withα), giving the modified Lagrangian:

L =
1

2
g>

Cg +
1

2
‖Mg − m‖2 + λ

> (Ag − b) . (3.22)

Optimization of this Lagrangian boils down to the slightly modified matrix equation shown

below:
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 . (3.23)

As an example of the application of these constraints, the surface in figure 3.8 was

constrained to approximately meet the planes z = my±1 using the constraints z(0.5, v) ≈

mv + 1; z(1.0, v) ≈ mv − 1. The value of m is determined interactively in order to obtain

the best-looking shape.

3.7.3 Surface creases

One final generalization is to allow the surface to crease. This means, as with the apparent

contour, specifying a curve in the parameter space (say u = uc), and constraining points

along this curve to project to the image of the crease as in (3.14). The second modification is

to E(r): replacing the bending energy, computed from second derivatives, with a membrane

tension energy—the sum of squares of first derivatives across the curve. Considering the

contribution to E(r) at a point (uc, v) on the crease, we replace

‖ruu‖
2 + ‖ruv‖

2 + ‖rvv‖
2 (3.24)

with

‖ru‖
2 + ‖rv‖

2, (3.25)
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Figure 3.7: Multi-local singularities: The red and green parts of the silhouette in the image

are continuous. However, they arise from different parts of the contour generator on the object’s

surface. (Picture courtesy: Roberto Cipolla)

so that the term transverse to the curve permits high second derivatives, allowing the crease

to form when E is minimized. This is implemented by augmenting C with first-derivative

terms, and adding weights to control the influence of each row of C. The energy remains

quadratic in the surface g and a global minimum is easily found.

3.8 Complex viewpoint

In this section we increase the scope of single-view reconstruction in two ways: first,

we deal with more complicated viewpoints. These are still generic viewpoints, but now

the apparent contour may terminate (where the view direction is asymptotic) or be self

occluded (a bi-local event). An example is seen in figure 3.7.

3.8.1 Discontinuous contour generators

In the case of objects which are self-occluding, the entire object’s contour generator can-

not be identified with a constant u curve in the parameter space. Continuous parts of the



3.8.1 Discontinuous contour generators 67

apparent contour which project from locally continuous regions of the object are identified

from their image projections (see the coloured curves in figures 3.7,3.8). The ordering and

relative scale and position of these curve segments on the surface is associated approxi-

mately with their locations on the parameter space. Again we use the freedom in the (u, v)

parametrization to choose these as parts of constant u or constant v curves in the param-

eter space. The position of the constraint curves on the parameter space is flexible, up to

ordering, and if scale and position in the mapping of these curve segments are preserved

roughly, the reconstruction will adhere well to the apparent contour constraints. Given

the parameter-space cuts, a number of new constraints are introduced into the system of

equations. The four curves on the banana image in figure 3.8 introduce new constraints

of the type outlined above. The left-hand side of the apparent contour is handled just as

above (3.17) (note that in this example the CG is non-planar—this is handled perfectly

using the previous machinery). Curves 4 and 3 are simply segments of contour generator

handled as above, noting that they must not occupy the same u = constant curve in pa-

rameter space because they are disjoint on the object. Denote curve 3 as extending from

(u3, 0) to (u3, v3), and curve 4 from (u4, v4) to (u4, 1). It is not important where the curve

endpoints are placed in the v direction, although it uses grid resolution most effectively if

they are placed so that the curves are roughly arc-length parametrized when re-projected

into the image.

Curve 2 is a particular class of curve on a 3D object. Because it corresponds to a

crease discontinuity, it is visible in the image after it has ceased to be part of the contour

generator. Thus we can identify it, and assign it to the same u-constant parameter line as

curve 3. This creates a more pleasing parametrization and generates a more plausible 3D

model, in conjunction with modelling creases realistically (§3.7.3). Another example can

be seen in figure 3.9.
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1

2

34

(a) (b) (c) (d)

Figure 3.8: Reconstruction from a complex apparent contour. (a) Input image, with

user-selected Canny edge chains. Curve 1 is a simple segment of the apparent contour. Curves 3

and 4 represent a continuous segment of the apparent contour which corresponds to a discontinuity

in the 3D contour generator. Curve 2 is a crease discontinuity which extends curve 3. (b) These

curves may be laid out in parameter space so as to preserve their incidence relationships. (c,d)

Projections of the recovered 3D surface from two views.

(a) (b) (c) (d)

Figure 3.9: Discontinuous contour generator, torus topology. (a) Donut image, with

Canny edgels superimposed. The three segments of the contour generator are shown thickened.

(b) Contour generator segments in parameter space. (c) Inflated surface, contour generator visible

through transparency. (d) Textured model.

3.9 Complex topology

One of the challenges in modelling shapes is dealing with complex topology. An object

surface can take a variety of shapes ranging from Monge patches (see §2.2 for discussion

about surface representations) to 3D closed surfaces which may even have holes in them.

We show how to model genus 0 surfaces like the fish and genus 1 like the teapot. The

only change between the schemes is the setting up of continuity around the ends of the

(u, v) parameter space. We can switch between cylindrical and toroidal topology easily.

By maintaining connectivity-graphs like Zhang et al . [211], one could model higher genus
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surfaces, similarly. Topology does not make a difference to the quality of the output shape.

The parametric surface representation (see §2.2) allows us to represent surfaces of

different topology and shape. As with the contour generator, topology can be represented

quite readily by various cuttings of the parameter space. Although somewhat complex,

these cuttings need be worked out only once per topological class. Figure 3.10 illustrates

the various cases, and we consider some examples to show how these are implemented in

our optimization framework.

For the cylindrical topology of figure 3.10, the essential constraint is that points on

the u = 0 curve (i.e. the 3D curve {r(0, v)|0 ≤ v ≤ 1}) are neighbours of points on the

u = 1 curve. In a continuous parametrization, it would be natural to implement this as a

set of incidence constraints on the surface and its derivatives as shown:

r(0, v) = r(1, v) ∀v, (3.26a)

ru(0, v) = ru(1, v) ∀v, (3.26b)

ruu(0, v) = ruu(1, v) ∀v, etc. (3.26c)

which is again linear in r. In a discrete implementation, this is a waste of 1/m of the

parameter space and complicates bookkeeping. In practice it is simpler to make X(1, j)

and X(m, j) neighbours in the derivative computations by modifying the Jacobian operator

matrix Cu, as well as the appropriate second derivative operators. For spherical topology,

these incidence constraints are augmented with the constraints that: (i) r(u, 0) = r(0, 0)∀u

which is again linear in r, and is implemented as the 3m linear constraints; and (ii)

rv(u, v) = rv

((
u+ 1

2

)
mod 1, v

)
∀u; v ∈ {0, 1}. The torus topology is a straightforward

modification of the cylindrical case. Finally, higher genus surfaces require somewhat more

profligate use of the parameter space. To make a genus two surface requires that two

loops of parameter space are identified. In this case, modification of the derivative operator

matrices is not for the faint-hearted, and recourse to a simple parameter identification as



3.9.1 Sensitivity to parameter assignment 70

in (3.26) is probably the best course of action. One such implementation of a genus 2

surface can be seen in figure 3.10. In general a surface of genus n(≥ 2) needs 2n holes in

the parameter surface. For a logical choice of the loop and a reasonable resolution, the

precise choice does not greatly affect surface shape.

(a)
Genus 0 (cylin-
drical)

(b)
Genus 0
(spherical)

(c)
Genus 1
(toroidal)

(d) Genus 2

Figure 3.10: Topology: The first row shows the parameter space for each of the topologies

listed in the bottom row. The arrow types indicate which ends of the parameter space must join

with each other. The dotted line in column 2 indicates that all points on that parameter line join

at one point. For surfaces of genus > 1, the hole in the surface translates to two holes in the

parameter space as shown in column 4. Images and reconstructions of surfaces of the respective

topologies are shown on Rows 2 and 3, with the apparent contour constraint represented as green

and magenta curves. The genus 2 teapot without texture mapping demonstrates the power of the

parametrization

3.9.1 Sensitivity to parameter assignment

At several points we have made special choices of parameter-space points and curves,

noting that the precise values chosen will have a minimal effect on the recovered surface.

In theory this is true if the energy being minimized is invariant to parametrization, for
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example surface curvature. In practice we are not minimizing curvature, merely a proxy

for it. This proxy computes derivatives in the parametric space and does not take actual

3D distances into account. So the parametrization does affect the object shape. We

illustrate that this effect is small by perturbing our assignments in the parameter space

by approximately 20% of their original assignment values for the banana example. The

models produced using identical inflation are shown in figure 3.11. Varying the parameter

assignment results in different but all convincing models. The sensitivity to perturbation

also depends on the object complexity and the availability of constraints. One workaround

is to use derivatives weighted by 3D distances and find the optimal surface by iteratively

fitting and reparametrizing the surface.

The object shape is closely related to the density of parametrization. For an object with

large variations in curvature, parametrizing sufficiently densely that the high-curvature sec-

tions are modelled will waste effort in densely sampling near-planar areas. These questions

are among those addressed by Gu et al .’s “geometry image” work [82] (also see § 2.2).

3.10 Implementation details

The optimization involved is equivalent to solving a linear equation with largely sparse

matrices. This is generally fast, e.g . solving the constrained optimization problem on a

64 × 64 × 3 grid takes under 1 second. In certain cases, we can exclusively solve for the x

and y mapping before solving for z, which means that the system can be solved for fewer

unknowns at a time, which ensures higher speed. The MATLAB backslash operator is

used, which internally uses the LU factorization method. The texture mapping used on

any point on the object surface is simply the image colour at its projection in the image.

As the surface curves away from the user at the CG, this can result in a patchy seam.

We regenerate texture in this band using available methods for texture synthesis such as

[48, 49].
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(i) (ii) (iii)

Figure 3.11: Perturbing the parameter space assignment: Column (i) shows the param-

eter assignment for each case. Columns (ii) & (iii) show the front and oblique views of the model

respectively.

3.11 Summary

We have shown how truly 3D freeform, surface modelling from silhouettes can be

achieved (algo. 3.1). Silhouette-based information can be used to constrain our surface

solution. Various other image-based cues, such as user-input, images of creases and multi-

local singularities (cusps), discontinuities along the surface can be introduced as simple

linear constraints in our problem. The under-constrained reconstruction is solved by a

quadratic smoothness function in the presence of these linear constraints. The globally

optimal surface can be found. We use a parametric surface representation and complex

topology and discontinuities (caused by self-occlusion e.g . torus swallowtails) are handled

by careful associating or cutting of the parameter domain respectively. Previous energy-
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Algorithm 3.1 Summary

1: Get object silhouette constraints (automatic or user-drawn), topological constraints
(genus 0, 1, etc.) and features such as creases and multi-local singularities. Construct
smoothness matrices (§ 3.4) appropriate to these image-based constraints.

2: if cylindrical inflation then
3: Derive inflation constraints from silhouette (§ 3.7.1.1). Solve for surface.
4: else if Distance transform or Inflation curve based inflation then
5: Solve for surface to get (u, v) → (x, y, z) mapping (§ 3.7.1.2,§ 3.7.1.3)). Now add

inflation constraints using this mapping. Solve for surface.
6: end if
7: while Spillage do
8: Allow user to perform drag-and-drop corrections (§ 3.7.1.4). Solve for surface.
9: end while

10: Create texture map for the surface from its image projection. Texture fill the seams if
necessary and display texture-mapped surface.

based approaches such as Terzopoulos et al ., [191], have relied on iterative optimization

strategies which frequently fell into local minima or mangled the surface mesh; and previous

ad-hoc approaches could not guarantee to maintain the silhouette without complex polygon

book-keeping. A recap is seen in figure 3.12 and a few more examples in figure 1.4.
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(a) Vase (b) Squash

(c) Monterey fish (d) Dory: Finding Nemo ( includes concavity)

(e) Jelly bean (compare with fig 2.5) (f) Orange

(g) Banana (self-occluding) (h) Donut (self-occluding)

Figure 3.12: 3D models of varying complexity produced by our method are shown. These range

from cylindrical topologies such as the vase (a), squash (b) and the simple monterey fish (c) to

objects with concavities in their silhouette such as a more complex monterey fish in (d). Objects

with spherical topologies can be handled much more easily (e,f) than previous work in fig 2.5.

Objects with self-occlusions such as the banana (g) and donut (h) can also be easily reconstructed.

(See figure 1.4 for more examples).



Chapter 4

Learning Wireframe Class Models of

3D Object Categories from 2D data

Figure 4.1: A deformable object class: The lily petal may not have a reliable number and

nature of features in all instances but has a unique reliable structure. Each instance is photographed

in an unknown view, adding to the ambiguity in recovering 3D object structure. The challenge of

reconstructing each 3D shape instance and the class shape model is addressed in this chapter.

In Chapter 3, we showed how 3D reconstruction can be performed with generic knowl-

edge about object topology given silhouette based cues from a single image. We now

explore the much more challenging problem of learning class-based information (or class-

based shape distributions) from image collections.



4.1 Introduction and overview 76

4.1 Introduction and overview

The typical approach to class-based single view reconstruction treats it with a two-step

approach: (i) learn a class-based shape model from several 3D exemplars (e.g . a PDM,

see § 2.3); (ii) fit the class model to new unseen images to produce plausible 3D shape

hypothesis. This two-step approach has been used by many methods such as [15], an imple-

mentation of which is shown in figure 1.1 (also discussed in § 2.3.2). Such 3D exemplars are

scarce and often inaccessible. While 3D or 2D data captured under controlled conditions

(calibration) may be hard to procure, unordered images (without specified calibration,

lighting etc.) of distinct object instances of a class are aplenty. Community photograph

collections are one such example of a rich source of information about the world, particu-

larly when many different photos of the same subject are captured over varying pose and

imaging conditions.

In this chapter, we show how to learn a deformable object class from images in a photo

collection such as Flickr. Such classes often occur in nature–oak leaves, lily petals (plant

types), dolphin (animals), buildings (piecewise planar objects), human faces etc. Different

3D instances of a class such as ‘lilies’ (see figure 4.1), have different shape, colour and

texture features as well as projection parameters. However, class-specific features and the

presence of common structure, bind the different instances together. This commonality is

used to learn deformable object models.

Overview: We start with a formal statement of the deformable object reconstruction

problem in § 4.2. The ambiguity in the problem necessitates the use of good priors and

regularization as seen in § 4.3. We finally present the objective function and optimization

process in 4.4. We present results in two experiments:

1. In § 4.5, we learn deformable wireframe-based object class models from multiple

uncalibrated images of photo collections (such as Flickr). We don’t have reliable

point correspondences or temporally smooth image sequences. Instead of first finding
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Figure 4.2: A learnt 3D object class: (1) Three examples from a training set of lily shapes

are shown. 2(a,b) Two views of 3D wireframes (and interpolated petal surfaces) estimated by our

WCM method using flexible correspondences are shown. The reprojected ribs are superimposed

over (1) in red. The 3D wireframes and surfaces for standard NRSfM techniques based on fixed

uniformly selected correspondences are shown in 3(a,b). The petal surfaces are coloured by their

depth (z) values in their own coordinate frame. Our WCM method produces petal-like surfaces

(with only 4 bases) while standard NRSfM produces mostly flat petals (except for the centre

column where the recovered petal is far too bendy).
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correspondences and then recovering the parameters of the deformable shape model

as existing methods [22, 23, 194] do , all variables are expressed jointly in one global

analytic objective. We show different ways of performing this optimization.

2. In § 4.6, we show how our method can be used with calibrated stereo images to

improve generic stereo reconstruction itself for such an object class. In addition to

creating better 3D exemplars, we also show how better PDMs can be learnt from

calibrated stereo images.

4.2 Problem statement and notation

Given an image collection, we want to simultaneously discover: correspondences, camera

matrix parameters, a global parametric shape model, and the parameters fitting it to each

image. We want to learn this for shape classes such as the lily petal, which have a wireframe

representation. We call the new method WCM, for “wireframe class model”. Figure 4.2

shows a preliminary comparison of our method against existing ones.

Each image is of a unique object instance (different lily petal), therefore, despite broadly

similar texture, the presence of a particular interest point in one instance cannot be guar-

anteed to occur in another (figures 4.1,4.3). Therefore, correspondences are defined across

higher-level primitives–the petal ribs defining silhouette curves. In order to understand

the problem and its solution, we need to introduce the different terms in our optimization

formally. We will then express the objective and the notion of variable correspondences.

4.2.1 Input data

We are given N images, each of a distinct lily instance. Features like speckles are unique

to each flower, and cannot be correlated across views, as seen in figure 4.3. However,

other features such as the silhouette and vein can be reliably identified as a collection of

2D curves, subject to occlusion. Henceforth, these three features i.e. the left, right part
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Figure 4.3: Instances of object class: Lily petals have different width, texture, number and

type of undulations. Common defining ribs in the silhouette can be seen in white.

Figure 4.4: Contour input. Contours are represented by edgel chains computed to sub-pixel

precision, and spline interpolated, so may be treated as continuous curves {w(t) | 1 ≤ t ≤ P}. A

part of the petal on the left is zoomed in to reveal the discrete and analytic curve representation.

of the silhouette and the vein will be known as the ‘ribs’ (illustrated in figure 4.4). In

order to simplify the problem, we assume that the flower shape is completely defined given

the wireframe of these ribs. Therefore the goal is now to determine the shape of each

object instance, where the shape is defined by a 3D wireframe. The image observations

are silhouettes of the ribs as observed in figure 4.4. In the experiments reported here,

the image based silhouettes are extracted semi-automatically. The user helps to localize

the curves by drawing a rough boundary and the curves for the silhouette are latched

on automatically to the closest Canny edges. Thus, a smooth silhouette representation

faithful to the image information is retrieved. The method is described in detail in A.2.
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This is a quick and reliable process.

4.2.2 Curve representation

Figure 4.5: Parametrization for

lily example: All contours are num-

bered in the same scheme.

The annotation yields a set of point observations

along the respective ribs in the image. The points

along the 3 ribs can be stored in one vector of P

points for the image. We assume an equal number

of point observations P/3 per curve as shown in fig-

ure 4.5. Though we know which curves correspond

to each other across images, the actual point cor-

respondences are unknown. Dense correspondences

are important for reconstruction and representation

of the 3D shape. Therefore there is a need for can-

didate points to able to slide along their ribs un-

til correspondences have been correctly identified

across the images. It is useful therefore, to have an analytic representation of the

ribs. A piecewise smooth cubic spline representation can be fit to its representative

points for each rib. For convenience of exposition we parametrize all curves by a sin-

gle parameter t, so the set of points traced by the curves in image n maps as following

{wnp | 1 ≤ p ≤ P} → {ωn(t) | 0 ≤ t ≤ 1} (see figure 4.5). We can now smoothly traverse

the parameter space occupied by the ribs instead of being restricted to hopping across the

discrete representation (see figure 4.4). Any 2D point on the ribs is now a function of a 1D

parameter point and precomputed parameters. Also analytic curves such as these allow

computation of smooth derivatives whose importance is discussed in Appendix B.
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4.2.3 3D model representation

The model for the 3D object class is assumed to lie in a linear subspace (see Bregler et al .

[23]) of basis shapes, each is a matrix Bk
3×P

1where each column bkp
3×1

represents a 3D point.

We denote by B the set of shapes {Bk}k=1...K . In a particular image, n, the observed

instance of the object class is defined by a vector of shape parameters αn , and the 3D

shape is denoted Xn, where

Xn
3×P

=
K∑

k=1

αnk Bk
3×P

. (4.1)

We adopt the convention that αn0 = 1∀n, so that B0 behaves like the mean in principal

components analysis (PCA).

4.2.4 Camera matrices

A 3D model is projected into the image via a 3 × 4 camera matrix as shown:

Pn
3×4

=

[

An
3×3

| Tn
3×1

]

. (4.2)

For
(

x
y
z

)

= P
3×4

[
X
1

]

4×1

, perspective projection is given by:
( x

z
y

z

)

:= π
(

x
y
z

)

(more details in

Appendix B). Therefore the image projection of the 3D shape is given by:

ŵnp
2×1

= π

(

An

K∑

k=1

αnk · bkp
3×1

+ tn
3×1

)

. (4.3)

Assuming a full projection matrix (11 d.o.f, or degrees of freedom) can make it difficult

to find sensible solutions. We want a simpler and more constrained camera representation

to solve the system more effectively. In many cases, a scaled-rotation camera matrix (7

1It is not necessary that the number of points in the basis shape be the same as the number of image
curve control points, but it loses no generality to make it so, and makes the new model “backwards
compatible” with nonrigid SfM models.



4.2.5 Objective 82

d.o.f) shown can be employed:

Pn
3×4

=

[

sn · Rn
3×3

tn
3×1

]

. (4.4)

If appropriately used, such an assumption constrains the camera sensibly without se-

riously affecting the plausibility of the resulting solutions. The matrix can be expressed

as a function of an underlying set of Q parameters (equals the d.o.f), which determine the

entries of the matrix. The scale is determined by one such parameter sn. The rotation

and translation each have 3 degrees of freedom. In scenes where the depth of the object is

much smaller than the distance from the camera, a scaled-orthographic camera model (Q

= 6) also makes for a good approximation (refer Hartley and Zisserman [84], Forsyth and

Ponce [62]). The altered camera projection is unaffected by depth and therefore uses only

a sub-matrix of the system above as shown:

Pn
3×4

= f

(

θn
Q×1

)

=






sn · Rn
2×3

tn
2×1

0 0 0 1




 , Q = 6 for scaled-ortho. (4.5)

In addition to constraining the problem, scaled-rotation (and scaled-orthographic) ma-

trices yield derivatives which are easy to express and compute. This is useful for optimiza-

tion (see Appendix B).

4.2.5 Objective

In NRSfM (Non-Rigid Structure from Motion), the correspondences between model and im-

age ŵnp are assumed known. The model fit may be assessed by minimizing the reprojection

error of the 3D model’s projection with respect to the actual image-based correspondences

as:

E =
∑

np

‖enp
2×1

‖2 =
∑

np

∥
∥
∥
∥
ŵnp
2×1

− wnp
2×1

∥
∥
∥
∥

2

. (4.6)
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While each wnp is available from the image, the current estimate ŵnp, varies with the

parameters. The model can be fit by minimizing E w.r.t parameters

Θ = {{α}1...N , {B}1...K , {θ}1..N}. (4.7)

The energy and its Jacobian (see Appendix B for more detail) can be computed exactly

for every configuration of the parameters, facilitating an efficient least-squares (Levenberg-

Marquardt ) bundle adjustment over the unknowns.

4.2.6 Variable correspondences and inter-curve distances

We want to maintain the notion of (analytic) curves while constructing our models or

measuring error. Calculating a new analytic representation for the 3D model through each

iteration is difficult during optimization. In 2D however, we do not have to limit ourselves

discrete points to represent image-based silhouettes. Corresponding silhouette-based ribs

are given across images. These can be converted to analytic form in a one-off computation.

Therefore, reprojection error as the difference: enp (see equation 4.6) can be replaced by a

closest-point calculation between the projected rib curves (in the form of discrete projected

points) and the analytic image curve as

dmin2

np = min
t

d2
np(t) = min

t

∥
∥ŵnp − wn(t)

∥
∥2
. (4.8)

Replacing the error term in (4.6) with (4.8) gives us a reprojection error across images

for variable correspondences. This small modification makes the optimization rather more

difficult. We shall now discuss the several options for minimizing D =
∑

np dmin
np

2.

Ways of minimizing D

In our experiments, a number of strategies for minimization of D were considered: distance

transform, point-to-spline distance, and augmented bundle adjustment. We now discuss
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these three methods.

Distance transforms The distance transform approach maintains a distance transform

for each training image. For each point on a grid (at some reasonably fine resolution)

superimposed over the curve, the closest curve point and its distance is pre-computed. The

typical DT stores the closest distances in the form of scalars. However, for the purpose

of our least-squares optimization, it is useful to maintain the x, y parts of this distance

separately. Thus the DT can be expressed by the following 2 vector:

DTn(x)
2×1

= min
t

‖x − wn(t)‖. (4.9)

Therefore the explicit computation of the closest point on the image silhouette-curves

for each candidate projection point can be avoided. Instead a quick interpolated look-up

can be performed on the pre-computed DT to give the following:

dmin
np = DTn(ŵ). (4.10)

The distance transform at a given grid resolution and the derivatives (see Appendix B and

also [57]) can be computed offline. This look-up based distance computation is fast and

cheap on computational resources. Accuracy depends on the discretization of the DT, but

the resolution is expensive on memory resources and often limits the number of images we

can train on.

Explicit closest point computation in each function evaluation to measure

curve-to-curve distances We can also minimize the actual directional distance between

the projected silhouette at any given instant, and the reference silhouette. Bi-directional

distance calculation is ideal, however it is much more expensive to compute. The 3D

candidate ribs and their 2D silhouettes at any given instant are stored in discrete form.

For each discrete 2D candidate silhouette point, the closest point on the analytic reference
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image curve can be found and distances can be summed up across the candidate silhouette.

This implies a minimization for each representative model point in each evaluation of the

error function in equation (4.8). Because the image curves are defined as interpolating

splines, the closest point to any query point can be efficiently and quite reliably found us-

ing Newton-Raphson iterations. However the derivatives of equation 4.8 are not available

in closed form as ŵnp itself is unavailable in closed-form. Therefore the only options are to

either use expensive explicit iterative closest-point optimization, or faster finite-difference

approximations for derivative computation. Details about this optimization can be seen

in Appendix B.

Slack approach Consider the image n and vertex p of the candidate rib Xnp and its

estimated projection in the image ŵnp. Let the closest point for ŵnp on the reference image

silhouette wn(t) be denoted by the parameter t = tnp. Instead of explicitly computing

this in each function evaluation during optimization, we can make it a part of the larger

objective. This amounts to increasing the variable space with NP extra parameters tnp

and rewriting the objective as follows:

min
Θ

∑

np

min
t
dnp(t) = min

Θ,t11..tNP

∑

np

dnp(t). (4.11)

We use this approach. This adds NP parameters to the optimization but does not greatly

increase the computational load as the variables are uncoupled (read further in Appendix

B).

4.3 Priors and point constraints

The number of variables in the problem far exceed the number of image observations. In

such situations, the models retrieved from each image are prone to noise and lack the

smoothness characteristics of the actual 3D model. For example, a global optimum of the
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objective can be found by setting Bk = 0 for all k, and choosing Pn to project the resulting

point onto any point on the image curve, e.g. wn(0). To combat degenerate solutions and

noise, regularizers on the 3D shape are required.

Smoothness and Tension The quest for minimal reprojection error can cause degener-

ate loops and self-entanglement in the 3D curves. Also when using DTs, their discretization

can cause the curves to be jagged in 2D and 3D. Therefore having some smoothness reg-

ularizer is essential. This smoothness can be simply second-order smoothness w.r.t. the

curve parameter, also known as bending energy, as shown below:

Ebending =
∑

n

P−1∑

p=2

λp‖Xn,p−1− 2Xn,p+Xn,p+1‖
2. (4.12)

In addition to smoothness, we also want the points on the curve to be equally spaced

along the curve, or in other words, we want the 3D rib curves to have unit speed parametriza-

tion. To encourage this, we include a first-order tension term.2

These priors of smoothness and tension are therefore represented by the following reg-

ularizer on X, and hence on B:

Esmooth =

∑

n

P−1∑

p=2

λp‖Xn,p−1 − 2Xn,p + Xn,p+1‖
2

︸ ︷︷ ︸

Ebending

+

ψp‖Xn,p−1 − Xn,p+1‖
2

︸ ︷︷ ︸

Etension

, (4.13)

where the parameters λp, ψp switch off the regularizers at the discontinuities in parametriza-

tion (e.g. P/3 in figure 4.5). They also additionally allow these to be relatively weighted

depending on the problem specifics.

2For a curve which has no other constraints except that its ends are fixed, such a tension term causes
the curve to stretch out tautly as a straight line, with the representative points on the curve being at equal
distances.
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Coincidence The end points of the 3D ribs are not fixed in space and the tension term

can causes the ribs to contract. The ribs being completely collapsed to a point which

projects somewhere on each image’s silhouette leads to a degenerate but valid solution.

This must be prevented in a principled manner. In our example images, the tip and base

of the petal are identifiable in many views, and can be included as conventional end-point

constraints. However, there is observation error associated with these. A weaker, but

more principled constraint is to encourage the tips and the base of each of the 3 ribs of

a petal to be coincident in 3D. Therefore, a coherent petal in 3D with its veins meeting

at the ends leads to coherent projections in images too. This regularization in 3D on the

ribs allows them to find the best base-tip projections in the images despite observation

error and without manual annotation. The smoothness regularizer (4.13) can now be used

without degeneracies. Using the scheme in figure 4.5 the following coincidence term can

be added to the optimization. χbase, χtips control the relative weights accorded to the

coincidence at the base and tips of the petal:

Ecoincident =
∑

n

χbase
(

‖Xn1 − Xn P
3

+1‖
2 + ‖Xn1 − Xn 2P

3
+1‖

2
)

+

χtips
(

‖Xn P
3

− XnP‖
2 + ‖Xn P

3

− Xn 2P
3

‖2
)

.

(4.14)

4.4 The total objective function

Combining these terms gives our primary objective:

Ewcm(Θ, t11, ..., tnp) =
∑

np

d2
np(t) + Ecoincident + Esmooth. (4.15)

The actual optimization procedure is discussed in fine detail in Appendix B. Basi-

cally the Levenberg-Marquardt least-squares optimization used here needs a residual vec-

tor which contains all the elements of the summation defined in equation (4.15). The

introduction of the regularizers (4.13,4.14) introduces new terms to the reprojection-error
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based residual vector defined in Appendix B. This in turn results in the addition of new

blocks to the Jacobian as shown in figure 4.6.

4.5 Experiments I: Flickr

The goal is to compare deformable object reconstruction from fixed correspondences (Opti-

mizing (4.11) with fixed tnp ∀n, p is equivalent to a regularized version of nonrigid Structure

from Motion) with our new method (Wireframe Class Models WCM) which includes cor-

respondence finding within the optimization (4.15). In this experiment, we do not have

the ability to compare with ground truth. We will show our contribution in terms of the

theory and the qualitative evaluation of the results clearly show that our method performs

better.

Data The first set of experiments deals with the example in figure 4.2. A collection of

56 “lily” photos were downloaded from Flickr, and manually annotated as described above,

to produce a three-rib curve for each view. The curves were sampled at unit speed into 20

samples per rib, so P = 60. The optimized code (as discussed in Appendix B) can handle

much higher resolutions but at the expense of compute time.

Results The experiment is performed for N = 56 images, each model having P = 60

vertices and K = 1 . . . 4 bases. The projection matrices Pn are rarely completely unknown,

so may be parametrized by fewer than 12 variables. When the camera instrinsics are known

we use a 7-parameter similarity transform (unnormalized quaternion and translation); and

for distant features, an affine camera (8 parameters, third row of Pn is [0 0 0 1] for all n).

The key to any large optimization is in the choice of initialization, and in having

a hierarchical minimization strategy. If we were to start the full optimization over all

parameters, it would almost certainly not reach a good optimum. This we relax towards

the full solution by varying K from 1 to the desired target, and for each K, we first
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J α(NK) B(3KP ) θ(7N) T (NP )

d 2PNK 6PNK 14NP 2NP

ebending 3PNK ≈ 9PNK 0 0

etension 3PNK ≈ 9PNK 0 0

ecoincidence 12PNK 72NK 0 0

Figure 4.6: Jacobian structure: The variables are plotted along horizontal while the terms

contributing to the objective are along the vertical.
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K standard regularized
NRSfM for fixed
correspondences

our variable corre-
spondence WCM

Timings Errors Timings Errors
optimization

time from

K − 1 to

K

time per

100 func

evals

Reproj

error:

pixels per

point

Objective

func

(aver-

aged per

point)

optimization

time from

K − 1 to

K

time per

100 func

evals

Reproj

error:

pixels per

point

Objective

func

(aver-

aged per

point)

1 5 minutes 6.42 s 12.16 0.4247 1 day 6.50 s 10.59 3.6974
2 0.5 minutes 7.23 s 9.22 0.3219 3 days 7.21 s 8.99 0.31
3 2 minutes 7.75 s 7.56 0.26 3 days 7.79 s 7.19 0.25
4 2 minutes 9.41 s 5.57 0.19 1 day 9.36 s 5.38 0.18

Table 4.1: Table showing approximate times for optimization using the competing methods

(N = 56, P = 60 and K as shown). The total optimization times can be sensitive to initialization,

therefore we also show the timings per 100 function evaluations. As seen above the WCM method

achieves a better minimum. Surprisingly it does better even on the reprojection error.

estimate the P matrices, then the bases, with fixed correspondences, and finally vary the

correspondences tnp. Optimization time increases with the number of bases K and points

P but also depends on the initialization and nearest minimum available (see table 4.1). For

effective optimization the sparsity in the derivative computations is utilized, as discussed

in Appendix B.

The number of terms in the residual is 7NPK + 12N . The NRSfM (with NK + 7N +

3KP+NP variables) produces rather flat reconstructions, at best. In contrast, WCM (with

NK + 7N + 3KP variables) produces moderately realistic 3D models with reassuringly

little parameter tuning, which can be used to predict the shape of examples without re-

fitting the entire model or resorting to even more complex priors. The results of the two

competing methods can be compared in figure 4.2. The performance is summarized further

in table 4.1. A gallery of many more images and their reconstructions by our method can be

viewed in figures 4.7,4.8 and 4.9. Despite the NP extra variables, the WCM approach takes

roughly the same time per function evaluation. Each K is initialized from the results of

the previous stage (K− 1). Depending on how close the starting point is to the minimum,
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the total time taken by each optimization stage varies. In general, the WCM method

takes a lot longer to converge than NRSfM. The ability to optimize the problem over a

larger domain (inclusive of correspondences), enables the WCM method to reach a better

minimum. Interestingly the flexibility also results in reduced reprojection error. While the

per pixel reduction may seem small, the sum over all the images and points makes for a

considerable saving.

Algorithm 4.1 Experiment I: Summary

1: Take dataset of images and annotated petal ribs. Fit piecewise splines to the petal ribs
in each image (§ 4.2.2).

2: Represent correspondences (wnp) by the parameters tnp on spline-based ribs. These
are initialized by P equidistant points on the petal ribs in each of the N images.

3: For (k = 1) assume rigid body. Bundle adjustment (reprojection error combined with
smoothness and petal-specific coincidence regularization, see § 4.3, § 4.4) is performed
over camera parameters, rigid petal and correspondences.

4: for k = 2 · · ·K do
5: The object is represented by k bases. Use results from k − 1 to initialize system for

k bases.
6: Perform bundle adjust over camera parameters, bases, shape-fitting coefficients and

the correspondences. The optimization is performed over all parameters including
the parameters corresponding to the k − 1 initialization.

7: end for
8: Tune the hyperparameters λ,ψ, χ according to best visual quality.

4.6 Experiments II: Stereo reconstruction

Problem setup: The goal is to compare two methods of building deformable shape

models: (i) a standard PDM based method using 3D shape exemplars built using calibrated

stereo frameworks; (ii) The WCM method adapted to build better deformable shape models

for stereo reconstruction and PDMs. We will call this new method the sWCM (s–stereo).

In the case of learning a class model from stereo data, the conventional approach would

be to reconstruct a 3D wireframe for each set of stereo images, and then to model the 3D

distribution using PCA. However this does not take into account the very non-isotropic
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Figure 4.7: Gallery I: Some images from the dataset and their reconstructions are plotted.

Surface colour corresponds to surface depth. Some images are plotted without lines or with
lighting to highlight the shape. Coordinate axes give an idea about the relative petal size
in x, y, z.
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Figure 4.8: Gallery II: Some images from the dataset and their reconstructions are plotted.

Surface colour corresponds to surface depth. Some images are plotted without lines or with
lighting to highlight the shape.
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Figure 4.9: Gallery III: Some images from the dataset and their reconstructions are plotted.

Surface colour corresponds to surface depth. Some images are plotted without lines or with
lighting to highlight the shape.

uncertainties in the wireframe coordinates when the model has been acquired using stereo.

PCA with anisotropic data uncertainties is a rather harder problem than simple PCA, and

will at best allow the use of Gaussian approximations to the uncertainties. Any error in

registration will add to errors in the model. There is therefore, the need to investigate

better methods for PDM building.

Data: Multiple images of an object are captured simultaneously using a calibrated stereo

rig. In particular M = 20 object instances are taken, each of which is photographed by

a set of 2 cameras, with matrices Pl, Pr. Reliable reconstruction in the presence of the

minimal two images is challenging. Different methods for 3D reconstruction of the object

are explored and the best one is used for reconstruction of exemplars Xm. As each petal

is captured in a different frame of reference, a similarity transformation Hm relates the

different exemplars and must be estimated. Similar to § 4.2.1, image based curves for the
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left and right images of the mth stereo pair are captured by piecewise spline representations

stored in ωrm(t),ωlm(t) (see Appendix B for more detail).

The PDM approach assumes that the 3D models for an object are generated by a

distribution [37]. We continue to use the assumption that the 3D models lie in a linear

subspace of bases, so that Xm =
∑

k βmk · Bk, (see § 4.2.3). The goal is to recover the best

3D model Xm for each set of stereo images of the mth petal. The most effective way of

building PDMs is then explored. For this it is imperative to recover H, B, β.

The problem is explored in two stages:

1. We will first examine the most effective methods for reconstructing wireframe based

shapes from stereo images.

2. We will then explore how our class-based WCM framework can be used to most

effectively extract a model from such exemplars.

4.6.1 Stereo reconstruction of exemplars

We will explore the different methods of stereo reconstruction for this problem here.

Naïve methods: The simplest method for reconstruction is to find a set of reliable cor-

respondences across image pairs and triangulate to get 3D structure. In the absence of

features and only curve-based information usually only sparse correspondences are avail-

able. There are some ways of generating more dense correspondences. For e.g. for each

point lmp on the rib in the left image, its epipolar line (say e) in the right image can be

intersected with the corresponding rib (given by curve ωrm) in the right image to yield

its correspondence (see figure 4.10). This is equivalent to minimizing the transfer error

defined as:
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(a) left image (b) right image

(c) multiple intersections of e with silhouette

(d) tangency of e with silhouette

Figure 4.10: Finding correspondences for stereo: To find the correspondence for point p

in left image (a) of pair m: lmp, the intersection of its epipolar line e (in yellow) must be found

with the corresponding curve in the right image (b). (c,d) illustrate some problems with such

an approach. (c) shows how multiple intersections of e with the silhouette (in red) leading to

ambiguity in correspondences. (d) Epipolar lines can be tangent to the silhouette causing a range

of positions on the silhouette to be candidate correspondences.
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e = Fm

[
lmp

1

]
. (4.16)

Ideally, e>
[

r∗mp

1

]

= 0, (4.17)

where r∗mp = ωrm(t∗), (4.18)

t∗ = argmin
t

∥
∥
∥e

>
[

ωrm(t)
1

]∥
∥
∥

2
. (4.19)

Note: ωrm is the piecewise cubic spline representation of the silhouette curves in the

right image of the mth stereo pair. ωrm(t) denotes the point represented by a parameter

t on this curve. The minimization of this transfer error can be done analytically with the

spline-based representation and produces good results except at the ends of the petals, or

in curvaceous regions, where the ribs are tangential to the epipolar lines, or where multiple

intersections occur with undulated curve silhouette (see figure 4.10).

The minimization of such an error also causes the selection of 3D points that correctly

project somewhere on the ribs in the left and right images, but may not be actual valid

points on the petal. There may also be situations where due to observation error, there

is no intersection with the image curve. A combination of these factors result in the 3D

reconstructions with stray vertices as shown in row 1 of figure 4.11.

Therefore, the correspondences must have some properties to prevent such degeneracies

and tackle noise. The problems due to multiple intersections, tangencies etc. can be

addressed by using techniques such as dynamic programming.

DP approach: Valid correspondences across two curves must display properties such

as monotonicity (Roy and Cox [164]). In other words, the criss-crossing seen in (1,a) fig-

ure 4.11 must be prevented. Given that the ribs in the left and right images are sampled at

a reasonably fine resolution–lu, u ∈ [1, U ], rv , v ∈ [1, V ], the problem of finding correspon-

dences can be recast as a labelling problem. For each point lu on the discretized left curve,

as before, we want to find the corresponding point (label) rv on the discretized right image

curve that minimizes transfer error. Additionally we penalize the lack of monotonicity.
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1.

2.

3.
(a) (b)

Figure 4.11: Naïve transfer error minimization vs. DP based correspondences: 1(a,b)

show the correspondences between the left (green) silhouette and the right (red) silhouette. The

naive approach leads to ambiguity and the violation of monotonicity in the correspondences (1,a).

The resulting reconstruction (2−3,a) contains vertices that minimize reprojection error but do not

belong to the petal. With the regularized DP-based approach this is solved (1,b) and a sensible

petal (2 − 3, b) is recovered.



4.6.1 Stereo reconstruction of exemplars 99

On moving forward from point u1 to u2 in the left image, the correspondences for them

v1, v2 should also result in moving along the same direction. This cost is summarized in

D, in (4.21). The total objective (4.22) is a combination of transfer error (4.20) and regu-

larization in the form of monotonicity (4.21) similar to Ohta and Kanade [141]. The total

objective (4.22) is expressed as a cost of assigning label v to node u and includes the cost

incurred until node u−1. Mathematically, the problem can be expressed as φ and this can

be solved by a simple dynamic program as shown.

C(u, v) = e>u rv, where eu =
x

√

x2
1 + x2

2

, forx = F






lu

1




 . (4.20)

D(u1, u2, v1, v2) =







λ|‖lu1
− lu2

‖ − ‖rv1
− rv2

‖| , if (u1 − u2)(v1 − v2) > 0.

∞ otherwise.
(4.21)

φ(u, v) = min
k

{φ(u− 1, k) +D(u− 1, u, k, v) + C(u, v)} . (4.22)

The combination of transfer error (4.20) and monotonicity (4.21) make this method

less prone to the problems of the naïve method. This minimization of this DP (4.22) can

be performed along a unit-speed sampling of the left image to retrieve dense correspon-

dences. The improved reconstruction results can be compared with the naïve approach

in figure 4.11. The average reprojection error for this method can be seen in table 4.2.

This optimization is performed at increasing resolutions of the right curve, to examine its

effect on the reprojection error. First the right curve is sampled at nearly the pixel res-

olution resulting in a reprojection error of nearly half a pixel per point. Upon increasing

the sampling resolution of the right label space to 0.1 pixels, the reprojection error falls to

nearly 0.1 pixels. This shows that the best achievable reprojection error depends on the

sampling resolution. However, the sampling resolution is limited by memory and time of

optimization. Though the errors of DP and the naïve method are comparable, the lack of

regularization allows the naïve method to achieve marginally better optima.
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Stereo-aware WCM (sWCM): The DP based results still exhibit some jaggedness

and noise as seen in figure 4.11. Simply smoothing the 3D coordinates is not an option as

this will increase the reprojection error. The curves must be smooth while being faithful

to the silhouettes. This brings about the need to vary the correspondences along the

ribs until both objectives are met (as in WCMs 4.15). Additionally our smoothness (and

tension) regularizers should not cause degenerate solutions as discussed in § 4.3. Taking

all the desiderata into account, it is obvious that once more we must use the WCM (4.15)

formulation to solve this time for a rigid object model from multiple calibrated views. The

number of unknowns are much fewer than before and the optimization can be summed up

as:

min
tl

P×1

, tr
P×1

, X
3×p

Im = min
tl

P×1

, tr
P×1

, X
3×p

(

Esmoothness + Ecoincidence +
∑

p

f2
mp

)

, (4.23)

where f2
mp =

(
l(tlp) − π

(
Plm

[
Xp

1

]))2
+
(
r(trp) − π

(
Prm

[
Xp

1

]))2
,

Esmoothness = λ‖Xp−1 − 2Xp + Xp+1‖
2 + ψ‖Xp+1 − Xp−1‖

2,

Ecoincidence = χbase
(
‖X1 − XP/3+1‖

2 + ‖X1 − X2P/3+1‖
2
)

+ χtip
(
‖XP/3 − XP ‖

2 + ‖XP/3 −X2P/3‖
2
)
. (4.24)

The correspondences are now expressed in terms of the parameters tl, tr representing

the positions of points along splines representing the stereo silhouettes. The best recon-

struction for each image pair can be performed by optimizing Ewcm of (4.15) with N = 1,

K = 1, variable correspondences (tl, tr), fixed camera pair–Plm, Prm and low weights on

Ecoincident and Esmooth. The results are seen in figure 4.12. The reprojection error from

the three methods can be compared in the table 4.2.

The naïve method minimizes reprojection error most effectively but result in faulty

models. The DP based approach optimizes reprojection error almost equally well. The DP

3D models do not have the stray vertices of the naïve method. They are plausible although
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being slightly noisy and jagged. This is improved in the sWCM approach. This function

firstly takes the more accurate reprojection error into account instead of the directional

transfer error. Variable correspondences are incorporated for greater flexibility. The all

encompassing objective(4.23) strikes a balance between optimizing reprojection error and

accounting for image noise. Thus it produces the best 3D models qualitatively (figure 4.12),

while compromising minimally on the reprojection error (see table 4.2).

Figure 4.12: Final sWCM reconstruction: The best reconstruction using sWCM (in green)

is compared against the DP-based solution (in red) of figure 4.11. The sWCM optimization is

performed upon a comprehensive analytic objective function, inclusive of variable correspondences

and regularization. The resulting reconstruction is much more smooth and plausible, despite

minimizing reprojection error equally well.

4.6.2 Improving PDMs

In typical PDM based methods, the shape exemplars Xm are used to learn a compact basis

representation. One common method is to use Principal Component Analysis to extract

eigen-vectors (see Blanz and Vetter [15]). The first K eigen-vectors are used to represent

the shape in its linear subspace. This method assumes that the shape distribution can

be approximated with a Gaussian. Though variations have been proposed, the ease of

optimization of the PCA-based method makes it most popular.
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Method Average Reprojection error per image vertex

Naïve transfer error 0.04
DP (label space at pixel resolution) 0.51
DP (label space at 10×pixel res) 0.09

sWCM 0.12

Table 4.2: Reprojection error across the different methods for stereo reconstruction are com-

pared. Each method minimizes a slightly different objective. Minimizing naïve transfer error

results in the best reprojection error but the worst 3D models (figure 4.11). DP based discrete op-

timization corrects some of the problems with almost equally good reprojection error. The sWCM

(figure 4.12) yields the best combination of reprojection error while maintaining a good 3D model.

The performance of the DP-based method is subject to the resolution of discretization of the label

space and computational constraints.

Problem The PCA based method doesn’t take individual image-based errors of projected

vertices into account and assumes that each vertex has uniform isotropic noise in 3D space.

We argue therefore, that in order to accurately compute the compact shape representation,

the image errors should be accounted for. Instead of treating this as a modular problem of

(i) first building shape exemplars and (ii) converting them to compact representations, we

should be jointly working towards finding the best shape bases that explain all the stereo

images well.

Data The stereo data allows us to perform a number of experiments. The first test

compares conventional 3D PCA (i.e. building a 3D point distribution model [37]) and

stereo-aware WCM (sWCM).

We can directly optimize the likelihood of the bases by running WCM with a reduced

parametrization, where every pair of views is parametrized by a single set of rotation and

translation parameters. These parameters are used to create a 4 × 4 similarity transfor-
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mation H, and the values of P2m−1 and P2m are then given by

P2m−1 = PLHm, (4.25)

P2m = PRHm. (4.26)

This helps to relate the coordinate frames of the individual petal instances. Running this

optimization effectively measures the error of the bases in the image coordinate system,

from whence it came, rather than in 3D. Optimization over all the parameters–camera,

correspondences, bases and mixing coefficients, allows us to build a shape model while

taking the stereo pairs that they came from into account.

Experiments and results We use the stereo reconstruction of § 4.6.1 as our base

method for computing the compact, linear subspace defined by bases B, using PCA with

the first K = 6 eigen-vectors from M = 20 exemplars. Now using the bundle adjustment

(Appendix B) to optimize upon the special case sWCM (4.23, 4.4 ) we optimize upon

14180 variables including the bases. The sWCM algorithm is initialized with the bases

from PCA. The resulting new bases B∗ show a reduced reprojection error compared to the

original bases (see table 4.3). The trade-off made in terms of the 3D modelling error is

negligible, and the sWCM successfully decreases the objective.

As seen in figure 4.13, the optimization yields a good estimate of shape (in the K

= 6 subspace) to each training image pair. The original ground truth shape is seen in

blue. For the 3D PCA approach, we took the estimated 3D shape for each stereo pair,

registered them as a pre-processing step, then fit a 3D PCA model. From this model, we

reconstructed the 3D shapes shown in green. Fitting the sWCM on the dataset yields the

shape approximation seen in red.
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(a)

(b)

(c)

(d)

Figure 4.13: Training on the stereo dataset (Blue-original shape, Green-PCA fitted

to original shape, Red-sWCM fitting (a) Shows the left and the right image of a stereo pair.

(b) Best ground truth estimate (c) PCA bases fitted to the ground truth shape (d) The sWCM

trained model fitted on this image pair.

K=6 Before After
3D error SRP error 3D error SRP error

Initial 0.035 6.54 0.035 6.54

Final 0.073 3.83 0.06 1.25

Table 4.3: For the basis representation using K = 6, it can be seen that further bundle adjust-

ment using (4.23) improves the reprojection error of the PCA bases acquired from stereo. While

doing so, there is no loss of 3D modelling accuracy as seen in the table.
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Algorithm 4.2 Summary: Stereo-aware wireframe class models.

1: For a stereo pair, take the left image and identify P equidistant points on it. Using
these as the nodes of a graph and the candidate correspondences as labels (discretized
points on the right image rib silhouettes), run a dynamic program on a regularized
objective of transfer error and curve consistency (described in § 4.6.1).

2: Use the correspondences to initialize the regularized objective of reprojection error
with smoothness and petal-specific coincidence (see eqn. 4.23). The optimization is a
bundle adjustment performed over correspondences and 3D structure.

3: For the purpose of learning a compact PDM representation: use PCA on the aligned
stereo-built 3D models to extract bases (§ 4.6.2).

4: In order to learn an improved basis set: optimize over the regularized objective of re-
projection error (eqn. 4.23). Now the optimization is performed over correspondences,
bases, shape-fitting coefficients and inter-shape alignment (similarity matrix) parame-
ters.

4.7 Summary

We introduce a novel extension to nonrigid SfM, and show that it constructs better de-

formable class models from a collection of photos of an object class. This is done in the

absence of any initial shape information (Experiment I). We show this method extends to

cases where stereo information is present (Experiment II). Preliminary results on improv-

ing PDMs show that they can be tested in a variety of environments where class-based

models are used, such as single view reconstruction.

In Experiment I (algo. 4.1), we have shown how a single framework, built around

regularized reprojection error with variable cameras, 3D models and correspondences. The

framework can be expressed as one joint objective and solved in a principled manner with

bundle adjustment. In contrast to existing state of the art, our images are not temporally

smooth, nor do we have reliable point correspondences. We use the notion of having higher-

level features such as object curve correspondences in images. We perform a variety of 3D

reconstruction tasks on a collection of similar object class instances (as opposed to just

deformed versions of the same object).

Unseen stereo examples provide us with a testbed consisting of ground truth. We

show how conventional stereo reconstruction methods can be improved for wireframe based
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object classes (algo. 4.2). Conventionally PDMs are built in a modular framework–first

build exemplars and then fit a PDM to these exemplars. In Experiment II, we also show

how conventional PDMs can be improved by joining these steps and optimizing PDM bases

over their source images. Effectively we show how to train the novel PDM framework with

the sWCM approach. This must be further tested on testbeds to examine the improvement

in performance in greater detail. This is the next natural step for this experiment.



Chapter 5

Class-based Object Detection and

Segmentation

One of the goals of 3D modelling is to make the whole process as easy as possible for

the end user. To this end, we would like to create a completely automatic end-to-end

system. Given an instance of an object with information about its class and topology in

an image, the following steps need to be automatically performed: (i) Detect the apparent

contour curves—for example by segmenting out the object; (ii) identify the contours in the

parameter space; (iii) generate a surface consistent with the apparent contours and texture

map it. We have demonstrated steps (ii)-(iii) in Chapter 3, we now address step (i). To

this end, we show how object class-based edge classification can be used to modify state

of the art methods in object detection and segmentation to achieve our goal.

5.1 Introduction and overview

Edges are important features of an image. They are coupled to the geometry and reveal

important information about the scene. They can be found reasonably reliably and are

partially invariant to illumination or moderate changes in contrast etc. Importantly, they
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reduce the amount of image information that needs processing for regular image processing

and vision tasks, by expressing an image concisely.

Object detection relies on the use of class features. These can vary in complexity

from simple ones such as locally computed intensity and gradient-based features to more

complex statistically computed ones such as SIFT etc. For practical purposes, features

such as colour, texture, gradient features etc. are each treated as independent features.

In algorithms such as [67], recognition is performed while treating all image edges equally

regardless of their context. However, all edges are not equal. The edges on the boundary

of an object from a specific class have the characteristic local colour or texture of that

object class on one side and can have anything (i.e. class or non-class information) on

the other side. Similarly, class specific edges may also have a characteristic shape. Thus

these features–texture, edge information etc. are inextricably tied together and must be

jointly analyzed. In this context, our objective is to learn an edge classifier to differentiate

between edges lying on the boundary of an instance of an object class, from others. For

such classification it is necessary to make use of other local information surrounding the

edge–appearance, texture and shape (see Figure 5.1). These edges will have the standard

gradient properties but in addition the classification differentiates between edges that lie

on the boundary of the object, and those that don’t. Therefore, foreground vs. back-

ground image appearance can be differentiated in the context of an image edge gradient.

This is studied at a local level thus making this process fast and easy. Such bottom-up

information can be combined efficiently with a top-down imposition of structure and con-

straints. While conventional cue integration tends to occur later in the processing pathway,

this “early vision” integration means that it is easy to modify existing applications to use

our class-specific edges, offering the potential for improved performance across a range of

applications.

Object segmentation is another much researched topic in computer vision that can

benefit from class-based edges. Recent approaches rely heavily on many forms and mod-
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ifications of the mincut-max-flow algorithm over an image treated as a Markov Random

Field (MRF). In particular we modify and employ the ObjCut formulation of Kumar et

al . [103]. In this method, segmentation is treated as a binary MRF labelling problem. The

MRF includes likelihoods from the foreground and background colour (or texture) distri-

butions, and the segmentation is guided by a pictorial structure object model (ObjCut

adds the pictorial structure prior to earlier work such as GrabCut [163]). We will add our

edge classification to this model to improve performance.

In this chapter we describe our method for edge classification in §5.2 (an example of

this can be seen in figure 5.1). We show how this can be used to improve object detection

based on the chamfer matching method (Gavrila [67]) in §5.5. Subsequently this is used

to improve the ObjCut algorithm of [103] to yield more accurate object segmentation

in §5.6. Finally, class-based single view reconstruction can be automated using this as

shown in §5.7.

5.2 Classifying edges for an object class

We now describe how local information neighbouring an edge can be learnt to classify

detected edges into those arising from the boundaries of an object class or not. Our

objective is to separate class-specific boundary edges from others—image edges arising

from internal discontinuities, specularities, and background clutter. For each edge, simple

features that encapsulate the neighbourhood are extracted. These features are then used

to learn a classifier to predict whether the edge lies on the object boundary.

There is the question of how to represent the appearance e.g. colour distribution, tex-

ture and shape of the edges. Traditionally this has been handled by extracting easily

discriminable complex features by convolving the regions of interest with a wide range

of filters. However the contrasting approach is to avoid this and let the classifier discern

between the unprocessed samples. We follow the latter, by simply extracting a rotation-

ally invariant (up to a flip factor) patch around each edge point using a feature vector



5.2 Classifying edges for an object class 110

(a) A simple image (b) Canny edges (c) Validated edges

Figure 5.1: Overview. The background and internal gradients in (b) make object detection

difficult. (c) The class-specific validated edges help in removing clutter and internal gradients.

Most of the non-class edges have been suppressed, greatly simplifying subsequent processing such

as detection or class specific segmentation.

consisting of the pixel colours. This representation implicitly captures the shape from the

edge boundary running through the patch, and the colour and texture of the patch. On

the other hand, with such a simple representation we are not explicitly recording that the

distributions on each side of the object boundary edge chain may be different. The idea is

that the ability to discriminate can be gained either during the stage of extracting features

or while classifying them. Varma and Zisserman [200] demonstrated this by classifying

texture in monochrome images with the use of simple patch features.

Feature extraction Given an image, a set of edges are extracted using the Canny edge

detector. This algorithm is inherently robust for the job because of its use of non-maximal

suppression and hysteresis [27, 28]. The parameters in Canny are: (i) the initial amount of
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smoothing before edge detection, and (ii) the thresholds for qualifying high contrast regions

as ‘edges’. The Canny algorithm is available in many implementations and the parameter

values depend on the implementation and the image it is applied to. The actual parameters

are not important as long as the following characteristics are ensured. Smoothing can help

reduce image noise but detail should not be lost and the edges should not be offset from

their true location. Similarly, the thresholds must be set to allow enough object detail

to come through, while admitting minimal clutter. In practice the parameters are never

perfect and for an image, some clutter will always come through, while some relevant detail

may be lost due to insufficient contrast in some regions.

To simplify ground truth annotation, edges are linked into chains automatically ac-

cording to their spatial proximity as shown in figure 5.1(b). Now edges are associated with

these edge chains instead of individual sub-pixel level detections. As a result, stray single

pixel detections can be discarded easily enabling usage of edge chains that form more mean-

ingful demarcations in the image. All edge chains are manually annotated for training and

verification. They are marked positive if they lie on the boundary of an object instance;

all other edge chains are negative by default (see figure 5.2). This is a simple procedure

as only a few user clicks are required per image for annotation of positive examples. This

can be read in detail in Appendix A.

We use simple m × n (where m,n have been appropriately chosen) image patches

as our features. Each point along the edge chain is the center of a patch feature. For

standardization, each patch is centered at its corresponding point on the edge chain and

rotated so that its x-axis is aligned with the tangent at that point along the edge chain.

An example can be seen in figure 5.2. This involves a simple interpolation to extract the

rotated patches from the image pixels. The colour values of each pixel in this patch are

now used to represent the appearance ([200] only used grey values).

Flip ambiguity Our patches extracted from the images are rotationally invariant up to a

flip factor. For e.g. in a positive patch, the object region can lie either on the top or bottom
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(a)

(b)
Negative examples Positive examples

Figure 5.2: Annotation and feature patches: Annotated edge chains can be seen in cropped

images in the row (a) Positive edge chains are marked in green, and the negative ones in red. The

patches extracted as each edge chain is traversed are shown in row (b). Patch in (b) corresponds

to boxed location in (a).

half of the patch (figure 5.2). This means that the domain of valid patches forms multiple

modes in the patch space. Ideally, the training data should capture sufficient examples

with the object on either side and the learning should efficiently handle this flip ambiguity.

However, sufficient examples with object on either half of the patch cannot be guaranteed

in the process of data extraction. Also the classification algorithm may not be equipped to

deal with multi-modal domains. The problem of choosing the right model and parameters

for the classification can add to the difficulty. We resort to a simple trick for removing this

ambiguity. In the presence of a dominant class characteristic such as colour or texture,

the patches can be flipped to remove this ambiguity. Consider the class–orange (fruit); a

patch from an image of an orange, can be flipped so that the more “orange” region always

lies on one half-patch (say upper side). The “orangeness” of a half-patch can be measured

by taking the joint probability of each pixel in that half-patch according to a colour or

texture distribution for that class. This can be understood as a representation where all

data lies in one half of the patch space, therefore eliminating the multi-modality caused by

the flip factor. Classes like bottles lack such a dominant colour or texture characteristic.
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The approach for such a class is described in § 5.3.

Classification is basically the task of assigning a label (from a space of two or more

labels) to a variable, or a set of variables and can be performed by a variety of methods. We

use the Support Vector Machine (SVM) [172] to learn an edge classifier (object boundary

vs. others) for the patch features. The parameters we need to learn are: the size of the

patch; and for the SVM: the kernel type (we compare linear, RBF and polynomial kernels

of degree 1, 2 and 3) and parameters such as the cost factor (weight of errors on negative

samples vs. those of positive ones). The performance of the classifier on a test set is based

on measures such as accuracy, precision and recall. These are defined as follows:

Accuracy=
(

tp+tn
tp+fp+fn+tn

)

,

Precision=
(

tp
tp+fp

)

,

Recall =
(

tp
tp+fn

)

.

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

tp = True Positive,

tn = True Negative,

fp = False positive,

fn = False negative.

(5.1)

The output of the SVM is a real valued function which is thresholded to get binary

classification.

5.3 Edge classification: experiment and results

We illustrate our method on three classes here: oranges, bananas and bottles. We follow

the standard procedure of assembling a set of images which are used to first train and

then evaluate the classifier. We assemble a database for each class of about 100 images

(examples can be seen in figures 5.3-5.4). Each dataset is split into half for training and

testing (the training set is split further for training and validation). The images cover a

wide range of scale, pose, perspective distortion and illumination conditions, and include

multiple object instances, partial occlusions, and background clutter. Other state of the

art, such as Lempitsky et al . [111], undertake the challenge of finding object pose for object
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detection via a globally optimal branch-and-bound algorithm. However, they consider only

a limited range of pose variation thus making their method unviable. Across the large

variations exhibited by these datasets (figure 5.3,5.4) their method would prove extremely

expensive. Examples are shown in figures (5.1,5.6-5.8).

Figure 5.3: Some pictures from the Orange dataset. Note: the specularities, shading and
texture on the object surfaces. Some occlusion and clutter can be observed. Contrary to
expectation, the shape is not always a perfect circle. Other circular objects in the images
(tin box, face, circular specularities, shadows etc.) can confuse standard object detectors.

We use the SVM for edge classification and learn the model via cross validation. We

find that the best performance for the orange and banana datasets is achieved with a

polynomial kernel of degree 2, and with patches of size m = 11 (along the y axis of patch

coordinate frame) and n = 11 (along the x direction of the patch coordinate frame). The

ratio of the number of available positive and negative examples is used to relatively weight

the training errors on negative and positive samples (Morik et al . [134]). For the bottle

dataset, the RBF kernel shows superior performance, the size of the patches being the

same.
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The bottles vary widely in shape, colour, labels and are often occluded. They range from being

opaque to translucent or transparent. Images downloaded from the web may also have compression

artifacts contributing to image noise.

The colour varies between yellow and green, with or without black stains. There is often some

occlusion and lots of clutter. The dataset is collected over wide changes in illumination and pose

parameters (scale, rotation, foreshortening etc.)

Figure 5.4: Some examples from the bottle and banana dataset.
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The SVM output fi at location i in the image is usually thresholded to retrieve binary

classification ci. Alternatively it can also be interpreted as a probability into a probability

isedge(i) that location i is an object edge. Logistic regression is performed on the fi as

shown:

isedge(i) = p (ci = 1|fi) =
1

1 + exp(Afi +B)
. (5.2)

A and B are parameters that must be learnt by minimizing the negative log likelihood

of the training data i.e. the SVM outputs and thresholded classifications fi, ci:

{A,B} = argmin
A,B

∑

i

(1 + ci)

2
log(pi) +

(1 − ci)

2
log(1 − pi). (5.3)

This can be read up in further detail in work by Platt [149] and more recently by

Grandvalet [77].

Flip ambiguity: For the orange and banana classes, Gaussian mixture models (GMMs,

see [129, 130]) over pixel colours are built from training data and these are used to flip the

training and test features. For comparison, the best performance of SVMs for the flipped

vs. unflipped cases is compared in the tables in figure 5.5. Flipped features perform better

and are used for the orange and banana classes. The colour and texture of the ‘bottle’ class

is much more variable and hence Gaussian mixture models for colour will not be helpful in

disambiguation. For such categories the classifier has to handle the ambiguity by choosing

the appropriate support vectors and slack variables.

The performance of the classifier is summarized in the table of figure 5.5 for the enu-

merated classes. Receiver operator characteristic curves (ROC curves: see [156] and [201]

for a more modern approach) summarize the performance of the classifier as the number of

occurrences of true positives (sensitivity) is traded against those of true negatives (speci-

ficity). This can be done by varying the operating point along the ROC curve. Figure 5.5
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shows the result of varying the extent of suppression of false edges with the variation of the

operating point. A high area under the ROC curve is desirable and indicates good learning

across a range of sensitivities. The models are fairly well learnt as can be seen from the

ROC curves in the top row of figure 5.5. In the case of bottles, the lack of one distinctive

colour or texture reduces our accuracy. For such object classes, (lacking distinctive colour

or texture) other representations may be necessary. For example, texton distributions or

separate local colour histograms for each side of the boundary. The classification results

on several example images can be verified in figures (5.6-5.8). The choice of the operating

point is important and usually this is based on the relative importance assigned to mis-

classification of positive vs. negative features. We assign equal weight to misclassification

of positive and negative samples and this cost is represented by a line (y = mx+ c), where

slope: m = 1. The operating point is chosen to be the point of tangency on the ROC curve

with this line such that the offset c is maximized. This operating point is also the closest

of such points to point (0, 1) on the axes.

The method performs well on all datasets. Since the feature used is a simple vector of

neighbourhood pixel colour values, this method works best for classes with characteristic

texture, such as bananas and apples. Bananas and oranges show good classification. There

are hardly any false negatives. Some false positives are detected on orange like regions and

even orange reflections (see figure 5.6). The bottle class is more difficult and has more false

classifications. The labels on bottles are particularly difficult as they have widely varying

colour and texture as seen in figure 5.8.
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(a) Orange (b) Bottle (c) Banana

(e) Image (f)Lower false positive rate (g)Higher false positive rate

Best classification without flipping

Class Accuracy (%) Precision (%) Recall (%)
Orange 98.59 71.46 67.11

Banana 96.37 82.03 58.18

Bottle 82.01 90.03 72.00

Best classification with flipping
Orange 98.48 99.39 97.57

Banana 90.37 92.79 87.53

Figure 5.5: Edge Classification Results. The ROC curve plots the True Positive Rate

against the False Positive Rate as the threshold is varied for classification between the minimum

and maximum values of the SVM output. (f),(g) show edge classification with a variation in the

operating point for the bottle image of (e). In (b) the operating point towards the left results in

lower false positives as seen in (f) and a change to the green operating point on the right results

in a higher false positive rate (g). The red points on (a),(b) and (c) show the operating point used

for the datasets. The classification results at these operating points are given in the table.
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Figure 5.6: Example images and class-based edge classifications for ‘orange’: Edges are red

if classified as +ve object boundary else they are plotted in gray. A large number of edges from

clutter, specularity and internal gradients that confuse template matching are discarded by this

classification. Most orange boundaries are correctly classified, with the exception of orange-like

regions. The last row shows the misclassification of orange reflections on the sill and the tin box.
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Figure 5.7: Bananas: Edge classification on some example banana images. Edge labels are

labelled red if classified as +ve object boundary else they are plotted in gray. A large number of

edges from clutter, specularity and internal gradients that confuse template matching are discarded

by this classification. A few false positives can be seen from confusion banana-coloured key-
chains in row 3.
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Figure 5.8: Edge classification on some example bottle images. Edge labels are labelled red

if classified as object boundary else they are plotted in gray. While significant clutter is elimi-

nated, the lack of characteristic texture causes more misclassification. Bottle labels are especially

confusing due to their variety of text and colour.
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5.4 Discussion

We have explained the process of class-based edge classification and shown its performance

on 3 datasets. Before discussing its applications, there are many interesting questions that

are worth further discussion. The flip ambiguity is one important point, for which we find

one working solution. Admittedly, there may be more principled ways of handling this

problem. Some of these are as follows:

1. Ideally, the ambiguity should be automatically handled by the classification process.

This seems to yield less optimal results as shown in figure 5.5.

2. Alternatively, we can use the existing and flipped versions of all training features to

learn the classifier. This would mean that more regions of the parameter space are

considered valid and the decision boundaries may become more complex. Then the

onus of learning this ambiguity would lie with the classifier. Since (1) does not work

well, this might not do much better.

3. The training annotation can include information about the inside and outside of the

object, ensuring correct orientation and eliminating the need for the colour heuristic.

However, the ambiguity would still persist during the testing phase.

4. The flip factor could be treated as a latent variable, that could be marginalized out.

5. Alternatively, we could also try to handle this ambiguity at the kernel level. One

such experiment was to modify the RBF kernels to internally flip the patches and

choose the one which best optimizes the cost. For example, using the kernel:

k(x, x′) = max
(
exp

(
−γ‖x− x′‖2

)
, exp

(
−γ‖x− flipud(x′)‖2

))
,

where flipud(x) flips the patch vertically, with the intuition that the correct alignment

of the patches (original or flipped) will have lower cost due to greater consistency
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of the object region. Note that this kernel is no longer a Mercer kernel. However,

upon experimentation, we found that this kernel (and similar modifications of lin-

ear kernels) performed worse than the standard polynomial and RBF kernels. This

difference was heightened if the category has a strong colour model. The inferior per-

formance could simply be a result of not finding the right kernel and SVM parameters.

Therefore, the failure of our experiment is not the final word on experimentation with

more elegant kernels.

There are also interesting questions about the best methods for edge finding and feature

representation and the merits of global vs. local methods. Though we use the SVM for

classification, other methods such as Adaboost [64], Random forests [25] etc. may also be

employed. We now discuss these two applications of edge-based classification.

5.5 Application I: Chamfer matching for object detection

Local information in the form of colour, texture and shape is used to classify edges from a

class-based perspective. This learning can be used in applications for object detection and

object segmentation. Class-based edge validation can help disambiguate between multiple

hypotheses and benefit object detection methods such as chamfer matching greatly. In

chamfer matching a set of learnt object templates are matched to the detected edges in

the image using a distance transform (DT). The position at which the convolution of the

template T with the distance transform of the feature image (the edge-map I) is minimal,

determines the match. For scale invariance this can be stated as:

Dchamfer(T, I, θ) =
1

|T|

∑

t∈T

min
i∈I

d(i, t, θ), |T| is the length of template. (5.4)

Here |T| denotes the length of the template, while θ denotes the set of pose parameters,

such as translation on the image, that are applied to the template before evaluating this

measure. For each point on the template, the closest point on the image edge map is
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found, making this measure asymmetric. The symmetric measure would have been defined

as follows:

Dchamfer(T, I, θ) =
1

|T|

∑

t∈T

min
i∈I

d(i, t, θ) +
1

|I|

∑

i∈I

min
t∈T

d(i, t, θ). (5.5)

Consider T, I to be the edge-maps for two templates being compared. The asymmetric

chamfer distance is prone to some degenerate solutions, e.g . T can shrink to a point

and match I perfectly. The symmetric chamfer is a much more robust way of measuring

their similarities. However, the second part of this distance must be recomputed every

time the template and pose change even the slightest bit, making this very expensive.

The asymmetric chamfer distance can be computed efficiently and quickly by the use of

Distance Transforms (DTs) and is therefore the preferred choice for object detection here.

Variations of the basic algorithm have been introduced for robustness. The DT can be

used to find a precomputed approximation of Euclidean distance using integer arithmetic

and simple interpolation. The DT may be truncated at a certain threshold to accommodate

occlusion. Also, f th quantile values (such as in the Hausdorff distance) can be used for

robustness in handling occlusion. Symmetric chamfer distances may be used in order to

reduce mismatches, but they involve more expensive computation. The orientation at edges

could be accounted for by using oriented DTs, i.e. a different DT is stored for each of a

set of discretized gradient directions. This method is effective only when smooth sub-pixel

contours are available to compute the DTs for each of the orientation bins.

Matching At a match the chamfer distance must have a low value. Therefore, potential

match is found by by minimizing (5.5). Instead of the optimal match, all matches lying

within a certain threshold are considered potential matches by Gavrila [67] and subjected

to a second verification stage. We will simply consider the single most optimal match

(equivalent to having strict thresholds at each prototype node) instead and want this to
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be accurate without the need of subsequent hypothesis verification. Therefore, the goal is

to find T, θ such that the DT is minimized for a given image I. Ideally this match should

coincide with the actual location of the object of interest.

Usually, the exact specific template corresponding to an image is unknown. Therefore

the shape of the object must be generalized from training data. We want to encapsulate the

variation across a variety of pose parameters across the possible template space. In practice

(see [67]), this is done by simply taking the finite set of training exemplar templates and

subjecting them to the set of possible geometric transformations such as rotation, scaling

etc. to build a vast artificial set of templates. These ‘pose’ parameters are sampled

at discrete intervals to create this data. This is more general than the initial set and

computationally easier to handle than the vast continuum of possible shapes. Searching

through this vast space of templates which would have otherwise been expensive, is tackled

by building a template hierarchy based on structural similarity. This is expensive but can

be computed offline. Prototype templates represent the nodes of the tree and distances

between templates are represented in order to capture the similarity between prototypes

and their child templates (example in figure 5.9). During test time matching can be

optimized, by only considering the prototype templates which may yield potential matches

thus pruning the search across the tree.

Building the hierarchy involves measuring similarity between each pair of templates. A

similarity matrix can be computed from inter-template distances. However in the presence

of a large number of templates this can be very expensive. Gavrila [67] proposes a K-means

like algorithm which can be faster but less accurate than more comprehensive methods such

as agglomerative clustering.

Given a test image, a hierarchical branch-and-bound strategy is used find template

matches for the given test image. With the occasional modification, this is a standard

algorithm for object detection. In this work, we concern ourselves only with the ‘one’ best

match per image.
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The performance of the described hierarchical scheme is rife with some problems:

1. Prototype templates can latch on to various noisy features from occlusion, specular-

ities and random clutter, leading to a small value of Dchamfer even when the actual

object has not been found (seen in figures 5.9, 5.10, 5.11).

2. The discretization along the parameter space exacerbates this problem. A different

template at a different pose can give a smaller truncated chamfer cost by latching on

clutter. In contrast, the template that is closest in size, shape and pose to the given

image instance may have a higher chamfer cost due to the discretization at which

the template dataset is generated.

3. The clustering via the Kmeans like algorithm (see [67, 68]) is neither deterministic,

nor globally optimal and also contributes to this problem. This may be improved by

choosing a different clustering approach such as agglomerative clustering. However,

the untruncated unidirectional chamfer distance is not a metric measure, and choos-

ing the right thresholds at each node, the number of nodes in each level, the number of

levels, and the truncation thresholds for chamfer matching, is difficult. Strict thresh-

olds can cause solutions to be missed. On the other hand, lenient thresholds will

cause the search to proceed through a large portion of the tree making it expensive.

Originally, Gavrila [67] follows the detection stage with verification where each hypothesis

is tested and verified. By using the validated edges from §5.2 for chamfer matching, the

process can be sped up without the need for subsequent hypothesis verification (see figure

5.11).

Class-based chamfer matching results: Hierarchical trees are built for each of our

datasets i.e. orange (50 images), banana (60 images) and bottle (90 images). A few

independently segmented masks (training masks) are taken to learn hierarchical template

trees. Templates are created from these training masks by subjecting them to the following

transformations:
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Figure 5.9: A hierarchical template tree showing some branches of the tree of templates and

prototypes. The templates are generated at discretely generated samples in the pose space. There-

fore for a given image, the template corresponding to its exact pose parameters might not exist

in the tree. Perspective distortion which is only approximated by the pose parameters, can also

make matching difficult. Therefore, the correct (green) match may be abandoned in favour of an

incorrect (red) match. This can also happen if the prototype templates match against clutter in

the image edge maps can leading to ambiguity between multiple possible matches.

1. orange: 4 training masks each taken across all combinations of 7 rotations and 11

scales

2. banana: 26 masks at 16 rotations and 16 scales

3. bottles: 7 masks at 10 rotations and 11 scales

The discretization for each dataset is chosen on the basis of the complexity of the class and

samples in the training data. The orange is a simple shape and despite variation in bottle

shapes, they are observed at relatively simple orientations (mostly upright). Therefore for

the orange and bottle classes fewer masks and rotations angles are required. In contrast,

the banana is observed at a wide range of orientations and scales and needs a larger set

of templates. We first use the original hierarchical template matching approach of Gavrila

[67] to find the one best match per image. As shown in figures 5.10(b) and 5.11(a) there are

numerous mismatches. We then use the validated edges from our edge classifier (figures 5.6-

5.8) to determine the relevant edges for the current object of interest (see 5.10(c)). Chamfer
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Oranges Bottles Bananas

Raw edge map 27/50 26/90 14/60
Validated edge map 43/50 41/90 29/60

Table 5.1: Visually correct detections are summarized before and after the edge maps are

validated. The validated edge maps clearly give more correct detections. (Also see figures 5.10,5.11)

matching upon this leads to improved detection (figures 5.10(d) and 5.11(c)) compared to

the original (figures, 5.10(b) and 5.11(a)). This can be used to improve any algorithm that

uses template matching, such as subsequent segmentation using ObjCut as discussed next

and illustrated in figure 5.11(d). For this experiment, the entire dataset acts as the test

set and the number of visually correct matches are summarized below:

5.6 Application II: Class based segmentation—ObjCut

In this section we illustrate how edge specific classification can be used to improve the

performance of an object segmentation algorithm. In particular we modify the ObjCut

algorithm of Kumar et al. [103]. ObjCut is a Bayesian method for class based binary

segmentation using an Object Category Specific Markov Random Field (MRF). In [103],

a pictorial structure formulation is used in order to handle multiple part objects. In this

work, we deal with one part objects therefore eliminating the need for the use of pictorial

structures.

To segment a given image, a two stage approach is followed in [103]: (1) hierarchical

chamfer matching is used to first localize the object in the image, and (2) the object

characteristics from the detection are used to perform mincut based segmentation. We

have shown how to use edge classification to make (1) better in § 5.5. Additionally, we

now show that the edge classification results can be used to modify the weights of the

image-based graph for refined mincut segmentation in stage (2).

ObjCut formulates the segmentation problem as an object category specific condi-
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(a) An apparently sim-
ple image

(b) Many plausible
matches

(c) A simple but clut-
tered scene

(d) chaotic edge map
(in gray)

(e) Original image
with edge map (in
red)

(f) Best match (g) Validated edge
map (in red)

(h) Best match on the
validated edge map

Figure 5.10: Edge classification improving Chamfer matching based detection. The

first row demonstrates the problem encountered by chamfer matching. (b,d) shows the (gray)

edge maps of two apparently simple images (a,b). The correct green match in (b) may be missed

due to the presence of other plausible matches (in the other colours), which are latched on to

internal specularities and parts of object clutter (tin box). Similarly, one can see how practically

any template could be matched in several locations of the edge map shown in (d). In subsequent

rows, (e) shows the base image and its edge map. The results of hierarchical chamfer matching are

faulty as seen in (f). Replacing the edge map with the validated classification results shown in (g)

dramatically improves the ‘best chamfer match’ as seen in (h).
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(a) Basic Chamfer (b) ObjCut (b) Chamfer with

class-specific edges

(c) Improved ObjCut

Figure 5.11: Class-based chamfer detection for improving ObjCut segmentation.

(a)Chamfer Matching using all image edges. The matches latch on to irrelevant edges correspond-

ing to internal gradients and specularities (first row), and clutter (circular lid, second and third

row). Results in bad segmentation (b). Matching on class edges and texture (c) leads to better

matching – compare with the confusions arising from the problems in (a).(d) Modified ObjCut

results are much more accurate.
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tional random field (CRF). The joint energy for any configuration of the image-based

graph is given by the following equation and can be optimized by mincut:

χ(m,d;Θ, τ ) =
∑

i












ψ(di;mi, τ )
︸ ︷︷ ︸

pixel likelihood
+

φ(mi;Θ)
︸ ︷︷ ︸

shape likelihood

+
∑

j∈Ni

(

ψ(mi,mj ; τ )
︸ ︷︷ ︸

Ising prior
+
φ(di,dj , i, j,mi,mj ; τ )
︸ ︷︷ ︸

contrast term

)












. (5.6)

The terms in this energy are now defined. The image has N pixels which form a set of

observations {di|i = 1 . . . N}. The goal is to find a binary labelling mi ∈ {0, 1} dividing

the image into foreground and background. A set of parameters τ = {H0,H1, P, λ, σ, µ}

is either learnt or set heuristically. The parameters act as knobs to control the different

terms of (5.6).

Note: we use ψ(x) to define the negative log likelihood (or energy) for any probability

p(x).

Ni denotes the set of pixels in the neighbourhood of i. The first term in (5.6) is the

likelihood term for the observation at a pixel given its labelling. This emission model is

given by:

p(di|mi, τ ) = Hmi
(di), (5.7)

ψ(di;mi, τ ) = − log(p(di|mi, τ )), (5.8)

where H1 and H0 are the foreground and background (normalized) colour (RGB) distri-

butions respectively.

The second term φ(mi|Θ) denotes a likelihood term for the shape. MRF-based seg-

mentation techniques which use MINCUT perform very well with manual initialization in

the form of strokes, bounding boxes etc. Automatic recognition and detection of the object

using a shape model can replace the user interventions to yield accurate automatic seg-
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mentation. Having learnt a shape model, a set of latent shape variables Θ can be used to

fit the model to a given image, which will favour segmentations of a detected shape. Here,

we use a template tree as described in §5.5 and Θ denotes the discretized pose parameters

(scale, rotation, translation) involved in the process of hierarchical chamfer matching. The

function φ(mi|Θ)is chosen so that if we were given an estimate of the location and shape of

the object, then pixels falling near that shape would more likely have object (foreground)

label and vice versa. It has the form:

φ(mi;Θ) = − log p(mi|Θ), (5.9)

where we define: p(mi|Θ) ∝
1

1 + exp((−1)miµ ∗ d(i,Θ))
. (5.10)

d(i,Θ) is the distance of a pixel i from the shape defined by Θ (being negative if inside the

shape). The parameter µ determines how much the points outside the shape are penalized

compared to the points inside the shape.

The third term is an Ising prior which encourages pixels in a neighbourhood to take

similar labels, defined as:

p(mi,mj |τ ) ∝ exp
(

−(1 − δ(mi,mj))P
)

, (5.11)

ψ(mi,mj ; τ ) = − log(p(mi,mj |τ )). (5.12)

In addition, a fourth (contrast) term is commonly used in CRF based segmentation

methods. This favours pixels with similar colour having the same label. This is done by

reducing the cost within the Ising model for two labels being different in proportion to

the difference in intensities of their corresponding pixels. This contrast term of the energy

function is given by:

φ(di,dj , i, j,mi,mj ; τ ) = −λ
(1 − δmi,mj

)

dist(i, j)

(
−‖di − dj‖

2

2σ2

)

, (5.13)
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where dist(i, j) is the Euclidean distance between the two pixels denoted by i and j. While

σ controls the sensitivity of the penalty to the distance between the pixels (i, j), λ controls

the contribution of (5.13) to the total energy function. Note that (5.13) is not a part of

the prior, for the prior term cannot include the data.

5.6.1 Improving segmentation

Initialization

The edges and texture features in the image are used to localize the object in the image

by performing hierarchical chamfer matching (as discussed in §5.5). This yields the ob-

ject’s pose parameters Θ in the image. We modify this by performing chamfer matching

over class-specific edge maps as discussed in § 5.5. This helps to prevent the mismatches

illustrated in figure 5.9. The results of incorporating this are summarized in table 5.2 and

figures 5.11, 5.10. This change makes a dramatic improvement to the segmentation quality.

Segmentation

Figure 5.12: Boundary term: Edge classifi-

cation on Canny edge chains at sub-pixel resolu-

tion, is used to set edge weights of the boundary

term in the CRF. k denotes the point of inter-

section of Canny chain with CRF edge between

nodes i and j. edge(i, j) = isedge(k)

Following [19] the CRF used in ObjCut

has a contrast dependent prior. This means

that a segmentation which introduces a

change of state between pixels (i.e. a change

from foreground to background in this case)

adds a cost to the energy, but this cost is

diminished if there is a strong gradient be-

tween the pixels (as measured in the im-

age data). The inclusion of data-dependent

pairwise terms for pixels in a clique gives

a substantial improvement in segmentation

quality, and the resulting MRF can still be minimized using graph cuts as described in [19].
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We want the algorithm to be even more specific and consider only those edges that are

relevant to the object class. Therefore, only those edges of the MRF which coincide with

object boundaries should be weakened. Our edge classification (§5.2) can be interpreted

as a probability isedge(k) of a particular sub-pixel image point k lying on the object

boundary as seen in (5.2). This is available along Canny edge chains that are derived at

sub-pixel accuracy on an image. For the purpose of CRF segmentation, we need to convert

this class-based knowledge to weights on an image graph with the pixels acting as nodes.

The edge weight edge(i, j) of the CRF between pixels i, j is represented by the value of the

class probability isedge(k) (defined by (5.2), figure 5.12) at the intersection of the Canny

edge chain with the edge i, j. A new boundary term is defined, which adds to the category

specificity of the CRF:

edge(i, j) =







0 if no intersection,

isedge(k) if valid intersection.
(5.14)

ζ(mi,mj, i, j; τ ) = −ξ(1 − δmi,mj
)edge(i, j), (5.15)

where ξ is the parameter controlling the influence of this boundary term. Adding (5.14)

to (5.6) gives us our new Object Category Specific CRF. This can still be optimized by

MINCUT. The results of this change are seen in table 5.2 and figure 5.13.

5.6.2 Implementation

For ObjCut with the modified category specific MRF and shape model, the optimal pa-

rameters must be found. A large number of parameters (around 20) can be identified for

the model to be learnt. Of these, 6 control the relative weights between the colour likeli-

hoods, shape likelihoods, prior and the boundary terms (Ising, contrast and our class-based

boundary terms), and are most crucial for performance and strongly interrelated. Coor-

dinate descent is performed to maximize the accuracy of segmentation over the training

data, for this subset of important parameters. Subsequently, the other parameters can be
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(1)

(2)
(a) (b) (c)

Figure 5.13: Edge classification based boundary term for improving ObjCut

based segmentation. Two cases with partially incorrect chamfer matches are seen in (a). The

incorrect detection leads to incorrect foreground and background models and faulty segmentation.

(1) The boundary term from edge classification leads to a graceful recovery from such a misguided

initialization and the leakage in this segmentation can be contained. (2) shows a similar case. The

initial segmentation is inaccurate owing to incorrect initialization. But using the boundary term

leads to a much more polished segmentation as seen in (2,c).
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individually optimized in a similar manner. We start with large step sizes for gradient de-

scent and reduce them as we refine our estimates. This is performed over a grid of sampled

parameters and the time taken depends on the size of the search space. However, during

testing, performing the modified ObjCut over each image takes only a few seconds.

5.6.3 Results

This test is performed upon the orange and bottle datasets contain 50 (23 training, 27

testing) and 90 (40 training, 50 testing) images respectively. The hierarchical template

trees are the same as discussed in the results of §5.5. The parameters of optimization are

minimized over the training set.

The performance is measured by the number of misclassified pixels in the test data

with respect to the manually segmented ground truth. Table 5.2 summarizes the results

for the two object classes. At first look, the improvement to chamfer matching from the

edge classification seems to be making the maximum impact in terms of numbers. The

subtle yet important contribution of the edge-based boundary term can be visualized in

figure 5.13. Note: Each image has 90, 000 pixels on an average. For the orange class, we

Object class ObjCut ObjCut

+ modified CRF
ObjCut

+ modified CRF
+ chamfer matching

Orange 2947 2457 256
Bottle 8121 8064 4077

Table 5.2: Classification error: Average number of misclassified pixels per test image are

shown. Better object detection through edge-validated chamfer matching makes the maximum

reduction to error. However, the modified CRF makes the subtle but important contribution as

shown in figure 5.13.

get visually correct segmentations for 47 out of 50 images. For the bottle class, we get

57 correct segmentations out of 90 images. The banana dataset is our most challenging

dataset, owing to the wide shape variations and image clutter. We get good segmentations

of around 37 out of 60 images. While both our edge based modifications improve ObjCut,
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the use of relevant edges in chamfer matching makes the more significant difference (see

figures 5.11 (c) and 5.14).

5.7 Automation

We have shown how to automatically detect and segment instances of a particular class in a

given image. We can use these segmentations to derive object silhouettes and subsequently

perform reconstructions for relatively simple views of objects as shown in figure 5.15.

In these examples the topology is known due to the knowledge of the class. Given the

segmentation, it is also trivial to derive the silhouette for the object. In the case of simple

frontal views of objects it is relatively easy to decide on one scheme of inflation. In this

case, we assume cylindrical inflation (see §3.7.1.1) for the orange and banana classes. For

an orange this kind of inflation automatically produces spherical shapes assuming the

correct topology is imposed (see figure 3.10). For simple views, we can continue with the

assignment of parameter curves to the silhouette-parameter space mapping as specified in

§3.6. Figure 5.15 shows examples of completely automated reconstructions. Of course, in

the case of an orange, there are only simple views.

5.8 Summary

In this chapter, we show how local image based information can be used to learn a classifier

that differentiates object class boundary edges from other image edges such as clutter,

specularities etc. We then show how class specific edges can be used for Chamfer matching

and ObjCut for enhanced object detection and segmentation (algo. 5.1). The implications

of such class specific edge labelling are many fold since any algorithm for object classes

that uses edges, can now be improved. We show the use of this for automatic class specific

single view reconstruction of objects.
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1

2

3

4

5

6

Figure 5.14: More results. The performance of our method on some examples is shown on
the banana, orange and bottle datasets. This dataset, has a wide range of challenges from pose,
scale, clutter and lighting. In the presence of multiple instances, we use the best Chamfer match as
shown in Row 1. The segmentation using the initialization from Row 1, 3 and 5, by the improved
ObjCut is shown on Row 2, 4and 6.
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(a) (b) (c) (d)

Figure 5.15: Automatic reconstruction of simple objects. (a) Two images superimposed

with the initial detections found from the orange and banana models. (b) Segmentation obtained

by our method. (c) Contours around the segmentation which form the silhouette input to the

reconstruction algorithm. (d) Final 3D reconstruction.

Algorithm 5.1 Summary: Object detection and segmentation

1: Extract Canny edges from the dataset and link these to form edge chains. Anno-
tate training images and extract patch features around the edge chains. Train the
edge based classifier as described in § 5.2 and optimize over the parameters by cross-
validation. Perform edge classification on the test images.

2: To perform object detection: learn a hierarchical template tree for the object class of
interest. Perform object detection over the classified edge map as described in § 5.5.

3: To perform segmentation: Use the classified edge-map to perform the class-specific
object detection and also modify the CRF weights. These contribute to the stages of
ObjCut. Learn the parameters of ObjCut over the training set by cross-validation
using a grid search (see § 5.6).



Chapter 6

Conclusion

We now conclude with a summary of the contributions of this thesis. We will also review

recent developments and sketch some avenues for future research.

6.1 Single view reconstruction of curved surfaces

In Chapter 3, we show how readily available image information in the form of object

silhouettes can be used for effective reconstruction of objects.

6.1.1 Contributions

• The silhouette is a projection of the 3D contour generator (CG) from the object’s

surface. The projective properties of the CG are exploited to provide constraints

on the 3D surface. By using the freedom in surface parametrization, image-based

constraints can be imposed on the actual unknowns (the 3D surface vertices).

• The problem of retrieving the unknown 3D model is framed as a convex problem

which can be solved by one single linear operation.

• Within this linear framework, various cues such as normals, gradients and inflation

constraints can be embedded.
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Oak leaf

Butterfly

Ivy leaf

Dolphin

Figure 6.1: More deformable classes to explore: oak leaves, butterflies, ivy. While some

features such as number of veins (5 in English ivy), symmetry (of a butterfly across its body)

are useful, there are other challenges. Similarly, butterflies have drastically different texture and

significantly different wings. The oak leaf has varying number of veins and pointed tips in its

leaf depending on the particular instance and characteristics such as age. While the English ivy

presents a reliable structure that can be repeatedly identified, the oak leaf presents contrasting

challenges. The dolphin seen in completely different views reveals different occluding contours on

its surface, which must be correlated. The pose of each instance and issues like occlusion add to

the ambiguity in the structure of that 3D object.
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• Specific image-based observations such as creases, singularities can also be integrated

into the framework and used to more accurately model the 3D surface.

• Our solution allows the representation and building of topologically complex surfaces

of virtually any genus (any number of holes).

6.1.2 Directions of future research

We have only explored the tip of the problem of silhouette-based single view reconstruction.

There are many interesting and challenging problems that must be addressed. Some of

them are noted below:

• We frame the reconstruction problem as a linearly constrained quadratic program-

ming problem. Our smoothness metric is a simple, second-order smoothness. How-

ever, several other smoothness metrics such as normal curvature, Gaussian curvature,

integrals of smoothness functions over piece-wise domains etc. must be considered.

Typically, using a complex smoothness prior makes the optimization non-linear and

non-convex. The challenge is to retain the simplicity of the solution while using more

sophisticated smoothness priors and surface representations. The ideal smoothness

prior would also make ad hoc inflation redundant by automatically favouring inflated

solutions, therefore resulting in a much more elegant framework.

• As long as we still need inflation, it is important to investigate robust ways of inflation

other than the ad hoc, complex ones used currently. While some automated inflation

is derived from silhouettes and distance transforms, there is a need for an investigation

of a broader variety of intelligent inflation mechanisms e.g . inflationary potential

fields as those used in [191].

• In our current method, the mapping of constraints on the parametric surface is

approximately set by hand. However this can be made more flexible by allowing

reparametrization of the constraint mapping. This also allows the parameter space
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to redistribute over the object surface more uniformly. This is equivalent to a joint

optimization of the surface coordinates X(u, v) at vertices along with the parameter

assignment (u, v) at those vertices. This is a topic which would be interesting for

further exploration.

• Different surface representations have various powers. E.g . implicit surfaces can

be used easily to represent complex topology, while parametric surfaces (which we

use), allow the optimization of complex functionals in a direct fashion. It would be

interesting to see which of these representations is suited to specific tasks. In our work

in § 3.9, we show how the limitations of parametric surfaces can be overcome so we

can represent complex topologies. It would be interesting to see how the limitations

of other representations can be overcome.

6.2 Deformable object reconstruction from multiple images

of distinct class instances

There are two important aspects to class-based information in reconstruction: (i) learning

the class model; (ii) using the class model to predict the 3D model for an image. In chapter

4 we propose a method for learning deformable wireframe-based object class models from

photo collections.

6.2.1 Contributions

• Different instances of an object class have widely varying features and sometimes

features (such as spots on a lily petal) may not be repetitive making reliable corre-

spondences hard to find. Unlike video there is also no temporal smoothness in the

frames of a photo collection. Existing NRSfM techniques cannot be employed for the

development of deformable shape models in such cases.

• The ribs of a petal form reliably identifiable curves on the object which correspond to
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each other across images. We show that these can be used to define the higher-level

primitive of curve correspondences instead of point correspondences.

• We show that the problem of finding the deformable shape model (in terms of the

3D curves forming the object wireframe) and all the unknown parameters (cameras

etc.) can be now framed in terms of a unified objective function which uses the

image-based curves as observations. This unified objective can be effectively and

incrementally solved to retrieve a good deformable model for the class.

• We show how this objective can be solved in its combined analytic form. We also

show how by allowing some discretization error, the process can be sped up to yield

solutions more quickly.

• Traditionally reconstruction (even for the rigid case) has been framed as a two step

process: find correspondences, and then reconstruct the 3D model. Iterative methods

toggling between the two have been explored. Our most novel contribution is to

elegantly combine the problem of finding dense correspondences and estimating all

other variables simultaneously in a principled bundle adjustment framework.

6.2.2 Directions for future research

NRSfM has been an extensively studied problem in recent times. In our work we assume

that we know which curves are in correspondence across images, while allowing the corre-

sponding points themselves to vary during optimization. First a method to extend this is

discussed below.

Bundle adjustment for deformable object reconstruction with more flexible

correspondences

The next natural step to our work is to include the search for corresponding curves in the

optimization. The objective function being non-convex, will continue to rely on incremental
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Deformable dolphin reconstruction: Methods from chapters 3 and 4 can be

extended. (a,c) display different silhouettes of two dolphins, shown on the parametric surface

in (b). This information can be related to create the 3D models shown in (d). (e) Many more

silhouette parts can be used to create a more constrained model (f).
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learning with good initializations, but will allow for automation of the complete procedure,

thereby providing the ultimate test.

Another approach is to learn deformable object models from far more generic infor-

mation available in images. Consider the dolphin photographed from completely different

views, with the prominent curves marked out in figures 6.2 (a,c). The silhouettes (and

other features) in the two images correspond to different parts of the unknown 3D object

surface. While it is difficult to find corresponding curves in the two images, it is easier to

identify the relative relationship that the curves in each image have to the unknown 3D

deformable dolphin. Note, that different object parts may be occluded in each image (see

figure 6.1). Each image (a,c) in figure 6.2 can be used independently to perform silhouette

based reconstruction (using the red and silhouette respectively, as marked in figure 6.2 (b))

as described in chapter 3, with simple automated or user-inserted inflation. A contrasting

approach is use the silhouette information from one view as inflation constraints for the

other image’s reconstruction. This involves optimizing jointly over 3D structure and cam-

era position. Preliminary results are seen in figure 6.2 (d,f) for varying number of curves

used across the second image(c,e) with respect to the base image (a).

Chapter 3 assumes constant correspondences between the silhouette the object’s para-

metric surface. But the techniques of varying correspondences introduced in chapter 4 can

be used to simultaneously allow the location of the silhouette constraints on the object’s

mesh to be optimized along with the deformable 3D structure and camera parameters.

When performed over a large number of images this is a natural extension of our work in

deformable object reconstruction.

Other possible extensions are stated below:

• Typically the observations are far fewer than the number of variables required to

be found. This necessitates the use of good priors over variables and smoothness

regularizers. In our work, smoothness is costly as it adds a lot of terms to our opti-

mization. The investigation of alternative techniques is important. The PPCA based
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hierarchical regularization which was proposed by Torresani et al . [194] regularizes

the problem by enforcing priors on the latent variables thus adding few terms to the

optimization. It would be interesting to compare our method against an appropriate

extension of their work.

• Other structure primitives (other than our wireframes) can be considered in order

to constrain the problem meaningfully. One example is to consider surface repre-

sentation by the more powerful parametric surface representation. Classes such as

‘butterflies’ (see figure 6.1) are similar to wireframe represented lilies, but introduce

the novel challenge of having parts that only show rigid motion. ‘Oak leaves’ (see fig-

ure 6.1) pose new challenges by having an unpredictable number of corners, thereby

needing a more flexible object representation than that provided by the linear PDMs

(e.g . the multi-modal mixture model distributions of [40]) . Exploration of such

object categories opens up new challenges and avenues.

• A large part of the work has gone towards writing efficient optimization code, de-

manding quick and efficient computation of the Jacobian. Currently this code must

be optimally written by the programmer. There is a need for higher level programs

that write efficient code to compute a Jacobian given a specific problem. This is

an extremely hard problem to address and one of the active areas of research in

numerical optimization [127, 78].

• Occlusion is one of the major challenges of multiple view reconstruction of objects,

especially for deformable models. Typically, this is handled by first finding a set of

reliable correspondences to initialize the framework and then to predict the missing

features. However, our novel wireframe based object representation allows for new

approaches to handling occlusion. Curve subsets can be represented and discovered

in the parameter space. This ability to treat visible parts of the curve in the analytic

framework presents promising avenues.
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6.3 Class-specific object detection and segmentation

Class-based reconstruction from single images is a hard problem and inevitably needs some

user-assisted or externally obtained knowledge of the specific problem at hand. The need

for automation in this process has often been emphasized. In Chapter 5 we show how object

characteristics can be learnt to enable automatic detection and segmentation of an object

from an image. Such a step is essential to bypass annotation required for reconstruction.

6.3.1 Contributions

• Image edges provide a compact representation of an image and display some invari-

ance to imaging conditions. They are vital for detection algorithms such as chamfer

matching. Edge-like intensity gradient terms are also incorporated in modern graph-

based segmentation tools such as GRABCUT, ObjCut etc.

• Existing edge-based approaches are generic and do not incorporate class-based infor-

mation in their use of edges. However, we identify the fact that image edges have

differing image intensity distributions in their neighbourhood depending on whether

they belong to an object class boundary or not. We show how basic RGB pixel-based

features extracted from the neighbourhood of image edges can be used to learn an

effective classifier to differentiate object class boundary from other edges.

• We then use this low-level classification with higher level detection algorithms based

on hierarchical chamfer matching to improve object detection. This results in fewer

false detections, reduced need for hypothesis verification and faster performance.

• Instead of using only intensity and gradient based information from edges, we com-

bine the class-specific edge learning in the pairwise terms of the ObjCut CRF, results

in better segmentation.



6.3.2 Directions for future research 149

6.3.2 Directions for future research

• We use a simple patch-based feature and leave the hard work for the classifier. In

many other methods such as [128], complex filter responses are used as features for

learning transparent glass boundaries in images. It would be interesting to pit our

method against this to see the trade-off between the two methods. Also tougher

object classes with more difficult texture such as “apples” can be explored.

• We use an SVM based classifier. It would be interesting to explore more sophisticated

features, other learning frameworks–Adaboost [65], Random Forests [25] etc. Even

within the SVM framework, the possibility of using more sophisticated kernels needs

to be further explored.

• Detecting and object and estimating its pose is a complex problem. In the continuous

domain it is prone to many local minima and subject to initialization. In the discrete

domain, possible solutions can be searched more exhaustively. Branch-and-bound

methods have been proposed to effectively detect and object and its pose. However,

the performance of such methods is limited by the quality of the tree of hierarchically

organized templates. Better metrics of template similarity and more effective tree

building to ensure effective bounds are much needed.

• In our work, we have dealt with the detection of single instances of inherently rigid

objects. The next step would be to extend this to non-rigid objects such as articulated

objects with the pictorial structures framework (also used by ObjCut). Levin and

Weiss [113] have extended ObjCut to perform learning in one integrated step instead

of the different stages. It would be interesting to explore how edge learning, as in

our method, can be integrated with their method.
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Annotation

Annotation is an important part of gleaning information from data. For effectiveness, the

annotation has to be adequately informative and intuitive. A lot of the work in this thesis

deals with creating outlines and segmentations for training and verification of performance.

We discuss the tools used and developed during the course of this thesis.

A.1 Drawing tools

We often need curve annotations denoting a curve of interest such as an object boundary.

The goal can be spelt out as follows:

• To retrieve a curve representation in the form of points, splines etc.

• Maintaining order of extraction i.e. we should be able to retrieve points from one

end of the curve to the other (as needed in Chapter 3).

• The curves should be automatically drawn towards nature image features such as

edges. One such example is a ‘snake’ [96].

• The user should have adequate and easy control over drawing, and editing the curves.

• There should be ways of trading off smoothness over accuracy and vice versa.
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There are some tools available from popular image manipulation softwares. The lasso

completely depends on human input and allows the user to draw a contour around an

object of interest. Therefore the output quality depends on the skill of the annotator with

the mouse. Another boundary drawing tool is the Magnetic Lasso (Photoshop, [2])–lasso

‘magnetized’ to image edge features. With minor variations these are also known as Live

Wire [50], Lazy Snapping [114], Intelligent Scissors (GIMP, [137]) etc. This family of

algorithms uses a point based representation and a dynamic programming approach to

trace the path of a curve from a fixed starting point to the current position of the mouse.

As the user draws the contour, control points are inserted in the curve by manual clicking.

Each control point becomes a new fixed-starting point. The performance depends on high

contrast of foreground against background and can be run in real time. It depends on a

good initial seed point and parameters such as width of search window, contrast sensitivity

etc. Some software such as Photoshop automatically insert control points for the user given

an addition parameter–frequency of control points. This method is impressive, but has its

share of drawbacks. Though backtracking is allowed, other forms of post-drawing editing

are usually not in place. Although this is a boundary drawing method in principle, most

applications assume segmentation follows and therefore, do not return the curve itself.

The basic algorithm doesn’t ensure that the detected curve is close to the trajectory of

the mouse motion. Some workarounds have been proposed in recent times. Therefore in

difficult regions, the solution is to insert many small segments with many control points,

which can be a cumbersome process. Other methods could also be used for editing. Despite

the presence of some anti-aliasing, the final output can look a bit jagged as the method is

implemented on pixel-based grids with an inadequate incorporation of smoothing.

Another such tool for boundary annotation are snakes. These are energy minimizing

curves, so called due to the wriggling motion they undergo while minimizing their energy

functions. The energy function is a combination of an internal energy function which

determines their elasticity and curvature, and an external energy function based on image
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information and user interaction. The user must give a good initialization. The classic

implementation of snakes by Kass et al . [96] allows the problem to be reduced to a matrix

form. However this puts constraints on the energy functions. Davison et al . [44] propose

a less complicated form of the energy functions, and energy minimization is carried out

by adjusting individual vertices on the snakes. This allows for a greater range of energy

functions, and the addition of internal energy functions like area and symmetry terms

without complicating the minimization process. However it gives only a local solution.

Also the snake may be prone to contraction without appropriate gradients. Also subsequent

editing is not easy in the new approach.

Our tool is snake-like and takes user-drawings in the form of a sequences of points as

input (Figure A.1(a)). After initially fitting a piece-wise smooth spline to this set, the

image-gradients along the normals to the curves are examined. At each control point, the

location of highest gradient in a small interval along the normal is identified. This spline

controlled point is moved to this new location. This forms the step of automated latching

provided by the system as shown in Figure A.1(b). This ensures that the user does not

have to work too hard at getting the initial annotation right. In contrast to snakes, if

the end points are unconstrained, this doesn’t lead to immediate contraction of the curve.

After this auto-correction stage, the user gets control and can change the position of control

points deliberately in order to correct or refine estimates of the object boundary. Dragging

any control point will automatically adjust the rest of the curve to smoothly follow and

automatically adjust the curve resolution to ensure the detail in the image is uniformly

captured. An artificial example of such a modification is demonstrated in Figure A.1(c) to

demonstrate the flexibility of this piece-wise spline representation. This method depends

on some parameters too, such as width of searching (along normals, during the latching

phase) and frequency of control points (controlling the maximum undulation achievable by

the curve). However, the advantages are as follows. It returns a smooth sub-pixel, closed-

form representation for the curve. It makes use of the user trajectory during annotation
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to effective latch on the desired object. The method allows for great ease in editing.

Smoothness of boundary is explicitly encoded in the representation, therefore in addition

to lying on the boundary, it returns a smooth (naturally anti-aliased) curve that can be

adjusted as desired and also subsequently used for segmentation (see figure A.5).

A.2 Edge selection tool

Annotation often involves dividing data into positive and negative examples of a concept.

As shown in Chapter 5, we could be interested in differentiating edges that belong to an

object boundary from others. Edge features can be reliably retrieved from algorithms such

as Canny. A simple algorithm based on proximity of edge points can be used to group

them into edge chains. The chains are curves which are encoded with information such as

shape and normal at each point in addition to the fact that they’re placed on interesting

image gradient. Therefore these edge chains can be used for higher level vision tasks.

For e.g. we may want to delineate object boundaries or mark features such as creases

on the object surface, without relying on the user’s skill in annotation. The process now

involves marking the discovered edge chains. The system detects the current edge chain of

interest by selecting the chain closest to the user’s mouse at any instant and finalizing this

annotation involves only a click. Also with a simple click, the user is given the power to

cut edge chains and therefore use parts of edge chains instead of the whole. The chains can

also be flipped with a click if directionality is important. With very few clicks the image

can be annotated as shown in figure A.2.

A.3 Segmentation

One of the most important pieces of information about data is the location and extent of

the image covered by the object, or segmentation. This is commonly wanted in vision tasks

in order to learn the location and extent of the object’s presence in the image, to learn
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(a) (b)

Figure A.1: Using approximate user drawing to draw a precise object boundary. Editing this

representation is easy as seen above.
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(a) Original image contains a number of instances of object of interest (banana) at various scales

and orientations

(b) The map of edges gathered into chains is shown. Mouse-over results in selection of edge chains

(current selection shown in green). Upon clicking this chain is finally annotated as a positive

boundary examples.
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(c) Therefore annotating the boundary of a complex image such as this can be accomplished with

a few clicks.

Figure A.2: Figure annotation using edge information. The procedure is shown above.
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its shape, texture and colour distribution, or simply to verify the performance of various

algorithms. Higher level vision algorithms often go hand and hand with segmentation, such

as detection, recognition, matting and other sophisticated image manipulation techniques.

The most basic method of segmentation is thresholding. This doesn’t account for

noise or intrinsic variation in colour of an object. However many graphics packages still

use more sophisticated variations of thresholding. The Magic Wand (Photoshop, Digital

Image Suite) or Fuzzy Select (GIMP), is one such tool. Either the user sets a seed or

multiple seed pixels and a tolerance level is retrieved. All pixels are tested against the set

tolerance level to get the segmentation. Many selections are required before the object can

be selected completely and even then the segmentation may spill out or leave many holes

which need further editing. One such result of the method can be seen in figure A.5(d) . In

fact the Magnetic Lasso based approaches usually perform much better for segmentation

purposes.

One of the most effective methods for segmentation rely on the min cut algorithm on

image-based graphs (see [19]). The algorithm directly yields global optima for specific

objective function types and results in a pixel level segmentation. Cues about foreground

vs. background can be incorporated in many ways. One such method GrabCut ([19],[163])

depends on strokes of the user to learn image statistics, which are then used for segmenta-

tion. This family of methods form the state of the art in segmentation. However, many of

these algorithms are not yet publicly available. The few available ones include Quick Select

(Photoshop). Unfortunately, though 8 neighbourhood graphs are possible, this software

only uses 4 neighbourhoods resulting in jagged contours. For segmentation this thesis sees

the use of either the GrabCut based methods, or a simple polygonal fill of the closed curves

retrieved by our boundary annotation method (§A.1, Figure A.3). Alternately, our bound-

ary can be used to define weights in a Graph Cut to retrieve an improved segmentation

instead of just a fill-in.
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Figure A.3: A vase can be segmented easily and effectively with our method

(a) Initial user drawing (b) Magnetic lasso fit

(c) Our latched contour from drawing (d) Final latched contour

Figure A.4: Comparison of magnetic lasso with our method. Drawing as shown in (a) is used

in both cases. (b) latches on well, but has sharp corners at control points. (c) our method latches

on with a couple of stray matches. Upon correction (d) shows a smooth, near-perfect fit.
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(a) (b)

(c) (d)

Figure A.5: Segmentations from three methods are seen: (a) Our method with a simple fill-in

(b) Magnetic Lasso [2] segmentation (done as well as possible) and (c) Quick Select segmentation

[3]. (c) is less jagged, however (a) follows features like the curves at the bottom of the apple better

than (b),(c). (d) shows the poor relative performance of the Magic Wand [1] done despite involving

twice the effort of (a-c).
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Bundle Adjustment

We look at the problem of non-rigid structure from multiple distinct views. A recap of the

notation and the variables of the problem follows in Table B.1:

Notation

symbol definition description

X in bold font vector

X typewritten font matrix

π( X
N×1

) X1···N−1

XN

projection of a vector

◦

X [ X
1

] homogenizing a vector (appending 1)

Pi
M×1

index in subscript indicates ith column of matrix P
M×N

Pi

1×N
index in superscript indicates ith row of matrix P

M×N

Problem summary in terms of variables

variable range/size significance

n 1 · · ·N image number

p 1 · · ·P petal vertex or point

k 1 · · ·K index for the basis shape

q 1 · · ·Q index into parameter set θ affecting camera ma-

trices
Xnp
3×1

pth 3D model vertex point for nth image

Bkp pth vertex for the kth basis shape

αnk Contribution of kth basis towards nth shape

Pn
3×4

= f(θ)n =
[
An
3×3

tn
3×1

]

Projection matrix for image n (can have many

forms)
wnp
2×1

image correspondence for Xnp (if known)

ωn(t)
2×1

point denoted by param t on the analytic silhou-

ette ωn.
ŵnp
2×1

projection of current 3D point Xnp

Table B.1: Problem recap
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In our problem statement (refer to § 4.2,4.4) the only information we have available

across the images is ω. For each image n, we want to find the unique 3D models made up

by points–Xnp. In order to exploit the common structure across images, some assumptions

are needed. The most popular and effective one assumes that the unknown 3D shapes lie

in a linear subspace of K bases (see [23, 22, 194]) such that the following relation holds:

Xn
3×P

=

K∑

k=1

αnk · Bk
3×P

. (B.1)

with derivatives:

∂Xnp
3×1

∂αnk
1×1

= Bkp
3×1

, (B.2)

∂Xnp
3×1

∂B>
kp

1×3

= αnk · I
3×3

. (B.3)

The process of projection of a 3D point Xnp to form its image estimate can be summed

up as follows:

ŵnp = π

(

Pn

◦

Xnp

)

= π (AnXnp + tnp) . (B.4)

1. For known correspondence wnp the reprojection error is defined as

enp
2×1

= (ŵnp
2×1

− wnp
2×1

). (B.5)

2. For unknown (variable) correspondences, the reprojection error is function of the

parameter defining the correspondence too. So the distance of ŵnp to the point

corresponding to a parameter t on ωn is given by:

dnp(t) =

(

ŵnp − ωn(t)
2×1

)

. (B.6)
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The closest point to ŵnp can be found by minimizing the above as follows:

dmin2

np = min
t

d2
np(t) = min

t

(

ŵnp − ωn(t)
2×1

)2

. (B.7)

Note: The only difference between the two equations above is the introduction of

extra parameter t. However, this does not affect the function value w.r.t. the other

parameters given the same correspondence.

B.1 Objective

The goal is to find 3D shapes for each view of the set of images. The available information

is in the form of corresponding image silhouette curves. This means that the most natural

objective function is minimization of reprojection error.

min
θ,α,B

E = min
θ,α,B

∑

np

e2
np for known correspondences, (B.8a)

or min
θ,α,B

∑

np

min
t

d2
np(t) for variable correspondences. (B.8b)

The equations (B.8a) and (B.8b) are exactly equivalent given the same correspondences.

Also their behaviour w.r.t. variation in the variables {θ, α, B} is identical.

Let’s look at how variable correspondences are represented. In equation (B.5) the cor-

respondences are fixed, but in equation(B.6) they take a functional form ω(t). Each curve

is a set of piecewise smooth cubic splines stored in ω
x,ωy. Therefore for P points, we have

P −1 splines which are smooth at their joins. A given t corresponds to a specific curve seg-

ment s and corresponding spline set–ω
x
s

4×1
, ωy

s
4×1

. The actual point coordinates corresponding
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to a parameter tnp on curve ωn are computed as shown.

t ∈ [0, 1] → p ∈ [1, P ] |mapping between parameter range and point

s = b1 + (P − 1) ∗ tnpc |spline segment for tnp

wnp = ω(tnp),

=







ω
x
s
>

1×4

ω
y
s
>

1×4


















t3np

t2np

tnp

1












. (B.9)

This function (B.9) uses pre-computed spline coefficients ω
x
s ,ω

y
s corresponding to the x

and y values of the segment s.

B.2 Optimization

Optimization of the objective (B.8a,B.8b) can be done using the well-known Levenberg-

Marquardt algorithm (see [112, 124]). The error function is represented in its vector form

(before being squared and summed) and the Jacobian of this residual w.r.t. all the variables

can be used to effectively optimize the objective function. The optimization assumes a

locally linear surface for the objective function but this has been observed to be a reasonably

good assumption for most practical tasks.

Derivatives An important aspect of least-squares techniques such as Levenberg-Marquardt

is that, similar to methods like Newton Raphson, Gauss-Newton etc., its performance is

greatly enhanced by continuous functions for which derivatives can be spelt out analyt-

ically. For a vector residual, this involves finding an accurate Jacobian. In the absence

of analytic Jacobians, the solvers resort to finite-difference Jacobians, but this implies

more function evaluations and decreased accuracy. Because of our parametrization of the
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problem we are able to provide analytic derivatives as shown below:

∂ŵnp

∂Xnp
2×3

=

[

A
1,2
n

2×3
− ŵnp

2×1

⊗ A
3
n

1×3

]

1
(

P3
n

◦

Xnp

) , ⊗: Kronecker product (B.10)

∂ŵnp

∂θnq
2×1

=





∂P1,2

n

∂θnq
2×4

− ŵnp
2×1

⊗
∂P3

n

∂θnq
2×4






◦

Xnp
(

P3
n

◦

Xnp

)

4×1

. (B.11)

These derivatives can be used for writing the derivatives for the objective function:

∂enp

∂Xnp
2×3

=
∂dnp(t)

∂Xnp
=
∂ŵnp

∂Xnp
,

∂enp

∂αnk
2×1

=
∂dnp(t)

∂αnk
=
∂ŵnp

∂Xnp
2×3

∂Xnp

∂αnk
3×1

,

∂enp

∂Bkp
2×3

=
∂dnp(t)

∂Bkp
=
∂ŵnp

∂Xnp
2×3

∂Xnp

∂Bkp
3×3

,

∂enp

∂θnq
=
∂dnp(t)

∂θnq
=
∂ŵnp

∂θnq
2×3

. (B.12)

Variable correspondences, in practice, can be implemented in one of many ways. Each

method has its own specific derivative definition and subsequent optimization.

Incorporating varying correspondences and inter-curve distances

For varying correspondences the reprojection error of a point is equivalent to the minimal

distance to the image silhouette. We now examine the different ways of computing this.
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Figure B.1: Sparsity pattern for Jacobian for each variable set: The error vector (along

vertical axis) composed of enp is ordered by p first and then stacked for each n. α, θ (along

horizontal axis, column (a,b)) are stacked by k, q for each value of n. B (along horizontal, column(c))

is stacked for each point p for each value of k (basis). T (column (c)) is stacked according to point

index p for each image n. The jacobians here are shown for the toy values of N = 4,K = 3, P = 7.

For a scaled-orthographic projective matrix Q = 7. The sparsity patterns are significant because

they represent the data dependencies on the different variables clearly. In order optimize the speed

of optimization, it is important to take this sparsity pattern into account.

Exact computation For the parametric correspondences of equation (B.8b) we can

use equation(B.9) to provide derivatives w.r.t. the correspondence parameter as:

∂dnp(t)

∂tnp
= −

∂ωn(t)

∂tnp
, (B.13)

= −


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>
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>
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. (B.14)

For each point p in each image n, the reprojection error can be found for equation

(B.8b) by performing a Newton Raphson optimization using equations (B.9,B.14). The

accuracy in this method comes at the expense of computation.
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Distance transform: The need for N×P optimizations of equation (B.9) in each func-

tion evaluation of the objective (B.8b) is computationally expensive.

dmin2

np = min
t

d2
np(t) (B.15)

By approximating the minimal distance of a point to the silhouette by using distance

transforms, the computation can be considerably reduced. Computing the distance trans-

form DTn of a curve ωn for a grid of some reasonable resolution is a one-off computation.

DTn(wnp)
2×1

≈ min
t

(ŵnp − ωn(t)) (or, dmin
np )

The typical DT returns a scalar value, but similar to dmin we store the (x, y) parts

of the distance separately. If the resolution of the grid on which the DT is computed is

δ, then the approximation error due to DT is at most δ and usually considerably less.

Therefore, for any point ŵnp a simple linear interpolation can be performed upon the DT

at the given resolution to retrieve DTn(wnp). Storing the DT at a reasonable resolution

to improve accuracy causes memory constraints (especially when storing curves across N

different images). Therefore the speed of DT comes at the cost of accuracy (in turn limited

by memory). The objective function can be now written as:

E =
∑

np

e2
np = min

θ,α,B

∑

np

DT2
n(ŵnp). (B.16)

Since using DTs changes the objective function express the derivatives and how they’re

expressed. Once computed the value of the DT is a function of only ŵnp. Therefore,

finite-difference derivatives can be computed for the DT as shown:

∂DTn
2×1

∂ŵnp
2×1

≈ ∇DTn
2×2

. (B.17)
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The derivatives of Xnp (B.2,B.3) and ŵnp (B.10,B.11) stay the same. The new derivatives

for enp are given below.

∂enp

∂Xnp
2×3

=
∂DTn

∂ŵnp
2×2

·
∂ŵnp

∂Xnp
2×3

≈ ∇DTn
2×2

·
∂ŵnp

∂Xnp
2×3

(B.18)

∂enp

∂αnk
2×1

=
∂DTn

∂ŵnp
2×2

·
∂ŵnp

∂αnk
2×1

≈ ∇DTn
2×2

·
∂ŵnp

∂Xnp
2×3

·
∂Xnp

∂αnk
3×1

(B.19)

∂enp

∂Bkp
2×3

=
∂DTn

∂ŵnp
2×2

·
∂ŵnp

∂Bkp
2×3

≈ ∇DTn
2×2

·
∂ŵnp

∂Xnp
2×3

·
∂Xnp

∂Bkp
3×3

(B.20)

∂enp

∂θnq
2×1

=
∂DTn

∂ŵnp
2×2

·
∂ŵnp

∂θnq
2×1

≈ ∇DTn
2×2

·
∂ŵnp

∂θnq
2×1

(B.21)

The derivative is a combination of finite-difference and analytic terms. However the

use of a finite-difference derivative for DT–∇DT ensures the derivatives again involve only

an interpolated table look-up thus avoiding expensive computation.

Slack approach Let’s take another look at equation (B.8b). By pulling the internal

minimization into the larger objective function, we can avoid minimization within each

function evaluation of E.

E = min
θ,α,B

∑

np

min
t

d2
np(t) original objective,

≈ min
θ,α,B,T

∑

np

d2
np(t) new slack objective. (B.22)

The derivatives for this objective stay the same as shown in equations (B.12, B.14).

This means that the variables of the internal minimization– T
N×P

are added to the set of

all variables to be optimized over. Given a 3D point and a projection matrix, the closest

point correspondence on an image curve is full determined. However, by introducing extra

redundant variables, the optimization is made easier despite the addition ofN×P variables.

The added variables introduce a very sparse almost diagonal part to the final Jacobian for
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optimization.

B.3 Conclusion

This note demonstrates different techniques that can be used in the optimization of re-

projection error for construction of deformable object models. In particular, analytic and

semi-analytic approaches are demonstrated and it shown how jacobians can be constructed

for each case for effective minimization using bundle adjustment. Though reprojection er-

ror is used here, the method can be extended to variations of the energy as discussed in

§4.4,4.6.1.
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