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Abstract 
 

Linear discriminant analysis (LDA) sheds light on classification tasks in computer 

vision. However, classification based on LDA can perform poorly in applications 

because LDA has: 1) the heteroscedastic problem, 2) the multimodal problem, 3) 

the class separation problem, and 4) the small sample size (SSS) problem. In this 

thesis, the first three problems are called the model based problems because they 

arise from the definition of LDA. The fourth problem arises when there are too 

few training samples. The SSS problem is also known as the overfitting problem. 

 

To address the model based problems, a new criterion is proposed: maximization 

of the geometric mean of the Kullback–Leibler (KL) divergences and the 

normalized KL divergences for subspace selection when samples are sampled 

from Gaussian mixture models. The new criterion reduces all model based 

problems significantly, as shown by a large number of empirical studies. 

 

To address the SSS problem in LDA, a general tensor discriminant analysis 

(GTDA) is developed. GTDA makes better use of the structure information of the 

objects in vision research. GTDA is a multilinear extension of a modified LDA. It 

involves the estimation of a series of projection matrices in projecting an object in 

the form of a tensor from a high dimensional feature space to a low dimensional 

feature space. Experiments on human gait recognition demonstrate that GTDA 

combined with LDA and nearest neighbor rule outperforms competing methods. 

 

Based on the work above, the standard convex optimization based approach to 

machine learning is generalized to the supervised tensor learning (STL) 

framework, in which tensors are accepted as input. The solution to STL is 

obtained in practice using an alternating projection algorithm. This generalization 

reduces the overfitting problem when there are only a few training samples. An 

empirical study confirms that the overfitting is reduced. 
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1. Introduction 
 

Linear subspace methods [58] have been used as an important pre–processing step 

in many applications of classification for dimension reduction or subspace 

selection, because of the so called curse of dimensionality [7]. The aim of the 

linear subspace methods is to project the original high dimensional feature space 

to a low dimensional subspace. Many methods have been proposed for selecting 

the low dimensional subspace, e.g., principal component analysis (PCA) [64] and 

linear discriminant analysis (LDA) [103]. PCA finds a subspace, which minimizes 

reconstruction error, while LDA finds a subspace, which separates different 

classes in the projected low dimensional space. 

In this thesis, we mainly focus on discriminative linear subspace methods, 

especially on LDA, because LDA has been widely used in classification tasks in 

computer vision research, such as image segmentation [97], relevance feedback in 

content based image retrieval [139][152][153][154], image database indexing 

[113], video shots classification [43], medical image analysis [116], object 

recognition and categorization [54], natural scene classification [156], face 

recognition [158][118][34][168], gait recognition [46][78][79][166][165][142], 

fingerprint recognition [59], palmprint recognition [62][179], texture 

classification [133], and hand writing classification [119]. 

The following view of LDA is taken in this thesis: when samples are drawn from 

different Gaussian distributions [60] with identical covariance matrices, LDA 

maximizes the arithmetic mean of the Kullback–Leibler (KL) [21] divergences 

between all pairs of distributions after projection into a subspace. From this point 

of view, LDA has the following problems: 1) heteroscedastic problem 

[29][28][35][70][61][81][99]: LDA ignores the discriminative information, which 

is present when the covariance matrices change between classes; 2) multimodal 

problem [51][28]: each class is modelled by a single Gaussian distribution; and 3) 

class separation problem [103][95][96][99][146]: LDA merges classes which are 

close together in the original feature space. We call these three problems model 

based problems, because they are part of the limitations of the definition of LDA. 

Apart from the model based problems, LDA also has the small sample size (SSS) 

problem [38][49][139][123][19][175][55][173][174][180], when the number of 
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training samples is less than the dimension of the feature space. In the LDA 

model, two scatter matrices are calculated. These are the between class scatter 

matrix [39] and the within class scatter matrix [39]. The between class scatter 

matrix measures the separation between different classes. The larger the volume 

(e.g., the trace value) of the matrix is, the better the different classes are separated. 

The within class scatter matrix describes the scatter of samples around their 

respective class centers. The smaller the volume of the matrix is, the closer the 

samples are to their respective class centers. LDA finds a subspace, which 

maximizes the ratio between the trace of the projected between class scatter 

matrix and the trace of the projected within class scatter matrix. The solution is 

given by an eigenvalue decomposition [44] of the product of the inverse of the 

within class scatter matrix and the between class scatter matrix. In many real 

applications, LDA cannot be applied in this straightforward way, because the rank 

of the within class scatter is deficient [47], i.e., the inverse of the matrix does not 

exist. 

To deal with the model based problems, it is important to develop a flexible 

framework. Because LDA is equal to the maximization of the arithmetic mean of 

the KL divergences when samples are obtained from different Gaussian 

distributions with identical covariances, we develop a general averaged 

divergences analysis framework, which extends LDA in two ways: 1) 

generalizing the KL divergences to the Bregman divergence [14], which is a 

general distortion measure of probability distributions and 2) generalizing the 

arithmetic mean to the generalized mean [48], which includes as special cases a 

large number of mean functions, e.g., the arithmetic mean, the geometric mean 

[20], and the harmonic mean [1][48]. Because this framework takes different 

covariance matrices into account, it can make better use of the information in 

heteroscedastic data. Then we combine the Gaussian Mixture Model (GMM) [30] 

with the framework to reduce the multimodal problem. In applications, LDA 

tends to merge classes, which are close in the original high dimensional space. 

This problem is reduced with the proposed general averaged divergences analysis 

framework by using geometric mean for subspace selection. Three criteria for 

subspace selection are described: 1) maximization of the geometric mean of the 

divergences; 2) maximization of the geometric mean of normalized divergences; 

and 3) maximization of the geometric mean of all divergences (both the 
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divergences and the normalized divergences). Experiments with computer 

generated data and digitized hand writing [53] show that the combination of the 

geometric mean based criteria and the KL divergence significantly reduces the 

heteroscedastic problem, the multimodal problem and the class separation 

problem. 

To deal with the SSS problem, the following two steps are conducted:  

1) the LDA criterion is replaced by the difference between the trace of the 

between class scatter matrix in the projected subspace and the weighted trace 

of the within class scatter matrix in the projected subspace. The new criterion 

is named the differential scatter discriminant criterion (DSDC) [143][149]. 

The relationship between LDA and DSDC is discussed in detail in Chapter 2;  

2) In computer vision research, samples are often tensors, i.e., 

multidimensional arrays. For example, the averaged gait image [45][91], 

which is the feature used for gait recognition, is a matrix, or a second order 

tensor; a face image, is also a matrix in face recognition [182]; a color image 

[54] in object recognition is a third order tensor or a three dimensional array; 

and a color video shot (a color image sequence) [43] in video retrieval is a 

forth order tensor or a four dimensional array. Therefore, DSDC is 

reformulated through operations in multilinear algebra [115][75] or tensor 

algebra [115][75]. That is we substitute the multilinear algebra operations, 

e.g., the tensor product, the tensor contraction, and the mode product, for the 

linear algebra operations, e.g., the matrix product, the matrix transpose, and 

the trace operation. Then we can directly replace the vectors, which are used 

to represent vectorized samples, with tensors, which are used to represent the 

original samples. 

The combination of the two steps described above is named the general tensor 

discriminant analysis (GTDA) [144][147]. By this replacement, the SSS problem 

can be significantly reduced, because we need not to estimate a large projection 

matrix at a time. That is we estimate a series of small projection matrices 

iteratively by using the alternating projection method, which obtains each small 

projection matrix with all the other fixed projection matrices in an iterative way, 

i.e., an alternating projection method for optimization decouples a projection 

matrix from the others. In each iteration, the number of unknown parameters (the 

size of a projection matrix) in GTDA is much less than that of in LDA. 
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GTDA is motivated by the successes of the tensor rank one analysis (TR1A) 

[132], general tensor analysis (GTA) [75][162][171], and the two dimensional 

LDA (2DLDA) [174] for face recognition. The benefits of GTDA are: 1) 

reduction of the SSS problem for subsequent classification, e.g., by LDA; 2) 

preservation of discriminative information in training tensors, while PCA, TR1A, 

and GTA do not guarantee this; 3) provision with stable recognition rates because 

the optimization algorithm of GTDA converges, while that of 2DLDA does not; 

and 4) acceptance of the general tensors as input, while 2DLDA only accepts 

matrices as input. 

We then apply the proposed GTDA to appearance [82] based human gait 

recognition [45][46][91][92]. For appearance based gait recognition, the averaged 

gait images are suited for human gait recognition, because: 1) the averaged gait 

images of the same person share similar visual effects under different 

circumstances; and 2) the averaged gait images of different people even under the 

same circumstance are very different. Motivated by the successes of Gabor 

function [32][80] based image decompositions for image understanding and 

object recognition, we develop three different Gabor function based image 

representations [144]: 1) the sum of Gabor functions over directions based 

representation (GaborD), 2) the sum of Gabor functions over scales based 

representation (GaborS), and 3) the sum of Gabor functions over scales and 

directions based representation (GaborSD). These representations are applied to 

recognize people from their averaged gait images. A large number of experiments 

were carried out to evaluate the effectiveness (recognition rate) of gait recognition 

based on the following three successive steps: 1) the Gabor/GaborD/GaborS/ 

GaborSD image representations, 2) GTDA to extract features from the Gabor/ 

GaborD/GaborS/GaborSD image representations, and 3) applying LDA for 

recognition. The proposed methods achieve sound performance for gait 

recognition based on the USF HumanID Database [126]. Experimental 

comparisons are made with nine state of the art classification methods 

[46][66][126][167][173] in gait recognition. 

Finally, vector based learning1 is extended to accept tensors as input. This results 

in the supervised tensor learning (STL) framework [149][150], which is the 

                                                 
1 Vector based learning means the traditional classification technique, which accepts vectors as 
input. In vector based learning, a projection vector Lw R∈

r  and a bias b R∈  are learnt to 



5 

multilinear extension of the convex optimization [11] based learning. To obtain 

the solution of an STL based learning algorithm, an alternating projection method 

is designed. Based on STL and its alternating projection optimization algorithm, 

we illustrate some examples. That is we extend the soft margin support vector 

machine (SVM) [161][15], the nu–SVM [130][128], the least squares SVM 

[137][138], the minimax probability machine (MPM) [74][135], the Fisher 

discriminant analysis (FDA) [37][30][69], the distance metric learning (DML) 

[169] to their tensor versions, which are the soft margin support tensor machine 

(STM), the nu–STM, the least squares STM, the tensor MPM (TMPM) [150], the 

tensor FDA (TFDA), and the multiple distance metrices learning (MDML), 

respectively. With STL, we also introduce a method for feature extraction through 

an iterative way [132] and develop the tensor rank one discriminant analysis 

(TR1DA) [145][143] as an example. The experiments for image classification 

demonstrate TMPM reduces the overfitting problem in MPM. The experiments 

for the elapsed time problem in human gait recognition show TR1DA is more 

effective than PCA, LDA, and TR1A. 

 

 

 

                                                                                                                                      

determine the class label of a sample Lx R∈
r  according to a linear decision function 

( ) sign Ty x w x b⎡ ⎤= +⎣ ⎦
r r r . The wr  and b  are obtained based on a learning model, e.g., minimax 

probability machine (MPM), which is based on N training samples associated with labels 
{ },L

i ix R y∈
r , where iy  is the class label, { }1, 1iy ∈ + − , and 1 i N≤ ≤ . 
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Model Problems:
1. Heteroscedastic Problem
2. Unimodal Problem
3. Class Separation Problem

The Small Sample 
Size Problem Overfitting

Supervised Tensor 
Learning

Discriminative Linear 
Subspace Method

Discriminative Multilinear 
Subspace Method

Maximization of the Geometric Mean 
of all Kullback-Leibler Divergences 

Linear Discriminant Analysis

General Averaged Divergences 
Analysis

1. Support Tensor Machine
2. Tensor Minimax Probability Machine
3. Tensor Fisher Discriminant Analysis
4. Multiple Distance Metrics Learning
                … … … … … … 

Chapter 2 Chapter 3 Chapter 4

General Tensor 
Discriminant Analysis

Manifold Learning 
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Figure 1.1. The plan of the thesis. 

 

LDA selects subspace to separate different classes in the projected low 

dimensional subspace and it has been widely applied for classification tasks in 

computer vision research. However, LDA has two types of problems: 1) the 

model based problems, which are led by its definition and 2) the small sample size 

(SSS) problem, when the number of training samples is less than the dimension of 

the feature space. To deal with the model based problems, we develop the 

maximization of the geometric mean of all Kullback-Leibler divergences under 

the general averaged divergences analysis framework in Chapter 2, as shown in 

Figure 1.1. To deal with the SSS problem, we propose a general tensor 

discriminant analysis (GTDA) for subspace selection based on tensor algebra. 

GTDA is also extended for popular manifold learning algorithms in Chapter 3, as 

shown in Figure 1.1. The SSS problem is relevant to the overfitting problem in 

vector based learning algorithms for classification. Both problems arise when the 

number of training samples is small. In Chapter 4, we apply tensor algebra to 
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extend vector based learning algorithms to accept tensors as input to reduce the 

overfitting problem. A number of examples are provided in this Chapter, as shown 

in Figure 1.1. 

In Chapter 2, we review two important linear subspace methods [58], namely 

principal component analysis (PCA) [64] and linear discriminant analysis (LDA) 

[103]. We then analyze the problems of LDA and review some extensions [19] 

[28][29][38][49][51][55][61][70][95][96][99][103][123][139][173][174][175][18

0] of LDA to reduce these problems. We also give a new point of view [146] on 

discriminative subspace selection and develop a new framework for subspace 

selection, the general averaged divergences analysis [146]. This framework allows 

a range of different criteria for assessing subspaces. Based on the new framework, 

we investigate geometric mean [20] for discriminative subspace selection and 

develop a method for the maximization of the geometric mean of all Kullback–

Leibler (KL) [21] divergences (MGMKLD) [146] by combining the maximization 

of the geometric mean of all divergences and the KL divergence for subspace 

selection. A large number of experiments are conducted to demonstrate the 

effectiveness of the new discriminative subspace selection method compared with 

LDA and its representative extensions. 

In Chapter 3, we focus on multilinear subspace methods, because the objects in 

computer vision research are often tensors [75]. Firstly, tensor algebra [115][75] 

is briefly introduced. It is the mathematical fundamental material of this Chapter. 

After that, unsupervised learning techniques, such as TR1A [132] and GTA [75] 

[162][171], are reviewed. We also give a brief introduction of 2LDA [174]. 

Motivated by the success of 2DLDA in face recognition, we then develop GTDA, 

which includes the following parts: 1) the LDA criterion is replaced by DSDC 

[143][149]. The relationship between LDA and DSDC is discussed in detail; and 

2) DSDC is reformulated through operations in multilinear algebra [115][75]. 

Based on the reformulated DSDC, vectors can be replaced with tensors, i.e., 

retaining the original format of samples; 3) an alternating projection optimization 

procedure is developed to obtain the solution of GTDA; 4) provide the 

mathematical proof of the convergence of the alternating projection optimization 

procedure for calculating the projection matrices; and 5) the computational 

complexity is analyzed. Finally, the proposed GTDA combined with LDA and the 

nearest neighbour classifier is utilized for appearance based human gait 
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recognition [45][46][91][92]. Compared with previous algorithms, the newly 

presented algorithms achieve better recognition rates. 

In Chapter 4, a supervised tensor learning (STL) framework [149][150] is 

developed based on the similar idea to reduce the SSS problem in Chapter 3. We 

first introduce convex optimization [11] and convex optimization based learning. 

Then we propose the STL framework associated with the alternating projection 

method for optimization. Based on STL and its alternating projection optimization 

algorithm, we generalize the support vector machine (SVM) [161][15][130][128] 

[137][138], the minimax probability machine (MPM) [74][135], the Fisher 

discriminant analysis (FDA) [37][30] [69], and the distance metric learning 

(DML) [169], as the support tensor machine, the tensor minimax probability 

machine, the tensor Fisher discriminant analysis, and the multiple distance metrics 

learning, respectively. We also propose an iterative feature extraction method 

based on STL. As an example, we develop the tensor rank one discriminant 

analysis (TR1DA). Experiments are conducted based on the tensor minimax 

probability machine and TR1DA. 

Chapter 5 concludes. 

The main contributions of the thesis are three folds: 

1. Develop a discriminative subspace selection framework, i.e., general 

averaged divergences analysis. Based on this framework, a special case, 

i.e., maximization of the geometric mean of all Kullback–Leibler (KL) 

divergences, is given to significantly reduce the class separation problem 

raised by imbalanced distributions of KL divergences between different 

classes. Moreover, it is also compatible with the heteroscedastic property 

of data and deals with samples drawn from mixture of Gaussians naturally. 

Empirical studies demonstrate that it outperforms LDA and its 

representative extensions; 

2. Develop the general tensor discriminant analysis (GTDA) to reduce the 

small sample size (SSS) problem. Unlike all existing tensor based 

discriminative subspace selection algorithms, GTDA converges in the 

training stage. Moreover, a full mathematical proof is given. To our best 

knowledge, this is the first work in the world to give both a converged 

algorithm and a mathematical proof. Again, this proof can be also applied 

to justify whether a tensor based algorithm converges or not by checking 
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the convexity of its objective function. By applying GTDA to human gait 

recognition, we achieve the state-of-the-art recognition accuracy; and 

3. By applying tensor algebra to vector based learning, we finally develop a 

supervised tensor learning framework. The significance of the framework 

is we can conveniently generalize different vector based classifiers to 

tensor based classifiers to reduce the over–fitting problem. For example, 

we generalize the support vector machine to the support tensor machine 

and give out the error bound; we generalize the Fisher discriminant 

analysis and the minimax probability machine to the tensor Fisher 

discriminant analysis and the tensor minimax probability machine, 

respectively, to overcome the matrix singular problem; and we generalize 

distance metric learning to multiple distance metrics learning to make it 

computable for appearance based recognition tasks. Finally, an iterative 

feature extraction model is given based on supervised tensor learning. 

Empirical studies show the power of supervised tensor learning and the 

iterative feature extraction model. 
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2. Discriminative Linear Subspace Methods 
 

The linear subspace method (LSM) [2][21][50][109][107] has been developed and 

demonstrated to be a powerful tool in pattern recognition and computer vision 

research fields. LSM finds a matrix 'L LU R ×∈  to transform the high dimensional 

sample Lx R∈
r  to a low dimensional sample 'Ly R∈

r , i.e., Ty U x=
r r . There are 

two major categories of LSM algorithms, which are focused on either feature 

selection or dimension reduction, respectively. A feature selection algorithm 

selects a (very small) number of most effective features from the entire feature 

pool. That is the un–selected features are not utilized. In feature selection, the 

linear transformation matrix U  has the following properties: 1) the entries of U  

are 1 or 0; 2) the inner product of any two columns of U  is 0; and 3) the sum of 

all entries of any column of U  is 1. A dimension reduction algorithm finds 

several sets of coefficients, and with each set of coefficients the original features 

are weighted and summed to produce a new feature. By this means, several (less 

than the number of the original features) new low dimensional samples are 

“generated” to preserve as much as possible the information (e.g., reconstructive 

information or discriminative information) carried by the original high 

dimensional samples. In this thesis, we focus on algorithms for dimension 

reduction. 

From the viewpoint of modelling, LSM can be used with a large number of 

models varying from reconstructive models to discriminative models. A 

reconstructive LSM minimizes ( )1

N
i i Hi

L x Uy
=

−∑ r r , where we have N training 

samples ixr  on hand; the projection matrix is U ; iyr  is the low dimensional 

representation of ixr ; 
H

⋅  is a norm; and ( )L ⋅  is a loss function [161][128]. 

Principal component analysis (PCA) [64] is an example of a reconstructive model. 

On the other side, discriminative models, e.g., linear discriminant analysis (LDA) 

[39], are utilized for classification. A discriminative LSM maximizes an objective 

function to separate different classes in the projected low dimensional subspace. 

Both reconstructive and discriminative models are widely used in many real–

world applications, such as biometrics [182][68], bioinformatics [31], and 

multimedia information management [24][139]. 
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In this Chapter, we mainly focus on the discriminative LSM, especially LDA, 

because it is the most popular algorithm in dimension reduction (or subspace 

selection) for classification. If samples are sampled from Gaussian distributions 

with identical covariance matrices, LDA maximizes the arithmetic mean value of 

the Kullback–Leibler (KL) [21] divergences between different classes. Based on 

this point of view, it is not difficult to see that LDA has the following problems: 

1) Heteroscedastic problem [29][28][70][61][99]: LDA models different classes 

with identical covariance matrices. Therefore, it fails to take account of any 

variations in the covariance matrices between different classes; 

2) Multimodal problem [51][28]: In many applications, samples in each class can 

not be approximated by a single Gaussian. Instead, a Gaussian mixture model 

(GMM) [39][30] is required. However, LDA models each class by a single 

Gaussian distribution; 

3) Class separation problem [103][95][96][99][146]: In applications, distances 

between different classes are different and LDA tends to merge classes which are 

close together in the original feature space. 

The first two problems have been well studied in the past few years and a number 

of extensions of LDA have been generated to deal with them. Although some 

methods [103][95][96][99] have been proposed to reduce the third problem, it is 

still not well solved. In this Chapter, to further reduce the class separation 

problem, we first generalize LDA to obtain a general averaged divergences 

analysis, which extends LDA from two aspects: 1) the KL divergence is replaced 

by the Bregman divergence [14]; and 2) the arithmetic mean is replaced by the 

generalized mean function [48]. By choosing different options in 1) and 2), a 

series of subspace selection algorithms are obtained, with LDA included in as a 

special case. 

Under the general averaged divergences analysis, we investigate the effectiveness 

of geometric mean [20] based subspace selection in solving the class separation 

problem. The geometric mean amplifies the effects of small divergences and at 

the same time reduces the effects of large divergences. Next, the maximization of 

the geometric mean of the normalized divergences is studied. This turns out not to 

be suitable for subspace selection, because there exist projection matrices which 

make all divergences very small and at the same time make all normalized 

divergences similar in value. We therefore propose a third criterion, maximization 
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of the geometric mean of all divergences (both the divergences and the 

normalized divergences) or briefly MGMD. It is a combination of the first two. 

With MGMD, it is possible to develop different subspace selection methods by 

choosing different divergences. In this chapter, we select the KL divergence and 

assume that the samples in each class are obtained by sampling Gaussian 

distributions. This results in the maximization of a function of all KL divergences 

(MGMKLD). The name MGMKLD is chosen because the function is closely 

related to the geometric mean of divergences. We extend MGMKLD to the case 

in which the samples in each class are sampled from a Gaussian Mixture Model 

[30]. This gives the multimodal extension of MGMKLD, or M–MGMKLD. 

Finally, we kernelize [104][109][128][129] MGMKLD to the kernel MGMKLD 

or briefly KMGMKLD. Preliminary experiments based on synthetic data and 

handwriting digital data [53] show that MGMKLD achieves much better 

classification rates than LDA and its several representative extensions taken from 

the literature. 

The Chapter is organized as follows. In §53 and §53, PCA with its kernel 

extension and LDA with its representative extensions are briefly reviewed, 

respectively. In §53, the general averaged divergences analysis is proposed. In 

§53, the geometric mean for subspace selection is investigated. The KL 

divergence based geometric mean subspace selection is developed in §53. 

synthetic data based experiments, statistical experiments, and hand writing 

recognition for justifying the effectiveness of linear subspace methods are given 

in §53, §53, and §53, respectively. Finally, summary of this Chapter is given in 

§53. Moreover, all proofs and deductions in this Chapter are given in §53. 
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 Principal Component Analysis 

 

Although PCA [64] is a reconstructive model, it has been successfully applied for 

classification tasks in computer vision. It extracts the principal eigenspace 

associated with a set of training samples L
ix R∈
r  ( 1 i n≤ ≤ ). Let 

( ) ( )( )1
1 n T

i ii
S n x m x m

=
= − −∑ r r r r  be the covariance matrix, alternatively called the 

total–class scatter matrix, of all training samples ixr , where ( ) 1
1 n

ii
m n x

=
= ∑r r . 

One solves the eigenvalue equation i iu Suλ =
r r  for eigenvalues 0iλ ≥ . The 

projection matrix *U  is spanned by the first 'L  eigenvectors with the largest 

eigenvalues, '
1* |Li iU u∗
=⎡ ⎤= ⎣ ⎦

r . If xr  is a new sample, then it is projected to 

( ) ( )* Ty U x m= −
r r r . The vector yr  is used in place of xr  for representation and 

classification. 

PCA has the following properties. In the following description, we assume the 

training samples ixr  are centralized, i.e., 0m =
r . 

Property 2.1: PCA maximizes the variance in the projected subspace for a given 

dimension 'L , i.e., 

( ) 2

1

1arg max tr arg max
n

T T
i FroU U i

U SU U x
n =

= ∑ r . (2.01)

where 
Fro

⋅  is the Frobenius norm. 

Proof: See Appendix. 

Property 2.2: The principal eigenspace U  in PCA diagonalizes the covariance 

matrix of the training samples. 

Property 2.3: PCA minimizes the reconstruction error, i.e., 

( ) 2

1

1arg max tr arg min
n

T T
i i FroU U i

U SU x UU x
n =

= −∑ r r . (2.02)

Proof: See Appendix. 

Property 2.4: PCA decorrelates the training samples in the projected subspace. 

Proof: See Appendix. 

Property 2.5: PCA maximizes the mutual information between xr  and yr  on 

Gaussian data. 

Proof: See Appendix. 
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We now study the nonlinear extension of PCA, or the kernel PCA (KPCA) [129], 

which takes high order stastistics of the training samples into account. Consider a 

nonlinear mapping: 

( ): ,L HR R x xφ φ→
r r
a , (2.03)

where H n= . Then, in HR , the covariance matrix is 

( )( ) ( )( )
1

1 n T

i i
i

S x m x m
nφ φ φφ φ

=

= − −∑ r r r r , (2.04)

where ( ) ( )1
1 n

ii
m n xφ φ

=
= ∑r r  is the mean vector of all training samples in HR . 

The ( ) ( )T
i ix xφ φr r  is a linear operator on the range of φ  in HR . Suggested by 

Schölkopf et al. [128][129], the mapping is defined as ( ) ( ) ,i ix x x xφ φr r r r
a . The 

next step in KPCA is to find the eigenvalue decomposition on Sφ . 

v S vφλ =
r r . (2.05)

Because all solutions vr  with 0λ ≠  are the linear combinations of ( )ixφ r , 

1 i n≤ ≤ , we have 

( ) ( ), ,i ix v x S vφλ φ φ=
r r r r , for all 1 i n≤ ≤ . (2.06)

Replace vr  with ( )1

n
i ii

xα φ
=∑ r  in (2.06), we have 

( ) ( )

( )
( ) ( )

( ) ( ) ( )

1

1

1 1

1

,

1
1,

1 ,

n

j i j
j

n

k kn n k
j i n

j k
k k j

k

x x

x x
n

x
n

x x x
n

λ α φ φ

φ φ
α φ

φ φ φ

=

=

= =

=

⎛ ⎞−⎜ ⎟
⎝ ⎠

=
⎛ ⎞

−⎜ ⎟
⎝ ⎠

∑

∑
∑ ∑

∑

r r

r r

r

r r r

 (2.07)

for all 1 i n≤ ≤ . 

In terms of the n n×  kernel Gram matrix [128][129] ( ) ( ): ,ij i jK x xφ φ= =
r r  

( ),i jk x xr r , (2.07) is simplified as 

( )( )T
i i iK K I M I M Kλ α α= − −

r r  (2.08)

where iα
r  is a column vector and it is the eigenvectors of ( )( )TI M I M K− − ; 

iλ  is the eigenvalues of K ; ( ) ( ) ( ), ,i ik x z x zφ φ=
r rr r  is the kernel function 

[128][129]; and all entries in 
1 ;

n n
ij i j n

M m R ×

≤ ≤
⎡ ⎤= ∈⎣ ⎦  are 1 n . The projection 
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matrix Λ  in HR  is spanned by the first ( )' 'H H H n< =  iα
r  with the largest 

eigenvalues, i.e., [ ]1i i n
α

≤ ≤
Λ =

r . 

After obtaining the linear combination coefficients, we can project a given sample 

zr  to the subspace constructed by KPCA according to 

( ) ( ) ( )
( ) ( ) ( )1 2, , , , , , ,

T T T

T
n

X z X z

k x z k x z k x z
φ φφ φΛ = Λ

= Λ ⎡ ⎤⎣ ⎦

r r

r r rr r r
L

 (2.09)

where ( ) 1[ ]i i nX xφ φ ≤ ≤=
r . 
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 Linear Discriminant Analysis 

 

LDA [103] finds in the feature space a low dimensional subspace where the 

different classes of samples remain well separated after projection to this 

subspace. The subspace is spanned by a set of vectors, which are denoted as 

[ ]1 ', , LU u u=
r r
K . It is assumed that a training set of samples is available. The 

training set is divided into c classes. The ith class contains in  samples 

;i jxr (1 ij n≤ ≤ ), and has a mean value ( ) ;1
1 in

i i i jj
m n x

=
= ∑r r . The between class 

scatter matrix bS  and the within class scatter matrix wS  are defined by 

( )( )

( )( )
1

; ;
1 1

1      

1 i

c
T

b i i i
i

nc T

w i j i i j i
i j

S n m m m m
n

S x m x m
n

=

= =

⎧ = − −⎪
⎪
⎨
⎪ = − −
⎪⎩

∑

∑∑

r r r r

r r r r
 (2.10)

where c  is the number of classes; 
1

c
ii

n n
=

= ∑  is the size of the training set; and 

( ) ;1 1
1 ic n

i ji j
m n x

= =
= ∑ ∑r r  is the mean vector of all training samples. Meanwhile, 

( ) ( )( ); ;1 1
1 i Tc n

t i j i ji j
S n x m x m

= =
= − −∑ ∑ r r r r

b wS S= +  is the covariance matrix of all 

samples. 

The projection matrix *U  of LDA is chosen to maximize the ratio between bS  

and wS  in the projected subspace, i.e., 

( ) ( )( )1
* arg max tr T T

w b
U

U U S U U S U
−

= . (2.11)

The projection matrix *U  is computed from the eigenvectors of 1
w bS S− , under 

the assumption that wS  is invertible. If c equals to 2, LDA reduces to the Fisher 

discriminant analysis [37]; otherwise LDA is known as the Rao discriminant 

analysis [122]. Because ( )rank 1bS c≤ − , we have ' 1L c≤ − , i.e., the maximum 

dimension of the projected subspace for LDA is ( )min 1, 1c L− − . 

If separate classes are sampled from Gaussian distributions, all with identical 

covariance matrices, then LDA maximizes the mean value of the KL divergences 

between different classes. This result will be proved in §122. 

LDA encounters the following problems, which are: 
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1) Heteroscedastic problem [29][28][70][61][99]: LDA discards the 

discriminative information preserved in covariance matrices of different classes; 

2) Multimodal problem [51][28]: LDA models each class by a single Gaussian 

distribution, so it cannot find a suitable projection for classification when samples 

are sampled from complex distributions, e.g., GMM; 

3) Class separation problem [103][95][96][99][146]: LDA tends to merge classes 

which are close together in the original feature space. 

Furthermore, when the size of the training set is smaller than the dimension of the 

feature space, LDA has the small sample size (SSS) problem [19][30][38][39] 

[49][55][123][139][173][174][175][180]. 

In the following, we review some representative solutions for these problems. 

Furthermore, we mention some alternatives of LDA [39], namely the 

nonparametric discriminant analysis [39][40], and the kernel extension of LDA 

[104][109] [128][129]. 

 

 Heteroscedastic Problem 

LDA does not fully utilize the discriminative information contained in the 

covariances of different classes. As a result, it cannot find a suitable projection 

direction when different classes share the same mean, as shown in Figure 2.1. 

In the past decades, a large number of extensions based on LDA were developed 

to reduce this problem. For example, 

• Decell and Mayekar [29] proposed a method to obtain a subspace to 

maximize the average interclass divergence, which measures the 

separations between the classes. This criterion takes into account the 

discriminative information preserved in the covariances of different 

classes. The projection matrix *U  is calculated by maximizing, 

( ) (

( )( ) ) ) ( )

1

1 1;
tr

              1 ',

c c
T T

D i j
i j j i

T

j i j i

J U S U U S

m m m m U c c L

−

= = ≠

⎡ ⎛
= ⎢ ⎜

⎢ ⎝⎣
⎤+ − − − −⎥⎦

∑ ∑
r r r r

 (2.12)

where iS  is the ith class covariance matrix (1 i c≤ ≤ ); imr  is the mean 

vector of the samples in the ith class (1 i c≤ ≤ ); c  is the number of classes 
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of the training set; 'L  is the number of selected features; and U  is the 

projection matrix to obtain the low dimensional representation. 

De la Torre and Kanade [28] developed the oriented discriminant analysis 

(ODA) based on the objective function defined in (2.12), but used iterative 

majorization to obtain a solution. The iterative majorization speeds up the 

training stage. 

 

O
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lassification
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Figure 2.1. LDA fails to find the optimal projection direction for classification, 

because it does not utilize the discriminative information preserved in the class 

covariances. 

 

• Campbell [17] has shown LDA is related to the maximum likelihood 

estimation of parameters for a Gaussian model based on the following two 

assumptions: 1) all class discriminative information resides in a low 

dimensional subspace of the original high dimensiaon feature space and 2) 

the within class covariances are identical for all classes. Kumar and 

Andreou [70] developed the heteroscedastic discriminant analysis (HDA) 
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by dropping the identical class covariances assumption. The projection 

matrix *U  is calculated by maximizing, 

' ' ' '
1

log log 2 log
c

T T
K L L L L i L i L

i
J n U SU n U S U n U− −

=

= + −∑ , (2.13)

where [ ]' 'L L LU U U −=  is the full transformation matrix; 'LU  is the 

transformation submatrix to select the discriminative subspace; 

( )det⋅ ⋅� ; iS  is the ith class covariance matrix (1 i c≤ ≤ ); S  is the 

covariance matrix of all training samples; c  is the number of classes of 

the training set; and 'L  is the number of selected features. Furthermore, 

the projection matrix *U  is obtained by maximizing KJ  through the 

gradient steepest ascent algorithm. 

• Jelinek [61] proposed a different way to deal with the heteroscedastic 

problem in subspace selection by the gradient steepest ascent method to 

find the projection matrix *U  by maximizing, 

1

log log
c

T T
J b i i

i

J n U S U n U S U
=

= −∑ , (2.14)

where ( )det⋅ ⋅� ; iS  is the covariance matrix of the ith class; bS  is the 

between class scatter matrix defined in (2.10); in  is the number of 

samples in the ith class (1 i c≤ ≤ ); c  is the number of classes of the 

training set; and U  is the projection matrix to obtain the low dimensional 

representation. 

• Loog and Duin [99] introduced the Chernoff criterion to heteroscedasticize 

LDA, i.e., the heteroscedastic extension of LDA (HLDA). The projection 

matrix *U  in HLDA is obtained by maximizing,  

( ) ( )( )(
( ) ( )(

( ) ( )))

1 1 21 1 2 1 2 1 2 1 2

1 1

1 21 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

1                  log

                  log log ,

c c T

L i j w w w ij w w i j i j
i j i

w w ij w w ij w
i j

i w i w j w j w w

J q q S S S S S S m m m m

S S S S S S S

S S S S S S S

π π

π π

− −− − −

= = +

−− − −

− −

= × × − −

× +

− −

∑ ∑ r r r r

 (2.15)

where 
1

c
i i kk

q n n
=

= ∑  is the prior probability of the ith class; iS  is the 

covariance matrix of the ith class; ( )i i i jq q qπ = + ; ( )j j i jq q qπ = + ; 

ij i i j jS S Sπ π= + ; wS  is the within class scatter matrix defined in (2.10); 
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in  is the number of samples in the ith class (1 i c≤ ≤ ); and c  is the 

number of classes of the training set. 

The projection matrix *U  of HLDA is constructed by the eigenvectors of 

the LJ  corresponding to the largest eigenvalues. 

 Multimodal problem 

The direct way to deal with the multimodal problem is to model each class by a 

GMM [39][30]. Two representative works are as following, 

• Hastie and Tibshirani [51] combined GMM with LDA based on the fact 

that LDA is equivalent to maximum likelihood classification when each 

class is modelled by a single Gaussian distribution. The extension directly 

replaces the original single Gaussian in each class by a Gaussian mixture 

model in Campbell’s result [17], as shown in (2.13). 

• De la Torre and Kanade [28] generalized ODA defined in (2.12) for the 

multimodal case as the multimodal ODA (MODA) by combining it with 

GMM learnt by the normalized cut [131][177]. Each class is modelled by 

a GMM. The aim of MODA is to find a projection matrix *U  to 

maximize 

( )
( )( )( )

1

;

1 1 1 1 ; ; ; ; ;

tr
ji

T T
ccc c i k

MODA T
i j k l i k j l i k j l j lj i

U S U U
J

m m m m S U

−

= = = =
≠

⎛ ⎞
⎜ ⎟= ⎜ ⎟
× − − +⎜ ⎟
⎝ ⎠

∑∑∑∑ r r r r , (2.16)

where ic  is the number of subclusters of the ith class; ;i kS  is the 

covariance matrix of the kth subcluster of the ith class; ;i kmr  is the mean 

vector of the kth subcluster of the ith class; c  is the number of classes of 

the training set; and U  is the projection matrix to obtain the low 

dimensional representation. 

 

 Class separation problem 

One of the most severe problems in LDA is the class separation problem, i.e., 

LDA merges classes which are close together in the original feature space. As 

pointed out by McLachlan in [103], Lotlikar and Kothari in [95], Loog et al. in 

[98], and Lu et al. in [100], this merging of classes significantly reduces the 

recognition rate. The example in Figure 2.2 shows that LDA is not always optimal 
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for pattern classification. To improve its performance, Lotlikar and Kothari in 

[95] developed the fractional–step LDA (FS–LDA) by introducing a weighting 

function. Loog et al. in [98] developed another weighting method for LDA, 

namely the approximate pairwise accuracy criterion (aPAC). The advantage of 

aPAC is that the projection matrix can be obtained by the eigenvalue 

decomposition. Lu et al. in [100] combined the FS–LDA and the direct LDA 

[175] for very high dimensional problems, such as face recognition [182]. 

However, both FS–LDA and aPAC do not use the discriminative information in 

different class covariances. Therefore, when samples are drawn from Gaussians 

with different covariances, these two methods fail to detect the suitable subspace 

for classification (their performance could be even worse than LDA). The detailed 

procedures for FS–LDA and aPAC are as follows, 
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Figure 2.2. The samples in each class are drawn from a Gaussian distribution. 

LDA finds a projection direction, which merges class 1 and class 2. One of the 

reasonable projection directions for classification trades the distance between the 

class 1 and the class 2 against the distance between the class 1, 2 and class 3. This 

example is a sketch of the synthetic data used in Figure 2.7 in §0. 
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• Lotlikar and Kothari [95] developed FS–LDA to reduce the class 

separation problem. They found this problem is invoked by non–uniform 

distances between classes, i.e., some distances between different classes 

are small while others are large. Therefore, a weighting method is used to 

reduce this problem. FS–LDA is an iterative procedure for subspace 

selection as shown in Table 2.1. 

 

Table 2.1. Fractional–Step Linear Discriminant Analysis 

Input: Training samples ;i jxr  in LR , where i denotes the ith class (1 i c≤ ≤ ) and 
j denotes the jth sample in the ith class ( 1 ij n≤ ≤ ), and the dimension 'L  
( 'L L< ) of the projected subapce. 

Output: Linear projection matrix *U  in 'L LR × . 

1. Set L LU I ×=  (the identity matrix) 

2. Calculate the mean of the ith class ( ) ;1
1 in

i i i jj
m n x

=
= ∑r r . 

3. for k L=  to ( )' 1L +  with step 1−  { 

4. for 0l =  to ( )1r −  with step 1 { 

5. 
Calculate ; ;

l T
i j i jy A U x=
r r , where A  is a diagonal matrix. The kth 

entry of A  is less than 1 and the other entries are 1; 

6. Calculate ( ) ;1
1 in

i i i jj
n yμ

=
= ∑r r  in the projected subspace; 

7. 

Calculate ( ) ( )( )( )( )1 1
1

Tc c ij
b i j i ji j

S n w d μ μ μ μ
= =

= − −∑ ∑ r r r r , where 

( )w ⋅  is the weighting function and ( )pij
i jd m m= −
r r . Usually, 

( )w ⋅  is set as a polynomial like function with degree less than 3−  
(in our experiments, we set it as 8− ). 

8. 
Compute the first k eigenvectors [ ]1 2, , kϕ ϕ ϕΨ =

r r r
L  of bS  

associated with the largest k eigenvalues. Set U U← Ψ . 

9. }//for in line 4. 

10. Discard the last column of U . 

11. }//for in line 3. 
 

• Loog et al. [98][96] proposed another way to deal with the class 

separation problem by combining a weighting function with LDA and 

then resulted in aPAC, 
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( ) ( )( )1 2 1 2

1 1

c c T

aPAC i j ij w i j i j w
i j

J q q d S m m m m Sω − −

= =

= − −∑∑ r r r r , (2.17)

where ( ) ( )1T

ij i j w i jd m m S m m−= − −
r r r r ; 

1

c
i i kk

q n n
=

= ∑  is the prior 

probability of the ith class; wS  is the within class scatter matrix defined in 

(2.10); imr  is the mean vector of samples in the ith class; in  is the 

number of samples in the ith class (1 i c≤ ≤ ); c  is the number of classes 

of the training set; ( ) ( ) ( )21 2 erf 2 2x x xω =  is the weighting function. 

The projection matrix is 1 2* wU S −= Φ , where Φ  is the matrix of leading 

eigenvectors of aPACJ  with the largest eigenvalues. 

This combination aPACJ  approximates the mean classification accuracy 

(one minus Bayes error). The benefit of this method is the projection 

matrix can be obtained by the eigenvalue decomposition. 

 

The weighting function based methods are not effective for the class separation 

problem, because it is not clear how to select an optimal weighting function. 

Although Loog et al. [98][96] considered the Bayesian error in aPAC, it fails to 

deal with the heteroscedastic problem. Even for the homoscedastic case, aPAC is 

also not optimal, because it only approximats to the Bayesian error. The synthetic 

data based test, shown in Figure 2.7 and Figure 2.8, demonstrates that FS–LDA 

and aPAC do not often find the optimal projection direction for classification. 

 

 Small Sample Size Problem 

In many practical applications, especially in biometric research, discriminant 

models encounter the SSS problem [38][49][139][123][19][175][55][173][174] 

[180], because the number of training samples is less than the dimension of the 

feature space. To deal with this problem, a number of algorithms were proposed. 

For example, 

• Friedman [38] proposed the regularized discriminant analysis (RDA), 

which is a classification tool to smooth out the effects of ill– or poorly– 

conditioned covariance estimates due to the lack of training samples. RDA 

is a combination of ridge–shrinkage [20], LDA, and quadratic discriminant 
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analysis (QDA) [30][39]. It provides a great number of regularization 

alternatives. In RDA, the regularized class covariance matrix is defined as 

( ) ( ) ( )
( )

( )
( )

1 1
, 1 tr

1 1
i i

i
i i

S S S S
S I

n n p n n
λ λ λ λγλ γ γ
λ λ λ λ

⎛ ⎞− + − +
= − + ⎜ ⎟⎜ ⎟− + − +⎝ ⎠

, (2.18)

where iS  is the covariance matrix of the ith class; S  is the covariance 

matrix of all samples; I  is the identity matrix in p pR × ; in  is the 

number of samples of the ith class; n  is the number of all samples; p  is 

the dimension of the original high dimensional feature space; and 

0 , 1λ γ≤ ≤  are regularization parameters, which are chosen to jointly 

minimize an unbiased estimate of future misclassification risk through the 

cross validation [72] or Boostrapping [33]. In RDA, the class discriminant 

score for classification is 

( ) ( ) ( )( ) ( )1 , log , 2 logT i
i i i i i

nd x x m S x m S
n

λ γ λ γ−= − − + −
r r r r r , (2.19)

where ( )det⋅ ⋅�  and imr  is the mean vector of samples in the ith class. 

The class label of xr  is ( )arg min i
i

d xr . 

Furthermore, RDA can also be used for subspace selection by introducing 

the reduced rank step for the sum of ( )id xr  over all training samples as 

( ) ( )( ) ( )

( )

1

; ;
1 1

,

                  log , ,

inc T T T
R i j i i i j i

i j

T
i

J x m U U S U U x m

U S U

λ γ

λ γ

−

= =

= − −

+

∑∑ r r r r

 (2.20)

where ( )det⋅ ⋅� . The projection matrix is obtained by minimizing RJ  

over U . When ( ) ( ), ,i jS Sλ γ λ γ=  for all i j≠ , RDA for subspace 

selection reduces to the regularized LDA (R–LDA). 

• Hastie et al. [49] viewed LDA as multivariate linear regression [106] and 

used the penalized least squares regression [106] to reduce the SSS 

problem. 

• Swets and Weng [139] introduced PCA as the pre–processing step in LDA 

for face recognition (PCA+LDA). The SSS problem is avoided if the PCA 

subspace has a small enough dimension. PCA+LDA is one of the most 

popular methods to deal with the SSS problem in biometric research. It has 

been being effective in many empirical demonstrations [139][4][89]. It is 
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also easy to be implemented as there are only two main steps: 1) conduct 

PCA on training samples and 2) conduct LDA on the PCA pre–processed 

data. PCA+LDA achieves top level performance in many applications, 

such as face recognition [4][88][89], gait recognition [45][46][92], and 

image retrieval [139]. The drawbacks [19][175] of this method are that the 

classification performance is sensitive to the number of features selected 

by PCA and PCA discards some discriminative information. 

• Raudys and Duin [123] applied the pseudo–inverse [44] to the covariance 

matrix in LDA as P–LDA and this utilization can reduce the SSS problem 

in LDA. The projection matrix is obtained by maximizing 

( ) ( )( )tr T T
P w bJ U S U U S U

+
= , (2.21)

where A+  means the pseudo–inversion of A , as defined in [44]. 

• Chen et al. [19] claimed that the most discriminative dimensions are 

preserved in the null space V  (the complement of the range space, i.e., 

0wS V = ) of the within class scatter matrix wS  when the dimension of the 

feature space is much higher than the number of training samples. First, 

they project all training samples to the null space of wS . Second, PCA is 

utilized on the projected samples to select the projection direction for 

classification. To reduce the time complexity of this method, Cevikalp et 

al. [18] developed the discriminative common vectors scheme. 

• Yu and Yang [175] claimed that the null space V  (or the complement of 

the range space, i.e., 0bS V = ) of the between class scatter matrix bS  

contains little discriminative information. Therefore, they first remove the 

null space of bS  and then select the projection matrix to minimize the 

within class scatter matrix wS . 

• Howland and Park [55] introduced the generalized singular value 

decomposition (GSVD) [44] to reduce the SSS problem in LDA. The 

detailed procedure is listed in Table 2.2. 

 

Table 2.2.  
Linear Discriminant Analysis via Generalized Singular Value Decomposition 

Input: Training samples ;i jxr  in LR , where i denotes the ith class (1 i c≤ ≤ ) and 
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j denotes the jth sample in the ith class ( 1 ij n≤ ≤ ), and the dimension 'L  
( 'L L< ) of the projected subapce. 

Output: Linear projection matrix *U  in 'L LR × . 

1. 

Calculate bH  and wH  according to 

( ) L c
b i iH n m m R ×⎡ ⎤= − ∈⎣ ⎦

r r  and ( );
L n

b i j iH x m R ×⎡ ⎤= − ∈⎣ ⎦
r , where i and j 

vary over all classes and all samples in each class, separately. 

2. 

Computer the complete orthogonal decomposition 

0
0 0

T R
P KQ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, where ( )
T

c n Lb
T
w

H
K R

H
+ ×⎡ ⎤

= ∈⎢ ⎥
⎣ ⎦

 and the rank of K  is t . 

3. 
Conduct the singular value decomposition on ( )1: ,1:P c t , i.e., 

( )1: ,1:TU P c t V = Λ . 

4. 
Let 

1 0
0

R V
A Q

I

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. The projection matrix *U  is the first 'L  

( )' 1L c≤ −  columns of A . 

 

• Ye and Li [174] combined the orthogonal triangular decomposition [44], 

or briefly the QR decomposition, with LDA to reduce the SSS problem. 

Compared with LDA/GSVD, LDA/QR has lower time and space 

complexities. The only difference between PCA+LDA and LDA/QR is the 

first stage: PCA+LDA applies PCA to the covariance matrix of total 

training samples, while LDA/QR conducts the QR decomposition on a 

small matrix involving the class means. The detailed description of 

LDA/QR is given in Table 2.3. 

• Recently, Zhang et al. [180] reformulated LDA based on the statistical 

learning theory by defining the following regularized function to reduce 

the SSS problem: 

( )2

; ;
1 1

1* arg max
inc

T T
i j i j

u i j
u y u x u u

n
λ

= =

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∑∑r

r r r r r , (2.22)

where 2c = ; ;i jy  is the label identifying the class of the sample ;i jxr ; λ  

is a small value; and Tu ur r  is the regularization term. Zhang et al. then 

extended (2.22) to multiclass problems and proved the equivalence 

between (2.22) and the regularized version of LDA and reported (2.22) can 
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reduce the SSS problem. This extension has also been recognized by 

Gallinari et al. [42] and Hastie et al. [49]. 

 

Table 2.3. Linear Discriminant Analysis via QR Decomposition 

Input: Training samples ;i jxr  in LR , where i denotes the ith class (1 i c≤ ≤ ) and 
j denotes the jth sample in the ith class ( 1 ij n≤ ≤ ), and the dimension 'L  
( 'L L< ) of the projected subapce. 

Output: Linear projection matrix *U  in 'L LR × . 

1. 

Calculate bH  and wH  according to 

( ) L c
b i iH n m m R ×⎡ ⎤= − ∈⎣ ⎦

r r  and ( );
L n

b i j iH x m R ×⎡ ⎤= − ∈⎣ ⎦
r , where i and j 

vary over all classes and all samples in each class, separately. 

2. 
Apply QR decomposition on bH  as bH QRE= , where Q , R , and E  
are in L tR × , t cR × , and c cR × , respectively. Here t  is the rank of bH . 

3. 
Let T

bS RR=  and T T
w w wS Q H H Q= . Let [ ]1i i t

φ
≤ ≤

Φ =  be the first t  

eigenvectors of 1
b wS S−  associated with the first t  smallest eigenvalues. 

4. The projection matrix *U  is defined by *U Q= Φ . 

 

 Several LDA Alternatives 

Several alternatives to LDA are obtained by varying the objective function 

defined in (2.11) for LDA. That is the projection matrix *U  can be obtained by 

maximizing the following criteria, 

( ) ( )( )1

1 2 1tr T TJ U S U U S U
−

=  (2.23)

2 1 2log logT TJ U S U U S U= −  (2.24)

( ) ( )3 1 2tr trT TJ U S U U S Uλ= −  (2.25)

( ) ( )4 1 2tr trT TJ U S U U S U=  (2.26)

where ( )det⋅ ⋅� ; the pair { }1 2,S S  could be { },b wS S , { },b tS S , or { },t wS S ; 

and λ  in 3J  is a  Lagrange multiplier. The criterion 1J  is the traditional 

definition of LDA as shown in (2.11). The maximization of 1J  is equivalent to 

the maximization of ( )1tr TU S U  with the constraint 2
TU S U I= , where I  is 

the identity matrix. In 2J , when T
bU S U  is not full rank, we cannot set  1S  
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equal to bS , due to ( )det 0bS = . The maximization of 2J  is equal to the 

maximization of 1J  as shown in [39]. 

 

 Nonparametric Model based Discriminant Analysis 

In this Section, we review some important nonparametric based discriminant 

analysis algorithms. 

• Hastie et al. [52] viewed LDA as a multivariate linear regression and 

generalized LDA by replacing the multivariate linear regression with a 

multivariate nonparametric regression. They named the nonparametric 

generalization of LDA as flexible discriminant analysis. Furthermore, they 

also [50] introduced GMM to the flexible discriminant analysis to model 

complex distributions. 

• Fukunaga and Mantock [40] extended the between class scatter matrix bS  

and the within class scatter matrix wS  from the parametric version to the 

nonparametric version. With this extension, LDA is generalized to the 

nonparametric discriminant analysis (NDA). Using this generalization, 

more features can be selected for classification when 1c −  features are 

not enough. Meanwhile, the assumption that each class has a Gaussian 

distribution is dropped. 

• Buturovic [16] used the k–nearest–neighbour based Bayes error 

minimization criterion to select the discriminative subspace. Lotlikar and 

Kothari [94] minimized the Bayes error in the projected subspace when 

each class is modelled by a hyper sphere and each class has its own mean. 

By modelling each class density function via a kernel estimator, this 

method can be utilized for practical applications. Liu et al. [90] used a 

stochastic gradient algorithm to obtain linear representations for 

classification based on a new defined optimization criterion which utilizes 

the between class distance and within class distance information through a 

nonparametric way.  

 

 Kernel Discriminant Analysis 
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The nonlinear extension of LDA, or the kernel LDA (KDA) [109][104][129], is to 

solve the generalized eigenvalue decomposition 

( ) ( )( )1
* arg max tr T T

t b
U

U U S U U S U
φ

φ φ
φ φ φ φ φ

−
=  (2.27)

in the higher dimensional space, where the between class scatter matrix bS  and 

the total class scatter matrix tS  in the higher dimensional space are defined as 

( )( )

( )( ) ( )( )

, ,
1

; ;
1 1

1           

1 i

c T

b i i i
i

nc T

t i j i j
i j

S n m m m m
n

S x m x m
n

φ
φ φ φ φ

φ
φ φφ φ

=

= =

⎧ = − −⎪
⎪
⎨
⎪ = − −
⎪⎩

∑

∑∑

r r r r

r r r r
 (2.28)

where ( ) ( );1 1
1 ic n

i ji j
m n xφ φ

= =
= ∑ ∑r r , ( ) ( ); ;1

1 in
i i i jj

m n xφ φ
=

= ∑r r , and 
1

c
ii

n n
=

=∑ . 

Similar to KPCA, each column in Uφ  is also a linear combination of all training 

samples in the higher dimensional space, i.e., U Xφ φ= Λ , where Λ  is a matrix 

to store linear combination coefficients as it is defined in KPCA and Xφ  is 

defined as ( ) ( )1;1 1;2, , ,X x xφ φ φ⎡= ⎣
r r

L  ( ) ( )2;1 ;, ,
cc nx xφ φ ⎤
⎦

r r
L . 

By replacing Uφ  in ( ) ( )( )1
* arg max tr T T

t b
U

U U S U U S U
φ

φ φ
φ φ φ φ φ

−
=  with XφΛ , we 

have 

( ) ( )( )1
* arg max tr T T

t bK K
−

Λ
Λ = Λ Λ Λ Λ  (2.29)

where bK  and tK  are defined as 

( )( )TbK K W M W M K= − −  (2.30)

( )( )T
tK K I M I M K= − − . (2.31)

where ( ) ( ) ( ), , n n
i j i jK k x x x x Rφ φ ×⎡ ⎤⎡ ⎤= = ∈⎣ ⎦ ⎣ ⎦
r r r r  is the kernel Gram matrix; 

( ),k ⋅ ⋅  is a kernel function [128][129]; [ ]1
n n

l l c
W W R ×

≤ ≤
= ∈  is a block diagonal 

matrix; all entries in i in n
lW R ×∈  are 1 in ; and all entries in 

1 ;

n n
ij i j n

M m R ×

≤ ≤
⎡ ⎤= ∈⎣ ⎦  are 1 n . 

After obtaining the linear combination coefficients, we can project a given sample 

zr  to the subspace constructed by KDA through 
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( ) ( ) ( )

( ) ( ) ( )1;1 1;2 ;, , , , , , .
c

T T T

T
c n

X z X z

k x z k x z k x z

φ φφ φΛ = Λ

⎡ ⎤= Λ ⎣ ⎦

r r

r r rr r r
L

 (2.32)

where ( ) 1[ ]i i nX xφ φ ≤ ≤=
r . 
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 General Averaged Divergences Analysis 

 

If different classes are assumed to be sampled from Gaussian densities with 

different expected values but identical covariances, then LDA maximizes the 

mean value of the KL divergences between different pairs of densities. We 

propose a framework, the General Averaged Divergences Analysis, for choosing a 

discriminative subspace by: 1) generalizing the distortion measure from the KL 

divergence to the Bregman divergence2, and 2) generalizing the arithmetic mean 

to the generalized mean function [48]. Based on this framework, we can develop a 

method to reduce the heteroscedastic problem, the unimodel problem, and the 

class separation problem, simultaneously. 

 

 Bregman Divergence 

Definition 2.1 (Bregman Divergence): Let :mapU S R→  be a 1C  convex 

function defined on a closed convex set S R+⊆ . The first derivative of mapU  is 

mapU ′ , which is a monotonic function. The inverse function of mapU ′  is 

( ) 1

mapUξ
−

′= . The probability density for the samples in ith class is 

( ) ( )|ip x p x y i= =
r r , where y i=  means the sample xr  is sampled from the ith 

class. The difference, as shown in Figure 2.3, at ( )( )jp xξ r  between the function 

mapU  and the tangent line to mapU  at ( )( ) ( )( )( )( ),i map ip x U p xξ ξr r  is given by: 

( )( ) ( )( )( ) ( )( )( ) ( )( )( ){ }
( ) ( )( ) ( )( ){ }

,

                                         .

i j map j map i

i j i

d p x p x U p x U p x

p x p x p x

ξ ξ ξ ξ

ξ ξ

= −

− −

r r r r

r r r  (2.33)

Based on (2.33), the Bregman divergence for ( )ip xr  and ( )jp xr  is 

( ) ( )( ) ( )( ) ( )( )( )|| ,i j i jD p x p x d p x p x dξ ξ μ= ∫
r r r r , (2.34)

                                                 
2 There are many distortion measures, such as Bregman divergence, Amari’s α –divergence, and 
Csiszar’s ϕ –divergence. The Bregman divergence is selected as the distortion measure in this 
thesis. 
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where dμ  (i.e., ( )d xμ r ) is the Lebesgue measure. The right–hand side of (2.34) 

is also called the U–divergence [110]. Because mapU  is a convex function, 

( )( ) ( )( )( ),d p x q xξ ξr r  is non–negative. Consequently, Bregman divergence is 

non–negative. Because ( )( ) ( )( )( ),d p x q xξ ξr r  is in general not symmetric, 

Bregman divergence is also not symmetric. Detailed information about the 

Bregman divergence can be found in [110]. 

( )( )( )iU p xξ r

( )( )ip xξ r ( )( )jp xξ r

( )( )( )jU p xξ r

( )( ) ( )( )( ),i jd p x p xξ ξr r

( ) ( )( ) ( )( ){ } ( )( )( )i j i jp x p x p x U p xξ ξ ξ− +
r r r r

ξ

( )U ξ

 

Figure 2.3. The geometric setting for Bregman divergence. 

 

If ( ) ( )expmapU x x= , Bregman divergence reduces to the KL–divergence, 

( ) ( )( ) ( ) ( ) ( ) ( )
( )

( ) ( )
( ) ( ) ( )( )

|| log

                            log || .

j
i j j i i

i

i
i i j

j

p x
D p x p x p x p x p x d

p x

p x
p x d KL p x p x

p x

μ

μ

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠

= =

∫

∫

r
r r r r r

r

r
r r r

r

 (2.35)

Further examples can be found in [110]. 

For Gaussian probability density functions, ( ) ( ); ,i i ip x N x m Σ
r r r
� , where imr  is 

the mean vector of the ith class samples and iΣ  is the within class covariance 

matrix of the ith  class, the KL divergence [21] is 
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( ) ( )( ) ( ) ( )
( )

( ) ( )1 1

; ,
|| ; , ln

; ,

                              ln ln tr tr ,

i i
i j i i

j j

j i j i j ij

N x m
KL p x p x N x m dx

N x m

D− −

Σ
= Σ

Σ

= Σ − Σ + Σ Σ + Σ

∫
r r

r r r r r
r r

 (2.36)

where ( ) ( )ij i j i jD m m m m= − ⊗ −
r r r r  and ( )detΣ Σ� . 

To simplify the notation we denote the KL divergence between the projected 

densities ( )|Tp U x y i=r  and ( )|Tp U x y j=
r  by 

( ) ( ) ( )( )|| | || |T T
U i jD p p D p U x y i p U x y j= =

r r
� . (2.37)

 

 General Averaged Divergences Analysis 

We replace the arithmetic mean by the generalized mean [48], 

( )
( )( )

11

1

||i j U i j
i j c

m n
m n c

q q D p p
V U

q qϕ

ϕ
ϕ ≤ ≠ ≤−

≤ ≠ ≤

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

∑
∑

, (2.38)

where ( )ϕ ⋅  is a strict monotonic real–valued increasing function defined on 

( )0,+∞ ; ( )1ϕ− ⋅  is the inverse function of ( )ϕ ⋅ ; iq  is the prior probability of 

the ith class (usually, we set i iq n n=  or simply set 1iq c= ); ( )||U i jD p p  is 

defined in (2.37); Lx R∈
r  where LR  is the feature space containing the training 

samples; and 'L LU R ×∈  ( 'L L> ) is the projection matrix. The general averaged 

divergences function measures the average of all divergences between pairs of 

classes in the subspace. We obtain the projection matrix *U  by maximizing the 

general averaged divergences function ( )V Uϕ  over U , for a fixed ( )ϕ ⋅ . The 

general optimization algorithm for subspace selection based on (2.38) is given in 

Table 2.4. Usually, the concavity of the averaged divergences cannot be 

guaranteed. To reduce the effects of local maxima [11], we choose a number of 

different initial projection matrices; carry out the separate optimizations; and then 

select the best one, which has the maximal value of ( )V Uϕ . 

If ( )V Uϕ  depends only on the subspace of nR  spanned by the columns of U  

then U  can be replaced by UC  where C  is a k k×  matrix, chosen such that 

the columns of UC  are orthogonal. 
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On setting ( )x xϕ = , we obtain the arithmetic mean based method for choosing a 

subspace, 

( )
1

1

||
* arg max i j U i j

U i j c m n
m n c

q q D p p
U

q q≤ ≠ ≤
≤ ≠ ≤

= ∑ ∑ ( )
1

arg max ||i j U i j
U i j c

q q D p p
≤ ≠ ≤

= ∑ . (2.39)

 

 

Table 2.4. General Averaged Divergences Analysis for Subspace Selection 

Input: Training samples ;i jxr  in LR , where i denotes the ith class (1 i c≤ ≤ ) 
and j denotes the jth sample in the ith class (1 ij n≤ ≤ ), the dimension 'L
( 'L L< ) of the projected subspace, and M is the maximum number of different 
initial values for the projection matrix. 

Output: Optimal linear projection matrix *U  in 'L LR × . 

1. for 1:m M=  { 

2. Randomly initialize m
tU  ( 1t = ), i.e., all entries of 1

mU  are random 
numbers. 

3. while ( ) ( )1
m m
t tV U V Uϕ ϕ ε−− >  ( 610ε −= ), do{ 

4. 

Conduct the gradient steepest ascent algorithm3 to maximize the 
averaged divergences defined in (2.38): 

( )1 1
m m m
t t U tU U V Uϕκ− −← + ⋅∂ . Here, κ , a small value (e.g., 0.0001), 

is the learning rate. 

5. 1t t← +  

6. }//while in line 3 

7. }//for in line 1 

8. ( )* arg max m
t

m
U V Uϕ← . 

 

Observation 2.1: LDA maximizes the arithmetic mean of the KL divergences 

between all pairs of classes, under the assumption that the Gaussian distributions 

( )ip xr  for different classes all have the same covariance matrix. The optimal 

                                                 
3 The gradient steepest ascent algorithm can be replaced by other faster optimization methods, 
such as the conjugate gradient method, to reduce the number of iterations. 
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projection matrix U  with respect to LDA can be obtained by maximizing a 

particular ( )V Uϕ , i.e., 

( ) ( )( )1

1
arg max || arg max tr T T

i j U i j w b
U Ui j c

q q D p p U S U U S U
−

≤ ≠ ≤

=∑ . (2.40)

Proof: See Appendix. 

Example: Decell and Mayekar [29] maximized the weighted arithmetic mean of 

all symmetric KL divergences between all pairs of classes in the projected 

subspace. The weighting factor of the symmetric KL divergence between the ith 

class and the jth class is i jq q , where iq  is the prior probability of the ith 

class.The symmetric KL divergence is: 

( ) ( ) ( )

( ) ( )( )( )( )1 1 1 1

1 1|| || ||
2 2

tr tr .

i j i j j i

T

j i i j j i i j i j

SKL p p KL p p KL p p

m m m m− − − −

= +

= Σ Σ +Σ Σ + Σ + Σ − −
r r r r

 (2.41)

It follows from (2.41) that Decell and Mayekar’s method also maximizes the 

arithmetic mean of all KL divergences. 

De la Torre and Kanade [28] developed ODA based on the objective function 

(2.12) used in [29], but using the iterative majorization to quickly obtain a 

solution. 

 

 How to Deal with the Multimodal Problem [50] 

Up to this point it has been assumed that the samples in a given class are sampled 

from a single Gaussian distribution. This assumption often fails in real–world 

large data sets, such as those used for multi–view face [84] and gait [176] 

recognition, natural image classification [156] or texture classification [133]. 

To overcome this limitation, each class can be modelled by a GMM. Many 

methods for obtaining GMMs have been described in the literature. Examples 

include KMeans [30], GMM with expectation–maximization (EM) [30], graph–

cut [131], and spectrum clustering. Unfortunately, these methods are not adaptive, 

in that the number of subclusters must be specified, and some of them (e.g., EM 

and KMeans) are sensitive to initial values. In our algorithm we use the recently 

introduced GMM–EM like algorithm, proposed by Figueiredo and Jain [36], 

which is named the GMM–FJ method. The reasons for choosing GMM–FJ are: it 

finds the number of subclusters; it is less sensitive to the choice of initial values of 
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parameters than EM; and it avoids the boundary problem4 of the parameter space. 

We assume that samples in each class are sampled from a GMM and the 

projection matrix U  can be obtained by maximizing the general averaged 

divergences, which measure the averaged distortion between any pair of 

subclusters in different classes, i.e., 

( )
( )( )

1 1 11

1 1 1

||
i j

i j

k l k l
i j U i j

i j c k C l C

s t
m n

m n c s C t C

q q D p p
V U

q qϕ

ϕ
ϕ ≤ ≠ ≤ ≤ ≤ ≤ ≤−

≤ ≠ ≤ ≤ ≤ ≤ ≤

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑
, (2.42)

where k
iq  is the prior probability of the kth subcluster of the ith class; k

ip  is the 

sample density of the samples in the kth subcluster in the ith class; ( )||k l
U i jD p p  is 

the divergence between the kth subcluster in the ith class and the lth subcluster in 

the jth class. 

 

                                                 
4 The means of each class is equal to one of the samples and the covariances are arbitrarily close 
to singular. For example, we have N samples and we use N Gaussians to model these samples. The 
mean of each Gaussian is equivalent to a sample and the covariance of each Gaussian is singular. 
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 Geometric Mean for Subspace Selection 

 

In LDA and ODA, the arithmetic mean of the divergences is used to find a 

suitable subspace into which to project the samples. The main benefit of using the 

arithmetic mean in LDA is that the projection matrix can be obtained by the 

generalized eigenvalue decomposition. However, LDA is not optimal for 

multiclass classification [103] because of the class separation problem defined in 

§103. Therefore, it is useful to investigate other choices of ϕ  in (2.38) to see if 

better results can be obtained. 

 

 Criterion 1:  
Maximization of the Geometric Mean of the Divergences 

The log function is a suitable choice for ϕ  because it increases the effects of 

small divergences and at the same time reduces the effects of large divergences. 

On setting  ( ) ( )logx xϕ =  in (2.38), the generalized geometric mean of the 

divergences is obtained. The required subspace *U  is given by, 

( ) 1
1

* arg max ||
i j

m n
m n c

q q

q q
U i j

U i j c

U D p p
≤ ≠ ≤

≤ ≠ ≤

∑⎡ ⎤= ⎣ ⎦∏ . (2.43)

It follows from the mean inequality that the generalized geometric mean is upper 

bounded by the arithmetic mean of the divergences, i.e., 

( ) ( )1
11

1

|| ||
i j

m n
m n c

q q
i jq q

U i j U i j
i j ci j c m n

m n c

q q
D p p D p p

q q≤ ≠ ≤
≤ ≠ ≤≤ ≠ ≤

≤ ≠ ≤

⎛ ⎞
⎜ ⎟∑⎡ ⎤ ≤⎣ ⎦ ⎜ ⎟
⎜ ⎟
⎝ ⎠

∑∏ ∑
. (2.44)

Proof: See Appendix. 

Furthermore, (2.43) emphasizes the total volume of all divergences. For example, 

in the special case i jq q=  for all ,i j , 

( ) ( )1
1 1

arg max || arg max ||
i j

i j
m n

m n c

q q
q q

q q
U i j U i j

U Ui j c i j c

D p p D p p
≤ ≠ ≤

≤ ≠ ≤ ≤ ≠ ≤

∑⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦∏ ∏  

( )
1

arg max ||U i j
U i j c

D p p
≤ ≠ ≤

= ∏ . 
(2.45)
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 Criterion 2:  
Maximization of the Geometric Mean of the Normalized 
Divergences 

We can further strengthen the effects of small divergences on subspace selection, 

by maximizing the geometric mean5 of all normalized divergences6 in the 

projected subspace, i.e., 

( )
( )

( )
1

1

1 1

* arg max || arg max ||
c c

U i j U i j
U Ui j c i j c

U E p p E p p
−

≤ ≠ ≤ ≤ ≠ ≤

⎡ ⎤
= =⎢ ⎥

⎣ ⎦
∏ ∏ , (2.46)

where the normalized divergence ( )||U i jE p p  between the ith class and the jth 

class is defined by: 

( ) ( )
( )

1

||
||

||
i j U i j

U i j
m n U m n

m n c

q q D p p
E p p

q q D p p
≤ ≠ ≤

=
∑

. (2.47)

The intuition behind (2.46) is that the product of normalized divergences is large 

when the normalized divergences are similar to each other. Therefore, maximizing 

the geometric mean of the normalized divergences will tend to make them as 

similar as possible. The effects of the small divergences should then be 

emphasized. 

 

 Criterion 3:  
Maximization of the Geometric Mean of all Divergences 

Although criterion 2 emphasizes small divergences during optimization, direct use 

of the criterion is not desirable for subspace selection. This is because 

experiments in §233066540 show that there exists U  for which all divergences 

become small, but all normalized divergences are comparable in size. In such 

case, the projection matrix U  is not suitable for classification, because several 

classes may be severely overlapped. 

To reduce this problem, we combine criterion 2 with criterion 1 into a new one. 

The new criterion maximizes the linear combination of: 1) the log of the 

                                                 
5 In (2.46), we use the geometric mean but not the generalized geometric mean because the 
weights (the prior probabilities iq ) are moved to the normalized divergences as shown in (2.47). 
In this form, the calculations are simplified. 
6 The sum of all normalized divergences is one. 
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geometric mean of the divergences and 2) the log of the geometric mean of 

normalized divergences. This criterion is named the Maximization of the 

Geometric Mean of all Divergences, or briefly MGMD, 

( )
( )

( ) ( )

( ) ( )

1

1
1

1

1

1 1

log ||
* arg max

1 log ||

    arg max log || log || ,

i j

m n
m n c

c c

U i j
i j c

q qU
q q

U i j
i j c

U i j i j U i j
U i j c i j c

E p p
U

D p p

D p p q q D p p

α

α

η

≤ ≠ ≤

−

≤ ≠ ≤

≤ ≠ ≤

≤ ≠ ≤ ≤ ≠ ≤

⎧ ⎫
⎡ ⎤⎪ ⎪
⎢ ⎥⎪ ⎪⎪ ⎪⎣ ⎦= ⎨ ⎬

⎪ ⎪
∑⎡ ⎤+ −⎪ ⎪⎣ ⎦⎪ ⎪⎩ ⎭

⎧ ⎫⎛ ⎞⎪ ⎪= −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

∏

∏

∑ ∑

 (2.48)

where 0 1α< <  is the linear combination coefficient to integrate the criterion 1 

with 2; and 
( )

( )( )
1

1

1

1 1

m n
m n c

m n
m n c

c c q q

c c q q

α
η

α α
≤ ≠ ≤

≤ ≠ ≤

−
=

− − +

∑
∑

. The supremum of η  is ( )1c c −  

and the infimum of η  is 0. When 0α =  (or 0η = ), (2.48) reduces to (2.43); 

and when 1α =  (or ( )1c cη = − ), (2.48) reduces to (2.46). The rational of the 

combination coefficient α  trades off the geometric mean of divergences of 

different pairs of classes against the geometric mean of normalized divergences of 

different pairs of classes. The first part emphasizes the total volume of all 

divergences; increases effects of small divergences; and reduces effects of large 

divergences. The second part further strengthens the effects of small divergences 

and weakens theeffects of large divergences. Therefore, by tuning the parameter 

α , we can balance the impacts of selected subspace on the total volume of all 

divergences, the impacts of large divergences, and the impacts of small ones. 

Deduction 2.1: See Appendix. 

Based on (2.48) and (2.42), we directly extend MGMD to the multimodal case, as 

the Multimodal extension of the Maximization of the Geometric Mean of all 

Divergences (M–MGMD), 

( )

( )

1 1 1

1 1 1

log ||

* arg max
log ||

i j

i j

k l
U i j

i j c k C l C

U k l k l
i j U i j

i j c k C l C

D p p

U
q q D p pη

≤ ≠ ≤ ≤ ≤ ≤ ≤

≤ ≠ ≤ ≤ ≤ ≤ ≤

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬⎛ ⎞
⎪ ⎪− ⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∑ ∑ ∑

∑ ∑ ∑
. (2.49)

In the next Section, we discuss subspace selection based on the choice of the KL 

divergence in (2.48) and (2.49). 
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 Kullback–Leibler Divergence based Subspace Selection 

 

In the last Section, we developed a framework MGMD/M–MGMD for subspace 

selection based on the geometric mean of divergences and normalized 

divergences. In this Section, we combine the KL divergence with MGMD/M–

MGMD as an example for practical applications. The multimodal problem [50] is 

carefully studied and finally we kernelize the proposed subspace selection 

method. Experimental studies are given in §50, §50, and §50. 

 

 MGMD and KL Divergence for Subspace Selection 

By combining the KL divergence defined in (2.36) and MGMD defined in (2.48), 

we obtain the Maximization of the Geometric Mean of all KL Divergences 

(MGMKLD), 

( )* arg max
U

U L U= , (2.50)

where ( )L U  is defined by 

( ) ( ) ( )
1 1

log || log ||U i j i j U i j
i j c i j c

L U KL p p q q KL p pη
≤ ≠ ≤ ≤ ≠ ≤

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑ ∑ , (2.51)

and ( )||U i jKL p p  is the KL divergence between the ith class and the jth class in 

the projected subspace, 

( )

( ) ( )( ) ( )( )1 1

1|| log log
2

    tr tr

T T
U i j j i

T T T T
j i j ij

KL p p U U U U

U U U U U U U D U
− −

= Σ − Σ

+ Σ Σ + Σ
 (2.52)

To better understand MGMKLD, we need to define the Stiefel manifold and the 

Grassmann manifold. 

Definition 2.2: The Stiefel manifold [10] ( ),St n r  for n r≥  is defined as a set 

of all n r×  matrices with orthonormal columns, i.e., 

( , ) { : }n r T
rSt n r U R U U I×= ∈ = . ( ),St n r  is a sub–manifold of n rR ×  of real 

dimension 22n r r× − . Two elements 1U  and 2U  in ( ),St n r  are said to be 

equivalent if their columns span the same subspace, i.e., 1 2U U Q=  for some 

orthogonal matrix r rQ R ×∈ . 
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Table 2.5. Optimization procedure for MGMKLD 

Input: Training samples ;i jxr  in nR , where i denotes the ith class (1 i c≤ ≤ ) 
and j denotes the jth sample in the ith class (1 ij n≤ ≤ ), the dimension k  ( k n< ) 
of the selected subspace, the maximum number M of different initial values for 
the projection matrix U , the learning rate κ (a small value), the combination 
factor η , and a small value ε  as the convergence condition. 

Output: An estimate *U  in n kR ×  of the optimal projection matrix. 

1. for 1:m M=  { 

2. Initialize m
tU  ( 1t = ) randomly. 

3. 

while ( ) ( )1
m m
t tL U L U ε−− >  ( 610ε −= ), 

where ( )m
tL U  and ( )||m

t
i jU

KL p p  are defined in (2.51) and (2.52), 

respectively. 
do{ 

4. 
Conduct the gradient steepest ascent step: 

( )1 1
m m m
t t U tU U L Uκ− −← + ⋅∂ , where ( )m

U tL U∂  is defined in (2.53). 

5. 1t t← + . 

5. }//while in line 3 

6. }//for in line 1 

7. ( )arg max m

m
U V Uϕ←  

8. Ortho–normalization Step: ( )* ortho - normalizeU U← . 

 

Definition 2.3: The Grassmann manifold [10] is the quotient space of ( ),St n r  

with respect to the above equivalent relation. Each element in the Grassmann 

manifold ( ),Gr n r  is an equivalent class in ( ),St n r . ( ),Gr n r  is a set of all r–

dimensional vector subspaces of nR 7. 

As mentioned in the Table 2.4, the procedure for the maximization of the general 

averaged divergences, we prove the projection matrix U  is invariant to the 

                                                 
7 http://mathworld.wolfram.com/GrassmannManifold.html 
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ortho–normalization operator for ( )L U , i.e., U  stays in the Grassmann 

manifold. In other words, ( )L U  will depend only on the subspace defined by 

U . 

Claim 2.1: The ortho–normalization operation does not change the value of the 

objective function ( )L U  of MGMKLD defined in (2.51). 

Proof: See Appendix. 

To obtain the optimization procedure for MGMKLD based on Table 2.4, we need 

the first order derivative of ( )L U , 

( )
( ) ( )

( ) ( )

1

1

1

1 1

|| ||

     || || ,

U

U i j U U i j
i j c

m n U m n i j U U i j
m n c i j c

L U

KL p p KL p p

q q KL p p q q KL p pη

−

≤ ≠ ≤

−

≤ ≠ ≤ ≤ ≠ ≤

∂

= ∂

⎛ ⎞⎛ ⎞− ∂⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑

∑ ∑

 
(2.53)

where the first order derivative of ( )||U i jKL p p  is given by 

( )
( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 1

1 1

||

    .

U U i j

T T T
j j i i i ij j

T T T
j j i ij j

KL p p

U U U U U U D U U U

U U U U D U U U

− − −

− −

∂

= Σ −Σ Σ + Σ + Σ

−Σ Σ Σ + Σ

Σ  (2.54)

 

 Multimodal Extension of MGMKLD 

In many situations, the distribution of each class is not Guassian. It is reasonable 

to use GMMs to fit each class. The advantages of introducing GMM to 

discriminative subspace selection are described in §0. In this Section, we combine 

GMM with MGMKLD as the multimodal extension of MGMKLD (M–

MGMKLD). The combination, M–MGMKLD, is obtained from (2.36) and (2.49), 

as 

( )* arg max GMM
U

U L U=  

( )

( )

1 1 1

1 1 1

arg max log ||

                                        log || .

i j

i j

k l
i j

U i j c k C l C

k l k l
i j U i j

i j c k C l C

KLU p p

q q KL p pη

≤ ≠ ≤ ≤ ≤ ≤ ≤

≤ ≠ ≤ ≤ ≤ ≤ ≤

⎡ ⎤= ⎣ ⎦

⎡ ⎤
⎡ ⎤− ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑

W

 
(2.55)
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Claim 2.2: The ortho–normalization operation does not change the value of the 

objective function ( )GMML U  of M–MGMKLD. 

Proof. This claim is proved in the same way as the Claim 2.1.          ■ 

 

Table 2.6. Optimization procedure for M–MGMKLD. 

Input: Training samples ;i jxr  in nR , where i denotes the ith class (1 i c≤ ≤ ) 
and j denotes the jth sample in the ith class (1 ij n≤ ≤ ), the dimension k  ( k n< ) 
of the selected subspace, the maximum number M of different initial values for
U , the learning rate κ (a small value), the combination factor η , and a small 
value ε  as the convergence condition. 

Output: Linear projection matrix *U  in n kR × . 

1. 
Conduct the GMM–FJ to cluster samples in each class and obtain the 
corresponding covariance matrix k

iΣ  and mean value k
imr , where 

1 i c≤ ≤  and 1 ik C≤ ≤ , iC  is the number of clusters of the ith class. 

2. for 1:m M=  { 

3. Initialize 1
mU  randomly. 

4. 
while ( ) ( )1

m m
GMM t GMM tL U L U ε−− >  ( 610ε −= ),  

where ( )GMML U  is defined in (2.55). 
do{ 

5. 
Conduct the gradient steepest step: ( )1 1

m m m
t t U GMM tU U L Uκ− −← + ⋅∂ , 

where ( )U GMML U∂  is defined in (2.56). 

6. }//while in line 4 

7. ( )arg max m

m
U V Uϕ← . 

8. }//for in line 2 

9. Ortho–normalization Step: ( )* ortho - normalizeU U← . 

 

With Claim 2.2 and Table 2.4, we can obtain the optimization procedure for M–

MGMKLD. We only need to mention the first order derivative of the objective 

function ( )GMML U  of M–MGMKLD, 
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( ) ( ) ( )

( )

1

1 1 1

1

1 1 1

|| ||

                                             ||

                                                

i j

i j

k l k l
U GMM U i j U U i j

i j c k C l C

s t s t
m n U m n

m n c s C t C

L U KL p p KL p p

q q KL p pη

−

≤ ≠ ≤ ≤ ≤ ≤ ≤

−

≤ ≠ ≤ ≤ ≤ ≤ ≤

∂ = ∂

⎛ ⎞
− ⎜ ⎟⎜ ⎟

⎝ ⎠

∑ ∑ ∑

∑ ∑ ∑

( )
1 1 1

  || .
i j

k l k l
i j U U i j

i j c k C l C
q q KL p p

≤ ≠ ≤ ≤ ≤ ≤ ≤

⎛ ⎞
∂⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑

 (2.56)

By incorporating the merits of GMM–FJ and the proposed MGMKLD model, the 

new method has the following benefits: 

1. Experiments show that the new method reduces the class separation 

problem; 

2. The new method inherits the merits of GMM–FJ. In detail, it determines 

the number of subclusters in each class automatically; it is less sensitive to 

the choice of initial values of the parameters than EM; and it avoids the 

boundary problem of the parameter space; 

3. The new method is capable of obtaining the projection orthogonal matrix, 

i.e., ( )GMML U  depends only on the subspace defined by U . 

 

 Kernel Extension of MGMKLD 

In this part, we study the kernel extension of MGMKLD. Because of the success 

of the kernel method [129][109] in pattern classification, MGMKLD will be 

generalized from the low dimensional original Hilbert space to the higher 

dimensional Hilbert space. The generalized version is named the kernel 

MGMKLD (KMGMKLD). 

To utilize the kernel dot product trick [129][109] for MGMKLD, we need to have 

the Lemma 2.1. Denote ⊕  as the direct sum. 

Lemma 2.1: If U  is a solution to MGMKLD and x xU U U ⊥= ⊕ , then xU  is a 

solution to MGMKLD. We have ( ) ( )xL U L U= . Here, the column space of xU  

is spanned by the samples { } 1
; 1| ij n

i j i cx ≤ ≤
≤ ≤

r  and the column space of xU ⊥  is the 

orthogonal complement of the column space of xU . 

Proof: See Appendix. 

From Lemma 2.1, we know that the orthogonal complement component xU ⊥  

( xU U= ) does not affect the objective function ( )L U  of MGMKLD defined in 
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(2.51). Consequently, we can set 0xU ⊥ = , i.e., the column space of U  is 

spanned by the samples { } 1
; 1| ij n

i j i cx ≤ ≤
≤ ≤

r . Based on Lemma 2.1, the kernel trick can be 

utilized to implement the kernel extension of MGMKLD, because ( )L U  defined 

in (2.51) can be fully expressed in terms of inner products with the samples 

{ } 1
; 1| ij n

i j i cx ≤ ≤
≤ ≤

r  only. Without this lemma, the kernelization of MGMKLD cannot be 

implemented. 

Herein, there is a mapping rule : L HR Rφ a  to map MGMKLD to a higher–

dimensional space [109][104][129]. The samples xr , which are modelled by 

( ),i iN m Σ
r , are mapped as 

( ) ( ) ( )( ); ; ~ ,i j i j i ix x N mφ φ φ→ Σ
r r r  (2.57)

( ); ;
1

1 in

i i j
ji

m x
nφ φ

=

= ∑r r  (2.58)

( )( ) ( )( ); ; ; ; ;

T

i i j i i j iE x m x mφ φ φφ φ⎡ ⎤Σ = − −⎢ ⎥⎣ ⎦
r r r r  (2.59)

where ;imφ
r  is the mean vector of the ith class in HR  and ;iφΣ  is the covariance 

matrix of the ith class in HR . 

Based on Lemma 2.1, we can choose the projection matrix in HR  as 

( ) ( ); ; ; *
1 1

inc

i j i j i j n FF ni j
U x xφ α φ φ ××

= =

⎡ ⎤= = Λ⎣ ⎦∑∑ r r , (2.60)

where ;i jα  is the linear combination coefficient to combine the training samples 

( );i jxφ r  in HR . 

This means each column of Uφ  is a linear combination of all ( );i jxφ r  by 

varying i and j from all classes and samples in each class. 

Therefore, the KL divergence ( )( ) ( )( )( )||U i jKL p x p xφ φr r  in the feature space is 

( )( ) ( )( )( )

( ) ( )( )( )
; ;

1

; ; ;

||

log log1
2 tr

U i j

T T
j i

T T
j j ij

KL p x p x

U U U U

U U U D U

φ

φ φ φ φ φ φ

φ φ φ φ φ φ φ

φ φ

−

⎛ ⎞Σ − Σ
⎜ ⎟= ⎜ ⎟+ Σ Σ +⎜ ⎟
⎝ ⎠

r r

. (2.61)

Therefore, (2.51) becomes 
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( ) ( )( ) ( )( )( )

( )( ) ( )( )( )
1

1

log ||

               log ||

U i j
i j c

m n U m n
m n c

L U KL p x p x

q q KL p x p x

φ

φ

φ φ φ

η φ φ

≤ ≠ ≤

≤ ≠ ≤

⎡ ⎤= ⎣ ⎦

⎡ ⎤− ⎢ ⎥⎣ ⎦

∑

∑

r r

r r
. (2.62)

The variable ijD  becomes 

( ) ( ) ( ) ( ); ; ; ; ;
1 1 1 1

1 1 1 1j ji i
Tn nn n

ij i k i l i k i l
k l k li j i j

D x x x x
n n n nφ φ φ φ φ

= = = =

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑r r r r . (2.63)

To obtain the kernel Gram matrix [129] based representation in (2.61), we need to 

reformulate ( ) ;
T

iU U Uφ φ φΣ  by the kernel dot product trick8 as: 

;

' , , , , '
1 1 11 1

i i i i i i i i i i

T
i

T
T T
n H C C C C C C C C C C n H

i i i

U U

K I I K
n n n

φ φ φ

× ×

Σ

⎛ ⎞⎛ ⎞
= Λ − − Λ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

, (2.64)

Deduction 2.2: See Appendix. 

where .; jK  is the ( )1

1

thi
kk

n j−

=
+∑  column of the kernel Gram matrix 

( ) ( ); ;

T

i j i jF n F n
K x xφ φ

× ×
⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦

r r  ( ); ;,i j i jk x x⎡ ⎤= ⎣ ⎦
r r , ( ); ;,i j i jk x xr r  is the kernel function 

[129], ,
,

C Ci i

i iC CI R∈  is the identity matrix, ,
,1 i i

i i

C C
C C R∈  is the unit matrix, 

.; 1i i
C j j n

K K
≤ ≤

⎡ ⎤= ⎣ ⎦  is composed of the columns in the kernel Gram matrix from the 

( )1

1
1

thi
kk

n−

=
+∑  column to the ( )1

thi
kk

n
=∑  column; 'n H×Λ  is the projection 

matrix in HR  and 'H  is the number of selected features in HR . 

With the kernel dot product trick we can transform ;
T

ijU D Uφ φ φ  into 

;

' '
1 1 1 11 1 1 1

i i j j i i j j

T
ij

T

T
n H C C C C C C C C n H

i j i j

U D U

K K K K
n n n n

φ φ φ

× ×

⎛ ⎞⎛ ⎞
= Λ − − Λ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

. (2.65)

Deduction 2.3: See Appendix. 

Therefore, we can reformulate (2.61) as: 

                                                 
8 The kernel dot product trick is used to transform a linear algorithm (for classification, subspace 
selection, regression, and etc.) to a non–linear one by mapping the original samples in a low 
dimensional space into a higher dimensional space. Based on this mapping, the linear algorithm in 
the new space is equivalent to non–linear algorithm in the original space. The trick transforms a 
linear algorithm by replacing the dot product between two vectors with a kernel function. 
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( )

' ' ' '
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1

' ' ' '
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1 1tr
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× × × ×
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, (2.66)

where 
jCK  and ,i jC CL  are defined by: 

, ,
1 1

j j j j j jC C C C C C
j

K K I
n

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 (2.67)

,
1 11 1

i j i i j jC C C C C C
i j

L K K
n n

⎛ ⎞
= −⎜ ⎟⎜ ⎟
⎝ ⎠

. (2.68)

For a given sample zr , the corresponding feature ( )TU zφ φ
r  in the higher 

dimensional space is given by: 

( ) ( ) ( ) ( )' ; ' ; ,
T TT T T

n H i j n H i jH n H n
U z x z k x zφ φ φ φ× ×× ×

⎡ ⎤ ⎡ ⎤= Λ = Λ⎣ ⎦ ⎣ ⎦
r rr r r , (2.69)

where ( ); ,i jk x zr r  is the kernel function with entries ;i jxr  and zr . There are many 

typical kernel functions that could be used here, e.g., the Gaussian radial basis 

kernels ( ( ) ( )( )2 2, exp 2k x x x x σ′ ′= − −
r r r r ), the homogeneous polynomial kernels 

( ( ), , dk x x x x′ ′=
r r r r ), the inhomogeneous polynomial kernels ( ( ),k x x′ =

r r  

( ),
d

x x c′ +
r r ), and the sigmoid kernels ( ( ) ( ), tanh ,k x x x xκ ϑ′ ′= − +

r r r r ). The 

homogeneous polynomial kernels and the Gaussian radial basis kernels are widely 

used in pattern classification. The homogeneous polynomial kernels are invariant 

under orthogonal transformations. Liu [87] empiricially demonstrated that the 

fractional powers in the homogeneous polynomial kernels perform better than 

integral powers. The radial basis kernels can be written as ( ) ( )( ), ,k x x f d x x′ ′=
r r r r , 

where f  is a function on R+  and d  is a metric function. In Gaussian radial 

basis kenrles, f  is an exponential function and d  is the Euclidean metric. In 

different applications, we can choose different f  and d  through the cross–

validation to achieve reasonable performances. 
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Theorem 2.1: MGMKLD followed by KPCA is equal to KMGMKLD. 

Proof: See Appendix. 

Theorem 2.2: M–MGMKLD followed by KPCA is equal to the multimodal 

extension of KMGMKLD, or briefly M–KMGMKLD. 

Proof. The result follows from the Theorem 2.1.                    ■ 

In the Theorem 2.1, we show that kernel principal component analysis (KPCA) 

following MGMKLD yields kernel MGMKLD. Based on this theorem, 

KMGMKLD is equivalent to first preprocessing the data using KPCA and then 

applying orthogonal MGMKLD to the preprocessed data. 
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 Comparison using Synthetic Data 

 

In this Section, we compare MGMKLD with the previous subspace selection 

methods, which are LDA [39], heteroscedastic discriminant analysis (HDA) [61], 

approximate pairwise accuracy criteria (aPAC) [98], weighted LDA (WLDA), 

fractional–step LDA (FS–LDA) [95], heteroscedastic extenstion LDA (HLDA) 

[99], oriented discriminant analysis (ODA) [28], and multimodal oriented 

discriminant analysis (MODA) [28]. WLDA is similar to aPAC, but the weighting 

function is 8d − . In FS–LDA, the weighting function is 8d −  and the number of 

the fractional step is 30. We denote the proposed method as MGMKLD(η ), 

where η  is the combination factor in (2.48). We do not compare the proposed 

methods with the nonparametric based methods [2][16][94][90], because our 

framework is parametric. 

 

 Heteroscedastic Problem 

To examine the classification ability of these subspace selection methods for 

solving the heteroscedastic problem [99], we generate two classes such that each 

class has 500 samples, drawn from a Gaussian distribution. The two Gaussian 

distributions have identical mean values but different covariances. As shown in 

Figure 2.4, LDA, aPAC, WLDA, and FS–LDA separate classes without taking the 

differences of class covariances into account. All other methods achieve better 

separation of the two classes as shown in Figure 2.4, because they consider the 

differences both in class means and in class covariances. 
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Figure 2.4. Heteroscedastic example: in this figure, from left to right, from top to 

bottom, there are nine subfigures showing the projection directions (indicated by 

lines in each subfigure) obtained using LDA, HDA, aPAC, WLDA, FS–LDA, 

HLDA, ODA, MGMKLD(0), and MGMKLD(1). In this experiment, the linear 

classifier ( ) ( )1ˆ ˆˆ ˆ lnT
i i i ix m x m−− Σ − + Σ  is applied as the classification method 

after a subspace selection procedure, where ˆ im  and ˆ
iΣ  are the estimated ith 

class mean and covariance matrix in the lower dimensional space, respectively. 

The training classification errors of these methods are 0.3410, 0.2790, 0.3410, 

0.3410, 0.3430, 0.2880, 0.2390, 0.2390, and 0.2390, respectively. 

 

Based on the same data, we demonstrate that the geometric mean of normalized 

divergences is not sufficient for subspace selection. On setting 2η = , MGMKLD 

reduces to the maximization of the geometric mean of normalized KL 

divergences. This result is based on the description of (2.48). The left subfigure in 

Figure 2.5 shows the projection direction (indicated by lines in each subfigure) 

from the two dimensional space to a one dimensional space found by maximizing 

the geometric mean of normalized KL divergences. The projection direction 

merges the two classes. The right subfigure in Figure 2.5 shows the geometric 

mean of normalized KL divergences in the one dimensional subspace during 

training. In this experiment, we observed: 1) KL divergences between the class 1 
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and class 2 is 1.1451 and normalized KL divergences is 0.5091 at the 1000th 

training iteration; and 2) the KL divergence between the class 2 and class 1 is 

1.1043 and the normalized KL divergence is 0.4909 at the 1000th training 

iteration. The right subfigure shows normalized KL divergences are maximized 

finally, but the left subfigure shows the projection direction is not suitable for 

classification. The suitable projection direction for classification can be found in 

the bottom–left subfigure in Figure 2.4. 
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Figure 2.5. The maximization of the geometric mean of the normalized 

divergences is not sufficient for subspace selection. 

 

 Multimodal Problem 

In many applications it is useful to model the distribution of a class by a GMM, 

because samples in the class may be drawn from a non–Gaussian distribution. To 

demonstrate the classification ability of M–MGMKLD, we generated two classes; 

each class has two subclusters; and samples in each subcluster are drawn from a 

Gaussian distribution. Figure 2.6 shows the subspaces selected by different 

methods. In this case, LDA, WLDA, FS–LDA, and aPAC do not select good 

subspaces for classification. However, the multimodal extensions of ODA and 

MGMKLD find suitable subspaces. Furthermore, although HDA and HLDA do 

not take account of multimodal classes, they each select a suitable subspace. This 

is because the two classes have different class covariance matrices when each 

class is modelled by a single Gaussian distribution. For complex cases, e.g., when 

each class consists of more than 3 subclusters, HDA and HLDA fail to find good 

subspaces for classification. 
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Figure 2.6. Multimodal problem: in this figure, from left to right, from top to 

bottom, there are nine subfigures, which show the projection directions (indicated 

by lines in each subfigure) by using LDA, HDA, aPAC, FS–LDA(3), FS–LDA(8), 

HLDA, MODA, M–MGMKLD(0), and M–MGMKLD(1). In this experiment, the 

linear classifier ( ) ( )1ˆ ˆˆ ˆ lnT
i i i ix m x m−− Σ − + Σ  is applied as the classification 

method after a subspace selection procedure, where ˆ im  and ˆ
iΣ  are the 

estimated ith class mean and covariance matrix in the lower dimensional space, 

respectively. The training classification errors of these methods are 0.0917, 

0.0167, 0.0917, 0.0917, 0.0917, 0.0167, 0.0083, 0.0083, and 0.0083, respectively. 

 

 Class Separation Problem 

The most prominent advantage of MGMKLD is it can significantly reduce the 

classification errors caused by very strong effects of large divergences between 
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certain classes. To demonstrate this point, we generate three classes for which the 

samples in each class are drawn from Gaussian distributions. The KL divergence 

between two of these classes is small and the KL divergences between the third 

class and the two classes are large, i.e., two classes are close together and the third 

is further away. 

In this case, MGMKLD(0) also performs well, but not as well as MGMKLD(5). 

In Figure 2.7, it is shown that MGMKLD(5) separates all classes. Furthermore, in 

MGMKLD, we achieve the same results when setting η , defined in (2.48), equal 

to 1,2,3,4, and 5. However, LDA, HLDA, and ODA do not give good results. The 

aPCA and FS–LDA algorithms are better than LDA but neither of them gives the 

best projection direction. The result obtained from aPCA is better than that 

obtained from WLDA, because aPAC uses a better weighting strategy than 

WLDA. 
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Figure 2.7. Class separation problem: in this figure, from left to right, from top to 

bottom, there are nine subfigures to describe the projection directions (indicated 

by lines in each subfigure) by using LDA, HDA, aPAC, WLDA, FS–LDA, 

HLDA, ODA, MGMKLD(0), and MGMKLD(5). In this experiment, the linear 

classifier ( ) ( )1ˆ ˆˆ ˆ lnT
i i i ix m x m−− Σ − + Σ  is applied as the classification method 

after a subspace selection procedure, where ˆ im  and ˆ
iΣ  are the estimated ith 

class mean and covariance matrix in the lower dimensional space, respectively. 

The training classification errors of these methods are 0.3100, 0.3033, 0.2900, 

0.3033, 0.0567, 0.3100, 0.3100, 0.1167, and 0.0200, respectively. MGMKLD(5) 

finds the best projection direction for classification. 

 

 
Figure 2.8. Class separation problem: in this figure, from left to right, there are 

three subfigures to describe the projection directions (indicated by lines in each 

subfigure) by using aPAC, FS–LDA, and MGMKLD(5). In this experiment, the 

linear classifier ( ) ( )1ˆ ˆˆ ˆ lnT
i i i ix m x m−− Σ − + Σ  is applied as the classification 

method after a subspace selection procedure, where ˆ im  and ˆ
iΣ  are the 

estimated ith class mean and covariance matrix in the lower dimensional space, 

respectively. The training classification errors of these methods are 0.1200, 

0.1733, and 0.0267, respectively. MGMKLD(5) finds the best projection direction 

for classification. 

 

In Figure 2.7, different Gaussians have identical covariances. In this case, FS–

LDA works better than aPAC. In Figure 2.8, different Gaussians have different 

covariances. In this case, aPAC works better than FS–LDA. In both cases, the 

proposed MGMKLD (5) achieves the best performance. 
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 Statistical Experiments 

 

jzr

iTimr

jnr

;i jxr

in

c

0tμ =
r

t IΣ =

0nμ =
r 2n IΣ =

iw

2k =

mr

0mμ =
r

m IΣ =

0μ =
r

5Σ =

 
Figure 2.9. Data Generation Model. In this model, 1 4w = , 2 0w = , 3 4w = − , 

4 4w = , 5 4w = , 2k = , ( )1 1 201Tm km w= +
r r , 2 200Tm =

r , ( )[ ]3 3 10 100 ,1 Tm km w= +
r r , 

( )[ ]4 4 10 101 ,0 Tm km w= +
r r , and ( )[ ]5 5 5 5 5 51 ,0 ,1 ,0 Tm km w= +

r r . 

 

In this Section, we utilize a synthetic data model, which is a generalization of the 

data generation model used by De la Torre and Kanade [28], to evaluate 

MGMKLD in terms of accuracy and robustness. The accuracy is measured by 

averaged classification errors and the robustness is measured by standard 

deviation of the classification errors. In this experiment, the linear classifier [30] 

and the nearest neighbour rule9  [105] are applied for classification after a 

subspace selection procedure. In this data generation model, there are five classes, 

which are represented by the symbols ○, ×, ＋, □, and ◇, as shown in 

Figure 2.11 (on page 62). In our experiments, for the training/testing set, the data 

generator gives 200 samples for each of the five classes (therefore, 1,000 samples 

in total). Moreover, the samples in each class are obtained from a single Gaussian. 

Each Gaussian density is a linear transformed “standard Gaussian distribution”, 

                                                 
9 The nearest neighbor rule classifies a sample xr  to the class C , when x′r  is the nearest 
neighbor to xr  under the Euclidean metric and x′r  belongs to the class C . 
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i.e., ( )0,N I . The linear transformations are defined by ;i j i j i jx T z m n= + +
r r rr , 

where 20
;i jx R∈
r , 20 7

iT R ×∈ , ( ) 7~ 0,jz N I R∈r , ( ) 20~ 0,2jn N I R∈
r , i denotes 

the ith class, j denotes the jth sample in this class, and imr  is the mean value of the 

normal distribution for the ith class. The imr  are assigned with the following 

values: ( )( )1 202 0,1 4 1Tm N= +
r , 2 200Tm =

r , ( )( )[ ]3 10 102 0,1 4 0 ,1 Tm N= −
r , 

( )( )[ ]4 10 102 0,1 4 1 ,0 Tm N= +
r , and ( )( )[ ]5 5 5 5 52 0,1 4 1 ,0 ,1 ,0 Tm N= +

r , where 201  

is a row vector in 20R  and all entries in 201  are 1. The notations of 101 , 51 , 

200 , 100 , and 50  have the similar meanings as 201 . The projection matrix iT  is 

a random matrix, in which the elements are sampled independently from 

( )0,5N , where 5  is the variance. The data generation model is shown in Figure 

2.9. Based on this data generation model, 800 groups (each group consists of 

training and testing samples) of synthetic data are generated. 

For comparison, the subspace selection methods, e.g., MGMKLD, are first 

utilized to select a given number of features. Then the nearest neighbour rule and 

the linear classifier ( ) ( )1ˆ ˆˆ ˆln
T

i i i ix m x m−− Σ − + Σ
r r r r  are used as the classification 

methods after a subspace selection procedure, where ˆ
imr  and ˆ

iΣ  are the 

estimated ith class mean and covariance matrix in the lower dimensional space, 

respectively. In this Section, the baseline algorithms are LDA, HDA, aPAC, 

WLDA, FS–LDA, HLDA, and ODA. 

 

 Performance Evaluation 

We conducted the designed experiments 800 times based on randomly generated 

data sets. The experimental results are reported in Table 2.7 – Table 2.10. Table 

2.7 and Table 2.9 show averaged classification errors of LDA, HDA, aPAC, 

WLDA, FS–LDA, HLDA, ODA, MGMKLD(0), and MGMKLD(2c). Table 2.7 

and Table 2.8 show the results of the nearest neighbour rule and Table 2.9 and 

Table 2.10 show the results of the linear classifier. For the 800 experiments, 

statistical experimental results are shown in Table 2.7 and Table 2.9, where 

arithmetic mean values are computed on different feature dimensions from 1 to 6 

(by column). Correspondingly, standard deviations under each condition, which 
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measure the robustness of the classifiers, are given in Table 2.8 and Table 2.10. 

We emphasize that we have twenty feature dimensions for each sample and all 

samples are divided into one of the five classes, therefore, the maximal feature 

number for LDA, HDA, WLDA, aPAC, and FS–LDA is 5–1=4; in contrast, 

HLDA, ODA, and MGMKLD can extract more features than LDA and HDA. 

From Table 2.7 – Table 2.10, it can be concluded that MGMKLD outperforms 

LDA, HDA, aPAC, WLDA, FS–LDA, HLDA, and ODA, consistently. Finally, 

the linear classifier distance outperforms the nearest neighbour rule when samples 

are sampled from Gaussian distributions. 

 

Table 2.7: Averaged classification errors (the mean for 800 experiments) of LDA, 

HDA, aPAC, WLDA, FS–LDA, HLDA, ODA, MGMKLD(0), and 

MGMKLD(2c). (The nearest neighbour rule) 

Basis 1 2 3 4 5 6 
LDA 0.2968 0.1552 0.1103 0.1504 –– –– 
HDA 0.3087 0.1850 0.1642 0.1807 –– –– 
aPAC 0.3206 0.1469 0.1088 0.1324 –– –– 
WLDA 0.4320 0.1930 0.1126 0.1092 –– –– 
FS–LDA 0.3098 0.1490 0.1108 0.1104 –– –– 
HLDA 0.2982 0.1561 0.1073 0.1050 0.1043 0.1043 
ODA 0.3029 0.1706 0.1370 0.1266 0.1219 0.1206 
MGMKLD(0) 0.2548 0.1397 0.1054 0.1030 0.1024 0.1018 
MGMKLD(2c) 0.2430 0.1310 0.1039 0.1018 0.1010 0.1006 

 

Table 2.8: Standard deviations of classification errors for 800 experiments of 

LDA, HDA, aPAC, WLDA, FS–LDA, HLDA, ODA, MGMKLD(0), and 

MGMKLD(2c). (The nearest neighbour rule) 

Basis 1 2 3 4 5 6 
LDA 0.1002 0.0995 0.0985 0.1077 –– –– 
HDA 0.1016 0.1040 0.1007 0.1055 –– –– 
aPAC 0.1270 0.1171 0.0979 0.0983 –– –– 
WLDA 0.1275 0.1239 0.1051 0.0995 –– –– 
FS–LDA 0.1475 0.1216 0.0990 0.0964 –– –– 
HLDA 0.1001 0.0992 0.0968 0.0942 0.0928 0.0920 
ODA 0.1010 0.1037 0.1016 0.0992 0.0965 0.0957 
MGMKLD(0) 0.1094 0.0985 0.0948 0.0919 0.0905 0.0893 
MGMKLD(2c) 0.1130 0.0979 0.0947 0.0916 0.0902 0.0889 
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Table 2.9: Averaged classification errors (the mean for 800 experiments) of LDA, 

HDA, aPAC, WLDA, FS–LDA, HLDA, ODA, MGMKLD(0), and 

MGMKLD(2c). (The linear classifier ( ) ( )1ˆ ˆˆ ˆln
T

i i i ix m x m−− Σ − + Σ
r r r r ) 

Basis 1 2 3 4 5 6 
LDA 0.2455 0.1199 0.0811 0.0813 –– –– 
HDA 0.2516 0.1384 0.0971 0.1221 –– –– 
aPAC 0.2626 0.1134 0.0827 0.0813 –– –– 
WLDA 0.3716 0.1498 0.0863 0.0817 –– –– 
FS–LDA 0.3050 0.1363 0.0883 0.1090 –– –– 
HLDA 0.2456 0.1216 0.0821 0.0791 0.0764 0.0741 
ODA 0.2500 0.1327 0.1037 0.0894 0.0829 0.0796 
MGMKLD(0) 0.2226 0.1099 0.0815 0.0776 0.0751 0.0725 
MGMKLD(2c) 0.2404 0.1036 0.0806 0.0766 0.0742 0.0720 

 

Table 2.10: Standard deviations of classification errors for 800 experiments of 

LDA, HDA, aPAC, WLDA, FS–LDA, HLDA, ODA, MGMKLD(0), and 

MGMKLD(2c). (The linear classifier ( ) ( )1ˆ ˆˆ ˆln
T

i i i ix m x m−− Σ − + Σ
r r r r ) 

Basis 1 2 3 4 5 6 
LDA 0.0932 0.0843 0.0792 0.0795 –– –– 
HDA 0.0919 0.0880 0.0886 0.1435 –– –– 
aPAC 0.1175 0.0987 0.0816 0.0795 –– –– 
WLDA 0.1231 0.1055 0.0870 0.0804 –– –– 
FS–LDA 0.1678 0.1387 0.0980 0.1272 –– –– 
HLDA 0.0919 0.0852 0.0799 0.0772 0.0745 0.0725 
ODA 0.0923 0.0894 0.0879 0.0810 0.0766 0.0739 
MGMKLD(0) 0.1033 0.0844 0.0788 0.0746 0.0720 0.0695 
MGMKLD(2c) 0.1373 0.0848 0.0795 0.0743 0.0717 0.0692 

 

 Initial Values Issue 

We generate a training set according to the synthetic data model described at the 

beginning of this Section. We randomly initialize parameters in MGMKLD(2c) to 

examine how different initial values affect the solution. Note that we omit lines 1, 

2, 6, and 7 from the optimization procedure for MGMKLD given in Table 2.5, 

because these lines are used to set different initial values. We can see from Figure 

2.10 that MGMKLD(2c) is insensitive to choices of initial values in 50 random 

experiments. 



60 

 

0 2 4 6 8 10 12 14 16 18 20
−40

−20

0

20

40

60

80

100

120

140

K
ul

lb
ac

k−
Le

ib
le

r 
D

iv
er

ge
nc

e

0 2 4 6 8 10 12 14 16 18 20
−20

0

20

40

60

80

100

K
ul

lb
ac

k−
Le

ib
le

r 
D

iv
er

ge
nc

e

 

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

K
ul

lb
ac

k−
Le

ib
le

r 
D

iv
er

ge
nc

e

0 2 4 6 8 10 12 14 16 18 20
10

20

30

40

50

60

70

80

90

100

K
ul

lb
ac

k−
Le

ib
le

r 
D

iv
er

ge
nc

e

 
Figure 2.10. Initial values: From left to right, from top to bottom, the subfigures 

show the mean value and the corresponding standard deviation of the KL 

divergence between the class i and the class j of these 50 different initial values in 

the 10th (50th, 100th, and 1000th) training iterations. Because there are 5 classes in 

the training set, there are 20 KL divergences to examine. The circles in each 

subfigure show the mean values of the KL divergences for 50 different initial 

values. The error bars show the corresponding standard deviations. For better 

visualization, the scale for showing the standard deviations is 10 times larger than 

the vertical scale in each subfigure. The standard deviations of these 20 KL 

divergences approach 0 as the number of training iterations increases. 

 

 Nest Structure Property 

Definition 2.4: Given a subspace selection method, [ ]1n i i n
W w

≤ ≤
=

r  and 

[ ]1m i i m
U u

≤ ≤
=
r  are projection matrices obtained from the same training data but 

with m n> , i.e., mU  contains more features than nW , i.e., m n> . Let nU  be 

the first n columns of mU . If nU  and nW  are identified to the same point on a 
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Grassmann manifold, we say the subspace selection method has the nest structure 

property. For example, PCA has the nest structure property.  
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Figure 2.11. MGMKLD(2c) has no nest structure property. 

 

A desirable subspace selection method should adapt to the selected dimensions. A 

subspace selection method of this type is not expected to have the nest structure 

property. For instance, in our experiment, we first extract two dimensional 

features from the original entire feature set (twenty features) based on 

MGMKLD(2c); with these two features, the profile of the five classes of samples 

is illustrated in the first subfigure of Figure 2.11. We then extract six features 

from all based on MGMKLD(2c) with the same training samples, but we only 

show the first two dimensions of the extracted six dimensional features in the 

second subfigure of Figure 2.11. The third subfigure shows the first two 

dimensions when ten features are extracted. Based on the figure, we can see that 

these first two features in the two cases are different. Therefore, MGMKLD(2c) 

has no nest structure. 
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 Real–World Experiments 

 
Figure 2.12. Samples in the USPS database [53]. 

 

In this Section, we report the experimental results of the proposed algorithms 

using a well known character recognition data set, the United States Postal 

Services (USPS) database [53], in which there are 9,298 handwriting character 

samples divided into ten classes. Twenty samples of each class are given in Figure 

2.12 row by row. Each sample is a vector with 256 dimensions. The entire USPS 

data set is divided into two parts [53], a training set with 7,291 samples and a test 

set with 2,007 samples. In our experiments, we utilize the entire USPS database to 

evaluate performances of LDA, HDA, aPAC, WLDA, FS–LDA, HLDA, ODA, 

MODA, MGMKLD(0), MGMKLD(2c), and M–MGMKLD(2c). 

 

 Linear Method 

We apply the algorithms to the USPS database. As illustrated in Table 2.11, when 

the top 3, 5, and 7 discriminative features are required, MGMKLD(2c) gives the 

best performance for all cases among all algorithms. When the top 9, 15, and 20 

features are selected, M–MGMKLD(2c) consistently outperforms all other 

algorithms and gives comparable performance to MGMKLD(2c) in some cases. 

The error rate is only around half that of ODA and MODA. The use of GMM in 

M–MGMKLD(2c) is particularly advantageous for large data sets. Note that in the 

original 256 dimensional feature space, the number of the classes is ten, therefore, 

the maximum dimension of the extracted feature space is nine (10–1=9) for LDA, 
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aPAC, WLDA, HDA, and FS–LDA, while for other listed algorithms, including 

our MGMKLD(2c) and M–MGMKLD(2c), more features can be selected. This is 

a minor advantage of our algorithms compared with the conventional LDA model. 

 

Table 2.11. Performances (classification errors) of linear methods on the USPS 

database. (The nearest neighbour rule) 

Basis 3 5 7 9 15 20 
LDA 0.3827 0.1629 0.1186 0.1096 –– –– 
aPAC 0.3144 0.1679 0.2141 0.1106 –– –– 
HDA 0.3518 0.2516 0.1988 0.1734 –– –– 
WLDA 0.4310 0.2342 0.1415 0.1096 –– –– 
FS–LDA 0.3338 0.1794 0.1430 0.1131 –– –– 
HLDA 0.3518 0.2347 0.1779 0.1281 0.0947 0.0827 
ODA 0.3983 0.2617 0.1636 0.1162 0.1060 0.0970 
MODA 0.3950 0.2850 0.1576 0.1032 0.1027 0.0937 
MGMKLD(0) 0.2875 0.1574 0.1116 0.0987 0.0598 0.0583 
MGMKLD(2c) 0.2720 0.1375 0.1105 0.0867 0.0578 0.0562 
M–MGMKLD(2c) 0.3179 0.1414 0.1106 0.0822 0.0569 0.0553 

 

 Kernel Method 

We compare KMGMKLD(2c) and M–KMGMKLD(2c) with the Kernel LDA 

(KDA) [104] in Table 2.12. Firstly, the results show that all three kernel 

algorithms perform better than the linear algorithms. Secondly, the improvements 

for LDA, MGMKLD(2c), and M–MGMKLD(2c) are 13.22%, 8.42%, and 

23.11%, respectively. Herein, nine dimensions are selected to construct the kernel 

feature space. The kernel ( ) 2, ,k x x x x′ ′=
r r r r  is chosen. 

 

Table 2.12. Performances (error rates) of kernel methods on the USPS database. A 

nine dimensional feature space is selected for each algorithm. (The nearest 

neighbour rule) 

Basis KDA KMGMKLD(2c) M–KMGMKLD(2c) 
Error 0.0951 0.0794 0.0632 
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 Summary 

 

General averaged divergences analysis is proposed to enhance the conventional 

Fisher–Rao linear discriminant analysis (LDA). LDA is one of the most important 

subspace methods in pattern classification research and applications; however, it 

has a tendency to merge together nearby classes when the features are projected to 

a lower dimensional space. To reduce this merging, new criteria for subspace 

selection are chosen. The new criteria are based on the geometric mean of the 

divergences between different pairs of classes. Three new criteria are defined, 

namely, 1) maximization of the geometric mean of the divergences; 2) 

maximization of the geometric mean of normalized divergences; and 3) 

maximization of the geometric mean of all divergences. The third criterion is a 

combination of the first two criteria.  Then, the multimodal extension and the 

kernel extension of the maximization of the geometric mean of all divergences are 

introduced as well. The divergence can be any Bregman divergence. In our 

experiments we use the Kullback–Leibler divergence, which is a special case of 

the Bregman divergence. 

The new subspace selection methods are tested experimentally using synthetic 

data and handwriting data from the USPS database [53]. The experiments show 

that the third criterion, named the maximization of the geometric mean of all KL 

divergences is more effective than LDA and its representatives. In the future, we 

will utilize this method for other pattern classification tasks, for example 

biometrics and bioinformatics. 
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3. Discriminative Multilinear Subspace Method 
 

In computer vision research, many objects are naturally represented by 

multidimensional arrays, i.e., tensors [75], such as the gray face image shown in 

Figure 3.1 in face recognition [34][168], the color image shown in Figure 3.2 in 

scene image classification [156], and the video shot shown in Figure 3.3 in motion 

categorization [43]. However, in current research, the original tensors (images and 

videos) are always scanned into vectors, thus discarding a great deal of useful 

structural information, which is helpful to reduce the small sample size (SSS) 

problem in subspace selection methods, e.g., linear discriminant analysis (LDA). 

 

Second 
Order Tensor

Width
H

ei
gh

t

Face Image  
Figure 3.1. A gray level face image is a second order tensor, i.e., a matrix. Two 

indices are required for pixel locations. The face image comes from 

http://www.merl.com/projects/images/face–rec.gif. 

 

Third Order 
Tensor

Width

H
ei

gh
t

Color

Color Image  
Figure 3.2. A color image is a third order tensor, which is also a data cuboid, 

because three indices are required to locate elements. Two indices are used for 

pixel locations and one index is used to local the color information (e.g., R, G, and 

B). 



67 

 

Fourth Order 
Tensor

Width

H
ei

gh
t

Color Video Shot

Ti
m

e
Color

Time

 
Figure 3.3. A color video shot is a fourth order tensor. Four indices are used to 

locate elements. Two indices are used for pixel locations; one index is used to 

locate the color information; and the other index is used for time. The video shot 

comes from http://www–nlpir.nist.gov/projects/trecvid/. 

 

To utilize the structure information, many dimension reduction algorithms [75] 

[132][162][171] based on the multilinear subspace method (MLSM) have been 

developed for data representation [75][162][171][132], pattern classification 

[162][171][132], and network abnormal detection [136]. MLSM finds a sequence 

of linear transformation matrices i iL L
iU R ′×∈  ( i iL L′ < , 1 i M≤ ≤ ) to transform a 

large tensor 1 2 ML L LR × ×∈X L  to a smaller tensor 1 2 ML L LR ′ ′ ′× ×∈Y L . For example, if 

we have a second order tensor 1 2L LR ×∈X  with large 1L  and 2L , in MLSM we 

need to find two linear transformation matrices 1 1
1

L LU R ′×∈  ( 1 1L L′ < ) and 

2 2
2

L LU R ′×∈  ( 2 2L L′ < ) to transform X  according to 1 2
TU U=Y X . After the 

transformation, the dimension is reduced from 1 2L L×  to 1 2L L′ ′× , i.e., 

1 2L LR ′ ′×∈Y . Similar to LSM, MLSM includes a large number of methodologies 

varying from reconstructive models to discriminative models based on different 

criteria. The reconstructive models, e.g., the general tensor analysis (GTA) 

[75][162][171] and the tensor rank one analysis (TR1A) [132], are utilized to 
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generate low dimensional representations which preserve the original information 

as much as possible. The discriminative models, e.g., the two dimensional linear 

discriminant analysis (2DLDA) [173] and the general tensor discriminant analysis 

(GTDA) [144][147], find low dimensional representations which preserve as 

much as possible of the information required for reliable classification. 

In this Chapter, we show that the SSS problem is reduced if the tensor structure of 

data is retained. We also demonstrate that MLSM is a constrained version of the 

linear subspace method (LSM), i.e., MLSM is equivalent to LSM combined with 

constraints. 

In this Chapter, we mainly focus on the discriminative MLSM, especially 

2DLDA, which is a two dimensional extension of LDA. That is 2DLDA accepts 

matrix type data as input while LDA accepts vector type data as input. The 

effectiveness and the efficiency of 2DLDA for dimension reduction have been 

demonstrated in face recognition. However, 2DLDA fails to converge during the 

training stage. This nonconvergence has the following disadvantages: 1) it is 

difficult to determine when to stop the training stage; and 2) different numbers of 

training iterations lead to different recognition results. To solve the 

nonconvergence problem in 2DLDA, we develop GTDA, which is an M 

dimensional extension of LDA. That is GTDA accepts general tensors (e.g., 

vectors, matrices, data cuboids, and high dimensional arrays) as input. GTDA has 

the following properties: 1) reduction of the SSS problem for subsequent 

classification, e.g., by LDA; 2) preservation of the discriminative information in 

training tensors; 3) provision with a converged iterative optimization algorithm, 

which obtains a stable solution for GTDA; and 4) acceptance of general tensors as 

input. 

The organization of this Chapter is as follows. In §147, the mathematical 

foundation, tensor algebra, of this thesis is briefly introduced. In §147, we 

describe the relationship between the LSM algorithms and the MLSM algorithms. 

In §147, the tensor rank one analysis based on the best rank one approximation is 

reviewed. In §147, the general tensor analysis based on the best rank 

( )1 2, , MR R RL  approximation is reviewed. In §147, we analyze the 

nonconvergence issue of the 2DLDA for discriminative subspace selection. In 

§147, we develop GTDA and GTDA’s manifold learning extension is given in 

§147. To examine the effectiveness of GTDA, it is applied for human gait 
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recognition and the performance evaluation is given in §147. Finally, the 

summary of this Chapter is given in §147 and the relevant deductions and proofs 

in this Chapter are given in §147. 
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 Tensor Algebra 

 

This Section contains the fundamental materials on tensor algebra [75], which are 

relevant to this thesis. Tensors are arrays of numbers which transform in certain 

ways under different coordinate transformations. The order of a tensor 
1 2 ML L LR × × ×∈X L , represented by a multi–dimensional array of real numbers, is M . 

An element of X  is denoted as 
1 2, ,..., Ml l lX , where 1 i il L≤ ≤  and 1 i M≤ ≤ . The 

ith dimension (or mode) of X  is of size iL . A scalar is a zero–th order tensor; a 

vector is a first order tensor; and a matrix is a second order tensor. The structure 

of a third order tensor is shown in Figure 3.4. In the tensor terminology, we have 

the following definitions. 

 

1 2 3L L LR × ×∈X
1L

2L
3L

 

Figure 3.4. A third order tensor 1 2 3L L LR × ×∈X . 

 

Definition 3.1 (Tensor Product or Outer Product) The tensor product ⊗X Y  

of a tensor 1 2 ML L LR × × ×∈X L  and another tensor 1 2 '' ' 'ML L LR × × ×∈Y L  is defined by 

( )
1 2 1 2 '1 2 1 2 '

... ' ' ... '... ' ' ... ' M MM M
l l l l l ll l l l l l × × × × × ×× × × × × × ×

⊗ =X Y X Y , (3.01)

for all index values. 

For example, the tensor product of two vectors 1
1

Lx R∈
r  and 2

2
Lx R∈

r  is a matrix 

1 2L LX R ×∈ , i.e., 1 2 1 2
TX x x x x= ⊗ =

r r r r . 

Definition 3.2 (Mode–d Matricizing or Matrix Unfolding) The mode–d 

matricizing or matrix unfolding of an M–th order tensor 1 2 ML L LR × × ×∈X L  is the set 

of vectors in dLR  obtained by keeping the index di  fixed and varying the other 
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indices. Therefore, the mode–d matricizing or matrix unfolding of an M–th order 

tensor is a matrix ( )
d dL L

dX R ×∈ , where ( )d ii d
L L

≠
= ∏ . We denote the mode–d 

matricizing of X  as ( )matd X  or briefly ( )dX . Figure 3.5 shows the mode–1, 

mode–2, and mode–3 matricizing of a third order tensor 3 2 2R × ×∈X . 

 

2 2L =

3 2 2R × ×∈X

2 2L =

3 2 2R × ×∈X

2 2L =

3 2 2R × ×∈X

Mode-1

Mode-2

Mode-3

2 2L =

3 2 2R × ×∈X

2 2L =

3 2L =

1 3L =

3 2L =

2 2L =

1 3L =

( )
3 4

1X R ×∈

( )
2 6

2X R ×∈

( )
2 6

3X R ×∈

 
Figure 3.5. The mode–1, mode–2, and mode–3 matricizing of a third order tensor 

3 2 2R × ×∈X . 
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Definition 3.3 (Tensor Contraction) The contraction of a tensor is obtained by 

equating two indices and summing over all values of repeated indices. Contraction 

reduces the tensor order by 2.  

A suitable notation for contraction is the Einstein’s summation convention10. For 

example, the tensor product of two vectors , Nx y R∈
r r  is Z x y= ⊗

r r ; and the 

contraction of Z  is T
iiZ x y x y= ⋅ =

r r r r , where the repeated indices imply 

summation. The value of iiZ  is the inner product of xr  and yr . In general, for 

tensors 1 1M ML L L LR ′′ ′× × × × ×∈X L L  and 1 1M ML L L LR ′′′′ ′′× × × × ×∈Y L L , the contraction on the 

tensor product ⊗X Y  is 

( )( ) ( ) ( )
1

1 1 1 1
1 1 1

; 1: 1:
M

M M M M
M

L L

l l l l l l l l
l l

M M
′ ′′′ ′ ′′ ′′× × × × × × × × × ×

= =

⊗ =∑ ∑X Y X Y
L L L L

� � L� � , (3.02)

In this thesis, when the convention is conducted on all indices except the ith index 

on the tensor product of X  and Y  in 1 2 ML L LR × × ×L , we denote this procedure as 

( )( ) ( )( )

( ) ( )

( ) ( ) ( ) ( )

1 11

1 1 1 1 1 1
1 1 11 1 1 1

; ; 1: 1, 1: 1: 1, 1:

  

  mat mat ,

i i M

i i i M i i i M
i i M

L LL L

l l l l l l l l l l
l l l l

T T
i i i i

i i i i M i i M

X Y

− +

− + − +
− +

× × × × × × × × × × × ×
= = = =

⊗ = ⊗ − + − +

=

= =

∑ ∑ ∑ ∑

X Y X Y

X Y

X Y

L L L L

� � � �� � � �� �

L L  (3.03)

and ( )( ); i iL Li i R ×⊗ ∈X Y� �
� �� � . 

Definition 3.4 (Mode–d product) The mode–d product d U×X  of a tensor 

1 2 ... ML L LR × × ×∈X  and a matrix 'd dL LU R ×∈  is an 1 2 1 1'd d dL L L L L− +× × × × × ×L  

ML×L  tensor defined by 

( ) ( )
( )( )

1 2 1 11 2 1 1

                                          ; 2 ,

d d d M d dd d d M
d

d l l l l l l l ll l l l l l
l

U U

U d

− +− +
′× × × × × × × ×′× × × × × × ×

′

× =

= ⊗

∑X X

X

L LL L

� �
� �

 (3.04)

for all index values. The mode–d product is a type of contraction. 

Based on the definition of Mode–d product, we have 

( ) ( )d t t dU V V U× × = × ×X X  (3.05)

                                                 
10 “When any two subscripts in a tensor expression are given the same symbol, it is implied that 
the convention is formed.” –––––A. Einstein, Die Grundlage der Allgemeinen Relativitatstheorie, 
Ann. Phys., 49:769, 1916. 
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where 1 2 ML L LR × × ×∈X L , d dL LU R ′ ×∈ , and t tL LV R ′×∈ . Therefore, ( )d tU V× ×X  

can be simplified as d tU V× ×X . 

Furthermore, 

( ) ( )d t dU V VU× × = ×X X  (3.06)

where 1 2 ML L LR × × ×∈X L , d dL LU R ′ ×∈ , d dL LV R ′′ ′×∈ , and VU  is the standard matrix 

product of V  and U . 

Figure 3.6 shows a third order tensor 1 2 3L L LR × ×∈X  mode–2 products with a 

matrix 2 2L LU R ′ ×∈ . The result is a tensor in 1 2 3L L LR ′× × . 

 

1 2 3L L LR × ×∈X
1L

2L
3L

2×

2L

2L′ =
1 2 3L L LR ′× ×∈Y

1L

2L′
3L

 

Figure 3.6. The mode–2 product of a third order tensor 1 2 3L L LR × ×∈X  and a matrix 
2 2L LU R ′ ×∈  results in a new tensor 1 2 3L L LR ′× ×∈Y . 

 

To simplify the notation in this thesis, we denote 

1 1 2 2
1

k

M

M M k
k

U U U U×
=

× × × × ∏X XL �  (3.07)

and 

1 1 1 1 1 1
1;

d

M

i i i i M M d i i
d d i

U U U U U U− − + + ×
= ≠

× × × × × × = ×∏X X XL L � . (3.08)

Definition 3.5 (Frobenius Norm for Tensor) The Frobenius norm of a tensor 
1 2 ML L LR × × ×∈X L  is given by 

( )( ) ( )
1

1
1

2

1 1

; 1: 1: .
M

M
M

L L

l lFro
l l

M M
× ×

= =

= ⊗ = ∑ ∑X X X X
L

� � L� �  (3.09)

The Frobenius norm of a tensor X  measures the “size” of the tensor and its 

square is the “energy” of the tensor. 

Definition 3.6 (Rank–1 tensor) An M–th order tensor X  has rank one if it is the 

tensor product of M vectors iL
iu R∈
r , where 1 i M≤ ≤ : 
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1 2
1

M

M k
k

u u u u⊗
=

= ⊗ ⊗ ⊗ =∏X r r r r
L . (3.10)

The rank of an arbitrary M–th order tensor X , denoted by ( )rankR = X , is the 

minimum number of rank–1 tensors that yield X  in a linear combination. 

Definition 3.7 (d–rank) The d–rank of a tensor X , represented by 

( )rankd dR = X , is the dimension of the vector space generated by the mode–d 

matricizing. 

Based on the definition of the d–rank of a tensor X , we have 

( ) ( )( ) ( )rank rank mat rankd d d dR X= = =X X . (3.11)

The higher–order singular value decomposition (HOSVD) of a tensor is very 

important in tensor algebra. Most of the algorithms relevant to tensor algebra are 

based on HOSVD. HOSVD is a higher–order extension of the singular value 

decomposition (SVD) of a matrix. The HOSVD of a third order tensor 
1 2 3L L LR × ×∈X  is shown in Figure 3.7. 

 

1 2 3L L LR × ×∈X 1 2 3L L LR × ×∈Y1 1
1

L LU R ×∈

2 2
2

L LU R ×∈

1×

2×

3 3
3

L LU R ×∈
3×

 

Figure 3.7. The HOSVD of a third order tensor 1 2 3L L LR × ×∈X . 

 

Theorem 3.1 (Higher–Order Singular Value Decomposition) [76] 

A tensor 1 2 ML L LR × × ×∈X L  can be decomposed as the product of a tensor 
1 2 ML L LR × × ×∈Y L  with a series of orthogonal matrices k kL L

kU R ×∈ , i.e., 
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1
k

M

k
k

U×
=

= ∏X Y , (3.12)

such that, the subtensor of 1 1 1k k M

k

L L L L
l Rα

− +× × ×
= ∈Y L , obtained by fixing the kth 

(1 k kl L≤ ≤ ) index to α , is orthogonal to 1 1 1k k M

k

L L L L
l Rβ

− +× × ×
= ∈Y L , i.e., 

( )( ); 1: 1 1: 1 0
k kl l M Mα β= =⊗ − − =Y Y� �

� �� � . (3.13)

when α β≠ . 

Finally, 

1 2 0
k k k kl l l LFro Fro Fro= = =≥ ≥ ≥ ≥Y Y YL . (3.14)

Proof: See Appendix. 

 

Table 3.1. 
Alternating Projection for the Higher–Order Singular Value Decomposition. 

Input: The input tensor 1 2 ML L LR × × ×∈X L . 

Output: Projection matrices { }1| , k kL LM
k k kU U R ×

= ∈  and the tensor 1 2 ML L LR × × ×∈Y L . 

1. Initialization: Set 1|Mk kU =  be equal to random orthogonal matrices. 

2. Conduct the following steps iteratively until convergence. 

3. For 1k =  to M  

4. Calculate T
k kU= ×T X ; 

5. 
Mode–d matricize T  as ( )

k kL L
kT R ×∈  

( 1 1 1k k k ML L L L L− += × × ×L ); 

6. Calculate ( ) ( )
T

k kS T T= , k kl lS R ×
+∈ . 

7. 
Update the mode–k projection matrix kU  by conducting SVD on 
S : T

k k kS U U= Σ . 

8. End 

9. 

Convergence checking: if ( ) ( )1
T
k t k t

Fro
U U I ε− − ≤  ( 610ε −= ) for all 

modes, the calculation has converged. Here ( )k tU  is the current optimized 

projection matrix and ( )1k tU −  is the previous projection matrix. 

10. Calculate the output tensor 
1

k

M
T
k

k

U×
=

= ∏Y X . 
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There is no closed form solution for HOSVD. In this thesis, an alternating 

projection method is used to obtain a solution for HOSVD, as shown in Table 3.1. 
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 The Relationship between LSM and MLSM 

Suppose: 1) we have a dimension reduction algorithm 1A , which finds a sequence 

of linear transformation matrices i iL L
iU R ′×∈  ( i iL L′ < , 1 i M≤ ≤ ) to transform a 

large tensor 1 2 ML L LR × ×∈X L  to a smaller tensor 1 2
1

ML L LR ′ ′ ′× ×∈Y L , i.e., 

1 1 1 2 2
T T T

M MU U U= × × × ×Y X L ; and 2) we have another dimension reduction 

algorithm 2A , which finds a linear transformation matrix L LU R ′×∈  

( 1 2 ML L L L= × ×L  and 1 2 ML L L L′ ′ ′ ′= × ×L ; i iL L′ < ) to transform a high 

dimensional vector ( )vectx = Xr  to a lower dimensional vector ( )2 2vecty = Yr , 

i.e., 2
Ty U x=

r r , where ( )vect ⋅  is the vectorization operator; Lx R∈
r  and 

2
Ly R ′∈

r . According to [181], we know 

( )
( )

( ) ( )

1 1

1 1 2 2

1 2

vect

   vect

   vect .

T T T
M M

T
M

y

U U U

U U U

=

= × × × ×

= ⊗ ⊗ ⊗

Y

X

X

r

L

L

 (3.15)

Therefore, if 1 2 MU U U U= ⊗ ⊗ ⊗L , 2 1y y=
r r . That is the algorithm 1A  is equal 

to the algorithm 2A , if the linear transformation matrix L LU R ′×∈  in 2A  is 

equal to 1 2 MU U U U= ⊗ ⊗ ⊗L 11. 

The tensor representation helps to reduce the number of parameters needed to 

model data. In 1A , there are 1 1

M
i ii

N L L
=

′= ∑  parameters. While in 2A , there are 

2 1 1

M M
i ii i

N L L
= =

′=∏ ∏  parameters. In statistical learning, we usually require that 

the number of the training samples is larger than the number of parameters to 

model these training samples for linear algorithms. In the training stage of the 

MLSM based learning algorithms, we usually use the alternating projection 

method to obtain a solution, i.e., the linear projection matrices are obtained 

independently, so we only need about { }0 max i ii
N L L′=  training samples to 

obtain a solution. However, 2N  training samples are required to obtain a 

                                                 
11 In (3.15), we conduct the reshape operation on 1 2 MU U U= ⊗ ⊗ ⊗U L . That is, originally U  
lies in 1 1 2 2 M ML L L L L LR ′ ′ ′× × × × × ×L  and after the reshape operation U  is transformed to V  in 

( ) ( )1 2 1 2M ML L L L L LR ′ ′ ′× × × × × × ×L L . Then, we can apply the transpose operation on V . 
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solution for LSM based learning algorithms. That is the MLSM based learning 

algorithms require a much smaller number of training samples than LSM based 

learning algorithms, because 0 2N N� . Therefore, the tensor representation helps 

to reduce the small sample size (SSS) problem described in Chapter 2. 

There is a long history of methods to reduce the number of parameters needed to 

model the data by introducing constraints. Take the methods in Gaussian 

distribution estimation as an example12: when the data consist of only a few 

training samples embedded in a high dimensional space, we always add some 

constraints to the covariance matrix, for example by requiring the covariance 

matrix to be a diagonal matrix. Therefore, to better characterize or classify natural 

data, a scheme should preserve as many as possible of the original constraints. 

When the training samples are limited, these constraints help to give reasonable 

solutions to classification problems. 

Based on the discussions above, we have the following results:  

1) when the number of the training samples is limited, the vectorization operation 

always leads to the SSS problem. That is, for a small size training set, we need to 

use the MLSM based learning algorithms, because the LSM based learning 

algorithms will over–fit the data. The vectorization of a tensor into a vector 

makes it harder to keep track of the information in spatial constraints. For 

example, two 4–neighbor connected pixels in an image may be widely separated 

from each other after a vectorization; 

2) when the number of training samples is large, the MLSM based learning 

algorithms will under–fit the data. In this case, the vectorization operation for the 

data is helpful because it increases the number of parameters available to model 

the data. 

 

                                                 
12 Constraints in MLSM are justified by the form of the data. However, constrains in the example 
are ad hoc. 
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 Tensor Rank One Analysis 

To study the tensor rank one analysis (TR1A) [132]13, we first introduce the best 

rank one approximation to a general tensor. That is, given an M–th order tensor 
1 2 ML L LR × ×∈X L , find a scalar λ   and a series of unit vectors 1|Mk ku =

r  to minimize 

the function f  defined by 

( )
2

1
1

|
M

M
k k k

k Fro

f u uλ= ⊗
=

= − ∏Xr r , (3.16)

where 
1

k

M
T
k

k

uλ ×
=

= ∏X r . 

The Figure 3.8 shows the best rank one approximation of a third order tensor 
1 2 3L L LR × ×∈X . 

 

1 2 3L L LR × ×∈X 1
1

Lu R∈
r

⊗
⊗

⊗
Rλ∈

 

Figure 3.8. The best rank one approximation to a third order tensor 1 2 3L L LR × ×∈X . 

 

Theorem 3.2 [77] Minimizing ( )
2

1
1

|
M

M
k k k

k Fro

f u uλ= ⊗
=

= − ∏Xr r  (
1

k

M
T
k

k

uλ ×
=

= ∏X r ) is 

equivalent to maximizing 

( )
2

1
1

|
k

M
M T

k k k
k Fro

g u u= ×
=

= ∏Xr r . (3.17)

Moreover, 2

Fro
f g= −X . 

Proof: See Appendix. 

                                                 
13 TR1A is an extension of the original algorithm, which only accepts matrices as input. 



80 

 

Based on (3.17), a solution of (3.16) can be obtained by the alternating projection 

method, listed in Table 3.2. 

 

Table 3.2. Alternating Projection for the Best Rank One Approximation 

Input: The input tensor 1 2 ML L LR × ×∈X L . 

Output: Projection vectors { }1| , kLM
k k ku u R= ∈
r r  and the scalar λ , such that 

( )1|Mk kf u =
r  is minimized. 

1. Initialization: Set 1|Mk ku =
r  be equal to random unit vectors. 

2. Conduct the following steps iteratively until convergence. 

3. For 1k =  to M  

4. Calculate T
k kv u= ×Xr r ; 

5. Assignment: vλ ←
r , /ku v λ=

r r . 

6. End 

7. 

Convergence checking: if ( ) ( )1 1T
k t k tu u ε− − ≤
r r  ( 610ε −= ) for all modes, the 

calculated kur  has converged. Here ( )k tur  is the current optimized 

projection vector and ( )1k tu −

r  is the previous projection vector. 

 

TR1A is defined based on (3.16) for a number of samples 1 2 ML L L
i R × ×∈X L , 

1 i N≤ ≤  by minimizing the total reconstruction error through 1|Mi iu =
r  and 1|Ni iλ = , 

i.e., 

( )
2

1
1 1

|
MN

M
k k i i k

i k Fro

f u uλ= ⊗
= =

= −∑ ∏Xr r , 
1

k

M
T

i i k
k

uλ ×
=

= ∏X r . (3.18)

Minimizing (3.18) is equivalent to maximizing 

( )
2

1
1 1

|
k

MN
M T

k k i k
i k Fro

g u u= ×
= =

=∑ ∏Xr r . (3.19)

In practical applications, the total reconstruction error (3.18) is not small enough, 

so we need to use a number of rank one tensors 1
, 1|

r R
k r k Mu ≤ ≤

≤ ≤
r  and a number of 

scalars 1
, 1|

r R
i r i Nλ ≤ ≤

≤ ≤  to approximate the original tensors iX  to minimize the 

function f  defined by 
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( )
2

1 1
, 1 , 1 , ,

1 1 1

| , |
MN R

r R r R
i r i N k r k M i i r k r

i r k Fro

f u uλ λ≤ ≤ ≤ ≤
≤ ≤ ≤ ≤ ⊗

= = =

= −∑ ∑ ∏Xr r . (3.20)

There is no closed form solution for (3.20). A solution, listed in Table 3.3, based 

on the alternating projection is suggested by Shashua and Levin [132]. 

(Note: The algorithm is based on the fact: minimizing 
2

1 1

MN

i i k
i k Fro

uλ ⊗
= =

−∑ ∏X r  is 

equivalent to maximizing
2

1 1
k

MN
T

i k
i k Fro

u×
= =
∑ ∏X r .) 

Table 3.3. Alternating Projection for the Tensor Rank One Analysis 

Input: The input tensors 1 2 ML L L
i R × ×∈X L , 1 i N≤ ≤  and the number of rank one 

tensors R . 

Output: Projection vectors { }1
, 1 ,| , kLr R

k r k M k ru u R≤ ≤
≤ ≤ ∈

r r  and scalars { 1
, 1| ,r R

i r i Nλ ≤ ≤
≤ ≤

},i r Rλ ∈ , such that (3.20) is minimized. 

1. For 1r =  to R  

2. Set , 1|Mk r ku =
r  be equal to random unit vectors. 

3. Conduct steps 4–9 iteratively until convergence. 

4. For 1k =  to M  

5. Calculate ,
T

i i k k rv u= ×Xr r , 1 i n≤ ≤ ; 

6. 

Calculate the eigenvector h
r

 of 1
1

n

i i
i

V v v
=

= ⊗∑ r r  associated with 

the largest eigenvalue; (This step is equivalent to calculating the 
left singular vector h

r
 of [ ]2 1 2, , , nV v v v=

r r r
L  associated with the 

largest singular value.) 

7. Assignment: ,k ru h←
rr ; 

8. End 

9. 

Convergence checking: if , , , , 1 1T
k r t k r tu u ε− − ≤
r r  ( 610ε −= ) for all indices, 

the calculated ,k rur  has converged. Here , ,k r tur  is the current optimized 
projection vector and , , 1k r tu −

r  is the previous projection vector. 

10. Assignment: , ,
1

k

M
T

k r i k r
k

uλ ×
=

← ∏X r  (1 i N≤ ≤ ); 

11. Assignment: , ,
1

M

i i k r k r
k

uλ ⊗
=

← − ∏X X r  (1 i N≤ ≤ ); 

12. End 
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Based on the procedure to obtain a solution for TR1A listed in Table 3.3, we can 

calculate the scalars 1|Rr rλ =  for any given tensor X  through the following 

iterative procedure: 1). Calculate ,
1

k

M
T

r k r
k

uλ ×
=

= ∏X r ; 2) Assign 

,
1

M

r k r
k

uλ ⊗
=

← − ∏X X r , 1 r R≤ ≤ . Based on TR1A, a general tensor is represented 

by a sequence of rank one approximations. 

 



83 

 General Tensor Analysis 

 

General tensor analysis (GTA) [162] is a multidimensional extension of the 

principal component analysis (PCA). Before we describe GTA, the best 

( )1 2rank , , , MR R R− L  approximation is introduced. The procedure is similar to 

the best rank one approximation. 

Definition 3.8 [77] (Best Rank– ( )1 2, , MR R RL  Approximation) Given a tensor 

1 2 ML L LR × ×∈X L , the tensor 1 2ˆ ML L LR × ×∈X L  with ( )( )ˆrank matd dR=X , 

1 d M≤ ≤ , which minimizes the least square cost ˆ
Fro

−X X , is the best rank–

( )1 2, , MR R RL  approximation of the original tensor X . 

The Figure 3.9 shows the best ( )1 2 3rank , ,R R R−  approximation of a third order 

tensor 1 2 3L L LR × ×∈X . 

 

1 2 3L L LR × ×∈X
1 2 3R R RR × ×∈Y

1 1
1

L RU R ×∈

2 2
2

L RU R ×∈

1×

2×

3 3
3

L RU R ×∈
3×

 

Figure 3.9. The best ( )1 2 3rank , ,R R R−  approximation of a third order tensor 

1 2 3L L LR × ×∈X . 

 

Theorem 3.3 [75] Given a sequence of unitary matrices 'k kL L
kU R ×∈  (1 k M≤ ≤  

and d dL L′ < ) and a tensor 1 2 ML L LR × ×∈X L , the function ( ) 2ˆ ˆ
Fro

f = −X X X  is 

minimized, where ( )ˆrankd dL′=X  and 1 2ˆ ML L LR × ×∈X L  

( )
1 1 1

ˆ
k k k

M M M
T T
k k k k

k k k

U U U U× × ×
= = =

⎛ ⎞
= =⎜ ⎟
⎝ ⎠
∏ ∏ ∏X X X . (3.21)

Proof: See Appendix. 
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Theorem 3.4 [75] For a given tensor 1 2 ML L LR × ×∈X L , minimizing 

( ) ( )
2

1
1

|
k

M
M T

k k k k
k Fro

f U U U= ×
=

= − ∏X X  is equivalent to maximizing 

( )
2

1
1

|
k

M
M T

k k k
k Fro

g U U= ×
=

= ∏X . (3.22)

Proof: See Appendix. 

 

Table 3.4. 
Alternating Projection for the Best Rank– ( )1 2, , MR R RL  Approximation. 

Input: The input tensors 1 2 ML L LR × ×∈X L  and the d–ranks { }1|Md dL =′ . 

Output: Projection matrices { }1| , k kL LM
k k kU U R ′×

= ∈  and the tensor 1 2 ML L LR ′ ′ ′× × ×∈Y L , 
such that (3.22) is maximized. 

1. 
Initialization: Set 1|Mk kU =  be equal to random matrices and each column of 

1|Mk kU =  is a unit vector. 

2. Conduct the following steps iteratively until convergence. 

3. For 1k =  to M  

4. Calculate T
k kU= ×T X ; 

5. 
Mode–d matricize T  as ( )

k kL L
kT R ×∈  

( 1 1 1k k k ML L L L L− += × × ×L ); 

6. Calculate ( ) ( )
T

k kS T T= , k kL LS R ×
+∈ . 

7. 
Update the mode–k projection matrix kU  by the first kL′  columns 
of the left singular vectors of S  associated with the kL′  largest 
singular values; 

8. End 

9. 

Convergence checking: if , 1 ,
T
L t L t Fro

U U I ε− − ≤  ( 610ε −= ) for all modes, 

the calculated kU  has converged. Here ,k tU  is the current optimized 
projection matrix and , 1k tU −  is the previous projection matrix. 

10. Calculate the core tensor 
1

k

M
T
k

k

U×
=

= ∏Y X . 
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There is no closed form solution for the best rank– ( )1 2, , MR R RL  approximation. 

The alternating projection method could be used to estimate this approximation 

based on (3.21) and (3.22) as listed in Table 3.4. 

 

Table 3.5. Alternating Projection for General Tensor Analysis. 

Input: The input tensor 1 2 ML L L
i R × ×∈X L , 1 i N≤ ≤ , and the d–ranks { }1|Md dL =′ . 

Output: Projection unitary matrices { }1| , k kL LM
k k kU U R ′×

= ∈  and the tensor 
1 2 ML L L

i R ′ ′ ′× × ×∈Y L , such that (3.23) is minimized. 

Initialization: Set 1|Mk kU =  be equal to random matrices and each column of 

1|Mk kU =  is a unit vector. 

1. Conduct the following steps iteratively until convergence. 

2. For 1k =  to M  

3. Calculate T
i i k kU= ×T X , 1 i N≤ ≤ ; 

4. 
Mode–d matricize iT  as ( );

k kL L
i kT R ×∈ , 1 i N≤ ≤ , 

( 1 1 1k k k ML L L L L− += × × ×L ); 

5. Calculate ( ) ( ); ;
1

N
T

i k i k
i

S T T
=

= ∑ , k kL LS R ×
+∈ . 

6. 
Update the mode–k projection matrix kU  by the first kL′  columns 
of the left singular vectors of S  associated with the kL′  largest 
singular values; 

7. End 

8. 

Convergence checking: if , 1 ,
T
k t k t Fro

U U I ε− − ≤  ( 610ε −= ) for all modes, 

the calculated kU  has converged. Here ,k tU  is the current optimized 
projection matrix and , 1k tU −  is the previous projection matrix. 

9. Calculate the core tensor 
1

k

M
T

i i k
k

U×
=

= ∏Y X . 

 

GTA is defined based on (3.21). Given a number of samples 1 2 ML L L
i R × ×∈X L , 

1 i N≤ ≤ , GTA minimizes the function f  defined by 

( )
2

1
1 1

|
k

MN
M

k k i i k
i k Fro

f U U= ×
= =

= −∑ ∏X Y , (3.23)
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where 
1

k

M
T

i i k
k

U×
=

= ∏Y X . 

Based on Theorem 3.4, minimizing (3.23) is equivalent to maximizing 

( )
2

1
1 1

|
k

MN
M T

k k i k
i k Fro

g U U= ×
= =

= ∑ ∏X . (3.24)

 

There is no closed form solution to (3.23). A solution, listed in Table 3.5, based 

on the alternating projection is similar to Table 3.3.  

(Note: The algorithm is based on the fact: minimizing 
2

1 1
k

MN

i i k
i k Fro

U×
= =

−∑ ∏X Y  is 

equivalent to maximizing 
2

1 1
k

MN
T

i k
i k Fro

U×
= =
∑ ∏X .) 
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 Two Dimensional Linear Discriminant Analysis 

 

The major difference between LDA and 2DLDA is the representation of the 

training samples. In LDA, the training samples are represented by vectors, while 

they are represented as matrices in 2DLDA. 

Suppose: the training samples are divided into C classes and the ith (1 i C≤ ≤ ) 

class contains Ni samples 1 2
;

L L
i jX R ×∈  (1 ij N≤ ≤ ). The mean matrix of all 

training samples is ( ) ( );1 1 1
iC N C

i j ii j i
M X N

= = =
= ∑ ∑ ∑  and the mean matrix of the 

ith class samples is ( );1
iN

i i j ij
M X N

=
= ∑ . The class structure in the high 

dimensional space is defined by 

( ) ( )( )

( ) ( )( )

; ;
1 1

1

tr

tr ,

iNC TH
w i j i i j i

i j

C
TH

b i i i
i

D X M X M

D N M M M M

= =

=

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
⎛ ⎞= − −⎜ ⎟
⎝ ⎠

∑∑

∑
 (3.25)

The class structure in the low dimensional space is defined by 

( ) ( ) ( )

( ) ( ) ( )

; ;
1 1

1

tr

tr ,

iNC TL T T
w i j i i j i

i j

C
TL T T

b i i i
i

D U X M VV X M U

D N U M M VV M M U

= =

=

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
⎛ ⎞= − −⎜ ⎟
⎝ ⎠

∑∑

∑
 (3.26)

The 2DLDA finds two projection matrices 1 1L LU R ′×∈  and 2 2L LV R ′×∈  to 

preserve the class structure of the original high dimensional space in the projected 

low dimensional space by maximizing ( )( ) ( )1L L
w bD D

−
. Ye et al. [173] developed 

the following alternating projection method to obtain a solution of 2DLDA. The 

algorithm conducts the following two steps iteratively: 

Step 1: calculate U , which is the 1L′  eigenvectors of 1
w bA A−  associated with the 

largest 1L′  eigenvalues, with the given V  (it is a random matrix and each 

column is a unit vector), where wA  and bA  are defined by 
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( ) ( )

( ) ( )

; ;
1 1

1

.

iNC TT
w i j i i j i

i j

C
TT

b i i i
i

A X M VV X M

A N M M VV M M

= =

=

= − −

= − −

∑∑

∑
 (3.27)

Step 2: calculate V , which is the 2L′  eigenvectors of 1
w bB B−  associated with the 

largest 2L′  eigenvalues, with the given U  (obtained in Step 1), where wB  and 

bB  are defined by 

( ) ( )

( ) ( )

; ;
1 1

1
.

iNC T T
w i j i i j i

i j

C
T T

b i i i
i

B X M UU X M

B N M M UU M M

= =

=

= − −

= − −

∑∑

∑
 (3.28)

The 2DLDA reduces the SSS problem and it is more efficient than LDA in terms 

of time complexity and space complexity. The drawback of 2DLDA is the 

alternating projection algorithm to obtain a solution of 2DLDA does not converge. 

Therefore, the recognition accuracies are not stable over different training 

iterations. For example, in the Probe A of the human gait recognition task in this 

Chapter, the rank one recognition rate changes from 75% to 91% in the first 100 

training iterations. This is because the projection matrices U  and V  do not 

maximize ( )( ) ( )1L L
w bD D

−
. According to steps 1 and 2, the projection matrix U  is 

the 1L′  eigenvectors of 1
w bA A−  associated with the largest 1L′  eigenvalues, 

which is obtained with the given V  by maximizing ( )( )1
tr T T

w bU A U U A U
−

 

while the projection matrix V  is the 2L′  eigenvectors of 1
w bB B−  associated with 

the largest 2L′  eigenvalues, which is obtained with the given U  by maximizing 

( )( )1
tr T T

w bU B U U B U
−

. The projection matrices U  and V , obtained by 

iteratively conducting steps 1 and 2, do not maximize ( )( ) ( )1L L
w bD D

−
, because 

maximizing the trace ratio between two projected matrices does not be equal to 

maximizing the ratio trace between two projected matrices [103], i.e., with the 

given wA  and bA , the argument of maximum ( )( )1
tr T T

w bU A U U A U
−

 by 

varying U  does not maximize ( ) ( )tr trT T
b wU A U U A U  and with the given wB  
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and bB , the argument of maximum ( )( )1
tr T T

w bV B V V B V
−

 by varying V  does 

not maximize ( ) ( )tr trT T
b wV B V V B V . 

To deal with the nonconvergence problem and to accept general tensors as input 

for discriminative dimension reduction, we propose GTDA in the next Section. 
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 General Tensor Discriminant Analysis 

 

Although the effectiveness and the efficiency of 2DLDA, as a preprocessing for 

subsequent classification, e.g., by LDA, have been proved, 2DLDA fails to 

converge in the training stage. The nonconvergence shadows the advantages of 

2DLDA, because: 1) it is difficult to determine when to stop the training stage; 

and 2) different numbers of training iterations will lead to different recognition 

results. To solve the nonconvergence problem, we develop GTDA, which 1) 

provides a converged alternating projection algorithm for training; 2) accepts 

general tensors as input; 3) preserves the discriminative information for 

classification; and 4) reduces the SSS problem in the subsequent classification, 

e.g., by LDA. The proposed GTDA is based on the differential scatter 

discriminant criterion (DCDS). 

 

 Differential Scatter Discriminant Criterion (DSDC) 

The Differential Scatter Discriminant Criterion (DSDC) [39][149][143][145] is 

defined by, 

( ) ( )( )* arg max tr tr
T

T T
b w

U U I
U U S U U S Uζ

=
= − , (3.29)

where ζ  is a tuning parameter; L LU R ′×∈   ( L L′ < ) , constrained by 
TU U I= , is the projection matrix; and bS  and wS  are defined in (2.10). 

According to [39] (pp. 446–447), the solution to (3.29) is equivalent to the 

solution to (12) for some special ζ  in (3.29). If we extract only one feature, i.e., 

U  degenerates to a vector, then ( )1
max w bS Sζ λ −= , which is the maximum 

eigenvalue of 1
w bS S− . If we want to extract L′  features simultaneously, we 

estimate ζ  as 
1

L
ii
λ

′

=∑ , where 1|Li iλ ′
=  are the largest L′  eigenvalues of 1

w bS S− . 

From [39] (pp. 446–447), it is not difficult to show that a suitable ζ  in (3.29) is 

( ) ( )tr trT T
opt b opt opt w optU S U U S U 14. An accurate solution of (3.29) can be obtained by 

                                                 
14 The derivative of ( ) ( )tr trT T

b wU S U U S Uζ−  with respect to U  is given by b wS U S Uζ− . 

To obtain a solution of (3.29), we need to set 0b wS U S Uζ− =  (as we have a strict condition here, 
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an alternating projection method. Here, we use the approximation (on setting ζ  

as the maximum eigenvalue of 1
w bS S− ) in (3.29) to avoid the alternating projection 

method for optimization. 

In realworld applications, because the distribution of testing samples diverges 

from the distribution of training samples, a manually chosen value of ζ  always 

achieves better prediction results than the calculated value. However, the manual 

setting of ζ  is not practical for real applications, because we do not know the 

best choice of ζ  for classification. In this thesis, ζ  is selected automatically 

during the training procedure. 

 

 General Tensor Discriminant Analysis 

On defining bS  and wS  by (2.10), it follows from (3.29) that 

( ) ( )( )arg max tr tr
T

T T
b w

U U I
U U S U U S Uζ∗

=
= −  

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

1 1
1

; 1 ; 1
1 1

; 1 1
   arg max

; 1 1
iT

C
T T

i i i
i

NC
U U I T T

i j i i j i
i j

N m m U m m U

x m U x m Uζ

=

=

= =

⎛ ⎞− × ⊗ − ×⎜ ⎟
⎜ ⎟=
⎜ ⎟
− − × ⊗ − ×⎜ ⎟
⎝ ⎠

∑

∑∑

r r r r� �
� �� �

r r r r� �
� �� �

 

( ) ( ) 22

1 ; 1
1 1 1

   arg max
i

T

nC c
T T

i i i j iFro FroU U I i i j
N m m U x m Uζ

= = = =

⎛ ⎞
= − × − − ×⎜ ⎟

⎝ ⎠
∑ ∑∑r r r r  

(3.30)

where 
Fro

⋅  is the Frobenius norm and the projection matrix L LU R ′×∈  ( L L′ < ) is 

constrained by TU U I= . 

Deduction 3.1: See Appendix. 

Let ;i jX  denote the jth training sample (tensor) in the ith individual class, 

( ) ;1
1 iN

i i i jj
N

=
= ∑M X  is the mean tensor of the samples in the ith class, 

( ) 1
1 C

i ii
N N

=
= ∑M M  is the mean tensor of all training samples, and kU  

denotes the kth direction projection matrix for decomposition in the training 

procedure. Moreover, 1
; 1| ij N

i j i C
≤ ≤
≤ ≤X , 1|Ci i=M , and M  are all M–th order tensors in 

                                                                                                                                      

i.e., ( ) 0b w kS S uζ− = , ku U∀ ∈ , ku  is a column vector in U ). Consequently, we have 

( ) ( )Tr TrT T
opt b opt opt w optU S U U S Uζ= , where optU  is a solution to (3.29). 
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1 2 ML L LR × × ×L . Based on (3.30), we analogously define GTDA by replacing ;i jxr , 

imr , and mr  with ;i jX , iM , and M , respectively, as: 

( )

( )
( )( )

( )

( )
( )( )

1

1

1

1
1

|

;
1

1 1
;

1

; 1: 1:

| arg max

; 1: 1:

k

k

T M
k k k

ki

k

M
T

i kC
k

i M
i T

i k
kM

l l MU U I T
i j i kNC

k

M
i j T

i j i k
k

U
N M M

U
U

U
M M

U
ζ

=

×
=

=
×

=∗
=

=

×
=

= =
×

=

⎛ ⎛ ⎞
−⎜ ⎜ ⎟

⎝ ⎠⎜
⎜ ⎛ ⎞⎜ ⊗ −⎜ ⎟⎜ ⎝ ⎠

= ⎜
⎛ ⎞⎜ −⎜ ⎟⎜ ⎝ ⎠⎜−
⎛ ⎞

⊗ −⎜ ⎟
⎝ ⎠⎝

∏
∑

∏

∏
∑∑

∏

M M

M M

X M

X M

� �
� �
� �
� �
� �
� �
� �
� �
� �� �

� �
� �
� �
� �
� �
� �
� �
� �
� �� �

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎜ ⎟
⎜ ⎟

⎠

. (3.31)

According to the definition of the Frobenius norm of a tensor in (3.09), the right 

hand side of (3.31) can be simplified as 

( ) ( )
1

1

2 2

;
| 1 1 11 1

|

arg max .
i

k kT M
k k k

M
l l

NM MC C
T T

i i k i j i k
U U I i i jk kFro Fro

U

N U Uζ
=

∗
=

× ×
= = = == =

⎛ ⎞
= − − −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑∑∏ ∏M M X M

 (3.32)

There is no closed form solution to (3.31), so we choose to use an alternating 

projection method, which is an iterative procedure, to obtain a numerical solution. 

Therefore, (3.31) is decomposed into M different optimization sub–problems, as 

follows, 

( )

( )
( )( )

( )

( )
( )( )

1

1

1

;
1

1 1
;

1

; 1: 1:

arg max

; 1: 1:

k

k

T
l l

ki

k

M
T

i kC
k

i M
i T

i k
k

l MU U I T
i j i kNC

k

M
i j T

i j i k
k

U
N M M

U
U

U
M M

U
ζ

×
=

=
×

=∗

=

×
=

= =
×

=

⎛ ⎞⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟
⎜ ⎟⎛ ⎞⎜ ⎟⊗ −⎜ ⎟⎜ ⎟⎝ ⎠

= ⎜ ⎟
⎛ ⎞⎜ −⎜ ⎟⎜ ⎝ ⎠⎜−

⎜ ⎛ ⎞
⊗ −⎜ ⎜ ⎟
⎝ ⎠⎝ ⎠

∏
∑

∏

∏
∑∑

∏

M M

M M

X M

X M

� �
� �
� �
� �
� �
� �
� �
� �
� �� �

� �
� �
� �
� �
� �
� �
� �
� �
� �� �

⎟
⎟
⎟
⎟
⎟

 

( )( )
( )( )

( )( )
( )( )

1

;

1 1 ;

mat

mat
    arg max tr

mat

mat

T
l l i

T
C i l i l l

T T
i l i l l

T
l lTU U I NC l i j i l l

T Ti j l i j i l l

n U

U
U U

U

U
ζ

=

=

= =

⎛ ⎞⎛ ⎞⎡ ⎤− ×
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥− ×⎣ ⎦⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎡ ⎤− ×⎜ ⎟⎜ ⎟⎢ ⎥−⎜ ⎟⎜ ⎟⎢ ⎥⎜ − × ⎟⎜ ⎟⎣ ⎦⎝ ⎠⎝ ⎠

∑

∑∑

M M

M M

X M

X M

. 

(3.33)

Deduction 3.2: See Appendix. 
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To simplify (3.33), we define 

( )( ) ( )( )
1

mat mat
C

T T T
l i l i l l l i l l

i
B N U U

=

⎡ ⎤= − × − ×⎣ ⎦∑ M M M M , (3.34)

and 

( )( ) ( )( ); ;
1 1

mat mat
iNC

T T T
l l i j i l l l i j i l l

i j
W U U

= =

⎡ ⎤= − × − ×⎣ ⎦∑∑ X M X M . (3.35)

Therefore, (3.33) is simplified as, 

( )( )
1

1
|

* | arg max tr
T M
l l l

M T
l l l l l l

U U I
U U B W Uζ

=

=
=

= − . (3.36)

As pointed out in 0, ζ  is the tuning parameter. 

Table 3.6 lists the alternating projection method based optimization procedure for 

GTDA with the given tuning parameter ζ  to simplify the proof of the 

convergence theorem. Later, we describe how to determine the tuning parameter 

ζ  and the dimension 1 2 ML L L′ ′ ′× ×L  of the output tensors automatically. The 

key steps in the alternating projection procedure are Steps 3–5, which involve 

finding the lth mode projection matrix ,l tU  in the tth iteration using 1
, 1|lk t kU −

=  

obtained in the tth iteration and , 1 1|Mk t k lU − = +  obtained in the ( 1t − )th iteration. In 

Steps 3 and 4, we obtain the between class scatter matrix , 1l tB −  and the within 

class scatter matrix , 1l tW −  with 1
, 1|lk t kU −

=  obtained in the tth iteration and 

, 1 1|Mk t k lU − = +  obtained in the ( 1t − )th iteration. The singular value decomposition 

(SVD) of , 1 , 1l t l tB Wζ− −−  is obtained and , 1l tU −  is updated using the eigenvectors 

of , 1 , 1l t l tB Wζ− −− , which correspond to the largest eigenvalues of , 1 , 1l t l tB Wζ− −− . 

According to the algorithm described in Table 3.6, we can obtain a solution 

1| k kL LM
k kU R ′×

= ∈  ( k kL L′ < ) by an iterative way. For GTDA, we use the projected 

tensor 
1

k

M
T
k

k

U×
=

= ∏Y X  to represent the original general tensor X . Unlike 

2DLDA [173], the alternating projection method based optimization procedure for 

GTDA converges, as proved in Theorem 3.5. 

Theorem 3.5 The alternating projection method based optimization procedure for 

GTDA converges. 

Proof: See Appendix. 
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Table 3.6. Alternating Projection for General Tensor Discriminant Analysis 

Input: Training tensors 1 21
; 1| i Mj N L L L

i j i C R≤ ≤ × × ×
≤ ≤ ∈X L , the dimension of the output 

tensors 1 2
;

ML L L
i j R ′ ′ ′× × ×∈Y L , the tuning parameters ζ , and the maximum number of 

training iterations T . 

Output: The projection matrix 1| k kL LM
k kU R ′ ×

= ∈  ( T
k kU U I= ) and the output tensors

1 21
; 1| i Mj N L L L

i j i C R ′ ′ ′≤ ≤ × × ×
≤ ≤ ∈Y L . 

1. 
Initialize: Set ,0 1| k kL LM

k kU R ′×
= ∈  be equal to random matrices and each 

column of ,0 1|Mk kU =  is a unit vector. 

2. For 1t =  to T { 

3. For 1l =  to M  { 

4. Calculate 
( )( )

( )( )
, 1

, 1
1 , 1

mat

mat

T
C i l i l l t

l t T T
i l i l l t

N U
B

U

−

−
= −

⎡ ⎤− ×
⎢ ⎥=
⎢ ⎥− ×⎣ ⎦

∑
M M

M M
 

5. Calculate 
( )( )
( )( )

; , 1

, 1
1 1 ; , 1

mat

mat

i
T

NC l i j i l l t

l t T Ti j l i j i l l t

U
W

U

−

−
= =

−

⎡ ⎤− ×
⎢ ⎥=
⎢ ⎥− ×⎣ ⎦

∑∑
X M

X M
 

6. 
Optimize ( )( ), , 1 , 1arg max tr

T

T
l t l t l t

U U I
U U B W Uζ− −

=
= −  by SVD on 

, 1 , 1l t l tB Wζ− −− . 

7. }//For loop in Step 2. 

8. 
Convergence check: the training stage of GTDA converges if 

( ) , , 11
Err M T

l t l tl
t U U I ε−=
= − ≤∑  ( 610ε −= ). 

9. }// For loop in Step 1. 

10. ; ;
1

k

M
T

i j i j k
k

U×
=

= ∏Y X . 

 

For practical applications, it is important to determine the tuning parameter ζ  

and the dimension 1 2 ML L L′ ′ ′× × ×L  of the output tensors automatically. In the tth 

training iteration and the lth order, we adjust ζ  after Step 4 and before Step 5 by 

setting tζ  being equal to the maximum eigenvalue of 1
, 1 , 1l t l tW B−
− − . That is ζ  is 

varying from one iteration to the next. In the tth training iteration, the lth dimension 

of the output tensors lL′  is determined by the lth projection matrix ,l tU , so we set 
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a threshold value δ  to automatically determine lL′  according to the following 

inequality: 

,1, ,1, ,2,

, , , ,1 1

1
, , , ,1 1

, , , ,1 1

, ,1

, ,1

             

                                       1,

l l

l l

l l

l

l

l t l t l t
L L

l j t l j tj j

L L
l i t l i ti i

L L
l j t l j tj j

L
l i ti

L
l j tj

λ λ λ

λ λ

λ λ
δ

λ λ

λ

λ

= =

′ ′+

= =

= =

=

=

+
< <

< ≤ < <

< =

∑ ∑
∑ ∑
∑ ∑

∑
∑

L

L . (3.37)

where , ,l i tλ  is the ith eigenvalue of , 1 , 1l t t l tB Wζ− −−  and , , , ,l i t l j tλ λ≥  if i j< . 

Therefore, there is only one parameter, the threshold value δ , which needs to be 

tuned for recognition tasks. Without this method as shown in (3.37), we have to 

tune 1M +  parameters, comprising of one parameter for each order of the M–th 

order tensors and ζ  in (3.36). This multiparameter tuning is too time consuming 

when M is large. 

 

 Computational Complexity 

The time complexity of LDA is ( )3

1

M
ii

O L
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∏  in the training stage, where 

training samples X  belong to 1 2 ML L LR × × ×L . The time complexity of the 

alternating projection method based optimization procedure of GTDA is 

( )3
1

M
ii

O T L
=∑ , where T  is the number of iterations required for GTDA to 

converge. The space complexity of LDA is ( )2

1

M
ii

O L
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∏  in the training stage. 

The space complexity of the alternating projection method based optimization 

procedure of GTDA is ( )2
1

M
ii

O L
=∑ . 
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 Manifold Learning using Tensor Representations 

 

The proposed GTDA can also be extended for manifold learning [13], which has 

become popular in machine learning. Manifold learning is based on geometrical 

assumptions, i.e., a data set approximately lies in a low dimensional manifold 

embedded in the original high dimensional feature space. Recently, a large 

number of algorithms have been developed based on different criteria. For 

example, ISOMAP [155] finds the low dimensional representation for data by 

preserving the geodesic distances of data pairs in the original high dimensional 

space. Locally linear embedding (LLE) [124][127] produces the low dimensional 

representation for locally sufficient reconstruction, i.e., a sample is reconstructed 

from its neighborhood samples. Laplacian Eigenmap (LE) [5][6]reduces the data 

dimension by preserving the locality character of the samples. Recently, Bengio et 

al. [8] unified a number of manifold learning algorithms together and developed 

the out of sample extension. Yan et al. [172] developed another framework, 

named the graph embedding framework (GEF). GEF finds the projection matrix 
L LU R ′×∈  ( L L′ < ) to map the original high dimensional samples Lx R∈

r  to the 

low dimensional space LR ′  through a linear projection, i.e., Ty U x=
r r  and 

Ly R ′∈
r . The objective function of GEF is defined by 
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, (3.38)

where ijs  and ijb  are predefined weighting factors and N is the number of 

training samples. By varying ijs  and ijb , different dimension reduction 

algorithms can be obtained, e.g., LLE, ISOMAP, and LDA. The linear projection 

matrix L LU R ′×∈  is obtained by maximizing ( )F U  subject to the constraint 

TU U I= . To extend GEF to accept general tensors as input, we reformulate 

(3.38) as 
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where ζ  is a tuning parameter and the linear projection matrix U  is obtained 

by maximizing ( )G U  constrained by TU U I= . 

Based on (3.33), we analogously define tensorized GEF by replacing ixr  with 

iX  as 
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where ζ  is a tuning parameter and a series of linear projection matrices 1|Mk kU =  

is obtained by maximizing ( )1|Mk kH U =  constrained by T
k kU U I=  for 

1 k M≤ ≤ . According to (3.09), the tensorized GEF can be defined as 
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Similar to GTDA, there is no closed form solution. Therefore, (3.41) is 

decomposed into M different optimization sub–problems, as follows, 
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With (3.42), a solution to the tensorized GEF can be obtained iteratively by the 

alternating projection method. 
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 GTDA for Human Gait Recognition 

 

A straightforward application of LDA to human gait recognition leads to poor 

results because of the SSS problem. For this reason, principal component analysis 

(PCA) [30] is conducted as a preprocessing step to reduce the SSS problem. 

Unfortunately, some discriminative information is discarded by PCA.  

In this Section, we apply the proposed GTDA to reduce the SSS problem in LDA 

for appearance based human gait recognition [126]. Appearance [83] is the basic 

stage of visual information representation and reflects the walking manner 

[45][91]. In the following, we use the averaged gait image [45][91] as the 

appearance model. As a representation method, the effectiveness of the averaged 

gait image based recognition has been proved in [45][46][91][92]. 

The averaged gait image is decomposed by Gabor functions [25][26][101] and we 

combine the decomposed images to give new representations for recognition. 

There are three major reasons for introducing the Gabor based representation for 

the averaged gait image based recognition: 1) human brains seem to have a 

special function to process information in multi–resolution levels [25][26][101]; 

2) it is supposed that Gabor functions are similar to the receptive field profiles in 

the mammalian cortical simple cells [25][101]; and 3) Gabor function based 

representations have been successfully employed in many computer vision 

applications, such as face recognition [87][88][89] and texture analysis [32]. 

Although Gabor function based representations are effective for object 

recognition [25][26] and image understanding, the computational cost of the 

representation is high. Therefore, three variant methods for representation are 

introduced to utilize Gabor functions to reduce the computational cost in 

calculating the representation and in training subsequent feature selection 

algorithms by partially or fully summing over Gabor functions. The sum operation 

reduces the number of functions, used for decomposing the averaged gait images. 

These methods are: 1) the sum over directions of Gabor functions based 

representation (GaborD), 2) the sum over scales of Gabor functions based 

representation (GaborS), and 3) the sum over both scales and directions of Gabor 

functions based representation (GaborSD). 
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 Gabor Gait Representation 

As demonstrated in [45][91], the averaged gait image is a robust feature for gait 

recognition tasks. In Figure 3.10, the sample averaged gait images are obtained 

from different persons under different circumstances. It can be observed that: 1) 

the averaged gait images of the same person under different circumstances share 

similar visual effects; and 2) the averaged gait images of different persons, even 

under the same circumstance, are very different. So, it is possible to recognize a 

person by his or her averaged gait images. Furthermore, according to research 

results reported in [80], Gabor functions based image decomposition is 

biologically relevant to and is useful for image understanding and recognition. 

Consequently, it is reasonable to introduce Gabor functions for the averaged gait 

image based gait recognition. 

 

 

 

 

 
Figure 3.10. The columns show the averaged gait images of nine different people 

in the Gallery of the USF database described in §1. The four rows in the figure 

from top to bottom are based on images taken from the Gallery, ProbeB, ProbeH, 

and ProbeK, respectively. The averaged gait images in a single column come from 

the same person. 

 

1. Gabor Functions 
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Marcelja [101] and Daugman [25][26] modelled the responses of the visual cortex 

by Gabor functions, because they are similar to the receptive field profiles in the 

mammalian cortical simple cells. Daugman [25][26] developed the 2D Gabor 

functions, a series of local spatial bandpass filters, which have good spatial 

localization, orientation selectivity, and frequency selectivity. Lee [80] gave a 

good introduction to image representation using Gabor functions. A Gabor 

(wavelet, kernel, or filter) function is the product of an elliptical Gaussian 

envelope and a complex plane wave, defined as: 
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where ( ),z x y=r  is the variable in a spatial domain and k
r

 is the frequency 

vector, which determines the scale and orientation of Gabor functions, di
sk k e φ=

r
, 

where max
s

sk k f= , max 2k π= , 2f = , 0,1,2,3,4s = , and 8d dφ π= , for 

0,1,2,3,4,5,6,7d = . Examples of the real part of Gabor functions are presented in 

Figure 3.11. Here, we use Gabor functions (full complex functions) with five 

different scales and eight different orientations, making a total of forty Gabor 

functions, for the averaged gait image decomposition. The number of oscillations 

under the Gaussian envelope is determined by 2δ π= . The term ( )2exp 2σ−  

is subtracted in order to make the kernel DC–free, and thus insensitive to the 

average illumination. 

 

 
Figure 3.11. The real part of Gabor functions with five different scales and eight 

different directions. 
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2. Gabor based Gait Representation 

The Gabor function representation of an averaged gait image is obtained by 

convolving the Gabor functions with the averaged gait image. This yields a fourth 

order tensor in 1 2 5 8L LR × × ×  constructed by filtering an averaged gait image through 

a series of Gabor functions with five scales and eight directions. Two indices are 

required for pixel locations: one index is required for scale information, and one 

index is required for direction information. The entries of the fourth order tensor 

are complex numbers and the magnitude part of this fourth order tensor is defined 

as the Gabor gait as shown in Figure 3.12. In Gabor gait, there are 40 components 

(images), each of which is the magnitude part of the output, which is obtained by 

convoluting the averaged gait image with a Gabor function. 

 

 
Figure 3.12. Gabor gait: the rows show different scales and the columns show 

different directions for an averaged gait image. 

 

The gait representation method in Figure 3.12 is similar to the face representation 

method [87][88] using Gabor functions. Although this method for representation 

is powerful, its computational costs both for recognition and calculation for 
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representation are higher compared with the original image based recognition. 

The computational cost in recognition is described in §3. 

We introduce three new methods to decompose averaged gait images based on 

Gabor functions defined in (3.43). These are the sum over directions of Gabor 

functions based representation (GaborD), the sum over scales of Gabor functions 

based representation (GaborS), and the sum over scales and directions of Gabor 

functions based representation (GaborSD). The most important benefit of these 

new representations is that the cost of computing the gait representation based on 

them is low. The computational cost of the Gabor based representation and the 

complexity analysis for GTDA based dimension reduction for different 

representations are given in §3. 

 

∑∑

∑

 
Figure 3.13. Three new methods for averaged gait image representation using 

Gabor functions: GaborS, GaborD, and GaborSD. 

 

GaborD is the magnitude part of outputs generated by convolving an averaged 

gait image ( ),I x y  with the sum of Gabor functions over the eight directions 

with a fixed scale, 

( ) ( )( ) ( ), ,GaborD , , ,s d s d
d d

x y I x y I x yψ ψ⎛ ⎞= ∗ = ∗⎜ ⎟
⎝ ⎠

∑ ∑ , (3.44)
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where ( ), ,s d x yψ  is the Gabor function defined in (3.43); and ( )GaborD ,x y  is 

the output of the GaborD method for representation. Therefore, we have five 

different outputs to represent the original gait image through the GaborD 

decomposition. We then put all ( )GaborD ,x y  with different scales together as a 

third order tensor DG  in 1 2 5L LR × × : two indices are required for pixel locations; 

and one index is required for scale change. The calculation procedure is shown in 

Figure 3.13. Examples of GaborD based gait representation are shown in Figure 

3.14. 

GaborS is the magnitude part of outputs generated by convolving an averaged gait 

image ( ),I x y  with the sum of Gabor functions over the five scales with the 

fixed direction, 

( ) ( )( ) ( ), ,GaborS , , ,s d s d
s s

x y I x y I x yψ ψ⎛ ⎞= ∗ = ∗⎜ ⎟
⎝ ⎠

∑ ∑ , (3.45)

where ( ), ,s d x yψ  is the Gabor function defined in (3.43), and ( )GaborS ,x y  is 

the output of the GaborS method for representation. Therefore, we have eight 

different outputs to represent the original gait image through the GaborS based 

decomposition. We then put all ( )GaborS ,x y  with different scales together as a 

third order tensor SG  in 1 2 8L LR × × : two indices are required for pixel locations; 

and one index is required for direction change. The calculation procedure is 

shown in Figure 3.13. Examples of GaborS based gait representation are shown in 

Figure 3.14. 

GaborSD is the magnitude part of the output generated by convolving an averaged 

gait image ( ),I x y  with the sum of all forty Gabor functions, 

( ) ( )( ) ( ), ,GaborSD , , ,s d s d
s d s d

x y I x y I x yψ ψ⎛ ⎞= ∗ = ∗⎜ ⎟
⎝ ⎠

∑∑ ∑∑ , (3.46)

where ( ), ,s d x yψ  is the Gabor function defined in (3.43), and ( )GaborSD ,x y  

is the output of the GaborSD method for representation. Therefore, it is a second 

order tensor in 1 2L LR × . Two indices are required for pixel locations. The 

calculation procedure is shown in Figure 3.13. Examples of GaborD based gait 

representation are shown in Figure 3.14. 
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Figure 3.14. The thirteen columns are Gallery gait, ProbeA gait, ProbeB gait, 

ProbeC gait, ProbeD gait, ProbeE gait, ProbeF gait, ProbeG gait, ProbeH gait, 

ProbeI gait, ProbeJ gait, ProbeK gait, and ProbeL gait, respectively. From the first 

row to the last row are the original gait, GaborD (from 0 to 4), GaborS (from 0 to 

7), and GaborSD, respectively. The Gallery gait and ProbeA – ProbeI gaits are 

described in Section 3.8.2.1. 



106 

 

3. Computational Complexity 

Gabor functions with different scales and directions are approximated by masks of 

size 1 2G G×  (in experiments, 1 2 64G G= = ) and averaged gait images are in 

1 2L LR × . Therefore, the computational complexities for generating a Gabor gait in 
1 2 5 8L LR × × ×  , a GaborD gait in 1 2 5L LR × × , a GaborS gait in 1 2 8L LR × × , and a GaborSD 

gait in 1 2L LR ×  are ( )1 2 1 240O L L G G , ( )1 2 1 25O L L G G , ( )1 2 1 28O L L G G , and 

( )1 2 1 2O L L G G , respectively. Based on the analysis, the GaborD, GaborS, and 

GaborSD based gait representation can reduce the computational complexity of 

the Gabor based representation, because the number of filters (the sum of Gabor 

functions) for decomposition in the GaborD/GaborS/GaborSD based 

representation is smaller than the number of filters (Gabor functions) for 

decomposition in Gabor based representation. The experiments in §2 show that 

GaborD and GaborS based representations perform slightly better than Gabor 

based representation for gait recognition. 

 

Table 3.7. Computational complexities of the alternating projection method based 

optimization procedure of GTDA with Gabor/GaborD/GaborS/GaborSD 

representations. 

 Time Complexity Space Complexity 

Gabor gaits in 1 2 5 8L LR × × ×  ( )( )3 3
1 1 2637O T L L+ +  ( )2 2

1 289O L L+ +  

GaborD gaits in 1 2 5L LR × ×  ( )( )3 3
2 1 2125O T L L+ +  ( )2 2

1 225O L L+ +  

GaborS gaits in 1 2 8L LR × ×  ( )( )3 3
3 1 2512O T L L+ +  ( )2 2

1 264O L L+ +  

GaborSD gaits in 1 2N NR ×  ( )( )3 3
4 1 2O T L L+  ( )2 2

1 2O L L+  

 

The computational complexities of the alternating projection method based 

optimization procedure of GTDA with Gabor/GaborD/GaborS/GaborSD 

representation are listed in Table 2.1. In Table 2.1, 1T  ( 2T , 3T , and 4T ) is the 

number of iterations to make the optimization procedures of GTDA with Gabor 

(GaborD, GaborS, and GaborSD) based representations converge. In our 

experiments, we found that 1T , 2T , 3T , and 4T  are usually comparable. 
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Therefore, with GaborS/GaborD/GaborSD representations, the computational 

complexities of the alternating projection method based optimization procedure of 

GTDA are reduced compared with that of the Gabor based representation. 

 

 Experimental Results 

This Section first briefly describes the USF HumanID gait database [126] (gallery 

and probes). We then compare the performance of our algorithms with several 

other established algorithms for human gait recognition. 

 

1. HumanID Gait Database: Gallery and Probe Data Sets 

 

Table 3.8. Twelve probe sets for challenge experiments. 

Experiment (Probe) # of Probe 
Sets 

Difference between Gallery and 
Probe Set 

A (G, A, L, NB, M/N) 122 View 
B (G, B, R, NB, M/N) 54 Shoe 
C (G, B, L, NB, M/N) 54 View and Shoe 
D (C, A, R, NB, M/N) 121 Surface 
E (C, B, R, NB, M/N) 60 Surface and Shoe 
F (C, A, L, NB, M/N) 121 Surface and View 
G (C, B, L, NB, M/N) 60 Surface, Shoe, and View 
H (G, A, R, BF, M/N) 120 Briefcase 
I (G, B, R, BF, M/N) 60 Briefcase and Shoe 
J (G, A, L, BF, M/N) 120 Briefcase and View 
K (G, A/B, R, NB, N) 33 Time, Shoe, and Clothing 
L (C, A/B, R, NB, N) 33 Time, Shoe, Clothing, and Surface 

 

We carried out all our experiments upon the USF HumanID [126] outdoor gait 

(people–walking–sequences) database of version 2.1. The database has been built 

and widely utilized for vision–based gait recognition. It consists of 1,870 

sequences from 122 subjects (people). For each subject, there are the following 

covariates: change in viewpoints (Left or Right), change in shoe types (A or B), 

change in walking surface (Grass or Concrete), change in carrying conditions 

(Briefcase or No Briefcase), and elapsed time (May or November) between 
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sequences being compared. There is a set of pre–designed experiments (12 

experiments) for algorithm comparison. For algorithm training, the database 

provides a gallery with the following covariates: grass, shoe type A, right camera, 

and no briefcase, which was collected in May and it also includes a number of 

new subjects collected in November. This gallery dataset has 122 individuals. For 

algorithm testing, 12 probe sets are constructed according to the 12 experiments 

and detailed information about the probe sets is given in Table 3.8. More detailed 

information about USF HumanID is described in [126]. 

 

 
Figure 3.15. The averaged gait extraction and the dissimilarity measure. 

 

Figure 3.15 shows examples of averaged gait images. The averaged gait image 

stands for the mean image (pixel by pixel) of silhouettes over a gait cycle within a 

sequence. A gait cycle is two successive half gait cycles. A half gait cycle is a 

series of stances: from heels–together–stance and full–stride–stance, to heels–

together–stance, as shown in Figure 3.15. As suggested in [91], the whole 
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sequence is partitioned into a series of sub–sequences according to the gait period 

(a cycle) length GaitN . Then the binary images within one cycle (a sub–sequence) 

are averaged to acquire a set of averaged silhouette images iAS , i.e.  

( )
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/
1|

Gait
Gait

Gait

k i N
T N

i i Gait
k iN

AS S k N
= + −

⎢ ⎥⎣ ⎦
=

=

⎛ ⎞
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⎝ ⎠

∑ . (3.47)

The averaged gait representation is robust against any errors in individual frames, 

so we choose the averaged gait image to represent a gait cycle. One sequence 

yields several averaged gait images and the number of averaged gait images 

depends on the number of gait cycles in this sequence. In the following 

experiments, averaged gait images are utilized as the original data for the gait 

recognition problem. Some further averaged gait images from the gallery set are 

also shown in Figure 3.10, which demonstrate that averaged gait images can be 

used for gait recognition, because different people have different averaged gait 

images. 

The dissimilarity measure in gait recognition is the same as in [91]. The distance 

between the gallery sequence and the probe sequence is 

( )
( ) ( )( )1 1

Dist ,

       Median min ,p G

Method Method
P G

N N Method Method
i j P G

AS AS

AS i AS j= == −
 (3.48)

where ( ) 1| PNMethod
P iAS i =  is the ith projected AS in the probe data and 

( ) 1| GNMethod
G jAS j =  is the jth projected AS in the gallery. The right hand side of (3.48) 

is the median of the Euclidean distances between averaged silhouettes from the 

probe and the gallery. It is suggested as a suitable measure for gait recognition by 

Liu and Sarkar in [91]. 

There are only two parameters in all proposed methods, one for GTDA and the 

other for LDA. In detail, one parameter is the threshold value δ  for GTDA as 

described in (3.37). In all experiments, we vary δ  from 0.85 to 0.995 with a step 

0.005. In 2DLDA, a similar strategy is used, i.e., δ  is used to determine the 

dimensions of the projected subspace in each order. The other parameter is the 

number of selected dimensions in LDA. In all experiments relevant to LDA, we 

vary the number of dimensions from 1 to 121 with a step 1. To speed up all 

experiments, we down sample the original averaged gait images from 128 88×  to 

64 44×  in all proposed methods. These are indicated by the note “H” in Table 3.9 
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and Table 3.10. We also show some experimental results based on the original 

averaged gait images with the size 128 88× . 

To examine the effectiveness of the automatic selection of ζ  for GTDA based 

recognition defined in (3.31), we also manually tune the parameters to achieve 

further improvement by changing the selected dimensions for each mode and the 

Lagrange multiplier ζ  defined in (3.36). This is indicated by the note “M” in 

Table 3.9 and Table 3.10. Although manually tuning parameters improves the 

performance, it is time consuming. Moreover, the improvement is limited, so the 

automatic parameter selection used in this Chapter is enough for applications. 

 

2. Performance Evaluation 

Sarkar et al. [126] evaluated the performance of the baseline algorithm on the 

HumanID challenge database using the rank one/five recognition rates: 1) the rank 

one recognition rate is the percentage of the number of the correct subjects in the 

first place of a list of matches obtained by an algorithm and 2) the rank five 

recognition rate is the percentage of the number of the correct subjects in any of 

the first five places of a list of matches obtained by an algorithm. Twelve 

experiments have been designed, namely experiment A to experiment L, as shown 

in Table 3.8. The baseline algorithm reports the rank one recognition rates of the 

twelve experiments with increasing difficulty from 78% as the easiest to 3% as 

the hardest by examining the effects of the introduced five covariates (under 

different combinations). 

Table 3.9 and Table 3.10 report all experiments, which compare the proposed 

algorithms with the existing algorithms. The item “Avg” in Table 3.9 and Table 

3.10 means the averaged recognition rates of all probes (A–L), i.e., the ratio of 

correctly recognized subjects to the total number of subjects in all probes. The 

columns labeled A to L are exactly the same tasks as in the baseline algorithm. In 

both tables, the first rows give the performance of Baseline [126], HMM [66], 

IMED [167], IMED+LDA [167], LDA [45], LDA+Sync [45], LDA+Fusion [45], 

2DLDA [173], and 2DLDA+LDA [173], respectively; while the performance of 

the new algorithms upon the same gallery set and probe set is fully reported on all 

comparison experiments, which are namely, GTDA(H), GTDA (M & H), GTDA, 

Gabor+GTDA(H), GaborD+GTDA(H), GaborD+GTDA, GaborS+GTDA (H), 
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GaborS+GTDA, GaborSD+GTDA(H), GaborSD+GTDA, GTDA+LDA(H), 

GTDA+LDA, Gabor+GTDA+LDA(H), GaborD+GTDA+LDA(H), GaborD+ 

GTDA+LDA, GaborS+GTDA+LDA(H), GaborS+GTDA+LDA, and GaborSD+ 

GTDA+LDA(H), respectively. Finally, the last columns of both tables report the 

average performance of the corresponding algorithms on all probe sets. 

From the comparison results in Table 3.9 and Table 3.10, it is clear that the 

averaged recognition rate of the twelve probes, our new methods (GTDA+LDA, 

Gabor+GTDA+LDA, GaborD+GTDA+LDA, and GaborS+GTDA+LDA) 

outperform the previous state–of–the–art algorithms (top part in both tables), e.g., 

the HMM algorithm, which is stable in modeling the gait cycles, and the IMED 

algorithm, which is demonstrated to improve the conventional LDA. Figure 3.16 

and Figure 3.17 visually compare the results obtained from some important 

algorithms with the results obtained from the proposed ones. Table 3.9 and Table 

3.10 show that our proposed methods are not very sensitive to the changes in the 

size of averaged gait images, because the recognition rates are only slightly 

decreased when averaged gait images are down sampled from 128 88×  to 

64 44× . Manually tuning the parameter ζ  in GTDA in (15) will slightly 

improve the averaged recognition rate. Furthermore, performances for probes D–

G and K–L are not satisfactory. Therefore, further studies are required to make 

them applicable. Finally, the performances of different methods have the 

following relationship: Baseline < IMED < LDA < IMED+ LDA < 2DLDA+LDA 

< LDA+Fusion < GTDA+LDA < GaborD+GTDA+LDA < Gabor+GTDA+LDA 

< GaborS+GTDA+LDA. 

In addition, it is worth emphasizing that the effects of the five covariates are also 

reflected in experimental results. In general, the results in Table 3.9 and Table 

3.10, for the proposed GaborS/GaborD+GTDA+LDA, show that: 

• Viewpoint and shoe changes have little impact on the recognition rate. This 

point is demonstrated by columns A–C, in which the rank one recognition 

rates are around 92%; 

• Apart from the viewpoint and the shoe covariates, if briefcase is also 

considered, the recognition tasks become more difficult and as a result, in 

columns H–J the performance is around 87% in rank one evaluation; 
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• If the viewpoint and the shoe issues are studied together with the surface 

covariate, the recognition tasks become hard. This effect leads to a worse 

performance around 35% in columns D–G in rank one evaluation; 

• The most difficult problem in human gait recognition is the elapsed time 

task, i.e., data in gallery and data in probes were captured at different time. 

In USF HumanID, data in gallery were obtained in May and data in probes 

were obtained in November. Much work should be done to improve the 

performance on the tasks K and L although our proposed algorithms report 

better performance around 17% in rank one evaluation compared with 

many previous efforts, such as the baseline [126], IMED [167], 

IMED+LDA, LDA [45][46], and LDA+Fusion [45][46], in most cases. 
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Table 3.9. Rank one recognition rates for human gait recognition. 

Rank One (%) A B C D E F G H I J K L Avg 
Probe Size 122 54 54 121 60 121 60 120 60 120 33 33 –– 
Baseline 73 78 48 32 22 17 17 61 57 36 3 3 40.9572 
HMM 89 88 68 35 28 15 21 85 80 58 17 15 53.5365 
IMED 75 83 65 25 28 19 16 58 60 42 2 9 42.8695 
IMED+LDA 88 86 72 29 33 23 32 54 62 52 8 13 48.6357 
LDA 87 85 76 31 30 18 21 63 59 54 3 6 48.1983 
LDA+Sync 83 94 61 50 48 22 33 48 52 34 18 12 48.0355 
LDA+Fusion 91 94 81 51 57 25 29 62 60 57 9 12 55.8257 
2DLDA 89 93 80 28 33 17 19 74 71 49 16 16 50.9823 
2DLDA+LDA 89 91 82 33 33 23 25 67 78 50 19 19 52.6409 
GTDA (H) 85 88 73 24 25 15 14 53 49 45 4 7 42.9916 
GTDA (M & H) 86 88 73 24 25 17 16 53 49 45 10 7 43.7035 
GTDA 85 88 71 19 23 15 14 49 47 45 7 7 41.5992 
Gabor+GTDA (H) 84 86 73 31 30 16 18 85 85 57 13 10 52.5052 
GaborD+GTDA (H) 88 88 71 28 28 12 19 87 75 59 7 10 51.7359 
GaborD+GTDA 81 88 65 21 23 8 13 92 83 55 13 10 49.2610 
GaborS+GTDA (H) 89 89 69 31 33 13 16 79 76 56 13 13 51.4322 
GaborS+GTDA 82 86 67 22 30 8 14 92 88 62 10 7 50.9990 
GaborSD+GTDA (H) 87 89 71 23 28 8 14 82 69 51 4 13 48.2109 
GaborSD+GTDA 81 82 69 17 26 7 14 91 78 60 10 10 48.8518 
GTDA+LDA (H) 94 95 88 35 42 23 30 65 61 58 16 19 54.5543 
GTDA+LDA 95 95 86 39 44 25 30 61 68 67 16 19 56.5167 
Gabor+GTDA+LDA (H) 89 93 80 45 49 23 30 81 85 53 10 19 57.7296 
GaborD+GTDA+LDA (H) 93 93 84 34 40 23 32 90 80 63 16 19 58.9102 
GaborD+GTDA+LDA 89 93 84 27 35 17 26 93 88 67 16 22 57.5511 
GaborS+GTDA+LDA (H) 93 95 88 39 47 28 33 82 82 63 19 19 60.2390 
GaborS+GTDA+LDA 91 93 86 32 47 21 32 95 90 68 16 19 60.5804 
GaborSD+GTDA+LDA (H) 92 93 78 30 38 21 26 82 75 55 16 19 54.8685 
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Table 3.10. Rank five recognition rates for human gait recognition. 

Rank Five (%) A B C D E F G H I J K L Avg 
Probe Size 122 54 54 121 60 121 60 120 60 120 33 33 –– 
Baseline 88 93 78 66 55 42 38 85 78 62 12 15 64.5397 
HMM –– –– –– –– –– –– –– –– –– –– –– –– –– 
IMED 91 93 83 52 59 41 38 86 76 76 12 15 65.3132 
IMED+LDA 95 95 90 52 63 42 47 86 86 78 21 19 68.5950 
LDA 92 93 89 58 60 36 43 90 81 79 12 12 67.3674 
LDA+Sync 92 96 91 68 69 50 55 80 78 69 39 30 70.8528 
LDA+Fusion 94 96 93 85 79 52 57 89 86 77 24 21 76.1754 
2DLDA 97 93 93 57 59 39 47 91 94 75 37 34 70.9530 
2DLDA+LDA 97 100 95 58 57 50 50 86 94 77 43 40 72.8507 
GTDA (H) 98 95 95 57 54 34 42 75 80 69 22 16 65.0532 
GTDA (M & H) 100 97 95 57 54 34 45 75 80 70 25 25 66.1472 
GTDA 100 97 95 52 52 34 45 47 71 70 25 25 64.7015 
Gabor+GTDA (H) 96 95 89 59 63 33 49 94 92 76 19 40 70.3205 
GaborD+GTDA (H) 96 95 88 59 49 27 35 95 97 84 28 28 69.0898 
GaborD+GTDA 96 91 82 45 45 23 32 96 94 78 31 37 65.4134 
GaborS+GTDA (H) 98 97 93 60 52 34 37 93 95 79 31 25 70.0605 
GaborS+GTDA 96 91 84 45 54 23 37 96 95 79 22 31 66.0741 
GaborSD+GTDA (H) 95 93 88 54 47 27 30 89 88 71 28 28 64.8361 
GaborSD+GTDA 96 91 82 43 54 23 33 98 94 82 28 34 66.3319 
GTDA+LDA (H) 100 99 97 66 68 50 57 89 85 81 40 31 75.3267 
GTDA+LDA 100 99 97 67 69 50 57 90 90 84 40 37 76.5365 
Gabor+GTDA+LDA (H) 95 97 93 70 71 44 56 94 95 80 31 34 75.1451 
GaborD+GTDA+LDA (H) 98 99 95 62 68 44 50 96 99 87 37 43 76.0731 
GaborD+GTDA+LDA 98 99 93 52 59 37 49 99 99 88 34 43 73.5846 
GaborS+GTDA+LDA (H) 98 99 97 68 68 50 56 95 99 84 40 40 77.5762 
GaborS+GTDA+LDA 98 99 95 58 64 41 52 98 99 87 31 37 74.9008 
GaborSD+GTDA+LDA (H) 99 99 93 57 61 40 47 89 90 78 40 37 71.6534 
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Figure 3.16. Recognition performance comparison for rank one evaluation. From 

top–left to bottom, in each of the thirteen subfigures (Probes A, B, C, D, E, F, G, 

H, I, J, K, L, and the average performance), there are eleven bars, which 

correspond to the performance of HMM, IMED+LDA, LDA, LDA+Fusion, 

2DLDA+LDA, GTDA+LDA(H), GTDA+LDA, Gabor+GTDA+LDA(H), 
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GaborD+GTDA+LDA(H), GaborS+GTDA+LDA(H), and GaborSD+GTDA+ 

LDA(H), respectively. 
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Figure 3.17. Recognition performance comparison for rank five evaluation. From 

top–left to bottom, in each of the thirteen subfigures (Probes A, B, C, D, E, F, G, 

H, I, J, K, L, and the average performance), there are ten bars, which correspond 

to the performance of IMED+LDA, LDA, LDA+Fusion, 2DLDA+LDA, GTDA 

+LDA(H), GTDA+LDA, Gabor+GTDA+LDA(H), GaborD+GTDA+LDA(H), 

GaborS+GTDA+LDA(H), and GaborSD+GTDA+LDA(H), respectively. 
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3. Convergence Examination 
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Figure 3.18. Experimental based convergence justification for the alternating 

projection method for GTDA. The x–coordinate is the number of training 

iterations and the y–coordinate is the error value Err, as defined in Step 6 in Table 

3.6. From left to right, these four sub–figures show how Err changes with the 

increasing number of training iterations with different threshold values (88%, 

90% 92% and 94%) defined in (3.37). 

 

From Figure 3.18, it can be seen that only 3 to 5 iterations are usually required to 

achieve convergence of the alternating projection method based optimization 

procedure of GTDA because errors with different threshold values σ  approach 

zero rapidly. In contrast, the traditional 2DLDA does not converge during the 

training procedure, as shown in the first figure in [173]. 
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 Summary 

 

Objects in computer vision research are naturally represented by general tensors. 

The most popular examples are images and video shots, e.g., face images in face 

recognition and video shots in video categorization. However, tensors have in the 

past been reduced to the vector form, because available subspace selection 

methods do not accept tensors as input. The vectorization removes the structure 

information, which could reduce the number of parameters needed to model the 

samples (images and video shots). To preserve the structure information, we 

develop the general tensor discriminant analysis (GTDA) for discriminative 

multilinear susbapce selection. This is an effective and efficient preprocessing 

step for subsequent classification, e.g. by linear discriminant analysis (LDA). 

Compared with existing multilinear subspace selection methods, e.g., the general 

tensor analysis (GTA) and the two dimensional LDA (2DLDA), the advantages of 

the proposed GTDA are: 1) the proposed alternating projection method to obtain a 

solution of GTDA converges; 2) GTDA accepts general tensors as input; 3) 

GTDA takes the discriminative information into account; and 4) GTDA reduces 

the SSS problem of the subsequent classification, e.g., by LDA. We further 

develop the manifold learning using tensor representations, which is an extension 

of GTDA based on the graph embedding framework. With this new framework, 

most of the popular manifold learning algorithms accept tensors as input. Finally, 

we apply GTDA to human gait recognition and achieve top level performance. 
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4. Supervised Tensor Learning 
 

In vector based learning15 [30][39], a projection vector Lw R∈
r  and a bias b R∈  

are learnt to determine the class label of a sample Lx R∈
r  according to a linear 

decision function ( ) sign Ty x w x b⎡ ⎤= +⎣ ⎦
r r r . The wr  and b  are obtained based on 

a learning model, e.g., minimax probability machine (MPM) [74][135], based on 

N training samples associated with labels { },L
i ix R y∈
r , where iy  is the class 

label, { }1, 1iy ∈ + − , and 1 i N≤ ≤ . In this Chapter, we focus on the convex 

optimization based learning, which accept vectors as input. 

Supervised tensor learning (STL) [149][150] is developed to extend the vector 

based learning algorithms to accept tensors as input. That is we learn a series of 

projection vectors 1| kLM
k kw R= ∈
r  and a bias b R∈  to determine the class label 

{ }1, 1+ −  of a sample 1 2 ML L LR × ×∈X L  according to a multilinear decision function 

( )
1

sign
k

M

k
k

y w b×
=

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∏X X r . The 1|Mk kw =

r  and b  are obtained from a learning 

model, e.g., tensor minimax probability machine (TMPM), based on N training 

samples associated with labels { }1 2 ,ML L L
i iR y× ×∈X L , where iy  is the class label, 

{ }1, 1iy ∈ + − , and 1 i N≤ ≤ . 

This extension to tensor input is important, because many objects in computer 

vision research are represented by general tensors in 1 2 ML L LR × ×L , as described in 

Chapter 3. If we choose to use vector based learning algorithms, the vectorization 

operation ( )vect ⋅  is applied to a general tensor X  and form a vector 

( )vect Lx R= ∈Xr , where 1 2 ML L L L= × ×L . The vectorization eliminates the 

structure information of a sample in its original format. However, the information 

is helpful to reduce the number of parameters in a learning model and result in 

alleviating the overfitting problem. Usually, the testing error decreases with 

respect to the increasing complexity of training samples. When the complexity of 

training samples (partially represented by the number of training samples) is 

                                                 
15 We refer to the binary classification tasks. 



122 

limited, the tensor based learning machine performs better than the vector based 

learning machine. Otherwise, the vector based learning machine outperforms the 

tensor based learning machine, as shown in Figure 4.1. Usually, the size of the 

training set measures the data complexity and the complexity of a suitable 

classifier should consist with the complexity of the training data. 

 

Complexity of Training Samples

Te
st

in
g 

E
rr

or

Vector Based Learning Machine

Tensor Based Learning Machine

 
Figure 4.1. Tensor based learning machine vs. vector based learning machine. 

 

This Chapter is organized as follows. In §0, the convex optimization is briefly 

reviewed and a framework level formula of the convex optimization based 

learning is introduced. In §0, we develop a supervised tensor learning (STL) 

framewok, which is an extension of the convex optimization based learning. An 

alternating projection method is also developed to obtain the solution to an STL 

based learning algorithm. In §0, we develop a number of tensor extensions of 

many popular learning machines, such as the support vector machine (SVM) 

[15][128][130][137][138][161], the minimax probability machine (MPM) [74] 

[135], the Fisher discriminant analysis (FDA) [37][30][69], and the distance 

metric learning (DML) [169]. In §169, an iterative feature extraction model 

(IFEM) is given as an extension of the STL framework and the tensor rank one 

discriminant analysis (TR1DA) is developed as an example. In §4.5, Two 

experiments are conducted to study the effectiveness of TMPM (for STL) and 
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TR1DA (for IFEM) empirically. The first experiment, for image classification, 

demonstrates that TMPM reduces the overfitting problem in MPM. The second 

experiment, for the elapsed time problem in human gait recognition, shows 

TR1DA is more effective than PCA, LDA, and TR1A. Frinally, we summarize 

this Chapter in §169. 
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 Convex Optimization based Learning 

 

Learning models are always formulated as optimization problems [170][178]. 

Therefore, mathematical programming [170][178] is the heart of machine learning 

research [128]. In this Section, we first introduce the fundamentals of convex 

optimization and then give a general formulation for convex optimization based 

learning. 

A mathematical programming problem [170][178][11] has the form or it can be 

transformed to this form 

( )
( )
( )

0min   

0,    1
s.t.   

0,    1

w

i

i

f w

f w i m
h w i p

⎡ ⎤
⎢ ⎥
⎢ ⎥≤ ≤ ≤
⎢ ⎥= ≤ ≤⎣ ⎦

r

r

r

r
, (4.1) 

where 1 2[ , , , ]T n
nw w w w R= ∈

r
L  is the optimization variable in (4.1); the function 

0 : nf R R→  is the objective function; the functions : n
if R R→  are inequality 

constraint functions; and the functions : n
ih R R→  are equality constraint 

functions. A vector *wr  is a solution to the problem if 0f  achieves its minimum 

among all possible vectors, i.e., all vectors which satisfy the constraint equations 

( 1|mi if =  and 1|p
i ih = ). 

When the objective function ( )0f wr  and the inequality constraint functions 

( ) 1|mi if w =
r  satisfy 

( ) ( ) ( )1 2 1 2

1 2

,    and    1

,

i i i

n

f w w f w f w
R

w w R

α β α β
α β α β+

+ ≤ +

∈ + =

∈

r r r r

r
 (4.2) 

(i.e., ( ) 0|mi if w =
r  are convex functions) and the equality constraint functions 

( ) 1|p
i ih w =
r  are affine (i.e., ( ) 0ih w =

r  can be simplified as T
i ia w b=
r r ), the 

mathematical programming problem defined in (4.1) is named the convex 

optimization problem. Therefore, a convex optimization problem [11] is defined 

by 
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( )
( )

0min   

0,    1
s.t.   

,     1

w

i
T
i i

f w

f w i m
a w b i p

⎡ ⎤
⎢ ⎥
⎢ ⎥≤ ≤ ≤
⎢ ⎥= ≤ ≤⎣ ⎦

r

r

r

r r
, (4.3) 

where ( ) 0|mi if w =

r  are convex functions. The domain D  of the problem in (4.3) is 

the intersection of the domains of ( ) 0|mi if w =
r , i.e., 

0
dom

m

i
i

D f
=

= I . The point *wr  

in D  is the optimal solution of (4.3) if and only if 

( )( )0 * * 0,   T f w w w w D∇ − ≥ ∀ ∈
r r r r . (4.4) 

The geometric interpretation of the optimal solution for a convex optimization 

problem is given in Figure 4.2. 

 

D

*wr

( )0 *f w−∇
r

 
Figure 4.2. The geometric interpretation of the optimal solution *wr  in D  for a 

convex optimization problem defined in (4.3). 

 

The convex optimization problem defined in (4.3) has a large number of popular 

special cases, such as linear programming (LP) [160], linear fractional 

programming (LFP) [11], quadratic programming (QP) [114], quadratically 

constrained quadratic programming (QCQP) [93], second order cone 

programming (SOCP) [93], semi–definite programming (SDP) [159], and 

geometric programming (GP) [12]. All of these special cases have been widely 

applied in different areas, such as computer networks, machine learning, computer 

vision, psychology, health research, automation research, and economics. 

The significance of a convex optimization problem is that the solution is unique 

(i.e., the locally optimal solution is also the globally optimal solution), so the 
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convex optimization has been widely applied to machine learning for many years, 

such as LP [160] in the linear programming machine (LPM) [117][134], QP [114] 

in the support vector machine (SVM) [161][15][130][128][137][138], SDP [159] 

in the distance metric learning (DML) [169] and the kernel matrix learning [73], 

and SOCP [93] in the minimax probability machine (MPM) [74][135]. This 

section reviews some basic concepts for supervised learning based on convex 

optimization, such as SVM, MPM, Fisher discriminant analysis (FDA) [37][30] 

[69], and DML. 

Now, we introduce LP, QP, QCQP, SOCP, and SDP, which have been widely 

used to model learning problems. 

LP is defined by 

min   

s.t.   

T

w
c w

Gw h

Aw b

⎡ ⎤
⎢ ⎥
⎢ ⎥≤
⎢ ⎥

=⎢ ⎥⎣ ⎦

r

r r

rr

rr

, (4.5) 

where m nG R ×∈  and p nA R ×∈ . That is the convex optimization problem reduces 

to LP when the objective and constraint functions in the convex optimization 

problem defined in (4.3) are all affine. The geometric interpretation of the optimal 

solution for LP is given in Figure 4.3. 

 

D

*wr
c−r

 
Figure 4.3. The geometric interpretation of the optimal solution *wr  in D  for 

LP defined in (4.5). 

 

QP is defined by 
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1min  
2

s.t.   

T T

w
w Pw q w r

Gw h

Aw b

⎡ ⎤+ +⎢ ⎥
⎢ ⎥

≤⎢ ⎥
⎢ ⎥

=⎣ ⎦

r

r r r r

rr

rr

, (4.6) 

where nP S+∈ , m nG R ×∈  and p nA R ×∈ . Therefore, the convex optimization 

problem reduces to QP when the objective function in (4.3) is convex quadratic 

and the constraint functions in (4.3) are all affine. The geometric interpretation of 

the optimal solution for QP is given in Figure 4.4. 

 

D

*wr
( )Pw q− +

r r

 
Figure 4.4. The geometric interpretation of the optimal solution *wr  in D  for 

QP defined in (4.6). 

 

If the inequality constraints are not affine but quadratic, (4.6) transfroms to 

QCQP, i.e., 

0 0 0
1min  
2
1 0,     1
2s.t.   

                                        

T T

w

T T
i i i

w P w q w r

w Pw q w r i m

Aw b

⎡ ⎤+ +⎢ ⎥
⎢ ⎥
⎢ ⎥+ + ≤ ≤ ≤⎢ ⎥
⎢ ⎥

=⎣ ⎦

r

r r r r

r r r r

rr

, (4.7) 

where n
iP S+∈  for 0 i m≤ ≤ . 

SOCP has the form 
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min   

,     1
s.t.   

                                         

T

w
T

i i i iFro

f w

A w b c w d i m
Fw g

⎡ ⎤
⎢ ⎥
⎢ ⎥+ ≤ + ≤ ≤
⎢ ⎥

=⎣ ⎦

r

r r

r r r

r r
, (4.8) 

where in n
iA R ×∈ , p nF R ×∈ , n

ic R∈
r , pg R∈

r , in
ib R∈ , and id R∈ . The 

constraint with the form TAw b c w d+ ≤ +
r r r  is called the second order cone 

constraint. When 0ic =
r  for all 1 i m≤ ≤ , SOCP transforms to QCQP. 

Recently, SDP has become an increasingly important technique in machine 

learning and many SDP based learning machines have been developed. SDP 

minimizes a linear function subject to a matrix semidefinite constraint 

( ) 0
1

min   c

s.t.    0

T

w

n

i i
i

w

F w F w F
=

⎡ ⎤
⎢ ⎥
⎢ ⎥

+ ≥⎢ ⎥
⎣ ⎦

∑

r

r r

r
�

, (4.9) 

where m
iF S∈  for all 0 i n≤ ≤  and nc R∈

r . 

Here, we provide a general formula for convex optimization based learning as 

( )
( )

, ,
min   , ,

s.t.    ,    1
w b

T
i i i i

f w b

y c w x b i N
ξ

ξ

ξ

⎡ ⎤
⎢ ⎥
⎢ ⎥+ ≥ ≤ ≤⎣ ⎦

rr

rr

r r , (4.10)

where 1: L Nf R R+ + →  is a criterion (convex function) for classification; 

:ic R R→  for all 1 i N≤ ≤  are convex constraint functions; L
ix R∈
r  

(1 i N≤ ≤ ) are training samples and their class labels are given by { }1, 1iy ∈ + − ; 

[ ]1 2, , , T N
N Rξ ξ ξ ξ= ∈

r
L  are slack variables; and Lw R∈

r  and b R∈  determine 

a classification hyperplane, i.e., 0Tw x b+ =
r r . By defining different classification 

criteria f  and convex constraint functions 1|Ni ic = , we can obtain a large number 

of learning machines, such as SVM, MPM, FDA, and DML. We detail this in the 

next Section. 
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 Supervised Tensor Learning: A Framework 

 

STL extends vector based learning algorithms to accept general tensors as input. 

In STL, we have N training samples 1 2 ML L L
i R × ×∈X L  represented by tensors 

associated with class label information { }1, 1iy ∈ + − . We want to separate 

positive samples ( 1iy = + ) from negative samples ( 1iy = − ) based on a criterion. 

This extension is obtained by replacing L
ix R∈
r  (1 i N≤ ≤ ) and Lw R∈

r  with 

1 2 ML L L
i R × ×∈X L  (1 i N≤ ≤ ) and kL

kw R∈
r  (1 k M≤ ≤ ) in (4.10). Therefore, STL 

is defined by 

( )
1

1
| , ,

1

min   | , ,

s.t.        ,    1

M
k k

k

M
k k

w b

M

i i i k i
k

f w b

y c w b i N

ξ
ξ

ξ

=
=

×
=

⎡ ⎤
⎢ ⎥
⎢ ⎥⎛ ⎞⎢ ⎥+ ≥ ≤ ≤⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∏X

rr

rr

r
. (4.11)

There are two main differences between vector based learning and tensor based 

learning: 1) training samples are represented by vectors in vector based learning, 

while they are represented by tensors in tensor based learning; and 2) the 

classification decision function is defined by Lw R∈
r  and b R∈  in vector based 

learning ( ( ) sign Ty x w x b⎡ ⎤= +⎣ ⎦
r r r ), while it is defined by kL

kw R∈
r  (1 k M≤ ≤ ) 

and b R∈  in tensor based learning, i.e., ( )
1

sign
k

M

k
k

y w b×
=

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∏X X r . In vector 

based learning, we have a classification hyperplane as 0Tw x b+ =
r r . While in 

tensor based learning, we define a classification hyperplane as 
1

0
k

M

k
k

w b×
=

+ =∏X r . 

The Lagrangian for STL defined in (4.11) is 

( ) ( )

( )

1 1
1 1

1
1 1

| , , , | , ,

                           | , ,

k

k

MN
M M

k k k k i i i i k i
i k

MN
M T

k k i i i i k
i k

L w b f w b y c w b

f w b y c w b

ξ α ξ α ξ

ξ α α ξ

= = ×
= =

= ×
= =

⎛ ⎞⎛ ⎞
= − + −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞

= − + +⎜ ⎟
⎝ ⎠

∑ ∏

∑ ∏

X

X

r rrr r r

r rrr r
, (4.12)

with Lagrange multipliers [ ]1 2, , , 0T
Nα α α α= ≥

r
L . The solution is determined 

by the saddle point of the Lagrangian 

( )
1

1
| , ,

max min | , , ,
M

k k

M
k k

w b
L w b

α ξ
ξ α

=
=rr r

r rr , (4.13)
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The derivative of ( )1| , , ,M
k kL w b ξ α=

r rr  with respect to jwr  is 

( )

( )

( ) ( )

1
1 1

1
1 1

1
1

| , ,

       | , ,

       | , , ,

j j j k

j j k

j

MN
M

w w k k i i w i i k
i k

MN
M i

w k k i i w i k
i k

N
M i

w k k i i i j j
i

L f w b y c w b

dcf w b y w b
dz
dcf w b y w
dz

ξ α

ξ α

ξ α

= ×
= =

= ×
= =

=
=

⎛ ⎞
∂ = ∂ − ∂ +⎜ ⎟

⎝ ⎠
⎛ ⎞

= ∂ − ∂ +⎜ ⎟
⎝ ⎠

= ∂ − ×

∑ ∏

∑ ∏

∑

X

X

X

r r r

r r

r

rr r

rr r

rr r

 (4.14)

where 
1

k

M

i k
k

z w b×
=

= +∏X r . 

The derivative of ( )1| , , ,M
k kL w b ξ α=

r rr  with respect to b  is 

( )

( )

( )

1
1 1

1
1 1

1
1

| , ,

      | , ,

      | , , ,

k

k

MN
M

b b k k i i b i i k
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MN
M i

b k k i i b i k
i k

N
M i

b k k i i
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L f w b y c w b

dcf w b y w b
dz
dcf w b y
dz
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ξ α

ξ α

= ×
= =

= ×
= =

=
=

⎛ ⎞
∂ = ∂ − ∂ +⎜ ⎟
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= ∂ − ∂ +⎜ ⎟
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∑ ∏

∑

X

X

rr r

rr r

rr

 (4.15)

where 
1

k

M

i k
k

z w b×
=

= +∏X r . 

To obtain a solution to STL, we need to set 0
jw L∂ =r  and 0bL∂ = . Accoridng to 

(4.14), we have 

( )
1

0
j j

N
i

w w i i i j j
i

dcL f y w
dz

α
=

∂ = ⇒ ∂ = ×∑ Xr r
r . (4.16)

According to (4.15), we have 

1

0
N

i
b b i i

i

dcL f y
dz

α
=

∂ = ⇒ ∂ =∑ . (4.17)

Based on (4.16), we find the solution to jwr  depends on kwr  (1 k M≤ ≤ , k j≠ ). 

That is we cannot obtain the solution to STL directly. The alternating projection 

provides a clue to have a solution to STL. The key idea in the alternating 

projection based optimization for STL is to obtain jwr  with the given kwr  

(1 k M≤ ≤ , k j≠ ) in an iterative way. The algorithm is given in Table 4.1. The 

convergence issue is proved in Theorem 4.1. 
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Table 4.1. Alternating Projection for the Supervised Tensor Learning 

Input: Training samples 1 2 ...
1| ML L LN

i i R × × ×
= ∈X  and their associated class labels

{ }1, 1iy = + − . 

Output: The parameters 1| kLM
k kw R= ∈
r  and b R∈ , such that the STL objective 

function ( )1| , ,M
k kf w b ξ=

rr  defined in (4.11) is minimized. 

1. Set 1|Mk kw =
r  be equal to random unit vectors in kLR . 

2. Carry out steps 3–5 iteratively until convergence. 

3. For 1j =  to M  

4. 

Obtain jL
jw R∈
r  by solving 

( )
( )

, ,
min   , ,

s.t.     ,    1
j

jw b

T
i i j i j j i

f w b

y c w w b i N

ξ
ξ

ξ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤× + ≥ ≤ ≤⎢ ⎥⎣ ⎦⎣ ⎦X

rr

rr

r r
 

5. End 

6. 

Convergence checking: if ( )2

, , 1 ,
1

1
M

T
k t k t k t Fro

k

w w w ε
−

−
=

⎡ ⎤− ≤⎢ ⎥⎣ ⎦∑ r r r ( 610ε −= ), 

the calculated 1|Mk kw =
r  have converged. Here ,k twr  is the current 

projection vector and , 1k tw −
r  is the previous projection vector. 

7. End 
 

The alternating projection procedure to obtain a solution in STL is illustrated in 

Table 4.1 and Figure 4.5. In this figure, training samples are represented by third 

order tensors. The following three steps are conducted iteratively to obtain the 

solution for STL: 

1) Generate the second projection vector 2wr  and third projection vectors 3wr  

randomly according to the Step 1 in Table 4.1; project the original training 

samples (third order tensors) 1 2 3L L L
i R × ×∈X  (1 i N≤ ≤ ) through 2wr  and 3wr  as 

( ) 1
1 1

L
i w R× ∈X r ; and calculate the first projection vector 1wr  according to the 

Step 4 in Table 4.1 based on the projected training samples ( )1 1i w×X r ; 

2) Project the original training samples 1|Ni i=X  to the calculated first projection 

vector 1wr  and the original third projection vector 3wr ; and calculate the second 
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projection vector 2wr  according to the Step 4 in Table 4.1 based on the projected 

training samples ( )2 2i w×X r ; 

3) Project the original training samples 1|Ni i=X  by the previous 1wr  and 2wr ; and 

calculate 3wr  through the Step 4 in Table 4.1 based on the projected training 

samples ( )3 3i w×X r . 
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Figure 4.5. The third order tensor example for the alternating projection in STL. 
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Theorem 4.1 The alternating projection based optimization procedure for STL 

converges. 

Proof. 

The alternating projection method never increases the function value 

( )1| , ,M
k kf w b ξ=

rr  of STL between two successive iterations, because it can be 

interpreted as a type of a monotonic algorithm. We can define a continuous 

function 

1 2 1
:

M
N N

M kk
f u u u R R u R R R

=
× × × × × = × × × →L ,  

where d dw u∈
r  and du  is the set, which includes all possible dwr . The bias 

b R∈  and the slack variables NRξ ∈
r

. 

With the definition, f  has M  different mappings: 

( ) ( )
( )

1, ,

1
1 1, ,

, , arg min | , ,

                    arg min , , ; | , | ,
d d

d d

M
d d d d du u b

d M
d l l l l du u b

g w b f w b

f w b w w

ξ

ξ

ξ ξ

ξ

∗ ∗ ∗
=∈

−
= = +∈

=

rr

rr

r rr r
�

rr r r   

The mapping can be calculated with the given 1
1|dl lw −
=

r  in the tth iteration and 

1|Ml l dw = +
r  in the ( 1t − )th iteration of the for–loop in Step 4 in Table 4.1. 

Given an initial d dw u∈
r  (1 d M≤ ≤ ), the alternating projection generates a 

sequence of items { }, , ,, , ;1d t d t d tw b d Mξ∗ ∗ ∗ ≤ ≤
rr  via 

( ) ( )1
, , , , 1 , 1 1, ,
, , arg min , , ; | , |

d d

d M
d t d t d t d l t l l t l du u b

g w b f w b w w
ξ

ξ ξ∗ ∗ ∗ −
= − = +∈

= rr

r rr r r r ,  

with each { }1,2,d M∈ L . The sequence has the following relationship: 

1,1 1,1 1,1 2,1 2,1 2,1 ,1 ,1 ,1 1,2 1,2 1,2

1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2,

( , , ) ( , , ) ( , , ) ( , , )

      ( , , ) ( , , ) ( , , ) ( , , )

  

M M M

t t t t t t T T T T T T

a f w b f w b f w b f w b

f w b f w b f w b f w b

ξ ξ ξ ξ

ξ ξ ξ ξ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

= ≥ ≥ ≥ ≥ ≥

≥ ≥ ≥ ≥ ≥ ≥

r r r rr r r r
L

r r r rr r r r
L L

, , ,                  ( , , ) .M T M T M Tf w b bξ∗ ∗ ∗≥ =
rr

L

where T →+∞ . Here both a  and b  are limited values in the R space. 

The alternating projection in STL can be illustrated by a composition of M  sub–

algorithms, defined as 

( ) ( )
1

1
1 1

: | , , Map , ,
l l

d M
M

d d d l d l
l l d

w b w w b wξ ξ
−

= × ×
= = +

Ω ×∏ ∏
r rr r r r
a .  
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It follows that 1 2 1

M

M dd=
Ω Ω Ω Ω = Ω� o oLo o  is a closed algorithm whenever all 

du  are compact. All sub–algorithms ( ), ,d d dg w b ξ∗ ∗ ∗
rr  decrease the value of f , so 

it should be clear that Ω  is monotonic with respect to f . 

Consequently, we can say that the alternating projection method to optimize STL 

defined in (4.11) converges.                                    ■ 
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 Supervised Tensor Learning: Examples 

 

Based on the proposed STL and its alternating projection training algorithm, a 

large number of tensor based learning algorithms can be obtained by combining 

STL with different learning criteria, such as SVM, MPM, DML, and FDA. 

 

 Support Vector Machine vs. Support Tensor Machine 

SVM [161][15][130][128][137][138][41] finds a classification hyperplane, which 

maximizes the margin between positive samples and negative samples, as shown 

in Figure 4.6. 

 

Support Vectors

iξ

iξ

Positive Sample

Negative Sample

Classification Hyperplane

Margin

Margin Error

 
Figure 4.6. SVM maximizes the margin between positive and negative training 

samples. 

 

Suppose there are N training samples L
ix R∈
r  (1 i N≤ ≤ ) associated with class 

lables { }1, 1iy ∈ + − . The traditional SVM [161][15], i.e., soft margin SVM, finds 

a projection vector Lw R∈
r  and a bias b R∈  through 

( ) 2

, , 1

1min   , ,
2

1 ,      1
s.t.   

0                                           

N

C SVM iFrow b i

T
i i i

J w b w c

y w x b i N

ξ
ξ ξ

ξ

ξ

−
=

⎡ ⎤= +⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤+ ≥ − ≤ ≤⎣ ⎦⎢ ⎥
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∑rr

rr r

r r

r

 (4.18)
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where [ ]1 2, , , T N
N Rξ ξ ξ ξ= ∈

r
L  is the vector of all slack variables to deal with 

the linearly non–separable problem. The iξ  ( 1 i N≤ ≤ ) is also called the 

marginal error for the ith training sample, as shown in Figure 4.6. The margin is 

2
Fro

wr . When the classification problem is linearly separable, we can set 0ξ =
r

. 

The decision function for classification is ( ) sign Ty x w x b⎡ ⎤= +⎣ ⎦
r r r . 

The Lagrangian of (4.18) is 

( ) ( )2

1 1 1

1 1 1

1, , , , 1
2
1                        
2

N N N
T

i i i i i i iFro
i i i

N N N
T T T T T

i i i i i
i i i

L w b w c y w x b

w w c y w x b y

ξ α κ ξ α ξ κ ξ

ξ α α α α ξ κ ξ

= = =

= = =

⎡ ⎤= + − + − + −⎣ ⎦

= + − − + − −

∑ ∑ ∑

∑ ∑ ∑

r r rr r r r

r rr r rr r r r r
 (4.19)

with Lagrangian multipliers 0iα ≥ ,  0iκ ≥  for 1 i N≤ ≤ . The solution is 

determined by the saddle point of the Lagrangian 

( )
, , ,

max min , , , ,
w b

L w b
α κ ξ

ξ α κrr r r

r r rr . (4.20)

This can be achieved by 

1
0

0 0
0 0.

N

w i i i
i

T
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L w y x

L y
L cξ
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α
α κ

=

∂ = ⇒ =

∂ = ⇒ =
∂ = ⇒ − − =

∑r

r

r r

r r

r r
 (4.21)

Based on (4.21), we can have the dual problem of (4.18), 

( )
1 1 1

1max   
2

0 
s.t.   

0

N N N
T

D i j i j i j i
i j i

T

J y y x x

y
c

α
α α α α

α
α

= = =

⎡ ⎤
= − +⎢ ⎥

⎢ ⎥
⎢ ⎥=
⎢ ⎥

≤ ≤⎢ ⎥⎣ ⎦

∑∑ ∑r

r r r

r r

r

. (4.22)

Set 
1 ,

T
i j i j i j N

P y y x x
≤ ≤

⎡ ⎤= ⎣ ⎦
r r , 11Nq ×=

rr , A y=
r , 0b =

r
, [ ], T

N N N NG I I× ×= − , and 

1 11 ,0
TT T

N Nh c × ×⎡ ⎤= ⎣ ⎦
r r r

 in (4.6), we can see that the dual problem of (4.18) in SVM is a 

QP. 

In the soft margin SVM defined in (4.18), the constant c  determines the tradeoff 

between 1) maximizing the margin between positive and negative samples and 2) 

minimizing the training error. The constant c  is not intuitive. Therefore, 

Bcholkopf et al. [130][128] developed the nu–SVM by replacing the unintuitive 

parameter c  with an intuitive parameter ν  as 
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( ) 2

, , , 1

1 1min   , , ,
2

,     1

s.t.     0,                                            
0                                            

N

SVM iFrow b i

T
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J w b w
N

y w x b i N
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ρ ξ
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∑rr
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r r

r
. (4.23)

The significance of ν  in nu–SVM defined in (4.23) is that it controls the number 

of support vectors and the marginal errors. 

Suykens and Vandewalle [137][138] simplified the soft margin SVM as the least 

squares SVM, 

( ) 2

, ,

1min   , ,
2 2

s.t.    1 ,     1

T
LS SVM Frow b

T
i i i

J w b w

y w x b i N

ε

γε ε ε

ε

−
⎡ ⎤= +⎢ ⎥
⎢ ⎥

⎡ ⎤+ = − ≤ ≤⎢ ⎥⎣ ⎦⎣ ⎦

rr

r r rr r

r r
. (4.24)

Here the penalty 0γ > . There are two differences between the soft margin SVM 

defined in (4.18) and the least squares SVM defined in (4.24): 1) inequality 

constraints are replaced by equalities; and 2) the loss 
1

N
ii
ξ

=∑  ( 0iξ ≥ ) is replaced 

by square loss. These two modifications make the solution of the least square 

SVM be more easily obtained compared with soft margin SVM. 

According to statistical learning theory, a learning machine performs well when 

the number of training samples is larger than the complexity of the model. 

Moreover, the model’s complexity and the number of parameters to describe the 

model are always in direct proportion. In computer vision research, objects are 

usually represented by general tensors as described in Chapter 3 and the number 

of training samples is limited. Therefore, it is reasonable to have the tensor 

extension of SVM i.e., the support tensor machine (STM), which uses fewer 

parameters than SVM. Based on (4.18) and STL defined in (4.11), it is not 

difficult to obtain the tensor extension of the soft margin SVM, i.e., the soft 

margin STM. 

Suppose we have training samples 1 2 ML L L
i R × ×∈X L  ( 1 i N≤ ≤ ) and their 

corresponding class labels { }1, 1iy ∈ + − . The decision function is defined by 

( )
1

sign
k

M

k
k

y w b×
=

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∏X X r , where the projection vectors kL

kw R∈
r  (1 k M≤ ≤ ) 

and the bias b  in soft margin STM are obtained from 
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Here, [ ]1 2, , , T N
N Rξ ξ ξ ξ= ∈

r
L  is the vector of all slack variables to deal with the 

linearly non–separable problem. 

The Lagrangian for this problem is 
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with Lagrangian multipliers 0iα ≥ ,  0iκ ≥  for 1 i N≤ ≤ . The solution is 

determined by the saddle point of the Lagrangian 
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M
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This can be achieved by 
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(4.28)

 

The first equation in (4.28) shows that the solution of jwr  depends on kwr  

(1 k M≤ ≤ , k j≠ ). That is we cannot obtain the solution for the soft margin 

STM directly. This point has been pointed out in the STL framework developed in 

§4.2. Therefore, we use the proposed alternating projection method in STL to 

obtain the solution of the soft margin STM. To have the alternating projection 

method for the soft margin STM, we need to replace the Step 4 in Table 4.1 by the 

following optimization problem, 
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where 2

1

k j
k Frok M

wη ≠

≤ ≤
=∏ r . 

The problem defined in (4.29) is the standard soft margin SVM defined in (4.18). 

Based on nu–SVM defined in (4.23) and STL defined in (4.11), we can also have 

the tensor extension of the nu–SVM, i.e., nu–STM, 
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Here, 0ν ≥  is a constant. The Lagrangian for this problem is 
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with Lagrangian multipliers 0τ ≥  and 0iα ≥ ,  0iκ ≥  for 1 i N≤ ≤ . The 

solution is determined by the saddle point of the Lagrangian 
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Similar to the soft margin STM, the solution of jwr  depends on kwr  (1 k M≤ ≤ , 

k j≠ ), because  
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Therefore, we use the proposed alternating projection method in STL to obtain the 

solution of nu–STM. To have the alternating projection method for nu–STM, we 

need to replace the Step 4 in Table 4.1 by the following optimization problem, 
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where 2

1

k j
k Frok M

wη ≠

≤ ≤
=∏ r . 

The problem defined in (4.34) is the standard nu–SVM defined in (4.23). 

Based on the least squares SVM defined in (4.24) and STL defined in (4.11), we 

can also have the tensor extension of the least square SVM, i.e., least square STM, 
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where 0γ >  is a constant. Similar to the soft margin STM and nu–STM, there is 

no closed form solution for least squares STM. We use the alternating projection 

method in STL to obtain the solution of the least squares STM. To have the 

alternating projection method for the least squares STM, we need to replace the 

Step 4 in Table 4.1 by the following optimization problem, 
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where 2

1

k j
k Frok M

wη ≠

≤ ≤
=∏ r . 

 

Theorem 4.2 In STM, the decision function is ( )
1

sign
k

M

k
k

y w b×
=

⎡ ⎤
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⎣ ⎦
∏X X r  with 

2
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M

k
k Fro

w⊗
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≤ Λ∏ r  and 2 2
Fro

R≤X . Let 0ρ >  and ν  is the fraction of training 

samples with a margin smaller than ρ Λ . When STM is obtained from N 

training samples 2 2
i Fro

R≤X  (1 i N≤ ≤ ), sampled from a distribution P with 
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probability at least 1 δ−  ( 0 1δ< < ), the misclassification probability of a test 

sample sampled from P is bounded by 

2 2
2

2

1ln lnR N
N
λν

ρ δ
⎛ ⎞Λ

+ +⎜ ⎟
⎝ ⎠

, (4.37)

where λ  is a universal constant. 

Proof: This is a direct conclusion from the theorem on the margin error bound 

introduced in [128]. More information about other error bounds in SVM can be 

found in [3]. 

 

 Minimax Probability Machine vs. Tensor Minimax Probability 
Machine 

 

Positive Sample

Negative Sample

Classification Hyperplane

( ),m+ +Σ
r

( ),m− −Σ
r

Intersection Point

 
Figure 4.7. MPM separates positive samples from negative samples by 

maximizing the probability of the correct classification for future samples. The 

intersection point minimizes the maximum of the Mahalanobis distances between 

positive and negative samples, i.e., it has the same Mahalanobis distances to the 

mean of the positive samples and the mean of the negative samples. 

 

The minimax probability machine (MPM) [74][135] has become popular. It is 

reported to outperform the conventional SVM consistently and therefore has 

attracted attention as a promising supervised learning algorithm. MPM focuses on 

finding a decision hyper–plane, which is ( ) { }, | 0TH w b x w x b= + =
r r r r , to separate 

positive samples from negative samples (a binary classification problem) with 

maximal probability with respect to all distributions modelled by given means and 

covarainces, as shown in Figure 4.7. MPM maximizes the probability of the 
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correct classification rate (classification accuracy) on future samples. For 

Gaussian distributed samples, it minimizes the maximum of the Mahalanobis 

distances of the positive samples and the negative samples. With given positive 

samples ixr  ( 1iy = + ) and negative samples ixr  ( 1iy = − ), MPM is defined as, 
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Here, the notation ( ) ( )1 ,i ix y m+ += + Σ
r r

�  means the class distribution of the 

positive samples has the mean m+
r  and covariance +Σ , and similarly for the 

notation ( ) ( )1 ,i ix y m− −= − Σ
r r

� . The classification decision function is given by 

( ) sign Ty x w x b⎡ ⎤= +⎣ ⎦
r r r . 

Recently, based on the powerful Marshall and Olkin’s theorem [102], Popescu 

and Bertsimas [120] proved a probability bound, 
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where xr  stands for a random vector, S  is a given convex set, and the 

supremum is taken over all distributions for xr  with the mean value as mr  and 

the covariance matrix Σ . Based on this result, Lanckriet et al. [74] reformulated 

(4.38) as: 
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where the constraint functions in (4.40) are second order cone functions. There 

MPM is an SOCP. This problem can be further simplified as 
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where b  is determined by 
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In computer vision research, many objects are represented by tensors. To match 

the input requirments in MPM, we need to vectorize the tensors to vectors. When 

training samples are limited, the vectorization will be a disaster. This is because 

MPM meets the matrix singular problem seriously (the ranks of +Σ  and −Σ  are 

deficient). To reduce this problem, we propose the tensor extension of MPM, i.e., 

tensor MPM (TMPM). TMPM is a combination of MPM and STL. 

Suppose we have training samples 1 2 ML L L
i R × ×∈X L  ( 1 i N≤ ≤ ) and their 

corresponding class labels { }1, 1iy ∈ + − . The decision function is given by 
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where ;l+Σ  is the covariance matrix of the projected samples ( )i l lw−×X r  for all 

1iy = +  and ;l−Σ  is the covariance matrix of the projected samples ( )i l lw−×X r  

for all 1iy = − . The function I( 1)iy = +  is 1 if iy  is 1+ , otherwise 0. The 

function I( 1)iy = −  is 1 if iy  is 1− , otherwise 0. This problem can be 

simplified as 
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where ( ) [ ]1
1 I( 1)N

i ii
N y+ + =

= = +∑M X , ( ) [ ]1
1 I( 1)N

i ii
N y− − =

= = −∑M X , and 

N+  ( N− ) is the number of positive (negative) samples. 

The Lagrangian for this problem is 
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with Lagrangian multipliers 0iα ≥  ( 1,2i = ). The solution is determined by the 

saddle point of the Lagrangian 
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This can be achieved by setting 0
jw L∂ =r , 0bL∂ = , and 0Lκ∂ = . It is not 

difficult to find that the solution of jwr  depends on kwr  (1 k M≤ ≤ , k j≠ ). 

Therefore, there is no closed form solution for TMPM. We use the proposed 

alternating projection method in STL to obtain the solution of TMPM. To have 

the alternating projection method for TMPM, we need to replace the Step 4 in 

Table 4.1 by the following optimization problem, 
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This problem is the standard MPM defined in (4.40). 

 

 Fisher Discriminant Analysis vs. Tensor Fisher Discriminant 
Analysis 

Fisher discriminant analysis (FDA) [37][30][69] has been widely applied for 

classification. Suppose there are N training samples L
ix R∈
r  ( 1 i N≤ ≤ ) 

associated with their class labels { }1, 1iy ∈ + − . There are N+  positive training 

samples and their mean is ( ) [ ]1
1 I( 1)N

i ii
m N y x+ + =

= = +∑r r ; there are N−  

negative training samples and their mean can be calculated from 

( ) [ ]1
1 I( 1)N

i ii
m N y x− − =

= = −∑r r ; the mean of all training samples is 
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( ) 1
1 N
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m N x

=
= ∑r r ; and the covariance matrix of all training samples is Σ . FDA 

finds a direction to separate the class means while minimizing the total covariance 

of the training samples. Therefore, two quantities need to be defined, which are: 

1) the between class scatter ( )( )2 1 2 1
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bS m m m m= − −
r r r r : measuring the difference 

between two classes; and 2) the within class scatter 
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Figure 4.8. FDA separates positive samples from negative samples by maximizing 

the symmetric Kullback–Leibler divergence between two classes under the 

assumption that the two classes share the same covariance matrix. 

 

This problem is simplified as 
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w w
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According to Chapter 2, we know this procedure is equivalent to maximizing the 

symmetric Kullback–Leibler divergence (KLD) between positive and negative 

samples with identical covariances in the projected subspace, so that positive 

samples are separated from negative samples. Based on the definition of FDA, we 

know FDA is a special case of the linear discriminant analysis (LDA). 
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The decision function in FDA is ( ) sign Ty x w x b⎡ ⎤= +⎣ ⎦
r r r , where wr  is the 

eigenvector of ( )( )1 Tm m m m−
+ − + −Σ − −
r r r r  associated with the largest eigenvalue 

and the bias b  is calculated by 
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The significance [30][39] of FDA is: FDA is Bayes optimal when the two classes 

are Gaussian distributed with identical covariances. 

When objects are represented by tensors, we need to vectorize the tensors to 

vectors to match the input requirments in FDA. When training samples are 

limited, the vectorization will be a disaster for FDA. This is because wS  and bS  

are both singular. To reduce this problem, we propose the tensor extension of 

FDA, i.e., tensor FDA (TFDA). TFDA is a combination of FDA and STL. 

Moreover, TFDA is a special case of the previous proposed general tensor 

discriminant analysis (GTDA). 

Suppose we have training samples 1 2 ML L L
i R × ×∈X L  ( 1 i N≤ ≤ ) and their 

corresponding class labels { }1, 1iy ∈ + − . The mean of the positive training 
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, (4.51)

The formula is obtained directly from (3.31) and (3.32). Similar to GTDA, there is 

no closed form solution for TFDA. The alternating projection is applied to obtain 

the solution for TFDA and we need to replace the Step 4 in Table 4.1 by the 

following optimization problem, 
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This problem is the standard FDA. When we have the projection vectors 1|Mk kw =
r , 

we can obtain the bias b  from 

( )
1

k

M

k
k

N N N N w
b

N N

− + + + − − ×
=

− +

− − +
=

+

∏M M r

. (4.53)

 

 Distance Metric Learning vs. Multiple Distance Metrics 
Learning 

Weinberger et al. [169] proposed the distance metric learning (DML) to learn a 

metric for k–nearest–neighbor (kNN) classification. The motivation of DML is 

simple because the performance of kNN is only related to the metric used for 

dissimilarity measure. In traditional kNN, the Euclidean metric fails to capture the 

statistical charateristics of training samples. In DML, the metric is obtained such 

that “k–nearest neighbors always belong to the same class while examples from 

different classes are separated by a large margin”. DML is defined by 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, 1 1 1 11 , ,
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(4.54)

where 1ijη =  and 1ijy =  mean that ixr  and jxr  have the same class label, 

otherwise 0. The constraint function 0Σ ≥  indicates that the maxtrix Σ  is 

required to be positive semidefinite, so the problem is an SDP. From the learnt 

distance metric Σ , it is direct to have the linear transformation matrix by 

decomposing TW WΣ = . 

The optimization problem defined in (4.54) is equivalent to 
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where ( ) 2ij i j L N
A x xη

×
⎡ ⎤= −⎣ ⎦

r r  (1 ,i j N≤ ≤ ) and 
2

,ijl i l j i L
B x x x x

×
⎡ ⎤= − −⎣ ⎦
r r r r . 

Margin Margin

Target Neighborhood

Local Neighborhood
Before After

ixr

ixr

Similarly Labeled

Differently Labeled

Differently Labeled
 

Figure 4.9. DML obtains a metric, such that “k–nearest neighbors always belong 

to the same class while examples from different classes are separated by a large 

margin”. 

 

Suppose we have training samples 1 2 ML L L
i R × ×∈X L  ( 1 i N≤ ≤ ) and their 

corresponding class labels { }1, 2, ,iy n∈ L . The multiple distance metric learning 

(MDML) learns M metrics T
k k kW WΣ =  ( 1 k M≤ ≤ ) for M–th order tensors 

1|Ni i=X  to make the samples, which have the same (different) labels, be as close 

(far) as possible. The MDML is defined as 
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As described in the STL framework, there is also no closed form solution for 

MDML. The alternating projection method is applied to obtain the solution for 

MDML and we need to replace the Step 4 in Table 4.1 by the following 

optimization problem,  

( ) ( ) ( )

( ) ( )
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Here, 
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This is because  
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( )( ) ( )( )( )tr mat matT T
j j i l j j j i l j j jW W W W= − × − ×X X X X  

( )( ) ( )( )( )tr mat matT T
j i l j j j j j i l j jW W W W= − × − ×X X X X  

( )( ) ( )( )( )tr mat mat .T
j i l j j j j i l j jW W= − × Σ − ×X X X X  

This problem defined in (4.57) is the standard DML. 
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 Iterative Feature Extraction Model based on Supervised 
Tensor Learning 

 

The iterative feature extraction model (IFEM) based on STL is an extension of the 

STL framework for feature extraction and its procedure is similar to the recursive 

rank one tensor approximation developed by Shashua and Levin in [132].  

Suppose we have training samples 1 2 ML L L
i R × ×∈X L  ( 1 i N≤ ≤ ) and their 

corresponding class labels { }1, 1iy ∈ + − . IFEM is defined by 
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where ,1i i=X X  and ,0 0iλ = . The , 1|Ri r rλ =  ( R  is the number of extracted 

features in IFEM) is used to represent the original tensor iX . 
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Figure 4.10. Iterative feature extraction model for third order tensors. 
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From the definition of IFEM, which is defined by Eqs. (4.60), (4.61), and (4.62), 

we know that IFEM can be calculated by a greedy approach. The calculation of 

, 1|Ni r i=X  is based on the given , 1 1|Ni r i− =X  and , 1 1|Mk r kw − =

r . With the given , 1 1|Ni r i− =X  

and , 1 1|Mk r kw − =
r , we can calculate , 1i rλ −  via (4.61). The projection vectors , 1|Mk r kw =

r  

can be obtained by optimizing (4.62) through the alternating projection method in 

Table 4.1. The flowchart of the algorithm for feature extraction for third order 

tensors is illustrated in Figure 4.10. 

With IFEM, we can obtain 1
, 1|

r R
k r k Mw ≤ ≤

≤ ≤
r  iteratively. The coordinate values , 1|Ri r rλ =  

can represent the original tensor iX . For example, in nearest neighbor based 

recognition, the prototype tensor pX  for each individual class in the database 

and the testing tensor tX  to be classified are projected onto the bases to get the 

prototype vector , 1|Rp r rλ = and the testing vector , 1|Rt r rλ = . The testing tensor class is 

found by minimizing the Euclidean distance ( )2

, ,1

R
t r p rr

ε λ λ
=

= −∑  over p . 

As an example, we develop the tensor rank one discriminant analysis (TR1DA) by 

combining IFEM with differential scatter discriminant criterion (DSDC) described 

in Chapter 2. 

TR1DA deals with the multiple classes classification problem. Suppose: there are 

N training samples 1 2
;

ML L L
i j R × ×∈X L . The ; ,i j rX  is the jth (1 ij N≤ ≤ ) training 

sample in the ith (1 i C≤ ≤ ) class for the rth iteration for feature extraction. If r 

equals to 1, we have ; ,1 ;i j i j=X X . The ith class mean tensor in the rth iteration is 

, ; ,
1

1 iN

i r i j r
jiN =

= ∑M X  and the total mean tensor in the rth iteration is 

; , ,
1 1 1

1 1 iNC C
i

r i j r i r
i i ii

N
C N N= = =

= =∑ ∑ ∑M X M . The kth projection vector in the rth iteration is 

defined by ,k rwr . With the given ; ,i j rX  and ,k rwr , the ( )1r + th iteration for 

feature extraction in TR1DA is defined by 
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 (4.63)
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Table 4.2. Alternating Projection for the Tensor Rank One Discriminant Analysis 

Input: Training samples 1 2 ...
;

ML L L
i j R × × ×∈X  (1 i c≤ ≤ , 1 ij n≤ ≤ ), the number R of 

rank one tensors allowed in TR1DA, and tuning parameters rζ , 1 r R≤ ≤  in 
TR1DA. 

Output: Projection vectors { }, 1 ,| , kLM
k r k k rw w R= ∈
r r  and scalars ; ,i j rλ , 1 r R≤ ≤ . 

1. For 1r =  to R  

2. Set , 1|Mk r kw =
r  be equal to random unit vectors. 

3. 
Calculate the class mean tensor ( ) ;1

1 iN
i i i jj

N
=

= ∑M X ; 

Calculate the total mean tensor ( )1

C
i ii

N N
=

=∑M M ; 

4. Carry out steps 5–10 iteratively until convergence. 

5. For 1k =  to M  

6. 

Calculate ( )( ) ( )( ), ,
1

C
T T

i i k k r i k k r
i

B N w w
=

⎡ ⎤= − × ⊗ − ×⎣ ⎦∑ M M M Mr r ; 

Calculate ( )( ) ( )( ); , ; ,
1 1

iNC
T T

i j i k k r i j i k k r
i j

W w w
= =

⎡ ⎤= − × ⊗ − ×⎣ ⎦∑∑ X M X Mr r ; 

7. Calculate the eigenvector h
r

 of lB Wζ−  associated with the 
largest eigenvalue; 

8. Assignment: ,k rw h←
rr ; 

9. End 

10. 

Convergence checking: if , , , , 1 , , 1 0
1T

k r t k r t k r tw w w ε− −− ≤
r r r  ( 610ε −= ) for 

all modes, the calculated ,k rwr  has converged. Here , ,k r twr  is the 
current projection vector and , , 1k r tw −

r  is the previous projection vector. 

11. Assignment: ; , ; ,
1

k

M
T

i j r i j k r
k

wλ ×
=

← ∏X r ; 

12. Assignment: ; ; ; , ,
1

M

i j i j i j r k r
k

wλ ⊗
=

← − ∏X X r ; 

13. End 
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The algorithm is given in Table 4.2. 

The time complexity of PCA (LDA) is ( )3

1

M
kk

O L
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∏  when training samples 

X  belong to 1 2 ML L LR × × ×L . The time complexity of TR1DA is 

( )1 1

R M
r kr k

O T L
= =∑ ∑ , where rT  is the number of iterations to make TR1DA 

converge for the rth feature extraction procedure (in our experiments for human 

gait recognition [143][145], rT  is about 20). The space complexity of PCA 

(LDA) is ( )2

1

M
kk

O L
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∏ . The space complexity of TR1DA is ( )1

M
kk

O L
=∏ . 

This indicates that the time complexity and the space complexity of feature 

extraction are reduced by working directly with tensor data rather than vectorizing 

the data and applying PCA (LDA). 
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 Experiments 

 

In this Section, we provide two experiments to demonstrate that STL and IFEM 

are powerful tools for classification and feature extraction. For STL, we 

implement TMPM for image classification. For IFEM, we implement TR1DA for 

the elapsed time problem in human gait recognition. 

 

 TMPM for Image Classification 

 

 
Figure 4.11. Attention model for image representation. 

 

To classify images into groups based on their semantic contents is very important 

and challenging. The simplest classification is binary and a hierarchical structure 

can be built from a series of binary classifiers. If we have semantic classification 

then image databases would be easier to manage [121][125]. The image semantic 

classification is also of great help for many applications. 

In this STL based classification experiment, two groups of images are separated 

from each other by a trained TMPM, which is a generalized learning machine 

with the STL framework. The input (representing features) of TMPM is the region 
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of interest (ROI) within an image, which are extracted by the attention model in 

[56][57][140] and represented as a third order tensor. 

The attention model [56][57] is capable of reproducing human performances for a 

number of pop–out tasks [157]. In other words, when a target is different from its 

surroundings by its unique orientation, color, intensity, or size, it is always the 

first attentive location and easy to be noticed by an observer. Therefore, it is 

reasonable to utilize the attention model based ROI to describe the semantic 

information of an image. 

 

 
Figure 4.12. Example images from the tiger category. 

 

As shown in Figure 4.11, representing an attention region from an image consists 

of several steps: 1) extracting the salient map as introduced by Itti et al. [56][57]; 
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2) finding the most attentive region, whose center has the largest value in the 

salient map; 3) extracting the attention region by a square, i.e., ROI, in size of 

64 64× ; and 4) finally, representing this ROI in the hue, saturation, and value 

(HSV) perceptual color space. We have a third order tensor for the image 

representation. 

 

 
Figure 4.13. Example images from the leopard category. 

 

Note that although we only select a small region from an image, the size of the 

extracted third order tensor is already as large as 64 64 3× × . If we vectorize this 

tensor, the dimension of the vector will be 12288 . The sizes of training samples 

are only of hundreds, which is much smaller than 12288 . Therefore, the small 

sample size (SSS) problem always arises. On the contrary, our proposed tensor 
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oriented supervised learning scheme can avoid this problem directly and at the 

same time represent the ROIs much more naturally. 

 

 
Figure 4.14. One hundred ROIs in the tiger category. 

 

The training set and the testing set for the following experiments are built upon 

the Corel photo gallery [164], from which 100 images are selected for each of the 

two categories. Examples are shown in Figure 4.12 and Figure 4.13. These 200 

images are then processed to extract the third tensor attention features for TMPM 

as shown in Figure 4.14 and Figure 4.15. 

We choose the “Tiger” category shown in Figure 4.12 and the “Leopard” category 

shown in Figure 4.13 for this binary classification experiment since it is a very 

difficult task for a machine to distinguish them, although a human being can 

easily differentiate between a tiger and a leopard. Basically, the characteristics of 

a classifier cannot be examined in detail if the classification problem is very 
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straightforward, for example, classifying grassland pictures from blood pictures. 

The “Tiger” and “Leopard” classification is carried out in this Section. We choose 

the top N images as training sets according to the image IDs, while all remaining 

images are used to form the corresponding testing set. 

 

 
Figure 4.15. One hundred ROIs in the leopard category. 

 

In our experiments, the third order tensor attention ROIs can mostly be found 

correctly from images. Some successful results, respectively extracted 

automatically from the “Tiger” category and the “Leopard” category, are shown in 

Figure 4.14 and Figure 4.15. By this we mean that, the underlying data structures 

are kept well for the next classification step. However, we should note that the 

attention model sometimes cannot depict the semantic information of an image. 

This is mainly because the attention model always locates a region that is different 

from its surroundings and thus might be “cheated” when some complex or bright 
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background exists. Some unsuccessful ROIs can also be found from Figure 4.14 

and Figure 4.15. It should be emphasized that to keep the following comparative 

experiments fair and automatic, these wrongly extracted ROIs are included in 

training samples. 

We carried out the binary classification (“Tiger” and “Leopard”) experiments 

upon the above training and testing sets. The proposed TMPM is compared with 

MPM. The experimental results are shown in Table 4.3. Error rates for both 

training and testing are reported according to the increasing size of the training set 

(STS) from 5 to 30. 
 

Table 4.3. TMPM vs. MPM 

 Training Error Rate Testing Error Rate 
STS TMPM MPM TMPM MPM 

5 0.0000 0.4000 0.4600 0.5050 
10 0.0000 0.5000 0.4250 0.4900 
15 0.0667 0.4667 0.3250 0.4150 
20 0.0500 0.5000 0.2350 0.4800 
25 0.0600 0.4800 0.2400 0.4650 
30 0.1167 0.5000 0.2550 0.4600 

 

From the training error rates in Table 4.3, it can be seen that the traditional 

method (MPM) cannot learn a suitable model for classification when the size of 

the training set is much smaller than the dimension of the feature space. It shows 

that the proposed TMPM algorithm is more effective than MPM at representing 

the intrinsic discriminative information (in the form of the third order ROIs). 

TMPM learns a better classification model for future data classification than 

MPM and thus has a satisfactory performance on the testing set. It is also 

observed that the TMPM error rate is a decreasing function of the size of the 

training set. This is consistent with statistical learning theory. 

We also evaluate TMPM as a sample algorithm of the proposed STL framework. 

Two important issues in machine learning are studied, namely, the training stage 

convergence property and the insensitiveness to the initial values.  

Figure 4.16 shows that as the training stage of TMPM converges efficiently by the 

alternating projection method. Usually, twenty iterations are enough to achieve 

convergence. 
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Figure 4.16. TMPM converges effectively. 

 

Three sub–figures in the left column of Figure 4.16 show tensor projected values 

of the original general tensors with an increasing number of learning iterations 

using 10, 20, and 30 training samples for each class, respectively, from top to 

bottom. We find that the projected values converge to stable values. Three sub–

figures in the right column of Figure 4.16 show the training error rates and the 

testing error rates according to the increasing number of learning iterations by 10, 

20, and 30 training samples for each class, respectively, from top to bottom. 
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Based on all sub–figures in Figure 4.16, it can be found that the training error and 

the testing error converge to stable values, which empirically justify the 

convergence of the alternating projection method for TMPM. The theoretical 

proof is given in the Theorem 4.1. 
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Figure 4.17. TMPM is stable with different initial values. 

 

Many learning algorithms converge to different values when initial values are 

varied. This is the so–called local minimum problem. However, the developed 

TMPM does not have this local minimum problem, which is demonstrated by a set 

of experiments (with 100 different initial parameters, 10 learning iterations, and 

20 training samples), as shown in Figure 4.17. The training error rates and the 

testing error rates are always 0.05 and 0.235, respectively. Moreover, because 

TMPM is a convex optimization problem, theoretically TMPM has a unique 

solution. 

 

 TR1DA for the Elapsed Time Problem in Gait Recognition 

To study the characteristics of the proposed TR1DA, we utilize it on the elapsed 

time problem in human gait recognition. In this Section we first briefly introduce 

our experimental data (gallery and probe) sets; and then report the performance of 

the TR1DA algorithm and compare its performance with principal component 
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analysis (PCA), linear discriminant analysis (LDA) and tensor rank one analysis 

(TR1A). The experiments provide numerical evidence for the convergence of 

TR1DA during the learning stage. 

Research efforts in biometrics are mainly motivated by the increasing 

requirements of machine based automatic human authentication/authorization 

[71]. As a promising biometric source, human gait describes the manner of a 

person’s walking and can be acquired at a distance. It was first analyzed in 

medical surgery [111][112], and then in psychology [23]. In computer vision, 

human motion has been studied for years [1]. An early attempt to recognize a 

person by the gait was probably made by Little and Boyd [86]. Since then, many 

efforts have been made for gait recognition [9][22][63][163]. In this Section, we 

focus on an appearance based model, which could be a preprocessing step for 

statistical models, such as Hidden Markov Model [65][66]. 

Our experiments are all carried out on the USF HumanID outdoor gait database 

[126], which consists of the following covariates: change in viewpoints (Left/L or 

Right/R), change in shoe types (A or B), change in walking surface (Grass/G or 

Concrete/C), change in carrying conditions (Briefcase/B or No Briefcase/NB), 

and elapsed time (May or November) between sequences being compared. The 

detailed description about the database is given in §3.1. 

Among all five covariates, elapsed time is our main concern in this Section 

because human identification systems are normally required to work over long 

periods of time. In this thesis, the remaining three conditions are examined 

thoroughly, namely change in shoe types (A or B), change in walking surface 

(Grass or Concrete), and change in carrying conditions (carrying a Briefcase or 

No Briefcase). Consequently, we choose our gallery set (May, C, A, L, NB) from 

the May data and consider eight pattern classification problems with the test sets 

of CAL (Nov., C, A, L, NB), CBL (Nov., C, B, L, NB) , GAL (Nov., G, A, L, 

NB), GBL (Nov., G, B, L, NB), CBAL (Nov., C, A, L, BF), CBBL (Nov., C, B, 

L, BF),  GBAL (Nov., G, A, L, BF), and GBBL (Nov., G, B, L, BF). 

In this Section we empirically study the TR1DA approach in terms of accuracy, 

convergence during the learning phase, and impact of parameter values on 

accuracy. TR1DA is compared with existing methods, including PCA, LDA, and 

TR1A. Experiments are carried out to recognize a gait with given examples of 
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gaits collected in the past (the elapsed time problem), which is still one of the 

most difficult problems in human gait recognition. 

In these experiments, we use EigenGait in a PCA based method for gait 

recognition, FisherGait in an LDA based method [45], TR1AGait in a TR1A for 

gait recognition, and TR1DAGait in a TR1DA for gait recognition. Figure 4.18 

shows the first ten EigenGaits, FisherGaits, TR1AGaits, and TR1DAGaits, 

respectively. We believe that TR1DA is a good method for classifying gaits 

because our experiments support this belief. First, TR1DAGait usually performs 

better than existing methods (EigenGait, FisherGait, and TR1AGait) in 

recognition tasks. Second, the training procedure for TR1DA converges within 

about 20 iterations. Third, it is not difficult to obtain a reasonable good 

performance of TR1DA by adjusting the tuning parameters rς  (1 r R≤ ≤ ). This 

is because there is a wide range of values for rς , over which TR1DA achieves a 

good performance. In our experiments, although we extract R  features, given 

R  independent tuning parameters, we set all tuning parameters be equal to each 

other, in order to reduce the number of parameters. It is possible to achieve better 

performance if the values of the tuning parameters are allowed to be different. 
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Figure 4.18. First 10 EigenGaits (the first column), first 10 FisherGaits (the 

second column), first 10 TR1AGaits (the third column), and first 10 TR1DAGaits 

(the fourth column). From the figure, we can see that EigenGaits and FisherGaits 

are dense, while TR1AGaits and TR1DAGaits are sparse, because they take the 
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structure information into account to reduce the number of unknown parameters 

in discriminant learning. 

 

Figure 4.19–Figure 4.26 illustrate the experimental results under eight different 

circumstances. In each of them: 

• The first sub–figure shows the effects of feature dimension on recognition 

precision (one minus the error rate). In this sub–figure, the x–coordinate is 

the feature dimension and the y–coordinate is the recognition precision. In 

order to keep the graph be in a manageable size, we only show the results 

for feature dimensions from 10 to 110. In these experiments, we show the 

top–one recognition precisions of EigenGait, FisherGait, TR1AGait, and 

TR1DAGait. We show the top–one and top–five recognition precisions of 

these algorithms in Table 4.5 and Table 4.6, respectively. Usually, tensor 

based algorithms (TR1AGait and TR1DAGait) achieve better recognition 

precisions than vector based algorithms (EigenGait and FisherGait) and 

TR1DAGait performs better than TR1AGait. 

 

• The second sub–figure shows the effects of feature dimension and the 

tuning parameter ς  on the recognition precision in TR1DA. In this sub–

figure, the x–coordinate is the feature dimension; the y–coordinate is the 

tuning parameter ς ; and the z–coordinate is the recognition precision. 

The feature dimension changes from 10 to 200 with a step 1 and ς  

changes from 0.01 to 0.5 with a step 0.01. For each probe the tuning 

parameter ς  is chosen to achieve the best performance. The detailed 

information about the value of ς  is given in Table 4.4. In each case there 

is a range of values of ς  for which TR1DA achieves a good 

performance. We only show one value for each probe. It can be observed 

from the sub–figure that for each probe, there are a number of points to 

achieve the best performance according to different ς  values. 

 

• The third sub–figure shows the number of iterations required in the 

training procedure for extracting the ith feature. In this sub–figure, the x–

coordinate is the feature dimension and the y–coordinate is the number of 
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iterations required for convergence. The mean value of the number of 

iterations for convergence is represented by the dashed line. In these 

experiments, we set the maximum number of training iterations as 1,000. 

The training procedure usually converges within 80 iterations. The mean 

number of training iterations for different features is about 20 and the 

standard deviation is about 10. Detailed information about the number of 

iterations required can be found in Table 4.4. 

 

• The four bottom sub–figures examine the training procedure convergence 

property of TR1DA. Because different features share similar convergence 

curves, we only show the convergence curves of the first two features. The 

left column is relevant to the 1st feature and the right column is relevant to 

the 2nd feature. In the upper two of the four bottom–right sub–figures, the 

x–coordinate is the number of the training iterations t and the y–coordinate 

is the log of differences in a projection direction between two neighboring 

training iterations, i.e., they demonstrate how 

( ) ( ) ( )( )1 0
log 1T

k k kt t t
u u u

−
−  and ( ) ( ) ( )( )1 0

log 1T
k k kt t t

v v v
−
−  

(mentioned in Table 4.2) change with the training iterations for the 1st and 

2nd features ( 1,2k = ). Here, 
0

x  is the dimension of x ; ( )k t
u  is the 

first projection vector of the tth training iteration for the kth feature; and 

( )k t
v  is the second projection vector of the tth training iteration for the kth 

feature. In these experiments, the visual objects are averaged gait images, 

which are second order tensors. To avoid confusion, we use u  and v  to 

represent the projection vectors in different directions. From the upper two 

sub–figures, we can see that as the number of training iterations increases, 

the changes in u  and v  approach to zero. In the lower two of the four 

bottom–right sub–figures, the x–coordinate denotes the number of training 

iterations and the y–coordinate is the function value f  of TR1DA 

defined in (13), i.e., they show how the function value of TR1DA defined 

in (13) changes with the training iterations for the 1st and 2nd features. 

From the sub–figures, we can see that as the number of training iterations 

increases, the change of the function value of TR1DA approaches zero. 

All of these sub–figures demonstrate that the training procedure of 
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TR1DA converges after about 20 iterations. If 

( ) ( ) ( )( )1 0
log 1T

k k kt t t
u u u ε

−
− <  and ( ) ( ) ( )( )1 0

log 1T
k k kt t t

v v v ε
−
− < , 

we deem the training procedure converges. The value of ε  is 610− . 

 

Table 4.4. Parameters in convergence examination for eight probes. 

TR1DA GBL GAL CBL CAL GBBL GBAL CBBL CBAL
Max 58 63 55 67 65 73 54 53 
Mean 21 19 18 19 20 22 18 19 
Std 11 10 10 11 11 14 11 10 
ς  0.03 0.17 0.25 0.31 0.02 0.05 0.20 0.28 
 

Table 4.5. Rank One recognition precision for eight probes. 

Rank One GBL GAL CBL CAL GBBL GBAL CBBL CBAL
EigenGait 11.00 14.66 13.44 18.28 09.50 10.00 11.29 09.68 
FisherGait 07.50 17.80 13.98 18.82 09.00 13.00 07.53 16.13 
TR1AGait 20.49 17.80 18.11 13.98 23.48 15.00 17.74 15.98 
TR1DAGait 24.59 18.85 21.26 16.13 23.48 16.00 20.97 17.16 
 

Table 4.6. Rank five recognition precision for eight probes. 

Rank Five GBL GAL CBL CAL GBBL GBAL CBBL CBAL
EigenGait 28.00 29.84 33.87 41.94 31.00 24.50 31.72 30.11 
FisherGait 25.00 32.98 40.32 41.94 24.00 29.00 23.12 33.87 
TR1AGait 36.07 30.89 40.94 33.33 38.64 28.50 35.48 35.50 
TR1DAGait 37.70 30.37 44.09 34.41 39.39 29.00 36.29 36.69 
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Figure 4.19. GBL task: TR1DA performances, convergence, and parameters 

(feature dimension and ς ) analysis. Detailed explanation is in §233066540. 

 

 

 



172 

10 20 30 40 50 60 70 80 90 100 110
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Feature Dimension

GAL: Feature Dimension vs. Precision

EigenGait
FisherGait
TR1AGait
TR1DAGait

 

 



173 

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70
Feature Dimension vs. Number of Iterations for Convergence

Feature Dimension

N
um

be
r o

f I
te

ra
tio

ns
 fo

r C
on

ve
rg

en
ce

 
 

5 10 15 20 25 30 35 40
-40

-35

-30

-25

-20

-15

-10

-5

0
1st Feature Convergence Examination

Iteration Number

Lo
g 

of
 E

rro
r

U Direction
V Direction

5 10 15 20 25 30 35 40
-40

-35

-30

-25

-20

-15

-10

-5

0
2nd Feature Convergence Examination

Iteration Number

Lo
g 

of
 E

rro
r

U Direction
V Direction

 

0 5 10 15 20 25 30 35 40

100

150

200

250

300

1st Feature TR1DA Funcation Value

Iteration Number

TR
1D

A
 F

un
ct

io
n 

V
al

ue

0 5 10 15 20 25 30 35 40

50

60

70

80

90

100

110

120

130

2nd Feature TR1DA Funcation Value

Iteration Number

TR
1D

A
 F

un
ct

io
n 

V
al

ue

 
 

Figure 4.20. GAL task: TR1DA performances, convergence, and parameters 

(feature dimension and ς ) analysis. Detailed explanation is in §0. 
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Figure 4.21. CBL task: TR1DA performances, convergence, and parameters 

(feature dimension and ς ) analysis. Detailed explanation is in §0. 

 

 

 



176 

 

10 20 30 40 50 60 70 80 90 100 110
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Feature Dimension

CAL: Feature Dimension vs. Precision

EigenGait
FisherGait
TR1AGait
TR1DAGait

 

 



177 

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70
Feature Dimension vs. Number of Iterations for Convergence

Feature Dimension

N
um

be
r o

f I
te

ra
tio

ns
 fo

r C
on

ve
rg

en
ce

 
 

5 10 15 20 25 30 35 40
-40

-35

-30

-25

-20

-15

-10

-5

0
1st Feature Convergence Examination

Iteration Number

Lo
g 

of
 E

rro
r

U Direction
V Direction

5 10 15 20 25 30 35 40
-40

-35

-30

-25

-20

-15

-10

-5

0
2nd Feature Convergence Examination

Iteration Number

Lo
g 

of
 E

rro
r

U Direction
V Direction

 

0 5 10 15 20 25 30 35 40

150

200

250

300

350

400

450

500

550

600

1st Feature TR1DA Funcation Value

Iteration Number

TR
1D

A
 F

un
ct

io
n 

V
al

ue

0 5 10 15 20 25 30 35 40

100

120

140

160

180

200

220

240

2nd Feature TR1DA Funcation Value

Iteration Number

TR
1D

A
 F

un
ct

io
n 

V
al

ue

 
Figure 4.22. CAL task: TR1DA performances, convergence, and parameters 

(feature dimension and ς ) analysis. Detailed explanation is in §0. 
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Figure 4.23. GBBL task: TR1DA performances, convergence, and parameters 

(feature dimension and ς ) analysis. Detailed explanation is in §0. 
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Figure 4.24. GBAL task: TR1DA performances, convergence, and parameters 

(feature dimension and ς ) analysis. Detailed explanation is in §0. 
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Figure 4.25. CBBL task: TR1DA performances, convergence, and parameters 

(feature dimension and ς ) analysis. Detailed explanation is in §0. 
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Figure 4.26. CBAL task: TR1DA performances, convergence, and parameters 

(feature dimension and ς ) analysis. Detailed explanation is in §0. 

 

Based on Figures 4.19 – 4.26, we have the following observations: 

1. The first sub–figure of each figure shows the classification performance 

versus the selected feature dimension. Most of these sub-figures show that 
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tensor based subspace selection methods (TR1DA and TR1A) perform better 

than vector based ones (LDA and PCA) and the discriminative subspace 

selection methods (TR1DA and LDA) perform better than reconstructive 

subspace selection methods (TR1A and PCA). This is because the size of the 

gallery, i.e., the training set, in different tasks is much less than the dimension 

of original features, i.e., the appearance of the averaged gait image for 

representation. According to the discussions at the beginning of this Chapter, 

we know tensor based subspace selection methods reduce the over fitting 

problem when training samples are limited, so TR1DA and TR1A should 

perform better than LDA and PCA, respectively. Moreover, tasks here are 

classification so discriminative based methods perform better than 

reconstructive based methods as discussed at the beginning of Chapter 2; 

2. The second sub–figure of each figure shows the classification performance of 

TR1DA versus the parameters in TR1DA. There are two parameters for 

TR1DA, which are ς  and selected feature dimension. Some of these sub-

figures show that the more the selected features are, the higher the 

classification accuracy is for the first selected 200 features; and some of them 

show that with the increasing number of selected features, the classification 

accuracy is initially increasing and then decreasing. From a large number of 

experiences in subspace selection, we know the latter is more reasonable than 

the former, so we believe we can have the similar observations as the latter if 

more features are selected for evaluation; 

3. The third sub–figure of each figure shows the number of iterations required to 

meet the training stage convergence condition in TR1DA for different 

features. According to Table 4.4, normally, TR1DA needs about 20 iterations 

to converge and the corresponding standard deviation is about 10. Therefore, 

for most features, we need about 30 iterations for training. The distributions of 

the number of training iterations are similar to noise, i.e., there is no clear 

relationship between the number of training iterations and the selected 

features. This is because the training processes for different features are 

independent, as shown in Section 4.4; and 

4. The last four sub–figures of each figure demonstrate the convergence property 

of the training stage of TR1DA. The first two sub–figures show that the 

difference between the projection vectors of two consecutive training 
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iterations is decreasing with the increasing number of the training iterations; 

and the last two sub–figures show the TR1DA function value is increasing 

with the increasing number of the training iterations. These two points consist 

with the mathematical proof of the theorem 4.1.  
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 Summary 

 

In this Chapter, the vector based learning is extended to accept tensors as input. 

The result is a supervised tensor learning (STL) framework, which is the 

multilinear extension of convex optimization based learning. To obtain the 

solution of an STL based learning algorithm, the alternating projection method is 

used. Based on STL and its alternating projection optimization algorithm, we 

illustrate several examples. That is we extend the soft margin support vector 

machine (SVM), the nu–SVM, the least squares SVM, the minimax probability 

machine (MPM), the Fisher discriminant analysis (FDA), the distance metric 

learning (DML) to their tensor versions, which are the soft margin support tensor 

machine (STM), the nu–STM, the least squares STM, the tensor MPM (TMPM), 

the tensor FDA (TFDA), and the multiple distance metrices learning (MDML). 

Based on STL, we also introduce a method for iterative feature extraction: the 

iterative feature extraction model (IFEM). As an example, we develop the tensor 

rank one discriminant analysis (TR1DA). 

Finally, we implement TMPM for image classification and TR1DA for the 

elapsed time problem in human gait recognition. By comparing TMPM with 

MPM, we show that TMPM reduces the overfitting problem in MPM. By 

comparing TR1DA with principal component analysis (PCA), linear discriminant 

analysis (LDA), and tensor rank one analysis (TR1A), we show that TR1DA 

reduces the small sample size problem and always achieves the best performance 

on the elapsed time problem in human gait recognition. 
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5. Thesis Conclusion 
 

Linear discriminant analysis (LDA) motivates this thesis. This is because LDA 

has many problems, although it has been deemed as one of the most important 

linear subspace methods in pattern classification and it has been widely applied in 

many applications, e.g., face recognition [34][168], image retrieval [139][152] 

[153][154], video data organization [43], gait recognition [46], speech recognition 

[67][70], document classification [108], music management [85], network flow 

analysis [136], and video surveillance [143][144]. 

The first type of the problems with LDA is model based: 1) the heteroscedastic 

problem [29][28][70][61][99], 2) the multimodal problem [51][28], and 3) the 

class separation problem [103][95][96][99][146]. To deal with the model based 

problems, we begin with the fact that LDA selects the subspace to maximize the 

arithmetic mean of the Kullback–Leibler (KL) [21] divergences between different 

classes, when samples are sampled from Gaussian distributions [60] with identical 

covariances. We then generalize LDA in two ways: 1) extending the KL 

divergence to the Bregman divergence [14]; and 2) extending the arithmetic mean 

to the generalized mean [48]. The result of these generalizations is the general 

averaged divergences analysis and the significance of the generalization is a 

discriminative subspace selection framework, from which we can develope a 

number of different methods to select discriminative features. Based on this 

framework, we analyze the geometric based subspace selection: 1) the geometric 

mean of divergences between different classes, 2) the geometric mean of 

normalized divergences between different classes, and 3) the geometric mean of 

all divergences (the divergences and the normalized divergences) between 

different classes. The first method is studied because the geometric mean 

increases the effects of small divergences and at the same time reduces the effects 

of large divergences. The second method is studied to further reduce the effects of 

large divergences. The intuition is the product of normalized divergences is large 

when they are similar to each other. However, the second method cannot be 

directly used for subspace selection. This is because there are subspaces in which 

all divergences become small, but all normalized divergences are comparable in 

size. Consequently, we linearly combine the first and the second methods 



190 

together. To apply the geometric mean based subspace selection for real 

applications, we suppose the samples are sampled from Gaussian distributions and 

we use the KL divergence to measure differences between different classes. 

Because we drop the identical covariances assumption in LDA, we do not meet 

the heteroscedastic problem. The advantages of the combination of the geometric 

mean and the KL divergences are: 1) it is compatible with the heteroscedastic 

property of the distributions of samples in different classes; 2) it selects suitable 

discriminative subspace when samples are drawn from Gaussian mixture models; 

and 3) it significantly reduces the class separation problem when KL divergences 

of difffernt classes are not evenly distributed. For real applications, we use the 

Gaussian mixture model to model the samples in each class, and thus avoid the 

multimodal problem. Based on a large number of experiments, from synthetic 

data to hand writing digital recognition, the geometric mean combined with the 

KL divergence outperforms LDA and its representative extensions. 

The second type of these problems with LDA is the small sample size (SSS) 

problem [38][49][139][123][19][175][55][173][174][180]. LDA meets this 

problem when the number of training samples is less than the dimension of the 

feature space. In computer vision research, this problem can be reduced in a 

natural way by introducing the structure information as constraints, because 

objects in computer vision research are always represented by multidimensional 

arrays, i.e., tensors [75]. For example, a face image in face recognition, an 

averaged gait image in human gait recognition, and a video shot in video 

management. Although there are some algorithms applying the structure 

information for subspace selection, e.g., tensor rank one analysis (TR1A) [132], 

general tensor analysis (GTA) [75][162][171], and two dimensional linear 

discriminant analysis (2DLDA) [174], each of these methods has its own 

drawbacks for classification. TR1A and GTA are reconstructive models, i.e., they 

are used to produce representations for sufficient reconstruction but not for 

classification. The 2DLDA fails to converge in the training stage, although its 

effectiveness and efficiency have been demonstrated through face recognition 

applications. Here, we propose a different discriminative multilinear subspace 

method, the general tensor discriminant analysis (GTDA) [144][147], by 

combining the differential scatter discriminant criterion and the operations in 

multilinear algebra [115][75]. Compared with TR1A, GTA, and 2DLDA, GTDA 
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has the following benefits: 1) provision with a converged alternating projection 

training algorithm to obtain a solution, while 2DLDA does not; 2) preservation of 

more discriminative information of training samples; 3) acceptance of general 

tensors as input; and 4) reduction of the SSS problem in the subsequent 

classification, e.g., by LDA. We further extend GTDA by combining the manifold 

learning [13] and the operations in multilinear algebra to make the manifold 

learning algorithms accept general tensors as input. To examine the effictiveness 

and the efficiency of GTDA, we apply it for human gait recognition. Based on a 

great deal of comparison, GTDA combined with LDA always achieves the top 

level performance for USF HumanID gait database [126]. 

In supervised learning [30][39], when the size of training samples is small, 

learning machines encounter the overfitting problem. Similar to the motivation in 

GTDA, we also utilize the structure information as constraints to reduce the 

overfitting problem by decreasing the number of parameters needed to model the 

training samples. This results in a supervised tensor learning (STL) [149][150] 

framework. The framework extends the convex optimization [11] based learning 

to accept general tensors as input. To obtain the solution of the algorithms under 

the STL framework, we develop an alternating projection method. Based on STL 

and its alternating projection optimization algorithm, we illustrate the following 

examples, which are the support tensor machine (STM), the tensor minimax 

probability machine (TMPM), the tensor Fisher discriminant analysis (TFDA), the 

multiple distance metrics learning (MDML). Motivated by TR1A and based on 

STL, we develop the tensor rank one discriminant analysis (TR1DA), which is an 

iterative discriminative feature extraction method. Finally, we implement TMPM 

and TR1DA for image classification and the elapsed time problem in human gait 

recognition, respectively. By comparing TMPM with MPM, we know TMPM 

reduces the overfitting problem in supervised learning. By comparing TR1DA 

with principal component analysis (PCA), linear discriminant analysis (LDA), and 

tensor rank one analysis (TR1A), we know TR1DA reduces the SSS problem. 

In summary, this thesis deals with non trivial problems in discriminative subspace 

selection, which are how to select the most discriminative subspace for 

classification and how to deal with the SSS problem or over-fitting problem. The 

primary contributions of the thesis are as follows: 
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1) we develop a general averaged divergences analysis framework, which is 

a combination of the generalized mean function and the Bregman 

divergence, for discriminative subspace selection;  

2) under this framework, a new method, which combines the geometric 

mean and the Kullback–Leibler divergence, is developed to significantly 

reduce the class separation problem. With theoretical analysis, we know 

the method also reduces the heteroscedastic problem and the multimodal 

problem; 

3) the kernelization of this new method is also developed for nonlinear 

problems. Unlike existing kernel algorithms, we prove the kernel version 

is equivalent to the linear version followed by the kernel principal 

component analysis; 

4) a large number of empirical studies based on both synthetic and real data 

show the new discriminative subspace selection method performs better 

than LDA and its representative extensions; 

5) we propose GTDA to reduce the SSS problem for LDA. The advantages 

of GTDA compared with existing pre-processing methods, e.g., principal 

component analysis (PCA), tensor rank one analysis (TR1A), general 

tensor analysis (GTA), and two dimensional LDA (2DLDA), are: i) 

reduction of the SSS problem for subsequent classification, e.g., by LDA, 

ii) preservation of discriminative information in training tensors, while 

PCA, TR1A, and MSA do not guarantee this, iii) provision with stable 

recognition rates because the optimization algorithm of GTDA converges, 

while that of 2DLDA does not, and iv) acceptance of general tensors as 

input, while 2DLDA only accepts matrices as input; 

6) we provide a mathematical proof to demonstrate the convergence property 

at the training stage. The significance of the proof is it is the first 

theoretical study for the convergence issue of the alternating projection 

based training algorithms for tensor subspace selection; 

7) we apply the developed GTDA to human gait recognition. By applying 

Gabor filters for averaged gait image representation, GTDA for subspace 

selection, and LDA for classification, we achieve the stat-of-the-art 

performance; and 
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8) we develop a STL framework and an alternating projection optimization 

algorithm to reduce the over–fitting problem in convex optimization 

based learning. Based on them, we propose STM, TMPM, TFDA, and 

MDML. Compared with existing popular classifiers, e.g., SVM, MPM, 

FDA, and DML, the advantages of their tensor extensions are: i) 

generalizing better for the small size training set than vector based 

classifiers, ii) converging well in the training stage compared with 

existing tensor classifiers, e.g., 2DLDA, and iii) reducing training 

computational complexities of vector based classifiers. 
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6. Appendices 
 

 Appendix for Chapter 2 

Let L
ix R∈
r  ( 1 i n≤ ≤ ) be a zero mean set of training samples, i.e., 

( ) 1
1 0n

ii
m n x

=
= =∑r r . Let ( ) 1

1 n T
i ii

S n x x
=

= ∑ r r  be the covariance matrix, and let 

U  be the linear transformation matrix in PCA. The Frobenius norm is denoted by 

Fro
⋅ . We have the following properties of PCA as defined in Section 2.1. 

Property 2.1: PCA maximizes the variance in the projected subspace, i.e., 

( ) 2

1

1arg max tr arg max
n

T T
i FroU U i

U SU U x
n =

= ∑ r .  

Proof. 

( )

( )
1

2

1 1

1arg max tr arg max tr

1 1arg max tr arg max

n
T T T

i i
U U i

n n
T T T

i i i FroU Ui i

U SU U x x U
n

U x x U U x
n n

=

= =

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

= =

∑

∑ ∑

r r

r r r
 

Therefore, PCA maximizes the variance in the projected subspace.       ■ 

 

Property 2.3: PCA minimizes the reconstruction error, i.e., 
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In PCA, because TU U I= , we have 
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Therefore, PCA minimizes the reconstruction error.              ■ 

 

Property 2.4: PCA decorrelates the training samples in the projected subspace. 

Proof. 

Let U  be the projection, which is calculated according to PCA. Project all 

training samples ixr  using U  as T
i iy U x=
r r , where 'L LU R ×∈ . 

Therefore, the covariance of the projected data is 

( )( )
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∑ ∑r r r r  

TU SU=  

Because TU SU  is a diagonal matrix, PCA decorrelates the training samples ixr  

in the projected subspace.                       ■ 

 

Property 2.5: PCA maximizes the mutual information between xr  and Ty U x=
r r  

on Gaussian data. 

Proof. 

Let U  be the projection, which is calculated according to PCA. Project all 

training samples xr  using U  as Ty U x=
r r , where 'L LU R ×∈ . 

The mutual information is ( ) ( ) ( )
( ) ( )

,
, , log

Y X

p x y
I X Y p x y dXdY

p x p y
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r r
r r

r r  and we 

have ( ) ( ) ( ) ( ), |I X Y H Y H Y X H Y= − = , because Ty U x=
r r . Here, ( )H Y  is 

the entropy of Y  and ( )|H Y X  is the entropy of Y  with the given X . 
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The training samples are normally distributed with zero mean and covariance S , 

so the projected training samples are also normally distributed with zero mean and 

covariance T
yS U SU= . Therefore, the entropy ( )H yr  is given by 

( ) ( ) ( )logH y p y y dy= −∫
r r r r  

( )1 ' 1log 2 log
2 2 2 y

N Sπ= + +  

( )1 ' 1log 2 log
2 2 2

TN U SUπ≤ + + . 

Because U  consists of the eigenvectors of S  corresponding to the first largest 

'L  eigenvalues of S , U  maximizes the mutual information on Gaussian data. 

■ 

 

Observation 2.1: LDA maximizes the arithmetic mean of the KL divergences 

between all pairs of classes, under the assumption that the Gaussian distributions 

for different classes all have the same covariance matrix. The optimal projection 

matrix U  in LDA can be obtained by maximizing a particular ( )V Uϕ  defined 

in (2.38). 

Proof. 

According to (2.36) and (2.37), the KL divergence between the ith class and the jth 

class in the projected subspace with the assumption of equal covariance matrices 
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= ∑  is the prior probability of the ith class. 
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The generalized geometric mean is upper bounded by the arithmetic mean of the 

divergences, i.e., 
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MGMD is a linear combination of 1) the log of the geometric mean of the 

divergences and 2) the log of the geometric mean of normalized divergences, i.e.,  
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where 0 1α< < . 

It is equivalent to 
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log log ||

    arg max
log ||

i j U i j
i j c i j c

U
i j U i j

i j c

q q D p p

q q D p pη

≤ ≠ ≤ ≤ ≠ ≤

≤ ≠ ≤

⎧ ⎫+
⎪ ⎪⎪ ⎪= ⎨ ⎬⎛ ⎞⎪ ⎪− ⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

∑ ∑

∑
 

( ) ( )
1 1

    arg max log || log ||U i j i j U i j
U i j c i j c

D p p q q D p pη
≤ ≠ ≤ ≤ ≠ ≤

⎧ ⎫⎛ ⎞⎪ ⎪= −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭
∑ ∑ , 

where 
( )

( )( )
1

1

1

1 1

m n
m n c

m n
m n c

c c q q

c c q q

α
η

α α
≤ ≠ ≤

≤ ≠ ≤

−
=

− − +

∑
∑

 and 0 1α< < . The supremum of η  is 

( )1c c −  and the infimum of η  is 0. When 0α = / 0η = , (2.48) reduces to 

(2.43); and when 1α = / ( )1c cη = − , (2.48) reduces to (2.46).         ■ 

 

Claim 2.1: ( ) ( )L U L UB= , where B  is any orthogonal r r×  matrix and U  

is the projection matrix, which maximizes ( )L U  defined in (2.51). 

Proof. 

Because ( ) ( ) ( )
1 1

log || log ||U i j i j U i j
i j c i j c

L U KL p p q q KL p pη
≤ ≠ ≤ ≤ ≠ ≤

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑ ∑ , it is 

sufficient to prove ( ) ( )|| ||U i j UB i jKL p p KL p p= . Here ip  is the probability 

density function for samples in the ith class, i.e., ( ) ( )|i ip p x p x y i= = =
r r . 

According to the definition of ( )||U i jKL p p  in (2.52), we have 

( )

( ) ( )( )
( )( )

1

1

1|| log log
2

                         tr

                         tr ,

T T T T
UB i j j i

T T T T
j i

T T T T
j ij

KL p p B U UB B U UB

B U UB B U UB

B U UB B U D UB

−

−

= Σ − Σ

+ Σ Σ

+ Σ
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where iΣ  is the covariance matrix of the ith class and 

( ) ( )ij i j i jD m m m m= − ⊗ −
r r r r . 

Because AB A B=  when A  and B  are square matrices, we have  

( )

( ) ( )( )
( )( )

1

1

1|| log log
2

                         tr

                         tr .

T T
UB i j j i

T T T T
j i

T T T T
j ij

KL p p U U U U

B U UB B U UB

B U UB B U D UB

−

−

= Σ − Σ

+ Σ Σ

+ Σ

 

Because 

( ) ( ) ( )
( )

1 1 11

1
                        ,

T T T T
j j

T T
j

B U UB B U U B

B U U B

− − −−

−

Σ = Σ

= Σ
 

we have 

( )

( ) ( )( )
( )( )
( )

1

1

1|| log log
2

                         tr

                         tr

                     || .

T T
UB i j j i

T T
j i

T T
j ij

U i j

KL p p U U U U

U U U U

U U U D U

KL p p

−

−

= Σ − Σ

+ Σ Σ

+ Σ

=

 

Therefore, ( ) ( )L U L UB= .                             ■ 

 

Lemma 2.1: If U  is a solution to MGMKLD and x xU U U ⊥= ⊕ , then xU  is a 

solution to MGMKLD, and ( ) ( )xL U L U= . Here, the column space of xU  is 

spanned by the samples { } 1
; 1| ij n

i j i cx ≤ ≤
≤ ≤

r  and the column space of xU ⊥  is the 

orthogonal complement of the column space of xU . 

Proof. 

Because ( ) ; 0
T

x i jU x⊥ =
r  and ( ) 0

T

x xU U⊥ = , we have 

( ) ( )T TT
x x i x i x iU U m U m U m⊥ ⊥+ = +

r r r ( )( );
1

1 in TT T
x i x i j x i

ji

U m U x U m
n

⊥

=

= + =∑r r r  

and 

( ) ( )T

x x i x xU U U U⊥ ⊥⊕ Σ ⊕  
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( ) ( )( ) ( ) ( )( ); ;
1

1 in TT T

x x i j i x x i j i
ji

U U x m U U x m
n

⊥ ⊥

=

⎛ ⎞= ⊕ − ⊕ −⎜ ⎟
⎝ ⎠

∑ r r r r  

( )( ) ( )( )( ); ;
1

1 .
in TT T T

x i j i x i j i x i x
ji

U x m U x m U U
n =

= − − = Σ∑ r r r r  

That is ( )T T
x x i x iU U m U m⊥⊕ =

r r  and ( ) ( )T T
x x i x x x i xU U U U U U⊥ ⊥⊕ Σ ⊕ = Σ . With 

these two equations, we can get ( ) ( )|| ||
xU i j U i jKL p p KL p p= , because: 

( )||U i jKL p p  

( ) ( )( )( )1

log log1
2 tr

T T
j i

T T
j i ij

U U U U

U U U D U
−

⎛ ⎞Σ − Σ
⎜ ⎟= ⎜ ⎟+ Σ Σ +⎜ ⎟
⎝ ⎠

 

( ) ( ) ( ) ( )

( ) ( )( )
( ) ( )( )( )

1

log log

1
2 tr

T T

x x j x x x x i x x

T

x x j x x

T

x x i ij x x

U U U U U U U U

U U U U

U U D U U

⊥ ⊥ ⊥ ⊥

−
⊥ ⊥

⊥ ⊥

⎛ ⎞⊕ Σ ⊕ − ⊕ Σ ⊕⎜ ⎟
⎜ ⎟

⎛ ⎞⎜ ⎟= ⊕ Σ ⊕⎜ ⎟⎜ ⎟+ ⎜ ⎟⎜ ⎟
⎜ ⎟⊕ Σ + ⊕⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

( ) ( )( )( ) ( )1

log log1 ||
2 tr x

T T
x j x x i x

U i jT T
x j x x i ij x

U U U U
KL p p

U U U D U
−

⎛ ⎞Σ − Σ
⎜ ⎟= =⎜ ⎟+ Σ Σ +⎜ ⎟
⎝ ⎠

 

Therefore ( ) ( )xL U L U= , i.e., the matrices U  and Ux  are equally good 

solutions to MGMKLD.                                        ■ 

 

Deduction 2.2: To obtain the kernel Gram matrix [129] based representation in 

(2.61), we need to get the ( ) ;
T

iU U Uφ φ φΣ  reformulated by the kernel dot product 

trick as 

;

' , , , , '
1 1 11 1 ,

i i i i i i i i i i

T
i

T
T T
n H C C C C C C C C C C n H

i i i

U U

K I I K
n n n

φ φ φ

× ×

Σ

⎛ ⎞⎛ ⎞
= Λ − − Λ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

  

where .; jK  is the ( )1

1

thi
kk

n j−

=
+∑  column of the kernel Gram matrix 

( ) ( ); ;

T

i j i jF n F n
K x xφ φ

× ×
⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦

r r  ( ); ;,i j i jk x x⎡ ⎤= ⎣ ⎦
r r , ( ); ;,i j i jk x xr r  is the kernel function 

[129], ,
,

C Ci i

i iC CI R∈  is the identity matrix, ,
,1 i i

i i

C C
C C R∈  is a matrix in which 
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every entry is 1, .; 1i i
C j j n

K K
≤ ≤

⎡ ⎤= ⎣ ⎦  is composed of the columns in the kernel 

Gram matrix from the ( )1

1
1

thi
kk

n−

=
+∑  column to the ( )1

thi
kk

n
=∑  column. 

Deduction 

;
T

iU Uφ φ φΣ  

( ) ( ) ( )

( ) ( ) ( )

' ; ; ;
1

1

; ; ; '
1

1

1

1

i

i

i

nTT
n H p q i j i kF nn ki

Tnji
i j i l p q n HF nli

x x x
n

n
x x x

n

φ φ φ

φ φ φ

× ×
=

=

××
=

⎛ ⎞⎛ ⎞⎡ ⎤Λ −⎜ ⎟⎜ ⎟⎣ ⎦ ⎝ ⎠⎜ ⎟
= ⎜ ⎟

⎛ ⎞⎜ ⎟⎡ ⎤− Λ⎜ ⎟ ⎣ ⎦⎜ ⎟⎝ ⎠⎝ ⎠

∑
∑

∑

r r r

r r r
 

' .; .; .; .; '
1 1 1

1 1 1i i i
Tn n n

T
n H j k j l n H

j k li i i

K K K K
n n n× ×

= = =

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟= Λ − − Λ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
∑ ∑ ∑  

' .; .; '
1

1 1 11 1
i

i i i i

Tn
T
n H j C C j C C n H

ji i i

K K K K
n n n× ×

=

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟= Λ − − Λ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
∑  

' , , '
1 1 11 1

i i i i i i i i

T
T
n H C C C C C C C C n H

i i i

K K K K
n n n× ×

⎛ ⎞⎛ ⎞
= Λ − − Λ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

' , , , , '
1 1 11 1

i i i i i i i i i i

T
T T
n H C C C C C C C C C C n H

i i i

K I I K
n n n× ×

⎛ ⎞⎛ ⎞
= Λ − − Λ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
.         ■ 

 

Deduction 2.3: To obtain the kernel Gram matrix [129] based representation in 

(2.61), we need to get the ;
T

ijU D Uφ φ φ  reformulated by the kernel dot product trick 

as 

;

' '
1 1 1 11 1 1 1 ,

i i j j i i j j

T
ij

T

T
n H C C C C C C C C n H

i j i j

U D U

K K K K
n n n n

φ φ φ

× ×

⎛ ⎞⎛ ⎞
= Λ − − Λ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

  

where .; jK  is the ( )1

1

thi
kk

n j−

=
+∑  column of the kernel Gram matrix 

( ) ( ); ;

T

i j i jF n F n
K x xφ φ

× ×
⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦

r r  ( ); ;,i j i jk x x⎡ ⎤= ⎣ ⎦
r r , ( ); ;,i j i jk x xr r  is the kernel function 

[129], ,
,

C Ci i

i iC CI R∈  is the identity matrix, ,
,1 i i

i i

C C
C C R∈  is the unit matrix, 
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.; 1i i
C j j n

K K
≤ ≤

⎡ ⎤= ⎣ ⎦  is composed of the columns in the kernel Gram matrix from the 

( )1

1
1

thi
kk

n−

=
+∑  column to the ( )1

thi
kk

n
=∑  column. 

Deduction 

;
T

ijU D Uφ φ φ  

( ) ( ) ( )

( ) ( ) ( )

' ; ; ;
1 1

; ; ; '
1 1

1 1

1 1

ji

ji

nnTT
n H p q i k j lH n k li j

Tnn

i k j l p q n HH nk li j

x x x
n n

x x x
n n

φ φ φ

φ φ φ

× ×
= =

××
= =

⎛ ⎞⎛ ⎞
⎡ ⎤Λ −⎜ ⎟⎜ ⎟⎣ ⎦ ⎜ ⎟⎜ ⎟⎝ ⎠

= ⎜ ⎟
⎛ ⎞⎜ ⎟

⎡ ⎤− Λ⎜ ⎟⎜ ⎟⎣ ⎦⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑

∑ ∑

r r r

r r r
 

' .; .; .; .; '
1 1 1 1

1 1 1 1j ji i
Tn nn n

T
n H k l k l n H

k l k li j i j

K K K K
n n n n× ×

= = = =

⎛ ⎞⎛ ⎞
= Λ − − Λ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑  

' '
1 1 1 11 1 1 1

i i j j i i j j

T

T
n H C C C C C C C C n H

i j i j

K K K K
n n n n× ×

⎛ ⎞⎛ ⎞
= Λ − − Λ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
.        ■ 

 

Theorem 2.1: MGMKLD followed by KPCA is equal to KMGMKLD. 

Proof. 

To simplify the formulation, we assume that ( ) ( );1 1
1 0ic n

i ji j
m n xφ φ

= =
= =∑ ∑r r . 

The eigenvectors calculated in KPCA are denoted as: 

;
1
1

i ii i

i

n ni j
i c
j n

P Rβ ×
≤ ≤
≤ ≤

∑ ∑⎡ ⎤= ∈⎣ ⎦ . 

Then, 
; ;

; ,1 ;1i j i j
i j iK i c j nβ λ β= ≤ ≤ ≤ ≤ . 

For a sample ;i jx , its corresponding vector in KPCA, the higher dimensional 

space is: 

( )( ) ( ) ( ); ; ; ; .;1
,

T
KPCA T T

p q i j p q i j jF n n
z x P x P k x x P Kφ φ

× ×
⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦

r r r rr . 

Then, we have T KPCA
iU UΣ , given by: 

( )( ); ;
1 TT KPCA T KPCA KPCA KPCA KPCA

i i j i i j ij
i

U U U x m x m U
n

Σ = − −∑ r r r r  

.; .; .; .;
1 1 1

T
T T T T T

j j j jj l l
i i i

U P K P K P K P K U
n n n

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ ∑  
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.; .; .; .;
1 1 1

T
T T

j j j jj l l
i i i

U P K K K K PU
n n n

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ ∑  

, , , ,
1 1 11 1

i i i i i i i i i i

T
T T T

C C C C C C C C C C
i i i

U P K I I K PU
n n n

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

and T KPCA
ijU D U  is given by: 

; ; ; ;
1 1 1 1

1 1 1 1j ji i
Tn nn n

T KPCA T KPCA KPCA KPCA KPCA
ij i k j l i k j l

k l k li j i j

U D U U x x x x U
n n n n= = = =

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑r r r r  

.; .; .; .;
1 1 1 1

1 1 1 1j ji i
Tn nn n

T T T T T
k l k l

k l k li j i j

U P K P K P K P K U
n n n n= = = =

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑  

.; .; .; .;
1 1 1 1

1 1 1 1j ji i
Tn nn n

T T
k l k l

k l k li j i j

W P K K K K PU
n n n n= = = =

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑  

1 1 1 11 1 1 1
i i j j i i j j

T

T T
C C C C C C C C

i j i j

U P K K K K PU
n n n n

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

As P  is in full rank, denoting 'n H PU×Λ = , we then have 

( )' '
T KPCA T

i n H i n HU U φ× ×Σ = Λ Σ Λ  

and  

( )' '
T KPCA T

ij n H ij n HU D U Dφ× ×= Λ Λ . 

Therefore, 

( ) ( ) ( )( )'ij ij n H ijKL PU KL KL Uφ×= Λ = . 

Consequently, 

( ) ( )( )L PU L Uφ= . 

That is MGMKLD followed by KPCA is equal to KMGMKLD.        ■ 
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 Appendix for Chapter 3 

 

Theorem 3.1 (Higher–Order Singular Value Decomposition) 

A tensor 1 2 ML L LR × × ×∈X L  can be decomposed as the product of a tensor 
1 2 ML L LR × × ×∈Y L  with a series of orthogonal matrices k kL L

kU R ×∈ , i.e., 

1
k

M

k
k

U×
=

= ∏X Y ,  

such that, the subtensor of 1 1 1k k M

k

L L L L
l Rα

− +× × ×
= ∈Y L , obtained by fixing the kth 

(1 k kl L≤ ≤ ) index to α , is orthogonal to 1 1 1k k M

k

L L L L
l Rβ

− +× × ×
= ∈Y L , i.e., 

( )( ); 1: 1 1: 1 0
k kl l M Mα β= =⊗ − − =Y Y� �

� �� � .  

when α β≠ . 

Finally, 

1 2 0
k k k kl l l LFro Fro Fro= = =≥ ≥ ≥ ≥Y Y YL .  

 

Proof. 

Decompose the mode–k matricizing of X  through SVD, 

( )mat T
k k k kU V= ΣX   

where kU , kV  are orthogonal matrices and { }1 2diag , , , kL
k k k kσ σ σΣ = L  with 

i j
k kσ σ≥  for all i j≤ . 

Then, we have 

( ) ( )[ ]1 2 1 1mat mat T
k k k k k NU U U U U U− += ⊗ ⊗ ⊗ ⊗X Y L L .  

Therefore, we have 

( )[ ]1 2 1 1mat TT
k k k k k k k NU V U U U U U U− +Σ = ⊗ ⊗ ⊗ ⊗Y L L .  

i.e., 

( ) [ ]1 2 1 1mat T
k k k k k NV U U U U U− += Σ ⊗ ⊗ ⊗ ⊗Y L L .  

Because kU  and kV  are unitary matrices, 

( )( ); 1: 1 1: 1 0
k kl l M Mα β= =⊗ − − =Y Y� �

� �� � ,  

for all α β≠ , and 
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1 2
1 2 0k

k k k k

L
l k l k l L kFro Fro Fro

σ σ σ= = == ≥ = ≥ ≥ = ≥Y Y YL .  

It follows from the above analysis that HOSVD is proved.             ■ 

 

Theorem 3.2 

Minimizing ( )
2

1
1

|
M

M
k k k

k Fro

f u uλ= ⊗
=

= − ∏Xr r  (
1

k

M
T
k

k

uλ ×
=

= ∏X r ) is equivalent to 

maximizing 

( )
2

1
1

|
k

M
M T

k k k
k Fro

g u u= ×
=

= ∏Xr r .  

Moreover, 2

Fro
f g= −X . 

Proof. 

Because 

( )

( )

2

1
1

2
2 2

1 1

2 2

2
1

|

              2

              

              | ,

k

M
M

k k k
k Fro

M M
T
k kFro

k kFro Fro

Fro

M
k kFro

f u u

u u

g u

λ

λ λ

λ

= ⊗
=

× ⊗
= =

=

= −

= − +

= −

= −

∏

∏ ∏

X

X X

X

X

r r

r r

r

 

minimizing ( )1|Mk kf u =
r  is equivalent to maximizing ( )1|Mk kg u =

r .       ■ 

 

Theorem 3.3  

Given a sequence of unitary matrices 'k kL L
kU R ×∈  (1 k M≤ ≤  and d dL L′ < ) and 

a tensor 1 2 ML L LR × ×∈X L , the function ( ) 2ˆ ˆ
Fro

f = −X X X , where ( )ˆrankd dL′=X ,  

is minimized, when 1 2ˆ ML L LR × ×∈X L  is given by 

( )
1 1 1

ˆ
k k k

M M M
T T
k k k k

k k k

U U U U× × ×
= = =

⎛ ⎞
= =⎜ ⎟
⎝ ⎠
∏ ∏ ∏X X X .  

 

Proof. 

It is sufficient to prove Y  minimizes ( )
2

1
k

M

k
k Fro

g U×
=

= − ∏Y X Y  ,  
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where 
1

k

M
T
k

k

U×
=

= ∏Y X . 

Let 
1

k

M

k
k

U×
=

= − ∏E X Y . 

Because the columns in kU , 1 k M≤ ≤ , are orthogonal, we have 

( )

1 1 1

1 1 1

1 1

1

                

                

                .

k k k

k k k

k k

k

M M M
T T
k k k

k k k

M M M
T T
k k k

k k k

M M
T T
k k k

k k
M

T
k

k

U U U

U U U

U U U

U

× × ×
= = =

× × ×
= = =

× ×
= =

×
=

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

= −

= −

= −

∏ ∏ ∏

∏ ∏ ∏

∏ ∏

∏

E X Y

X Y

X Y

X Y

 

Therefore, 
1

k

M

k
k

U×
=
∏Y  is the least square estimation of X , i.e., ( )g Y  is 

minimized when 
1

k

M
T
k

k

U×
=

= ∏Y X .                               ■ 

 

Theorem 3.4  

For a given tensor 1 2 ML L LR × ×∈X L , minimizing  

( ) ( )
2

1
1

|
k

M
M T

k k k k
k Fro

f U U U= ×
=

= − ∏X X   

is equivalent to maximizing 

( )
2

1
1

|
k

M
M T

k k k
k Fro

g U U= ×
=

= ∏X .  
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where 
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Theorem 3.5 The alternating projection method based optimization procedure for 

GTDA converges. 

Proof. 

The alternating projection method never decreases the function value ( )1|Ml lf U =  

of GTDA between two successive iterations, because it can be interpreted as a 

type of monotonic algorithm. We define a continuous function 

1 2
1

:
M

M l
l

f S S S S R+

=

× × × = →∏L , 

where l lU S∈  and lS  is a closed set, which includes all possible lU . 



210 

With the definition, f  consists of M  different mappings: 
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The mapping can be calculated with the given 1
1|ld dU −
=  in the tth iteration and 

1|Md d lU = +  in the ( 1t − )th iteration of the for–loop in Steps 3–5 in Table 3.6. 

Given an initial 1 1U S∈ , the alternating projection generates a sequence of items 
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U =  via ( )l lU g U∈ , with each { }1,2,l M∈ L . The sequence has the 

following relationship: 
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; and a  and b  

are limited values in the R+ space. 

Formally, the alternating projection can be illustrated by a composition of M  

sub–algorithms defined as 
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It follows that 1 2 MΩ Ω Ω Ω� o oLo  is an algorithm for sets 1|Ml lS = . All sub–

algorithms ( )lg U  increase the value of f , so Ω  is monotonic with respect to 

f .                                                       ■ 
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