
1

Discriminative Linear and

Multilinear Subspace Methods

Dacheng TAO

A Thesis Submitted in Partial Fulfilment of the Requirements

for the Degree of Doctor of Philosophy

October 2006

School of Computer Science and Information Systems

2

This thesis is submitted to the School of Computer Science and Information

Systems, Birkbeck College, University of London in partial fulfilment of the

requirements for the degree of Doctor of Philosophy. I hereby declare that this

thesis is my own work and except where otherwise stated. This submission has

not been submitted for a degree to any other university or institution.

Dacheng TAO

School of Computer Science and Information Systems

Birkbeck College

University of London

3

To my family.

1

Table of Contents

Table of Contents .. 1

List of Figures ... 1

List of Tables... 7

Abstract ... 9

Acknowledgement... 10

1. Introduction ... 1

1.1 Thesis Organization... 6

1.2 Publications ... 10

2. Discriminative Linear Subspace Methods... 11

2.1 Principal Component Analysis.. 14

2.2 Linear Discriminant Analysis.. 17

2.3 General Averaged Divergences Analysis.. 32

2.4 Geometric Mean for Subspace Selection .. 38

2.5 Kullback–Leibler Divergence based Subspace Selection 41

2.6 Comparison using Synthetic Data ... 50

2.7 Statistical Experiments .. 56

2.8 Real–World Experiments .. 63

2.9 Summary ... 65

3. Discriminative Multilinear Subspace Method... 66

3.1 Tensor Algebra .. 70

3.2 The Relationship between LSM and MLSM 77

3.3 Tensor Rank One Analysis.. 79

3.4 General Tensor Analysis ... 83

3.5 Two Dimensional Linear Discriminant Analysis.............................. 87

3.6 General Tensor Discriminant Analysis ... 90

3.7 Manifold Learning using Tensor Representations 96

3.8 GTDA for Human Gait Recognition ... 99

3.9 Summary ... 120

4. Supervised Tensor Learning.. 121

4.1 Convex Optimization based Learning... 124

4.2 Supervised Tensor Learning: A Framework 129

2

4.3 Supervised Tensor Learning: Examples.. 136

4.4 Iterative Feature Extraction Model based on Supervised Tensor

Learning... 152

4.5 Experiments... 156

4.6 Summary ... 188

5. Thesis Conclusion ... 189

6. Appendices .. 194

6.1 Appendix for Chapter 2... 194

6.2 Appendix for Chapter 3... 205

References ... 211

1

List of Figures

Figure 1.1. The plan of the thesis. ... 6

Figure 2.1. LDA fails to find the optimal projection direction for classification,

because it does not utilize the discriminative information preserved in the class

covariances. ... 19

Figure 2.2. The samples in each class are drawn from a Gaussian distribution.

LDA finds a projection direction, which merges class 1 and class 2. One of the

reasonable projection directions for classification trades the distance between the

class 1 and the class 2 against the distance between the class 1, 2 and class 3. This

example is a sketch of the synthetic data used in Figure 2.7 in §2.6.3. 22

Figure 2.3. The geometric setting for Bregman divergence.................................. 33

Figure 2.4. Heteroscedastic example: in this figure, from left to right, from top to

bottom, there are nine subfigures showing the projection directions (indicated by

lines in each subfigure) obtained using LDA, HDA, aPAC, WLDA, FS–LDA,

HLDA, ODA, MGMKLD(0), and MGMKLD(1). In this experiment, the linear

classifier () ()1ˆ ˆˆ ˆ lnT
i i i ix m x m−− Σ − + Σ is applied as the classification method

after a subspace selection procedure, where ˆ im and ˆ
iΣ are the estimated ith

class mean and covariance matrix in the lower dimensional space, respectively.

The training classification errors of these methods are 0.3410, 0.2790, 0.3410,

0.3410, 0.3430, 0.2880, 0.2390, 0.2390, and 0.2390, respectively....................... 51

Figure 2.5. The maximization of the geometric mean of the normalized

divergences is not sufficient for subspace selection.. 52

Figure 2.6. Multimodal problem: in this figure, from left to right, from top to

bottom, there are nine subfigures, which show the projection directions (indicated

by lines in each subfigure) by using LDA, HDA, aPAC, FS–LDA(3), FS–LDA(8),

HLDA, MODA, M–MGMKLD(0), and M–MGMKLD(1). In this experiment, the

linear classifier () ()1ˆ ˆˆ ˆ lnT
i i i ix m x m−− Σ − + Σ is applied as the classification

method after a subspace selection procedure, where ˆ im and ˆ
iΣ are the

estimated ith class mean and covariance matrix in the lower dimensional space,

respectively. The training classification errors of these methods are 0.0917,

2

0.0167, 0.0917, 0.0917, 0.0917, 0.0167, 0.0083, 0.0083, and 0.0083, respectively.

... 53

Figure 2.7. Class separation problem: in this figure, from left to right, from top to

bottom, there are nine subfigures to describe the projection directions (indicated

by lines in each subfigure) by using LDA, HDA, aPAC, WLDA, FS–LDA,

HLDA, ODA, MGMKLD(0), and MGMKLD(5). In this experiment, the linear

classifier () ()1ˆ ˆˆ ˆ lnT
i i i ix m x m−− Σ − + Σ is applied as the classification method

after a subspace selection procedure, where ˆ im and ˆ
iΣ are the estimated ith

class mean and covariance matrix in the lower dimensional space, respectively.

The training classification errors of these methods are 0.3100, 0.3033, 0.2900,

0.3033, 0.0567, 0.3100, 0.3100, 0.1167, and 0.0200, respectively. MGMKLD(5)

finds the best projection direction for classification. .. 55

Figure 2.8. Class separation problem: in this figure, from left to right, there are

three subfigures to describe the projection directions (indicated by lines in each

subfigure) by using aPAC, FS–LDA, and MGMKLD(5). In this experiment, the

linear classifier () ()1ˆ ˆˆ ˆ lnT
i i i ix m x m−− Σ − + Σ is applied as the classification

method after a subspace selection procedure, where ˆ im and ˆ
iΣ are the

estimated ith class mean and covariance matrix in the lower dimensional space,

respectively. The training classification errors of these methods are 0.1200,

0.1733, and 0.0267, respectively. MGMKLD(5) finds the best projection direction

for classification. ... 55

Figure 2.9. Data Generation Model. In this model, 1 4w = , 2 0w = , 3 4w = − ,

4 4w = , 5 4w = , 2k = , ()1 1 201Tm km w= +
r r , 2 200Tm =

r , ()[]3 3 10 100 ,1 Tm km w= +
r r ,

()[]4 4 10 101 ,0 Tm km w= +
r r , and ()[]5 5 5 5 5 51 ,0 ,1 ,0 Tm km w= +

r r 56

Figure 2.10. Initial values: From left to right, from top to bottom, the subfigures

show the mean value and the corresponding standard deviation of the KL

divergence between the class i and the class j of these 50 different initial values in

the 10th (50th, 100th, and 1000th) training iterations. Because there are 5 classes in

the training set, there are 20 KL divergences to examine. The circles in each

subfigure show the mean values of the KL divergences for 50 different initial

values. The error bars show the corresponding standard deviations. For better

visualization, the scale for showing the standard deviations is 10 times larger than

3

the vertical scale in each subfigure. The standard deviations of these 20 KL

divergences approach 0 as the number of training iterations increases. 60

Figure 2.11. MGMKLD(2c) has no nest structure property.................................. 62

Figure 2.12. Samples in the USPS database [53]. ... 63

Figure 3.1. A gray level face image is a second order tensor, i.e., a matrix. Two

indices are required for pixel locations. The face image comes from

http://www.merl.com/projects/images/face–rec.gif. ... 66

Figure 3.2. A color image is a third order tensor, which is also a data cuboid,

because three indices are required to locate elements. Two indices are used for

pixel locations and one index is used to local the color information (e.g., R, G, and

B). .. 66

Figure 3.3. A color video shot is a fourth order tensor. Four indices are used to

locate elements. Two indices are used for pixel locations; one index is used to

locate the color information; and the other index is used for time. The video shot

comes from http://www–nlpir.nist.gov/projects/trecvid/. 67

Figure 3.4. A third order tensor 1 2 3L L LR × ×∈X . .. 70

Figure 3.5. The mode–1, mode–2, and mode–3 matricizing of a third order tensor
3 2 2R × ×∈X 71

Figure 3.6. The mode–2 product of a third order tensor 1 2 3L L LR × ×∈X and a matrix
2 2L LU R ′ ×∈ results in a new tensor 1 2 3L L LR ′× ×∈Y 73

Figure 3.7. The HOSVD of a third order tensor 1 2 3L L LR × ×∈X 74

Figure 3.8. The best rank one approximation to a third order tensor 1 2 3L L LR × ×∈X .

... 79

Figure 3.9. The best ()1 2 3rank , ,R R R− approximation of a third order tensor

1 2 3L L LR × ×∈X . .. 83

Figure 3.10. The columns show the averaged gait images of nine different people

in the Gallery of the USF database described in §3.8.2.1. The four rows in the

figure from top to bottom are based on images taken from the Gallery, ProbeB,

ProbeH, and ProbeK, respectively. The averaged gait images in a single column

come from the same person... 100

Figure 3.11. The real part of Gabor functions with five different scales and eight

different directions. ... 101

4

Figure 3.12. Gabor gait: the rows show different scales and the columns show

different directions for an averaged gait image... 102

Figure 3.13. Three new methods for averaged gait image representation using

Gabor functions: GaborS, GaborD, and GaborSD. ... 103

Figure 3.14. The thirteen columns are Gallery gait, ProbeA gait, ProbeB gait,

ProbeC gait, ProbeD gait, ProbeE gait, ProbeF gait, ProbeG gait, ProbeH gait,

ProbeI gait, ProbeJ gait, ProbeK gait, and ProbeL gait, respectively. From the first

row to the last row are the original gait, GaborD (from 0 to 4), GaborS (from 0 to

7), and GaborSD, respectively. The Gallery gait and ProbeA – ProbeI gaits are

described in Section 3.8.2.1... 105

Figure 3.15. The averaged gait extraction and the dissimilarity measure. 108

Figure 3.16. Recognition performance comparison for rank one evaluation. From

top–left to bottom, in each of the thirteen subfigures (Probes A, B, C, D, E, F, G,

H, I, J, K, L, and the average performance), there are eleven bars, which

correspond to the performance of HMM, IMED+LDA, LDA, LDA+Fusion,

2DLDA+LDA, GTDA+LDA(H), GTDA+LDA, Gabor+GTDA+LDA(H),

GaborD+GTDA+LDA(H), GaborS+GTDA+LDA(H), and GaborSD+GTDA+

LDA(H), respectively.. 116

Figure 3.17. Recognition performance comparison for rank five evaluation. From

top–left to bottom, in each of the thirteen subfigures (Probes A, B, C, D, E, F, G,

H, I, J, K, L, and the average performance), there are ten bars, which correspond

to the performance of IMED+LDA, LDA, LDA+Fusion, 2DLDA+LDA, GTDA

+LDA(H), GTDA+LDA, Gabor+GTDA+LDA(H), GaborD+GTDA+LDA(H),

GaborS+GTDA+LDA(H), and GaborSD+GTDA+LDA(H), respectively......... 118

Figure 3.18. Experimental based convergence justification for the alternating

projection method for GTDA. The x–coordinate is the number of training

iterations and the y–coordinate is the error value Err, as defined in Step 6 in Table

3.6. From left to right, these four sub–figures show how Err changes with the

increasing number of training iterations with different threshold values (88%,

90% 92% and 94%) defined in (3.37). .. 119

Figure 4.1. Tensor based learning machine vs. vector based learning machine. 122

Figure 4.2. The geometric interpretation of the optimal solution *wr in D for a

convex optimization problem defined in (4.3). ... 125

5

Figure 4.3. The geometric interpretation of the optimal solution *wr in D for

LP defined in (4.5)... 126

Figure 4.4. The geometric interpretation of the optimal solution *wr in D for

QP defined in (4.6). ... 127

Figure 4.5. The third order tensor example for the alternating projection in STL.

... 133

Figure 4.6. SVM maximizes the margin between positive and negative training

samples. ... 136

Figure 4.7. MPM separates positive samples from negative samples by

maximizing the probability of the correct classification for future samples. The

intersection point minimizes the maximum of the Mahalanobis distances between

positive and negative samples, i.e., it has the same Mahalanobis distances to the

mean of the positive samples and the mean of the negative samples.................. 142

Figure 4.8. FDA separates positive samples from negative samples by maximizing

the symmetric Kullback–Leibler divergence between two classes under the

assumption that the two classes share the same covariance matrix. 146

Figure 4.9. DML obtains a metric, such that “k–nearest neighbors always belong

to the same class while examples from different classes are separated by a large

margin”.. 149

Figure 4.10. Iterative feature extraction model for third order tensors. 152

Figure 4.11. Attention model for image representation. 156

Figure 4.12. Example images from the tiger category. 157

Figure 4.13. Example images from the leopard category.................................... 158

Figure 4.14. One hundred ROIs in the tiger category. .. 159

Figure 4.15. One hundred ROIs in the leopard category..................................... 160

Figure 4.16. TMPM converges effectively. .. 162

Figure 4.17. TMPM is stable with different initial values. 163

Figure 4.18. First 10 EigenGaits (the first column), first 10 FisherGaits (the

second column), first 10 TR1AGaits (the third column), and first 10 TR1DAGaits

(the fourth column). From the figure, we can see that EigenGaits and FisherGaits

are dense, while TR1AGaits and TR1DAGaits are sparse, because they take the

structure information into account to reduce the number of unknown parameters

in discriminant learning... 166

6

Figure 4.19. GBL task: TR1DA performances, convergence, and parameters

(feature dimension and ς) analysis. Detailed explanation is in §4.5.2.............. 171

Figure 4.20. GAL task: TR1DA performances, convergence, and parameters

(feature dimension and ς) analysis. Detailed explanation is in §4.5.2.............. 173

Figure 4.21. CBL task: TR1DA performances, convergence, and parameters

(feature dimension and ς) analysis. Detailed explanation is in §4.5.2.............. 175

Figure 4.22. CAL task: TR1DA performances, convergence, and parameters

(feature dimension and ς) analysis. Detailed explanation is in §4.5.2.............. 177

Figure 4.23. GBBL task: TR1DA performances, convergence, and parameters

(feature dimension and ς) analysis. Detailed explanation is in §4.5.2.............. 179

Figure 4.24. GBAL task: TR1DA performances, convergence, and parameters

(feature dimension and ς) analysis. Detailed explanation is in §4.5.2.............. 181

Figure 4.25. CBBL task: TR1DA performances, convergence, and parameters

(feature dimension and ς) analysis. Detailed explanation is in §4.5.2.............. 183

Figure 4.26. CBAL task: TR1DA performances, convergence, and parameters

(feature dimension and ς) analysis. Detailed explanation is in §4.5.2.............. 185

7

List of Tables

Table 2.1. Fractional–Step Linear Discriminant Analysis 23

Table 2.2. Linear Discriminant Analysis via Generalized Singular Value

Decomposition... 26

Table 2.3. Linear Discriminant Analysis via QR Decomposition......................... 28

Table 2.4. General Averaged Divergences Analysis for Subspace Selection 35

Table 2.5. Optimization procedure for MGMKLD... 42

Table 2.6. Optimization procedure for M–MGMKLD. .. 44

Table 2.7: Averaged classification errors (the mean for 800 experiments) of LDA,

HDA, aPAC, WLDA, FS–LDA, HLDA, ODA, MGMKLD(0), and

MGMKLD(2c). (The nearest neighbour rule)... 58

Table 2.8: Standard deviations of classification errors for 800 experiments of

LDA, HDA, aPAC, WLDA, FS–LDA, HLDA, ODA, MGMKLD(0), and

MGMKLD(2c). (The nearest neighbour rule)... 58

Table 2.9: Averaged classification errors (the mean for 800 experiments) of LDA,

HDA, aPAC, WLDA, FS–LDA, HLDA, ODA, MGMKLD(0), and

MGMKLD(2c). (The linear classifier () ()1ˆ ˆˆ ˆln
T

i i i ix m x m−− Σ − + Σ
r r r r) 59

Table 2.10: Standard deviations of classification errors for 800 experiments of

LDA, HDA, aPAC, WLDA, FS–LDA, HLDA, ODA, MGMKLD(0), and

MGMKLD(2c). (The linear classifier () ()1ˆ ˆˆ ˆln
T

i i i ix m x m−− Σ − + Σ
r r r r) 59

Table 2.11. Performances (classification errors) of linear methods on the USPS

database. (The nearest neighbour rule).. 64

Table 2.12. Performances (error rates) of kernel methods on the USPS database. A

nine dimensional feature space is selected for each algorithm. (The nearest

neighbour rule) .. 64

Table 3.1. Alternating Projection for the Higher–Order Singular Value

Decomposition... 75

Table 3.2. Alternating Projection for the Best Rank One Approximation 80

Table 3.3. Alternating Projection for the Tensor Rank One Analysis 81

Table 3.4. Alternating Projection for the Best Rank– ()1 2, , MR R RL

Approximation... 84

Table 3.5. Alternating Projection for General Tensor Analysis............................ 85

8

Table 3.6. Alternating Projection for General Tensor Discriminant Analysis...... 94

Table 3.7. Computational complexities of the alternating projection method based

optimization procedure of GTDA with Gabor/GaborD/GaborS/GaborSD

representations... 106

Table 3.8. Twelve probe sets for challenge experiments. 107

Table 3.9. Rank one recognition rates for human gait recognition. 113

Table 3.10. Rank five recognition rates for human gait recognition................... 114

Table 4.1. Alternating Projection for the Supervised Tensor Learning 131

Table 4.2. Alternating Projection for the Tensor Rank One Discriminant Analysis

... 154

Table 4.3. TMPM vs. MPM .. 161

Table 4.4. Parameters in convergence examination for eight probes.................. 169

Table 4.5. Rank One recognition precision for eight probes............................... 169

Table 4.6. Rank five recognition precision for eight probes. 169

9

Abstract

Linear discriminant analysis (LDA) sheds light on classification tasks in computer

vision. However, classification based on LDA can perform poorly in applications

because LDA has: 1) the heteroscedastic problem, 2) the multimodal problem, 3)

the class separation problem, and 4) the small sample size (SSS) problem. In this

thesis, the first three problems are called the model based problems because they

arise from the definition of LDA. The fourth problem arises when there are too

few training samples. The SSS problem is also known as the overfitting problem.

To address the model based problems, a new criterion is proposed: maximization

of the geometric mean of the Kullback–Leibler (KL) divergences and the

normalized KL divergences for subspace selection when samples are sampled

from Gaussian mixture models. The new criterion reduces all model based

problems significantly, as shown by a large number of empirical studies.

To address the SSS problem in LDA, a general tensor discriminant analysis

(GTDA) is developed. GTDA makes better use of the structure information of the

objects in vision research. GTDA is a multilinear extension of a modified LDA. It

involves the estimation of a series of projection matrices in projecting an object in

the form of a tensor from a high dimensional feature space to a low dimensional

feature space. Experiments on human gait recognition demonstrate that GTDA

combined with LDA and nearest neighbor rule outperforms competing methods.

Based on the work above, the standard convex optimization based approach to

machine learning is generalized to the supervised tensor learning (STL)

framework, in which tensors are accepted as input. The solution to STL is

obtained in practice using an alternating projection algorithm. This generalization

reduces the overfitting problem when there are only a few training samples. An

empirical study confirms that the overfitting is reduced.

10

Acknowledgement

Professor Stephen J. Maybank is an excellent advisor and friend! During the two

years for my PhD study, I owed him a lot because I have obtained everlasting

helps from him when I was confused; I have obtained inspirations from him when

I was depressed; and I have obtained rigorous comments from him when I was not

correct on mathematics. I am anxious to have his comments, because they are my

precious stairs, which shape my research from style to content. I would like to

express my deepest gratitude to Steve.

I would like to thank my second supervisor and friend Dr. Xuelong Li for his

discussions, suggestions, and encouragements. With Xuelong’s help, I can do my

research here directly and I can become familiar with London with little effort.

I appreciate my external examiner Professor Andrew Blake at Microsoft Research

Cambridge Lab and internal examiner Professor Shaogang Gong at Queen Mary

for their time reviewing this thesis, their patience for my PhD viva, their

constructive comments to refine this thesis, and their encouragements for my

work.

I would like to thank my fantastic collaborator and friend Professor Xindong Wu

(UVM) for his valuable and interesting suggestions.

I would like to thank my fantastic collaborator and friend Professor Christos

Faloutsos (CMU) and Mr. Jimeng Sun (CMU) for an interesting collaboration

work on tensor analysis for streaming data.

I would like to thank Professor Mario Figueiredo (Instituto Superior Técnico) for

his explanation on the boundary problem in the training procedure of the Gaussian

mixture model.

I need to thank the financial support from the Overseas Research Students Award

Scheme (ORSAS), the Birkbeck College, and the School of Computer Science

11

and Information Systems. Without them, I have no chance to finish my PhD in

UK.

I would also like to thank Mr. Phil Gregg, Mr. Graham Sadler, Mr. Andrew

Watkins, and Mr. Phil Docking for their help on computing resources. Without

their help, I would not have obtained my experimental results in time. I occupied

many computers simultaneously (usually more than five) in the laboratory many

times.

I would like to thank Ms. Betty Walters and Ms. Gilda Andreani for their help in

administration during my study. I thank all members in the department for their

encouragements and suggestions.

I would like to thank my good friends, Dr. Renata Camargo (Birkbeck), Mr.

Liangliang Cao (UIUC), Dr. Yuzhong Chen (Tokyo), Dr. Jun Cheng (CUHK),

Ms. Victoria Gagova (Birkbeck), Dr. Qi Li (UDEL), Dr. Zhifeng Li (CUHK), Mr.

Wei Liu (CUHK), Ms. Ju Luan (CUHK), Mr. Bo Luo (PSU), Mr. Xiaolong Ma

(SUNY-SB), Dr. Mingli Song (ZJU), Mr. Jimeng Sun (CMU), Mr. Wei Wang

(UC-Davis), Mr. Xiaogang Wang (MIT), Dr. Yonggang Wen (MIT), Dr. Hui

Xiong (Rutgers), Dr. Dong Xu (Columbia), Mr. Jin Xu (NLPR), Mr. Tianqiang

Yuan (CUHK), Dr. Dell Zhang (Birkbeck), etc. Moreover, I especially need to

thank Mr. Xiaolong Ma for his friendly support. I also need to thank Dr. Qi Li for

useful discussions.

Finally, I owe my family a lot for many things. I thank all my family members for

their extreme understanding and infinite support of my PhD study and academic

pursuits.

1

1. Introduction

Linear subspace methods [58] have been used as an important pre–processing step

in many applications of classification for dimension reduction or subspace

selection, because of the so called curse of dimensionality [7]. The aim of the

linear subspace methods is to project the original high dimensional feature space

to a low dimensional subspace. Many methods have been proposed for selecting

the low dimensional subspace, e.g., principal component analysis (PCA) [64] and

linear discriminant analysis (LDA) [103]. PCA finds a subspace, which minimizes

reconstruction error, while LDA finds a subspace, which separates different

classes in the projected low dimensional space.

In this thesis, we mainly focus on discriminative linear subspace methods,

especially on LDA, because LDA has been widely used in classification tasks in

computer vision research, such as image segmentation [97], relevance feedback in

content based image retrieval [139][152][153][154], image database indexing

[113], video shots classification [43], medical image analysis [116], object

recognition and categorization [54], natural scene classification [156], face

recognition [158][118][34][168], gait recognition [46][78][79][166][165][142],

fingerprint recognition [59], palmprint recognition [62][179], texture

classification [133], and hand writing classification [119].

The following view of LDA is taken in this thesis: when samples are drawn from

different Gaussian distributions [60] with identical covariance matrices, LDA

maximizes the arithmetic mean of the Kullback–Leibler (KL) [21] divergences

between all pairs of distributions after projection into a subspace. From this point

of view, LDA has the following problems: 1) heteroscedastic problem

[29][28][35][70][61][81][99]: LDA ignores the discriminative information, which

is present when the covariance matrices change between classes; 2) multimodal

problem [51][28]: each class is modelled by a single Gaussian distribution; and 3)

class separation problem [103][95][96][99][146]: LDA merges classes which are

close together in the original feature space. We call these three problems model

based problems, because they are part of the limitations of the definition of LDA.

Apart from the model based problems, LDA also has the small sample size (SSS)

problem [38][49][139][123][19][175][55][173][174][180], when the number of

2

training samples is less than the dimension of the feature space. In the LDA

model, two scatter matrices are calculated. These are the between class scatter

matrix [39] and the within class scatter matrix [39]. The between class scatter

matrix measures the separation between different classes. The larger the volume

(e.g., the trace value) of the matrix is, the better the different classes are separated.

The within class scatter matrix describes the scatter of samples around their

respective class centers. The smaller the volume of the matrix is, the closer the

samples are to their respective class centers. LDA finds a subspace, which

maximizes the ratio between the trace of the projected between class scatter

matrix and the trace of the projected within class scatter matrix. The solution is

given by an eigenvalue decomposition [44] of the product of the inverse of the

within class scatter matrix and the between class scatter matrix. In many real

applications, LDA cannot be applied in this straightforward way, because the rank

of the within class scatter is deficient [47], i.e., the inverse of the matrix does not

exist.

To deal with the model based problems, it is important to develop a flexible

framework. Because LDA is equal to the maximization of the arithmetic mean of

the KL divergences when samples are obtained from different Gaussian

distributions with identical covariances, we develop a general averaged

divergences analysis framework, which extends LDA in two ways: 1)

generalizing the KL divergences to the Bregman divergence [14], which is a

general distortion measure of probability distributions and 2) generalizing the

arithmetic mean to the generalized mean [48], which includes as special cases a

large number of mean functions, e.g., the arithmetic mean, the geometric mean

[20], and the harmonic mean [1][48]. Because this framework takes different

covariance matrices into account, it can make better use of the information in

heteroscedastic data. Then we combine the Gaussian Mixture Model (GMM) [30]

with the framework to reduce the multimodal problem. In applications, LDA

tends to merge classes, which are close in the original high dimensional space.

This problem is reduced with the proposed general averaged divergences analysis

framework by using geometric mean for subspace selection. Three criteria for

subspace selection are described: 1) maximization of the geometric mean of the

divergences; 2) maximization of the geometric mean of normalized divergences;

and 3) maximization of the geometric mean of all divergences (both the

3

divergences and the normalized divergences). Experiments with computer

generated data and digitized hand writing [53] show that the combination of the

geometric mean based criteria and the KL divergence significantly reduces the

heteroscedastic problem, the multimodal problem and the class separation

problem.

To deal with the SSS problem, the following two steps are conducted:

1) the LDA criterion is replaced by the difference between the trace of the

between class scatter matrix in the projected subspace and the weighted trace

of the within class scatter matrix in the projected subspace. The new criterion

is named the differential scatter discriminant criterion (DSDC) [143][149].

The relationship between LDA and DSDC is discussed in detail in Chapter 2;

2) In computer vision research, samples are often tensors, i.e.,

multidimensional arrays. For example, the averaged gait image [45][91],

which is the feature used for gait recognition, is a matrix, or a second order

tensor; a face image, is also a matrix in face recognition [182]; a color image

[54] in object recognition is a third order tensor or a three dimensional array;

and a color video shot (a color image sequence) [43] in video retrieval is a

forth order tensor or a four dimensional array. Therefore, DSDC is

reformulated through operations in multilinear algebra [115][75] or tensor

algebra [115][75]. That is we substitute the multilinear algebra operations,

e.g., the tensor product, the tensor contraction, and the mode product, for the

linear algebra operations, e.g., the matrix product, the matrix transpose, and

the trace operation. Then we can directly replace the vectors, which are used

to represent vectorized samples, with tensors, which are used to represent the

original samples.

The combination of the two steps described above is named the general tensor

discriminant analysis (GTDA) [144][147]. By this replacement, the SSS problem

can be significantly reduced, because we need not to estimate a large projection

matrix at a time. That is we estimate a series of small projection matrices

iteratively by using the alternating projection method, which obtains each small

projection matrix with all the other fixed projection matrices in an iterative way,

i.e., an alternating projection method for optimization decouples a projection

matrix from the others. In each iteration, the number of unknown parameters (the

size of a projection matrix) in GTDA is much less than that of in LDA.

4

GTDA is motivated by the successes of the tensor rank one analysis (TR1A)

[132], general tensor analysis (GTA) [75][162][171], and the two dimensional

LDA (2DLDA) [174] for face recognition. The benefits of GTDA are: 1)

reduction of the SSS problem for subsequent classification, e.g., by LDA; 2)

preservation of discriminative information in training tensors, while PCA, TR1A,

and GTA do not guarantee this; 3) provision with stable recognition rates because

the optimization algorithm of GTDA converges, while that of 2DLDA does not;

and 4) acceptance of the general tensors as input, while 2DLDA only accepts

matrices as input.

We then apply the proposed GTDA to appearance [82] based human gait

recognition [45][46][91][92]. For appearance based gait recognition, the averaged

gait images are suited for human gait recognition, because: 1) the averaged gait

images of the same person share similar visual effects under different

circumstances; and 2) the averaged gait images of different people even under the

same circumstance are very different. Motivated by the successes of Gabor

function [32][80] based image decompositions for image understanding and

object recognition, we develop three different Gabor function based image

representations [144]: 1) the sum of Gabor functions over directions based

representation (GaborD), 2) the sum of Gabor functions over scales based

representation (GaborS), and 3) the sum of Gabor functions over scales and

directions based representation (GaborSD). These representations are applied to

recognize people from their averaged gait images. A large number of experiments

were carried out to evaluate the effectiveness (recognition rate) of gait recognition

based on the following three successive steps: 1) the Gabor/GaborD/GaborS/

GaborSD image representations, 2) GTDA to extract features from the Gabor/

GaborD/GaborS/GaborSD image representations, and 3) applying LDA for

recognition. The proposed methods achieve sound performance for gait

recognition based on the USF HumanID Database [126]. Experimental

comparisons are made with nine state of the art classification methods

[46][66][126][167][173] in gait recognition.

Finally, vector based learning1 is extended to accept tensors as input. This results

in the supervised tensor learning (STL) framework [149][150], which is the

1 Vector based learning means the traditional classification technique, which accepts vectors as
input. In vector based learning, a projection vector Lw R∈

r and a bias b R∈ are learnt to

5

multilinear extension of the convex optimization [11] based learning. To obtain

the solution of an STL based learning algorithm, an alternating projection method

is designed. Based on STL and its alternating projection optimization algorithm,

we illustrate some examples. That is we extend the soft margin support vector

machine (SVM) [161][15], the nu–SVM [130][128], the least squares SVM

[137][138], the minimax probability machine (MPM) [74][135], the Fisher

discriminant analysis (FDA) [37][30][69], the distance metric learning (DML)

[169] to their tensor versions, which are the soft margin support tensor machine

(STM), the nu–STM, the least squares STM, the tensor MPM (TMPM) [150], the

tensor FDA (TFDA), and the multiple distance metrices learning (MDML),

respectively. With STL, we also introduce a method for feature extraction through

an iterative way [132] and develop the tensor rank one discriminant analysis

(TR1DA) [145][143] as an example. The experiments for image classification

demonstrate TMPM reduces the overfitting problem in MPM. The experiments

for the elapsed time problem in human gait recognition show TR1DA is more

effective than PCA, LDA, and TR1A.

determine the class label of a sample Lx R∈
r according to a linear decision function

() sign Ty x w x b⎡ ⎤= +⎣ ⎦
r r r . The wr and b are obtained based on a learning model, e.g., minimax

probability machine (MPM), which is based on N training samples associated with labels
{ },L

i ix R y∈
r , where iy is the class label, { }1, 1iy ∈ + − , and 1 i N≤ ≤ .

6

 Thesis Organization

Model Problems:
1. Heteroscedastic Problem
2. Unimodal Problem
3. Class Separation Problem

The Small Sample
Size Problem Overfitting

Supervised Tensor
Learning

Discriminative Linear
Subspace Method

Discriminative Multilinear
Subspace Method

Maximization of the Geometric Mean
of all Kullback-Leibler Divergences

Linear Discriminant Analysis

General Averaged Divergences
Analysis

1. Support Tensor Machine
2. Tensor Minimax Probability Machine
3. Tensor Fisher Discriminant Analysis
4. Multiple Distance Metrics Learning
 … … … … … …

Chapter 2 Chapter 3 Chapter 4

General Tensor
Discriminant Analysis

Manifold Learning
using Tensor

Representations

Figure 1.1. The plan of the thesis.

LDA selects subspace to separate different classes in the projected low

dimensional subspace and it has been widely applied for classification tasks in

computer vision research. However, LDA has two types of problems: 1) the

model based problems, which are led by its definition and 2) the small sample size

(SSS) problem, when the number of training samples is less than the dimension of

the feature space. To deal with the model based problems, we develop the

maximization of the geometric mean of all Kullback-Leibler divergences under

the general averaged divergences analysis framework in Chapter 2, as shown in

Figure 1.1. To deal with the SSS problem, we propose a general tensor

discriminant analysis (GTDA) for subspace selection based on tensor algebra.

GTDA is also extended for popular manifold learning algorithms in Chapter 3, as

shown in Figure 1.1. The SSS problem is relevant to the overfitting problem in

vector based learning algorithms for classification. Both problems arise when the

number of training samples is small. In Chapter 4, we apply tensor algebra to

7

extend vector based learning algorithms to accept tensors as input to reduce the

overfitting problem. A number of examples are provided in this Chapter, as shown

in Figure 1.1.

In Chapter 2, we review two important linear subspace methods [58], namely

principal component analysis (PCA) [64] and linear discriminant analysis (LDA)

[103]. We then analyze the problems of LDA and review some extensions [19]

[28][29][38][49][51][55][61][70][95][96][99][103][123][139][173][174][175][18

0] of LDA to reduce these problems. We also give a new point of view [146] on

discriminative subspace selection and develop a new framework for subspace

selection, the general averaged divergences analysis [146]. This framework allows

a range of different criteria for assessing subspaces. Based on the new framework,

we investigate geometric mean [20] for discriminative subspace selection and

develop a method for the maximization of the geometric mean of all Kullback–

Leibler (KL) [21] divergences (MGMKLD) [146] by combining the maximization

of the geometric mean of all divergences and the KL divergence for subspace

selection. A large number of experiments are conducted to demonstrate the

effectiveness of the new discriminative subspace selection method compared with

LDA and its representative extensions.

In Chapter 3, we focus on multilinear subspace methods, because the objects in

computer vision research are often tensors [75]. Firstly, tensor algebra [115][75]

is briefly introduced. It is the mathematical fundamental material of this Chapter.

After that, unsupervised learning techniques, such as TR1A [132] and GTA [75]

[162][171], are reviewed. We also give a brief introduction of 2LDA [174].

Motivated by the success of 2DLDA in face recognition, we then develop GTDA,

which includes the following parts: 1) the LDA criterion is replaced by DSDC

[143][149]. The relationship between LDA and DSDC is discussed in detail; and

2) DSDC is reformulated through operations in multilinear algebra [115][75].

Based on the reformulated DSDC, vectors can be replaced with tensors, i.e.,

retaining the original format of samples; 3) an alternating projection optimization

procedure is developed to obtain the solution of GTDA; 4) provide the

mathematical proof of the convergence of the alternating projection optimization

procedure for calculating the projection matrices; and 5) the computational

complexity is analyzed. Finally, the proposed GTDA combined with LDA and the

nearest neighbour classifier is utilized for appearance based human gait

8

recognition [45][46][91][92]. Compared with previous algorithms, the newly

presented algorithms achieve better recognition rates.

In Chapter 4, a supervised tensor learning (STL) framework [149][150] is

developed based on the similar idea to reduce the SSS problem in Chapter 3. We

first introduce convex optimization [11] and convex optimization based learning.

Then we propose the STL framework associated with the alternating projection

method for optimization. Based on STL and its alternating projection optimization

algorithm, we generalize the support vector machine (SVM) [161][15][130][128]

[137][138], the minimax probability machine (MPM) [74][135], the Fisher

discriminant analysis (FDA) [37][30] [69], and the distance metric learning

(DML) [169], as the support tensor machine, the tensor minimax probability

machine, the tensor Fisher discriminant analysis, and the multiple distance metrics

learning, respectively. We also propose an iterative feature extraction method

based on STL. As an example, we develop the tensor rank one discriminant

analysis (TR1DA). Experiments are conducted based on the tensor minimax

probability machine and TR1DA.

Chapter 5 concludes.

The main contributions of the thesis are three folds:

1. Develop a discriminative subspace selection framework, i.e., general

averaged divergences analysis. Based on this framework, a special case,

i.e., maximization of the geometric mean of all Kullback–Leibler (KL)

divergences, is given to significantly reduce the class separation problem

raised by imbalanced distributions of KL divergences between different

classes. Moreover, it is also compatible with the heteroscedastic property

of data and deals with samples drawn from mixture of Gaussians naturally.

Empirical studies demonstrate that it outperforms LDA and its

representative extensions;

2. Develop the general tensor discriminant analysis (GTDA) to reduce the

small sample size (SSS) problem. Unlike all existing tensor based

discriminative subspace selection algorithms, GTDA converges in the

training stage. Moreover, a full mathematical proof is given. To our best

knowledge, this is the first work in the world to give both a converged

algorithm and a mathematical proof. Again, this proof can be also applied

to justify whether a tensor based algorithm converges or not by checking

9

the convexity of its objective function. By applying GTDA to human gait

recognition, we achieve the state-of-the-art recognition accuracy; and

3. By applying tensor algebra to vector based learning, we finally develop a

supervised tensor learning framework. The significance of the framework

is we can conveniently generalize different vector based classifiers to

tensor based classifiers to reduce the over–fitting problem. For example,

we generalize the support vector machine to the support tensor machine

and give out the error bound; we generalize the Fisher discriminant

analysis and the minimax probability machine to the tensor Fisher

discriminant analysis and the tensor minimax probability machine,

respectively, to overcome the matrix singular problem; and we generalize

distance metric learning to multiple distance metrics learning to make it

computable for appearance based recognition tasks. Finally, an iterative

feature extraction model is given based on supervised tensor learning.

Empirical studies show the power of supervised tensor learning and the

iterative feature extraction model.

10

 Publications

The research of this thesis has resulted in the following research papers:

1. D. Tao, X. Li, X. Wu, and S. J. Maybank, “General Tensor Discriminant
Analysis and Gabor Features for Gait Recognition,” IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 2007. [Chapter 3]

2. D. Tao, X. Li, X. Wu, and S. J. Maybank, “Tensor Rank One Discriminant
Analysis,” Submitted to IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI). (Under Major Revision) [Chapter 4]

3. D. Tao, X. Li, X. Wu, and S. J. Maybank, “General Averaged Divergences
Analysis,” Submitted to IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI). (Under Major Revision) [Chapter 2]

4. D. Tao, X. Li, and S. J. Maybank, “Negative Samples Analysis in Relevance
Feedback,” IEEE Transactions on Knowledge and Data Engineering
(TKDE), 2007.

5. D. Tao, X. Li, W. Hu, S. J. Maybank, and X. Wu, “Supervised Tensor
Learning: A Framework,” Knowledge and Information Systems (Springer),
2007. [Chapter 4]

6. D. Tao, X. Li, X. Wu, and S. J. Maybank, “Human Carrying Status in Visual
Surveillance,” IEEE Int’l Conf. on Computer Vision and Pattern Recognition
(CVPR), pp. 1,670–1,677, 2006. (Acceptance rate: ~20%) [Chapter 3]

7. D. Tao, X. Li, X. Wu, and S. J. Maybank, “Elapsed Time in Human Gait
Recognition: A New Approach,” IEEE Int’l Conf. on Acoustics, Speech, and
Signal Processing (ICASSP), vol. 2, pp. 177–180, 2006. [Chapter 4]

8. D. Tao, X. Li, W. Hu, S. J. Maybank, and X. Wu, “Supervised Tensor
Learning,” IEEE Int’l Conf. on Data Mining (ICDM), pp. 450–457, 2005.
(Acceptance rate: ~11%) [Chapter 4]

9. D. Tao, X. Li, W. Hu, and S. J. Maybank, “Stable Third–Order Tensor
Representation for Color Image Classification,” IEEE Int’l Conf. on Web
Intelligence (WI), pp. 641–644, 2005.

11

2. Discriminative Linear Subspace Methods

The linear subspace method (LSM) [2][21][50][109][107] has been developed and

demonstrated to be a powerful tool in pattern recognition and computer vision

research fields. LSM finds a matrix 'L LU R ×∈ to transform the high dimensional

sample Lx R∈
r to a low dimensional sample 'Ly R∈

r , i.e., Ty U x=
r r . There are

two major categories of LSM algorithms, which are focused on either feature

selection or dimension reduction, respectively. A feature selection algorithm

selects a (very small) number of most effective features from the entire feature

pool. That is the un–selected features are not utilized. In feature selection, the

linear transformation matrix U has the following properties: 1) the entries of U

are 1 or 0; 2) the inner product of any two columns of U is 0; and 3) the sum of

all entries of any column of U is 1. A dimension reduction algorithm finds

several sets of coefficients, and with each set of coefficients the original features

are weighted and summed to produce a new feature. By this means, several (less

than the number of the original features) new low dimensional samples are

“generated” to preserve as much as possible the information (e.g., reconstructive

information or discriminative information) carried by the original high

dimensional samples. In this thesis, we focus on algorithms for dimension

reduction.

From the viewpoint of modelling, LSM can be used with a large number of

models varying from reconstructive models to discriminative models. A

reconstructive LSM minimizes ()1

N
i i Hi

L x Uy
=

−∑ r r , where we have N training

samples ixr on hand; the projection matrix is U ; iyr is the low dimensional

representation of ixr ;
H

⋅ is a norm; and ()L ⋅ is a loss function [161][128].

Principal component analysis (PCA) [64] is an example of a reconstructive model.

On the other side, discriminative models, e.g., linear discriminant analysis (LDA)

[39], are utilized for classification. A discriminative LSM maximizes an objective

function to separate different classes in the projected low dimensional subspace.

Both reconstructive and discriminative models are widely used in many real–

world applications, such as biometrics [182][68], bioinformatics [31], and

multimedia information management [24][139].

12

In this Chapter, we mainly focus on the discriminative LSM, especially LDA,

because it is the most popular algorithm in dimension reduction (or subspace

selection) for classification. If samples are sampled from Gaussian distributions

with identical covariance matrices, LDA maximizes the arithmetic mean value of

the Kullback–Leibler (KL) [21] divergences between different classes. Based on

this point of view, it is not difficult to see that LDA has the following problems:

1) Heteroscedastic problem [29][28][70][61][99]: LDA models different classes

with identical covariance matrices. Therefore, it fails to take account of any

variations in the covariance matrices between different classes;

2) Multimodal problem [51][28]: In many applications, samples in each class can

not be approximated by a single Gaussian. Instead, a Gaussian mixture model

(GMM) [39][30] is required. However, LDA models each class by a single

Gaussian distribution;

3) Class separation problem [103][95][96][99][146]: In applications, distances

between different classes are different and LDA tends to merge classes which are

close together in the original feature space.

The first two problems have been well studied in the past few years and a number

of extensions of LDA have been generated to deal with them. Although some

methods [103][95][96][99] have been proposed to reduce the third problem, it is

still not well solved. In this Chapter, to further reduce the class separation

problem, we first generalize LDA to obtain a general averaged divergences

analysis, which extends LDA from two aspects: 1) the KL divergence is replaced

by the Bregman divergence [14]; and 2) the arithmetic mean is replaced by the

generalized mean function [48]. By choosing different options in 1) and 2), a

series of subspace selection algorithms are obtained, with LDA included in as a

special case.

Under the general averaged divergences analysis, we investigate the effectiveness

of geometric mean [20] based subspace selection in solving the class separation

problem. The geometric mean amplifies the effects of small divergences and at

the same time reduces the effects of large divergences. Next, the maximization of

the geometric mean of the normalized divergences is studied. This turns out not to

be suitable for subspace selection, because there exist projection matrices which

make all divergences very small and at the same time make all normalized

divergences similar in value. We therefore propose a third criterion, maximization

13

of the geometric mean of all divergences (both the divergences and the

normalized divergences) or briefly MGMD. It is a combination of the first two.

With MGMD, it is possible to develop different subspace selection methods by

choosing different divergences. In this chapter, we select the KL divergence and

assume that the samples in each class are obtained by sampling Gaussian

distributions. This results in the maximization of a function of all KL divergences

(MGMKLD). The name MGMKLD is chosen because the function is closely

related to the geometric mean of divergences. We extend MGMKLD to the case

in which the samples in each class are sampled from a Gaussian Mixture Model

[30]. This gives the multimodal extension of MGMKLD, or M–MGMKLD.

Finally, we kernelize [104][109][128][129] MGMKLD to the kernel MGMKLD

or briefly KMGMKLD. Preliminary experiments based on synthetic data and

handwriting digital data [53] show that MGMKLD achieves much better

classification rates than LDA and its several representative extensions taken from

the literature.

The Chapter is organized as follows. In §53 and §53, PCA with its kernel

extension and LDA with its representative extensions are briefly reviewed,

respectively. In §53, the general averaged divergences analysis is proposed. In

§53, the geometric mean for subspace selection is investigated. The KL

divergence based geometric mean subspace selection is developed in §53.

synthetic data based experiments, statistical experiments, and hand writing

recognition for justifying the effectiveness of linear subspace methods are given

in §53, §53, and §53, respectively. Finally, summary of this Chapter is given in

§53. Moreover, all proofs and deductions in this Chapter are given in §53.

14

 Principal Component Analysis

Although PCA [64] is a reconstructive model, it has been successfully applied for

classification tasks in computer vision. It extracts the principal eigenspace

associated with a set of training samples L
ix R∈
r (1 i n≤ ≤). Let

() ()()1
1 n T

i ii
S n x m x m

=
= − −∑ r r r r be the covariance matrix, alternatively called the

total–class scatter matrix, of all training samples ixr , where () 1
1 n

ii
m n x

=
= ∑r r .

One solves the eigenvalue equation i iu Suλ =
r r for eigenvalues 0iλ ≥ . The

projection matrix *U is spanned by the first 'L eigenvectors with the largest

eigenvalues, '
1* |Li iU u∗
=⎡ ⎤= ⎣ ⎦

r . If xr is a new sample, then it is projected to

() ()* Ty U x m= −
r r r . The vector yr is used in place of xr for representation and

classification.

PCA has the following properties. In the following description, we assume the

training samples ixr are centralized, i.e., 0m =
r .

Property 2.1: PCA maximizes the variance in the projected subspace for a given

dimension 'L , i.e.,

() 2

1

1arg max tr arg max
n

T T
i FroU U i

U SU U x
n =

= ∑ r . (2.01)

where
Fro

⋅ is the Frobenius norm.

Proof: See Appendix.

Property 2.2: The principal eigenspace U in PCA diagonalizes the covariance

matrix of the training samples.

Property 2.3: PCA minimizes the reconstruction error, i.e.,

() 2

1

1arg max tr arg min
n

T T
i i FroU U i

U SU x UU x
n =

= −∑ r r . (2.02)

Proof: See Appendix.

Property 2.4: PCA decorrelates the training samples in the projected subspace.

Proof: See Appendix.

Property 2.5: PCA maximizes the mutual information between xr and yr on

Gaussian data.

Proof: See Appendix.

15

We now study the nonlinear extension of PCA, or the kernel PCA (KPCA) [129],

which takes high order stastistics of the training samples into account. Consider a

nonlinear mapping:

(): ,L HR R x xφ φ→
r r
a , (2.03)

where H n= . Then, in HR , the covariance matrix is

()() ()()
1

1 n T

i i
i

S x m x m
nφ φ φφ φ

=

= − −∑ r r r r , (2.04)

where () ()1
1 n

ii
m n xφ φ

=
= ∑r r is the mean vector of all training samples in HR .

The () ()T
i ix xφ φr r is a linear operator on the range of φ in HR . Suggested by

Schölkopf et al. [128][129], the mapping is defined as () () ,i ix x x xφ φr r r r
a . The

next step in KPCA is to find the eigenvalue decomposition on Sφ .

v S vφλ =
r r . (2.05)

Because all solutions vr with 0λ ≠ are the linear combinations of ()ixφ r ,

1 i n≤ ≤ , we have

() (), ,i ix v x S vφλ φ φ=
r r r r , for all 1 i n≤ ≤ . (2.06)

Replace vr with ()1

n
i ii

xα φ
=∑ r in (2.06), we have

() ()

()
() ()

() () ()

1

1

1 1

1

,

1
1,

1 ,

n

j i j
j

n

k kn n k
j i n

j k
k k j

k

x x

x x
n

x
n

x x x
n

λ α φ φ

φ φ
α φ

φ φ φ

=

=

= =

=

⎛ ⎞−⎜ ⎟
⎝ ⎠

=
⎛ ⎞

−⎜ ⎟
⎝ ⎠

∑

∑
∑ ∑

∑

r r

r r

r

r r r

 (2.07)

for all 1 i n≤ ≤ .

In terms of the n n× kernel Gram matrix [128][129] () (): ,ij i jK x xφ φ= =
r r

(),i jk x xr r , (2.07) is simplified as

()()T
i i iK K I M I M Kλ α α= − −

r r (2.08)

where iα
r is a column vector and it is the eigenvectors of ()()TI M I M K− − ;

iλ is the eigenvalues of K ; () () (), ,i ik x z x zφ φ=
r rr r is the kernel function

[128][129]; and all entries in
1 ;

n n
ij i j n

M m R ×

≤ ≤
⎡ ⎤= ∈⎣ ⎦ are 1 n . The projection

16

matrix Λ in HR is spanned by the first ()' 'H H H n< = iα
r with the largest

eigenvalues, i.e., []1i i n
α

≤ ≤
Λ =

r .

After obtaining the linear combination coefficients, we can project a given sample

zr to the subspace constructed by KPCA according to

() () ()
() () ()1 2, , , , , , ,

T T T

T
n

X z X z

k x z k x z k x z
φ φφ φΛ = Λ

= Λ ⎡ ⎤⎣ ⎦

r r

r r rr r r
L

 (2.09)

where () 1[]i i nX xφ φ ≤ ≤=
r .

17

 Linear Discriminant Analysis

LDA [103] finds in the feature space a low dimensional subspace where the

different classes of samples remain well separated after projection to this

subspace. The subspace is spanned by a set of vectors, which are denoted as

[]1 ', , LU u u=
r r
K . It is assumed that a training set of samples is available. The

training set is divided into c classes. The ith class contains in samples

;i jxr (1 ij n≤ ≤), and has a mean value () ;1
1 in

i i i jj
m n x

=
= ∑r r . The between class

scatter matrix bS and the within class scatter matrix wS are defined by

()()

()()
1

; ;
1 1

1

1 i

c
T

b i i i
i

nc T

w i j i i j i
i j

S n m m m m
n

S x m x m
n

=

= =

⎧ = − −⎪
⎪
⎨
⎪ = − −
⎪⎩

∑

∑∑

r r r r

r r r r
 (2.10)

where c is the number of classes;
1

c
ii

n n
=

= ∑ is the size of the training set; and

() ;1 1
1 ic n

i ji j
m n x

= =
= ∑ ∑r r is the mean vector of all training samples. Meanwhile,

() ()(); ;1 1
1 i Tc n

t i j i ji j
S n x m x m

= =
= − −∑ ∑ r r r r

b wS S= + is the covariance matrix of all

samples.

The projection matrix *U of LDA is chosen to maximize the ratio between bS

and wS in the projected subspace, i.e.,

() ()()1
* arg max tr T T

w b
U

U U S U U S U
−

= . (2.11)

The projection matrix *U is computed from the eigenvectors of 1
w bS S− , under

the assumption that wS is invertible. If c equals to 2, LDA reduces to the Fisher

discriminant analysis [37]; otherwise LDA is known as the Rao discriminant

analysis [122]. Because ()rank 1bS c≤ − , we have ' 1L c≤ − , i.e., the maximum

dimension of the projected subspace for LDA is ()min 1, 1c L− − .

If separate classes are sampled from Gaussian distributions, all with identical

covariance matrices, then LDA maximizes the mean value of the KL divergences

between different classes. This result will be proved in §122.

LDA encounters the following problems, which are:

18

1) Heteroscedastic problem [29][28][70][61][99]: LDA discards the

discriminative information preserved in covariance matrices of different classes;

2) Multimodal problem [51][28]: LDA models each class by a single Gaussian

distribution, so it cannot find a suitable projection for classification when samples

are sampled from complex distributions, e.g., GMM;

3) Class separation problem [103][95][96][99][146]: LDA tends to merge classes

which are close together in the original feature space.

Furthermore, when the size of the training set is smaller than the dimension of the

feature space, LDA has the small sample size (SSS) problem [19][30][38][39]

[49][55][123][139][173][174][175][180].

In the following, we review some representative solutions for these problems.

Furthermore, we mention some alternatives of LDA [39], namely the

nonparametric discriminant analysis [39][40], and the kernel extension of LDA

[104][109] [128][129].

 Heteroscedastic Problem

LDA does not fully utilize the discriminative information contained in the

covariances of different classes. As a result, it cannot find a suitable projection

direction when different classes share the same mean, as shown in Figure 2.1.

In the past decades, a large number of extensions based on LDA were developed

to reduce this problem. For example,

• Decell and Mayekar [29] proposed a method to obtain a subspace to

maximize the average interclass divergence, which measures the

separations between the classes. This criterion takes into account the

discriminative information preserved in the covariances of different

classes. The projection matrix *U is calculated by maximizing,

() (

()())) ()

1

1 1;
tr

 1 ',

c c
T T

D i j
i j j i

T

j i j i

J U S U U S

m m m m U c c L

−

= = ≠

⎡ ⎛
= ⎢ ⎜

⎢ ⎝⎣
⎤+ − − − −⎥⎦

∑ ∑
r r r r

 (2.12)

where iS is the ith class covariance matrix (1 i c≤ ≤); imr is the mean

vector of the samples in the ith class (1 i c≤ ≤); c is the number of classes

19

of the training set; 'L is the number of selected features; and U is the

projection matrix to obtain the low dimensional representation.

De la Torre and Kanade [28] developed the oriented discriminant analysis

(ODA) based on the objective function defined in (2.12), but used iterative

majorization to obtain a solution. The iterative majorization speeds up the

training stage.

O
ptim

al P
rojection D

irection for C
lassification

LD
A

Figure 2.1. LDA fails to find the optimal projection direction for classification,

because it does not utilize the discriminative information preserved in the class

covariances.

• Campbell [17] has shown LDA is related to the maximum likelihood

estimation of parameters for a Gaussian model based on the following two

assumptions: 1) all class discriminative information resides in a low

dimensional subspace of the original high dimensiaon feature space and 2)

the within class covariances are identical for all classes. Kumar and

Andreou [70] developed the heteroscedastic discriminant analysis (HDA)

20

by dropping the identical class covariances assumption. The projection

matrix *U is calculated by maximizing,

' ' ' '
1

log log 2 log
c

T T
K L L L L i L i L

i
J n U SU n U S U n U− −

=

= + −∑ , (2.13)

where []' 'L L LU U U −= is the full transformation matrix; 'LU is the

transformation submatrix to select the discriminative subspace;

()det⋅ ⋅� ; iS is the ith class covariance matrix (1 i c≤ ≤); S is the

covariance matrix of all training samples; c is the number of classes of

the training set; and 'L is the number of selected features. Furthermore,

the projection matrix *U is obtained by maximizing KJ through the

gradient steepest ascent algorithm.

• Jelinek [61] proposed a different way to deal with the heteroscedastic

problem in subspace selection by the gradient steepest ascent method to

find the projection matrix *U by maximizing,

1

log log
c

T T
J b i i

i

J n U S U n U S U
=

= −∑ , (2.14)

where ()det⋅ ⋅� ; iS is the covariance matrix of the ith class; bS is the

between class scatter matrix defined in (2.10); in is the number of

samples in the ith class (1 i c≤ ≤); c is the number of classes of the

training set; and U is the projection matrix to obtain the low dimensional

representation.

• Loog and Duin [99] introduced the Chernoff criterion to heteroscedasticize

LDA, i.e., the heteroscedastic extension of LDA (HLDA). The projection

matrix *U in HLDA is obtained by maximizing,

() ()()(
() ()(

() ()))

1 1 21 1 2 1 2 1 2 1 2

1 1

1 21 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

1 log

 log log ,

c c T

L i j w w w ij w w i j i j
i j i

w w ij w w ij w
i j

i w i w j w j w w

J q q S S S S S S m m m m

S S S S S S S

S S S S S S S

π π

π π

− −− − −

= = +

−− − −

− −

= × × − −

× +

− −

∑ ∑ r r r r

 (2.15)

where
1

c
i i kk

q n n
=

= ∑ is the prior probability of the ith class; iS is the

covariance matrix of the ith class; ()i i i jq q qπ = + ; ()j j i jq q qπ = + ;

ij i i j jS S Sπ π= + ; wS is the within class scatter matrix defined in (2.10);

21

in is the number of samples in the ith class (1 i c≤ ≤); and c is the

number of classes of the training set.

The projection matrix *U of HLDA is constructed by the eigenvectors of

the LJ corresponding to the largest eigenvalues.

 Multimodal problem

The direct way to deal with the multimodal problem is to model each class by a

GMM [39][30]. Two representative works are as following,

• Hastie and Tibshirani [51] combined GMM with LDA based on the fact

that LDA is equivalent to maximum likelihood classification when each

class is modelled by a single Gaussian distribution. The extension directly

replaces the original single Gaussian in each class by a Gaussian mixture

model in Campbell’s result [17], as shown in (2.13).

• De la Torre and Kanade [28] generalized ODA defined in (2.12) for the

multimodal case as the multimodal ODA (MODA) by combining it with

GMM learnt by the normalized cut [131][177]. Each class is modelled by

a GMM. The aim of MODA is to find a projection matrix *U to

maximize

()
()()()

1

;

1 1 1 1 ; ; ; ; ;

tr
ji

T T
ccc c i k

MODA T
i j k l i k j l i k j l j lj i

U S U U
J

m m m m S U

−

= = = =
≠

⎛ ⎞
⎜ ⎟= ⎜ ⎟
× − − +⎜ ⎟
⎝ ⎠

∑∑∑∑ r r r r , (2.16)

where ic is the number of subclusters of the ith class; ;i kS is the

covariance matrix of the kth subcluster of the ith class; ;i kmr is the mean

vector of the kth subcluster of the ith class; c is the number of classes of

the training set; and U is the projection matrix to obtain the low

dimensional representation.

 Class separation problem

One of the most severe problems in LDA is the class separation problem, i.e.,

LDA merges classes which are close together in the original feature space. As

pointed out by McLachlan in [103], Lotlikar and Kothari in [95], Loog et al. in

[98], and Lu et al. in [100], this merging of classes significantly reduces the

recognition rate. The example in Figure 2.2 shows that LDA is not always optimal

22

for pattern classification. To improve its performance, Lotlikar and Kothari in

[95] developed the fractional–step LDA (FS–LDA) by introducing a weighting

function. Loog et al. in [98] developed another weighting method for LDA,

namely the approximate pairwise accuracy criterion (aPAC). The advantage of

aPAC is that the projection matrix can be obtained by the eigenvalue

decomposition. Lu et al. in [100] combined the FS–LDA and the direct LDA

[175] for very high dimensional problems, such as face recognition [182].

However, both FS–LDA and aPAC do not use the discriminative information in

different class covariances. Therefore, when samples are drawn from Gaussians

with different covariances, these two methods fail to detect the suitable subspace

for classification (their performance could be even worse than LDA). The detailed

procedures for FS–LDA and aPAC are as follows,

LD
A

Pr
oj

ec
tio

n
D

ire
ct

io
n

Class 1

Class 2 Class 3Optimal Projection Direction

Figure 2.2. The samples in each class are drawn from a Gaussian distribution.

LDA finds a projection direction, which merges class 1 and class 2. One of the

reasonable projection directions for classification trades the distance between the

class 1 and the class 2 against the distance between the class 1, 2 and class 3. This

example is a sketch of the synthetic data used in Figure 2.7 in §0.

23

• Lotlikar and Kothari [95] developed FS–LDA to reduce the class

separation problem. They found this problem is invoked by non–uniform

distances between classes, i.e., some distances between different classes

are small while others are large. Therefore, a weighting method is used to

reduce this problem. FS–LDA is an iterative procedure for subspace

selection as shown in Table 2.1.

Table 2.1. Fractional–Step Linear Discriminant Analysis

Input: Training samples ;i jxr in LR , where i denotes the ith class (1 i c≤ ≤) and
j denotes the jth sample in the ith class (1 ij n≤ ≤), and the dimension 'L
('L L<) of the projected subapce.

Output: Linear projection matrix *U in 'L LR × .

1. Set L LU I ×= (the identity matrix)

2. Calculate the mean of the ith class () ;1
1 in

i i i jj
m n x

=
= ∑r r .

3. for k L= to ()' 1L + with step 1− {

4. for 0l = to ()1r − with step 1 {

5.
Calculate ; ;

l T
i j i jy A U x=
r r , where A is a diagonal matrix. The kth

entry of A is less than 1 and the other entries are 1;

6. Calculate () ;1
1 in

i i i jj
n yμ

=
= ∑r r in the projected subspace;

7.

Calculate () ()()()()1 1
1

Tc c ij
b i j i ji j

S n w d μ μ μ μ
= =

= − −∑ ∑ r r r r , where

()w ⋅ is the weighting function and ()pij
i jd m m= −
r r . Usually,

()w ⋅ is set as a polynomial like function with degree less than 3−
(in our experiments, we set it as 8−).

8.
Compute the first k eigenvectors []1 2, , kϕ ϕ ϕΨ =

r r r
L of bS

associated with the largest k eigenvalues. Set U U← Ψ .

9. }//for in line 4.

10. Discard the last column of U .

11. }//for in line 3.

• Loog et al. [98][96] proposed another way to deal with the class

separation problem by combining a weighting function with LDA and

then resulted in aPAC,

24

() ()()1 2 1 2

1 1

c c T

aPAC i j ij w i j i j w
i j

J q q d S m m m m Sω − −

= =

= − −∑∑ r r r r , (2.17)

where () ()1T

ij i j w i jd m m S m m−= − −
r r r r ;

1

c
i i kk

q n n
=

= ∑ is the prior

probability of the ith class; wS is the within class scatter matrix defined in

(2.10); imr is the mean vector of samples in the ith class; in is the

number of samples in the ith class (1 i c≤ ≤); c is the number of classes

of the training set; () () ()21 2 erf 2 2x x xω = is the weighting function.

The projection matrix is 1 2* wU S −= Φ , where Φ is the matrix of leading

eigenvectors of aPACJ with the largest eigenvalues.

This combination aPACJ approximates the mean classification accuracy

(one minus Bayes error). The benefit of this method is the projection

matrix can be obtained by the eigenvalue decomposition.

The weighting function based methods are not effective for the class separation

problem, because it is not clear how to select an optimal weighting function.

Although Loog et al. [98][96] considered the Bayesian error in aPAC, it fails to

deal with the heteroscedastic problem. Even for the homoscedastic case, aPAC is

also not optimal, because it only approximats to the Bayesian error. The synthetic

data based test, shown in Figure 2.7 and Figure 2.8, demonstrates that FS–LDA

and aPAC do not often find the optimal projection direction for classification.

 Small Sample Size Problem

In many practical applications, especially in biometric research, discriminant

models encounter the SSS problem [38][49][139][123][19][175][55][173][174]

[180], because the number of training samples is less than the dimension of the

feature space. To deal with this problem, a number of algorithms were proposed.

For example,

• Friedman [38] proposed the regularized discriminant analysis (RDA),

which is a classification tool to smooth out the effects of ill– or poorly–

conditioned covariance estimates due to the lack of training samples. RDA

is a combination of ridge–shrinkage [20], LDA, and quadratic discriminant

25

analysis (QDA) [30][39]. It provides a great number of regularization

alternatives. In RDA, the regularized class covariance matrix is defined as

() () ()
()

()
()

1 1
, 1 tr

1 1
i i

i
i i

S S S S
S I

n n p n n
λ λ λ λγλ γ γ
λ λ λ λ

⎛ ⎞− + − +
= − + ⎜ ⎟⎜ ⎟− + − +⎝ ⎠

, (2.18)

where iS is the covariance matrix of the ith class; S is the covariance

matrix of all samples; I is the identity matrix in p pR × ; in is the

number of samples of the ith class; n is the number of all samples; p is

the dimension of the original high dimensional feature space; and

0 , 1λ γ≤ ≤ are regularization parameters, which are chosen to jointly

minimize an unbiased estimate of future misclassification risk through the

cross validation [72] or Boostrapping [33]. In RDA, the class discriminant

score for classification is

() () ()() ()1 , log , 2 logT i
i i i i i

nd x x m S x m S
n

λ γ λ γ−= − − + −
r r r r r , (2.19)

where ()det⋅ ⋅� and imr is the mean vector of samples in the ith class.

The class label of xr is ()arg min i
i

d xr .

Furthermore, RDA can also be used for subspace selection by introducing

the reduced rank step for the sum of ()id xr over all training samples as

() ()() ()

()

1

; ;
1 1

,

 log , ,

inc T T T
R i j i i i j i

i j

T
i

J x m U U S U U x m

U S U

λ γ

λ γ

−

= =

= − −

+

∑∑ r r r r

 (2.20)

where ()det⋅ ⋅� . The projection matrix is obtained by minimizing RJ

over U . When () (), ,i jS Sλ γ λ γ= for all i j≠ , RDA for subspace

selection reduces to the regularized LDA (R–LDA).

• Hastie et al. [49] viewed LDA as multivariate linear regression [106] and

used the penalized least squares regression [106] to reduce the SSS

problem.

• Swets and Weng [139] introduced PCA as the pre–processing step in LDA

for face recognition (PCA+LDA). The SSS problem is avoided if the PCA

subspace has a small enough dimension. PCA+LDA is one of the most

popular methods to deal with the SSS problem in biometric research. It has

been being effective in many empirical demonstrations [139][4][89]. It is

26

also easy to be implemented as there are only two main steps: 1) conduct

PCA on training samples and 2) conduct LDA on the PCA pre–processed

data. PCA+LDA achieves top level performance in many applications,

such as face recognition [4][88][89], gait recognition [45][46][92], and

image retrieval [139]. The drawbacks [19][175] of this method are that the

classification performance is sensitive to the number of features selected

by PCA and PCA discards some discriminative information.

• Raudys and Duin [123] applied the pseudo–inverse [44] to the covariance

matrix in LDA as P–LDA and this utilization can reduce the SSS problem

in LDA. The projection matrix is obtained by maximizing

() ()()tr T T
P w bJ U S U U S U

+
= , (2.21)

where A+ means the pseudo–inversion of A , as defined in [44].

• Chen et al. [19] claimed that the most discriminative dimensions are

preserved in the null space V (the complement of the range space, i.e.,

0wS V =) of the within class scatter matrix wS when the dimension of the

feature space is much higher than the number of training samples. First,

they project all training samples to the null space of wS . Second, PCA is

utilized on the projected samples to select the projection direction for

classification. To reduce the time complexity of this method, Cevikalp et

al. [18] developed the discriminative common vectors scheme.

• Yu and Yang [175] claimed that the null space V (or the complement of

the range space, i.e., 0bS V =) of the between class scatter matrix bS

contains little discriminative information. Therefore, they first remove the

null space of bS and then select the projection matrix to minimize the

within class scatter matrix wS .

• Howland and Park [55] introduced the generalized singular value

decomposition (GSVD) [44] to reduce the SSS problem in LDA. The

detailed procedure is listed in Table 2.2.

Table 2.2.
Linear Discriminant Analysis via Generalized Singular Value Decomposition

Input: Training samples ;i jxr in LR , where i denotes the ith class (1 i c≤ ≤) and

27

j denotes the jth sample in the ith class (1 ij n≤ ≤), and the dimension 'L
('L L<) of the projected subapce.

Output: Linear projection matrix *U in 'L LR × .

1.

Calculate bH and wH according to

() L c
b i iH n m m R ×⎡ ⎤= − ∈⎣ ⎦

r r and ();
L n

b i j iH x m R ×⎡ ⎤= − ∈⎣ ⎦
r , where i and j

vary over all classes and all samples in each class, separately.

2.

Computer the complete orthogonal decomposition

0
0 0

T R
P KQ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, where ()
T

c n Lb
T
w

H
K R

H
+ ×⎡ ⎤

= ∈⎢ ⎥
⎣ ⎦

 and the rank of K is t .

3.
Conduct the singular value decomposition on ()1: ,1:P c t , i.e.,

()1: ,1:TU P c t V = Λ .

4.
Let

1 0
0

R V
A Q

I

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. The projection matrix *U is the first 'L

()' 1L c≤ − columns of A .

• Ye and Li [174] combined the orthogonal triangular decomposition [44],

or briefly the QR decomposition, with LDA to reduce the SSS problem.

Compared with LDA/GSVD, LDA/QR has lower time and space

complexities. The only difference between PCA+LDA and LDA/QR is the

first stage: PCA+LDA applies PCA to the covariance matrix of total

training samples, while LDA/QR conducts the QR decomposition on a

small matrix involving the class means. The detailed description of

LDA/QR is given in Table 2.3.

• Recently, Zhang et al. [180] reformulated LDA based on the statistical

learning theory by defining the following regularized function to reduce

the SSS problem:

()2

; ;
1 1

1* arg max
inc

T T
i j i j

u i j
u y u x u u

n
λ

= =

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∑∑r

r r r r r , (2.22)

where 2c = ; ;i jy is the label identifying the class of the sample ;i jxr ; λ

is a small value; and Tu ur r is the regularization term. Zhang et al. then

extended (2.22) to multiclass problems and proved the equivalence

between (2.22) and the regularized version of LDA and reported (2.22) can

28

reduce the SSS problem. This extension has also been recognized by

Gallinari et al. [42] and Hastie et al. [49].

Table 2.3. Linear Discriminant Analysis via QR Decomposition

Input: Training samples ;i jxr in LR , where i denotes the ith class (1 i c≤ ≤) and
j denotes the jth sample in the ith class (1 ij n≤ ≤), and the dimension 'L
('L L<) of the projected subapce.

Output: Linear projection matrix *U in 'L LR × .

1.

Calculate bH and wH according to

() L c
b i iH n m m R ×⎡ ⎤= − ∈⎣ ⎦

r r and ();
L n

b i j iH x m R ×⎡ ⎤= − ∈⎣ ⎦
r , where i and j

vary over all classes and all samples in each class, separately.

2.
Apply QR decomposition on bH as bH QRE= , where Q , R , and E
are in L tR × , t cR × , and c cR × , respectively. Here t is the rank of bH .

3.
Let T

bS RR= and T T
w w wS Q H H Q= . Let []1i i t

φ
≤ ≤

Φ = be the first t

eigenvectors of 1
b wS S− associated with the first t smallest eigenvalues.

4. The projection matrix *U is defined by *U Q= Φ .

 Several LDA Alternatives

Several alternatives to LDA are obtained by varying the objective function

defined in (2.11) for LDA. That is the projection matrix *U can be obtained by

maximizing the following criteria,

() ()()1

1 2 1tr T TJ U S U U S U
−

= (2.23)

2 1 2log logT TJ U S U U S U= − (2.24)

() ()3 1 2tr trT TJ U S U U S Uλ= − (2.25)

() ()4 1 2tr trT TJ U S U U S U= (2.26)

where ()det⋅ ⋅� ; the pair { }1 2,S S could be { },b wS S , { },b tS S , or { },t wS S ;

and λ in 3J is a Lagrange multiplier. The criterion 1J is the traditional

definition of LDA as shown in (2.11). The maximization of 1J is equivalent to

the maximization of ()1tr TU S U with the constraint 2
TU S U I= , where I is

the identity matrix. In 2J , when T
bU S U is not full rank, we cannot set 1S

29

equal to bS , due to ()det 0bS = . The maximization of 2J is equal to the

maximization of 1J as shown in [39].

 Nonparametric Model based Discriminant Analysis

In this Section, we review some important nonparametric based discriminant

analysis algorithms.

• Hastie et al. [52] viewed LDA as a multivariate linear regression and

generalized LDA by replacing the multivariate linear regression with a

multivariate nonparametric regression. They named the nonparametric

generalization of LDA as flexible discriminant analysis. Furthermore, they

also [50] introduced GMM to the flexible discriminant analysis to model

complex distributions.

• Fukunaga and Mantock [40] extended the between class scatter matrix bS

and the within class scatter matrix wS from the parametric version to the

nonparametric version. With this extension, LDA is generalized to the

nonparametric discriminant analysis (NDA). Using this generalization,

more features can be selected for classification when 1c − features are

not enough. Meanwhile, the assumption that each class has a Gaussian

distribution is dropped.

• Buturovic [16] used the k–nearest–neighbour based Bayes error

minimization criterion to select the discriminative subspace. Lotlikar and

Kothari [94] minimized the Bayes error in the projected subspace when

each class is modelled by a hyper sphere and each class has its own mean.

By modelling each class density function via a kernel estimator, this

method can be utilized for practical applications. Liu et al. [90] used a

stochastic gradient algorithm to obtain linear representations for

classification based on a new defined optimization criterion which utilizes

the between class distance and within class distance information through a

nonparametric way.

 Kernel Discriminant Analysis

30

The nonlinear extension of LDA, or the kernel LDA (KDA) [109][104][129], is to

solve the generalized eigenvalue decomposition

() ()()1
* arg max tr T T

t b
U

U U S U U S U
φ

φ φ
φ φ φ φ φ

−
= (2.27)

in the higher dimensional space, where the between class scatter matrix bS and

the total class scatter matrix tS in the higher dimensional space are defined as

()()

()() ()()

, ,
1

; ;
1 1

1

1 i

c T

b i i i
i

nc T

t i j i j
i j

S n m m m m
n

S x m x m
n

φ
φ φ φ φ

φ
φ φφ φ

=

= =

⎧ = − −⎪
⎪
⎨
⎪ = − −
⎪⎩

∑

∑∑

r r r r

r r r r
 (2.28)

where () ();1 1
1 ic n

i ji j
m n xφ φ

= =
= ∑ ∑r r , () (); ;1

1 in
i i i jj

m n xφ φ
=

= ∑r r , and
1

c
ii

n n
=

=∑ .

Similar to KPCA, each column in Uφ is also a linear combination of all training

samples in the higher dimensional space, i.e., U Xφ φ= Λ , where Λ is a matrix

to store linear combination coefficients as it is defined in KPCA and Xφ is

defined as () ()1;1 1;2, , ,X x xφ φ φ⎡= ⎣
r r

L () ()2;1 ;, ,
cc nx xφ φ ⎤
⎦

r r
L .

By replacing Uφ in () ()()1
* arg max tr T T

t b
U

U U S U U S U
φ

φ φ
φ φ φ φ φ

−
= with XφΛ , we

have

() ()()1
* arg max tr T T

t bK K
−

Λ
Λ = Λ Λ Λ Λ (2.29)

where bK and tK are defined as

()()TbK K W M W M K= − − (2.30)

()()T
tK K I M I M K= − − . (2.31)

where () () (), , n n
i j i jK k x x x x Rφ φ ×⎡ ⎤⎡ ⎤= = ∈⎣ ⎦ ⎣ ⎦
r r r r is the kernel Gram matrix;

(),k ⋅ ⋅ is a kernel function [128][129]; []1
n n

l l c
W W R ×

≤ ≤
= ∈ is a block diagonal

matrix; all entries in i in n
lW R ×∈ are 1 in ; and all entries in

1 ;

n n
ij i j n

M m R ×

≤ ≤
⎡ ⎤= ∈⎣ ⎦ are 1 n .

After obtaining the linear combination coefficients, we can project a given sample

zr to the subspace constructed by KDA through

31

() () ()

() () ()1;1 1;2 ;, , , , , , .
c

T T T

T
c n

X z X z

k x z k x z k x z

φ φφ φΛ = Λ

⎡ ⎤= Λ ⎣ ⎦

r r

r r rr r r
L

 (2.32)

where () 1[]i i nX xφ φ ≤ ≤=
r .

32

 General Averaged Divergences Analysis

If different classes are assumed to be sampled from Gaussian densities with

different expected values but identical covariances, then LDA maximizes the

mean value of the KL divergences between different pairs of densities. We

propose a framework, the General Averaged Divergences Analysis, for choosing a

discriminative subspace by: 1) generalizing the distortion measure from the KL

divergence to the Bregman divergence2, and 2) generalizing the arithmetic mean

to the generalized mean function [48]. Based on this framework, we can develop a

method to reduce the heteroscedastic problem, the unimodel problem, and the

class separation problem, simultaneously.

 Bregman Divergence

Definition 2.1 (Bregman Divergence): Let :mapU S R→ be a 1C convex

function defined on a closed convex set S R+⊆ . The first derivative of mapU is

mapU ′ , which is a monotonic function. The inverse function of mapU ′ is

() 1

mapUξ
−

′= . The probability density for the samples in ith class is

() ()|ip x p x y i= =
r r , where y i= means the sample xr is sampled from the ith

class. The difference, as shown in Figure 2.3, at ()()jp xξ r between the function

mapU and the tangent line to mapU at ()() ()()()(),i map ip x U p xξ ξr r is given by:

()() ()()() ()()() ()()(){ }
() ()() ()(){ }

,

 .

i j map j map i

i j i

d p x p x U p x U p x

p x p x p x

ξ ξ ξ ξ

ξ ξ

= −

− −

r r r r

r r r (2.33)

Based on (2.33), the Bregman divergence for ()ip xr and ()jp xr is

() ()() ()() ()()()|| ,i j i jD p x p x d p x p x dξ ξ μ= ∫
r r r r , (2.34)

2 There are many distortion measures, such as Bregman divergence, Amari’s α –divergence, and
Csiszar’s ϕ –divergence. The Bregman divergence is selected as the distortion measure in this
thesis.

33

where dμ (i.e., ()d xμ r) is the Lebesgue measure. The right–hand side of (2.34)

is also called the U–divergence [110]. Because mapU is a convex function,

()() ()()(),d p x q xξ ξr r is non–negative. Consequently, Bregman divergence is

non–negative. Because ()() ()()(),d p x q xξ ξr r is in general not symmetric,

Bregman divergence is also not symmetric. Detailed information about the

Bregman divergence can be found in [110].

()()()iU p xξ r

()()ip xξ r ()()jp xξ r

()()()jU p xξ r

()() ()()(),i jd p x p xξ ξr r

() ()() ()(){ } ()()()i j i jp x p x p x U p xξ ξ ξ− +
r r r r

ξ

()U ξ

Figure 2.3. The geometric setting for Bregman divergence.

If () ()expmapU x x= , Bregman divergence reduces to the KL–divergence,

() ()() () () () ()
()

() ()
() () ()()

|| log

 log || .

j
i j j i i

i

i
i i j

j

p x
D p x p x p x p x p x d

p x

p x
p x d KL p x p x

p x

μ

μ

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠

= =

∫

∫

r
r r r r r

r

r
r r r

r

 (2.35)

Further examples can be found in [110].

For Gaussian probability density functions, () (); ,i i ip x N x m Σ
r r r
� , where imr is

the mean vector of the ith class samples and iΣ is the within class covariance

matrix of the ith class, the KL divergence [21] is

34

() ()() () ()
()

() ()1 1

; ,
|| ; , ln

; ,

 ln ln tr tr ,

i i
i j i i

j j

j i j i j ij

N x m
KL p x p x N x m dx

N x m

D− −

Σ
= Σ

Σ

= Σ − Σ + Σ Σ + Σ

∫
r r

r r r r r
r r

 (2.36)

where () ()ij i j i jD m m m m= − ⊗ −
r r r r and ()detΣ Σ� .

To simplify the notation we denote the KL divergence between the projected

densities ()|Tp U x y i=r and ()|Tp U x y j=
r by

() () ()()|| | || |T T
U i jD p p D p U x y i p U x y j= =

r r
� . (2.37)

 General Averaged Divergences Analysis

We replace the arithmetic mean by the generalized mean [48],

()
()()

11

1

||i j U i j
i j c

m n
m n c

q q D p p
V U

q qϕ

ϕ
ϕ ≤ ≠ ≤−

≤ ≠ ≤

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

∑
∑

, (2.38)

where ()ϕ ⋅ is a strict monotonic real–valued increasing function defined on

()0,+∞ ; ()1ϕ− ⋅ is the inverse function of ()ϕ ⋅ ; iq is the prior probability of

the ith class (usually, we set i iq n n= or simply set 1iq c=); ()||U i jD p p is

defined in (2.37); Lx R∈
r where LR is the feature space containing the training

samples; and 'L LU R ×∈ ('L L>) is the projection matrix. The general averaged

divergences function measures the average of all divergences between pairs of

classes in the subspace. We obtain the projection matrix *U by maximizing the

general averaged divergences function ()V Uϕ over U , for a fixed ()ϕ ⋅ . The

general optimization algorithm for subspace selection based on (2.38) is given in

Table 2.4. Usually, the concavity of the averaged divergences cannot be

guaranteed. To reduce the effects of local maxima [11], we choose a number of

different initial projection matrices; carry out the separate optimizations; and then

select the best one, which has the maximal value of ()V Uϕ .

If ()V Uϕ depends only on the subspace of nR spanned by the columns of U

then U can be replaced by UC where C is a k k× matrix, chosen such that

the columns of UC are orthogonal.

35

On setting ()x xϕ = , we obtain the arithmetic mean based method for choosing a

subspace,

()
1

1

||
* arg max i j U i j

U i j c m n
m n c

q q D p p
U

q q≤ ≠ ≤
≤ ≠ ≤

= ∑ ∑ ()
1

arg max ||i j U i j
U i j c

q q D p p
≤ ≠ ≤

= ∑ . (2.39)

Table 2.4. General Averaged Divergences Analysis for Subspace Selection

Input: Training samples ;i jxr in LR , where i denotes the ith class (1 i c≤ ≤)
and j denotes the jth sample in the ith class (1 ij n≤ ≤), the dimension 'L
('L L<) of the projected subspace, and M is the maximum number of different
initial values for the projection matrix.

Output: Optimal linear projection matrix *U in 'L LR × .

1. for 1:m M= {

2. Randomly initialize m
tU (1t =), i.e., all entries of 1

mU are random
numbers.

3. while () ()1
m m
t tV U V Uϕ ϕ ε−− > (610ε −=), do{

4.

Conduct the gradient steepest ascent algorithm3 to maximize the
averaged divergences defined in (2.38):

()1 1
m m m
t t U tU U V Uϕκ− −← + ⋅∂ . Here, κ , a small value (e.g., 0.0001),

is the learning rate.

5. 1t t← +

6. }//while in line 3

7. }//for in line 1

8. ()* arg max m
t

m
U V Uϕ← .

Observation 2.1: LDA maximizes the arithmetic mean of the KL divergences

between all pairs of classes, under the assumption that the Gaussian distributions

()ip xr for different classes all have the same covariance matrix. The optimal

3 The gradient steepest ascent algorithm can be replaced by other faster optimization methods,
such as the conjugate gradient method, to reduce the number of iterations.

36

projection matrix U with respect to LDA can be obtained by maximizing a

particular ()V Uϕ , i.e.,

() ()()1

1
arg max || arg max tr T T

i j U i j w b
U Ui j c

q q D p p U S U U S U
−

≤ ≠ ≤

=∑ . (2.40)

Proof: See Appendix.

Example: Decell and Mayekar [29] maximized the weighted arithmetic mean of

all symmetric KL divergences between all pairs of classes in the projected

subspace. The weighting factor of the symmetric KL divergence between the ith

class and the jth class is i jq q , where iq is the prior probability of the ith

class.The symmetric KL divergence is:

() () ()

() ()()()()1 1 1 1

1 1|| || ||
2 2

tr tr .

i j i j j i

T

j i i j j i i j i j

SKL p p KL p p KL p p

m m m m− − − −

= +

= Σ Σ +Σ Σ + Σ + Σ − −
r r r r

 (2.41)

It follows from (2.41) that Decell and Mayekar’s method also maximizes the

arithmetic mean of all KL divergences.

De la Torre and Kanade [28] developed ODA based on the objective function

(2.12) used in [29], but using the iterative majorization to quickly obtain a

solution.

 How to Deal with the Multimodal Problem [50]

Up to this point it has been assumed that the samples in a given class are sampled

from a single Gaussian distribution. This assumption often fails in real–world

large data sets, such as those used for multi–view face [84] and gait [176]

recognition, natural image classification [156] or texture classification [133].

To overcome this limitation, each class can be modelled by a GMM. Many

methods for obtaining GMMs have been described in the literature. Examples

include KMeans [30], GMM with expectation–maximization (EM) [30], graph–

cut [131], and spectrum clustering. Unfortunately, these methods are not adaptive,

in that the number of subclusters must be specified, and some of them (e.g., EM

and KMeans) are sensitive to initial values. In our algorithm we use the recently

introduced GMM–EM like algorithm, proposed by Figueiredo and Jain [36],

which is named the GMM–FJ method. The reasons for choosing GMM–FJ are: it

finds the number of subclusters; it is less sensitive to the choice of initial values of

37

parameters than EM; and it avoids the boundary problem4 of the parameter space.

We assume that samples in each class are sampled from a GMM and the

projection matrix U can be obtained by maximizing the general averaged

divergences, which measure the averaged distortion between any pair of

subclusters in different classes, i.e.,

()
()()

1 1 11

1 1 1

||
i j

i j

k l k l
i j U i j

i j c k C l C

s t
m n

m n c s C t C

q q D p p
V U

q qϕ

ϕ
ϕ ≤ ≠ ≤ ≤ ≤ ≤ ≤−

≤ ≠ ≤ ≤ ≤ ≤ ≤

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑
, (2.42)

where k
iq is the prior probability of the kth subcluster of the ith class; k

ip is the

sample density of the samples in the kth subcluster in the ith class; ()||k l
U i jD p p is

the divergence between the kth subcluster in the ith class and the lth subcluster in

the jth class.

4 The means of each class is equal to one of the samples and the covariances are arbitrarily close
to singular. For example, we have N samples and we use N Gaussians to model these samples. The
mean of each Gaussian is equivalent to a sample and the covariance of each Gaussian is singular.

38

 Geometric Mean for Subspace Selection

In LDA and ODA, the arithmetic mean of the divergences is used to find a

suitable subspace into which to project the samples. The main benefit of using the

arithmetic mean in LDA is that the projection matrix can be obtained by the

generalized eigenvalue decomposition. However, LDA is not optimal for

multiclass classification [103] because of the class separation problem defined in

§103. Therefore, it is useful to investigate other choices of ϕ in (2.38) to see if

better results can be obtained.

 Criterion 1:
Maximization of the Geometric Mean of the Divergences

The log function is a suitable choice for ϕ because it increases the effects of

small divergences and at the same time reduces the effects of large divergences.

On setting () ()logx xϕ = in (2.38), the generalized geometric mean of the

divergences is obtained. The required subspace *U is given by,

() 1
1

* arg max ||
i j

m n
m n c

q q

q q
U i j

U i j c

U D p p
≤ ≠ ≤

≤ ≠ ≤

∑⎡ ⎤= ⎣ ⎦∏ . (2.43)

It follows from the mean inequality that the generalized geometric mean is upper

bounded by the arithmetic mean of the divergences, i.e.,

() ()1
11

1

|| ||
i j

m n
m n c

q q
i jq q

U i j U i j
i j ci j c m n

m n c

q q
D p p D p p

q q≤ ≠ ≤
≤ ≠ ≤≤ ≠ ≤

≤ ≠ ≤

⎛ ⎞
⎜ ⎟∑⎡ ⎤ ≤⎣ ⎦ ⎜ ⎟
⎜ ⎟
⎝ ⎠

∑∏ ∑
. (2.44)

Proof: See Appendix.

Furthermore, (2.43) emphasizes the total volume of all divergences. For example,

in the special case i jq q= for all ,i j ,

() ()1
1 1

arg max || arg max ||
i j

i j
m n

m n c

q q
q q

q q
U i j U i j

U Ui j c i j c

D p p D p p
≤ ≠ ≤

≤ ≠ ≤ ≤ ≠ ≤

∑⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦∏ ∏

()
1

arg max ||U i j
U i j c

D p p
≤ ≠ ≤

= ∏ .
(2.45)

39

 Criterion 2:
Maximization of the Geometric Mean of the Normalized
Divergences

We can further strengthen the effects of small divergences on subspace selection,

by maximizing the geometric mean5 of all normalized divergences6 in the

projected subspace, i.e.,

()
()

()
1

1

1 1

* arg max || arg max ||
c c

U i j U i j
U Ui j c i j c

U E p p E p p
−

≤ ≠ ≤ ≤ ≠ ≤

⎡ ⎤
= =⎢ ⎥

⎣ ⎦
∏ ∏ , (2.46)

where the normalized divergence ()||U i jE p p between the ith class and the jth

class is defined by:

() ()
()

1

||
||

||
i j U i j

U i j
m n U m n

m n c

q q D p p
E p p

q q D p p
≤ ≠ ≤

=
∑

. (2.47)

The intuition behind (2.46) is that the product of normalized divergences is large

when the normalized divergences are similar to each other. Therefore, maximizing

the geometric mean of the normalized divergences will tend to make them as

similar as possible. The effects of the small divergences should then be

emphasized.

 Criterion 3:
Maximization of the Geometric Mean of all Divergences

Although criterion 2 emphasizes small divergences during optimization, direct use

of the criterion is not desirable for subspace selection. This is because

experiments in §233066540 show that there exists U for which all divergences

become small, but all normalized divergences are comparable in size. In such

case, the projection matrix U is not suitable for classification, because several

classes may be severely overlapped.

To reduce this problem, we combine criterion 2 with criterion 1 into a new one.

The new criterion maximizes the linear combination of: 1) the log of the

5 In (2.46), we use the geometric mean but not the generalized geometric mean because the
weights (the prior probabilities iq) are moved to the normalized divergences as shown in (2.47).
In this form, the calculations are simplified.
6 The sum of all normalized divergences is one.

40

geometric mean of the divergences and 2) the log of the geometric mean of

normalized divergences. This criterion is named the Maximization of the

Geometric Mean of all Divergences, or briefly MGMD,

()
()

() ()

() ()

1

1
1

1

1

1 1

log ||
* arg max

1 log ||

 arg max log || log || ,

i j

m n
m n c

c c

U i j
i j c

q qU
q q

U i j
i j c

U i j i j U i j
U i j c i j c

E p p
U

D p p

D p p q q D p p

α

α

η

≤ ≠ ≤

−

≤ ≠ ≤

≤ ≠ ≤

≤ ≠ ≤ ≤ ≠ ≤

⎧ ⎫
⎡ ⎤⎪ ⎪
⎢ ⎥⎪ ⎪⎪ ⎪⎣ ⎦= ⎨ ⎬

⎪ ⎪
∑⎡ ⎤+ −⎪ ⎪⎣ ⎦⎪ ⎪⎩ ⎭

⎧ ⎫⎛ ⎞⎪ ⎪= −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

∏

∏

∑ ∑

 (2.48)

where 0 1α< < is the linear combination coefficient to integrate the criterion 1

with 2; and
()

()()
1

1

1

1 1

m n
m n c

m n
m n c

c c q q

c c q q

α
η

α α
≤ ≠ ≤

≤ ≠ ≤

−
=

− − +

∑
∑

. The supremum of η is ()1c c −

and the infimum of η is 0. When 0α = (or 0η =), (2.48) reduces to (2.43);

and when 1α = (or ()1c cη = −), (2.48) reduces to (2.46). The rational of the

combination coefficient α trades off the geometric mean of divergences of

different pairs of classes against the geometric mean of normalized divergences of

different pairs of classes. The first part emphasizes the total volume of all

divergences; increases effects of small divergences; and reduces effects of large

divergences. The second part further strengthens the effects of small divergences

and weakens theeffects of large divergences. Therefore, by tuning the parameter

α , we can balance the impacts of selected subspace on the total volume of all

divergences, the impacts of large divergences, and the impacts of small ones.

Deduction 2.1: See Appendix.

Based on (2.48) and (2.42), we directly extend MGMD to the multimodal case, as

the Multimodal extension of the Maximization of the Geometric Mean of all

Divergences (M–MGMD),

()

()

1 1 1

1 1 1

log ||

* arg max
log ||

i j

i j

k l
U i j

i j c k C l C

U k l k l
i j U i j

i j c k C l C

D p p

U
q q D p pη

≤ ≠ ≤ ≤ ≤ ≤ ≤

≤ ≠ ≤ ≤ ≤ ≤ ≤

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬⎛ ⎞
⎪ ⎪− ⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∑ ∑ ∑

∑ ∑ ∑
. (2.49)

In the next Section, we discuss subspace selection based on the choice of the KL

divergence in (2.48) and (2.49).

41

 Kullback–Leibler Divergence based Subspace Selection

In the last Section, we developed a framework MGMD/M–MGMD for subspace

selection based on the geometric mean of divergences and normalized

divergences. In this Section, we combine the KL divergence with MGMD/M–

MGMD as an example for practical applications. The multimodal problem [50] is

carefully studied and finally we kernelize the proposed subspace selection

method. Experimental studies are given in §50, §50, and §50.

 MGMD and KL Divergence for Subspace Selection

By combining the KL divergence defined in (2.36) and MGMD defined in (2.48),

we obtain the Maximization of the Geometric Mean of all KL Divergences

(MGMKLD),

()* arg max
U

U L U= , (2.50)

where ()L U is defined by

() () ()
1 1

log || log ||U i j i j U i j
i j c i j c

L U KL p p q q KL p pη
≤ ≠ ≤ ≤ ≠ ≤

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑ ∑ , (2.51)

and ()||U i jKL p p is the KL divergence between the ith class and the jth class in

the projected subspace,

()

() ()() ()()1 1

1|| log log
2

 tr tr

T T
U i j j i

T T T T
j i j ij

KL p p U U U U

U U U U U U U D U
− −

= Σ − Σ

+ Σ Σ + Σ
 (2.52)

To better understand MGMKLD, we need to define the Stiefel manifold and the

Grassmann manifold.

Definition 2.2: The Stiefel manifold [10] (),St n r for n r≥ is defined as a set

of all n r× matrices with orthonormal columns, i.e.,

(,) { : }n r T
rSt n r U R U U I×= ∈ = . (),St n r is a sub–manifold of n rR × of real

dimension 22n r r× − . Two elements 1U and 2U in (),St n r are said to be

equivalent if their columns span the same subspace, i.e., 1 2U U Q= for some

orthogonal matrix r rQ R ×∈ .

42

Table 2.5. Optimization procedure for MGMKLD

Input: Training samples ;i jxr in nR , where i denotes the ith class (1 i c≤ ≤)
and j denotes the jth sample in the ith class (1 ij n≤ ≤), the dimension k (k n<)
of the selected subspace, the maximum number M of different initial values for
the projection matrix U , the learning rate κ (a small value), the combination
factor η , and a small value ε as the convergence condition.

Output: An estimate *U in n kR × of the optimal projection matrix.

1. for 1:m M= {

2. Initialize m
tU (1t =) randomly.

3.

while () ()1
m m
t tL U L U ε−− > (610ε −=),

where ()m
tL U and ()||m

t
i jU

KL p p are defined in (2.51) and (2.52),

respectively.
do{

4.
Conduct the gradient steepest ascent step:

()1 1
m m m
t t U tU U L Uκ− −← + ⋅∂ , where ()m

U tL U∂ is defined in (2.53).

5. 1t t← + .

5. }//while in line 3

6. }//for in line 1

7. ()arg max m

m
U V Uϕ←

8. Ortho–normalization Step: ()* ortho - normalizeU U← .

Definition 2.3: The Grassmann manifold [10] is the quotient space of (),St n r

with respect to the above equivalent relation. Each element in the Grassmann

manifold (),Gr n r is an equivalent class in (),St n r . (),Gr n r is a set of all r–

dimensional vector subspaces of nR 7.

As mentioned in the Table 2.4, the procedure for the maximization of the general

averaged divergences, we prove the projection matrix U is invariant to the

7 http://mathworld.wolfram.com/GrassmannManifold.html

43

ortho–normalization operator for ()L U , i.e., U stays in the Grassmann

manifold. In other words, ()L U will depend only on the subspace defined by

U .

Claim 2.1: The ortho–normalization operation does not change the value of the

objective function ()L U of MGMKLD defined in (2.51).

Proof: See Appendix.

To obtain the optimization procedure for MGMKLD based on Table 2.4, we need

the first order derivative of ()L U ,

()
() ()

() ()

1

1

1

1 1

|| ||

 || || ,

U

U i j U U i j
i j c

m n U m n i j U U i j
m n c i j c

L U

KL p p KL p p

q q KL p p q q KL p pη

−

≤ ≠ ≤

−

≤ ≠ ≤ ≤ ≠ ≤

∂

= ∂

⎛ ⎞⎛ ⎞− ∂⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑

∑ ∑

(2.53)

where the first order derivative of ()||U i jKL p p is given by

()
() () () ()
() () ()

1 1 1

1 1

||

 .

U U i j

T T T
j j i i i ij j

T T T
j j i ij j

KL p p

U U U U U U D U U U

U U U U D U U U

− − −

− −

∂

= Σ −Σ Σ + Σ + Σ

−Σ Σ Σ + Σ

Σ (2.54)

 Multimodal Extension of MGMKLD

In many situations, the distribution of each class is not Guassian. It is reasonable

to use GMMs to fit each class. The advantages of introducing GMM to

discriminative subspace selection are described in §0. In this Section, we combine

GMM with MGMKLD as the multimodal extension of MGMKLD (M–

MGMKLD). The combination, M–MGMKLD, is obtained from (2.36) and (2.49),

as

()* arg max GMM
U

U L U=

()

()

1 1 1

1 1 1

arg max log ||

 log || .

i j

i j

k l
i j

U i j c k C l C

k l k l
i j U i j

i j c k C l C

KLU p p

q q KL p pη

≤ ≠ ≤ ≤ ≤ ≤ ≤

≤ ≠ ≤ ≤ ≤ ≤ ≤

⎡ ⎤= ⎣ ⎦

⎡ ⎤
⎡ ⎤− ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑

W

(2.55)

44

Claim 2.2: The ortho–normalization operation does not change the value of the

objective function ()GMML U of M–MGMKLD.

Proof. This claim is proved in the same way as the Claim 2.1. ■

Table 2.6. Optimization procedure for M–MGMKLD.

Input: Training samples ;i jxr in nR , where i denotes the ith class (1 i c≤ ≤)
and j denotes the jth sample in the ith class (1 ij n≤ ≤), the dimension k (k n<)
of the selected subspace, the maximum number M of different initial values for
U , the learning rate κ (a small value), the combination factor η , and a small
value ε as the convergence condition.

Output: Linear projection matrix *U in n kR × .

1.
Conduct the GMM–FJ to cluster samples in each class and obtain the
corresponding covariance matrix k

iΣ and mean value k
imr , where

1 i c≤ ≤ and 1 ik C≤ ≤ , iC is the number of clusters of the ith class.

2. for 1:m M= {

3. Initialize 1
mU randomly.

4.
while () ()1

m m
GMM t GMM tL U L U ε−− > (610ε −=),

where ()GMML U is defined in (2.55).
do{

5.
Conduct the gradient steepest step: ()1 1

m m m
t t U GMM tU U L Uκ− −← + ⋅∂ ,

where ()U GMML U∂ is defined in (2.56).

6. }//while in line 4

7. ()arg max m

m
U V Uϕ← .

8. }//for in line 2

9. Ortho–normalization Step: ()* ortho - normalizeU U← .

With Claim 2.2 and Table 2.4, we can obtain the optimization procedure for M–

MGMKLD. We only need to mention the first order derivative of the objective

function ()GMML U of M–MGMKLD,

45

() () ()

()

1

1 1 1

1

1 1 1

|| ||

 ||

i j

i j

k l k l
U GMM U i j U U i j

i j c k C l C

s t s t
m n U m n

m n c s C t C

L U KL p p KL p p

q q KL p pη

−

≤ ≠ ≤ ≤ ≤ ≤ ≤

−

≤ ≠ ≤ ≤ ≤ ≤ ≤

∂ = ∂

⎛ ⎞
− ⎜ ⎟⎜ ⎟

⎝ ⎠

∑ ∑ ∑

∑ ∑ ∑

()
1 1 1

 || .
i j

k l k l
i j U U i j

i j c k C l C
q q KL p p

≤ ≠ ≤ ≤ ≤ ≤ ≤

⎛ ⎞
∂⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑

 (2.56)

By incorporating the merits of GMM–FJ and the proposed MGMKLD model, the

new method has the following benefits:

1. Experiments show that the new method reduces the class separation

problem;

2. The new method inherits the merits of GMM–FJ. In detail, it determines

the number of subclusters in each class automatically; it is less sensitive to

the choice of initial values of the parameters than EM; and it avoids the

boundary problem of the parameter space;

3. The new method is capable of obtaining the projection orthogonal matrix,

i.e., ()GMML U depends only on the subspace defined by U .

 Kernel Extension of MGMKLD

In this part, we study the kernel extension of MGMKLD. Because of the success

of the kernel method [129][109] in pattern classification, MGMKLD will be

generalized from the low dimensional original Hilbert space to the higher

dimensional Hilbert space. The generalized version is named the kernel

MGMKLD (KMGMKLD).

To utilize the kernel dot product trick [129][109] for MGMKLD, we need to have

the Lemma 2.1. Denote ⊕ as the direct sum.

Lemma 2.1: If U is a solution to MGMKLD and x xU U U ⊥= ⊕ , then xU is a

solution to MGMKLD. We have () ()xL U L U= . Here, the column space of xU

is spanned by the samples { } 1
; 1| ij n

i j i cx ≤ ≤
≤ ≤

r and the column space of xU ⊥ is the

orthogonal complement of the column space of xU .

Proof: See Appendix.

From Lemma 2.1, we know that the orthogonal complement component xU ⊥

(xU U=) does not affect the objective function ()L U of MGMKLD defined in

46

(2.51). Consequently, we can set 0xU ⊥ = , i.e., the column space of U is

spanned by the samples { } 1
; 1| ij n

i j i cx ≤ ≤
≤ ≤

r . Based on Lemma 2.1, the kernel trick can be

utilized to implement the kernel extension of MGMKLD, because ()L U defined

in (2.51) can be fully expressed in terms of inner products with the samples

{ } 1
; 1| ij n

i j i cx ≤ ≤
≤ ≤

r only. Without this lemma, the kernelization of MGMKLD cannot be

implemented.

Herein, there is a mapping rule : L HR Rφ a to map MGMKLD to a higher–

dimensional space [109][104][129]. The samples xr , which are modelled by

(),i iN m Σ
r , are mapped as

() () ()(); ; ~ ,i j i j i ix x N mφ φ φ→ Σ
r r r (2.57)

(); ;
1

1 in

i i j
ji

m x
nφ φ

=

= ∑r r (2.58)

()() ()(); ; ; ; ;

T

i i j i i j iE x m x mφ φ φφ φ⎡ ⎤Σ = − −⎢ ⎥⎣ ⎦
r r r r (2.59)

where ;imφ
r is the mean vector of the ith class in HR and ;iφΣ is the covariance

matrix of the ith class in HR .

Based on Lemma 2.1, we can choose the projection matrix in HR as

() (); ; ; *
1 1

inc

i j i j i j n FF ni j
U x xφ α φ φ ××

= =

⎡ ⎤= = Λ⎣ ⎦∑∑ r r , (2.60)

where ;i jα is the linear combination coefficient to combine the training samples

();i jxφ r in HR .

This means each column of Uφ is a linear combination of all ();i jxφ r by

varying i and j from all classes and samples in each class.

Therefore, the KL divergence ()() ()()()||U i jKL p x p xφ φr r in the feature space is

()() ()()()

() ()()()
; ;

1

; ; ;

||

log log1
2 tr

U i j

T T
j i

T T
j j ij

KL p x p x

U U U U

U U U D U

φ

φ φ φ φ φ φ

φ φ φ φ φ φ φ

φ φ

−

⎛ ⎞Σ − Σ
⎜ ⎟= ⎜ ⎟+ Σ Σ +⎜ ⎟
⎝ ⎠

r r

. (2.61)

Therefore, (2.51) becomes

47

() ()() ()()()

()() ()()()
1

1

log ||

 log ||

U i j
i j c

m n U m n
m n c

L U KL p x p x

q q KL p x p x

φ

φ

φ φ φ

η φ φ

≤ ≠ ≤

≤ ≠ ≤

⎡ ⎤= ⎣ ⎦

⎡ ⎤− ⎢ ⎥⎣ ⎦

∑

∑

r r

r r
. (2.62)

The variable ijD becomes

() () () (); ; ; ; ;
1 1 1 1

1 1 1 1j ji i
Tn nn n

ij i k i l i k i l
k l k li j i j

D x x x x
n n n nφ φ φ φ φ

= = = =

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑r r r r . (2.63)

To obtain the kernel Gram matrix [129] based representation in (2.61), we need to

reformulate () ;
T

iU U Uφ φ φΣ by the kernel dot product trick8 as:

;

' , , , , '
1 1 11 1

i i i i i i i i i i

T
i

T
T T
n H C C C C C C C C C C n H

i i i

U U

K I I K
n n n

φ φ φ

× ×

Σ

⎛ ⎞⎛ ⎞
= Λ − − Λ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

, (2.64)

Deduction 2.2: See Appendix.

where .; jK is the ()1

1

thi
kk

n j−

=
+∑ column of the kernel Gram matrix

() (); ;

T

i j i jF n F n
K x xφ φ

× ×
⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦

r r (); ;,i j i jk x x⎡ ⎤= ⎣ ⎦
r r , (); ;,i j i jk x xr r is the kernel function

[129], ,
,

C Ci i

i iC CI R∈ is the identity matrix, ,
,1 i i

i i

C C
C C R∈ is the unit matrix,

.; 1i i
C j j n

K K
≤ ≤

⎡ ⎤= ⎣ ⎦ is composed of the columns in the kernel Gram matrix from the

()1

1
1

thi
kk

n−

=
+∑ column to the ()1

thi
kk

n
=∑ column; 'n H×Λ is the projection

matrix in HR and 'H is the number of selected features in HR .

With the kernel dot product trick we can transform ;
T

ijU D Uφ φ φ into

;

' '
1 1 1 11 1 1 1

i i j j i i j j

T
ij

T

T
n H C C C C C C C C n H

i j i j

U D U

K K K K
n n n n

φ φ φ

× ×

⎛ ⎞⎛ ⎞
= Λ − − Λ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

. (2.65)

Deduction 2.3: See Appendix.

Therefore, we can reformulate (2.61) as:

8 The kernel dot product trick is used to transform a linear algorithm (for classification, subspace
selection, regression, and etc.) to a non–linear one by mapping the original samples in a low
dimensional space into a higher dimensional space. Based on this mapping, the linear algorithm in
the new space is equivalent to non–linear algorithm in the original space. The trick transforms a
linear algorithm by replacing the dot product between two vectors with a kernel function.

48

()

()

' ' ' '

1

' ' ' , , '

1

' ' ' '

1 1log log

1 1tr
2

1 1tr

j j i i

j j i j i j

j j i i

ij

T T T T
n H C C n H n H C C n H

j i

T T T T
n H C C n H n H C C C C n H

j

T T T T
n H C C n H n H C C n H

j i

KL U

K K K K
n n

K K L L
n

K K K K
n n

φ

× × × ×

−

× × × ×

−

× × × ×

⎛
⎜ Λ Λ − Λ Λ⎜
⎜
⎜ ⎛ ⎞⎛ ⎞⎜ ⎜ ⎟= + Λ Λ Λ Λ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟+ Λ Λ Λ Λ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠⎝

⎞
⎟
⎟
⎟
⎟
⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟

⎠

, (2.66)

where
jCK and ,i jC CL are defined by:

, ,
1 1

j j j j j jC C C C C C
j

K K I
n

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 (2.67)

,
1 11 1

i j i i j jC C C C C C
i j

L K K
n n

⎛ ⎞
= −⎜ ⎟⎜ ⎟
⎝ ⎠

. (2.68)

For a given sample zr , the corresponding feature ()TU zφ φ
r in the higher

dimensional space is given by:

() () () ()' ; ' ; ,
T TT T T

n H i j n H i jH n H n
U z x z k x zφ φ φ φ× ×× ×

⎡ ⎤ ⎡ ⎤= Λ = Λ⎣ ⎦ ⎣ ⎦
r rr r r , (2.69)

where (); ,i jk x zr r is the kernel function with entries ;i jxr and zr . There are many

typical kernel functions that could be used here, e.g., the Gaussian radial basis

kernels (() ()()2 2, exp 2k x x x x σ′ ′= − −
r r r r), the homogeneous polynomial kernels

((), , dk x x x x′ ′=
r r r r), the inhomogeneous polynomial kernels ((),k x x′ =

r r

(),
d

x x c′ +
r r), and the sigmoid kernels (() (), tanh ,k x x x xκ ϑ′ ′= − +

r r r r). The

homogeneous polynomial kernels and the Gaussian radial basis kernels are widely

used in pattern classification. The homogeneous polynomial kernels are invariant

under orthogonal transformations. Liu [87] empiricially demonstrated that the

fractional powers in the homogeneous polynomial kernels perform better than

integral powers. The radial basis kernels can be written as () ()(), ,k x x f d x x′ ′=
r r r r ,

where f is a function on R+ and d is a metric function. In Gaussian radial

basis kenrles, f is an exponential function and d is the Euclidean metric. In

different applications, we can choose different f and d through the cross–

validation to achieve reasonable performances.

49

Theorem 2.1: MGMKLD followed by KPCA is equal to KMGMKLD.

Proof: See Appendix.

Theorem 2.2: M–MGMKLD followed by KPCA is equal to the multimodal

extension of KMGMKLD, or briefly M–KMGMKLD.

Proof. The result follows from the Theorem 2.1. ■

In the Theorem 2.1, we show that kernel principal component analysis (KPCA)

following MGMKLD yields kernel MGMKLD. Based on this theorem,

KMGMKLD is equivalent to first preprocessing the data using KPCA and then

applying orthogonal MGMKLD to the preprocessed data.

50

 Comparison using Synthetic Data

In this Section, we compare MGMKLD with the previous subspace selection

methods, which are LDA [39], heteroscedastic discriminant analysis (HDA) [61],

approximate pairwise accuracy criteria (aPAC) [98], weighted LDA (WLDA),

fractional–step LDA (FS–LDA) [95], heteroscedastic extenstion LDA (HLDA)

[99], oriented discriminant analysis (ODA) [28], and multimodal oriented

discriminant analysis (MODA) [28]. WLDA is similar to aPAC, but the weighting

function is 8d − . In FS–LDA, the weighting function is 8d − and the number of

the fractional step is 30. We denote the proposed method as MGMKLD(η),

where η is the combination factor in (2.48). We do not compare the proposed

methods with the nonparametric based methods [2][16][94][90], because our

framework is parametric.

 Heteroscedastic Problem

To examine the classification ability of these subspace selection methods for

solving the heteroscedastic problem [99], we generate two classes such that each

class has 500 samples, drawn from a Gaussian distribution. The two Gaussian

distributions have identical mean values but different covariances. As shown in

Figure 2.4, LDA, aPAC, WLDA, and FS–LDA separate classes without taking the

differences of class covariances into account. All other methods achieve better

separation of the two classes as shown in Figure 2.4, because they consider the

differences both in class means and in class covariances.

51

Figure 2.4. Heteroscedastic example: in this figure, from left to right, from top to

bottom, there are nine subfigures showing the projection directions (indicated by

lines in each subfigure) obtained using LDA, HDA, aPAC, WLDA, FS–LDA,

HLDA, ODA, MGMKLD(0), and MGMKLD(1). In this experiment, the linear

classifier () ()1ˆ ˆˆ ˆ lnT
i i i ix m x m−− Σ − + Σ is applied as the classification method

after a subspace selection procedure, where ˆ im and ˆ
iΣ are the estimated ith

class mean and covariance matrix in the lower dimensional space, respectively.

The training classification errors of these methods are 0.3410, 0.2790, 0.3410,

0.3410, 0.3430, 0.2880, 0.2390, 0.2390, and 0.2390, respectively.

Based on the same data, we demonstrate that the geometric mean of normalized

divergences is not sufficient for subspace selection. On setting 2η = , MGMKLD

reduces to the maximization of the geometric mean of normalized KL

divergences. This result is based on the description of (2.48). The left subfigure in

Figure 2.5 shows the projection direction (indicated by lines in each subfigure)

from the two dimensional space to a one dimensional space found by maximizing

the geometric mean of normalized KL divergences. The projection direction

merges the two classes. The right subfigure in Figure 2.5 shows the geometric

mean of normalized KL divergences in the one dimensional subspace during

training. In this experiment, we observed: 1) KL divergences between the class 1

52

and class 2 is 1.1451 and normalized KL divergences is 0.5091 at the 1000th

training iteration; and 2) the KL divergence between the class 2 and class 1 is

1.1043 and the normalized KL divergence is 0.4909 at the 1000th training

iteration. The right subfigure shows normalized KL divergences are maximized

finally, but the left subfigure shows the projection direction is not suitable for

classification. The suitable projection direction for classification can be found in

the bottom–left subfigure in Figure 2.4.

0 100 200 300 400 500 600 700 800 900 1000
0.44

0.45

0.46

0.47

0.48

0.49

0.5

Training Iterations

G
eo

m
et

ric
 M

ea
n

of
 th

e
N

or
m

al
iz

ed
 K

LD
s

Figure 2.5. The maximization of the geometric mean of the normalized

divergences is not sufficient for subspace selection.

 Multimodal Problem

In many applications it is useful to model the distribution of a class by a GMM,

because samples in the class may be drawn from a non–Gaussian distribution. To

demonstrate the classification ability of M–MGMKLD, we generated two classes;

each class has two subclusters; and samples in each subcluster are drawn from a

Gaussian distribution. Figure 2.6 shows the subspaces selected by different

methods. In this case, LDA, WLDA, FS–LDA, and aPAC do not select good

subspaces for classification. However, the multimodal extensions of ODA and

MGMKLD find suitable subspaces. Furthermore, although HDA and HLDA do

not take account of multimodal classes, they each select a suitable subspace. This

is because the two classes have different class covariance matrices when each

class is modelled by a single Gaussian distribution. For complex cases, e.g., when

each class consists of more than 3 subclusters, HDA and HLDA fail to find good

subspaces for classification.

53

Figure 2.6. Multimodal problem: in this figure, from left to right, from top to

bottom, there are nine subfigures, which show the projection directions (indicated

by lines in each subfigure) by using LDA, HDA, aPAC, FS–LDA(3), FS–LDA(8),

HLDA, MODA, M–MGMKLD(0), and M–MGMKLD(1). In this experiment, the

linear classifier () ()1ˆ ˆˆ ˆ lnT
i i i ix m x m−− Σ − + Σ is applied as the classification

method after a subspace selection procedure, where ˆ im and ˆ
iΣ are the

estimated ith class mean and covariance matrix in the lower dimensional space,

respectively. The training classification errors of these methods are 0.0917,

0.0167, 0.0917, 0.0917, 0.0917, 0.0167, 0.0083, 0.0083, and 0.0083, respectively.

 Class Separation Problem

The most prominent advantage of MGMKLD is it can significantly reduce the

classification errors caused by very strong effects of large divergences between

54

certain classes. To demonstrate this point, we generate three classes for which the

samples in each class are drawn from Gaussian distributions. The KL divergence

between two of these classes is small and the KL divergences between the third

class and the two classes are large, i.e., two classes are close together and the third

is further away.

In this case, MGMKLD(0) also performs well, but not as well as MGMKLD(5).

In Figure 2.7, it is shown that MGMKLD(5) separates all classes. Furthermore, in

MGMKLD, we achieve the same results when setting η , defined in (2.48), equal

to 1,2,3,4, and 5. However, LDA, HLDA, and ODA do not give good results. The

aPCA and FS–LDA algorithms are better than LDA but neither of them gives the

best projection direction. The result obtained from aPCA is better than that

obtained from WLDA, because aPAC uses a better weighting strategy than

WLDA.

55

Figure 2.7. Class separation problem: in this figure, from left to right, from top to

bottom, there are nine subfigures to describe the projection directions (indicated

by lines in each subfigure) by using LDA, HDA, aPAC, WLDA, FS–LDA,

HLDA, ODA, MGMKLD(0), and MGMKLD(5). In this experiment, the linear

classifier () ()1ˆ ˆˆ ˆ lnT
i i i ix m x m−− Σ − + Σ is applied as the classification method

after a subspace selection procedure, where ˆ im and ˆ
iΣ are the estimated ith

class mean and covariance matrix in the lower dimensional space, respectively.

The training classification errors of these methods are 0.3100, 0.3033, 0.2900,

0.3033, 0.0567, 0.3100, 0.3100, 0.1167, and 0.0200, respectively. MGMKLD(5)

finds the best projection direction for classification.

Figure 2.8. Class separation problem: in this figure, from left to right, there are

three subfigures to describe the projection directions (indicated by lines in each

subfigure) by using aPAC, FS–LDA, and MGMKLD(5). In this experiment, the

linear classifier () ()1ˆ ˆˆ ˆ lnT
i i i ix m x m−− Σ − + Σ is applied as the classification

method after a subspace selection procedure, where ˆ im and ˆ
iΣ are the

estimated ith class mean and covariance matrix in the lower dimensional space,

respectively. The training classification errors of these methods are 0.1200,

0.1733, and 0.0267, respectively. MGMKLD(5) finds the best projection direction

for classification.

In Figure 2.7, different Gaussians have identical covariances. In this case, FS–

LDA works better than aPAC. In Figure 2.8, different Gaussians have different

covariances. In this case, aPAC works better than FS–LDA. In both cases, the

proposed MGMKLD (5) achieves the best performance.

56

 Statistical Experiments

jzr

iTimr

jnr

;i jxr

in

c

0tμ =
r

t IΣ =

0nμ =
r 2n IΣ =

iw

2k =

mr

0mμ =
r

m IΣ =

0μ =
r

5Σ =

Figure 2.9. Data Generation Model. In this model, 1 4w = , 2 0w = , 3 4w = − ,

4 4w = , 5 4w = , 2k = , ()1 1 201Tm km w= +
r r , 2 200Tm =

r , ()[]3 3 10 100 ,1 Tm km w= +
r r ,

()[]4 4 10 101 ,0 Tm km w= +
r r , and ()[]5 5 5 5 5 51 ,0 ,1 ,0 Tm km w= +

r r .

In this Section, we utilize a synthetic data model, which is a generalization of the

data generation model used by De la Torre and Kanade [28], to evaluate

MGMKLD in terms of accuracy and robustness. The accuracy is measured by

averaged classification errors and the robustness is measured by standard

deviation of the classification errors. In this experiment, the linear classifier [30]

and the nearest neighbour rule9 [105] are applied for classification after a

subspace selection procedure. In this data generation model, there are five classes,

which are represented by the symbols ○, ×, ＋, □, and ◇, as shown in

Figure 2.11 (on page 62). In our experiments, for the training/testing set, the data

generator gives 200 samples for each of the five classes (therefore, 1,000 samples

in total). Moreover, the samples in each class are obtained from a single Gaussian.

Each Gaussian density is a linear transformed “standard Gaussian distribution”,

9 The nearest neighbor rule classifies a sample xr to the class C , when x′r is the nearest
neighbor to xr under the Euclidean metric and x′r belongs to the class C .

57

i.e., ()0,N I . The linear transformations are defined by ;i j i j i jx T z m n= + +
r r rr ,

where 20
;i jx R∈
r , 20 7

iT R ×∈ , () 7~ 0,jz N I R∈r , () 20~ 0,2jn N I R∈
r , i denotes

the ith class, j denotes the jth sample in this class, and imr is the mean value of the

normal distribution for the ith class. The imr are assigned with the following

values: ()()1 202 0,1 4 1Tm N= +
r , 2 200Tm =

r , ()()[]3 10 102 0,1 4 0 ,1 Tm N= −
r ,

()()[]4 10 102 0,1 4 1 ,0 Tm N= +
r , and ()()[]5 5 5 5 52 0,1 4 1 ,0 ,1 ,0 Tm N= +

r , where 201

is a row vector in 20R and all entries in 201 are 1. The notations of 101 , 51 ,

200 , 100 , and 50 have the similar meanings as 201 . The projection matrix iT is

a random matrix, in which the elements are sampled independently from

()0,5N , where 5 is the variance. The data generation model is shown in Figure

2.9. Based on this data generation model, 800 groups (each group consists of

training and testing samples) of synthetic data are generated.

For comparison, the subspace selection methods, e.g., MGMKLD, are first

utilized to select a given number of features. Then the nearest neighbour rule and

the linear classifier () ()1ˆ ˆˆ ˆln
T

i i i ix m x m−− Σ − + Σ
r r r r are used as the classification

methods after a subspace selection procedure, where ˆ
imr and ˆ

iΣ are the

estimated ith class mean and covariance matrix in the lower dimensional space,

respectively. In this Section, the baseline algorithms are LDA, HDA, aPAC,

WLDA, FS–LDA, HLDA, and ODA.

 Performance Evaluation

We conducted the designed experiments 800 times based on randomly generated

data sets. The experimental results are reported in Table 2.7 – Table 2.10. Table

2.7 and Table 2.9 show averaged classification errors of LDA, HDA, aPAC,

WLDA, FS–LDA, HLDA, ODA, MGMKLD(0), and MGMKLD(2c). Table 2.7

and Table 2.8 show the results of the nearest neighbour rule and Table 2.9 and

Table 2.10 show the results of the linear classifier. For the 800 experiments,

statistical experimental results are shown in Table 2.7 and Table 2.9, where

arithmetic mean values are computed on different feature dimensions from 1 to 6

(by column). Correspondingly, standard deviations under each condition, which

58

measure the robustness of the classifiers, are given in Table 2.8 and Table 2.10.

We emphasize that we have twenty feature dimensions for each sample and all

samples are divided into one of the five classes, therefore, the maximal feature

number for LDA, HDA, WLDA, aPAC, and FS–LDA is 5–1=4; in contrast,

HLDA, ODA, and MGMKLD can extract more features than LDA and HDA.

From Table 2.7 – Table 2.10, it can be concluded that MGMKLD outperforms

LDA, HDA, aPAC, WLDA, FS–LDA, HLDA, and ODA, consistently. Finally,

the linear classifier distance outperforms the nearest neighbour rule when samples

are sampled from Gaussian distributions.

Table 2.7: Averaged classification errors (the mean for 800 experiments) of LDA,

HDA, aPAC, WLDA, FS–LDA, HLDA, ODA, MGMKLD(0), and

MGMKLD(2c). (The nearest neighbour rule)

Basis 1 2 3 4 5 6
LDA 0.2968 0.1552 0.1103 0.1504 –– ––
HDA 0.3087 0.1850 0.1642 0.1807 –– ––
aPAC 0.3206 0.1469 0.1088 0.1324 –– ––
WLDA 0.4320 0.1930 0.1126 0.1092 –– ––
FS–LDA 0.3098 0.1490 0.1108 0.1104 –– ––
HLDA 0.2982 0.1561 0.1073 0.1050 0.1043 0.1043
ODA 0.3029 0.1706 0.1370 0.1266 0.1219 0.1206
MGMKLD(0) 0.2548 0.1397 0.1054 0.1030 0.1024 0.1018
MGMKLD(2c) 0.2430 0.1310 0.1039 0.1018 0.1010 0.1006

Table 2.8: Standard deviations of classification errors for 800 experiments of

LDA, HDA, aPAC, WLDA, FS–LDA, HLDA, ODA, MGMKLD(0), and

MGMKLD(2c). (The nearest neighbour rule)

Basis 1 2 3 4 5 6
LDA 0.1002 0.0995 0.0985 0.1077 –– ––
HDA 0.1016 0.1040 0.1007 0.1055 –– ––
aPAC 0.1270 0.1171 0.0979 0.0983 –– ––
WLDA 0.1275 0.1239 0.1051 0.0995 –– ––
FS–LDA 0.1475 0.1216 0.0990 0.0964 –– ––
HLDA 0.1001 0.0992 0.0968 0.0942 0.0928 0.0920
ODA 0.1010 0.1037 0.1016 0.0992 0.0965 0.0957
MGMKLD(0) 0.1094 0.0985 0.0948 0.0919 0.0905 0.0893
MGMKLD(2c) 0.1130 0.0979 0.0947 0.0916 0.0902 0.0889

59

Table 2.9: Averaged classification errors (the mean for 800 experiments) of LDA,

HDA, aPAC, WLDA, FS–LDA, HLDA, ODA, MGMKLD(0), and

MGMKLD(2c). (The linear classifier () ()1ˆ ˆˆ ˆln
T

i i i ix m x m−− Σ − + Σ
r r r r)

Basis 1 2 3 4 5 6
LDA 0.2455 0.1199 0.0811 0.0813 –– ––
HDA 0.2516 0.1384 0.0971 0.1221 –– ––
aPAC 0.2626 0.1134 0.0827 0.0813 –– ––
WLDA 0.3716 0.1498 0.0863 0.0817 –– ––
FS–LDA 0.3050 0.1363 0.0883 0.1090 –– ––
HLDA 0.2456 0.1216 0.0821 0.0791 0.0764 0.0741
ODA 0.2500 0.1327 0.1037 0.0894 0.0829 0.0796
MGMKLD(0) 0.2226 0.1099 0.0815 0.0776 0.0751 0.0725
MGMKLD(2c) 0.2404 0.1036 0.0806 0.0766 0.0742 0.0720

Table 2.10: Standard deviations of classification errors for 800 experiments of

LDA, HDA, aPAC, WLDA, FS–LDA, HLDA, ODA, MGMKLD(0), and

MGMKLD(2c). (The linear classifier () ()1ˆ ˆˆ ˆln
T

i i i ix m x m−− Σ − + Σ
r r r r)

Basis 1 2 3 4 5 6
LDA 0.0932 0.0843 0.0792 0.0795 –– ––
HDA 0.0919 0.0880 0.0886 0.1435 –– ––
aPAC 0.1175 0.0987 0.0816 0.0795 –– ––
WLDA 0.1231 0.1055 0.0870 0.0804 –– ––
FS–LDA 0.1678 0.1387 0.0980 0.1272 –– ––
HLDA 0.0919 0.0852 0.0799 0.0772 0.0745 0.0725
ODA 0.0923 0.0894 0.0879 0.0810 0.0766 0.0739
MGMKLD(0) 0.1033 0.0844 0.0788 0.0746 0.0720 0.0695
MGMKLD(2c) 0.1373 0.0848 0.0795 0.0743 0.0717 0.0692

 Initial Values Issue

We generate a training set according to the synthetic data model described at the

beginning of this Section. We randomly initialize parameters in MGMKLD(2c) to

examine how different initial values affect the solution. Note that we omit lines 1,

2, 6, and 7 from the optimization procedure for MGMKLD given in Table 2.5,

because these lines are used to set different initial values. We can see from Figure

2.10 that MGMKLD(2c) is insensitive to choices of initial values in 50 random

experiments.

60

0 2 4 6 8 10 12 14 16 18 20
−40

−20

0

20

40

60

80

100

120

140

K
ul

lb
ac

k−
Le

ib
le

r
D

iv
er

ge
nc

e

0 2 4 6 8 10 12 14 16 18 20
−20

0

20

40

60

80

100

K
ul

lb
ac

k−
Le

ib
le

r
D

iv
er

ge
nc

e

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

K
ul

lb
ac

k−
Le

ib
le

r
D

iv
er

ge
nc

e

0 2 4 6 8 10 12 14 16 18 20
10

20

30

40

50

60

70

80

90

100

K
ul

lb
ac

k−
Le

ib
le

r
D

iv
er

ge
nc

e

Figure 2.10. Initial values: From left to right, from top to bottom, the subfigures

show the mean value and the corresponding standard deviation of the KL

divergence between the class i and the class j of these 50 different initial values in

the 10th (50th, 100th, and 1000th) training iterations. Because there are 5 classes in

the training set, there are 20 KL divergences to examine. The circles in each

subfigure show the mean values of the KL divergences for 50 different initial

values. The error bars show the corresponding standard deviations. For better

visualization, the scale for showing the standard deviations is 10 times larger than

the vertical scale in each subfigure. The standard deviations of these 20 KL

divergences approach 0 as the number of training iterations increases.

 Nest Structure Property

Definition 2.4: Given a subspace selection method, []1n i i n
W w

≤ ≤
=

r and

[]1m i i m
U u

≤ ≤
=
r are projection matrices obtained from the same training data but

with m n> , i.e., mU contains more features than nW , i.e., m n> . Let nU be

the first n columns of mU . If nU and nW are identified to the same point on a

61

Grassmann manifold, we say the subspace selection method has the nest structure

property. For example, PCA has the nest structure property.

-20 -15 -10 -5 0 5 10 15

-10

-5

0

5

10

15

Select 2 features

1st class

2nd class

3rd class

4th class

5th class

-20 -15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

Select 6 features

1st class

2nd class

3rd class

4th class

5th class

62

-20 -15 -10 -5 0 5 10 15
-10

-5

0

5

10

15

20

Select 10 features

1st class

2nd class

3rd class

4th class

5th class

Figure 2.11. MGMKLD(2c) has no nest structure property.

A desirable subspace selection method should adapt to the selected dimensions. A

subspace selection method of this type is not expected to have the nest structure

property. For instance, in our experiment, we first extract two dimensional

features from the original entire feature set (twenty features) based on

MGMKLD(2c); with these two features, the profile of the five classes of samples

is illustrated in the first subfigure of Figure 2.11. We then extract six features

from all based on MGMKLD(2c) with the same training samples, but we only

show the first two dimensions of the extracted six dimensional features in the

second subfigure of Figure 2.11. The third subfigure shows the first two

dimensions when ten features are extracted. Based on the figure, we can see that

these first two features in the two cases are different. Therefore, MGMKLD(2c)

has no nest structure.

63

 Real–World Experiments

Figure 2.12. Samples in the USPS database [53].

In this Section, we report the experimental results of the proposed algorithms

using a well known character recognition data set, the United States Postal

Services (USPS) database [53], in which there are 9,298 handwriting character

samples divided into ten classes. Twenty samples of each class are given in Figure

2.12 row by row. Each sample is a vector with 256 dimensions. The entire USPS

data set is divided into two parts [53], a training set with 7,291 samples and a test

set with 2,007 samples. In our experiments, we utilize the entire USPS database to

evaluate performances of LDA, HDA, aPAC, WLDA, FS–LDA, HLDA, ODA,

MODA, MGMKLD(0), MGMKLD(2c), and M–MGMKLD(2c).

 Linear Method

We apply the algorithms to the USPS database. As illustrated in Table 2.11, when

the top 3, 5, and 7 discriminative features are required, MGMKLD(2c) gives the

best performance for all cases among all algorithms. When the top 9, 15, and 20

features are selected, M–MGMKLD(2c) consistently outperforms all other

algorithms and gives comparable performance to MGMKLD(2c) in some cases.

The error rate is only around half that of ODA and MODA. The use of GMM in

M–MGMKLD(2c) is particularly advantageous for large data sets. Note that in the

original 256 dimensional feature space, the number of the classes is ten, therefore,

the maximum dimension of the extracted feature space is nine (10–1=9) for LDA,

64

aPAC, WLDA, HDA, and FS–LDA, while for other listed algorithms, including

our MGMKLD(2c) and M–MGMKLD(2c), more features can be selected. This is

a minor advantage of our algorithms compared with the conventional LDA model.

Table 2.11. Performances (classification errors) of linear methods on the USPS

database. (The nearest neighbour rule)

Basis 3 5 7 9 15 20
LDA 0.3827 0.1629 0.1186 0.1096 –– ––
aPAC 0.3144 0.1679 0.2141 0.1106 –– ––
HDA 0.3518 0.2516 0.1988 0.1734 –– ––
WLDA 0.4310 0.2342 0.1415 0.1096 –– ––
FS–LDA 0.3338 0.1794 0.1430 0.1131 –– ––
HLDA 0.3518 0.2347 0.1779 0.1281 0.0947 0.0827
ODA 0.3983 0.2617 0.1636 0.1162 0.1060 0.0970
MODA 0.3950 0.2850 0.1576 0.1032 0.1027 0.0937
MGMKLD(0) 0.2875 0.1574 0.1116 0.0987 0.0598 0.0583
MGMKLD(2c) 0.2720 0.1375 0.1105 0.0867 0.0578 0.0562
M–MGMKLD(2c) 0.3179 0.1414 0.1106 0.0822 0.0569 0.0553

 Kernel Method

We compare KMGMKLD(2c) and M–KMGMKLD(2c) with the Kernel LDA

(KDA) [104] in Table 2.12. Firstly, the results show that all three kernel

algorithms perform better than the linear algorithms. Secondly, the improvements

for LDA, MGMKLD(2c), and M–MGMKLD(2c) are 13.22%, 8.42%, and

23.11%, respectively. Herein, nine dimensions are selected to construct the kernel

feature space. The kernel () 2, ,k x x x x′ ′=
r r r r is chosen.

Table 2.12. Performances (error rates) of kernel methods on the USPS database. A

nine dimensional feature space is selected for each algorithm. (The nearest

neighbour rule)

Basis KDA KMGMKLD(2c) M–KMGMKLD(2c)
Error 0.0951 0.0794 0.0632

65

 Summary

General averaged divergences analysis is proposed to enhance the conventional

Fisher–Rao linear discriminant analysis (LDA). LDA is one of the most important

subspace methods in pattern classification research and applications; however, it

has a tendency to merge together nearby classes when the features are projected to

a lower dimensional space. To reduce this merging, new criteria for subspace

selection are chosen. The new criteria are based on the geometric mean of the

divergences between different pairs of classes. Three new criteria are defined,

namely, 1) maximization of the geometric mean of the divergences; 2)

maximization of the geometric mean of normalized divergences; and 3)

maximization of the geometric mean of all divergences. The third criterion is a

combination of the first two criteria. Then, the multimodal extension and the

kernel extension of the maximization of the geometric mean of all divergences are

introduced as well. The divergence can be any Bregman divergence. In our

experiments we use the Kullback–Leibler divergence, which is a special case of

the Bregman divergence.

The new subspace selection methods are tested experimentally using synthetic

data and handwriting data from the USPS database [53]. The experiments show

that the third criterion, named the maximization of the geometric mean of all KL

divergences is more effective than LDA and its representatives. In the future, we

will utilize this method for other pattern classification tasks, for example

biometrics and bioinformatics.

66

3. Discriminative Multilinear Subspace Method

In computer vision research, many objects are naturally represented by

multidimensional arrays, i.e., tensors [75], such as the gray face image shown in

Figure 3.1 in face recognition [34][168], the color image shown in Figure 3.2 in

scene image classification [156], and the video shot shown in Figure 3.3 in motion

categorization [43]. However, in current research, the original tensors (images and

videos) are always scanned into vectors, thus discarding a great deal of useful

structural information, which is helpful to reduce the small sample size (SSS)

problem in subspace selection methods, e.g., linear discriminant analysis (LDA).

Second
Order Tensor

Width
H

ei
gh

t

Face Image
Figure 3.1. A gray level face image is a second order tensor, i.e., a matrix. Two

indices are required for pixel locations. The face image comes from

http://www.merl.com/projects/images/face–rec.gif.

Third Order
Tensor

Width

H
ei

gh
t

Color

Color Image
Figure 3.2. A color image is a third order tensor, which is also a data cuboid,

because three indices are required to locate elements. Two indices are used for

pixel locations and one index is used to local the color information (e.g., R, G, and

B).

67

Fourth Order
Tensor

Width

H
ei

gh
t

Color Video Shot

Ti
m

e
Color

Time

Figure 3.3. A color video shot is a fourth order tensor. Four indices are used to

locate elements. Two indices are used for pixel locations; one index is used to

locate the color information; and the other index is used for time. The video shot

comes from http://www–nlpir.nist.gov/projects/trecvid/.

To utilize the structure information, many dimension reduction algorithms [75]

[132][162][171] based on the multilinear subspace method (MLSM) have been

developed for data representation [75][162][171][132], pattern classification

[162][171][132], and network abnormal detection [136]. MLSM finds a sequence

of linear transformation matrices i iL L
iU R ′×∈ (i iL L′ < , 1 i M≤ ≤) to transform a

large tensor 1 2 ML L LR × ×∈X L to a smaller tensor 1 2 ML L LR ′ ′ ′× ×∈Y L . For example, if

we have a second order tensor 1 2L LR ×∈X with large 1L and 2L , in MLSM we

need to find two linear transformation matrices 1 1
1

L LU R ′×∈ (1 1L L′ <) and

2 2
2

L LU R ′×∈ (2 2L L′ <) to transform X according to 1 2
TU U=Y X . After the

transformation, the dimension is reduced from 1 2L L× to 1 2L L′ ′× , i.e.,

1 2L LR ′ ′×∈Y . Similar to LSM, MLSM includes a large number of methodologies

varying from reconstructive models to discriminative models based on different

criteria. The reconstructive models, e.g., the general tensor analysis (GTA)

[75][162][171] and the tensor rank one analysis (TR1A) [132], are utilized to

68

generate low dimensional representations which preserve the original information

as much as possible. The discriminative models, e.g., the two dimensional linear

discriminant analysis (2DLDA) [173] and the general tensor discriminant analysis

(GTDA) [144][147], find low dimensional representations which preserve as

much as possible of the information required for reliable classification.

In this Chapter, we show that the SSS problem is reduced if the tensor structure of

data is retained. We also demonstrate that MLSM is a constrained version of the

linear subspace method (LSM), i.e., MLSM is equivalent to LSM combined with

constraints.

In this Chapter, we mainly focus on the discriminative MLSM, especially

2DLDA, which is a two dimensional extension of LDA. That is 2DLDA accepts

matrix type data as input while LDA accepts vector type data as input. The

effectiveness and the efficiency of 2DLDA for dimension reduction have been

demonstrated in face recognition. However, 2DLDA fails to converge during the

training stage. This nonconvergence has the following disadvantages: 1) it is

difficult to determine when to stop the training stage; and 2) different numbers of

training iterations lead to different recognition results. To solve the

nonconvergence problem in 2DLDA, we develop GTDA, which is an M

dimensional extension of LDA. That is GTDA accepts general tensors (e.g.,

vectors, matrices, data cuboids, and high dimensional arrays) as input. GTDA has

the following properties: 1) reduction of the SSS problem for subsequent

classification, e.g., by LDA; 2) preservation of the discriminative information in

training tensors; 3) provision with a converged iterative optimization algorithm,

which obtains a stable solution for GTDA; and 4) acceptance of general tensors as

input.

The organization of this Chapter is as follows. In §147, the mathematical

foundation, tensor algebra, of this thesis is briefly introduced. In §147, we

describe the relationship between the LSM algorithms and the MLSM algorithms.

In §147, the tensor rank one analysis based on the best rank one approximation is

reviewed. In §147, the general tensor analysis based on the best rank

()1 2, , MR R RL approximation is reviewed. In §147, we analyze the

nonconvergence issue of the 2DLDA for discriminative subspace selection. In

§147, we develop GTDA and GTDA’s manifold learning extension is given in

§147. To examine the effectiveness of GTDA, it is applied for human gait

69

recognition and the performance evaluation is given in §147. Finally, the

summary of this Chapter is given in §147 and the relevant deductions and proofs

in this Chapter are given in §147.

70

 Tensor Algebra

This Section contains the fundamental materials on tensor algebra [75], which are

relevant to this thesis. Tensors are arrays of numbers which transform in certain

ways under different coordinate transformations. The order of a tensor
1 2 ML L LR × × ×∈X L , represented by a multi–dimensional array of real numbers, is M .

An element of X is denoted as
1 2, ,..., Ml l lX , where 1 i il L≤ ≤ and 1 i M≤ ≤ . The

ith dimension (or mode) of X is of size iL . A scalar is a zero–th order tensor; a

vector is a first order tensor; and a matrix is a second order tensor. The structure

of a third order tensor is shown in Figure 3.4. In the tensor terminology, we have

the following definitions.

1 2 3L L LR × ×∈X
1L

2L
3L

Figure 3.4. A third order tensor 1 2 3L L LR × ×∈X .

Definition 3.1 (Tensor Product or Outer Product) The tensor product ⊗X Y

of a tensor 1 2 ML L LR × × ×∈X L and another tensor 1 2 '' ' 'ML L LR × × ×∈Y L is defined by

()
1 2 1 2 '1 2 1 2 '

... ' ' ... '... ' ' ... ' M MM M
l l l l l ll l l l l l × × × × × ×× × × × × × ×

⊗ =X Y X Y , (3.01)

for all index values.

For example, the tensor product of two vectors 1
1

Lx R∈
r and 2

2
Lx R∈

r is a matrix

1 2L LX R ×∈ , i.e., 1 2 1 2
TX x x x x= ⊗ =

r r r r .

Definition 3.2 (Mode–d Matricizing or Matrix Unfolding) The mode–d

matricizing or matrix unfolding of an M–th order tensor 1 2 ML L LR × × ×∈X L is the set

of vectors in dLR obtained by keeping the index di fixed and varying the other

71

indices. Therefore, the mode–d matricizing or matrix unfolding of an M–th order

tensor is a matrix ()
d dL L

dX R ×∈ , where ()d ii d
L L

≠
= ∏ . We denote the mode–d

matricizing of X as ()matd X or briefly ()dX . Figure 3.5 shows the mode–1,

mode–2, and mode–3 matricizing of a third order tensor 3 2 2R × ×∈X .

2 2L =

3 2 2R × ×∈X

2 2L =

3 2 2R × ×∈X

2 2L =

3 2 2R × ×∈X

Mode-1

Mode-2

Mode-3

2 2L =

3 2 2R × ×∈X

2 2L =

3 2L =

1 3L =

3 2L =

2 2L =

1 3L =

()
3 4

1X R ×∈

()
2 6

2X R ×∈

()
2 6

3X R ×∈

Figure 3.5. The mode–1, mode–2, and mode–3 matricizing of a third order tensor

3 2 2R × ×∈X .

72

Definition 3.3 (Tensor Contraction) The contraction of a tensor is obtained by

equating two indices and summing over all values of repeated indices. Contraction

reduces the tensor order by 2.

A suitable notation for contraction is the Einstein’s summation convention10. For

example, the tensor product of two vectors , Nx y R∈
r r is Z x y= ⊗

r r ; and the

contraction of Z is T
iiZ x y x y= ⋅ =

r r r r , where the repeated indices imply

summation. The value of iiZ is the inner product of xr and yr . In general, for

tensors 1 1M ML L L LR ′′ ′× × × × ×∈X L L and 1 1M ML L L LR ′′′′ ′′× × × × ×∈Y L L , the contraction on the

tensor product ⊗X Y is

()() () ()
1

1 1 1 1
1 1 1

; 1: 1:
M

M M M M
M

L L

l l l l l l l l
l l

M M
′ ′′′ ′ ′′ ′′× × × × × × × × × ×

= =

⊗ =∑ ∑X Y X Y
L L L L

� � L� � , (3.02)

In this thesis, when the convention is conducted on all indices except the ith index

on the tensor product of X and Y in 1 2 ML L LR × × ×L , we denote this procedure as

()() ()()

() ()

() () () ()

1 11

1 1 1 1 1 1
1 1 11 1 1 1

; ; 1: 1, 1: 1: 1, 1:

 mat mat ,

i i M

i i i M i i i M
i i M

L LL L

l l l l l l l l l l
l l l l

T T
i i i i

i i i i M i i M

X Y

− +

− + − +
− +

× × × × × × × × × × × ×
= = = =

⊗ = ⊗ − + − +

=

= =

∑ ∑ ∑ ∑

X Y X Y

X Y

X Y

L L L L

� � � �� � � �� �

L L (3.03)

and ()(); i iL Li i R ×⊗ ∈X Y� �
� �� � .

Definition 3.4 (Mode–d product) The mode–d product d U×X of a tensor

1 2 ... ML L LR × × ×∈X and a matrix 'd dL LU R ×∈ is an 1 2 1 1'd d dL L L L L− +× × × × × ×L

ML×L tensor defined by

() ()
()()

1 2 1 11 2 1 1

 ; 2 ,

d d d M d dd d d M
d

d l l l l l l l ll l l l l l
l

U U

U d

− +− +
′× × × × × × × ×′× × × × × × ×

′

× =

= ⊗

∑X X

X

L LL L

� �
� �

 (3.04)

for all index values. The mode–d product is a type of contraction.

Based on the definition of Mode–d product, we have

() ()d t t dU V V U× × = × ×X X (3.05)

10 “When any two subscripts in a tensor expression are given the same symbol, it is implied that
the convention is formed.” –––––A. Einstein, Die Grundlage der Allgemeinen Relativitatstheorie,
Ann. Phys., 49:769, 1916.

73

where 1 2 ML L LR × × ×∈X L , d dL LU R ′ ×∈ , and t tL LV R ′×∈ . Therefore, ()d tU V× ×X

can be simplified as d tU V× ×X .

Furthermore,

() ()d t dU V VU× × = ×X X (3.06)

where 1 2 ML L LR × × ×∈X L , d dL LU R ′ ×∈ , d dL LV R ′′ ′×∈ , and VU is the standard matrix

product of V and U .

Figure 3.6 shows a third order tensor 1 2 3L L LR × ×∈X mode–2 products with a

matrix 2 2L LU R ′ ×∈ . The result is a tensor in 1 2 3L L LR ′× × .

1 2 3L L LR × ×∈X
1L

2L
3L

2×

2L

2L′ =
1 2 3L L LR ′× ×∈Y

1L

2L′
3L

Figure 3.6. The mode–2 product of a third order tensor 1 2 3L L LR × ×∈X and a matrix
2 2L LU R ′ ×∈ results in a new tensor 1 2 3L L LR ′× ×∈Y .

To simplify the notation in this thesis, we denote

1 1 2 2
1

k

M

M M k
k

U U U U×
=

× × × × ∏X XL � (3.07)

and

1 1 1 1 1 1
1;

d

M

i i i i M M d i i
d d i

U U U U U U− − + + ×
= ≠

× × × × × × = ×∏X X XL L � . (3.08)

Definition 3.5 (Frobenius Norm for Tensor) The Frobenius norm of a tensor
1 2 ML L LR × × ×∈X L is given by

()() ()
1

1
1

2

1 1

; 1: 1: .
M

M
M

L L

l lFro
l l

M M
× ×

= =

= ⊗ = ∑ ∑X X X X
L

� � L� � (3.09)

The Frobenius norm of a tensor X measures the “size” of the tensor and its

square is the “energy” of the tensor.

Definition 3.6 (Rank–1 tensor) An M–th order tensor X has rank one if it is the

tensor product of M vectors iL
iu R∈
r , where 1 i M≤ ≤ :

74

1 2
1

M

M k
k

u u u u⊗
=

= ⊗ ⊗ ⊗ =∏X r r r r
L . (3.10)

The rank of an arbitrary M–th order tensor X , denoted by ()rankR = X , is the

minimum number of rank–1 tensors that yield X in a linear combination.

Definition 3.7 (d–rank) The d–rank of a tensor X , represented by

()rankd dR = X , is the dimension of the vector space generated by the mode–d

matricizing.

Based on the definition of the d–rank of a tensor X , we have

() ()() ()rank rank mat rankd d d dR X= = =X X . (3.11)

The higher–order singular value decomposition (HOSVD) of a tensor is very

important in tensor algebra. Most of the algorithms relevant to tensor algebra are

based on HOSVD. HOSVD is a higher–order extension of the singular value

decomposition (SVD) of a matrix. The HOSVD of a third order tensor
1 2 3L L LR × ×∈X is shown in Figure 3.7.

1 2 3L L LR × ×∈X 1 2 3L L LR × ×∈Y1 1
1

L LU R ×∈

2 2
2

L LU R ×∈

1×

2×

3 3
3

L LU R ×∈
3×

Figure 3.7. The HOSVD of a third order tensor 1 2 3L L LR × ×∈X .

Theorem 3.1 (Higher–Order Singular Value Decomposition) [76]

A tensor 1 2 ML L LR × × ×∈X L can be decomposed as the product of a tensor
1 2 ML L LR × × ×∈Y L with a series of orthogonal matrices k kL L

kU R ×∈ , i.e.,

75

1
k

M

k
k

U×
=

= ∏X Y , (3.12)

such that, the subtensor of 1 1 1k k M

k

L L L L
l Rα

− +× × ×
= ∈Y L , obtained by fixing the kth

(1 k kl L≤ ≤) index to α , is orthogonal to 1 1 1k k M

k

L L L L
l Rβ

− +× × ×
= ∈Y L , i.e.,

()(); 1: 1 1: 1 0
k kl l M Mα β= =⊗ − − =Y Y� �

� �� � . (3.13)

when α β≠ .

Finally,

1 2 0
k k k kl l l LFro Fro Fro= = =≥ ≥ ≥ ≥Y Y YL . (3.14)

Proof: See Appendix.

Table 3.1.
Alternating Projection for the Higher–Order Singular Value Decomposition.

Input: The input tensor 1 2 ML L LR × × ×∈X L .

Output: Projection matrices { }1| , k kL LM
k k kU U R ×

= ∈ and the tensor 1 2 ML L LR × × ×∈Y L .

1. Initialization: Set 1|Mk kU = be equal to random orthogonal matrices.

2. Conduct the following steps iteratively until convergence.

3. For 1k = to M

4. Calculate T
k kU= ×T X ;

5.
Mode–d matricize T as ()

k kL L
kT R ×∈

(1 1 1k k k ML L L L L− += × × ×L);

6. Calculate () ()
T

k kS T T= , k kl lS R ×
+∈ .

7.
Update the mode–k projection matrix kU by conducting SVD on
S : T

k k kS U U= Σ .

8. End

9.

Convergence checking: if () ()1
T
k t k t

Fro
U U I ε− − ≤ (610ε −=) for all

modes, the calculation has converged. Here ()k tU is the current optimized

projection matrix and ()1k tU − is the previous projection matrix.

10. Calculate the output tensor
1

k

M
T
k

k

U×
=

= ∏Y X .

76

There is no closed form solution for HOSVD. In this thesis, an alternating

projection method is used to obtain a solution for HOSVD, as shown in Table 3.1.

77

 The Relationship between LSM and MLSM

Suppose: 1) we have a dimension reduction algorithm 1A , which finds a sequence

of linear transformation matrices i iL L
iU R ′×∈ (i iL L′ < , 1 i M≤ ≤) to transform a

large tensor 1 2 ML L LR × ×∈X L to a smaller tensor 1 2
1

ML L LR ′ ′ ′× ×∈Y L , i.e.,

1 1 1 2 2
T T T

M MU U U= × × × ×Y X L ; and 2) we have another dimension reduction

algorithm 2A , which finds a linear transformation matrix L LU R ′×∈

(1 2 ML L L L= × ×L and 1 2 ML L L L′ ′ ′ ′= × ×L ; i iL L′ <) to transform a high

dimensional vector ()vectx = Xr to a lower dimensional vector ()2 2vecty = Yr ,

i.e., 2
Ty U x=

r r , where ()vect ⋅ is the vectorization operator; Lx R∈
r and

2
Ly R ′∈

r . According to [181], we know

()
()

() ()

1 1

1 1 2 2

1 2

vect

 vect

 vect .

T T T
M M

T
M

y

U U U

U U U

=

= × × × ×

= ⊗ ⊗ ⊗

Y

X

X

r

L

L

 (3.15)

Therefore, if 1 2 MU U U U= ⊗ ⊗ ⊗L , 2 1y y=
r r . That is the algorithm 1A is equal

to the algorithm 2A , if the linear transformation matrix L LU R ′×∈ in 2A is

equal to 1 2 MU U U U= ⊗ ⊗ ⊗L 11.

The tensor representation helps to reduce the number of parameters needed to

model data. In 1A , there are 1 1

M
i ii

N L L
=

′= ∑ parameters. While in 2A , there are

2 1 1

M M
i ii i

N L L
= =

′=∏ ∏ parameters. In statistical learning, we usually require that

the number of the training samples is larger than the number of parameters to

model these training samples for linear algorithms. In the training stage of the

MLSM based learning algorithms, we usually use the alternating projection

method to obtain a solution, i.e., the linear projection matrices are obtained

independently, so we only need about { }0 max i ii
N L L′= training samples to

obtain a solution. However, 2N training samples are required to obtain a

11 In (3.15), we conduct the reshape operation on 1 2 MU U U= ⊗ ⊗ ⊗U L . That is, originally U
lies in 1 1 2 2 M ML L L L L LR ′ ′ ′× × × × × ×L and after the reshape operation U is transformed to V in

() ()1 2 1 2M ML L L L L LR ′ ′ ′× × × × × × ×L L . Then, we can apply the transpose operation on V .

78

solution for LSM based learning algorithms. That is the MLSM based learning

algorithms require a much smaller number of training samples than LSM based

learning algorithms, because 0 2N N� . Therefore, the tensor representation helps

to reduce the small sample size (SSS) problem described in Chapter 2.

There is a long history of methods to reduce the number of parameters needed to

model the data by introducing constraints. Take the methods in Gaussian

distribution estimation as an example12: when the data consist of only a few

training samples embedded in a high dimensional space, we always add some

constraints to the covariance matrix, for example by requiring the covariance

matrix to be a diagonal matrix. Therefore, to better characterize or classify natural

data, a scheme should preserve as many as possible of the original constraints.

When the training samples are limited, these constraints help to give reasonable

solutions to classification problems.

Based on the discussions above, we have the following results:

1) when the number of the training samples is limited, the vectorization operation

always leads to the SSS problem. That is, for a small size training set, we need to

use the MLSM based learning algorithms, because the LSM based learning

algorithms will over–fit the data. The vectorization of a tensor into a vector

makes it harder to keep track of the information in spatial constraints. For

example, two 4–neighbor connected pixels in an image may be widely separated

from each other after a vectorization;

2) when the number of training samples is large, the MLSM based learning

algorithms will under–fit the data. In this case, the vectorization operation for the

data is helpful because it increases the number of parameters available to model

the data.

12 Constraints in MLSM are justified by the form of the data. However, constrains in the example
are ad hoc.

79

 Tensor Rank One Analysis

To study the tensor rank one analysis (TR1A) [132]13, we first introduce the best

rank one approximation to a general tensor. That is, given an M–th order tensor
1 2 ML L LR × ×∈X L , find a scalar λ and a series of unit vectors 1|Mk ku =

r to minimize

the function f defined by

()
2

1
1

|
M

M
k k k

k Fro

f u uλ= ⊗
=

= − ∏Xr r , (3.16)

where
1

k

M
T
k

k

uλ ×
=

= ∏X r .

The Figure 3.8 shows the best rank one approximation of a third order tensor
1 2 3L L LR × ×∈X .

1 2 3L L LR × ×∈X 1
1

Lu R∈
r

⊗
⊗

⊗
Rλ∈

Figure 3.8. The best rank one approximation to a third order tensor 1 2 3L L LR × ×∈X .

Theorem 3.2 [77] Minimizing ()
2

1
1

|
M

M
k k k

k Fro

f u uλ= ⊗
=

= − ∏Xr r (
1

k

M
T
k

k

uλ ×
=

= ∏X r) is

equivalent to maximizing

()
2

1
1

|
k

M
M T

k k k
k Fro

g u u= ×
=

= ∏Xr r . (3.17)

Moreover, 2

Fro
f g= −X .

Proof: See Appendix.

13 TR1A is an extension of the original algorithm, which only accepts matrices as input.

80

Based on (3.17), a solution of (3.16) can be obtained by the alternating projection

method, listed in Table 3.2.

Table 3.2. Alternating Projection for the Best Rank One Approximation

Input: The input tensor 1 2 ML L LR × ×∈X L .

Output: Projection vectors { }1| , kLM
k k ku u R= ∈
r r and the scalar λ , such that

()1|Mk kf u =
r is minimized.

1. Initialization: Set 1|Mk ku =
r be equal to random unit vectors.

2. Conduct the following steps iteratively until convergence.

3. For 1k = to M

4. Calculate T
k kv u= ×Xr r ;

5. Assignment: vλ ←
r , /ku v λ=

r r .

6. End

7.

Convergence checking: if () ()1 1T
k t k tu u ε− − ≤
r r (610ε −=) for all modes, the

calculated kur has converged. Here ()k tur is the current optimized

projection vector and ()1k tu −

r is the previous projection vector.

TR1A is defined based on (3.16) for a number of samples 1 2 ML L L
i R × ×∈X L ,

1 i N≤ ≤ by minimizing the total reconstruction error through 1|Mi iu =
r and 1|Ni iλ = ,

i.e.,

()
2

1
1 1

|
MN

M
k k i i k

i k Fro

f u uλ= ⊗
= =

= −∑ ∏Xr r ,
1

k

M
T

i i k
k

uλ ×
=

= ∏X r . (3.18)

Minimizing (3.18) is equivalent to maximizing

()
2

1
1 1

|
k

MN
M T

k k i k
i k Fro

g u u= ×
= =

=∑ ∏Xr r . (3.19)

In practical applications, the total reconstruction error (3.18) is not small enough,

so we need to use a number of rank one tensors 1
, 1|

r R
k r k Mu ≤ ≤

≤ ≤
r and a number of

scalars 1
, 1|

r R
i r i Nλ ≤ ≤

≤ ≤ to approximate the original tensors iX to minimize the

function f defined by

81

()
2

1 1
, 1 , 1 , ,

1 1 1

| , |
MN R

r R r R
i r i N k r k M i i r k r

i r k Fro

f u uλ λ≤ ≤ ≤ ≤
≤ ≤ ≤ ≤ ⊗

= = =

= −∑ ∑ ∏Xr r . (3.20)

There is no closed form solution for (3.20). A solution, listed in Table 3.3, based

on the alternating projection is suggested by Shashua and Levin [132].

(Note: The algorithm is based on the fact: minimizing
2

1 1

MN

i i k
i k Fro

uλ ⊗
= =

−∑ ∏X r is

equivalent to maximizing
2

1 1
k

MN
T

i k
i k Fro

u×
= =
∑ ∏X r .)

Table 3.3. Alternating Projection for the Tensor Rank One Analysis

Input: The input tensors 1 2 ML L L
i R × ×∈X L , 1 i N≤ ≤ and the number of rank one

tensors R .

Output: Projection vectors { }1
, 1 ,| , kLr R

k r k M k ru u R≤ ≤
≤ ≤ ∈

r r and scalars { 1
, 1| ,r R

i r i Nλ ≤ ≤
≤ ≤

},i r Rλ ∈ , such that (3.20) is minimized.

1. For 1r = to R

2. Set , 1|Mk r ku =
r be equal to random unit vectors.

3. Conduct steps 4–9 iteratively until convergence.

4. For 1k = to M

5. Calculate ,
T

i i k k rv u= ×Xr r , 1 i n≤ ≤ ;

6.

Calculate the eigenvector h
r

 of 1
1

n

i i
i

V v v
=

= ⊗∑ r r associated with

the largest eigenvalue; (This step is equivalent to calculating the
left singular vector h

r
 of []2 1 2, , , nV v v v=

r r r
L associated with the

largest singular value.)

7. Assignment: ,k ru h←
rr ;

8. End

9.

Convergence checking: if , , , , 1 1T
k r t k r tu u ε− − ≤
r r (610ε −=) for all indices,

the calculated ,k rur has converged. Here , ,k r tur is the current optimized
projection vector and , , 1k r tu −

r is the previous projection vector.

10. Assignment: , ,
1

k

M
T

k r i k r
k

uλ ×
=

← ∏X r (1 i N≤ ≤);

11. Assignment: , ,
1

M

i i k r k r
k

uλ ⊗
=

← − ∏X X r (1 i N≤ ≤);

12. End

82

Based on the procedure to obtain a solution for TR1A listed in Table 3.3, we can

calculate the scalars 1|Rr rλ = for any given tensor X through the following

iterative procedure: 1). Calculate ,
1

k

M
T

r k r
k

uλ ×
=

= ∏X r ; 2) Assign

,
1

M

r k r
k

uλ ⊗
=

← − ∏X X r , 1 r R≤ ≤ . Based on TR1A, a general tensor is represented

by a sequence of rank one approximations.

83

 General Tensor Analysis

General tensor analysis (GTA) [162] is a multidimensional extension of the

principal component analysis (PCA). Before we describe GTA, the best

()1 2rank , , , MR R R− L approximation is introduced. The procedure is similar to

the best rank one approximation.

Definition 3.8 [77] (Best Rank– ()1 2, , MR R RL Approximation) Given a tensor

1 2 ML L LR × ×∈X L , the tensor 1 2ˆ ML L LR × ×∈X L with ()()ˆrank matd dR=X ,

1 d M≤ ≤ , which minimizes the least square cost ˆ
Fro

−X X , is the best rank–

()1 2, , MR R RL approximation of the original tensor X .

The Figure 3.9 shows the best ()1 2 3rank , ,R R R− approximation of a third order

tensor 1 2 3L L LR × ×∈X .

1 2 3L L LR × ×∈X
1 2 3R R RR × ×∈Y

1 1
1

L RU R ×∈

2 2
2

L RU R ×∈

1×

2×

3 3
3

L RU R ×∈
3×

Figure 3.9. The best ()1 2 3rank , ,R R R− approximation of a third order tensor

1 2 3L L LR × ×∈X .

Theorem 3.3 [75] Given a sequence of unitary matrices 'k kL L
kU R ×∈ (1 k M≤ ≤

and d dL L′ <) and a tensor 1 2 ML L LR × ×∈X L , the function () 2ˆ ˆ
Fro

f = −X X X is

minimized, where ()ˆrankd dL′=X and 1 2ˆ ML L LR × ×∈X L

()
1 1 1

ˆ
k k k

M M M
T T
k k k k

k k k

U U U U× × ×
= = =

⎛ ⎞
= =⎜ ⎟
⎝ ⎠
∏ ∏ ∏X X X . (3.21)

Proof: See Appendix.

84

Theorem 3.4 [75] For a given tensor 1 2 ML L LR × ×∈X L , minimizing

() ()
2

1
1

|
k

M
M T

k k k k
k Fro

f U U U= ×
=

= − ∏X X is equivalent to maximizing

()
2

1
1

|
k

M
M T

k k k
k Fro

g U U= ×
=

= ∏X . (3.22)

Proof: See Appendix.

Table 3.4.
Alternating Projection for the Best Rank– ()1 2, , MR R RL Approximation.

Input: The input tensors 1 2 ML L LR × ×∈X L and the d–ranks { }1|Md dL =′ .

Output: Projection matrices { }1| , k kL LM
k k kU U R ′×

= ∈ and the tensor 1 2 ML L LR ′ ′ ′× × ×∈Y L ,
such that (3.22) is maximized.

1.
Initialization: Set 1|Mk kU = be equal to random matrices and each column of

1|Mk kU = is a unit vector.

2. Conduct the following steps iteratively until convergence.

3. For 1k = to M

4. Calculate T
k kU= ×T X ;

5.
Mode–d matricize T as ()

k kL L
kT R ×∈

(1 1 1k k k ML L L L L− += × × ×L);

6. Calculate () ()
T

k kS T T= , k kL LS R ×
+∈ .

7.
Update the mode–k projection matrix kU by the first kL′ columns
of the left singular vectors of S associated with the kL′ largest
singular values;

8. End

9.

Convergence checking: if , 1 ,
T
L t L t Fro

U U I ε− − ≤ (610ε −=) for all modes,

the calculated kU has converged. Here ,k tU is the current optimized
projection matrix and , 1k tU − is the previous projection matrix.

10. Calculate the core tensor
1

k

M
T
k

k

U×
=

= ∏Y X .

85

There is no closed form solution for the best rank– ()1 2, , MR R RL approximation.

The alternating projection method could be used to estimate this approximation

based on (3.21) and (3.22) as listed in Table 3.4.

Table 3.5. Alternating Projection for General Tensor Analysis.

Input: The input tensor 1 2 ML L L
i R × ×∈X L , 1 i N≤ ≤ , and the d–ranks { }1|Md dL =′ .

Output: Projection unitary matrices { }1| , k kL LM
k k kU U R ′×

= ∈ and the tensor
1 2 ML L L

i R ′ ′ ′× × ×∈Y L , such that (3.23) is minimized.

Initialization: Set 1|Mk kU = be equal to random matrices and each column of

1|Mk kU = is a unit vector.

1. Conduct the following steps iteratively until convergence.

2. For 1k = to M

3. Calculate T
i i k kU= ×T X , 1 i N≤ ≤ ;

4.
Mode–d matricize iT as ();

k kL L
i kT R ×∈ , 1 i N≤ ≤ ,

(1 1 1k k k ML L L L L− += × × ×L);

5. Calculate () (); ;
1

N
T

i k i k
i

S T T
=

= ∑ , k kL LS R ×
+∈ .

6.
Update the mode–k projection matrix kU by the first kL′ columns
of the left singular vectors of S associated with the kL′ largest
singular values;

7. End

8.

Convergence checking: if , 1 ,
T
k t k t Fro

U U I ε− − ≤ (610ε −=) for all modes,

the calculated kU has converged. Here ,k tU is the current optimized
projection matrix and , 1k tU − is the previous projection matrix.

9. Calculate the core tensor
1

k

M
T

i i k
k

U×
=

= ∏Y X .

GTA is defined based on (3.21). Given a number of samples 1 2 ML L L
i R × ×∈X L ,

1 i N≤ ≤ , GTA minimizes the function f defined by

()
2

1
1 1

|
k

MN
M

k k i i k
i k Fro

f U U= ×
= =

= −∑ ∏X Y , (3.23)

86

where
1

k

M
T

i i k
k

U×
=

= ∏Y X .

Based on Theorem 3.4, minimizing (3.23) is equivalent to maximizing

()
2

1
1 1

|
k

MN
M T

k k i k
i k Fro

g U U= ×
= =

= ∑ ∏X . (3.24)

There is no closed form solution to (3.23). A solution, listed in Table 3.5, based

on the alternating projection is similar to Table 3.3.

(Note: The algorithm is based on the fact: minimizing
2

1 1
k

MN

i i k
i k Fro

U×
= =

−∑ ∏X Y is

equivalent to maximizing
2

1 1
k

MN
T

i k
i k Fro

U×
= =
∑ ∏X .)

87

 Two Dimensional Linear Discriminant Analysis

The major difference between LDA and 2DLDA is the representation of the

training samples. In LDA, the training samples are represented by vectors, while

they are represented as matrices in 2DLDA.

Suppose: the training samples are divided into C classes and the ith (1 i C≤ ≤)

class contains Ni samples 1 2
;

L L
i jX R ×∈ (1 ij N≤ ≤). The mean matrix of all

training samples is () ();1 1 1
iC N C

i j ii j i
M X N

= = =
= ∑ ∑ ∑ and the mean matrix of the

ith class samples is ();1
iN

i i j ij
M X N

=
= ∑ . The class structure in the high

dimensional space is defined by

() ()()

() ()()

; ;
1 1

1

tr

tr ,

iNC TH
w i j i i j i

i j

C
TH

b i i i
i

D X M X M

D N M M M M

= =

=

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
⎛ ⎞= − −⎜ ⎟
⎝ ⎠

∑∑

∑
 (3.25)

The class structure in the low dimensional space is defined by

() () ()

() () ()

; ;
1 1

1

tr

tr ,

iNC TL T T
w i j i i j i

i j

C
TL T T

b i i i
i

D U X M VV X M U

D N U M M VV M M U

= =

=

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
⎛ ⎞= − −⎜ ⎟
⎝ ⎠

∑∑

∑
 (3.26)

The 2DLDA finds two projection matrices 1 1L LU R ′×∈ and 2 2L LV R ′×∈ to

preserve the class structure of the original high dimensional space in the projected

low dimensional space by maximizing ()() ()1L L
w bD D

−
. Ye et al. [173] developed

the following alternating projection method to obtain a solution of 2DLDA. The

algorithm conducts the following two steps iteratively:

Step 1: calculate U , which is the 1L′ eigenvectors of 1
w bA A− associated with the

largest 1L′ eigenvalues, with the given V (it is a random matrix and each

column is a unit vector), where wA and bA are defined by

88

() ()

() ()

; ;
1 1

1

.

iNC TT
w i j i i j i

i j

C
TT

b i i i
i

A X M VV X M

A N M M VV M M

= =

=

= − −

= − −

∑∑

∑
 (3.27)

Step 2: calculate V , which is the 2L′ eigenvectors of 1
w bB B− associated with the

largest 2L′ eigenvalues, with the given U (obtained in Step 1), where wB and

bB are defined by

() ()

() ()

; ;
1 1

1
.

iNC T T
w i j i i j i

i j

C
T T

b i i i
i

B X M UU X M

B N M M UU M M

= =

=

= − −

= − −

∑∑

∑
 (3.28)

The 2DLDA reduces the SSS problem and it is more efficient than LDA in terms

of time complexity and space complexity. The drawback of 2DLDA is the

alternating projection algorithm to obtain a solution of 2DLDA does not converge.

Therefore, the recognition accuracies are not stable over different training

iterations. For example, in the Probe A of the human gait recognition task in this

Chapter, the rank one recognition rate changes from 75% to 91% in the first 100

training iterations. This is because the projection matrices U and V do not

maximize ()() ()1L L
w bD D

−
. According to steps 1 and 2, the projection matrix U is

the 1L′ eigenvectors of 1
w bA A− associated with the largest 1L′ eigenvalues,

which is obtained with the given V by maximizing ()()1
tr T T

w bU A U U A U
−

while the projection matrix V is the 2L′ eigenvectors of 1
w bB B− associated with

the largest 2L′ eigenvalues, which is obtained with the given U by maximizing

()()1
tr T T

w bU B U U B U
−

. The projection matrices U and V , obtained by

iteratively conducting steps 1 and 2, do not maximize ()() ()1L L
w bD D

−
, because

maximizing the trace ratio between two projected matrices does not be equal to

maximizing the ratio trace between two projected matrices [103], i.e., with the

given wA and bA , the argument of maximum ()()1
tr T T

w bU A U U A U
−

 by

varying U does not maximize () ()tr trT T
b wU A U U A U and with the given wB

89

and bB , the argument of maximum ()()1
tr T T

w bV B V V B V
−

 by varying V does

not maximize () ()tr trT T
b wV B V V B V .

To deal with the nonconvergence problem and to accept general tensors as input

for discriminative dimension reduction, we propose GTDA in the next Section.

90

 General Tensor Discriminant Analysis

Although the effectiveness and the efficiency of 2DLDA, as a preprocessing for

subsequent classification, e.g., by LDA, have been proved, 2DLDA fails to

converge in the training stage. The nonconvergence shadows the advantages of

2DLDA, because: 1) it is difficult to determine when to stop the training stage;

and 2) different numbers of training iterations will lead to different recognition

results. To solve the nonconvergence problem, we develop GTDA, which 1)

provides a converged alternating projection algorithm for training; 2) accepts

general tensors as input; 3) preserves the discriminative information for

classification; and 4) reduces the SSS problem in the subsequent classification,

e.g., by LDA. The proposed GTDA is based on the differential scatter

discriminant criterion (DCDS).

 Differential Scatter Discriminant Criterion (DSDC)

The Differential Scatter Discriminant Criterion (DSDC) [39][149][143][145] is

defined by,

() ()()* arg max tr tr
T

T T
b w

U U I
U U S U U S Uζ

=
= − , (3.29)

where ζ is a tuning parameter; L LU R ′×∈ (L L′ <) , constrained by
TU U I= , is the projection matrix; and bS and wS are defined in (2.10).

According to [39] (pp. 446–447), the solution to (3.29) is equivalent to the

solution to (12) for some special ζ in (3.29). If we extract only one feature, i.e.,

U degenerates to a vector, then ()1
max w bS Sζ λ −= , which is the maximum

eigenvalue of 1
w bS S− . If we want to extract L′ features simultaneously, we

estimate ζ as
1

L
ii
λ

′

=∑ , where 1|Li iλ ′
= are the largest L′ eigenvalues of 1

w bS S− .

From [39] (pp. 446–447), it is not difficult to show that a suitable ζ in (3.29) is

() ()tr trT T
opt b opt opt w optU S U U S U 14. An accurate solution of (3.29) can be obtained by

14 The derivative of () ()tr trT T

b wU S U U S Uζ− with respect to U is given by b wS U S Uζ− .

To obtain a solution of (3.29), we need to set 0b wS U S Uζ− = (as we have a strict condition here,

91

an alternating projection method. Here, we use the approximation (on setting ζ

as the maximum eigenvalue of 1
w bS S−) in (3.29) to avoid the alternating projection

method for optimization.

In realworld applications, because the distribution of testing samples diverges

from the distribution of training samples, a manually chosen value of ζ always

achieves better prediction results than the calculated value. However, the manual

setting of ζ is not practical for real applications, because we do not know the

best choice of ζ for classification. In this thesis, ζ is selected automatically

during the training procedure.

 General Tensor Discriminant Analysis

On defining bS and wS by (2.10), it follows from (3.29) that

() ()()arg max tr tr
T

T T
b w

U U I
U U S U U S Uζ∗

=
= −

()() ()() ()()

()() ()() ()()

1 1
1

; 1 ; 1
1 1

; 1 1
 arg max

; 1 1
iT

C
T T

i i i
i

NC
U U I T T

i j i i j i
i j

N m m U m m U

x m U x m Uζ

=

=

= =

⎛ ⎞− × ⊗ − ×⎜ ⎟
⎜ ⎟=
⎜ ⎟
− − × ⊗ − ×⎜ ⎟
⎝ ⎠

∑

∑∑

r r r r� �
� �� �

r r r r� �
� �� �

() () 22

1 ; 1
1 1 1

 arg max
i

T

nC c
T T

i i i j iFro FroU U I i i j
N m m U x m Uζ

= = = =

⎛ ⎞
= − × − − ×⎜ ⎟

⎝ ⎠
∑ ∑∑r r r r

(3.30)

where
Fro

⋅ is the Frobenius norm and the projection matrix L LU R ′×∈ (L L′ <) is

constrained by TU U I= .

Deduction 3.1: See Appendix.

Let ;i jX denote the jth training sample (tensor) in the ith individual class,

() ;1
1 iN

i i i jj
N

=
= ∑M X is the mean tensor of the samples in the ith class,

() 1
1 C

i ii
N N

=
= ∑M M is the mean tensor of all training samples, and kU

denotes the kth direction projection matrix for decomposition in the training

procedure. Moreover, 1
; 1| ij N

i j i C
≤ ≤
≤ ≤X , 1|Ci i=M , and M are all M–th order tensors in

i.e., () 0b w kS S uζ− = , ku U∀ ∈ , ku is a column vector in U). Consequently, we have

() ()Tr TrT T
opt b opt opt w optU S U U S Uζ= , where optU is a solution to (3.29).

92

1 2 ML L LR × × ×L . Based on (3.30), we analogously define GTDA by replacing ;i jxr ,

imr , and mr with ;i jX , iM , and M , respectively, as:

()

()
()()

()

()
()()

1

1

1

1
1

|

;
1

1 1
;

1

; 1: 1:

| arg max

; 1: 1:

k

k

T M
k k k

ki

k

M
T

i kC
k

i M
i T

i k
kM

l l MU U I T
i j i kNC

k

M
i j T

i j i k
k

U
N M M

U
U

U
M M

U
ζ

=

×
=

=
×

=∗
=

=

×
=

= =
×

=

⎛ ⎛ ⎞
−⎜ ⎜ ⎟

⎝ ⎠⎜
⎜ ⎛ ⎞⎜ ⊗ −⎜ ⎟⎜ ⎝ ⎠

= ⎜
⎛ ⎞⎜ −⎜ ⎟⎜ ⎝ ⎠⎜−
⎛ ⎞

⊗ −⎜ ⎟
⎝ ⎠⎝

∏
∑

∏

∏
∑∑

∏

M M

M M

X M

X M

� �
� �
� �
� �
� �
� �
� �
� �
� �� �

� �
� �
� �
� �
� �
� �
� �
� �
� �� �

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎜ ⎟
⎜ ⎟

⎠

. (3.31)

According to the definition of the Frobenius norm of a tensor in (3.09), the right

hand side of (3.31) can be simplified as

() ()
1

1

2 2

;
| 1 1 11 1

|

arg max .
i

k kT M
k k k

M
l l

NM MC C
T T

i i k i j i k
U U I i i jk kFro Fro

U

N U Uζ
=

∗
=

× ×
= = = == =

⎛ ⎞
= − − −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑∑∏ ∏M M X M

 (3.32)

There is no closed form solution to (3.31), so we choose to use an alternating

projection method, which is an iterative procedure, to obtain a numerical solution.

Therefore, (3.31) is decomposed into M different optimization sub–problems, as

follows,

()

()
()()

()

()
()()

1

1

1

;
1

1 1
;

1

; 1: 1:

arg max

; 1: 1:

k

k

T
l l

ki

k

M
T

i kC
k

i M
i T

i k
k

l MU U I T
i j i kNC

k

M
i j T

i j i k
k

U
N M M

U
U

U
M M

U
ζ

×
=

=
×

=∗

=

×
=

= =
×

=

⎛ ⎞⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟
⎜ ⎟⎛ ⎞⎜ ⎟⊗ −⎜ ⎟⎜ ⎟⎝ ⎠

= ⎜ ⎟
⎛ ⎞⎜ −⎜ ⎟⎜ ⎝ ⎠⎜−

⎜ ⎛ ⎞
⊗ −⎜ ⎜ ⎟
⎝ ⎠⎝ ⎠

∏
∑

∏

∏
∑∑

∏

M M

M M

X M

X M

� �
� �
� �
� �
� �
� �
� �
� �
� �� �

� �
� �
� �
� �
� �
� �
� �
� �
� �� �

⎟
⎟
⎟
⎟
⎟

()()
()()

()()
()()

1

;

1 1 ;

mat

mat
 arg max tr

mat

mat

T
l l i

T
C i l i l l

T T
i l i l l

T
l lTU U I NC l i j i l l

T Ti j l i j i l l

n U

U
U U

U

U
ζ

=

=

= =

⎛ ⎞⎛ ⎞⎡ ⎤− ×
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥− ×⎣ ⎦⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎡ ⎤− ×⎜ ⎟⎜ ⎟⎢ ⎥−⎜ ⎟⎜ ⎟⎢ ⎥⎜ − × ⎟⎜ ⎟⎣ ⎦⎝ ⎠⎝ ⎠

∑

∑∑

M M

M M

X M

X M

.

(3.33)

Deduction 3.2: See Appendix.

93

To simplify (3.33), we define

()() ()()
1

mat mat
C

T T T
l i l i l l l i l l

i
B N U U

=

⎡ ⎤= − × − ×⎣ ⎦∑ M M M M , (3.34)

and

()() ()(); ;
1 1

mat mat
iNC

T T T
l l i j i l l l i j i l l

i j
W U U

= =

⎡ ⎤= − × − ×⎣ ⎦∑∑ X M X M . (3.35)

Therefore, (3.33) is simplified as,

()()
1

1
|

* | arg max tr
T M
l l l

M T
l l l l l l

U U I
U U B W Uζ

=

=
=

= − . (3.36)

As pointed out in 0, ζ is the tuning parameter.

Table 3.6 lists the alternating projection method based optimization procedure for

GTDA with the given tuning parameter ζ to simplify the proof of the

convergence theorem. Later, we describe how to determine the tuning parameter

ζ and the dimension 1 2 ML L L′ ′ ′× ×L of the output tensors automatically. The

key steps in the alternating projection procedure are Steps 3–5, which involve

finding the lth mode projection matrix ,l tU in the tth iteration using 1
, 1|lk t kU −

=

obtained in the tth iteration and , 1 1|Mk t k lU − = + obtained in the (1t −)th iteration. In

Steps 3 and 4, we obtain the between class scatter matrix , 1l tB − and the within

class scatter matrix , 1l tW − with 1
, 1|lk t kU −

= obtained in the tth iteration and

, 1 1|Mk t k lU − = + obtained in the (1t −)th iteration. The singular value decomposition

(SVD) of , 1 , 1l t l tB Wζ− −− is obtained and , 1l tU − is updated using the eigenvectors

of , 1 , 1l t l tB Wζ− −− , which correspond to the largest eigenvalues of , 1 , 1l t l tB Wζ− −− .

According to the algorithm described in Table 3.6, we can obtain a solution

1| k kL LM
k kU R ′×

= ∈ (k kL L′ <) by an iterative way. For GTDA, we use the projected

tensor
1

k

M
T
k

k

U×
=

= ∏Y X to represent the original general tensor X . Unlike

2DLDA [173], the alternating projection method based optimization procedure for

GTDA converges, as proved in Theorem 3.5.

Theorem 3.5 The alternating projection method based optimization procedure for

GTDA converges.

Proof: See Appendix.

94

Table 3.6. Alternating Projection for General Tensor Discriminant Analysis

Input: Training tensors 1 21
; 1| i Mj N L L L

i j i C R≤ ≤ × × ×
≤ ≤ ∈X L , the dimension of the output

tensors 1 2
;

ML L L
i j R ′ ′ ′× × ×∈Y L , the tuning parameters ζ , and the maximum number of

training iterations T .

Output: The projection matrix 1| k kL LM
k kU R ′ ×

= ∈ (T
k kU U I=) and the output tensors

1 21
; 1| i Mj N L L L

i j i C R ′ ′ ′≤ ≤ × × ×
≤ ≤ ∈Y L .

1.
Initialize: Set ,0 1| k kL LM

k kU R ′×
= ∈ be equal to random matrices and each

column of ,0 1|Mk kU = is a unit vector.

2. For 1t = to T {

3. For 1l = to M {

4. Calculate
()()

()()
, 1

, 1
1 , 1

mat

mat

T
C i l i l l t

l t T T
i l i l l t

N U
B

U

−

−
= −

⎡ ⎤− ×
⎢ ⎥=
⎢ ⎥− ×⎣ ⎦

∑
M M

M M

5. Calculate
()()
()()

; , 1

, 1
1 1 ; , 1

mat

mat

i
T

NC l i j i l l t

l t T Ti j l i j i l l t

U
W

U

−

−
= =

−

⎡ ⎤− ×
⎢ ⎥=
⎢ ⎥− ×⎣ ⎦

∑∑
X M

X M

6.
Optimize ()(), , 1 , 1arg max tr

T

T
l t l t l t

U U I
U U B W Uζ− −

=
= − by SVD on

, 1 , 1l t l tB Wζ− −− .

7. }//For loop in Step 2.

8.
Convergence check: the training stage of GTDA converges if

() , , 11
Err M T

l t l tl
t U U I ε−=
= − ≤∑ (610ε −=).

9. }// For loop in Step 1.

10. ; ;
1

k

M
T

i j i j k
k

U×
=

= ∏Y X .

For practical applications, it is important to determine the tuning parameter ζ

and the dimension 1 2 ML L L′ ′ ′× × ×L of the output tensors automatically. In the tth

training iteration and the lth order, we adjust ζ after Step 4 and before Step 5 by

setting tζ being equal to the maximum eigenvalue of 1
, 1 , 1l t l tW B−
− − . That is ζ is

varying from one iteration to the next. In the tth training iteration, the lth dimension

of the output tensors lL′ is determined by the lth projection matrix ,l tU , so we set

95

a threshold value δ to automatically determine lL′ according to the following

inequality:

,1, ,1, ,2,

, , , ,1 1

1
, , , ,1 1

, , , ,1 1

, ,1

, ,1

 1,

l l

l l

l l

l

l

l t l t l t
L L

l j t l j tj j

L L
l i t l i ti i

L L
l j t l j tj j

L
l i ti

L
l j tj

λ λ λ

λ λ

λ λ
δ

λ λ

λ

λ

= =

′ ′+

= =

= =

=

=

+
< <

< ≤ < <

< =

∑ ∑
∑ ∑
∑ ∑

∑
∑

L

L . (3.37)

where , ,l i tλ is the ith eigenvalue of , 1 , 1l t t l tB Wζ− −− and , , , ,l i t l j tλ λ≥ if i j< .

Therefore, there is only one parameter, the threshold value δ , which needs to be

tuned for recognition tasks. Without this method as shown in (3.37), we have to

tune 1M + parameters, comprising of one parameter for each order of the M–th

order tensors and ζ in (3.36). This multiparameter tuning is too time consuming

when M is large.

 Computational Complexity

The time complexity of LDA is ()3

1

M
ii

O L
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∏ in the training stage, where

training samples X belong to 1 2 ML L LR × × ×L . The time complexity of the

alternating projection method based optimization procedure of GTDA is

()3
1

M
ii

O T L
=∑ , where T is the number of iterations required for GTDA to

converge. The space complexity of LDA is ()2

1

M
ii

O L
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∏ in the training stage.

The space complexity of the alternating projection method based optimization

procedure of GTDA is ()2
1

M
ii

O L
=∑ .

96

 Manifold Learning using Tensor Representations

The proposed GTDA can also be extended for manifold learning [13], which has

become popular in machine learning. Manifold learning is based on geometrical

assumptions, i.e., a data set approximately lies in a low dimensional manifold

embedded in the original high dimensional feature space. Recently, a large

number of algorithms have been developed based on different criteria. For

example, ISOMAP [155] finds the low dimensional representation for data by

preserving the geodesic distances of data pairs in the original high dimensional

space. Locally linear embedding (LLE) [124][127] produces the low dimensional

representation for locally sufficient reconstruction, i.e., a sample is reconstructed

from its neighborhood samples. Laplacian Eigenmap (LE) [5][6]reduces the data

dimension by preserving the locality character of the samples. Recently, Bengio et

al. [8] unified a number of manifold learning algorithms together and developed

the out of sample extension. Yan et al. [172] developed another framework,

named the graph embedding framework (GEF). GEF finds the projection matrix
L LU R ′×∈ (L L′ <) to map the original high dimensional samples Lx R∈

r to the

low dimensional space LR ′ through a linear projection, i.e., Ty U x=
r r and

Ly R ′∈
r . The objective function of GEF is defined by

()
()

()

2

1 1

2

1 1

N N
T

ij i j Froi j
N N

T
ij i j Froi j

b U x x
F U

s U x x

= =

= =

−
=

−

∑∑

∑∑

r r

r r
, (3.38)

where ijs and ijb are predefined weighting factors and N is the number of

training samples. By varying ijs and ijb , different dimension reduction

algorithms can be obtained, e.g., LLE, ISOMAP, and LDA. The linear projection

matrix L LU R ′×∈ is obtained by maximizing ()F U subject to the constraint

TU U I= . To extend GEF to accept general tensors as input, we reformulate

(3.38) as

97

() () ()

() ()

() ()

()
()()
()()

()()

2 2

1 1 1 1

2

1 1

2

1
1 1

1

1

 ; 1 1

n n n n
T T

ij i j ij i jFro Froi j i j

n n
T

ij ij i j Froi j

n n
T

ij ij i j Froi j

T
i j

ij ij Tj i j

G U b U x x s U x x

b s U x x

b s x x U

x x U
b s

x x U

ζ

ζ

ζ

ζ

= = = =

= =

= =

= − − −

= − −

= − − ×

− ×
= −

⊗ − ×

∑∑ ∑∑

∑∑

∑∑

r r r r

r r

r r

r r� �
� �
� �
� �r r� �
� �� �

1 1
,

n n

i= =
∑∑

 (3.39)

where ζ is a tuning parameter and the linear projection matrix U is obtained

by maximizing ()G U constrained by TU U I= .

Based on (3.33), we analogously define tensorized GEF by replacing ixr with

iX as

() ()
()

()
()()1

1
1 1

1

| ; 1: 1: ,
k

k

M
T

i j kN N
kM

k k ij ij M
i j T

i j k
k

U
H U b s M M

U
ζ

×
=

=
= =

×
=

⎛ ⎞
−⎜ ⎟

⎝ ⎠= −
⎛ ⎞

⊗ −⎜ ⎟
⎝ ⎠

∏
∑∑

∏

X X

X X

� �
� �
� �
� �
� �
� �
� �
� �
� �� �

 (3.40)

where ζ is a tuning parameter and a series of linear projection matrices 1|Mk kU =

is obtained by maximizing ()1|Mk kH U = constrained by T
k kU U I= for

1 k M≤ ≤ . According to (3.09), the tensorized GEF can be defined as

()

() ()

1

1

1 1
|

2

| 1 1 1

| arg max |

 arg max .

T M
k k k

kT M
k k k

M M
k k k k

U U I

MN N
T

ij ij i j k
U U I i j k Fro

U H U

b s Uζ

=

=

∗
= =

=

×
= = = =

=

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
∑∑ ∏X X

 (3.41)

Similar to GTDA, there is no closed form solution. Therefore, (3.41) is

decomposed into M different optimization sub–problems, as follows,

()
()

()
()()

()
()()
()()

1

1 1

1

1 1

arg max ; 1: 1:

mat
 arg max tr

mat

k

T
k k

k

T
k k

M
T

i j kN N
k

k ij ij MU U I i j T
i j k

k

T
N N k i j k kT

k ij ij T TU U I i j k i j k k

U
U b s M M

U

U
U b s

U

ζ

ζ

×
=∗

= = =
×

=

= = =

⎛ ⎞⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟= −⎜ ⎟⎛ ⎞⎜ ⎟⊗ −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎡ ⎤− ×
⎜ ⎢ ⎥= −

⎢ ⎥− ×⎣ ⎦⎝

∏
∑∑

∏

∑∑

X X

X X

X X

X X

� �
� �
� �
� �
� �
� �
� �
� �
� �� �

.kU
⎛ ⎞⎞
⎜ ⎟⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎠⎝ ⎠

 (3.42)

98

With (3.42), a solution to the tensorized GEF can be obtained iteratively by the

alternating projection method.

99

 GTDA for Human Gait Recognition

A straightforward application of LDA to human gait recognition leads to poor

results because of the SSS problem. For this reason, principal component analysis

(PCA) [30] is conducted as a preprocessing step to reduce the SSS problem.

Unfortunately, some discriminative information is discarded by PCA.

In this Section, we apply the proposed GTDA to reduce the SSS problem in LDA

for appearance based human gait recognition [126]. Appearance [83] is the basic

stage of visual information representation and reflects the walking manner

[45][91]. In the following, we use the averaged gait image [45][91] as the

appearance model. As a representation method, the effectiveness of the averaged

gait image based recognition has been proved in [45][46][91][92].

The averaged gait image is decomposed by Gabor functions [25][26][101] and we

combine the decomposed images to give new representations for recognition.

There are three major reasons for introducing the Gabor based representation for

the averaged gait image based recognition: 1) human brains seem to have a

special function to process information in multi–resolution levels [25][26][101];

2) it is supposed that Gabor functions are similar to the receptive field profiles in

the mammalian cortical simple cells [25][101]; and 3) Gabor function based

representations have been successfully employed in many computer vision

applications, such as face recognition [87][88][89] and texture analysis [32].

Although Gabor function based representations are effective for object

recognition [25][26] and image understanding, the computational cost of the

representation is high. Therefore, three variant methods for representation are

introduced to utilize Gabor functions to reduce the computational cost in

calculating the representation and in training subsequent feature selection

algorithms by partially or fully summing over Gabor functions. The sum operation

reduces the number of functions, used for decomposing the averaged gait images.

These methods are: 1) the sum over directions of Gabor functions based

representation (GaborD), 2) the sum over scales of Gabor functions based

representation (GaborS), and 3) the sum over both scales and directions of Gabor

functions based representation (GaborSD).

100

 Gabor Gait Representation

As demonstrated in [45][91], the averaged gait image is a robust feature for gait

recognition tasks. In Figure 3.10, the sample averaged gait images are obtained

from different persons under different circumstances. It can be observed that: 1)

the averaged gait images of the same person under different circumstances share

similar visual effects; and 2) the averaged gait images of different persons, even

under the same circumstance, are very different. So, it is possible to recognize a

person by his or her averaged gait images. Furthermore, according to research

results reported in [80], Gabor functions based image decomposition is

biologically relevant to and is useful for image understanding and recognition.

Consequently, it is reasonable to introduce Gabor functions for the averaged gait

image based gait recognition.

Figure 3.10. The columns show the averaged gait images of nine different people

in the Gallery of the USF database described in §1. The four rows in the figure

from top to bottom are based on images taken from the Gallery, ProbeB, ProbeH,

and ProbeK, respectively. The averaged gait images in a single column come from

the same person.

1. Gabor Functions

101

Marcelja [101] and Daugman [25][26] modelled the responses of the visual cortex

by Gabor functions, because they are similar to the receptive field profiles in the

mammalian cortical simple cells. Daugman [25][26] developed the 2D Gabor

functions, a series of local spatial bandpass filters, which have good spatial

localization, orientation selectivity, and frequency selectivity. Lee [80] gave a

good introduction to image representation using Gabor functions. A Gabor

(wavelet, kernel, or filter) function is the product of an elliptical Gaussian

envelope and a complex plane wave, defined as:

() ()
2 2

2

22 2
, 2,

k z
ik z

s d k

k
x y z e e e

δ
δψ ψ

δ

⋅
− −⋅

⎡ ⎤
= = ⋅ ⋅ −⎢ ⎥

⎢ ⎥⎣ ⎦

r r

r r
r

r
r , (3.43)

where (),z x y=r is the variable in a spatial domain and k
r

 is the frequency

vector, which determines the scale and orientation of Gabor functions, di
sk k e φ=

r
,

where max
s

sk k f= , max 2k π= , 2f = , 0,1,2,3,4s = , and 8d dφ π= , for

0,1,2,3,4,5,6,7d = . Examples of the real part of Gabor functions are presented in

Figure 3.11. Here, we use Gabor functions (full complex functions) with five

different scales and eight different orientations, making a total of forty Gabor

functions, for the averaged gait image decomposition. The number of oscillations

under the Gaussian envelope is determined by 2δ π= . The term ()2exp 2σ−

is subtracted in order to make the kernel DC–free, and thus insensitive to the

average illumination.

Figure 3.11. The real part of Gabor functions with five different scales and eight

different directions.

102

2. Gabor based Gait Representation

The Gabor function representation of an averaged gait image is obtained by

convolving the Gabor functions with the averaged gait image. This yields a fourth

order tensor in 1 2 5 8L LR × × × constructed by filtering an averaged gait image through

a series of Gabor functions with five scales and eight directions. Two indices are

required for pixel locations: one index is required for scale information, and one

index is required for direction information. The entries of the fourth order tensor

are complex numbers and the magnitude part of this fourth order tensor is defined

as the Gabor gait as shown in Figure 3.12. In Gabor gait, there are 40 components

(images), each of which is the magnitude part of the output, which is obtained by

convoluting the averaged gait image with a Gabor function.

Figure 3.12. Gabor gait: the rows show different scales and the columns show

different directions for an averaged gait image.

The gait representation method in Figure 3.12 is similar to the face representation

method [87][88] using Gabor functions. Although this method for representation

is powerful, its computational costs both for recognition and calculation for

103

representation are higher compared with the original image based recognition.

The computational cost in recognition is described in §3.

We introduce three new methods to decompose averaged gait images based on

Gabor functions defined in (3.43). These are the sum over directions of Gabor

functions based representation (GaborD), the sum over scales of Gabor functions

based representation (GaborS), and the sum over scales and directions of Gabor

functions based representation (GaborSD). The most important benefit of these

new representations is that the cost of computing the gait representation based on

them is low. The computational cost of the Gabor based representation and the

complexity analysis for GTDA based dimension reduction for different

representations are given in §3.

∑∑

∑

Figure 3.13. Three new methods for averaged gait image representation using

Gabor functions: GaborS, GaborD, and GaborSD.

GaborD is the magnitude part of outputs generated by convolving an averaged

gait image (),I x y with the sum of Gabor functions over the eight directions

with a fixed scale,

() ()() (), ,GaborD , , ,s d s d
d d

x y I x y I x yψ ψ⎛ ⎞= ∗ = ∗⎜ ⎟
⎝ ⎠

∑ ∑ , (3.44)

104

where (), ,s d x yψ is the Gabor function defined in (3.43); and ()GaborD ,x y is

the output of the GaborD method for representation. Therefore, we have five

different outputs to represent the original gait image through the GaborD

decomposition. We then put all ()GaborD ,x y with different scales together as a

third order tensor DG in 1 2 5L LR × × : two indices are required for pixel locations;

and one index is required for scale change. The calculation procedure is shown in

Figure 3.13. Examples of GaborD based gait representation are shown in Figure

3.14.

GaborS is the magnitude part of outputs generated by convolving an averaged gait

image (),I x y with the sum of Gabor functions over the five scales with the

fixed direction,

() ()() (), ,GaborS , , ,s d s d
s s

x y I x y I x yψ ψ⎛ ⎞= ∗ = ∗⎜ ⎟
⎝ ⎠

∑ ∑ , (3.45)

where (), ,s d x yψ is the Gabor function defined in (3.43), and ()GaborS ,x y is

the output of the GaborS method for representation. Therefore, we have eight

different outputs to represent the original gait image through the GaborS based

decomposition. We then put all ()GaborS ,x y with different scales together as a

third order tensor SG in 1 2 8L LR × × : two indices are required for pixel locations;

and one index is required for direction change. The calculation procedure is

shown in Figure 3.13. Examples of GaborS based gait representation are shown in

Figure 3.14.

GaborSD is the magnitude part of the output generated by convolving an averaged

gait image (),I x y with the sum of all forty Gabor functions,

() ()() (), ,GaborSD , , ,s d s d
s d s d

x y I x y I x yψ ψ⎛ ⎞= ∗ = ∗⎜ ⎟
⎝ ⎠

∑∑ ∑∑ , (3.46)

where (), ,s d x yψ is the Gabor function defined in (3.43), and ()GaborSD ,x y

is the output of the GaborSD method for representation. Therefore, it is a second

order tensor in 1 2L LR × . Two indices are required for pixel locations. The

calculation procedure is shown in Figure 3.13. Examples of GaborD based gait

representation are shown in Figure 3.14.

105

Figure 3.14. The thirteen columns are Gallery gait, ProbeA gait, ProbeB gait,

ProbeC gait, ProbeD gait, ProbeE gait, ProbeF gait, ProbeG gait, ProbeH gait,

ProbeI gait, ProbeJ gait, ProbeK gait, and ProbeL gait, respectively. From the first

row to the last row are the original gait, GaborD (from 0 to 4), GaborS (from 0 to

7), and GaborSD, respectively. The Gallery gait and ProbeA – ProbeI gaits are

described in Section 3.8.2.1.

106

3. Computational Complexity

Gabor functions with different scales and directions are approximated by masks of

size 1 2G G× (in experiments, 1 2 64G G= =) and averaged gait images are in

1 2L LR × . Therefore, the computational complexities for generating a Gabor gait in
1 2 5 8L LR × × × , a GaborD gait in 1 2 5L LR × × , a GaborS gait in 1 2 8L LR × × , and a GaborSD

gait in 1 2L LR × are ()1 2 1 240O L L G G , ()1 2 1 25O L L G G , ()1 2 1 28O L L G G , and

()1 2 1 2O L L G G , respectively. Based on the analysis, the GaborD, GaborS, and

GaborSD based gait representation can reduce the computational complexity of

the Gabor based representation, because the number of filters (the sum of Gabor

functions) for decomposition in the GaborD/GaborS/GaborSD based

representation is smaller than the number of filters (Gabor functions) for

decomposition in Gabor based representation. The experiments in §2 show that

GaborD and GaborS based representations perform slightly better than Gabor

based representation for gait recognition.

Table 3.7. Computational complexities of the alternating projection method based

optimization procedure of GTDA with Gabor/GaborD/GaborS/GaborSD

representations.

 Time Complexity Space Complexity

Gabor gaits in 1 2 5 8L LR × × × ()()3 3
1 1 2637O T L L+ + ()2 2

1 289O L L+ +

GaborD gaits in 1 2 5L LR × × ()()3 3
2 1 2125O T L L+ + ()2 2

1 225O L L+ +

GaborS gaits in 1 2 8L LR × × ()()3 3
3 1 2512O T L L+ + ()2 2

1 264O L L+ +

GaborSD gaits in 1 2N NR × ()()3 3
4 1 2O T L L+ ()2 2

1 2O L L+

The computational complexities of the alternating projection method based

optimization procedure of GTDA with Gabor/GaborD/GaborS/GaborSD

representation are listed in Table 2.1. In Table 2.1, 1T (2T , 3T , and 4T) is the

number of iterations to make the optimization procedures of GTDA with Gabor

(GaborD, GaborS, and GaborSD) based representations converge. In our

experiments, we found that 1T , 2T , 3T , and 4T are usually comparable.

107

Therefore, with GaborS/GaborD/GaborSD representations, the computational

complexities of the alternating projection method based optimization procedure of

GTDA are reduced compared with that of the Gabor based representation.

 Experimental Results

This Section first briefly describes the USF HumanID gait database [126] (gallery

and probes). We then compare the performance of our algorithms with several

other established algorithms for human gait recognition.

1. HumanID Gait Database: Gallery and Probe Data Sets

Table 3.8. Twelve probe sets for challenge experiments.

Experiment (Probe) # of Probe
Sets

Difference between Gallery and
Probe Set

A (G, A, L, NB, M/N) 122 View
B (G, B, R, NB, M/N) 54 Shoe
C (G, B, L, NB, M/N) 54 View and Shoe
D (C, A, R, NB, M/N) 121 Surface
E (C, B, R, NB, M/N) 60 Surface and Shoe
F (C, A, L, NB, M/N) 121 Surface and View
G (C, B, L, NB, M/N) 60 Surface, Shoe, and View
H (G, A, R, BF, M/N) 120 Briefcase
I (G, B, R, BF, M/N) 60 Briefcase and Shoe
J (G, A, L, BF, M/N) 120 Briefcase and View
K (G, A/B, R, NB, N) 33 Time, Shoe, and Clothing
L (C, A/B, R, NB, N) 33 Time, Shoe, Clothing, and Surface

We carried out all our experiments upon the USF HumanID [126] outdoor gait

(people–walking–sequences) database of version 2.1. The database has been built

and widely utilized for vision–based gait recognition. It consists of 1,870

sequences from 122 subjects (people). For each subject, there are the following

covariates: change in viewpoints (Left or Right), change in shoe types (A or B),

change in walking surface (Grass or Concrete), change in carrying conditions

(Briefcase or No Briefcase), and elapsed time (May or November) between

108

sequences being compared. There is a set of pre–designed experiments (12

experiments) for algorithm comparison. For algorithm training, the database

provides a gallery with the following covariates: grass, shoe type A, right camera,

and no briefcase, which was collected in May and it also includes a number of

new subjects collected in November. This gallery dataset has 122 individuals. For

algorithm testing, 12 probe sets are constructed according to the 12 experiments

and detailed information about the probe sets is given in Table 3.8. More detailed

information about USF HumanID is described in [126].

Figure 3.15. The averaged gait extraction and the dissimilarity measure.

Figure 3.15 shows examples of averaged gait images. The averaged gait image

stands for the mean image (pixel by pixel) of silhouettes over a gait cycle within a

sequence. A gait cycle is two successive half gait cycles. A half gait cycle is a

series of stances: from heels–together–stance and full–stride–stance, to heels–

together–stance, as shown in Figure 3.15. As suggested in [91], the whole

109

sequence is partitioned into a series of sub–sequences according to the gait period

(a cycle) length GaitN . Then the binary images within one cycle (a sub–sequence)

are averaged to acquire a set of averaged silhouette images iAS , i.e.

()
()1 1

/
1|

Gait
Gait

Gait

k i N
T N

i i Gait
k iN

AS S k N
= + −

⎢ ⎥⎣ ⎦
=

=

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

∑ . (3.47)

The averaged gait representation is robust against any errors in individual frames,

so we choose the averaged gait image to represent a gait cycle. One sequence

yields several averaged gait images and the number of averaged gait images

depends on the number of gait cycles in this sequence. In the following

experiments, averaged gait images are utilized as the original data for the gait

recognition problem. Some further averaged gait images from the gallery set are

also shown in Figure 3.10, which demonstrate that averaged gait images can be

used for gait recognition, because different people have different averaged gait

images.

The dissimilarity measure in gait recognition is the same as in [91]. The distance

between the gallery sequence and the probe sequence is

()
() ()()1 1

Dist ,

 Median min ,p G

Method Method
P G

N N Method Method
i j P G

AS AS

AS i AS j= == −
 (3.48)

where () 1| PNMethod
P iAS i = is the ith projected AS in the probe data and

() 1| GNMethod
G jAS j = is the jth projected AS in the gallery. The right hand side of (3.48)

is the median of the Euclidean distances between averaged silhouettes from the

probe and the gallery. It is suggested as a suitable measure for gait recognition by

Liu and Sarkar in [91].

There are only two parameters in all proposed methods, one for GTDA and the

other for LDA. In detail, one parameter is the threshold value δ for GTDA as

described in (3.37). In all experiments, we vary δ from 0.85 to 0.995 with a step

0.005. In 2DLDA, a similar strategy is used, i.e., δ is used to determine the

dimensions of the projected subspace in each order. The other parameter is the

number of selected dimensions in LDA. In all experiments relevant to LDA, we

vary the number of dimensions from 1 to 121 with a step 1. To speed up all

experiments, we down sample the original averaged gait images from 128 88× to

64 44× in all proposed methods. These are indicated by the note “H” in Table 3.9

110

and Table 3.10. We also show some experimental results based on the original

averaged gait images with the size 128 88× .

To examine the effectiveness of the automatic selection of ζ for GTDA based

recognition defined in (3.31), we also manually tune the parameters to achieve

further improvement by changing the selected dimensions for each mode and the

Lagrange multiplier ζ defined in (3.36). This is indicated by the note “M” in

Table 3.9 and Table 3.10. Although manually tuning parameters improves the

performance, it is time consuming. Moreover, the improvement is limited, so the

automatic parameter selection used in this Chapter is enough for applications.

2. Performance Evaluation

Sarkar et al. [126] evaluated the performance of the baseline algorithm on the

HumanID challenge database using the rank one/five recognition rates: 1) the rank

one recognition rate is the percentage of the number of the correct subjects in the

first place of a list of matches obtained by an algorithm and 2) the rank five

recognition rate is the percentage of the number of the correct subjects in any of

the first five places of a list of matches obtained by an algorithm. Twelve

experiments have been designed, namely experiment A to experiment L, as shown

in Table 3.8. The baseline algorithm reports the rank one recognition rates of the

twelve experiments with increasing difficulty from 78% as the easiest to 3% as

the hardest by examining the effects of the introduced five covariates (under

different combinations).

Table 3.9 and Table 3.10 report all experiments, which compare the proposed

algorithms with the existing algorithms. The item “Avg” in Table 3.9 and Table

3.10 means the averaged recognition rates of all probes (A–L), i.e., the ratio of

correctly recognized subjects to the total number of subjects in all probes. The

columns labeled A to L are exactly the same tasks as in the baseline algorithm. In

both tables, the first rows give the performance of Baseline [126], HMM [66],

IMED [167], IMED+LDA [167], LDA [45], LDA+Sync [45], LDA+Fusion [45],

2DLDA [173], and 2DLDA+LDA [173], respectively; while the performance of

the new algorithms upon the same gallery set and probe set is fully reported on all

comparison experiments, which are namely, GTDA(H), GTDA (M & H), GTDA,

Gabor+GTDA(H), GaborD+GTDA(H), GaborD+GTDA, GaborS+GTDA (H),

111

GaborS+GTDA, GaborSD+GTDA(H), GaborSD+GTDA, GTDA+LDA(H),

GTDA+LDA, Gabor+GTDA+LDA(H), GaborD+GTDA+LDA(H), GaborD+

GTDA+LDA, GaborS+GTDA+LDA(H), GaborS+GTDA+LDA, and GaborSD+

GTDA+LDA(H), respectively. Finally, the last columns of both tables report the

average performance of the corresponding algorithms on all probe sets.

From the comparison results in Table 3.9 and Table 3.10, it is clear that the

averaged recognition rate of the twelve probes, our new methods (GTDA+LDA,

Gabor+GTDA+LDA, GaborD+GTDA+LDA, and GaborS+GTDA+LDA)

outperform the previous state–of–the–art algorithms (top part in both tables), e.g.,

the HMM algorithm, which is stable in modeling the gait cycles, and the IMED

algorithm, which is demonstrated to improve the conventional LDA. Figure 3.16

and Figure 3.17 visually compare the results obtained from some important

algorithms with the results obtained from the proposed ones. Table 3.9 and Table

3.10 show that our proposed methods are not very sensitive to the changes in the

size of averaged gait images, because the recognition rates are only slightly

decreased when averaged gait images are down sampled from 128 88× to

64 44× . Manually tuning the parameter ζ in GTDA in (15) will slightly

improve the averaged recognition rate. Furthermore, performances for probes D–

G and K–L are not satisfactory. Therefore, further studies are required to make

them applicable. Finally, the performances of different methods have the

following relationship: Baseline < IMED < LDA < IMED+ LDA < 2DLDA+LDA

< LDA+Fusion < GTDA+LDA < GaborD+GTDA+LDA < Gabor+GTDA+LDA

< GaborS+GTDA+LDA.

In addition, it is worth emphasizing that the effects of the five covariates are also

reflected in experimental results. In general, the results in Table 3.9 and Table

3.10, for the proposed GaborS/GaborD+GTDA+LDA, show that:

• Viewpoint and shoe changes have little impact on the recognition rate. This

point is demonstrated by columns A–C, in which the rank one recognition

rates are around 92%;

• Apart from the viewpoint and the shoe covariates, if briefcase is also

considered, the recognition tasks become more difficult and as a result, in

columns H–J the performance is around 87% in rank one evaluation;

112

• If the viewpoint and the shoe issues are studied together with the surface

covariate, the recognition tasks become hard. This effect leads to a worse

performance around 35% in columns D–G in rank one evaluation;

• The most difficult problem in human gait recognition is the elapsed time

task, i.e., data in gallery and data in probes were captured at different time.

In USF HumanID, data in gallery were obtained in May and data in probes

were obtained in November. Much work should be done to improve the

performance on the tasks K and L although our proposed algorithms report

better performance around 17% in rank one evaluation compared with

many previous efforts, such as the baseline [126], IMED [167],

IMED+LDA, LDA [45][46], and LDA+Fusion [45][46], in most cases.

113

Table 3.9. Rank one recognition rates for human gait recognition.

Rank One (%) A B C D E F G H I J K L Avg
Probe Size 122 54 54 121 60 121 60 120 60 120 33 33 ––
Baseline 73 78 48 32 22 17 17 61 57 36 3 3 40.9572
HMM 89 88 68 35 28 15 21 85 80 58 17 15 53.5365
IMED 75 83 65 25 28 19 16 58 60 42 2 9 42.8695
IMED+LDA 88 86 72 29 33 23 32 54 62 52 8 13 48.6357
LDA 87 85 76 31 30 18 21 63 59 54 3 6 48.1983
LDA+Sync 83 94 61 50 48 22 33 48 52 34 18 12 48.0355
LDA+Fusion 91 94 81 51 57 25 29 62 60 57 9 12 55.8257
2DLDA 89 93 80 28 33 17 19 74 71 49 16 16 50.9823
2DLDA+LDA 89 91 82 33 33 23 25 67 78 50 19 19 52.6409
GTDA (H) 85 88 73 24 25 15 14 53 49 45 4 7 42.9916
GTDA (M & H) 86 88 73 24 25 17 16 53 49 45 10 7 43.7035
GTDA 85 88 71 19 23 15 14 49 47 45 7 7 41.5992
Gabor+GTDA (H) 84 86 73 31 30 16 18 85 85 57 13 10 52.5052
GaborD+GTDA (H) 88 88 71 28 28 12 19 87 75 59 7 10 51.7359
GaborD+GTDA 81 88 65 21 23 8 13 92 83 55 13 10 49.2610
GaborS+GTDA (H) 89 89 69 31 33 13 16 79 76 56 13 13 51.4322
GaborS+GTDA 82 86 67 22 30 8 14 92 88 62 10 7 50.9990
GaborSD+GTDA (H) 87 89 71 23 28 8 14 82 69 51 4 13 48.2109
GaborSD+GTDA 81 82 69 17 26 7 14 91 78 60 10 10 48.8518
GTDA+LDA (H) 94 95 88 35 42 23 30 65 61 58 16 19 54.5543
GTDA+LDA 95 95 86 39 44 25 30 61 68 67 16 19 56.5167
Gabor+GTDA+LDA (H) 89 93 80 45 49 23 30 81 85 53 10 19 57.7296
GaborD+GTDA+LDA (H) 93 93 84 34 40 23 32 90 80 63 16 19 58.9102
GaborD+GTDA+LDA 89 93 84 27 35 17 26 93 88 67 16 22 57.5511
GaborS+GTDA+LDA (H) 93 95 88 39 47 28 33 82 82 63 19 19 60.2390
GaborS+GTDA+LDA 91 93 86 32 47 21 32 95 90 68 16 19 60.5804
GaborSD+GTDA+LDA (H) 92 93 78 30 38 21 26 82 75 55 16 19 54.8685

114

Table 3.10. Rank five recognition rates for human gait recognition.

Rank Five (%) A B C D E F G H I J K L Avg
Probe Size 122 54 54 121 60 121 60 120 60 120 33 33 ––
Baseline 88 93 78 66 55 42 38 85 78 62 12 15 64.5397
HMM –– –– –– –– –– –– –– –– –– –– –– –– ––
IMED 91 93 83 52 59 41 38 86 76 76 12 15 65.3132
IMED+LDA 95 95 90 52 63 42 47 86 86 78 21 19 68.5950
LDA 92 93 89 58 60 36 43 90 81 79 12 12 67.3674
LDA+Sync 92 96 91 68 69 50 55 80 78 69 39 30 70.8528
LDA+Fusion 94 96 93 85 79 52 57 89 86 77 24 21 76.1754
2DLDA 97 93 93 57 59 39 47 91 94 75 37 34 70.9530
2DLDA+LDA 97 100 95 58 57 50 50 86 94 77 43 40 72.8507
GTDA (H) 98 95 95 57 54 34 42 75 80 69 22 16 65.0532
GTDA (M & H) 100 97 95 57 54 34 45 75 80 70 25 25 66.1472
GTDA 100 97 95 52 52 34 45 47 71 70 25 25 64.7015
Gabor+GTDA (H) 96 95 89 59 63 33 49 94 92 76 19 40 70.3205
GaborD+GTDA (H) 96 95 88 59 49 27 35 95 97 84 28 28 69.0898
GaborD+GTDA 96 91 82 45 45 23 32 96 94 78 31 37 65.4134
GaborS+GTDA (H) 98 97 93 60 52 34 37 93 95 79 31 25 70.0605
GaborS+GTDA 96 91 84 45 54 23 37 96 95 79 22 31 66.0741
GaborSD+GTDA (H) 95 93 88 54 47 27 30 89 88 71 28 28 64.8361
GaborSD+GTDA 96 91 82 43 54 23 33 98 94 82 28 34 66.3319
GTDA+LDA (H) 100 99 97 66 68 50 57 89 85 81 40 31 75.3267
GTDA+LDA 100 99 97 67 69 50 57 90 90 84 40 37 76.5365
Gabor+GTDA+LDA (H) 95 97 93 70 71 44 56 94 95 80 31 34 75.1451
GaborD+GTDA+LDA (H) 98 99 95 62 68 44 50 96 99 87 37 43 76.0731
GaborD+GTDA+LDA 98 99 93 52 59 37 49 99 99 88 34 43 73.5846
GaborS+GTDA+LDA (H) 98 99 97 68 68 50 56 95 99 84 40 40 77.5762
GaborS+GTDA+LDA 98 99 95 58 64 41 52 98 99 87 31 37 74.9008
GaborSD+GTDA+LDA (H) 99 99 93 57 61 40 47 89 90 78 40 37 71.6534

115

1 2 3 4 5 6 7 8 9 10 11
82

84

86

88

90

92

94

96

98

Algorithm#

R
an

k
1

R
ec

og
ni

tio
n

R
at

e

Performance Comparison on ProbeA

1 2 3 4 5 6 7 8 9 10 11
80

85

90

95

Algorithm#

R
an

k
1

R
ec

og
ni

tio
n

R
at

e

Performance Comparison on ProbeB

1 2 3 4 5 6 7 8 9 10 11
65

70

75

80

85

90

Algorithm#

R
an

k
1

R
ec

og
ni

tio
n

R
at

e

Performance Comparison on ProbeC

1 2 3 4 5 6 7 8 9 10 11

30

35

40

45

50

Algorithm#
R

an
k

1
R

ec
og

ni
tio

n
R

at
e

Performance Comparison on ProbeD

1 2 3 4 5 6 7 8 9 10 11

30

35

40

45

50

55

Algorithm#

R
an

k
1

R
ec

og
ni

tio
n

R
at

e

Performance Comparison on ProbeE

1 2 3 4 5 6 7 8 9 10 11
14

16

18

20

22

24

26

28

Algorithm#

R
an

k
1

R
ec

og
ni

tio
n

R
at

e
Performance Comparison on ProbeF

1 2 3 4 5 6 7 8 9 10 11

20

22

24

26

28

30

32

34

Algorithm#

R
an

k
1

R
ec

og
ni

tio
n

R
at

e

Performance Comparison on ProbeG

1 2 3 4 5 6 7 8 9 10 11

55

60

65

70

75

80

85

90

Algorithm#

R
an

k
1

R
ec

og
ni

tio
n

R
at

e

Performance Comparison on ProbeH

116

1 2 3 4 5 6 7 8 9 10 11

60

65

70

75

80

85

Algorithm#

R
an

k
1

R
ec

og
ni

tio
n

R
at

e

Performance Comparison on ProbeI

1 2 3 4 5 6 7 8 9 10 11

50

55

60

65

70

Algorithm#

R
an

k
1

R
ec

og
ni

tio
n

R
at

e

Performance Comparison on ProbeJ

1 2 3 4 5 6 7 8 9 10 11
2

4

6

8

10

12

14

16

18

Algorithm#

R
an

k
1

R
ec

og
ni

tio
n

R
at

e

Performance Comparison on ProbeK

1 2 3 4 5 6 7 8 9 10 11

6

8

10

12

14

16

18

Algorithm#
R

an
k

1
R

ec
og

ni
tio

n
R

at
e

Performance Comparison on ProbeL

1 2 3 4 5 6 7 8 9 10 11

46

48

50

52

54

56

58

60

62

Algorithm#

R
an

k
1

R
ec

og
ni

tio
n

R
at

e

Average Performance Comparison

Figure 3.16. Recognition performance comparison for rank one evaluation. From

top–left to bottom, in each of the thirteen subfigures (Probes A, B, C, D, E, F, G,

H, I, J, K, L, and the average performance), there are eleven bars, which

correspond to the performance of HMM, IMED+LDA, LDA, LDA+Fusion,

2DLDA+LDA, GTDA+LDA(H), GTDA+LDA, Gabor+GTDA+LDA(H),

117

GaborD+GTDA+LDA(H), GaborS+GTDA+LDA(H), and GaborSD+GTDA+

LDA(H), respectively.

2 3 4 5 6 7 8 9 10 11

88

90

92

94

96

98

100

Algorithm#

R
an

k
5

R
ec

og
ni

tio
n

R
at

e

Performance Comparison on ProbeA

2 3 4 5 6 7 8 9 10 11
88

90

92

94

96

98

100

Algorithm#

R
an

k
5

R
ec

og
ni

tio
n

R
at

e

Performance Comparison on ProbeB

2 3 4 5 6 7 8 9 10 11
84

86

88

90

92

94

96

98

100

Algorithm#

R
an

k
5

R
ec

og
ni

tio
n

R
at

e

Performance Comparison on ProbeC

2 3 4 5 6 7 8 9 10 11
50

55

60

65

70

75

80

85

Algorithm#

R
an

k
5

R
ec

og
ni

tio
n

R
at

e

Performance Comparison on ProbeD

2 3 4 5 6 7 8 9 10 11
55

60

65

70

75

80

Algorithm#

R
an

k
5

R
ec

og
ni

tio
n

R
at

e

Performance Comparison on ProbeE

2 3 4 5 6 7 8 9 10 11
35

40

45

50

Algorithm#

R
an

k
5

R
ec

og
ni

tio
n

R
at

e

Performance Comparison on ProbeF

2 3 4 5 6 7 8 9 10 11
40

45

50

55

Algorithm#

R
an

k
5

R
ec

og
ni

tio
n

R
at

e

Performance Comparison on ProbeG

2 3 4 5 6 7 8 9 10 11

82

84

86

88

90

92

94

96

98

100

Algorithm#

R
an

k
5

R
ec

og
ni

tio
n

R
at

e

Performance Comparison on ProbeH

118

2 3 4 5 6 7 8 9 10 11

80

85

90

95

100

Algorithm#

R
an

k
5

R
ec

og
ni

tio
n

R
at

e

Performance Comparison on ProbeI

2 3 4 5 6 7 8 9 10 11

74

76

78

80

82

84

86

88

90

Algorithm#

R
an

k
5

R
ec

og
ni

tio
n

R
at

e

Performance Comparison on ProbeJ

2 3 4 5 6 7 8 9 10 11

15

20

25

30

35

40

45

Algorithm#

R
an

k
5

R
ec

og
ni

tio
n

R
at

e

Performance Comparison on ProbeK

2 3 4 5 6 7 8 9 10 11

15

20

25

30

35

40

45

Algorithm#
R

an
k

5
R

ec
og

ni
tio

n
R

at
e

Performance Comparison on ProbeL

2 3 4 5 6 7 8 9 10 11

64

66

68

70

72

74

76

78

80

Algorithm#

R
an

k
5

R
ec

og
ni

tio
n

R
at

e

Average Performance Comparison

Figure 3.17. Recognition performance comparison for rank five evaluation. From

top–left to bottom, in each of the thirteen subfigures (Probes A, B, C, D, E, F, G,

H, I, J, K, L, and the average performance), there are ten bars, which correspond

to the performance of IMED+LDA, LDA, LDA+Fusion, 2DLDA+LDA, GTDA

+LDA(H), GTDA+LDA, Gabor+GTDA+LDA(H), GaborD+GTDA+LDA(H),

GaborS+GTDA+LDA(H), and GaborSD+GTDA+LDA(H), respectively.

119

3. Convergence Examination

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

Number of Iterations

E
rr

Gabor+GTDA (88%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

Number of Iterations

E
rr

Gabor+GTDA(90%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

8

10

12

14

16

18

Number of Iterations

E
rr

Gabor+GTDA (92%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

8

10

12

14

16

18

Number of Iterations

E
rr

Gabor+GTDA (94%)

Figure 3.18. Experimental based convergence justification for the alternating

projection method for GTDA. The x–coordinate is the number of training

iterations and the y–coordinate is the error value Err, as defined in Step 6 in Table

3.6. From left to right, these four sub–figures show how Err changes with the

increasing number of training iterations with different threshold values (88%,

90% 92% and 94%) defined in (3.37).

From Figure 3.18, it can be seen that only 3 to 5 iterations are usually required to

achieve convergence of the alternating projection method based optimization

procedure of GTDA because errors with different threshold values σ approach

zero rapidly. In contrast, the traditional 2DLDA does not converge during the

training procedure, as shown in the first figure in [173].

120

 Summary

Objects in computer vision research are naturally represented by general tensors.

The most popular examples are images and video shots, e.g., face images in face

recognition and video shots in video categorization. However, tensors have in the

past been reduced to the vector form, because available subspace selection

methods do not accept tensors as input. The vectorization removes the structure

information, which could reduce the number of parameters needed to model the

samples (images and video shots). To preserve the structure information, we

develop the general tensor discriminant analysis (GTDA) for discriminative

multilinear susbapce selection. This is an effective and efficient preprocessing

step for subsequent classification, e.g. by linear discriminant analysis (LDA).

Compared with existing multilinear subspace selection methods, e.g., the general

tensor analysis (GTA) and the two dimensional LDA (2DLDA), the advantages of

the proposed GTDA are: 1) the proposed alternating projection method to obtain a

solution of GTDA converges; 2) GTDA accepts general tensors as input; 3)

GTDA takes the discriminative information into account; and 4) GTDA reduces

the SSS problem of the subsequent classification, e.g., by LDA. We further

develop the manifold learning using tensor representations, which is an extension

of GTDA based on the graph embedding framework. With this new framework,

most of the popular manifold learning algorithms accept tensors as input. Finally,

we apply GTDA to human gait recognition and achieve top level performance.

121

4. Supervised Tensor Learning

In vector based learning15 [30][39], a projection vector Lw R∈
r and a bias b R∈

are learnt to determine the class label of a sample Lx R∈
r according to a linear

decision function () sign Ty x w x b⎡ ⎤= +⎣ ⎦
r r r . The wr and b are obtained based on

a learning model, e.g., minimax probability machine (MPM) [74][135], based on

N training samples associated with labels { },L
i ix R y∈
r , where iy is the class

label, { }1, 1iy ∈ + − , and 1 i N≤ ≤ . In this Chapter, we focus on the convex

optimization based learning, which accept vectors as input.

Supervised tensor learning (STL) [149][150] is developed to extend the vector

based learning algorithms to accept tensors as input. That is we learn a series of

projection vectors 1| kLM
k kw R= ∈
r and a bias b R∈ to determine the class label

{ }1, 1+ − of a sample 1 2 ML L LR × ×∈X L according to a multilinear decision function

()
1

sign
k

M

k
k

y w b×
=

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∏X X r . The 1|Mk kw =

r and b are obtained from a learning

model, e.g., tensor minimax probability machine (TMPM), based on N training

samples associated with labels { }1 2 ,ML L L
i iR y× ×∈X L , where iy is the class label,

{ }1, 1iy ∈ + − , and 1 i N≤ ≤ .

This extension to tensor input is important, because many objects in computer

vision research are represented by general tensors in 1 2 ML L LR × ×L , as described in

Chapter 3. If we choose to use vector based learning algorithms, the vectorization

operation ()vect ⋅ is applied to a general tensor X and form a vector

()vect Lx R= ∈Xr , where 1 2 ML L L L= × ×L . The vectorization eliminates the

structure information of a sample in its original format. However, the information

is helpful to reduce the number of parameters in a learning model and result in

alleviating the overfitting problem. Usually, the testing error decreases with

respect to the increasing complexity of training samples. When the complexity of

training samples (partially represented by the number of training samples) is

15 We refer to the binary classification tasks.

122

limited, the tensor based learning machine performs better than the vector based

learning machine. Otherwise, the vector based learning machine outperforms the

tensor based learning machine, as shown in Figure 4.1. Usually, the size of the

training set measures the data complexity and the complexity of a suitable

classifier should consist with the complexity of the training data.

Complexity of Training Samples

Te
st

in
g

E
rr

or

Vector Based Learning Machine

Tensor Based Learning Machine

Figure 4.1. Tensor based learning machine vs. vector based learning machine.

This Chapter is organized as follows. In §0, the convex optimization is briefly

reviewed and a framework level formula of the convex optimization based

learning is introduced. In §0, we develop a supervised tensor learning (STL)

framewok, which is an extension of the convex optimization based learning. An

alternating projection method is also developed to obtain the solution to an STL

based learning algorithm. In §0, we develop a number of tensor extensions of

many popular learning machines, such as the support vector machine (SVM)

[15][128][130][137][138][161], the minimax probability machine (MPM) [74]

[135], the Fisher discriminant analysis (FDA) [37][30][69], and the distance

metric learning (DML) [169]. In §169, an iterative feature extraction model

(IFEM) is given as an extension of the STL framework and the tensor rank one

discriminant analysis (TR1DA) is developed as an example. In §4.5, Two

experiments are conducted to study the effectiveness of TMPM (for STL) and

123

TR1DA (for IFEM) empirically. The first experiment, for image classification,

demonstrates that TMPM reduces the overfitting problem in MPM. The second

experiment, for the elapsed time problem in human gait recognition, shows

TR1DA is more effective than PCA, LDA, and TR1A. Frinally, we summarize

this Chapter in §169.

124

 Convex Optimization based Learning

Learning models are always formulated as optimization problems [170][178].

Therefore, mathematical programming [170][178] is the heart of machine learning

research [128]. In this Section, we first introduce the fundamentals of convex

optimization and then give a general formulation for convex optimization based

learning.

A mathematical programming problem [170][178][11] has the form or it can be

transformed to this form

()
()
()

0min

0, 1
s.t.

0, 1

w

i

i

f w

f w i m
h w i p

⎡ ⎤
⎢ ⎥
⎢ ⎥≤ ≤ ≤
⎢ ⎥= ≤ ≤⎣ ⎦

r

r

r

r
, (4.1)

where 1 2[, , ,]T n
nw w w w R= ∈

r
L is the optimization variable in (4.1); the function

0 : nf R R→ is the objective function; the functions : n
if R R→ are inequality

constraint functions; and the functions : n
ih R R→ are equality constraint

functions. A vector *wr is a solution to the problem if 0f achieves its minimum

among all possible vectors, i.e., all vectors which satisfy the constraint equations

(1|mi if = and 1|p
i ih =).

When the objective function ()0f wr and the inequality constraint functions

() 1|mi if w =
r satisfy

() () ()1 2 1 2

1 2

, and 1

,

i i i

n

f w w f w f w
R

w w R

α β α β
α β α β+

+ ≤ +

∈ + =

∈

r r r r

r
 (4.2)

(i.e., () 0|mi if w =
r are convex functions) and the equality constraint functions

() 1|p
i ih w =
r are affine (i.e., () 0ih w =

r can be simplified as T
i ia w b=
r r), the

mathematical programming problem defined in (4.1) is named the convex

optimization problem. Therefore, a convex optimization problem [11] is defined

by

125

()
()

0min

0, 1
s.t.

, 1

w

i
T
i i

f w

f w i m
a w b i p

⎡ ⎤
⎢ ⎥
⎢ ⎥≤ ≤ ≤
⎢ ⎥= ≤ ≤⎣ ⎦

r

r

r

r r
, (4.3)

where () 0|mi if w =

r are convex functions. The domain D of the problem in (4.3) is

the intersection of the domains of () 0|mi if w =
r , i.e.,

0
dom

m

i
i

D f
=

= I . The point *wr

in D is the optimal solution of (4.3) if and only if

()()0 * * 0, T f w w w w D∇ − ≥ ∀ ∈
r r r r . (4.4)

The geometric interpretation of the optimal solution for a convex optimization

problem is given in Figure 4.2.

D

*wr

()0 *f w−∇
r

Figure 4.2. The geometric interpretation of the optimal solution *wr in D for a

convex optimization problem defined in (4.3).

The convex optimization problem defined in (4.3) has a large number of popular

special cases, such as linear programming (LP) [160], linear fractional

programming (LFP) [11], quadratic programming (QP) [114], quadratically

constrained quadratic programming (QCQP) [93], second order cone

programming (SOCP) [93], semi–definite programming (SDP) [159], and

geometric programming (GP) [12]. All of these special cases have been widely

applied in different areas, such as computer networks, machine learning, computer

vision, psychology, health research, automation research, and economics.

The significance of a convex optimization problem is that the solution is unique

(i.e., the locally optimal solution is also the globally optimal solution), so the

126

convex optimization has been widely applied to machine learning for many years,

such as LP [160] in the linear programming machine (LPM) [117][134], QP [114]

in the support vector machine (SVM) [161][15][130][128][137][138], SDP [159]

in the distance metric learning (DML) [169] and the kernel matrix learning [73],

and SOCP [93] in the minimax probability machine (MPM) [74][135]. This

section reviews some basic concepts for supervised learning based on convex

optimization, such as SVM, MPM, Fisher discriminant analysis (FDA) [37][30]

[69], and DML.

Now, we introduce LP, QP, QCQP, SOCP, and SDP, which have been widely

used to model learning problems.

LP is defined by

min

s.t.

T

w
c w

Gw h

Aw b

⎡ ⎤
⎢ ⎥
⎢ ⎥≤
⎢ ⎥

=⎢ ⎥⎣ ⎦

r

r r

rr

rr

, (4.5)

where m nG R ×∈ and p nA R ×∈ . That is the convex optimization problem reduces

to LP when the objective and constraint functions in the convex optimization

problem defined in (4.3) are all affine. The geometric interpretation of the optimal

solution for LP is given in Figure 4.3.

D

*wr
c−r

Figure 4.3. The geometric interpretation of the optimal solution *wr in D for

LP defined in (4.5).

QP is defined by

127

1min
2

s.t.

T T

w
w Pw q w r

Gw h

Aw b

⎡ ⎤+ +⎢ ⎥
⎢ ⎥

≤⎢ ⎥
⎢ ⎥

=⎣ ⎦

r

r r r r

rr

rr

, (4.6)

where nP S+∈ , m nG R ×∈ and p nA R ×∈ . Therefore, the convex optimization

problem reduces to QP when the objective function in (4.3) is convex quadratic

and the constraint functions in (4.3) are all affine. The geometric interpretation of

the optimal solution for QP is given in Figure 4.4.

D

*wr
()Pw q− +

r r

Figure 4.4. The geometric interpretation of the optimal solution *wr in D for

QP defined in (4.6).

If the inequality constraints are not affine but quadratic, (4.6) transfroms to

QCQP, i.e.,

0 0 0
1min
2
1 0, 1
2s.t.

T T

w

T T
i i i

w P w q w r

w Pw q w r i m

Aw b

⎡ ⎤+ +⎢ ⎥
⎢ ⎥
⎢ ⎥+ + ≤ ≤ ≤⎢ ⎥
⎢ ⎥

=⎣ ⎦

r

r r r r

r r r r

rr

, (4.7)

where n
iP S+∈ for 0 i m≤ ≤ .

SOCP has the form

128

min

, 1
s.t.

T

w
T

i i i iFro

f w

A w b c w d i m
Fw g

⎡ ⎤
⎢ ⎥
⎢ ⎥+ ≤ + ≤ ≤
⎢ ⎥

=⎣ ⎦

r

r r

r r r

r r
, (4.8)

where in n
iA R ×∈ , p nF R ×∈ , n

ic R∈
r , pg R∈

r , in
ib R∈ , and id R∈ . The

constraint with the form TAw b c w d+ ≤ +
r r r is called the second order cone

constraint. When 0ic =
r for all 1 i m≤ ≤ , SOCP transforms to QCQP.

Recently, SDP has become an increasingly important technique in machine

learning and many SDP based learning machines have been developed. SDP

minimizes a linear function subject to a matrix semidefinite constraint

() 0
1

min c

s.t. 0

T

w

n

i i
i

w

F w F w F
=

⎡ ⎤
⎢ ⎥
⎢ ⎥

+ ≥⎢ ⎥
⎣ ⎦

∑

r

r r

r
�

, (4.9)

where m
iF S∈ for all 0 i n≤ ≤ and nc R∈

r .

Here, we provide a general formula for convex optimization based learning as

()
()

, ,
min , ,

s.t. , 1
w b

T
i i i i

f w b

y c w x b i N
ξ

ξ

ξ

⎡ ⎤
⎢ ⎥
⎢ ⎥+ ≥ ≤ ≤⎣ ⎦

rr

rr

r r , (4.10)

where 1: L Nf R R+ + → is a criterion (convex function) for classification;

:ic R R→ for all 1 i N≤ ≤ are convex constraint functions; L
ix R∈
r

(1 i N≤ ≤) are training samples and their class labels are given by { }1, 1iy ∈ + − ;

[]1 2, , , T N
N Rξ ξ ξ ξ= ∈

r
L are slack variables; and Lw R∈

r and b R∈ determine

a classification hyperplane, i.e., 0Tw x b+ =
r r . By defining different classification

criteria f and convex constraint functions 1|Ni ic = , we can obtain a large number

of learning machines, such as SVM, MPM, FDA, and DML. We detail this in the

next Section.

129

 Supervised Tensor Learning: A Framework

STL extends vector based learning algorithms to accept general tensors as input.

In STL, we have N training samples 1 2 ML L L
i R × ×∈X L represented by tensors

associated with class label information { }1, 1iy ∈ + − . We want to separate

positive samples (1iy = +) from negative samples (1iy = −) based on a criterion.

This extension is obtained by replacing L
ix R∈
r (1 i N≤ ≤) and Lw R∈

r with

1 2 ML L L
i R × ×∈X L (1 i N≤ ≤) and kL

kw R∈
r (1 k M≤ ≤) in (4.10). Therefore, STL

is defined by

()
1

1
| , ,

1

min | , ,

s.t. , 1

M
k k

k

M
k k

w b

M

i i i k i
k

f w b

y c w b i N

ξ
ξ

ξ

=
=

×
=

⎡ ⎤
⎢ ⎥
⎢ ⎥⎛ ⎞⎢ ⎥+ ≥ ≤ ≤⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∏X

rr

rr

r
. (4.11)

There are two main differences between vector based learning and tensor based

learning: 1) training samples are represented by vectors in vector based learning,

while they are represented by tensors in tensor based learning; and 2) the

classification decision function is defined by Lw R∈
r and b R∈ in vector based

learning (() sign Ty x w x b⎡ ⎤= +⎣ ⎦
r r r), while it is defined by kL

kw R∈
r (1 k M≤ ≤)

and b R∈ in tensor based learning, i.e., ()
1

sign
k

M

k
k

y w b×
=

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∏X X r . In vector

based learning, we have a classification hyperplane as 0Tw x b+ =
r r . While in

tensor based learning, we define a classification hyperplane as
1

0
k

M

k
k

w b×
=

+ =∏X r .

The Lagrangian for STL defined in (4.11) is

() ()

()

1 1
1 1

1
1 1

| , , , | , ,

 | , ,

k

k

MN
M M

k k k k i i i i k i
i k

MN
M T

k k i i i i k
i k

L w b f w b y c w b

f w b y c w b

ξ α ξ α ξ

ξ α α ξ

= = ×
= =

= ×
= =

⎛ ⎞⎛ ⎞
= − + −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞

= − + +⎜ ⎟
⎝ ⎠

∑ ∏

∑ ∏

X

X

r rrr r r

r rrr r
, (4.12)

with Lagrange multipliers []1 2, , , 0T
Nα α α α= ≥

r
L . The solution is determined

by the saddle point of the Lagrangian

()
1

1
| , ,

max min | , , ,
M

k k

M
k k

w b
L w b

α ξ
ξ α

=
=rr r

r rr , (4.13)

130

The derivative of ()1| , , ,M
k kL w b ξ α=

r rr with respect to jwr is

()

()

() ()

1
1 1

1
1 1

1
1

| , ,

 | , ,

 | , , ,

j j j k

j j k

j

MN
M

w w k k i i w i i k
i k

MN
M i

w k k i i w i k
i k

N
M i

w k k i i i j j
i

L f w b y c w b

dcf w b y w b
dz
dcf w b y w
dz

ξ α

ξ α

ξ α

= ×
= =

= ×
= =

=
=

⎛ ⎞
∂ = ∂ − ∂ +⎜ ⎟

⎝ ⎠
⎛ ⎞

= ∂ − ∂ +⎜ ⎟
⎝ ⎠

= ∂ − ×

∑ ∏

∑ ∏

∑

X

X

X

r r r

r r

r

rr r

rr r

rr r

 (4.14)

where
1

k

M

i k
k

z w b×
=

= +∏X r .

The derivative of ()1| , , ,M
k kL w b ξ α=

r rr with respect to b is

()

()

()

1
1 1

1
1 1

1
1

| , ,

 | , ,

 | , , ,

k

k

MN
M

b b k k i i b i i k
i k

MN
M i

b k k i i b i k
i k

N
M i

b k k i i
i

L f w b y c w b

dcf w b y w b
dz
dcf w b y
dz

ξ α

ξ α

ξ α

= ×
= =

= ×
= =

=
=

⎛ ⎞
∂ = ∂ − ∂ +⎜ ⎟

⎝ ⎠
⎛ ⎞

= ∂ − ∂ +⎜ ⎟
⎝ ⎠

= ∂ −

∑ ∏

∑ ∏

∑

X

X

rr r

rr r

rr

 (4.15)

where
1

k

M

i k
k

z w b×
=

= +∏X r .

To obtain a solution to STL, we need to set 0
jw L∂ =r and 0bL∂ = . Accoridng to

(4.14), we have

()
1

0
j j

N
i

w w i i i j j
i

dcL f y w
dz

α
=

∂ = ⇒ ∂ = ×∑ Xr r
r . (4.16)

According to (4.15), we have

1

0
N

i
b b i i

i

dcL f y
dz

α
=

∂ = ⇒ ∂ =∑ . (4.17)

Based on (4.16), we find the solution to jwr depends on kwr (1 k M≤ ≤ , k j≠).

That is we cannot obtain the solution to STL directly. The alternating projection

provides a clue to have a solution to STL. The key idea in the alternating

projection based optimization for STL is to obtain jwr with the given kwr

(1 k M≤ ≤ , k j≠) in an iterative way. The algorithm is given in Table 4.1. The

convergence issue is proved in Theorem 4.1.

131

Table 4.1. Alternating Projection for the Supervised Tensor Learning

Input: Training samples 1 2 ...
1| ML L LN

i i R × × ×
= ∈X and their associated class labels

{ }1, 1iy = + − .

Output: The parameters 1| kLM
k kw R= ∈
r and b R∈ , such that the STL objective

function ()1| , ,M
k kf w b ξ=

rr defined in (4.11) is minimized.

1. Set 1|Mk kw =
r be equal to random unit vectors in kLR .

2. Carry out steps 3–5 iteratively until convergence.

3. For 1j = to M

4.

Obtain jL
jw R∈
r by solving

()
()

, ,
min , ,

s.t. , 1
j

jw b

T
i i j i j j i

f w b

y c w w b i N

ξ
ξ

ξ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤× + ≥ ≤ ≤⎢ ⎥⎣ ⎦⎣ ⎦X

rr

rr

r r

5. End

6.

Convergence checking: if ()2

, , 1 ,
1

1
M

T
k t k t k t Fro

k

w w w ε
−

−
=

⎡ ⎤− ≤⎢ ⎥⎣ ⎦∑ r r r (610ε −=),

the calculated 1|Mk kw =
r have converged. Here ,k twr is the current

projection vector and , 1k tw −
r is the previous projection vector.

7. End

The alternating projection procedure to obtain a solution in STL is illustrated in

Table 4.1 and Figure 4.5. In this figure, training samples are represented by third

order tensors. The following three steps are conducted iteratively to obtain the

solution for STL:

1) Generate the second projection vector 2wr and third projection vectors 3wr

randomly according to the Step 1 in Table 4.1; project the original training

samples (third order tensors) 1 2 3L L L
i R × ×∈X (1 i N≤ ≤) through 2wr and 3wr as

() 1
1 1

L
i w R× ∈X r ; and calculate the first projection vector 1wr according to the

Step 4 in Table 4.1 based on the projected training samples ()1 1i w×X r ;

2) Project the original training samples 1|Ni i=X to the calculated first projection

vector 1wr and the original third projection vector 3wr ; and calculate the second

132

projection vector 2wr according to the Step 4 in Table 4.1 based on the projected

training samples ()2 2i w×X r ;

3) Project the original training samples 1|Ni i=X by the previous 1wr and 2wr ; and

calculate 3wr through the Step 4 in Table 4.1 based on the projected training

samples ()3 3i w×X r .

133

Figure 4.5. The third order tensor example for the alternating projection in STL.

(
)

1
1

1
L

i
w

R
×

∈
X

r

2
2

L
w

R
∈

r

(1
)

(
)

2
2

2
L

i
w

R
×

∈
X

r

2
2

L
w

R
∈

r

1
2

3

(1
)

L
L

L
i

R i
N×

×
∈ ≤
≤

X

The First Mode

Th
e

S
ec

on
d

M
od

e

The
 Thir

d M
od

e

1
2

3

(1
)

L
L

L
i

R i
N×

×
∈ ≤
≤

X

(2
)

Projected
Samples

1
2

3

(1
)

L
L

L
i

R i
N×

×
∈ ≤
≤

X

P
ro

je
ct

ed

S
am

pl
es

2
2

L
w

R
∈

r

(3
)

Proj
ec

ted

Sam
ple

s

O
rig

in
al

 S
am

pl
es

P
ro

je
ct

ed
 S

am
pl

es

134

Theorem 4.1 The alternating projection based optimization procedure for STL

converges.

Proof.

The alternating projection method never increases the function value

()1| , ,M
k kf w b ξ=

rr of STL between two successive iterations, because it can be

interpreted as a type of a monotonic algorithm. We can define a continuous

function

1 2 1
:

M
N N

M kk
f u u u R R u R R R

=
× × × × × = × × × →L ,

where d dw u∈
r and du is the set, which includes all possible dwr . The bias

b R∈ and the slack variables NRξ ∈
r

.

With the definition, f has M different mappings:

() ()
()

1, ,

1
1 1, ,

, , arg min | , ,

 arg min , , ; | , | ,
d d

d d

M
d d d d du u b

d M
d l l l l du u b

g w b f w b

f w b w w

ξ

ξ

ξ ξ

ξ

∗ ∗ ∗
=∈

−
= = +∈

=

rr

rr

r rr r
�

rr r r

The mapping can be calculated with the given 1
1|dl lw −
=

r in the tth iteration and

1|Ml l dw = +
r in the (1t −)th iteration of the for–loop in Step 4 in Table 4.1.

Given an initial d dw u∈
r (1 d M≤ ≤), the alternating projection generates a

sequence of items { }, , ,, , ;1d t d t d tw b d Mξ∗ ∗ ∗ ≤ ≤
rr via

() ()1
, , , , 1 , 1 1, ,
, , arg min , , ; | , |

d d

d M
d t d t d t d l t l l t l du u b

g w b f w b w w
ξ

ξ ξ∗ ∗ ∗ −
= − = +∈

= rr

r rr r r r ,

with each { }1,2,d M∈ L . The sequence has the following relationship:

1,1 1,1 1,1 2,1 2,1 2,1 ,1 ,1 ,1 1,2 1,2 1,2

1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2,

(, ,) (, ,) (, ,) (, ,)

 (, ,) (, ,) (, ,) (, ,)

M M M

t t t t t t T T T T T T

a f w b f w b f w b f w b

f w b f w b f w b f w b

ξ ξ ξ ξ

ξ ξ ξ ξ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

= ≥ ≥ ≥ ≥ ≥

≥ ≥ ≥ ≥ ≥ ≥

r r r rr r r r
L

r r r rr r r r
L L

, , , (, ,) .M T M T M Tf w b bξ∗ ∗ ∗≥ =
rr

L

where T →+∞ . Here both a and b are limited values in the R space.

The alternating projection in STL can be illustrated by a composition of M sub–

algorithms, defined as

() ()
1

1
1 1

: | , , Map , ,
l l

d M
M

d d d l d l
l l d

w b w w b wξ ξ
−

= × ×
= = +

Ω ×∏ ∏
r rr r r r
a .

135

It follows that 1 2 1

M

M dd=
Ω Ω Ω Ω = Ω� o oLo o is a closed algorithm whenever all

du are compact. All sub–algorithms (), ,d d dg w b ξ∗ ∗ ∗
rr decrease the value of f , so

it should be clear that Ω is monotonic with respect to f .

Consequently, we can say that the alternating projection method to optimize STL

defined in (4.11) converges. ■

136

 Supervised Tensor Learning: Examples

Based on the proposed STL and its alternating projection training algorithm, a

large number of tensor based learning algorithms can be obtained by combining

STL with different learning criteria, such as SVM, MPM, DML, and FDA.

 Support Vector Machine vs. Support Tensor Machine

SVM [161][15][130][128][137][138][41] finds a classification hyperplane, which

maximizes the margin between positive samples and negative samples, as shown

in Figure 4.6.

Support Vectors

iξ

iξ

Positive Sample

Negative Sample

Classification Hyperplane

Margin

Margin Error

Figure 4.6. SVM maximizes the margin between positive and negative training

samples.

Suppose there are N training samples L
ix R∈
r (1 i N≤ ≤) associated with class

lables { }1, 1iy ∈ + − . The traditional SVM [161][15], i.e., soft margin SVM, finds

a projection vector Lw R∈
r and a bias b R∈ through

() 2

, , 1

1min , ,
2

1 , 1
s.t.

0

N

C SVM iFrow b i

T
i i i

J w b w c

y w x b i N

ξ
ξ ξ

ξ

ξ

−
=

⎡ ⎤= +⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤+ ≥ − ≤ ≤⎣ ⎦⎢ ⎥
⎢ ⎥≥⎣ ⎦

∑rr

rr r

r r

r

 (4.18)

137

where []1 2, , , T N
N Rξ ξ ξ ξ= ∈

r
L is the vector of all slack variables to deal with

the linearly non–separable problem. The iξ (1 i N≤ ≤) is also called the

marginal error for the ith training sample, as shown in Figure 4.6. The margin is

2
Fro

wr . When the classification problem is linearly separable, we can set 0ξ =
r

.

The decision function for classification is () sign Ty x w x b⎡ ⎤= +⎣ ⎦
r r r .

The Lagrangian of (4.18) is

() ()2

1 1 1

1 1 1

1, , , , 1
2
1
2

N N N
T

i i i i i i iFro
i i i

N N N
T T T T T

i i i i i
i i i

L w b w c y w x b

w w c y w x b y

ξ α κ ξ α ξ κ ξ

ξ α α α α ξ κ ξ

= = =

= = =

⎡ ⎤= + − + − + −⎣ ⎦

= + − − + − −

∑ ∑ ∑

∑ ∑ ∑

r r rr r r r

r rr r rr r r r r
 (4.19)

with Lagrangian multipliers 0iα ≥ , 0iκ ≥ for 1 i N≤ ≤ . The solution is

determined by the saddle point of the Lagrangian

()
, , ,

max min , , , ,
w b

L w b
α κ ξ

ξ α κrr r r

r r rr . (4.20)

This can be achieved by

1
0

0 0
0 0.

N

w i i i
i

T
b

L w y x

L y
L cξ

α

α
α κ

=

∂ = ⇒ =

∂ = ⇒ =
∂ = ⇒ − − =

∑r

r

r r

r r

r r
 (4.21)

Based on (4.21), we can have the dual problem of (4.18),

()
1 1 1

1max
2

0
s.t.

0

N N N
T

D i j i j i j i
i j i

T

J y y x x

y
c

α
α α α α

α
α

= = =

⎡ ⎤
= − +⎢ ⎥

⎢ ⎥
⎢ ⎥=
⎢ ⎥

≤ ≤⎢ ⎥⎣ ⎦

∑∑ ∑r

r r r

r r

r

. (4.22)

Set
1 ,

T
i j i j i j N

P y y x x
≤ ≤

⎡ ⎤= ⎣ ⎦
r r , 11Nq ×=

rr , A y=
r , 0b =

r
, [], T

N N N NG I I× ×= − , and

1 11 ,0
TT T

N Nh c × ×⎡ ⎤= ⎣ ⎦
r r r

 in (4.6), we can see that the dual problem of (4.18) in SVM is a

QP.

In the soft margin SVM defined in (4.18), the constant c determines the tradeoff

between 1) maximizing the margin between positive and negative samples and 2)

minimizing the training error. The constant c is not intuitive. Therefore,

Bcholkopf et al. [130][128] developed the nu–SVM by replacing the unintuitive

parameter c with an intuitive parameter ν as

138

() 2

, , , 1

1 1min , , ,
2

, 1

s.t. 0,
0

N

SVM iFrow b i

T
i i i

J w b w
N

y w x b i N

νξ ρ
ξ ρ ξ νρ

ρ ξ

ξ
ρ

−
=

⎡ ⎤= + −⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤+ ≥ − ≤ ≤⎣ ⎦⎢ ⎥
⎢ ⎥≥
⎢ ⎥

≥⎣ ⎦

∑rr

rr r

r r

r
. (4.23)

The significance of ν in nu–SVM defined in (4.23) is that it controls the number

of support vectors and the marginal errors.

Suykens and Vandewalle [137][138] simplified the soft margin SVM as the least

squares SVM,

() 2

, ,

1min , ,
2 2

s.t. 1 , 1

T
LS SVM Frow b

T
i i i

J w b w

y w x b i N

ε

γε ε ε

ε

−
⎡ ⎤= +⎢ ⎥
⎢ ⎥

⎡ ⎤+ = − ≤ ≤⎢ ⎥⎣ ⎦⎣ ⎦

rr

r r rr r

r r
. (4.24)

Here the penalty 0γ > . There are two differences between the soft margin SVM

defined in (4.18) and the least squares SVM defined in (4.24): 1) inequality

constraints are replaced by equalities; and 2) the loss
1

N
ii
ξ

=∑ (0iξ ≥) is replaced

by square loss. These two modifications make the solution of the least square

SVM be more easily obtained compared with soft margin SVM.

According to statistical learning theory, a learning machine performs well when

the number of training samples is larger than the complexity of the model.

Moreover, the model’s complexity and the number of parameters to describe the

model are always in direct proportion. In computer vision research, objects are

usually represented by general tensors as described in Chapter 3 and the number

of training samples is limited. Therefore, it is reasonable to have the tensor

extension of SVM i.e., the support tensor machine (STM), which uses fewer

parameters than SVM. Based on (4.18) and STL defined in (4.11), it is not

difficult to obtain the tensor extension of the soft margin SVM, i.e., the soft

margin STM.

Suppose we have training samples 1 2 ML L L
i R × ×∈X L (1 i N≤ ≤) and their

corresponding class labels { }1, 1iy ∈ + − . The decision function is defined by

()
1

sign
k

M

k
k

y w b×
=

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∏X X r , where the projection vectors kL

kw R∈
r (1 k M≤ ≤)

and the bias b in soft margin STM are obtained from

139

()
1

2

1
| , , 11

1

1min | , ,
2

1 , 1
 s.t.

0

M
k k

k

M N
M

C STM k k k i
w b ik Fro

M

i i k i
k

J w b w c

y w b i N

ξ
ξ ξ

ξ

ξ

=
− = ⊗

==

×
=

⎡ ⎤
= +⎢ ⎥

⎢ ⎥
⎢ ⎥⎡ ⎤⎢ ⎥+ ≥ − ≤ ≤⎢ ⎥⎢ ⎥⎣ ⎦
⎢ ⎥

≥⎢ ⎥⎣ ⎦

∑∏

∏X

rr

rr r

r

r

. (4.25)

Here, []1 2, , , T N
N Rξ ξ ξ ξ= ∈

r
L is the vector of all slack variables to deal with the

linearly non–separable problem.

The Lagrangian for this problem is

()
2

1
11

1 11

11 1

1| , , , ,
2

 1

1
2

k

k

M N
M

k k k i
ik Fro

MN N

i i i k i i i
i ik

M N
T
k k i i i i k

ik k

L w b w c

y w b

w w c y w

ξ α κ ξ

α ξ κ ξ

ξ α

= ⊗
==

×
= ==

×
== =

= +

⎛ ⎞⎡ ⎤
− + − + −⎜ ⎟⎢ ⎥

⎣ ⎦⎝ ⎠

= + −

∑∏

∑ ∑∏

∑∏

X

X

r r rr r

r

r r r

1

1

MN

i

N
T T T

i
i

b yα α α ξ κ ξ

=

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

− + − −

∑ ∏

∑
r rr r rr

 (4.26)

with Lagrangian multipliers 0iα ≥ , 0iκ ≥ for 1 i N≤ ≤ . The solution is

determined by the saddle point of the Lagrangian

()
1

1, | , ,
max min | , , , ,

M
k k

M
k k

w b
L w b

α κ ξ
ξ α κ

=
=rr r r

r r rr . (4.27)

This can be achieved by

()
1

1

10

0 0
0 0

j

N

w j i i i j jk j
T i
k k

k

T
b

L w y w
w w

L y
L cξ

α

α
α κ

≠
=

=

∂ = ⇒ = ×

∂ = ⇒ =
∂ = ⇒ − − =

∑
∏

Xr

r

r r

r r

r r

r r
.

(4.28)

The first equation in (4.28) shows that the solution of jwr depends on kwr

(1 k M≤ ≤ , k j≠). That is we cannot obtain the solution for the soft margin

STM directly. This point has been pointed out in the STL framework developed in

§4.2. Therefore, we use the proposed alternating projection method in STL to

obtain the solution of the soft margin STM. To have the alternating projection

method for the soft margin STM, we need to replace the Step 4 in Table 4.1 by the

following optimization problem,

140

()
()

2

, , 1
min , ,

2

1 , 1
s.t.

0

j

N

C STM j j iFrow b i

T
i j i j j i

J w b w c

y w w b i N

ξ

ηξ ξ

ξ

ξ

−
=

⎡ ⎤= +⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤× + ≥ − ≤ ≤⎣ ⎦⎢ ⎥
⎢ ⎥≥⎣ ⎦

∑
X

rr

rr r

r r

r

, (4.29)

where 2

1

k j
k Frok M

wη ≠

≤ ≤
=∏ r .

The problem defined in (4.29) is the standard soft margin SVM defined in (4.18).

Based on nu–SVM defined in (4.23) and STL defined in (4.11), we can also have

the tensor extension of the nu–SVM, i.e., nu–STM,

()
1

2

1
| , , , 11

1

1 1min | , , ,
2

, 1

 s.t. 0,
0

M
k k

k

M N
M

STM k k k i
w b ik Fro

M

i i k i
k

J w b w
N

y w b i N

ν
ξ ρ

ξ ρ ξ νρ

ρ ξ

ξ
ρ

=
− = ⊗

==

×
=

= + −

⎡ ⎤
+ ≥ − ≤ ≤⎢ ⎥

⎣ ⎦
≥
≥

∑∏

∏X

rr

rr r

r

r

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (4.30)

Here, 0ν ≥ is a constant. The Lagrangian for this problem is

()
2

1
11

1 1

1

1 1| , , , , , ,
2

1 1
2

k

M N
M

k k k i
ik Fro

MN
T

i i i k i
i k

M
T
k k

k

L w b w
N

y w b

w w

ξ ρ α κ τ ξ νρ τρ

α ρ ξ κ ξ

= ⊗
==

×
= =

=

= + − −

⎛ ⎞⎡ ⎤
− + − + −⎜ ⎟⎢ ⎥

⎣ ⎦⎝ ⎠

= +

∑∏

∑ ∏

∏

X

r r rr r

rrr

r r

1 1 1

1

 ,

k

MN N

i i i i k
i i k

N
T T T

i
i

y w
N

b y

ξ α

α ρ α α ξ κ ξ νρ τρ

×
= = =

=

⎛ ⎞
− ⎜ ⎟

⎝ ⎠

− + − − − −

∑ ∑ ∏

∑

X r

r rr r rr

 (4.31)

with Lagrangian multipliers 0τ ≥ and 0iα ≥ , 0iκ ≥ for 1 i N≤ ≤ . The

solution is determined by the saddle point of the Lagrangian

()
1

1, , | , , ,
max min | , , , , , ,

M
k k

M
k k

w b
L w b

α κ τ ξ ρ
ξ ρ α κ τ

=
=rr r r

r r rr . (4.32)

Similar to the soft margin STM, the solution of jwr depends on kwr (1 k M≤ ≤ ,

k j≠), because

()
1

1

10
j

N

w j i i i j jk j
T i
k k

k

L w y w
w w

α≠
=

=

∂ = ⇒ = ×∑
∏

Xr
r r

r r
.

(4.33)

141

Therefore, we use the proposed alternating projection method in STL to obtain the

solution of nu–STM. To have the alternating projection method for nu–STM, we

need to replace the Step 4 in Table 4.1 by the following optimization problem,

()
()

2

, , , 1

1min , , ,
2

, 1

 s.t. 0
0

j

N

STM j j iFrow b i

T
i j i j j i

J w b w
N

y w w b i N

νξ ρ

ηξ ρ ξ νρ

ρ ξ

ξ
ρ

−
=

= + −

⎡ ⎤× + ≥ − ≤ ≤⎣ ⎦
≥
≥

∑
X

rr

rr r

r r

r

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, (4.34)

where 2

1

k j
k Frok M

wη ≠

≤ ≤
=∏ r .

The problem defined in (4.34) is the standard nu–SVM defined in (4.23).

Based on the least squares SVM defined in (4.24) and STL defined in (4.11), we

can also have the tensor extension of the least square SVM, i.e., least square STM,

()
1

2

1
| , , 1

1

1min | , ,
2 2

 s.t. 1 , 1

M
k k

k

M
M T

LS STM k k k
w b k Fro

M

i i k i
k

J w b w

y w b i N

ε

γε ε ε

ε

=
− = ⊗

=

×
=

⎡ ⎤
= +⎢ ⎥

⎢ ⎥
⎢ ⎥⎡ ⎤⎢ ⎥+ = − ≤ ≤⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

∏

∏X

rr

r r rr r

r
, (4.35)

where 0γ > is a constant. Similar to the soft margin STM and nu–STM, there is

no closed form solution for least squares STM. We use the alternating projection

method in STL to obtain the solution of the least squares STM. To have the

alternating projection method for the least squares STM, we need to replace the

Step 4 in Table 4.1 by the following optimization problem,

()
()

2

1, ,
min | , ,

2 2
 s.t. 1 , 1

j

M T
LS STM k k j Frow b

T
i j i j j i

J w b w

y w w b i N

ε

η γε ε ε

ε

− =
⎡ ⎤= +⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥× + = − ≤ ≤⎣ ⎦⎣ ⎦X

rr

r r rr r

r r
, (4.36)

where 2

1

k j
k Frok M

wη ≠

≤ ≤
=∏ r .

Theorem 4.2 In STM, the decision function is ()
1

sign
k

M

k
k

y w b×
=

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∏X X r with

2
2

1

M

k
k Fro

w⊗
=

≤ Λ∏ r and 2 2
Fro

R≤X . Let 0ρ > and ν is the fraction of training

samples with a margin smaller than ρ Λ . When STM is obtained from N

training samples 2 2
i Fro

R≤X (1 i N≤ ≤), sampled from a distribution P with

142

probability at least 1 δ− (0 1δ< <), the misclassification probability of a test

sample sampled from P is bounded by

2 2
2

2

1ln lnR N
N
λν

ρ δ
⎛ ⎞Λ

+ +⎜ ⎟
⎝ ⎠

, (4.37)

where λ is a universal constant.

Proof: This is a direct conclusion from the theorem on the margin error bound

introduced in [128]. More information about other error bounds in SVM can be

found in [3].

 Minimax Probability Machine vs. Tensor Minimax Probability
Machine

Positive Sample

Negative Sample

Classification Hyperplane

(),m+ +Σ
r

(),m− −Σ
r

Intersection Point

Figure 4.7. MPM separates positive samples from negative samples by

maximizing the probability of the correct classification for future samples. The

intersection point minimizes the maximum of the Mahalanobis distances between

positive and negative samples, i.e., it has the same Mahalanobis distances to the

mean of the positive samples and the mean of the negative samples.

The minimax probability machine (MPM) [74][135] has become popular. It is

reported to outperform the conventional SVM consistently and therefore has

attracted attention as a promising supervised learning algorithm. MPM focuses on

finding a decision hyper–plane, which is () { }, | 0TH w b x w x b= + =
r r r r , to separate

positive samples from negative samples (a binary classification problem) with

maximal probability with respect to all distributions modelled by given means and

covarainces, as shown in Figure 4.7. MPM maximizes the probability of the

143

correct classification rate (classification accuracy) on future samples. For

Gaussian distributed samples, it minimizes the maximum of the Mahalanobis

distances of the positive samples and the negative samples. With given positive

samples ixr (1iy = +) and negative samples ixr (1iy = −), MPM is defined as,

()

() ()
{ }

() ()
{ }

, ,

1 ~ ,

1 ~ ,

max , ,

inf Pr 0
 s.t.

inf Pr 0
i i

i i

MPMw b

T
ix y m

T
ix y m

J w b

w x b

w x b

δ
δ δ

δ

δ
+ +

− −

=+ Σ

=− Σ

⎡ = ⎤
⎢ ⎥
⎢ ⎥+ ≥ ≥
⎢ ⎥
⎢ ⎥+ ≤ ≥⎢ ⎥⎣ ⎦

r

r r

r r

r

r r

r r

. (4.38)

Here, the notation () ()1 ,i ix y m+ += + Σ
r r

� means the class distribution of the

positive samples has the mean m+
r and covariance +Σ , and similarly for the

notation () ()1 ,i ix y m− −= − Σ
r r

� . The classification decision function is given by

() sign Ty x w x b⎡ ⎤= +⎣ ⎦
r r r .

Recently, based on the powerful Marshall and Olkin’s theorem [102], Popescu

and Bertsimas [120] proved a probability bound,

()
{ } 2

~ ,

1sup Pr
1x m

x S
dΣ

∈ =
+r r

r with () ()2 1inf T

x S
d x m x m−

∈
= − Σ −r

r r r r , (4.39)

where xr stands for a random vector, S is a given convex set, and the

supremum is taken over all distributions for xr with the mean value as mr and

the covariance matrix Σ . Based on this result, Lanckriet et al. [74] reformulated

(4.38) as:

()
, ,

max , ,

, 1
 s.t.

, 1

MPMw b

T T
i

T T
i

J w b

w m b w w y

w m b w w y

κ
κ κ

κ

κ
+ +

− −

=⎡ ⎤
⎢ ⎥
⎢ ⎥+ ≥ + Σ = +⎢ ⎥
⎢ ⎥+ ≤ − Σ = −⎣ ⎦

r

r

r r r r

r r r r

, (4.40)

where the constraint functions in (4.40) are second order cone functions. There

MPM is an SOCP. This problem can be further simplified as

()
()

min

 s.t. 1

T T
MPMw
T

J w w w w w

w m m

+ −

+ −

⎡ ⎤= Σ + Σ
⎢ ⎥
⎢ ⎥− =⎣ ⎦

r

r r r r r

r r r , (4.41)

where b is determined by

() () ()
() () () ()

* *
* *

* * * *

T
T

T T

w w
b w m

w w w w

+
+

+ −

Σ
= −

Σ + Σ

r r
r r

r r r r . (4.42)

144

In computer vision research, many objects are represented by tensors. To match

the input requirments in MPM, we need to vectorize the tensors to vectors. When

training samples are limited, the vectorization will be a disaster. This is because

MPM meets the matrix singular problem seriously (the ranks of +Σ and −Σ are

deficient). To reduce this problem, we propose the tensor extension of MPM, i.e.,

tensor MPM (TMPM). TMPM is a combination of MPM and STL.

Suppose we have training samples 1 2 ML L L
i R × ×∈X L (1 i N≤ ≤) and their

corresponding class labels { }1, 1iy ∈ + − . The decision function is given by

()
1

sign
k

M

k
k

y w b×
=

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∏X X r . Projection vectors kL

kw R∈
r (1 k M≤ ≤) and the

bias b in TMPM are obtained from

()
1

1
| , ,

;
11 1

;
11 1

max | , ,

1 I(1) sup
 s.t.

1 I(1) sup

M
k k

k

k

M
MPM k k

w b

MN
T

i i k l l l
l Mi k

MN
T

i i k l l l
l Mi k

J w b

y w b w w
N

y w b w w
N

κ
κ κ

κ

κ

=
=

× +
≤ ≤= =+

× −
≤ ≤= =−

⎡ ⎤=
⎢ ⎥
⎢ ⎥⎛ ⎞⎡ ⎤⎢ ⎥= + + ≥ + Σ⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦⎝ ⎠
⎢ ⎥

⎛ ⎞⎡ ⎤⎢ ⎥= − + ≤ − Σ⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦⎝ ⎠⎣ ⎦

∑ ∏

∑ ∏

X

X

r

r

r r r

r r r

, (4.43)

where ;l+Σ is the covariance matrix of the projected samples ()i l lw−×X r for all

1iy = + and ;l−Σ is the covariance matrix of the projected samples ()i l lw−×X r

for all 1iy = − . The function I(1)iy = + is 1 if iy is 1+ , otherwise 0. The

function I(1)iy = − is 1 if iy is 1− , otherwise 0. This problem can be

simplified as

()
1

1
| , ,

;
11

;
11

max | , ,

sup
 s.t.

sup

M
k k

k

k

M
MPM k k

w b

M
T

k l l l
l Mk

M
T

k l l l
l Mk

J w b

w b w w

w b w w

κ
κ κ

κ

κ

=
=

+ × +
≤ ≤=

− × −
≤ ≤=

⎡ ⎤=
⎢ ⎥
⎢ ⎥
⎢ ⎥+ ≥ + Σ
⎢ ⎥
⎢ ⎥
⎢ ⎥+ ≤ − Σ
⎢ ⎥⎣ ⎦

∏

∏

M

M

r

r

r r r

r r r

, (4.44)

where () []1
1 I(1)N

i ii
N y+ + =

= = +∑M X , () []1
1 I(1)N

i ii
N y− − =

= = −∑M X , and

N+ (N−) is the number of positive (negative) samples.

The Lagrangian for this problem is

145

()1 1 ;
11

2 ;
11

1 2
1

1

| , , , sup

 sup

k

k

k

M
M T

k k k l l l
l Mk

M
T

k l l l
l Mk

M

k
k

L w b w b w w

w b w w

b b w
N N

κ α κ α κ

α κ

α ακ α

= + × +
≤ ≤=

− × −
≤ ≤=

+ ×
=+ −

⎛ ⎞
= − − + − Σ⎜ ⎟

⎝ ⎠
⎛ ⎞

+ + + Σ⎜ ⎟
⎝ ⎠

= − − + −

∏

∏

∏

M

M

M

rr r r r

r r r

r
2

1

1 2
; ;

1 1
 sup sup

k

M

k
k

T T
l l l l l l

l M l M

w

w w w w
N N

α

α κ α κ

− ×
=

+ −
≤ ≤ ≤ ≤+ −

+

+ Σ + Σ

∏M r

r r r r

 (4.45)

with Lagrangian multipliers 0iα ≥ (1,2i =). The solution is determined by the

saddle point of the Lagrangian

()
1

1
| , ,

max min | , , ,
M

k k

M
k k

w b
L w b

α κ
κ α

=
=r r

rr . (4.46)

This can be achieved by setting 0
jw L∂ =r , 0bL∂ = , and 0Lκ∂ = . It is not

difficult to find that the solution of jwr depends on kwr (1 k M≤ ≤ , k j≠).

Therefore, there is no closed form solution for TMPM. We use the proposed

alternating projection method in STL to obtain the solution of TMPM. To have

the alternating projection method for TMPM, we need to replace the Step 4 in

Table 4.1 by the following optimization problem,

()

()
()

, ,

;

;

max , ,

 s.t.

j
MPM jw b

T T
j j j j j j

T T
j j j j j j

J w b

w w b w w

w w b w w

κ
κ κ

κ

κ

+ +

− −

⎡ ⎤=
⎢ ⎥
⎢ ⎥

× + ≥ + Σ⎢ ⎥
⎢ ⎥

× + ≤ − Σ⎢ ⎥⎣ ⎦

M

M

r

r

r r r r

r r r r

. (4.47)

This problem is the standard MPM defined in (4.40).

 Fisher Discriminant Analysis vs. Tensor Fisher Discriminant
Analysis

Fisher discriminant analysis (FDA) [37][30][69] has been widely applied for

classification. Suppose there are N training samples L
ix R∈
r (1 i N≤ ≤)

associated with their class labels { }1, 1iy ∈ + − . There are N+ positive training

samples and their mean is () []1
1 I(1)N

i ii
m N y x+ + =

= = +∑r r ; there are N−

negative training samples and their mean can be calculated from

() []1
1 I(1)N

i ii
m N y x− − =

= = −∑r r ; the mean of all training samples is

146

() 1
1 N

ii
m N x

=
= ∑r r ; and the covariance matrix of all training samples is Σ . FDA

finds a direction to separate the class means while minimizing the total covariance

of the training samples. Therefore, two quantities need to be defined, which are:

1) the between class scatter ()()2 1 2 1
T

bS m m m m= − −
r r r r : measuring the difference

between two classes; and 2) the within class scatter

()()2

1

N
w i ii

S x m x m N
=

= − − = Σ∑ r r r r : the variance of all training samples. The

projection direction wr maximizes

()max
T

b
FDA Tw

w

w S wJ w
w S w

⎡ ⎤
=⎢ ⎥

⎣ ⎦
r

r r
r

r r . (4.48)

Positive Sample

Negative Sample

Classification Hyperplane

(),m+ Σ
r

(),m− Σ
r

Figure 4.8. FDA separates positive samples from negative samples by maximizing

the symmetric Kullback–Leibler divergence between two classes under the

assumption that the two classes share the same covariance matrix.

This problem is simplified as

()
()

max
T

FDA Tw

w m m
J w

w w
+ −

⎡ ⎤−
⎢ ⎥=
⎢ ⎥Σ⎣ ⎦

r

r r r
r

r r . (4.49)

According to Chapter 2, we know this procedure is equivalent to maximizing the

symmetric Kullback–Leibler divergence (KLD) between positive and negative

samples with identical covariances in the projected subspace, so that positive

samples are separated from negative samples. Based on the definition of FDA, we

know FDA is a special case of the linear discriminant analysis (LDA).

147

The decision function in FDA is () sign Ty x w x b⎡ ⎤= +⎣ ⎦
r r r , where wr is the

eigenvector of ()()1 Tm m m m−
+ − + −Σ − −
r r r r associated with the largest eigenvalue

and the bias b is calculated by

()TN N N m N m w
b

N N
− + + + − −

− +

− − +
=

+

r r r

. (4.50)

The significance [30][39] of FDA is: FDA is Bayes optimal when the two classes

are Gaussian distributed with identical covariances.

When objects are represented by tensors, we need to vectorize the tensors to

vectors to match the input requirments in FDA. When training samples are

limited, the vectorization will be a disaster for FDA. This is because wS and bS

are both singular. To reduce this problem, we propose the tensor extension of

FDA, i.e., tensor FDA (TFDA). TFDA is a combination of FDA and STL.

Moreover, TFDA is a special case of the previous proposed general tensor

discriminant analysis (GTDA).

Suppose we have training samples 1 2 ML L L
i R × ×∈X L (1 i N≤ ≤) and their

corresponding class labels { }1, 1iy ∈ + − . The mean of the positive training

samples is () []1
1 I(1)N

i ii
N y+ + =

= = +∑M X ; the mean of the negative training

samples is () []1
1 I(1)N

i ii
N y− − =

= = −∑M X ; the mean of all training samples is

() 1
1 N

ii
N

=
= ∑M X ; and N+ (N−) is the number of positive (negative) samples.

The decision function is defined by ()
1

sign
k

M

k
k

y w b×
=

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∏X X r , where the

projection vectors kL
kw R∈
r (1 k M≤ ≤) and the bias b in TFDA are obtained

from

()
()

()
1

2

1
1 2|

1 1

max |
k

M
k k

k

M

k
kM

TFDA k k MNw

i k
i k

w
J w

w
=

+ − ×
=

=

×
= =

⎡ ⎤
−⎢ ⎥

⎢ ⎥=⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

∏

∑ ∏

M M

X M
r

r

r

r
, (4.51)

The formula is obtained directly from (3.31) and (3.32). Similar to GTDA, there is

no closed form solution for TFDA. The alternating projection is applied to obtain

the solution for TFDA and we need to replace the Step 4 in Table 4.1 by the

following optimization problem,

148

() ()

()

2

2

1

max
j

T
j j j

TFDA j Nw T
j i j j

i

w w
J w

w w

+ −

=

⎡ ⎤
⎢ ⎥⎡ ⎤− ×⎣ ⎦⎢ ⎥=
⎢ ⎥⎡ ⎤− ×⎣ ⎦⎢ ⎥⎣ ⎦

∑

M M

X M
r

r r
r

r r
. (4.52)

This problem is the standard FDA. When we have the projection vectors 1|Mk kw =
r ,

we can obtain the bias b from

()
1

k

M

k
k

N N N N w
b

N N

− + + + − − ×
=

− +

− − +
=

+

∏M M r

. (4.53)

 Distance Metric Learning vs. Multiple Distance Metrics
Learning

Weinberger et al. [169] proposed the distance metric learning (DML) to learn a

metric for k–nearest–neighbor (kNN) classification. The motivation of DML is

simple because the performance of kNN is only related to the metric used for

dissimilarity measure. In traditional kNN, the Euclidean metric fails to capture the

statistical charateristics of training samples. In DML, the metric is obtained such

that “k–nearest neighbors always belong to the same class while examples from

different classes are separated by a large margin”. DML is defined by

() () () ()

() () () ()

, 1 1 1 11 , ,

min , 1

1 , 1 , ,

 s.t. 0,

ijl

N N N NT

DML ijl ij i j i j ij il ijl
i j i ji j l N

TT
i l i l i j i j ijl

ijl

J x x x x c y

x x x x x x x x i j l N

ξ
ξ η η ξ

ξ

ξ

Σ
= = = =≤ ≤

Σ = − Σ − + −

− Σ − − − Σ − ≥ − ≤ ≤

≥

∑∑ ∑∑r r r r

r r r r r r r r

 1 , ,
0

i j l N

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥≤ ≤⎢ ⎥
⎢ ⎥Σ ≥⎣ ⎦

(4.54)

where 1ijη = and 1ijy = mean that ixr and jxr have the same class label,

otherwise 0. The constraint function 0Σ ≥ indicates that the maxtrix Σ is

required to be positive semidefinite, so the problem is an SDP. From the learnt

distance metric Σ , it is direct to have the linear transformation matrix by

decomposing TW WΣ = .

The optimization problem defined in (4.54) is equivalent to

149

() () ()
, 1 11 , ,

min , tr 1

1 , 1 , ,
 s.t. 0, 1 , ,

0

ijl

N N
T

DML ijl ij il ijl
i ji j l N

T
ijl ijl ijl

ijl

J A A c y

B B i j l N
i j l N

ξ
ξ η ξ

ξ
ξ

Σ
= =≤ ≤

Σ = Σ + −

Σ ≥ − ≤ ≤
≥ ≤ ≤

Σ ≥

∑∑

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (4.55)

where () 2ij i j L N
A x xη

×
⎡ ⎤= −⎣ ⎦

r r (1 ,i j N≤ ≤) and
2

,ijl i l j i L
B x x x x

×
⎡ ⎤= − −⎣ ⎦
r r r r .

Margin Margin

Target Neighborhood

Local Neighborhood
Before After

ixr

ixr

Similarly Labeled

Differently Labeled

Differently Labeled

Figure 4.9. DML obtains a metric, such that “k–nearest neighbors always belong

to the same class while examples from different classes are separated by a large

margin”.

Suppose we have training samples 1 2 ML L L
i R × ×∈X L (1 i N≤ ≤) and their

corresponding class labels { }1, 2, ,iy n∈ L . The multiple distance metric learning

(MDML) learns M metrics T
k k kW WΣ = (1 k M≤ ≤) for M–th order tensors

1|Ni i=X to make the samples, which have the same (different) labels, be as close

(far) as possible. The MDML is defined as

150

()
()

()

() ()

1

2

1 1 1
1 1 , ,

| ,
1 , ,

1 1

2 2

1 1

min | , |
1

1

 s.t. 0, 1 , ,

k

M
k k ijl

k k

MN N

ij i j k
i j kM Fro

MDML k k ijl i j l N N NW
i j l N

ij il ijl
i j

M M

i l k i j k ijl
k kFro Fro

ijl

W
J W

c y

W W

i j l N

ξ

η
ξ

η ξ

ξ

ξ

=

×
= = =

= ≤ ≤

≤ ≤

= =

× ×
= =

⎡ ⎤
−⎢ ⎥

⎢ ⎥= ⎢ ⎥
⎢ ⎥+ −
⎢ ⎥⎣ ⎦

− − − ≥ −

≥ ≤ ≤

∑∑ ∏

∑∑

∏ ∏

X X

X X X X

0, 1 T

k kW W k M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

≥ ≤ ≤⎢ ⎥⎣ ⎦

. (4.56)

As described in the STL framework, there is also no closed form solution for

MDML. The alternating projection method is applied to obtain the solution for

MDML and we need to replace the Step 4 in Table 4.1 by the following

optimization problem,

() () ()

() ()

1 , ,, 1 11 , ,

2 2

1 1

min , | tr 1

1

 s.t. 0, 1 , ,

p ijl

k k

N N
T

MDML p ijl i j l N p p p ij il ijlW i ji j l N

M M

i l k i j k ijl
k kFro Fro

ijl

J W A A c y

W W

i j l N
W

ξ
ξ η ξ

ξ

ξ

≤ ≤
= =≤ ≤

× ×
= =

= Σ + −

− − − ≥ −

≥ ≤ ≤

∑∑

∏ ∏X X X X

0, 1 T
k kW k M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥≥ ≤ ≤⎣ ⎦

. (4.57)

Here,

()()
1 1

mat
N N

p ij p i j p p
i j

A Wη
= =

= − ×∑∑ X X , (4.58)

and

()(); matijl p p j l p pB W= − ×X X . (4.59)

This is because

() ()() ()()()
2

1

tr mat mat
k

M
T

i l k j i l j j j j i l j j
k Fro

W W W×
=

− = − × Σ − ×∏X X X X X X .

Deduction:

()
2

1
k

M

i l k
k Fro

W×
=

− ∏X X

() () ()()
1 1

; 1: 1:
k k

M M

i l k i l k
k k

W W M M× ×
= =

⎛ ⎞ ⎛ ⎞
= − ⊗ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∏ ∏X X X X

� �
� �
� �
� �� �

()() ()() ()()tr ; 1: 1:i l j j j j i l j j j jW W W W M M⎡ ⎤ ⎡ ⎤= − × × ⊗ − × ×⎣ ⎦ ⎣ ⎦X X X X� �
� �� �

() () ()()()tr ; T
j i l j j i l j j jW W W j j W⎡ ⎤ ⎡ ⎤= − × ⊗ − ×⎣ ⎦ ⎣ ⎦X X X X� �
� �� �

151

()() ()()()tr mat matT T
j j i l j j j i l j j jW W W W= − × − ×X X X X

()() ()()()tr mat matT T
j i l j j j j j i l j jW W W W= − × − ×X X X X

()() ()()()tr mat mat .T
j i l j j j j i l j jW W= − × Σ − ×X X X X

This problem defined in (4.57) is the standard DML.

152

 Iterative Feature Extraction Model based on Supervised
Tensor Learning

The iterative feature extraction model (IFEM) based on STL is an extension of the

STL framework for feature extraction and its procedure is similar to the recursive

rank one tensor approximation developed by Shashua and Levin in [132].

Suppose we have training samples 1 2 ML L L
i R × ×∈X L (1 i N≤ ≤) and their

corresponding class labels { }1, 1iy ∈ + − . IFEM is defined by

, , 1 , 1 , 1
1

k

M

i r i r i r k r
k

wλ− − × −
=

= − ∏X X r
 (4.60)

(), 1 , 1 , 1
1

k

M T

i r i r k r
k

wλ − − × −
=

= ∏X r (4.61)

()
, 1

, 1
| , ,

, ,
1

min | , ,

s.t. , 1

M
k r k

k

M
k r k

w b

M

i i i r k r i
k

f w b

y c w b i N

ξ
ξ

ξ

=
=

×
=

⎡ ⎤
⎢ ⎥
⎢ ⎥⎛ ⎞⎢ ⎥+ ≥ ≤ ≤⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∏X

rr

rr

r
 (4.62)

where ,1i i=X X and ,0 0iλ = . The , 1|Ri r rλ = (R is the number of extracted

features in IFEM) is used to represent the original tensor iX .

1 2 3
, 1

(1)

L L L
i r R

i N

× ×
− ∈

≤ ≤

X

1 2 3
, 1

(1)

L L L
i r R

i N

× ×
− ∈

≤ ≤

X 3

, 1 , 1
1

i r k r
k

wλ − ⊗ −
=
∏ r 1 2 3

,

(1)

L L L
i r R

i N

× ×∈

≤ ≤

X

2, 1rw −
r

1×

3×

2×
2, 1rw −
r, 1i tλ −

Figure 4.10. Iterative feature extraction model for third order tensors.

153

From the definition of IFEM, which is defined by Eqs. (4.60), (4.61), and (4.62),

we know that IFEM can be calculated by a greedy approach. The calculation of

, 1|Ni r i=X is based on the given , 1 1|Ni r i− =X and , 1 1|Mk r kw − =

r . With the given , 1 1|Ni r i− =X

and , 1 1|Mk r kw − =
r , we can calculate , 1i rλ − via (4.61). The projection vectors , 1|Mk r kw =

r

can be obtained by optimizing (4.62) through the alternating projection method in

Table 4.1. The flowchart of the algorithm for feature extraction for third order

tensors is illustrated in Figure 4.10.

With IFEM, we can obtain 1
, 1|

r R
k r k Mw ≤ ≤

≤ ≤
r iteratively. The coordinate values , 1|Ri r rλ =

can represent the original tensor iX . For example, in nearest neighbor based

recognition, the prototype tensor pX for each individual class in the database

and the testing tensor tX to be classified are projected onto the bases to get the

prototype vector , 1|Rp r rλ = and the testing vector , 1|Rt r rλ = . The testing tensor class is

found by minimizing the Euclidean distance ()2

, ,1

R
t r p rr

ε λ λ
=

= −∑ over p .

As an example, we develop the tensor rank one discriminant analysis (TR1DA) by

combining IFEM with differential scatter discriminant criterion (DSDC) described

in Chapter 2.

TR1DA deals with the multiple classes classification problem. Suppose: there are

N training samples 1 2
;

ML L L
i j R × ×∈X L . The ; ,i j rX is the jth (1 ij N≤ ≤) training

sample in the ith (1 i C≤ ≤) class for the rth iteration for feature extraction. If r

equals to 1, we have ; ,1 ;i j i j=X X . The ith class mean tensor in the rth iteration is

, ; ,
1

1 iN

i r i j r
jiN =

= ∑M X and the total mean tensor in the rth iteration is

; , ,
1 1 1

1 1 iNC C
i

r i j r i r
i i ii

N
C N N= = =

= =∑ ∑ ∑M X M . The kth projection vector in the rth iteration is

defined by ,k rwr . With the given ; ,i j rX and ,k rwr , the ()1r + th iteration for

feature extraction in TR1DA is defined by

; , 1 ; , ; , ,
1

M

i j r i j r i j r k r
k

wλ+ ⊗
=

= − ∏X X r
 (4.63)

; , ; , ,
1

k

M
T

i j r i j r k r
k

wλ ×
=

= ∏X r (4.64)

154

()

(), 1

2

, ,
1 1*

, 1 2
|

; , , ,
1 1 1

| arg max
k

M ik r k

k

MC

i i r r k r
i kM

k r k
N MCw

r i j r i r k r
i j k

N w
w

wζ
=

×
= =

=

×
= = =

⎛ ⎞
−⎜ ⎟

⎜ ⎟= ⎜ ⎟
⎜ ⎟− −⎜ ⎟
⎝ ⎠

∑ ∏

∑∑ ∏

M M

X M
r

r

r

r
. (4.65)

Table 4.2. Alternating Projection for the Tensor Rank One Discriminant Analysis

Input: Training samples 1 2 ...
;

ML L L
i j R × × ×∈X (1 i c≤ ≤ , 1 ij n≤ ≤), the number R of

rank one tensors allowed in TR1DA, and tuning parameters rζ , 1 r R≤ ≤ in
TR1DA.

Output: Projection vectors { }, 1 ,| , kLM
k r k k rw w R= ∈
r r and scalars ; ,i j rλ , 1 r R≤ ≤ .

1. For 1r = to R

2. Set , 1|Mk r kw =
r be equal to random unit vectors.

3.
Calculate the class mean tensor () ;1

1 iN
i i i jj

N
=

= ∑M X ;

Calculate the total mean tensor ()1

C
i ii

N N
=

=∑M M ;

4. Carry out steps 5–10 iteratively until convergence.

5. For 1k = to M

6.

Calculate ()() ()(), ,
1

C
T T

i i k k r i k k r
i

B N w w
=

⎡ ⎤= − × ⊗ − ×⎣ ⎦∑ M M M Mr r ;

Calculate ()() ()(); , ; ,
1 1

iNC
T T

i j i k k r i j i k k r
i j

W w w
= =

⎡ ⎤= − × ⊗ − ×⎣ ⎦∑∑ X M X Mr r ;

7. Calculate the eigenvector h
r

 of lB Wζ− associated with the
largest eigenvalue;

8. Assignment: ,k rw h←
rr ;

9. End

10.

Convergence checking: if , , , , 1 , , 1 0
1T

k r t k r t k r tw w w ε− −− ≤
r r r (610ε −=) for

all modes, the calculated ,k rwr has converged. Here , ,k r twr is the
current projection vector and , , 1k r tw −

r is the previous projection vector.

11. Assignment: ; , ; ,
1

k

M
T

i j r i j k r
k

wλ ×
=

← ∏X r ;

12. Assignment: ; ; ; , ,
1

M

i j i j i j r k r
k

wλ ⊗
=

← − ∏X X r ;

13. End

155

The algorithm is given in Table 4.2.

The time complexity of PCA (LDA) is ()3

1

M
kk

O L
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∏ when training samples

X belong to 1 2 ML L LR × × ×L . The time complexity of TR1DA is

()1 1

R M
r kr k

O T L
= =∑ ∑ , where rT is the number of iterations to make TR1DA

converge for the rth feature extraction procedure (in our experiments for human

gait recognition [143][145], rT is about 20). The space complexity of PCA

(LDA) is ()2

1

M
kk

O L
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∏ . The space complexity of TR1DA is ()1

M
kk

O L
=∏ .

This indicates that the time complexity and the space complexity of feature

extraction are reduced by working directly with tensor data rather than vectorizing

the data and applying PCA (LDA).

156

 Experiments

In this Section, we provide two experiments to demonstrate that STL and IFEM

are powerful tools for classification and feature extraction. For STL, we

implement TMPM for image classification. For IFEM, we implement TR1DA for

the elapsed time problem in human gait recognition.

 TMPM for Image Classification

Figure 4.11. Attention model for image representation.

To classify images into groups based on their semantic contents is very important

and challenging. The simplest classification is binary and a hierarchical structure

can be built from a series of binary classifiers. If we have semantic classification

then image databases would be easier to manage [121][125]. The image semantic

classification is also of great help for many applications.

In this STL based classification experiment, two groups of images are separated

from each other by a trained TMPM, which is a generalized learning machine

with the STL framework. The input (representing features) of TMPM is the region

157

of interest (ROI) within an image, which are extracted by the attention model in

[56][57][140] and represented as a third order tensor.

The attention model [56][57] is capable of reproducing human performances for a

number of pop–out tasks [157]. In other words, when a target is different from its

surroundings by its unique orientation, color, intensity, or size, it is always the

first attentive location and easy to be noticed by an observer. Therefore, it is

reasonable to utilize the attention model based ROI to describe the semantic

information of an image.

Figure 4.12. Example images from the tiger category.

As shown in Figure 4.11, representing an attention region from an image consists

of several steps: 1) extracting the salient map as introduced by Itti et al. [56][57];

158

2) finding the most attentive region, whose center has the largest value in the

salient map; 3) extracting the attention region by a square, i.e., ROI, in size of

64 64× ; and 4) finally, representing this ROI in the hue, saturation, and value

(HSV) perceptual color space. We have a third order tensor for the image

representation.

Figure 4.13. Example images from the leopard category.

Note that although we only select a small region from an image, the size of the

extracted third order tensor is already as large as 64 64 3× × . If we vectorize this

tensor, the dimension of the vector will be 12288 . The sizes of training samples

are only of hundreds, which is much smaller than 12288 . Therefore, the small

sample size (SSS) problem always arises. On the contrary, our proposed tensor

159

oriented supervised learning scheme can avoid this problem directly and at the

same time represent the ROIs much more naturally.

Figure 4.14. One hundred ROIs in the tiger category.

The training set and the testing set for the following experiments are built upon

the Corel photo gallery [164], from which 100 images are selected for each of the

two categories. Examples are shown in Figure 4.12 and Figure 4.13. These 200

images are then processed to extract the third tensor attention features for TMPM

as shown in Figure 4.14 and Figure 4.15.

We choose the “Tiger” category shown in Figure 4.12 and the “Leopard” category

shown in Figure 4.13 for this binary classification experiment since it is a very

difficult task for a machine to distinguish them, although a human being can

easily differentiate between a tiger and a leopard. Basically, the characteristics of

a classifier cannot be examined in detail if the classification problem is very

160

straightforward, for example, classifying grassland pictures from blood pictures.

The “Tiger” and “Leopard” classification is carried out in this Section. We choose

the top N images as training sets according to the image IDs, while all remaining

images are used to form the corresponding testing set.

Figure 4.15. One hundred ROIs in the leopard category.

In our experiments, the third order tensor attention ROIs can mostly be found

correctly from images. Some successful results, respectively extracted

automatically from the “Tiger” category and the “Leopard” category, are shown in

Figure 4.14 and Figure 4.15. By this we mean that, the underlying data structures

are kept well for the next classification step. However, we should note that the

attention model sometimes cannot depict the semantic information of an image.

This is mainly because the attention model always locates a region that is different

from its surroundings and thus might be “cheated” when some complex or bright

161

background exists. Some unsuccessful ROIs can also be found from Figure 4.14

and Figure 4.15. It should be emphasized that to keep the following comparative

experiments fair and automatic, these wrongly extracted ROIs are included in

training samples.

We carried out the binary classification (“Tiger” and “Leopard”) experiments

upon the above training and testing sets. The proposed TMPM is compared with

MPM. The experimental results are shown in Table 4.3. Error rates for both

training and testing are reported according to the increasing size of the training set

(STS) from 5 to 30.

Table 4.3. TMPM vs. MPM

 Training Error Rate Testing Error Rate
STS TMPM MPM TMPM MPM

5 0.0000 0.4000 0.4600 0.5050
10 0.0000 0.5000 0.4250 0.4900
15 0.0667 0.4667 0.3250 0.4150
20 0.0500 0.5000 0.2350 0.4800
25 0.0600 0.4800 0.2400 0.4650
30 0.1167 0.5000 0.2550 0.4600

From the training error rates in Table 4.3, it can be seen that the traditional

method (MPM) cannot learn a suitable model for classification when the size of

the training set is much smaller than the dimension of the feature space. It shows

that the proposed TMPM algorithm is more effective than MPM at representing

the intrinsic discriminative information (in the form of the third order ROIs).

TMPM learns a better classification model for future data classification than

MPM and thus has a satisfactory performance on the testing set. It is also

observed that the TMPM error rate is a decreasing function of the size of the

training set. This is consistent with statistical learning theory.

We also evaluate TMPM as a sample algorithm of the proposed STL framework.

Two important issues in machine learning are studied, namely, the training stage

convergence property and the insensitiveness to the initial values.

Figure 4.16 shows that as the training stage of TMPM converges efficiently by the

alternating projection method. Usually, twenty iterations are enough to achieve

convergence.

162

0 10 20 30 40 50 60 70 80 90 100
−4

−3.5

−3

−2.5

−2

−1.5

−1

Number of Iterations

P
os

iti
on

Tensor MPM converges on the training data

0 10 20 30 40 50 60 70 80 90 100
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Iterations

E
rr

or
 R

at
e

Training and Tesing Error Rate vs. Number of Iterations

Training Error
Testing Error

0 10 20 30 40 50 60 70 80 90 100
−6

−5

−4

−3

−2

−1

0

Number of Iterations

P
os

iti
on

Tensor MPM converges on the training data

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Iterations

E
rr

or
 R

at
e

Training and Tesing Error Rate vs. Number of Iterations

Training Error
Testing Error

0 10 20 30 40 50 60 70 80 90 100
−6

−5

−4

−3

−2

−1

0

1

2

Number of Iterations

P
os

iti
on

Tensor MPM converges on the training data

0 10 20 30 40 50 60 70 80 90 100
0.1

0.15

0.2

0.25

0.3

0.35

Number of Iterations

E
rr

or
 R

at
e

Training and Testing Error Rate vs. Number of Iterations

Training Error
Tesing Error

Figure 4.16. TMPM converges effectively.

Three sub–figures in the left column of Figure 4.16 show tensor projected values

of the original general tensors with an increasing number of learning iterations

using 10, 20, and 30 training samples for each class, respectively, from top to

bottom. We find that the projected values converge to stable values. Three sub–

figures in the right column of Figure 4.16 show the training error rates and the

testing error rates according to the increasing number of learning iterations by 10,

20, and 30 training samples for each class, respectively, from top to bottom.

163

Based on all sub–figures in Figure 4.16, it can be found that the training error and

the testing error converge to stable values, which empirically justify the

convergence of the alternating projection method for TMPM. The theoretical

proof is given in the Theorem 4.1.

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

Experimental Rounds

E
rro

r R
at

e

Tensor Minimax Probability Machine is stable with different initial values

Testing Error Rate
Training Error Rate

Figure 4.17. TMPM is stable with different initial values.

Many learning algorithms converge to different values when initial values are

varied. This is the so–called local minimum problem. However, the developed

TMPM does not have this local minimum problem, which is demonstrated by a set

of experiments (with 100 different initial parameters, 10 learning iterations, and

20 training samples), as shown in Figure 4.17. The training error rates and the

testing error rates are always 0.05 and 0.235, respectively. Moreover, because

TMPM is a convex optimization problem, theoretically TMPM has a unique

solution.

 TR1DA for the Elapsed Time Problem in Gait Recognition

To study the characteristics of the proposed TR1DA, we utilize it on the elapsed

time problem in human gait recognition. In this Section we first briefly introduce

our experimental data (gallery and probe) sets; and then report the performance of

the TR1DA algorithm and compare its performance with principal component

164

analysis (PCA), linear discriminant analysis (LDA) and tensor rank one analysis

(TR1A). The experiments provide numerical evidence for the convergence of

TR1DA during the learning stage.

Research efforts in biometrics are mainly motivated by the increasing

requirements of machine based automatic human authentication/authorization

[71]. As a promising biometric source, human gait describes the manner of a

person’s walking and can be acquired at a distance. It was first analyzed in

medical surgery [111][112], and then in psychology [23]. In computer vision,

human motion has been studied for years [1]. An early attempt to recognize a

person by the gait was probably made by Little and Boyd [86]. Since then, many

efforts have been made for gait recognition [9][22][63][163]. In this Section, we

focus on an appearance based model, which could be a preprocessing step for

statistical models, such as Hidden Markov Model [65][66].

Our experiments are all carried out on the USF HumanID outdoor gait database

[126], which consists of the following covariates: change in viewpoints (Left/L or

Right/R), change in shoe types (A or B), change in walking surface (Grass/G or

Concrete/C), change in carrying conditions (Briefcase/B or No Briefcase/NB),

and elapsed time (May or November) between sequences being compared. The

detailed description about the database is given in §3.1.

Among all five covariates, elapsed time is our main concern in this Section

because human identification systems are normally required to work over long

periods of time. In this thesis, the remaining three conditions are examined

thoroughly, namely change in shoe types (A or B), change in walking surface

(Grass or Concrete), and change in carrying conditions (carrying a Briefcase or

No Briefcase). Consequently, we choose our gallery set (May, C, A, L, NB) from

the May data and consider eight pattern classification problems with the test sets

of CAL (Nov., C, A, L, NB), CBL (Nov., C, B, L, NB) , GAL (Nov., G, A, L,

NB), GBL (Nov., G, B, L, NB), CBAL (Nov., C, A, L, BF), CBBL (Nov., C, B,

L, BF), GBAL (Nov., G, A, L, BF), and GBBL (Nov., G, B, L, BF).

In this Section we empirically study the TR1DA approach in terms of accuracy,

convergence during the learning phase, and impact of parameter values on

accuracy. TR1DA is compared with existing methods, including PCA, LDA, and

TR1A. Experiments are carried out to recognize a gait with given examples of

165

gaits collected in the past (the elapsed time problem), which is still one of the

most difficult problems in human gait recognition.

In these experiments, we use EigenGait in a PCA based method for gait

recognition, FisherGait in an LDA based method [45], TR1AGait in a TR1A for

gait recognition, and TR1DAGait in a TR1DA for gait recognition. Figure 4.18

shows the first ten EigenGaits, FisherGaits, TR1AGaits, and TR1DAGaits,

respectively. We believe that TR1DA is a good method for classifying gaits

because our experiments support this belief. First, TR1DAGait usually performs

better than existing methods (EigenGait, FisherGait, and TR1AGait) in

recognition tasks. Second, the training procedure for TR1DA converges within

about 20 iterations. Third, it is not difficult to obtain a reasonable good

performance of TR1DA by adjusting the tuning parameters rς (1 r R≤ ≤). This

is because there is a wide range of values for rς , over which TR1DA achieves a

good performance. In our experiments, although we extract R features, given

R independent tuning parameters, we set all tuning parameters be equal to each

other, in order to reduce the number of parameters. It is possible to achieve better

performance if the values of the tuning parameters are allowed to be different.

166

Figure 4.18. First 10 EigenGaits (the first column), first 10 FisherGaits (the

second column), first 10 TR1AGaits (the third column), and first 10 TR1DAGaits

(the fourth column). From the figure, we can see that EigenGaits and FisherGaits

are dense, while TR1AGaits and TR1DAGaits are sparse, because they take the

167

structure information into account to reduce the number of unknown parameters

in discriminant learning.

Figure 4.19–Figure 4.26 illustrate the experimental results under eight different

circumstances. In each of them:

• The first sub–figure shows the effects of feature dimension on recognition

precision (one minus the error rate). In this sub–figure, the x–coordinate is

the feature dimension and the y–coordinate is the recognition precision. In

order to keep the graph be in a manageable size, we only show the results

for feature dimensions from 10 to 110. In these experiments, we show the

top–one recognition precisions of EigenGait, FisherGait, TR1AGait, and

TR1DAGait. We show the top–one and top–five recognition precisions of

these algorithms in Table 4.5 and Table 4.6, respectively. Usually, tensor

based algorithms (TR1AGait and TR1DAGait) achieve better recognition

precisions than vector based algorithms (EigenGait and FisherGait) and

TR1DAGait performs better than TR1AGait.

• The second sub–figure shows the effects of feature dimension and the

tuning parameter ς on the recognition precision in TR1DA. In this sub–

figure, the x–coordinate is the feature dimension; the y–coordinate is the

tuning parameter ς ; and the z–coordinate is the recognition precision.

The feature dimension changes from 10 to 200 with a step 1 and ς

changes from 0.01 to 0.5 with a step 0.01. For each probe the tuning

parameter ς is chosen to achieve the best performance. The detailed

information about the value of ς is given in Table 4.4. In each case there

is a range of values of ς for which TR1DA achieves a good

performance. We only show one value for each probe. It can be observed

from the sub–figure that for each probe, there are a number of points to

achieve the best performance according to different ς values.

• The third sub–figure shows the number of iterations required in the

training procedure for extracting the ith feature. In this sub–figure, the x–

coordinate is the feature dimension and the y–coordinate is the number of

168

iterations required for convergence. The mean value of the number of

iterations for convergence is represented by the dashed line. In these

experiments, we set the maximum number of training iterations as 1,000.

The training procedure usually converges within 80 iterations. The mean

number of training iterations for different features is about 20 and the

standard deviation is about 10. Detailed information about the number of

iterations required can be found in Table 4.4.

• The four bottom sub–figures examine the training procedure convergence

property of TR1DA. Because different features share similar convergence

curves, we only show the convergence curves of the first two features. The

left column is relevant to the 1st feature and the right column is relevant to

the 2nd feature. In the upper two of the four bottom–right sub–figures, the

x–coordinate is the number of the training iterations t and the y–coordinate

is the log of differences in a projection direction between two neighboring

training iterations, i.e., they demonstrate how

() () ()()1 0
log 1T

k k kt t t
u u u

−
− and () () ()()1 0

log 1T
k k kt t t

v v v
−
−

(mentioned in Table 4.2) change with the training iterations for the 1st and

2nd features (1,2k =). Here,
0

x is the dimension of x ; ()k t
u is the

first projection vector of the tth training iteration for the kth feature; and

()k t
v is the second projection vector of the tth training iteration for the kth

feature. In these experiments, the visual objects are averaged gait images,

which are second order tensors. To avoid confusion, we use u and v to

represent the projection vectors in different directions. From the upper two

sub–figures, we can see that as the number of training iterations increases,

the changes in u and v approach to zero. In the lower two of the four

bottom–right sub–figures, the x–coordinate denotes the number of training

iterations and the y–coordinate is the function value f of TR1DA

defined in (13), i.e., they show how the function value of TR1DA defined

in (13) changes with the training iterations for the 1st and 2nd features.

From the sub–figures, we can see that as the number of training iterations

increases, the change of the function value of TR1DA approaches zero.

All of these sub–figures demonstrate that the training procedure of

169

TR1DA converges after about 20 iterations. If

() () ()()1 0
log 1T

k k kt t t
u u u ε

−
− < and () () ()()1 0

log 1T
k k kt t t

v v v ε
−
− < ,

we deem the training procedure converges. The value of ε is 610− .

Table 4.4. Parameters in convergence examination for eight probes.

TR1DA GBL GAL CBL CAL GBBL GBAL CBBL CBAL
Max 58 63 55 67 65 73 54 53
Mean 21 19 18 19 20 22 18 19
Std 11 10 10 11 11 14 11 10
ς 0.03 0.17 0.25 0.31 0.02 0.05 0.20 0.28

Table 4.5. Rank One recognition precision for eight probes.

Rank One GBL GAL CBL CAL GBBL GBAL CBBL CBAL
EigenGait 11.00 14.66 13.44 18.28 09.50 10.00 11.29 09.68
FisherGait 07.50 17.80 13.98 18.82 09.00 13.00 07.53 16.13
TR1AGait 20.49 17.80 18.11 13.98 23.48 15.00 17.74 15.98
TR1DAGait 24.59 18.85 21.26 16.13 23.48 16.00 20.97 17.16

Table 4.6. Rank five recognition precision for eight probes.

Rank Five GBL GAL CBL CAL GBBL GBAL CBBL CBAL
EigenGait 28.00 29.84 33.87 41.94 31.00 24.50 31.72 30.11
FisherGait 25.00 32.98 40.32 41.94 24.00 29.00 23.12 33.87
TR1AGait 36.07 30.89 40.94 33.33 38.64 28.50 35.48 35.50
TR1DAGait 37.70 30.37 44.09 34.41 39.39 29.00 36.29 36.69

170

10 20 30 40 50 60 70 80 90 100 110
0

0.05

0.1

0.15

0.2

0.25

Feature Dimension

GBL: Feature Dimension vs. Precision

EigenGait
FisherGait
TR1AGait
TR1DAGait

171

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60
Feature Dimension vs. Number of Iterations for Convergence

Feature Dimension

N
um

be
r o

f I
te

ra
tio

ns
 fo

r C
on

ve
rg

en
ce

5 10 15 20 25 30 35 40
-40

-35

-30

-25

-20

-15

-10

-5

0
1st Feature Convergence Examination

Iteration Number

Lo
g

of
 E

rro
r

U Direction
V Direction

5 10 15 20 25 30 35 40
-40

-35

-30

-25

-20

-15

-10

-5

0
2nd Feature Convergence Examination

Iteration Number

Lo
g

of
 E

rro
r

U Direction
V Direction

0 5 10 15 20 25 30 35 40
10

15

20

25

30

35

40

45

50
1st Feature TR1DA Funcation Value

Iteration Number

TR
1D

A
 F

un
ct

io
n

V
al

ue

0 5 10 15 20 25 30 35 40
5

10

15

20

2nd Feature TR1DA Funcation Value

Iteration Number

TR
1D

A
 F

un
ct

io
n

V
al

ue

Figure 4.19. GBL task: TR1DA performances, convergence, and parameters

(feature dimension and ς) analysis. Detailed explanation is in §233066540.

172

10 20 30 40 50 60 70 80 90 100 110
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Feature Dimension

GAL: Feature Dimension vs. Precision

EigenGait
FisherGait
TR1AGait
TR1DAGait

173

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70
Feature Dimension vs. Number of Iterations for Convergence

Feature Dimension

N
um

be
r o

f I
te

ra
tio

ns
 fo

r C
on

ve
rg

en
ce

5 10 15 20 25 30 35 40
-40

-35

-30

-25

-20

-15

-10

-5

0
1st Feature Convergence Examination

Iteration Number

Lo
g

of
 E

rro
r

U Direction
V Direction

5 10 15 20 25 30 35 40
-40

-35

-30

-25

-20

-15

-10

-5

0
2nd Feature Convergence Examination

Iteration Number

Lo
g

of
 E

rro
r

U Direction
V Direction

0 5 10 15 20 25 30 35 40

100

150

200

250

300

1st Feature TR1DA Funcation Value

Iteration Number

TR
1D

A
 F

un
ct

io
n

V
al

ue

0 5 10 15 20 25 30 35 40

50

60

70

80

90

100

110

120

130

2nd Feature TR1DA Funcation Value

Iteration Number

TR
1D

A
 F

un
ct

io
n

V
al

ue

Figure 4.20. GAL task: TR1DA performances, convergence, and parameters

(feature dimension and ς) analysis. Detailed explanation is in §0.

174

10 20 30 40 50 60 70 80 90 100 110
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Feature Dimension

CBL: Feature Dimension vs. Precision

EigenGait
FisherGait
TR1AGait
TR1DAGait

175

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60
Feature Dimension vs. Number of Iterations for Convergence

Feature Dimension

N
um

be
r o

f I
te

ra
tio

ns
 fo

r C
on

ve
rg

en
ce

5 10 15 20 25 30 35 40
-40

-35

-30

-25

-20

-15

-10

-5

0
1st Feature Convergence Examination

Iteration Number

Lo
g

of
 E

rro
r

U Direction
V Direction

5 10 15 20 25 30 35 40
-40

-35

-30

-25

-20

-15

-10

-5

0
2nd Feature Convergence Examination

Iteration Number

Lo
g

of
 E

rro
r

U Direction
V Direction

0 5 10 15 20 25 30 35 40

150

200

250

300

350

400

450

1st Feature TR1DA Funcation Value

Iteration Number

TR
1D

A
 F

un
ct

io
n

V
al

ue

0 5 10 15 20 25 30 35 40

80

100

120

140

160

180

2nd Feature TR1DA Funcation Value

Iteration Number

TR
1D

A
 F

un
ct

io
n

V
al

ue

Figure 4.21. CBL task: TR1DA performances, convergence, and parameters

(feature dimension and ς) analysis. Detailed explanation is in §0.

176

10 20 30 40 50 60 70 80 90 100 110
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Feature Dimension

CAL: Feature Dimension vs. Precision

EigenGait
FisherGait
TR1AGait
TR1DAGait

177

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70
Feature Dimension vs. Number of Iterations for Convergence

Feature Dimension

N
um

be
r o

f I
te

ra
tio

ns
 fo

r C
on

ve
rg

en
ce

5 10 15 20 25 30 35 40
-40

-35

-30

-25

-20

-15

-10

-5

0
1st Feature Convergence Examination

Iteration Number

Lo
g

of
 E

rro
r

U Direction
V Direction

5 10 15 20 25 30 35 40
-40

-35

-30

-25

-20

-15

-10

-5

0
2nd Feature Convergence Examination

Iteration Number

Lo
g

of
 E

rro
r

U Direction
V Direction

0 5 10 15 20 25 30 35 40

150

200

250

300

350

400

450

500

550

600

1st Feature TR1DA Funcation Value

Iteration Number

TR
1D

A
 F

un
ct

io
n

V
al

ue

0 5 10 15 20 25 30 35 40

100

120

140

160

180

200

220

240

2nd Feature TR1DA Funcation Value

Iteration Number

TR
1D

A
 F

un
ct

io
n

V
al

ue

Figure 4.22. CAL task: TR1DA performances, convergence, and parameters

(feature dimension and ς) analysis. Detailed explanation is in §0.

178

10 20 30 40 50 60 70 80 90 100 110
0

0.05

0.1

0.15

0.2

0.25

Feature Dimension

GBBL: Feature Dimension vs. Precision

EigenGait
FisherGait
TR1AGait
TR1DAGait

179

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70
Feature Dimension vs. Number of Iterations for Convergence

Feature Dimension

N
um

be
r o

f I
te

ra
tio

ns
 fo

r C
on

ve
rg

en
ce

0 5 10 15 20 25 30 35 40
-40

-35

-30

-25

-20

-15

-10

-5

0
1st Feature Convergence Examination

Iteration Number

Lo
g

of
 E

rro
r

U Direction
V Direction

0 5 10 15 20 25 30 35 40
-40

-35

-30

-25

-20

-15

-10

-5

0
2nd Feature Convergence Examination

Iteration Number

Lo
g

of
 E

rro
r

U Direction
V Direction

0 5 10 15 20 25 30 35 40
5

10

15

20

25

30

1st Feature TR1DA Funcation Value

Iteration Number

TR
1D

A
 F

un
ct

io
n

V
al

ue

0 5 10 15 20 25 30 35 40
2

3

4

5

6

7

8

9

10

11

12

13
2nd Feature TR1DA Funcation Value

Iteration Number

TR
1D

A
 F

un
ct

io
n

V
al

ue

Figure 4.23. GBBL task: TR1DA performances, convergence, and parameters

(feature dimension and ς) analysis. Detailed explanation is in §0.

180

10 20 30 40 50 60 70 80 90 100 110
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Feature Dimension

GBAL: Feature Dimension vs. Precision

EigenGait
FisherGait
TR1AGait
TR1DAGait

181

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80
Feature Dimension vs. Number of Iterations for Convergence

Feature Dimension

N
um

be
r o

f I
te

ra
tio

ns
 fo

r C
on

ve
rg

en
ce

5 10 15 20 25 30 35 40
-40

-35

-30

-25

-20

-15

-10

-5

0
1st Feature Convergence Examination

Iteration Number

Lo
g

of
 E

rro
r

U Direction
V Direction

5 10 15 20 25 30 35 40
-40

-35

-30

-25

-20

-15

-10

-5

0
2nd Feature Convergence Examination

Iteration Number

Lo
g

of
 E

rro
r

U Direction
V Direction

0 5 10 15 20 25 30 35 40
20

30

40

50

60

70

80

90
1st Feature TR1DA Funcation Value

Iteration Number

TR
1D

A
 F

un
ct

io
n

V
al

ue

0 5 10 15 20 25 30 35 40

15

20

25

30

35

2nd Feature TR1DA Funcation Value

Iteration Number

TR
1D

A
 F

un
ct

io
n

V
al

ue

Figure 4.24. GBAL task: TR1DA performances, convergence, and parameters

(feature dimension and ς) analysis. Detailed explanation is in §0.

182

10 20 30 40 50 60 70 80 90 100 110
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Feature Dimension

CBBL: Feature Dimension vs. Precision

EigenGait
FisherGait
TR1AGait
TR1DAGait

183

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60
Feature Dimension vs. Number of Iterations for Convergence

Feature Dimension

N
um

be
r o

f I
te

ra
tio

ns
 fo

r C
on

ve
rg

en
ce

5 10 15 20 25 30 35 40
-40

-35

-30

-25

-20

-15

-10

-5

0
1st Feature Convergence Examination

Iteration Number

Lo
g

of
 E

rro
r

U Direction
V Direction

5 10 15 20 25 30 35 40
-40

-35

-30

-25

-20

-15

-10

-5

0
2nd Feature Convergence Examination

Iteration Number

Lo
g

of
 E

rro
r

U Direction
V Direction

0 5 10 15 20 25 30 35 40

100

150

200

250

300

350

1st Feature TR1DA Funcation Value

Iteration Number

TR
1D

A
 F

un
ct

io
n

V
al

ue

0 5 10 15 20 25 30 35 40

60

70

80

90

100

110

120

130

140

150

2nd Feature TR1DA Funcation Value

Iteration Number

TR
1D

A
 F

un
ct

io
n

V
al

ue

Figure 4.25. CBBL task: TR1DA performances, convergence, and parameters

(feature dimension and ς) analysis. Detailed explanation is in §0.

184

10 20 30 40 50 60 70 80 90 100 110
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Feature Dimension

CBAL: Feature Dimension vs. Precision

EigenGait
FisherGait
TR1AGait
TR1DAGait

185

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60
Feature Dimension vs. Number of Iterations for Convergence

Feature Dimension

N
um

be
r o

f I
te

ra
tio

ns
 fo

r C
on

ve
rg

en
ce

5 10 15 20 25 30 35 40
-40

-35

-30

-25

-20

-15

-10

-5

0
1st Feature Convergence Examination

Iteration Number

Lo
g

of
 E

rro
r

U Direction
V Direction

5 10 15 20 25 30 35 40
-40

-35

-30

-25

-20

-15

-10

-5

0
2nd Feature Convergence Examination

Iteration Number

Lo
g

of
 E

rro
r

U Direction
V Direction

0 5 10 15 20 25 30 35 40

150

200

250

300

350

400

450

500

550

1st Feature TR1DA Funcation Value

Iteration Number

TR
1D

A
 F

un
ct

io
n

V
al

ue

0 5 10 15 20 25 30 35 40
80

100

120

140

160

180

200

220
2nd Feature TR1DA Funcation Value

Iteration Number

TR
1D

A
 F

un
ct

io
n

V
al

ue

Figure 4.26. CBAL task: TR1DA performances, convergence, and parameters

(feature dimension and ς) analysis. Detailed explanation is in §0.

Based on Figures 4.19 – 4.26, we have the following observations:

1. The first sub–figure of each figure shows the classification performance

versus the selected feature dimension. Most of these sub-figures show that

186

tensor based subspace selection methods (TR1DA and TR1A) perform better

than vector based ones (LDA and PCA) and the discriminative subspace

selection methods (TR1DA and LDA) perform better than reconstructive

subspace selection methods (TR1A and PCA). This is because the size of the

gallery, i.e., the training set, in different tasks is much less than the dimension

of original features, i.e., the appearance of the averaged gait image for

representation. According to the discussions at the beginning of this Chapter,

we know tensor based subspace selection methods reduce the over fitting

problem when training samples are limited, so TR1DA and TR1A should

perform better than LDA and PCA, respectively. Moreover, tasks here are

classification so discriminative based methods perform better than

reconstructive based methods as discussed at the beginning of Chapter 2;

2. The second sub–figure of each figure shows the classification performance of

TR1DA versus the parameters in TR1DA. There are two parameters for

TR1DA, which are ς and selected feature dimension. Some of these sub-

figures show that the more the selected features are, the higher the

classification accuracy is for the first selected 200 features; and some of them

show that with the increasing number of selected features, the classification

accuracy is initially increasing and then decreasing. From a large number of

experiences in subspace selection, we know the latter is more reasonable than

the former, so we believe we can have the similar observations as the latter if

more features are selected for evaluation;

3. The third sub–figure of each figure shows the number of iterations required to

meet the training stage convergence condition in TR1DA for different

features. According to Table 4.4, normally, TR1DA needs about 20 iterations

to converge and the corresponding standard deviation is about 10. Therefore,

for most features, we need about 30 iterations for training. The distributions of

the number of training iterations are similar to noise, i.e., there is no clear

relationship between the number of training iterations and the selected

features. This is because the training processes for different features are

independent, as shown in Section 4.4; and

4. The last four sub–figures of each figure demonstrate the convergence property

of the training stage of TR1DA. The first two sub–figures show that the

difference between the projection vectors of two consecutive training

187

iterations is decreasing with the increasing number of the training iterations;

and the last two sub–figures show the TR1DA function value is increasing

with the increasing number of the training iterations. These two points consist

with the mathematical proof of the theorem 4.1.

188

 Summary

In this Chapter, the vector based learning is extended to accept tensors as input.

The result is a supervised tensor learning (STL) framework, which is the

multilinear extension of convex optimization based learning. To obtain the

solution of an STL based learning algorithm, the alternating projection method is

used. Based on STL and its alternating projection optimization algorithm, we

illustrate several examples. That is we extend the soft margin support vector

machine (SVM), the nu–SVM, the least squares SVM, the minimax probability

machine (MPM), the Fisher discriminant analysis (FDA), the distance metric

learning (DML) to their tensor versions, which are the soft margin support tensor

machine (STM), the nu–STM, the least squares STM, the tensor MPM (TMPM),

the tensor FDA (TFDA), and the multiple distance metrices learning (MDML).

Based on STL, we also introduce a method for iterative feature extraction: the

iterative feature extraction model (IFEM). As an example, we develop the tensor

rank one discriminant analysis (TR1DA).

Finally, we implement TMPM for image classification and TR1DA for the

elapsed time problem in human gait recognition. By comparing TMPM with

MPM, we show that TMPM reduces the overfitting problem in MPM. By

comparing TR1DA with principal component analysis (PCA), linear discriminant

analysis (LDA), and tensor rank one analysis (TR1A), we show that TR1DA

reduces the small sample size problem and always achieves the best performance

on the elapsed time problem in human gait recognition.

189

5. Thesis Conclusion

Linear discriminant analysis (LDA) motivates this thesis. This is because LDA

has many problems, although it has been deemed as one of the most important

linear subspace methods in pattern classification and it has been widely applied in

many applications, e.g., face recognition [34][168], image retrieval [139][152]

[153][154], video data organization [43], gait recognition [46], speech recognition

[67][70], document classification [108], music management [85], network flow

analysis [136], and video surveillance [143][144].

The first type of the problems with LDA is model based: 1) the heteroscedastic

problem [29][28][70][61][99], 2) the multimodal problem [51][28], and 3) the

class separation problem [103][95][96][99][146]. To deal with the model based

problems, we begin with the fact that LDA selects the subspace to maximize the

arithmetic mean of the Kullback–Leibler (KL) [21] divergences between different

classes, when samples are sampled from Gaussian distributions [60] with identical

covariances. We then generalize LDA in two ways: 1) extending the KL

divergence to the Bregman divergence [14]; and 2) extending the arithmetic mean

to the generalized mean [48]. The result of these generalizations is the general

averaged divergences analysis and the significance of the generalization is a

discriminative subspace selection framework, from which we can develope a

number of different methods to select discriminative features. Based on this

framework, we analyze the geometric based subspace selection: 1) the geometric

mean of divergences between different classes, 2) the geometric mean of

normalized divergences between different classes, and 3) the geometric mean of

all divergences (the divergences and the normalized divergences) between

different classes. The first method is studied because the geometric mean

increases the effects of small divergences and at the same time reduces the effects

of large divergences. The second method is studied to further reduce the effects of

large divergences. The intuition is the product of normalized divergences is large

when they are similar to each other. However, the second method cannot be

directly used for subspace selection. This is because there are subspaces in which

all divergences become small, but all normalized divergences are comparable in

size. Consequently, we linearly combine the first and the second methods

190

together. To apply the geometric mean based subspace selection for real

applications, we suppose the samples are sampled from Gaussian distributions and

we use the KL divergence to measure differences between different classes.

Because we drop the identical covariances assumption in LDA, we do not meet

the heteroscedastic problem. The advantages of the combination of the geometric

mean and the KL divergences are: 1) it is compatible with the heteroscedastic

property of the distributions of samples in different classes; 2) it selects suitable

discriminative subspace when samples are drawn from Gaussian mixture models;

and 3) it significantly reduces the class separation problem when KL divergences

of difffernt classes are not evenly distributed. For real applications, we use the

Gaussian mixture model to model the samples in each class, and thus avoid the

multimodal problem. Based on a large number of experiments, from synthetic

data to hand writing digital recognition, the geometric mean combined with the

KL divergence outperforms LDA and its representative extensions.

The second type of these problems with LDA is the small sample size (SSS)

problem [38][49][139][123][19][175][55][173][174][180]. LDA meets this

problem when the number of training samples is less than the dimension of the

feature space. In computer vision research, this problem can be reduced in a

natural way by introducing the structure information as constraints, because

objects in computer vision research are always represented by multidimensional

arrays, i.e., tensors [75]. For example, a face image in face recognition, an

averaged gait image in human gait recognition, and a video shot in video

management. Although there are some algorithms applying the structure

information for subspace selection, e.g., tensor rank one analysis (TR1A) [132],

general tensor analysis (GTA) [75][162][171], and two dimensional linear

discriminant analysis (2DLDA) [174], each of these methods has its own

drawbacks for classification. TR1A and GTA are reconstructive models, i.e., they

are used to produce representations for sufficient reconstruction but not for

classification. The 2DLDA fails to converge in the training stage, although its

effectiveness and efficiency have been demonstrated through face recognition

applications. Here, we propose a different discriminative multilinear subspace

method, the general tensor discriminant analysis (GTDA) [144][147], by

combining the differential scatter discriminant criterion and the operations in

multilinear algebra [115][75]. Compared with TR1A, GTA, and 2DLDA, GTDA

191

has the following benefits: 1) provision with a converged alternating projection

training algorithm to obtain a solution, while 2DLDA does not; 2) preservation of

more discriminative information of training samples; 3) acceptance of general

tensors as input; and 4) reduction of the SSS problem in the subsequent

classification, e.g., by LDA. We further extend GTDA by combining the manifold

learning [13] and the operations in multilinear algebra to make the manifold

learning algorithms accept general tensors as input. To examine the effictiveness

and the efficiency of GTDA, we apply it for human gait recognition. Based on a

great deal of comparison, GTDA combined with LDA always achieves the top

level performance for USF HumanID gait database [126].

In supervised learning [30][39], when the size of training samples is small,

learning machines encounter the overfitting problem. Similar to the motivation in

GTDA, we also utilize the structure information as constraints to reduce the

overfitting problem by decreasing the number of parameters needed to model the

training samples. This results in a supervised tensor learning (STL) [149][150]

framework. The framework extends the convex optimization [11] based learning

to accept general tensors as input. To obtain the solution of the algorithms under

the STL framework, we develop an alternating projection method. Based on STL

and its alternating projection optimization algorithm, we illustrate the following

examples, which are the support tensor machine (STM), the tensor minimax

probability machine (TMPM), the tensor Fisher discriminant analysis (TFDA), the

multiple distance metrics learning (MDML). Motivated by TR1A and based on

STL, we develop the tensor rank one discriminant analysis (TR1DA), which is an

iterative discriminative feature extraction method. Finally, we implement TMPM

and TR1DA for image classification and the elapsed time problem in human gait

recognition, respectively. By comparing TMPM with MPM, we know TMPM

reduces the overfitting problem in supervised learning. By comparing TR1DA

with principal component analysis (PCA), linear discriminant analysis (LDA), and

tensor rank one analysis (TR1A), we know TR1DA reduces the SSS problem.

In summary, this thesis deals with non trivial problems in discriminative subspace

selection, which are how to select the most discriminative subspace for

classification and how to deal with the SSS problem or over-fitting problem. The

primary contributions of the thesis are as follows:

192

1) we develop a general averaged divergences analysis framework, which is

a combination of the generalized mean function and the Bregman

divergence, for discriminative subspace selection;

2) under this framework, a new method, which combines the geometric

mean and the Kullback–Leibler divergence, is developed to significantly

reduce the class separation problem. With theoretical analysis, we know

the method also reduces the heteroscedastic problem and the multimodal

problem;

3) the kernelization of this new method is also developed for nonlinear

problems. Unlike existing kernel algorithms, we prove the kernel version

is equivalent to the linear version followed by the kernel principal

component analysis;

4) a large number of empirical studies based on both synthetic and real data

show the new discriminative subspace selection method performs better

than LDA and its representative extensions;

5) we propose GTDA to reduce the SSS problem for LDA. The advantages

of GTDA compared with existing pre-processing methods, e.g., principal

component analysis (PCA), tensor rank one analysis (TR1A), general

tensor analysis (GTA), and two dimensional LDA (2DLDA), are: i)

reduction of the SSS problem for subsequent classification, e.g., by LDA,

ii) preservation of discriminative information in training tensors, while

PCA, TR1A, and MSA do not guarantee this, iii) provision with stable

recognition rates because the optimization algorithm of GTDA converges,

while that of 2DLDA does not, and iv) acceptance of general tensors as

input, while 2DLDA only accepts matrices as input;

6) we provide a mathematical proof to demonstrate the convergence property

at the training stage. The significance of the proof is it is the first

theoretical study for the convergence issue of the alternating projection

based training algorithms for tensor subspace selection;

7) we apply the developed GTDA to human gait recognition. By applying

Gabor filters for averaged gait image representation, GTDA for subspace

selection, and LDA for classification, we achieve the stat-of-the-art

performance; and

193

8) we develop a STL framework and an alternating projection optimization

algorithm to reduce the over–fitting problem in convex optimization

based learning. Based on them, we propose STM, TMPM, TFDA, and

MDML. Compared with existing popular classifiers, e.g., SVM, MPM,

FDA, and DML, the advantages of their tensor extensions are: i)

generalizing better for the small size training set than vector based

classifiers, ii) converging well in the training stage compared with

existing tensor classifiers, e.g., 2DLDA, and iii) reducing training

computational complexities of vector based classifiers.

194

6. Appendices

 Appendix for Chapter 2

Let L
ix R∈
r (1 i n≤ ≤) be a zero mean set of training samples, i.e.,

() 1
1 0n

ii
m n x

=
= =∑r r . Let () 1

1 n T
i ii

S n x x
=

= ∑ r r be the covariance matrix, and let

U be the linear transformation matrix in PCA. The Frobenius norm is denoted by

Fro
⋅ . We have the following properties of PCA as defined in Section 2.1.

Property 2.1: PCA maximizes the variance in the projected subspace, i.e.,

() 2

1

1arg max tr arg max
n

T T
i FroU U i

U SU U x
n =

= ∑ r .

Proof.

()

()
1

2

1 1

1arg max tr arg max tr

1 1arg max tr arg max

n
T T T

i i
U U i

n n
T T T

i i i FroU Ui i

U SU U x x U
n

U x x U U x
n n

=

= =

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

= =

∑

∑ ∑

r r

r r r

Therefore, PCA maximizes the variance in the projected subspace. ■

Property 2.3: PCA minimizes the reconstruction error, i.e.,

() 2

1

1arg max tr arg min
n

T T
i i FroU U i

U SU x UU x
n =

= −∑ r r .

Proof.

It is sufficient to prove
2 2

1 1

1 1arg max arg min
n n

T T
i i iFro FroU Ui i

U x x UU x
n n= =

= −∑ ∑r r r .

() ()

()

2

1

1

1

1arg min

1arg min

1arg min

n
T

i i FroU i

n TT T
i i i i

U i

n
T T T T T T T T
i i i i i i i i

U i

x UU x
n

x UU x x UU x
n

x x x UU x x UU x x UU UU x
n

=

=

=

−

= − −

= − − +

∑

∑

∑

r r

r r r r

r r r r r r r r

In PCA, because TU U I= , we have

195

()

()

()

1

1

1

2

1

1arg min

1arg min

1arg min

1arg max

n
T T T T T T T T
i i i i i i i i

U i

n
T T T
i i i i

U i

n
T T
i i

U i

n
T

i FroU i

x x x UU x x UU x x UU UU x
n

x x x UU x
n

x UU x
n

U x
n

=

=

=

=

− − +

= −

= −

=

∑

∑

∑

∑

r r r r r r r r

r r r r

r r

r

Therefore, PCA minimizes the reconstruction error. ■

Property 2.4: PCA decorrelates the training samples in the projected subspace.

Proof.

Let U be the projection, which is calculated according to PCA. Project all

training samples ixr using U as T
i iy U x=
r r , where 'L LU R ×∈ .

Therefore, the covariance of the projected data is

()()
1 1

1 1n n TT T T
y i i i i

i i

S y y U x U x
n n= =

= =∑ ∑r r r r

1 1

1 1n n
T T T T

i i i i
i i

U x x U U x x U
n n= =

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

∑ ∑r r r r

TU SU=

Because TU SU is a diagonal matrix, PCA decorrelates the training samples ixr

in the projected subspace. ■

Property 2.5: PCA maximizes the mutual information between xr and Ty U x=
r r

on Gaussian data.

Proof.

Let U be the projection, which is calculated according to PCA. Project all

training samples xr using U as Ty U x=
r r , where 'L LU R ×∈ .

The mutual information is () () ()
() ()

,
, , log

Y X

p x y
I X Y p x y dXdY

p x p y
= ∫ ∫

r r
r r

r r and we

have () () () (), |I X Y H Y H Y X H Y= − = , because Ty U x=
r r . Here, ()H Y is

the entropy of Y and ()|H Y X is the entropy of Y with the given X .

196

The training samples are normally distributed with zero mean and covariance S ,

so the projected training samples are also normally distributed with zero mean and

covariance T
yS U SU= . Therefore, the entropy ()H yr is given by

() () ()logH y p y y dy= −∫
r r r r

()1 ' 1log 2 log
2 2 2 y

N Sπ= + +

()1 ' 1log 2 log
2 2 2

TN U SUπ≤ + + .

Because U consists of the eigenvectors of S corresponding to the first largest

'L eigenvalues of S , U maximizes the mutual information on Gaussian data.

■

Observation 2.1: LDA maximizes the arithmetic mean of the KL divergences

between all pairs of classes, under the assumption that the Gaussian distributions

for different classes all have the same covariance matrix. The optimal projection

matrix U in LDA can be obtained by maximizing a particular ()V Uϕ defined

in (2.38).

Proof.

According to (2.36) and (2.37), the KL divergence between the ith class and the jth

class in the projected subspace with the assumption of equal covariance matrices

(i jΣ = Σ = Σ) is:

() ()()1
|| tr constantT T

U i j ijD p p U U U D U
−

= Σ + .

Then, we have

()
1

* arg max ||i j U i j
U i j c

U q q D p p
≤ ≠ ≤

= ∑

()()()1

1
 arg max tr T T

i j ij
U i j c

q q U U U D U
−

≤ ≠ ≤

= Σ∑

() 1

1

 arg max tr T T
i j ij

U i j c

U U U q q D U
−

≤ ≠ ≤

⎛ ⎞⎛ ⎞
= Σ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑

()
11

1 1

 arg max tr
c c

T T
i j ij

U i j i
U U U q q D U

−−

= = +

⎛ ⎞⎛ ⎞
= Σ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑ ,

where
1

c
i i kk

q n n
=

= ∑ is the prior probability of the ith class.

197

Because
1

1 1

c c

b i j ij
i j i

S q q D
−

= = +

=∑ ∑ , as proved by Loog in [96], and t b wS S S= + = Σ

where bS , wS , and tS are defined in (2.10), we have:

() ()()1

1
arg max || arg max tr T T

i j U i j w b
U Ui j c

q q D p p U S U U S U
−

≤ ≠ ≤

=∑ . ■

The generalized geometric mean is upper bounded by the arithmetic mean of the

divergences, i.e.,

() ()1
11

1

|| ||
i j

m n
m n c

q q
i jq q

U i j U i j
i j ci j c m n

m n c

q q
D p p D p p

q q≤ ≠ ≤
≤ ≠ ≤≤ ≠ ≤

≤ ≠ ≤

⎛ ⎞
⎜ ⎟∑⎡ ⎤ ≤⎣ ⎦ ⎜ ⎟
⎜ ⎟
⎝ ⎠

∑∏ ∑
.

Proof.

Because
1

1

1i j

i j c m n
m n c

q q
q q≤ ≠ ≤

≤ ≠ ≤

=∑ ∑
 and ()|| 0U i jD p p > , according to the Jensen

inequality [21], we have

()
1

1

||i j
U i j

i j c m n
m n c

q q
D p p

q q≤ ≠ ≤
≤ ≠ ≤

∑ ∑

()()()
1

1

exp log ||i j
U i j

i j c m n
m n c

q q
D p p

q q≤ ≠ ≤
≤ ≠ ≤

= ∑ ∑

()()
1

1

exp log ||i j
U i j

i j c m n
m n c

q q
D p p

q q≤ ≠ ≤
≤ ≠ ≤

⎛ ⎞
⎜ ⎟≥ ⎜ ⎟
⎜ ⎟
⎝ ⎠
∑ ∑

() 1
1

||
i j

m n
m n c

q q

q q
U i j

i j c

D p p
≤ ≠ ≤

≤ ≠ ≤

∑⎡ ⎤= ⎣ ⎦∏ .

■

MGMD is a linear combination of 1) the log of the geometric mean of the

divergences and 2) the log of the geometric mean of normalized divergences, i.e.,

()
()

() () 1

1
1

1

1

log ||
* arg max

1 log ||
i j

m n
m n c

c c

U i j
i j c

q qU
q q

U i j
i j c

E p p
U

D p p

α

α
≤ ≠ ≤

−

≤ ≠ ≤

≤ ≠ ≤

⎧ ⎫
⎡ ⎤⎪ ⎪
⎢ ⎥⎪ ⎪⎪ ⎪⎣ ⎦= ⎨ ⎬

⎪ ⎪
∑⎡ ⎤+ −⎪ ⎪⎣ ⎦⎪ ⎪⎩ ⎭

∏

∏

198

where 0 1α< < .

It is equivalent to

() ()
1 1

arg max log || log ||U i j i j U i j
U i j c i j c

D p p q q D p pη
≤ ≠ ≤ ≤ ≠ ≤

⎧ ⎫⎛ ⎞⎪ ⎪−⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭
∑ ∑ ,

where
()

()()
1

1

1

1 1

m n
m n c

m n
m n c

c c q q

c c q q

α
η

α α
≤ ≠ ≤

≤ ≠ ≤

−
=

− − +

∑
∑

.

Deduction 2.1:

()
()

() ()

() ()

1

1
1

1

1

1 1

log ||
* arg max

1 log ||

 arg max log || log || .

i j

m n
m n c

c c

U i j
i j c

q qU
q q

U i j
i j c

U i j i j U i j
U i j c i j c

E p p
U

D p p

D p p q q D p p

α

α

η

≤ ≠ ≤

−

≤ ≠ ≤

≤ ≠ ≤

≤ ≠ ≤ ≤ ≠ ≤

⎧ ⎫
⎡ ⎤⎪ ⎪
⎢ ⎥⎪ ⎪⎪ ⎪⎣ ⎦= ⎨ ⎬

⎪ ⎪
∑⎡ ⎤+ −⎪ ⎪⎣ ⎦⎪ ⎪⎩ ⎭

⎧ ⎫⎛ ⎞⎪ ⎪= −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

∏

∏

∑ ∑

Deduction

()
()

() () 1

1
1

1

1

log ||
* arg max

1 log ||
i j

m n
m n c

c c

U i j
i j c

q qU
q q

U i j
i j c

E p p
U

D p p

α

α
≤ ≠ ≤

−

≤ ≠ ≤

≤ ≠ ≤

⎧ ⎫
⎡ ⎤⎪ ⎪
⎢ ⎥⎪ ⎪⎪ ⎪⎣ ⎦= ⎨ ⎬

⎪ ⎪
∑⎡ ⎤+ −⎪ ⎪⎣ ⎦⎪ ⎪⎩ ⎭

∏

∏

() ()

() ()
1

1
1

1 log ||
1

 arg max 1
log ||

U i j
i j c

U
i j U i j

i j cm n
m n c

E p p
c c

q q D p p
q q

α

α
≤ ≠ ≤

≤ ≠ ≤
≤ ≠ ≤

⎧ ⎫
⎪ ⎪−⎪ ⎪

= ⎨ ⎬−
⎪ ⎪+
⎪ ⎪
⎩ ⎭

∑

∑∑

()
()

()

() ()

1
1

1
1

||1 log
1 ||

 arg max
1

log ||

i j U i j

i j c m n U m n
m n c

U

i j U i j
i j cm n

m n c

q q D p p
c c q q D p p

q q D p p
q q

α

α

≤ ≠ ≤
≤ ≠ ≤

≤ ≠ ≤
≤ ≠ ≤

⎧ ⎫
⎪ ⎪

−⎪ ⎪⎪ ⎪= ⎨ ⎬
−⎪ ⎪+⎪ ⎪

⎪ ⎪⎩ ⎭

∑ ∑

∑∑

199

()
() ()

()

1
1

1

1
log ||

1
 arg max

log ||

i j U i j
i j cm n

m n c
U

m n U m n
m n c

q q D p p
c c q q

q q D p p

αα

α

≤ ≠ ≤
≤ ≠ ≤

≤ ≠ ≤

⎧ ⎫⎛ ⎞
−⎪ ⎪⎜ ⎟+⎪ ⎪⎜ ⎟−⎪ ⎪⎜ ⎟= ⎨ ⎬⎝ ⎠

⎪ ⎪⎛ ⎞⎪ ⎪− ⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∑∑

∑

() ()
1 1

 arg max log || log ||i j U i j i j U i j
U i j c i j c

q q D p p q q D p pη
≤ ≠ ≤ ≤ ≠ ≤

⎧ ⎫⎛ ⎞⎪ ⎪= −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭
∑ ∑

()

()
1 1

1

log log ||

 arg max
log ||

i j U i j
i j c i j c

U
i j U i j

i j c

q q D p p

q q D p pη

≤ ≠ ≤ ≤ ≠ ≤

≤ ≠ ≤

⎧ ⎫+
⎪ ⎪⎪ ⎪= ⎨ ⎬⎛ ⎞⎪ ⎪− ⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

∑ ∑

∑

() ()
1 1

 arg max log || log ||U i j i j U i j
U i j c i j c

D p p q q D p pη
≤ ≠ ≤ ≤ ≠ ≤

⎧ ⎫⎛ ⎞⎪ ⎪= −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭
∑ ∑ ,

where
()

()()
1

1

1

1 1

m n
m n c

m n
m n c

c c q q

c c q q

α
η

α α
≤ ≠ ≤

≤ ≠ ≤

−
=

− − +

∑
∑

 and 0 1α< < . The supremum of η is

()1c c − and the infimum of η is 0. When 0α = / 0η = , (2.48) reduces to

(2.43); and when 1α = / ()1c cη = − , (2.48) reduces to (2.46). ■

Claim 2.1: () ()L U L UB= , where B is any orthogonal r r× matrix and U

is the projection matrix, which maximizes ()L U defined in (2.51).

Proof.

Because () () ()
1 1

log || log ||U i j i j U i j
i j c i j c

L U KL p p q q KL p pη
≤ ≠ ≤ ≤ ≠ ≤

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑ ∑ , it is

sufficient to prove () ()|| ||U i j UB i jKL p p KL p p= . Here ip is the probability

density function for samples in the ith class, i.e., () ()|i ip p x p x y i= = =
r r .

According to the definition of ()||U i jKL p p in (2.52), we have

()

() ()()
()()

1

1

1|| log log
2

 tr

 tr ,

T T T T
UB i j j i

T T T T
j i

T T T T
j ij

KL p p B U UB B U UB

B U UB B U UB

B U UB B U D UB

−

−

= Σ − Σ

+ Σ Σ

+ Σ

200

where iΣ is the covariance matrix of the ith class and

() ()ij i j i jD m m m m= − ⊗ −
r r r r .

Because AB A B= when A and B are square matrices, we have

()

() ()()
()()

1

1

1|| log log
2

 tr

 tr .

T T
UB i j j i

T T T T
j i

T T T T
j ij

KL p p U U U U

B U UB B U UB

B U UB B U D UB

−

−

= Σ − Σ

+ Σ Σ

+ Σ

Because

() () ()
()

1 1 11

1
 ,

T T T T
j j

T T
j

B U UB B U U B

B U U B

− − −−

−

Σ = Σ

= Σ

we have

()

() ()()
()()
()

1

1

1|| log log
2

 tr

 tr

 || .

T T
UB i j j i

T T
j i

T T
j ij

U i j

KL p p U U U U

U U U U

U U U D U

KL p p

−

−

= Σ − Σ

+ Σ Σ

+ Σ

=

Therefore, () ()L U L UB= . ■

Lemma 2.1: If U is a solution to MGMKLD and x xU U U ⊥= ⊕ , then xU is a

solution to MGMKLD, and () ()xL U L U= . Here, the column space of xU is

spanned by the samples { } 1
; 1| ij n

i j i cx ≤ ≤
≤ ≤

r and the column space of xU ⊥ is the

orthogonal complement of the column space of xU .

Proof.

Because () ; 0
T

x i jU x⊥ =
r and () 0

T

x xU U⊥ = , we have

() ()T TT
x x i x i x iU U m U m U m⊥ ⊥+ = +

r r r ()();
1

1 in TT T
x i x i j x i

ji

U m U x U m
n

⊥

=

= + =∑r r r

and

() ()T

x x i x xU U U U⊥ ⊥⊕ Σ ⊕

201

() ()() () ()(); ;
1

1 in TT T

x x i j i x x i j i
ji

U U x m U U x m
n

⊥ ⊥

=

⎛ ⎞= ⊕ − ⊕ −⎜ ⎟
⎝ ⎠

∑ r r r r

()() ()()(); ;
1

1 .
in TT T T

x i j i x i j i x i x
ji

U x m U x m U U
n =

= − − = Σ∑ r r r r

That is ()T T
x x i x iU U m U m⊥⊕ =

r r and () ()T T
x x i x x x i xU U U U U U⊥ ⊥⊕ Σ ⊕ = Σ . With

these two equations, we can get () ()|| ||
xU i j U i jKL p p KL p p= , because:

()||U i jKL p p

() ()()()1

log log1
2 tr

T T
j i

T T
j i ij

U U U U

U U U D U
−

⎛ ⎞Σ − Σ
⎜ ⎟= ⎜ ⎟+ Σ Σ +⎜ ⎟
⎝ ⎠

() () () ()

() ()()
() ()()()

1

log log

1
2 tr

T T

x x j x x x x i x x

T

x x j x x

T

x x i ij x x

U U U U U U U U

U U U U

U U D U U

⊥ ⊥ ⊥ ⊥

−
⊥ ⊥

⊥ ⊥

⎛ ⎞⊕ Σ ⊕ − ⊕ Σ ⊕⎜ ⎟
⎜ ⎟

⎛ ⎞⎜ ⎟= ⊕ Σ ⊕⎜ ⎟⎜ ⎟+ ⎜ ⎟⎜ ⎟
⎜ ⎟⊕ Σ + ⊕⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

() ()()() ()1

log log1 ||
2 tr x

T T
x j x x i x

U i jT T
x j x x i ij x

U U U U
KL p p

U U U D U
−

⎛ ⎞Σ − Σ
⎜ ⎟= =⎜ ⎟+ Σ Σ +⎜ ⎟
⎝ ⎠

Therefore () ()xL U L U= , i.e., the matrices U and Ux are equally good

solutions to MGMKLD. ■

Deduction 2.2: To obtain the kernel Gram matrix [129] based representation in

(2.61), we need to get the () ;
T

iU U Uφ φ φΣ reformulated by the kernel dot product

trick as

;

' , , , , '
1 1 11 1 ,

i i i i i i i i i i

T
i

T
T T
n H C C C C C C C C C C n H

i i i

U U

K I I K
n n n

φ φ φ

× ×

Σ

⎛ ⎞⎛ ⎞
= Λ − − Λ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

where .; jK is the ()1

1

thi
kk

n j−

=
+∑ column of the kernel Gram matrix

() (); ;

T

i j i jF n F n
K x xφ φ

× ×
⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦

r r (); ;,i j i jk x x⎡ ⎤= ⎣ ⎦
r r , (); ;,i j i jk x xr r is the kernel function

[129], ,
,

C Ci i

i iC CI R∈ is the identity matrix, ,
,1 i i

i i

C C
C C R∈ is a matrix in which

202

every entry is 1, .; 1i i
C j j n

K K
≤ ≤

⎡ ⎤= ⎣ ⎦ is composed of the columns in the kernel

Gram matrix from the ()1

1
1

thi
kk

n−

=
+∑ column to the ()1

thi
kk

n
=∑ column.

Deduction

;
T

iU Uφ φ φΣ

() () ()

() () ()

' ; ; ;
1

1

; ; ; '
1

1

1

1

i

i

i

nTT
n H p q i j i kF nn ki

Tnji
i j i l p q n HF nli

x x x
n

n
x x x

n

φ φ φ

φ φ φ

× ×
=

=

××
=

⎛ ⎞⎛ ⎞⎡ ⎤Λ −⎜ ⎟⎜ ⎟⎣ ⎦ ⎝ ⎠⎜ ⎟
= ⎜ ⎟

⎛ ⎞⎜ ⎟⎡ ⎤− Λ⎜ ⎟ ⎣ ⎦⎜ ⎟⎝ ⎠⎝ ⎠

∑
∑

∑

r r r

r r r

' .; .; .; .; '
1 1 1

1 1 1i i i
Tn n n

T
n H j k j l n H

j k li i i

K K K K
n n n× ×

= = =

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟= Λ − − Λ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
∑ ∑ ∑

' .; .; '
1

1 1 11 1
i

i i i i

Tn
T
n H j C C j C C n H

ji i i

K K K K
n n n× ×

=

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟= Λ − − Λ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
∑

' , , '
1 1 11 1

i i i i i i i i

T
T
n H C C C C C C C C n H

i i i

K K K K
n n n× ×

⎛ ⎞⎛ ⎞
= Λ − − Λ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

' , , , , '
1 1 11 1

i i i i i i i i i i

T
T T
n H C C C C C C C C C C n H

i i i

K I I K
n n n× ×

⎛ ⎞⎛ ⎞
= Λ − − Λ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
. ■

Deduction 2.3: To obtain the kernel Gram matrix [129] based representation in

(2.61), we need to get the ;
T

ijU D Uφ φ φ reformulated by the kernel dot product trick

as

;

' '
1 1 1 11 1 1 1 ,

i i j j i i j j

T
ij

T

T
n H C C C C C C C C n H

i j i j

U D U

K K K K
n n n n

φ φ φ

× ×

⎛ ⎞⎛ ⎞
= Λ − − Λ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

where .; jK is the ()1

1

thi
kk

n j−

=
+∑ column of the kernel Gram matrix

() (); ;

T

i j i jF n F n
K x xφ φ

× ×
⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦

r r (); ;,i j i jk x x⎡ ⎤= ⎣ ⎦
r r , (); ;,i j i jk x xr r is the kernel function

[129], ,
,

C Ci i

i iC CI R∈ is the identity matrix, ,
,1 i i

i i

C C
C C R∈ is the unit matrix,

203

.; 1i i
C j j n

K K
≤ ≤

⎡ ⎤= ⎣ ⎦ is composed of the columns in the kernel Gram matrix from the

()1

1
1

thi
kk

n−

=
+∑ column to the ()1

thi
kk

n
=∑ column.

Deduction

;
T

ijU D Uφ φ φ

() () ()

() () ()

' ; ; ;
1 1

; ; ; '
1 1

1 1

1 1

ji

ji

nnTT
n H p q i k j lH n k li j

Tnn

i k j l p q n HH nk li j

x x x
n n

x x x
n n

φ φ φ

φ φ φ

× ×
= =

××
= =

⎛ ⎞⎛ ⎞
⎡ ⎤Λ −⎜ ⎟⎜ ⎟⎣ ⎦ ⎜ ⎟⎜ ⎟⎝ ⎠

= ⎜ ⎟
⎛ ⎞⎜ ⎟

⎡ ⎤− Λ⎜ ⎟⎜ ⎟⎣ ⎦⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑

∑ ∑

r r r

r r r

' .; .; .; .; '
1 1 1 1

1 1 1 1j ji i
Tn nn n

T
n H k l k l n H

k l k li j i j

K K K K
n n n n× ×

= = = =

⎛ ⎞⎛ ⎞
= Λ − − Λ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑

' '
1 1 1 11 1 1 1

i i j j i i j j

T

T
n H C C C C C C C C n H

i j i j

K K K K
n n n n× ×

⎛ ⎞⎛ ⎞
= Λ − − Λ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
. ■

Theorem 2.1: MGMKLD followed by KPCA is equal to KMGMKLD.

Proof.

To simplify the formulation, we assume that () ();1 1
1 0ic n

i ji j
m n xφ φ

= =
= =∑ ∑r r .

The eigenvectors calculated in KPCA are denoted as:

;
1
1

i ii i

i

n ni j
i c
j n

P Rβ ×
≤ ≤
≤ ≤

∑ ∑⎡ ⎤= ∈⎣ ⎦ .

Then,
; ;

; ,1 ;1i j i j
i j iK i c j nβ λ β= ≤ ≤ ≤ ≤ .

For a sample ;i jx , its corresponding vector in KPCA, the higher dimensional

space is:

()() () (); ; ; ; .;1
,

T
KPCA T T

p q i j p q i j jF n n
z x P x P k x x P Kφ φ

× ×
⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦

r r r rr .

Then, we have T KPCA
iU UΣ , given by:

()(); ;
1 TT KPCA T KPCA KPCA KPCA KPCA

i i j i i j ij
i

U U U x m x m U
n

Σ = − −∑ r r r r

.; .; .; .;
1 1 1

T
T T T T T

j j j jj l l
i i i

U P K P K P K P K U
n n n

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ ∑

204

.; .; .; .;
1 1 1

T
T T

j j j jj l l
i i i

U P K K K K PU
n n n

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ ∑

, , , ,
1 1 11 1

i i i i i i i i i i

T
T T T

C C C C C C C C C C
i i i

U P K I I K PU
n n n

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

and T KPCA
ijU D U is given by:

; ; ; ;
1 1 1 1

1 1 1 1j ji i
Tn nn n

T KPCA T KPCA KPCA KPCA KPCA
ij i k j l i k j l

k l k li j i j

U D U U x x x x U
n n n n= = = =

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑r r r r

.; .; .; .;
1 1 1 1

1 1 1 1j ji i
Tn nn n

T T T T T
k l k l

k l k li j i j

U P K P K P K P K U
n n n n= = = =

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑

.; .; .; .;
1 1 1 1

1 1 1 1j ji i
Tn nn n

T T
k l k l

k l k li j i j

W P K K K K PU
n n n n= = = =

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑

1 1 1 11 1 1 1
i i j j i i j j

T

T T
C C C C C C C C

i j i j

U P K K K K PU
n n n n

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

As P is in full rank, denoting 'n H PU×Λ = , we then have

()' '
T KPCA T

i n H i n HU U φ× ×Σ = Λ Σ Λ

and

()' '
T KPCA T

ij n H ij n HU D U Dφ× ×= Λ Λ .

Therefore,

() () ()()'ij ij n H ijKL PU KL KL Uφ×= Λ = .

Consequently,

() ()()L PU L Uφ= .

That is MGMKLD followed by KPCA is equal to KMGMKLD. ■

205

 Appendix for Chapter 3

Theorem 3.1 (Higher–Order Singular Value Decomposition)

A tensor 1 2 ML L LR × × ×∈X L can be decomposed as the product of a tensor
1 2 ML L LR × × ×∈Y L with a series of orthogonal matrices k kL L

kU R ×∈ , i.e.,

1
k

M

k
k

U×
=

= ∏X Y ,

such that, the subtensor of 1 1 1k k M

k

L L L L
l Rα

− +× × ×
= ∈Y L , obtained by fixing the kth

(1 k kl L≤ ≤) index to α , is orthogonal to 1 1 1k k M

k

L L L L
l Rβ

− +× × ×
= ∈Y L , i.e.,

()(); 1: 1 1: 1 0
k kl l M Mα β= =⊗ − − =Y Y� �

� �� � .

when α β≠ .

Finally,

1 2 0
k k k kl l l LFro Fro Fro= = =≥ ≥ ≥ ≥Y Y YL .

Proof.

Decompose the mode–k matricizing of X through SVD,

()mat T
k k k kU V= ΣX

where kU , kV are orthogonal matrices and { }1 2diag , , , kL
k k k kσ σ σΣ = L with

i j
k kσ σ≥ for all i j≤ .

Then, we have

() ()[]1 2 1 1mat mat T
k k k k k NU U U U U U− += ⊗ ⊗ ⊗ ⊗X Y L L .

Therefore, we have

()[]1 2 1 1mat TT
k k k k k k k NU V U U U U U U− +Σ = ⊗ ⊗ ⊗ ⊗Y L L .

i.e.,

() []1 2 1 1mat T
k k k k k NV U U U U U− += Σ ⊗ ⊗ ⊗ ⊗Y L L .

Because kU and kV are unitary matrices,

()(); 1: 1 1: 1 0
k kl l M Mα β= =⊗ − − =Y Y� �

� �� � ,

for all α β≠ , and

206

1 2
1 2 0k

k k k k

L
l k l k l L kFro Fro Fro

σ σ σ= = == ≥ = ≥ ≥ = ≥Y Y YL .

It follows from the above analysis that HOSVD is proved. ■

Theorem 3.2

Minimizing ()
2

1
1

|
M

M
k k k

k Fro

f u uλ= ⊗
=

= − ∏Xr r (
1

k

M
T
k

k

uλ ×
=

= ∏X r) is equivalent to

maximizing

()
2

1
1

|
k

M
M T

k k k
k Fro

g u u= ×
=

= ∏Xr r .

Moreover, 2

Fro
f g= −X .

Proof.

Because

()

()

2

1
1

2
2 2

1 1

2 2

2
1

|

 2

 | ,

k

M
M

k k k
k Fro

M M
T
k kFro

k kFro Fro

Fro

M
k kFro

f u u

u u

g u

λ

λ λ

λ

= ⊗
=

× ⊗
= =

=

= −

= − +

= −

= −

∏

∏ ∏

X

X X

X

X

r r

r r

r

minimizing ()1|Mk kf u =
r is equivalent to maximizing ()1|Mk kg u =

r . ■

Theorem 3.3

Given a sequence of unitary matrices 'k kL L
kU R ×∈ (1 k M≤ ≤ and d dL L′ <) and

a tensor 1 2 ML L LR × ×∈X L , the function () 2ˆ ˆ
Fro

f = −X X X , where ()ˆrankd dL′=X ,

is minimized, when 1 2ˆ ML L LR × ×∈X L is given by

()
1 1 1

ˆ
k k k

M M M
T T
k k k k

k k k

U U U U× × ×
= = =

⎛ ⎞
= =⎜ ⎟
⎝ ⎠
∏ ∏ ∏X X X .

Proof.

It is sufficient to prove Y minimizes ()
2

1
k

M

k
k Fro

g U×
=

= − ∏Y X Y ,

207

where
1

k

M
T
k

k

U×
=

= ∏Y X .

Let
1

k

M

k
k

U×
=

= − ∏E X Y .

Because the columns in kU , 1 k M≤ ≤ , are orthogonal, we have

()

1 1 1

1 1 1

1 1

1

 .

k k k

k k k

k k

k

M M M
T T
k k k

k k k

M M M
T T
k k k

k k k

M M
T T
k k k

k k
M

T
k

k

U U U

U U U

U U U

U

× × ×
= = =

× × ×
= = =

× ×
= =

×
=

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

= −

= −

= −

∏ ∏ ∏

∏ ∏ ∏

∏ ∏

∏

E X Y

X Y

X Y

X Y

Therefore,
1

k

M

k
k

U×
=
∏Y is the least square estimation of X , i.e., ()g Y is

minimized when
1

k

M
T
k

k

U×
=

= ∏Y X . ■

Theorem 3.4

For a given tensor 1 2 ML L LR × ×∈X L , minimizing

() ()
2

1
1

|
k

M
M T

k k k k
k Fro

f U U U= ×
=

= − ∏X X

is equivalent to maximizing

()
2

1
1

|
k

M
M T

k k k
k Fro

g U U= ×
=

= ∏X .

Proof.

Because

()
2

1
1 1

2 2

1 1

2 2

1 1

2 2

|

 2 ,

 2 ,

 ,

k k

k k

k k

M M
M T

k k k k
k k Fro

M M
T
k kFro Fro

k k

M M
T T
k kFro Fro

k k

Fro Fro

f U U U

U U

U U

= × ×
= =

× ×
= =

× ×
= =

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠

= − +

= −

∏ ∏

∏ ∏

∏ ∏

X X

X X X Y

X X X Y

X Y

208

where
1

k

M
T
k

k

U×
=

= ∏Y X , minimizing ()1|Mk kf U = is equivalent to maximizing

()1|Mk kg U = . ■

Deduction 3.1

() ()()arg max tr trT T
b w

U
U U S U U S Uζ∗ = −

()()

()()

1

; ;
1 1

tr

 arg max
tr

i

c
TT

i i i
i

ncU TT
i j i i j i

i j

U n m m m m U

U x m x m Uζ

=

= =

⎛ ⎞⎛ ⎞⎡ ⎤− −⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠⎜ ⎟
= ⎜ ⎟⎛ ⎞⎡ ⎤⎜ ⎟− − −⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎣ ⎦⎝ ⎠⎝ ⎠

∑

∑∑

()()

()()
1

; ;
1 1

tr

 arg max
tr

i

c
TT

i i i
i

ncU TT
i j i i j i

i j

nU m m m m U

U x m x m Uζ

=

= =

⎛ ⎞⎛ ⎞⎡ ⎤− −⎜ ⎟⎜ ⎟⎣ ⎦⎝ ⎠⎜ ⎟= ⎜ ⎟⎛ ⎞⎡ ⎤⎜ ⎟− − −⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠⎝ ⎠

∑

∑∑

()()()
()()()

1

; ;
1 1

tr
 arg max

tr
i

c
TT

i i i
i

nc TU T
i j i i j i

i j

n U m m m m U

U x m x m Uζ

=

= =

⎛ ⎞⎡ ⎤− −⎜ ⎟⎣ ⎦
⎜ ⎟=
⎜ ⎟⎡ ⎤− − −⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

∑

∑∑

() ()()
() ()()

1

; ;
1 1

tr
 arg max

tr
i

c TT T
i i i

i
nc TU T T

i j i i j i
i j

n U m m U m m

U x m U x mζ

=

= =

⎛ ⎞⎡ ⎤− −⎜ ⎟⎣ ⎦
⎜ ⎟=
⎜ ⎟

⎡ ⎤− − −⎜ ⎟⎣ ⎦⎝ ⎠

∑

∑∑

()() ()() ()()

()() ()() ()()

1 1
1

; 1 ; 1
1 1

; 1 1
 arg max

; 1 1
i

c
T T

i i i
i

ncU T T
i j i i j i

i j

n m m U m m U

x m U x m Uζ

=

= =

⎛ ⎞− × ⊗ − ×⎜ ⎟
⎜ ⎟=
⎜ ⎟
− − × ⊗ − ×⎜ ⎟
⎝ ⎠

∑

∑∑

� �
� �� �

� �
� �� �

Deduction 3.2

209

()

()
()()

()

()
()()

1

1

1

1
1

|

;
1

1 1
;

1

; 1: 1:

| arg max

; 1: 1:

k

k

M
l l

ki

k

M
T

i kc
k

i M
i T

i k
kM

l l MU T
i j i knc

k

M
i j T

i j i k
k

U
n M M

U
U

U
M M

U
ζ

=

×
=

=
×

=∗
=

×
=

= =
×

=

⎛ ⎞⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠⎜
⎜ ⎛ ⎞⎜ ⊗ −⎜ ⎟⎜ ⎝ ⎠

= ⎜
⎛ ⎞⎜ −⎜ ⎟⎜ ⎝ ⎠⎜−

⎜ ⎛ ⎞
⊗ −⎜ ⎜ ⎟
⎝ ⎠⎝ ⎠

∏
∑

∏

∏
∑∑

∏

M M

M M

X M

X M

� �
� �
� �
� �
� �
� �
� �
� �
� �� �

� �
� �
� �
� �
� �
� �
� �
� �
� �� �

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

()()
()()

()()

()()
()()

()()
1

1

| ;

1 1 ;

; 1: 1:

 arg max

; 1: 1:
M

l l i

T T
c i l l l l

i T T
i i l l l l

T TU nc i j i l l l l

T Ti j i j i l l l l

U U
n M M

U U

U U
M M

U U
ζ

=

=

= =

⎛ ⎞− × ×
⎜ ⎟
⎜ ⎟⊗ − × ×
⎜ ⎟= ⎜ ⎟− × ×⎜ ⎟
−⎜ ⎟
⎜ ⊗ − × × ⎟
⎝ ⎠

∑

∑∑

M M

M M

X M

X M

� �
� �
� �
� �
� �� �

� �
� �
� �
� �
� �
� �� �

()()
()() ()()

()()
()()

()()
1

1

|
;

1 1 ;

tr ;

 arg max

tr ;
M

l l i

T
c i l lT

i l lT
i i l l

TU nc i j i l lT
l lTi j i j i l l

U
n U l l U

U

U
U l l U

U
ζ

=

=

= =

⎛ ⎞⎛ ⎞− ×
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⊗ − ×⎝ ⎠⎜ ⎟

= ⎜ ⎟⎛ ⎞− ×⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎜ ⊗ − × ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑

∑∑

M M

M M

X M

X M

� �
� �
� �
� �
� �� �

� �
� �
� �
� �
� �
� �� �

()()
()()

()()
()()

1

1

| ;

1 1 ;

mat

mat
 arg max tr

mat

mat

M
l l i

T
c i l i l l

T T
i l i l l

T
l lTU nc l i j i l l

T Ti j l i j i l l

n U

U
U U

U

U
ζ

=

=

= =

⎛ ⎞⎛ ⎞⎡ ⎤− ×
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥− ×⎣ ⎦⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎡ ⎤− ×⎜ ⎟⎜ ⎟⎢ ⎥−⎜ ⎟⎜ ⎟⎢ ⎥⎜ − × ⎟⎜ ⎟⎣ ⎦⎝ ⎠⎝ ⎠

∑

∑∑

M M

M M

X M

X M

.

Theorem 3.5 The alternating projection method based optimization procedure for

GTDA converges.

Proof.

The alternating projection method never decreases the function value ()1|Ml lf U =

of GTDA between two successive iterations, because it can be interpreted as a

type of monotonic algorithm. We define a continuous function

1 2
1

:
M

M l
l

f S S S S R+

=

× × × = →∏L ,

where l lU S∈ and lS is a closed set, which includes all possible lU .

210

With the definition, f consists of M different mappings:

() ()

()()
()()

()()
()()

1

1

;

1 1 ;

arg max |

mat

mat
 arg max tr .

mat

mat

l l

l l i

M
l l l

U S

T
c i l i l l

T T
i l i l l

T
l lTU S nc l i j i l l

T Ti j l i j i l l

g U f U

n U

U
U U

U

U
ζ

=
∈

=

∈

= =

⎛ ⎞⎛ ⎞⎡ ⎤− ×
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥− ×⎣ ⎦⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎡ ⎤− ×⎜ ⎟⎜ ⎟⎢ ⎥−⎜ ⎟⎜ ⎟⎢ ⎥⎜ − × ⎟⎜ ⎟⎣ ⎦⎝ ⎠⎝ ⎠

∑

∑∑

M M

M M

X M

X M

�

The mapping can be calculated with the given 1
1|ld dU −
= in the tth iteration and

1|Md d lU = + in the (1t −)th iteration of the for–loop in Steps 3–5 in Table 3.6.

Given an initial 1 1U S∈ , the alternating projection generates a sequence of items

(){ }1|Ml lt
U = via ()l lU g U∈ , with each { }1,2,l M∈ L . The sequence has the

following relationship:

1 2 1 2

1 2 1 2

(,1) (,1) (,1) (, 2) (, 2)
 (,) (,) (,) (,)
 (,) .

M

M

a f U f U f U f U f U
f U t f U t f U T f U T
f U T b

= ≤ ≤ ≤ ≤ ≤ ≤
≤ ≤ ≤ ≤ ≤ ≤
≤ =

L

L L

L

where T →+∞ , (,)lf U t means () ()()1 11
| , |l M

d d d d lt t
f U U= = +−

; and a and b

are limited values in the R+ space.

Formally, the alternating projection can be illustrated by a composition of M

sub–algorithms defined as

() ()
1

1
1 1

: | Map
d d

l M
M

l l l d l d
d d l

U U u U
−

= × ×
= = +

Ω ×∏ ∏r
a .

It follows that 1 2 MΩ Ω Ω Ω� o oLo is an algorithm for sets 1|Ml lS = . All sub–

algorithms ()lg U increase the value of f , so Ω is monotonic with respect to

f . ■

211

References

[1]. M. Abramowitz and I. A. Stegun, (Eds.). Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
New York: Dover. 1972.

[2]. M. Aladjem, “Linear Discriminant Analysis for Two Classes via Removal
of Classification Structure,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 19, no. 2, pp. 187–192, Feb. 1997.

[3]. P. Bartlett and J. Shawe–Taylor, “Generalization Performance of Support
Vector Machines and Other Pattern Classifiers,” Advances in Kernel
Methods – Support Vector Learning, B. Scholkopf, C. J. Burges, and A. J.
Smola (eds.), MIT Press, Cambridge, USA, 1998.

[4]. P. Belhumeur and J. Hespanha and D. Kriegman, “Eigenfaces vs.
Fisherfaces: Recognition Using Class Specific Linear Projection,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 711–
720, 1997.

[5]. M. Belkin and P. Niyogi, “Laplacian Eigenmaps and Spectral Techniques
for Embedding and Clustering,” Neural Information Processing Systems,
vol. 14, pp. 585–591, 2002.

[6]. M. Belkin and P. Niyogi, “Laplacian Eigenmaps for Dimensionality
Reduction and Data Representation,” Neural Computation, vol. 15, no. 6,
pp. 1,373–1,396, 2003.

[7]. R. E. Bellman, Adaptive Control Processes. Princeton University Press,
Princeton, NJ, 1966.

[8]. Y. Bengio, J.–F. Paiement, P. Vincent, O. Delalleau, N. Le Roux, and M.
Ouimet, “Out–of–Sample Extensions for LLE, Isomap, MDS, Eigenmaps,
and Spectral Clustering,” Advances in Neural Information Processing
Systems, vol. 16, 2004.

[9]. A. Bissacco, A. Chiuso, Y. Ma and S. Soatto, “Recognition of Human
Gaits,” Proc. IEEE Int’l Conf. Computer Vision and Pattern Recognition,
vol. 2, pp. 52–57, 2001.

[10]. W. M. Boothby, An Introduction to Differential Manifolds and
Riemannian Geometry, 2nd ed. San Diego, CA: Academic, 1986.

[11]. S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge
University Press, 2004.

[12]. S. Boyd, S. J. Kim, L. Vandenberghe, and A. Hassibi, “A Tutorial on
Geometric Programming,” Optimization and Engineering, 2006.

[13]. C. J. C. Burges, “Geometric Methods for Feature Extraction and
Dimensional Reduction,” In Data Mining and Knowledge Discovery
Handbook: A Complete Guide for Practitioners and Researchers, Eds. L.
Rokach and O. Maimon, Kluwer Academic Publishers, 2005.

[14]. L.M. Bregman, “The Relaxation Method to Find the Common Points of
Convex Sets and Its Application to the Solution of Problems in Convex

212

Programming,” USSR Compt. Math. and Math. Phys., no. 7, pp. 200–217,
1967.

[15]. J.C. Burges, “A Tutorial on Support Vector Machines for Pattern
Recognition,” Data Mining and Knowledge Discovery, vol. 2, no. 2, pp.
121–167, 1998.

[16]. L. J. Buturovic, “Toward Bayes–Optimal Linear Dimension Reduction,”
IEEE Trans. Pattern Analysis Machine Intelligence, vol. 16, no. 4, pp.
420–424, April 1994.

[17]. N. Campbell, “Canonical Variate Analysis – a General Formulation,”
Australian Journal of Statistics, vol. 26, pp. 86–96, 1984.

[18]. H. Cevikalp, M. Neamtu, M. Wilkes, and A. Barkana, “Discriminative
Common Vectors for Face Recognition,” IEEE Trans. Pattern Analysis
and Machine Intelligence. vol. 27, no. 1, pp. 4–13, 2005.

[19]. L. F. Chen, H.Y. Liao, M. T. Ko, J. C. Lin, and G. J. Yu, “A New LDA–
based Face Recognition System which Can Solve the Small Sample Size
Problem,” Pattern Recognition, vol. 33, no. 10, pp. 1,713–1,726, 2000.

[20]. Y. Chou, Statistical Analysis, Holt International, 1969.

[21]. T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: Wiley, 1991.

[22]. D. Cunado, M. Nixon, and J. Carter, “Automatic Extraction and
Description of Human Gait Models for Recognition Purposes,” Computer
Vision and Image Understanding, vol. 90, no. 1, pp. 1–41, 2003.

[23]. J. Cutting and L. Kozlowski, “Recognizing Friends by Their Walk: Gait
Perception without Familiarity Cues,” Bulletin of the Psychonomic Society,
vol. 9, pp. 353 – 356, 1977.

[24]. L. S. Daniel and J. Weng, “Hierarchical Discriminant Analysis for Image
Retrieval,” IEEE Trans. Pattern Analysis Machine Intelligence, vol. 21,
no. 5, pp. 386–401, May 1999.

[25]. J. G. Daugman, “Two–Dimensional Spectral Analysis of Cortical
Receptive Field Profile,” Vision Research, vol. 20, pp. 847–856, 1980.

[26]. J. G. Daugman, “Uncertainty Relation for Resolution in Space, Spatial
Frequency, and Orientation Optimized by Two–Dimensional Visual
Cortical Filters,” Journal of the Optical Society of America, vol. 2, no. 7,
pp. 1,160–1,169, 1985.

[27]. J. G. Daugman, “High Confidence Visual Recognition of Persons by a
Test of Statistical Independence,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 15, no. 11, pp. 1,148–1,161, 1993.

[28]. F. De la Torre and T. Kanade “Multimodal Oriented Discriminant
Analysis,” Int’l Conf. Machine Learning, Bonn, Germany, Aug. 2005.

[29]. H. P. Decell and S. M. Mayekar, “Feature Combinations and the
Divergence Criterion,” Computers and Math. With Applications, vol. 3,
pp. 71–76, 1977.

[30]. R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification. John Wiley
and Sons Inc. 2001.

213

[31]. S. Dudoit, J. Fridly, and T.P. Speed, “Comparison of Discrimination
Methods for the Classification of Tumors Using Gene Expression Data”, J.
of the American Statistical Association, vol. 97, no.457, pp. 77–87, 2002.

[32]. D. Dunn, W. E. Higgins, and J. Wakeley, “Texture Segmentation Using 2–
D Gabor Elementary Functions,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 16, no. 2, pp. 130–149, 1994.

[33]. B. Efron, “Estimating the Error Rate of a Prediction Rule: Improvement on
Cross–Validation,” Journal of the American Statistical Association, vol.
78, no. 382, pp. 316–331, 1983.

[34]. K. Etemad and R. Chellappa, “Discriminant Analysis for Recognition of
Human Face Images,” Journal of the Optical Society of America A, vol.
14, no. 8, pp. 1,724–1,733, 1998.

[35]. L. P. Fatti and D. M. Hawkins, “Variable Selection in Heteroscedastic
Discriminant Analysis,” Journal of the American Statistical Association,
vol. 81, pp. 494-500, 1986.

[36]. M. Figueiredo and A.K. Jain, “Unsupervised Learning of Finite Mixture
Models,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24,
no. 3, pp. 381–396, Mar. 2002.

[37]. R. A. Fisher, “The Statistical Utilization of Multiple Samples,” Ann.
Eugenics, vol. 8 pp. 376–386, 1938.

[38]. J. H. Friedman, “Regularized Discriminant Analysis,” Journal of the
American Statistical Association, vol. 84, pp. 165–175, 1989.

[39]. K. Fukunaga, Introduction to Statistical Pattern Recognition (Second
Edition), Academic Press, 1990.

[40]. K. Fukunaga and M. Mantock, “Nonparametric Discriminant Analysis,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 5, pp. 671–
678, 1983.

[41]. G. Fung and O. L. Mangasarian, “Proximal Support Vector Machine
Classifiers,” Proc. 7th ACM SIGKDD Int’l Conf. Knowledge Discovery
and Data Mining, California, USA, pp. 77–86, 2001.

[42]. P. Gallinari, S. Thiria, F. Badran, and F. Folgelman–Soulie, “On the
Relations between Discriminant Analysis and Multilayer Perceptrons,”
Neural Networks, vol. 4, pp. 349–360, 1991.

[43]. A. Girgensohn and J. Foote, “Video Classification using Transform
Coefficients,” Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal
Processing, vol. 6, pp. 3045–3048, 1999.

[44]. G. H. Golub and C. F. van Loan, Matrix Computation (Third Edition), The
Johns Hopkins Univ. Press, 1996.

[45]. J. Han and B. Bhanu, “Statistical Feature Fusion for Gait–Based Human
Recognition,” Proc. IEEE Int’l Conf. Computer Vision and Pattern
Recognition, vol. 2, pp. 842–847, Washington, DC, 2004.

[46]. J. Han and B. Bhanu, “Individual Recognition Using Gait Energy Image,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 2, pp.
316–322, 2006.

214

[47]. C.P. Hansen, Rank–deficient and discrete ill–posed problems. SIAM,
Philadelphia, PA, 1997.

[48]. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities. Cambridge,
England: Cambridge University Press, 1952.

[49]. T. Hastie, A. Buja, and R. Tibshirani, “Penalized Discriminant Analysis,”
Annals of Statistics, vol. 23, pp. 73–102, 1995.

[50]. T. Hastie and R. Tibshirani, “Flexible Discriminant by Mixture Models,”
J. Royal Statistical Society (Series B), vol. 58, pp. 155–176, 1996.

[51]. T. Hastie and R. Tibshirani, “Discriminant Analysis by Gaussian
Mixtures,” Journal of the Royal Statistical Society Series B:
Methodological, vol. 58, pp. 155–176, 1996.

[52]. T. Hastie, R. Tibshirani, and A. Buja, “Flexible Discriminant Analysis by
Optimal Scoring,” Journal of the American Statistical Association, vol. 89,
pp. 1,255–1,270, 1994.

[53]. T. Hastie, R. Tibshirani, and J.H. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, New York: Springer,
2001.

[54]. B. Heisele, “Visual Object Recognition with Supervised Learning,” IEEE
Intelligent Systems, vol. 8, no. 3, pp. 38–42, 2003.

[55]. P. Howland and H. Park, “Generalizing Discriminant Analysis Using the
Generalized Singular Value Decomposition,” IEEE Trans. Pattern
Analysis Machine Intelligence, vol. 26, no. 8, pp. 995–1,006, 2004.

[56]. L. Itti and C. Koch, “Computational Modeling of Visual Attention,”
Nature Reviews Neuroscience, vol. 2, no. 3, pp. 194–203, 2001.

[57]. L. Itti, C. Koch, and E. Niebur, “A Model of Saliency–based Visual
Attention for Rapid Scene Analysis,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 20, no. 11, pp. 1,254–1,259, 1998.

[58]. A. K. Jain, R. P. W. Duin, and J. Mao, “Statistical Pattern Recognition: A
Review,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22,
no. 1, pp. 4–37, 2000.

[59]. A. K. Jain, S. Prabhakar, and L. Hong, “A Multichannel Approach to
Fingerprint Classification,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 21, no. 4, pp. 348–359, 1999.

[60]. E.T. Jaynes, Probability Theory: The Logic of Science (Principles and
Elementary Applications), Cambridge University Press, 2003.

[61]. B. Jelinek, “Review on Heteroscedastic Discriminant Analysis,”
Unpublished Report.
http://www.cavs.msstate.edu/hse/ies/publications/courses/ece_8443/papers
/2001/hda2/p01_paper_v00.pdf#search=%22%22Review%20on%20Heter
oscedastic%20Discriminant%20Analysis%22%22

[62]. X. Jing and D. Zhang, “A Face and Palmprint Recognition Approach
based on Discriminant DCT Feature Extraction,” IEEE Trans. Systems,
Man and Cybernetics, Part B, vol. 34, no. 6, pp. 2,405–2,415, 2004.

[63]. A.Y. Johnson and A.F. Bobick, “A Multi–View Method for Gait

215

Recognition using Static Body Parameters,” Proc. IEEE Int’l Conf. on
Audio– and Video– Based Biometric Person Authentication, pp. 301–311,
2001.

[64]. I. T. Jolliffe, Principal Component Analysis (2nd edition), Springer, 2002.

[65]. A. Kale, A. N. Rajagopalan, N. Cuntoor, and V. Kruger, “Gait–based
Recognition of Humans using Continuous HMMs,” Proc. IEEE Int’l Conf.
Automatic Face and Gesture Recognition, pp. 321–326, Washington, DC,
2002.

[66]. A. Kale, A. Sundaresan, A. N. Rajagopalan, N. P. Cuntoor, A. K. Roy–
Chowdhury, V. Kruger, and R. Chellappa, “Identification of Humans using
Gait,” IEEE Trans. Image Processing, vol. 13, no. 9, pp. 1,163–1,173,
2004.

[67]. M. Katz, H.–G. Meier, H. Dolfing, and D. Klakow, “Robustness of Linear
Discriminant Analysis in Automatic Speech Recognition,” Proc. IEEE.
Int’l Conf. on Pattern Recognition, vol. 3, 2002.

[68]. T.K. Kim and J. Kittler, “Locally Linear Discriminant Analysis for
Multimodally Distributed Classes for Face Recognition with a Single
Model Image,” IEEE Trans. Pattern Analysis Machine Intelligence, vol.
27, no. 3, pp. 318–327, Mar., 2005.

[69]. S.J. Kim, A. Magnani, and S. Boyd, “Robust Fisher Discriminant
Analysis,” Advances in Neural Information Processing Systems,
Vancouver, British Columbia, 2005.

[70]. N. Kumar and A. G. Andreou, “Heteroscedastic Discriminant Analysis and
Reduced Rank HMMs for Improved Speech Recognition,” Speech
Communcation, vol. 26, pp. 283–297, 1998.

[71]. S. Kung, M. Mak, and S. Lin, Biometric Authentication. Prentice Hall,
2004.

[72]. P. A. Lachenbruch, Discriminant Analysis. Hafner Press, New York, 1975.

[73]. G. Lanckriet, N. Cristianini, P. Bartlett, L. Ghaoui, and M. Jordan,
“Learning the Kernel Matrix with Semidefinite Programming,” J. of
Machine Learning Research, vol. 5, pp. 27–72, 2004.

[74]. G. Lanckriet, L. Ghaoui, C. Bhattacharyya, and M. Jordan, “A Robust
Minimax Approach to Classification”, J. of Machine Learning Research,
vol. 3, pp. 555–582, 2002.

[75]. L. D. Lathauwer, Signal Processing Based on Multilinear Algebra, Ph.D.
Thesis, Katholike Universiteit Leuven, 1997.

[76]. L. De Lathauwer, B. De Moor, and J. Vandewalle, “A Multilinear Singular
Value Decomposition,” SIAM J. on Matrix Analysis and Applications, vol.
21, no. 4, pp. 1253–1278, 2001.

[77]. L. De Lathauwer, B. De Moor, and J. Vandewalle, “On the Best Rank–1
and Rank–(r1,r2,...,rn) Approximation of Higher–Order Tensors,” SIAM J.
on Matrix Analysis and Applications, vol. 21, no. 4, pp. 1,324–1,342,
2000.

[78]. L. Lee, G. Dalley, and K. Tieu, “Learning Pedestrian Models for
Silhouette Refinement,” Proc. IEEE Int’l Conf. Computer Vision, vol. 1,

216

pp. 663–670, Nice, France, 2003.

[79]. L. Lee and W. E. L. Grimson, “Gait Analysis for Recognition and
Classification,” Proc. IEEE Int’l Conf. Automatic Face and Gesture
Recognition, pp. 155–162, Washington, DC, 2002.

[80]. T. S. Lee, “Image Representation Using 2D Gabor Wavelets,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 18, no. 10, pp.
959–971, 2003.

[81]. Y. Leedan and P. Meer, “Heteroscedastic Regression in Computer Vision:
Problems with Bilinear Constraint,” International Journal of Computer
Vision, vol. 37, no. 2, pp. 127-150, 2000.

[82]. A. Leonardis and H. Bischof, Robust Recovery of Eigenimages in the
Presence of Outliers and Occlusions, Journal of Computing and
Information Technology, vol. 4, no. 1, pp. 25–36, 1996.

[83]. Q. Li, An Integration Framework of Feature Selection and Extraction for
Appearance based Recognition, PhD Thesis, UDEL1472, University of
Delaware, 2006.

[84]. S. Z. Li, X. Lu, X. Hou, X. Peng, and Q. Cheng, “Learning Multiview
Face Subspaces and Facial Pose Estimation using Independent Component
Analysis,” IEEE Trans. Image Processing, vol. 14, no. 6, pp. 705–712,
2005.

[85]. T. Li, M. Ogihara, Q. Li, “A Comparative Study on Content–based Music
Genre Classification,” Proc. Annual ACM Conf. on Research and
Development in Information Retrieval, pp. 282–289, 2003.

[86]. J. J. Little and J. E. Boyd, “Recognizing People by Their Gait: the Shape
of Motion,” Videre, vol. 1, no. 2, pp. 1–32, 1998.

[87]. C. Liu, “Gabor–based Kernel PCA with Fractional Power Polynomial
Models for Face Recognition,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 26, no. 5, pp. 572–581, 2004.

[88]. C. Liu and H. Wechsler, “Gabor Feature Based Classification Using the
Enhanced Fisher Linear Discriminant Model for Face Recognition,” IEEE
Trans. Image Processing, vol. 11, no. 4, pp. 467–476, 2002.

[89]. C. Liu and H. Wechsler, “Enhanced Fisher Linear Discriminant Models
for Face Recognition,” Proc. IEEE Int’l Conf. Pattern Recognition, vol.2,
pp. 1,368–1,372, Brisbane, Australia, 1998.

[90]. X. Liu, A. Srivastava, and K. Gallivan, “Optimal Linear Representations
of Images for Object Recognition,” IEEE Trans. Pattern Analysis Machine
Intelligence, vol. 26, no. 5, pp. 662–666, May 2004.

[91]. Z. Liu and S. Sarkar, “Simplest Representation yet for Gait Recognition:
Averaged Silhouette,” Proc. IEEE Int’l Conf. Pattern Recognition, vol. 4,
pp. 211–214, Cambridge, England, 2004.

[92]. Z. Liu and S. Sarkar, “Improved Gait Recognition by Gait Dynamics
Normalization,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 28, no. 6, pp. 863–876, 2006.

[93]. M. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, “Applications of
Second–Order Cone Programming,” Linear Algebra and its Applications,

217

vol. 284, pp. 193–228, 1998.

[94]. R. Lotlikar and R. Kothari, “Adaptive Linear Dimensionality Reduction
for Classification,” Pattern Recognition, vol. 33, no. 2, pp. 185–194,
February 2000.

[95]. R. Lotlikar and R. Kothari, “Fractional–Step Dimensionality Reduction,”
IEEE Trans. Pattern Analysis Machine Intelligence, vol. 22, no. 6, pp.
623–627, June 2000.

[96]. M. Loog, “Approximate Pairwise Accuracy Criteria for Multiclass Linear
Dimension Reduction: Generalizations of the Fisher Criterion,” Delft
Univ. Technique Report, 1999.

[97]. M. Loog, Supervised Dimensionality Reduction and Contextual Pattern
Recognition in Medical Image Processing, Ph.D. thesis, Image Sciences
Institute, Utrecht University, 2004.

[98]. M. Loog, R. P.W. Duin, and R. Haeb–Umbach, “Multiclass Linear
Dimension Reduction by Weighted Pairwise Fisher Criteria,” IEEE Trans.
Pattern Analysis Machine Intelligence, vol. 23, no. 7, pp. 762–766, July
2001.

[99]. M. Loog and R. P.W. Duin, “Linear Dimensionality Reduction via a
Heteroscedastic Extension of LDA: The Chernoff Criterion,” IEEE Trans.
Pattern Analysis Machine Intelligence, vol. 26, no. 6, pp. 732–739, June
2004.

[100]. J. Lu, K.N. Plataniotis, and A.N. Venetsanopoulos, “Face Recognition
Using LDA Based Algorithms,” IEEE Trans. Neural Networks, vol. 14,
no. 1, pp. 195–200, Jan. 2003.

[101]. S. Marcelja, “Mathematical Description of the Responses of Simple
Cortical Cells,” Journal of the Optical Society of America, vol. 70, no. 11,
pp. 1297–1300, 1980.

[102]. A. Marshall and I. Olkin, “Multivariate Chebyshev Inequalities,” Annals of
Mathematical Statistics, vol. 31, no. 4, pp. 1,001–1,014, 1960.

[103]. G.J. McLachlan, Discriminant Analysis and Statistical Pattern
Recognition, Wiley–Interscience, New York, 1992.

[104]. S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K. R. Muller, “Fisher
Discriminant Analysis with Kernels,” IEEE Workshop on Neural Networks
for Signal Processing, pp. 41–48, 1999.

[105]. T. Mitchell, Machine Learning, McGraw Hill, New York, 1997.

[106]. D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to Linear
Regression Analysis (4th Edition), John Wiley & Sons, 2006.

[107]. H. Moon and P.J. Phillips, “Computational and Performance Aspects of
PCA–based Face Recognition Algorithms,” Perception, vol. 30, pp. 303–
321, 2001.

[108]. T. K. Moon, P. Howland, J. H. Gunther, “Document Author Classification
using Generalized Discriminant Analysis,” Proc. Workshop on Text
Mining, SIAM Int'l Conf. on Data Mining, 2006.

[109]. K.R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf, “An

218

Introduction to Kernel–Based Learning Algorithms,” IEEE Trans. Neural
Networks, vol. 12, no. 2, pp. 181–201, Feb. 2001.

[110]. N. Murata, T. Takenouchi, T. Kanamori, and S. Eguchi, “Information
Geometry of U–Boost and Bregman Divergence,” Neural Computation,
vol. 16, no. 7, pp. 1,437–1,481, July, 2004.

[111]. M. Murray, “Gait as a Total Pattern of Movement,” American Journal of
Physical Medicine, vol. 16, pp. 290 – 332, 1967.

[112]. M. Murray, A. Drought, and R. Kory, “Walking Pattern of Normal Men,”
J. of Bone and Joint Surgery, vol. 46, no. A(2), pp. 335–360, 1964.

[113]. S. Nikolopoulos, S. Zafeiriou, P. Sidiropoulos, N. Nikolaidis, and I. Pitas,
“Image Replica Detection Using R–Trees and Linear Discriminant
Analysis,” Proc. IEEE Int'l Conf. Multimedia and Expo, 2006.

[114]. J. Nocedal and S. J. Wright, Numerical Optimization, Springer, 1999.

[115]. D. G. Northcutt, Multilinear Algebra, Cambridge U Press, 1984.

[116]. X.M. Pardo, P. Radeva, and D. Cabello, “Discriminant Snakes for 3D
Reconstruction of Anatomical Organs,” Medical Image Analysis, vol. 7,
no. 3, pp. 293–310, 2003.

[117]. J.P. Pedroso and N. Murata, “Support Vector Machines for Linear
Programming: Motivation and Formulations,” BSIS Technical Report
No.99–XXX, RIKEN Brain Science Institute, Japan, 1999.

[118]. P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss, “The FERET
Evaluation Methodology for Face–Recognition Algorithms,” IEEE Trans.
on Pattern Recognition and Machine Intelligence, vol. 22, no. 10, pp.
1090–1104, 2000.

[119]. R. Plamondon and S. N. Srihari On–Line and Off–Line Handwriting
Recognition: A Comprehensive Survey. IEEE Trans. on Pattern
Recognition and Machine Intelligence, vol. 22, no. 1, pp. 63–84, 2000.

[120]. I. Popescu and D. Bertsimas, “Optimal Inequalities in Probability Theory:
a Convex Optimization Approach,” Technique Report TM62, Insead.

[121]. B.G. Prasad, K.K. Biswas, and S.K. Gupta, “Region–based Image
Retrieval using Integrated Color, Shape, and Location Index,” Computer
Vision and Image Understanding, vol. 94, no. 1–3, pp. 192–233, 2004.

[122]. C. R. Rao, “The Utilization of Multiple Samples in Problems of Biological
Classification,” J. Royal Statistical Soc., B, vol. 10, pp. 159–203, 1948.

[123]. S. Raudys and R. P. W. Duin, “On Expected Classification Error of the
Fisher Linear Classifier with Pseudo–inverse Covariance Matrix,” Pattern
Recognition Letter, vol. 19, no. 5–6, 1998.

[124]. S. T. Roweis and L. K. Saul, “Nonlinear Dimensionality Reduction by
Locally Linear Embedding,” Science, vol. 290, pp. 2,323–2,326, 2000.

[125]. Y. Rui, T. S. Huang, and S. F. Chang, “Image Retrieval: Current
Techniques, Promising Directions and Open Issues,” Journal of Visual
Communication and Image Representation, vol. 10, pp. 39–62, 1999.

[126]. S. Sarkar, P. Phillips, Z. Liu, I. Vega, P. Grother, and K. Bowyer, “The
HumanID Gait Challenge Problem: Data Sets, Performance, and

219

Analysis,” IEEE Trans. Pattern Analysis Machine Intelligence, vol. 27, no.
2, pp. 162–177, 2005.

[127]. L. K. Saul and S. T. Roweis, “Think Globally, Fit Locally: Unsupervised
Learning of Low Dimensional Manifolds,” Journal of Machine Learning
Research, vol. 4, pp. 119–155, 2003.

[128]. B. Schölkopf and A. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond (Adaptive
Computation and Machine Learning), MIT Press, 2001.

[129]. B. Schölkopf, A. J. Smola, and K.R. Müller, “Kernel Principal Component
Analysis,” Advances in Kernel Methods: Support Vector Learning, MIT
Press, pp. 327–352, Cambridge, MA, USA, 1999.

[130]. B. Schölkopf, A. Smola, R. C. Williamson, and P. L. Bartlett, “New
Support Vector Algorithms,” Neural Computation, vol. 12, pp. 1,207 –
1,245, 2000.

[131]. J. Shi and J. Malik, “Normalized Cuts and Image Segmentation,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 888–
905, Aug. 2000.

[132]. A. Shashua and A. Levin, “Linear Image Coding for Regression and
Classification Using the Tensor–rank Principle,” Proc. IEEE Int’l Conf.
Computer Vision and Pattern Recognition, vol. 1, pp. 42–49, 2001.

[133]. J. R. Smith and S.–F. Chang, “Transform Features for Texture
Classification and Discrimination in Large Image Databases,” Proc. IEEE
Int'l Conf. Image Processing, vol. 3, pp. 407–411, 1994.

[134]. A. Smola, T.T. Friess, and B. Schölkopf, “Semiparametric Support Vector
and Linear Programming Machines,” Neural and Information Processing
Systems, vol. 11, 1999.

[135]. T.R. Strohmann, A. Belitski, G.Z. Grudic, and D. DeCoste, “Sparse
Greedy Minimax Probability Machine Classification,” Advances in Neural
Information Processing Systems, Vancouver and Whistler, British
Columbia, 2003.

[136]. J. Sun, D. Tao, and C. Faloutsosy, “Beyond Streams and Graphs: Dynamic
Tensor Analysis,” Proc. ACM SIGKDD Int’l Conf. on Knowledge
Discovery and Data Mining, 2006.

[137]. J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J.
Vandewalle, Least Squares Support Vector Machines, World Scientific,
2002.

[138]. J.A.K. Suykens, J. Vandewalle, “Least Squares Support Vector Machine
Classifiers,” Neural Processing Letters, vol. 9, no. 3, pp. 293–300, 1999.

[139]. D. L. Swets and J. Weng, “Using Discriminant Eigenfeatures for Image
Retrieval,” IEEE Trans. Pattern Analysis and Machine Intelligences, vol.
18, no. 8, pp. 831–836, 1996.

[140]. Y. Sun and R. Fisher, “Object–based Visual Attention for Computer
Vision,” Artificial Intelligence, vol. 146, no. 1, pp. 77–123, 2003.

[141]. J.A.K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J.
Vandewalle, Least Squares Support Vector Machines, World Scientific,

220

Singapore.

[142]. R. Tanawongsuwan and A. Bobick, “Modelling the Effects of Walking
Speed on Appearance–based Gait Recognition,” Proc. IEEE Int’l Conf.
Computer Vision and Pattern Recognition, 2, 783–790, 2004.

[143]. D. Tao, X. Li, X. Wu, and S. J. Maybank, “Elapsed Time in Human Gait
Recognition: A New Approach,” Proc. IEEE Int’l Conf. on Acoustics,
Speech, and Signal Processing, vol. 2, pp. 177–180, 2006.

[144]. D. Tao, X. Li, X. Wu, and S. J. Maybank, “Human Carrying Status in
Visual Surveillance,” Proc. IEEE Int’l Conf. on Computer Vision and
Pattern Recognition, pp. 1,670–1,677, 2006.

[145]. D. Tao, X. Li, X. Wu, and S. J. Maybank, “Tensor Rank One Discriminant
Analysis,” Submitted to IEEE Trans. on Pattern Analysis and Machine
Intelligence. (Under Major Revision)

[146]. D. Tao, X. Li, X. Wu, and S. J. Maybank, “General Averaged Divergences
Analysis,” Submitted to IEEE Trans. on Pattern Analysis and Machine
Intelligence. (Under Major Revision)

[147]. D. Tao, X. Li, X. Wu, and S. J. Maybank, “General Tensor Discriminant
Analysis and Gabor Features for Gait Recognition,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, 2007. (To appear)

[148]. D. Tao, X. Li, and S. J. Maybank, “Negative Samples Analysis in
Relevance Feedback,” IEEE Trans. on Knowledge and Data Engineering,
2007. (To appear)

[149]. D. Tao, X. Li, W. Hu, S. J. Maybank, and X. Wu, “Supervised Tensor
Learning: A Framework,” Knowledge and Information Systems (Springer),
2007. (To appear)

[150]. D. Tao, X. Li, W. Hu, S. J. Maybank, and X. Wu, “Supervised Tensor
Learning,” Proc. IEEE Int’l Conf. on Data Mining, pp. 450–457, 2005.

[151]. D. Tao, X. Li, W. Hu, and S. J. Maybank, “Stable Third–Order Tensor
Representation for Color Image Classification,” Proc. IEEE Int’l Conf. on
Web Intelligence, pp. 641–644, 2005.

[152]. D. Tao, X. Tang, X. Li, and Y. Rui, “Kernel Direct Biased Discriminant
Analysis: A New Content–based Image Retrieval Relevance Feedback
Algorithm,” IEEE Trans. on Multimedia, vol. 8, no. 4, pp. 716–727, 2006.

[153]. D. Tao and X. Tang, “Kernel Full–space Biased Discriminant Analysis,”
Proc. IEEE Int’l Conf. on Multimedia and Expo, pp. 1,287–1,290, 2004.

[154]. D. Tao and X. Tang, “A Direct Method to Solve the Biased Discriminant
Analysis in Kernel Feature Space for Content–based Image Retrieval,”
Proc. IEEE Int’l Conf. on Acoustics, Speech, and Signal Processing, pp.
441–444, 2004.

[155]. J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A Global Geometric
Framework for Nonlinear Dimensionality Reduction,” Science, vol. 290,
pp. 2,319–2,323, 2000.

[156]. A. B. Torralba and A. Oliva, “Semantic Organization of Scenes using
Discriminant Structural Templates,” Proc. IEEE Int'l Conf. Computer
Vision, pp. 1,253–1,258, 1999.

221

[157]. A.M. Treisman and G. Gelade, “A Feature–Integration Theory of
Attention,” Cognitive Psychology, vol. 12, no. 1, pp. 97–136, 1980.

[158]. M. Turk and A. Pentland, “Eigenfaces for Recognition,” J. of Cognitive
Neurosicence, vol. 3, no. 1, pp. 71–86, 1991.

[159]. L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM
Review, vol. 38, no. 1, pp. 49–95, 1996.

[160]. R. Vanderbei, Linear Programming: Foundations and Extensions (2nd
edition), Springer, 2001.

[161]. V. Vapnik, The Nature of Statistical Learning Theory, Springer–Verlag,
New York, 1995.

[162]. M. A. O. Vasilescu and D. Terzopoulos, “Multilinear Subspace Analysis
for Image Ensembles,” Proc. IEEE Int'l Conf. Computer Vision and
Pattern Recognition, vol.2, pp. 93–99, Madison, WI, 2003.

[163]. G. Veres, L. Gordon, J. Carter, and M. Nixon, “What Image Information is
Important in Silhouette–based Gait Recognition?,” Proc. IEEE Int’l Conf.
Computer Vision and Pattern Recognition, vol. 2, pp. 776–782, 2004.

[164]. J. Z. Wang, L. Li, and G. Wiederhold, “SIMPLIcity: Semantics–Sensitive
Integrated Matching for Picture Libraries,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 23, no. 9, pp. 947–963, 2001.

[165]. L. Wang, H. Ning, T. Tan, and W. Hu, “Fusion of Static and Dynamic
Body Biometrics for Gait Recognition,” Proc. IEEE Int’l Conf. Computer
Vision, 2, 2003.

[166]. L. Wang, T. Tan, H. Ning, and W. Hu, “Silhouette Analysis–based Gait
Recognition for Human Identification,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 25, no. 12, pp. 1,505–1,518, 2003.

[167]. L. Wang, Y. Zhang, and J. Feng, “On the Euclidean Distance of Images,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 27, no. 8, pp.
1,334–1,339, 2005.

[168]. H. Wechslet, J. Phillips, V. Bruse, F. Soulie, and T. Hauhg, editors. Face
Recognition: From Theory to Application. Springer–Verlag, Berlin, 1998.

[169]. K. Q. Weinberger, J. Blitzer, and L. K. Saul, “Distance Metric Learning
for Large Margin Nearest Neighbor Classification,” Neural Information
Processing Systems, 2005.

[170]. W. L. Winston, J. B. Goldberg, and M. Venkataramanan, Introduction to
Mathematical Programming: Operations Research (4th edition), Duxbury
Press, 2002.

[171]. D. Xu, S. Yan, L. Zhang, H.–J. Zhang, Z. Liu, and H.–Y. Shum,
“Concurrent Subspaces Analysis,” Proc. IEEE Int'l Conf. Computer Vision
and Pattern Recognition, vol. 2, pp. 203–208, 2005.

[172]. S. Yan, D. Xu, B. Zhang, and H.J. Zhang, “Graph Embedding: A General
Framework for Dimensionality Reduction,” Proc. IEEE Int’l Conf.
Computer Vision and Pattern Recognition, vol. 2 pp. 830–837, 2005.

[173]. J. Ye, R. Janardan, and Q. Li, “Two–Dimensional Linear Discriminant
Analysis,” Neural Information Processing Systems, pp. 1,569–1,576,

222

Vancouver, Canada, 2005.

[174]. J. Ye and Q. Li, “A Two–Stage Linear Discriminant Analysis via QR–
Decomposition,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 27, no. 6, pp. 929–941, 2005.

[175]. H. Yu and J. Yang, “A Direct LDA Algorithm for High–dimensional Data
with Application to Face Recognition,” Pattern Recognition, vol. 34, no.
12, pp. 2,067–2,070, Dec. 2001.

[176]. S. Yu, D. Tan, and T. Tan, “Modelling the Effect of View Angle Variation
on Appearance–Based Gait Recognition,” Proc. Asian Conf. Computer
Vision, vol. 1, pp. 807–816, 2006.

[177]. S. X. Yu and J. Shi, “Multiclass Spectral Clustering,” Proc. IEEE Int’l
Conf. Computer Vision, pp. 313–319, 2003.

[178]. W.I. Zangwill, Nonlinear Programming: A Unified Approach. Englewood
Cliffs, NJ: Prentice–Hall, 1969.

[179]. D. Zhang, A. W.–K. Kong, J. You, and M. Wong, “Online Palmprint
Identification,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 25, no. 9, pp. 1,041–1,050, 2003.

[180]. P. Zhang, J. Peng and N. Riedel, “Discriminant Analysis: A Least Squares
Approximation View,” IEEE Workshop on Learning in conjunction with
IEEE Int’l Conf. Computer Vision and Pattern Recognition, San Diego,
CA, 2005.

[181]. X. Zhang, Matrix Analysis and Applications, Springer, 2004.

[182]. W. Zhao, R. Chellappa, and P. Phillips, “Subspace Linear Discriminant
Analysis for Face Recognition,” Technical Report CAR–TR–914, Center
for Automation Research, University of Maryland, 1999.

