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Summary

This thesis presents three main strands of work concerned with developing digital imag-
ing for high throughput β autoradiography. These three strands comprise work with
the image sensor technology, Monte Carlo simulation and the use of post-acquisition
image analysis based on image registration. In this way, the complete autoradiography
imaging chain is addressed.

CCD and CMOS imaging technologies are presented as potential imaging alternatives to
using conventional film in autoradiography. These digital technologies exhibit enhanced
sensitivity, dynamic range and linearity compared to film using imaging methods devel-
oped at Surrey. These imaging methods address the different sources of noise typically
present in CCD and CMOS technologies. Tissue imaging using 3H, 35S and 121I, the
typical radioisotopes used by the Drug Addiction Group in the School of Biomedical
and Biological Sciences, is presented. The first successful images of 3H-labelled tis-
sue sections using CCD and CMOS technologies operating at room temperature are
presented as one of the main achievements of this work.

To better understand the image creation process some prelimiary Monte Carlo simula-
tions, using the GEANT4 toolkit, have been undertaken, demonstrating intrinsic and
extrinsic key parameters of these digital sensors that can be used to optimise spatial
resolution. These simulations demonstrate that each radioisotope requires a different
optimum detector architecture. In this work these optimum architectures are analyzed.

To support the high sensitivity (i.e. fast) imaging produced by the sensor technology,
automated post-acquisition analysis is also considered, using an atlas-based image regis-
tration approach, by previously aligning automatically segmented biological landmarks
using a feature-based extraction approach, region growing. This has the potential to
speed up the post-acquisition analysis aspects of the imaging chain. Thus a computer-
based tool designed to semi-automatically elastically register a radiogram with an atlas
has been developed.

Key words: Digital Autoradiography, CCD Technology, CMOS Technology, Monte
Carlo, Region Growing, Image Registration.
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Chapter 1

Introduction

Autoradiography (AR) is a method used to map the distribution of radiolabelled bio-
molecules, known as tracers, deposited in thin tissue specimens. There are many dif-
ferent applications for this technique that measure the pathways of many different bio-
molecules (see for example Figure 1.1). The particular application considered in this
work is based on the identification, localisation and quantification of neurotransmitter
receptors in brain tissue sections (see Figure 1.2). Studying the binding mechanism
of dopamine ligands with dopamine receptors, these can be inhibited with new drugs
avoiding the addiction. This is important in studies of the mechanism of addiction and
the action of drugs on specific brain regions. The aforementioned neurotransmitters
are targeted with specific drugs. For imaging purposes these drugs, or ligands, are
labelled with a certain radioisotope. Thus when the ligand under study binds with a
specific receptor, the location of this receptor binding is identified by detection of the
radioactivity emitted by the radioisotope.

Figure 1.1: Exemplar whole body autoradiographic images of a whole body mouse with
3H-TTP1 (left) and 18F-FDG2 (right) of a tumour in the shoulder (arrow) exposed to
conventional film. The TTP distribution demonstrates a more selective binding to
glucose consumer centres such as the cancerous tissue, liver and kidneys, whereas the
FDG image demonstrates a less selective binding, showing presence of the ligand in the
background, making more difficult the correct delineation of the tissues under study.

1



2 Chapter 1. Introduction

Figure 1.2: Autoradiographic image of a coronal mouse brain section bound with 35S-
GTP3γS demonstrating ligand binding to µ-opioid receptors exposed to conventional
film for 4 days.

The most typical radioisotopes used to label the aforementioned ligands in autoradiog-
raphy are 35S, 14C and 3H. These radioisotopes emit β particles which are fast electrons.
These β electrons exhibit tortuous paths in tissue and the detection medium because
of their low mass. Thus, a collision with a nucleus or even with another electron will
change their trajectories losing energy in the process. This loss of energy depends on
the distance of the β particle to the orbital electron and its kinetic energy. This will
have a critical effect on the spatial resolution of the final image.

Film emulsion has been the traditional detection medium used since Lacassagne and
collaborators developed the first autoradiographic method to localise radioactive Polo-
nium in biological specimens in 1924 [91]. Film has some special characteristics that
make it suitable for autoradiography. autoradiography film is similar to that used in
traditional photography: it is basically comprised of a layer with tiny halide silver
bromide grains or crystals (0.4-1.0 µm diameter) contained in a gel emulsion. The pro-
portion of crystals per unit area controls the sensitivity of the film and the background
noise. The number of crystals should not exceed 10 crystals per 10,000 square micron,
higher counts of crystals may obscure low signals and corrupt the evaluation of exper-
imental data [164]. These grains are ionised by the β particles emitted from the tissue
sample leaving a latent image. The extremely small size of the aforementioned grains
means this technique exhibits excellent intrinsic spatial resolution (∼1-50 µm for 14C,
3H and 35S imaging, due mainly to scattering) for low cost (∼$3 per sheet for standard
film and ∼$50 per sheet for hypersensitive film). Typical autoradiographic film has an
anti-scratch protection layer on both sides, although hypersensitive autoradiographic
film lacks these layers to enable the detection of lower energy charged particles such as
those emitted from 3H. This obviously makes this film more delicate to handle.

On the other hand this technology presents some disadvantages such as poor linear-
ity, especially at low activity levels, limited dynamic range (∼102) and in particular
low sensitivity producing long exposure times (∼days or ∼weeks depending on the
radioisotope).

Non-linear response may be observed in regions with extreme (high or low) activity,
1Thymidine-triphosphate
2Fluoro-2-deoxy-D-glucose
3Guanosine 5-Triphosphate



3

i.e. high or low uptake of drugs. In these areas the film can start to saturate and the
number of ionised halide crystals is no longer proportional to the number of emitted β
particles, i.e. activity. Thus the subsequent analysis, in which the exact level of uptake
in particular regions of the drug under study is measured, needs to be corrected each
time an experiment is undertaken.

The lack of sensitivity is due to the small diameter and low intrinsic density of the
halide crystals suspended in the gel emulsion. The probability of interaction (cross
section) of a β electron with a halide crystal is very low, leading to extended exposure
times. This will depend also on the energy of the radioisotope. With higher energy β
electrons there is less probability these will be stopped in the overlying structures of
the film (anti-scratch coating) and thus proportionally more electrons will pass through
to, and ionise the halide crystals.

There are also some other secondary issues such as the cost of consumables needed to
develop autoradiography film, the necessity of having a dark room, the sensitivity to
accidental damage (and the subsequent waste of time after an experiment). Moreover
there is also a significant time overhead to analyse the resulting data, typically repre-
senting ∼70 hours of man effort. Previous efforts [108, 61] to address this area have
corrected or enhanced the detection technology, and as this is where the main issue
resides, this approach will also be considered here.

To better understand the physical mechanisms that affect autoradiography imaging
performance Monte Carlo methods have been used. A set of simulations has been
prepared, with different sensor geometries and different radioactive sources, to find the
optimal geometry of a digital sensor for application in digital autoradiography.

However, as mentioned above, there is also a significant overhead associated with man-
ual post-acquisition Region of Interest (ROI) analysis. Therefore, this bottleneck in
the experimental process has also been addressed, to fully encompass the over-arching
aim in this thesis: achieving high throughput autoradiography. As a result a computer-
based tool has been developed in quantitative autoradiography (QAR) that registers an
autoradiogram with a brain atlas, thus producing automated ROI analysis of arbitrary
anatomical brain regions.
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Chapter 2

Technology Review

A number of alternative imaging technologies to conventional film, indicated in Figure
2.1 in chronological order, have appeared in the last few years claiming better perfor-
mance than film in some aspects (mainly sensitivity) to the point that may make these
viable options to replace autoradiographic film. Among the technologies harnessed for
this application are Microchannel Plates (MCP), gaseous wire chambers, optical-based
approaches, such as Phosphor Imaging Plates (IP) or scintillators, and finally the most
prolific alternative, silicon-based detectors. Among the most interesting of this latter
family are the Depleted FET (DEPFET) BIOSCOPE system, silicon strip detectors,
Charge-Coupled Devices (CCD) and a variety of designs utilising cost-effective Comple-
mentary Metal-Oxide-Semiconductor (CMOS) technology. These are described below,
with exemplar results, summarising the current state of the art imaging technology
applied to autoradiography. However, as this area of development has matured over
the last few decades, inevitably different types of technologies have also been combined
and different imaging methods adopted. For the purposes of this chapter, there are
several approaches: indirect methods, where an intermediate step is used to convert
the deposited energy to some other form (often optical), which is then registered using
an optical imaging detector, and direct detection, where the β electrons produce charge
directly.

2.1 Indirect Detection Methods

2.1.1 Optical Systems

The two main alternatives using optical photons are storage phosphors and scintilla-
tors. The Imaging Plate (IP) was invented by Fujifilm and was first used for X-ray
imaging [161]. It was later used for radioisotope and electron detection. The IP is a
storage film comprised of a protective layer on top, a support layer at the bottom and a
photo-stimulable phosphor layer in between. The photo-stimulable layer contains phos-
phors of barium fluorobromide (BaFBr) containing an amount of bivalent europium as
a luminescence centre, ∼5 µm diameter, that partially traps and stores the energy of

5



6 Chapter 2. Technology Review

Figure 2.1: Time line showing the evolution of various imaging technologies that have
been used in the development of digital autoradiography. Note the dominance of silicon-
based imaging sensors in recent years.

particles while they traverse the detection medium. This energy is trapped in the phos-
phor until scanned with a laser. When the phosphor molecules are photostimulated,
they release the stored energy as luminescence that is detected by a photomultiplier
tube (PMT). This technology has the advantages of 10-1000 times greater sensitivity
than conventional film, depending on the sample, it is reusable and it has a wider
dynamic range and superior linearity. This technology is commercialised by FujiFilm
Life Science [57] with the Bio-imaging analyser system (BAS), the BAS-5000 being
the most recent release, and by GE Healthcare with the Storm gel and blot imaging
system. Examples of autoradiographic data obtained with the BAS-5000 are shown in
Figure 2.2.

(a) (b)

Figure 2.2: Examples of autoradiographic data acquired with BAS-5000. Rat brain
section labelled with 35S exposed for 36 hours (a) and whole body autoradiogram
where expression of the apoptosis gene labelled with 33P exposed for 60 hours is shown
(b) [57].
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Results using 14C [80] and 3H [182], with an exposure time of 2 and 15 hours respec-
tively, have been reported, claiming a spatial resolution of 50 µm for 3H [182]. This
alternative has been the most attractive approach to replace conventional film for the
life science community due to its excellent sensitivity so far, but this is still not of
general use due to the open discussion about the best spatial resolution achievable by
this method. Surrey’s Drug-Addiction Group, that has collaborated in this thesis work,
and other groups that use autoradiography as detection method for their research, cer-
tainly discard IP technology for high resolution rodent imaging due to the low spatial
resolution exhibited by this technology.

The aforementioned scintillation materials have widespread use in broader medical
imaging applications such as X-ray computed tomography (CT), single photon emis-
sion computed tomography (SPECT) and positron emission tomography (PET). Scin-
tillators absorb ionising particles and produce fluorescing visible photons, subsequently
detected by an optical detector, such as CCDs or PMTs.

The first work in scintillators applied to autoradiography was reported by Karellas [81]
where a thin sheet of scintillator was applied to a low noise CCD. A much more suc-
cessful realisation of this approach is the µ-Imager (µ-Imager 2000TM ), a commercial
system developed by BiospaceLab, that is based on a scintillator sheet, an image in-
tensifier tube and a cooled CCD camera, as shown in Figure 2.3. The ionising particles
emitted by the sample generate an instantaneous cloud of photons in the thin (∼5 µm
thick) scintillator, that are collected by an intensifier tube and guided to a CCD de-
tector. Although good sensitivity can be achieved, there will be no discernable energy
resolution because so few optical photons are detected. Dual tracer imaging has to rely
on other phenomenon (such as the size of the observed scintillation light splash for each
event) to separate different tracers. Results with 3H and 35S are shown in Figure 2.4
claiming 15 µm spatial resolution [12].

Figure 2.3: General operating principles of
µ-Imager [12].

Figure 2.4: Rat brain section labelled with
3H and 35S obtained with the µ-Imager [12].

Another approach presented in [35] uses a lens-coupled cooled CCD camera (20 µm
pixel size) with a 3 µm thin phosphor film placed next to the sample under study.
In-vivo experiments with 99mTc labelled glandular tissue, exposing mandibular glands
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in direct contact with the thin phosphor film, were undertaken. The spatial resolution
(FWHM) is estimated at 60 µm assuming a 90Y/90Sr point source, and a theoretical 50
µm FWHM (2.5 pixel size) is obtained assuming an ideal 70 µm FWHM 99mTc disc.
The spatial resolution presented in this work can not be extrapolated to β- sources
given their different manner of interaction in silicon. Moreover the dimensions of the
point sources assumed in this work were not clearly described producing doubts over
the aforementioned results. Nonetheless this spatial resolution is still insufficient for
use in thin tissue β- autoradiography.

The limiting issue with using scintillators is the effect of the diffusion of the secondary
electrons (see Section 3.1). Although this is a known issue, it has to be highlighted the
remarkable claimed spatial resolution obtained with the µ-Imager (15 µm for 3H). This
is without doubt the best spatial resolution reported and thus, an aim of this study to
be as close as possible to this figure.

2.2 Direct Detection Methods

2.2.1 Gaseous Detectors

Gaseous detectors are based on the principle of applying an electric field across a gas
volume sensitive to incident ionising radiation. When a charged particle traverses a
gas, free electrons and positive ions are generated. These electrons can be accelerated
by an electric field producing secondary ionisation in an avalanche process, wherein
a gain of x103-106 is obtained [22]. This is the basis of a proportional gas chamber.
The focus of the research with this type of technology has been on developing a multi-
plicity of geometries for drifting, amplifying and collecting this charge, principally for
applications in high energy physics.

In the sixties, charged particle detection in particle physics was mainly undertaken by
examining millions of photographs from bubble chambers or spark chambers. In 1968
Georges Charpak, who joined CERN in 1959, revolutionised the particle detection com-
munity by inventing the Multiwire Proportional Chamber (MWPC) [33]. This device
is comprised of a mesh of equally spaced thin wires (anode) between two orthogonal
cathode planes enclosed in a gas mixture (of e.g. argon and ethane), as shown in Figure
2.5. The anode wires are grounded and the cathode planes have a negative voltage. The
electrons that traverse the field will therefore be attracted towards the anode wires. As
the field is higher near the wires the attracted electrons have an avalanche effect as they
approach the wires. This development has spawned several attempts to harness this
approach to autoradiography [14, 109], and ultimately led to Charpak’s Nobel Prize in
Physics in 1992, for services to Physics and the invention of the MWPC.

This idea has spawned several commercial systems such as the InstantImager1, which is
based on a microchannel array detector (MICAD) [137] and a MWPC. The electrons are
detected by a microchannel array consisting of an array of holes, in which a drift field
is established. Electrons (betas) interacting in the gas within the holes are multiplied

1Packard Instruments, Meriden, USA
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Figure 2.5: Schematic diagram of a MWPC showing the cathode plans and the anode
wires. The chamber is filled with a gas mixture of argon and ethane [127].

by an argon based gas mixture. Then this shower of electrons is attracted towards an
anode wire within an MWPC located beneath, where an avalanche is generated. Only
results with 14C and 32P have been reported with a spatial resolution of 400 µm for
14C. An example of a radiogram obtained with the InstantImager with 99mTc after 20
hours is shown in Figure 2.6 [137]. This system is no longer commercially available,
in part due to its poor spatial resolution, and the difficulties in producing reliable gas
mixtures in a life science setting.

Figure 2.6: Radiogram of 99mTc in a rat kidney obtained with the InstantImager after
20 hours of exposure time (left) and adjacent section exposed to film after 1 day (right)
[137].

More recently, Charpak, [168] has described the use of a gaseous detector to amplify
emitted β particles. However, instead of using the charge to determine location, the
scintillation light produced during the amplification process was detected and localised
using a high performance CCD camera. Further developments with MWPC technology
led to a commercial system known as the β-Imager (β-Imager 2000TM ), developed by
BiospaceLab, based on a parallel plate avalanche chamber within which the sample is
placed, as shown in Figure 2.7. Results using 3H (Figure 2.8) claiming 50 µm of spatial
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resolution [12], and unrivalled sensitivity of ∼80.00 10−6 cps mm−2 kBq−1 g (computed
from [168]), have been published using this system.

Figure 2.7: General operating principles of
β-Imager [12].

Figure 2.8: Whole body section imaging
with β imager and 3H labelling in a rat.
Detection area is of 75mmx100mm with 8 h
acquisition [12].

The main problem of all the systems based on MWPC is the unacceptable spatial
resolution obtained due to the diffusion of the secondary electrons in the gas chamber,
this being a critical problem due to the sub-millimetric (and ideally micron-level) spatial
resolution demands of routine autoradiography studies.

2.2.2 Microchannel Plates

Microchannel Plate Detectors (MCP) were originally developed as amplification ele-
ments for image intensification. The first MCPs were implemented in USSR, USA and
UK in the early sixties almost simultaneously [46]. The basic architecture of an MCP
is constructed from a planar slab of glass, 2 mm thick usually, made of a high resistive
material such as lead glass, tessellated with an array of tiny tubes (microchannels) that
behave as electron multipliers (see Figure 2.9). A voltage in the range of 400-2000 volts
is applied between the two extremes, which establishes a uniform electric field inside
the channels. Most modern MCP detectors consist of two MCPs in a chevron (v-like)
shape. The MCPs are usually placed in a vacuum chamber before applying the voltage
between the two ends in order to reduce the noise inside the channels. This also helps
to extend the lifetime of the MCPs. These are parallel to one another and typically
biased at a small angle (∼8o) away from the perpendicular face. Typical hole diameters
are 10-100 µm with an approximate distance between them of 15 µm. The charge is
amplified twice offering higher gain compared to the conventional straight configura-
tion MCP. If a particulate radioactive source is placed close enough to the array of
microchannels (of the order of ∼ µm), the emitted particles (β electrons) hit the wall
of the channels. The impacts generate showers of electrons that propagate through the
channels, and thus the microchannels can be considered as continuous dynodes. There
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are several different read out possibilities used on the microchannels to detect the am-
plified β electrons such as photomultiplier tubes or a single segmented metal anode.
The spatial resolution of this technique is clearly limited by the channel diameter and
pitch, and the detection efficiency is strongly limited by the angle at which the tubes
are tilted.

The first attempt of applying this technology to autoradiography was the β camera
[106, 107]. This placed an MCP with a scintillator and a fibre-optic window between
the source and the plate. The best resolution achieved by this system was ∼500 µm and
was only tested with medium energy radioisotopes such as 14C and 201Tl in brain tissue
sections. No results were reported with low energy radionuclides such as 3H. The spatial
resolution shown by this system is inferior to the minimum needs of autoradiography
to replace conventional film. Nonetheless this extensive pioneering work undertaken
by Ljunggren and Strand [106, 107] demonstrated the potential of this technology for
replacing film.

Figure 2.9: Schematic of a single channel
of a MCP showing the mechanism of sec-
ondary electron production [46].

Figure 2.10: Whole body section of 14C la-
belled rat exposed for 2 hours to an MCP.
Note that the intensity values are shown
in logarithmic scale. The spatial resolution
measured in this section is ∼80 µm [98].

Other approaches using low noise MCPs applied to autoradiography have been exten-
sively investigated for different radioisotopes such as 3H [99, 101], 14C [97] and other
high energy radioisotopes such as 199mTc and 188Re [100] . The best spatial resolution
published with this technology so far is ∼60 µm using an X-ray source [98]. An example
of a whole body rat section labelled with 14C and exposed to an MCP for 2 hours is
shown in Figure 2.10. It is indicated in this experiment how the spatial resolution (∼80
µm) is too low for this application. The sensitivity, measured from data published in
[98], is estimated at ∼6 10−3 cps mm−2 kBq−1 g measured with a 14C microscale, and
∼24 10−6 cps mm−2 kBq−1 g measured with a 3H microscale.

A way to improve the spatial resolution with a MCP is the reduction of diameter of
the microchannels and the reduction of pitch between them. One approach to increase
the detection efficiency is including a CsI coating (scintillator) in the input surface of
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the MCP. A factor of x2 for 3H and x3 for 14C in detection efficiency improvement are
reported in [96] using such approach.

It has been clearly shown the strong dependence of spatial resolution with the mi-
crochannel diameter and the pitch. If smaller microchannels are used this will have a
negative impact on the detection efficiency, given that less particles will be detected.
On the other hand a thin sheet of scintillator can be placed on the input surface of the
MCP to increase detection efficiency, but this will have a negative impact on the spatial
resolution. These sensitivity measurements shown here demonstrate comparable figures
to other alternatives in the literature, but the spatial resolution is still far below that
of traditional film.

2.3 Silicon Technology

The use of silicon-based technology for autoradiography and other radiation detection
and imaging applications has become a prolific activity in the physical sciences.

The physical properties of silicon make this material highly attractive for sensing ion-
ising radiation. Especially due to its low ionising energy to create one e-/hole pair (3.6
eV), compared to that in film (7 eV) [188].

The way in which the generated charge within the silicon is collected and read out from
the sensor is where most of the research has been carried out. A variety of different
silicon-based technologies can be found in the imaging arena, each fighting for better
performance and a stronger place in the competition for scientific and commercial
imaging applications. CCDs are the most popular choice as imaging sensors at the
moment, as their performance currently represents the gold standard in solid-state
digital imaging. Nevertheless there is a growing field of research being undertaken
using CMOS technology which is starting to threaten the dominant position of CCD
technology. During the course of this research, E2V Technologies plc, the UK main
manufacturer of scientific CCD detectors has now started to release its first CMOS
imaging sensors in late 2008. Besides CCD and CMOS technologies, there exist other
alternatives such as DEPFET, silicon strip detectors and hybrid technology, initially
designed for high energy physics projects, but also applied to medical applications.
As there is such a high level of activity in this area, this aspect of direct imaging
performance has been given its own subsection.

2.3.1 DEPFET pixel BIOSCOPE system

The Depleted Field Effect Transistor (DEPFET) pixel Bioscope is based on a 64x64
array of DEPFET pixels with two versions, square 50 µm x 50 µm pixel pitch and
hexagonal 50 µm x 42 µm pixel pitch and with 3.2 x 3.2 mm2 of sensitive area [173].

The structure from bottom to top, shown in Figure 2.11, is comprised of a layer of
SiO2 (30 nm thick), nitride (100 nm thick) and a shallow p+ implantation. Summing
up the window entrance is only 200 nm thick. Beneath the entrance window is the
fully depleted substrate of the sensor which is 300 µm thick, here is where the ionising
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particles generate the charge due to ionisation while they traverse the sensor, and
are quickly collected by the internal gate. Finally, beneath the bulk is a field effect
transistor (FET). The charge carriers (electrons) originated by the ionising particle in
the substrate are collected by the gate of the transistor (internal gate in Figure 2.11)
thus modulating the transistor current. By sensing this current the information about
the impinged particle can be extracted. This measurement has to be undertaken under
a very low noise read out scheme because the standing transistor current is 100 µA
and charge of 100 electrons will originate a change of only 10 nA in this current. The
total noise is 225 e- for the total read out chain [147]. In order to reduce the input
capacitance to reduce the thermal noise of the device, the gate is split in two, one on
the surface, as usual, and an internal gate to collect all the charge.

Figure 2.11: Cross section of a DEPFET pixel. The structure is symmetric along the
symmetry axis shown [125].

The results published in [125] demonstrate the capability of this device at detecting 3H
due to the thin entrance of the rear side (200 nm), as shown in Figure 2.12 [173].

Figure 2.12: Optical image of a leaf labelled with 3H (left) and autoradiogram of the
same leaf (right) after 2 hours exposure [173].

An experiment using a 55Fe source and using the η-function reconstruction algorithm
[17] produced a measured spatial resolution for 6 keV γ photons of 6.7±0.7 µm [173].
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By extension, the authors claim that the achievable resolution with 3H is ∼7 µm but
no experimental results proving this resolution have, as yet, been presented.

The lack of biological results with 3H demonstrating the excellent spatial resolution
claimed by [173], and the very specialised process necessary to make this detector are
the two main problems to use this approach as a general method for autoradiography.

2.3.2 Silicon strip detectors

A silicon strip detector is a detector comprised of an n-type bulk, as usual for silicon-
based detectors, and an aluminium contact on the rear side. An n-type-based semicon-
ductor has better conductivity and longer lifetime than a p-type-based semiconductor.
The front face is comprised of aluminium strips and p-type silicon strips. These strips
are separated between them with a thin layer of insulator. When a charged particle
traverses the detector it generates charge in the bulk. The positive carriers (holes) drift
towards the negatively charged p-type silicon strips at the top of the sensor whereas the
negative carriers drift towards the positively charged aluminium contact at the back of
the detector. When the holes, or positive carriers, reach the p-type strips this charge
is measured through sensitive electronic read out channels.

Figure 2.13: Typical structure of a single sided silicon strip detector [158].

Read-out strips can be added on the other side of the detector perpendicular to the
existing strips on the top to produce 2D information. These are then called Double
Sided Silicon Strip Detectors (DSSSD). Therefore when a ionising particle deposits
charge in the bulk of the detector the orthogonal coordinates of the impact can be read
out. The spatial resolution is strongly dependant on the separation between strips.

One of the first application of silicon strip detectors to autoradiography can be found
in [155], where a 1D silicon strip detector was used. To gain 2D information the source
was rotated automatically on the sensor and a subsequent reconstruction using Fore
Back Projection was undertaken.

Use of double sided silicon strip detectors (DSSSD), due to the availability of 2D infor-
mation, has been more extensively investigated. A DSSSD with a 300 µm thick bulk
and 100 µm pitch between strips is presented in [18]. 32P labelled human mammary
epithelial cells were imaged claiming a relative efficiency of 20% in comparison to a
scintillator counter (considered as ground truth, i.e. what this measured is considered
to be the absolute activity). In [131] a 300 µm thick DSSSD with 50 µm pitch on both
p and n sides was studied as part of the Bioscope system. This sensor has 640 strips
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on each side having an effective area of 32 x 32 mm2. This study presented results
obtained with 45Ca, 35S and 14C (none of them biological samples), claiming a spatial
resolution below 50 µm, as the best possible with this detector. In [90] the use of
DSSSD is demonstrated to have good energy resolution being able to distinguish two
drops of 33P and 35S (Figure 2.14).

Figure 2.14: Autoradiogram of a drop of 33P (top figure left corner), a drop of 35S (top
figure right corner) and a drop of a mixture of 33P and 35S (top figure bottom), same
autoradiogram discarding energies out of the range corresponding to 33P (bottom left
figure) and same autoradiogram discarding energies out of the range corresponding to
35S (bottom right figure) [90].

A more recent work uses silicon strip detectors to image serial sections of activity
volumes, in order to image radiolabelled antibodies [129]. This work studied the non-
uniform uptake of anti-CD20 and anti-CEA antibodies labelled with 131I in tumours
(Figure 2.15).

Figure 2.15: Reconstructed activity volumes of CD20 expressing tumours, acquired
with a silicon strip detector. Left: 11h post injection of 131I-labelled minibody, max
tissue diameter: 10 mm. Right: 48h post injection of 131I-labelled intact antibody, max
tissue diameter: 25 mm [129].

Silicon strip detectors have been shifted out of the arena for autoradiography imaging
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due to the greater acceptance of CCD technology and entrance in the field of CMOS
technology for scientific applications. The spatial resolution is again the main drawback
of this approach being much easier to manufacture small pixels than narrow strips.

2.3.3 Hybrid CMOS technology

Hybrid CMOS technology is based on the concept of separation of the semiconductor
sensor and the read out circuitry. There are some techniques for bonding such as direct
bonding and bump bonding (see Figure 2.16). The most common way to connect these
two different devices is bump bonding [20]. The pixel pitch strongly depends on the
method used to grow the array of bumps and the material of these. This architecture
presents some advantages compared to monolithic integration as higher fill factor and
possible optimisation of both parts separately. For instance the semiconductor part can
be changed depending on the application (silicon, GaAs, CdTe, CdZn for X-ray, SiC
for UV or PbSe for infrared radiation) whereas the read out electronics is the same.

Figure 2.16: Example of bump bonding.

The most significant exponent of this technology is the Medipix consortium (CERN,
Geneva, Switzerland) that has produced Medipix1 (Betaview) and Medipix2 (Timepix
and Medipix3 are under development), characterised by an excellent low noise perfor-
mance.

Medipix1 [1, 19] is a 64x64 array of pixels 150 µm size square pixels and a pixel separa-
tion of 20 µm (170 µm pixel size). The semiconductor used, GaAs or Si, is 200-300 µm
thick and is bump bonded to a single-Particle Counting Chip (PCC). This design has
in each cell a charge amplifier, a pixel-by-pixel adjustable discriminator to adjust the
uniformity of the images and a 15-bit counter. GaAs is used as semiconductor in [1],
where the frame rate is set at 10 mins/frame due to its poor sensitivity. The threshold
to detect β events is set to 25-35 keV to keep the noise count rate low, so that 14C, 35S
and 32P imaging is possible. The background count rate measured with these settings
is 2.50 10−3 cps mm−2. On the other hand [19] used silicon-based Medipix1 to detect β
electrons emitted from a 14C source. In this case the threshold was decreased to 15 keV
getting a lower background count rate of 0.35 10−3 cps mm−2 and a higher efficiency,
12%, compared 10% obtained with GaAs [1].

Medipix2 [118, 119, 120] is a 256x256 array of pixels with a 55 µm pixel pitch, hence
the sensitive area is 14x14 mm2. The semiconductor is a 300 µm thick slab of silicon



2.3. Silicon Technology 17

and is Indium bump bonded to the counting chip. Each cell has a charge amplifier, a
double threshold discriminator and a 13-bit counter. In [118] standard microscales were
used to calibrate the sensor with a global threshold of 7 keV. The microscales consist of
known amounts of radioactivity homogeneously distributed in a plastic tissue equivalent
polymer of 120 µm thickness. Each microscale has 8 cells of varying activity from 1.13
kBq/g to 31.86 kBq/g for the low activity microscale (RPA504) and from 0.00381 kBq/g
to 3.7740 kBq/g for the high activity microscale (RPA511) (GE Healthcare1).

The potential of this approach is tremendous, given the flexibility of this design, being
possible to optimise the electronics independently on the detector semiconductor used.
Future versions of Medipix will probably represent a good choice for autoradiography,
but the very specialised process necessary to make these detectors and the high cost of
the facilities necessary do not make this approach a good alternative to be extended in
the autoradiography community.

2.3.4 Charge Coupled Devices technology

The application of CCD technology to autoradiography has already been presented
using indirect approaches in [81, 12], as explained in the Section 2.1.1. In contrast,
the first direct detection approach using CCDs was demonstrated by [130]. Direct
irradiation was used under cooled conditions, using a cryostat system with liquid ni-
trogen. Results with tissue labelled with 14C-deoxyglucose are shown in Figure 2.17
demonstrating higher dynamic range compared to film.

(a) (b)

Figure 2.17: Images of mouse brain sections labelled with 14[C]deoxyglucose obtained
with film after three weeks exposure (a), and by the cooled CCD-based system at -150
C (121 K) after 24 hours exposure (b). The CCD image defines the distribution of
the labelled glucose more accurately than the film autoradiogram which seems to show
saturation in the region of the hypothalamus, enclosed in a square in the figure [130].

This work was further developed to extend its use to room temperature imaging [88]
with 35S, as shown in Figure 2.18, after fixed pattern noise is removed by using simple

1GE Healthcare UK Limited, Pollards Wood, Nightingales Lane, Chalfont St.Giles, Bucks, UK, HP8
4SP
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image correction schemes. The autoradiograms were acquired at x36 times faster than
film, but with almost an order of magnitude reduction in sensitivity compared to low
temperature performance observed in [130]. Some corresponding structures in both
autoradiograms are clearly visible in Figure 2.18 (e.g. see boxed region). However
although this work represented the first attempt to produce direct autoradiograms at
room temperature using CCD technology, the image quality is far inferior for that
needed for routine use in life sciences applications. It may have been that this simply
required longer exposure times, as total exposure time was limited by the hard disk
storage available at the time.

(a) (b)

Figure 2.18: Images of mouse brain sections labelled with 35S obtained with film after
four days exposure (a), and by the CCD-based system at 22 C after 2 hours exposure
(b), after correction of dark current and fixed pattern noise. The squares indicate where
selective local hot spots are more easily distinguished in the CCD system, compared to
the film autoradiograms [88].

2.3.5 Complementary Metal-Oxide-Semiconductor technology

CMOS technology is still an emerging technology in scientific applications, where CCD
technology is still considered to be a gold standard. CMOS technology is at the mo-
ment dominating the consumer-based low-cost imaging market, due to the ability of
CMOS manufacturers to produce CMOS imaging sensors at the same rate as CMOS
circuitry, as they are both based on the same standard fabrication processes. It is
being used in medical imaging in X-ray detection with the use of scintillators such as
Cs-I or Gadox [9, 23, 16]. A significant example this technology is starting to be used
in mammography where CMOS technology is the only technology that can be easily
packaged like a mammography film cassette without cooling, and also because of its
low power consumption [16] (see Figure 2.19).

Typically detectors used in Computed Tomography (CT) have been flat panels, based
on amorphous silicon or amorphous selenium, or CCD imaging sensors. CMOS technol-
ogy is itself a low-cost alternative compared to other approaches. There are arguments
relative to the sensitive area and the spatial resolution achievable by CMOS and CCD
technologies, but undoubtedly both technologies offer competitive performance. The
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(a) (b)

Figure 2.19: Mammogram acquired with a digital sensor comprised of eight (2 x 4)
CMOS tiled sensors (48 µm pixel size) with 100mm x 100mm field of view (a), and
surgical 15mm x 20mm biopsy specimen acquired with the same CMOS sensor where
dense (bottom left corner) and subtle (top right corner) calcifications are observed (b)
[16].

low cost of CMOS technology makes this alternative very attractive to be used on
regular basis in CT [94, 29, 185].

The use of this technology in autoradiography is still scant. MIMOSA [171] and Vanilla
[31] are the only CMOS MAPS sensors applied to autoradiography published in the
literature so far. In [43] MIMOSA V demonstrated its capability for detecting 3H
under cooled conditions but to date, no biological assessment has been published. The
noise of this sensor is impressive compared to other non-CMOS sensors applied to
autoradiography [1] but the sensitivity to detect 3H is low.

A review of the most important alternatives applied to autoradiography has been ex-
posed above. Silicon-based detectors are a very active area of research, thus a significant
variety of designs is found in the literature. Some of these designs were initially de-
sign for high energy physics, therefore they have been recycled to be used in medical
imaging.

In summary, hybrid technology has demonstrated high sensitivity and low noise, but
the spatial resolution is still not good enough for thin tissue autoradiography. Moreover
this is an expensive technology making it unattractive for large area development. Sil-
icon strip technology, although being commercially available, again does not offer the
spatial resolution that autoradiography demands. DEPFET has been demonstrated to
have high spatial resolution and low intrinsic noise, but work on sensitivity has not been
published yet to be able to compare with other approaches. In this regard, one may con-
sider its applicability to be unproven, but not discounted. CCD and CMOS technologies
are the most prolific approaches used by the scientific community at the moment. It has
already been mentioned the main differences between these technologies, highlighting
that CMOS technology is starting to reach a similar performance compared to CCD
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technology, but this is still a matter for debate. Among the most important advantages
of CMOS technology compared with CCD technology are high-speed imaging and low
cost, therefore most of the R&D work at the moment is undertaken using CMOS tech-
nology. Part of this work will examine the relative merits of both of these competing
technologies for thin tissue autoradiography.



Chapter 3

Digital Autoradiography Imaging
Principles with Solid-State
Silicon Detectors

3.1 Signal Generation in Silicon-based Detectors

When an ionising particle is incident on a silicon-based imaging sensor, it may be either
backscattered or absorbed in the overlying (insensitive) layers of the detector, traverse
through these layers until it reaches the sensitive part of the detector, or traverse the
whole detector without interacting, depending on the kinetic energy of the particle.

Assuming a standard front illumination geometry, the top layers of the detector are
typically comprised of protective layers of SiO2 and Si3N4 and interlaced electrodes of
polysilicon and SiO2 layers in CCD detectors (∼1 µm thick) [74], or protective layers
of SiO2 and Si3N4 in CMOS detectors (∼1-5 µm thick). The latter also includes a
mixture of transistors (placed in a corner of the pixel) and interconnection lines. These
are also commonly called dead layers because they are not sensitive to electromagnetic
radiation. If the particle reaches the sensitive epitaxial layer it may interact with the
valence electrons of the silicon lattice and/or with the silicon atoms nuclei (see Figure
3.2(a)). If the impinging particle has sufficient kinetic energy, it may produce ionisa-
tion in the silicon, generating charge carriers at a mean rate of ∼3.6 eV/electron, which
corresponds to three times the energy band gap of silicon [52]. The sensitive region is
usually called the epitaxial layer, referring to the method used to make it, by deposit-
ing monocrystalline film on a monocrystalline substrate (from Greek above in ordered
manner). In CCD technology, this is divided between the depleted layer, affected by
an electric field, and the undepleted field free layer, while in CMOS technology the
entire epitaxial layer is field free. Figure 3.1 shows typical electron ranges induced in
silicon for β- autoradiography. These energies cover the average and maximum ener-
gies of the most typical radioisotopes used in β- autoradiography, 5-1710 keV. These
electron ranges were obtained by simulating a monoenergetic point source of a specific
radioisotope in a block of silicon, being the electron ranges expressed as the straight
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line distances between the initial and final points of the trajectories of each simulated
electron.

Figure 3.1: Electron range obtained from Monte Carlo simulations for a range of ener-
gies 5-1710 keV, covering the average and maximum energies of 3H, 14C, 35S and 32P,
typical radioisotopes used in β- autoradiography.

To maximise sensitivity, it is necessary to minimise absorption, back-scattering and
transmission losses of the incident radiation field. These processes depend on the
physical characteristics of silicon and the detector dead layer composition [75].

One method used to improve optical sensitivity in the near IR and UV spectrum in CCD
and CMOS technologies, is to use a back-illuminated back-thinned geometry. Some
groups are starting to apply this fabrication process to CMOS detectors [43, 15, 31],
but it is still emerging. This fabrication process is based on bonding a new substrate
(purely for mechanical support) on top of the front face and removing the underlying
structures of the sensor below the sensitive volume. This process is graphically shown
in Figure 3.2.

Electrons liberated from ionised silicon atoms mentioned above, initially generate a
spherical electron cloud with initial radius σi, defined by equation 3.1 [167]:

σi = 0.0062E1.75µm (3.1)

This parameter is derived from the well known energy/depth relationship R = kEn,
where E is energy in keV, R is range in µm and k and n are constants dependant on the
material [51]. This charge may suffer two different effects: (1) In presence of an electric
field the deposited charge drifts towards the charge collection points, i.e. photodiodes
or photogates. (2) Deposited charge also suffers thermal diffusion. Depending on the
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(a) Cross-section of a typical front-illuminated CCD detector

(b) Cross-section of a typical front-illuminated CCD detector, showing
the new substrate bonded on top and the removal of the original substrate
on the back side.

(c) Cross-section of a typical back-illuminated CCD detector, with a thin
(∼100 nm) dioxide layer on the back side. This is a residual layer pro-
duced by the chemical etching process applied to remove the substrate.

Figure 3.2: Process of back-thinning showing the initial typical cross-section of a front-
illuminated device (a), the fabrication processes applied to the detector (b) and the
final cross-section produced after back-thinning (c).
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distance to be travelled, doping level and temperature, the degree of diffusion may also
affect the final destination of the charge cloud, and may spread to neighbouring pixels.

In the case of CCD technology, the charge generated in the depletion region (affected
by an electric field) drifts quickly towards the closest polarised gate of a pixel, confining
most of the charge to the pixel where the charge was generated. The magnitude of the
electric field is depth dependant, as shown in equation 3.2 [134]:

E(z) =
qN

ε
(z − zd) (3.2)

where ε is the electric permittivity of silicon (1.044 10−12 F cm−1), q is the elementary
charge (C), N is the doping level (cm−3), zd is the thickness of the depleted layer and z
is the silicon depth of the sensitive region. The depth of the depletion zone is governed
by the doping level and the voltage applied, and it is defined by equation 3.3 [134]:

zd =

√
2V ε
qN

(3.3)

where V is the mean of the surface voltage.

This charge deposited in the depletion region also suffers a low component of diffusion,
defined by the standard deviation of a Gaussian projected on the collection point σd,
mathematically expressed as shown in equation 3.4 [86]:

σd = 4

√
εkT

q2N
ln

zd
zd − z

(3.4)

where k is the Boltzmann constant (8.62 10−5 eV/K), T is the temperature (K) and z
is the depth of interaction. The most important parameter here is N the doping level,
showing that higher doping levels reduces the thickness of the depleted layer (equation
3.3) and increases the electric field (equation 3.2), therefore producing a smaller charge
cloud diameter. For example, the variation of σd with the depth of interaction in a 7
µm thick silicon depletion layer, for a wide range of doping levels, is shown in Figure
3.3. It has to be noted that the ordinate axis is presented in logarithmic scale. Typical
doping levels for CCD sensors is ∼1012 cm−3 [74], and for CMOS sensors is ∼1015 cm−3

[44].

On the other hand, the charge generated in the field free layer diffuses until it eventually
recombines or reaches the depleted region. A similar process is suffered by charge in the
epitaxial layer of a CMOS detector due to the low (or non-existent) electric field, where
deposited charge suffers diffusion until it recombines or reaches a collection point.

As mentioned above, if the deposited charge is not collected it eventually thermally
recombines. This process is governed by the collection time tc and the life time or
recombination time tr. If tr is long enough (tc < tr) the charge will be collected before
it recombines. This is controlled by the doping level in the silicon, with higher doping
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Figure 3.3: Variation of σd with the depth of interaction in a 7 µm thick depletion layer
for different values of impurities concentration.

levels the recombination time is shorter. This is why if there is charge deposition in the
substrate, that usually has very high doping levels, it recombines quickly. The average
length that the charge travels before it recombines is called diffusion length [54]. The
diffusion length is governed by the diffusion coefficient and the recombination time, as
shown in equation 3.5:

L =
√
D tr (3.5)

where L is the diffusion length, D is the diffusion coefficient and tr is the recombination
life time, usually of the order of several hundred µs in today’s epitaxial layers [154].
This parameter is usually measured experimentally [154, 3]. The diffusion coefficient D
depends on the mobility as demonstrated by the Einstein relation shown in equation
3.6, which ultimately depends on the doping level as shown in equation 3.7 [54].

D =
kT

q
µ (3.6)

where µ is the mobility of the minority carriers (cm2/V s), i.e. electrons in this case
where the sensitive layer is usually p+ doped with acceptor dopants such as Boron.
The term kT

q is typically given a value of 25 mV at room temperature.

Some studies have tried to establish an empirical correspondence between majority
carriers mobility and doping level. The mobility of the minority carriers can be ap-
proximated by that for majority carriers with the same doping density. An accepted
empirical formula is shown in equation 3.7 [175]:

µ =
µmax − µmin

1 + ( NNr )α
+ µmin (3.7)
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where µmin, µmax, α and Nr are fitting parameters. A table with values for Boron (p
type) and Phosphorus (n type) for the different fitting parameters is shown in Table
3.1. A graph with results obtained by different studies of majority carriers mobility vs.
doping level for Boron in silicon at room temperature is shown in Figure 3.4.

Table 3.1: Parameters for calculation of the mobility as a function of the doping density

Boron Phosphorus
µmin 44.9 68.5
µmax 470.5 1414
Nr 2.23 1017 9.20 1016

α 0.719 0.711

Figure 3.4: Variation of carriers mobility (cm2/V s) in the ordinate axis with dopant
level (atoms/cm−3) in the abscissa axis for Boron in silicon at room temperature
(300K), given by equation 3.7.

The depleted region is to first order, absent of free carriers, therefore the charge gen-
erated in the depleted region does not recombine. It drifts to the collection points due
the electric field as mentioned above. In those regions where the electric field is too
low or non-existent the charge will diffuse as explained above. This charge diffuses over
4π being possible to approximate the projection on the depleted region to a Gaussian
shape [78]. By analogy the same process is described for charge deposited in the epitax-
ial region in a CMOS detector. A well accepted model for the width of this Gaussian
shape σff is defined empirically by equation 3.8, presented for first time in the seminal
paper [78], and quoted by other authors [25, 115, 134]. This equation was obtained by
using Monte Carlo simulations, where 2000 electrons randomly wander in silicon until
they are collected in the depleted layer. In this work different absorption depths are
simulated obtaining different cloud diameters.

σff =
zff
2

√
1− (

za
zff

)2 (3.8)

where zff is the thickness of the field free layer and za is the distance between the z
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coordinate of the interaction and the bottom of the field free region. It is observed
from equation 3.8 how the worst case situation where za = 0 (produces the largest
cloud diameter) which is when the charge is generated at the bottom of the field free
layer, while the best case is when the charge is generated near the surface with the
depleted region (za = zff ), where the charge does not suffer field free diffusion. A
graph showing the dependence of σff with za (equation 3.8) in a 20 µm thick field free
layer is shown in Figure 3.5

Figure 3.5: Evolution of the width of the Gaussian obtained in the field free region σff
with the distance between the point where the interaction took place and the rear side
of the field free layer za, calculated in a 20 µm thick field free layer.

Subsequent work [70, 134, 25] undertook thorough analytical studies of charge diffusion,
demonstrated that the assumption of a Gaussian distribution in the field free layer in
fact underestimates charge in the tails of the distribution. Therefore, the real distribu-
tion affects more pixels than if a perfect Gaussian distribution were assumed. On the
other hand the actual distribution has a more pronounced peak compared to a perfect
Gaussian. This matter will be further discussed in Chapter 6.

The width of the final Gaussian distribution (σtot), taking into account the initial
charge spread (σi), the diffusion in the depleted volume (σd) and the diffusion in the
undepleted volume (σff ) is described by equation 3.9:

σtot =
√
σ2
i + σ2

d + σ2
ff (3.9)

An example of the Gaussian shape projections of charge diffused in a 20 µm thick active
volume at several depths of interaction, from the upper surface to the bottom surface
with the substrate, is shown in Figure 3.6. The standard deviation of the projected
Gaussians on the top surface σff are 2 µm, 4 µm, 6 µm, 8 µm and 10 µm from left to
right, corresponding to depths of interaction 0.4 µm, 1.6 µm, 4 µm, 8 µm and 20 µm
respectively.

Most scientific CCD imagers are fabricated on 30-50 Ω-cm epitaxial silicon (correspond-
ing with 1015 cm−3 of doping level), but in order to mitigate the diffusion effect more
and more CCD detectors are manufactured using high resistivity silicon wafers (∼5-12
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Figure 3.6: Example of several Gaussian shape projections of charge diffused in a 20
µm thick active volume at different depths of interaction, at 0.4 µm, 1.6 µm, 4 µm, 8
µm and 20 µm from left to right, with standard deviations 2 µm, 4 µm, 6 µm, 8 µm
and 10 µm respectively.

KΩ-cm corresponding with ∼1012 cm−3 of doping level) [162]. This allows the electric
field present in the depletion region, that usually reaches 7 to 10 µm deep in the silicon,
to be extended. This will make the electrons drift towards the top of the layer, where
the electrodes are, while the holes will be attracted towards the substrate, therefore
mitigating diffusion or recombination. In CMOS technology low resistivity silicon is
used so the electric field is very low compared to CCD technology reaching only to 1-2
µm (it can be considered null for certain studies) [75]. These physical processes define
the charge collection efficiency of the detector, and have a direct impact in the spatial
resolution achievable, depending on the doping level, thickness of the sensitive layer,
pixel size and electric field in the case of CCD technology [148].

As has been observed there exists a wide variety of parameters that affect the perfor-
mance of a silicon-based detector in different ways. Depending on the application a
trade off has to be established to obtain the most suitable performance in each case. At
the end of this chapter a discussion connecting the concepts explained in this section,
with the different sources of noise and specific features of CCD and CMOS technologies
is presented.

3.2 Sources of Noise in Silicon-based Detectors

Having discussed the principles of charge generation in silicon imaging detectors, it is
necessary to also consider the different sources of noise found in CCD and CMOS tech-
nologies that stand in the way of obtaining excellent performance required in scientific
applications.
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3.2.1 Shot Noise

The arrival of ionising particles to a detector is a random process governed by a Pois-
son distribution. When the number of particles that reach the detector is small, this
randomness adds a certain noise (i.e. uncertainty) component to the signal measured
in a pixel given by Poisson statistics, as shown in equation 3.10:

σshot =
√
S (3.10)

where S is the number of electrons that reach the detector and σshot is the shot noise
component in electrons. Therefore this noise is relatively more significant when collect-
ing small numbers of particles, such as the application considered in this work. There
also exists dark current shot noise. This component represents the uncertainty of dark
current generation in a pixel under low illumination conditions.

3.2.2 Thermal Noise

Also known as dark current, this is created by electrons that have jumped from the
valence band to interface states and from these to the conduction band by means of
thermal energy. These interface states are intermediate states between the valence
and the conduction bands, generated by impurities or defects in the silicon’s crystal
lattice. The probability of this random process has a strong relation with temperature.
These thermally generated electrons can be found, in a CCD sensor, in the bulk, in the
depletion region and in the surface between the oxide and the silicon. These can be
found mainly in the defective sidewalls and the edges of the photodiodes in a CMOS
sensor. The relation between temperature and dark current is given by the equation
3.11 [74]:

D = RCApT
1.5e−Eg/2kT (3.11)

where D is the dark current (electrons/pixels/second), R is the dark current at 300K
(usually specified by the manufacturer in electrons/secs cm2), C is a unitless constant
(2.5 1015), Ap is the pixel area (cm2/pixel), T is the absolute temperature (K) and Eg
is the energy band gap, which is 1.12 eV at room temperature (300 K).

In CCD technology the typical approach to minimise this effect is by adding free carriers
that occupy the interface states, often referred to as inverted mode operation. In an
inverted CCD the potential in the substrate is higher than in the surface, therefore
holes from the channel stop will migrate to the interface and hopping of electrons from
the interface states to the conduction band will be inhibited [116]. This same approach
has been adopted by some manufacturers of CMOS imagers. Another approach used
in CMOS technology is reducing the number of crystal defects from the surface of the
substrate by improving manufacturing processes. The most simple approach to reduce
the effect of dark current is by cooling down the sensor, thus harnessing the exponential
dependence on temperature (see equation 3.11).
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3.2.3 Fixed Pattern Noise

Silicon wafers are fabricated using epitaxial growing. This process causes certain
nonuniform doping profiles, i.e. crystal defects, in the silicon structure. These crystal
defects and metal impurities act as generation and recombination sites for hole-electron
pairs. This problem, and slight size variations in the pixel geometries, means that pix-
els across a sensor have generally nonuniform sensitivity, better known as pixel Fixed
Pattern Noise (FPN).

In the absence of ionising particles, dark current at room temperature means unwanted
electrons are generated and stored in a potential well. These are observed as isolated
high intensity pixels or lines in an image. As these defects are unevenly distributed
across the sensor, this produces nonuniformity in the image in terms of broken lines
and salt and pepper noise.

This nonuniformity is approximately 1-2 % of the average signal in CCD and CMOS
technologies, affecting in a similar way to both technologies. The advantage of CMOS
technology is that, as the read out step is faster in CMOS detectors, the integration
time can be much reduced in comparison to CCD sensors, therefore the FPN component
should theoretically be less significant in CMOS sensors compared to CCDs.

It is also worth noting that there also exists column FPN, caused by read out circuitry
(ADC, multiplexers,...) mismatches between different columns, however this is not
considered in this work due to the minor effect observed in the sensors considered here.

3.2.4 Latch-up Effect

This name is used to describe the effect that appears when parasitic n-p-n and p-
n-p junctions, present in the circuitry of the CMOS sensor as shown in Figure 3.7
[141], are triggered by undesirable currents between the transistors. These undesirable
currents may appear when the sensitive layer of a CMOS detector is too thick. This
will provoke malfunctioning in the detector and, if these currents become uncontrolled,
thermal damage may occur. To avoid this problem CMOS detectors are not thicker
than 20 µm. The latch-up effect is a well known problem present in integrated circuits
(ICs) fabricated using standard CMOS processes, possibly causing catastrophic failures
under extreme conditions.

The thin sensitive layer, necessary to avoid the latch-up, will concomitantly collect little
charge compared to thicker detectors. This produces a concomitant problem, in that
the noise that may mask the desired deposited charge (from an ionising particle in this
case) in the thin sensitive area has to be low. This does not happen in CCD sensors as
can be observed from the nature of this problem.

3.2.5 Read Noise

When the charge in a pixel is read out the analogue voltage may suffers several ampli-
fication steps, and finally it is converted to a digital value by an Analogue-to-Digital
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Figure 3.7: Basic p-substrate CMOS cross-section with latch-up circuit model.

Converter (ADC). All these processes introduce noise from the inherent electronic noise
in the active read out circuitry. There exists a wide variety of low noise electronic de-
signs for amplifiers and ADCs to reduce this effect.

The principle difference between CCD and CMOS technology on this aspect, is that
CCD technology utilises amplification and digitisation steps off-chip, i.e. in an external
electronic board in the acquisition system. Therefore the charge is driven by a cable
from the image sensor to the board. By contrast CMOS imaging technology commonly
incorporates the amplification and digitisation steps on-chip, i.e. in a pixel or imme-
diately adjacent to the chip. The impact of this difference is that CCD technology
is more susceptible to noise while it is being driven to the external board. In CMOS
technology this risk is reduced.

On the other hand CCD technology has pushed the read noise floor to below 1 electron
rms by careful amplifier design and design of digital filtering circuits that process the
video signal. In CMOS technology, where the analog process is on-chip, it is more
difficult to achieve this optimisation of low noise electronics design [75]. For instance
it is easier in CCD technology to add capacitors to control the electrical bandwidth
of the analog signal to reduce the white noise, while in CMOS technology this is not
possible because adding filters would have a negative effect on the size of the chip.

CCDs manufacturers usually supply the on-chip read out noise figure in electrons root
mean square (rms), referring to the standard deviation of the unwanted charge in a
given pixel.

3.2.6 Reset Noise

Every time charge within a pixel is read out (i.e. transferred to some read out node for
digitisation), the pixel is subsequently reset to a base line potential in order to allow
accumulation of charge again, given that not all the charge is transferred. This problem
happens because the clocking signals used to read out the charge are not able to attract
all the deposited charge within the pixel. The reset noise arises when the pixel is reset
but not all the remaining charge is emptied. Therefore the level of charge measured in
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the next cycle does not correspond exactly to what has been deposited by the ionising
particles in that pixel: the actual value of charge has an offset.

The typical solution to this problem, originally developed for CCD technology, is de-
nominated Correlated Double Sampling (CDS). CDS samples the photodiode/gate af-
ter reset and then after the signal acquisition, subsequently these two samples are
subtracted, hence the reset offset is removed. This technique is easy to implement in
CCD technology because of the serial mode read out scheme.

Reset noise is the main source of noise for CMOS technology. Also known as kTC
noise, this is of the order of 30-50 electrons rms. This source of noise can be largely
eliminated by CDS, as in CCD technology, or by active reset schemes explained below.

CDS is very common in CCD technology but it is still a matter under study in CMOS
technology due to the extra difficulty of the parallel read out architecture. CDS can be
applied on-pixel or off-pixel, externally. One design choice in state-of-the-art CMOS
sensors involves adding an extra capacitor, acting as memory, to store the level of
charge after the reset. When the level of charge is measured after integrating this
is then subtracted from the level of charge stored in the extra capacitor, therefore
mitigating the effect of the reset noise. This extra capacitor in each pixel reduces the
fill factor of each pixel, resulting on reduced sensitivity and increased read noise by
a factor of

√
2, making the read out of the charge from the pixel slower, as now the

charge has to be measured twice.

Another possibility is to implement active reset schemes. Typically, using this approach,
the pixel is reset applying VReset <VDD to the Reset transistor (see Figure 3.14), being
VDD the voltage at which the transistors are powered. This is commonly known as
soft reset. With this choice the reset noise is reduced to

√
kTC/2 but two problems

arise: FPN and image lag. Image lag is a problem related to the persistence of the
previous frame in the current frame, given that the charge of the photodiodes has not
been entirely emptied.

An alternative to soft reset is applying hard reset by replacing the n type Reset transis-
tor by a p type transistor, which occupies more space, therefore reducing the fill factor.
A more common choice is to increase the voltage applied to the n type Reset transistor
gate above VDD (VReset >VDD). Under this scenario image lag is eliminated but the
reset noise is still

√
kTC.

Most CMOS designers use a technique called Flushed reset, which is a combination of
hard and soft reset. Flushed reset gets rid of the problems of both soft and hard reset
and gains their advantages: the reset noise is reduced to

√
kTC/2 and the image lag

effect is eliminated. This technique is implemented by applying two different voltage
levels sequentially to the Reset transistor gate, first applying VReset >VDD (hard reset),
and secondly applying VReset <VDD (soft reset).

3.3 Charge-Coupled Devices Technology

Having described the principles of charge generation and read out in pixellated silicon
imaging sensors, the next 2 sections describe the detailed architecture and read out
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mechanisms involved in the two most prolific types of solid state imaging sensors:
CCDs and CMOS sensors.

3.3.1 Typical Structure of a CCD Detector

The typical structure of a CCD detector is shown in Figure 3.8. At the very top is a
layer of electrodes or gates, made of polysilicon (material consisting of multiple small
silicon crystals), used to transfer the accumulated charge from each pixel to the global
output buffer in serial mode. Below is a layer made of SiO2 to isolate the electrode
layer and the silicon structure. These layers comprise the dead layers responsible, in this
application, for stopping the least energetic particles. Below is the epitaxial sensitive
region, made of crystalline doped silicon, and below this is the substrate made of high
resistivity and highly doped silicon. The substrate provides a mechanically rigid base
upon which all the other layers are formed.

Figure 3.8: Anatomy of a Charge-Coupled Device (CCD).

The sensitive region is comprised of two layers, a depleted layer (i.e. charge free in the
quiescent state), produced by application of an electric field, and a field free layer (see
Figure 3.9).

A single pixel can be composed of two electrodes (two phase CCD), three electrodes
(three phase CCD) or four electrodes (four phase CCD). Between the pixels there
exist channel stops, implanted potential barriers made of doped silicon, to prevent the
transfer of charge between pixels due to diffusion. In the first CCD detectors these
channel stops were implanted on the surface, but the semiconductor/insulator interface
was found to trap some charge while the well was being filled that was difficult to
release when being emptied, so the transfer efficiency was low. This motivated the
design change making the channel stops underneath the dioxide, i.e. buried channel
stops [74].

From a more general point of view there exist two different CCD architectures to trans-
fer the deposited charge out of the detector: full frame and frame-transfer architectures.

Frame-transfer devices have the active area divided in two halves, one of them is sensi-
tive to incident radiation (image section) and the other half (storage section) is physi-
cally masked to optical radiation, as shown in Figure 3.10(a). Thus, after accumulating
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Figure 3.9: CCD cross-section showing charge diffusion generated in each layer of the
sensitive region.

charge in the sensitive half for a certain period of time, charge is quickly transferred
(∼msecs) from the sensitive half to the storage half. Subsequently the charge in the
storage half is serially read out through the read out register to the output amplifier,
while the sensitive half is acquiring the next subsequent image frame. The advantage of
this approach is that read out and image acquisition processes are no longer dependent
on one another, and can be independently optimised for a particular application. The
major disadvantage is that the sensitive region is reduced by a half [140].

Full frame devices are more common, due to their simpler design, compared to frame-
transfer devices. These detectors comprise of the image section only, thus either accu-
mulate charge or read out the charge. The detailed description of this architecture is
presented in the next section.

(a) (b)

Figure 3.10: Frame-transfer (a) and full frame (b) architectures.
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3.3.2 Read out Process in a CCD Detector

The way in which a full frame CCD operates is divided in two steps. First it collects
and integrates the charge produced by the incident radiation field, and secondly it reads
out the deposited charge serially. The typical read out architecture of a CCD is shown
in Figure 3.11.

Figure 3.11: Typical read out architecture of a CCD sensor [53].

This architecture shows how one single column is read out in a clock cycle and saved in
a vertical register. Subsequently each pixel in the vertical register is read out serially
through the common output amplifier. This process takes as many clock cycles as
number of pixels to read out, being therefore slow. This is a very important limiting
factor for the integration time of the sensor because the integration time can not be
shorter than the read out time. To understand this effect, the fact that while a sensor is
reading out the charge, incident radiation will keep on impinging on the sensor, unless
the read out cycle can be controlled by physically blocking the incident radiation with
a shutter. If the integration time and the read out time are similar the last pixels
being read out will comprise charge from their original position plus charge due to the
integration of the incident radiation field across the entire column, and any associated
dark current for that column.

To read out the accumulated charge in the sensitive region, the charge is transferred
between pixels within rows, before reaching the vertical shift register, by applying
voltages to the electrodes. There exists three different architectures to transfer the
charge between pixels: two phase, three phase and four phase CCD clocking. The
process of shifting the charge from one electrode to another in a three phase device is
depicted in Figure 3.12.

First a positive voltage is applied to the P(1) electrode in each pixel, therefore all
the deposited charge within each pixel is confined beneath this electrode (t1 in Figure
3.12). Secondly the same voltage is applied to the P(2) electrode, so the charge confined
beneath the P(1) electrode is now shared between these two electrodes, P(1) and P(2)
(t2 in Figure 3.12). Thirdly the voltage applied to P(1) drops so all the charge is
beneath the second electrode P(2) (t3 in Figure 3.12). This process is subsequently
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Figure 3.12: Three phase CCD clocking.

repeated to transfer the charge to the third electrode P(3), and then the the electrode
P(1) of the adjacent pixel, and so on. This combination of signals is repeated across
the whole sensor until the charge of every pixel has been read out. This is why this
read out architecture is that slow.

In the three phase architecture observed in Figure 3.12 each pixel is comprised of three
phases, each of them connected to one electrode. Therefore one pixel is comprised of
three electrodes. In a two phase architecture each pixel is comprised of two phases, each
of them connected to two electrodes, shortcircuited between them in pairs, therefore one
pixel is comprised of four physical electrodes, which are effectively two. This architec-
ture, used initially due to its simple fabrication process, requires more complex clocking
sequences to shift the charge. In a four phase architecture each pixel is comprised of
four phases, each of them connected to one electrode, therefore one pixel is comprised
of four electrodes. This architecture, used by Philips, is able to use 50% of the pixel for
storage obtaining higher charge capacity compared to the two and three phase designs
used by other semiconductor manufacturers. The three phase architecture is the most
common choice of manufacturers due to some relative advantages obtained with this
architecture compared to the other two, such as better spatial resolution and higher
frame rates [42].
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3.4 Complementary Metal-Oxide-Semiconductor Technol-
ogy

The continuous advances in CMOS technology motivated by the latest advances in
microprocessors and DRAM memories in the semiconductors industry, have now started
to make this technology a viable alternative to the popular CCD technology. In the
early 1990s CMOS technology made possible the manufacture of imaging sensors based
on this technology. The read out is achieved via row and column decoders, as shown
in Figure 3.16, so these devices are fast, and by using low voltage control, consume
low power. This read out architecture also allows random access to pixels, very useful
for applications where certain regions of interest can be read out, instead of the entire
active area, speeding up the read out process.

3.4.1 Typical Structure of a CMOS Detector

This technology, similar to CCD technology, is comprised of a two dimensional array
of pixels, each of them sensitive to ionising particles accumulating the charge deposited
within. There exist two main choices for pixel architectures: Passive Pixel Sensors
(PPS) and Active Pixel Sensors (APS) shown in Figures 3.13 and 3.14 respectively.

Figure 3.13: Typical pixel architecture
of a Passive Pixel.

Figure 3.14: Typical pixel architecture
of an Active Pixel.

As can be observed, PPS are comprised of just a charge collector (photodiode or pho-
togate) and a transistor to enable the read out of the charge. Conversely, the APS is
comprised usually of three transistors, better known as a 3T architecture. The Reset
transistor is used to reset the pixel clearing the charge remaining in the pixel after being
read out, the Source Follower (SF) transistor is used to convert the charge accumulated
in the pixel from charge to current and finally the Read Selection (RS) transistor is
used to pump the current out when enabled into a shift register.

In Figure 3.15 a surface profile of a typical CMOS detector is observed. This picture
was taken with a surface profiler from the Department of Physics and Astronomy, in
the University of Glasgow, UK.

It can be observed in this figure highlighted in red, the profile of the connections between
the p-n junctions, and the circuitry and connections with the rest of the electronics
contained within each pixel. It can also be observed the large tracks, corresponding
with the main connections between pixels and the largest tracks corresponding with
the ground, common to every pixel.
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Figure 3.15: Surface profile scan of a CMOS detector array of pixels taken with a
surface profiler.

There exists some variations to the 3T architecture to increase the functionality of the
pixels, such as the inclusion of ADC converters or N-bits RAM memories as examples.
All these additional structures, together with the metallic paths necessary to intercon-
nect all the electronics, affect the fill factor of the detector, i.e. the ratio of the total
area of a pixel and the sensitive area of a pixel.

This parameter is of extra importance for imaging applications where the activity and
energy is specially low, as the transistors and paths, usually ∼1 µm thick, comprising
the aforementioned structures will absorb the incident particles before these reach the
sensitive layer. For the specific case of 3H β- autoradiography, where the β- particles
have an average energy of 5.7 keV, these will be absorbed in the first 1-2 µm of ma-
terial. In this case, the higher the fill factor the better sensitivity, therefore too many
transistors is not a desirable characteristic in the pixel. Compared to CCD sensors
where the fill factor is 100%, due to the absence of transistors, the CMOS sensor suit-
able for autoradiography should have fill factor as high as possible to obtain acceptable
sensitivity.

For higher energy radioisotopes such as 14C or 35S, with average energies ∼50 keV, the
circuitry contained in each pixel does not represent a significant problem given that
these β particles are absorbed in a depth of ∼10-15 µm.

The thickness of the epitaxial layer in CMOS technology does not exceed 20 µm due to
limitations in the standard CMOS processes involved in the fabrication, and to avoid
the latch-up effect (see Section 3.2.4). One of the basic concepts of CMOS technology
is that it exhibits low energy consumption. Therefore the electric field used to collect
the charge in the collection points usually extends to only ∼1 µm deep in the active
volume. The rest of the epitaxial layer is not under the effect of any electric field, so
that liberated charge behaves in a similar manner to that in the field free region of a
CCD sensor.

Most CMOS sensors are APS sensors. As these sensors are fabricated on a single
substrate, including detector and read out electronics, these are called Monolithic APS
(MAPS), given that Monolithic means consisting of one piece.
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3.4.2 Read out Process in a CMOS Detector

The read out architecture of CMOS sensors is usually column-parallel. There is usu-
ally an Analogue-to-Digital (A/D) converter at the end of each column so the charge
in the pixels are digitised in parallel. There exist other architectures that use less
A/D converters but still digitise several pixels in parallel (e.g. 1 A/D converter per
4 columns), and other more complex architectures with A/D converters in each pixel,
thus the conversion of the whole array is undertaken in parallel, making the read out
step very fast. This architecture allows faster read out compared to CCD detectors,
making possible shorter integration times. As shown in equation 3.11, dark current is
linearly dependant on integration time, therefore this architecture used in CMOS im-
agers can potentially produce lower thermal noise. A typical structure of CMOS read
out architecture is shown in Figure 3.16. It can be observed how a single row is read
out in parallel through the column amplifiers, and then outside through the output
amplifiers.

Figure 3.16: Typical read out architecture of a CMOS sensor.

3.5 Designing the Optimum Silicon-based Detector

The above text has briefly outlined the principles of CCD and CMOS technologies.
From this discussion the relative advantages and disadvantages of each technology can
be compared, but it is clear that no single technology outperforms clearly over the
other. Using silicon imaging technology (CCD or CMOS) for direct β± detection in
β autoradiography, there are some requirements to fulfil, apart from those intrinsically
obtained by using silicon-based detectors such as linearity and high dynamic range.
These are high spatial resolution, high sensitivity and large area. In this section the
effect of some key design parameters and intrinsic technological parameters are analysed
from the perspective of the spatial resolution and the Signal-to-Noise ratio (SNR), for
different energy ranges corresponding to traditional β- radioisotopes.
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Conventional autoradiography film has been traditionally used as it offers an intrinsic
spatial resolution of ∼1 nm, imposed by the diameter of the silver grains that work
as the active component of film. However, scattering of the β particles in the film
deteriorates the resolution, and this is further affected by the resolution limit of the
digitisation process. Thus, the final spatial resolution is typically in the range of 10-30
µm for tissue imaging.

These aforementioned key design parameters, common for CCD and CMOS technolo-
gies, are (1) the depth of the depleted region, (2) the pixel size, (3) the thickness of the
active area and (4) the collection time.

3.5.1 Spatial Resolution Optimisation

Considering only the spatial resolution as the main feature to optimise, when a particle
traverses through the detector, the longest the particle range the more pixels will be
affected by this particle, producing a negative effect on the spatial resolution. These
particles deposit charge after ionising atoms in the silicon, which subsequently diffuses
spherically affecting more pixels. The conjunction of these two effects greatly imposes
the final spatial resolution of the detector.

This effect can be mitigated by using optimised design parameters depending on the
initial kinetic energy of the particle. In general the spatial resolution is improved
by using a thin active area, so the particles escape the detector, after depositing some
charge, avoiding further scattering. If deposited charge is quickly collected, the diffusion
process is then mitigated. This is achieved by having deep depletion regions and reduced
collection time.

CCD detectors usually have thicker sensitive volumes than CMOS detectors (20-100 µm
compared to 4-20 µm respectively), so more diffusion is potentially generated, assuming
that the incident radiation reaches the field free area. By making CCD detectors with
high resistivity silicon (∼5-12 kΩ-cm) the depth of the depleted region is extended
covering the entire thickness of the active area. This is a very important property of
CCD detectors that allows the deposited charge to be collected quickly, minimising
diffusion effects. In CMOS detectors the charge diffuses largely due to the absence of
electric field in most part of the active volume.

The location of the collection points within a CMOS pixel can also help to mitigate the
diffusion process. CMOS pixels usually have a single collection point in the centre of
the pixel, with typical dimensions of ∼1x1x1 µm3. Other approaches place more than
one collection point distributed in the pixel to collect more charge and to reduce the
collection time [144].

The spatial resolution is strongly governed by the pixel size. If short range particles
are considered, a small pixel size will provide better spatial resolution. If the appli-
cation requires to resolve small structures, a small pixel size will obtain more detailed
structures than larger pixel sizes. If, on the other hand, longer range particles are
considered, small pixel sizes do not represent a practical improvement given that the
spatial resolution is ultimately imposed by the particle range.
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3.5.2 Signal-to-Noise Ratio Optimisation

Considering only the SNR as the main feature to optimise, the idea would be to max-
imise the sensitivity, the amount of charge deposited in the active area and to reduce
the noise of the detector.

The sensitivity is partly imposed by the dead layers located on top of the detector and by
the fill factor. This is 100% for CCD technology, but in the case of CMOS technology
this is reduced due to the presence of transistors and interconnection lines in each
pixel. This consideration is applicable mainly to visible radiation. Some recent CMOS
developments applied to charged particles claim to have 100% fill factor [40, 48, 144] by
reasoning that any deposited charge in the epitaxial layer is collected, assuming that
the charged particles traverse the pixel electronic layers (∼1 µm thick). For low range
β-, such as those emitted by 3H, this is not the case, therefore fill factor is an important
parameter for low energy radioisotopes.

A typical method used to increase the sensitivity is by applying the aforementioned
back-thinning process. Back-thinning is a mature process in CCD technology where
CCD experts understand the process well, mitigating the addition of the aforemen-
tioned imperfections. These same experts are starting to apply this process to CMOS
technology, but as this is just the beginning there are some not well understood factors
that make this process rather complicated. The first few attempts of back-thinning
a CMOS detector [31, 43] so far have shown higher figures of noise than their front-
illuminated counterparts.

To maximise the amount of charge that can be deposited in the active area the detector
should have a thick active volume (≥20µm). Charge recombination should be minimised
to collect as much deposited charge as possible.

3.5.3 Detector Noise

To keep the detector noise low is also a very important parameter to maximise the
previously discussed SNR. The main sources of noise are reset noise, FPN and dark
current noise for CCD technology, and in addition read out noise and reset noise for
CMOS technology.

Typical values of dark current at room temperature for CCD technology are 3-50
pA/cm2 (117-1950 electrons/pixel/second given a 25 µm pixel), whereas for CMOS
technology such figures increase up to 100-2000 pA/cm2 (3900-78000 electrons/pixel/second
given a 25 µm pixel) [76]. To counteract this disadvantage CMOS detectors usually
acquire faster, using shorter integration times, reducing significantly this source of noise
[79]. If faster frame rates are used in CCD technology, to match those rates used in
CMOS technology, this will be by using higher electric fields. This increases the con-
sumption and heats up the detector, therefore dark current increases. These problems
can be easily removed by cooling down the sensor, which is not always a desirable
option. The problem of FPN is also more significant for longer integration times. If
the detector has high levels of noise, having concomitantly low SNR, this will probably
mask partially, if not totally, the deposited charge by the incident particles. Therefore,
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to obtain similar quantitative results the radioactive samples will have to be exposed
for longer.

CCD technology has had traditionally lower read out and reset noise figures compared
to CMOS technology, having a typical value of 3-20 electrons rms of read out noise
[50, 105] and reducing significantly the reset noise by using CDS. CMOS technology
has traditionally suffered from high levels of read out noise until they were reinvented
at the Jet Propulsion Laboratory at the beginning of the 90s, offering since then figures
around 10-50 electrons rms. Nowadays figures such as <5 electrons rms can be found
in commercial CMOS detectors [7].

CMOS detectors are able to read out at up to ∼1 Gb/s consuming power in the order of
tens of mW, therefore dark current is significantly reduced. The efforts of most CMOS
research groups to reduce the noise for this technology are concentrated on reducing
the reset noise. Different approaches have been briefly described above. Typical reset
noise figures in CMOS detectors are of the order of 30-50 electrons rms [172], and by
using active reset schemes this can be reduced by a factor of 2 [56] or even completely
removed using true CDS. This alternative increases other sources of noise though, as
it has been mentioned.

Another problem related with the noise of each technology is related with the aforemen-
tioned back-thinning process. In order to back-thin a detector this has to be exposed to
additional processes where the silicon is heated up. This has an effect on the silicon’s
crystal lattice, adding further imperfections to the silicon, generating a higher rate of
dark current.

3.5.4 Detector Size

Another perspective that has attracted little attention traditionally is the size of the
detector. There have appeared in recent years some applications in the medical and life
sciences fields where the size of the detector is a critical factor. Digital detectors being
manufactured nowdays are in the range of tens of mm2, while the life sciences commu-
nity is asking for tens of cm2. Large area sensors is a problem for both technologies.
The size of the detector is ultimately imposed by the wafer, but the yield, i.e. ratio
of working sensors with total number of sensors in a wafer, is also important, as this
is directly translated into process costs. A small detector will have higher yield than
a large detector, therefore the cost of manufacturing a small detector is lower. How-
ever large detectors can be realised by merging some smaller detectors, by a technique
called stitching. Some large area sensors are already being developed obtaining areas
in the range of 30-60 cm2, but still far from the usual 18cm x 24cm size (432 cm2) that
traditional emulsion film exhibits.

There are some large area CCD detectors in the market, but to read out the charge
of these detectors high electric fields are applied (>1 amp consumption) and, as it has
been mentioned, this heats up the detector. There are just a few of large area CMOS
detectors known so far [10, 16, 123, 153], but as more interest on this matter arises,
more groups are working on making larger detectors.
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3.5.5 Conclusions

To summarise, assuming an ideal situation, where anything could be designed, the ideal
detector should fulfil these characteristics:

1. The detector should be as thick as the maximum range of the β- particles emitted
by the radioisotope used to maximise the signal deposited in the active area.
Around 20 µm should be sufficient for low and medium energy β- autoradiography
radioisotopes. To minimise charge diffusion deposited charge should be quickly
collected. In CMOS technology several collection points can be distributed on
the top layer. In CCD technology the active layer can be completely covered by
the electric field, reducing charge diffusion largely.

2. It has been demonstrated in the literature that a back-thinned device is desirable
for β- autoradiography, to enhance the sensitivity, therefore increasing SNR.

3. Regarding the noise, given that 3H has an average energy of 5.7 keV, each β
electron will release ∼1500 electrons. Assuming a desired SNR of 1 dB (signal
is 10 times higher than the sum of all the noise sources) the overall noise should
be as low as ∼150 electrons/pixel (thermal noise included). Some recipes to
push down the noise level include working at low temperatures or using short
integration times, among some of the most popular approaches. For medium
energy radioisotopes with ∼50 keV, the signal deposited would be of ∼14000
electrons, leading to a less restrictive ground noise of 1400 electrons/event. In
this case these 14000 electrons might be split between several pixels, therefore
these 14000 electrons should be divided by the number of pixels affected.

4. Small pixels is desirable to obtain high spatial resolution. By considering the
mean range of β- particles emitted by 3H (∼0.2 µm), the pixel size should be as
close as possible to this measure. A pixel size of 1 µm is actually available in
CMOS technology. On the other hand, small pixels have a direct negative impact
on the SNR, given that a smaller pixel will collect less signal than a larger pixel
in the case where a β electron interacts with more than one pixel, case of 14C
and 35S. In this case charge splitting between the affected pixels would have a
negative impact in the SNR.

As the overview of technology given in this chapter has exposed, there is no definitive
answer to what technology is more suitable for autoradiography. CCD technology
is well established in the field, but private and public capitals are pushing CMOS
technology basically because of economic reasons. Senior scientists in the field claim
that CCD technology is still better positioned than CMOS technology, but performance
is improving so fast that CMOS technology can be expected to eventually subsume CCD
technology from scientific applications.
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Chapter 4

Experimental Materials and
Methods

CCD technology is a mature technology of popular choice for scientific applications.
Due to some inherent advantages of CMOS technology, such as low power consump-
tion and cost, much effort has been expended to improve the overall performance of
CMOS technology in order to compete with CCD technology. There are many groups
in the scientific and commercial communities trying to improve such performance to
make CMOS technology a serious competitor of CCD technology. There exists quite a
lot of discussions on what imaging sensor technology is most suitable for different ap-
plications. Some work has been undertaken in autoradiography using CCD detectors,
including prior work at Surrey. Rather fewer attempts at using CMOS detectors in
autoradiography have been reported in the literature. As one of the aims of this work
is to find out what technology is currently more suitable for autoradiography, several
sensors have been used in this work: one commercial CCD detector and one off-the-shelf
CMOS detector. The basic architecture of these sensors was described in the previous
chapter. Their main features are detailed below. As the work shown here is undertaken
at room temperature, in contrast with other works undertaken under cooled conditions,
some sources of noise, such as dark current and fixed pattern noise (FPN), are exacer-
bated making observation of β- particle signals in the raw images impossible. Therefore
post-processing of these raw images, to counteract the aforementioned sources of noise,
is necessary. The post-processing applied to the images acquired with each sensor is
described below.

When a β electron impinges on silicon and deposits energy, the resulting free charge
diffuses in the silicon often resulting in charge sharing with the neighbouring pixels.
Due to the different sources of noise described in Section 3.2, this charge is masked. Part
of the work described here, as part of the post-processing step, also details a novel dual
threshold that obtains a better sampling of a β- cluster hit, improving the accuracy
of the number of pixels affected by a β- ionisation event. By accurately classifying
more pixels as part of an actual β- event in a cluster hit, different alternatives aimed
to improve the spatial resolution can potentially be applied.

45
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4.1 CCD Sensor Description

The CCD detector used in this work is an E2V1 CCD55-20 inverted mode sensor. The
main features of this detector are detailed in Table 4.1. For 3H imaging, a back-thinned
55-20 sensor was used, with the same pixel array geometry as the front-illuminated
device, but with an anti-reflection layer added (∼100 nm thick), which in this case
only serves to protect the surface. Being back illuminated, the ionised particles first
encounter the residual field-free region rather than the depletion region.

E2V classifies its detector quality by grades from 0 to 2, 0 being the best quality
and 2 the worst. This quality level represents the number of dead columns defects,
white/black spots and traps that the customer should expect from the CCD detector.
The CCD detector chosen for this work is grade 2 as it offers an acceptable number of
defective columns/pixels for a reasonable cost of ∼ £300, compared to ∼ £2000 for a
grade 0 CCD detector.

The CCD acquisition system used is a CDB01-X CCD Driver Assembly previously
manufactured by E2V. This comprises an analogue read out board, with several ampli-
fication stages, Correlated Double Sampling (to remove reset noise) and a digital control
board controlled by an ERA60100PBA FPGA that generates all the clock pulse wave-
forms to control the CCD detector. The resultant video signal is applied to a 12 bit
ADC integrated in a National Instruments2 Data Acquisition card within the PC un-
der the control of a bespoke LabView application which saves each image frame to file.
These images are subsequently processed off-line using in-house Matlab code.

4.2 CMOS Sensor Description

The RC-UK Basic Technology Multidimensional Integrated Intelligent Imaging (MI3)
programme [123], which has funded the design and manufacture of the CMOS sensor
presented in this work, produced several CMOS detectors. Only the CMOS detector
Vanilla is presented in this work as the most suitable detector for autoradiography. The
main features of Vanilla, alongside with those of the CCD detector used in this work,
are shown in Table 4.1. Vanilla is driven by an acquisition system called OptoDAQ,
developed by the Rutherford Appleton Laboratory (Science and Technology Facilities
Council), which is based around a board using a Virtex-II ProTM 20FF1152 FPGA
shown in Figure 4.1. OptoDAQ drives and controls the CMOS sensor. The digitised
image is then sent to the acquisition PC via fibre optic connection. The image acqui-
sition protocol is accessible using Matlab, LabView or C++ through a dynamic link
library (dll) which interacts directly with the hardware.

The Vanilla detector is shown in Figure 4.2, with its corresponding schematic in Figure
4.3. Each pixel has a 3T structure, as that shown in Figure 3.14, with one single charge
collection point (1x1x1 µm3) in the centre of the pixel structure.

1E2V Technologies Ltd, Chelmsford, Essex, UK
2National Instruments UK and Ireland, Newbury, Berkshire, UK
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Table 4.1: Main features of the CCD and CMOS detectors

CCDFI VanillaFI VanillaBI

Array size 770x1152 520x520 520x520
Pixel size 22.5 µm 25 µ 25 µ
Active area 17.3x25.9 mm2 13x13 mm2 13x13 mm2

Thickness of 7 µm Depleted ∼1 µm Depleted ∼1 µm Depleted
active area 13 µm Field-free 20 µm Field-free 20 µm Field-free
Voltage conversion 3 µV/e- 8.9 µV/e- 8.9 µV/e-
Full well 450000 e- 100000 e- 100000 e-
Read out noise 3 e- rms <25 e- rms <25 e- rms
Integration time 10 secs/frame* 1 secs/frame 1 secs/frame
Digitisation 11 bits ADC 12 bits ADC 12 bits ADC
resolution
Passivation Poly-Si 0.5 µm
layers SiO2 0.1 µm SiO2 4 µm SiO2 ∼100 nm

Si3N4 0.1 µm Si3N4 1 µm
* governed by serial read out electronics and maximum available clock speed of 1MHz.

FI Front-illuminated.
BI Back-illuminated.

Figure 4.1: FPGA-based OptoDAQ system.

Regarding the cross-section of the sensor, several versions of the Vanilla CMOS sensor
have been fabricated. Two different detectors with different epitaxial thicknesses have
been fabricated, one with 14 µm thickness and another one with 20 µm thickness.

Due to the typical thickness of the passivation layers placed on top of the CMOS sensors
(1-5 µm) a back-thinned version has also been fabricated. Back-thinning is a mature
technique applied in CCD technology but relatively new to CMOS technology. This
process, described in Section 3.1, is basically based on flipping the sensor and applying
a chemical etch. A resulting thin overlying oxide layer will allow detection of low energy
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Figure 4.2: Vanilla sensor Figure 4.3: 3T pixel architecture used in
Vanilla. The photodiode can be observed
in the centre of the pixel, the transistors at
the top right corner with interconnections.

electrons, such as those emitted by 3H. See Figure 3.2 to see a block diagram of this
process.

4.3 Experimental Methodology for CCD Imaging

In order to correct for dark current and inter-pixel nonuniformities (FPN), which are
the main sources of noise masking the signal to be detected, every image acquired on
each system has to be somehow cleaned. Due to the variety of sensors used in this
work, their different features and different measures in which each type of noise affects
each sensor a different methodology for each sensor has to be elaborated. In the next
subsections the methodology applied to each technology sensor is described.

4.3.1 CCD Pattern Noise Correction

Due to the low activity that samples usually have in β- autoradiography, the count
rate is poor, and due to the limited performance of the acquisition system used in this
CCD work, relatively long integration times are used. This will concomitantly produce
relatively high dark current in the pixels and will also aggravate the FPN (explained in
Section 3.2). The typical way of addressing this problem is by cooling down the sensor
using liquid nitrogen, CO2 pellets or other methods. One of the goals of this project is
to work at room temperature, to avoid using a cooling system or vacuum the detector
chamber, both processes being very inconvenient for undertaking regular experiments
in a life sciences laboratory. In the case of this work ten seconds of integration time per
image frame was found appropriate to obtain a reasonable level of noise and deposited
charge. This will be addressed later.

Long experiments are usually required in β- autoradiography, due to the low activity
used in these experiments. As high spatial resolution is also a general requirement
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low/medium energy radioisotopes are used, which concomitantly makes these β- parti-
cles difficult to detect due to their short path lengths (∼1-10 µm), therefore increasing
the exposure time. This makes temporal stability of the detection medium an impor-
tant key parameter. Ideally the behaviour of the sensor should be constant with time
while it is acquiring. In practise this is not the case, where changes in the detector
behaviour have been observed here in this and previous works [88]. These changes are
sometimes slow, which is explained by slow changes of temperature, or there may be
sudden jumps in individual and overall pixel dark current levels, which are more diffi-
cult to explain. These two problems are tackled as detailed in [178], where an adaptive
FPN correction is applied to acquired images at room temperature, to mitigate dark
current and FPN effects. This noise correction algorithm is briefly described below.

First a set of blank frames is acquired to compute for each pixel located at location
(i, j), the mean dark current offset or pedestal (µi,j), the standard deviation (σi,j), and
the global mode of a set of blank frames (mref ). This set of blank frames is used to
correct the dark current and to apply the adaptive FPN correction. As dark current
corruption is principally a bias effect, µi,j attempts to model this bias level for each
pixel.

Examples of the mean and standard deviation computed from a 562 frames blank
dataset are shown in Figures 4.4(a) and 4.4(c) respectively, with their corresponding
intensity histograms. Figure 4.4(d) shows how the standard deviation exhibited by
most of the pixels (∼60 %) in the CCD detector have a value of 3 Digital Numbers
(DN).

To demonstrate the temporal stability of the CCD detector, the evolution of the mode
measured in every single frame from the set of blank frames is shown in Figure 4.5.
The mode of this set is 495 DN with a standard deviation of 3.2 DN. This standard
deviation gives an idea of how stable this detector is; it will be compared with the
CMOS sensor in the following sections. It is observed an initial increase of the mode
from 475 DN to 495 DN until the detector temperature stabilises.

A selection of random pixels have been independently studied to observe how accurate
they can be modeled with the aforementioned mode and standard deviation. The
intensity histograms of six random pixels obtained from 575 samples are shown in
Figure 4.6.

The reason why the mode is chosen to model a pixel, instead of the mean, is because
the mean can potentially be affected by outlier DN values measured in certain frames,
while the mode is not affected. The coordinates, mode, mean and standard deviation
of each pixel are shown in Table 4.2. It is observed how the mode and the mean are
not significantly different, besides a slight skew of the mean. Figure 4.6(d) shows a
bimodal distribution exhibited by pixel 4, representing a typical example of a hot pixel
that shows a sudden change in its dark current level behaviour. This issue does not
represent a problem for the detection of true particles as will be explained later.

After the set of blank frames has been acquired, new images are acquired and the
correction, defined by equation 4.1, is applied.

yi,j = xi,j − [µi,j − (mref −mc)] (4.1)
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(a) (b)

(c) (d)

Figure 4.4: Mean image (top left), corresponding intensity histogram (top right), stan-
dard deviation of each pixel (bottom left) and corresponding histogram (bottom right),
calculated with 562 frames acquired using ten seconds of integration time at room
temperature with the CCD detector.

Figure 4.5: Evolution of the mode of each of the first 400 acquired images for the set
of blank frames. The mode of this set of modes is 495 DN and the standard deviation
is 3.2 DN, but there are obvious jumps present in the data. Each frame was acquired
after ten seconds of integration time.
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(a) Pixel 1 (b) Pixel 2 (c) Pixel 3

(d) Pixel 4 (e) Pixel 5 (f) Pixel 6

Figure 4.6: Intensity histograms of random pixels measured in the CCD detector for
575 frames.

Table 4.2: Main parameters of the pixels shown in Figure 4.6
X Y Mode Mean Standard Deviation

Pixel 1 538 136 645 647 6.1
Pixel 2 897 258 539 540 3.8
Pixel 3 411 523 529 532 9.9
Pixel 4 166 207 479 476 2.5
Pixel 5 942 180 495 497 3.0
Pixel 6 291 588 514 517 3.2

where xi,j is the raw pixel value, µi,j is the mean value of the pixel (i,j) obtained from
the reference set of blank images, mref is the mode of all the images in the reference data
set, mc is the mode of the current frame and yi,j is the new pixel value. The difference
mref −mc counteracts drifts in µi,j when mc 6= mref , i.e. when the behaviour of the
sensor changes as explained above.

After this first step, a threshold proportional to the standard deviation of each pixel,
defined by equation 4.2, is then applied to each pixel:

Ti,j = Mi,j + kσi,j (4.2)

where Mi,j is the mode dark signal of the pixel, averaged over the blank set of images,
and σi,j is the dark level standard deviation for each pixel obtained from the aforemen-
tioned blank frames, which defines the pixel threshold individually. The pixel threshold
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is then globally defined in terms of the coefficient k. This parameter is experimentally
set for a certain radioisotope, hence k does not have to be changed between experi-
ments given similar environmental conditions. A flow chart describing the whole image
correction process and thresholding is shown in Figure 4.7.

Figure 4.7: Flow chart of the image correction applied to the CCD images.

The resulting binary images are then labelled using 8-connectivity analysis and the
location, size and intensity of each event cluster are saved. In order to obtain a use-
ful composite image, the thresholded images, described above, are accumulated and
summed. The result of this process applied to the image data is shown in Figure 4.8.
Note the scale of each image.

(a) (b) (c)

Figure 4.8: Raw (left), corrected (middle) and thresholded (right) images of the front
illuminated CCD sensor, showing the stages used to correct for pattern noise. (b) and
(c) represent the image data prior and post application of the thresholding. This shows
a single frame from a 14C exposure for ten seconds of integration time.
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4.4 Experimental Methodology for CMOS Imaging

In the case of the CMOS sensor Vanilla, the most important sources of noise are reset
noise (kTC noise) and residual inter-pixel FPN. In the case of FPN, due to the short
integration time, it is not as significant as with the CCD detector described previously.

4.4.1 CMOS Pattern Noise Correction

The correction applied to the images acquired with Vanilla is the same as that explained
in Section 4.3.1, applied to the CCD detector. However, the integration time used in
all the experiments presented here is one second. This is the shortest integration time
achievable by the OptoDAQ system with the current version of the software that shows
long term reliability. But it is worth reiterating that the read out here is column-
parallel, so that a complete frame only requires 520 pixels to be read out serially,
compared to 887040 (770x1152) pixels in the CCD detector using single node serial
read out. Dark current noise is directly proportional to integration time, therefore the
longer the integration time the higher the dark current noise. It was shown in Section
3.5 that CMOS technology shows typically figures ∼30-40 times higher of dark current
compared to CCD technology. Therefore, to mitigate this effect, the integration time
used was the shortest that the technology allows offering reliability with long term
experiments.

As has been mentioned before, a set of blank frames is necessary to statistically model
each pixel. Usually 3400 frames are used for this purpose. An example of the mean
intensity image (µ), corresponding histogram, standard deviation for each pixel (σ) and
corresponding histogram are shown in Figure 4.9. It can be seen how approximately
60 % of the pixels have a σ value of 7 DN. This shows that most pixels exhibit a
similar performance but, in comparison to Figure 4.4, the device is noisier than the
CCD sensor used in this work. This will affect significantly the threshold applied to
each pixel (equation 4.2). In the case where a pixel changes significantly its signal, due
maybe to a faulty crystalline silicon structure in that specific pixel, this will originate
false positives in the detection process. Using the thresholding method defined by
equation 4.2, a pixel under this situation will exhibit high σi,j , resulting in a high
threshold Ti,j . Therefore its digital value will be below the threshold unless it has a
significant high digital value (caused by deposited charge) to be considered as a true
event. This explains the robustness of the thresholding method used here when noisy
pixels are present in the image.

As has been mentioned, the temporal stability of a detector is a very important pa-
rameter to consider when undertaking long experiments such as those necessary in
autoradiography. The evolution of the mode for the 3400 frames acquired for the set
of blank frames is shown in Figure 4.10.

Once again, to demonstrate that a pixel can be modeled with the mode and the standard
deviation, the histograms of six random pixels are presented in Figure 4.11 calculated
with 42840 samples. The coordinates, mode, mean and standard deviation of each
pixel are shown in Table 4.3. It can be observed how the mode and the mean are not
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(a) (b)

(c) (d)

Figure 4.9: Mean image (top left), corresponding intensity histogram (top right), stan-
dard deviation of each pixel (bottom left) and corresponding histogram (bottom right)
calculated with 3400 frames acquired with Vanilla using 1 second integration time.

Figure 4.10: Evolution of the mode of each of the 3400 acquired images for the set of
blank frames.

significantly different. Note how pixel 2 has the highest difference between mode and
mean and also the highest standard deviation.

An example of a raw image obtained with Vanilla with one second of integration time
and its corresponding corrected and thresholded images are shown in Figure 4.12.

Their corresponding histograms, presented in Figure 4.13, show a reduction of intensity,
corresponding mainly to dark current noise, of ten times. It is observed how the
pixel intensity values from the raw image (blue) are compressed in lower values in
the corrected image (red) in the histogram.
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(a) Pixel 1 (b) Pixel 2 (c) Pixel 3

(d) Pixel 4 (e) Pixel 5 (f) Pixel 6

Figure 4.11: Intensity histograms of random pixels measured in the Vanilla detector
for 42840 images.

Table 4.3: Main parameters of the pixels shown in Figure 4.11
X Y Mode Mean Standard Deviation

Pixel 1 274 207 447 444 6.1
Pixel 2 308 316 755 749 10.9
Pixel 3 105 290 343 343 6.8
Pixel 4 54 34 451 450 7.0
Pixel 5 106 106 439 438 6.3
Pixel 6 433 433 269 268 7.6

Other observations can be extracted from the histograms shown in Figure 4.13, such
as few saturated pixels, with 4095 value (12 bits ADCs) in the intensity histogram of
the raw image, although these are not shown in the histogram. This is attributed to a
defect in this particular sensor, corresponding to excessive dark current noise in these
pixels.

4.5 Hot Pixels

As has been mentioned, all pixels in a detector have certain level of leakage current, also
called dark current. Hot pixels are considered to be those pixels that exhibit a higher
rate of leakage current than the rest. Hot pixels are caused by a defective lattice in the
bulk silicon near the channel stops, which due to the electric field present, electron-
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(a) (b) (c)

Figure 4.12: Raw (left), corrected (middle) and thresholded (right) images of Vanilla,
showing the stages used to correct for pattern noise. (b) and (c) represent the image
data prior and post application of the thresholding. This shows a single frame from a
14C exposure for one second integration time, with 3 β- events detected.

Figure 4.13: Intensity histograms of raw (blue) and corrected (red) images, Figures
4.12(a) and 4.12(b) respectively, acquired with the Vanilla sensor.

hole pairs are thermally generated. In CCD and CMOS imaging, this effect is highly
influenced by temperature, being aggravated for high temperatures. The behaviour of
these pixels can be classified in three different categories:

1. Pixels that consistently show high digital value.

2. Pixels that normally exhibit a leakage current similar to their neighbours, but
eventually the leakage current jumps to a higher/lower level. This presents a bi-
modal intensity histogram. Pixel 4 in Figure 4.6(d) is an example of this category.

3. Pixels that sporadically exhibit different rates of leakage current. This case also
presents a bimodal distribution, but these pixels are more difficult to detect au-
tomatically. This effect has been observed within this work only in the CMOS
detector used, but not in the CCD detector.
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The practical effect is that these pixels are usually bright as if an event has been detected
causing false events. If the number of hot pixels is significant this could significantly
affect Region-of-Interest (ROI) analysis or any other quantitative analysis. These pixels
are discarded in the following way described below.

Based on the low activity contained in the samples used here, it is assumed that the
corresponding probability of two events impacting in the same pixel in two consecutive
frames is negligible. Hence, if a pixel is bright in two consecutive frames, the apparent
event data of both events and all future events is discarded until this pixel returns to
a value consistent with its neighbours. This method only fixes the problem if a hot
pixel is most of the time bright and eventually turns off (category 2). If the pixel
flickers (category 3), as has been observed in the CMOS detector, this problem has to
be solved in a different way. These flicker pixels are removed by applying the FPN
correction (Section 4.3.1) to all the images, and investigating the final composite image,
i.e. the sum of all the thresholded images. The final composite image will exhibit pixels
with low DN value, corresponding to noisy pixels that detect false events, pixels with
a certain DN value corresponding to true events which impacted in the same pixel,
and finally pixels with a much higher DN value corresponding to the aforementioned
flickering hot pixels. A post-acquisition method used in practise to tackle this problem
is to discard those pixels, after the composite image has been obtained, above a given
N DN value. Two images are then obtained, one with the remaining pixels and that
with those removed hot pixels. If the latter shows any visible structure, this means
that the value used to discard the hot pixels, N, is too low and a higher value must be
used. Although manual inspection has been used, the method could easily have been
semi-automated by calculating the correlation of the residual image with the summed
image, and then use a selected correlation threshold to ensure a correct N was applied.
This process is manually repeated until no structure is visible in the image containing
the hot pixels.

4.6 A Novel Region of Interest Post-Analysis

The aforementioned strategy was followed in this study to correct for dark current noise
and FPN, in order to detect true β events present in each frame, obtaining a low rate
of false events. The approach taken so far has largely followed the algorithm described
in Section 4.3.1. In this section some further correction methods are described. The
approach detailed in Section 4.3.1 thresholds the image, y, locally by considering the
variance of each pixel σi,j , and globally by the coefficient k, producing a binary image, g.
It has been empirically observed how a relative high k value was necessary to obtain an
acceptable level of noise under room temperature acquisition. This has two concomitant
negative effects: first it discards low energy β events and secondly it sub-samples the
actual charge deposited by higher energy events in a cluster of pixels.

Using the methodology described above, it has been observed how some events that
deposit charge in more than one pixel, are partially sampled. This situation is common
in CMOS technology where no electric field is present in the active area, and charge
may diffuse for several microns depending on the kinetic energy of the β electron and
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the thickness of the active volume. For a given cluster of pixels, only those pixels
with higher digital values than the threshold defined by equation 4.2 are considered,
therefore discarding other pixels that exhibit lower digital values but actually contain
part of the deposited charge.

On the other hand, given the discrete nature of pixelated detectors, the spatial resolu-
tion is significantly affected by the detector pixel size among other design parameters.
If the impinging β particle has enough kinetic energy to affect more than one pixel,
and the deposited charge is accurately measured the hit event may be reconstructed
in order to obtain spatial information on how the electron behaved in the silicon at
sub-pixel level. Therefore it is of high importance to obtain accurate measurement of
the deposited charge in each detected hit. To tackle this problem a dual thresholding
method is detailed below in order to improve the measurement of charge deposition in
pixelated detectors.

This approach is based first on the detection of β events using the methodology de-
scribed above. It will be shown later that in this first step the sensitivity of the detector
is imposed, given that this first step detects the total number of events present in the
current frame. After some events have been detected a ROI, Rλ, is defined in the
corrected image (Figure 4.12(b)) around each event detected in the previous step. The
initial size of Rλ is 9x9 pixels, given that 5 pixels correspond to 125 µm, close to the
expected maximum range of β- emitted by 14C or 35S (see Figure 3.1). Two different
approaches are studied in this section. The first of them establishes a fixed threshold
within Rλ, lower than the initial T defined in Section 4.3.1. The second approach
establishes an adaptive threshold based on the statistics within Rλ.

4.6.1 Fixed Dual Thresholding

It was shown in equation 4.2 how the parameter k sets the threshold globally. It has
already been stated that this approach produces deposited charge under-measurement,
therefore poor sampling information.

In this approach the original parameter k is renamed to k1, and a second value k2

is used to establish a second threshold T2 only within each Rλ. Using this approach
the number of detected events in a single corrected frame, is imposed by k1. This
ultimately controls the sensitivity and the background noise level of the system. Low
values of k1 will lead to a large amount of events detected, representing true events
(high sensitivity) but also false events, i.e. noise (high noise). On the other hand, high
values of k1 will lead to a few amount of events, reducing the sensitivity and the noise
at the same time.

After the events being detected in the first thresholding step, each event is indepen-
dently analysed, by thresholding again using k2, being k2 < k1. This provides more
accurate sampling information, in order to obtain sub-pixel resolution. This may also
include some noise in the measurement, but it will be demonstrated below how this
effect is not significant compared to the addition of pixels corresponding to partially
sampled events.



4.6. A Novel Region of Interest Post-Analysis 59

4.6.2 Adaptive Dual Thresholding

In this second approach, as part of the ROI analysis, the pixel with the highest digital
value in each local region Rλ, pi, is compared with a threshold N , in order to differ-
entiate between noisy events and true events. This threshold N is obtained from the
histogram of the corrected image, defined in equation 4.1 by y, h(y) (Figure 4.14) in
the following way: let us define two simple concepts related with the occupancy of the
histogram h(y): (i) An isolated bin within the histogram h(y) is a bin h(z) with 1 DN
height and empty bins in the contiguous positions. It must fulfil the three conditions
shown in equation 4.3:

Isolated bin h(z)iso


h(z) = 1 &
h(z − 1) = 0 &
h(z + 1) = 0.

(4.3)

(ii) A non-isolated bin is defined as a bin h(z) with occupancy >1, or with anterior
or posterior contiguous bins with non-zero values. It must fulfil at least one of the
conditions shown in equation 4.4:

Non− isolated bin h(z)non−iso


h(z) > 1 ‖
h(z − 1) 6= 0 ‖
h(z + 1) 6= 0.

(4.4)

It is assumed here that the residual noise (residual dark current and FPN) is compactly
concentrated in the lower intensity bins of the histogram h(y), as shown in the red
component of the histogram in Figure 4.13. True β- events, that deposit a significant
part of their charge in one single pixel, if present in the image, will reside in isolated bins
at higher digital values than the residual noise, whereas non-isolated bins are assumed
to correspond to noisy pixels. These assumptions are made under the low probability of
having two β events, in the same frame (one second), with exactly the same deposited
charge in electrons, subsequently digitised (DN) and rounded. Under this improbable
situation these two events would represent a non-isolated bin in h(y) and would be
classified as noise.

This framework assumes that low activity sources/samples are used in these experi-
ments and short integration times are used. Under these assumptions, and using the
previous definitions shown in equations 4.3 and 4.4, the value N is set at the intensity
value corresponding to the last isolated bin after the lowest DN contiguous bins (con-
sidered to represent noise). This is graphically shown in Figure 4.14. In this specific
real example the inset in Figure 4.14 shows the histogram detail representing the lowest
values of the histogram. This figure shows the bins of the histogram cluster where the
last non-isolated bins are located at positions 96 DN and 97 DN, which means that
the last isolated bin is at position 101 DN. Therefore N has a value of 101 DN for this
particular corrected image.

Once the threshold value N is obtained for a specific corrected image, each event is
independently analysed, similarly to the previous thresholding method. A 9x9 pixels
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Figure 4.14: Exemplar intensity histogram h(y) of a corrected image y with inset
showing the lower intensity bins of the histogram. Note the two last non-isolated bins
and the last isolated bin, that corresponds with the threshold chosen to distinguish
between noisy pixels and true β- events. It is assumed that higher intensities correspond
to higher probability of occupancy by genuine events.

Rλ around the highest intensity pixel of each detected event is analysed. If this pixel
value is below N the event is considered noise, if it is above N then it is subject to
be analysed. In this case, instead of using a fixed threshold within the Rλ as before,
the statistical mode mRλ and the standard deviation σRλ of Rλ are obtained, and Rλ
is subsequently thresholded using mRλ − σRλ as threshold. After thresholding Rλ only
those pixels spatially connected to the cluster hit where the central pixel resides, are
considered as part of the true β- event containing deposited charge.

An example of adaptive dual thresholding process is shown in Figure 4.15. A 9x9 ROI
placed on a detected event, and centred in the pixel with the highest digital value of
Rλ, is shown as a 3D plot in Figure 4.15(a). Each bin represents the digital value read
from each pixel of Rλ. It is observed that this cluster consists of a central pixel, where
the particle deposited most of its energy, then some adjacent pixels contain part of the
energy deposited by either the primary β particle, by secondary electrons generated
in the silicon or as a result of dark current, and finally other pixels with a certain
digital value corresponding to noise surrounding the event cluster under study. Figure
4.15(b) shows Figure 4.15(a) with the threshold defined independently for each pixel,
as described by equation 4.2, plot on top. Only five pixels exhibit higher digital values
than the threshold, as it is shown in Figure 4.15(b), therefore only these five pixels are
considered as part of the hit cluster using the initial correction method described in
Section 4.3.1 (Figure 4.15(c)). This example shows how no pixels are classified as false
events, but this also shows how some adjacent pixels to the central pixel are missed, and
thus are wrongly classified as noise. After applying the adaptive thresholding method
explained above, adjacent pixels to the central cluster, that are initially missclassified
as noise, are now correctly classified as pixels containing deposited charge, therefore
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considered as part of the true event and added to the hit cluster, as shown in Figure
4.15(d). By correctly classifying more pixels as part of the cluster hit this method
obtains enlarged clusters. This is assumed to contain better representation of the true
charge deposited. This claim will be further demonstrated in Section 6.3.1 by using
experimentally validated Monte Carlo simulations.

(a) (b)

(c) (d)

Figure 4.15: 9x9 ROI cropped from a corrected image acquired with Vanilla shown
as a 3D plot (a), same plot as (a) but with the threshold calculated with equation
4.2 for each pixel added on top (b), graph (b) thresholded using the original method
(c) (some pixels with deposited charge have been removed) and resulting ROI obtained
after implementing the improvement described above (d). This was assumed to contain
a higher proportion of the true deposited charge, plus some additional residual dark
current signal.

4.7 Cluster Hit Reconstruction

The methodology explained above, where more information is extracted from each
cluster hit, has the potential of obtaining sub-pixel resolution. It has been observed
how including more pixels in each cluster hit decreases the spatial resolution (see Table
5.3). On the other hand this can help to obtain a better reconstruction of the cluster hit,
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by obtaining a more accurate initial position where the β electron impinged, compared
to the situation where less information is available.

An example of a real β- event is shown in Figure 4.16 to demonstrate the impact of
this dual thresholding method. An exemplar 3D plot of deposited charge in each pixel
is shown in Figures 4.16(a) and 4.16(d), using the initial correction method (described
in Section 4.3.1) and the adaptive dual thresholding method respectively, using as a
global thresholding parameter k=8 in both cases. The grey scale images of such 3D
plots are shown in Figures 4.16(b) and 4.16(e) respectively, showing how with the
standard method the cluster hit is comprised of only 2 pixels, while with the adaptive
dual thresholding method the cluster hit is comprised of 14 pixels. The computed
centre of gravity (COG) is indicated with a red point in both cases.

(a) (b) (c)

(d) (e) (f)

Figure 4.16: 3D plot of the deposited charge in each pixel using the traditional cor-
rection method (a) and the fixed dual thresholding method (d). Greyscale images of
corresponding 3D plots showing the COG with a red point (b) and (e) respectively,
and corresponding reconstructed cluster hits (c) and (f) respectively.

To compute the COG in Figures 4.16(b) and 4.16(e), the images were up-sampled by
a factor of x100 (using nearest-neighbour interpolation), being the distance between
COGs in Figures 4.16(b) and 4.16(e) 9.5 µm. There are other cases where this distance
is longer (or shorter) depending on the energy and angle of incidence in the detector of
the β electron. Monte Carlo (MC) simulations, where the real COGs of noiseless events
are known, have also been undertaken to demonstrate that the new dual thresholding
method obtains more accurate charge deposition information. The distance between
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the real COG, and the resulting COG after applying the dual thresholding method,
for several simulated β- events was computed, showing lower errors than the distance
between the real COG and the resulting COG after applying the initial correction
method. This error could vary within a range of 1-10 µm.

It is known that β- particles describe tortuous paths when they interact in silicon,
depositing energy at certain points in their trajectory, and also generating secondary
electrons, when impacting with outer electrons with sufficient energy. From charge
diffusion theory it is usually assumed that deposited charge diffuses in silicon and, if
projected on the top surface of the active layer, a Gaussian-like distribution is obtained
[78]. Moreover, it is also assumed here, and confirmed later in the MC simulations,
that the pixel with the highest intensity value indicates where the β electron impacted
initially in the silicon, and then started its erratic trajectory depositing charge in the
neighbouring pixels. Based on these assumptions, and the information present in the
pixelated images (Figures 4.16(b) and 4.16(e)), the cluster hits are reconstructed by
creating straight lines between the COG of the cluster and the centre of each pixel within
the cluster. Then a succession of Gaussians along each straight line joining each pixel
with the COG is created as shown in Figures 4.16(c) and 4.16(f) for these cases shown
in Figures 4.16(b) and 4.16(e) respectively. This succession of Gaussians emulates the
charge diffusion process observed in each point where the particle deposited charge. As
the depth of interaction is not known in each point the σ of the Gaussians has been
arbitrarily set at 7.5 µm, observing satisfactory results visually in the final reconstructed
clusters in Figures 4.16(c) and 4.16(f).

The effect of this cluster hit reconstruction in calibrated 14C microscales and 3H labelled
brain tissue imaging will be presented in Chapter 5.
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Chapter 5

Experimental Evaluation

To be able to compare quantitatively and qualitatively the performance of each detector
and, more important, to highlight the differences between the CCD and the CMOS
detectors used in autoradiography, the results for each single experiment are going to
be presented simultaneously for the two detectors.

The performance, expressed as the sensitivity and background noise level, has been
measured using calibrated microscales of 14C, and 3H in the case of the backthinned
devices [58]. The microscales consist of known amounts of radioactivity homogeneously
distributed in a plastic tissue equivalent polymer of 50(3H)-120(14C) µm thickness.
Each microscale has 8 cells of varying activity; for 3H the range is 0.11-4.04 kBq/mg
and for 14C, this is 1.11-31.89 kBq/g.

To demonstrate practical application of these detectors, tissue sections labelled with
3H are also presented below. Tissue sections labelled with 14C are not presented in this
work because this radioligand is only used for spinal cord studies in our laboratory, and
moreover these experiments do not represent a challenge in terms of spatial resolution.

The experiments were set up placing each sensor in a light proof box and placing the
radioactive sample, either the microscale or the tissue sample, in direct contact with
the surface of the sensor. For comparison purposes the samples were also exposed
to conventional autoradiography film. When using film, the protocol used was the
same as the typical protocol followed by experts in a life sciences laboratory. This was
placing the samples in direct contact with film within a light proof cassette, making
firm contact on the samples against the film, and after a sensible exposure time for
each radioisotope, subsequently digitising the developed sheets of film.

5.1 Sensitivity

The sensitivity of a detector is a measure of how many β- events per unit area, emitted
by the sample under study, are detected in a certain period of time given a certain
amount of activity.

While introduced as the definition of sensitivity in this work, it is still not clear what
is the standard measure of sensitivity in the scientific community. All the different
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Table 5.1: Different measures used to measure sensitivity

Measure Detector Reference

counts Betacamera Puertolas et al [145]
e-/pixel/µCi CCD+Scintillator Karellas et al [81]
c/mm2/kBq/g CCD Ott et al [130]
ADC/pixel/kBq/g CCD Kokkinou et al [88]
c/µg/µCi/g MWPC Petegnief et al [137]
cpm/kBq/g MCP Lees et al [99, 98, 96]
cps/kBq MCP Lees et al [100]

Medipix I Abate et al [1]
cps/mm2/kBq/g β-Imager Tribollet et al [168]

Medipix II Mettivier et al [118, 120]
CMOS MIMOSA V Cappellini et al [32]

measures found in the literature have in common a calibrated microscale with known
values of activity given by the manufacturer, typically of 14C, being used, measuring
detected events (counts), ADC units or electrons for each band of the microscale. The
normalised number of counts per band is given for 14C and 3H in [145], exposed for
180 minutes and 150 minutes respectively, but no measure of sensitivity is given (it
is assumed that the number of counts corresponds to the number of detected events,
but this is not explicitly stated). The number of electrons per pixel against activity
(µCi) has also been used [81] to assess the sensitivity of a scintillator intensified CCD.
Sensitivity using direct detection with CCD detectors has also been measured under
cooled conditions [130] by measuring counts per mm2 against activity (kBq/g), and
at room temperature [88] by measuring ADC units per pixel against activity. Counts
per µg of standard tissue against the accumulated activity per mass unit is used to
measure the efficiency of a multiwire proportional chamber in [137]. Another common
measure is counts per minute (cpm) against activity (kBq/g) used in [96, 98, 99] to
measure the sensitivity of microchannel plates (MCP) or in cpm against cpm/g given
by a scintillator counter, which is derived from the actual activity of the source [13].
Counts per second (cps) against activity (kBq) is used to assess the sensitivity of MCPs
applied to autoradiography in [100] and of Medipix I in [1]. Finally cps/mm2 against
activity (kBq/g) is used to measure the sensitivity of the β-Imager [168], the hybrid
detector Medipix II [118, 120] and the MAPS CMOS detector MIMOSA V [32]. Given
that this measure gives more information (spatial and temporal information) than the
other aforementioned measures this is the one used in this work. All these measures
are summarised in Table 5.1.

An exemplar composite image of calibrated 14C microscales exposed for 100 minutes
to the CCD sensor is shown in Figure 5.1 . Figure 5.2 demonstrates the corresponding
image obtained from the CMOS Vanilla sensor with 14C for the same exposure period.
The initial dark current noise and FPN correction method detailed in Section 4.3.1
has been applied to both images, using a value of k=8 as global parameter (equation
4.2) for these two examples. Figure 5.3 shows the corresponding image obtained with



5.1. Sensitivity 67

autoradiographic film with the same reference source and for the same exposure period.
Clearly, the level of contrast against background fogging makes image quantification
with film impossible in such a short exposure time.

Figure 5.1: Composite image with 14C obtained with the CCD sensor after 100 minutes
exposure

Figure 5.2: Composite image with 14C obtained with the CMOS sensor after 100 min-
utes exposure

Figure 5.3: Exemplar image produced using 14C microscale after exposure to Biomax
MR film for 100 minutes.

To analyse the sensitivity and the observed background noise level of the CCD and the
CMOS sensor from the composite images (Figures 5.1 and 5.2), ROI analysis was un-
dertaken to determine the number of counts per second per band (cps/mm2) against the
known specific activity per band (kBq/g obtained from the microscale manufacturer’s
data sheet [58]) to calculate the sensitivity, and the number of counts per second per
mm2 in a manually drawn ROI in the area corresponding to the background to calculate
the background noise level.

If the cps/mm2 measured in each band is plotted in the ordinate axis, and the activity
(kBq/g) is plotted in the abscissa axis, a linear response of the detector is observed, and
secondly, if a straight line is fitted to the data points, the sensitivity can be extracted
from the slope of the fitting line.

As has been shown in the methodology section, the measure of the sensitivity and the
background noise level is significantly affected by the threshold (equation 4.2) imposed
on the corrected frames. As observed in equation 4.2, the threshold is ultimately
dependant on the global parameter k. To establish an objective value for this coefficient,
the relation of the parameter k with a measure of Signal-to-Noise ratio (SNR), defined
by equation 5.1, has been calculated for the two detectors under the same conditions:
same source, same post-processing and same length experiment.
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SNR =
IM − IB
IB

(5.1)

where IM is the number of counts per second per mm2 measured in a given band and
similarly IB measured in the background. The evolution of the SNR with coefficient k
for the CCD detector and the CMOS detector are shown in Figure 5.4.

(a) (b)

Figure 5.4: Evolution of SNR with coefficient k for a 14C source exposed to the CCD
detector (left) and the CMOS detector (right).

The parameter k clearly controls the overall sensitivity of the detector, as it also controls
the observed background noise level. This noise level controls ultimately the minimum
detectable activity. Given this dependence the sensitivity and background noise level
have also been calculated for the CCD detector and the CMOS detector for a range of k
values from 2 up to 35, shown in Figures 5.5 and 5.6 respectively. It is observed in Figure
5.5 that the sensitivity of the CCD detector is ∼1.5 times better than the sensitivity
of the CMOS detector. This can be explained by a higher fill factor exhibited by CCD
technology, by the thinner dead layers located on the surface of the CCD detector and
by the noisier pixel response (higher σi,j) observed in the CMOS detector compared
to the CCD detector, as shown in Figures 4.9(d) and 4.4(d) respectively. It can also
be seen how there exists a drop of sensitivity at low values of k, due to exacerbated
noise that masks the signal. A linear evolution of the sensitivity is obtained in the
k parameter range of 4-25 for both detectors. The negative slope within this linear
range has been obtained, resulting in a rate of -1.4 10−4 cps mm−2 kBq g−1 k−1 for the
CCD detector and -2 10−4 cps mm−2 kBq g−1 k−1 for the CMOS detector (although
parameter k is unitless here it is presented as if k was its unit). This is translated in a
slightly higher sensitivity of the CMOS detector to the k parameter. It is also observed
in Figure 5.6 how the ordinate axis is in logarithmic scale to better distinguish the
difference of background noise between both detectors. If shown in linear scale, for the
CCD detector there is a plateau at k=8 which corresponds with a background noise
of ∼3.7 10−4 cps mm−2. Similarly for the CMOS detector the plateau starts at k=6
corresponding with a background noise of ∼13 10−4 cps mm−2.

To see how the parameter k affects to the composite image, exemplar composite images,
showing only the 5 bands with higher activity, obtained after 100 minutes of exposure
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Figure 5.5: Evolution of sensitivity (cps mm−2 kBq g−1) with parameter k for a 14C
source exposed to the CCD sensor (blue) and the CMOS detector Vanilla (red). In the
k parameter range of 4-25, where the response can be approximated as linear, the drop
rate is -1.4 10−4 cps mm−2 kBq g−1 k−1 for the CCD detector and -2 10−4 cps mm−2

kBq g−1 k−1 for the CMOS detector.

Figure 5.6: Evolution of background noise (cps mm−2), shown in logarithmic scale,
with parameter k for a 14C source exposed to the CCD sensor (blue) and the CMOS
detector Vanilla (red).

time are shown in Figure 5.7 for the CCD detector and in Figure 5.8 for the CMOS
detector, for several values of k.

To put the sensitivity and background noise measurements in perspective, Table 5.2
compares the performance of the CCD detector and the CMOS detector with other
detectors published in the literature.
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(a) k=5

(b) k=15

(c) k=30

Figure 5.7: Composite images of a 14C mi-
croscale exposed to the CCD sensor for 100
minutes for different values of the k param-
eter.

(a) k=5

(b) k=15

(c) k=30

Figure 5.8: Composite images of a 14C mi-
croscale exposed to the Vanilla sensor for
100 minutes for different values of the k pa-
rameter.

Table 5.2: Sensitivity and background noise measured in silicon-based detectors.
Detector Radioisotope Sensitivity Background noise Experiment length

(cps mm−2 Bq mg−1) (cps mm−2)
E2V CCD47-20 3[H] 1.2 10−5 2.9 10−4 48 hours
E2V CCD47-20 14[C] 24.6 10−3 2.0 10−3 12 hours
CMOS Vanilla 3[H] 0.9 10−5 4.7 10−4 15 hours
CMOS Vanilla 14[C] 11.4 10−3 3.79 10−3 100 minutes

CMOS MIMOSAV 3[H] 2.0 10−5 6.6 10−4 2 hours
Hybrid MedipixII 3[H] 1.0 10−5 1.4 10−4 1 hour

To obtain an optimum value for the global parameter k the SNR (Figure 5.4), sensitivity
(Figure 5.5) and background noise (Figure 5.6) have been studied for both detectors.

Figure 5.4, where the evolution of the SNR with the control parameter k is shown,
suggests that high values of k (k'20 for both detectors), obtain the highest SNR that
both technologies can achieve. On the other hand Figure 5.5 suggests that the highest
sensitivity is obtained at very low k values (k'5 for the CCD detector and k'4 for the
CMOS detector), compromising the number of detected false events, i.e. background
noise. Finally the background noise (Figure 5.6), if shown in linear scale, shows how
both detectors present a plateau at k=8 for the CCD detector and k=6 for the CMOS
detector.

Considering the suggested k values by each graph for each detector, the optimum value
taken in this work is that suggested by the background noise level. Too low k values,
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as the sensitivity graph suggests, would produce too noisy images so the SNR would
be compromised. Too high values, as the SNR graph suggests, would produce very
clean images, but the sensitivity would be extremely compromised, making necessary
to extend the experiments for too long. The background noise graph suggests a middle
point between two extremes. Therefore k=8 for the CCD detector and k=6 for the
CMOS detector are the values used in the forthcoming experiments.

5.2 Calibration of the CCD and CMOS Detectors

In order to compare sensor performance it is necessary to calibrate the energy response
of the CCD and the CMOS imagers, so that a comparative event threshold in calibrated
keV units can be used between detectors. Both sensors were exposed to a point source
of 241Am (activity of 41 kBq) situated approximately 30 mm from the surface of the
detector with a layer of insulating tape to absorb the associated α particles. The
geometry was set up such that the chances of obtaining overlapping event clusters
within a single image frame was considered negligible.

For the CCD detector, peaks corresponding to the 241Am photon energies of 13.9 keV,
17.5 keV, 22 keV and 26 keV were observed in the reconstructed energy spectrum,
as shown in Figure 5.9. Exposing the sensors to a 14C source also provided a refer-
ence energy of 49 keV from the associated mean energy in the beta deposited energy
spectrum.

Figure 5.9: Energy spectra of 241Am (blue) and 14C (green) measured in the CCD
detector, with the most significant energies indicated.

From these data obtained with the CCD detector, a fitted calibration line is shown in
Figure 5.10 with a slope of 3.61 DN/keV (0.27 keV/DN) and an intersection point of
-16 DN units. Assuming 3.6 eV is required to liberate one electron in silicon, then this
yields a slope of 75 e-/DN units and an intersection point of 1234 electrons.

For the CMOS detector, peaks corresponding to the 241Am photon energies of 13.9keV,
17.5 keV, 22 keV and 26 keV were observed in the reconstructed energy spectrum, as
shown in Figure 5.11.

From these data obtained with the CMOS imager, a fitted calibration line is shown in
Figure 5.12 with a slope of 24.1 DN/keV (0.041 keV/DN) and an intersection point
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Figure 5.10: Energy calibration curve for CCD sensor. X axis represents the signal in
keV and Y axis represents the signal in ADC units.

Figure 5.11: Energy spectra of 241Am (blue) and 14C (green) measured in the CMOS
detector Vanilla, with the most significant energies indicated.

of -295.7 DN. Assuming 3.6 eV is required to liberate 1 electron in silicon, then this
yields a slope of 11.5 e-/DN units and an intersection of 3400 electrons. Compared
with the corresponding values presented for the CCD detector, this demonstrates first
the higher amplification of the electrons read out from a pixel in to DN shown by the
CMOS detector, and secondly the higher noise exhibited by this CMOS detector.

Having calibrated the CCD and the CMOS sensors energy response, every DN value
can be quantified in keV.

5.3 Temporal Stability of the Vanilla Detector

Given that the experiments typically undertaken in autoradiography take for relative
long periods of time (several hours) it is important to measure the variability (or sta-
bility) of the detector performance. The performance is measured here as the detector
sensitivity (cps mm−2 kBq g−1) and the background noise (cps mm−2).

Several experiments have been consecutively undertaken, exposing the 14C microscale
to the CMOS Vanilla sensor, for different periods of time: 1, 2, 6, 12, 18, 36 and 48
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Figure 5.12: Energy calibration curve for the CMOS Vanilla sensor. X axis represents
the energy in keV and Y axis represents the signal in DN units.

hours. The sensitivity and the background noise for each experiment are shown in
Figure 5.13 and Figure 5.14 respectively. The experiment length shown in the abscissa
axis represents the true experiment length discarding corrupted frames.

Figure 5.13: Evolution of sensitivity (cps
mm−2 kBq g−1) with time of the Vanilla
detector for a 14C microscale.

Figure 5.14: Evolution of background noise
(cps mm−2) with time of the Vanilla detec-
tor for a 14C microscale.

These two figures show good stability of the CMOS detector, specially the sensitivity
study, showing a maximum variation between the mean sensitivity (3.7 10−3 cps mm−2

kBq g−1) and the most deviated measure of 5.06 %.

5.4 Cluster Distribution

The cluster distribution represents the histogram of the different event sizes detected
in number of pixels. This distribution may be considered as a surrogate measure of
Point Spread Function (PSF) of the system.

Depending on the methodology explained in Section 4.3.1 and the post-processing anal-
ysis explained in Section 4.6, the cluster distributions obtained are different in each case.
The new thresholding approaches (Section 4.6) append more pixels to the cluster hit
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when a β- event is detected, compared to the traditional approach (Section 4.3.1). This
will have an effect in the cluster distribution by showing higher occupancy in those bins
corresponding with larger cluster sizes.

The choice of detector also makes a difference, given that deposited charge in silicon
behaves differently in each technology. It has been described how deposited charge
mainly diffuses in the field free region in the entire active volume of the CMOS sensor
and in the field free region of the CCD sensor, but the CCD also benefits from a much
larger depletion region, wherein deposited charge is quickly collected. It has been
detailed (Section 4.1) that the field free region in this specific CCD detector is 13 µm,
while the active volume of this CMOS detector is 20 µm thick completely field free
(Section 4.2). This represents a larger charge diffusion process in the CMOS detector
than in the CCD detector, producing larger cluster hits.

To show how the different approaches exposed here affect the spatial resolution of the
system, given the absence of a point or a line source, a method described in [148]
has been used to obtain an approximation to the true PSF. This method is based on
the alignment of every detected event, centring every event in the pixel with highest
intensity value. It is assumed in this work that this method gives a good approximation
of the PSF of the system, making the measure independent on the distance between
the original position where the particle was generated and the pixels where the particle
interacted in the active area. This method assumes that the pixel with highest intensity
value corresponds with the pixel where the β electron interacted first when impinged
in the detector, as will be later demonstrated in the MC simulations.

The results presented in this section are later confirmed by Monte Carlo simulations
presented in Section 6.3.1 as part of a forward looking design process, using experience
learnt from the sensors available for experimental work. The processes described here
are reproduced and the final results compared in Section 6.3.1.

5.4.1 Cluster Distribution with no ROI Analysis

The normalised cluster distributions obtained with a 14C source exposed for the 100
minutes on the CCD and CMOS detectors, where no post-processing is applied, for
a value of k=8 as a global thresholding parameter for both sensors are presented in
Figure 5.15.

In order to obtain an accurate cluster distribution of the genuine β- events, to compute
these histograms shown in Figure 5.15, only those events beneath the radioactive bands
of the microscale are considered here. Moreover, to also consider the false events
that are beneath the radioactive bands of the microscale, another cluster distribution
comprised of only false events, enclosed in an ROI with the same size as the sum of
all the radioactive bands, is placed in the background, where no radioactive source is
placed. This resulting cluster distribution comprised of false events, is then subtracted
from the cluster distribution comprised of true events. This has been observed to give
a more accurate cluster distribution if compared with MC simulations.

It is observed how for the CCD detector ∼80 % of the events are 1-2 pixels size, whilst
for the CMOS detector most of the events are in the range of 1-4 pixels size. This
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(a) (b)

Figure 5.15: Normalised cluster distribution for the CCD (left) and CMOS (right)
detectors, exposed to a 14C microscale for 100 minutes on both detector.

demonstrates an expected phenomenon, showing a larger charge diffusion effect in the
CMOS detector, given that the field free layer is thicker (20 µm) compared to the
CCD detector (13 µm). The PSF obtained, as has been explained above, is presented
in Figure 5.16(a) and Figure 5.16(c) for the CCD detector and the CMOS detector
respectively.

(a) (b)

(c) (d)

Figure 5.16: PSF for the CCD (a) and CMOS (c) detectors, obtained from the cluster
distributions shown in Figure 5.15. Their profiles with interpolated PSFs are shown in
(b) and (d) respectively.

The Full-Width-Half-at-Maximum (FWHM) measured from the PSFs shown in Figure
5.16(b) and Figure 5.16(d) are 1.24 and 1.54 times the pixel size respectively. This
corresponds to 27.9 µm for the CCD detector (22.5 µm pixel size) and 38.6 µm for the
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CMOS detector (25 µm pixel size).

5.4.2 Cluster Distribution with Fixed Dual Thresholding

By applying the algorithm with fixed dual thresholding detailed in Section 4.6.1, a fixed
secondary threshold k2 < k1 is applied in every Rλ where an event has been previously
detected. Following this, here is shown how pixels assumed to be misclassified using
the traditional method are now classified as part of the cluster hit, therefore resulting
in larger clusters. The cluster distributions measured for each detector with fixed dual
thresholding applied, are shown in Figure 5.17. In these examples k1=8 and k2=4 for
both detectors, with a 14C microscale exposed for 100 minutes on the CCD detector
and the CMOS detector.

(a) (b)

Figure 5.17: Normalised cluster distribution for the CCD (left) and CMOS (right)
detectors, exposed to a 14C microscale for 100 minutes, using fixed dual thresholding
ROI analysis with k1=8 and k2=4 for both detectors.

In this situation it is observed how more pixels are affected by deposited charge com-
pared to the previous scenario. For the CCD detector approximately 66 % of the events
are 1-2 pixels large, and for the CMOS detector now events from 1-15 pixels size can
be found. Similarly to the previous case the PSF is presented in Figure 5.18.

The FWHM measured from the PSFs shown in Figure 5.18 are 1.35 and 2.38 times the
pixel size respectively. This corresponds with 30.3 µm for the CCD detector and 59.5
µm for the CMOS detector.

5.4.3 Cluster Distribution with Adaptive Dual Thresholding

Similarly to the previous section, by applying the adaptive secondary threshold in
every Rλ, where an event has been previously detected, as detailed in Section 4.6.2,
misclassified pixels using the traditional method are now correctly classified as part
of the genuine β event. The difference with the previous method, where a fixed dual
threshold is used, is that in this case no fixed parameter is used, and the local threshold
used in each Rλ is only dependant in its own statistics. The cluster distributions
measured for the CCD detector and the CMOS detector are respectively shown in
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(a) (b)

(c) (d)

Figure 5.18: PSF for the CCD (a) and CMOS (c) detectors, obtained from the cluster
distributions shown in Figure 5.17. Their profiles with interpolated PSFs are shown in
(b) and (d) respectively.

(a) (b)

Figure 5.19: Normalised cluster distribution for the CCD (left) and CMOS (right)
detectors, exposed to a 14C microscale for 100 minutes, using adaptive threshold for
both detectors.

Figure 5.19. k=8 is used for both detectors in this example, with a 14C microscale
exposed for 100 minutes on the CCD detector and the CMOS detector.

There exist more events larger than 2 pixels in this situation. Now only approximately
28 % of the events are 1-2 pixels large for the CCD detector, most of the events (∼85
%) being 1-4 pixels size, while for the CMOS detector most of the events (∼45 %) are
7-11 pixels size. Similarly to the previous case the PSF is presented in Figure 5.20.

The FWHM measured from the PSFs shown in Figure 5.20 are 1.62 and 3.18 times the
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(a) (b)

(c) (d)

Figure 5.20: PSF for the CCD (a) and CMOS (c) detectors, obtained from the cluster
distributions shown in Figure 5.19. Their profiles with interpolated PSFs are shown in
(b) and (d) respectively.

pixel size respectively. This corresponds with 36.4 µm for the CCD detector and 79.5
µm for the CMOS detector.

The spatial resolution measured using the three different approaches described above
for the CCD detector and the CMOS detector, are summarised in Table 5.3, where the
units are given in pixels, and also in µm depending on the pixel size of each detector.

5.5 Tissue Imaging Using 3H

To demonstrate the potential of digital technology for direct detection with 3H in tissue
samples, several ex-vivo brain tissue sections labelled with the selective D1 dopamine re-
ceptor radioligand 3[H]SCH-233901 (4 nM) were prepared. These sections were exposed
to the back-thinned CCD sensor for 11 hours (Figure 5.21) and to the back-thinned
CMOS Vanilla sensor for 48 hours (Figure 5.22(b)), in comparison to the typical length
of these experiments (∼5 weeks) when using film. These represent the first demon-
strations of 3H tissue imaging with room temperature CCD and CMOS detectors suc-
cessfully reproducing the main target areas of uptake in a fraction of the usual 5 week
exposure time required with conventional autoradiographic film [30].

After the two images shown in Figure 5.22 were obtained, a quantitative analysis was
1Schering Plough 23990 binding bound with 3H
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Table 5.3: FWHM measured for the CCD and the CMOS sensors using the three different
approaches

FWHM in pixel units and µm

no-ROI analysis Fixed dual Adaptive dual
thresholding thresholding

CCD (22.5 µm pixel size) 1.24 (27.9 µm) 1.35 (30.3 µm) 1.62 (36.4 µm)
CMOS (25 µm pixel size) 1.54 (38.6 µm) 2.38 (59.5 µm) 3.18 (79.5 µm)

Figure 5.21: 3H tissue image obtained with a CCD at room temperature, for 11 hours,
demonstrating tritiated ligand binding to D1 receptors in a coronal mouse Striatum
section, from the level of the Caudate, Bregma 0.62 mm (left) and 0.02mm (right).

(a) Film-based image (b) CMOS-based image

Figure 5.22: 3H tissue image obtained with traditional film after 5 weeks (a) and
with back-thinned CMOS sensor (b) at room temperature, for 37 hours, demonstrating
tritiated ligand binding to D1 receptors in a coronal mouse Striatum section, from the
level of the Caudate, bregma 0.86 mm.

manually undertaken. Several ROIs were drawn by a life science expert manually in
both sections. These sections, indicated in Figure 5.23, are the Caudate Putamen
(CPu), Cingulate Cortex (CgCx), Olfactory Tubercle (Tu), Accumbens Nucleus Shell
(AcbSh) and Accumbens Nucleus Core (AcbC). The digital values of such regions were
then converted to femtomoles per gram of ligand concentration, 3[H]SCH-23390 in
this specific case, and compared with the data extracted from the film autoradiogram
(Figure 5.22(a)). In the case of the experiment undertaken with conventional film,
six sections of contiguous bregmas were analysed to obtain an experimental mean and
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standard deviation of concentration in the ROIs under study. The values measured
with the CMOS sensor and the conventional film are shown in Figure 5.24. The values
of ligand density measured with the CMOS detector were observed to be close to the
mean value measured with traditional film and within the range imposed by ±σ (also
shown in Figure 5.24).

Figure 5.23: Fig. 5.22(b) with the regions under study labelled.

Figure 5.24: Comparison of ligand concentration in fm/g of the ROIs indicated in
Figure 5.23 with traditional film after 5 weeks and with the CMOS sensor after 37
hours. The error bar in the measurements shown in the bars of film refer to 1 σ of the
mean from the ligand concentration measured in 6 different sections of close bregmas.
For the CMOS sensor only 1 of the sections was analysed.

Subsequently the raw images acquired with the CMOS sensor were re-processed to
measure the ligand concentration as a function of time within the five aforementioned
regions, thus a time-evolution graph of the measured ligand concentration was obtained.
This indicated where the ligand concentration measured by the CMOS sensor in each
region is quantitatively similar to the traditional film-based image. This graph is shown
in Figure 5.25 only for the Caudate Putamen and the Cingulate Cortex as an example.
Note the arrows in this graph (Figure 5.25) showing when the measured ligand con-
centrations of the analysed ROIs in the CMOS sensor reach the mean value minus one
standard deviation. The 5 ROIs under study reached a concentration close to the final
concentration, and within the range imposed by µ±1σ by the experiment undertaken
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with traditional film, in approximately 13 hours. This represents a reduction of a factor
∼50 in exposure time needed for CMOS direct detection compared to film in order to
achieve the similar levels of qualitative accuracy.

Figure 5.25: Evolution of the radioligand concentration in the Caudate Putamen (blue)
and Cingulate Cortex (red) with time. The arrows indicate where the concentrations
measured in the CMOS-based image are similar to those measured with traditional
film.

In Table 5.4 the time at which the radioligand measured in the CMOS-based autora-
diogram reaches the mean concentration measured in film exposed for 5 weeks (t1 )
and the mean minus one standard deviation (t2 ) are shown. The average of these two
measurements is shown in t3.

Table 5.4: Time necessary by the Vanilla CMOS sensor to obtain comparable measure-
ments of radioligand concentration.
ROI Name t1 (hrs) t2 (hrs) t3 (hrs)

1 Caudate Putamen (CPu) 19.0 13.7 16.3
2 Cingulate Cortex (CgCx) 12.9 10.4 11.6
3 Olfactory Tubercle (Tu) 14.7 11.2 12.9
4 Accumbens Nucleus Shell (AcbSh) 20.4 12.5 16.4
5 Accumbens Nucleus Core (AcbC) 20.0 12.5 16.3

5.6 Image Quality

It has been mentioned in this work, that a very important limiting factor of a digital
detector, for the spatial resolution is the pixel size. To mitigate this limitation, and
with the aim of obtaining sub-pixel resolution, two variations of a dual thresholding
approach, where more information is extracted from detected cluster hits, have been
presented in Section 4.6. Using this information, it has been shown in Section 4.7
how obtaining such extra information in each cluster hit, the estimated β electron
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trajectories are computed to have a better idea of where the β- particles impinged in
the detector, and what trajectory occurred within the active volume of the detector.

To demonstrate the impact of this dual thresholding method in tissue imaging, this
has been applied to 14C calibrated microscales and 3H labelled brain tissue sections.
In both cases the result demonstrates a smoother film-like appearance without losing
visible resolution.

A cropped region of a composite image obtained after 18 hours of a 14C source exposed
to the CMOS detector, corrected using the initial dark current noise and FPN correction
method and the new fixed dual thresholding method (k1=8,k2=4), are shown in Figure
5.26. In Figure 5.26(a) the typical pixelated appearance is observed, whilst in Figure
5.26(b) the same image with event hits reconstructed as explained above is shown,
exhibiting a more similar film-like appearance. To study the effect of this process on
the spatial resolution 400 rows in each image have been averaged to obtain a 2.7 mm
long cross-profile of the edges, shown with a red box in Figures 5.26(a) and 5.26(b).
The resulting superimposed profiles are shown in Figure 5.26(c), where the blue plot
represents the profile corresponding to the pixelated image (Figure 5.26(a)), and the
red plot represents the profile corresponding to the processed image (Figure 5.26(b)).
No degradation of the edges is observed in the processed profile shown in red.

In the case of 3H brain tissue imaging the resultant image after ROI analysis has been
applied is shown in Figure 5.27(c), alongside the pixelated image (Figure 5.27(b)) and
the conventional film image obtained after 5 weeks of exposure time (Figure 5.27(a)).

To better observe in more detail the improvement introduced by the hit reconstruction
explained above, a zoom image of two different key functional regions, corresponding
to the top part of the Caudate Putamen and to the Olfactory Tubercle (see Figure
5.23), present in the section shown in Figure 5.27 are shown in Figures 5.28 and 5.29.
In these two images it can be observed how the image where hit reconstruction has
been applied (c) is more similar to the film image (a), and show some structures that
are better resolved compared to the pixelated image (b).

5.7 Conclusions

In this chapter three methods have been detailed to detect β- event from raw images
acquired with a CCD and a CMOS sensor. These images have been shown to be
corrupted mainly with dark current noise and FPN.

The main difference between the three methods is the way these subsample each event,
having the sensitivity fixed by the thresholding parameter k used in equation 4.2.
Depending on the method used to subsample each event will give more detailed infor-
mation of the deposited charge in a cluster hit. If more pixels affected by the deposited
charge are available, then more accurate centroiding techniques can be used to achieve
sub-pixel spatial resolution.

This technique is applied to 14C microscales autoradiographic data, showing a cross
profile of the raw composite image, and the processed composite image using the fixed
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(a) (b)

(c)

Figure 5.26: Composite image obtained after 18 hours of a 14C source exposed to the
CMOS detector, applying no ROI analysis (a) and using the fixed dual thresholding
method (k1=8,k2=4) (b). A more film-like appearance is observed in (b) compared to
(a) where the typical pixelated appearance is exhibited. Cross-profiles of 400 averaged
rows (shown in a red box in (a) and (b)) are shown in (c), to demonstrate the absence
of edge degradation. These cross-profiles correspond with a real length of 2.7 mm.

dual thresholding method and subsequent hit reconstruction. This demonstrates that
applying this hit reconstruction techniques no spatial resolution is lost, giving the
composite image a more film-like appearance.

This technique has also been applied to thin tissue autoradiographic data, showing
better resolved small structures in the images where hit reconstruction techniques have
been used.
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(a) (b) (c)

Figure 5.27: Composite image of a 3H labelled brain tissue section obtained after 5
weeks exposed to conventional film (a), and after ∼37 hours exposed to the CMOS
detector, using the fixed dual thresholding method (k1=4,k2=2) (b) and corresponding
image after hit reconstruction has been applied (c). A more film-like appearance is
observed in (c) compared to (b) where the typical pixelated appearance is exhibited.

(a) (b) (c)

Figure 5.28: Film image (a), raw image (b) and reconstructed image (c) of the top
part of the Caudate Putamen region, corresponding to Figures 5.27(b) and 5.27(c)
respectively.

(a) (b) (c)

Figure 5.29: Film image (a), raw image (b) and reconstructed image (c) of the Olfactory
Tubercle region, corresponding to Figures 5.27(b) and 5.27(c) respectively.



Chapter 6

Monte Carlo Simulations

6.1 Previous Work

Monte Carlo methods have been a very important tool for modelling complex systems
characterised by a stochastic nature. These systems usually have many variables so that
an analytical solution can not be easily obtained. Monte Carlo methods are therefore
a type of numerical integration where many trials are calculated and a gross number
derived to describe the outcome.

For physics-based simulation, there are several Monte Carlo toolkits available: Geant4
[38], MCNPX [27], Penelope [11] and EGSnrc [149] are among the most important
implementations. For this study Geant4 has been used, together with its low energy
package, because it has reliable accuracy in modelling interaction physics with electrons
down to 250 eV. This is particularly relevant for studying 3H imaging (average energy
5.9 keV and maximum energy 18 keV), along side higher energy emitters.

Despite the large body of work completed using Monte Carlo methods in medical imag-
ing, specially in PET and SPECT, the use of this in autoradiography is relatively scant.
Examples include Geant4 to simulate the detection of positrons emitted by a sample of
18F-FDG with a storage phosphor detector [157]. MCNP5 has been used to simulate the
heterogeneous dose distributions of 90Y, 177Lu and 111In in rat kidneys autoradiograms
[89]. The charge collection process of the MIMOSA CMOS architecture is investigated
[44] using the commercial Monte Carlo toolkit ISE-TCAD [2]. This same sensor has
also been studied with MCNPX analysing the efficiency of the sensor interacting with
α-particles [128]. Low energy electron interaction in silicon has also been studied with
the hybrid CMOS sensor Medipix2 [117] for electron imaging and with the MIMOSA
CMOS sensor [43] for autoradiography using the CASINO Monte Carlo package, show-
ing very superficial results as this Monte Carlo package has very limited functionality.
The effect of backscattering in electron microscopy has been studied using customised
Monte Carlo simulations, and compared to experimental data [121]. A system based
on a double sided silicon strip detector with a synthetic collimator has been simu-
lated using EGSnrc [138], to understand the interactions of low-energy gamma photons
(125I and 123I) with the collimator and the detector in small animal imaging. There is
however little evidence of Monte Carlo simulation work being used to understand the

85
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imaging trade-offs of particular imaging geometries. This is the starting point for this
work.

6.2 Geant 4

Geant4 is a complex Monte Carlo package developed in C++, structuring all the dif-
ferent modules interacting in the simulation in C++ classes. Different modules, always
present in the simulations undertaken in this work, can be enumerated as shown below:

• Detector Construction: This module defines the architecture and materials of the
different parts, also known as volumes, of the detector. This module also defines
the sensitive volumes. This means that when the simulated particles interact with
the volumes of the detector, no measurement is taken unless the volume of the
current interaction is defined as sensitive volume.

• Physics List : This module defines the particles that can be simulated and the
physics processes associated to each particle. When the simulation is running,
and the particles are interacting with matter, the measurements are taken in dis-
crete form, hence after each certain distance the particles are stopped and polled
regarding its status (type of particle, energy deposited, energy left, location, etc).
In this module a threshold can be set to limit the number of secondary particles
generated due to ionisation of e.g. silicon atoms. This threshold can be set by
limiting the minimum distance that a particle has to travel, or the minimum en-
ergy that it has to contain to be tracked. Therefore if a β electron or a secondary
electron generates more secondary electrons, these have to be able to travel a
minimum distance or contain a minimum energy to be tracked. The purpose of
this mechanism is to limit the number of generated secondaries to control the
computing load of a simulation, or to avoid the infrared divergence effect, where
thousands of particles with very low energy might be generated. On the other
hand this mechanism has a significant impact on the spatial resolution and energy
deposition of every particle, limiting the accuracy of the simulations.

• Stacking Action: In this module different particles can be prioritised or even killed
at a certain step if necessary. This module is of great usefulness, because there
may be particles not important for the simulation, that are generated and can
make the simulation heavier and slower, thus these particles can be killed. The
three possible classes in which a particle can be classified, if not killed, are urgent,
waiting and postpone-to-next-event.

• Analysis manager : This module is the core of the simulation. When an event
physically interacts with a sensitive volume a snapshot of this event, also called
hit, is taken so position, time, momentum, energy, deposited energy and geo-
metrical information can be measured. These hits are collected in different lists
for each event for further analysis. Memory for this information is allocated in
the heap. Therefore the following has to be taken into account: the number of
particles to simulate, the step length and the information to be saved for each hit
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not to fill the heap. Each event has an Initialise method, a ProcessHits method
and an EndOfEvent method. The initial properties of a given particle or man-
ually user defined settings can be set in the Initialise method. All the different
measurements that can be taken from a particle while it traverses matter are
taken in the ProcessHits method. Finally, the final properties of a particle can
be measured in the EndOfEvent method.

Once the simulation is coded with all the necessary modules compiled and linked the
simulations are controlled via macro files. These files are simple scripts that define
the shape, position and nature of the radioactive source, the visualisation driver to be
used (if any) and the number of particles to be generated. Note that by using these
macro files it is possible to define different architectures and generate particles for each
architecture in a single simulation run. This allows results to be compared between
different detector architectures in a single simulation (increasing computational load
but reducing execution time). Macro files can be called from other macro files allowing
increased complexity with higher hierarchy. Different levels of verbosity can also be
used to control the amount of information that is presented on the screen at run time,
which can be very useful for debugging purposes.

Geant4 allows one to use different random number engines. The default random num-
ber generator is the original universal random number generator Ranmar (proposed
by Marsaglia and Zaman), but the random number generator used in this work is the
Ranecu engine [73], due to its easiness to handle the internal status of the engine to
repeat a certain event or experiment. The initialisation is carried out using a Multi-
plicative Congruential generator, with seeds taken from a seed table given an index.
The period of the Ranecu engine is 1018, shorter in comparison with the extended
Mersenne/Twister engine (106001) or the Ranmar engine (1043), all of them well below
the longest experiment presented in this work where 3.2 10 6 random particles were
generated. The speed of each random number generator, which is of great importance
when generating millions of random numbers as in this work, measured in millions
of generated uniform random numbers per second in a Pentium Pro 200 Mhz is 1.5,
compared to 2.5 the Mersenne/Twister engine and 1.6 the Ranmar engine [71].

6.2.1 General Particle Source

The radioactive sources, in the aforementioned macro files, are generated using the
General Particle Source (GPS) [59].

This package allows the user to define different energy spectra (linear, exponential,
Gaussian), different angular distributions (directions in which the particles emanate
from the source), different spatial samplings (2D or 3D surfaces) and multiple inde-
pendent sources. This is very useful for example to simulate two different sources with
a gap in between, and observe whether the gap is visible depending on the particle,
energy, thickness of the sources, etc. Using this package a wide variety of source shapes
can be created such as spheres, discs, boxes and many more, the point source being the
default configuration. The size and position of this is also defined with this package.
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The main advantage of using this package is that Geant4’s particle generator is suitable
for simple studies, but with GPS very complex setups can be created, and even typical
continuous β spectra or user defined spectra can be used.

6.2.2 Visualisation Drivers

One of the main parts of any Monte Carlo package is the visualisation of the detector
geometry for visual inspection of the simulation set-up. Geant4 is able to work with
several different visualisation drivers. Figures 6.1, 6.2, 6.3 and 6.4 represent some
exemplar geometries with some of the most common drivers.

• OpenGL. OpenGL is a standard 2D/3D graphics interface. This is a standard
system component in Linux and Windows.

• RayTracer. This driver performs ray-tracing visualisation using the tracking rou-
tines of Geant4. The rendering can be aborted at any time before it finishes, to
retry rendering from a different point of view. This can save a lot of time when
debugging complex geometries.

• HepRep/Wired3. HepRep creates a HepRep XML file in HepRep1 format, pre-
pared to be viewed with the Wired3 HepRep browser. This browser shows only
certain parts of the simulations such as only certain particles or certain volumes
of the detector. This can be very useful when very complex simulations are being
visually inspected.

• VRML. This format is a standard format for representing interactive 3D vector
graphics. Any VRML browser, such as octagaplayer, can be used.

• DAWN. This is a renderer which reads 3D geometrical data and visualise them.
It is able to show vectorised graphics in high detail. A couple of useful tools can
be used with this driver. DAWNCUT can perform a planar cut on a geometry to
better observe its inner structures. DAVID is a tool that automatically detects
overlapping volumes and highlights them to make the user aware of the error.

6.3 Comparison with Experimental Data

The validation of any Monte Carlo package is a critical issue to assure reliable results
are produced. A thorough validation of the electromagnetic model applied to photons,
electrons, protons and alpha particles in Geant4 is presented in [6]. In the aforemen-
tioned article the standard package, the low energy package and an alternative low
energy package based on the Penelope analytical approach [11] are considered. The
conclusion for electrons, the particle of interest in this work, is that the three packages
show an excellent agreement in the energy range 1 keV to 100 TeV when compared to
the NIST reference data [126].
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Figure 6.1: DAWN example Figure 6.2: OpenGL example

Figure 6.3: RayTracer example Figure 6.4: VRML example

To validate the results obtained from the experimental setups shown here, the electron
stopping power and continuously slowing down approximation (CSDA) ranges have
been measured, and these have been compared with those tabulated in the ICRU
Report 37 [72]. In this work only the CSDA range of electrons from 10 keV up to 500
keV is considered, as this corresponds to the range of energies of the typical isotopes
used in β- autoradiography. The measured range for each energy (blue squares) with
its corresponding error margin (standard deviation of the measurement) is compared
to the range obtained from ESTAR1 (red squares) in Figure 6.5. The error measured is
very low for low energies (∼1 %) but this increases somewhat for higher energies. The
error bars shown in Figure 6.5 represent the standard deviation of the electron ranges
measured with Geant4.

This experiment was undertaken with multiple scattering and the energy loss fluctua-
tions that electrons suffer while they traverse the detector disabled, in agreement with
ESTAR [6, 126]. To neglect the energy loss fluctuations is the same as to assume that
the rate of energy loss at every point along the track is equal to the same as the total
stopping power.

6.3.1 Validation with Experimental Data

A variety of detector architectures shown in this work, have been simulated to demon-
strate that the architectures and the physical processes involved in the detection of β

1Stopping-power and range for electrons [126]
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Figure 6.5: Measured electron range (blue squares) using Geant4 and NIST electron
range (red squares) in silicon as a function of the electron incident energy.

particles are well understood. The detectors used in these simulations are typically
comprised of (from bottom to top) a substrate, epitaxial layer (sensitive layer) and
overlying structures. On top of these layers it is included an air gap between the top
surface and the sample, the tissue sample itself and finally the glass microscope slide
which is used to carry the tissue sample, as shown in Figure 6.6.

Figure 6.6: 3D cutaway of a digital detector used in these Monte Carlo simulations.

The tissue thickness can take two different values, either 120 µm (microscale thickness),
for validation purposes, or 20 µm which is the typical tissue thickness. When a point
source is used it is placed at the bottom surface of the tissue layer, to consider the best
situation.

The dimensions of the common structures in CCD and CMOS detectors are shown in
Table 6.1.

Table 6.1: Common dimensions used in the CCD and CMOS architectures

Layer Glass slide Tissue Air gap Sensitive layer Substrate
Thickness 1.0 mm 120.0 µm variable 20.0 µm 500.0 µm

20 µm

The structures where CCD and CMOS detectors differ are the pixel size and the struc-
ture and thickness of the overlaying layers. The dimensions are shown in Table 6.2.

A special mention has to be made for back-thinned devices (see Figure 3.2). In this
case the typical top overlaying layers of a front-illuminated device, are located between
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Table 6.2: Dimensions used in the CCD (left) and CMOS (right) architectures

Structure Dimension
Pixel size 22.5 µm
Poly-Si 0.5 µm
SiO2 0.1 µm
Si3N4 0.1 µm

Structure Dimension
Pixel size 25 µm

SiO2 4 µm
Si3N4 1 µm

the sensitive layer and the substrate. An extra passivation ∼100 nm layer has to be
added on top of the active layer, representing the residual SiO2 layer remaining on the
epitaxial layer after etching the substrate in the back-thinning process.

Several processes have been implemented in the simulations undertaken in this work,
to validate the experimental data, to obtain as much realistic results as possible. The
processes included in the simulations are detailed below, and also depicted in a work
flow in Figure 6.7.

• Initial Monte Carlo Geant4 experiments, simulating the charge deposition process
in silicon.

• Diffusion is added to the simulated data.

• After the charge diffusion is implemented, statistical noise, as measured from
experimental data, is added to the entire noiseless image, resulting in a realistic
simulated image.

• The Mean Image and the Standard Deviation Image used to corrupt the simulated
data are directly measured on the detector. The Mean Image is corrected based
on the difference between the mode of the Mean Image and the mode of the
realistic simulated image, as described in Section 4.3.1. The realistic simulated
image is corrected with the corrected mean image, resulting in a corrected image.
This is subsequently thresholded. The threshold is directly obtained from k times
the Standard Deviation Image.

Initial Monte Carlo Simulation
First the Monte Carlo simulation is undertaken using Geant4, implementing the corre-
sponding structures of the detector. A 225x225x120 µm3 piece of tissue of 14C, covering
10 (225 µm/22.5 µm per pixel) and 9 (225 µm/25 µm per pixel) pixels for the CCD and
the CMOS respectively, is placed on top of the air gap layer. A total of 106 particles
have been simulated.

When a β electron or an electron generated by ionisation interacts with the silicon in
the active layer some information is obtained and saved to file from the particle at the
ith step: kinetic energy, deposited energy and position in euclidean coordinates within
the detector. An example of the deposited energy by a β electron with an initial kinetic
energy of 66 keV, in a cluster of pixels, is shown in Figure 6.13(a).
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Figure 6.7: Image chain process of the noise addition and further noise correction of
simulated data.

Charge Diffusion Implementation
As Geant4 does not implement the charge diffusion process that deposited charge suffers
in silicon (see Section 3.1), this is implemented as a second step using a tailored script
written in Matlab. The initial approach was to compute σtot (equation 3.9) for each
step i based on the coordinates within the detector. This was obtained by computing
first σi (equation 3.1), σd (equation 3.4) for particles in the depleted layer in the CCD
detector and σff (equation 3.8) for particles in the field free layer of the CCD detector
and the epitaxial layer of the CMOS detector.

From the deposited energy at the ith step, the number of e-/hole pairs was computed
(3.6 eV/e-h pair). Assuming that N e-h pairs were created, a Gaussian distribution with
standard deviation σtot (equation 3.9) was randomly sampled extracting N samples.
An example of the diffusion process is shown in Figure 6.13(b), where the deposited
charge shown in Figure 6.13(a) has diffused following the diffusion theory detailed in
Section 3.1.

It has been observed in this work how σff is usually the most significant factor in equa-
tion 3.9, being sometimes σi (for low energies) and σd negligible (see Signal Generation
in Silicon-based detectors in Section 3.1). To demonstrate the validity of equation 3.8
the experiment set up by Janesick [78] has been reproduced in this work. In this vali-
dation test 2000 electrons are simulated in a semi-infinite slab representing a field free
layer. These electrons are collected in one of the boundaries, simulating the effect of the
depleted layer in a CCD pixel, and reflected in the opposite boundary, simulating the
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effect of the substrate. The resulting charge distribution in the depleted layer boundary
is approximated as Gaussian with an absorption depth dependant on the standard de-
viation σff . The resulting σff , after simulating a random walk for electrons originated
in a semi-infinite silicon slab at different absorption depths, for different field free layer
thicknesses, has been obtained. Three examples of one electron placed in a semi-infinite
slab with a 20 µm thick field free layer at 20, 10 and 5 µm absorption depths are shown
in Figure 6.8. In this figure the y axis on the left represents the boundary with the
substrate, which reflects all the charge that reaches this point, and the y axis on the
right represents the boundary with the depleted layer (CCD technology) or the charge
collection diode (CMOS technology).

(a) Absorption depth 20 µm (b) Absorption depth 10 µm (c) Absorption depth 5 µm

Figure 6.8: Monte Carlo simulations of one electron showing a random walk in a 20
µm thick field free layer at 20 µm, 10 µm and 5 µm absorption depths.

The pseudo-random numbers that are generated to give direction to each electron are
in the [−1, 1] range, this has to be divided by a certain step size. It was observed how
to obtain accurate results the step size at which each electron moves in the silicon was
a critical parameter. A step size of za

500 , being za the absorption depth, was observed to
exhibit good accuracy, i.e. each step size has a maximum length of za

500 µm. This results
in a longer step size for those events that deposit energy far from the charge collection
points (Figure 6.8(a)⇒0.04 µm step size) than those that deposit energy close to the
charge collection points (Figure 6.8(c)⇒0.01 µm step size).

An example of 105 electrons deposited in a 0.05 µm thick field free layer at an absorption
depth of 0.05 µm, representing the worst possible situation where more diffusion occurs,
is shown in Figure 6.9. The standard deviation measured from the data is 0.025 µm, half
the field free layer, as equation 3.8 indicates. A Gaussian distribution with 0.025 µm
standard deviation is plotted on top. It can be observed how the simulated bell-shaped
charge distribution does not fit on the ideal Gaussian distribution very accurately,
showing maximum discrepancy at the tails.

Similarly, 105 electrons have been simulated in a 20 µm thick field free layer at an
absorption depth of 20 µm, as shown in Figure 6.10. The standard deviation measured
from the simulated deposited charge distribution is 13.42 µm. In this particular case,
this value is slightly higher than the expected half field free layer thickness, 10 µm. A
Gaussian distribution with the aforementioned standard deviation is plotted on top in
Figure 6.10.

In Figures 6.9 and 6.10 certain dissimilarity between the obtained simulated charge
distribution and the assumed Gaussian distribution is observed. This dissimilarity,
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Figure 6.9: Example of 105 electrons projected on the charge collection point in a 0.05
µm thick field free layer at an absorption depth of 0.05 µm. A Gaussian distribution
with 0.025 µm standard deviation is plotted on top, with a width as prescribed by
Janesick [78].

Figure 6.10: Example of 105 electrons projected on the charge collection point in a 20
µm thick field free layer at an absorption depth of 20 µm. A Gaussian distribution
with 13.42 µm standard deviation is plotted on top, as predicted from [78].

showing a slightly more peaked charge distribution and with wider tails, has been
previously noted by other authors, such as [25, 70, 134, 143]. It has to be noted how
the standard deviation obtained for the case of a relatively thick detector (20 µm field
free layer) is higher than the expected standard deviation. This implies that, for thick
detectors, equation 3.8 is not as accurate as it is for thin detectors.

Besides the Monte Carlo simulation approach used by Janesick [78], detailed analytical
approaches to study the charge diffusion in field free silicon (applied to X-ray radiation
in CCD technology) can be found in [70, 134]. Very little work has been undertaken to
validate these analytical approaches though. Relatively recent is the work of Prigozhin
et al [143] where the analytical solution detailed by Pavlov et al [134] is successfully
validated, using a cooled CCD detector (all sources of noise except read-out noise are
removed) exposed to a 55Fe source. By isolating the signal deposited by X-ray photons
absorbed in the field free layer at different depths of interaction, the charge deposition
shape of such events is studied and compared with the analytical distribution proposed
by [134]. Another conclusion of Prigozhin’s work is that the charge diffusion suffered
in the depleted layer in CCD detectors can be neglected without greatly distorting the
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final charge distribution. The resulting charge distribution observed by Prigozhin et
al, assuming recombination in the field free layer is negligible (diffusion length is much
higher than the thickness of the field free layer) and the substrate works as a reflecting
body (field free layer is p doped and substrate is p+ doped), follows equation 6.1:

qff1(x) =
1

2π

∞∑
m=−∞

za − 2mzff
pm(x)3

(6.1)

where za is the absorption depth, zff is the thickness of the field free layer and pm is
defined by equation 6.2:

pm(x) =
√
x2 + (za − 2mzff )2 (6.2)

This charge distribution has been compared with Hopkinson’s et al work [70] obtaining
very similar results. The charge distribution as defined by Hopkinson’s et al follows
equation 6.3:

qff2(x) =
za

2πu(x)3
(1 +

u(x)
1.15za
za
xff

+0.13

)exp(− u(x)
1.15za
za
xff

+0.13

) (6.3)

where u(x) is described by equation 6.4:

u(x) =
√

(x2 + z2
a) (6.4)

If both charge distributions are plotted together, as shown in Figure 6.11, it is observed
how the results obtained by both equations are very similar in almost the whole field
free layer thickness, but as the absorption depth approximates to the boundary with
the substrate dissimilarities appear, as shown in Figure 6.11(d).

For comparison purposes with the approximated charge distribution proposed by Janesick
[78] the same studies are shown in Figure 6.12 with the simplified Gaussian charge
distribution plotted on top. Figure 6.12 demonstrates that the Gaussian approxima-
tion approximately fits Prigozhin’s and Hopkinson’s charge distributions for short and
medium absorption depths, but differs greatly for deep absorption depths. It can be
observed how the evolution of the analytical charge distributions is mainly based on a
more peaked distribution and wider tails as the absorption depth increases.

After this study it has been observed how Janesick’s model can be considered as a good
approximation for thin detectors. For thick detectors, as the charge is deposited further
from the charge collection element, the differences between Janesick’s model and the
real charge distribution measured by Prigozhin have higher differences. Hopkinson’s
model also seems to underestimate the charge distribution in the tails compared to
Prigozhin’s model. Finally Prigozhin’s model has been implemented in this work given
that it is the only work found in the literature that compares the analytically developed
model with real data obtaining a good level of agreement.
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(a) 5 µm (b) 10 µm

(c) 15 µm (d) 20 µm

Figure 6.11: Analytical charge distributions of an X-ray absorbed at different absorp-
tion depths in a 20 µm thick field free layer, obtained with Prigozhin’s equation 6.1
(qff1) shown in blue, and obtained with Hopkinson’s equation 6.3 (qff2) shown in red.
Excellent agreement is shown at 5 µm and 10 µm, with minor divergence at 15 µm. At
20 µm there are major differences between the two models.

Detector Noise Implementation
Having validated the simulated charge deposition and diffusion processes, it was also
necessary to consider adding realistic noise to the synthetic noiseless event data, as this
was a significant source of potential corruption.

As explained in Section 4.3.1, prior to the correction of the noisy images acquired with
the CCD or the CMOS detector, a reference set of blank frames is first necessary. The
mean (µi,j) and standard deviation (σi,j) of each pixel is then obtained from this data
set.

For the simulations, this utilises mean and standard deviation images directly from the
experimental data. The noiseless image has initially every pixel value in eV, but as
the noise is added in digital numbers (DN), every pixel value is transformed to DN.
For this transformation the ratio between the number of electrons per DN (e-/DN), i.e.
gain, is necessary. In order to obtain this, the detector was calibrated as explained in
Section 5.2 with an 241Am point source. The resulting gain for the CCD detector is
250 eV/DN, and for the CMOS detector is 38.8 eV/DN.

After the image has been converted to DN, the noise ni,j is then independently obtained
for each pixel, sampling a random number from a Gaussian distribution with pixel
specific µi,j and σi,j as parameters. For a given pixel xi,j , the noise ni,j is added to
obtain an observed pixel value yi,j , given by equation 6.5.
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(a) 5 µm (b) 10 µm

(c) 15 µm (d) 20 µm

Figure 6.12: Analytical charge distributions of an X-ray absorbed at different absorp-
tion depths in a 20 µm thick field free layer, obtained with Prigozhin’s equation 6.1
(qff1) shown in blue, obtained with Hopkinson’s equation 6.3 (qff2) shown in red, and
approximated Gaussian distribution proposed by Janesick shown in black.

yi,j = xi,j + ni,j (6.5)

where ni,j is a random number sampled from a Gaussian distribution with mean and
standard deviation µi,j and σi,j respectively, obtained from experimental data. An
example of the resulting noisy image y is shown in Figure 6.13(c).

Image Correction
Three different correction methods have been detailed in Section 4.6. These methods
have been similarly implemented in order to fully validate the Monte Carlo simulations,
with the standard correction method explained in Section 4.3.1 (Figure 6.13(d)) and
the two novel corrections explained in Section 4.6. The result of generating synthetic
noisy images, and then applying the dual thresholding method to Figure 6.13(d), using
a fixed secondary threshold of k2=4, is shown in Figure 6.13(e).

After the correction has been applied the image is converted from relative DN values
back to energy (in eV) using the same calibration as before (Figure 6.13(f)). Finally the
energy deposited by each β electron and the size of each hit (in pixels) are computed
to obtain the final energy spectrum and cluster distribution, to be compared with
experimental data.

Note the change of unit in Figure 6.13 (b) to (c) where the pixels have been converted
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from keV to DN to add the noise. Note also the more accurate sampling in (e), after
post processing has been applied, compared with (d), where less pixels are included in
the hit. In other words, (e) is more similar to (b), which is considered as the ground
truth, compared to (d).

(a) (b) (c)

(d) (e) (f)

Figure 6.13: In Figure (a) a 66 keV β electron without any diffusion entering the
detector from a non orthogonal direction is observed. The implementation of the dif-
fusion process is shown in (b), noise is added in (c), initial correction is observed in
(d), correction after post processing has been applied is shown in (e) and this is finally
transformed to keV in (f).

Results of the Validation
The approach used in this work to evaluate the similarity of the simulated data com-
pared to experimental data, is by comparing the cluster distribution obtained from
the CMOS detector and the corresponding Monte Carlo simulations, for each different
algorithm. The CCD is deliberately avoided in this comparison because of its lower
diffusion and superior deposited charge confinement. The purpose of this validation is
also to demonstrate that the correction method shown in Section 4.6 is based on the
correct assumptions.

The experimental data taken with the CMOS detector is comprised of a 6 hours ac-
quisition experiment, resulting in a total of 18360 images acquired. The number of
events that were detected is 6570 events. The number of simulated events was 106 as
mentioned above.

In Figure 6.14 the cluster distribution obtained from the acquired images from Vanilla
and the cluster distribution obtained from the simulated setup, applying no post-
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processing and using k=8, are shown. Both distributions show very similar results,
noticing how most of the events are concentrated in the first 4 bins, which means that
most of the events are 1-4 pixels in size in both experimental and simulated results.

(a) (b)

Figure 6.14: Experimental normalised cluster distribution for the CMOS detector (left)
and Monte Carlo simulated (right) using no ROI analysis.

Similarly, in Figure 6.15, the cluster distribution obtained from the acquired images
from Vanilla (Figure 6.15(a)) and the cluster distribution obtained from the simulated
setup (Figure 6.15(b)), applying the fixed dual thresholding with k1=8 and k2=4 in the
ROI analysis are shown. In this case, both distributions also show comparable results.
In particular, note here how most events are now 5-10 pixels in size. Besides the random
behaviour of the dark current in the pixels of the detector, which has been modelled,
it was also observed how the experimental noise exhibits a time-dependant random
component. This random component was basically comprised of an apparently random
change of the global bias in the image (random change of dark current) and also in the
random increase of noise that some pixels exhibit in the detector (random change of
FPN). This effect has not been modelled as no reliable pattern of behaviour has been
found. This may result in a higher disparity between cluster distributions compared
to the previous case. The correction method explained in Section 4.3.1 tries to correct
these effects, but this relies ultimately in certain models. If detector behaviour (or pixel
behaviour) does not follow those models the correction method fails to correct the dark
current noise and FPN.

(a) (b)

Figure 6.15: Experimental normalised cluster distribution for the CMOS detector (left)
and Monte Carlo simulated (right) using fixed dual thresholding with k1=8 and k2=4.
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Thirdly, in Figure 6.16 the experimental and simulated cluster distributions, resulting
from the post-processing using adaptive thresholding in the ROI analysis, are shown.
The value of thresholding parameter k used in equation 4.2 to initially detect the β-
events is 8, to maintain consistency with the rest of the experiments shown above. In
this case both distributions show a good match, showing in both cases how most of
the 1-5 pixels events have now disappeared, and concentrating most of the events in
the 7-12 pixels big events. In this case it is thought that the match is better because
the method to adaptively threshold each ROI, is able to discard the noise (false events)
better than in the previous situation. Therefore a slight mismatch between the noise
shown in the experimental scenario and in that simulated does not make a significant
difference for the results between experiment and simulation.

(a) (b)

Figure 6.16: Experimental normalised cluster distribution for the CMOS detector (left)
and Monte Carlo simulated (right) using adaptive dual thresholding with k=8.

After these results of the Monte Carlo simulations of the β- particles interactions in
silicon and the implemented charge diffusion process, it is considered that the simu-
lations are sufficiently close to the experimental case, making possible a plausible set
of predictive and/or analytical investigations in detector geometries and their effect on
the spatial resolution and charge deposition.

6.4 Detector Considerations

Some simulations have been undertaken to understand the various effects of the different
structures found typically in a CCD or a CMOS detector, and how these structures
affect imaging performance for β- autoradiography. These effects are self-absorption
effect, absorption depth and spatial resolution.

The self-absorption effect is due to the short electron range resultant of low and medium
energy radioisotopes in comparison with the thickness of the radioactive source. If the
source is thicker than the range of a certain β electron, this will be absorbed within
the source. This effect means that a only fraction of the β electrons emitted by a
radioactive source actually escape from the active volume.

The absorption depth is a critical feature as it affects the intrinsic spatial resolution
and the capability of the detector of stopping the β particles.
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The spatial resolution is an important section where the dependency of the main design
parameters of the detector (pixel size and epitaxial layer thickness) are analysed to
obtain the optimum spatial resolution depending on the radioisotope. In this section
the system noise and the different correction methods presented in Sections 4.3.1 and
4.6 are considered to assess their effects on the final spatial resolution.

6.4.1 Self-absorption Effect

It has been shown in the past that accounting for β self absorption is very important
to accurately measure the performance of a system [118, 145]. In both of these cases
an estimation of the effective activity, i.e. fraction of β-particles escaping from a source
and reaching the detector, is undertaken based on the range of 3H and 14C in the
polymer-based microscale and in the geometry of the system.

The experiment presented in this section estimates the percentage of particles that
reach the surface of the detector using a slab of tissue-equivalent polymer of 3H and
14C (density of ∼1.1 g/cm3 2), using the entire range of energies of the corresponding
β-spectra.

The experimental setup is simply a uniform radioactive slab of tissue (50 µm thick for
3H and 120 µm thick for 14C) on top of a slab of silicon. Then the intrinsic energy
spectrum of the radioisotope under study and the deposited energy spectrum in the
sensor are compared. Comparing the area under each distribution gives the fraction
of particles that reach the detector (block of silicon). This allows to obtain the energy
loss within the polymer microscale.

In Figure 6.17 the intrinsic energy spectrum (Figure 6.17(a)) and the deposited energy
spectrum (Figure 6.17(b)) of a 3H source are shown. From these graphs the fraction
of 3H particles that reach the detector is estimated at ∼0.8 %. The same study is
repeated for 14C shown in Figure 6.18. From this simulation the estimated fraction
of 14C particles that reach detector is ∼13.4 %, very close to the 14 % estimated
analytically in [118].

(a) (b)

Figure 6.17: Intrinsic energy spectrum (a) and deposited energy spectrum (b) of 3H
within the slab of silicon. Note change in shape and dramatic change of the abscissa.

2GE Healthcare UK Ltd, Amersham Place, Little Chalfont, Buckinghamshire HP7 9NA, England
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Figure 6.18: Intrinsic (black) and deposited (white) energy spectra of 14C.

It is observed in both Figures 6.17 and 6.18 a general energy loss for the whole energy
range, due to energy deposition within the source, but the energy spectra are not simply
shifted to lower values, the shape of the energy spectra actually changes in both cases.
This is due to a higher self-absorption effect of the low energy β electrons (short range)
compared to the higher energy β electrons.

6.4.2 Absorption Depth

The absorption depth, also known as range, is where a specific particle with a specific
kinetic energy is absorbed in matter. In the particular case of β- electrons in digital au-
toradiography, these interact with silicon depositing charge in each interaction, hence
generating electron-hole pairs. These β- electrons slow down as their kinetic energy
decreases, getting to a stopping point where no more energy is contained in the particle
(other than thermal energy). As has been mentioned in Chapter 3, the trajectory of
these β- electrons in silicon is tortuous, in contrast to the typical straight line trajec-
tories obtained with X-ray photons. Electrons can undergo sharp deflections or maybe
stopped completely in a single interaction. Electron ranges are highly variable even for
electrons with the same energy [36]. The range is defined as the straight-line distance
between the coordinate where the β particle initially interacted with the silicon and
the coordinate where it was finally absorbed.

A tabulated measurement of absorption depth is found in the NIST website [126].
This information is also published in the International Commission on Radiation Units
and Measurements (ICRU) report 37, which defines the Stopping Powers for Electrons
and Positrons. As has been previously mentioned, this measure neglects energy-loss
fluctuations and multiple scattering. In the case of β electrons, scattering is a significant
process. Therefore the ranges provided by NIST may show high differences from what
those particle ranges observed in the Monte Carlo simulations obtained here.

To obtain a better approximation of the absorption depth of β electrons, a point source
of monoenergetic electrons placed in the centre of a slab of silicon has been simulated,
for a wide range of energies (5-80 keV). The range obtained from these simulations
neglecting scattering and taking it into account are shown in Figure 6.19, also with the
range provided by NIST.
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Figure 6.19: Electron range in silicon provided by NIST (blue), obtained with the
Monte Carlo simulations without scattering (red) and with scattering (green).

It can be observed that NIST does not provide any information for energies below 10
keV. It can also be observed how the ranges provided by NIST are longer than those
obtained in the simulations due to the absence of models for energy-loss fluctuations
and multiple scattering in the NIST data. The difference shown by these sets of data
(with and without scattering) becomes higher as the energy increases due to a higher
multiple scattering effect.

6.4.3 Spatial Resolution

The range of a β- particle is controlled by its kinetic energy but this is less definite
than for other particles. This is due to the fact that the trajectory of a β- particle
follows a tortuous path due to its comparable mass to that of the outer electrons in
the atoms environment. The particle will interact with these orbital electrons and the
nuclei, changing direction abruptly and generating electron/hole pairs, thus depositing
energy. This results in β-electrons with total path length greater than the penetration
distance (straight line between initial interaction point and where the particle was
finally absorbed).

It has been previously stated that the four intrinsic factors in a silicon-based detector
that control the spatial resolution of an interaction are the pixel size, the electric field
depth within the sensitive layer of the sensor, the resistivity of the silicon wafer and
the thickness of the sensor [148]. Although [148] only considered X-ray interactions,
here it is assumed that for β imaging, these factors are also the most relevant. It would
be more appropriate to define the range of a β electron as the distance between the
position where the β electron is generated, somewhere within the tissue sample, and the
position where the particle is stopped. All the interactions of the particle in the middle
of these two points will affect the range and concomitantly the spatial resolution. This
is why any potential air gap is also an important parameter to consider in the observed
spatial resolution for β imaging.

The electric field depth in the sensitive layer of the sensor will depend on the operational
voltage of the sensor: being inherently low for CMOS sensors the electric field depth
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will also be low. This parameter is imposed by the technology and the feature size.
For instance, for 0.18 µm CMOS processes, the voltage at which the sensor is operated
is 1.8 V [77]. This electric field depth is non-uniform along the sensitive layer of the
sensor and weakly extended in the sensitive volume [177], or even neglected [176]. The
resistivity of the silicon wafer (typically < 10 Ω/cm) is also imposed by the CMOS
production foundry and is lower than that for CCD detectors, to avoid the latch-up
problem associated with CMOS electronic circuitry [77].

From an ionising radiation detection and imaging perspective, the only design param-
eters that can be imposed prior to fabrication (within reasonable ranges) are the pixel
size and the thickness of the epitaxial layer. This is why these simulations have been
focused in the study of these two parameters. The thickness of the layers used in the
detector architecture for this set of experiments for 14C and 3H are detailed in tables
6.3 and 6.4 respectively. For the case of 3H, a back-thinned architecture is used. This
is why there is a top passivation layer of 0.1 µm, the residual product of the etching
process on the sensor, and the bottom passivation layer of 5 µm, the same passivation
layer on top of the epitaxial layer in the front-illuminated architecture (further details
of the back-thinning process appear in Section 3.1). The range of thicknesses of the
epitaxial (sensitive) layer used is up to 30 µm for 14C and 20 µm for 3H.

Table 6.3: Thickness of layers used for spatial resolution for 14C

Layer Glass Tissue Passive Substrate
Thickness 1.0 mm 20.0 µm 5.0 µm 500.0 µm

Table 6.4: Thickness of layers used for spatial resolution for 3H

Layer Glass Tissue Passive (top) Passive (bottom) Substrate
Thickness 1.0 mm 20.0 µm 0.1 µm 5.0 µm 500.0 µm

In order to investigate these phenomenon further, a Monte Carlo simulation was set up
as follows. A point source was placed in the centre of a central pixel from a 29x29 pixel
array in direct contact with the surface of the detector (no air gap). The spatial reso-
lution was measured as the Full-Width-Half-at-Maximum (FWHM) from the resulting
Point Spread Function (PSF) in each experiment. For a 14C point source 5 104 particles
were simulated for each detector geometry, the pixel size range being 5, 10, 15 and 25
µm, and the epitaxial layer thickness range 5, 15, 20 and 30 µm, resulting in a spatial
resolution map where the effects of the pixel size and the epitaxial layer thickness on
the spatial resolution are studied. A total of 8 105 particles were simulated. For a 3H
point source 2 105 particles were simulated for each detector geometry, the pixel size
range being 1, 2, 5 and 10 µm, and the epitaxial layer thickness range 1, 2.5, 5, 10 and
20 µm. A total of 4 106 particles were simulated. After all these combinations were
simulated using Geant4, the charge diffusion process, system noise and noise correction,
as described in Section 6.3.1, were added to obtain realistic results.

The number of particles simulated for each geometry for the 14C point source (5 104

particles) was confirmed to be statistically sufficient by simulating 106 particles for a
subset of the aforementioned geometries and obtaining identical results.
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The number of particles simulated for the 3H point source was four times higher com-
pared to 14C given that more particles are absorbed in the passivated layers, and the
deposited energy is significantly lower. Therefore more statistics were necessary in
order to compute the FWHM from the PSF reliably. After repeating an initial simu-
lation several times using 2 105 particles, similar results were obtained, demonstrating
statistical validity with this set of samples.

Initial Spatial Resolution Map
The spatial resolution map resulting from a simulation of the variation of the spatial
resolution with the thickness of the epitaxial layer (5, 15, 20 and 30 µm) and the pixel
size (5, 10, 15 and 25 µm) for a point source of 14C with no air gap is shown in Figure
6.20. Similarly, a spatial resolution map resulting from a simulation of the variation of
the spatial resolution with the thickness of the epitaxial layer (1, 2.5, 5, 10 and 20 µm)
and the pixel size (1, 2, 5 and 10 µm) for a point source of 3H with no air gap is shown
in Figure 6.21.

Figures 6.20 and 6.21 do not include charge diffusion, noise or any kind of correction;
these just represent the intrinsic spatial resolution obtained from each geometry for
each radioisotope.

Figure 6.20: Simulated spatial resolution
map of the digital sensor exposed to a
point source of 14C with no air gap be-
tween the surface of the sensor and the
source.

Figure 6.21: Simulated spatial resolution
map of the digital sensor exposed to a
point source of 3H with no air gap be-
tween the surface of the sensor and the
source.

It is observed how in both examples, the data point with the smallest pixel size and
thinnest epitaxial layer, 5 µm and 5 µm respectively for 14C and 1 µm and 1 µm
respectively for 3H, shows the best spatial resolution, ∼15 µm for 14C and ∼1 µm for
3H. It can be observed how the dependence of the spatial resolution on the thickness of
the epitaxial layer is very low, as oppose to the dependence with the pixel size in both
cases. This high dependence is not shown in Figure 6.20 for 14C below a pixel size of
∼10 µm, which corresponds approximately with the average range of 14C β electrons.

Spatial Resolution Map with Charge Diffusion
Those results shown in Figures 6.20 and 6.21, are obtained using the data generated
by the Geant4 Monte Carlo toolkit, where no charge diffusion, system noise or noise
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correction are included in the model. Nonetheless, these represent a baseline level of
performance, against which the effect of further performance degrading processes can
be measured. To obtain a more accurate study of the resulting observed spatial res-
olution based on the variation of the detector geometry, the charge diffusion process
has been implemented as explained above (Section 6.3.1). The resulting spatial resolu-
tion variation, used for the same geometries used in Figures 6.20 and 6.21 is shown in
Figures 6.22 and 6.23 for 14C and 3H respectively.

Figure 6.22: Simulated spatial resolu-
tion map of the digital sensor exposed
to a point source of 14C with no air gap
between the surface of the sensor and
the source, with charge diffusion process
(red) and without charge diffusion pro-
cess (blue). Note that the data point cor-
responding to the smallest spatial resolu-
tion corresponds to a 5 µm thick epitaxial
layer and a 5 µm pixel.

Figure 6.23: Simulated spatial resolu-
tion map of the digital sensor exposed
to a point source of 3H with no air gap
between the surface of the sensor and
the source, with charge diffusion process
(red) and without charge diffusion pro-
cess (green). Note that the data point
corresponding to the smallest spatial res-
olution corresponds to a 1 µm thick epi-
taxial layer and a 1 µm pixel.

It can be observed in Figures 6.20 and 6.21 how, without charge diffusion, the variation
in epitaxial thickness does not provide a significant impact on the spatial resolution. If
the charge diffusion process is considered, it is now observed in Figures 6.22 and 6.23
how the epitaxial layer thickness represents an important parameter in the detector
design, having a negative impact when a thicker epitaxial layer is used.

Both Figures 6.22 and 6.23 show a significant degradation of the spatial resolution as
both the pixel size and the epitaxial layer increase in size due to the charge diffusion
process, being this process more critical for 14C due to the higher amount of deposited
charge (higher ionising energy).

In the specific case of 14C (Figure 6.22), it is observed how the rate of spatial resolution
degradation as the pixel size increases is higher for a pixel size <∼10 µm along the
entire range 5-25 µm. This is due to the higher impact of the charge diffusion process
on the spatial resolution for a pixel size below the average 14C mean energy. On the
other hand, the rate of spatial resolution degradation holds a linear relationship with
the epitaxial layer thickness.

The specific case of 3H (Figure 6.23) shows some differences compared to the previous
case. In this case the charge diffusion process does not show such high degradation of



6.4. Detector Considerations 107

the spatial resolution compared to the previous scenario. The epitaxial layer thickness
shows to have a higher effect on the spatial resolution for small pixel sizes (<∼4 µm)
than for larger pixel sizes.

Spatial Resolution Map with System Noise and Noise Correction
This study is further analysed by including the effect of dark current noise and FPN,
and subsequent noise correction. The three different correction approaches, described
in Sections 4.3.1 and 4.6, are implemented to observe how these affect the spatial
resolution in each different scenario. It has to be noted that the noise model applied to
the raw images, obtained from the Monte Carlo simulations, was previously measured
from the available detector, having 25 µm pixel size and 20 µm thick epitaxial layer.
This is expected to change for other geometries but the absence of other available
detector geometries limited the implementation of geometry dependant noise models.
However the FPN is not expected to change significantly by changing the dimensions of
the pixel size and the epitaxial layer thickness. Dark current noise, on the other hand,
is expected to increase with size given that this is proportional to the pixel area Ap and
the constant specified by the manufacturer R, representing the dark current noise at
300K, as shown in equation 3.11. In this respect, the noise implementation here may
be somewhat overestimated for pixels <25 µm and underestimated for pixels >25 µm.

In Figures 6.24 and 6.25 the spatial resolution map for 14C and 3H are shown respec-
tively, obtained after including the detector noise in the model and applying the FPN
correction method described in Section 4.3.1. Figure 6.24 represents the intrinsic spa-
tial resolution map for 14C shown in blue, and the spatial resolution map obtained
after applying the correction method shown in red. Similarly, Figure 6.25 represents
the intrinsic spatial resolution map for 3H in green, and the spatial resolution map
obtained after including detector noise and applying the correction method in red.

Figure 6.24: Simulated spatial resolution
map of the digital sensor exposed to a
point source of 14C with no air gap be-
tween the surface of the sensor and the
source, without charge diffusion process
(blue) and with charge diffusion process,
noise addition and the FPN correction
method described in Section 4.3.1 (red).

Figure 6.25: Simulated spatial resolution
map of the digital sensor exposed to a
point source of 3H with no air gap be-
tween the surface of the sensor and the
source, without charge diffusion process
(green) and with charge diffusion pro-
cess, noise addition and the FPN cor-
rection method described in Section 4.3.1
(red).
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The same graphs have been obtained applying the fixed dual thresholding method
described in Section 4.6.1 for the two cases presented above, in Figures 6.26 for 14C
and 6.27 for 3H. The two thresholds applied in the fixed dual thresholding method for
14C are k1=8 and k2=4, and for 3H these thresholds are k1=4 and k2=2.

Figure 6.26: Simulated spatial resolu-
tion map of the digital sensor exposed
to a point source of 14C with no air gap
between the surface of the sensor and
the source, without charge diffusion pro-
cess (blue) and with charge diffusion pro-
cess, noise addition and the fixed dual
thresholding method as noise correction
method (red).

Figure 6.27: Simulated spatial resolution
map of the digital sensor exposed to a
point source of 3H with no air gap be-
tween the surface of the sensor and the
source, without charge diffusion process
(green) and with charge diffusion pro-
cess, noise addition and the fixed dual
thresholding method as noise correction
method (red).

In order to further study the spatial resolution maps presented above, due to the vast
amount of data processed to produce each spatial resolution map (8 105 particles for
14C and 4 106 for 3H), two highly sampled profiles have been simulated. One profile is
taken at a fixed 5 µm epitaxial layer and the other one at 20 µm epitaxial. The pixel
size values simulated in these cases are 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5 and 25 µm for
14C, and 0.5, 1, 2, 3, 4, 5, 7.5 and 10 for 3H.

The resulting spatial resolution for each epitaxial layer for 14C is shown in Figure 6.28
for four different cases. (1) for the raw data without charge diffusion, system noise
nor noise correction (shown in blue), (2) for the data where charge diffusion has been
included in the model (shown in red), (3) for the data where charge diffusion, system
noise and the standard correction method (Section 4.3.1) have been included (shown in
black), and finally (4) for the data where charge diffusion, system noise and the fixed
dual thresholding correction method (Section 4.6, k1=8 and k2=4) have been included
(shown in green).

From Figure 6.28 some conclusions can be extracted with respect to 14C imaging.
First this demonstrates that the up sampling introduced in the spatial resolution maps
between data points shown in Figures 6.20, 6.22, 6.24 and 6.26 does not introduce
artifacts. It demonstrates how the spatial resolution, measured from the raw data in
both cases (blue graph), does not show an important dependency on the pixel size in the
range of 5-10 µm. This approximately corresponds with the mean range of β electrons
at 49 keV, the mean energy of 14C. For a pixel size >10 µm the spatial resolution
increases linearly with the pixel size. When the charge diffusion process, system noise
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(a) Epitaxial layer 5 µm. (b) Epitaxial layer 20 µm.

Figure 6.28: Spatial resolution obtained for 14C for an epitaxial layer of 5 µm (a) and
20 µm (b) for a range of 5-25 µm pixel sizes. The blue graph represents the spatial
resolution for the raw data, the red graph includes the effect of the charge diffusion, the
black line includes the charge diffusion, system noise and correction method described
in Section 4.3.1, and the green graph includes the charge diffusion, system noise and
dual thresholding correction method.

and noise correction are included in the simulations, then the spatial resolution shows
a higher dependence on the pixel size. In the particular case where the FPN correction
method described in Section 4.3.1 is applied (black graph), the spatial resolution shows
a linear dependence with the pixel size over the whole range of values studied here.
This linear dependence is mostly observed in the other case, where the fixed dual
thresholding correction method is applied (green graph).

Similar to the study shown above, the resulting spatial resolution for 3H is shown in
Figure 6.29 for the same four different cases as before. In this particular case the
parameters used for the fixed dual thresholding method are k1=4 and k2=2. The
epitaxial layer values used in these experiments are at 5 and 20 µm, and the pixel size
values used here are 0.5, 1, 2, 3, 4, 5, 7.5 and 10 µm, as mentioned above.

From Figure 6.29 some conclusions can be extracted. Similarly with the previous case,
for 14C, this demonstrates that the up sampling introduced in the spatial resolution
maps shown in Figures 6.21, 6.23, 6.25 and 6.27 does not introduce artifacts. Figure
6.29 demonstrates how the spatial resolution, measured from the raw data in both cases
(blue graph), is strongly correlated with the pixel size. The effect of charge diffusion in
this case is strongly limited by the epitaxial layer thickness. Note, in Figure 6.29(a),
how the spatial resolution is unaffected by charge diffusion for pixel sizes larger than
the epitaxial layer thickness, set at 5 µm. Figure 6.29(b) shows how for a thicker
detector charge diffusion has a more significant effect, particularly at smaller pixel
dimensions, resulting in a degraded spatial resolution. When charge diffusion, system
noise and noise correction are included in the simulations, in the particular case where
the FPN correction method described in Section 4.3.1 is applied (black graph), the
spatial resolution shows a linear dependence with the pixel size, being very close to the
intrinsic spatial resolution (blue graph) in the whole pixel size range studied here. In
the case where the fixed dual thresholding correction method is applied (green graph),
the spatial resolution graph seems to fall between that obtained with and without the
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(a) Epitaxial layer 5 µm. (b) Epitaxial layer 20 µm.

Figure 6.29: Spatial resolution obtained for 3H for an epitaxial layer of 5 µm (a) and
20 µm (b) for a range of 0.5-10 µm pixel sizes. The blue graph represents the spatial
resolution for the raw data, the red graph includes the effect of the charge diffusion, the
black line includes the charge diffusion, system noise and correction method described
in Section 4.3.1, and the green graph includes the charge diffusion, system noise and
dual thresholding correction method.

charge diffusion process (red graph).

Overall, these simulations demonstrate that the best spatial resolution is obtained when
pixel size is minimised, and that once FPN correction processes have been applied, there
is only very weak dependence on epitaxial thickness.

6.4.4 Air Gap Effect on Spatial Resolution

In order to investigate the effect of the air gap between the surface of the sensor and the
source on the spatial resolution a set of experiments has been undertaken using a fixed
pixel size at 25 µm (the pixel size of the sensor used in the experimental part of the
study) using four different radioisotopes; 14C, 35S, 32P and 18F. Different thicknesses
have been considered to study the degradation of the FWHM with this effect. In
this case, the aim is to study the intrinsic spatial resolution degradation with the air
gap between the sample and the surface of the detector, therefore no charge diffusion,
system noise or noise correction method is implemented to obtain these results.

The FWHM degradation for four different radioisotopes, 14C, 35S, 32P and 18F, has
been studied for two different values of air gap: 0 µm shown in Figure 6.30(a) and 20
µm shown in Figure 6.30(b). Figure 6.30 shows how the air gap degrades the spatial
resolution dramatically.

The same experiment has been undertaken for 3H using a fixed pixel size of 1 µm for
a range of epitaxial thicknesses varying from 1 µm up to 25 µm with no air gap (blue)
and for a 5 µm air gap (red). It is shown in Figure 6.31 how the epitaxial thickness
does not show any difference due to the short range of 3H β electrons.
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(a) Spatial resolution vs thickness of epitaxial layer
with no air gap.

(b) Spatial resolution vs thickness of epitaxial layer
with an air gap of 20 µm.

Figure 6.30: Spatial resolution vs thickness of epitaxial layer with different values of
air gap for 14C (blue), 35S (green), 32P (red) and 18F (black) using a pixel size of 25
µm.

Figure 6.31: Spatial resolution vs thickness of epitaxial layer with no air gap (blue)
and with a 5 µm air gap (reg) for 3H using a pixel size of 1 µm.

6.4.5 Charge Collection

It has been described above how the detector architecture geometry, epitaxial layer
thickness and pixel size, are of critical importance for the spatial resolution. Another
parameter of significant influence for the final image quality is the proportion of charge
(signal) collected by the sensitive volume of the detector. A thick detector with large
pixels will collect more signal than a thin detector with small pixels, thus producing
higher SNR images.

To study this effect in this work a point source in the centre of an array of 29x29 pixels
is simulated. The proportion of charge deposited by each β electron in the central pixel,
where the point source is centred, compared to the entire amount of deposited charge
is analysed.

A similar comparison to the spatial resolution study, where the intrinsic deposited
signal, the effect of charge diffusion and the resulting deposited signal after system noise
and noise correction are implemented, are compared to see their respective effects.

Figure 6.32 shows the proportion of charge deposited in the central pixel of the β
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electrons emitted by a 14C point source (centred in the central pixel) for different ar-
chitecture geometries, where the pixel size range goes from 5 µm up to 25 µm, and
the epitaxial thickness goes from 5 µm up to 30 µm. Each data point represents a
specific architecture where 5 104 β electrons have been simulated. Figure 6.32(a) shows
the intrinsic proportion of charge deposited (no charge diffusion and no noise) in blue,
compared to the proportion of charge deposited with charge diffusion process included
in the model in red. Figure 6.32(b) shows the comparison between the intrinsic propor-
tion of charge deposited in blue (the same as in Figure 6.32(a)) and the proportion of
deposited charge with charge diffusion, system noise and the noise correction method
described in Section 4.3.1 implemented in green.

(a) (b)

Figure 6.32: Proportion of charge deposited in a pixel by a 14C point source for different
detector architectures. Figure (a) shows the intrinsic proportion of deposited charge in
blue with the proportion of deposited charge with the charge diffusion process added
to the model in red. Figure (b) shows the same intrinsic proportion of deposited charge
in blue with the proportion of deposited charge with charge diffusion, system noise and
the noise correction method described in Section 4.3.1 implemented in green.

The intrinsic proportion of deposited charge shown in Figure 6.32 demonstrates how
increasing the pixel size has a positive impact on the amount of deposited charge in
a pixel, concomitantly improving the SNR of the final image, and therefore improving
the image quality.

It is also observed in Figure 6.32 how decreasing the epitaxial thickness improves the
proportion of charge deposited in a single pixel. This can be confusing as it is well
known that a detector with a thick active volume collects more charge than a thin
active volume. The reason of this apparently contradictory result is because a thicker
detector collects more charge than a thin detector, but this charge is shared with more
pixels, concomitantly showing lower proportion of deposited charge in one single pixel.

Figure 6.32(a) shows how the charge diffusion process produces a degradation of the
proportion of deposited charge in one pixel, having higher impact for thicker active
volumes. For instance, for a pixel size of 25 µm and a 5 µm epitaxial thick, it can
be observed how the proportion of deposited charge drops from 0.5 (48.2%) down to
0.4 (40.1%) (x1.2 degradation rate), while for a 30 µm epitaxial thick the degradation
of proportion of deposited charge goes from 0.4 (39.3%) down to 0.25 (25.8%) (x1.5
degradation rate).



6.5. Conclusions 113

As has been observed in the spatial resolution study (Section 6.4.3) the different correc-
tion methods tend to alleviate the effect of charge diffusion process, by ignoring those
pixels with the lowest level of signal, because they are masked by dark current and
FPN. In this example, where the correction method described in Section 4.3.1 is imple-
mented, Figure 6.32(b) exhibits a less significant impact of the charge diffusion process.
The proportion of deposited charge shown in all the different architectures studied in
this section is closer to the intrinsic proportion of deposited charge, compared to the
previous example (Figure 6.32(a)), but globally the same conclusions obtained in the
previous case still hold. The charge diffusion process degrades the proportion of de-
posited charge in one pixel, this effect being more significant for thicker architectures.
It can be observed in Figure 6.32(b) how the intrinsic proportion of deposited charge
(blue) for small pixel sizes is slightly lower than that obtained with charge diffusion,
system noise and noise correction implemented (green). This artifact is attributed to a
deficient noise correction that is unable to remove all the noise in each pixel, therefore
the signal measured in each pixel is overestimated due to the level of noise. This effect
is only observed for small pixels, where the level of deposited signal is lower than for
large pixels, because the level of noise assumed for all the detector architectures remains
constant.

6.5 Conclusions

First two important issues, such as the self-absorption effect and the range of β- particles
in silicon, largely discussed in the literature have been investigated. Self-absorption has
been shown to have a significant impact in the efficiency of the detector, reducing the
β- particles that reach to the surface of the detector to ∼0.8 % and ∼14 % for 3H
and 14C respectively, as shown in Figures 6.17 and 6.18. Electron range (Figure 6.19)
has also been shown to have a significant impact in the spatial resolution as largely
explained in Section 6.4.3.

Secondly the two thresholding methods presented in this thesis work have been val-
idated, demonstrating successful implementation of the diffusion process suffered by
ionised charge in silicon, and correct modelling of the noise observed in the CMOS
digital detector. The experimental setup is reproduced obtaining similar cluster distri-
butions, showing a good match between both scenarios.

A thorough study on the spatial resolution of the detector has been presented. Given
that the Monte Carlo simulations have been previously validated, the geometry of the
detector has been modified to obtain an optimum detector geometry for each typical
radioisotope used in β autoradiography.

From this set of experiments an optimum detector geometry can be chosen depending
on the radioisotope used. Observing the intrinsic spatial resolution map (Figures 6.20
and 6.21) it seems clear that for 14C a pixel size <10 µm does not improve the spatial
resolution. From this value up to larger pixels, the spatial resolution then linearly scales
with the pixel size. A similar effect has been observed for 3H albeit with a smaller range
of pixel sizes. This indicates that spatial resolution is strongly related with the mean
range of the electrons emitted by each radioisotope, over and above pixel dimension.
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From Figures 6.22 and 6.23 it is observed how the charge diffusion effect greatly de-
grades the spatial resolution. Several models found in the literature were implemented,
resulting in very similar results for thin detectors. Dissimilarities were found when
using thicker detectors as those used in this thesis. The only validated charge diffu-
sion model with experimental data was implemented in this work for inclusion in the
Monte Carlo data previously produced. This model has been shown to produce the
largest dissimilarities compared with the rest of the models for deep energy deposition
interactions in thick detectors (∼20 µm).

Charge diffusion could be reduced by applying an electric field to the active volume to
collect the deposited charge, or by using a thinner detector. It has been observed that
the outer pixels affected by the deposited charge in an arbitrary event only contain few
electrons. These few electrons will be easily masked by dark current noise.

The correction methods applied to the noisy images demonstrate capability of detecting
true events, and reliably rejecting false events, by obtaining similar cluster distributions
to those obtained with Monte Carlo simulations representing a realistic environment.
These methods can be separated in two depending on the goal of the method.

Using the FPN correction method described in Section 4.3.1, a single threshold, high
enough to produce a low rate of false events, results in a spatial resolution map similar
to the intrinsic spatial resolution map for low energies (3H) as shown in Figure 6.25 and
in more detail in Figure 6.29. For medium energies (14C) some differences arise as the
effects of the epitaxial layer thickness on spatial resolution increases as shown in Figure
6.24 and in more detail in Figure 6.28, due to higher levels of multiple scattering.

Where dual thresholding is applied it is observed how the spatial resolution is degraded
with regard to the previous method, but as explained in the previous chapter this
higher level of information can be made available for event reconstruction algorithms
to improve the spatial resolution.

In all cases shown above, when charge diffusion, system noise and noise correction are
included in the final model, it has been shown how the best spatial resolution always
corresponds to the smallest range of pixel sizes. In the case of 14C, this represents pixels
up to 10-15 µm as being optimal. Above this range, the degrading effects of pixel
dimension and epitaxial thickness somewhat degrade spatial resolution performance.
Below this size, one might expect to see greater significance in the per pixel statistical
uncertainty produced due to finer sampling of the total charge. For 3H, the charge
diffusion effect appears to be proportional to epitaxial thickness and pixel size. In this
case, the optimal pixel dimension appear to be ∼1 µm.

It has been further demonstrated how the spatial resolution of the system is dramati-
cally affected by the air gap between the surface of the sensor and the source. As can
be observed in Figure 6.30, a 20 µm air gap produces ∼x2 increase in spatial resolution
compared to no air gap when imaging 14C or 35S. For instance for an epitaxial thickness
of 20 µm the intrinsic spatial resolution goes from ∼31 µm up to ∼65 µm. A similar
degradation rate can be observed for higher energy radioisotopes such as 32P and 18F,
showing a degradation from ∼34 µm for both radioisotopes without air gap up to 70
µm and 75 µm respectively with a 20 µm air gap.
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These results demonstrate how an air gap between the detecting medium and the sam-
ple is a matter of great importance, and further explains the reason why, in traditional
autoradiography using conventional film, the samples are placed in direct contact with
film inside a cassette where the lid makes pressure on the samples to reduce the possi-
bility of existence of a gap between the samples and the sheet of film.

It has also been shown the dependence of the epitaxial thickness and pixel size on the
deposited charge in one single pixel. A large pixel shows higher proportion of deposited
charge in one pixel, while a thicker epitaxial layer reduces the proportion of deposited
charge as it is shared between neighbouring pixels. On the other hand it is known that
thick active volumes collect more charge than thin active volumes, despite the fact that
it is shared between neighbouring pixels.

Depending on the application and the main aim of the design, a tradeoff between resolu-
tion and deposited charge has to be found in any direct detection silicon imaging device.
The choice of one parameter over the other is going to deprecate the performance in a
certain way.

Following all this work, for a system needing 3H imaging capability, it needs to have
∼1 µm pixel size or below and 1 µm epitaxial thickness. If this is not important, then
this can be relaxed to ∼10 µm pixel size and 10-15 µm epitaxial thickness. The pixel
size necessary for autoradiography is well below 25 µm, the pixel size of the detectors
used in this thesis, although the epitaxial thickness is close to that one used in this
work (20 µm).

After studying β electron interactions in silicon imaging by using Monte Carlo to un-
derstand the best way to design a silicon imaging sensor, this work studies in the next
two chapters the second bottle-neck in the imaging chain post-acquisition analysis.



116 Chapter 6. Monte Carlo Simulations



Chapter 7

Segmentation of Low Contrast to
Noise Ratio Autoradiographic
Data

7.1 Introduction

Image segmentation is one of the most fundamental aspects of biomedical image pro-
cessing. It is widely used in a variety of applications such as delineation of anatomical
structures, functional structures, tumours or extraction of features among some signifi-
cant examples. There is even a wider variety of methods to segment a certain structure,
depending on the specific problem.

Image segmentation of autoradiographic data plays an important role, as part of the
final analysis and assessment of the autoradiograms obtained in a typical autoradiog-
raphy experiment. The usual protocol followed in these type of experiments, involves
manual segmentation of those regions that exhibit higher radioligand concentrations.
In the specific case of this thesis work, where brain autoradiography is studied, those
regions within the brain that exhibit higher radioligand concentration are manually
delineated. These segmented regions represent areas in the brain that contain high
levels of the neuroreceptor under study, hence a high level of radioligand uptake is ob-
served. However, manual segmentation is very time consuming and repetitive. As the
aim of this thesis addresses high throughput autoradiography, then having addressed
the image acquisition phase, the next bottle neck in autoradiography throughput is the
large amount of time needed for analysis, involving segmentation of key structures.

These segmented functional regions will be used as biological landmarks for further
alignment with an atlas. Thus, it is assumed that these segmented landmarks have
counterparts with the corresponding atlas bregma1. The reference point Bregma is
shown indicated in a typical mouse skull in Figure 7.1, and also in a sagital mouse
brain section in Figure 7.2 [135]. There exists a wide variety of types of landmarks.
Those used in this work are segmented anatomical landmarks corresponding to key

1Coordinate system which defines the exact position of a certain slice in the brain
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functional structures of the brain. These structures correspond to the regions in the
autoradiogram with highest and lowest levels of uptake of the radioligand; i.e. these
will be the brightest and the darkest regions respectively.

Figure 7.1: Mouse skull diagram show-
ing the horizontal plane reference points,
bregma and lambda [135].

Figure 7.2: Sagital section of the mouse
brain. The position of the skull marks
(bregma, lambda and interaural) are indi-
cated [135].

To put in proper perspective the real difficulty of this problem, for comparison with
other imaging modalities, typical Contrast to Noise Ratio (CNR) for CT is around
∼200 and for MR is ∼300 for a 3T scanner and ∼100 for a 1.5T scanner. On the other
hand typical values of CNR in functional imaging are: PET ∼10 and ∼1-4 for SPECT,
similar values to those obtained in autoradiography. This is already suggestive that
most of the segmentation approaches developed for CT and/or MR are most likely to
misclassify the typical blurred edges in autoradiography.

7.2 Review on Segmentation Techniques

Image segmentation is one of the traditional branches of image analysis playing a key
role in the biomedical arena. These methods are represented by a multiplicity of differ-
ent approaches, as shown in different surveys [64, 132, 139]. Conventional segmentation
approaches are based on histogram thresholding, edge detection (active contours), clus-
tering, Bayesian methods and region extraction, or a combination of these.

Thresholding techniques are often discarded in medical imaging because these only con-
sider histogram information, ignoring spatial information, and because of susceptibility
to noise.

Edge detection based approaches have typically demonstrated good performance with
high contrast images such as those found in Computed Tomography (CT) or Magnetic
Resonance (MR), where boundaries are generally well defined, but for modalities with
low CNR, as is often the case in functional imaging, boundaries appear diffuse and
the level of noise is higher than that compared to CT and MR, due to low spatial
resolution, partial volume effects and noise resulting from the statistical nature of
radioactive decay [65]. As an example of edge detection, semi-automatic segmentation
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using a tailored model of active contours for brain autoradiographic data, is presented
in [122]. The resulting segmentation data is visually assessed providing reproducible
results, but user interaction is often required. Edge detection methods usually work
in conjunction with a different approach to make the overall algorithm more robust.
Some hybrid approaches using region growing, followed by active contours to refine the
edge detection process, have been presented for PET tumour delineation [102, 184].

Attempts to simultaneously segment volumes of interest (VOIs), and to obtain a tracer
kinetic model from the tissue time-activity curve (TTAC) is a very active area of re-
search in image segmentation. A combination of clustering and region growing [83]
and Markov Random Fields (MRF) [34] are some of the different approaches used in
dynamic PET studies. Clustering time-activity curves using K-means or Maximum a
Posteriori MRF (MAP-MRF) [152] are also some alternatives presented in the litera-
ture. Fuzzy C-means (FCM) and Fuzzy Hidden Markov Chains [65] have been other
recent approaches used in segmentation of PET studies [187]. A comparison between
Expectation-Maximisation (EM), Fuzzy C-Means and Independent Component Analy-
sis (ICA) is presented in [87], applied to simulated and real dynamic PET brain images.
The overall results are not satisfactory, but the authors conclude that ICA offers better
results compared to the others, but it requires initial manual thresholding of the 3D
images.

In the case of single slices or static images, where temporal information is not available,
region growing has been shown to be an effective approach in 2D [111], where automatic
delineation of fMRI structures using region growing outperforms clustering methods,
and in 3D [170], where segmentation is applied for automatic extraction of blood ves-
sels from Magnetic Resonance Angiography (MRA) data. This approach is widely used
for biomedical image segmentation, due in part to its capability of segmenting noisy
images and because it combines spatial connectivity and intensity information simul-
taneously. This technique relies on the idea that neighbouring pixels within the same
region have some similarity, most often based on intensity values or statistics. As a
result, a multitude of approaches based on region growing have been presented in the
literature for segmenting a wide variety of imaging modalities, such as planar mam-
mography [95], functional MRI [111], MR Angiography [170, 183], CT, MR, tumour
segmentation [69, 114, 142] and PET [63].

Two novel measures are presented in [69], such as the gradient and the contrast that
successfully delineate regions in MR images. These discontinuity measures have demon-
strated good performance with mammogram image data [95], CT and MR images
[69] but are too sensitive to noise when segmenting images with low CNR. Region
growing relies on what is called the homogeneity criterion, where a pixel is appended
to the region being grown if its intensity value is within some user-defined limits
[142, 183, 111, 114], this aspect representing the most important feature of the al-
gorithm. In [142] this margin is obtained from a previous learning step. Noticeably
[183] used competitive region growing by growing several seed regions at the same time
assuming that all the seeds are in direct contact. In [111] every voxel is considered a
seed voxel at the initial point. Then the homogeneity criterion used to grow regions is
based on the Pearson correlation coefficient between the time series of the voxel and
the averaged time series of the voxels in a pre-merged region, and then compared to
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a pre-defined fixed threshold. The resulting regions are the largest segmented regions.
This work also compares the performance of region growing, by analysing the receiver
operating characteristic (ROC), with other methods typically used in fMRI, such as
fuzzy c-mean clustering analysis (FCA), concluding that region growing outperforms
compared to the mentioned method. A dynamic homogeneity criterion is also used in
some approaches, where the user-defined margins change as the region grower evolves
[63, 114]. A Bayesian approach is used by [133] to model the bimodal histogram gener-
ated when a region grower operates between two different tissues, using fuzzy c-means
to estimate the parameters that describe each distribution. However, this relies on
reasonably good CNR. Region growing has been shown to be highly dependent on the
location and order of the original seeds chosen to grow the regions. The skeleton of, pre-
viously thresholded, blood vessels is used as seed regions to automate the initialisation
of the region growing approach presented in [170].

In this work the segmentation issue of low CNR images (as often found in functional
biomedical image data) is addressed using a region based approach. This automatic
region grower, that automatically locates the seed regions for each structure, tries to
detect significant variations in the statistics in the region under segmentation, or sig-
nificant increments of the region size being segmented is demonstrated using simulated
and pre-clinical imagery, demonstrating the suitability of this algorithm to low CNR
images. This region grower segments the complete image until all the structures are
labelled, i.e. included in a segmented region.

The methodology used in this work, for recursively segmenting objects represented in
a low CNR image, results in a fully labelled scene. This involves first simple removal
of an assumed background component, followed by initialisation and execution of the
region grower, finally halting using some termination criteria, discussed in detail in
section 7.3.4. Once initial regions have been grown, then these are discarded from the
original image, and the region grower is then recursively executed repeatedly until all
pixels have been assigned to a segmented region.

7.3 Methodology

Classically, segmentation is defined as the partitioning of an image I into n non-
overlapping regions Ri, I = ∪ni=1Ri, which are homogeneous with respect to some
characteristic. The distinctiveness or non-overlapping condition, i.e. Rk ∩ Rj = ∅ for
k 6= j is then fulfilled, wherein each Rk being connected between them. Some seg-
mentation approaches assume a priori knowledge of the final number of subregions n.
However in the case of the algorithm described here, n is unknown.

The methodology now described is used for recursively segmenting objects represented
in a low CNR image, resulting in a fully labelled scene, without knowing the number
of subsets a priori, n, in contrast with other approaches [114, 183]. A flowchart of
the entire segmentation process is shown in Figure 7.3. The steps that comprise this
algorithm involve first a pre-processing step where the simple removal of an assumed
background component and anisotropic filtering to reduce statistical noise are first
applied (Section 7.3.1). Secondly the region grower is initialised and subsequently it
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is executed following a dynamic criterion, where the growing parameters are adjusted
depending on the statistics of the image as the region grower evolves (Section 7.3.2).
Finally the region grower halts using some termination criteria (discussed in more detail
in Section 7.3.4). Once initial regions have been grown, then these are discarded from
the original image, and the region grower is then recursively executed until all pixels
have been assigned to a segmented region.

Figure 7.3: Flow chart showing the entire segmentation process.

It has been observed that after the autoradiogram has been segmented, is some cases
there still exist some regions with low levels of ligand uptake (low intensity values)
that have not been segmented. Therefore, once the region grower has segmented all
the possible regions, the entire process is applied to an intensity-inverted version of
the same autoradiogram. Depending on the specificity of the radioligand used in the
original tissue section and the abundance of the neuroreceptors targeted in a specific
experiment this dual-segmentation process may result in an over-segmented labelling.

If the radioligand used is not very specific this will bind to many different neurore-
ceptors, with the addition of the targeted one, resulting in a homogeneous image with
abundant bright regions. If, on the other hand, the radioligand is highly specific it
will only bind to those regions where a specific neuroreceptor is present resulting in an
image with some very specific bright regions.

If the targeted neuroreceptor is very abundant the radioligand will be present in many
regions of the tissue section, resulting in a corresponding image with abundant bright
regions. This is the case of nicotinic neuroreceptors radiolabelled with 125[I]-epibatidine.
If the neuroreceptor can be located only in very specific regions of the brain this will
result therefore in very specific bright regions. Clearly these issues alter the resulting
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CNR of the image to be segmented. This variability in the target region might be
addressed by using a region growing approach.

Due to the final over-segmentation produced in some cases where the radioligand is
not very specific, the targeted neuroreceptor is abundant or also due to high statistical
noise present in some images a region merging is undertaken at the end (Section 7.3.5).

The result of undertaking all these steps provide a final image with more regions seg-
mented, compared to applying the region grower only once to the autoradiogram, easing
the overall analysis of the autoradiograms.

7.3.1 Pre-processing

Prior to applying a region grower on the autoradiograms, the raw image data is first
pre-processed. This pre-processing is comprised of two steps: first a thresholding step,
where the background is removed, and secondly a filtering step, where an anisotropic
filter is applied to the autoradiogram, to reduce statistical noise of the autoradiogram
that may produce over-segmentation of certain regions. These two steps are described
below.

Thresholding:

Initially images are thresholded before being segmented to remove the background
noise. This is undertaken by computing the histogram of the image, and assuming this
comprises of a set of n Gaussian-distributed components: all the pixels belonging to the
first Gaussian distribution of the histogram are then set to zero. Low intensity values
are assumed to correspond to absence of radioactivity, and presence of radioactivity is
coded with high intensity values.

Due to sampling problems and presence of statistical noise, the histogram is smoothed
by using a kernel density estimator, before finding the optimal setting for background
thresholding. Given an intensity histogram fx, with bins occupancy {x1, x2, ...xN |
∀xi > 0}, the equation of the statistical density estimator applied to the intensity
histogram is shown in equation 7.1 [159]:

f̂x(h) =
1
Nh

N∑
i=1

K(
x− xi
h

), (7.1)

where f̂x(h) is the resulting smoothed intensity histogram for a certain bandwidth h, N
is the total number of occupied bins in the intensity histogram, K is the kernel applied
to the data operating on x, the occupancy for the bins in the original histogram fx
and xi being a particular bin occupancy. A Gaussian function with zero mean and
variance one is usually used for K. The kernel density estimator is then fully defined
by equation 7.2:
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f̂x(h) =
1
Nh

N∑
i=1

1
2π
e−

1
2
(
x−xi
h

)2 (7.2)

The main problem related with kernel density estimators is usually to choose a suitable
value for the bandwidth h. AMISE (Asymptotic Mean Integrated Squared Error) is an
algorithm used to calculate the optimal bandwidth, but due to the heavy computing
cost traditionally necessary to run this algorithm a much easier option has been chosen
in this thesis work. This is the popular Silverman’s rule of thumb bandwidth [159]
obtained with equation 7.3:

h = 1.06σx(NxNy)−0.2 (7.3)

where σx is the standard deviation of the image, and NxNy is the total number of pixels
in the image. Silverman’s rule of thumb has been qualitatively validated obtaining
usually satisfactory results by previous works.

In Figures 7.4(a) and 7.4(b) a raw autoradiogram and its corresponding histogram are
shown. In Figure 7.4(c) the resulting smoothed intensity histogram is shown, presenting
better defined peaks, smoother valleys and removing false peaks due to noise. As can
be observed in Figure 7.4(c) the red line delimits the valley between the Gaussian
corresponding to the background noise and the residual histogram.

This threshold is automatically obtained by finding the zero-crossing points of the
second derivative of the smoothed histogram f̂x(h), and finding the corresponding zero-
crossing to the first valley between Gaussians. All the pixels below that intensity bin are
set to zero and those above the threshold are considered as part of the autoradiogram.

Few pixels of the background with higher value than the threshold will still remain,
and some other pixels in the autoradiogram with lower values than the threshold might
be set to zero because the Gaussians are slightly overlapped. To avoid this problem
the thresholded image is morphologically processed. There will be some holes in the
autoradiogram that will be filled and, outside the autoradiogram, there will be small
blobs belonging to background noise. These will be removed by only considering the
largest blob of the thresholded autoradiogram.

At the end of the pre-processing stage the image has the background set to zero and
the autoradiogram has its original values without holes as shown in Figure 7.4(d).

In the data used for development of the method, there were some images where the
background and the autoradiogram were not possible to separate by using this ap-
proach, given that the main body of the autoradiogram had very similar intensity
values, compared to the background noise. In such cases the thresholding step was
simply ignored.

Anisotropic Filtering:

Given the high statistical noise the autoradiographic data usually exhibits, an anisotropic
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(a) (b)

(c) (d)

Figure 7.4: Original autoradiogram (a), corresponding intensity histogram (b),
smoothed intensity histogram using a Gaussian-based kernel density estimator (c) and
thresholded autoradiogram (d).

filter is first applied to the autoradiograms. An anisotropic filter is a common method
to enhance the image quality in computer graphics, first introduced by Perona and
Malik [136]. It is anisotropic because it is space variant, i.e. it is not homogeneous in
all directions. It smooths homogeneous regions and enhance sharp edges.

This filtering process involves filtering an initial image I(i, j) iteratively using the filter
described by equation 7.4:

I(i, j)t+1 = I(i, j)t + λ(ctU∇tUIti,j + ctD∇tDIti,j + ctL∇tLIti,j + ctR∇tRIti,j), (7.4)

where I(i, j)t is the pixel value of the image at position (i, j) at iteration t, I(i, j)t+1

is the pixel value at position (i, j) at the next iteration, the coefficient λ has a fixed
value of 0.25, coefficients ctθ are the so called conduction coefficients calculated at the
iteration t, and the terms ∇ are the finite differences calculated for 4-connectivity (i.e.
pixels (i, j − 1), (i, j + 1), (i− 1, j) and (i+ 1, j)) as shown below:
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
∇tUIti,j = Iti,j−1 − Iti,j
∇tDIti,j = Iti,j+1 − Iti,j
∇tLIti,j = Iti−1,j − Iti,j
∇tRIti,j = Iti+1,j − Iti,j

(7.5)

The conduction coefficients ct are obtained with equation 7.6 [133]:

ct =
1

1 + (‖∇
tI(i,j)‖
k )2

(7.6)

where ‖∇tI(i, j)‖ is the norm of the finite difference for each case (U,D,L and R). k
is a tuning value empirically obtained from the intensity histogram f(x) defined by
equation 7.7 [133]:

k = 0.6
N∑
i=1

f(x) (7.7)

The visual result on the autoradiograms after applying this filter is subtle and difficult
to observe, but it has a positive impact on the subsequent processing of the image data,
smoothing homogeneous regions and thus avoiding over segmentation in such regions,
without affecting the edges contiguity.

7.3.2 Region Grower

The performance of most region growing techniques is highly dependant on the selection
of the location of the initial seed pixels. Some approaches assume manual location of
these, making this process user dependant and time consuming. Other approaches au-
tomatically locate the seed pixels by using different methods prior to the segmentation,
such as image thresholding or morphological operations [170]. Other approaches use
competitive region growing where all the pixels are considered initially as seed pixels,
regions are separately grown from the initial seed pixels by adding pixels that satisfy
the homogeneity criterion. In a second step some regions are selected from the obtained
regions based on some predefined criterion [111]. In this work the seed pixel locations
are chosen automatically as follows. Two assumptions are made in the initialisation:

• The initial region centred on a seed pixel (i.e. seed region) is N xN pixels assuming
that the smallest region to be segmented is 2N x2N pixels. This assumption makes
sure that the smallest anatomical region present in a tissue section is not missed
due to the size of the initial seed region.

• The minimum distance between the centres of a segmented region and a new seed
pixel is M pixels. This mitigates the effect of growing a new region which is
actually part of an existing segmented structure, that has been undersegmented.
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The first seed region is centred on a randomly located pixel that occupies the highest
intensity value in the image. This is then enclosed by an N xN seed region, N being
dependant on the size of the image. Some statistics, comprised of the mean, mode and
standard deviation, and the highest pixel value in the seed region are calculated. For
the specific case of the autoradiograms used in this work a region of 9x9 pixels was
used. Therefore, prior to the segmentation, the autoradiogram is resized manually to
make the smallest structure to be segmented (usually the hypothalamus) at least 18x18
pixels.

To make this resizing step user-independent for brain autoradiography image data, a
typical autoradiogram where the hypothalamus is observed, has been taken, and the
percentage of the the area of the hypothalamus compared to the whole section has been
manually measured. By doing this a standard size (in pixels) for the autoradiograms
to be segmented is set, prior to segmentation. This should be undertaken with an
image containing the hypothalamus before a whole set of tissue sections is segmented,
therefore the resizing parameters are first obtained and subsequently applied to all the
autoradiograms under analysis.

7.3.3 Dynamic Similarity Criterion

A region grower is based on the similarity criterion, a criterion that candidate pixels
have to fulfil to be appended to the region. This is with no doubt the most important
feature of the region grower. Once the localised seed region statistics are computed,
then a one pixel wide border, defined by T (equation 7.8), is considered, and each pixel
of the border is evaluated.

T = {xij /∈
n⋃
i=1

Ri : N(xij)
n⋂
i=1

Ri 6= ∅} (7.8)

where N(xij) is the set of immediate neighbours of pixel xij . The considered intensity
pixel, xij , will be appended to the region {Ri} if it fulfils the homogeneity criterion, i.e.
if it is within the margins defined by equation 7.9:

xij

{
∈ Ri if mo − kσ1,s < x̂ij < mo + kσ2,s

/∈ Ri otherwise
(7.9)

where x̂ij is the mean of the 3x3 ROI centred in xij , mo (see Figure 7.5) is the mode
of the seed region, σ1,s is the standard deviation of the pixels in the seed region below
mo, σ2,s is the standard deviation of the pixels in the seed region above mo and k is
a parameter that controls the marginal step size. This parameter k gives this region
grower the capability of adapting the homogeneity criterion to the different difficulties
exhibited in typical autoradiographic data with low CNR, such as blurred edges and
high statistical noise.

The reference pixel xij is usually used in equation 7.9, instead of x̂ij , but due to the
high statistical noise present in the image this represents an improvement to avoid a
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premature halt of the region growing. An initial value of k is set manually but this is
later increased dynamically as in [114] (see Figure 7.6).

The use of two different standard deviations is based on the typical case of a textured re-
gion where the histogram of the original seed area is modelled with a Gaussian mixture
[142]; thus the mode of the histogram approximately sets the middle of the mixture,
one standard deviation (σ1,s) represents the lower values of the mixture describing, in
an approximate way, the variation of width of an assumed Gaussian like (but contami-
nated) distribution, and the second (σ2,s) is a similar descriptor for the higher values of
the mixture (see Figure 7.5). If the seed region is placed on a very homogeneous region
and the histogram can be modelled with a single Gaussian, i.e. σ1,s and σ2,s are very
similar, this does not represent a problem for the correct modeling of the statistics of
the seed region.

Figure 7.5: Model of a low CNR Gaussian mixture where two different standard devi-
ations, σ1,s for lower values and σ2,s for higher values, are computed to better model
the statistics of the original seed region.

Some parameters are measured from the intensity histogram at each iteration t to be
used by the termination criterion based on the intensity histogram (explained below):

• mode of the current region being segmented (mt).

• the difference between the mode intensity of the region at the current iteration t
(mt) and the mode of the original seed region (mo), denoted as ∆m1.

• the difference of the mode intensity of the region at iteration t (mt) and the
previous mode at iteration t-1 (mt−1), denoted as ∆m2.

Every time the contour T (equation 7.8) is extracted, all the pixels contained in the
one pixel wide Tt (t denoting that the contour T corresponds to the tth iteration) are
candidates to be appended to the region Ri,t. After appending those pixels that fulfil
equation 7.9 a new region is obtained Ri,t+1. Using the same parameter k, the contour
Tt+1 is extracted again in the next iteration (t + 1) from the new region Ri,t+1, to
append those pixels that still fulfil equation 7.9.

Several iterations of the region grower will occur, using the initial parameter setting in
equation 7.9, until no further pixels are appended to the region. Parameter k is then
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adaptively changed by a certain step size (k = k +4k) in response to the CNR of the
image; the step size 4k used in the experiments shown here has a value of 1. This
parameter can be thought as a way of controlling the sensitivity of the region grower
to edges. If this parameter 4k is large (>1), every time it is updated, the margins
defined by equation 7.9 will allow to append more pixels, possibly missing some edges.
On the other hand, if 4k is small (<1), the algorithm could be too sensitive to noise
and halt prematurely. To give 4k a specific value is therefore a matter of controlling
the sensitivity the algorithm given the noise present in the image data. For images with
high CNR (>20) the step size could be higher (2-3) and for images with lower CNR
(<5) the step size could be lower (0.2-0.5). By dynamically updating k, this parameter
relaxes equation 7.9 so the number of pixels appended to the region being grown is
increased. Figure 7.6 shows the evolution of the boundary for different values of k,
from the initial k=3 to the final k=17 for this example.

Figure 7.6: Evolution of the boundary as k automatically increases, relaxing equation
7.9, for k=3, k=7 and k=17. The initial seed region, painted in red, is indicated with
an arrow.

It is worth to make the difference at this point of the two different indices mentioned
so far. The first of them, t, increases every time a new contour Ti,t is extracted and
subsequently the candidates in the contour that fulfil the homogeneity criterion are
appended to Ri,t. This process is repeated until no more pixels can be appended to
Ri,t, which is when the other index k increases, updating the similarity criterion, and
t is initialised.

Every time t or k iterate the termination criteria are evaluated to find out if the region
grower stopped because it found an edge, or because, due to statistical noise or inhomo-
geneities in the region, it found a false edge. The termination criteria can be divided in
two groups: termination criteria evaluated when t is increased and termination criteria
evaluated when k is increased.

The termination criterion evaluated when t is updated is briefly explained below and
further detailed in Section 7.3.4:
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1. A significant change of mode in the intensity histogram of Ri,t while t iterates
is considered to indicate an over-growing situation. This termination criterion is
further explained below.

The termination criteria evaluated when k is updated are briefly explained below and
further detailed in Section 7.3.4:

1. The number of iterations t that the region grower iterates appending pixels, until
it can not append any more and k is updated is also considered. The physical
explanation of this is that if k is updated (increased4k), and few iterations t occur
(with the new k value) until the region grower halts again, can be an indication
of a very inhomogeneous region. Given this situation the region grower considers
that it is leaking in to a different region (different texture).

2. The difference of areas between regions at k and k−1 is calculated. A significant
jump between region sizes at consecutive iterations may indicate that the region
grower is over-growing. This is futher explained in Section 7.3.4 below.

3. The mean of the gradient of the outer contour Ti,t is defined as Ck. If a significant
drop between Ck and Ck−1 is observed the region grower considers that Ti,t was
placed on an edge in the previous iteration.

If none of the termination criteria determines that a discontinuity between textures
has been found the parameter k is subsequently updated to continue appending pixels
(see equation 7.9). In this case the region grower applies a penalty scheme to the outer
contour Ti,t detailed below.

Penalisation scheme:

The intensity values of those pixels that are contained in the outer contour Ti,t of the
segmented region at the current iteration Ri,t are penalized. This penalty decreases the
intensity value of only those pixels contained in Ti,t by a certain value, depending on
the relative overlap between the intensity histograms of Ri,t and its corresponding outer
contour Ti,t, defined as pR and pT respectively. The penalty is defined by equation 7.10:

Ti,t = Ti,t − w(µs − µc) (7.10)

where w is a weighting factor (explained below) and µs and µc are the mean intensity
value of Ri,t and Ti,t respectively. Note that µs and µc will always fulfil µs > µc, i.e.
the mean of the pixel values in the region being segmented Ri,t will always be higher
than the mean of the pixel values in the contour Ti,t.

The physical phenomenon that explains this penalty is because some times the region
grower stops appending pixels due to high statistical noise present in the region being
segmented. If the intensity value of the pixels contained in Ti,t are similar enough
to those pixels in Ri,t (which means the region grower stopped due to the presence
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of significant statistical noise), after updating parameter k these pixels in Ti,t will be
appended to the region being grown. On the other hand, if the intensity value of the
pixels in Ti,t are very dissimilar compared to those pixels in Ri,t, the intensity penalty
will increase such dissimilarity of intensity value, keeping these pixels out of the region
grown.

The weighting factor w is obtained from pR and pT , the instensity histograms of those
pixels contained in Ri,t and Ti,t as mentioned above. These intensity histograms will
sometimes be very low populated, i.e. constructed with very few samples when Ri,t
is small. Therefore some considerations have to be taken to reduce the effect of poor
sampling and produce undesirable results.

To obtain w first a set of parameters N(m,σu, σl) from each Ri,t and Ti,t are obtained,
m being the mode, and σu and σl the standard deviation of those pixels below and
above m respectively, similarly to that described above. Then pR and pT are modelled
as a finite mixture model using the aforementioned set of parameters N(m,σu, σl) for
each distribution. An idealised plot of pR and pT is shown in Figure 7.7, where pR is
plot in blue and pT in red, as pR corresponds to Ri,t which contains by definition higher
intensity values than Ti,t.

Figure 7.7: Intensity histogram of Ri,t, pR, shown in blue and of Ti,t, pT , shown in red.
The parameters measured from each distribution are also shown.

After being obtained pR and pT a measure of the overlapping between these two is
computed. In order to do this two parameters are obtained. First pR∩pT , representing
the measure of overlapping between both distributions, and secondly pR ∪ pT , used to
normalise the overlapping between both distributions pR∩pT . The overlapping measure
O is defined by equation 7.11, being O = [0, 1).

O =
∑
ppR∩pT∑
ppR∪pT

(7.11)

If O = 0 means that there exists no overlapping between pR and pT (completely different
tissues). The situation O = 1 never arises as this would imply both distributions are
identical, a situation which is impossible because at this point the region grower is
stopped because the intensity pixel of those pixels in Ti,t can not be appended to Ri,t
due to intensity disparity.
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After the model of each distribution, NR(mR, σR,u, σR,l) and NT (mT , σT,u, σT,l), and
the overlapping O have been computed, w is then obtained following equation 7.12 to
solve equation 7.10:

w =


0 (No penalty) if σT,u > 2σT,l & σR,l > 2σR,u;
1 (Maximum penalty) if O=0 (pR ∩ pT = ∅);
1−O (Medium penalty) otherwise (pR ∩ pT > 1).

(7.12)

The first condition shown in equation 7.12 implies that there exists a substantial amount
of overlapping, as shown in an idealised situation in Figure 7.8, where σT,u > 2σT,l and
σR,l > 2σR,u. In that case w = 0, which means that those pixels in Ti,t are not
penalized. The second condition establishes that if there exists no overlapping between
pR and pT (i.e. Ri,t and Ti,t are very dissimilar) w is set to one, which means that
those pixels in Ti,t suffer maximum penalty, µs − µc. The last condition lies between
the two extreme cases described above. The amount of penalty of the pixels in Ti,t is
related to the relative overlapping between the intensity histograms of Ri,t and Ti,t, pR
and pT respectively. The higher the overlapping (O↑) the lower the penalty (w ↓).

Figure 7.8: Intensity histogram of Ri,t, pR, shown in blue and Ti,t, pT , shown in red.
The parameters measured from each distribution are also shown. This case shows a
situation where σT,u > 2σT,l and σR,l > 2σR,u.

The effect of the inclusion of the weighting factor w is observed in a practical case in
Figure 7.9. Figure 7.9(a) shows the original autoradiogram, where the region under
study is bounded by a red box. Figure 7.9(b) shows a close up of such region. The
resulting segmentation for an initial k value Ri,t, superimposed on the autoradiogram,
is shown in Figure 7.9(c). At this point the region grower can not append more pixels,
so the weighting factor is evaluated. For this purpose the contour of the segmented
region Ti,t is extracted to obtain pT , as shown in Figure 7.9(d). Figure 7.9(e) is the
same image as Figure 7.9(b) but with a different intensity scale, where the contrast
between the parts of the tissue being segmented and the tissue in the background are
clearly differentiated. Figure 7.9(f) represents Figure 7.9(e) but with the weighting
factor applied to those pixels in the contour (figure 7.9(d)), thus both images present
the same pixel intensity in every pixel except in those pixels in the contour of the region
being segmented where these have been penalized.
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To understand this process note the bright region observed in Figure 7.9(b). In Figure
7.9(c) this bright region has been properly segmented but it stops appending pixels
due to the high statistical noise present in the image. If only k is updated those pixels
in the bright branch will be appended to the region being segmented, but some pixels
located at the sides of the elongated segmented region (indicated in Figure 7.9(c)) will
also be appended. By penalizing all the pixels in the contour as explained above, those
pixels located at both sides of the elongated segmented region will not be appended,
while those pixels in the mentioned bright branch will be appended.

(a) Original autoradiogram. (b) Zoom of the region being
segmented.

(c) Region being segmented
indicated in white.

(d) Contour of region being
segmented.

(e) Original image. (f) Image with pixels in the contour after applying
(7.12).

Figure 7.9: Process of the effect of weighting the pixels in the contour.

7.3.4 Termination Criteria

Termination criteria are those conditions that have to be fulfilled to halt the region
growing process. The criteria used in this work have been developed based on the
empirical observation of the properties observed in low CNR images such as digitised
autoradiograms. These criteria are based on the points enumerated below:

• Intensity histogram of the region under segmentation.

• Too few iterations of t until k is updated.

• Difference between region sizes each time the parameter k is updated.

• Edge detection based on image gradient.



7.3. Methodology 133

Termination criterion based on intensity histogram:

One of the conditions to stop the region grower is based on analysing the histogram
of the segmented region at each iteration t. When segmenting low CNR imagery, it is
observed that the object being segmented is usually described by a Gaussian-like distri-
bution, but as the region grower appends more pixels to the region, a second Gaussian
distribution emerges initially as a long tail. At a certain point the histogram of the
region will develop into a bimodal but frequently asymmetric Gaussian mixture (see
Figure 7.10).

As the histogram of the region grown develops into a bimodal histogram, the difference
between the mode intensity at iteration t and the mode intensity computed from the
initial seed region, defined by equation 7.13, is going to be significantly increased.

∆m1 = mt −mo (7.13)

where mt is the mode of the histogram at the current iteration t and mo is the mode
computed from the original seed region.

In some cases the mixture distribution can be highly asymmetric, making it difficult
to distinguish these two components (see Figure 7.11). This effect might happen also
when the histogram results in a Landau-like distribution. One way of detecting which
situation has occurred is by studying the evolution of the mode of the histogram at
each iteration, defined by equation 7.14.

∆m2 = mt −mt−1 (7.14)

where mt is the mode of the histogram at the current iteration and mt−1 is the mode
of the histogram at the previous iteration.

If the evolution of the histogram from the region being segmented results in a bimodal
histogram, ∆m1 and ∆m2 will increase significantly at the iteration when the mode of
the second distribution is higher than that of the first original distribution (indicated
in Figure 7.10). In this case the region being grown has flooded across different tissues.
A hard threshold (shown in Figure 7.10) is applied here as the lowest (non zero) his-
togram bin between the two distributions. Under this situation a portion of the object
being segmented is incorrectly discarded (area A in Figure 7.10), and a portion of the
segmented component is incorrectly assigned to the grown region (area B in Figure
7.10). After binarising the segmented region, it is observed that pixels corresponding
to area B, are not spatially connected to the grown region being segmented. These
pixels are therefore easily removed using binary morphological operations.

In the case, where a highly asymmetric long tailed Gaussian histogram shape is ob-
served, neither ∆m1 nor ∆m2 will exhibit the step change seen in the previous case.
Therefore region growing may also be halted by detecting any potential over-segmentation
from observing the change in region size as well as described below.

In practise the intensity histogram of the region being segmented is not smooth, due to
a mixture of high noise (variation) and low statistics. To distinguish between the two
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Figure 7.10: Idealised example of seg-
menting two different tissues resulting in a
clearly distinguished bimodal distribution.

Figure 7.11: Idealised example of segment-
ing two different tissues with a highly asym-
metric mixture distribution, making com-
ponent separation difficult.

different situations explained above, and to avoid spurious halts of the region growing,
then the two conditions shown in equation 7.15 have to be fulfilled to halt the region
growing process:


max{∆m1} − σ{∆m1} > max{∆m1acc}+ σ{∆m1acc}

max{∆m2} − σ{∆m2} > max{∆m2acc}+ σ{∆m2acc}

(7.15)

where ∆m1acc is a vector whose components represent the ∆m1 (7.13) accumulated
values used each time k is incremented, and ∆m2acc is similarly defined for ∆m2 (7.14).
A real intensity histogram example is shown in Figure 7.12 with its corresponding
mode (blue plot), ∆m2acc (red plot) and ∆m2 (green plot) evolution, shown in Figure
7.13. The red arrows indicate every time the parameter k is increased. As mentioned
previously index t iterates for an initial k value (kinit). When no more pixels are
appended for that k value, this is increased by k = k + 1. After n iterations (k+n in
Figure 7.13) a significant change of ∆m2 is detected, resulting in a halt of the region
grower.

It can be observed how the mode flickers at the beginning when the histogram has low
statistics, and then it stabilises until a large change is detected. This initial flickering
might be discarded by checking whether there actually exists a valley between the
distributions in the intensity histogram.

Termination criterion based on how many times t iterates until k is updated:

The second termination criterion evaluated every time k is updated is based on the
number of times that t has been increased between consecutive iterations of k. The
physical phenomenon in which this criterion is based on the following observation.
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Figure 7.12: Example of intensity his-
togram where ∆m2 suffers a significant
change.

Figure 7.13: Evolution of the histogram
mode (blue), ∆m2acc (red) and ∆m2 (green)
of intensity histogram shown in Figure 7.12.
The increments of the parameter k are
marked with red arrows.

While the region grower is growing on a relatively homogeneous region, the iterator
t increases as more pixels are appended to Ri,t. Eventually the intensity value of the
pixels in Ti,t drop as the region grower gets close to the boundary of the functional region
being segmented, preventing the region grower of appending more pixels. When this
situation is given, k is increased to continue appending pixels. If the region grower halts
after few iterations t (0-4 iterations) this situation suggests that the region grower is
growing on a very inhomogeneous regions, i.e. a boundary. Therefore the region grower
halts.

Termination criterion based on difference between region sizes:

Another of the termination criteria observes the difference in size of Ri,t for consec-
utive values of k. The region size difference is measured as shown in equation 7.16.

Ik = Ak −Ak−1 (7.16)

where Ak is the region size of Ri,t at iteration k and Ak−1 is the region size of Ri,t at
iteration k-1. The region grower considers that region being segmented is leaking in to
another region, and therefore over-growing, if Ik > 5Ik−1.

Termination criterion based on edge detection:

Before the region grower is applied to the autoradiogram, G(i, j), the gradient of the
image, is first computed as described in equation 7.17:

G(i, j) =
√
∇hI(i, j)2 +∇vI(i, j)2 +∇d1I(i, j)2 +∇d2I(i, j)2 (7.17)
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where the terms ∇I(i, j) are the finite differences if pixel (i, j) with its 8 neighbours,
as shown in equation 7.18:


∇hI(i, j) =

√
(x(i, j)− x(i, j − 1))2 + (x(i, j)− x(i, j + 1))2

∇vI(i, j) =
√

(x(i, j)− x(i− 1, j))2 + (x(i, j)− x(i+ 1, j))2

∇d1I(i, j) =
√

(x(i, j)− x(i− 1, j − 1))2 + (x(i, j)− x(i+ 1, j + 1))2

∇d2I(i, j) =
√

(x(i, j)− x(i+ 1, j − 1))2 + (x(i, j)− x(i− 1, j + 1))2
(7.18)

Having computed the gradient G(i, j) of the entire image, every time the parameter k is
updated, a binary template of T (i, j), defined as Tb(i, j), is extracted, and the gradient
of only those pixels contained in T (i, j) are summed up and normalised, dividing by
the cardinality of the contour (

∑
Tb(i, j)k), resulting in an updated gradient scalar

measure defined by Ck:

Ck =
∑
G(i, j)Tb(i, j)k∑

Tb(i, j)k
(7.19)

If Ck < Ck−1 the region grower considers that it has missed an edge in the previous
iteration k − 1, therefore the region grower halts and considers the region segmented
at iteration k − 1 as valid.

In Figure 7.14 this process is observed. Figure 7.14(a) represents the original image,
Figures 7.14(c) and 7.14(d) represent the segmented region at iterations k-1 and k
respectively. The gradient of the image G(i, j) shown only where the contour of the
segmented region is present T (i, j) is shown in Figures 7.14(e) and 7.14(f) for k-1 and k
respectively. For this specific example, at iteration k, Ck has a value of 0.38, while for
the previous iteration Ck−1 has a value of 0.53. Given this situation the region grower
stops and takes the previous segmented region at k-1 as valid. Observing the origi-
nal autoradiogram in Figure 7.14(a) it is observed that the segmented region actually
corresponds with the left side of the known functional structure Caudate Putamen.

In order to avoid premature halting of the region grower, a second condition has to
be fulfilled by Ck−1 to stop the region grower. As has been mentioned, the level of
statistical noise in the typical autoradiograms used here is significant, so there may be
some iterations, typically early on in the region growing process, where Ck is slightly
lower than Ck−1, sufficient to stop the region grower, but does not actually corresponds
with a functional region. This is why a second noise check condition to be fulfilled by
Ck−1 has been introduced: Ck−1 has to be above a certain threshold to actually be
considered. This threshold is σg+mg, where σg and mg are the standard deviation and
the mode of the gradient image G(i, j) respectively (considering in G(i, j) only those
pixels above zero).

Combination of termination criteria:

As has been mentioned, the termination criterion based on significant jumps on the
intensity histogram mode is evaluated every time the iteration index t is updated. The
rest of termination criteria are all evaluated one after the other when k is updated.
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(a) Original autoradiogram. (b) Gradient of original au-
toradiogram, G(i, j). The
image is grey scale inverted
for illustration purposes.

(c) Segmented region at k-1.

(d) Segmented region at k. (e) Gradient in the contour
at k-1, Ck−1. The image is
Gray scale inverted for illus-
tration purposes.

(f) Gradient in the contour
at k, Ck. The image is Gray
scale inverted for illustration
purposes.

Figure 7.14: Process of edge detection to halt the region grower.

The first one to be evaluated is the one that considers how many iterations of t have
happened between consecutive increases of k. Secondly the difference between consec-
utive region sizes is evaluated. Thirdly the edges of consecutive regions are evaluated
as explained above.

If only one of them considers that the region growing process has to stop, then it
stops. There is no priority established between them, thus the order in which they are
evaluated is not critical.

In order to segment the rest of the objects in the image, consecutive seed pixels are
located using the criterion of the next highest pixel value in the image excluding
those already segmented. This pixel needs to be a minimum distance of M pixels
(a value of 30 was used here) from the previously segmented regions to avoid over-
segmentation by growing regions too close. These regions consecutively segmented
comprise Ra = {Ra1, Ra2, ...Ran}, Ra being the final fully labelled image, n the total
number of segmented regions and Raθ each of the segmented regions. As has been men-
tioned, once Ra is obtained the autoradiogram is inverted in intensity and the process is
repeated exactly in the same way, producing now Rb = {Rb1, Rb2, ...Rbm}, Rb being the
final fully labelled image of the intensity inverted autoradiogram, m the total number
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of segmented regions and Rbθ each of the segmented regions.

7.3.5 Region Merging

Image segmentation algorithms often suffer from undersegmentation or oversegmenta-
tion because segmentation algorithms rely on relatively homogeneous textures. This
effect has also been observed in the studies undertaken in this work. Therefore a post-
processing step based on region merging is presented to obtain more robust image
segmentation results.

First the labelled images obtained after the segmentation of the original autoradiogram
(Ra) and the segmentation of the intensity-inverted autoradiogram (Rb) are combined.

The way the combination of Ra and Rb is undertaken is by considering the intersection
between regions in Ra and Rb. Denoting the final fully segmented image as Rl the
fusion initialises by setting Rl = Rb. Then the overlapping of each region of Ra with
Rl is studied. The following considerations are then taken:

1. If Raθ ∩Rl = ∅ then Rl = Rl ∪Raθ.

2. If Raθ ∩Rl 6= ∅ and N(Raθ ∩Rl) = 1, N(·) being the number of different regions
in the intersection, then Rl = Rl ∪Raθ.

3. If Raθ ∩Rl 6= ∅ and N(Raθ ∩Rl) > 1, then the proportion of overlapping between
both regions, Iab (Iab = Raθ ∩ Rbθ) with Raθ and with Rbθ, defined as p1 and p2

respectively, is computed as defined in equation 7.20:

p1 =

∑
i∈Iab

xi∑
i∈Raθ

xi
p2 =

∑
i∈Iab

xi∑
i∈Rbθ

xi
(7.20)

where
∑

i∈Iab xi represents the sum of the pixel values in Iab,
∑

i∈Raθ xi represents
the sum of the pixel values in Raθ and similarly with Rbθ. If p1 < 1% & p2 < 1%
then Iab is ignored. Otherwise Iab is merged to Raθ or Rbθ following equation
7.21: {

Raθ = Raθ ∪ Iab if µRa − µIab < µRb − µIab ⇒ Rl = Rl ∪Raθ
Rbθ = Rbθ ∪ Iab if µRa − µIab > µRb − µIab ⇒ Rl = Rl ∪Rbθ

(7.21)

where µIab is the mean of the pixels in the overlapped area Iab, µRa is the mean
of Raθ and µRb is the mean of Rbθ.

An example, where Ra intersects with two regions, Rb1 and Rb21 (N(Raθ∩Rl) = 2)
is shown in Figure 7.15. The intersection of Ra with Rb1 is shown in purple and
denoted by Iab1 in Figure 7.15(d). Similarly, the intersection of Ra with Rb2 is
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(a) (b) (c) (d) (e)

Figure 7.15: Rb = {Rb1,Rb2} (a), Ra = {Ra} (b), intersection of Ra and Rb (c),
intersection of Ra with Rb1 (Iab1) shown in purple (d) and intersection of Ra with Rb2
(Iab2) shown in purple (e).

shown in purple and denoted by Iab2 in Figure 7.15(e). Both regions, Iab1 and
Iab2, are independently evaluated as explained above.

A real example of a fusion of labelled (segmented) images is shown in Figure 7.16.
Figures 7.16(a) and 7.16(b) show the original and the intensity-inverted autoradiograms
respectively. Figure 7.16(c) shows the corresponding atlas image (Bregma -1.82 mm)
considered as the ground truth. Figures 7.16(d) and 7.16(e) show the corresponding
labelled images and Figure 7.16(f) shows the final fusioned labelled map.

(a) Original autoradiogram. (b) Intensity-inverted autoradio-
gram.

(c) Corresponding atlas image
(Bregma -1.82 mm).

(d) Labelled map of original au-
toradiogram.

(e) Labelled map of intensity-
inverted autoradiogram.

(f) Fusion of labelled maps.

Figure 7.16: The fusion of labelled maps (d) and (e) produces a more detailed labelled
map (segmentation) of the original autoradiogram (a).

This fusion results in an over-segmented autoradiogram. To obtain a more accurate
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segmentation some of these regions have to be merged. This has been undertaken
by evaluating the similarity between intensity histograms of adjacent regions in the
fusioned labelled image. The metric used in this work is the Dice similarity index
[47], based on the proportion of overlapping of intensity histograms. The percentage
of overlapping for two arbitrary regions Ra1 and Rb1, being their intensity histograms
h1 and h2 respectively, is defined in equation 7.22:

povl(%) = 2
∑
h1
⋂
h2∑

h1 + h2
100% (7.22)

This measurement will result in 1 for a perfect overlapping and 0 for a total absence of
overlapping.

In some cases where |Raθ| << |Rbθ|, | · | being the size of the corresponding region,
a direct comparison of h1 and h2 may not be appropriated due to the much higher
amount of samples in one histogram compared to the other. This problem has been
tackled in this work by considering only those pixels that comprise a sub-region of Rbθ,
denominated R′bθ, in close proximity of Raθ when this situation is given. In this way,
not only the histograms integrals are equal, but also it is assumed that those pixels
from the subregion of R′bθ show a more accurate similarity or dissimilarity measure with
Raθ. Figure 7.17 shows an example where |Raθ| << |Rbθ| and therefore a sub-region of
Rbθ shown in green (R′bθ) is used to calculate a more representative measure of povl(%)
(equation 7.22).

(a) (b)

Figure 7.17: Raθ and Rbθ where |Raθ| << |Rbθ| (a) and sub-region of Rbθ, R′bθ, with
similar size compared to Raθ (b).

After povl(%) has been computed for all those regions in contact in the merged labelled
map (Figure 7.16(f)), if povl(%) > p the corresponding regions will be merged, otherwise
they will remain separate, p being manually set in each experiment.

7.4 Validation

The performance of the segmentation algorithm is assessed measuring how often the
algorithm results in a correct decision, in order to predict how this will perform when
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used routinely. The issue here is that counting pixel regions as correct or incorrectly
segmented regions is too complex due to lack of absolute ground truth in a functional
biological image. We have used therefore a set of simple test simulated images where
the ground-truth and noise are known. The metrics used to evaluate the segmentation
technique presented here is based on measuring over-segmentation, under-segmentation
and missing regions depending on the noise added to the simulated image [26].

An initial 300x300 pixels test simulated image, shown in Figure 7.18(a), is comprised
of two different tissues (A and B) and a background. Tissue A is a 60 pixels radius
circumference centred in the test image, while tissue B represents a piece of tissue with
lower intensity value but larger in extension. The test image has been deliberately
corrupted adding Gaussian noise with different values of variance, representing the
typical statistical noise present in these kinds of imaging applications, and by blurring
the edges filtering the ideal image with a Gaussian spatial filter using different variance
values. Figures 7.18(b) and 7.18(c) represent the ideal image blurred with a σ=5 pixels
PSF and with additive Gaussian noise with µ=0 and σ=2 and σ=6 respectively. These
σ values are typically found in autoradiographic data.

(a) (b) (c)

Figure 7.18: Simulated noiseless image (a), simulated image blurred with a σ=5 PSF
and additive Gaussian noise (µ=0 and σ=2) (b)and simulated image blurred with a
σ=5 PSF and additive Gaussian noise (µ=0 and σ=6) (c).

These variance values used in the blurring process correspond to the system impulse
response, defined by the Point Spread Function (PSF), that are observed in the differ-
ent imaging modalities. In the case of autoradiography this blurring effect is mainly
due to the β particle mean range (∼0.3 µm for 3H, ∼13 µm for 14C and 35S) and by
the deposited charge diffusion process in the active layer of a digital imaging device.
Based on experimental work two different scenarios are considered here. For low en-
ergy radioisotopes, such as 3H, a σ=2 pixels has been used, and for medium energy
radioisotopes such as 14C and 35S, a σ=5 pixels has been used.

The assessment of this image segmentation algorithm is based on varying the Contrast-
to-Noise-Ratio (CNR) of the test image. Mean intensity values and noise values have
been directly measured in a variety of autoradiograms labelled with different radioiso-
topes to use real values in the assessment of the algorithm. The measure of the as-
sessment is based on the percentage of over-segmented and under-segmented pixels of
each tissue for different CNR values. The typical definition of CNR for an image with
uniform noise in the background, as is this case, is shown in 7.23. This equation is not
applicable in a real situation, where different values of noise (σ) are measured in every
different tissue (texture) and background, but this is not considered in the test image
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for simplicity of the validation.

CNR =
SAB
σbck

(7.23)

where SAB is the difference µA-µB, µA and µB being the mean intensities of ROIs in
tissues A and B respectively, and σbck is the standard deviation of the background,
considered as the noise. The Gaussian noise added to the test image has the same
variance for the three structures (tissue A, tissue B and background), therefore the
standard deviation measured in any of the regions is the same.

It is observed from equation 7.23 that the CNR depends on the difference of intensities
between the two tissues under study and the statistical noise present. In the approach
used in this work the difference of intensities between tissues is fixed to a value measured
directly from autoradiographic data, but the statistical noise is increased.

After manually measuring the intensity in some of our autoradiograms, the values used
for the assessment here are SAB=40 (tissues A and B) and SBbck=35 (tissues B and
background). The standard deviation measured in different regions of real autoradio-
graphic data varied from 8 down to 3 in some cases. In this work a range of 0.5 up to
10 has been analysed, resulting in a CNR range of 81.0 (σ=0.5) down to 4.0 (σ=10), as
observed in Figure 7.19. In Figure 7.20 the percentage of over-segmented and under-
segmented pixels are shown when segmenting tissue A and tissue B. Each combination
(PSF and σ) has been repeated over 30 times with different statistical noise realisa-
tions, therefore a statistical mean and ±σ for each combination has been obtained, as
shown in Figure 7.20 with error bars. Those error bars that show high ±σ for CNR<6
in Tissue B (shown in black in Figure 7.20(a) and in red in Figure 7.20(b)) represent
situations where either the region was barely segmented due to too much noise (Figure
7.20(a)), or where the segmentation completely leaked in the background tissue.

Figure 7.19: CNR measured between Tissue A and B (blue) and B and background
(red) with statistical noise σ.

In Figure 7.20(a) it is observed how Tissue A slightly suffers under-segmentation <15%
for low values of σ resulting from the blurring effect in the edges. As the noise increases
the blurring affect takes less importance, therefore the number of under-segmented
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(a) (b)

Figure 7.20: Percentage of under-segmented (left) and over-segmented (right) pixels
of segmentation of tissue A (green and blue) and tissue B (black and red). Note the
logarithmic scale in the abscissa axis.

pixels decreases. Tissue B suffers in some cases of under-segmentation for high values
of noise due to premature halts. In Figure 7.20(b) Tissue A never suffers of over-
segmentation, while Tissue B suffers of over-segmentation in some cases when σ >7.
In general this demonstrates how this approach is able to segment reliably data with
CNR≥6.

7.5 Results

Several autoradiograms have been used to assess the performance of this segmentation
algorithm. Only a few examples using different radioisotopes are presented here.

7.5.1 Iodine-125 labelled sections

Iodine-125 (125I) is a radioisotope of Iodine used in autoradiography to bind to nico-
tinic ligands, such as Epibatidine or α-Bungarotoxin, to study nicotinic acetylcholine
receptors (nAChRs) in brain. This radioisotope has not been mentioned previously in
this thesis work because it is not a β- emitter, it is a gamma emitter with a maximum
energy of 35 keV, some of which are internally converted to x-rays. Due to the large
density of these nAChRs receptors in brain, resulting autoradiographic data usually
shows a significant number of regions with high levels of uptake.

To demonstrate the ability of the region grower described in this chapter to segment
low CNR autoradiographic data the CNR of some manually drawn ROIs have been
measured. As mentioned before, the CNR described in equation 7.23 is not applicable
in this situation where the noise (σ) is different for different tissues. A widely used
alternative definition of CNR for cases where non-uniform noise is present in the image
is then used to measure the CNR between regions [160]. This definition is shown in
equation 7.24:
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CNR =
SAB√
σ2
A+σ2

B
2

(7.24)

where σA and σB are the standard deviation (i.e. noise) measured in each tissue A and
B respectively.

An example of a 125I-labelled autoradiogram, where the studied ROIs are indicated in
white boxes, is shown in Figure 7.21. The mean and standard deviation of those ROIs
are shown in the table next to the autoradiogram.

Figure 7.21: Autoradiogram of 125[I]-
epibatidine labelled brain section with ROIs
under analysis indicated in white boxes.

Region Mean Standard
Deviation

A 243 1.0
B 209 5.1
C 215 3.0
D 193 5.0
E 184 8.0
F 168 6.6
G 84 5.7
H 124 7.6

From those mean and standard deviation values shown in the above table, the resulting
CNR measured between some significant adjacent regions, measured following equation
7.24, are shown in Table 7.1.

Table 7.1: CNR values for the regions shown in Figure 7.21
CNRAB 9.2 CNRAC 12.5 CNRCD 5.3 CNREF 2.1 CNRGH 5.9

Figure 7.22 represents an example of an autoradiogram of 125[I]-epibatidine density
binding to α4β2 heteromeric nAChRs in a mouse brain section. This example shows
the resulting segmentation of the original autoradiogram and its intensity inverted
version. Observing the original autoradiogram (Figure 7.22(a)) it can be noted how
some structures have a counterpart in the atlas image (Figure 7.22(c)), and some other
structures do not, the reason being that atlases are created based on large data sets
of images to obtain a generic atlas. This means that in practise images will not fit
perfectly in to atlases.

Observing Figures 7.22(a) and 7.22(h) it can be identified how most of the brightest
structures in the autoradiogram are correctly segmented. It can also be observed that
those regions, where the CNR was measured in Figure 7.21, are successfully segmented.

This same autoradiogram was also segmented by an expert biologist following the same
criteria as if it was an usual experiment, using the atlas book as reference. The resulting
segmentation is shown in Figure 7.22(i). The name of those regions identified in Figure
7.22(i) are Periaqueductal Grey (PAG), Medial Geniculate Nucleus (MG), Interpe-
duncular Fossa (IPF), Medial Mammillary Nucleus (MM), Substantia Nigra (SNR),
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Fasciculus Retrofexlus (FR), Ventral Tegmental Area (VTA) and Medial Lemniscus
(ML).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.22: (a) Original autoradiogram of α4β2 nAChRs binding in a mouse brain sec-
tion (20 µm thick) labelled with 125[I]-epibatidine (0.1 nM), cut at the level of Bregma
-3.16 mm (b) original autoradiogram inverted, (c) corresponding atlas section, (d) re-
sulting segmented autoradiogram, (e) resulting segmented inverted autoradiogram, (f)
fusioned segmented autoradiograms (d) and (e), (g) fusioned segmented autoradiograms
after merging regions with higher similarity, (h) original autoradiogram with those re-
gions segmented delimited and (i) autoradiogram manually segmented by an expert
biologist.

Some observations can be extracted by comparing the resulting fully segmented au-
toradiogram of this segmentation process, shown in Figure 7.22(h), and that same
autoradiogram segmented by an expert biologist, shown in Figure 7.22(i).

First there are regions shown in Figure 7.22(i) clearly delineated based on the expe-
rience of the biologist that are not correctly identified by the segmentation process
presented in this chapter, such as those regions observed in the cortical area. The
region denominated as PAG does not show a distinct level of density ligand uptake
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compared to its background, thus being impossible to segment with the region grower.
The region denominated as FR is delineated but it is not possible to distinguish from
the VTA. The same happens with the region denominated as MG, which is correctly
delineated but again, it merges with the Optic Nerve Layer (Op) region indicated in
Figure 7.22(h). Those regions with clearly different levels of ligand density compared to
adjacent regions are perfectly delineated, such as the SNR, MM and IPF. Some regions
with low level of density ligand are also segmented such as the Dentate Gyrus (DG) or
other small regions regions such as the Oriens Layer of the Hippocampus (Or), Alveus
of the Hippocampus (alv), Stratum Radiatum of the Hippocampus (Rad) or Field CA1
of Hippocampus (CA1). Although these regions are not important for biologists they
will help in the registration process detailed in next chapter to obtain a more accurate
atlas warped on the autoradiogram.

In order to compare the manual segmentation and the automatic segmentation quan-
titatively the Dice similarity index between those regions that intersect has been com-
puted. In the specific case of the example shown in Figure 7.22, those regions denomi-
nated as MM, IPF and VTA+FR have been evaluated. The contour of the mentioned
regions manually segmented and the contour of the corresponding regions automatically
segmented by the region grower are shown in Figure 7.23.

Figure 7.23: Contour of manually segmented regions and regions automatically seg-
mented using the region grower with names of the regions indicated.

The Dice index, defined in equation 7.25, measured between those regions indicated in
Figure 7.23 is shown in table 7.2.

D = 2
A1 ∩A2

A1 +A2
(7.25)

Table 7.2: CNR values for the regions shown in Figure 7.23
Region Dice index

IPF 0.89
MM 0.71

VTA+FR 0.61

In this case only three regions were compared. The MM and IPF regions were inde-
pendently delineated by the expert and by the region grower, showing both a high Dice
index. VTA and FR were delineated independently by the expert but the ligand den-
sity was equally distributed on that area, thus being segmented as one single functional
area by the region grower. That is why the Dice index observed in Table 7.2 for the
region VTA+FR is lower than in the other two regions.
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7.5.2 Hydrogen-3 labelled sections

Selective Tritiated ligands are typically used to label receptors or transporters in the
brain; among others selective 3H ligands have been used to label various components
of the dopaminergic system in the brain (e.g. D1, D2 and Dopamine Transporters).
There is higher density of D1 receptors in Striatum regions of the brain compared to D2
receptors, therefore D1-labelled brain autoradiograms show brighter Striatum regions
than those D2-labelled autoradiograms, and concomitantly higher CNR.

Similarly to the previous example the mean and standard deviation of several ROIs are
also analysed, by manually placing these on significant regions of the original autora-
diogram as shown in Figure 7.24.

Figure 7.24: Autoradiogram of 3H-labelled
brain section with ROIs under analysis in-
dicated in white boxes.

Region Mean Standard
Deviation

A 153 6.7
B 141 5.9
C 116 6.3
D 82 5.0
E 85 5.0
F 70 4.3

Similar to the previous example, the CNR between some of the segmented regions
shown in Figure 7.24 are shown in Table 7.3:

Table 7.3: CNR values for the regions shown in Figure 7.24
CNRAB 1.9 CNRAC 5.6 CNRAD 12.0 CNRCE 5.4 CNREF 3.2

One example of an autoradiogram of mouse brain section labelled with 3[H]SCH2-
23390 to D1 receptors is shown in Figure 7.25. This section was cut at the level of
the Striatum (Bregma +0.62 mm) where high density of ligand binding to dopamine
D1 receptors is observed, specifically in the regions of the Caudate Putamen and the
Olfactory Tubercle. Figure 7.25(i) shows the resulting manual delineation by an expert
biologist, where the most important functional areas are indicated. These are the
Caudate Putamen (CPu), Olfactory Tubercle (Tu), Ventral Pallidum (VP), Cingulate
Cortex (Cg), Lateral Septal Nucleus (LSI and LSV) and Caudal Interstitial (CI) and
Dorsal Endopiriform Nucleus (DEn).

Comparing Figure 7.25(h) and 7.25(i) it is observed how regions Cg, LSI and LSD are
drawn based on experience, but they do not exhibit any change on ligand density, mak-
ing impossible for the region grower to segment. On the other hand, regions CPu, Tu
and VP are correctly delineated. The region denominated as CI+DEn is not delineated
although a slight level of ligand density can be observed. The CNR measured between

2Schering Plough 23990 binding bound with 3H
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CI+DEn and the background tissue with lower ligand density is 3.5. In this case this
CNR is too low to be segmented properly. It can also be observed how the Corpus Cal-
losum (cc), Lateral Ventricle (LV) and the anterior part of the Anterior Commissure
(aca), indicated in Figure 7.25(h), are segmented by the region grower. These regions
are not segmented by biologists because they lack of importance for the purposes of
their studies, but for the approach taken here all the regions have importance, for use
in the registration process explained in next chapter.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.25: (a) Original autoradiogram of a mouse brain section (20 µm thick) cut at
the level of the Striatum (Bregma +0.62 mm), labelled with 3[H]SCH-23390 (4 nM) to
D1 receptors, (b) original autoradiogram inverted, (c) corresponding atlas section, (d)
resulting segmented autoradiogram, (e) resulting segmented inverted autoradiogram,
(f) fusioned segmented autoradiograms (d) and (e), (g) fusioned segmented autoradio-
grams after merging regions with higher similarity, (h) original autoradiogram with
those regions segmented delimited and (i) autoradiogram manually segmented by an
expert biologist.

A similar quantitative comparison, compared to the previous example, has been un-
dertaken. In the specific case of the example shown in Figure 7.25, those regions de-
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nominated as CPu, VP and Tu in both hemispheres have been evaluated. The contour
of the mentioned regions manually segmented and the contour of the corresponding
regions automatically segmented by the region grower are shown in Figure 7.26.

Figure 7.26: Contour of manually segmented regions and regions automatically seg-
mented using the region grower with names of the regions indicated.

The Dice index measured between those regions indicated in Figure 7.26 is shown in
table 7.4. In this case these Dice indices show higher values compared to the previous
experiment. It is worth to mention that the region grower segmented the right CPu and
Tu regions as one single region, due to the equally distributed ligand over those regions,
showing no difference between regions. On the other hand a biologist is aware that
both regions correspond to different anatomical regions but same functional regions,
therefore they are delineated separately. This typical situation does not represent a
problem for the later registration process, as both regions will be considered as one,
and the warped atlas will define where is the limit between both anatomical regions.

Table 7.4: CNR values for the regions shown in Figure 7.26
Region Dice index

CPu (left) 0.93
VP (left) 0.83
Tu (left) 0.90

CPu+Tu (right) 0.92
VP (right) 0.73

7.5.3 Sulphur-35 labelled sections

Sulphur-35 (35S) is an isotope typically used to label, among others, the nucleotide lig-
and guanosine 5’-O-[γ-thio]triphosphate (GTPγS) resulting in the radioligand [35S]GTPγS.
This radioligand can be used to label the intracellular second messenger signal trans-
duction G protein. The high energy of 35S, compared to 3H, (average energy ∼49 keV
and maximum energy 167 keV) makes typical 35S-labelled autoradiographic data to
have intrinsically low spatial resolution, due to the high β electron range longer than
the other radioisotopes used in this work (10 µm for a 50 keV β electron, see Figure
6.19). An additional issue with this type of autoradiographic data is the fact that G
proteins show a widespread distribution of the protein in the brain, resulting in images
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with little difference of contrast between functional regions, being concomitantly more
difficult to segment.

As in previous experiments, several ROIs are manually drawn and analysed, as shown
in Figure 7.27. The mean and standard deviation of each indicated ROI are shown in
the Table next to the autoradiogram.

Figure 7.27: Autoradiogram of 35S-labelled
brain section with ROIs under analysis in-
dicated in white boxes.

Region Mean Standard
Deviation

A 156 4.9
B 137 7.3
C 143 4.9
D 114 6.0
E 81 5.4
F 110 5.5
G 96 7.0
H 121 4.6

From those mean and standard deviation values the CNR is obtained as shown in Table
7.5:

Table 7.5: CNR values for the regions shown in Figure 7.27
CNRAB 3.0 CNRCD 5.4 CNREF 5.2 CNRCF 6.3 CNRGH 4.0

One example of 35[S]GTPγS labelled mouse brain section (20 µm thick) autoradiogram
is shown in Figure 7.28. This example corresponds to an autoradiogram from the level
of the Hippocampus (Bregma -1.46 mm). High density of G proteins are observed in the
amygdaloid area and the hippocampal area. Figure 7.25(i) shows the resulting man-
ual delineation by an expert biologist, where the most important functional areas are
indicated. These are the Caudate Putamen (CPu), Hypothalamus (HYP), Amygdalae
(AM), Medial Amygdaloid Nucleus (ME), Lateral Globus Pallidus (LGP), Hippocam-
pus (HIP) and fields CA1 and CA3 of Hippocampus (CA1 and CA3), Ventromedial
Thalamic Nucleus (VM) and Paraventricular Thalamic Nucleus (PV).

Comparing Figure 7.28(h) and 7.28(i) it is observed how multitutde of regions, such
as CA1, CA3, HYP and ME among some examples, are drawn based on experience,
but they do not exhibit any change on ligand density, making impossible for the region
grower to segment. On the other hand, regions PV and AM in both hemispheres are
correctly delineated. In addition it can also be observed how the regions Internal Cap-
sule (ic) and the Supraoptic Nucleus (SOR), indicated in Figure 7.28(h), are segmented
by the region grower. Similarly to the previous case, these regions are not segmented
by biologists because they lack of importance for the purposes of their studies, but for
the approach taken here all the regions have importance, as the further registration
explained in next chapter is more accurate.

A similar quantitative comparison, compared to the previous examples, has been un-
dertaken. In the specific case of the example shown in Figure 7.28, those regions
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.28: (a) Original autoradiogram of a mouse brain section (20 µm thick) cut at
the level of the Hippocampus (Bregma -1.46 mm), labelled with [35S]GTPγS to G pro-
teins, (b) original autoradiogram inverted, (c) corresponding atlas section, (d) resulting
segmented autoradiogram, (e) resulting segmented inverted autoradiogram, (f) fusioned
segmented autoradiograms (d) and (e), (g) fusioned segmented autoradiograms after
merging regions with higher similarity, (h) original autoradiogram with those regions
segmented delimited and (i) autoradiogram manually segmented by an expert biologist.

denominated as PV and AM in both hemispheres have been evaluated. The contour
of the mentioned regions manually segmented and the contour of the corresponding
regions automatically segmented by the region grower are shown in Figure 7.29.

The Dice index measured between those regions indicated in Figure 7.29 is shown
in table 7.6. In this case these Dice indices show lower values compared to the two
previous experiments. In this example it was specially difficult to find regions similarly
segmented by the expert and by the region grower. It has been observed how 35S-
labelled ligands have lower specificity and worse spatial resolution (due to the longer β-
range) compared to 3H and 125I, resulting in specially low CNR autoradiograms. This
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Figure 7.29: Contour of manually segmented regions and regions automatically seg-
mented using the region grower with names of the regions indicated.

leads to higher disagreements with experts, as shown in Table 7.6.

Table 7.6: CNR values for the regions shown in Figure 7.29
Region Dice index

PV 0.59
AM (left) 0.63

AM (right) 0.49

7.6 Conclusions

A segmentation algorithm, based on region growing, devised to be applied to func-
tional data has been detailed in this chapter. The two main parts of this algorithm,
the similarity criterion and the termination criteria, have been widely described and
discussed.

It has been demonstrated how the similarity criterion is able to cope with high levels
of statistical noise, and concomitantly low levels of CNR between adjacent tissues, due
to its capability of dynamically adapting the region growing similarity criterion to the
amount of noise of the section. It has been demonstrated how using a test image the
region grower is able to segment robustly with levels of CNR down to ∼6.

A combination of termination criteria has been used to be able to halt the region grower
when a change of tissue texture or intensity, or a leaking situation are detected. Due to
the high statistical noise and the high amount of partial volumes this task was specially
difficult.

It can be observed from Tables 7.1 (125I), 7.3 (3H) and 7.5 (35S), that show the CNR
measured between some of the most significant functional structures in each experiment,
how the autoradiogram labelled with 35S shows the lowest values of CNR. This is related
with the lower specificity of 35S radioligands and with the longer β- range emitted by
35S. This effect degrades the spatial resolution of the autoradiogram.

The algorithm has been validated with a set of test images based on a phantom. By
modifying the statistical Gaussian noise the CNR was also modified in a controlled
manner. The edges were also blurred by using a Gaussian mask to simulate the edge
degradation resulting from the particle range. The result of the validation using the
phantom is that this algorithm is able to segment reliably the different regions of the
phantom with a maximum statistical noise σ <7, corresponding to a CNR'6.
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To assess the region grower quantitatively, an expert has delineated manually the ex-
amples shown here, and these manually delineated autoradiograms have been compared
with the resulting autoradiograms of the region grower. The Dice index between coun-
terpart regions has been computed in all the overlapping regions. These Dice indices
have shown high values for 3H and 125I, demonstrating high level of agreement between
the manual and the automatic segmentation. The Dice indices obtained with 35S were
lower compared to the other two cases, representing a higher level of disagreement be-
tween both methods. It was observed in all the cases that an expert usually appears to
under-segment the regions of interest to avoid incorrect measurements due to adjacent
regions with lower or higher levels of ligand density. This effect does not happen with
the region grower as it is able to detect blurry edges halting the region growing process
before it leaks in to an adjacent region.
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Chapter 8

Image Registration

8.1 Introduction

The final aim of autoradiography studies is to measure the absolute ligand concentra-
tion in internal brain structures. This is also known as Quantitative Autoradiography
(QAR).

QAR involves ROI analysis of the autoradiogram using an implied correspondence with
particular anatomical structures using a paper-based anatomical atlas [135]. Absolute
image quantification is achieved by simultaneously exposing the autoradiography film
to a set of calibrated microscales, and then expressing the digital values in each identi-
fied region in femtomoles per milligramme of ligand, using a video-based densitometry
system. This analysis can then be used in life science applications such as genetic
studies comparing knock out mice1 with wild mice2. This labour intensive process is
prone to systematic and random errors introduced by the user, because the delineation
of ROIs of the key anatomical structures of the brain, typically of complex shapes, is
undertaken be free-hand drawing. The aim of this study is to provide a method to
automatically register an autoradiogram with an atlas, thus speeding up the labour-
intensive process, avoiding quantisation labelling errors from manual segmentation and
making the final quantitative results more accurate.

8.2 Review on Image registration

Image registration is a very active area of research in medical imaging, combining im-
ages from the same subject acquired with different imaging modalities, each modality
showing information of a different nature such as functional and structural. The most
active sub-area in image registration is based on the idea of aligning two different acqui-
sitions from the same subject using different modalities, mainly combining functional
and structural modalities [112, 124, 163, 166, 165, 181]. The aim of this is to be able

1A knock out mouse is a genetically modified mouse that has suffered the subtraction of a gen to
see how this gen affects.

2A wild mouse is a mouse that has not suffered any genetic modification.
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to obtain an accurate location in the anatomy of an active functional area. This appli-
cation has broad application in diagnosis, pre-surgery planning or even during surgery.

Sometimes the images are acquired using the same modality from the same subject so
the aim of image registration in this case is the correction of motion artifacts between
the two images, because they were taken at different times (study of the evolution of
a lesion), or because the patient just moved (correction of breathing and heart motion
is a very active application) [21, 84, 169]. If these effects are not corrected they have
a significant impact on the final resolution of the images, having the organ or tumour
under study poorly delineated contours. In the case of Image Guided Radio Therapy
(IMRT), where the tumour contours have to be as accurate as possible to reduce the
dose delivered in healthy tissue, this is a critical problem [110, 146].

Some other times the images are obtained from different subjects with the same modal-
ity to create an atlas to be used as reference for future studies. There are many other
combinations, but what all of them have in common is the necessity of aligning (regis-
tering) those images.

There are many different registration approaches and many different classifications such
as [28, 174, 112, 68, 151]. The most extended classification criteria are presented here:

• Dimensionality. This criterion relies on the the dimensions (2D or 3D) of the
images to register. It can be included here the registration of more than two
images in time series. An example of 2D and 3D registration studies is shown in
Figure 8.1.

(a) (b)

Figure 8.1: Example of co-registered 2D SPECT-MRI images (a) and example of co-
registered 3D image of the brain (MR) and basal ganglia (PET-18F) (b) [85].

• Nature of registration. It can be extrinsic, with invasive (Figure 8.2(a)) or
non-invasive markers (Figure 8.2(b)), or intrinsic. Intrinsic registration can be
(1) based on anatomical or geometrical landmarks (Figure 8.2(d)), (2) based
on segmentation of rigid or deformable models (Figure 8.2(c)) or (3) based on
pixel/voxel properties.
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(a) (b) (c)

(d)

Figure 8.2: Examples of different landmarks used in medical image registration [8].
Screws are used as invasive markers as shown in (a). Cutaneous landmarks can also
be used as non-invasive markers (b). Anatomical structures, present in the source and
target images, can be also used as landmarks, given a previous segmentation of such
structures (c) as shown in this MR example. User defined or geometrical landmarks
are also used (d) as in this CT-PET registration example.

• Modalities involved. Registration can be undertaken with images obtained
from the same imaging modality (PET, SPECT, CT, MR, Autoradiography, Ul-
trasounds, Fluorescence, etc), i.e. monomodal, from different modalities, i.e.
multimodal or intermodal, modality to model, or patient to model.

• Subject. The registration can be undertaken with images obtained from the
same subject, i.e. intrasubject, from different subjects, i.e. intersubject or from
patient to atlas.

• Nature of transformation. Here four different categories can be distinguished
as shown in Figure 8.3. Rigid (the relative distances between points remains
constant), affine (parallel lines remain parallel but the distance between points
might change), projective (straight lines remain straight but the parallelism can
be lost) and curved transformation (straight lines can be mapped onto curves).
A lot of surveys classify these categories also as rigid and non-rigid techniques.

• Parameter determination. The transformation parameters can be obtained
using a direct method or search-oriented. A direct method computes the afore-
mentioned parameters based on corresponding points in the source and target
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(a) (b) (c) (d) (e)

Figure 8.3: Examples of 2D transformations [112]. (a) Original image, (b) rigid trans-
formation, (c) affine transformation, (d) projective transformation and (e) curved trans-
formation.

images, by interpolation or approximation, assuming that the problem is simple
enough to allow a straightforward calculation. A search-oriented method starts
from an initial guess, and based on a goodness-of-match or an energy function,
refines the transformation parameters using an optimisation algorithm.

Usually the dimensionality, the modality and the subject are imposed by the appli-
cation. The nature of registration and nature of transformation are the two main
subjects to study to solve a specific problem. The formal mathematical problem con-
sists of finding a transformation T to map one image (source image) to another (target
image). This can be a transformation of the position xA to xB or it can consider also
the intensity value of such position, i.e. A(xA) to B(xB) [68].

Historically image registration has often been considered as a rigid problem. Rigid
transformations only allow rotations and translations. This method is very simple but
it has very limited use. Usually this is only used for registration of intrasubject images
with anatomical regions with few degrees of freedom such as bones or brain (usually
considered as a rigid body because of the skull). Rigid registration allows for 3 degrees
of freedom in 2D (2 for translation and 1 for rotation) or 6 degrees of freedom for
3D (3 for translation and 3 for rotation). Due to the lack of accuracy using only rigid
registration, affine registration appeared to add scaling and shearing as transformations,
so differences of scaling across scanners or large differences of scale between subjects
could be corrected. For transformations involving 3D image data the number of degrees
of freedom is therefore increased to 12 (3 for translation, 3 for rotation, 3 for scaling
and 3 for shearing).

Biological tissues often have in general an important elastic component, therefore rigid
or affine approaches may provide limited accuracy when aligned. The challenging work
carried out at the moment by many groups involves non-rigid, also known as curved
or elastic, registration techniques [41]. The main advantage of this technique is its ca-
pability of matching local characteristics while maintaining continuity and smoothness
[68, 104].

Another component in a registration algorithm is the similarity measure used to as-
sess how well two images match. These can be decomposed into geometric approaches
and intensity approaches [41]. Intensity approaches match intensity patterns using
mathematical or statistical criteria, so they are based on the existence of an intensity
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relationship between the two images. Typical measures are squared differences, corre-
lation coefficient, measures based on optical flow and based on information theory, such
as the well know mutual information or the intensity independent normalised mutual
information. Mutual information was first defined by Shanon in the information theory
field (Telecommunications), but it was demonstrated later by Wells and Viola [179]
how mutual information has a lot of potential to be used in the medical imaging area.

Geometric approaches identify intrinsic or extrinsic landmarks in the two images to
be matched. After the corresponding landmarks have been identified interpolation
methods are used to warp the source image in a way that the landmarks match in the
source and the target images consistently. Radial basis functions in general, and thin-
plate splines and B-splines in particular, have to be mentioned due to their widespread
use as interpolators in medical imaging. The main difference of these two families of
splines is that thin-plate splines have infinite support (every basis function has global
effect), and B-splines local support (every basis function has local effect). This is
usually seen as an advantage in favour of the B-splines due to the better registration of
local deformations. Cubic B-splines are usually the choice when this approach is used,
due to low computational cost.

The needs of non-rigid registration in image-guided surgery is discussed in [66]. This
discussion leads to a conclusion where, due to the computational cost of traditional
elastic registration methods, the number of degrees of freedom has to be decreased. This
is undertaken by using motion modelling, statistical shape modelling or biomechanical
modelling. Motion modelling is based on the a-priori knowledge of the cyclic cardiac
and respiratory motions. Using this knowledge the deformations in the organs caused
by these sources of motion can be potentially corrected on real time [66].

Statistical shape modelling searches for a compact description of shape and its varia-
tions of organs across a population, using principal component analysis to study the
most important shape variations [39].

Biomechanical modelling is based on the transformation of an underlying structure
of the physical model. Elastic models treat the image as a linear elastic solid. This
way of addressing the problem is only valid for small deformations. To face large
deformations the elastic model is replaced by viscous fluid models. Physically-based
numerical methods are based on the interpretation of the source image as an elastic solid
or a viscous fluid where the deformations are controlled by applied forces [37]. Using
this approach, the image registration is obtained as the solution of partial differential
equations of continuum mechanics [60]. Due to the high level of elasticity provided
by viscous fluids and the limited elasticity of biological tissues, these models do not
always make biological sense, producing unnatural-looking results, particularly when
large deformations are suffered by the object under study.

8.2.1 Image registration in Autoradiography

Most of the image registration applications with autoradiographic data presented in the
literature are aimed at registering closely spaced two dimensional sections of the same
subject to form a three dimensional model [186, 92]. This provides 3D information of
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activation areas in brain autoradiography studies. An example obtained from [92] is
shown in Figure 8.4.

(a) (b) (c)

Figure 8.4: (a) Original autoradiograms used for 3D brain surface reconstruction. 3D
reconstruction before registration (b) and after registration (c).

A first approach to register autoradiographic images is to compute the centre of mass
and the minor and major axis. This approach based on the principal axes method
was first used by [67]. An improvement over this method was developed by [186] where
asymmetric, damaged and tilted autoradiographic sections are considered. This method
has two problems: one is that the selection of the control points at the boundaries to
be registered is manual; the second is that the alternative proposed for situations in
which the shape is not correctly detected (damaged sections) is intensity-based, which
makes it of limited application to intra-subject registration or between modalities with
an intensity linear relationship. Rigid body transformation was applied in [92] using
principal axes matching, and mutual information as similarity criterion, to create a
three dimensional reconstruction of a rat brain from serial autoradiographic sections.
To overcome the previous limitations, elastic registration was applied in [82] using
mutual information as part of a global cost function, with thin-plate splines to register
2D autoradiographic images with video block face images3. In [113] a registration
of autoradiographic images and fMR images is implemented to compare the different
activation regions in symian brains. In this case a block matching algorithm (intensity
based) is used obtaining a 3-D reconstruction of serial 2-D autoradiographic slices and
a registration of this with an fMR brain volume in one single process.

All the published work so far to the best of the author’s knowledge, using registration in
autoradiography images has considered only intra-subject or inter-subject registration.
Atlas registration is well documented in other modalities such as PET [4, 49] and
MR [62, 45], but hitherto remains completely unexplored in autoradiography. Existing
atlases used in other modalities are typically created registering images from different
subjects, acquired with a given modality, sufficient to consider that a high percentage
of the population is well represented. Then a statistical atlas is created by averaging
the position of each organ or biological structure, thus intensity information is usually

3Reference video images
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available. This fact offers the opportunity of using a wide variety of different registration
approaches. This is not the case in autoradiography, where the aforementioned available
atlas [135] lacks intensity information, and contains only boundary information, as
observed in Figure 8.5. This limits the number of alternatives that can be used for the
purpose of this application.

Figure 8.5: Stack with several exemplar atlas sections.

8.3 Pre-registration: Affine registration

As mentioned in Section 8.1, the aim of this work in this chapter is to provide a method
to enhance throughput in autoradiography by developing an automated atlas-based
registration. The first step in this registration process, as in most of the approaches
found in the literature, is a global affine registration where global descriptors, such as
centre of mass and principal axes, are aligned. A principal axes transformation [5], also
considering scaling, is applied here. In this work five degrees of freedom are considered:
rotation (1), translation (2) and scaling (2). The shearing effect is not considered here
because visually it is seen to be negligible.

The centroid, the major and minor axes and the angle of rotation, defined as the angle
between the major axis and the horizontal axis, of both the autoradiogram and the
template are first obtained.

Then the transformation presented in matrix form, defined by equation 8.1, is applied
to the atlas section, as this is the source image.

(
x′

y′

)
=
(
sxcos(α) −sxsin(α)
sysin(α) sycos(α)

)(
x
y

)
+
(
tx
ty

)
(8.1)

where x and y are the initial coordinates, sx and sy are the scaling factors in the x and y
directions respectively, α is the rotation angle, tx and ty are the translational factors in
the x and y directions respectively and x′ and y′ are the final coordinates. An example
of this first step applied to an autoradiogram (target image) and its corresponding atlas
image (source image) is shown in Figure 8.6.
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Figure 8.6: Affine registration of the autoradiogram and the slice of the atlas corre-
sponding to that brain section (Bregma -1.70 mm). Some areas of poor correspondence
are indicated by the arrows.

Non-linear deformations observed in the autoradiograms are produced during the cut-
ting process of the tissue sections during sample preparation. This causes non-linear
deformations and even loss of cortical regions. Moreover, as the source image is a syn-
thetic atlas image, it is quite likely that key structures of the brain will fail to align with
counterpart regions in the atlas following global rigid-body registration. For these rea-
sons brain imagery from autoradiography has to be considered as soft (i.e. deformable)
tissue. This is why affine registration has proved to yield limited precision.

8.4 Refined registration: Non-rigid registration

The second approach that has been considered to refine the registration is based in a
special class of non-rigid elastic transformations, which allows the surfaces to be locally
deformed, with smoothness constraints to maintain continuity.

The approach used in this work to obtain a similarity measure is the geometric ap-
proach, given that the atlas used (see Figure 8.5) does not provide any kind of intensity
information thus ruling out an intensity based similarity measure. The intrinsic land-
marks used here are comprised of a set of automatically selected geometrical landmarks
and a set of anatomical regions present in the source and target images.

This problem has therefore been tackled by interpolation of landmarks. The whole
registration problem thus can be divided in three main steps [150].

• Extraction of landmarks. The landmarks, in this work, are subdivided in two dif-
ferent sets. First geometrical landmarks are selected that represent strategically
well suited control points in the external contour of the image. Secondly, a set
of anatomical landmarks are those internal key structures that are identifiable in
the autoradiogram as well as in the corresponding atlas image. These key struc-
tures are automatically segmented as those areas in the autoradiogram with the
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highest and lowest levels of uptake, corresponding with the brightest and darkest
regions respectively (assuming that high intensity values in the image represent
high level of radioactivity and vice versa). This information is taken from the
previous segmentation produced in Chapter 7.

• Establishing correspondence between landmarks. The segmented landmarks cor-
respond to certain structures in the brain architecture. This correspondence is
undertaken manually by the user, but could be undertaken automatically looking
for combinations of local structures in the area of the segmented region. This
assumes that the initial affine registration brought the segmented region and its
combination of structures in the atlas into some level of close proximity.

• Computing the transformation. Once the correspondence between the two datasets
has been found a transformation is applied to the atlas to warp the atlas onto the
autoradiogram.

8.4.1 Selection of geometrical landmarks

The contours of the autoradiogram and atlas present typically significant differences,
the atlas having a smooth boundary and the autoradiogram boundary being noisy and
highly tortuous. This difference is partly caused by the stresses induced by slicing the
sections.

Contour smoothing: To address this problem, before selecting the geometrical
landmarks, the segmented autoradiogram boundary is smoothed using cubic splines
[103]. For this purpose M equidistant points are automatically selected from the con-
tour to interpolate with the cubic splines. Depending on the distance between points,
the boundary will be more or less smoothed, obtaining a smoother contour when further
control points are selected, as can be observed in Figure 8.7. Here a smoother boundary
is observed in Figure 8.7(c) with a contour distance (length along the contour between
two consecutive points) between control points of 80 pixels, compared to that observed
in Figure 8.7(b) with a contour distance between control points of 40 pixels.

Location of geometrical landmarks: After smoothing the contour of the au-
toradiogram the geometrical landmarks are automatically selected in the atlas image.
These control points correspond to the junctions where the outer boundary of the atlas
has physical contact with the delimiters of the regions in the cortex, as shown in Figure
8.8(a) with circles in the outer boundary. These control points are selected based on
the assumption that after applying the elastic registration, the continuity of these con-
tours of the structures in the cortex with the outer boundary will be preserved. Once
these N control points on the atlas contour have been automatically located, their
corresponding control points in the autoradiogram are automatically selected. These
are selected as the physically closest points from the autoradiogram contour, as shown
in Figure 8.8(b) with circles in the autoradiogram contour, to the previously located
control points in the atlas contour. These two sets of control points will help to match
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(a) Original boundary (b) Smoothed boundary using
M=40

(c) Smoothed boundary using
M=80

Figure 8.7: Original boundary (a), smoothed boundary using a distance of 40 pixels
between points (b) and smoothed boundary using a distance of 80 pixels between points
(c).

the internal structures of the atlas onto the autoradiogram considering the deformed
external contour.

(a) (b)

Figure 8.8: Atlas (a) and autoradiogram (b) with the points selected to be used as
geometrical landmarks marked with circles.

The result of registering both contours, using the geometrical landmarks shown in
Figures 8.8(a) and 8.8(b), using linear radial functions (detailed in Section 8.4.5), is
shown in Figure 8.9(b). For comparison purposes the atlas and autoradiogram regis-
tered using only an affine registration is shown in Figure 8.9(a). Comparing Figures
8.9(a) and 8.9(b) it can be observed how the atlas contour fits more accurately with
the autoradiogram contour after the elastic registration of the atlas contour.

8.4.2 Selection of biological landmarks

The biological landmarks used in this work are derived from using the previous scene-
based segmentation of key functional structures of the autoradiograms. The segmen-
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(a) (b)

Figure 8.9: Atlas and autoradiogram registered after affine registration (a) and after
elastic deformation of the contour (b). Note how only the atlas contour fits more
accurately on the autoradiogram contour, but significant registration errors are still
observed in the internal structures.

tation process has been thoroughly described in Chapter 7.

As a first approach, the landmarks used for the registration of the internal structures
of the autoradiogram were the centres of mass of each segmented region. Therefore the
interpolation was undertaken using n landmarks, n being the total number of segmented
regions. This approach resulted in a better local alignment of the internal structures of
the autoradiogram with the atlas compared to just an affine registration. Nevertheless,
due to the high elasticity of the brain tissue sections and the concomitant significant
distortion produced by the cutting process, the boundary of the segmented internal
regions used as landmarks did not perfectly match the boundary of the corresponding
regions in the atlas.

To tackle this problem a second approach was considered. This second approach uses
a set of m control points in the boundary of each segmented internal region, and the
corresponding m control points in the atlas, as sets of landmarks to obtain a more
accurate registration.

Once a set of regions A (equation 8.2) has been automatically segmented in the au-
toradiogram, and the corresponding regions have been manually identified in the atlas
counterpart B (equation 8.3), the contour of each region is extracted.

A = {A1, A2, . . . An} Ai = {ai1, ai2, ai3, . . . aim} (8.2)

B = {B1, B2, . . . Bn} Bi = {bi1, bi2, bi3, . . . bim} (8.3)

A set of control nodes ai is extracted from each contour in each segmented region of
the autoradiogram Ai (equation 8.2), i being the region being processed and m the
number of control nodes in the contour. An identical procedure is followed for the
corresponding region of the atlas Bi (equation 8.3), producing a second set of control
points bi. The number of control nodes selected for each contour m, identical for both
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sets Ai and Bi, is proportional to the length of the contour. The heuristic criterion is to
set a point from the contour as control point every 20 pixels along the contour. If the
total number of control points extracted from a certain contour is less than 6 control
points because it is too short, then the distance between control points is reduced to
10 pixels instead of 20 pixels.

To obtain a better description of the contour shape, some points where maximum
curvature of the contour is measured are also used as control points. The curvature is
measured as shown in equation 8.4:

c =

√
t2x t2y
s

(8.4)

where tx and ty are defined by equation 8.5, x′ and y′ are the gradient of the x co-
ordinates and the y coordinates respectively, and parameter s is defined by equation
8.6:

tx =
x′

s
ty =

y′

s
(8.5) s =

√
x′2 + y′2 (8.6)

The curvature of a point in a curve is usually measured as how its coordinates change
related to its two adjacent points. Contour shapes in this work do not present acute
angles. Therefore the way of measuring the curvature has been modified to obtain a
more accurate detection of points with high curvature in the contour shape. Instead
of considering the two adjacent points of each point, the two equidistant points at five
pixels of distance by each side has been used. Using this method the 20 pixels with
largest curvature of the contour are extracted and included in the set of control points
Ai.

Figure 8.10 shows an example of an original autoradiogram with one of the segmented
regions highlighted in Figure 8.10(a), the wireframe image of the corresponding bregma
in Figure 8.10(b) and the labelled wireframe atlas image in Figure 8.10(c).

(a) (b) (c)

Figure 8.10: Original autoradiogram with one region under study delineated (a), wire-
frame image of corresponding bregma -1.82 mm (b) and labelled wireframe image (c).
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After extracting Ai for a specific autoradiogram region, the way the control nodes
are extracted from the contour in the corresponding atlas region, defined by Bi, is
very important, as it has to keep maximum proximity between pairs of control points
(ai1 with bi1, ai2 with bi2 and so on), it has to maintain the one-to-one property of
the warping transformation and at the same time it has to describe the contour as
accurate as possible. If after the initial affine registration there still exists a significant
missalignment between the internal structures in the autoradiogram under study and
the corresponding regions in the atlas, the control nodes will not properly describe the
contour of the atlas region. Besides there will be situations where the distance between
consecutive control points along the contour is too large to describe properly the atlas
contour.

Another problem that may occur is too close control points corresponding to two dif-
ferent structures. Given two different structures in the autoradiogram A1 and A2, and
their corresponding set of control points, {a11, a12, a13 . . . , a1m} and {a21, a22, a23 . . . , a2m}
respectively, if a given a1t (belonging to A1) is too close to another a2t (belonging to
A2) this situation could result in an unexpected behaviour in the data interpolator.

To solve these two problems each set of control points is post-processed to obtain an
accurate representation of the contour of each region while avoiding over-crowding of
control points along the contour. This is achieved by limiting the maximum contour
distance between adjacent control points along the region contour ait and ait+1, and
also by limiting the minimum straight distance between control points from adjacent
functional structures A1 and A2.

1. The first condition establishes that if between two consecutive control points along
the contour the distance exceeds the maximum distance allowed, h consecutive
control points in each side of the gap will be displaced in order to reduce that
gap. In other words, the contour will be stretched to better describe the original
contour of the region under study. The maximum distance along the contour
allowed between consecutive control points is the mean contour distance between
consecutive control points in the entire contour plus one standard deviation. The
number of control points displaced when this situation is given (h), has been
chosen arbitrarily as three for each side (total of six control points) for all the
experiments shown in this work.

2. The second condition establishes that if the straight distance between two control
points, a1t and a2t, belonging to two different functional regions, A1 and A2, is
too close, then these control points are ignored by the subsequent interpolation
process. This minimum distance has been set to five pixels for all the experiments
shown in this work.

An example of the first problem described above using real data is shown in Figure 8.11.
Figures 8.11(a) and 8.11(b) show the contour of the segmented region, corresponding to
the Corpus Callosum of the mouse brain, and the corresponding set of 128 equidistant
control points respectively. Figure 8.11(c) represents the contour of the corresponding
region in the atlas. The resulting control points from the atlas contour, extracted with
maximum spatial proximity to the control nodes of the autoradiogram (Figure 8.11(b)),
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are shown in Figure 8.11(d). Large gaps of distance between consecutive control points
are indicated with red circles. The result of post-processing the set of control points
from the atlas contour, reducing significant gaps between adjacent control points, is
indicated with arrows in the resulting Figure 8.11(e), where these gaps are reduced by
stretching the adjacent six control points per gap (3 control points per side).

(a) (b)

(c) (d)

(e)

Figure 8.11: Contour of segmented region corresponding to the Corpus Callosum of the
mouse brain (a), corresponding set of 128 equidistant control points (b), corresponding
atlas region (c) and corresponding set of 128 control points obtained from the atlas,
showing large gaps between consecutive control points indicated with red circles (d).
Figure (e) shows the final set of control points from the atlas after correcting significant
gaps between consecutive control points indicated with arrows (e).

This process is repeated for every segmented region in the autoradiogram. The control
nodes of each region are accumulated to be used in the final interpolation of all the
control nodes as described in the Section 8.4.3.

8.4.3 Scattered Data Interpolators

The problem of registration is viewed as a problem of interpolation in this work. This
can be used to predict values at locations where there is no recorded observation on a
surface or to deform surfaces. The latter is the case used in this study.

Having a set of control points in an image defined by x, with coordinates in 2D (x,
y), and their associated desired final coordinates (x’, y’ ), it is necessary to find a
transformation function f(x) which translates all the points, that are not control points,
to a new position x’ (x’, y’ ). These functions, better known as interpolators, have
to fulfil some constraints to obtain satisfactory results. Among the most important
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constrains are the fact that the control points have to be exactly moved to their final
coordinates, in other case they would be called approximators instead of interpolators,
and the final result must be smooth providing continuity in the surfaces.

In this work three different approaches are considered: The Inverse Distance Weighted
algorithm (IDW), Radial Basis Functions based algorithms (RBFs) and B-Splines func-
tions.

8.4.4 Inverse Distance Weighted

The Inverse Distance Weighted method is based on the assumption that the interpolat-
ing curve is more influenced by nearby control points than by more distant points. The
predicted value of a point is computed from the value of its neighbours. The classical
formula of the IDW interpolator, sometimes called Shephard’s method, is shown in
equation 8.7 [156].

f(x) =
n∑
i=1

wi(x)xi (8.7)

where n is the number of scattered points available to calculate the deformation field
to apply to the source image, wi(x) is the weight dependent on the distance between
the interpolation point to calculate x and the scatter point xi as shown in equation
8.8. The classical form of the weight function is shown in equation 8.8, where σi(x ) is
defined by equation 8.9.

wi(x) =
σi(x)∑n
j=1 σj(x)

(8.8) σi(x) =
1

(di(x))µ
(8.9)

being di(x) the euclidean distance between the interpolation point to estimate x and the
scatter point xi. The parameter µ is the significance of the surrounding points around
the interpolated value and controls the smoothness. The parameter µ > 1 assures
the continuity of the first derivative (which keeps the continuity of the transformation
function f(x)), a value of 1.5 is visually valid for us. In this special case the differences
between boundaries have to be considered.

Applying such deformations in the inner regions of the atlas, a combination of forces
induced by the aforementioned landmarks and the points from the contour, produces
a better match to the external contour and the internal structures. Ensuring this
correspondence occurs robustly is a key goal of this work to ensure that reliable analysis
can be undertaken using subsequent anatomically defined ROIs.

8.4.5 Radial Basis Functions interpolators

Another approach to scattered data interpolation is to create the interpolator, having n
sites with initial coordinates {tn} : ti = (xi, yi) and final coordinates {fn} : fi = (x′i, y

′
i)
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for two dimensions, as a linear combination of radial functions f(x). Then the resulting
interpolator function is described by equation 8.10 [104].

f(x) = pm(x) +
n∑
i=1

λiφ(||x− xi||) (8.10)

where pm is a low degree polynomial, λi is a set of coefficients to be computed, || · ||
denotes the Euclidean norm and φ(x) is the radial function (called radial because the
argument is the distance between two points x and xi). Some popular choices of this
function are given below:

φ(x) = x (Linear)
φ(x) = x2log(x) (Thin− plate spline)
φ(x) = e−x

2/2σ2
(Gaussian)

φ(x) = (x2 + c2)1/2 (Multiquadratic)
φ(x) = Ik(1− x)bd/2c+k+1(x) (Wendland)


(8.11)

where σ is the standard deviation of the Gaussian function, c in the multiquadratic
function is a positive constant and the Wendland function is described below.

The choice of RBF determines the characteristics of the transformation f(x). The main
properties of the RBFs are locality, solvability and efficiency [55]. Locality defines if the
function has local or global support, this is if the transformation for a certain point only
affects those surrounding points or all the points in the image respectively. Solvability
defines if the linear equation system that needs to be solved (see below) can be solved,
i.e. the matrices involved in the matrix system that has to be solved are non-singular
(the inverse can be computed). Efficiency depends on the dimension (2D or 3D) and
the size of the data set that has to be handled. It is also an important feature if the
matrix system that has to be solved is comprised of sparse or dense matrices.

The first four RBFs shown in equation 8.11 have infinite support, i.e. the addition or
modification of one single pair of control points will affect the entire transformation
function f(x). As opposed to functions with infinite support, the Wendland function
has local support, as it is defined only inside a user defined radius a, as shown in
equation 8.12:

φ(x) =
{
p(x) 0≤x≤a;
0 x>a

(8.12)

where p(x), also written as pd,k(x), is a univariate function that depends on the space
dimension d (2 for 2D and 3 for 3D) and on a smoothness factor k. The form of pd,k(x)
is defined in equation 8.13:

pd,k(x) = Ik(1− x)bd/2c+k+1
+ (x) (8.13)
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where Ik is the integral operator applied k times and the subscript + means that the
function is only defined inside the circle of radius a as mentioned previously, as shown
in equation 8.14:

(1− x)ν+ =
{

(1− x)ν 0≤x≤a;
0 x>a

(8.14)

The function pd,k(x) for different values of smoothness k is shown in Table 8.1 [180]:

Table 8.1: Explicit formula of Wendland’s functions
pd,0(x) = (1− x)d+ k=0

pd,1(x) = (1− x)(d+1)
+ [(d+ 1)x+ 1] k=1

pd,2(x) = (1− x)(d+2)
+ [(d2 + 4d+ 3)x2 + (3d+ 6)x+ 3] k=2

The Wendland function is not differentiable at x = 0 for k = 0, therefore it is not
smooth. To keep the function pd,k(x) with small degree, not to deprecate the efficiency
of the algorithm, k = 1 is chosen as smoothness degree. The specific case of this work is
2D, therefore d = 2. The function pd,k(x) used in this work is p2,1(x) = (1−x)3(3x+1),
therefore φ(x) is defined as shown in equation 8.15:

φ(x) =
{

(1− x)3(3x+ 1) 0≤x≤a;
0 x>a

(8.15)

From the general equation for RBFs (equation 8.10), a general solution for the low
degree polynomial, pm, is a linear combination of monomials defined by equation 8.16
[104].

pm(x) =
M∑
i=1

aigi(x) (8.16)

where M is the dimension of the space where the monomials are defined [150], defined
by equation 8.17, and gi(x) is described by equation 8.18 [24].

M =
(d+m− 1)!
(d!(m− 1)!)

(8.17)

where m is the order of the derivative function to be minimised to obtain the resulting
interpolator funtion 8.10 [150]. In this work m has been set to 2 for conveniency.

g1(x) = 1 g2(x) = x g3(x) = y (8.18)

being x and y the initial coordinates of the n known sites. For 2D images M=3.
This imposes the minimum number of landmarks to use, hence at least 3 non colinear
landmarks have to be supplied.
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The coefficients λi from equation 8.10 are obtained from the constraint that the values
of the function at the control points, f(xi), are known so n linear equations can be used
as described by the linear system in equation 8.19.

(
A Q
Q′ 0

)(
λ
a

)
=
(
f
0

)
(8.19)

where A is a matrix comprised of the radial basis function between each couple of
control points as shown in equation 8.20:

A =


0 φ(||x1 − x2||) φ(||x1 − x3||) · · · φ(||x1 − xn||)

φ(||x2 − x1||) 0 φ(||x2 − x3||) · · · φ(||x2 − xn||)
...

...
...

. . .
...

φ(||xn − x1||) φ(||xn − x2||) φ(||xn − x3||) · · · 0

 (8.20)

Q is a matrix with the initial coordinates, λ and a are the coefficients of the radial
functions and the monomials respectively and f is a matrix with the final coordinates.
These are defined by 8.21, 8.22 and 8.23 respectively.

Q =


1 x1 y1

1 x2 y2
...

...
...

1 xn yn

 (8.21)

λ =
(
λ1, λ2, · · · , λn

)T (8.22)

a =
(
a1, a2, · · · , aM

)T (8.23)

The dimensions of the system are as shown in 8.24:

(
nxn nxM
Mxn MxM

)(
nx1
Mx1

)
=
(
nxM − 1
MxM − 1

)
(8.24)

The final linear system of equations is fully described for a 2D case (M=3) as follows:



0 φ(||x1 − x2||) φ(||x1 − x3||) · · · φ(||x1 − xn||) 1 x1 y1

φ(||x2 − x1||) 0 φ(||x2 − x3||) · · · φ(||x2 − xn||) 1 x2 y2
...

...
...

. . .
...

...
...

...
φ(||xn − x1||) φ(||xn − x2||) φ(||xn − x3||) · · · 0 1 xn yn

1 1 1 . . . 1 0 0 0
x1 x2 x3 . . . xn 0 0 0
y1 y2 y3 . . . yn 0 0 0





λ1

λ2
...
λn
a1

a2

a3


=



f(x1, y1)
f(x2, y2)

...
f(xn, yn)

0
0
0


(8.25)
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After obtaining the λ and a coefficients, by inverting the matrix on the left hand side in
equation 8.19, all the points of the image are evaluated with the obtained f(x) function
obtaining the transformed image. To solve the typical system of linear equations in
Matlab, defined in matrix form by Ax = b, is typically using the command x = A \ b.
This approach to invert the system and obtain x employs LU factorisation, also known
as Gaussian elimination.

8.4.6 B-Splines interpolators

B-Splines approximation techniques are a very popular approach due to its local support
and the high efficiency of these functions. The approach in this work is to use B-Splines
functions as interpolators. The most popular B-Spline is the cubic B-Spline because it
gives a well accepted level of smoothness keeping the function simple, to obtain high
computational efficiency.

To clarify the terminology, for the different interpolators detailed above, control points
refer to the initial scattered data set of points with known initial and final position.
B-Splines theory refers as control points to those points that comprise an overlying
uniform lattice φ. Those points with known initial and final positions are simply
defined as initial data set of scattered data points x.

The basic idea is, given a set of scattered data points x, to find a transformation func-
tion f(x), as mentioned above. While for the previous interpolators the interpolating
function is continuous, i.e. it is defined in every point of the space, the main differ-
ence with B-Splines is that the transformation function is only defined in some specific
control points that cover the entire space forming an overlying lattice defined by φ [93].

Let φij be the value of the ijth control point on the lattice, located at (i, j). The
interpolation function in an arbitrary point (xw, yz), at euclidean coordinates (w, z), is
defined by equation 8.26:

f(xw, yz) =
3∑

k=0

3∑
l=0

Bk(s)Bl(t)φ(i+k)(j+l) (8.26)

where i = bxc − 1, j = byc − 1, s = x − bxc, t = y − byc, Bk and Bl are uniform
cubic B-Splines, defined by equation 8.27, and shown in Figure 8.12, φ(i+k)(j+l) are the
16 control points surrounding (xw, yz) as shown in Figure 8.13 and bc represents the
lower integer after rounding. This represents the locality of this B-Spline, and can be
extended by increasing the degree of the B-Spline, i.e. considering more control points
around (xw, yz).

B0(t) = (1− t)3/6 −2 ≤ t < −1
B1(t) = (3t3 − 6t2 + 4)/6 −1 ≤ t ≤ 0
B2(t) = (−3t3 + 3t2 + 3t+ 1)/6 0 ≤ t ≤ 1
B3(t) = t3/6 1 < t ≤ 2


(8.27)
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Bk and Bl weight the contribution of each control point to f(x, y) depending on the
distance t.

Figure 8.12: Cubic B-Spline defined by
equation 8.27.

Figure 8.13: Lattice of control points φ. A
scattered point (xw, yz) is shown in red with
its corresponding 16 neighbouring control
points surrounded by a dashed red square.

With this formulation the problem is reduced to solve the value of the control points that
comprise the lattice φ. To do this it is known that a landmark from the original frame
(xw, yz), belonging to the initial set of scattered landmarks x, has to be transformed
to the known new location (x′w, y

′
z) using the B-Spline interpolator shown in equations

8.28 and 8.29 for xw and yz respectively.

x′w =
3∑

k=0

3∑
l=0

Bklφkl (8.28)

y′z =
3∑

k=0

3∑
l=0

Bklφkl (8.29)

where Bkl is (Bk(s)Bl(t)) the B-Spline function corresponding to the local control point
at location (k, l) on the lattice, out of the 16 neighbour control points of a specific land-
mark (xw, yz). The problem of solving the value for the control points on the lattice φ
is undertaken for the x and y coordinates independently, therefore there are two lat-
tices implemented, φx and φy. The values for φklx and φkly are obtained by minimising∑3

k=0

∑3
l=0 φ

2
kl in equations 8.28 and 8.29 respectively, resulting in equations 8.30 and

8.31 respectively [93]:

φklx =
Bklx

′
w∑3

a=0

∑3
b=0B

2
ab

(8.30)

φkly =
Bkly

′
z∑3

a=0

∑3
b=0B

2
ab

(8.31)

Bkl will be different for each coordinate, x and y, because it depends on the distance
t between the point (xw, yz) and the klth control point on the lattice in each direction
independently.
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If the points belonging to the initial set of scattered points x are too close it is very
likely that there will be cases where one single control point on the lattice φkl is affected
by more than one scattered point in x. In other words, their neighbourhoods comprised
of 16 control points are overlapped, as shown in Figure 8.14.

Figure 8.14: Lattice of control points φ with two scattered points (xw, yz) and (xs, ym)
showing overlapped neighbouring regions. The overlapping control points on the lattice
are shown in green.

This situation leads to an error in φij . This error can be defined as the difference be-
tween the final value, after considering the contribution of all the surrounding scattered
data points (φij), and the expected value if only one scattered data point is considered
(φc), shown in equation 8.32:

e(φij) =
∑
c

(ωcφij − ωcφc)2 (8.32)

To minimise this error e(φij) equation 8.32 is differentiated with respect to φij , resulting
in equation 8.33.

φij =
∑

c ω
2
cφc∑

c ω
2
c

(8.33)

After computing the values of all the control points from the entire lattice φ, equation
8.26 is applied to all the scattered data points x. Due to the aforementioned error
e(φij) the final positions of the initial scattered data points will not coincide with the
known final positions. Therefore, in this specific situation where scattered data points
are too close and surrounding areas of control points overlap, B-Splines work as an
approximator instead of an interpolator. This error, and therefore reduced registration
accuracy, increases when increasing the distance between control points in the lattice,
as it is more likely that areas of control points overlap.

8.5 Results

To be able to observe the differences between different interpolators a mouse brain
section with relatively simple internal structure has been chosen. This is a mouse
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brain section labelled with 3[H]SCH-23390 cut at the level of the Striatum that shows
high levels of ligand uptake in the Caudate Putamen (CPu) and Olfactory Tubercle
(Tu), medium levels of ligand uptake in the Ventral Pallidum (VP), in the Dorsal
Endopiriform (DEng) and in the Cingulate Cortex (Cg) and low levels in the Corpus
Callosum (cc), the Anterior Commissure (aca) and Lateral Ventricle (LV) (see Figure
8.15(a)).

(a) (b)

(c) (d) (e)

Figure 8.15: Original autoradiogram of mouse brain section with regions with high,
medium and low level of radioligand uptake delineated after segmentation (a), corre-
sponding atlas regions (b), control points of the segmented autoradiogram regions (c),
initial control points of the corresponding atlas regions (d) and post-processed control
points of the atlas regions.

The regions that have been successfully segmented are the CPu, Tu, VP aca, and cc
as shown in Figure 8.15(a). The corresponding regions in the atlas are indicated in
Figure 8.15(b). Figure 8.15(c) represents the control points extracted from all the
autoradiogram contours from the regions indicated in Figure 8.15(a). Similarly the
initial unprocessed set control points of the corresponding atlas regions is shown in
Figure 8.15(d), and in Figure 8.15(e) after processing the set of control points.

The results of registering the internal regions shown in Figure 8.15(a) with their corre-
sponding regions in the atlas shown in Figure 8.15(b) with the different scattered data
interpolators are shown below. From these results only visual qualitative assessment
can be taken. By showing these results on their own there is no way to compare quali-
tatively these scattered data interpolators. For this purpose a leave-one-out evaluation
is presented in Section 8.6.
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8.5.1 Results with the Inverse Distance Weighted interpolator

The result of using a scattered data interpolator based on Inverse Distance Weighted
interpolator is shown in Figure 8.16. Figure 8.16(a) shows the autoradiogram with the
corresponding warped atlas section superimposed on top after the elastic transformation
function applied to the atlas, Figure 8.16(b) shows a control grid that shows the warping
function used in this example and Figure 8.16(c) shows the displacement vectors over
the surface after applying the transformation function.

(a) (b) (c)

Figure 8.16: Autoradiogram of mouse brain section with corresponding atlas section
superimposed on top, after applying an Inverse Distance Weighted interpolator (a).
The image in the middle shows a control grid showing the warping function (b). The
right image shows the displacement vectors corresponding to the warping function (c).

8.5.2 Results with Radial Basis Functions

The result of using a scattered data interpolator based on linear Radial Basis Functions
is shown in Figure 8.17. Figure 8.17(a) shows the autoradiogram with the corresponding
warped atlas section superimposed on top after the elastic transformation function
applied to the atlas, Figure 8.17(b) shows a control grid that shows the warping function
used in this example and Figure 8.17(c) shows the displacement vectors over the surface
after applying the transformation function.

The result of using the more extended RBF based on thin-plate splines is shown in
Figure 8.18. Figure 8.18(a) shows the autoradiogram with the corresponding warped
atlas section superimposed on top after the elastic transformation function applied to
the atlas, Figure 8.18(b) shows a control grid that shows the warping function used in
this example and Figure 8.18(c) shows the displacement vectors over the surface after
applying the transformation function.

RBFs based on multiquadratic functions demonstrated an important dependence on
the parameter c shown in equation 8.11. The higher c is the transformation has less
effect on the atlas. This is clearly observed in Figure 8.19, where three values of c
have been used, c=1 in Figure 8.19(a), c=10 in Figure 8.19(b) and c=100 in Figure
8.19(c). The corresponding control grids are shown in Figures 8.19(d), 8.19(e) and
8.19(f) respectively, and the corresponding displacement vectors are shown in Figures
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(a) (b) (c)

Figure 8.17: Autoradiogram of mouse brain section with corresponding atlas section
superimposed on top, after applying a scattered data interpolator based on linear RBFs
(a). The image in the middle shows a control grid showing the warping function (b).
The right image shows the displacement vectors corresponding to the warping function
(c).

(a) (b) (c)

Figure 8.18: Autoradiogram of mouse brain section with corresponding atlas section
superimposed on top, after applying a scattered data interpolator based on thin-plate
splines RBFs (a). The image in the middle shows a control grid showing the warping
function (b). The right image shows the displacement vectors corresponding to the
warping function (c).

8.19(g), 8.19(h) and 8.19(i) respectively. It can be observed from the control grids and
the displacement vector fields how the warping function effect diminish as parameter c
increases.

The specific case of RBFs based on the Wendland function is shown in Figure 8.20.
This function has local support as opposite to the other types of RBFs shown above.
The local support is controlled by imposing a maximum radius that limits the effect
of the Wendland function. The effect of varying the radius is shown in three examples
in Figure 8.20, for values a=10 (Figure 8.20(a)), a=30 (Figure 8.20(b)) and a=100
(Figure 8.20(c)). The control grids are shown in Figures 8.20(d), 8.20(e) and 8.20(f)
respectively and the displacement vectors are shown in Figures 8.20(g), 8.20(h) and
8.20(i) respectively.

It is observed in Figure 8.20(a) that a ripple effect appears in the borders of those regions
containing control points for a small radius. This suggests that the radius should be
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(a) c=1 (b) c=10 (c) c=100

(d) c=1 (e) c=10 (f) c=100

(g) c=1 (h) c=10 (i) c=100

Figure 8.19: Autoradiogram of mouse brain section with corresponding atlas section
superimposed on top, after applying RBFs based on multiquadratic functions for c=1
(a), c=10 (b) and c=100 (c). The three images in the middle row (d), (e) and (f)
show the respective control grids showing the warping functions. The three images in
the bottom row (g), (h) and (i) show the displacement vectors corresponding to each
warping function.

at least half of the distance between consecutive control points in the contour. This
ripple effect disappears for larger radii as observed in Figure 8.20(b). For large radii
the interpolator then behaves more as a global support function, as shown above, than
as a local support function. The local support effect is observed from the control grids
for small radii in Figures 8.20(d) and 8.20(e).
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(a) a=10 (b) a=30 (c) a=100

(d) a=10 (e) a=30 (f) a=100

(g) a=10 (h) a=30 (i) a=100

Figure 8.20: Autoradiogram of mouse brain section with corresponding atlas section
superimposed on top, after applying RBFs based on the Wendland function for a=10
(a), a=30 (b) and a=100 (c). The three images in the middle row (d), (e) and (f)
show the respective control grids showing the warping functions. The three images in
the bottom row (g), (h) and (i) show the displacement vectors corresponding to each
warping function.

8.5.3 Results with Cubic B-Splines

The result of using cubic B-Splines is shown in Figure 8.21. Different lattice interspaces
have been used to see how as the lattice interspace increases a smoother warping func-
tion is applied, generating artifacts in some cases, but the registration is less accurate.
The lattice interspace used is 5 pixels (Figure 8.21(a)), 10 pixels (Figure 8.21(b)) and
30 pixels (Figure 8.21(c)). The control grids are shown in Figures 8.21(d), 8.21(e) and
8.21(f) respectively and the displacement vectors are shown in Figures 8.21(g), 8.21(h)
and 8.21(i) respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8.21: Autoradiogram of mouse brain section with corresponding atlas section
superimposed on top, after applying cubic B-Splines with a lattice interspace of 5 pixels
(a), 10 pixels (b) and 30 pixels (c). The three images in the middle row (d), (e) and (f)
show the respective control grids showing the warping functions. The three images in
the bottom row (g), (h) and (i) show the displacement vectors corresponding to each
warping function.

The compact support of this function is clearly observed in the control grids where
only the surrounding areas to the initial scattered data points are transformed, keeping
intact the remaining areas of the atlas. It is also observed how, while the lattice control
points interspace increases, then the registration accuracy reduces. This approach does
not then work as an interpolator but more as an approximator, as described in Section
8.4.6.
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8.6 Validation

Given all the qualitative results shown above, differences in terms of smoothness and
accuracy are observed between the different scattered data interpolators. These differ-
ent interpolators are assessed in this section by obtaining a quantitative comparison
between methods. A leave-one-out approach has been used.

It was shown in Chapter 7 an automatic algorithm for image segmentation in autoradio-
graphy. From the autoradiogram labelled with 3H shown in Section 7.5.2 eight regions
were segmented, and a set of control points extracted from the contour of each region.
These regions are the Caudate Putamen (CPu), Olfactory Tubercle (Tu), Accumbens
Nucleus (Acb), Ventral Pallidum (VP), Corpus Callosum (cc), Anterior Commissure
(aca) and Lateral Ventricle (LV).

The leave-one-out approach has been implemented by considering 7 out of the 8 regions
and leaving one out, and after warping the atlas with a specific interpolator, a measure
of overlapping between the left-out region in the atlas and the corresponding region
in the autoradiogram is measured. Some of these regions are observed to be merged,
because the segmentation process failed to segment them independently. This failure
is mainly due to the absence of difference or almost no difference of intensity between
regions, i.e. no intensity edge , and as the segmentation algorithm is based on region
grower, these kind of situations are not detected. The reason why these regions do not
show an intensity edge is explained by the very similar ligand uptake of these regions,
and concomitantly the similar density of D1 neuroreceptors. These regions with absence
of intensity edge are the Accumbens Nucleus with the Ventral Pallidum (Acb+VP),
the Corpus Callosum with the Anterior Commissure (cc+LV) and, in the case of the
right hemisphere, there is no edge between the Caudate Putamen and the Olfactory
Tubercle. These situation do not represent a problem for this algorithm as long as the
corresponding regions are correctly identified in the atlas. The regions that have been
analysed for comparison between algorithms are the cc+LV, CPu (left side), Acb+VP
(left side), aca (left side) and Tu (left side).

The percentage of overlapping for each region (cc, CPu, VP, aca and Tu), as defined in
equation 8.34, after applying the Inverse Distance Weighted interpolator, linear RBFs,
thin-plate splines RBFs, multiquadratic RBFs (a=10), Wendland function-based RBFs
(a=30) and Cubic B-Splines (for a lattice interspacing of 10 pixels) is shown in Figure
8.22.

O = 2
| Rad ∩Atl |
| Rad | + | Atl |

(8.34)

where Atl represents the left-out region under study in the atlas, Rad represents the
corresponding region in the autoradiogram and | · | represents the size of the region.

The four bars on the left shown in Figure 8.22 for each region represent the global
support interpolators, while the two bars on the right represent the local support in-
terpolators, the Wendland function-based RBF and the Cubic B-Splines.
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Figure 8.22: Percentage of overlapping for each of the 5 different analysed regions for
the IDW, linear RBFs, thin-plate splines RBFs, multiquadratic RBFs and B-Splines
respectively.

8.7 Conclusions

It has been observed that B-Splines with closer distance between control points in the
lattice φ performs better showing higher overlap between the left-out-region and the
corresponding autoradiogram region. It has also been observed how for multiquadratic
RBFs, the higher the parameter a is the lesser accuracy is obtained.

The Caudate Putamen (CPu) shows a very similar, and overall high overlapping per-
centage between all the algorithms, explained by its large size and concomitantly easi-
ness to register. This makes this region a not very good region to compare the different
interpolators.

It is noticed how the Anterior Commissure region (aca), on the other hand, shows high
variation of overlapping between algorithms. This is due to the small size of this region,
making this specific region difficult to register compared to the other analysed regions.

The Olfactory Tubercle (Tu) also shows relative variation of overlapping, mainly due
to the large difference of size between the original autoradiogram and atlas. This
demonstrates that when a specific region in an autoradiogram largely differs from its
counterpart in the atlas image, if this is not considered in the registration process as
part of the biological landmark data set, the registration error will be significant.

Looking at the global support interpolators in detail it is observed a slight better
performance of the thin-plate splines RBFs compared to the linear RBFs and the
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multiquadratic RBFs, being the performance of these two very similar in general. It
can also be observed that the Inverse Distance Weighted interpolator performs slightly
worse than the RBFs-based interpolators for all the analysed regions.

Regarding the local support interpolators, Wendland functions-based RBFs performs
slightly better than Cubic B-Splines but this is not consistent along all the analysed
regions.

In general none of the registration algorithms shows a clear higher performance over
the others. Local support interpolators show slightly better performance for smaller
regions, while very little difference is observed for larger regions.



Chapter 9

Conclusions and Future Work

9.1 Concluding Remarks

The aim of this work was to present a new perspective on conventional autoradiography
by reducing the typical times spent in a typical autoadiography experiment. This
was focused on the two main stages where most time is spent: sample exposure (to
traditional film) and post-acquistion image analysis.

9.1.1 Acquisition

Sample exposure to film is largely dependant on the radioisotope being used and this
in turn depends on the marker-neuroreceptor under study. The chemical nature of a
specific marker will show certain preference to bind to a certain radioisotope, i.e. a
marker based on Sulphur atoms will be easier to bind to 35S than any other typical β-
radioisotope. Samples labelled with 35S and 125I are usually exposed to traditional film
for ∼4 days, samples labelled with 14C are usually exposed for ∼1 week and samples
labelled with 3H are usually exposed for ∼5 weeks. In the case of 3H, sample exposure
requires long periods of time because the low energy of the β electrons emitted by 3H,
which causes that most β- are absorbed in the protective layers or the gel that comprises
conventional film. Only a small proportion of the emitted β- ionise silver atoms in film.
35S and 14C require only a few days of exposure time because of the higher energy
compared to 3H. 125I requires also few days because it is an X-ray emitter, and X-rays
are not so easily absorbed in the protective layers or gel compared to β-. Therefore a
higher proportion of X-rays are able to ionise the silver atoms in film.

After exposing the sample and developing the film through delicate manual procedures,
the film is subsequently manually analysed to extract the radiomarker density of those
regions showing high radioligand binding density. This process is prone to error and is
susceptible to inter- and intra variability of life scientists analysing the images. This
makes the process unreliable if the region under study shows medium or low density of
ligand binding. Moreover, this process can take approximately an hour on average per
brain section. This analysis process usually occupies in total approximately three days
of an expert life scientist’s time.

185
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Several alternatives have been considered in the past to replace conventional film. The
only two alternatives considered by life scientists as relatively successful are phosphor
plates and the commercial Biospace: the β- and µ-Imagers. The former fails to obtain
competitive spatial resolution and has been largely discarded as an option by most
research groups, and the latter claims to produce a spatial resolution of 15 µm and 50
µm for 3H for the µ-Imager and the β-Imager respectively. However their high cost
and very small Field of View make these systems inaccessible and/or unattractive to
most research groups.

As a first part of this work two silicon solid-state alternatives, such as CCD and CMOS
technologies, have been thoroughly analysed and compared. CCD and CMOS tech-
nologies are two competing technologies with some points in common but also some
important differences. Digital technologies offer the possibility of on-line monitoring
a specific sample at the same time as the digital image is being formed. Experiments
have demonstrated that single events can be observed on the screen as they deposit
energy in the silicon. This has a great potential as life scientists can discard or continue
experimenting with new radiomarkers or new drugs, and do not need to wait for a long
period of time to see a final autoradiogram. This will save a lot of time in preliminary
studies.

CCD and CMOS technologies have demonstrated higher sensitivity compared to con-
ventional film, as well as their increased dynamic range. It has been shown the necessity
of back-thinning to be able to detect 3H β electrons in both technologies. In the specific
case of CMOS technology a quantitative comparison has been undertaken by measuring
the ligand density in some predefined regions of interest for 36 hours. By comparing
the measured density ligand concentration in the film autoradiogram, that had been
exposed for 4 weeks, similar density ligand concentrations were obtained with the back-
thinned CMOS detector in ∼13 hours for the 5 regions under study. This represents an
increased capture speed by a factor of 51 times in sensitivity compared to conventional
autoadiography film. To make this comparison more accurate the same section could
be exposed to film for different periods of time and subsequent image analysis would
compare different ligand density concentrations along time, but due to the high cost of
autoradiography film and the lengthy development of film and manual analysis renders
this approach is prohibitive.

Another important feature that these technologies have to show to be a viable alterna-
tive to conventional film is their spatial resolution. Autoradiography in general requires
high spatial resolution on the order of 1-10 µm depending on the radioisotope used.

This is an even more important requirement for brain autoradiography, the main focus
of this work, where a spatial resolution of 1 µm is often desired by life scientists. It is
important to note that due to multiple scattering inside the gel and the digitisation step
conventional film does not produce such high spatial resolution. In the specific case of
our Biosciences laboratory, using a digitization system with an 11 µm pixel size CCD
camera, the spatial resolution for 14C has been measured resulting in approximately
30-40 µm.

The pixel size and the thickness of the sensitive layer have been identified, through
Monte Carlo simulations, to be of significant importance in both technologies to obtain
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high spatial resolution. These Monte Carlo simulations have been undertaken, including
dark current modelling and fixed pattern noise simulations derived from the detector,
and an experimentally validated charge diffusion model in order to obtain realistic
results.

Monte Carlo simulations have demonstrated that spatial resolution scales largely with
the pixel size, and the higher the energy of the radioisotope the higher the dependency
on the sensitive layer thickness. For 3H a spatial resolution of 1 µm can theoretically
be achieved using a detector with ∼1 µm pixel pitch. For higher energy radioisotopes,
such as 14C and 35S, the thickness of the sensitive layer plays a far more significant role,
degrading the spatial resolution as it becomes affected by higher multiple scattering.

To reduce this effect, using a thinner sensitive layer is a possibility, resulting in reduced
sensitivity as less charge is deposited. Another alternative is to use CCD technology,
where the first few microns of the sensitive layer are affected by an electric field. This
electric field makes the deposited charge to drift towards the charge collection points,
thus minimising the charge diffusion process and reducing the multiple scattering effect.

9.1.2 Image analysis

The second part of this work is focused on the posterior to acquisition image analysis
process. As a life scientist, the main goal of autoradiography is to study the different
levels of ligand density present in a certain tissue, after the subject under study has
been treated with an experimental drug. In order to do so, after exposing the tissue
section to conventional film, this has to be developed and digitised. Then, an expert
life scientist manually delineates all the significant regions in the tissue section taking
a paper version of an atlas as a reference. Sometimes these regions are clearly visible
due to a high or low level of ligand density in comparison with the surrounding regions.
However, there are times when the life scientist delineates regions that do not show
different levels of ligand concentration and there is no information in the image that
represents the different tissues. In these cases the life scientist’s expertise is playing a
major role largely compromising the delineation accuracy.

In this work an approach to semi-automatically delineate all the regions of the tissue
section under study has been presented. This was divided into two stages: firstly,
regions with high and low levels of ligand density are automatically segmented, and
secondly, after extracting a set of control points from those segmented regions, the
autoradiogram is registered with its corresponding atlas image.

Autoradiography presents the typical problem present in functional data, such as high
statistical noise and low definition in the edges of the different functional regions.
As has been mentioned, the radioisotope used depends on the neuroreceptor under
study. Depending on the radioisotope the edges will be more or less defined. A low
energy radioisotope will produce better defined edges than a higher energy radioisotope,
making the segmentation process easier.

Region growing has been chosen in this work because it is a very robust option given
that it uses intensity and spatial information simultaneously. The two main components
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of a region grower are the similarity criterion followed to append pixels to a growing
region and the stopping criteria needed to know when to stop appending pixels.

Due to the high statistical noise typically present in autoradiographic data, a dynamic
similarity criterion has been used. This criterion automatically updates while a region
grows considering the amount of statistical noise present in the image. This avoids a
premature halt in the algorithm.

Given the complexity of the data being analysed in this work, the termination criteria
are comprised of a set of conditions that contemplate different possible situations that
have been observed. Detection of leakage in to a background region and edge detection
are the two conditions that have been used to stop growing a region. This combination
of criteria have been validated with synthetic data, by modelling the level of statistical
noise and measuring the level of over- and under- segmentation. This has demonstrated
that the region grower presented here is able to properly segment autoradiographic data
under the presence of a high level of statistical noise, with the added difficulty of blurred
edges between different tissues.

As synthetic data does not fully consider all the problems that can appear in real data,
this region grower has also been tested with different film autoradiographic sections
using different radioisotopes. The CNR of different regions being segmented has been
manually measured showing low levels of CNR, representing the difficulty of this sce-
nario. These results were quantitatively compared with manual segmentation by expert
life scientists, measuring the Dice index between corresponding manually and automati-
cally segmented regions, and resulting in high levels of agreement. It was also observed
how the region grower was able to segment certain regions with low levels of ligand
density and low importance for life scientists, but of high importance to increase the
accuracy of the subsequent registration process. A significant dependence of the final
success of the segmentation process has been observed on the quality of the anatomy
of the tissue section, as well as how well the radioligand was distributed on the section.

Subsequent to the segmentation, manual correspondence between segmented regions
and counterpart regions in the atlas was established. From these, a set of control points
were extracted. These control points were refined to better represent the shape of each
region. Finally, some of the most popular interpolators have been used to compute the
transformation function for all the pixels in the image. These interpolators have been
divided between different families: interpolators with global and local support, showing
in general a similar performance.

This process is successfully based on two assumptions: first that the internal anatomy of
the section is approximately well described by its corresponding atlas section, and sec-
ondly, that the segmentation process has been successful at correctly identifying those
regions with higher and lower density of ligand concentration. If these two assumptions
are fulfilled, the registration process produces a warped version of the atlas image, su-
perimposed on the autoradiogram, thus automatically delineating all the anatomical
regions that are present in the atlas image. Thus it is possible to extract the density
of ligand concentration in the autoradiogram automatically.
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9.2 Future Work

Comparing tritiated brain autoradiographic samples acquired with the back-thinned
Vanilla sensor and with a commercial back-thinned CCD, under temperature controlled
conditions, the changes of temperature were shown to have a significant impact on
the background noise of the final results. From the technological part of this thesis,
a natural extension of this work is to use the back-thinned CMOS sensor at room
temperature but under temperature controlled conditions, by using a thermoelectric
temperature controller (TED).

The correspondence between segmented regions and atlas regions is undertaken manu-
ally in this work. To have a fully automatic registration algorithm this process should
be automated. An approach based on spatial closeness between counterpart regions and
comparing region features, such as size, orientation, minor and major axes, was initially
tried, but problems arose for small regions that are not close enough to establish the
right correspondence.

A common problem that life scientists claim when they have to segment manually
autoradiographic data, is that the cutting process is not perfect and the thin sections
that they cut are not parallel to the coronal axis. There is usually a slight tilting
between the coronal plane and the blade. This results in the reference that they use
[135] to delineate the different regions under study being not exact. Therefore in a
single section, there may be more than one bregma needed as reference. This issue
makes the delineating process inaccurate depending on the tilting angle between the
coronal plane and the blade.

The algorithm presented here to automatically delineate the entire autoradiogram does
not consider this problem, as this is entirely undertaken in 2D. A possible extension of
this algorithm would be to develop the algorithm for a 3D scenario.

First a 3D model of the atlas brain should be built based on the reference [135]. Secondly
the correct tilting angle should be searched to find the right correspondence between
the 3D atlas and the different functional structures of the autoradiogram.

In order to add information to this algorithm to make the whole process more accurate
intensity information could be added to the atlas. There exists atlases in the internet
with intensity information made of histological sections, i.e. high resolution pictures of
brain sections. If some kind of relation or correspondence is found between the different
structural regions from the atlas and the histological sections, and then it is used to
establish a correspondence with the functional structures of the autoradiogram, the
process could be undertaken completely automatic and with higher information.
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Appendix A

Extra results of Registration

The automatic registration algorithm explained in Chapter 8 has been applied to those
autoradiograms segmented shown in Section 7.5.1, where a 125I labeled autoradiogram
is segmented, and Section 7.5.3, where a 35S labeled autoradiogram is segmented.

Not all the data interpolators have been tried in these autoradiograms given the sig-
nificant similarity of the quantitative results obtained after the validation in Section
8.6.

A.1 Results with Iodine-125

The segmentation of this section has been shown in Section 7.5.1. The resulting labeled
and segmented autoradiograms are shown in Figures A.1(a) and A.1(b) respectively.
Those regions, identified in the autoradiogram and atlas image, used in the registra-
tion as source and target sets of landmarks, are shown in Figures A.1(c) and A.1(d)
respectively.

(a) (b) (c) (d)

Figure A.1: Labeled 125I autoradiogram (a), resulting segmented autoradiogram with
some functional regions indicated (b), autoradiogram with regions used in the registra-
tion delineated (c) and corresponding delineated regions in the atlas image (d).

The result of after applying affine registration between the atlas (source image) and
the autoradiogram (target image) is shown in Figure A.2. Internal functional struc-
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tures show significant missmatches between the atlas and the autoradiogram, making
necessary elastic registration.

Figure A.2: Affine registration of the autoradiogram and the slice of the atlas corre-
sponding to that brain section (Bregma -3.16 mm). In general poor correspondence
between the internal functional regions can be observed.

The resulting registered autoradiogram after applying a scattered data interpolator
based on linear RBFs and based on thin-plate splines RBFs, as representative global
support interpolators, are shown in Figures A.3(a) and A.3(d) respectively. The result-
ing control grids and vector fields, are shown in Figures A.3(b) and A.3(c) respectively
for the linear RBFs, and in Figures A.3(e) and A.3(f) respectively for the thin-plate
splines RBFs.

The resulting registered autoradiogram after applying a scattered data interpolator
based on Wendland RBFs with a local effect of 30 pixels (radius of Wendland function),
and the same autoradiogram after applying a data interpolator based on B-splines with
a lattice interspace of 10 pixels, are shown in Figures A.4(a) and A.4(d) respectively.
The resulting control grids and the vector fields, are shown in Figures A.4(b) and A.4(c)
respectively for the Wendland function, and in Figures A.4(e) and A.4(f) respectively
for the B-splines.

A.2 Results with Sulphur-35

The segmentation of this section has been shown in Section 7.5.3. The resulting labeled
and segmented autoradiograms are shown in Figures A.5(a) and A.5(b) respectively.
Those regions, identified in the autoradiogram and atlas image, used in the registra-
tion as source and target sets of landmarks, are shown in Figures A.5(c) and A.5(d)
respectively.

The result of after applying affine registration between the atlas (source image) and
the autoradiogram (target image) is shown in Figure A.6. Internal functional struc-
tures show significant missmatches between the atlas and the autoradiogram, making
necessary elastic registration.
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(a) (b) (c)

(d) (e) (f)

Figure A.3: Autoradiogram of mouse brain section with corresponding atlas section
superimposed on top after applying a scattered data interpolator based on linear RBFs
(a). The image in (b) shows the resulting control grid showing the warping function, and
the image in (c) shows the displacement vectors corresponding to the warping function.
The same autoradiogram, superimposed on top of the atlas image after applying a
scattered data interpolator based on thin-plate splines RBFs is shown in (d). The
image in (e) shows the resulting control grid showing the warping function, and the
image in (f) shows the displacement vectors corresponding to the warping function.

The resulting registered autoradiogram after applying a scattered data interpolator
based on linear RBFs and based on thin-plate splines RBFs, as representative global
support interpolators, are shown in Figures A.7(a) and A.7(d) respectively. The result-
ing control grids and vector fields, are shown in Figures A.7(b) and A.7(c) respectively
for the linear RBFs, and in Figures A.7(e) and A.7(f) respectively for the thin-plate
splines RBFs.

The resulting registered autoradiogram after applying a scattered data interpolator
based on Wendland RBFs with a local effect of 30 pixels (radius of Wendland function),
and the same autoradiogram after applying a data interpolator based on B-splines with
a lattice interspace of 10 pixels, are shown in Figures A.8(a) and A.8(d) respectively.
The resulting control grids and the vector fields, are shown in Figures A.8(b) and A.8(c)
respectively for the Wendland function, and in Figures A.8(e) and A.8(f) respectively
for the B-splines.

This case is a good example where the radiolabeled ligand shows low specificity, which
makes the segmentation process a difficult task. Therefore, few functional structures
can be identified in the autoradiogram and in the atlas. The resulting interpolation
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(a) (b) (c)

(d) (e) (f)

Figure A.4: Autoradiogram of mouse brain section with corresponding atlas section
superimposed on top, after applying a scattered data interpolator based on Wendland
RBFs (a). The image in (b) shows a control grid showing the warping function and
the image in (c) shows the displacement vectors corresponding to the warping function.
The same autoradiogram superimposed on top of the atlas image, after applying a
scattered data interpolator based on B-splines with a lattice interspace of 10 pixels is
shown in (d). The image in (e) shows a control grid showing the warping function and
the image in (c) shows the displacement vectors corresponding to the warping function
(f).

(a) (b) (c) (d)

Figure A.5: Labeled 35S autoradiogram (a), resulting segmented autoradiogram with
some functional regions indicated (b), autoradiogram with regions used in the registra-
tion delineated (c) and corresponding delineated regions in the atlas image (d).

process shows similar results with all the interpolators as expected, shown overall good
results. In this case, even though few regions were identified and used as input for the
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Figure A.6: Affine registration of the autoradiogram and the slice of the atlas corre-
sponding to that brain section (Bregma -1.46 mm). In general poor correspondence
between the internal functional regions can be observed.

(a) (b) (c)

(d) (e) (f)

Figure A.7: Autoradiogram of mouse brain section with corresponding atlas section
superimposed on top after applying a scattered data interpolator based on linear RBFs
(a). The image in (b) shows the resulting control grid showing the warping function, and
the image in (c) shows the displacement vectors corresponding to the warping function.
The same autoradiogram, superimposed on top of the atlas image after applying a
scattered data interpolator based on thin-plate splines RBFs is shown in (d). The
image in (e) shows the resulting control grid showing the warping function, and the
image in (f) shows the displacement vectors corresponding to the warping function.
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(a) (b) (c)

(d) (e) (f)

Figure A.8: Autoradiogram of mouse brain section with corresponding atlas section
superimposed on top, after applying a scattered data interpolator based on Wendland
RBFs (a). The image in (b) shows a control grid showing the warping function and
the image in (c) shows the displacement vectors corresponding to the warping function.
The same autoradiogram superimposed on top of the atlas image, after applying a
scattered data interpolator based on B-splines with a lattice interspace of 10 pixels is
shown in (d). The image in (e) shows a control grid showing the warping function and
the image in (c) shows the displacement vectors corresponding to the warping function
(f).

interpolation algorithm, the registration of both images makes the quantitative analysis
more accurate and less error-prone than free-hand delineation.
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List of Publications:

The following publications have resulted from the work documented in this thesis:

Journal publications:

1. J. Cabello, A. Bailey, I. Kitchen, M. L. Prydderch, A. T. Clark, R. Turchetta and
K. Wells. Digital Autoradiography Using Room Temperature CCD and CMOS
Imaging Technology. Physics in Medicine and Biology, 2007; 52:4993-5011.

Conference publications:

1. J. Cabello, A. Bailey, I. Kitchen, M. Guy and K.Wells. Segmentation of low
contrast-to- noise ratio images applied to functional imaging using adaptive region
growing. In SPIE Medical Imaging, 2009., volume 7259, pages 40-52, Feb 2009.

2. J. Cabello, A. Holland, K. Holland, A. Bailey, I. Kitchen and K. Wells. Betacam:
A Commercial Approach to B- Autoradiography. In SPIE Medical Imaging, 2009.,
volume 7258, pages 3P-10 Feb 2009.

3. J. Cabello, A. Bailey, I. Kitchen, R. Turchetta and K. Wells. A Dual Threshold
Method to Independently Control Spatial Resolution and Sensitivity in β Imaging.
In Nuclear Science Symposium Conference Record, 2008. NSS ’08. IEEE, pages
1-7, Oct 2008.

4. J. Cabello and K. Wells. A Monte Carlo Investigation into the Fundamental
Limitations of Digital β-Autoradiography: Considerations for Detector Design.
In Nuclear Science Symposium Conference Record, 2007. NSS ’07. IEEE, volume
5, pages 3625-30, Oct 2007.

5. J. Cabello, K. Wells, A. Bailey and I. Kitchen. Semi-automatic elastic registra-
tion applied to a β-Autoradiography brain atlas. In Nuclear Science Symposium
Conference Record, 2007. NSS ’07. IEEE, volume 6, pages 4303-7, Oct 2007.
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First tritium autoradiography with a back-thinned CMOS detector and compari-
son of CMOS imaging performance with autoradiography film. In Nuclear Science
Symposium Conference Record, 2007. NSS ’07. IEEE, volume 5, pages 3743-6,
Oct 2007.

7. J. Cabello, A. Bailey, I. Kitchen, A. T. Clark, J. P. Crooks, R. Halsall, M. L.
Key-Charriere, S. Martin, M. L. Prydderch, R. Turchetta and K. Wells. Digital
Autoradiography Using CCD and CMOS Imaging Technology. In Nuclear Science
Symposium Conference Record, 2006. NSS ’06. IEEE, volume 4, pages 2607-12,
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G. Lutz, M. Mathes, H. G. Moser, I. Peric, R. H. Richter, C. Sandow, E. von
Törne, M. Trimpl, J. Treis, and N. Wermes. Performance of a DEPFET Prototype
Module for the ILC Vertex Detector. IEEE Transactions on Nuclear Science,
53(3):1719–25, Jun 2006.

[148] S. A. Rodney and J. L. Tonry. Characterizing Charge Diffusion in CCDs with
X-Rays. The Publications of the Astronomical Society of the Pacific, 118:866–73,
2006.

[149] D. W. O. Rogers and A. F. Bielajew. The Use of EGS for Monte Carlo Calcula-
tions in Medical Physics. Nuclear Instruments and Methods in Physics Research
Section A, 100:31–46, 1995.

[150] K. Rohr, H. S. Stiehl, R. Sprengel, J. Buzug, T. M. Weese, and M. H. Kuhn.
Landmark-based elastic registration using approximating thin-plate splines. IEEE
Transactions on Medical Imaging, 20:526–34, 2001.

[151] W. Rui and L. Minglu. An overview of medical image registration. In ICCIMA
’03: Proceedings of the 5th International Conference on Computational Intelli-
gence and Multimedia Applications, page 385, Washington, DC, USA, 2003. IEEE
Computer Society.

[152] A. Saad, B. Smith, G. Hamarneh, and T. Moller. Simultaneous segmentation,
kinetic parameter estimation, and uncertainty visualization of dynamic PET im-
ages. Med Image Comput Comput Assist Interv Int Conf Med Image Comput
Comput Assist Interv, 10(Pt 2):726–33, 2007.

[153] D. Scheffer. A Wafer scale Active Pixel CMOS Image Sensor for generic X-ray
radiology. In Jiang Hsieh and Michael J. Flynn, editors, Medical Imaging 2007:
Physics of Medical Imaging, volume 6510, page 65100O. SPIE, 2007.

[154] D.K. Schroder, B.D. Choi, S.G. Kang, W. Ohashi, K. Kitahara, G. Opposits,
T. Pavelka, and J. Benton. Silicon epitaxial layer recombination and generation
lifetime characterization. IEEE Transactions on Electron Devices, 50(4):906–12,
Apr 2003.

[155] B. Shangera and R. J. Ott. Preliminary studies using silicon strip detectors in
digital autoradiography. IEEE Transactions on Nuclear Science, 40(4):992–4,
1993.

[156] D. Shepard. A two-dimensional interpolation function for irregularly-spaced data.
In Proceedings of the 1968 23rd ACM national conference, pages 517–524, New
York, NY, USA, 1968. ACM.



Bibliography 211

[157] P. M. Shikhaliev, T. Xu, J. L. Ducote, B. Easwaramoorthy, J. Mukherjee, and
S. Molloi. Positron autoradiography for intravascular imaging: feasibility evalu-
ation. Phys. Med. Biol., 51:963–79, 2006.

[158] Silicon Strip Detectors in the ATLAS Experiment.
http://hepwww.rl.ac.uk/OpenDays98/Detectors/silicon.htm.

[159] B. W. Silverman. Density Estimation for Statistics and Data Analysis, volume 26.
Chapman & Hall/CRC, 1986.

[160] X. Song, B. W. Pogue, S. Jiang, M. M. Doyley, H. Dehghani, T. D. Tosteson,
and K. D. Paulsen. Automated region detection based on the contrast-to-noise
ratio in near-infrared tomography. Applied Optics, 43(5):1053–62, Feb. 2004.

[161] M. Sonoda, M. Takano, J. Miyahara, and H. Kato. Report on the development
of a CR system using an imaging plate. Radiology, 148:833, 1983.

[162] R. J. Stover, M. Wei, Y. Lee, D. K. Gilmore, S. E. Holland, D. E. Groom, W. W.
Moses, S. Perlmutter, G. Goldhaber, C. Pennypacker, N. W. Wang, and N. Palaio.
Characterization of a Fully Depleted CCD on High Resistivity Silicon. In Pro-
ceedings of The SPIE Conference on Solid State Sensor Arrays: Development and
Applications, volume 3019, pages 183–8, 1997.

[163] C. Studholme, D. L. G. Hill, and D. J. Hawkes. Automated three-dimensional reg-
istration of magnetic resonance and positron emission tomography brain images
by multiresolution optimization of voxel similarity measures. Medical Physics,
24(1):25–35, 1997.

[164] Walter E. Stumpf. Drug Localization in Tissues and Cells. Receptor Microscopic
Autoradiography. IDDC Press, Chapel Hill, NC, 2003.

[165] D. W. Townsend. Dual-Modality Imaging: Combining Anatomy and Function.
Journal of Nuclear Medicine, 49(6):938–55, 2008.

[166] D. W. Townsend and T. Beyer. A combined PET/CT scanner: the path to true
image fusion. The British Journal of Radiology, 75:S24–S30, 2002.

[167] L. K. Townsley, P. S. Broos, G. Chartas, E. Moskalenko, J. A. Nousek, and G. G.
Pavlov. Simulating CCDs for the Chandra Advanced CCD Imaging Spectrometer.
Nuclear Instruments and Methods in Physics Research A, 486:716–50, Nov 2002.

[168] E. Tribollet, J. J. Dreiffus, G. Charpak, W. Dominik, and N. Zaganidis. Local-
ization and quantitation of tritiated compounds in tissue sections with a gaseous
detector of β particles: Comparison with film autoradiography. Proc. Natl. Acad.
Sci., 88:1466–8, 1991.

[169] B. M. W. Tsui, W. P. Segars, and D. S. Lalush. Effects of Upward Creep
and Respiratory Motion in Myocardial SPECT. IEEE Trans. Nuclear Science,
47(3):1192–5, 2000.



212 Bibliography

[170] Y. Tuduki, K. Murase, M. Izumida, H. Miki, K. Kikuchi, K. Murakami, and
J. Ikezoe. Automated Seeded Region Growing Algorithm for Extraction of Cere-
bral Blood Vessels from Magnetic Resonance Angiographic Data. In Annual -
Proceedings of International Conference of the IEEE Engineering in Medicine
and Biology, volume 3, pages 1756–9, 2000.

[171] R. Turchetta, J. D. Berst, B. Casadei, G. Claus, C. Colledani, W. Dulinski,
Y. Hu, D. Husson, J. P. Le Normand, J. L. Riester, G. Deptuch, U. Goerlach,
S. Hiwueret, and M. Winter. A monolithic active pixel sensor for charged particle
tracking and imaging using standard VLSI CMOS technology. Nucl. Instr. and
Meth. A, 458:677–89, 2001.

[172] R. Turchetta, M. French, S. Manolopoulos, M. Tyndel, P. Allport, R. Bates,
V. O’shea, G. Hall, and M. Raymond. Monolithic active pixel sensors (MAPS)
in a VLSI CMOS technology. Nucl. Instr. and Meth. A, A501:251–9, 2003.

[173] J. Ulrici, P. Fischer, P. Klein, G. Lutz, W. Neeser, L. Richter, R. Strüder,
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