
Combinatorial and Convex Optimization for

Probabilistic Models in Computer Vision

Pawan Kumar Mudigonda

Thesis submitted in partial fulfillment of the requirements of the award of

PhD

Oxford Brookes University

2008

Abstract

This thesis investigates the role of optimization in two areas of Computer Science:

Computer Vision and Machine Learning. Specifically, we consider two well-known

problems in Computer Vision, namely motion segmentation and object category

specific image segmentation, and a fundamental problem in Machine Learning,

known as maximum a posteriori (map) estimation of discrete probabilistic models.

In order to address the problem of motion segmentation, we propose a novel

probabilistic model which is suitable for this application. Our model includes the

effects of occlusion, lighting changes and motion blur. The segmentation of a given

video is obtained by performing efficient inference on the probabilistic model in

two stages: (i) In the first stage, an initial estimate of the model is obtained using

a novel coarse-to-fine technique which reduces the time and memory required by

the sum-product belief propagation algorithm; and (ii) In the second stage, the

initial estimate is refined using the observation that the energy of the model can

be efficiently reduced using the αβ-swap and α-expansion algorithms.

For object category specific image segmentation, we extend the probabilistic

model used in previous approaches. Specifically, we incorporate it with an ob-

ject category model which provides top-down information about the shape of the

object. Given an image, its segmentation is determined using two new algorith-

mic contributions: (i) We propose efficient methods for obtaining samples of the

object category models of our choice by matching them to the given image; and

(ii) We make the (not obvious) observation that these samples can be quickly

marginalized within the em framework using one st-mincut operation. We com-

pare our method with the state of the art approaches and demonstrate significant

improvement.

Next, we present a theoretical analysis of previously proposed algorithms for

map estimation which are based on convex relaxations. In particular, we show

that a widely used linear programming (lp) relaxation strictly dominates (i.e.

provides a better approximation than) some recently proposed Quadratic Pro-

gramming (qp) and Second Order Cone Programming (socp) relaxations. We

generalize this result to show that, despite the flexibility in the form of objective

function and constraints offered by qp and socp, the lp relaxation dominates

a large class of qp and socp relaxations. As a consequence of our analysis, we

obtain two new socp relaxations which dominate the previous approaches.

Finally, we consider the problem of efficiently solving the new socp relax-

ations. To this end, we build upon the tree reweighted message passing frame-

work. We propose convergent algorithms which iteratively optimize the La-

grangian dual of the socp relaxations. These algorithms allow us to empirically

verify our theoretical analysis using both synthetic and real data.

i

Acknowledgements

I would like to thank my supervisors, Prof. Philip Torr and Prof. Andrew

Zisserman, for their guidance and encouragement. This work would not have

been possible without their contagious enthusiasm for research.

For having the patience to work with me and for numerous helpful discussions,

I would like to thank my collaborators: Mukta Prasad, Pushmeet Kohli and

Vladimir Kolmogorov. A special thanks to Mukta who excelled in her daunting

role as my best friend (and agony aunt).

Members of the Brookes Vision Group, past and present, created a wonderful

research environment. I am grateful to Pushmeet Kohli (my reliable soundboard

for ideas), Carl Ek, Karteek Alahari (my two favourite Brookes chefs), Prem

Fernando, Christophe Restif, Matthieu Bray, Samy Sun, Chris Russell, Jon Rihan,

Lubor Ladicky and Srikumar Ramalingam.

I would also like to thank my sponsors: Oxford Brookes University, EPSRC,

and PASCAL Network of Excellence.

I am indebted to my undergraduate advisors, Prof. C.V. Jawahar and Prof.

P.J. Narayanan. The courses I studied and the projects I worked on under their

supervision inspired me to pursue a PhD in Computer Vision.

Most importantly, I would like to thank my family for their support and

invaluable advice.

ii

Contents

Contents

1 Introduction 1

1.1 Optimization for Computer Vision 3

1.1.1 Motion Segmentation . 3

1.1.2 Object Category Specific Image Segmentation 5

1.2 Optimization for Machine Learning 7

1.2.1 A Graph Theoretic Problem . 7

1.2.2 How Should I Solve It? . 8

1.3 Contributions 9

1.3.1 Computer Vision . 9

1.3.2 Machine Learning . 9

1.4 Outline of the Thesis 10

1.5 Publications 11

2 Probabilistic Models and Inference Algorithms 12

2.1 The Labelling Problem 13

2.2 Random Field Models 15

2.2.1 Markov Random Fields . 16

2.2.2 Conditional Random Fields . 19

2.3 Inference 21

2.3.1 Maximum A Posteriori Estimation 21

2.3.2 Computing Max-Marginals . 23

2.3.3 Computing Marginals . 25

2.4 Algorithms for map Estimation 27

2.4.1 Min-Sum Belief Propagation . 27

2.4.2 Alternative Formulation of Min-Sum bp 29

2.4.3 Graph Cuts . 30

2.5 Algorithms for Computing Marginals 35

2.5.1 Sum-Product Belief Propagation 36

2.5.2 Other Algorithms . 38

3 Convex Relaxations for MAP Estimation 41

3.1 Introduction 42

3.2 Mathematical Optimization - Background 42

iii

Contents

3.3 Convex Relaxations for map Estimation 48

3.3.1 Integer Programming Formulation 48

3.3.2 Linear Programming Relaxation 49

3.3.3 Quadratic Programming Relaxation 50

3.3.4 Semidefinite Programming Relaxation 51

3.3.5 Second Order Cone Programming Relaxation 52

4 Learning Layered Motion Segmentations of Video 55

4.1 Introduction 57

4.2 Layered Representation 58

4.3 Learning Layered Segmentation 68

4.3.1 Two Frame Motion Segmentation 69

4.3.2 Initial Estimation of the Model over Multiple Frames 72

4.3.3 Refining Shape . 78

4.3.4 Updating Appearance . 83

4.3.5 Refining the Transformations 83

4.3.6 Refining the Segmentation of Frames 83

4.4 Results 84

4.5 Discussion 89

5 OBJCUT 92

5.1 Introduction 94

5.2 Object Category Specific Segmentation 98

5.3 Roadmap of the Solution 104

5.4 Object Category Models 109

5.4.1 Set of Exemplars Model . 110

5.4.2 Layered Pictorial Structures . 112

5.5 Sampling the Object Category Models 116

5.5.1 Sampling the soe . 116

5.5.2 Sampling the lps . 119

5.6 Results 123

5.7 Discussion 124

6 An Analysis of Convex Relaxations 129

6.1 Introduction 131

6.1.1 Comparing Relaxations . 132

6.1.2 Our Results . 134

6.2 LP-S vs. SOCP-MS 134

iv

Contents

6.3 QP-RL vs. SOCP-MS 137

6.4 QP and SOCP Relaxations over Trees and Cycles 141

6.4.1 Notation . 142

6.4.2 QP and SOCP Relaxations over Trees 145

6.4.3 QP and SOCP Relaxations over Cycles 152

6.5 Some Useful SOC Constraints 152

6.5.1 The SOCP-C Relaxation . 152

6.5.2 The SOCP-Q Relaxation . 155

6.6 Discussion 158

7 Efficiently Solving Convex Relaxations 159

7.1 Introduction 161

7.2 Preliminaries 162

7.3 Adding Linear Constraints 168

7.3.1 Properties of the trw-s(lp-c) Algorithm. 172

7.4 Adding Second Order Cone Constraints 174

7.5 Experiments 177

7.5.1 Synthetic Data . 177

7.5.2 Real Data - Video Segmentation 178

7.6 Discussion 183

8 Discussion 189

8.1 Contributions of the Thesis 190

8.2 Future Work 191

9 Appendix 195

Bibliography 200

v

List of Figures

List of Figures

1.1 An example of motion segmentation 4

1.2 Examples of object category specific image segmentation 6

1.3 Example colourings of a graph 8

2.1 Examples of object detection 14

2.2 Examples of interactive binary image segmentation 15

2.3 Examples of Markov random field 16

2.4 Energy of interactive binary image segmentation 19

2.5 An example conditional random field 22

2.6 Examples of graph constructions for map estimation 31

2.7 Graph constructions for αβ-swap and α-expansion 34

3.1 An example second order cone 45

4.1 An example video sequence . 58

4.2 Layered representation of a human model 59

4.3 An illustration of the neighbourhood of a point 62

4.4 cdrf formulation of the layered representation 63

4.5 Two possible latent images of a synthetic scene 64

4.6 Results of obtaining the transformations 72

4.7 Effects of modelling motion blur 73

4.8 Examples of rigidly moving components 74

4.9 Correspondences between four sets of components 76

4.10 Examples of clusters found using agglomerative clustering . . . 77

4.11 Shape estimate of segments found by clustering 78

4.12 Example αβ-swap move for two segments 80

4.13 Example α-expansion move for a segment 81

4.14 Results of refining the mattes of the layered representation . . . 82

4.15 Appearance of the learnt parts 83

4.16 Transformations obtained for the upper arm segment 84

4.17 Result of refining the segmentation 85

4.18 Motion segmentation results 1 86

4.19 Motion segmentation results 2 87

4.20 Motion segmentation results 3 88

4.21 Result of segmenting objects 89

4.22 Components learnt by allowing for non-rigid motion 89

4.23 Importance of encouraging spatial continuity 90

4.24 Results obtained for varying number of input frames 91

5.1 Segmentation obtained using the crf formulation 95

5.2 The Object Category Specific cdrf 101

5.3 Advantage of introducing an object category model in cdrf . . 103

5.4 The m-step of the em algorithm 107

5.5 Shape exemplars for fruits . 112

vi

List of Figures

5.6 Layered pictorial structures model of a cow 113

5.7 Intra-class correspondence using shape context 115

5.8 Shape exemplars for cow . 115

5.9 Inter-class correspondence using shape context 115

5.10 Shape exemplars for horse . 115

5.11 Tree cascade of classifier . 117

5.12 Efficient computation of chamfer distance 118

5.13 Samples and segmentations obtained for images with bananas . 118

5.14 Tree cascade of classifiers . 120

5.15 Advantage of using a complete graph over a tree structure . . . 121

5.16 Samples and segmentations for images of cows 121

5.17 Samples obtained using the lps model of a cow 123

5.18 Image segmentation results 1 125

5.19 Image segmentation results 2 126

5.20 Image segmentation results 3 127

5.21 Comparison with Leibe and Schiele 128

5.22 Effects of shape and appearance potentials 128

6.1 Example for tightness of lp-s additive bound 140

6.2 An example crf . 142

6.3 Examples of subgraphs and the vector m 150

6.4 Example of a frustrated cycle 154

6.5 An lp-s optimal solution for a frustrated cycle 155

6.6 An socp-c optimal solution for a frustrated cycle 156

6.7 An infeasible solution for socp-q 157

7.1 Example of the wta condition 167

7.2 Results of the first experiment 179

7.3 Results of the second experiment 180

7.4 Seed pixels for the ‘Garden’ sequence 182

7.5 Seed pixels for the ‘Dayton’ sequence 182

7.6 Segmentation for ‘Garden’ video using 4-neighbourhood 185

7.7 Segmentation for ‘Dayton’ video using 4-neighbourhood 186

7.8 Segmentation for ‘Garden’ video using 8-neighbourhood 187

7.9 Segmentation for ‘Dayton’ video using 8-neighbourhood 188

9.1 Coarse to fine sum-product bp 197

9.2 Graph construction for αβ-swap 198

9.3 Graph construction for α-expansion 199

vii

List of Tables

List of Tables

2.1 Energies and probabilities of an example crf 22

2.2 Min-marginals and max-marginals of an example crf 24

2.3 Marginals of an example crf 26

2.4 Messages and beliefs of min-sum bp for an example crf 29

2.5 Messages and beliefs of sum-product bp for an example crf . . 37

4.1 Parameters of the layered representation 60

4.2 Prior term for the layered representation 65

4.3 Contrast term for the layered representation 66

4.4 Prior and contrast terms of neighbouring points 67

7.1 The trw-s algorithm . 169

7.2 The trw-s(lp-c) algorithm . 172

7.3 The trw-s(socp-c)/trw-s(socp-q) algorithm 176

7.4 Complexity and timings for first synthetic data experiment . . . 181

7.5 Complexity and timings for second synthetic data experiment . 181

7.6 Timings for first real data experiment 183

7.7 Timings for second real data experiment 184

viii

Chapter 1

Introduction

1

Great strides have been made in the use of optimization. Models with thousands

of variables and constraints are being solved regularly and the results are being

applied routinely, but only by a relatively small number of organizations.

- George L. Nemhauser, The Age of Optimization, September, 1993.

The words of Nemhauser (among others) seem to have struck a chord with

many researchers. In the past decade, the optimization literature has grown to

form the backbone of several areas in Computer Science. This thesis represents

our attempt to further highlight its scope and importance.

Optimization itself is a vast field, which spans the range from the simplest

greedy algorithms (e.g. for determining the minimum spanning tree [52, 72]) to

the most complex Interior Point methods (e.g. for truss design [5]) and beyond.

Of particular interest to us is the application of optimization to the Probabilistic

Models framework. The study and development of probablistic models, like opti-

mization, has had a profound impact on many areas of Science, from Statistical

Physics to Molecular Biology. The focus of this thesis is on two areas: Computer

Vision and Machine Learning.

Computer Vision is concerned with the theory and technology for building

artificial systems that obtain information from images. The image data can take

many forms, such as a video sequence, views from multiple cameras, or multi-

dimensional data from a medical scanner. Some recent real-world applications

of Computer Vision include camera tracking for special effects in movies, mo-

tion capture for animation and biometric systems such as fingerprint recognition

for security systems. Machine Learning deals with the design and development

of algorithms and techniques that allow computers to learn. Its major focus is

to extract information (make inference) from data automatically, by computa-

tional and statistical methods. Progress in this area has lead to several useful

applications such as intelligent spam filters and handwritten text recognition for

creating digital libraries1. Each of these two areas contributes immensely to the

development of the other. While Machine Learning provides the means to solve

Computer Vision problems, Computer Vision in turn opens up new avenues for

Machine Learning to explore.

Our work in these areas can be divided into two parts. In the first part we

look at two well-known problems in Computer Vision. We show how extend-

ing some previously known algorithms in Machine Learning (e.g. by improving

their efficiency or developing some new observations about them) allows us to

solve these problems accurately. In the second part we consider a fundamental

problem of Machine Learning which plays a central role in many Computer Vi-

sion applications (including the ones considered in the first part). We present a

theoretical analysis of a subclass of approaches for this problem, identifying the

one that provides the best solution. Our analysis leads to some new and more

1Source of definitions: Wikipedia.

2

1.1. Optimization for Computer Vision

accurate methods which can be applied efficiently to tackle the hardest instances

of the problem.

We begin by describing and motivating the above mentioned problems.

1.1. Optimization for Computer Vision

In this work, we are interested in the following two Computer Vision problems:

(i) motion segmentation; and (ii) object category specific image segmentation.

Below, we describe the two problems and motivate them by listing some of their

applications. We also specify the difficulties that are inherent in these problems.

1.1.1 Motion Segmentation

Given a video sequence of an object, we define the problem of motion segmen-

tation as that of dividing the scene into rigidly moving segments in order to

obtain a foreground-background segmentation. This requires us to determine the

number of segments and learn the shape, appearance and transformations of each

segment in every frame of the video sequence. For example, Fig. 1.1(a) shows a

video sequence of a human walking. The shape and transformations of the learnt

segments is shown in Fig. 1.1(b). The appearance of the segments is shown in

Fig. 1.1(c).

Motivation: There are many potential applications of motion segmentation.

For example,

• Understanding Videos – Given a video sequence, we may wish to under-

stand the nature of the activities taking place in it. For example, for a

surveillance video, we would like to determine whether the moving object is

a car or a human, whether it is stationary or moving and which direction it

is travelling in. The enormous amount of video data available to us makes

it impossible to carry out such an analysis manually. Motion segmentation

would provide an elegant and accurate solution for this problem.

• Driving Avatars for Animation – In the animation industry, avatars are

currently driven using manual input which requires a lot of time and is

prone to being inaccurate. The movements of a human or quadruped, learnt

from a reliable motion segmentation algorithm, could be used as a time and

cost efficient alternative for this task.

• Human Computer Interaction (hci) – The current trend in hci is to move

away from conventional input devices such as mouse and keyboard, and

3

1.1. Optimization for Computer Vision

(a)

(b)

(c)

Figure 1.1: An example of motion segmentation. (a) Four intermediate frames of

an input video sequence of a person walking against a static background. (b) The

shape of the rigidly moving segments (each shown in a different colour from the

other) which constitute the entire visible body of the person. The transformations

of the segments for all frames should also be learnt as shown. (c) Together with

the appearance information, each frame of the video sequence can be segmented

into foreground and background.

towards more interactive and intuitive ways. A motion segmentation algo-

rithm which can distinguish between different hand gestures would greatly

facilitate this goal.

• Analyzing Motion for Medical Diagnosis – The diagnosis of several movement-

related disorders such as Parkinson’s disease and multiple sclerosis requires

the computation of a large number of statistics related to the patient’s gait.

Motion segmentation can be used as an effective tool for obtaining these

statistics.

Clearly, the problem of motion segmentation has great practical importance.

However, it throws up a lot of challenges which have so far prevented researchers

from solving it completely.

Challenges: A successful motion segmentation approach should address the

following issues:

• Computer Vision – Parts of the scene may be occluded in one or more

4

1.1. Optimization for Computer Vision

frames of the video sequence (e.g. see Fig. 1.1 where the torso occludes

an arm and the background). The appearance of the segments may also

change due to lighting conditions and motion blur. A motion segmentation

approach should be able to handle such changes and automatically deter-

mine the number of segments, together with their shape, appearance and

transformations.

• Machine Learning – Given a video, we are faced with the problem of learning

the representation of the scene through motion segmentation. The repre-

sentation should be chosen to handle the Computer Vision challenges men-

tioned above. However, such a representation would be complex and the

problem of learning it (i.e. performing inference) from a video would not

lend itself to naive methods like exhaustive search. For example, consider

a video sequence of f frames, each of which is of size l × b. Also, let us

suppose that the orientation of a given segment in a frame can be defined

using one of h possible rotation angles. For such a case, the shape of a seg-

ment would be determined using O(2l×b) operations by exhaustive search

(which is 2153600 even for reasonable frame sizes, l = 320 and b = 480).

Even if the shape of the segment has been provided, its transformations

for the entire video sequence would require O(lbfh) operations (i.e. over

75 million for f = 50 and h = 10). Clearly, a useful motion segmenta-

tion algorithm should cleverly employ efficient Machine Learning inference

algorithms (such as those proposed in [15]) to overcome this deficiency.

1.1.2 Object Category Specific Image Segmen-

tation

Given an image containing an instance of an object category1 of interest, our

aim is to segment the pixels of the image into foreground (i.e the object) and

background. The segmentation obtained should be accurate and its shape should

resemble that of the object. For example, Fig. 1.2(a) shows some images of cows.

Their corresponding segmentations are shown in Fig. 1.2(b).

Motivation: Object category specific image segmentation finds several appli-

cations, e.g.

• Automatic Photo Editing – Software such as Photoshop allows the user

to segment objects (such as their pets) from images using manual inter-

action. However, the widespread availability of cameras has ensured that

1The term object category (or object class) refers to a collection of objects which can be

described by a single noun, e.g. cows or horses. We use this term to imply a visual object

category as opposed to a functional one.

5

1.1. Optimization for Computer Vision

(a)

(b)

Figure 1.2: Examples of object category specific image segmentation. (a) Four

images containing an instance of the object category ‘cow’. (b) The segmentation

of the images in (a) into foreground and background.

even personal collections contain thousands of photographs. For such col-

lections, manual interaction is no longer an attractive option and should to

be substituted with automatic object category specific segmentation.

• Assisting Special Effects in Movies – Animated characters in movies are

introduced by replacing proxy human actors with avatars. This requires

the segmentation of a large number of frames (called rotoscoping), which

is currently done manually. Automatic segmentation of proxy actors from

frames would offer a more time and cost effective alternative.

• Improving Chroma-Keying – Imposing a synthetic background in tv video

(e.g. weather telecast) is usually done using chroma-keying, where the broad-

caster stands in front of a blue or green screen and a matte is pulled by

background subtraction. However, chroma-keying can easily go wrong due

to colour bleeding. The errors in segmentations can be greatly reduced by

encouraging its shape to resemble that of a human.

• Interleaved Object Recognition and Segmentation – A good segmentation

has been shown to greatly facilitate the localization of the object in the

image. Object localization is the first step towards many applications such

as surveillance and content based image and video retrieval.

Challenges: When addressing the problem of object category specific image

segmentation, we must consider the following difficulties:

• Computer Vision – The shape and appearance of an object category varies

greatly from one instance to the other. Further, articulated object category

may also differ significantly in their poses in two images (see Fig. 1.2). Parts

6

1.2. Optimization for Machine Learning

of the object may also be occluded (i.e. either self-occlusion or occlusion

from background). A good segmentation approach should be able to handle

these variations and drive the shape of the segmentation to look like an

object.

• Machine Learning – Similar to motion segmentation, the problem of object

category specific image segmentation is also very large scale. For example,

consider the task of detecting an instance of the object (required for seg-

mentation) in a given image of size l × b. If the object is made up of n

parts, each of which can be in one of h poses, then an exhaustive search

would detect the object in O(nh) time. Since the typical value of h is ap-

proximately O(lb), exhaustive search would be computationally infeasible

even for small image sizes such as l = 320 and b = 480. Similarly, the seg-

mentation itself would require O(2lb) time. A useful segmentation approach

should overcome these deficiencies using efficient inference algorithms (such

as those proposed in [23] for object detection and [13] for segmentation).

1.2. Optimization for Machine Learning

We now describe a fundamental problem in Machine Learning. We will postpone

describing the notation associated with this problem to the next chapter, and

provide a simpler graph theoretic formulation here as follows.

1.2.1 A Graph Theoretic Problem

Consider a graph G = {V,E}, where V = {V0, V1, · · · , Vn−1} is a set of n vertices

and E is a set of edges. For such a graph, we can define a colouring as an

assignment of one colour to each vertex from a given set of h possible colours.

Associated with each colouring is a cost which consists of two types of terms

(provided as input to the problem):

• A unary cost for assigning a colour i to Va, for each vertex Va ∈ V.

• A pairwise cost for assigning colours i and j to Va and Vb respectively, for

each pair of vertices (Va, Vb) ∈ E.

As an example, consider the graph shown in Fig. 1.3 whose vertices can be

coloured blue (with a unary cost of 1) or red (with a unary cost of 2). Sup-

pose also that the pairwise cost for any pair of vertices (Va, Vb) ∈ E is 0 if they

are assigned the same colour, and 1 otherwise. For this case, Fig. 1.3 shows 4 of

the 32 possible labellings, along with their costs. The aim of the problem is to

obtain the colouring with the minimum cost.

7

1.2. Optimization for Machine Learning

Cost=5 Cost=10 Cost=8 Cost=12

Figure 1.3: Four possible colourings of a graph consisting of five vertices and six

edges. The total cost is shown below the corresponding colouring. Clearly, the

first colouring has the minimum cost among of all 32 possible colourings, and

hence is the solution of our problem.

The above minimum cost colouring problem has a similar flavour to some of

the fundamental problems in theoretical Computer Science, e.g. maxcut [31],

multi-way cut [21], metric labelling [15, 42] and 0-extension [15, 39]. Further, it

is well-known that solving a general instance of the minimum cost colouring prob-

lem (i.e. for a given graph G and some cost function) is extremely hard, especially

for graphs with a large number of vertices. For this reason, computer scientists

find this problem very interesting, and have devoted a vast amount of literature

to developing approximate approaches for solving it. However, we note that the

importance of the above problem goes beyond pure theoretical inquisitiveness.

Specifically, it is very closely related to the problem of maximum a posteriori

(map) estimation of a probabilistic model. For now, it is sufficient to note that

map estimation plays a central role in many Computer Vision problems (includ-

ing motion segmentation and object category specific segmentation). When we

describe map estimation and its applications in detail, we hope the reader would

easily be able find the analogy between the two problems.

1.2.2 How Should I Solve It?

As mentioned earlier, the minimum cost colouring problem (and the related map

estimation problem) is, in general, extremely hard to solve exactly1. When we are

faced with the task of solving it, one approach that we can adopt is to employ a

previously proposed approximation algorithm. Some natural questions that arise

now are, “Which algorithm would give me the best solution?” and “How quickly

can I solve this algorithm?”.

The task of answering the first question is made difficult by the presence of

(seemingly) disconnected algorithms in the literature, which are hard to compare

against each other (e.g. the min-sum bp and the st-mincut algorithms described

1We note however that some instances of this problem may offer themselves to computa-

tionally feasible methods, as will be seen in the next chapter.

8

1.3. Contributions

in the next chapter). However, by restricting ourselves to approaches that share

some common features, we can hope to make substantial progress in this direction.

For this work, we will consider a subclass of algorithms which relax (i.e. ap-

proximate) the map estimation problem to an easy-to-solve Mathematical Opti-

mization Problem. Such algorithms are referred to as relaxations. Specifically,

we will study the relaxations proposed in [17, 51, 55, 64, 75, 79, 101]. We can

now simplify our earlier questions to, “Which relaxation would give me the best

solution?” and “How quickly can I obtain the solution of this relaxation?”. These

two questions will be the focus of the second part of the thesis.

1.3. Contributions

Our contributions can be broadly divided in two areas, Computer Vision and

Machine Learning.

1.3.1 Computer Vision

Motion Segmentation: We formulate the problem of motion segmentation

using a novel probabilistic model. This model explicitly incorporates the effects of

occlusion and changes in appearance due to lighting and motion blur. We present

a method which automatically determines the number of rigidly moving segments

present in a given video and obtains their shape, appearance and transformations

for each frame. An initial estimate of the model is obtained by improving the

efficiency of a well-known algorithm. In order to refine the initial estimate, we

use the observation that the probability of the model can be increased using a

computationally feasible approach.

Object Category Specific Image Segmentation: We extend the previously

used probabilistic model for image segmentation (which provides bottom-up infor-

mation) by combining it with an object category model (which provides top-down

information about the shape of the object). Samples of the object category model

are found by efficiently matching it to the given image. The desired segmentation

is obtained by using the observation that samples of the object category model

can be quickly marginalized within the em framework [30].

1.3.2 Machine Learning

Analysis of Relaxations: We present a theoretical analysis of some previously

proposed relaxations. We clearly specify a criterion for comparing relaxations.

Using this criterion, we show that the equivalent relaxations of [17, 51, 101], first

presented in 1998 and closely related to the work of Schlesinger [79] in 1976,

9

1.4. Outline of the Thesis

provide a better approximation than the recently proposed relaxations of [55, 64,

75]. We extend this result by presenting a large class of relaxations which are

guaranteed not to be better than the approach of [17, 51, 79, 101]. Based on this

analysis, we propose two new and more accurate relaxations. It is worth noting

that our results are applicable for all problems related to map estimation, e.g.

maxcut, multi-way cut, metric labelling and 0-extension.

Efficient Algorithms for Relaxations: Our novel relaxations can be solved

only for small probabilistic models using standard softwares for optimization

(which is equivalent to considering a small number of vertices for the graph the-

oretic problem in § 1.2.1). However, in areas like Computer Vision, it is common

to have very large probabilistic models (equivalent to hundreds of thousands of

vertices). In order to address this deficiency, we develop novel iterative algorithms

which are guaranteed to converge. These algorithms allow us to empirically verify

our theoretical analysis of relaxations.

1.4. Outline of the Thesis

Chapter 2 describes the framework of probabilistic models and their role in Com-

puter Vision. Specifically, it shows how the solution to many Computer Vision

problems can be obtained by answering the queries that arise naturally in this

framework (e.g. map estimation which is closely related to the minimum cost

colouring problem described in § 1.2.1). We also provide details of some previ-

ously proposed algorithms for (approximately) obtaining the desired solution. In

chapter 3 we present an alternative formulation of the map estimation problem,

which allows us to specify the exact form of the some previous relaxations (that

were briefly mentioned in § 1.2.2).

In chapters 4 and 5 we consider two problems of Computer Vision (i.e. motion

segmentation and object category specific image segmentation respectively) and

provide an overview of the relevant literature. We show how the two problems

can be formulated within the framework of probabilistic models. In order to solve

these problems, we propose some novel extensions of the algorithms described

in chapter 2. We provide comparisons with the state of the art methods and

demonstrate significant improvements.

In chapter 6 we present an analysis of previously proposed relaxations. In

particular, we identify the relaxation which is best suited for the problem of

map estimation. This analysis leads us to propose two new and more accurate

relaxations. The question of how to solve these new relaxations efficiently is

answered in chapter 7. Specifically, we present convergent iterative algorithms

to obtain the solution of these relaxations. We test these algorithms using both

synthetic and real data, and show that the empirical results conform with the

10

1.5. Publications

theoretical analysis of chapter 6.

1.5. Publications

Part of the work described here has previously appeared as the following publi-

cations.

• Chapter 4

– M. Pawan Kumar, P.H.S. Torr and A. Zisserman. Learning Layered

Pictorial Structures from Video. ICVGIP, 2004.

– M. Pawan Kumar, P.H.S. Torr and A. Zisserman. Learning Layered

Motion Segmentations of Video. ICCV, 2005.

– M. Pawan Kumar, P.H.S. Torr and A. Zisserman. Learning Layered

Motion Segmentations of Video. To appear in IJCV, 2007.

• Chapter 5

– M. Pawan Kumar, P.H.S. Torr and A. Zisserman. Extending Pictorial

Structures for Object Recognition. BMVC, 2004.

– M. Pawan Kumar, P.H.S. Torr and A. Zisserman. Obj Cut. CVPR,

2005.

– M. Pawan Kumar, P.H.S. Torr and A. Zisserman. An Object Cate-

gory Specific MRF for Segmentation. Towards Category-Level Object

Recognition, 2006.

• Chapter 6

– M. Pawan Kumar, V. Kolmogorov and P.H.S. Torr. An Analysis of

Convex Relaxations for MAP Estimation. NIPS, 2007.

• Chapter 7

– M. Pawan Kumar and P.H.S. Torr. Efficiently Solving Convex Relax-

ations for MAP Estimation. Oxford Brookes Technical Report, 2007.

11

Chapter 2

Probabilistic Models and

Inference Algorithms

12

2.1. The Labelling Problem

Many tasks in Computer Vision can be viewed as labelling problems. Given some

observed data D, the objective of the labelling problem is to classify a set of

random variables v = {v0, v1, · · · , vn−1} by assigning one label to each variable

from the set l = {l0, l1, · · · , lh−1}. Note that we have assumed a finite and discrete

label set. Although this is not generally true, many applications use, or can be

approximated using, a discrete set of labels. In this work, we will mainly focus

on optimization based approaches for such applications.

A particular labelling of the random variables v can be represented by a

function f whose domain corresponds to the indices of the random variables and

range corresponds to the indices of the label set, i.e.

f : {0, 1, · · · , n− 1} → {0, 1, · · · , h− 1}. (2.1.1)

In other words, a labelling specifies that a random variable va ∈ v takes a label

lf(a) ∈ l. In general we wish to obtain a labelling (or a set of labellings) which

satisfies some criterion (e.g. it maximizes the joint probability of the labelling

and the data).

The ability of the labelling problem to provide a unified framework for several

applications makes it of fundamental importance to the community. In order to

illustrate this, let us formulate some applications as labelling problems. We begin

by considering the task of detecting an instance of an object class of interest (e.g.

cows) in a given image D. The object class is modelled using a set of parts. For

example, a cow can be modelled using ten parts (the head, the torso and the

eight half-limbs) as shown in Fig. 2.1(a). In order to model object detection as a

labelling problem, we define the random variables v and the label set l as follows.

• Each random variable va ∈ v corresponds to one part of the object class

model (e.g. the head or the torso).

• Each label li = {xi, yi, φi, ρi} ∈ l represents a putative pose of the part in

the image D, where (xi, yi) is the location of the part in the image, φi is

the orientation of the part and ρi is its scale.

Clearly, any labelling f defined using the above random variables and labels

provides a localization of the object in the given image. The problem of object

detection can then be viewed as obtaining a desirable labelling. Broadly speaking,

a desirable labelling f should satisfy the following conditions:

• The appearance of an object part va should conform with the image data

at pose lf(a).

13

2.1. The Labelling Problem

(a) (b)

Figure 2.1: (a) An example parts-based model for the object class ‘cow’. The

outlines show the shape of each part. The solid black lines show their orientation.

The length of these black lines indicates the scale of each part. The solid grey lines

which connect different parts indicate that the location of these parts should form

a valid configuration. (b) Using the model shown in (a), the object is localized in

a given image D. The detected parts are shown overlaid on the image.

• The boundary of an object part va in pose lf(a) should lie on the edges of

the image.

• The parts form a valid spatial configuration (e.g. the head and the torso of

a cow are adjacent or the legs of the cow are located beneath the torso).

Fig. 2.1(b) shows a cow that has been detected in a given image by obtaining a

desired labelling using the parts-based model in Fig. 2.1(a).

In the above application the number of random variables n is typically quite

small (e.g. n = 10 for cows) while the number of labels h is large (e.g. the work

described in [23] uses thousands of labels). In contrast our next example, namely

interactive binary image segmentation [13], is defined using a large number of

random variables and only 2 labels. In this application, the user provides a set

of foreground and background seed pixels for a given image D. These seed pixels

can be used to learn a foreground and background appearance model. The aim of

the application is then to partition the pixels of the image into foreground pixels

and background pixels. This task can be formulated as a labelling problem over

random variables v and label set l as follows.

• Each random variable va ∈ l corresponds to one pixel a of the given image

D.

• The label set consists of two labels, i.e. l = {l0, l1} where l0 represents the

foreground and l1 represents the background.

A labelling f using the above random variables and labels specifies a segmentation

of the image D. Thus the task of interactive binary image segmentation can be

seen as that of obtaining a desirable labelling, where a desirable labelling satisfies

the following conditions.

• The labels lf(a) of variables va conform with the appearance models.

14

2.2. Random Field Models

(a) (b)

Figure 2.2: Two examples for interactive binary segmentation. The red and blue

lines show the foreground and background seed pixels provided by the user. The

blue region shows the pixels corresponding to the random variables which take the

label l1. The remaining pixels belong to the foreground. Image courtesy: Yuri

Boykov.

• The boundary of the resulting segmentation lies on image edges.

• The segmentation is smooth (i.e. it is spatially continuous and free of speck-

les).

Fig. 2.2 shows some examples of the image segmentations obtained by computing

a desired labelling.

Note that in the above two applications, we have only provided a qualitative

description of the desired labelling. While this is sufficient to show the importance

of the labelling problem, it does not provide us with a concrete methodology to

model Computer Vision applications. In order to address this issue, we now

move on to a more quantitative description which specifies either (i) the joint

probability of the labelling f and the data D (denoted by Pr(f,D)); or (ii) the

conditional probability of f given D (denoted by Pr(f |D)). It is common practice

to represent the above mentioned distributions using probabilistic models [7, 65].

In general, a particular distribution can be compactly represented using several

different probabilistic models (e.g. Bayesian networks or factor graphs, see [114]).

In this work, we use the random field models described in the next section.

2.2. Random Field Models

A random field model specifies a neighbourhood relationship between the variables

v. Let Na ⊂ {0, 1, · · · , n− 1} represent the neighbourhood of a random variable

va such that b ∈ Na if, and only if, vb is a neighbour of va. In this work, we are

particularly interested in two types of random field models: (i) Markov random

field; and (ii) conditional random field.

15

2.2. Random Field Models

(a) (b)

Figure 2.3: Examples of mrf. The unfilled circles denote the variables v while the

filled circles represent the observed data D. (a) mrf consisting of cliques of size

two (formed by a variable and the corresponding observed node) and three (formed

by three variables {va, vc, vd} or {va, vb, vd}). (b) A pairwise mrf (i.e. with cliques

of size two). The pairwise potentials are associated with the connections between

neighbouring variables va and vb while the unary potentials correspond to the

connections between the variable va and the corresponding observed data Da.

2.2.1 Markov Random Fields

A Markov random field (mrf) models the joint probability Pr(f,D) of the la-

belling f and the data D. This joint probability is equal to the product of the

likelihood and the prior probabilities corresponding to the labelling f , i.e.

Pr(f,D) = Pr(D|f) Pr(f). (2.2.1)

A random field modelling the above joint distribution is said to be Markovian if

the prior distribution Pr(f) satisfies the following constraint [41]:

Pr(f(a)|f({0, 1, · · · , n− 1} − {a})) = Pr(f(a)|f(Na)), ∀a, (2.2.2)

where f(S) for any set S is defined as f(S) = {f(b)|b ∈ S}. In other words, the

prior probability of assigning a label to va depends only on the labelling of its

neighbours defined by Na.

The Hammersley and Clifford theorem [6] allows us to represent the joint

distribution Pr(f,D) of an mrf in closed form as follows. Let C be the set of

cliques formed by the neighbourhood relationship of the mrf. Associated with

each clique C ∈ C is a potential θC;f(C) such that

Pr(f,D|θ) =
1

Z(θ)

∏

C∈C
exp(−θC;f(C)), (2.2.3)

where for completeness we have introduced the term θ in the lhs which denotes

the parameters of the mrf (i.e. the clique potentials θC;f(C)). The term Z(θ) is

16

2.2. Random Field Models

a normalization constant (called the partition function) which ensures that the

probabilities sum to one, i.e.

Z(θ) =
∑

f

∏

C∈C
exp(−θC;f(C)). (2.2.4)

The graphical model representation [7, 65] of an mrf is defined by undirected

edges between two types of nodes: (i) observed nodes Da which represent the

data and are denoted by filled circles; and (ii) hidden nodes va, i.e. the random

variables, which are denoted by unfilled circles. The undirected edges can also

be classified into two types: (i) those that connect each random variable va to its

corresponding observed node Da, thereby forming a clique of size 2; and (ii) those

that connected va with its neighbours Na, thereby forming cliques of arbitrary

size. Fig. 2.3 shows two examples of graphical models of mrf.

In this work, we are particularly interested in pairwise mrf (also known as

second-order mrf1), i.e. mrf with cliques of size two. Although this seems re-

strictive, it can be shown that all probabilistic models which represent the joint

distribution Pr(f,D) (including mrfs with arbitrary size cliques) have an equiv-

alent pairwise mrf formulation [114].

In order to represent a pairwise mrf, we define a set E such that (a, b) ∈ E if,

and only if, b ∈ Na, i.e. E consists of the set of all pairs of neighbouring variables.

The distribution specified by a pairwise mrf defined on n random variables is

then given by

Pr(f,D|θ) =
1

Z(θ)

∏

a

exp(−θ1
a;f(a))

∏

(a,b)∈E
exp(−θ2

ab;f(a)f(b)), (2.2.5)

where θ1
a;f(a) and θ2

ab;f(a)f(b) are called unary and pairwise potentials respectively.

The superscripts 1 and 2 indicate that the unary potential depends on the label

of one random variable at a time while the pairwise potential depends on the

labels of two neighbouring random variables. The energy of a labelling f with

respect to the mrf is defined as

Q(f,D; θ) =
∑

a

θ1
a;f(a) +

∑

(a,b)∈E
θ2

ab;f(a)f(b). (2.2.6)

Clearly the probability of a labelling can be written in terms of its energy as

Pr(f,D|θ) =
1

Z(θ)
exp(−Q(f,D; θ)). (2.2.7)

Fig. 2.3(b) shows an example graphical model of a pairwise mrf. Note that the

terms θ1
a;f(a) define the potentials for the cliques formed by an observed node

1Besag [6] used order for specifying the neighbourhood. However, using order for clique size

is more appropriate due to the relationship of random fields with the work on Pseudo-Boolean

Optimization [11] where clique size is related to the order of the pseudo-boolean polynomial

than represents the mrf.

17

2.2. Random Field Models

and a hidden node, i.e. they depend on the data. In contrast, θ2
ab;f(a)f(b) are the

potentials for cliques formed by joining two neighbouring hidden nodes and hence,

they do not depend on the data.

Many applications in Computer Vision can be modelled using the mrf frame-

work. In order to illustrate this, let us consider the two examples discussed in

the previous section.

Example 1: For object class detection using a parts-based model, the neigh-

bourhood relationship E is usually chosen to define a tree structured mrf2 as

in [23] or a complete graph3 as in [25]. The unary potential θ1
a;f(a) represents the

negative log likelihood of the part va being assigned a label lf(a). For example,

the unary potential can be measured as the chamfer distance between the shape

exemplar of the part and the edge map of the image at pose lf(a). The pairwise

potentials can be described using a non-regular Potts model4 as follows:

θ2
ab;f(a)f(b) =

{

κ1 if lf(a) and lf(b) form valid configuration,

κ2 otherwise,
(2.2.8)

where (a, b) ∈ E and κ1 < κ2. From equation (2.2.5) we see that the pairwise

potentials favour a labelling which specifies the poses of the parts to form a

valid configuration (since this reduces the energy, thereby increasing the joint

probability Pr(f,D|θ)). Valid configurations can be defined strictly (e.g. distance

between head and torso should be between 100 and 120 pixels) or leniently (e.g.

head and torso should be adjacent to each other). Note that while the unary

potentials depend on the observed data D, the pairwise potentials are defined

independent of the data. The above mrf model provides the probability of the

object at any pose using equation (2.2.5).

Example 2: In the case of interactive binary image segmentation, the neigh-

bourhood is usually specified to form a grid mrf (i.e. E defines a 4 or 8 neigh-

bourhood). The unary potential θ1
a;f(a) of a variable va taking a label lf(a) is the

negative log likelihood of the rgb value Da under the appearance models learnt

from the seed pixels. For example, consider the image shown in Fig. 2.4(a) where

the filled rectangles indicate the seed pixels provided by the user. If the fore-

ground and background appearance models are represented by rgb histograms

2The neighbourhood relationship E is said to define a tree structured random field if the

hidden nodes in the graphical model form a connected, acyclic graph.
3The neighbourhood relationship E is said to define a complete graph mrf if (a, b) ∈ E for

all va, vb ∈ v, a 6= b.
4Note that in the Potts model the value of the pairwise potential θ2

ab;f(a)f(b) is κ1 if, and

only if, lf(a) = lf(b) and κ2 otherwise. We use the term non-regular Potts model to mean any

pairwise potential function defined over random variables va and vb and |l| > 2 labels which

can take only one of two values depending on the labels lf(a) and lf(b).

18

2.2. Random Field Models

(a) (b) (c)

Figure 2.4: (a) An example image. The red and blue rectangles show the fore-

ground and background seed pixels respectively which are provided by the user. (b)

The ratio θa;1

θa;0
for each variable va. Brighter pixels indicate variables for which

θa;0 < θa;1, i.e. variables which are more likely to belong to the foreground. (c)

The ratio (2.2.18) for each variable va specified by the pairwise potentials of the

crf formulation. The brighter pixels, which correspond to image edges, indicate

the variables which are more likely to belong to the boundaries of the segmentation.

(Hf for foreground and Hb for background), then the ratio of the unary potentials

θ1
a;1

θ1
a;0

=
− log p(Da|Hb)

− log p(Da|Hf)
, (2.2.9)

for all variables va is shown in Fig. 2.4(b). Note that the brighter pixels indicate

the random variables that are more likely to be assigned to the foreground. In or-

der to encourage continuous segmentation, the pairwise potentials can be defined

using an Ising model5 as

θ2
ab;f(a)f(b) =

{

κ1 if f(a) = f(b),

κ2 otherwise,
(2.2.10)

where (a, b) ∈ E and κ1 < κ2. In other words, the data independent pairwise

potentials encourage two neighbouring variables va and vb to take the same label.

2.2.2 Conditional Random Fields

Often in Computer Vision applications we would like to use pairwise potentials

which are data dependent. For example, in interactive binary segmentation, if

two neighbouring pixels a and b differ greatly in their rgb values then they are

likely to belong to different segments. Hence, the energy function should not be

heavily penalized for assigning them different labels. This can be achieved by

defining the value of the pairwise potential θ2
ab;f(a)f(b), where f(a) 6= f(b), which

5The Ising model is a special case of the Potts model which is defined using |l| = 2 labels

such that θ2
ab;ii < θ2

ab;ij where i 6= j.

19

2.2. Random Field Models

depends on the difference between the rgb values Da and Db (i.e. the pairwise

potentials are data dependent).

A probabilistic model which allows us to use data dependent pairwise poten-

tials is the conditional random field (crf) [56]. crf is a discriminative framework

(unlike the generative mrf framework [7]) which models the conditional proba-

bility Pr(f |D). The conditional distribution is assumed to satisfy the Markovian

property, i.e.

Pr(f(a)|f({0, 1, · · · , n− 1} − {a}),D) = Pr(f(a)|f(Na),D). (2.2.11)

Once again, we are mainly interested in the pairwise crf model. According to the

Hammersley-Clifford theorem [6], the distribution Pr(f |D) specified by a pairwise

crf can be written in closed form as

Pr(f |D, θ) =
1

Z(θ)

∏

a

exp(−θ1
a;f(a))

∏

(a,b)∈E
exp(−θ2

ab;f(a)f(b)), (2.2.12)

where θ1
a;f(a) and θ2

ab;f(a)f(b) are the unary and pairwise potentials respectively

which depend on the data. The partition function Z(θ) ensures that the proba-

bility distribution is normalized, i.e.

Z(θ) =
∑

f

∏

a

exp(−θ1
a;f(a))

∏

(a,b)∈E
exp(−θ2

ab;f(a)f(b)). (2.2.13)

The parameter θ of the crf has been introduced in the lhs for completeness.

Note that we have used similar notation for both mrf and crf. However, the

nature of the random field would be clear from context.

The energy of a labelling f for given crf (denoted by Q(f ;D)) is defined as

Q(f ;D, θ) =
∑

a

θ1
a;f(a) +

∑

(a,b)∈E
θ2

ab;f(a)f(b). (2.2.14)

Similar to mrf, the posterior probability of a labelling can be written in terms

of its energy as

Pr(f |D, θ) =
1

Z(θ)
exp(−Q(f ;D, θ)). (2.2.15)

Example: In order to illustrate the advantage of the crf model over mrf,

let us return to the case of interactive binary segmentation. Since the pairwise

potentials are now data dependent, we can define them as follows:

θ2
ab;f(a)f(b) =

{

κ1 if f(a) = f(b),

κ2 − γ(a, b) otherwise,
(2.2.16)

where κ1 < κ2 and the function γ(·, ·) is chosen to encourage the boundary of the

segments to lie on image edges. Following [13], we choose

γ(a, b) = λ

(

1− exp

(−∆2(a, b)

2σ2

)

1

dist(a, b)

)

. (2.2.17)

20

2.3. Inference

Here, ∆(a, b) measures the difference in the rgb values Da and Db and dist(a, b)

is the Euclidean distance between pixels a and b. The parameter λ is the relative

weight given to the term γ(a, b) compared to the term κ2. The parameter σ

determines how much is subtracted from the pairwise potential θ2
ab;f(a)f(b) when

f(a) 6= f(b), as γ(a, b) is small when ∆(a, b) < σ and large when ∆(a, b) > σ.

In order to obtain good segmentations, σ should be sufficiently large to allow for

variation in the rgb values within a segment. Fig. 2.4(c) shows the ratio

∑

b,(a,b)∈E θ
2
ab;00 + θ2

ab;11
∑

b,(a,b)∈E θ
2
ab;01 + θ2

ab;10

(2.2.18)

for all variables va using the following parameter setting: κ1 = 1, κ2 = 2.2, λ = 1

and σ = 5. Note that since θ2
ab;f(a)f(b) is a constant when f(a) = f(b) for all

neighbouring variables va and vb, the above ratio would be large for a variable va

when θ2
ab;f(a)f(b), f(a) 6= f(b), has a small value for all (a, b) ∈ E . In other words

the brighter pixels in Fig. 2.4(c), which correspond to image edges, indicate the

variables va which are more likely to lie on the segmentation boundary. Clearly,

the pairwise potentials of crf (in Fig. 2.4(c)) are more informative for the task

of interactive binary image segmentation than the data independent pairwise

potentials specified by the mrf formulation.

2.3. Inference

Models such as an mrf or a crf can be used when performing inference, i.e.

providing answers to probabilistic queries. We now describe three types of infer-

ence problems using a toy example for illustration. We assume the probabilistic

model to be a crf while noting that similar problems can be defined for the mrf

framework.

2.3.1 Maximum A Posteriori Estimation

The problem of maximum a posteriori (map) estimation is to find the labelling

with the maximum posterior probability. Formally, it requires us to find the

labelling f∗ such that

f ∗ = arg max
f

Pr(f |D, θ)

= arg max
f

1

Z(θ)

∏

a

exp(−θ1
a;f(a))

∏

(a,b)∈E
exp(−θ2

ab;f(a)f(b)). (2.3.1)

Note that in the above equation Z(θ) is a constant and can be ignored during the

maximization. This implies that the map labelling can be obtained by minimizing

21

2.3. Inference

Figure 2.5: An example crf consisting of four variables (shown as circles) each

of which can take one of two possible labels l0 and l1 (represented as a trellis on

top of the variables). The unary and pairwise potentials corresponding to the crf

are also shown. For example, θ1
a;0 = 5 and θ2

bc;01 = 3.

f(a) f(b) f(c) f(d) Energy Probability

0 0 0 0 18 0.0048

0 0 0 1 15 0.0971

0 0 1 0 27 5.961e-07

0 0 1 1 20 0.0006

0 1 0 0 22 8.847e-05

0 1 0 1 19 0.0018

0 1 1 0 27 5.961e-07

0 1 1 1 20 0.0006

1 0 0 0 16 0.0357

1 0 0 1 13 0.7169

1 0 1 0 25 4.405e-06

1 0 1 1 18 0.0048

1 1 0 0 18 0.0048

1 1 0 1 15 0.0971

1 1 1 0 23 3.254e-05

1 1 1 1 16 0.0357

Table 2.1: Energies and probabilities of all 16 possible labellings of the crf shown

in Fig. 2.5. The energies are computed using equation (2.2.14) and the probabil-

ities are found using equation (2.2.15). The partition function Z(θ) required in

equation (2.2.15) is computed using equation (2.2.13). For this crf parameter

θ, Z(θ) = 3.153e− 06.

22

2.3. Inference

the energy function Q(·;D), i.e.

f ∗ = arg min
f
Q(f ;D, θ)

= arg min
f

∑

a

θ1
a;f(a) +

∑

(a,b)∈E
θ2

ab;f(a)f(b). (2.3.2)

Fig. 2.5 shows an alternative graphical model representation of a crf which

consists of four random variables v = {va, vb, vc, vd}. Each of these random

variables is represented by a hidden node (i.e. an unfilled circle) in the figure.

The putative labels l = {l0, l1} for a random variable are shown as trellises (i.e.

the vertical lines) on top of the corresponding hidden node. In other words, each

branch of a trellis (shown as a horizontal line) represents one of the labels in the

set l. Note that the observed nodes are not shown for the sake of clarity of the

figure. This representation allows us to compactly define the unary and pairwise

potentials associated with the crf. Specifically, the unary potential θ1
a;i is shown

next to the ith branch of the trellis on top of the hidden node va. For example

according to Fig. 2.5, θ1
a;0 = 5 and θ1

a;1 = 2. The pairwise potential θ2
ab;ij is shown

next to the edge joining the ith and jth branches of the trellises corresponding

to hidden nodes va and vb respectively. For example in Fig. 2.5, θ2
ab;00 = 0 and

θ2
ab;01 = 1.

Table 2.1 lists the energies and the probabilities of all possible labellings cor-

responding to this crf. The values of the energies and the probabilities are

computed using equations (2.2.14) and (2.2.15) respectively. Consider the la-

belling {0, 1, 1, 0} of the crf in Fig. 2.5. The energy of this labelling is given

by

Q({0, 1, 1, 0}|D, θ) = θ1
1;0 + θ1

2;1 + θ1
3;1 + θ1

4;0 + θ2
12;01 + θ2

23;11 + θ2
34;10,

= 5 + 4 + 6 + 7 + 1 + 0 + 4 = 27. (2.3.3)

The corresponding probability is computed as

Pr({0, 1, 1, 0}|D, θ) =
1

Z(θ)
exp(−27) = 5.961e− 07, (2.3.4)

where Z(θ) is given by equation (2.2.13). Clearly the labelling f ∗ = {1, 0, 0, 1} is

the map estimate since it has the highest posterior probability (or equivalently

it has the lowest energy).

2.3.2 Computing Max-Marginals

Consider a labelling f which assigns a particular label, say li, to a random vari-

able va. The max-marginal probability1 of this assignment is defined as the maxi-

mum posterior probability over all such labellings f (i.e. over all f which satisfy

1Max-marginal probabilities are called so since their form is similar to the marginal proba-

bilities defined in the next section. We note, however, that max-marginal probabilities are not

obtained using marginalization.

23

2.3. Inference

Label Min-marginal energy Max-marginal probability

f(a) = 0 15 0.0971

f(a) = 1 13 0.7169

f(b) = 0 13 0.7169

f(b) = 1 15 0.0971

f(c) = 0 13 0.7169

f(c) = 1 16 0.0357

f(d) = 0 16 0.0357

f(d) = 1 13 0.7169

Table 2.2: Min-marginal energies and max-marginal probabilities for the crf

shown in Fig. 2.5 computed using equations (2.3.8) and (2.3.5) respectively.

f(a) = i). We denote the max-marginal probability of assigning label li to va as

pa;i(D, θ). The lower case ‘p’ is used to indicate the max-marginal probability is

not technically a probability distribution as it is not necessarily normalized. In

other words, for all particular variable va its max-marginal probabilities might

not sum to one. Formally, pa;i(D, θ) is given by the following equation:

pa;i(D, θ) = max
f,f(a)=i

Pr(f |D, θ)

=
1

Z(θ)
max

f,f(a)=i

∏

c

exp(−θ1
c;f(c))

∏

(c,d)∈E
exp(−θ2

cd;f(c)f(d)). (2.3.5)

For example, the max-marginal pa;1(D, θ) for the crf shown in Fig. 2.5 is the

maximum of the probabilities of the last eight labellings in table 2.1, i.e.

pa;1(D, θ) = max{0.0357, 0.7169, 4.405e− 06, 0.0048,

0.0048, 0.0971, 3.234e− 05, 0.0357}
= 0.7169. (2.3.6)

One can also define the max-marginal probability of assigning labels li and lj to

a pair of neighbouring random variables va and vb. We denote this max-marginal

probability as pab;ij(D, θ). Once again, the max-marginal probabilities of random

variables va and vb need not be normalized. Similar to equation (2.3.5), the max-

marginal probability pab;ij(D, θ) is given by

pab;ij(D, θ) = max
f,f(a)=i,f(b)=j

Pr(f |D, θ) (2.3.7)

=
1

Z(θ)
max

f,f(a)=i,f(b)=j

∏

c

exp(−θ1
c;f(c))

∏

(c,d)∈E
exp(−θ2

cd;f(c)f(d)).

In order to make the notation simpler, we will also denote the max-marginals

pa;i(D, θ) and pab;ij(D, θ) as pa;i and pab;ij respectively whenever it is clear which

crf parameter θ and data D are being used.

24

2.3. Inference

For every max-marginal probability, we can also define a min-marginal energy

(or simply min-marginal) as

qa;i(D, θ) = min
f,f(a)=li

Q(f ;D, θ) = min
f,f(a)=i

∑

c

θ1
c;f(c) +

∑

(c,d)∈E
θ2

cd;f(c)f(d),

qab;ij(D, θ) = min
f,f(a)=li,f(b)=lj

Q(f ;D, θ)

= min
f,f(a)=i,f(b)=j

∑

c

θ1
c;f(c) +

∑

(c,d)∈E
θ2

cd;f(c)f(d). (2.3.8)

Note that we use lower case ‘q’ so that the notation corresponds to the lower case

‘p’ used for max-marginal probabilities. For example, the min-marginal qa;1(D, θ)

for the crf shown in Fig. 2.5 is

qa;1(D, θ) = min{16, 13, 25, 18, 18, 15, 23, 16}= 13. (2.3.9)

Similar to max-marginals, we will also denote the min-marginal energies qa;i(D, θ)

and qab;ij(D, θ) as qa;i and qab;ij respectively whenever it is clear which crf and

data are being used. Table 2.2 lists all the min-marginal energies and max-

marginal probabilities corresponding to the variables of the crf shown in Fig. 2.5.

Max-marginals (and equivalently min-marginals) are closely related to the

problem of map estimation. Specifically, it can be shown that if a labelling f

satisfies the following:

pa;f(a)(D, θ) ≥ pa;i(D, θ), ∀va ∈ v, li ∈ l, (2.3.10)

pab;f(a)f(b)(D, θ) ≥ pab;ij(D, θ), ∀(a, b) ∈ E , li, lj ∈ l, (2.3.11)

then f is the map labelling of the crf. In other words, the map estimate of a

crf can be obtained by choosing a labelling f which provides the maximum max-

marginal (or equivalently the minimum min-marginals) for all va ∈ v and (a, b) ∈
E . Further, max-marginals and min-marginals can also be used to compute the

M most probable configurations of a crf [113].

2.3.3 Computing Marginals

In many applications, one might wish to compute the marginal probabilities. Sim-

ilar to max-marginal probabilities, these are defined for a particular assignment

(say label li) of a random variable va. The marginal probability (or simply

marginal) Pa;i(D, θ) of such an assignment is the sum of the posterior proba-

bilities of all labelling f such that f(a) = i. Formally, the marginals are given by

the following equation:

Pa;i(D, θ) =
∑

f,f(a)=i

Pr(f |D, θ) (2.3.12)

=
1

Z(θ)

∑

f,f(a)=i





∏

c

exp(−θ1
c;f(c))

∏

(c,d)∈E
exp(−θ2

cd;f(c)f(d))



 .

25

2.3. Inference

Label Marginals

f(a) = 0 0.10502

f(a) = 1 0.89498

f(b) = 0 0.85991

f(b) = 1 0.14009

f(c) = 0 0.95814

f(c) = 1 0.04186

f(d) = 0 0.04548

f(d) = 1 0.95452

Table 2.3: Marginals for the crf shown in Fig. 2.5.

For example, the marginal probability Pa;i(D, θ) for the crf shown in Fig. 2.5

can be computed as the sum of the probabilities of the last eight labellings in

table 2.1, i.e.

Pa;1(D, θ) = 0.0357 + 0.7169 + 4.405e− 06 + 0.0048

+ 0.0048 + 0.0971 + 3.234e− 05 + 0.0357

= 0.89498. (2.3.13)

It can easily be verified that the marginals of a particular variable va are nor-

malized. We choose to denote the marginal using upper case ‘P’ as they define

true probability distributions. One can also define the marginal probability of a

pair of neighbouring random variables va and vb being assigned labels li and lj
respectively as

Pab;ij(D, θ) =
∑

f,f(a)=i,f(b)=j

Pr(f |D, θ) (2.3.14)

=
1

Z(θ)

∑

f,f(a)=i,f(b)=j





∏

c

exp(−θ1
c;f(c))

∏

(c,d)∈E
exp(−θ2

cd;f(c)f(d))



 .

Note that, unlike map estimation, ignoring the partition function Z(θ) would

only compute the marginals up to a common scale factor. Table 2.3 lists all

the marginal probabilities (computed using equation (2.3.13)) corresponding to

the variables of the crf in Fig. 2.5. In order to make the notation simpler, we

will sometimes refer to the marginals Pa;i(D, θ) and Pab;ij(D, θ) as Pa;i and Pab;ij

respectively when there is no ambiguity regarding which parameter θ and data

D is being employed.

Marginals are very useful when one wishes to sample from the distribution

Pr(f |D). For example, see [23] for obtaining samples from the distribution of a

tree structured mrf. Further, it can be shown that the labelling f ∗ where each

label is given by

f ∗(a) = arg max
li∈l

Pa;i(D, θ) (2.3.15)

26

2.4. Algorithms for map Estimation

provides us with the minimum mean squared error (mmse) labelling [91].

Although the map estimate and the marginals can be easily computed for crfs

with small number of variables and labels (e.g. the one shown in Fig. 2.5), these

inference problems are generally np-hard2. However, given the central importance

of probabilistic models in many areas of Computer Science, several approximate

algorithms have been proposed in the literature. Next, we briefly describe some

such approaches starting with algorithms for map estimation.

2.4. Algorithms for map Estimation

The problem of map estimation for a given pairwise mrf/crf is central to ob-

taining the solution for many Computer Vision applications, e.g. interactive bi-

nary image segmentation, stereo reconstruction and image denoising [89]. Fur-

thermore, map estimation is closely related to several important Combinato-

rial Optimization problems such as maxcut [31], multi-way cut [21], metric la-

belling [15, 42] and 0-extension [15, 39].

Although the map estimation problem is np-hard in general, it is well-known

that it can be solved exactly in polynomial time for certain restricted cases.

For example, two such cases which are of interest to us are (i) tree structured

mrf/crf; and (ii) pairwise mrf/crf with submodular energy functions. While

the former case can be handled by a dynamic programming algorithm proposed

in [70], the latter case has been shown to be equivalent to the st-mincut problem

(which has several polynomial time algorithms) [33, 48, 78]. It seems natural,

therefore, to extend these methods to obtain approximate map labellings for a

general random field.

In this section, we will describe the approaches of [70] (for tree structured

random fields) and [48] (for submodular energy functions), and explore some of

their extensions that have been proposed in the literature. In the next chapter,

we present an alternative formulation of map estimation which allows us to obtain

approximate map labellings using Convex Optimization.

2.4.1 Min-Sum Belief Propagation

Min-sum belief propagation (min-sum bp) is an iterative message passing algo-

rithm proposed by Pearl [70] to solve the map estimation problem. At each

iteration, every random variable va passes messages to its neighbouring random

variables (one message per neighbour). The message that va passes to its neigh-

bour vb (denoted by mab) is a vector of length h = |l| whose jth element is given

2np-hard stands for Non-deterministic Polynomial-time hard and refers to a set of problems

for which no polynomial time algorithms are known. An approximate solution to these problems

is generally obtained by solving a related problem which has a polynomial time algorithm.

27

2.4. Algorithms for map Estimation

by

mab;j ←− min
li∈l



θ1
a;i + θ2

ab;ij +
∑

(a,c)∈E,c 6=b

mca;i



+ η1, (2.4.1)

where η1 is some constant which is used to prevent numerical overflow and un-

derflow. As can be seen from the above equation, the messages are defined using

the min and sum operations on the potentials and other messages. Hence, the

name min-sum bp. All messages are usually initialized to 0. The algorithm is

said to have converged when the rate of change of messages from one iteration to

the next falls below a certain threshold.

Upon convergence, min-sum bp provides us with approximate min-marginals

(called beliefs) for all random variables (a, b) ∈ E as

q′a;i ←− θ1
a;i +

∑

(a,c)∈E
mca;i + η2, (2.4.2)

where li ∈ l and η2 is some constant. It also provides us with beliefs for all pairs

of random variables va and vb, where (a, b) ∈ E , as

q′ab;ij ←− θ1
a;i + θ1

ab;j +
∑

(a,c)∈E,c 6=b

mca;i +
∑

(a,c)∈E,c 6=a

mcb;j + η2, (2.4.3)

The notation q′ indicates that the min-marginals obtained using min-sum bp need

not necessarily be exact. The beliefs computed in this manner can be used to

obtain an approximate map labelling f as

f(a) = arg min
li∈l

q′a;i. (2.4.4)

Min-sum bp was originally proposed for a tree structured random field where

it is guaranteed to provide the exact min-marginals within two iterations [70].

Using the relationship between min-marginals and map estimation (discussed

in section 2.3.2), it follows that min-sum bp also provides us the exact map

labelling in two iterations. In the first iteration (which we call the forward pass),

the messages are sent from the leaf nodes of the tree towards the root. In the

second iteration (called the backward pass), the messages are sent in the opposite

direction, i.e. starting from the root towards the leafs. Table 2.4 lists the messages

and the beliefs computed by the min-sum bp algorithm for the tree structured

crf shown in Fig. 2.5 (assuming va to be the leaf and vd to be the root). Note

that the min-marginals correspond exactly with those listed in table 2.2. Further,

the labelling f = {1, 0, 0, 1} obtained using equation (2.4.4) provides the exact

map estimate.

For a general random field (i.e. not necessarily tree structured), min-sum bp is

not guaranteed to converge. However, in practice it often provides a good estimate

of the map labelling, see e.g. [89]. Further, Weiss and Freeman [106] showed that

upon convergence min-sum bp provides the optimum labelling within a single-

cycle and tree neighbourhood. In other words, given the labelling f obtained

28

2.4. Algorithms for map Estimation

Forward Messages Backward Messages

mab;0 ← 3 mdc;0 ← 4

mab;1 ← 2 mdc;1 ← 4

mbc;0 ← 6 mcb;0 ← 8

mbc;1 ← 6 mcb;1 ← 9

mcd;0 ← 9 mba;0 ← 10

mcd;1 ← 10 mba;1 ← 11

Label Beliefs

f(a) = 0 q′a;0 ← 15

f(a) = 1 q′a;1 ← 13

f(b) = 0 q′b;0 ← 13

f(b) = 1 q′b;1 ← 15

f(c) = 0 q′c;0 ← 13

f(c) = 1 q′c;1 ← 16

f(d) = 0 q′d;0 ← 16

f(d) = 1 q′d;1 ← 13

Table 2.4: Forward and backward pass messages computed using min-sum bp for

the crf shown in Fig. 2.5. The messages are computed using equation (2.4.1)

with η1 = 0 for both passes. The beliefs computed using equation (2.4.2) are also

shown. Note that we use η2 = 0.

using min-sum bp, a labelling with higher probability (or lower energy) cannot

be obtained by changing the labels of only those variables which form a tree or a

single cycle.

2.4.2 Alternative Formulation of Min-Sum bp

We may sometimes find it convenient to use the alternative formulation of min-

sum bp which was proposed in [46]. Before providing the details of this formula-

tion, we must discuss the concept of reparameterization.

Reparameterization: Reparameterization (also known as equivalent transfor-

mations [79, 107]) plays a key role in many map estimation approaches (as will

be seen in later sections). A parameter θ is called a reparameterization of θ

(denoted by θ ≡ θ) if, and only if, the following holds true:

Q(f ;D, θ) = Q(f ;D, θ), ∀f. (2.4.5)

For example, it can easily be verified that the parameter θ given below is a

reparameterization of θ:

θ
1

a;i = θ1
a;i +

∑

(a,b)∈E Mba;i, (2.4.6)

θ
2

ab;ij = θ2
ab;ij −Mba;i −Mab;j , (2.4.7)

for all values of Mba;i and Mab;j .

Min-Sum bp as Reparameterization: In the context of min-sum bp, the

terms Mba;i and Mab;j which specify the reparameterization in equations (2.4.6)

and (2.4.7) can be viewed as the ith and the jth elements of the messages mba and

29

2.4. Algorithms for map Estimation

mab respectively (i.e. Mba;i = mba;i and Mab;j = mab;j). Formulated in this man-

ner, min-sum bp boils down to a series of reparameterizations. In other words,

instead of storing the original parameter θ and the messages at each iteration,

one can store the resulting reparameterized vector θ only. The algorithm is said

to converge when the rate of change in the reparameterized vector θ falls below

a certain threshold. The approximate map labelling f can then be obtained as

f(a) = max
li∈l

θ
1

a;i. (2.4.8)

The above formulation of min-sum bp retains the property of providing the

exact map labelling for tree-structured random fields in two iterations. It is worth

noting that at the end of the forward pass, the resulting reparameterized vector

θ would provide the exact min-marginal for the root variable. In other words, if

va is the root variable in a tree-structured random field, then

θ
1

a;i = qa;i, (2.4.9)

where qa;i is the exact min-marginal of va being assigned label li.

2.4.3 Graph Cuts

Algorithms based on graph cuts (more specifically st-mincut) are a popular tool

for map estimation in Computer Vision due to their speed and accuracy. Below,

we describe some such algorithms which are used in subsequent chapters. Before

we begin, we need the following definitions.

The st-mincut problem: This problem is defined using a positively weighted

directed graph G = {VG

⋃{s, t},EG, w}. Here VG denotes the set of vertices and

EG denotes the set of directed edges. The function w : EG → R
+ specifies the

weights of the edges (where R
+ denotes the set of non-negative real numbers)1.

The vertices s and t are special vertices called the terminals such that there are

no incoming edge to s (the source) and there are no outgoing edges from t (the

sink). Given such a graph G, a cut is defined as a partitioning of the vertices into

two disjoint sets V0
G and V1

G such that s ∈ V0
G and t ∈ V1

G. The cost of a cut

(denoted by C(V0
G,V

1
G)) is given by

C(V0
G,V

1
G) =

∑

Va∈V0
G

,Vb∈V1
G

w(Va, Vb), (2.4.10)

where w(Va, Vb) is the weight of edge from vertex Va to Vb. The problem of

st-mincut is to find the cut with the minimum cost. Several polynomial time

algorithms exist for solving the st-mincut problem, e.g. see [14].

1To be precise, the st-mincut problem is defined for graphs whose weights are non-negative

integers. However, since real numbers are quantized for storage in a computer, we will assume

the weights to be non-negative real numbers.

30

2.4. Algorithms for map Estimation

(a) (b)

Figure 2.6: (a) The graph construction for obtaining the map estimation of a

random field defined on two variables v = {va, vb}. Here P = θ2
ab;01+θ

2
ab;10−θ2

ab;00−
θ2

ab;11. Note that if the submodularity condition (2.4.12) is satisfied, then P ≥ 0.

The terms κ1 = min{0, |θ1
a;0|, |θ1

a;1 + θ2
ab;10 − θ2

ab;00|} and κ2 = min{0, |θ1
b;1|, |θ1

b;0 +

θ2
ab;10 − θ2

ab;11|} ensure that the remaining edges also have non-negative weights.

The st-mincut of this graph (and hence, the map estimate of the corresponding

random field) can be obtained in polynomial time. (b) The graph construction

in (a), together with the additivity theorem of [48], is used to obtain the graph

construction for the random field in Fig. 2.5.

Submodular Energy Functions: Several equivalent definitions of submodular

energy functions exist in the literature. Here, we will use the definition provided

in [78, 82]. The energy function Q(·;D, θ) of a crf (or Q(·,D; θ) for an mrf)

defined over variables v which take a label from set l is said to be submodular if

the following condition is satisfied for all (a, b) ∈ E :

θ2
ab;ii′ + θ2

ab;jj′ ≤ θ2
ab;ij′ + θ2

ab;ji′ , ∀i ≤ j, i′ ≤ j′, (2.4.11)

where li, lj, li′ , lj′ ∈ l.

We are now ready to describe the st-mincut based algorithm which provides

the exact map estimate for binary submodular energy functions.

Binary Submodular Energy Functions: The problem of obtaining the map

estimate of a submodular energy functions (for pairwise random fields) can be

mapped on to an equivalent st-mincut problem [78]. In this work, we are partic-

ularly interested in binary submodular functions which are defined using a label

set l = {l0, l1}. In this case, the submodularity condition defined above reduces

to

θ2
ab;00 + θ2

ab;11 ≤ θ2
ab;01 + θ2

ab;10, ∀(a, b) ∈ E . (2.4.12)

In order to illustrate the equivalence of map estimation for binary submodular

functions and st-mincut, let us consider a simple example where v = {va, vb}.
To obtain the map labelling of this random field, we define an st-mincut problem

over a graph G = {{Va, Vb}
⋃{s, t},EG, w}.

31

2.4. Algorithms for map Estimation

For every cut (V0
G,V

1
G) of the graph G, we can define a labelling f such that

f(a) =

{

0 if Va ∈ V0
G,

1 otherwise.

We would like to ensure that for every labelling f defined in this manner, the

following holds true:

Q(f ;D, θ) = C(V0
G,V

1
G) + κ, (2.4.13)

where κ is some constant which is independent of the labelling f . If we can

construct such a graph, it would follow that the labelling f ∗ corresponding to the

st-mincut would provide the map estimate of the random field. A method to

obtain the desired graph construction was proposed in [48]. Below, we provide

a brief description of the graph construction. For details, we refer the reader

to [48].

Recall that the st-mincut problem is defined using weights w : EG → R
+.

Hence the graph G, which we wish to construct, should contain only non-negative

edges. We achieve this in two stages. In the first stage, we reparameterize the

original parameter θ. As will be seen, this reparameterization allows us to con-

struct the desired graph G (i.e. one that does not contain any negative edges and

satisfies equation (2.4.13)) in the second stage.

We begin by defining the following reparameterization of the original param-

eter θ:

θ
1

a;0 = θ1
a;0 − θ2

ab;10 + θ2
ab;00 + θ2

ab;11, (2.4.14)

θ
1

a;1 = θ1
a;1 + θ2

ab;11, (2.4.15)

θ
1

b;0 = θ1
b;0 + θ2

ab;10 − θ2
ab;11, (2.4.16)

θ
1

b;1 = θ1
b;1, (2.4.17)

θ
2

ab;00 = θ
2

ab;10 = θ
2

ab;11 = 0, (2.4.18)

θ
2

ab;01 = θ2
ab;01 + θ2

ab;10 − θ2
ab;00 − θ2

ab;11. (2.4.19)

It can be easily verified that the parameter θ defined above is a valid reparame-

terization of θ since it satisfies equation (2.4.5). For example, consider the energy

of the labelling {1, 1} (i.e. f(a) = 1 and f(b) = 1) defined by θ, i.e.

Q({1, 1};D, θ) = θ
1

a;1 + θ
1

b;1 + θ
2

ab;11,

= θ1
a;1 + θ1

b;1 + θ2
ab;11,

= Q({1, 1};D, θ). (2.4.20)

Note that some of the unary potentials defined above may be negative. This

would lead to negative edges in the graph construction using the method of [48].

To avoid this problem (i.e. the negative edges), we consider the effect of adding

a constant to all the unary potentials θ1
a;i corresponding to a variable va. Since

32

2.4. Algorithms for map Estimation

every labelling f has to assign one and only one label to va, such an addition of

constant to θ1
a;i will result in adding the same constant to all labellings f . Hence,

this operation would not change the map estimate of a given random field (since

the constant is independent of the labelling f).

In our graph construction, we choose to add the terms θ2
ab;10−θ2

ab;00−θ2
ab;11+κ1

and κ2 to the unary potentials corresponding to va and vb respectively (i.e. to θ
1

a;i

and θ
1

b;i respectively). This would result in the following parameter θ̂:

θ̂1
a;0 = θ1

a;0 + κ1, (2.4.21)

θ̂1
a;1 = θ1

a;1 + θ2
ab;10 − θ2

ab;00 + κ1, (2.4.22)

θ̂1
b;0 = θ1

b;0 + θ2
ab;10 − θ2

ab;11 + κ2, (2.4.23)

θ̂1
b;1 = θ1

b;1 + κ2, (2.4.24)

θ̂2
ab;00 = θ̂2

ab;10 = θ̂2
ab;11 = 0, (2.4.25)

θ̂2
ab;01 = θ2

ab;01 + θ2
ab;10 − θ2

ab;00 − θ2
ab;11. (2.4.26)

Here, the constants κ1 and κ2 are chosen such that θ̂1
a;i ≥ 0 and θ̂1

b;i ≥ 0 for

both i = 0 and i = 1. The above parameter θ̂ can be easily represented using

a graph as shown in Fig. 2.6(a). Specifically, the unary potentials correspond to

weights of the edges between the terminals (i.e. the source s or the sink t) and

the vertices. For example, θ̂1
a;0 is the weight of the edge from Va to t while θ̂1

a;1

is the weight of the edge from s to Va. When f(a) = 0 (i.e Va ∈ V0
G), the edge

with weight θ̂1
a;0 contributes to the cost of the cut as desired. Similarly, when

f(a) = 1 (i.e. Va ∈ V1
G), the edge with weight θ̂1

a;1 is used for computing the cut.

The only non-zero pairwise potential in the above parameter θ̂ is θ̂2
ab;01, which is

non-negative by the definition of submodularity (see equation (2.4.12)). This is

represented by an edge between Va and Vb which only contributes to the cost of

the cut when f(a) = 0 and f(b) = 1 (as desired). Using the above observations,

the graph in Fig. 2.6(a) can be shown to satisfy equation (2.4.13).

The equivalent graph construction for an arbitrary set v of random variables

can be obtained by simply appending the graphs for all neighbouring pairs of

random variables (a, b) ∈ E (using the additivity theorem of [48]). For example,

the graph construction for the crf in Fig. 2.5 (which has a binary submodular

energy function) is shown in Fig. 2.6(b). Next, we describe two approximate

algorithms for non-submodular energy functions defined over labels l where |l| >
2.

The αβ-Swap Algorithm: The αβ-swap algorithm is an iterative procedure

for obtaining an approximate map estimate for a random field by solving a series

of st-mincut problems. It starts with an initial labelling f 0. At each iteration, it

considers a pair of labels lα and lβ together with the subset of variables vαβ ⊂ v

which are currently assigned one of these labels. It then solves an st-mincut

problem which potentially swaps the labels of these variables. For example, a

33

2.4. Algorithms for map Estimation

(a) (b)

Figure 2.7: (a) The graph construction for an αβ-swap on two variables v =

{va, vb}. Note that the α and β vertices represent the source and sink respec-

tively. After the cut, the variables corresponding to the vertices connected to α

(i.e. in the set V0
G) will be labelled lα while the other variables will take a label

lβ. Here Pαβ = θ2
ab;αβ + θ2

ab;βα − θ2
ab;αα − θ2

ab;ββ. When the pairwise potentials

form a semi-metric, then it can be shown that Pαβ ≥ 0 [15]. The terms κ1 =

min{0, |θ1
a;α|, |θ1

a;β + θ2
ab;βα − θ2

ab;αβ |} and κ2 = min{0, |θ1
b;β|, |θ1

b;α + θ2
ab;βα − θ2

ab;ββ |}
ensure that the remaining edges also have non-negative weights. (b) The graph

construction for an α-expansion on two variables v = {va, vb}. We assume that

f(a) and f(b) denote the current labelling of variables va and vb respectively.

The vertices α and ∼ α represent the source and the sink respectively. After the

cut, the variables corresponding to the vertices connected to α will take the label

lα while the remaining variables will retain their previous labelling. The term

Pα = θ2
ab;αf(b) + θ2

ab;f(a)α − θ2
ab;αα − θ2

ab;f(a)f(b). When the pairwise potentials form

a metric, then it can be shown that Pα ≥ 0 [15]. Again, the terms κ1 and κ2 are

chosen to ensure that the remaining edges also have non-negative weights.

34

2.5. Algorithms for Computing Marginals

variable va which was assigned a label lα in some previous iteration may now

take a label lβ if it results in a lower energy. The algorithm terminates when the

energy cannot be reduced further for any pairs of labels lα and lβ .

Fig. 2.7(a) shows the st-mincut graph construction for performing αβ-swap

for two variables va and vb. This graph is constructed using the method of [48]

(similar to Fig. 2.6(a)) using the appropriate values of the unary and pairwise

potentials. Note that in general the edges of the graph (specifically the edge

weight Pαβ) are not guaranteed to be positive. Hence, the st-mincut cannot

be obtained in polynomial time2. However, Boykov et al. [15] showed that αβ-

swap is applicable for a large and useful class of energy functions, i.e. when the

pairwise potentials form a semi-metric3, e.g. the Potts model or the truncated

linear/quadratic model. This follows from the fact that Pαβ = θ2
ab;αβ + θ2

ab;βα −
θ2

ab;αα − θ2
ab;ββ (in Fig. 2.7(a)) is non-negative for semi-metrics.

The α-Expansion Algorithm: The α-expansion algorithm is also an iterative

procedure which starts with an initial labelling f 0 and obtains an approximate

map estimate by solving a series of st-mincut problems. Unlike αβ-swap, it

considers one label lα at each iteration together with all the variables v. It then

solves an st-mincut problem which allows the variables to either take the label lα
or retain their label from the previous iteration. The algorithm terminates when

the energy cannot be reduced further for any label lα.

Fig. 2.7(b) shows the st-mincut graph construction for performing α-expansion

for two variables va and vb (obtained using the method of [48]). Again, the graph

is not guaranteed to have only positive edges (specifically the edges with weights

Pα) for an arbitrary energy function. However, α-expansion is applicable when the

pairwise potentials form a metric [15]4, e.g. the Potts model or the truncated linear

model. This follows from the fact that Pα = θ2
ab;αf(b) +θ

2
ab;f(a)α−θ2

ab;αα−θ2
ab;f(a)f(b)

(in Fig. 2.7(b)) is non-negative for metrics. Note that unlike αβ-swap, the trian-

gular inequality must be satisfied for α-expansion (to ensure Pα ≥ 0).

2.5. Algorithms for Computing Marginals

Marginal probabilities of random variables prove useful in many areas of Com-

puter Vision. Specifically, (i) they provide an estimate of the partition function

2The st-mincut problem has a polynomial time solution when the weights of the graph are

all non-negative. For a general graph, the st-mincut problem is called the maxcut problem

which is well-known to be np-hard.
3The pairwise potentials are said to form a semi-metric if they satisfy the following properties

for all (a, b) ∈ E : (i) θ2
ab;ij = θ2

ab;ji for all li, lj ∈ l; (ii) θ2
ab;ij ≥ 0 for all li, lj ∈ l; and (iii) θ2

ab;ij = 0

if, and only if, i = j.
4The pairwise potentials are said to form a metric if they form a semi-metric and obey the

additional property of triangular inequality, i.e. θ2
ab;ij + θ2

ab;jk ≥ θ2
ab;ik for all (a, b) ∈ E and

li, lj , lk ∈ l.

35

2.5. Algorithms for Computing Marginals

for parameter estimation; (ii) they allow us to obtain samples from the proba-

bility distribution being modelled by the random field [23]. These samples can

be used for determining the expectation of some function of the random vari-

ables (e.g. when using the em algorithm [30]); and (iii) they provide the mmse

labelling of the random field as shown in equation (2.3.15). The mmse labelling

may sometimes be smoother and hence more desirable than the map estimate

(see [91] for examples on stereo reconstruction).

Like map estimation, the problem of computing marginals for a general ran-

dom field model is also np-hard. However, it is well-known that the marginals

for tree structured random fields can be computed using a message passing algo-

rithm [70] (similar to the min-sum bp algorithm for map estimation described in

§ 2.4.1). Below, we described this algorithm and show how it can be generalized

to obtain approximate marginals for arbitrary random fields.

2.5.1 Sum-Product Belief Propagation

Sum-product belief propagation (sum-product bp) is an iterative message passing

algorithm proposed by Pearl [70] for approximately computing the marginals of

random variables v which take labels from the set l. Similar to min-sum bp,

at each iteration every random variable va passes messages to its neighbouring

random variable vb (denoted by mab). The jth element of the message mab is

given by

mab;j ←− η1

∑

li∈l



exp(−θ1
a;i) exp(−θ2

ab;ij)
∏

(a,c)∈E,c 6=b

mca;i



 , (2.5.1)

where η1 is a constant which prevents numerical overflow and underflow. As can

be seen in the above equations, the messages are computed as the sum of the

product of terms. Hence, the name sum-product bp. Typically, all messages are

initialized to 1. The algorithm is said to have converged when the rate of change

of messages from one iteration to the next falls below a certain threshold.

Upon convergence, sum-product bp provides us with approximate marginals

(or beliefs) for all random variables as

P ′
a;i ←− η2



exp(−θ1
a;i)

∏

(a,c)∈E
mca;i



 . (2.5.2)

It also provides the approximate marginals for two neighbouring random variables

va and vb as

P ′
ab;ij ←− η2



exp(−θ1
a;i − θ1

b;j − θ2
ab;ij)

∏

(a,c)∈E,c 6=b

mca;i

∏

(b,c)∈E,c 6=a

mcb;j



 . (2.5.3)

36

2.5. Algorithms for Computing Marginals

Forward Messages Backward Messages

mab;0 ← 5.652502e− 02 mdc;0 ← 1.922752e− 02

mab;1 ← 1.378140e− 01 mdc;1 ← 1.833234e− 02

mbc;0 ← 3.155822e− 03 mcb;0 ← 3.544267e− 04

mbc;1 ← 2.905015e− 03 mcb;1 ← 1.749953e− 04

mcd;0 ← 1.572510e− 04 mba;0 ← 4.914555e− 05

mcd;1 ← 6.044992e− 05 mba;1 ← 2.085102e− 05

Label Beliefs

f(a) = 0 P ′
a;0 ← 0.10502

f(a) = 1 P ′
a;1 ← 0.89498

f(b) = 0 P ′
b;0 ← 0.85991

f(b) = 1 P ′
b;1 ← 0.14009

f(c) = 0 P ′
c;0 ← 0.95814

f(c) = 1 P ′
c;1 ← 0.04186

f(d) = 0 P ′
d;0 ← 0.04548

f(d) = 1 P ′
d;1 ← 0.95452

Table 2.5: Forward and backward pass messages computed using sum-product bp

for the crf shown in Fig. 2.5. The messages are computed using equation (2.5.1)

with η1 = 1 for both iterations. The beliefs computed using equation (2.5.2) are

also shown. The value of η2 is set such that the marginals are normalized (i.e.

sum to 1) for all variables.

The notation P ′ is used to indicate that these are not necessarily the exact

marginals. Note that these beliefs are different from the beliefs of min-sum bp

which approximate the min-marginals. The beliefs are scaled by a constant η2

such that

∑

li∈l

P ′
a;i = 1, ∀va ∈ v, (2.5.4)

∑

li,lj∈l

P ′
ab;ij = 1, ∀(a, b) ∈ E . (2.5.5)

Sum-product bp allows us to obtain an approximate mmse labelling f as

f(a) = arg max
li∈l

P ′
a;i. (2.5.6)

As mentioned earlier, the sum-product bp algorithm obtains the exact marginals

for a tree structured random field [70]. Similar to min-sum bp (in § 2.4.1), this

is achieved in two iterations: (i) forward pass where messages are sent from leaf

nodes towards the root; and (ii) backward pass where the messages are sent from

the root towards the leaf nodes. It follows that sum-product bp provides the

exact mmse estimate. Table 2.5 lists the messages and the beliefs computed by

sum-product bp for the tree structured crf shown in Fig. 2.5 (assuming va to be

the leaf and vd to be the root). Note that the marginals correspond exactly with

those listed in table 2.3.

For a general random field (i.e. not necessarily tree structured), sum-product

bp is not guaranteed to converge. However, in practice it often provides a good

estimate of the marginals [66]. Further, it can be shown that when it converges,

the solution provided by sum-product bp is a local minimum of the Bethe approx-

imation of the free energy defined by the random field (described in more detail

below) [114].

37

2.5. Algorithms for Computing Marginals

2.5.2 Other Algorithms

In this work, we only use the sum-product bp algorithm for computing the

marginals. However, several other approximate algorithms have been proposed

in the literature. We now briefly describe a few other approaches. A more com-

prehensive review of algorithms for computing marginals can be found in [7, 60].

Generalized Belief Propagation: The Bethe approximation of the free en-

ergy of a random field is given by

Fβ =
∑

(a,b)∈E

∑

li,lj∈l

Pab;ij

(

logPab;ij + θ2
ab;ij

)

−
∑

va∈v

(qa − 1)
∑

li∈l

Pa;i

(

logPa;i + θ1
a;i

)

,

(2.5.7)

where qa is the number of neighbouring random variables of va. Recall that

Pa;i and Pab;ij are the marginals corresponding to the given crf. Yedidia et al.

[114] showed that sum-product bp converges to a local minimum of the Bethe

approximation of the free energy. In other words, the approximate marginals P ′
a;i

and P ′
ab;ij in equations (2.5.2) and (2.5.3) define a stationary point of Fβ. This

can be verified by equating the derivatives of Fβ with respect to Pa;i and Pab;ij

to zero. This connection between sum-product bp and Bethe approximation led

them to propose a message passing algorithm which attempts to minimize more

accurate approximations. These approximations, called Kikuchi approximations,

are defined using a set of clusters of random variables v. Let C be one such set

of clusters, i.e. for every c ∈ C there exists a cluster of variables vc = {va|a ∈ c}.
For each cluster c we can define a set super(c) such that d ∈ super(c) if, and only

if, c ⊂ d. Using the sets super(c) we assign an over-counting number oc to each

set c which is defined as

oc =

{

1 if c is the biggest cluster,

1−∑d∈super(c) od otherwise.
(2.5.8)

Given such a set C the Kikuchi approximation Fκ is specified as

Fκ =
∑

c∈C
oc





∑

li∈l|c|

Pc;i (logPc;i + θc;i)



 , (2.5.9)

where li = {li1 , · · · , li|c|} ∈ l|c| and Pc;i is the marginal probability of cluster c

taking labels li. The term θc;i is given by

θc;i =
∑

a∈c

θ1
a;ia +

∑

(a,b)∈c

θ2
ab;iaib

. (2.5.10)

Yedidia et al. [114] provided the message update rules that compute the approx-

imate marginals which are stationary point of the Kikuchi approximation Fκ.

This new message passing approach is called the Generalized Belief Propagation

38

2.5. Algorithms for Computing Marginals

(gbp) algorithm. We refer the interested reader to [114] for details. Similar to

sum-product bp, gbp is not guaranteed to converge for general random fields.

In practice, however, it provides better estimates of the marginal probabilities

than sum-product bp at the cost of more computational time. Yuille [115] pro-

posed convergent algorithms for minimizing the Bethe and Kikuchi approxima-

tion. However, these algorithms are slower than their message passing counter-

parts (i.e. sum-product bp and gbp).

Tree-reweighted sum-product Belief Propagation: The Bethe and Kikuchi

approximations defined above suffer from the problem that they have multiple

minima. Hence, any algorithm which attempts to minimize them, e.g. those de-

scribed in [114, 115], is prone to converge to a local minimum. Wainwright et

al. [100] addressed this issue by minimizing a new class of convex upper bounds

on the log partition function of a given random field θ (i.e. logZ(θ)). In order

to describe this upper bound, we consider a set of tree-structured random fields

R = {R1, · · · , Rm} defined over subsets of random variables v of the original

random field. Let µ = {µ1, µ2, · · · , µm} be a set of non-negative real numbers

such that they sum to 1. Using the set µ, we define an edge appearance term

for each pair of neighbouring random variable in the original random field, i.e.

(a, b) ∈ E , as

µab =
∑

Ri∈I(a,b)

µ(Ri), (2.5.11)

where Ri ∈ I(a, b) if, and only if, va and vb are neighbouring random variables in

Ri. By choosing µ such that µab > 0 for all (a, b) ∈ E , logZ(θ) is bounded above

by

logZ(θ) ≤ minT F (T;µ, θ),

s.t.
∑

lj∈l Tab;ij = Ta;i, ∀(a, b) ∈ E , li ∈ l,
∑

li∈l Ta;i = 1, ∀va ∈ v, (2.5.12)

where the function F (T;µ, θ) is given by

F (T;µ, θ) =
∑

va,li

Ta;i log Ta;i−
∑

(a,b)∈E,li,lj

µabTab;ij log
Tab;ij

(
∑

lk
Tab;ik)(

∑

lk
Tab;kj)

+T·θ.

(2.5.13)

It can be shown that the optimization problem (2.5.12) has a unique minima.

Wainwright et al. [100] also defined an efficient algorithm, which we call tree-

reweighted sum-product belief propagation, that obtains the upper bound of the

log partition function (i.e. minF (T;µ, θ)) together with the associated approxi-

mate marginals (i.e. T). We refer the interested reader to [100] for details.

Min-marginals using st-mincut: For binary submodular random fields, Kohli

and Torr [45] showed that the min-marginal energies of all the random variables

39

2.5. Algorithms for Computing Marginals

can be obtained by solving 2n st-mincut problems (where n = |v|). In each

of these st-mincut problems, the label of a particular variable is fixed to either

l0 or l1 (by using θ1
a;1 = ∞ or θ2

a;0 = ∞ respectively). Clearly, the value of

the st-mincut problems provide the min-marginals pa;i. Solving each of these

st-mincut problems individually would be computationally infeasible. However,

since the structure and weights of the graphs corresponding to these st-mincut

problems are very similar to each other, Kohli and Torr [45] observed that the

problems lend themselves to the dynamic graph cuts algorithm [44]. The min-

marginals obtained in this manner can be used as an approximation of the desired

marginal probabilities.

40

Chapter 3

Convex Relaxations for MAP

Estimation

41

3.2. Mathematical Optimization - Background

3.1. Introduction

In the previous chapter, we outlined some methods which provide the exact map

estimate for certain random fields, i.e. tree-structured random fields (using min-

sum bp) and random fields with binary submodular energy functions (using st-

mincut). We also presented some generalizations of these approaches that have

been previously proposed in the literature to obtain an approximate map estimate

for less restricted classes of random fields. In this chapter, we present a new

formulation of the problem of map estimation. As will be seen shortly, this

formulation allows us to utilize the well-studied Convex Optimization literature

to obtain approximate map labellings.

Once again, we will assume throughout this chapter that we are given a crf

while noting that the methods outlined here are equally applicable to the mrf

formulation. The crf is defined using random variables v = {v0, · · · , vn−1} each

of which can take a label from the set l = {l0, · · · , lh−1}. Recall that for a

given crf with parameter θ, the energy of a labelling f : {0, · · · , n − 1} −→
{0, · · · , h− 1} is given by

Q(f ;D, θ) =
∑

va∈v

θ1
a;f(a) +

∑

(a,b)∈E
θ2

ab;f(a)f(b), (3.1.1)

where θ1
a;f(a) is the unary potential for assigning label lf(a) to va. Similarly,

θ2
ab;f(a)f(b) is the pairwise potential for assigning labels lf(a) and lf(b) to neigh-

bouring random variables va and vb respectively. Given the crf, the goal of

the map estimation problem is to obtain a labelling f ∗ which has the minimum

energy (and equivalently the maximum posterior probability).

Before we describe the new formulation of map estimation, we will briefly

outline some main concepts from the Mathematical Optimization literature [12,

90]. A reader who is familiar with Mathematical Optimization may skip the next

section.

3.2. Mathematical Optimization - Background

In this section, we briefly set up the terminology of Mathematical Optimization

which is employed throughout the remaining thesis. For more details on Mathe-

matical Optimization, we refer the reader to [12, 90].

42

3.2. Mathematical Optimization - Background

Optimization Problem: A Mathematical Optimization problem (or simply

the optimization problem) has the following form:

op: x∗ = arg minx g(x), (3.2.1)

subject to hi(x) ≤ 0, (3.2.2)

i = 1, · · · , nC . (3.2.3)

Here x is called the optimization variable or simply the variable. The function

g(·) which is being minimized (in equation (3.2.1)) is called the objective function.

The functions hi(·), i = 1, · · · , nC (in equation 3.2.2) which restrict the values

that x can take are called the constraints. The set of all x which satisfy all the

constraints of the optimization problem op is called the feasibility region (denoted

by F(op)). In other words,

F(op) = {x|hi(x) ≤ 0, ∀i = 1, · · · , nC}. (3.2.4)

An optimal solution of op is a point x∗ ∈ F(op) that minimizes the objective

function g(·). Note that a given optimization problem may have more than one

optimal solution. The value of the objective function at an optimal solution x∗,

i.e. g(x∗), is called the optimal value of the optimization problem op.

Lagrangian Dual: The Lagrangian L(·, ·) of the optimization problem op

(specified in equations (3.2.1)-(3.2.2)) is defined as

L(x,λ) = g(x) +

nC
∑

i=1

λihi(x),x ∈ F(op), λi ≥ 0. (3.2.5)

The non-negative variables λ = {λ1, · · · , λnC
} are called Lagrangian multipliers.

Note that for any feasible solution x of the problem op, i.e. x ∈ F(op), the

following inequality holds true:

L(x,λ) ≤ g(x), ∀λ. (3.2.6)

This can be easily verified using the definition of the Lagrangian (3.2.5) since

λi ≥ 0 and hi(x) ≤ 0 for all i = 1, · · · , nC .

By employing the Lagrangian L(·, ·), we can define the Lagrangian dual prob-

lem of op as

dp: max
λ

min
x

L(x,λ), (3.2.7)

x ∈ F(op), (3.2.8)

λi ≥ 0, ∀i = 1, · · · , nC . (3.2.9)

It is common practice to refer to the problem dp as the dual and the original

problem op as the primal. Using inequality (3.2.6) it follows that the optimal

value of the dual provides the lower bound of the optimal value of the primal.

43

3.2. Mathematical Optimization - Background

This property is known as the weak duality condition. An important special case

of the weak duality condition is when the optimal values of the primal and the

dual problems are the same. Such primal and dual problems (which share the

same optimal values) are said to satisfy the strong duality condition. Duals play

a very important role when we are solving optimization problems [12]. In this

work, we will use the concept of duality extensively in chapter 7.

Integer Program: Integer Program (ip) refers to the class of optimization

problems where the elements of the variable x are constrained to take integer

values. In other words, the feasibility region of an ip consists of points x ∈ Z
m

(where Z is the set of integers and m is the dimensionality of x). Note that one

can also define Mixed Integer Programs as optimization problems where some

elements of the variable x are restricted to be integers. In this work, we will

focus on pure ip only. The class of ip plays an important role in many areas of

Computer Science due to its ability to model a large number of np-hard problems.

Of particular interest to us is the formulation of the map estimation problem as

an ip which will be described in the next section.

Convex Optimization Problem: Typically, the subclass ip of optimization

problems is very hard to solve. In contrast, an optimal solution of a convex

optimization problem is usually easier to obtain. A convex optimization problem

is one where the objective function g(·) and the constraints hi(·) are convex

functions1. Note that if all the constraints hi(·) are convex functions, then the

feasibility region forms a convex set2. Several convex optimization problems can

be solved in a time which is polynomial in the number of variables (i.e. the

dimensionality m of x) and constraints (i.e. nC). Below, we describe four such

classes of problems which provide a natural platform for obtaining approximate

solutions for the map estimation problem. It is also interesting to note that the

strong duality condition holds for all these four classes. For other problems with

polynomial time algorithms (and strong duality condition), we refer the reader

to [12].

Linear Program: A linear program (lp) is an optimization problem with a

linear objective function and linear constraints. Formally, an lp is specified as

1A function g(·) is convex if, and only if, the following holds true for all points x and y

which belong to the domain of g(·): g
(

x+y

2

)

≤ 1
2 (g(x) + g(y)).

2A set S is said to be convex if, and only if, for all x,y ∈ S the following holds true: x+y

2 ∈ S.

It is worth noting that if hi(·) is a convex function then the set S = {x|hi(x) ≤ 0} is a convex

set. Further, the intersection operation preserves convexity. In other words, if S1 and S2 are

convex, then S1

⋂

S2 is also convex.

44

3.2. Mathematical Optimization - Background

Figure 3.1: An example of a 3 dimensional second order cone. The points satis-

fying an soc constraint lie in the interior of the cone and form a convex set.

follows:

x∗ = arg minx c⊤x + κ

s.t. Ax ≤ b, (3.2.10)

where κ is some constant independent of x. The vector c defines the objective

function, while the matrix A and vector b specify the constraints.

Convex Quadratic Program: A convex quadratic program (qp) is an op-

timization problem with a convex quadratic objective function and linear con-

straints, i.e.

x∗ = arg minx ||Ax + b||2 + c⊤x + κ

s.t. A′x ≤ b′. (3.2.11)

Clearly, lp is a special case of qp. This can be seen by setting A = 0 and b = 0

to obtain the general form of the lp (3.2.10).

Second Order Cone Program: A second order cone program (socp) is an

optimization problem with a linear objective function and convex quadratic con-

straints, i.e.

x∗ = arg minx c⊤x + κ,

s.t. ||Aix + bi||2 ≤ c⊤i x + di,

i = 1, · · · , nC . (3.2.12)

Convex quadratic constraints are also known as second order cone (soc) con-

straints, Lorentz cone constraints or ice-cream cone constraints [12]. Fig. 3.1

shows the shape of a 3-D soc. Clearly, the interior of the cone, i.e. points which

45

3.2. Mathematical Optimization - Background

satisfy the soc constraint, form a convex set. The class of qp is a special case of

socp. For example, the qp (3.2.11) can be converted to an socp as follows:

x∗ = arg min(x,t) t+ κ,

s.t. ||Ax + b||2 + c⊤x ≤ t,

A′x ≤ b′, (3.2.13)

where t is some slack variable. If (x∗, t∗) is an optimal solution of the above socp,

then it follows that x∗ is an optimal solution of the qp (3.2.11) and

t∗ = ||Ax∗ + b||2 + c⊤x, (3.2.14)

since t is being minimized in the objective function.

Semidefinite Program: A semidefinite program (sdp) is a optimization prob-

lem with linear objective function and linear constraints defined over a variable

matrix X which is restricted to be positive semidefinite3 (denoted by X � 0).

Formally, an sdp is written as:

X∗ = arg minX C •X,

s.t. X � 0,

Ai •X ≤ bi,

i = 1, · · · , nC . (3.2.15)

Here the operator (•) denotes the Frobenius inner product, i.e.

A •B =
∑

i

∑

j

AijBij. (3.2.16)

It can be shown that socp is a special case of sdp. Specifically, it can be shown

that any soc constraint ||Aix + bi||2 ≤ c⊤i x + di can be written as ||u|| ≤ t,

where

u =

(

2(Aix + bi)

c⊤i x + di − 1

)

, t = c⊤i x + di + 1. (3.2.17)

This soc is equivalent to the following sdp constraint:

(

tI u

u⊤ t

)

� 0, (3.2.18)

where I is the identity matrix of appropriate dimensions.

3An m × m matrix X is said to be positive semidefinite if all its m eigenvalues are non-

negative. Equivalently, X is positive semidefinite if c⊤Xc ≥ 0, for all c ∈ R
m. It is worth

noting that any positive semidefinite matrix X can be written as X = U⊤U for an appropriate

matrix U.

46

3.2. Mathematical Optimization - Background

Relaxation: We now describe the concept of relaxation [67] which is used ex-

tensively in the rest of the chapter (and also chapters 6 and 7). A relaxation of

an optimization problem a is another optimization problem b such that

• The feasibility region of b is a strict superset of the feasibility region of a,

i.e. F(a) ⊂ F(b).

• If x ∈ F(a) (which also implies that x ∈ F(b)), then the value of the

objective function of b is less than or equal to the value of the objective

function of a at x.

If the optimization problem b is convex, then it is called a convex relaxation of a.

In the Optimization literature, typically problem a is hard to solve (e.g. an ip).

Hence, its approximate solution is obtained using its easier-to-solve relaxation b

(e.g. an lp, qp, socp or sdp relaxation of a). The quality of the solution obtained

using b (by rounding the optimal solution of b to obtain a feasible solution of

a) is usually specified by multiplicative or additive bounds which are described

below.

Multiplicative Bound: Consider a set of optimization problems A and a re-

laxation scheme defined over this set A. In other words, for every optimization

problem a ∈ A, the relaxation scheme provides a relaxation b ∈ B of a. Let eA

denote the optimal value of the optimization problem a. Further, let êA denote

the value of the objective function of a at the point obtained by rounding the

optimal solution of its relaxation b. The relaxation scheme is said to provide a

multiplicative bound of ρ for the set A if, and only if, the following condition is

satisfied:

E(êA) ≤ ρeA, ∀a ∈ A, (3.2.19)

where E(·) denotes the expectation of its argument under the rounding scheme

employed.

Additive Bound: A relaxation scheme defined over the set of optimization

problems A is said to provide an additive bound of σ for A if, and only if, the

following holds true:

E(êA) ≤ eA + σ, ∀a ∈ A. (3.2.20)

Here the terms êA and eA are defined as above.

Tightness of the Bound: The multiplicative bound specified by a relaxation

scheme defined over the set of optimization problems A is said to be tight if, and

only if, there exists an a ∈ A such that

E(êA) = ρeA. (3.2.21)

Similarly, the additive bound specified by a relaxation scheme defined over A is

said to be tight if, and only if, there exists an a ∈ A such that

E(êA) = eA + σ. (3.2.22)

47

3.3. Convex Relaxations for map Estimation

3.3. Convex Relaxations for map Estimation

We now formulate the problem of map estimation, defined using a discrete and

finite set of labels, as an ip. We also briefly describe four approximate solutions

for this ip based on convex relaxations.

3.3.1 Integer Programming Formulation

We consider a pairwise crf defined over variables v = {v0, v1, · · · , vn−1} each of

which can take a label from the finite and discrete set l = {l0, l1, · · · , lh−1}. Recall

that the set E associated with the crf specifies a neighbourhood relationship

between the random variables such that (a, b) ∈ E if, and only if, vb is a neighbour

of va. In order to formulate the map estimation problem of this crf as an ip,

we define a binary variable vector x of length nh. We denote the element of x

at index a · h + i as xa;i where va ∈ v and li ∈ l. These elements xa;i specify a

labelling f such that

xa;i =

{

1 if f(a) = i,

−1 otherwise.

We say that the variable xa;i belongs to variable va since it defines which label

va does (or does not) take. Let X = xx⊤. We refer to the (a · h + i, b · h + j)th

element of the matrix X as Xab;ij where va, vb ∈ v and li, lj ∈ l. Clearly the sum

of the unary potentials for a labelling specified by (x,X) is given by

∑

va,li

θ1
a;i

(1 + xa;i)

2
. (3.3.1)

Similarly the sum of the pairwise potentials for a labelling (x,X) is given by

∑

(a,b)∈E,li,lj

θ2
ab;ij

(1 + xa;i)

2

(1 + xb;j)

2
=

∑

(a,b)∈E,li,lj

θ2
ab;ij

(1 + xa;i + xb;j +Xab;ij)

4
.

(3.3.2)

Hence, the following ip finds the labelling with the minimum energy, i.e. it is

equivalent to the map estimation problem:

ip: x∗ = arg minx

∑

va,li
θ1

a;i
(1+xa;i)

2
+
∑

(a,b)∈E,li,lj
θ2

ab;ij
(1+xa;i+xb;j+Xab;ij)

4

s.t. x ∈ {−1, 1}nh, (3.3.3)
∑

li∈l xa;i = 2− h, (3.3.4)

X = xx⊤. (3.3.5)

Constraints (3.3.3) and (3.3.5) specify that the variables x and X are binary

such that Xab;ij = xa;ixb;j . We will refer to them as the integer constraints.

48

3.3. Convex Relaxations for map Estimation

Constraint (3.3.4), which specifies that each variable should be assigned only one

label, is known as the uniqueness constraint. Note that one uniqueness constraint

is specified for each variable va. Solving the above ip is in general np-hard. We

now describe four different convex relaxations of the ip.

3.3.2 Linear Programming Relaxation

The lp relaxation (proposed by Schlesinger [79] for a special case1 and inde-

pendently in [17, 51, 101] for the general case), which we call lp-s, is given as

follows2:

lp-s: x∗ = arg minx

∑

va,li
θ1

a;i
(1+xa;i)

2
+
∑

(a,b)∈E,li,lj
θ2

ab;ij
(1+xa;i+xb;j+Xab;ij)

4

s.t. x ∈ [−1, 1]nh,X ∈ [−1, 1]nh×nh, (3.3.6)
∑

li∈l xa;i = 2− h, (3.3.7)
∑

lj∈l
Xab;ij = (2− h)xa;i, (3.3.8)

Xab;ij = Xba;ji, (3.3.9)

1 + xa;i + xb;j +Xab;ij ≥ 0. (3.3.10)

In the lp-s relaxation only those elements Xab;ij of X are used for which (a, b) ∈ E
and li, lj ∈ l. Unlike the ip, the feasibility region of the above problem is relaxed

such that the variables xa;i and Xab;ij lie in the interval [−1, 1]. Further, the con-

straint (3.3.5) is replaced by equation (3.3.8) which is called the marginalization

constraint [101]. One marginalization constraint is specified for each (a, b) ∈ E
and li ∈ l. Constraint (3.3.9) specifies that X is symmetric. Constraint (3.3.10)

ensures that θ2
ab;ij is multiplied by a number between 0 and 1 in the objective

function. These constraints (3.3.9) and (3.3.10) are defined for all (a, b) ∈ E and

li, lj ∈ l. Note that the above constraints are not exhaustive, i.e. it is possible to

specify other constraints for the problem of map estimation (as will be seen in

the different relaxations described in the subsequent sections).

Properties of the lp-s Relaxation:

• Since the lp-s relaxation specifies a linear program it can be solved in

polynomial time. A labelling f can then be obtained by rounding the

(possibly fractional) solution of the lp-s.

• Using the rounding scheme of [42], the lp-s provides a multiplicative bound

of 2 when the pairwise potentials form a Potts model [17].

1The special case considered in [79] consists of pairwise potentials which specify a hard

constraint, i.e. they are either 0 or ∞.
2The formulation of the lp-s relaxation presented here uses a slightly different notation to

the ones described in [46, 101]. However, it can easily be shown that the two formulations are

equivalent by using the variables y and Y instead of x and X such that ya;i =
1+xa;i

2 , Yab;ij =
1+xa;i+xb;j+Xab;ij

4 .

49

3.3. Convex Relaxations for map Estimation

• Using the rounding scheme of [17], lp-s obtains a multiplicative bound of

2 +
√

2 for truncated linear pairwise potentials.

• lp-s provides a multiplicative bound of 1 when the energy functionQ(·;D, θ)
of the crf is submodular [82] (also see [37, 78] for the st-mincut graph

construction for minimizing submodular energy functions).

• The lp-s relaxation provides the same optimal solution for all reparame-

terizations θ of θ (i.e. for all θ ≡ θ) [46].

Although the lp-s relaxation can be solved in polynomial time, the state of the

art Interior Point algorithms can only handle upto a few thousand variables and

constraints. In order to overcome this deficiency several closely related algorithms

have been proposed in the literature for approximately solving the Lagrangian

dual of lp-s [46, 101, 107]3. We will return to these algorithms and build upon

them in chapter 7.

3.3.3 Quadratic Programming Relaxation

We now describe the qp relaxation for the map estimation ip which was proposed

by Ravikumar and Lafferty [75]. To this end, it would be convenient to reformu-

late the objective function of the ip using a vector of unary potentials of length

nh (denoted by θ̂1) and a matrix of pairwise potentials of size nh× nh (denoted

by θ̂2). The element of the unary potential vector at index (a · h + i) is defined

as

θ̂1
a;i = θ1

a;i −
∑

vc∈v

∑

lk∈l

|θ2
ac;ik|, (3.3.11)

where va ∈ v and li ∈ l. The (a ·h+ i, b ·h+ j)th element of the pairwise potential

matrix θ̂2 is defined such that

θ̂2
ab;ij =

{

∑

vc∈v

∑

lk∈l |θ2
ac;ik|, if a = b, i = j,

θ2
ab;ij otherwise,

where va, vb ∈ v and li, lj ∈ l. In other words, the potentials are modified by

defining a pairwise potential θ̂2
aa;ii and subtracting the value of that potential

from the corresponding unary potential θ1
a;i. The advantage of this reformulation

is that the matrix θ̂
2

is guaranteed to be positive semidefinite, i.e. θ̂
2 � 0. Using

the fact that for xa;i ∈ {−1, 1},
(

1 + xa;i

2

)2

=
1 + xa;i

2
, (3.3.12)

3It is worth noting that the α-expansion algorithm described in the previous chapter has

also been shown to be related to lp-s [50].

50

3.3. Convex Relaxations for map Estimation

it can be shown that the following is equivalent to the map estimation prob-

lem [75]:

qp-rl: x∗ = arg minx

(

1+x
2

)⊤
θ̂

1
+
(

1+x
2

)⊤
θ̂

2 (
1+x

2

)

, (3.3.13)

s.t.
∑

li∈l xa;i = 2− h, ∀va ∈ v, (3.3.14)

x ∈ {−1, 1}nh, (3.3.15)

where 1 is a vector of appropriate dimensions whose elements are all equal to

1. By relaxing the feasibility region of the above problem to x ∈ [−1, 1]nh, the

resulting qp can be solved in polynomial time since θ̂
2 � 0 (i.e. the relaxation

of the qp (3.3.13)-(3.3.15) is convex). We call the above relaxation qp-rl. Note

that in [75], the qp-rl relaxation was described using the variable y = 1+x
2

.

However, the above formulation can easily be shown to be equivalent to the one

presented in [75].

Ravikumar and Lafferty [75] proposed a rounding scheme for qp-rl (differ-

ent from the ones used in [17, 42]) that provides an additive bound of S
4

for the

map estimation problem, where S =
∑

(a,b)∈E
∑

li,lj∈l |θ2
ab;ij | (i.e. S is the sum of

the absolute values of all pairwise potentials) [75]. Under their rounding scheme,

this bound can be shown to be tight using a random field defined over two ran-

dom variables which specifies uniform unary potentials and Ising model pairwise

potentials. Further, they also proposed an efficient iterative procedure for solv-

ing the qp-rl relaxation approximately. However, unlike lp-s, no multiplicative

bounds have been established for the qp-rl formulation for special cases of the

map estimation problem.

3.3.4 Semidefinite Programming Relaxation

The sdp relaxation of the map estimation problem replaces the non-convex con-

straint X = xx⊤ by the convex semidefinite constraint X− xx⊤ � 0 [22, 31, 57]

which can be expressed as
(

1 x⊤

x X

)

� 0, (3.3.16)

using Schur’s complement [12]. Further, like lp-s, it relaxes the integer con-

straints by allowing the variables xa;i and Xab;ij to lie in the interval [−1, 1] with

Xaa;ii = 1 for all va ∈ v, li ∈ l. Note that the value of Xaa;ii is derived using the

fact that Xaa;ii = x2
a;i. Since xa;i can only take the values −1 or 1 in the map

estimation ip, it follows that Xaa;ii = 1. The sdp relaxation is a well-studied

approach which provides accurate solutions for the map estimation problem (e.g.

see [103]). However, due to its computational inefficiency, it is not practically

useful for large scale problems with nh > 1000. See however [68, 77, 93].

51

3.3. Convex Relaxations for map Estimation

3.3.5 Second Order Cone Programming Relax-

ation

We now describe the socp relaxation that was proposed by Muramatsu and

Suzuki [64] for the maxcut problem (i.e. map estimation with h = 2) and later

extended for a general label set [55]. This relaxation, which we call socp-ms, is

based on the technique of Kim and Kojima [40]. For completeness we first describe

the general technique of [40] and later show how socp-ms can be derived using

it.

socp Relaxations: Kim and Kojima [40] observed that the sdp constraint

X−xx⊤ � 0 can be further relaxed to soc constraints. Their technique uses the

fact that the Frobenius inner product of two semidefinite matrices is non-negative.

For example, consider the inner product of a fixed matrix C = UU⊤ � 0 with

X−xx⊤ (which, by the sdp constraint, is also positive semidefinite). This inner

product can be expressed as an soc constraint as follows:

C • (X− xx⊤) ≥ 0, (3.3.17)

⇒ ‖(U)⊤x‖2 ≤ C •X. (3.3.18)

Hence, by using a set of matrices S = {Ck|Ck = Uk(Uk)⊤ � 0, k = 1, 2, . . . , nC},
the sdp constraint can be further relaxed to nC soc constraints, i.e.

⇒ ‖(Uk)⊤x‖2 ≤ Ck •X, k = 1, · · · , nC . (3.3.19)

It can be shown that, for the above set of soc constraints to be equivalent to the

sdp constraint, nC = ∞. However, in practice, we can only specify a finite set

of soc constraints. Each of these constraints may involve some or all variables

xa;i and Xab;ij. For example, if Ck
ab;ij = 0, then the kth soc constraint will not

involve Xab;ij (since its coefficient will be 0).

The socp-ms Relaxation: Consider a pair of neighbouring variables va and

vb, i.e. (a, b) ∈ E , and a pair of labels li and lj. These two pairs define the

following variables: xa;i, xb;j , Xaa;ii = Xbb;jj = 1 and Xab;ij = Xba;ji (since X is

symmetric). For each such pair of variables and labels, the socp-ms relaxation

specifies two soc constraints which involve only the above variables [55, 64]. In

order to specify the exact form of these soc constraints, we need the following

definitions.

Using the variables va and vb (where (a, b) ∈ E) and labels li and lj , we define

the submatrices x(a,b,i,j) and X(a,b,i,j) of x and X respectively as:

x(a,b,i,j) =

(

xa;i

xb;j

)

,X(a,b,i,j) =

(

Xaa;ii Xab;ij

Xba;ji Xbb;jj

)

. (3.3.20)

52

3.3. Convex Relaxations for map Estimation

The socp-ms relaxation specifies soc constraints of the form:

‖(Uk
MS)⊤x(a,b,i,j)‖2 ≤ Ck

MS •X(a,b,i,j), (3.3.21)

for all pairs of neighbouring variables (a, b) ∈ E and labels li, lj ∈ l. To this end,

it uses the following two matrices:

C1
MS =

(

1 1

1 1

)

,C2
MS =

(

1 −1

−1 1

)

. (3.3.22)

In other words socp-ms specifies a total of 2|E|h2 soc constraints. Note that

both the matrices C1
MS and C2

MS defined above are positive semidefinite, and

hence can be written as C1
MS = U1

MS(U1
MS)⊤ and C1

MS = U1
MS(U1

MS)⊤ where

U1
MS =

(

0 1

0 1

)

and U2
MS =

(

0 −1

0 1

)

, (3.3.23)

Substituting these matrices in inequality (3.3.21) we see that the constraints

defined by the socp-ms relaxation are given by

‖(U1
MS)⊤x(a,b,i,j)‖2 ≤ C1

MS •X(a,b,i,j),

‖(U2
MS)⊤x(a,b,i,j)‖2 ≤ C2

MS •X(a,b,i,j), (3.3.24)

⇒
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

0 0

1 1

)(

xa;i

xb;j

)∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

=

(

1 1

1 1

)

•
(

Xaa;ii Xab;ij

Xba;ji Xbb;jj

)

,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

0 0

−1 1

)(

xa;i

xb;j

)∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

=

(

1 −1

−1 1

)

•
(

Xaa;ii Xab;ij

Xba;ji Xbb;jj

)

,(3.3.25)

⇒ (xa;i + xb;j)
2 ≤ Xaa;ii +Xbb;jj +Xab;ij +Xba;ji,

(xa;i − xb;j)
2 ≤ Xaa;ii +Xbb;jj −Xab;ij −Xba;ji, (3.3.26)

⇒ (xa;i + xb;j)
2 ≤ 2 + 2Xab;ij ,

(xa;i − xb;j)
2 ≤ 2− 2Xab;ij . (3.3.27)

The last expression is obtained using the fact that X is symmetric and Xaa;ii = 1,

for all va ∈ v and li ∈ l. Hence, in the socp-ms formulation, the map estimation

ip is relaxed to

socp-ms: x∗ = arg minx

∑

va,li
θ1

a;i
(1+xa;i)

2
+
∑

(a,b)∈E,li,lj
θ2

ab;ij
(1+xa;i+xb;j+Xab;ij)

4

s.t. x ∈ [−1, 1]nh,X ∈ [−1, 1]nh×nh, (3.3.28)
∑

li∈l
xa;i = 2− h, (3.3.29)

(xa;i − xb;j)
2 ≤ 2− 2Xab;ij , (3.3.30)

(xa;i + xb;j)
2 ≤ 2 + 2Xab;ij, (3.3.31)

Xab;ij = Xba;ji, (3.3.32)

1 + xa;i + xb;j +Xab;ij ≥ 0. (3.3.33)

53

3.3. Convex Relaxations for map Estimation

We refer the reader to [55, 64] for details. The socp-ms relaxation yields the

supremum and infimum for the elements of the matrix X using constraints (3.3.30)

and (3.3.31) respectively, i.e.

(xa;i + xb;j)
2

2
− 1 ≤ Xab;ij ≤ 1− (xa;i − xb;j)

2

2
. (3.3.34)

These constraints are specified for all (a, b) ∈ E and li, lj ∈ l. When the objective

function of socp-ms is minimized, one of the two inequalities would be satisfied

as an equality. This can be proved by assuming that the value for the vector x has

been fixed. Hence, the elements of the matrix X should take values such that it

minimizes the objective function subject to the constraints (3.3.30) and (3.3.31).

Clearly, the objective function would be minimized when Xab;ij equals either its

supremum or infimum value, depending on the sign of the corresponding pairwise

potential θ2
ab;ij , i.e.

Xab;ij =

{

(xa;i+xb;j)
2

2
− 1 if θ2

ab;ij > 0,

1− (xa;i−xb;j)
2

2
otherwise.

Similar to the lp-s and qp-rl relaxations defined above, the socp-ms relaxation

can also be solved in polynomial time. To the best our knowledge, no bounds

have been established for the socp-ms relaxation in earlier work. Furthermore,

no previous specialized algorithms exist for solving socp-ms (or indeed any other

socp relaxation) efficiently.

We will return to the above convex relaxations (specifically lp-s, qp-rl and

socp-ms) and identify the best one in the second part of the thesis (chapters 6

and 7). Before that, we turn our attention to the two Computer Vision problems

described in chapter 1.

54

Chapter 4

Learning Layered Motion

Segmentations of Video

55

In this chapter, we present the first of two applications of optimization for

Computer Vision, namely unsupervised motion segmentation. To this end, we

develop an approach for learning a layered representation of a scene from a video.

Our method is applicable to any video containing piecewise parametric motion.

The learnt model is a composition of layers, which consist of one or more segments.

The shape of each segment is represented using a binary matte and its appearance

is given by the rgb value for each point belonging to the matte.

In terms of the probabilistic model, the main contributions of our method

are: (i) The effects of image projection, lighting, and motion blur are taken

into account; (ii) Spatial continuity is explicitly modelled resulting in contiguous

segments; and (iii) Unlike previous approaches [94, 105], our method does not

use reference frame(s) for initialization.

In terms of optimization, the main contributions are: (i) A novel algorithm for

obtaining the initial estimate of the model by dividing the scene into rigidly mov-

ing components using efficient sum-product belief propagation; and (ii) Refining

the initial estimate using αβ-swap and α-expansion algorithms, which guarantee

a strong local minima.

Results are presented on several classes of objects with different types of cam-

era motion, e.g. videos of humans and animals walking which are shot with static

or moving cameras. We compare our method with the state of the art and demon-

strate significant improvements.

56

4.1. Introduction

4.1. Introduction

We present an approach for learning a layered representation from a video for

motion segmentation. The layered representation is composed of a set of layers,

each of which contains a number of segments. Each segment is defined by its

shape (represented as a binary matte) and appearance (represented as rgb values

for every point belonging to the segment). The model accounts for the effects

of occlusion, lighting and motion blur. Our method for learning this model is

applicable to any video containing piecewise parametric motion, e.g. piecewise

homography, without any restrictions on camera motion. For example, Fig. 4.1

shows one such sequence where a layered representation can be learnt and used

to segment the walking person from the static background.

Many different approaches for motion segmentation have been reported in

the literature. Important issues are: (i) whether the methods are feature-based

or dense; (ii) whether they model occlusion; (iii) whether they model spatial

continuity; (iv) whether they apply to multiple frames (i.e. a video sequence);

and (v) whether they are independent of which frames are used for initialization.

A comprehensive survey of feature-based methods can be found in [95]. Most

of these method rely on computing a homography corresponding to the motion

of a planar object. This limits their application to a restricted set of scenes and

motions. Dense methods [8, 19, 94, 105] overcome this deficiency by computing

pixel-wise motion. However, many dense approaches do not model occlusion

which can lead to overcounting of data when obtaining the segmentation, e.g.

see [8, 19].

Chief amongst the methods which do model occlusion are those that use a

layered representation [104]. One such approach, described in [105], divides a

scene into (almost) planar regions for occlusion reasoning. Torr et al. [94] extend

this representation by allowing for parallax disparity. However, these methods

rely on a keyframe for the initial estimation. Other approaches [38, 108] overcome

this problem by using layered flexible sprites. A flexible sprite is a 2D appearance

map and matte of an object which is allowed to deform from frame to frame

according to pure translation. Winn et al. [110] extend the model to handle

affine deformations. However, these methods do not enforce spatial continuity,

i.e. they assume each pixel is labelled independent of its neighbours. This leads to

non-contiguous segmentation when the foreground and background are similar in

appearance (see Fig. 4.23(b)). Most of these approaches, namely those described

in [19, 38, 94, 104, 105], use either em or variational methods for learning the

parameters of the model which makes them prone to local minima.

Wills et al. [109] noted the importance of spatial continuity when learning

the regions in a layered representation. Given an initial estimate, they learn the

57

4.2. Layered Representation

Figure 4.1: Four intermediate frames of a 31 frame video sequence of a person

walking sideways where the camera is static. Given the sequence, the model which

best describes the person and the background is learnt in an unsupervised manner.

Note that the arm always partially occludes the torso which makes it important

to handle occlusion. As the person is moving, her change in appearance due to

motion blur should also be taken into account.

shape of the regions using the powerful α-expansion algorithm [15] which guaran-

tees a strong local minima. However, their method does not deal with more than

2 views. In our earlier work [54], we described a similar approach to [109] for a

video sequence which automatically learns a model of an object. Unlike previous

approaches for learning object models (e.g. see [74], which approximates the ob-

ject using parallel lines of contrast) our approach obtains a more accurate shape

representation using motion segmentation. However, it depends on a keyframe to

obtain an initial estimate of the model. This has the disadvantage that points not

visible in the keyframe are not included in the model, which leads to incomplete

segmentation.

In this chapter, we present a model which does not suffer from the problems

mentioned above, i.e. (i) it models occlusion; (ii) it models spatial continuity; (iii)

it handles multiple frames; and (iv) it is learnt independent of keyframes. An

initial estimate of the model is obtained based on a method to estimate image

motion with discontinuities (similar to dense methods) using a new efficient sum-

product belief propagation (sum-product bp) algorithm. Although we use the new

sum-product bp algorithm only for estimating image motion, it is worth noting

that it is applicable to any random field model. The image motion computed in

this manner is approximated as piecewise parametric motion. However, unlike the

feature-based methods described in [95], our two step process for obtaining the

parametric motion allows us to learn the model for a wide variety of scenes. Given

the initial estimate, the shape of the segments along with the layering are learnt by

minimizing an objective function using αβ-swap and α-expansion algorithms [15].

Results are demonstrated on several classes of objects with different types of

camera motion.

In the next section, we describe the layered representation. Such a model

is particularly suited for applications like motion segmentation. In section 4.3,

we present a five stage approach to learn the model parameters from a video.

Results of our method are presented in section 4.4 for several classes of objects

and camera motions.

58

4.2. Layered Representation

4.2. Layered Representation

Figure 4.2: The top row shows the various layers of a human model (the latent

image in this case). Each layer consists of one of more segments whose appearance

is shown. The shape of each segment is represented by a binary matte (not shown

in the image). Any frame j can be generated using this representation by assigning

appropriate values to its parameters. Note that the background is not shown for

the sake of clarity of the figure.

We introduce the model for a layered representation which describes the scene

as a composition of layers. Any frame of a video can be generated from our model

by assigning appropriate values to its parameters as illustrated in Fig. 4.2. The

parameters of the model define the latent image and describe how to generate

the frames using the latent image (see table 4.1). The model also assigns a

(conditional) probability of the frame being generated for a given value of the

parameters.

Latent Image: The latent image is defined as follows. It consists of a set of nS

segments, which are 2D patterns (specified by their shape and appearance) along

with their layering. The layering determines the occlusion ordering. Each layer

contains a number of non-overlapping segments. We denote the ith segment of

the latent image as si. The shape of a segment si is modelled as a binary matte

ΩMi of size equal to the frame of the video. Let ai denote the ath point in the

matte ΩMi (where the subscript i indicates the segment si). For such a point ai,

ΩMi(ai) = 1 if ai belongs to segment si (denoted by ai ∈ si) and ΩMi(ai) = 0

otherwise.

The appearance ΩAi(ai) of the segment si is the rgb value of points ai ∈ si.

We denote the set of mattes and appearance parameters for all segments as ΩM

and ΩA respectively. The distribution of the rgb values ΩAi(ai) for all points

59

4.2. Layered Representation

Input

D Data (rgb values of all pixels in every frame of a video).

Dj The jth frame of the video D.

nF Number of frames.

Latent Image

nS Number of segments si including the background.

ΩMi Matte for segment si.

ΩM Set of all mattes, i.e. {ΩMi, i = 1, · · · , nS}.
ΩAi Appearance parameter for segment si.

ΩA Set of all appearance parameters, i.e. {ΩAi, i = 1, · · · , nS}.
Hi Histogram specifying the distribution of the rgb values for si.

H Set of all histograms, i.e. {Hi, i = 1, · · · , nS}.
oi Occlusion number of segment si.

o Set of all occlusion numbers, i.e. {oi, i = 1, · · · , nS}.
Other Parameters

Ωj
T i Transformation {tx, ty, sx, sy, φ} of segment si to frame j.

ΩT Set of transformations for all segments si and frames j.

Ωj
Li Lighting variables {Wj

i ,w
j
i} of segment si to frame j.

ΩL Set of lighting variables for all segments si and frames j.

Ω {nS,ΩM ,ΩA,H, o;ΩT ,ΩL}.

Table 4.1: Parameters of the layered representation.

ai ∈ si is specified using a histogram Hi for each segment si. The set of all such

histograms (i.e. for all segments si) is represented as H. In order to model the

layers, we assign a occlusion number oi to each segment si such that segments

belonging to the same layer share a common occlusion number. Each segment

si can partially or completely occlude segment sk if, and only if, oi > ok. In

summary, the latent image is defined by the mattes ΩM , the appearance ΩA,

the histograms H and the occlusion numbers o = {oi, i = 1, · · · , nS} of the nS

segments.

Transformations and Lighting Parameters: When generating frame j, we

start from a latent image and map each point ai ∈ si to a point a′ in the frame

using the transformation Ωj
T i. Note that we have assumed that points belonging

to the same segment move according to a common transformation. The generated

frame is then obtained by compositing the transformed segments in descending

order of their occlusion numbers. For this work, each transformation has five

degrees of freedom: one rotation, two translations (in x and y directions) and

two anisotropic scale factors.

The model accounts for the effects of lighting conditions on the appearance of a

60

4.2. Layered Representation

segment si using parameter Ωj
Li = {Wj

i ,w
j
i}, where Wj

i is a 3×3 diagonal matrix

and wj
i is a 3-dimensional vector. The change in appearance of the segment si

in frame j due to lighting conditions is modelled as a linear transformation of

ΩAi(ai), i.e.

d(a′) = Wj
i ·ΩAi(ai) + wj

i . (4.2.1)

The motion of segment si from frame j − 1 to frame j, denoted by mj
i , can be

determined using the transformations Ωj−1
T i and Ωj

T i. This allows us to take into

account the change in appearance due to motion blur as

gj
i (a

′) =

∫ T

0

d(a′ −mj
i (t))dt, (4.2.2)

where T is the total exposure time when capturing the frame.

To summarize, the layered representation model is given by the parameters

{nS,ΩM ,ΩA,H, o;ΩT ,ΩL}, where {nS,ΩM ,ΩA,H, o} define the latent image,

ΩT is the set of transformation parameters and ΩL represents the lighting pa-

rameters (see table 4.1). We denote the set of all parameters of the model by

Ω.

Posterior of the model: The layered representation described above is a dis-

criminative model. In other words, it specifies the conditional probability of the

parameters Ω given the video D which can be modelled using the conditional

random field (crf) formulation (described in § 2.2.2). However, there are two

disadvantages is using the crf framework directly: (i) similar to the mrf model,

the crf describes the probability of a labelling (i.e. a given set of values for

the parameter Ω) using only one type of pairwise potential. In other words, it

does not separate the data dependent and data independent parts of the pairwise

potential; and (ii) its graphical model representation is the same as that of an

mrf. These similarities between the mrf and crf models make it hard to judge

whether a given probabilistic model is generative or discriminative. In order to

make the distinction between these models more explicit, we will find it conve-

nient to use an alternative representation of crf. This alternative representation,

which we call the Contrast dependent random field (cdrf), is explained below.

The cdrf formulation models the posterior probability of Ω given data D as

Pr(Ω|D, θ) =
1

Z(θ)
exp(−Q(Ω;D, θ)), (4.2.3)

where θ is the set of potentials which define the cdrf and Z(θ) is the partition

function. The energy Q(Ω;D, θ) has the form

Q(Ω;D,θ) =

nS
∑

i=1





∑

ai∈ΩMi

θ1
ai;ΩMi(ai)

+
∑

(ai,bk)∈E

θp

ai,bk;ΩMi(ai),ΩMk(bk) + θc
ai,bk;ΩMi(ai),ΩMk(bk)



 ,

(4.2.4)

61

4.2. Layered Representation

Figure 4.3: The top row shows two segments of the human model. The unfilled

circles represent two of the neighbouring points of the filled circle. The neigh-

bourhood is defined across all mattes. We show one neighbour which lies on the

same matte (i.e. the torso) and another neighbour which lies on a different matte

(i.e. the upper arm). The bottom row shows two frames of the video along with

the projections of the points on the segments. Note that the neighbouring point

on the torso is occluded by the neighbouring point on the upper arm in the second

frame.

where E defines the neighbourhood of the cdrf. For this work, we define the

neighbourhood of ai as its 8-neighbourhood across all mattes ΩMi of the layered

representation (see Fig 4.3). As will be seen in § 4.3.3, this allows us to learn the

model efficiently by minimizing the energy Q(Ω;D, θ) using graph cuts. However,

a larger neighbourhood can be used for each point at the cost of more computation

time. Note that minimizing the energy Q(Ω;D, θ) is equivalent to maximizing

the posterior Pr(Ω|D, θ) since the partition function Z(θ) is independent of Ω.

Unlike the crf formulation which uses two types of potentials (unary and pair-

wise), the energy of the cdrf model for the layered representation has three com-

ponents: (i) the unary potential θ1
ai;ΩMi(ai)

; (ii) the data independent prior term

θp
ai,bk;ΩMi(ai),ΩMk(bk); and (iii) the data dependent contrast term θc

ai,bk;ΩMi(ai),ΩMk(bk).

The unary potential measures the consistency of motion and colour distribution

of the images of the point ai. The prior and contrast terms encourage spatially

continuous segments whose boundaries lie on edges in the frames. The graphical

model representation of the cdrf is shown in Fig. 4.4. We note that unlike mrf

it is not straightforward to generate the frames from cdrf since it is a discrim-

inative model (due to the presence of contrast term) [7, 56]. Below, we specify

the exact form of the potentials of the cdrf.

Unary Potential: We denote the observed rgb values at point a′ = Ωj
T i(ai)

(i.e. the image of the point ai in frame j) by Ij(ai). The generated rgb values of

the point a′ are described in equation (4.2.2). The unary potentials for a point

62

4.2. Layered Representation

Figure 4.4: Contrast-dependent random field (cdrf) formulation of the layered

representation containing two segments si and sk. The observed data is shown as

filled circles while the points on the segment mattes are shown as unfilled circles.

The unary potential θ1
ai;ΩMi(ai)

connects the data D (specifically the set of rgb val-

ues Ij(ai)) with the matte ΩMi(ai). The prior term θp
ai,bk;ΩMi(ai),ΩMk(bk) between

two neighbouring points ai and bk, which encourages spatial continuity, connects

ΩMi(ai) and ΩMk(bk). The data dependent contrast term θc
ai,bk;ΩMi(ai),ΩMk(bk)

which cannot be included in the prior, is shown using the diagonal connections

and the connections between observed nodes (in blue). Extending the formulation

to more than two segments is trivial. Note that some of the connections for the

contrast term are not shown for the sake of clarity of the figure.

ai are given by

θ1
ai;ΩMi(ai)

=

{

∑j=nF

j=1 − log(Pr(Ij(ai)|Ω) if ai ∈ si,

c1 otherwise,
(4.2.5)

where c1 is a constant penalty assigned to points ai which do not belong to the

segment si. This penalty c1 is necessary to avoid trivial solutions (i.e. ΩMi(ai) = 0

for all si and ai). For a point ai ∈ si, i.e. ΩMi(ai) = 1, the likelihood of Ij(ai)

is composed of two factors: (i) consistency with the colour distribution of the

segment, which is the conditional probability of Ij(ai) given ai ∈ si, and is

computed using histogram Hi; and (ii) consistency of motion which measures

how well the generated rgb values gj
i (a

′) match the observed values Ij(ai) (i.e.

how well does the latent image project into the frames). These factors are chosen

as

Pr(Ij(ai)|Ω) ∝ Pr(Ij(ai)|Hi) exp(−µ(cj
i (a

′)− Ij(ai))
2), (4.2.6)

where µ is some scaling factor. We use µ = 1 in our experiments. Note that in

the above equation we assume that the point ai is visible in frame j. When ai is

occluded by some other segment, we assign

Pr(Ij(ai)|Ω) = c2. (4.2.7)

One might argue that motion consistency alone would provide sufficient dis-

crimination between different segments. However, consider a video sequence with

63

4.2. Layered Representation

(a) (b)

(c) (d)

Figure 4.5: (a)-(b) Two possible latent images of the model consisting of two

segments. Unlike (a), the latent image shown in (b) assigns a block of green points

to the first segment of the model. (c)-(d) Two frames of the video sequences.

The brown region translates to the left while the green region remains stationary.

Note that when only consistency of motion is used in equation (4.2.6), the unary

potential θ1
ai;ΩMi(ai)

for ai ∈ si remains the same for both the latent images. This is

because the green block provides the same match scores for both transformations

(i.e. stationary and translation to left) since it maps onto green pixels in the

frames. However, when consistency of appearance is also used this green block

would be more likely to belong to the second segment (which is entirely green)

instead of the first segment (which is mostly brown). Hence, the unary potential

would favour the first latent image.

homogeneous background (e.g. brown horse walking on green grass). In such

cases, motion consistency would not be able to distinguish between assigning

some blocks of the background (i.e. the green grass) to either the horse segment

or the grass segment. Fig. 4.5 shows such a scenario where a block of the green

background is assigned to different segments. However, the colour distribution of

each segment would provide better discrimination. For example, the likelihood

of a green point belonging to the first (mostly brown) segment would be low ac-

cording to the colour distribution of that segment. Empirically, we found that

using both motion and colour consistency provide much better results than using

either of them alone.

Prior and Contrast: As noted above, the prior and contrast terms should be

chosen to encourage spatially continuous segments whose boundaries lie on image

edges. To this end, we closely follow the work of [13] on interactive binary image

64

4.2. Layered Representation

Point ai Point bk Segments Prior

ai /∈ si bk /∈ sk i 6= k κ1

ai /∈ si bk /∈ sk i = k κ1

ai /∈ si bk ∈ sk i 6= k κ1

ai /∈ si bk ∈ sk i = k κ2

ai ∈ si bk /∈ sk i 6= k κ1

ai ∈ si bk /∈ sk i = k κ2

ai ∈ si bk ∈ sk i 6= k κ2

ai ∈ si bk ∈ sk i = k κ1

Table 4.2: The value of the prior term θp
ai,bk;ΩMi(ai),ΩMk(bk) for various cases. The

first column shows whether ai ∈ si or not. Similarly, the second column shows

whether bk ∈ sk or not. In the third column, i = k implies that both points ai

and bk belong to the same matte. The fourth column lists the value of the prior

term corresponding to each case. Note that κ1 and κ2 are constants such that

κ1 < κ2.

segmentation which was described in chapter 2. For clarity, we first describe the

two terms separately while noting that their effect should be understood together.

We subsequently describe their joint behaviour.

Prior Term: The prior term is specified by a Potts model as shown in table 4.2.

Here κ1 and κ2 are constants such that κ1 < κ2. In other words, the prior

term encourages spatial continuity by assigning a constant penalty to any pair of

neighbouring pixels ai and bk which do not belong to the same segment.

Contrast Term: The contrast term encourages the projection of the boundary

between segments to lie on image edges. Its value for various cases is shown in

table 4.3. The term γik(ai, bk) is chosen such that it has a large value when ai

and bk project onto image edges. Following [13], we use

γik(ai, bk) = λ

(

1− exp

(−∆2
ik(ai, bk)

2σ2

)

· 1

dist(ai, bk)

)

, (4.2.8)

where

∆ik(ai, bk) =
1

nF

nF
∑

j=1

|Ij(ai)− Ij(bk)|. (4.2.9)

measures the difference between the rgb values Ij(ai) and Ij(bk) throughout

the video sequence. The term dist(ai, bk), i.e. the Euclidean distance between

ai and bk, gives more weight to the 4-neighbourhood of ai than the rest of the

8-neighbourhood. Similar to the interactive binary image segmentation exam-

ple (see § 2.2.2), the value of σ in equation (4.2.8) determines how the energy

Q(Ω;D, θ) is penalized since the penalty is high when ∆ik(ai, bk) < σ and small

65

4.2. Layered Representation

Point ai Point bk Segments Contrast

ai /∈ si bk /∈ sk i 6= k 0

ai /∈ si bk /∈ sk i = k 0

ai /∈ si bk ∈ sk i 6= k 0

ai /∈ si bk ∈ sk i = k −γik(ai, bk)

ai ∈ si bk /∈ sk i 6= k 0

ai ∈ si bk /∈ sk i = k −γik(ai, bk)

ai ∈ si bk ∈ sk i 6= k −γik(ai, bk)

ai ∈ si bk ∈ sk i = k 0

Table 4.3: The value of the contrast term θc
ai,bk;ΩMi(ai),ΩMk(bk) for various cases.

The first column shows whether ai ∈ si or not. Similarly, the second column

shows whether bk ∈ sk or not. In the third column, i = k implies that both

points ai and bk belong to the same matte. The fourth column lists the value of

the contrast term corresponding to each case. The function γik(·, ·) is as defined

in equation (4.2.8).

when ∆ik(ai, bk) > σ. Thus σ should be sufficiently large to allow for the variation

in rgb values within a segment.

Joint Behaviour of Prior and Contrast: In order to understand the joint

behaviour of the prior and contrast terms, we model the energy of the layered

representation in equation (4.2.4) using a crf with parameter θ̂ which is defined

as follows:

θ̂1
ai;ΩMi(ai)

= θ1
ai;ΩMi(ai)

(4.2.10)

and

θ̂2
ai,bk;ΩMi(ai),ΩMk(bk) = θp

ai,bk;ΩMi(ai),ΩMk(bk) + θc
ai,bk;ΩMi(ai),ΩMk(bk) (4.2.11)

Note that, for every cdrf, there would exist an equivalent crf whose pairwise

potentials are the sum of the prior and contrast terms of the cdrf. Similar to

the example crf in § 2.2.2, we specify the pairwise potentials using the following

weight values in all our experiments: κ1 = 1, κ2 = 2.2, λ = 1 and σ = 5. Table 4.4

shows the values of the prior and contrast term (as well as the pairwise potential

of the equivalent crf) for two neighbouring points ai and bk for these weight

values. We consider two cases for the term ∆ik(ai, bk): (i) ∆ik(ai, bk) = σ/3, i.e.

points ai and bk have similar appearance; (ii) ∆ik(ai, bk) = 3σ, which implies

points ai and bk have different appearance (as is the case when boundaries of

segments lie on image edges). Note that the value of the pairwise potentials is

small when the boundary of the segments lies on image edges (i.e. when i 6= k

and ∆ik(ai, bk) = 3σ). Hence, the weight values of our choice meet the desired

criterion for the pairwise potentials of the energy of the layered representation.

66

4.2. Layered Representation

Point ai Point bk Segments ∆ik(ai, bk) Prior Contrast Pairwise Pot.

ai /∈ si bk /∈ sk i 6= k σ/3 1 0 1

ai /∈ si bk /∈ sk i 6= k 3σ 1 0 1

ai /∈ si bk /∈ sk i = k σ/3 1 0 1

ai /∈ si bk /∈ sk i = k 3σ 1 0 1

ai /∈ si bk ∈ sk i 6= k σ/3 1 0 1

ai /∈ si bk ∈ sk i 6= k 3σ 1 0 1

ai /∈ si bk ∈ sk i = k σ/3 2.2 -0.0540 2.1460

ai /∈ si bk ∈ sk i = k 3σ 2.2 -0.9889 1.2111

ai ∈ si bk /∈ sk i 6= k σ/3 1 0 1

ai ∈ si bk /∈ sk i 6= k 3σ 1 0 1

ai ∈ si bk /∈ sk i = k σ/3 2.2 -0.0540 2.1460

ai ∈ si bk /∈ sk i = k 3σ 2.2 -0.9889 1.2111

ai ∈ si bk ∈ sk i 6= k σ/3 2.2 -0.0540 2.1460

ai ∈ si bk ∈ sk i 6= k 3σ 2.2 -0.9889 1.2111

ai ∈ si bk ∈ sk i = k σ/3 1 0 1

ai ∈ si bk ∈ sk i = k σ 1 0 1

Table 4.4: The prior and contrast terms for points ai and bk. The first two

columns specify whether ai ∈ si and bk ∈ sk or not respectively. In the third

column, i = k implies that both ai and bk belong to the same matte. The fourth

column lists the value of ∆ik(ai, bk). The fifth and sixth columns show the value of

the prior and the contrast terms respectively (computed using tables 4.2 and 4.3).

The pairwise potential of the equivalent crf model is shown in the seventh column

and is computed as the sum of the corresponding elements in the fifth and sixth

columns.

Empirically, they were found to provide good segmentations for all our input

videos.

Note that, for two points ai and bk, the minimum penalty of assigning them to

different segments, i.e. min(κ2− γik(ai, bk))−κ1, depends only on the value of κ1

and κ2 (since γik(ai, bk) is always less than 1). Unlike the crf framework, this fact

comes across clearly in the cdrf formulation which forces us to treat the prior and

the contrast term separately. In our case the values of κ1 and κ2 are chosen such

that the minimum value of this penalty is always greater than 0.2. This prevents

speckles appearing in the estimated segments by encouraging contiguous regions

(i.e. regions which minimize the length of the boundary between segments). For

example, consider the case where ai differs in appearance from all its neighbours

due to noise in the video frames. It would be undesirable to assign ai to a different

segment from all its neighbours. Such an assignment would be discouraged since

ai would have to incur a penalty of at least 0.2 from all its neighbours.

The next section builds on previous inference algorithms to learn the layered

67

4.3. Learning Layered Segmentation

representation. To this end, we describe a five stage approach to obtain Ω given

data D by minimizing the energy Q(Ω;D, θ) (i.e. maximizing Pr(Ω|D, θ)). The

method described is applicable to any scene with piecewise parametric motion.

4.3. Learning Layered Segmentation

1. Rigidly moving components are identified between every pair of consecutive

frames (§ 4.3.1). This is achieved by computing the image motion using a

novel efficient sum-product bp algorithm.

2. An initial estimate of Ω is obtained by combining these components

(§ 4.3.2). The number of segments nS is fixed to the initial estimate.

3. The parameters ΩA, ΩT and ΩL are kept constant and the mattes ΩM are

optimized using αβ-swap and α-expansion algorithms [15]. The occlusion

numbers oi are obtained (§ 4.3.3).

4. Using the refined values of ΩM , the appearance parameters ΩA are updated.

(§ 4.3.4).

5. Finally, the transformations ΩT and lighting variables ΩL are re-estimated,

keeping ΩM and ΩA unchanged (§ 4.3.5).

Algorithm 1: Estimating the parameters of the layered representation.

Given a video, our objective is to estimate Ω (i.e. the latent image, the trans-

formations and the lighting variables) of the layered representation. Our approach

takes inspiration from the highly successful interactive image segmentation algo-

rithm of Boykov and Jolly [13] in which the user provides a small number of

foreground and background seed pixels. The appearance model learnt from these

seed pixels then provides sufficient information to obtain reliable segmentation

by minimizing an objective function similar to equation (4.2.4) (see § 2.2.2). In

our case, the seed pixels are provided by a rough motion segmentation obtained

by computing the image motion. These seed pixels are sufficient to bootstrap the

method to minimize equation (4.2.4) to obtain reliable segmentations. This is

one of the key intuitions behind our method.

We obtain the layered representation Ω in five stages. In the first stage, image

motion is computed between every pair of consecutive frames to obtain rigidly

moving components. An initial estimate of Ω is then found in the second stage

using these components. This provides us with the seed pixels for each segment.

In the remaining stages, we alternate between holding some parameters constant

and optimizing the rest as illustrated in algorithm 1.

Our method makes use of three inference algorithms for crfs : sum-product

bp, αβ-swap and α-expansion. Sum-product bp is particularly useful for appli-

68

4.3. Learning Layered Segmentation

cations such as estimating motion fields where each site of the crf has a large

number of labels (i.e. equal to the number of possible motions from one frame

to the next). However, when refining the model, the number of labels is small

(i.e. equal to the number of segments) and hence efficient inference can be per-

formed using graph cuts based methods (i.e. αβ-swap and α-expansion). As will

be seen, we take advantage of the strengths of all these algorithms. We begin by

describing our approach for computing image motion.

4.3.1 Two Frame Motion Segmentation

In this section, we describe a novel, efficient algorithm to obtain rigidly mov-

ing components between a pair of frames by computing the image motion. Our

method is robust to changes in appearance due to lighting and motion blur.

We use the term components here to distinguish them from the segments finally

found. Note that this is a simple two frame motion segmentation method that is

used to initialize the more complex multiframe one as described later. The set

of components obtained from all pairs of consecutive frames in a video sequence

are combined to get the initial estimate of the segments (see § 4.3.2). Note that

our method does not depend on any keyframe(s). This avoids the problems of

previous approaches such as [94, 105], namely that they do not learn segments

which were not present in the keyframe. For example, if the hand of a person

walking was occluded by the torso in the keyframe then it would not be learnt

as part of the layered representation using the methods described in [94, 105]. In

contrast, our method will obtain the hand segment as long as it is visible in one

of the frames of the video (and is moving non-rigidly with the other segments).

In order to identify points that move rigidly together from frame j to j+ 1 in

the given video D, we need to determine the transformation that maps each point

in frame j to its position in frame j+1 (i.e. the image motion). However, at this

stage we are only interested in obtaining a coarse estimate of the components as

they will be refined later using graph cuts. This allows us to reduce the complexity

of the problem by dividing frame j into uniform patches ra of size p × p pixels

and determining their transformations ϕi. However, a large value of p may merge

two components. We use p = 3 for all our experiments which was found to offer

a good compromise between efficiency and accuracy.

The components are obtained in two stages: (i) finding a set of putative

transformations ϕi for each patch ra in frame j; (ii) selecting from those initial

transformations the best joint set of transformations over all patches in the frame.

As the size of the patch is only 3 × 3 and we restrict ourselves to consecutive

frames, it is sufficient to use transformations defined by a scale ρi, rotation φi

and translation ti = {txi , tyi }, i.e. ϕi = {ρi, φi, ti}.

69

4.3. Learning Layered Segmentation

Finding putative transformations: We define a crf whose variables cor-

respond to the patches of frame j (i.e. each variable va of the crf represents a

patch ra). Each label li of variable va corresponds to a putative transformation

ϕi. Note that this is a different crf from the one described in the previous section

which models the energy of the layered representation. It is a simpler one which

we will solve in order to provide initialization for the layered representation.

In order to further differentiate this crf from the one described in section 4.2,

we represent its unary and pairwise potentials as ψ1
a;i and ψ2

ab;ik respectively.

The unary potential ψ1
a;i of a label measures how well the patch ra matches

frame j + 1 after undergoing transformation ϕi. The neighbourhood Na of each

variable va is defined as its 4-neighbourhood. As we are interested in finding

rigidly moving components, we specify the pairwise potential ψ2
ab;ik such that

it encourages neighbouring patches to move rigidly together. Let f represent

a labelling of these variables (i.e. variable va takes label lf(a)). The posterior

probability of such a labelling given the jth and (j + 1)th frame (denoted by Dj

and Dj+1 respectively) is

Pr(f |Dj,Dj+1,ψ) =
1

Z(ψ)

∏

k

exp(−ψa;f(a))
∏

vb∈Na

exp(−ψab;f(a)f(b)), (4.3.1)

where ψ is the set of potentials and Z(ψ) is the partition function of the crf.

Below, we describe the various terms used to define the above crf in detail.

Transformations: By taking advantage of the fact that large scaling, trans-

lations and rotations are not expected between consecutive frames, we restrict

ourselves to a small number of putative transformations. Specifically, we vary

scale ρi from 0.7 to 1.3 in steps of 0.3, rotation φi from −0.3 to 0.3 radians in

steps of 0.15 and translations ti in horizontal (i.e. txi) and vertical directions (i.e.

tyi) from −10 to 10 pixels and −5 to 5 pixels respectively in steps of 1. Thus the

total number of transformations is 3465.

Unary Potential: The unary potential associated with a patch ra undergoing

transformation ϕi is modelled as ψ1
a;i ∝ −L(ra, ϕi). The term L(ra, ϕi) is com-

puted as follows. An ω × ω window centred around the patch ra in frame j is

transformed according to ϕi. The value of ω is chosen to be greater than the size

of the patch (i.e. ω > p). If ϕi is the true transformation of the patch ra then

the rgb values of the transformed ω × ω window should be similar to the rgb

values of the corresponding pixels in frame j + 1. The term L(ra, ϕi) measures

this similarity between the window and the corresponding pixels of frame j + 1

as their normalized cross-correlation. When calculating L(ra, ϕi) in this manner,

the ω × ω window is subjected to different degrees of motion blur according to

the motion specified by ϕi, and the best match score is chosen. This, along with

the use of normalized cross-correlation, makes the estimation of unary potential

robust to lighting changes and motion blur. In all our experiments, we used ω = 5.

Since the appearance of a patch does not change drastically between consecutive

70

4.3. Learning Layered Segmentation

frames, normalized cross-correlation provides reliable match scores. Unlike [54],

we do not discard the transformations resulting in a low match score. However,

it will be seen later that this does not significantly increase the amount of time

required for finding the minimum mean squared error (mmse) estimate of the

transformations due to our computationally efficient method.

Pairwise Potential: We want to assign the pairwise potentials ψ2
ab;ik such that

neighbouring patches ra and rb which do not move rigidly together are penalized.

However, we would be willing to take the penalty when determining the mmse

estimate if it results in better match scores. Furthermore, we expect two patches

separated by an edge to be more likely to move non-rigidly since they might

belong to different segments. Thus we define the pairwise potentials by a Potts

model such that

ψ2
ab;ik =

{

−1 if rigid motion,

−ζ∇(ra, rb) otherwise,

where ∇(ra, rb) is the average of the gradients of the neighbouring pixels x ∈ ra

and y ∈ rb, i.e. along the boundary shared by ra and rb. The term ζ specifies

how much penalty is assigned for two neighbouring patches not moving rigidly

together. We choose ζ such that it scales ζ∇(ra, rb) to lie between 0 and 1.

Occlusion: To handle occlusion, an additional label lo is introduced for each

variable va which represents the patch ra being occluded in frame j+1. The corre-

sponding likelihoods and pairwise terms ψ1
a;o, ψ

2
ab;io, ψ

2
ab;oi and ψ2

ab;oo are modelled

as constants for all patches ra and rb. In our experiments, we used the values

0.1, 0.5, 0.5 and 0.8 respectively. The higher value for ψ2
ab;oo specifies that two

neighbouring patches tend to get occluded simultaneously.

Obtaining the transformations: Once the crf has been specified, the best

joint set of transformations for all patches is found as the (approximate) mmse

estimate defined by the probability Pr(f |Dj,Dj+1,ψ). We use the sum-product

bp to find the posterior probability of a patch ra undergoing transformation ϕi.

This provides us with the mmse estimate of transformations.

The two main limitations of sum-product bp are its large memory require-

ments and its computational inefficiency. We overcome these problems by devel-

oping a novel coarse to fine bp algorithm. This algorithm groups similar labels of

the crf to obtain a smaller number of representative labels, thereby reducing the

memory requirements. The time complexity of sum-product bp is also reduced

using the method described in [24]. Details of the algorithm can be found in

Appendix A.

Once the mmse estimate of the transformations for all the patches of frame

j have been determined, we cluster the points moving rigidly together to obtain

rigid components. Components with size less than 100 pixels are merged with

surrounding components. We repeat this process for all pairs of consecutive

71

4.3. Learning Layered Segmentation

Figure 4.6: Results of obtaining the mmse estimates of the transformations. The

first two columns show consecutive frames of a video. The third column shown the

reconstruction of the second frame obtained by mapping the patches of the first

frame according to the transformations obtained using coarse-to-fine efficient lbp.

Points which are occluded from the first frame but are present in the second frame

would be missing from the reconstruction. These points are shown in red. Points

moving rigidly are clustered together to obtain the components shown in the fourth

column.

frames of the video. Themth component of frame j is represented as a set of points

Cj
m. Fig. 4.6 shows the result of our approach on four pairs of consecutive frames.

Fig. 4.7 shows the advantage of modelling motion blur when computing the unary

potential of a patch ra undergoing a transformation ϕi. In the next section, we

describe how an initial estimate of the layered representation is obtained using

the rigid pairwise components.

4.3.2 Initial Estimation of the Model over Mul-

tiple Frames

In this section, we describe a method to get an initial estimate of Ω. The method

consists of two stages: (i) combining rigidly moving components to obtain the

number of segments and the initial estimate of their shape parameter ΩMi; and

72

4.3. Learning Layered Segmentation

(a) (b)

(c) (d)

Figure 4.7: Effects of modelling motion blur. (a)-(b) Two consecutive frames

from the video shown in Fig. 4.1. (c) The image motion computed without mod-

elling motion blur. The reconstruction of the second frame, obtained by mapping

the patches of the first frame according to the transformations obtained, indicates

that incorrect transformations are found around the feet (see e.g. the shoes) where

there is considerable motion blur. Note that the pixels marked red are those that

are occluded in the first frame but present in the second frame. (d) Results after

modelling motion blur. Accurate transformations for the patches belonging to the

shoes are obtained by accounting for the change in appearance due to motion blur.

(ii) computing the remaining parameters, i.e. ΩAi, Ωj
T i and Ωj

Li.

Combining rigid components: Given the set of all pairwise components, we

want to determine the number of segments nS present in the entire video sequence

and obtain an initial estimate of their shape. To this end, we make use of the

mmse estimate of the transformations, i.e. ϕi, obtained in the previous section.

Note that, by definition, all the patches in frame j which belong to the same

component Cj
m share the same transformation (since they move rigidly together).

We denote the transformation of a component Cj
m (i.e. the transformation of its

patches) by ϕj
m.

Note that each component may consists of points which belong to one of more

segments. For example, consider the two components shown in the top row of

Fig. 4.6. One of these components consists of the two half limb segments of a

leg while the other component consists of the rest of the segments. However, we

rely on each segment of the scene to be detected as an individual component in

at least one frame. Empirically, this assumption is not found to be restrictive as

it is satisfied for all the videos used in our experiments.

73

4.3. Learning Layered Segmentation

(a)

(b)

(c)

(d)

Figure 4.8: Four sets of rigidly moving components found using five consecutive

frames. (a) First two frames together with the set of components (i.e. the back-

ground and the body of the person). (b)-(d) Rigidly moving components for the

remaining pairs of consecutive frames.

74

4.3. Learning Layered Segmentation

Given the above assumption, one of the methods to obtain the segments would

be to establish a correspondence between the components using the transforma-

tions ϕj
m. As an illustration, consider five consecutive frames of the video shown

in Fig. 4.1. These frames result in four sets of components (i.e. one set each for

four pairs of consecutive frames) as shown in Fig. 4.8. In order to establish a cor-

respondence between these sets of components, we start with the first set (i.e. the

set in Fig. 4.8(a) which contains only one component other than the background).

We map this component using its transformation to the second frame which es-

tablishes a correspondence between the first two sets of components as shown in

Fig. 4.9(a). This correspondences allows us to cluster the two sets of components

such that each cluster contains corresponding components. The clusters obtained

in this manner are also shown in Fig. 4.9(a).

We can continue this process by establishing a correspondence between the

second and the third set of components. By assuming the correspondence to be

transitive, we can obtain the clusters for the first three sets of components (see

Fig. 4.9(b)). If one of the components in frame j, say Cj
m, maps to more than

one components in frame j + 1 then we can split the cluster containing Cj
m as

shown in Fig. 4.9(c). Similarly, if more than one components in frame j, say

Cj
m and Cj

n, correspond to one component in frame j + 1, say Cj+1
p , then we can

simply let Cj+1
p to belong to one of the clusters (i.e. either belonging to the cluster

containing Cj
m or the cluster containing Cj

n). Hence, starting from the first frame

and proceeding in this manner till the end of the video would result in clustering

the components. The number of such clusters would provide us with the number

of segments nS. The initial estimate of the shape of a segment corresponding to

a cluster can simply be chosen as the shape of one of the components belonging

to that cluster.

However, the method described above does not take into account the errors

that may be present in the transformations ϕj
m. Such errors would result in es-

tablishing an incorrect correspondence between two sets of components. This

incorrect correspondence would in turn result in erroneous clustering of the com-

ponents, e.g. see Fig. 4.9(d). Thus any method used for combining the compo-

nents to obtain the segments should be robust to noise in the transformations

ϕj
m. For this purpose, we use the agglomerative clustering algorithm as follows.

Agglomerative clustering starts by treating each component as a separate clus-

ter. At each step, the two most similar clusters (i.e. the clusters containing the

two most similar components) are combined together. The algorithm is termi-

nated when the similarity of all pairs of components belonging to different clusters

falls below a certain threshold. The similarity of two components, say Cj
m and

Ck
n, is measured as follows. If the corresponding component of Cj

m in frame k lies

close to the component Ck
n, then their similarity is measured as the normalized

cross-correlation of the rgb values corresponding to these components. However,

if the corresponding component of Cj
m lies far from Ck

n, then their similarity mea-

75

4.3. Learning Layered Segmentation

(a) (b)

(c) (d)

Figure 4.9: Correspondences are established between two consecutive sets of com-

ponents by mapping a component Cj
m in frame j to frame j + 1 using transfor-

mation ϕj
m. These correspondences are shown using green lines going from one

set of components to the other. The corresponding components are said to belong

to the same cluster. (a) The correspondence and the resulting clustering for the

first two sets of components shown in Fig. 4.8. Each row in the right hand side

represents one cluster. For example, the first row corresponds to the head+torso

cluster, the second row corresponds to the arm cluster while the third tow cor-

responds to the leg cluster. (b) The correspondence and the resulting clustering

for the second and third sets of components. The correspondence is considered

transitive thereby resulting in a clustering of all three sets of components. (c) The

correspondence and the resulting clustering for the third and fourth sets of com-

ponents. Note that the leg cluster has been split into two half limb clusters. (d)

Errors in estimating the transformations ϕj
m result in incorrect correspondences.

Specifically, the arm of the person maps to the torso in the previous frame. In-

correct correspondence leads to erroneous clustering. For example, there are now

two clusters corresponding to the arms of the person.

76

4.3. Learning Layered Segmentation

(a) (b)

(c) (d)

Figure 4.10: The clusters found using agglomerative clustering for the components

shown in Fig. 4.8. (a) The cluster corresponding to the head+torso segment. (b)

The cluster corresponding to the arm segment. (c) The cluster corresponding to

the upper leg segment. (d) The cluster corresponding to the lower leg segment.

sure is set to −∞. The advantage of computing the similarity in this manner is

two folds: (i) the clustering obtained makes efficient use of the correspondences

provided by the transformations ϕj
m (computed as described above) while being

robust to noise; and (ii) it encourages the agglomerative clustering algorithm to

terminate quickly since the similarity measures between most pairs of components

are −∞.

Upon termination, the number of clusters provides us with the number of

segments. The clusters obtained using agglomerative clustering for the set of

components in Fig. 4.8 is shown in Fig. 4.10. We simply let components containing

more than one segment lie in a cluster representing one of these segments. For

example, the component in Fig. 4.8(b) which contains both the half limbs of a

leg belongs to the cluster corresponding to the lower half limb in Fig. 4.10(d).

We are now only left with the decision of choosing one of the components in a

cluster to represent the initial shape of the segment corresponding to that cluster.

To this end, we choose the smallest component in the ith cluster to specify the

matte ΩMi of segment si, as shown in Fig. 4.11 (top row). This avoids using a

component containing more than one segment to define the shape of a segment.

However, this implies that the initial estimate will often be smaller than (or equal

to) the ground truth and thus, needs to be expanded as described in § 4.3.3.

Fig. 4.11 (bottom row) shows the initial shape estimates of all the segments

(excluding the background) for the video in Fig. 4.1 obtained using our method.

Note that all the segments of the person visible in the video have been found.

77

4.3. Learning Layered Segmentation

Figure 4.11: Shape estimates of the segments found using agglomerative cluster-

ing. The top row shows the shape estimates corresponding to the clustering shown

in Fig. 4.10. The bottom row shows the shape estimates for all the segments found

in the entire video sequence shown in Fig. 4.1.

Before moving further, we note here that the above method for combining rigid

components to obtain segments is similar to the method described by Ramanan

and Forsyth [74]. Note that [74] clusters rectangular fragments found in a video

to obtain parts of an object. However, their method relies on finding parallel lines

of contrast to define the fragments, which restricts their method to a small class of

objects and videos. In contrast, our method obtains rigidly moving components

by computing image motion and hence, is applicable to any video containing

piecewise parametric motion.

Initial estimation of the model: Once the mattes ΩMi are found, we need

to determine the initial estimate of the remaining parameters of the model. The

transformations Ωj
T i are obtained using ϕj

m and the component clusters. The

appearance parameter ΩAi(ai) is given by the mean of Ij(ai) over all frames j.

The histograms Hi are computed using the rgb values ΩAi(ai) for all points

ai ∈ si. As the size of the segment is small (and hence, the number of such

rgb values is small), the histogram is implemented using only 15 bins each for

r, g and b. The lighting parameters Ωj
i = {Wj

i ,w
j
i} are calculated in a least

squares manner using ΩAi(ai) and Ij(ai), for all ai ∈ si. The motion variables

mj
i are given by Ωj

T i and Ωj−1
T i . This initial estimate of the model is then refined

by optimizing each parameter while keeping others unchanged. We start by

optimizing the shape parameters ΩM as described in the next section.

4.3.3 Refining Shape

In this section, we describe a method to refine the estimate of the shape pa-

rameters ΩM and determine the occlusion numbers oi. Given an initial coarse

estimate of the segments, we improve their shape using consistency of motion and

78

4.3. Learning Layered Segmentation

texture over the entire video sequence. The refinement is carried out such that it

minimizes the energy Q(Ω;D, θ) of the model given in equation (4.2.4).

There are several approaches that one can adopt to refine the shape param-

eters by minimizing the energy of the model. A standard way would be to fix

the occlusion numbers of the segments and refine their shape by minimizing the

resulting energy function. The process could be repeated for all possible assign-

ments of occlusion numbers. The assignment which results in the lowest energy

value would then be chosen to provide the refined estimates of ΩM . However,

this would be computationally inefficient because of the large number of possible

occlusion numbers for each segment. In order to reduce the complexity of the

algorithm, we make use of an iterative approach. As will be seen, this allows us

to make use of the fact that only those segments which overlap with each other

are required for determining the occlusion ordering (i.e. the layering of segments).

In practice, we found that this iterative procedure provides a good estimate of

the shape of the segments for all the videos used in this work.

Specifically, we make use of two algorithms: αβ-swap and α-expansion [15],

which were briefly described in chapter 2. The αβ-swap algorithm iterates over

pairs of segments, sα and sβ. At each iteration, it refines the mattes of sα and

sβ by swapping the values of ΩMα(aα) and ΩMβ(aβ) for some points aα and aβ

in the mattes of the segments sα and sβ respectively. The α-expansion algorithm

iterates over segments sα. At each iteration, it assigns ΩMα(aα) = 1 for some

points aα in the matte ΩMα. Note that α-expansion never reduces the number

of points belonging to segment sα.

In our previous work [54], we described an approach for refining the shape

parameters of the model when all the segments are restricted to lie in one reference

frame. In other words, each point on the reference frame has a unique label, i.e. it

belongs to only one segment. In that case, it was sufficient to refine one segment at

a time using the α-expansion algorithm alone to correctly relabel all the wrongly

labelled points. For example, consider a point a ∈ si which was wrongly labelled

as belonging to sk. During the expansion move where α = i, the point a would

be relabelled to si (and hence, it would not belong to sk).

The question now arises as to why we need both the αβ-swap and the α-

expansion algorithms for the layered representation? To answer this, we note

that the shape of each segment in the layered representation is modelled using

a separate matte (i.e. no reference frame is used). Hence the restriction that

points in the reference frame belong to only one segment no longer holds true. In

such a case, performing only α-expansion would incorrectly relabel the ath point

in both ΩMi and ΩMk to 1. We overcome this problem by performing αβ-swap

over pairs of segments. During the swap move when α = i and β = k, the

ath point in matte ΩMi (i.e. ai) would be relabelled to 1 while the ath point in

ΩMk (i.e. ak) would be relabelled to 0. This case is illustrated in Fig. 4.12 using

two segments corresponding to half limbs of the walking person in Fig. 4.1. The

79

4.3. Learning Layered Segmentation

(a) (b) (c)

(d) (e) (f)

Figure 4.12: An example of αβ-swap move for two segments, namely the upper

half limbs of the two legs of the walking person shown in Fig. 4.1. (a)-(b) The

initial shape estimate of the two half limbs which we denote by si (i.e. the blue

segment) and sk (i.e. the green segment) respectively. Note that some of the

points which belong to si have been incorrectly assigned to the matte of sk. (c)

The projection of these mattes onto a frame of the video. Clearly the segmentation

provided by these mattes is incomplete. (d)-(e) The refined shape estimates of

the two half limbs obtained using the αβ-swap algorithm (when α = i and β = k).

Note that the αβ-swap was computed by assuming that oi > ok (i.e. si occludes

sk). We also compute an αβ-swap move by assuming that oi < ok and choose

those mattes which result in the lowest energy between the two assumptions. (f)

The projection of the refined mattes onto the video frame.

80

4.3. Learning Layered Segmentation

(a) (b)

(c) (d)

Figure 4.13: An example of α-expansion move for the segment si in Fig. 4.12.

(a) The shape estimate of si obtained using an αβ-swap move as shown in

Fig. 4.12(d). (b) The projection of the matte onto a frame of the image. Note

that this segmentation is the same as that shown in Fig. 4.12(f). (c) The refined

shape estimate of si obtained after an α-expansion move (by assuming that oi > ok

where the segment sk is shown in Fig. 4.12(e)). Note that the refined matte rep-

resents the complete shape of the half limb si. This can be seen by projecting the

matte onto a video frame as shown in (d).

α-expansion algorithm would then grow the segments allowing them to overlap

(e.g. see Fig. 4.13 for the result of growing the segment si in Fig. 4.12(d) us-

ing α-expansion). Therefore, refining the shape parameters ΩMi of the layered

representation requires both the αβ-swap and the α-expansion algorithm.

We now show how the iterative procedure described above allows us to deter-

mine the occlusion ordering using only those segments which overlap with each

other. To this end, we define the limit Li of a segment si as the set of points ai

whose distance from si is at most 40% of the current size of si. Given segment

si, let sk be a segment such that the limit Li of si overlaps with sk in at least one

frame j of the video. Such a segment sk is said to be surrounding the segment si.

The number of surrounding segments sk is quite small for objects such as humans

and animals which are restricted in motion. For example, the head segment of

the person shown in Fig. 4.1 is surrounded by only the torso and the background

segments.

We iterate over segments and refine the shape of one segment si at a time. At

each iteration, we perform an αβ-swap for si and each of its surrounding segments

sk. This relabels all the points which were wrongly labelled as belonging to si.

We then perform an α-expansion algorithm to expand si to include those points

ai in its limit which move rigidly with si. During the iteration refining si, we

consider three possibilities for si and its surrounding segment sk: oi = ok, oi > ok

81

4.3. Learning Layered Segmentation

or oi < ok. Recall that if oi < ok, we assign Pr(Ij(ai)|Ω) = c2 for frames j

where the image of ai is occluded by the image of a point in sk. We choose the

option which results in the minimum value of Q(Ω;D, θ). This determines the

occlusion ordering among surrounding segments. We stop iterating when further

reduction of Q(Ω;D, θ) is not possible. This provides us with a refined estimate

of ΩM along with the layer number oi of the segments. Since the neighbourhood

for each point ai is small (see Fig. 4.3), graph cuts can be performed efficiently.

The graph constructions for both the αβ-swap and α-expansion algorithms are

provided in Appendix B.

Fig. 4.14 shows the refined shape parameters of the segments obtained by the

above method using the initial estimates. Results indicate that reliable shape

parameters can be learnt even while using a small neighbourhood. Note that,

although the torso is partially occluded by the arm and the backleg is partially

occluded by the front leg in every frame, their complete shape has been learnt us-

ing individual binary mattes for each segment. Next, the appearance parameters

corresponding to the refined shape parameters are obtained.

Figure 4.14: Result of refining the mattes of the layered representation of a per-

son using the iterative procedure described in § 4.3.3. The shape of the head is

re-estimated after one iteration. The next iteration refines the torso segment.

Subsequent iterations refine the half limbs one at a time. Note that the size of the

mattes is equal to that of a frame of the video but smaller mattes are shown here

for clarity.

82

4.3. Learning Layered Segmentation

Figure 4.15: Appearance of the parts learnt for the human model as described in

§ 4.3.4.

4.3.4 Updating Appearance

Once the mattes ΩMi of the segments are obtained, the appearance of a point

ai ∈ si, i.e. ΩAi(ai) is calculated as the mean of Ij(ai) over all frames j. The

histograms Hi are recomputed using the rgb values ΩAi(ai) for all points ai ∈ si

(again using 15 bins each for r, g and b). Fig. 4.15 shows the appearance of

the segments of the human model learnt using the video in Fig. 4.1. The refined

shape and appearance parameters help in obtaining a better estimate for the

transformations as described in the next section.

4.3.5 Refining the Transformations

Finally, the transformations ΩT and the lighting parameters ΩL are refined by

searching over putative transformations around the initial estimate, for all seg-

ments at each frame j. For each putative transformation, the lighting parameters

Ωj
Li = {Wj

i ,w
j
i} are calculated in a least squares manner. The transformation

Ωj
T i which results in the smallest ssd is chosen. We search for putative transfor-

mations by considering translations upto 5 pixels in steps of 1, scales 0.9, 1.0 and

1.1 and rotations between −0.15 and 0.15 radians in steps of 0.15 radians around

the initial estimate. Fig. 4.16 shows the rotation and translation in y-axis of the

upper arm in Fig. 4.1, obtained after refining the transformations.

The model Ω, learnt using the five stage approach described above, can be

used iteratively to refine the estimation of the layered representation. However,

we found that it does not result in a significant improvement over the initial

estimate as the parameters do not change much from one iteration to the other.

Next, we describe a method to refine the segmentation of each frame.

4.3.6 Refining the Segmentation of Frames

Our model maps the segments onto a frame using only simple geometric trans-

formations. This would result in gaps in the generated frame when the mo-

tion of segments cannot be accurately defined by such transformations (e.g. see

Fig. 4.17(a)). In order to deal with this, we refine the segmentation of each frame

by relabelling the points around the boundary of segments. Note that this step is

83

4.4. Results

(a) (b)

Figure 4.16: (a) Rotation of the upper arm obtained after refining the transfor-

mations as described in § 4.3.5. During the first half of the video, the arm swings

away from the body while in the second half it rotates towards the body. Clearly,

this motion has been captured in the learnt rotations. (b) Translation of the upper

arm in the horizontal direction. The person moves from the right to the left of the

scene with almost constant velocity as indicated by the learnt translations. Note

that the transformations are refined individually for each frame and are therefore

not necessarily smooth.

performed only to obtain more accurate segmentations and does not change the

values of any parameters. The relabelling is performed by using the α-expansion

algorithm. The unary potential for assigning point a in frame j around the

boundary of si to si is the inverse log likelihood of its observed rgb values in

that frame given by the histogram Hi.

The pairwise potential of assigning two neighbouring points a and b to the

same segment is κ1. The value of the pairwise potential is set to κ2 − γj(a, b)

otherwise. The term γj(a, b) is defined similar to γik(ai, bk) in equation (4.2.8),

i.e.

γj(a, b) = λ

(

1− exp

(−(∆j(a, b))2

2σ2

)

· 1

dist(ai, bk)

)

, (4.3.2)

where

∆j(a, b) = |Dj(a)−Dj(b)|, (4.3.3)

i.e. ∆j(a, b) is the difference in the observed rgb values of points a and b in frame

j. Fig. 4.17 shows an example where the gaps in the segmentation are filled using

the above method.

4.4. Results

We now present results for motion segmentation using the learnt layered repre-

sentation of the scene. The method is applied to different types of object classes

(such as jeep, humans and cows), foreground motion (pure translation, piecewise

similarity transforms) and camera motion (static and translating). The back-

ground is assumed to be static. We use the same weight values (i.e. κ1 = 1,

84

4.4. Results

(a) (b)

Figure 4.17: Result of refining the segmentation. (a) The segmentation obtained

by compositing the transformed segments in descending order of the occlusion

numbers. (b) The refined segmentation obtained using α-expansion (see text).

Note that the gaps in the segmentation that appear in (a), e.g. between the upper

and lower half limbs of the arm, have been filled.

κ2 = 2.2, λ = 1 and σ = 5) in all our experiments.

Fig. 4.18-4.20 show the segmentations obtained by generating frames using

the learnt representation. All segments are composited in descending order of

their occlusion numbers. Note that the segments belonging to the background

(i.e. with occlusion number 0) are not projected onto the frames. Fig. 4.18(a)

and 4.18(b) show the result of our approach on simple scenarios where each layer

of the scene consists of segments which are undergoing pure translation. Despite

having a lot of flexibility in the putative transformations (by allowing for various

rotations and scales), the initial estimation recovers the correct transformations,

i.e. those containing only translation. Note that the transparent windshield of

the jeep is (correctly) not recovered in the m.a.s.h. sequence as the background

layer can be seen through it. For the sequence shown in Fig. 4.18(a) the method

proves robust to changes in lighting condition and it learns the correct layering

for the segments corresponding to the two people.

Fig. 4.19(a) and 4.19(b) show the motion segmentation obtained for two

videos, each of a person walking. In both cases, the body is divided into the

correct number of segments (head, torso and seven visible half limbs). Our

method recovers well from occlusion in these cases. For such videos, the feet

of a person are problematic as they tend to move non-rigidly with the leg in some

frames. Indeed the feet are missing from the segmentations. Note that the grass

in Fig. 4.19(b) has similar intensity to the person’s trousers which causes some

errors in the transformations of the legs.

Fig. 4.20(a) and 4.20(b) are the segmentations of a cow walking. Again the

body of the cow is divided into the correct number of segments (head, torso

85

4.4. Results

(a)

(b)

Figure 4.18: Motion segmentation results 1. In each case, the left image shows

the various segments obtained in different colours. The top row shows the original

video sequence while the segmentation results are shown in the bottom row. (a)

A 40 frame sequence taken from a still camera (courtesy Nebojsa Jojic [38]).

The scene contains two people undergoing pure translation in front of a static

background. The results show that the layering is learnt correctly. (b) A 10 frame

video sequence taken from ‘M.A.S.H.’. The video contains a jeep undergoing

translation and slight out of plane rotation against a static background while the

camera pans to track the jeep.

and eight half limbs). The cow in Fig. 4.20(a) undergoes a slight out of plane

rotation in some frames, which causes some bits of grass to be pulled into the

segmentation. The video shown in Fig. 4.20(b) is taken from a poor quality analog

camera. However, our algorithm proves robust enough to obtain the correct

segmentation. Note that when relabelling the points around the boundary of

segments some parts of the background, which are similar in appearance to the

cow, get included in the segmentation.

Our approach can also be used to segment objects present at different depths

when the camera is translating. This is due to the fact that their transformations

with respect to the camera will differ. Fig. 4.21 shows one such example using

the well-known ‘Garden’ sequence. Note that the correct number of objects have

been found and good segmentation is obtained.

Timing: The initial estimation takes approximately 5 minutes for every pair

of frames: 3 minutes for computing the likelihood of the transformations and 2

minutes for mmse estimation using coarse to fine bp. The shape parameters of the

86

4.4. Results

(a)

(b)

Figure 4.19: Motion segmentation results 2. (a) A 31 frame sequence taken from

a still camera (courtesy Hedvig Sidenbladh [86]). The scene consists of a person

walking against a static background. The correct layering of various segments

of the person is learnt. The ground truth used for comparison is also shown in

the third row. (b) A 57 frame sequence taken from a translating camera of a

person walking against a static background (courtesy Ankur Agarwal [1]). Again

the correct layering of the segments is learnt.

segments are refined by minimizing the energy Q(Ω;D, θ) as described in § 4.3.3.

The st-mincut algorithm used has, in practice, a time complexity which is linear

in the number of points in the binary matte ΩMi. It takes less than 1 minute

to refine the shape of each segment. Most of the time is taken up in calculating

the various terms which define the energy shown in equation (4.2.4). Since the

algorithm provides a good initial estimate, it converges after at most 2 iterations

through each segment. All timings provided are for a C++ implementation on a

2.4 GHz processor.

Ground truth comparison: The segmentation performance of our method

was assessed using eight manually segmented frames (four each from the chal-

lenging sequences shown in Fig. 4.19(a) and 4.20(b)). Out of 80901 ground truth

foreground pixels and 603131 ground truth background pixels in these frames,

79198 (97.89%) and 595054 (98.66%) were present in the generated frames respec-

tively. Most errors were due to the assumption of piecewise parametric motion

and due to similar foreground and background pixels.

87

4.4. Results

(a)

(b)

Figure 4.20: Motion segmentation results 3. (a) A 44 frame sequence of a cow

walking taken from a translating camera. All the segments, along with their lay-

ering, are learnt. (b) A 30 frame sequence of a cow walking against a static

(homogeneous) background (courtesy Derek Magee [61]). The video is taken from

a still analog camera which introduces a lot of noise. The results obtained using

our approach (row 2) and the ground truth used for comparison (row 3) are also

shown.

Sensitivity to weights: Recall that, in order to obtain the rigidly moving

components, we compute the image motion for each patch ra in a frame j (i.e.

the transformation that maps the pixels in ra from frame j to j + 1). Fig. 4.22

shows the effects of computing the image motion and obtaining the components

without favouring rigid motion between neighbouring patches. This is achieved

by using a higher value of ζ in equation (4.3.2), specifically one which scales

ζ∇(ra, rb) to lie between 0 and 2 (i.e. twice the value of ζ used earlier). As

expected, this oversegments the body of the person by learning a large number of

rigidly moving components. This problem is overcome by favouring rigid motion

for any two neighbouring patches using the crf described in § 4.3.1.

Our model explicitly accounts for spatial continuity using the weights κ1, κ2

and λ. Fig. 4.23 shows the effects of setting these weights to zero, thereby not

modelling spatial continuity. Note that this significantly deteriorates the quality

of the segmentation when the background is homogeneous.

Sensitivity to length of sequence: We tested our approach by varying the

number of frames used for the video sequence shown in Fig. 4.1. Since the number

of segments (and their initial shape) is found using rigidly moving components,

88

4.5. Discussion

Figure 4.21: Segmenting objects. The top row shows some frames from the

29 frame ‘Garden’ sequence taken from a translating camera. The scene contains

four objects, namely the sky, the house, the field and the tree, at different depths

which are learnt correctly. The bottom row shows the appearance and shape of the

segmented objects.

Figure 4.22: Results of finding components for four frames from the video shown

in Fig. 4.1 by using a greater tolerance for non-rigid motion between two neigh-

bouring patches. A large number of components are found by clustering rigidly

moving patches, i.e. the method oversegments the body of the person. For ex-

ample, the head and the torso are oversegmented in the first and second image

respectively, while the third and fourth images show the oversegmentation of a leg.

using fewer frames tends to undersegment the object. For example, given 10

frames of a video where the two half limbs of an arm move rigidly together, our

method would detect the arm as one segment. Fig. 4.24 shows the initial esti-

mate of the segments obtained for a varying number of input frames. Note that

the video sequence contains two half-periods of motion (i.e. the person takes two

steps forward, first with the left leg and then with the right leg). As expected,

the algorithm undersegments the body when the full period of motion is not con-

sidered. By the twenty fourth frame, i.e. just after the beginning of the second

half-period, all visible segments are detected due to the difference in their trans-

formations. Using more than twenty four frames does not change the number

of segments obtained. However, the initial estimate of the segments changes as

smaller components are found in subsequent frames (see § 4.3.2).

89

4.5. Discussion

(a) (b)

(c) (d)

Figure 4.23: Encouraging spatial continuity. (a) Result obtained by setting the

weights κ1, κ2 and λ to zero. The method works well for the simple case of the

video shown in Fig. 4.18(a) where the foreground and background differ signifi-

cantly. When compared with ground truth, 93.1% of foreground pixels and 99.8%

of background pixels were labelled correctly. (b) By encouraging spatial continu-

ity, a small improvement is observed (95.4% of foreground pixels and 99.9% of

background pixels were present in the generated frame). (c) For the more diffi-

cult case shown in Fig. 4.18(b), the segmentation starts to include parts of the

homogeneous background when spatial continuity is not enforced. Only 91.7%

of foreground pixels and 94.1% of background pixels are generated, compared to

95% of foreground pixels and 99.8% of background pixels correctly obtained when

encouraging spatial continuity (shown in (d)).

4.5. Discussion

The algorithm proposed in this chapter achieves good motion segmentation re-

sults. Why is this? We believe that the reasons are two fold. Incremental im-

provements in the Computer Vision field have now ensured that: (i) we can use

an appropriate model which accounts for motion, changes in appearance, layering

and spatial continuity. The model is not too loose so as to undersegment, and not

too tight so as to oversegment; (ii) we have more powerful modern algorithmic

methods such as sum-product bp and graph cuts which avoid local minima better

than previous approaches.

However, there is still more to do. As is standard in methods using layered

representation, we have assumed that the visual aspects of the objects and the

layering of the segments do not change throughout the video sequence. At the

very least we need to extend the model to handle the varying visual aspects of

90

4.5. Discussion

Figure 4.24: Results of obtaining the initial estimate of the segments for a varying

number of input frames. The refined estimates of the shape obtained using the

method described in § 4.3.3 are also shown. During the first four frames only

two segments are detected, i.e. the body and a leg. In the next four frames, the

arm close to the camera and the other leg are detected. The half limbs which

constitute this arm and leg are detected using 11 frames of the video sequence.

When 24 frames are used, all 9 visible segments of the body are detected. The

initial estimate of the segments and the refined estimate of their shapes for the

entire video sequence is shown in Fig. 4.14.

objects present in the scene, e.g. front, back and 3/4 views, in addition to the

side views. The restriction of rigid motion within a segment can be relaxed using

non-parametric motion models.

For our current implementation, we have set the values of the weights em-

pirically. Although these values provide good results for a large class of videos,

it would be interesting to learn them using ground truth segmentations (similar

to [9] for image segmentation).

91

Chapter 5

OBJCUT

92

In this chapter, we present an application of optimization for object category

specific segmentation. We propose a principled probabilistic method for detecting

and segmenting instances of a particular object category within an image. Our

approach overcomes the deficiencies of previous segmentation techniques based

on traditional grid conditional random fields (crf), namely that (i) they require

the user to provide seed pixels for the foreground and the background; and (ii)

they provide a poor prior for specific shapes due to the small neighbourhood size

of grid crf.

Specifically, we replace the manual interaction by automatic object detection.

Furthermore, we propose a new probabilistic model which includes strong shape

potentials for the object, which incorporate top-down information that is global

across the image, in addition to the grid clique potentials, which provide the

bottom-up information used in previous approaches.

The shape potentials are provided by a detection of the object using an object

category model. We represent articulated object categories using a novel layered

pictorial structures model. Non-articulated object categories are modelled using

a set of exemplars. These object category models have the advantage that they

can handle large intra-class shape, appearance and spatial variation.

We develop an efficient method, ObjCut, to obtain segmentations using our

probabilistic framework. Novel aspects of this method include: (i) efficient al-

gorithms for sampling the object category models of our choice; and (ii) the

observation that the expected log likelihood of the model can be increased by a

single graph cut. Results are presented on several articulated (e.g. animals) and

non-articulated (e.g. fruits) object categories. We compare our method with the

state of the art in object category specific image segmentation and demonstrate

significant improvements.

93

5.1. Introduction

5.1. Introduction

Image segmentation has seen renewed interest in the field of Computer Vision,

in part due to the arrival of new efficient algorithms to perform the segmenta-

tion [13], and in part due to the resurgence of interest in object category de-

tection [2, 25, 58]. Segmentation fell from favour due to an excess of papers

attempting to solve ill posed problems with no means of judging the result. In

contrast, interleaved object detection and segmentation [10, 58, 69, 84, 112] is

both well posed and of practical use. Well posed in that the result of the segmen-

tation can be quantitatively judged, e.g. how many pixels have been correctly and

incorrectly assigned to the object. Of practical use because image editing tools

can be designed that provide a power assist to cut out applications like ‘Magic

Wand’, e.g. “I know this is a horse, please segment it for me, without the pain of

having to manually delineate the boundary.”

The conditional random field (crf) framework [56] provides a useful model

of images for segmentation and their prominence has been increased by the avail-

ability of efficient publically available code for their solution. The approach of

Boykov and Jolly [13], and more recently its application in a number of sys-

tems including GrabCut by Rother et al. [76], strikingly demonstrates that with

a minimum of user assistance objects can be rapidly segmented (e.g. by employ-

ing user-specified foreground and background seed pixels, see § 2.2.2). However

samples from the distribution defined by the commonly used grid crfs (e.g. with

4 or 8-neighbourhood) very rarely give rise to realistic shapes and on their own

are ill suited to segmenting objects. For example, Fig. 5.1(c) shows the result of

segmenting an image containing a cow using the method described in [13]. Note

that the segmentation does not look like the object despite using a large number

of seed pixels (see Fig. 5.1(b)) due to the small neighbourhood size of the grid

crf, which cannot provide global top-down information.

In contrast, models used for object detection utilize the global information

of the object to localize it in the image. For example, it is common practice to

represent an object using a set of shape and/or texture exemplars [29, 92, 97].

Given an image, the object can be detected by matching the exemplars to the

image. Such a model is particularly suitable for non-articulated object categories

where a sufficiently large set of exemplars can be used to handle intra-class shape

and appearance variation.

For articulated objects, in addition to shape and appearance, there might also

be a considerable spatial variation (e.g. see Fig. 5.19). In order to manage this

variability there is a broad agreement that articulated object categories should be

represented by a collection of spatially related parts each with its own shape and

appearance. This sort of approach dates back to the pictorial structures model

94

5.1. Introduction

(a) (b) (c)

(d) (e) (f)

Figure 5.1: Segmentation obtained using the crf formulation. (a) Original im-

age containing a cow. (b) The red and blue rectangles indicate the object and

background seed pixels respectively which are provided by the user. (c) Segmen-

tation obtained using the method described in [13]. Note that the segmentation

is not object-like due to the poor prior provided by the grid crf. (d),(e) The

cow is roughly localized using the pictorial structures model [23, 26]. The parts

detected are shown overlaid on the image. Note that the position and shape of

the parts differs between the two detections (e.g. the head and the torso). (f) The

segmentation obtained using our method. Unlike previous methods [9, 13, 76], the

segmentation is accurate and object-like.

95

5.1. Introduction

introduced by Fischler and Elschlager three decades ago [26]. Recently, pictorial

structures [23] and other related models [25, 69, 84] have been shown to be very

successful for the task of object recognition. Furthermore, pictorial structures

have been highly effective in detecting fronto-parallel views of objects [23, 74].

In other words, they not only make a decision about the presence or absence of

an object category in an image but they also provide a rough localization of the

object. However, these models alone are not suitable for obtaining a pixel-wise

segmentation of the image. For example, see Fig. 5.1(d) and (e) for two results

of matching the pictorial structures model of a cow to an image [53].

In this work, we combine the models used for object detection with the grid

crf framework used for segmentation. The coarse localization of the object

obtained by matching a model to an image provides us rough regions where the

foreground (i.e. the object) and background are present. These regions are used

to obtain the object and background seed pixels. The seed pixels could then be

directly used to obtain the segmentation using crf based methods. The result

would be an automated Boykov-Jolly style segmentation algorithm [13]. However,

such an approach would still suffer from the problem that the distribution of

the grid crf would not provide a good estimate for the shape of the object.

In order to address this deficiency, we go beyond the probabilistic models of

previous approaches. Specifically, we introduce a new framework that combines

the grid crf (which provides bottom-up information) with an object category

model (which provides global top-down information across the image plane).

Using the above framework, pixels of an image can be labelled as belonging

to the foreground or the background by jointly inferring the map estimate of the

object detection and segmentation. However, it would be undesirable to depend

only on the map detection since it may not localize some portion of the object

well. We overcome this problem by marginalizing over various detections obtained

for a given image. Fig. 5.1(d) and (e) show two such detections found using the

pictorial structures model of a cow. Fig. 5.1(f) shows the segmentation obtained

using the approach described in this chapter. Note that, unlike previous methods,

the segmentation is accurate and object-like.

In more detail, we cast the problem of object category specific segmentation

as that of estimating a probabilistic model which consists of an object category

model in addition to the grid crf. The object category model provides the

top-down information which encourages the segmentation to resemble the object.

For this work, we represent non-articulated objects using a set of exemplars. In

order to handle spatial variation, we use the pictorial structures model (with

suitable modifications) for articulated objects. However, it is worth noting that

our method is general and can be extended to any object category model.

We develop an efficient method, ObjCut, to obtain segmentations using this

framework. The basis of our method are two new theoretical/algorithmic contri-

butions: (i) we provide a highly efficient algorithm for marginalizing or optimizing

96

5.1. Introduction

the object category models of our choice; and (ii) we make the (not obvious) obser-

vation that the expectation of the log likelihood of an crf under the distribution

of some latent variables can be efficiently optimized by a single st-mincut.

Related Work: Many different approaches for segmentation using both top-

down and bottom-up information have been reported in the literature. Huang et

al. [36] describe an iterative algorithm which alternates between fitting an active

contour to an image and segmenting it on the basis of the shape of the active

contour. Cremers et al. [20] extend this by using multiple competing shape priors

and identifying the image regions where shape priors can be enforced. However,

the use of level sets in these methods makes them computationally inefficient.

Freedman et al. [28] describe an algorithm based on st-mincut which uses a

shape prior for segmentation. However, their framework lacks a probabilistic

formulation. Furthermore, all these methods require manual interaction.

There are a few automatic methods for combining top-down and bottom-up

information reported in the literature. For example, Borenstein and Ullman [10]

describe an algorithm for segmenting instances of a particular object category

from images using a patch-based model learnt from training images. Leibe and

Schiele [58] provide a probabilistic formulation for this while incorporating spatial

information of the relative locations of the patches. Winn and Jojic [111] describe

a generative model which provides the segmentation by applying a smooth de-

formation field on a class specific mask. Shotton et al. [85] propose a novel

texton-based feature which captures long range interactions to provide pixel-wise

segmentation. However, all the above methods use a weak model for the shape

of the object which does not provide realistic segmentations.

Winn and Shotton [112] present a segmentation technique using a parts-based

model which incorporates spatial information between neighbouring parts. Their

method allows for arbitrary scaling but it is not clear whether their model is

applicable to articulated object categories. Levin and Weiss [59] describe an

algorithm which learns a set of fragments for a particular object category that

assist the segmentation. The learnt fragments provide only local cues for segmen-

tation as opposed to the global information used in our work. The segmentation

also relies on the maximum likelihood estimate of the position of these fragments

on a given test image (found using normalized cross-correlation). This has two

disadvantages:

• The spatial relationship between the fragments is not considered while

matching them to an image (e.g. it is possible that the fragment corre-

sponding to the legs of a horse is located above the fragment corresponding

to the head). Thus the segmentation obtained would not be object-like. In

contrast, we marginalize over the object category model while taking into

account the spatial relationships between the parts of the model.

97

5.2. Object Category Specific Segmentation

• The algorithm becomes susceptible to error in the presence of background

clutter. Indeed, the segmentations provided by [59] assume that a rough

localization of the object is known a priori in the image. It is not clear

whether normalized cross-correlation would provide good estimates of the

fragment positions in the absence of such knowledge.

Outline: The chapter is organized as follows. In section 5.2 the probabilistic

model for object category specific segmentation is described. Section 5.3 gives an

overview of an efficient method for solving this model for foreground-background

labellings. We provide the details of our choice of representations for articulated

and non-articulated objects in section 5.4. The important issue of automatic

object detection is addressed in section 5.5. Results for several articulated and

non-articulated object categories and a comparison with other methods is given

in section 5.6.

5.2. Object Category Specific Segmentation

In this section we describe the model that forms the basis of our work. We

formally specify and build upon previous work on segmentation, providing a

probabilistic graphical model. There are three issues to be addressed in this

section: (i) how to make the segmentation conform to foreground and background

appearance models; (ii) how to encourage the segmentation to follow edges within

the image; and (iii) how to encourage the segmentation to look like an object.

Markov random fields (mrf) offer a probabilistic formulation for the problem

of segmentation. Recall that an mrf is characterized by pairwise prior terms

which are independent of the data (see § 2.2.1). However, in segmentation, it is

desirable to have pairwise data dependent terms [9, 13, 76] (e.g. see § 2.2.2). For

this purpose, we make use of the discriminative crf framework. Once again we

will find it convenient to use the alternative formulation of crf, i.e. the contrast

dependent random field (cdrf) framework described in the previous chapter. A

major drawback of previously used grid cdrf formulations is that, due to small

neighbourhood size, the segmentations obtained do not form a realistic shape for

a particular object category. In order to overcome this deficiency, we combine

the grid cdrf with a strong model for the object category of interest. We now

describe our probabilistic model in detail. For the sake of completeness, we start

with an mrf formulation and build up to our model from there.

Markov random field: Given an image D containing an instance of a known

object category, e.g. cows, we wish to segment the image into foreground, i.e.

pixels belonging to the object, and background. In order to formulate the problem

of segmentation, we define an mrf over random variables v = {v0, v1, · · · , vn−1},

98

5.2. Object Category Specific Segmentation

where each random variable va corresponds to a pixel a of the image D. The

random variables can take labels from the set l = {l0, l1} where l0 stands for

foreground and l1 stands for background. A segmentation can then be defined as

a labelling f : {0, 1, · · · , n−1} −→ {0, 1} which assigns label lf(a) to va. In other

words, if va is assigned label l0 or l1 then pixel a belongs to the foreground and

background respectively. The joint probability of the labelling f and the data D

is given by

Pr(f,D|θ) = Pr(D|f, θ) Pr(f |θ) =
1

Z1(θ)
exp(−Q1(f ;D, θ)), (5.2.1)

where θ is the parameter for the mrf and Z1(θ) is the partition function. By

assuming the Markovian property on the prior Pr(f |θ), the energy Q1(f ;D, θ)

can be written as the summation of clique potentials, i.e.

Q1(f ;D, θ) =
∑

va∈v

θ1
a;f(a) +

∑

(a,b)∈E
θ2

ab;f(a)f(b), (5.2.2)

where E is the neighbourhood relationship defined by the mrf. Typically, the

neighbourhood of a is defined as its 4 or 8-neighbourhood which results in a

grid mrf. The unary and pairwise potentials take a form which is similar to

the interactive binary image segmentation mrf discussed in § 2.2.1. Below, we

describe these potentials in detail.

Unary Potential: The unary potential θ1
a;f(a) is the emission model for a pixel

and is given by

θ1
a;f(a) =

{

− log(Pr(Da|Hobj)) if f(a) = 0

− log(Pr(Da|Hbkg)) if f(a) = 1,

where Hobj and Hbkg are the appearance models for foreground and background

respectively. For this work, Hobj and Hbkg modelled as rgb distributions. Recall

that Da denotes the rgb values of the pixel a.

Pairwise Potential: The pairwise potential θ2
ab;f(a)f(b) takes the form of an

Ising model:

θ2
ab;f(a)f(b) =

{

κ1 if f(a) = f(b),

κ2 if f(a) 6= f(b),

where κ1 < κ2. Thus the pairwise potential encourages smooth segmentation by

(equally) favouring any two neighbouring pixels having the same label.

Contrast Dependent Random Field: The mrf formulation described above

does not allow for data dependent pairwise terms. However, as noted in § 2.2.2,

the models for image segmentation include a contrast term which is used to favour

pixels with similar colour having the same label [9, 13, 76]. Together with a prior

term, this encourages contiguous segmentations whose boundaries lie on image

edges. The contrast and prior terms can be included within the cdrf framework

99

5.2. Object Category Specific Segmentation

by assuming the Markovian property on the conditional distribution Pr(f |D, θ)
(instead of Pr(f |θ) in the case of mrf) [56]. We provide the exact form of these

terms below.

Prior Term: Let f(a) and f(b) be the labels for variables va and vb respec-

tively. Then the corresponding prior term is similar to the pairwise potential

defined in equation (5.2.3), i.e.

θp
ab;f(a)f(b) =

{

κ1 if f(a) = f(b),

κ2 if f(a) 6= f(b),

Contrast Term: The contrast term θc
ab;f(a)f(b) is given by

θc
ab;f(a)f(b) =

{

0 if f(a) = f(b),

−γ(a, b) if f(a) 6= f(b).
(5.2.3)

Note that the contrast term is similar to the ones used in chapters 2 and 4. Its

form is inspired by previous work on segmentation [9, 13, 76]. We define γ(a, b)

such that it reduces the cost within the Ising model prior for f(a) 6= f(b) in

proportion to the difference in intensities of pixels a and b, i.e.

γ(a, b) = λ

(

1− exp

(−∆2(a, b)

2σ2

)

1

dist(a, b)

)

, (5.2.4)

where ∆(a, b) measures the difference in the rgb values of pixels a and b, i.e. Da

and Db, and dist(a, b) is the Euclidean distance between a and b.

We use the same weight values as the previous chapters, i.e. κ1 = 1, κ2 = 2.2,

λ = 1 and σ = 5. These values are suitable for encouraging contiguous segments

whose boundaries lie on image edges (see table 4.4). Empirically, these weights

were found to provide good results for a large variety of images.

Reducing the cost of the Ising model prior term in this manner makes the

pairwise terms, i.e. θp
ab;f(a)f(b) + θc

ab;f(a)f(b), discontinuity preserving [48]. Recall

that the contrast term θc
ab;f(a)f(b) cannot be included in the prior (since the prior

term is not data dependent). Rather it leads to a pairwise linkage between neigh-

bouring random variables and pixels as shown in the graphical model given in

Fig. 5.2. The posterior probability of the labelling is defined as

Pr(f |D, θ) =
1

Z2(θ)
exp(−Q2(f ;D, θ)), (5.2.5)

where Z2(θ) is the partition function. The energy Q2(f ;D, θ) is given by

Q2(f ;D, θ) =
∑

va∈v

θ1
a;f(a) +

∑

(a,b)∈E

(

θp
ab;f(a)f(b) + θc

ab;f(a)f(b)

)

. (5.2.6)

100

5.2. Object Category Specific Segmentation

Figure 5.2: Graphical model representation of the Object Category Specific cdrf.

The random variables v are shown as unfilled circles, while the observed data D

is shown using filled circles. The connections induced by the contrast term are

shown as the blue edges below the random variables. Note that some of these

connections (e.g. connecting the random variables on the left with pixels on the

right) are not shown for the sake of clarity of the image. The random variables

v lie in a plane. Together with the pixels shown below this plane, these form

the cdrf used for segmentation. In addition to these terms, the Object Category

Specific cdrf makes use of an object category model Ω (shown lying above the

plane). The model Ω guides the segmentation towards a realistic shape closely

resembling the object of interest.

101

5.2. Object Category Specific Segmentation

Object Category Specific cdrf: We introduce a strong object category

model, parameterized by Ω, to the grid cdrf framework which will favour seg-

mentations of a specific shape as shown in the graphical model depicted in Fig. 5.2.

We refer to this extension of the grid cdrf model as the Object Category Specific

cdrf. The Object Category Specific cdrf has the following energy function:

Q3(f,Ω;D, θ) =
∑

va∈v

(

θA
a;f(a) + θS

a;f(a)

)

+
∑

(a,b)∈E

(

θp
ab;f(a)f(b) + θc

ab;f(a)f(b)

)

,(5.2.7)

with posterior

Pr(f,Ω|D, θ) =
1

Z3(θ)
exp(−Q3(f,Ω;D, θ)). (5.2.8)

Here θ is the parameter of the Object Category Specific cdrf and Z3(θ) is the

partition function. The prior term θp
ab;f(a)f(b) and contrast term θc

ab;f(a)f(b) are as

defined above. The potentials θA
a;f(a) and θS

a;f(a) are described below.

Appearance Potential: The appearance potential θA
a;f(a) is the same as the

unary potential of the cdrf i.e.

θA
a;f(a) =

{

− log(Pr(Da|Hobj)) if f(a) = 0

− log(Pr(Da|Hbkg)) if f(a) = 1,

Shape Potential: We call the term θS
a;f(a) as the shape potential since it influ-

ences the shape of the segmentation to resemble the object. The shape potential

θSa;f(a) is chosen such that, given Ω (i.e. one possible localization of the object),

the random variables corresponding to pixels that fall near to a detected object

would be more likely to have foreground label (i.e. l0) than random variables

corresponding to pixels lying far from the object. It has the form:

θS
a;f(a) = − log Pr(f(a)|Ω). (5.2.9)

We choose to define Pr(f(a)|Ω) as

Pr(f(a) = 0|Ω) =
1

1 + exp(µ ∗ dist(a,Ω))
, (5.2.10)

Pr(f(a) = 1|Ω) = 1− Pr(f(a) = 0|Ω), (5.2.11)

where dist(a,Ω) is the spatial distance of a pixel a from the outline of the object

defined by Ω (being negative if inside the shape). The weight µ determines how

much the pixels outside the shape are penalized compared to the pixels inside the

shape.

Hence, the model Ω contributes the unary term θS
a;f(a) for each pixel a in the

image for a labelling f (see Fig. 5.2). Alternatively, Ω can also be associated with

the cdrf using pairwise terms as described in [28]. However, by reparameterizing

the cdrf [34], both formulations can be shown to be equivalent. We prefer the

use of unary terms since they do not effect the submodularity of the energy.

102

5.2. Object Category Specific Segmentation

(a) (b) (c)

(d) (e) (f)

Figure 5.3: (a) An example cow image. The red and blue rectangles show the

seed pixels which are used to learn the rgb distribution of foreground (Hobj)

and background (Hbkg) respectively. (b) The pairwise terms (prior+contrast)

for a pixel summed over its entire neighbourhood. Pixels marked bright white

indicate the presence of an image edge and are hence, more likely to define the

segmentation boundary. (c) The unary potential ratio
θ1
a;0

θ2
a;1

of a pixel computed

using Hobj and Hbkg. Pixels marked white are more likely to belong to foreground

than the pixels marked black. Clearly, the likelihoods obtained using only rgb

values are not sufficient to obtain a good segmentation. (d) The object category

model Ω. White pixels are the points that lie inside the object while black pixels lie

outside it. (e) The ratio
θS
a;0

θS
a;1

corresponding to the model Ω. Again, pixels marked

white are more likely to belong to foreground than background. (f) The ratio of

the unary terms, i.e.
θA
a;0+θS

a;0

θA
a;1+θS

a;1
. Compared to (c), the unary terms in (f) provide

more information about which pixels belong to the foreground and the background.

Together with the pairwise terms shown in (b), this allows us to obtain a good

segmentation of the object shown in (a).

103

5.3. Roadmap of the Solution

Hence, it can easily be shown that the energy function Q3(f,Ω;D, θ) can be

minimized via st-mincut [48]. Fig. 5.3 shows the advantage of introducing an

object category model in the cdrf.

In this work we use two types of object category models: (i) For non-articulated

objects, Ω is represented by a set of exemplars; (ii) For articulated objects, Ω is

specified by our extension of the pictorial structures model [23, 26]. However, we

would like to emphasize that our methodology is completely general and could

be combined with any sort of object category model (e.g. see [16]).

The Object Category Specific cdrf framework defined above provides the

probability of the labelling f and the object category model Ω as defined in

equation (5.2.8). However, the optimal foreground-background labelling should

be obtained by maximizing the posterior probability Pr(f |D). In order to achieve

this, we must integrate out Ω i.e.

Pr(f |D) =

∫

Pr(f,Ω|D)dΩ. (5.2.12)

The surprising result of this work is that this rather intractable looking inte-

gral can in fact be optimized by a simple and computationally efficient set of

operations, as described in the next section.

5.3. Roadmap of the Solution

We now provide a high-level overview of our approach. Given an image D, the

problem of segmentation requires us to obtain a labelling f ∗ which maximizes the

posterior probability Pr(f |D), i.e.

f ∗ = arg max Pr(f |D) = arg max log Pr(f |D). (5.3.1)

We have dropped the term θ from the above notation to make the text less

cluttered. We note however that there is no ambiguity about θ for the work

described in this chapter (i.e. it always stands for the parameter of the Object

Category Specific cdrf). In order to obtain realistic shapes, we would also like

to influence the segmentation using an object category model Ω (as described in

the previous section). Given an Object Category Specific cdrf specified by one

instance of Ω, the required posterior probability Pr(f |D) can be computed as

Pr(f |D) = Pr(f,Ω|D)
Pr(Ω|f,D)

, (5.3.2)

⇒ log Pr(f |D) = log Pr(f,Ω|D)− log Pr(Ω|f,D), (5.3.3)

where Pr(f,Ω|D) is given by equation (5.2.8) and Pr(Ω|f,D) is the conditional

probability of Ω given the image and its labelling. Note that we consider the log

of the posterior probability Pr(f |D). As will be seen, this allows us to marginal-

ize the object category model Ω using the Expectation Maximization (em) [30]

104

5.3. Roadmap of the Solution

framework in order to obtaining the desired labelling f ∗. By marginalizing Ω we

would ensure that the segmentation is not influenced by only one instance of the

object category model (which may not localize the entire object correctly, leading

to undesirable effects such as inaccurate segmentation).

We now briefly describe the em framework which provides a natural way to

deal with Ω by treating it as missing (latent) data. The em algorithm starts with

an initial estimate f 0 of the labelling and iteratively refines it by marginalizing

over Ω. It has the desirable property that during each iteration the posterior

probability Pr(f |D) does not decrease (i.e. the algorithm is guaranteed to con-

verge to a local maximum). Given the current guess of the labelling f ′, the em

algorithm consists of two steps: (i) e-step: where the probability distribution

Pr(Ω|f ′,D) is obtained; and (ii) m-step: where a new labelling f̂ is computed

such that Pr(f̂ |D) ≥ Pr(f ′|D). We briefly describe how the two steps of the em

algorithm can be computed efficiently in order to obtain the segmentation. We

subsequently provide the details for both the steps.

Efficiently Computing the E-step: Given the estimate of the labelling f ′,

we approximate the desired distribution Pr(Ω|f ′,D) by sampling efficiently for

Ω. For non-articulated objects, this involves computing similarity measures at

each location in the image. In § 5.5.1, we show how this can be done efficiently.

For the case of articulated objects, we make use of the efficient sum-product belief

propagation (sum-product bp) algorithm described in the previous chapter, which

efficiently computes the marginals for a non regular Potts model (i.e. when the

labels are not specified by an underlying grid of parameters, complementing the

result of Felzenszwalb and Huttenlocher [24]).

Efficiently Computing the M-step: Once the samples of Ω have been ob-

tained in the e-step, we need to compute a new labelling f̂ such that Pr(f̂ |D) ≥
Pr(f ′|D). We show that such a labelling f̂ can be computed by minimizing a

weighted sum of energy functions of the form given in equation (5.2.7), where

the summation is over the samples of Ω (see below for details). The weights are

given by the probability of the samples. This suggests that the labelling f̂ can

be obtained efficiently using a single st-mincut operation [48].

Details: We concentrate on the m-step first. We will later show how the e-step

can be approximately computed using image features. Given the distribution

Pr(Ω|f ′,D), we average equation (5.3.3) over Ω to obtain

log Pr(f |D) = E(log Pr(f,Ω|D))− E(log Pr(Ω|f,D)), (5.3.4)

where E(·) indicates the expectation under Pr(Ω|f ′,D). The key observation of

the em algorithm is that the second term on the right side of equation (5.3.4),

105

5.3. Roadmap of the Solution

i.e.

E(log Pr(Ω|f,D)) =

∫

(log Pr(Ω|f,D)) Pr(Ω|f ′,D)dΩ (5.3.5)

is maximized when f = f ′. We obtain a labelling f̂ such that it maximizes the

first term on the right side of equation (5.3.4), i.e.

f̂ = arg maxE(log Pr(f,Ω|D)) = arg max

∫

(log Pr(f,Ω|D)) Pr(Ω|f ′,D)dΩ.

(5.3.6)

since, if f̂ is different from f ′, then it is guaranteed to increase the posterior

probability p(f |D). This is due to the following two reasons: (i) f̂ increases

the first term of equation (5.3.4), i.e. E(log Pr(Ω, f |D)), as it is obtained by

maximizing this term; and (ii) f̂ decreases the second term of equation (5.3.4), i.e.

E(log Pr(Ω|f,D)), which is maximized when f = f ′. If f̂ is the same as f ′ then

the algorithm is said to have converged to a local maximum of the distribution

Pr(f |D). The expression in equation (5.3.6) is called the expected complete-data

log-likelihood in the em literature.

In section 5.5, it will be shown that we can efficiently sample from the object

category model Ω of our choice. This suggests a sampling based solution to

maximizing equation (5.3.6). Let the set of s samples be Ω1, . . . ,Ωs, with weights

wi = Pr(Ωi|f ′,D). Using these samples equation (5.3.6) can be approximated as

f̂ = arg maxf

∑i=s
i=1wi(−Q3(f,Ωi;D))− C, (5.3.7)

⇒ f̂ = arg minf

∑i=s
i=1wiQ3(f,Ωi;D) + C. (5.3.8)

The form of the energy Q3(f,Ωi;D) is given in equation (5.2.7). The term

C =
∑

i wi logZ3(θ) is a constant which does not depend on f or Ω and can

be therefore be ignored during the minimization. This is the key equation of our

approach. We observe that this energy function is a weighted linear sum of the

energies Q3(f,Ω;D) which, being a linear combination with positive weights wi,

can also be optimized using a single st-mincut operation [48] (see Fig. 5.4). This

demonstrates the interesting result that for cdrf (and mrf) with latent vari-

ables, it is computationally feasible to optimize the complete-data log-likelihood.

The em algorithm converges to a local minima of Pr(f |D) and its success

depends on the initial labelling f 0. In the last section a graphical model for

pixel by pixel segmentation was set up. However, it would be computationally

expensive to use this model straight off. Rather, we adopt an initialization stage

in which we get a rough estimate of the posterior probability of Ω from a set of

image features Z (defined in § 5.4.1). Image features (such as textons and edges)

can provide high discrimination at low computational cost. We approximate

the initial distribution Pr(Ω|f 0,D) as g(Ω|Z), where Z are some image features

chosen to localize the object in a computationally efficient manner. The weights

wi required to evaluate equation (5.3.8) on the first EM iteration are obtained

by sampling from the distribution g(Ω|Z) (defined in section 5.4).

106

5.3. Roadmap of the Solution

Figure 5.4: The top row shows various samples of a cow model for a given image.

Each sample Ωi gives rise to one instance of the Object Category Specific cdrf

which can be solved to obtain a segmentation using a single st-mincut operation

on a graph, say Gi (see § 2.4.3). The segmentation which increases the expected

complete-data log-likelihood is found using a single st-mincut operation on the

weighted average of all graphs Gi where the weights wi are defined by the probability

Pr(Ωi|f ′,D) of the various samples.

107

5.3. Roadmap of the Solution

One might argue that if the map estimate of the object has a very high

posterior probability compared to other poses, then equation (5.3.8) can be ap-

proximated using only the map estimate Ω∗ instead of the samples Ω1, . . . ,Ωs.

However, we found that this is not the case especially when the rgb distribution

of the background is similar to that of the object. For example, Fig. 5.17 shows

various samples obtained by matching the model for a cow to two images. Note

that different samples localize different parts of the object correctly and have

similar posterior probabilities. Thus it is necessary to use multiple samples of the

object category model.

The roadmap described above results in the ObjCut algorithm, which ob-

tains object category specific segmentation. Algorithms 1 and 2 summarize the

main steps of ObjCut for non-articulated and articulated object categories re-

spectively.

• Input: An image D and a non-articulated object category model.

• Initial estimate of pose using edges and texture (§ 5.5.1.1):

1. A set of candidate poses to = (xo, yo, θo, σo) for the object is identified using

a tree cascade of classifiers which computes a set of image features Z.

2. The maximum likelihood estimate is chosen as initial estimate of the pose.

• Improved estimation of pose taking into account colour (§ 5.5.1.2):

1. The appearance model of both foreground and background is updated.

2. A new set of candidate poses is generated for the object by densely sampling

pose space around the estimate found in the above step (again, using a tree

cascade of classifiers for computing Z).

• The samples Ω1, . . . ,Ωs are obtained from the posterior g(Ω|Z) of the object cate-

gory model as described in § 5.5.1.3.

• ObjCut

1. The weights wi = g(Ωi|Z) are computed.

2. The energy in equation (5.3.8) is minimized using a single st-mincut operation

to obtain the segmentation f .

Algorithm 1: The ObjCut algorithm for non-articulated object categories.

108

5.4. Object Category Models

• Input: An image D and an articulated object category model.

• Initial estimate of pose using edges and texture (§ 5.5.2.1):

1. A set of candidate poses ti = (xi, yi, θi, σi) for each part is identified using a

tree cascade of classifiers which computes a set of image features Z.

2. An initial estimate of the poses of the parts is found without considering the

layering of parts using an efficient sum-product bp algorithm.

• Improved estimation of pose taking into account colour and occlusion (§ 5.5.2.2):

1. The appearance model of both foreground and background is updated.

2. A new set of candidate poses is generated for each part by densely sampling

pose space around the estimate found in the above step (again, using a tree

cascade of classifiers for computing Z).

3. The pose of the object is estimated using efficient sum-product bp and the

layering of the parts.

• The samples Ω1, . . . ,Ωs are obtained from the posterior g(Ω|Z) of the object cate-

gory model as described in § 5.5.2.3.

• ObjCut

1. The weights wi = g(Ωi|Z) are computed.

2. The energy in equation (5.3.8) is minimized using a single st-mincut operation

to obtain the segmentation f .

Algorithm 2: The ObjCut algorithm for articulated object categories.

In the remainder of the chapter, we provide details of the object category

model Ω of our choice. We propose efficient methods to obtain the samples from

the posterior probability distribution of Ω required for the marginalization in

equation (5.3.8). We demonstrate the results on a number of articulated and

non-articulated object categories.

5.4. Object Category Models

When choosing the model Ω for the Object Category Specific cdrf, two issues

need to be considered: (i) whether the model can handle intra-class shape and

appearance variation (and, in the case of articulated objects, spatial variation);

and (ii) whether samples from the distribution g(Ω|Z) (which are required for

segmentation) can be obtained efficiently.

We represent the shape of an object (or a part, in the case of articulated ob-

jects) using multiple exemplars of the boundary. This allows us to handle the

intra-class shape variation. The appearance of an object (or part) is represented

using multiple texture exemplars. Again, this handles the intra-class appearance

variation. Note that the exemplars model the shape and appearance of an object

category. These should not be confused with the shape and appearance

potentials of the Object Category Specific cdrf used to obtain the segmenta-

tion.

109

5.4. Object Category Models

Once an initial estimate of the object is obtained, its appearance is known.

Thus the localization of the object can be refined using a better appearance

model (i.e. one which is specific to that instance of the object category). For this

purpose, we use histograms which define the distribution of the rgb values of the

foreground and the background.

We define the model Ω for non-articulated objects as a set of shape and

texture exemplars (see Fig. 5.5). In the case of articulated objects, one must also

allow for considerable spatial variation. For this purpose, we use the pictorial

structures (ps) model. However, the ps models used in previous work [23, 26]

assume non-overlapping parts which are connected in a tree structure. We extend

the ps by incorporating the layering information of parts and connecting them in

a complete graph structure. We call the resulting representation as the layered

pictorial structures (lps) model (see Fig. 5.6). Below, we describe the object

category models for non-articulated and articulated objects in detail.

5.4.1 Set of Exemplars Model

We represent non-articulated object categories as 2D patterns with a probabilis-

tic model for their shape and appearance. The shape of the object category is

represented using a set of shape exemplars S = {S1,S2, · · · ,Se}. For this work,

each shape exemplar Si is given by a set of points {si;1, si;2, · · · , si;m} describing

the outline of the object. Similarly, the appearance is represented using a set

of texture exemplars T = {T1,T2, · · · ,Te}, where each exemplar is an image

patch (i.e. a set of intensity values). Note that we use multiple exemplars (i.e.

e > 1) to handle the shape and appearance variations which are common in

non-articulated object categories. We call this the set of exemplars (soe) model.

Note that similar models were used for object detection in [29, 92, 97].

5.4.1.1 Feature likelihood for object

Given the putative pose of an object, i.e. to = {xo, yo, φo, ρo} (where {xo, yo} is

the location, φo is the rotation and ρo is the scale), we computed two features

Z = {z1, z2} for the shape and appearance of the object respectively. Let Do ⊆ D

be the set of pixels corresponding to the object at pose to. The features z1 and

z2 are computed using Do. Assuming independence of the two features, the

likelihood based on the whole data is approximated as

Pr(Z|Ω) = Pr(z1) Pr(z2) (5.4.1)

where Pr(z1) ∝ exp(−z1) and Pr(z2) ∝ exp(−z2). We also assume the prior

Pr(Ω) to be uniform. This provides us with the distribution g(Ω|Z) as

g(Ω|Z) ∝ Pr(Z|Ω) Pr(Ω) ∝ Pr(Z|Ω). (5.4.2)

We now describe the features z1 and z2 in detail.

110

5.4. Object Category Models

Outline (z1): The likelihood of the object shape should be robust to outliers

resulting from cluttered backgrounds. To this end, we define z1 as the minimum

of the truncated chamfer distances over all the exemplars of the object at pose

to. Let U = {u1, u2, · · · , um} represent the edges of the image at to. Then z1 is

computed as

z1 = min
Si∈S

dcham(Si,U). (5.4.3)

The truncated chamfer distance dcham(·, ·) is given by

dcham(Si,U) =
1

m

∑

j

min{min
k
||uk − si;j||, τ1}, (5.4.4)

where τ1 is a threshold for truncation which reduces the effect of outliers and

missing edges. Orientation information is included by computing mink ||uk−si;j ||
only over those edge points uk which have a similar orientation to si;j. This

makes the chamfer distance more robust [29]. We use 8 orientation groups for

the outline points.

Texture (z2): We use the vz classifier [98] which provides a histogram repre-

sentation Hi for each exemplar Ti
1. It also provides a histogram Ho for the image

patch Do. The feature z2 is computed as

z2 = min
Ti∈T

dchi(Hi,Ho), (5.4.5)

where dchi(·, ·) is the χ2 distance2.

5.4.1.2 Learning the exemplars

In order to learn the exemplars, we use manually segmented images. The outline

of each segmented image provides us with an exemplars Si ∈ S. The texture

exemplars Ti are given by the subimage marked as foreground. We use 20 seg-

mented images each for the ‘banana’ and the ‘orange’ categories. A subset of the

shape exemplars S of these two categories is shown in Fig. 5.5.

We now describe an extension to the ps which is used as the model Ω for

articulated objects.

1The vz classifier obtains a texton dictionary by clustering intensity values in an N × N

neighbourhood of each pixel in Ti for all Ti ∈ T . The histogram Hi is given by the frequency

of each entry of this texton dictionary in Ti. We use N = 3 in our experiments.
2The feature z2 described here handles the intra-class variation in appearance and is used

to determine an initial estimate of the pose of the object. This estimate is then refined using

a better appearance model (i.e. specific to a particular instance of the object category) as

described in § 5.5.1.2.

111

5.4. Object Category Models

Figure 5.5: A selection of the multiple exemplars used to represent the model for

bananas and oranges. Multiple shape exemplars are required to handle intra-class

shape variability.

5.4.2 Layered Pictorial Structures

In the case of articulated objects, we use the ps model to handle large deforma-

tions. ps are compositions of 2D patterns, termed parts, under a probabilistic

model for their shape, appearance and spatial layout. However, the ps models

used previously in [23, 26] are not directly suitable for applications such as effi-

cient segmentation due to the following reasons: (i) they use a weak likelihood

model which results in a large number of putative poses for each part; (ii) the

parts are connected in a tree structure and hence, provide a weak spatial model;

and (iii) they do not explicitly model self-occlusion. Hence, different parts with

similar shape and appearance (e.g. the legs of cows or horses) are often incorrectly

detected at the same pose (i.e. even in cases where they are actually at different

poses in the given image).

We overcome the deficiencies of previous ps models by extending them in three

ways: (i) similar to soe, the likelihood of a part includes both its outline and its

texture which results in a small number of putative poses for each part in a given

image (see § 5.5.2.1); (ii) all parts are connected to each other to form a complete

graph instead of a tree structure which provides a better spatial model; and (iii)

similar to the model described in the previous chapter (and also in [1]), each part

pi is assigned an occlusion number oi which determines its relative depth. The

occlusion numbers allow us to explicitly model self-occlusion. Specifically, a part

pi can partially or completely occlude part pj if and only if oi > oj . Note that

several parts can have the same occlusion number if they are at the same depth.

Such parts, which share a common occlusion number, are said to lie in the same

layer. We call this model layered pictorial structures (lps).

5.4.2.1 Posterior of the lps

An lps can also be viewed as an mrf where the random variables of the mrf

correspond to the nP parts. Each random variable takes one of nL labels which

encode the putative poses of the part. Similar to the pose of an object described

in § 5.4.1, the pose of the ith part is defined by a label ti = {xi, yi, φi, ρi}. For

a given pose ti and image D, the part pi corresponds to the subset of the image

pixels D which are used to calculate features Zi.

112

5.4. Object Category Models

Figure 5.6: Layered pictorial structures model of a cow. The various parts be-

longing to layers 2 and 1 are shown in the top left and right images respectively.

Parts undergo different transformations and are composited in decreasing order

of occlusion numbers to generate an instance of the object category (in this case,

cows). The posterior of such an instance is given by equation (5.4.10).

By slightly overloading the notation of chapter 2, the posterior of the lps can

be written as

g(Ω|Z) = Pr(Z|Ω) Pr(Ω), (5.4.6)

where Z = {Z1, . . . ,ZnP
} are the image features, p(Z|Ω) is the feature likelihood

and p(Ω) is the prior. Like the soe model, the shape of an lps is specified

by a set of shape exemplars Si for each part pi. The appearance of an lps is

modelled using a set of texture exemplars T for the object category. Note that

unlike the shape exemplars, which are specific to a part of an object category, the

texture exemplars are specific to the object category of interest. Assuming that

the features Zi are computed by not including pixels accounted for by parts pj

for which oj > oi (i.e. parts which can occlude pi), the feature likelihood is given

by

Pr(Z|Ω) =

i=nP
∏

i=1

Pr(Zi|Ω). (5.4.7)

The feature likelihood Pr(Zi|Ω) for part pi is computed as described in § 5.4.1.1.

Specifically, the likelihood of the first feature, i.e. Pr(z1), is computed using the

minimum of the truncated chamfer distance, over the set Si for the part, at pose

ti. The texture likelihood, p(z2), is obtained from the vz classifier using the set

T for the object category.

lps, like ps, are characterized by pairwise only dependencies between the

random variables. These are modelled as a prior on the relative poses of parts:

Pr(Ω) ∝ exp

(

−
i=nP
∑

i=1

j=nP
∑

j=1,j 6=i

α(ti, tj)

)

. (5.4.8)

Note that we use a completely connected mrf as this was found to provide a better

localization of the object than a tree structured mrf [53]. In our approach, the

113

5.4. Object Category Models

pairwise potentials α(ti, tj) of putative poses for each pair of parts are given by

a non-regular Potts model, i.e.

α(ti, tj) =

{

d1 if valid configuration

d2 otherwise,

where d1 < d2. In other words, all valid configurations are considered equally

likely and have a smaller cost. A configuration is considered valid if the dif-

ference between the two poses ti and tj lies in an interval defined by tmin
ij =

{xmin
ij , ymin

ij , θmin
ij , σmin

ij } and tmax
ij = {xmax

ij , ymax
ij , θmax

ij , σmax
ij }, i.e.

tmin
ij ≤ |ti − tj | ≤ tmax

ij . (5.4.9)

Note that the above inequalities should be interpreted component-wise (i.e. xmin
ij ≤

|xi − xj | ≤ xmax
ij and so on). For each pair of parts pi and pj the terms tmin

ij and

tmax
ij are learnt using training video sequences as described in § 5.4.2.2. Using

equation (5.4.6), the posterior of the lps parameters is given by

g(Ω|Z) ∝
i=nP
∏

i=1

Pr(Zi|Ω) exp

(

−
∑

j 6=i

α(ti, tj)

)

. (5.4.10)

5.4.2.2 Learning the lps

We now describe how we learn the various parameters of the lps model for cows.

To this end, we use 20 cow videos of 45 frames each and learn the segments

using the motion segmentation method described in the previous chapter. Cor-

respondence between the segments learnt from two different videos is established

using shape context with continuity constraints [92] as shown in Fig. 5.7. The

corresponding segments then define a part of the lps model. The outline of the

segments defines the shape exemplars Si (see Fig. 5.8), while the intensity values

of the segmented cows provides the set T . Furthermore, an estimate of |ti − tj|
is also obtained (after rescaling the frames of the video such that the width of

the cows is 230 pixels), for each frame and for all pairs of parts pi and pj. This is

used to compute the parameters tmin
ij and tmax

ij that define valid configurations.

To obtain the lps model for horses, we use 20 manually segmented images.

The texture exemplars can be obtained using the segmented images. However,

since these images do not provide us with any motion information, we cannot

use the method in chapter 4 to obtain the shape exemplars of the lps model.

In order to overcome this problem, we establish a point to point correspondence

between the outline of a cow from a training video and the outlines of the horses,

again using shape context with continuity constraints [92] (see Fig. 5.9). Using

this correspondence and the learnt parts of the cow, the parts of the horse are

now easily determined (see Fig. 5.10). The part correspondence obtained also

maps the parameters tmin
ij and tmax

ij that were learnt for cows to horses.

114

5.4. Object Category Models

Figure 5.7: Correspondence using shape context matching with continuity con-

straints. Outlines of two cows which need to be matched are shown. Lines are

drawn to indicate corresponding points.

Figure 5.8: The first row shows a subset of shape exemplars Si for the head of

a cow (obtained by establishing a correspondence between a set of segmented cow

images as shown in Fig. 5.7). The second row shows shape exemplars of the torso

part.

Figure 5.9: Correspondence using shape context matching with continuity con-

straints. Outlines of a horse and a cow are shown. Lines are drawn to indicate

corresponding points.

Figure 5.10: The first and second row show the multiple exemplars of the head

and the torso part respectively. The exemplars are obtained by establishing a

correspondence between segmented images of cows and horses as shown in Fig. 5.9.

115

5.5. Sampling the Object Category Models

In the next section, we address the important issue of developing efficient

algorithms for matching the model Ω to an image.

5.5. Sampling the Object Category Models

Given an image D, our objective is to match the object category model to it in

order to obtain samples from the distribution g(Ω|Z). We achieve this in three

stages:

• Initialization, where we fit the object category model to a given image D by

computing features z1 (i.e. chamfer) and z2 (i.e. texture) using exemplars.

This provides us with a rough object pose.

• Refinement, where the initial estimate is refined by computing z2 using a

better appearance model (i.e. the rgb distribution for the foreground and

background learnt using the initial pose together with the shape) instead

of the texture feature used during initialization. In the case of articulated

objects, the layering information is also used.

• Sampling, where samples are obtained from the distribution g(Ω|Z).

5.5.1 Sampling the soe

We now describe the three stages for obtaining samples by matching the soe

model (for a non-articulated object category) to a given image.

5.5.1.1 Initial estimation of pose

In order to obtain the initial estimate of the pose of an object, we need to compute

the feature likelihood for each pose using all exemplars. This would be compu-

tationally expensive due to the large number of possible poses and exemplars.

However, most poses have a very low likelihood since they do not cover the pixels

containing the object of interest. We require an efficient method which discards

such poses quickly. To this end, we use a tree cascade of classifiers [88].

We term the rotated and scaled versions of the shape exemplars as templates.

When matching many similar templates to an image, a significant speed-up is

achieved by forming a template hierarchy and using a coarse-to-fine search. The

idea is to group similar templates together with an estimate of the variance of

the error within the cluster, which is then used to define a matching threshold.

For each cluster, a prototype of the cluster is first compared to the image; the

individual templates within the cluster are compared to the image only if the

error is below the threshold. This clustering is done at various levels, resulting in

116

5.5. Sampling the Object Category Models

Figure 5.11: The putative poses of the object, e.g. a banana, together with their

likelihood are found using a cascade of classifiers. A tree structure is used to

prune away the bad poses by thresholding on the chamfer distance. The texture

(i.e. z2) is measured only at the last level of the tree since the outline shape (i.e.

z1) is sufficient to discard poses with low likelihood.

a hierarchy, with the templates at the leaf level covering the space of all possible

templates (see Fig. 5.11).

In our experiments, we constructed a 3-level tree by clustering the templates

using a cost function based on chamfer distance. We use 20 exemplars for each

object. The templates are generated by transforming the exemplars using discrete

rotations between −π/4 and π/4 radians in intervals of 0.1 radians and scales

between 0.7 and 1.3 in intervals of 0.1.

The edge image of D is found using edge detection with embedded confi-

dence [62] (a variation on Canny in which a confidence measure is computed

from an ideal edge template). The feature z1 (truncated chamfer distance) is

computed efficiently by using a distance transform of the edge image. This trans-

formation assigns to each pixel in the edge image, the minimum of τ1 and the

distance to its nearest edge pixel. The truncated chamfer distance of an exemplar

at an image pose to = {xo, yo, φo, ρo} is calculated efficiently as the mean of the

distance transform values at the template point coordinates (using the template

defined by rotation φo and scale ρo of the exemplar, see Fig. 5.12).

The feature z2 (i.e. texture) is computed only at level 3 of the tree cascade

by determining the nearest neighbour of the histogram of texton labelling of Do

among the histograms of texture exemplars. For this purpose, we use the efficient

nearest neighbour method described in [32] (modified for χ2 distance instead of

Euclidean distance).

Associated with each node of the cascade is a threshold used to reject bad

poses. The putative poses to of the object are found by rejecting bad poses

by traversing through the tree cascade starting from the root node for each

pixel {x, y} of the image D. The likelihoods Pr(Z|Ω) are computed using equa-

tion (5.4.1). The initial estimate of the pose is determined by the image location

{xo, yo}, template orientation φo and template scale ρo which results in the high-

117

5.5. Sampling the Object Category Models

(a) (b) (c)

Figure 5.12: (a) Original image containing bananas in a cluttered scene. (b)

Edgemap of the image. (c) The distance transform of the edgemap along with an

exemplar of banana. Brighter intensity values indicate points which are far away

from the edges. Truncated chamfer distance for the exemplar is calculated as the

mean of the distance transform values at the exemplar point coordinates.

Figure 5.13: The first column shows the initial estimate obtained for the pose of

a banana in two images (see § 5.5.1.1). Samples of the model obtained using the

rgb distribution of foreground and background are shown in the second and third

column (see § 5.5.1.3). The detected poses are shown overlaid on the image. The

fourth column shows the segmentation obtained using the ObjCut algorithm.

est likelihood. Fig. 5.13 (column 1) shows the initial estimate for two banana

images. This estimate is refined using a better appearance model as described

below.

5.5.1.2 Refinement of pose

Once the initial estimate of the pose of the object is obtained, the object location

is used to estimate the rgb distribution of the foreground and background (and

texture exemplars are no longer used). These distributions, denoted as Hobj and

Hbkg for the foreground and background respectively, are used to define a better

appearance feature z2, which is specific to the particular instance of the object

category in the image. Specifically,

Pr(z2) =
∏

x∈Do

Pr(x|Hobj)

Pr(x|Hbkg)
. (5.5.1)

118

5.5. Sampling the Object Category Models

The refined estimate of the putative poses are obtained using the tree cascade of

classifiers as described in § 5.5.1.1 by searching around the initial estimate. In

our experiments, we consider locations {x, y} which are at most at a distance of

15% of the size of the object as given by the initial estimate. When obtaining the

refined estimate, all orientations φ and scales ρ are considered at each location

{x, y}.

5.5.1.3 Obtaining samples of the soe

We now obtain samples from the distribution g(Z|Ω) for the soe model. By

assuming a uniform prior Pr(Ω) for the model parameter Ω, this distribution is

given by g(Z|Ω) ∝ Pr(z1) Pr(z2). The samples are defined as the best s matches

found in § 5.5.1.2 and are obtained by simply sorting over the various matches at

all possible locations of the image D. Fig. 5.13 (second and third column) shows

some of the samples obtained using the above method for two banana images.

Next, we describe how to sample the distribution g(Z|Ω) for an lps model in

the case of articulated object categories.

5.5.2 Sampling the lps

When matching the lps model to the image, the number of labels nL per part

has the potential to be very large. Consider the discretization of the putative

poses t = {x, y, φ, ρ} into 360×240 for {x, y} with 15 orientations and 7 scales at

each location. This results in 9,072,000 poses which causes some computational

difficulty when obtaining the samples of the lps.

Felzenszwalb and Huttenlocher [23] advocate maintaining all labels and sug-

gest an O(nPnL) algorithm for finding the samples of the ps by restricting the

form of the prior exp(−α(ti, tj)) in equation (5.4.8). In their work, priors are

specified by normal distributions. However, this approach would no longer be

computationally feasible as the number of parameters used to represent a pose ti

increase (e.g. 6 parameters for affine or 8 parameters for projective).

In our approach, we consider the same amount of discretization as in [23] when

we are finding candidate poses. However, as noted in § 5.4.2, using a strong shape

and appearance model along with discriminative features allows us to consider

only a small number of putative poses, nL, per part by discarding the poses with

low likelihood. We found that using a few hundred poses per part, instead of the

millions of poses used in [23], was sufficient. The samples are found by a novel

efficient algorithm of complexity O(nPn
′
L) (where n′

L ≪ n2
L) which generalizes the

method described in [24] to non-regular Potts model. Our approach is efficient

even for affine and projective transformations due to the small number of putative

poses nL. We now described the three stages for obtaining samples of the lps.

119

5.5. Sampling the Object Category Models

Figure 5.14: The putative poses of a part, e.g. the head, together with their like-

lihood are found using a cascade of classifiers. Similar to the cascade shown in

Fig. 5.11, a tree structure is used to prune away the bad poses. The texture (i.e.

z2) is measured only at the last level of the tree.

5.5.2.1 Initial estimation of poses

We find the initial estimate of the poses of the lps for an image D by first obtain-

ing the putative poses for each part (along with the corresponding likelihoods)

and then estimating posteriors of the putative poses. Note that we do not use

occlusion numbers of the parts during this stage.

The putative poses are found using a tree cascade of classifiers for each part

as described in § 5.5.1.1 (see Fig. 5.14). The first feature z1 is computed using

a 3-level tree cascade of classifiers for each part. Similar to the first stage of

matching the soe model, the appearance feature z2 is computed using texture

exemplars T of the object category at the third level of the tree cascade. Note

that at this stage the rgb distributions Hobj and Hbkg for the foreground and

background are not known. Hence, the feature z2 is computed using only texture

exemplars to overcome intra-class variation in appearance.

Next, an initial estimate of the model is obtained by computing the marginals

of the putative poses. Note that, unlike the soe model, lps provides a prior over

the relative poses of the parts which needs to be considered while computing the

marginals. The pose of each part in the initial estimate is given by the putative

pose which has the highest marginal probability.

We use sum-product bp to find the marginal probability of part pi taking a

label ti. Recall that the time complexity of sum-product bp is O(nPn
2
L) which

makes it inefficient for large nL. However, we take advantage of the fact that the

pairwise potentials of the lps are given by a non-regular Potts model (as shown

in equation (5.4.9)). This allows us to reduce the time complexity of sum-product

bp to O(nPn
′
L), where n′

L ≪ n2
L, using the efficient sum-product bp algorithm

described in Appendix A.

The beliefs for each part pi and putative pose ti computed using sum-product

bp (denoted by bi(ti)) allow us to determine the mmse (minimum mean squared

120

5.5. Sampling the Object Category Models

(a) (b) (c)

Figure 5.15: (a) An image containing a cow. (b) Initial estimate of poses of

the parts obtained when they are connected using a tree structure. Note that

the torso and the forelegs are not localized properly. (c) Result obtained using

a complete graph. The connections between the half limbs and the torso provide

better localization.

Figure 5.16: The first column shows the initial estimate obtained for poses of

parts of a cow in two images (see § 5.5.2.1). The half-limbs tend to overlap since

occlusion numbers are not used. Refined estimates of the poses obtained using

the rgb distribution of foreground and background together with the lps model

are shown in the second column (see § 5.5.2.2). The parts are shown overlaid on

the image. The third column shows the segmentation obtained using the ObjCut

algorithm.

error) estimate of the poses of the parts (by choosing the pose with the highest

belief). In addition, it also allows us to compute the beliefs for putative poses

of every pair of parts, i.e. bij(ti, tj), which is later used for sampling (see sec-

tion 5.5.2.3). Since the parts are connected to form a complete graph, we tend

to find valid configurations of the object. Fig. 5.15 shows the advantage of a

complete graph over the tree structure used in [23]. Fig. 5.16 (column 1) shows

the initial estimate for two cow images. Note that the occlusion numbers are not

used to obtain the initial estimate, as would be the case when using the ps model

instead of the lps model. Hence the half-limbs (which are similar to each other

in shape and appearance) tend to overlap. The initial estimate is refined using

the layering as described below.

121

5.5. Sampling the Object Category Models

5.5.2.2 Layerwise refinement

Using the initial estimate of the object obtained above, the rgb distribution of

the foreground (i.e. Hobj) and the background (i.e. Hbkg) is estimated. A better

appearance feature z2 (i.e. specific to the particular instance of the object category

in the images) is now computed as shown in equation (5.5.1). The refined estimate

of the poses are obtained by compositing the parts of the lps in descending order

of their occlusion numbers as follows. When considering the layer with occlusion

number o, putative poses of the parts pj such that oj = o are found using the tree

cascade of classifiers around the initial estimate of pj . In our experiments, we

consider locations {x, y} which are at most at a distance of 15% of the size of the

part as given by the initial estimate. At each location, all possible orientations

φ and scales ρ are considered. When computing the likelihood of the part at a

given pose, pixels which have already been accounted for by a previous layer are

not used. Again, the beliefs of each putative pose of every part is computed using

efficient sum-product bp. Fig. 5.16 (column 2) shows the mmse estimate obtained

using layerwise refinement for two cow images. However, for segmentation we are

interested in samples of the lps which are obtained in the third stage.

5.5.2.3 Obtaining samples of the lps

We describe the method for sampling by considering only 2 layers (called layer 1

and layer 2). The extension to an arbitrary number of layers is trivial. The basic

idea is to sample the parts in descending order of their occlusion numbers. In our

case, this would imply that we sample the parts from layer 2 before we sample

the parts from layer 1 (since layer 2 can occlude layer 1). Although this method

is not optimal, it produces useful samples for segmentation in practice. To obtain

a sample Ωi, parts belonging to layer 2 are considered first. The beliefs of these

parts are computed using efficient sum-product bp. The posterior for sample Ωi

is approximated as

g(Ωi|Z) =

∏

ij bij(ti, tj)
∏

i bi(ti)qi−1
, (5.5.2)

where qi is the number of neighbouring parts of pi. Since we use a complete

graph, qi = nP − 1, for all parts pi. Note that the posterior is exact only for a

singly connected graph. However, using this approximation sum-product bp has

been shown to converge to stationary points of the Bethe free energy [114].

The posterior is then sampled for poses, one part at a time (i.e. Gibbs sam-

pling), such that the pose of the part being sampled forms a valid configuration

with the poses of the parts previously sampled. The process is repeated to obtain

multiple samples Ωi (which do not include the poses of parts belonging to layer

1). This method of sampling is efficient since often very few pairs of poses form

a valid configuration. Further, these pairs are pre-computed during the efficient

sum-product bp algorithm as described in the Appendix A. The best nS samples,

122

5.6. Results

Figure 5.17: Each row shows three samples obtained by matching the lps model

of a cow to an image. Beliefs over the putative poses of parts are calculated using

sum-product bp. The resulting posterior probability is then sampled to obtain

instances of the object (see § 5.5.2.3). Note that different half-limbs are detected

correctly in different samples.

with the highest belief, are chosen.

To obtain the poses of parts in layer 1 for sample Ωi, we fix the poses of parts

belonging to layer 2 as given by Ωi. We calculate the posterior over the poses

of parts in layer 1 using sum-product bp. We sample this posterior for poses of

parts such that they form a valid configuration with the poses of the parts in

layer 2 and with those in layer 1 that were previously sampled. As in the case of

layer 2, multiple samples are obtained and the best nS samples are chosen. The

process is repeated for all samples Ωi for layer 2, resulting in a total of s = n2
S

samples.

However, computing the likelihood of the parts in layer 1 for each Ω is ex-

pensive as their overlap with parts in layer 2 needs to be considered. We use

an approximation by considering only those poses whose overlap with layer 2 is

below a threshold τ2. Fig. 5.17 shows some of the samples obtained using the

above method for the cows in Fig. 5.16. These samples are the input for the

ObjCut algorithm.

5.6. Results

We present several results of the ObjCut algorithm and compare it with a state of

the art method and ground truth. In all our experiments, we used the same weight

values. As will be seen, ObjCut provides reliable segmentation using both: (i)

modelled deformations, using a set of exemplars model for non-articulated objects

and the lps model for articulated objects; and (ii) unmodelled deformations, by

merging pixels surrounding the detected object into the segmentation via an st-

mincut operation.

The results for non-articulated objects are shown for two categories: bananas

123

5.7. Discussion

and oranges. Fig. 5.13 (column 4) shows the results of the ObjCut algorithm

for two banana images. Fig. 5.18 show the segmentations obtained for images

containing oranges. Note that the samples of the soe model correctly localize

the object in the image. The distinctive shape and appearance of the object then

allows us to obtain an accurate segmentation using a single st-mincut operation.

We also tested the ObjCut algorithm on two articulated object categories:

cows and horses. Fig 5.16 (column 3) shows the results of our approach for two

cow images. Fig. 5.19 and Fig. 5.20 show the segmentation of various images of

cows and horses respectively. The 8 cow images and 5 horse images were manually

segmented to obtain ground truth for comparison. For the cow images, out of the

125,362 foreground pixels and 472,670 background pixels present in the ground

truth, 120,127 (95.82%) and 466,611 (98.72%) were present in the segmentations

obtained. Similarly, for the horse images, out of the 79,860 foreground pixels

and 151,908 background pixels present in the ground truth, 71,397 (89.39%) and

151,185 (99.52%) were obtained in the segmentations computed by our approach.

In the case of horses, most errors are due to unmodelled mane and tail parts. Re-

sults indicate that, by considering both modelled and unmodelled deformations,

excellent segmentations were obtained by ObjCut.

Figure 5.21 shows a comparison of the segmentation results obtained when

using ObjCut with a state of the art method for object category specific seg-

mentation proposed by Leibe and Schiele [58]. Note that a similar approach was

described in [10]. The ObjCut algorithm provides better segmentations using a

significantly smaller number of exemplars. It achieves this by exploiting the abil-

ity of st-mincut for providing excellent segmentations using a good initialization

obtained by the object category model.

Figure 5.22 shows the effects of using only the shape potential θS
a;f(a) and

only the appearance potential θA
a;f(a) by discarding the other completely. Results

indicate that good segmentations depend on combining both the potentials, as is

the case with the ObjCut algorithm.

5.7. Discussion

The approach presented in this work overcomes the problems of previous meth-

ods. Specifically, it efficiently provides accurate segmentation which resembles the

object. The accuracy of the segmentation can be attributed to the novel prob-

abilistic model, i.e. Object Category Specific cdrf. Object Category Specific

cdrf combines the grid cdrf models previously used with an object category

model. While the grid cdrf provides bottom-up information, the object cate-

gory model incorporates top-down information about the shape of the object. For

non-articulated object categories, we showed how a set of exemplars model can be

effectively used to obtain good segmentations. For articulated object categories,

124

5.7. Discussion

Figure 5.18: Image segmentation results 1. The soe model for oranges was used

to obtain segmentations of previously unseen orange images. The first two images

in each column show some of the samples of the soe model. The segmentation

obtained using the ObjCut algorithm is shown in the last column.

we proposed a novel extension of the pictorial structures model which is suitable

for the segmentation application.

We presented a three stage approach to match the object category models

of our choice to a given image. In the first stage, a rough initial estimate is

obtained while taking into account the intra-class variation in shape, appearance

and spatial layout. In the second stage, the initial estimate is refined using more

descriptive features (i.e. features that are more specific to that instance of the

object category) and the layering information (in the case of articulated objects).

In the third stage, the samples of the object category model are obtain which are

then used to segment the image.

The efficiency of the method is due to two reasons: (i) we showed how the

samples of the object category models of our choice can be quickly obtained using

a tree cascade of classifiers and efficient sum-product bp; and (ii) our observation

that, within the em framework, the complete data log-likelihood can be optimized

using a single st-mincut.

However, our method may not scale well when the number of exemplars is

huge, e.g. when we want to handle multiple object categories simultaneously. In

such cases, the advantage of using feature sharing methods such as [96] within

our approach needs to be explored.

Currently, the shape potential provided by the object category model Ω is in-

corporated as a unary term in the Object Category Specific cdrf. An interesting

direction for future work would be to use higher order clique potentials provided

by Ω. Some promising work in this area [43] already seems to indicate that vast

improvements are possible by using more complex potentials.

125

5.7. Discussion

Figure 5.19: Image segmentation results 2. The first two images in each row

show some of the samples of the lps model. The segmentation obtained using the

Object Category Specific cdrf is shown in the last column. Most of the errors

were caused by the tail (which was not a part of the lps model) and parts of the

background which were close and similar in colour to the object.

126

5.7. Discussion

Figure 5.20: Image segmentation results 3. The lps model for the horse learnt

using manually segmented images was used to obtain the labelling of previously

unseen images. Most of the errors were caused by unmodelled parts i.e. the mane

and the tail.

127

5.7. Discussion

Figure 5.21: Comparison with Leibe and Schiele. The first two images of each row

show some of the samples obtained by matching the lps model to the image. The

third image is the segmentation obtained using the ObjCut algorithm. The fourth

image shows the result obtained using [58] (provided by the authors). Note that

ObjCut provides a better segmentation of the torso and head without detecting

extra half limbs.

Figure 5.22: Effects of shape and appearance potentials. The first column of

each row shows an image containing a cow. The segmentation results obtained

by using only the rgb histograms for the foreground and the background provided

by the lps model are shown in the second column. The results obtained by using

only the shape potential provided by the lps model is shown in the third column.

The fourth column shows the segmentations we get using the ObjCut algorithm.

Results indicate that good segmentation is obtained only when both shape and

appearance potentials are used.

128

Chapter 6

An Analysis of Convex

Relaxations

129

The problem of obtaining the maximum a posteriori estimate of a general

discrete random field (i.e. a random field defined using a finite and discrete set of

labels) is known to be np-hard. However, due to its central importance in many

applications, several approximate algorithms have been proposed in the literature.

In this chapter, we present an analysis of three such algorithms based on convex

relaxations which were described in chapter 3. Specifically, we consider (i) lp-s:

the linear programming (lp) relaxation proposed by Schlesinger [79] for a special

case and independently in [17, 51, 101] for the general case; (ii) qp-rl: the

quadratic programming (qp) relaxation by Ravikumar and Lafferty [75]; and (iii)

socp-ms: the second order cone programming (socp) relaxation first proposed

by Muramatsu and Suzuki [64] for two label problems and later extended in [55]

for a general label set.

We show that the socp-ms and the qp-rl relaxations are equivalent. Further-

more, we prove that despite the flexibility in the form of the constraints/objective

function offered by qp and socp, the lp-s relaxation strictly dominates (i.e. pro-

vides a better approximation than) qp-rl and socp-ms. We generalize these

results by defining a large class of socp (and equivalent qp) relaxations which is

dominated by the lp-s relaxation. Based on these results we propose some novel

socp relaxations which strictly dominate the previous approaches.

130

6.1. Introduction

6.1. Introduction

Discrete random fields (i.e. random fields defined using a finite and discrete set

of labels) are a powerful tool to obtain a probabilistic formulation for various

applications in Computer Vision and related areas [15, 18]. Hence, developing

accurate and efficient algorithms for performing inference on a given discrete

random field is of fundamental importance. In this chapter, we will focus on

the problem of maximum a posteriori (map) estimation. As seen in the previous

chapters, map estimation allows us to obtain solutions to many applications such

as motion segmentation and image segmentation (for more examples such as

stereo and image stitching, see [89]). Further, map estimation on discrete random

fields is closely related to many important Combinatorial Optimization problems

such as : (i) maxcut [31] which can be seen as an map estimation problem with

two putative labels and uniform unary potentials; (ii) multi-way cut [21] (map

estimation with Potts model pairwise potentials); (iii) metric labelling [15, 42]

(map estimation with metric pairwise potentials); and (iv) 0-extension [15, 39]

(map estimation with semi-metric pairwise potentials).

Recall that, given data D, a discrete random field models the distribution (i.e.

either the joint or the conditional probability) of a labelling of a set of random

variables. Each of these variables v = {v0, v1, · · · , vn−1} can take a label from a

discrete set l = {l0, l1, · · · , lh−1}. A particular labelling of variables v is specified

by a function f such that

f : {0, 1, · · · , n− 1} → {0, 1, · · · , h− 1}, (6.1.1)

i.e. variable va takes label lf(a). For convenience, we assume the model to be a

crf while noting that all the results of this chapter also apply to mrfs.

Within the crf framework, the conditional probability of a labelling f given

data D is specified as

Pr(f |D, θ) =
1

Z(θ)
exp(−Q(f ;D, θ). (6.1.2)

Here θ represents the parameters of the crf, Z(θ) is the partition function and

the energy Q(f ;D, θ) is given by

Q(f ;D, θ) =
∑

va∈v

θ1
a;f(a) +

∑

(a,b)∈E
θ2

ab;f(a)f(b). (6.1.3)

Recall that E specifies the neighbourhood relationship of the crf. The terms

θ1
a;f(a) and θ2

ab;f(a)f(b) are called the unary and pairwise potentials respectively.

For simplicity, we assume that θ2
ab;f(a)f(b) = w(a, b)d(f(a), f(b)) where w(a, b)

is the weight that indicates the strength of the pairwise relationship between

variables va and vb, with w(a, b) = 0 if (a, b) /∈ E , and d(·, ·) is a distance function

131

6.1. Introduction

on the labels1. As will be seen later, this formulation of the pairwise potentials

would allow us to concisely describe our results.

We note that a subclass of this problem where w(a, b) ≥ 0 and the distance

function d(·, ·) is a semi-metric or a metric has been well-studied in the litera-

ture [15, 17, 42]. However, we will focus on the general map estimation problem.

In other words, unless explicitly stated, we do not place any restriction on the

form of the unary and pairwise potentials.

The problem of map estimation is well known to be np-hard in general. Since

it plays a central role in several applications, many approximate algorithms have

been proposed in the literature (see chapters 2 and 3). In this chapter, we ana-

lyze three such algorithms which are based on convex relaxations of the integer

programming (ip) formulation (described in § 3.3.1). Specifically, we consider:

(i) lp-s, the linear programming (lp) relaxation of [17, 51, 79, 101] (see § 3.3.2);

(ii) qp-rl, the quadratic programming (qp) relaxation of [75] (see § 3.3.3); and

(iii) socp-ms, the second order cone programing (socp) relaxation of [55, 64]

(see § 3.3.5). In order to compare these relaxations, we require the following

definitions.

6.1.1 Comparing Relaxations

We say that a relaxation a dominates the relaxation b (alternatively, b is domi-

nated by a) if and only if

min
(x,X)∈F(a)

e(x,X; θ) ≥ min
(x,X)∈F(b)

e(x,X; θ), ∀θ, (6.1.4)

where F(a) and F(b) are the feasibility regions of the relaxations a and b re-

spectively. The term e(x,X; θ) denotes the value of the objective function at

(x,X) (i.e. the energy of the possibly fractional labelling (x,X)) for the map

estimation problem defined over the crf with parameter θ. Thus the optimal

value of the dominating relaxation a is always greater than or equal to the opti-

mal value of relaxation b. We note here that the concept of domination has been

used previously in [17] (to compare lp-s with the linear programming relaxation

in [42]).

Relaxations a and b are said to be equivalent if a dominates b and b dominates

a, i.e. their optimal values are equal to each other for all crfs. A relaxation a is

1The pairwise potentials for any crf can be represented in the form θ2
ab;ij = w(a, b)d(i, j).

This can be achieved by using a larger set of labels l̂ = {l0;0, · · · , l0;h1
, · · · , ln−1;h1

} such that

the unary potential of va taking label lb;i is θ1
a;i if a = b and ∞ otherwise. In other words, a

variable va can only take labels from the set {la;0, · · · , la;h−1} since all other labels will result

in an energy value of ∞. The pairwise potential for variables va and vb taking labels la;i and

lb;j respectively can then be represented in the form w(a, b)d(a; i, b; j) where w(a, b) = 1 and

d(a; i, b; j) = θ2
ab;ij . Note that using a larger set of labels l̂ will increase the time complexity of

map estimation algorithms, but does not effect the analysis presented in this chapter.

132

6.1. Introduction

said to strictly dominate relaxation b if a dominates b but b does not dominate

a. In other words there exists at least one crf with parameter θ such that

min
(x,X)∈F(a)

e(x,X; θ) > min
(x,X)∈F(b)

e(x,X; θ). (6.1.5)

Note that, by definition, the optimal value of any relaxation would always be less

than or equal to the energy of the optimal (i.e. the map) labelling. Hence, the

optimal value of a strictly dominating relaxation a is closer to the optimal value

of the map estimation ip compared to that of relaxation b. In other words, a

provides a better approximation for map estimation than b.

We now describe two special cases of domination which are used extensively

in the remainder of this chapter.

Case I: Consider two relaxations a and b which share a common objective

function. For example, the objective functions of the lp-s and the socp-ms

relaxations described in chapter 3 have the same form. Further, let a and b differ

in the constraints that they specify such that F(a) ⊆ F(b), i.e. the feasibility

region of a is a subset of the feasibility region of b.

Given two such relaxations, we claim that a dominates b. This can be proved

by contradiction. To this end, we assume that a does not dominate b. Therefore,

by definition of domination, there exists at least one parameter θ for which b

provides a greater value of the objective function than a. Let an optimal solution

of a be (xA,XA). Similarly, let (xB,XB) be an optimal solution of b. By our

assumption, the following holds true:

e(xA,XA; θ) < e(xB,XB; θ). (6.1.6)

However, since F(a) ⊆ F(b) it follows that (xA,XA) ∈ F(b). Hence, from

equation (6.1.6), we see that (xB,XB) cannot be an optimal solution of b. This

proves our claim.

We can also consider a case where F(a) ⊂ F(b), i.e. the feasibility region of

a is a strict subset of the feasibility region of b. Using the above argument we see

that a dominates b. Further, assume that there exists a parameter θ such that

the intersection of the set of all optimal solutions of a and the set of all optimal

solutions of b is null. In other words if (xB,XB) is an optimal solution of b then

(xB,XB) /∈ F(a). Clearly, if such a parameter θ exists then a strictly dominates

b.

Case II: Consider two relaxations a and b such that they share a common

objective function. Further, let the constraints of b be a subset of the constraints

of a. We claim that a dominates b. This follows from the fact that F(a) ⊆ F(b)

and the argument used in Case I above.

133

6.2. LP-S vs. SOCP-MS

6.1.2 Our Results

We prove that lp-s strictly dominates socp-ms (see section 6.2). Further, in

section 6.3, we show that qp-rl is equivalent to socp-ms. This implies that lp-

s strictly dominates the qp-rl relaxation. In section 6.4 we generalize the above

results by proving that a large class of socp (and equivalent qp) relaxations is

dominated by lp-s.

Based on these results, we propose a novel set of constraints which result in

socp relaxations that dominate lp-s, qp-rl and socp-ms. These relaxations

introduce soc constraints on cycles and cliques formed by the neighbourhood

relationship of the crf. In chapter 7, we propose approximate algorithms for

solving these relaxations and show that the empirical results conform with our

analysis.

6.2. LP-S vs. SOCP-MS

We now show that for the map estimation problem the linear constraints of lp-s,

i.e.

x ∈ [−1, 1]nh,X ∈ [−1, 1]nh×nh, (6.2.1)
∑

li∈l xa;i = 2− h, (6.2.2)
∑

lj∈lXab;ij = (2− h)xa;i, (6.2.3)

Xab;ij = Xba;ji, (6.2.4)

1 + xa;i + xb;j +Xab;ij ≥ 0. (6.2.5)

are stronger than the socp-ms constraints, i.e.

x ∈ [−1, 1]nh,X ∈ [−1, 1]nh×nh, (6.2.6)
∑

li∈l xa;i = 2− h, (6.2.7)

(xa;i − xb;j)
2 ≤ 2− 2Xab;ij , (6.2.8)

(xa;i + xb;j)
2 ≤ 2 + 2Xab;ij, (6.2.9)

Xab;ij = Xba;ji, (6.2.10)

1 + xa;i + xb;j +Xab;ij ≥ 0. (6.2.11)

In other words the feasibility region of lp-s is a strict subset of the feasibility

region of socp-ms (i.e. F(lp-s) ⊂ F(socp-ms)). This in turn would allow us to

prove the following theorem.

Theorem 1: The lp-s relaxation strictly dominates the socp-ms relaxation.

Proof: The lp-s and the socp-ms relaxations differ only in the way they

relax the non-convex constraint X = xx⊤. While lp-s relaxes X = xx⊤ using

the marginalization constraint (6.2.3), socp-ms relaxes it to constraints (6.2.8)

134

6.2. LP-S vs. SOCP-MS

and (6.2.9). The socp-ms constraints provide the supremum and infimum of

Xab;ij as
(xa;i + xb;j)

2

2
− 1 ≤ Xab;ij ≤ 1− (xa;i − xb;j)

2

2
. (6.2.12)

Consider a pair of neighbouring variables va and vb and a pair of labels li and lj .

Recall that socp-ms specifies the constraints (6.2.8) and (6.2.9) for all such pairs

of random variables and labels, i.e. for all xa;i, xb;j, Xab;ij such that (a, b) ∈ E and

li, lj ∈ l. In order to prove this theorem we use the following two lemmas.

Lemma 2.1: If xa;i, xb;j and Xab;ij satisfy the lp-s constraints, i.e. con-

straints (6.2.1)-(6.2.5), then

|xa;i − xb;j | ≤ 1−Xab;ij . (6.2.13)

The above result holds true for all (a, b) ∈ E and li, lj ∈ l.

Proof: From the lp-s constraints, we get

1 + xa;i

2
=
∑

lk∈l

1 + xa;i + xb;k +Xab;ik

4
, (6.2.14)

1 + xb;j

2
=
∑

lk∈l

1 + xa;k + xb;j +Xab;kj

4
.

Therefore,

|xa;i − xb;j | = 2
∣

∣

∣

1+xa;i

2
− 1+xb;j

2

∣

∣

∣
,

= 2
∣

∣

∣

∑

lk∈l

1+xa;i+xb;k+Xab;ik

4
−∑lk∈l

1+xa;k+xb;j+Xab;kj

4

∣

∣

∣
,

= 2
∣

∣

∣

∑

lk∈l,k 6=j
1+xa;i+xb;k+Xab;ik

4
−∑lk∈l,k 6=i

1+xa;k+xb;j+Xab;kj

4

∣

∣

∣
,

≤ 2
(

∑

lk∈l,k 6=j
1+xa;i+xb;k+Xab;ik

4
+
∑

lk∈l,k 6=i
1+xa;k+xb;j+Xab;kj

4

)

,

= 2
(

1+xa;i

2
− 1+xa;i+xb;j+Xab;ij

4
+

1+xb;j

2
− 1+xa;i+xb;j+Xab;ij

4

)

,

= 1−Xab;ij . (6.2.15)

Using the above lemma, we get

(xa;i − xb;j)
2 ≤ (1−Xab;ij)(1−Xab;ij), (6.2.16)

⇒ (xa;i − xb;j)
2 ≤ 2(1−Xab;ij), (6.2.17)

⇒ (xa;i − xb;j)
2 ≤ 2− 2Xab;ij . (6.2.18)

The inequality (6.2.17) is obtained using the fact that −1 ≤ Xab;ij ≤ 1 and hence,

1−Xab;ij ≤ 2. Using inequality (6.2.16), we see that the necessary condition for

the equality to hold true is (1−Xab;ij)(1−Xab;ij) = 2− 2Xab;ij, i.e. Xab;ij = −1.

Note that inequality (6.2.18) is equivalent to the socp-ms constraint (6.2.8).

Thus lp-s provides a smaller supremum of Xab;ij when Xab;ij > −1.

Lemma 2.2: If xa;i, xb;j and Xab;ij satisfy the lp-s constraints then

|xa;i + xb;j | ≤ 1 +Xab;ij . (6.2.19)

135

6.2. LP-S vs. SOCP-MS

This holds true for all (a, b) ∈ E and li, lj ∈ l.

Proof: According to constraint (6.2.5),

−(xa;i + xb;j) ≤ 1 +Xab;ij . (6.2.20)

Using Lemma 2.1, we get the following set of inequalities:

|xa;i − xb;k| ≤ 1−Xab;ik, lk ∈ l, k 6= j (6.2.21)

Adding the above set of inequalities, we get

∑

lk∈l,k 6=j |xa;i − xb;j | ≤
∑

lk∈l,k 6=j(1−Xab;ik), (6.2.22)

⇒ ∑

lk∈l,k 6=j(xa;i − xb;k) ≤
∑

lk∈l,k 6=j(1−Xab;ik), (6.2.23)

⇒ (h− 1)xa;i −
∑

lk∈l,k 6=j xb;k ≤ (h− 1)−∑lk∈l,k 6=j Xab;ik, (6.2.24)

⇒ (h− 1)xa;i + (h− 2) + xb;j ≤ (h− 1) + (h− 2)xa;i +Xab;ij . (6.2.25)

The last step is obtained using constraints (6.2.2) and (6.2.3), i.e.

∑

lk∈l

xb;k = (2− h),
∑

lk∈l

Xab;ik = (2− h)xa;i. (6.2.26)

Rearranging the terms, we get

(xa;i + xb;j) ≤ 1 +Xab;ij. (6.2.27)

Thus, according to inequalities (6.2.20) and (6.2.27)

|xa;i + xb;j| ≤ 1 +Xab;ij . (6.2.28)

Using the above lemma, we obtain

(xa;i + xb;j)
2 ≤ (1 +Xab;ij)(1 +Xab;ij), (6.2.29)

⇒ (xa;i + xb;j)
2 ≤ 2 + 2Xab;ij. (6.2.30)

where the necessary condition for the equality to hold true is 1 + Xab;ij = 2

(i.e. Xab;ij = 1). Note that the above constraint is equivalent to the socp-ms

constraint (6.2.9). Together with inequality (6.2.18), this proves that the lp-s

relaxation provides smaller supremum and larger infimum of the elements of the

matrix X than the socp-ms relaxation. Thus, F(lp-s) ⊂ F(socp-ms).

One can also construct a parameter θ for which the set of all optimal solutions

of socp-ms do not lie in the feasibility region of lp-s. In other words the optimal

solutions of socp-ms belong to the non-empty set F(socp-ms)−F(lp-s). Using

the argument of Case I in § 6.1.1, this implies that lp-s strictly dominates socp-

ms.

Note that the above theorem does not apply to the variation of socp-ms de-

scribed in [55, 64] which include triangular inequalities. However, since triangular

inequalities are linear constraints, lp-s can be extended to include them (as will

136

6.3. QP-RL vs. SOCP-MS

be seen in the next chapter). The resulting lp relaxation would strictly dominate

the socp-ms relaxation with triangular inequalities.

6.3. QP-RL vs. SOCP-MS

We now prove that qp-rl and socp-ms are equivalent (i.e. their optimal values

are equal for map estimation problems defined over all crfs). Specifically, we

consider a vector x which lies in the feasibility regions of the qp-rl and socp-ms

relaxations, i.e. x ∈ [−1, 1]nh. For this vector, we show that the values of the

objective functions of the qp-rl and socp-ms relaxations are equal. This would

imply that if x∗ is an optimal solution of qp-rl for some crf with parameter θ

then there exists an optimal solution (x∗,X∗) of the socp-ms relaxation. Further,

if eQ and eS are the optimal values of the objective functions obtained using the

qp-rl and socp-ms relaxation, then eQ = eS.

Theorem 2: The qp-rl relaxation and the socp-ms relaxation are equiva-

lent.

Proof: Recall that the qp-rl relaxation is defined as follows:

qp-rl: x∗ = arg minx

(

1+x
2

)⊤
θ̂

1
+
(

1+x
2

)⊤
θ̂

2 (
1+x

2

)

, (6.3.1)

s.t.
∑

li∈l xa;i = 2− h, ∀va ∈ v, (6.3.2)

x ∈ {−1, 1}nh, (6.3.3)

where the unary potential vector θ̂
1

and the pairwise potential matrix θ̂
2 � 0 are

defined as

θ̂1
a;i = θ1

a;i −
∑

vc∈v

∑

lk∈l

|θ2
ac;ik|, (6.3.4)

θ̂2
ab;ij =

{

∑

vc∈v

∑

lk∈l |θ2
ac;ik|, if a = b, i = j,

θ2
ab;ij otherwise.

Here, the terms θ1
a;i and θ2

ac;ik are the (original) unary potentials and pairwise

potentials for the given crf. Consider a feasible solution x of the qp-rl and the

socp-ms relaxations. Further, let X be the solution obtained when minimizing

the objective function of the socp-ms relaxation whilst keeping x fixed. We prove

that the value of the objective functions for both relaxations at the above feasible

solution is the same by equating the coefficient of θ1
a;i and θ2

ab;ij for all va ∈ v,

(a, b) ∈ E and li, lj ∈ l in both formulations. Using equation (6.3.4), we see that

θ1
a;i is multiplied by

1+xa;i

2
in the objective function of the qp-rl. Similarly, θ1

a;i is

multiplied by
1+xa;i

2
in the socp-ms relaxation. Therefore the coefficients of θ1

a;i

in both relaxations are equal for all va ∈ v and li ∈ l.

We now consider the pairwise potentials, i.e. θ2
ab;ij and show that their coeffi-

cients are the same when obtaining the minimum of the objective function. We

consider the following two cases.

137

6.3. QP-RL vs. SOCP-MS

Case I: Let θ2
ab;ij = θ2

ba;ji ≥ 0. Using equation (6.3.5) we see that, in the qp-rl

relaxation, θ2
ab;ij + θ2

ba;ji is multiplied by the following term:

(

1 + xa;i

2

)2

+

(

1 + xb;j

2

)2

+ 2

(

1 + xa;i

2

)(

1 + xb;j

2

)

− 1 + xa;i

2
− 1 + xb;j

2
.

(6.3.5)

In the case of socp-ms relaxation, since θ2
ab;ij ≥ 0, the minimum of the objective

function is obtained by using the minimum value that Xab;ij would take given the

soc constraints. Since X is symmetric, we see that θ2
ab;ij + θ2

ba;ji is multiplied by

the following term:

1+xa;i+xb;j+inf{Xab;ij}
2

(6.3.6)

=
1+xa;i+xb;j+(xa;i+xb;j)

2/2−1

2
, (6.3.7)

where the infimum of Xab;ij is defined by constraint (6.2.9) in the socp-ms re-

laxation. It can easily be verified that the terms (6.3.5) and (6.3.7) are equal.

Case II: Now consider the case where θ2
ab;ij = θ2

ba;ji < 0. In the qp-rl relax-

ation, the term θ2
ab;ij + θ2

ba;ji is multiplied by

1 + xa;i

2
+

1 + xb;j

2
+ 2

(

1 + xa;i

2

)(

1 + xb;j

2

)

−
(

1 + xa;i

2

)2

−
(

1 + xb;j

2

)2

.

(6.3.8)

In order to obtain the minimum of the objective function, the socp-ms relaxation

uses the maximum value that Xab;ij would take given the soc constraints. Thus,

θ2
ab;ij + θ2

ba;ji is multiplied by

1+xa;i+xb;j+sup{Xab;ij}
2

(6.3.9)

=
1+xa;i+xb;j+1−(xa;i−xb;j)

2/2

2
, (6.3.10)

where the supremum ofXab;ij is defined by constraint (6.2.8). Again, the terms (6.3.8)

and (6.3.10) can be shown to be equivalent.

Theorems 1 and 2 prove that the lp-s relaxation strictly dominates the qp-

rl and socp-ms relaxations. A natural question that now arises is whether the

additive bound of qp-rl (proved in [75]) is applicable to the lp-s and socp-ms

relaxations. Our next theorem answers this question in an affirmative. To this

end, we use the rounding scheme proposed in [75] to obtain the labelling f for

all the random variables of the given crf. This rounding scheme is summarized

below:

• Pick a variable va which has not been assigned a label.

• Assign the label li to va (i.e. f(a) = i) with probability
1+xa;i

2
.

• Continue till all variables have been assigned a label.

138

6.3. QP-RL vs. SOCP-MS

Recall that
∑h−1

i=0
1+xa;i

2
= 1 for all va ∈ v. Hence, once va is picked it is guaranteed

to be assigned a label. In other words the above rounding scheme terminates after

n = |v| steps. To the best of our knowledge, this additive bound was previously

known only for the qp-rl relaxation [75].

Theorem 3: For the above rounding scheme, lp-s and socp-ms provide

the same additive bound as the qp-rl relaxation of [75], i.e. S
4

where S =
∑

(a,b)∈E
∑

li,lj∈l |θ2
ab;ij | (i.e. the sum of the absolute values of all pairwise poten-

tials). Furthermore, this bound is tight.

Proof: The qp-rl and socp-ms relaxations are equivalent. Thus the above

theorem holds true for socp-ms. We now consider the lp-s relaxation of [17,

51, 79, 101]. We denote the energy of the optimal labelling as e∗. Recall that eL

denotes the optimal value of the lp-s which is obtained using possibly fractional

variables (x∗,X∗). Clearly, eL ≤ e∗. The energy of the labelling x̂, obtained after

rounding the solution of the lp-s relaxation, is represented by the term êL,

Using the above notation, we now show that the lp-s relaxation provides an

additive bound of S
4

for the above rounding scheme. We first consider the unary

potentials and observe that

E

(

θ1
a;i

(

1 + x̂a;i

2

))

= θ1
a;i

(

1 + x∗a;i

2

)

, (6.3.11)

where E(·) denotes the expectation of its argument under the above rounding

scheme. Similarly, for the pairwise potentials,

E

(

θ2
ab;ij

(

1 + x̂a;i

2

)(

1 + x̂b;j

2

))

= θ2
ab;ij

(

1 + x∗a;i + x∗b;ij + x∗a;ix
∗
b;j

4

)

. (6.3.12)

We analyze the following two cases:

(i) θ2
ab;ij ≥ 0: Using the fact that X∗

ab;ij ≥ |x∗a;i + x∗b;j| − 1 (see Lemma 2.2), we

get

1 + x∗a;i + x∗b;j + x∗a;ix
∗
b;j − (1 + x∗a;i + x∗b;j +X∗

ab;ij)

= x∗a;ix
∗
b;j −X∗

ab;ij

≤ x∗a;ix
∗
b;j + 1− |x∗a;i + x∗b;j |

≤ 1, (6.3.13)

where the equality holds when x∗a;i = x∗b;j = 0. Therefore,

E

(

θ2
ab;ij

(

1 + x̂a;i

2

)(

1 + x̂b;j

2

))

≤ θ2
ab;ij

(1 + x∗a;i + x∗b;ij +X∗
ab;ij)

4
+
|θ2

ab;ij|
4

.

(6.3.14)

(ii) θ2
ab;ij < 0: Using the fact that X∗

ab;ij ≤ 1 − |x∗a;i − x∗b;j | (see Lemma 2.1),

we get

1 + x∗a;i + x∗b;j + x∗a;ix
∗
b;j − (1 + x∗a;i + x∗b;j +X∗

ab;ij)

≥ x∗a;ix
∗
b;j − 1 + |x∗a;i − x∗b;j |

≥ −1, (6.3.15)

139

6.3. QP-RL vs. SOCP-MS

(a) (b)

Figure 6.1: An example crf for proving the tightness of the lp-s additive bound

of S
4
. (a) The two random variables va and vb are shown as unfilled circles. Their

two putative labels are shown as branches (i.e. the horizontal lines) of the trellises

(i.e. the vertical lines). The value of the unary potential θ1
a;i is shown next to the

ith branch of the trellis on top of va. The pairwise potential θ2
ab;ij is shown next

to the connection between the ith and jth branches of the trellises on top of va

and vb respectively. Note that the unary potentials are uniform while the pairwise

potentials form an Ising model. (b) An optimal solution of the lp-s relaxation

for the crf shown in (a). This solution is shown in red to differentiate it from

the potentials shown in (a). The values of the variables xa;i are shown next to the

ith branch of the trellis of va. Note that all variables xa;i have been assigned to 0.

The values of the variables Xab;ij are shown next to the connection between the

ith and jth branch of the trellises of va and vb. Note that Xab;ij = −1 if θ2
ab;ij > 0

and Xab;ij = 1 otherwise.

where the equality holds when x∗a;i = x∗b;j = 0. Therefore,

E

(

θ2
ab;ij

(

1 + x̂a;i

2

)(

1 + x̂b;j

2

))

≤ θ2
ab;ij

(1 + x∗a;i + x∗b;ij +X∗
ab;ij)

4
+
|θ2

ab;ij|
4

.

(6.3.16)

Summing the expectation of the unary and pairwise potentials for all va ∈ v,

(a, b) ∈ E and li, lj ∈ l, we get

e∗ ≤ E(êL) ≤ eL +
S

4
≤ e∗ +

S

4
, (6.3.17)

which proves the additive bound for lp-s.

This additive bound can indeed be shown to be tight by using the following

simple example. Consider an instance of the map estimation problem for a crf

defined on two variables v = {va, vb} each of which can take one of two labels

from the set l = {l0, l1}. Let the unary and pairwise potentials be as defined

in Fig. 6.1(a), i.e. the unary potentials are uniform and the pairwise potentials

follow the Ising model.

An optimal solution of the lp-s relaxation is given in Fig. 6.1(b). Clearly,

e∗ = 2 (e.g. for the labelling f = {0, 0} or f = {1, 1}) while E(êL) = 2+ 2
4

= e∗+S
4
.

Thus the additive bounds obtained for the lp-s, qp-rl and socp-ms algorithms

are the same. In fact, one can construct arbitrarily large crfs (i.e. crf defined

140

6.4. QP and SOCP Relaxations over Trees and Cycles

over a large number of variables) with uniform unary potentials and Ising model

pairwise potentials for which the bound can be shown to be tight. We note,

however, that better bounds can be obtained for some special cases of the map

estimation problem using the lp-s relaxation together with more clever rounding

schemes (such as those described in [17, 42]).

6.4. QP and SOCP Relaxations over Trees and

Cycles

We now generalize the results of Theorem 1 by defining a large class of socp

relaxations which is dominated by lp-s. Specifically, we consider the socp re-

laxations which relax the non-convex constraint X = xx⊤ using a set of second

order cone (soc) constraints of the form

||(Uk)⊤x|| ≤ Ck •X, k = 1, · · · , nC (6.4.1)

where Ck = Uk(Uk)⊤ � 0, for all k = 1, · · · , nC . In order to make the proofs

of the subsequent theorems easier, we make two assumptions. However, the

theorems would hold true even without these assumptions as discussed below.

Assumption 1: We assume that the integer constraints

x ∈ {−1,+1}nh,X ∈ {−1,+1}nh×nh, (6.4.2)

are relaxed to

x ∈ [−1,+1]nh,X ∈ [−1,+1]nh×nh, (6.4.3)

with Xaa;ii = 1, for all va ∈ v, li ∈ l. The constraints (6.4.3) provide the convex

hull for all the points defined by the integer constraints (6.4.2). Recall that the

convex hull of a set of points is the smallest convex set which contains all the

points. We now discuss how the above assumption is not restrictive with respect

to the results that follow. Let a be a relaxation which contains constraints (6.4.3).

Further, let b be a relaxation which differs from a only in the way it relaxes the

integer constraints. Then by definition of convex hull F(a) ⊂ F(b). In other

words a dominates b (see Case I in § 6.1.1). Hence, if a is dominated by the lp-s

relaxation, then lp-s would also dominate b.

Assumption 2: We assume that the set of constraints (6.4.1) contains all the

constraints specified in the socp-ms relaxation. Recall that for a given pair of

neighbouring random variables, i.e. (a, b) ∈ E , and a pair of labels li, lj ∈ l,

socp-ms specifies soc constraints using two matrices (say C1 and C2) which are

0 everywhere expect for the following 2× 2 submatrices:
(

C1
aa;ii C1

ab;ij

C1
ba;ji C1

bb;jj

)

=

(

1 1

1 1

)

,

(

C2
aa;ii C2

ab;ij

C2
ba;ji C2

bb;jj

)

=

(

1 −1

−1 1

)

. (6.4.4)

141

6.4. QP and SOCP Relaxations over Trees and Cycles

In the case where a given relaxation a does not contain the socp-ms constraints,

we can define a new relaxation b. This new relaxation b is obtained by adding

all the socp-ms constraints to a. By definition, b dominates a (although not

necessarily strictly, see Case II in § 6.1.1). Hence, if b is dominated by the

lp-s relaxation then it follows that lp-s would also dominate a. Hence, our

assumption about including the socp-ms constraints is not restrictive for the

results presented in this section.

Note that each socp relaxation belonging to this class would define an equiv-

alent qp relaxation (similar to the equivalent qp-rl relaxation defined by the

socp-ms relaxation). Hence, all these qp relaxations will also be dominated by

the lp-s relaxation. Before we begin to describe our results in detail, we need to

set up some notation as follows.

6.4.1 Notation

(a) (b) (c)

Figure 6.2: (a) An example crf defined over four variables which form a cycle.

Note that the observed nodes are not shown for the sake of clarity of the image.

(b) The set Ek specified by the matrix Ck shown in equation (6.4.6), i.e. Ek =

{(a, b), (b, c), (c, d)}. (c) The set V k = {a, b, c, d}. See text for definitions of these

sets.

We consider an soc constraint which is of the form described in equation (6.4.1),

i.e.

||(Uk)⊤x|| ≤ Ck •X, (6.4.5)

where k ∈ {1, · · · , nC}. In order to help the reader understand the notation

better, we use an example crf shown in Fig. 6.2(a). This crf is defined over

four variables v = {va, vb, vc, vd} (connected to form a cycle of length 4), each of

which take a label from the set l = {l0, l1}. For this crf we specify a constraint

using a matrix Ck � 0 which is 0 everywhere, except for the following 4 × 4

submatrix:










Ck
aa;00 Ck

ab;00 Ck
ac;00 Ck

ad;00

Ck
ba;00 Ck

bb;00 Ck
bc;00 Ck

bd;00

Ck
ca;00 Ck

cb;00 Ck
cc;00 Ck

cd;00

Ck
da;00 Ck

db;00 Ck
dc;00 Ck

dd;00











=











2 1 1 0

1 2 1 1

1 1 2 1

0 1 1 2











(6.4.6)

142

6.4. QP and SOCP Relaxations over Trees and Cycles

Using the soc constraint shown in equation (6.4.5) we define the following

sets:

• The set Ek is defined such that (a, b) ∈ Ek if, and only if, it satisfies the

following conditions:

(a, b) ∈ E , (6.4.7)

∃li, lj ∈ l such that Ck
ab;ij 6= 0. (6.4.8)

Recall that E specifies the neighbourhood relationship for the given crf. In

other words Ek is the subset of the edges in the graphical model of the crf

such that Ck specifies constraints for the random variables corresponding

to those edges. For the example crf (shown in Fig. 6.2(a)) and Ck matrix

(in equation (6.4.6)), the set Ek obtained is shown in Fig. 6.2(b).

• The set V k is defined as a ∈ V k if, and only if, there exists a vb ∈ v

such that (a, b) ∈ Ek. In other words V k is the subset of hidden nodes in

the graphical model of the crf such that Ck specifies constraints for the

random variables corresponding to those hidden nodes. Fig. 6.2(c) shows

the set V k for our example soc constraint.

• The set T k consists of elements a; i ∈ T k which satisfy

a ∈ V k, li ∈ l, (6.4.9)

∃b ∈ V k, lj ∈ l, such that Ck
ab;ij 6= 0. (6.4.10)

In other words the set T k consists of the set of indices for the vector x

which are constrained by inequality (6.4.5), i.e. the coefficient of xa;i where

a; i ∈ T k are non-zero in the lhs of inequality (6.4.5). Note that in equa-

tion (6.4.6) the constraint is specified using only the label l0 for all the

random variables v. Thus the set T k is given by

T k = {(a; 0), (b; 0), (c; 0), (d; 0)}. (6.4.11)

For each set T k we define three disjoint subsets of T k × T k as follows.

• The set T k
0 is defined as

T k
0 = {(a; i, b; j)|(a; i, b; j) ∈ T k × T k, (a, b) ∈ E , (a, b) /∈ Ek}. (6.4.12)

Note that by definition Ck
ab;ij = 0 if (a; i, b; j) ∈ T k

0 . Thus T k
0 indexes the

elements of matrix X which are not constrained by inequality (6.4.5) but

are present in the set T k × T k. For the matrix Ck in equation (6.4.6), the

set T k
0 is given by

T k
0 = {(a; 0, d; 0)} (6.4.13)

143

6.4. QP and SOCP Relaxations over Trees and Cycles

• The set T k
1 is defined as

T k
1 = {(a; i, b; j)|(a; i, b; j) ∈ T k × T k, (a, b) /∈ E}. (6.4.14)

In other words the set T k
1 indexes the elements of matrix X which are con-

strained by inequality (6.4.5) but do not belong to any pair of neighbouring

random variables. Note that the variables Xab;ij such that (a; i, b; j) ∈ T k
1

were not present in the lp-s relaxation. For the matrix Ck in equa-

tion (6.4.6), the set T k
1 is given by

T k
1 = {(a; 0, c; 0), (b; 0, d; 0)} (6.4.15)

• The set T k
2 is defined as

T k
2 = {(a; i, b; j)|(a; i, b; j) ∈ T k × T k, (a, b) ∈ Ek}. (6.4.16)

In other words the set T k
2 indexes the elements of matrix X which are con-

strained by inequality (6.4.5) and belong to a pair of neighbouring random

variables. For the matrix Ck in equation (6.4.6), the set T k
1 is given by

T k
2 = {(a; 0, b; 0), (b; 0, c; 0)(c; 0, d; 0)} (6.4.17)

Note that T k
0

⋃ T k
1

⋃ T k
2 = T k × T k. For a given set of pairwise potentials

θ2
ab;ij we define two disjoint sets of T k

2 as follows.

• The set T k
2+ corresponds to non-negative pairwise potentials, i.e.

T k
2+ = {(a; i, b; j)|(a; i, b; j) ∈ T k

2 , θ
2
ab;ij ≥ 0}, (6.4.18)

Thus the set T k
2+ indexes the elements of matrix X which belong to T k

2 and

are multiplied by a non-negative pairwise potential in the objective function

of the relaxation.

• The set T k
2− corresponds to negative pairwise potentials, i.e.

T k
2− = {(a; i, b; j)|(a; i, b; j) ∈ T k

2 , θ
2
ab;ij < 0}, (6.4.19)

Thus the set T k
2− indexes the elements of matrix X which belong to T k

2 and

are multiplied by a negative pairwise potential in the objective function of

the relaxation. Note that T k
2 = T k

2+

⋃T k
2−. For the purpose of illustration

let us assume that, for the example crf in Fig. 6.2(a), θ2
ab;00 ≥ 0 while

θ2
bc;00 < 0 and θ2

cd;00 < 0. Then,

T k
2+ = {(a; 0, b; 0)}, (6.4.20)

T k
2− = {(b; 0, c; 0), (c; 0, d; 0)}, (6.4.21)

144

6.4. QP and SOCP Relaxations over Trees and Cycles

We also define a weighted graph Gk = (V k, Ek) whose vertices are specified

by the set V k and whose edges are specified by the set Ek. The weight of an edge

(a, b) ∈ Ek is given by w(a, b). Recall that w(a, b) specifies the strength of the

pairwise relationship between two neighbouring variables va and vb. Thus, for our

example soc constraint, the vertices of this graph are given in Fig. 6.2(c) while

the edges are shown in Fig. 6.2(b). This graph can be viewed as a subgraph of

the graphical model representation for the given crf.

Further, we define the submatrices xk
T and Xk

T of x and X respectively such

that

xk
T = {xa;i|a; i ∈ T k}, (6.4.22)

Xk
T = {Xab;ij|(a; i, b; j) ∈ T k × T k}. (6.4.23)

For our example, these submatrices will be given by

xk
T =











xa;0

xb;0

xc;0

xd;0











,Xk
T =











Xaa;00 Xab;00 Xac;00 Xad;00

Xba;00 Xbb;00 Xbc;00 Xbd;00

Xca;00 Xcb;00 Xcc;00 Xcd;00

Xda;00 Xdb;00 Xdc;00 Xdd;00











. (6.4.24)

Using the above notation, we are now ready to describe our results in detail.

6.4.2 QP and SOCP Relaxations over Trees

We begin by considering those relaxations where the soc constraints are defined

such that the graphsGk = (V k, Ek) form trees. For example, the graphGk defined

by the soc constraint in equation (6.4.6) forms a tree as shown in Fig. 6.2(b).

We denote such a relaxation, which specifies soc constraints only over trees, by

socp-t. Note that socp-ms (and hence, qp-rl) can be considered a special case

of this class of relaxations where the number of vertices in each tree is equal to

two (since the constraints are defined for all (a, b) ∈ E).
We will remove this restriction by allowing the number of vertices in each

tree to be arbitrarily large (i.e. between 1 and n). We consider one such tree

G = (V,E). Note that for a given relaxation socp-t, there may be several soc

constraints defined using this tree G (or its subtree). Without loss of generality,

we assume that the constraints

||(Uk)⊤x|| ≤ Ck •X, k = 1, · · · , n′
C (6.4.25)

are defined on the tree G. In other words,

Gk ⊆ G, k = 1, · · · , n′
C , (6.4.26)

where Gk ⊆ G implies that Gk is a subtree of G. In order to make the notation

less cluttered, we will drop the superscript k from the sets defined in the

previous section (since we will consider only one tree G in our analysis).

145

6.4. QP and SOCP Relaxations over Trees and Cycles

We will now show that socp-t is dominated by the lp-s relaxation. This

result is independent of the choice of trees G and matrices Ck. To this end, we

define the term e1(xT) for a given value of xT as

e1(xT) =
∑

(a;i)∈T



θ1
a;i +

∑

(b;j)∈T

θ2
ab;ij

2



xa;i. (6.4.27)

Further, for a fixed xT we also define the following two terms:

eS
2 (xT) = min

(xT ,XT)∈F(socp-t)

∑

(a;i,b;j)∈T2

θ2
ab;ijXab;ij, (6.4.28)

eL
2 (xT) = min

(xT ,XT)∈F(lp-s)

∑

(a;i,b;j)∈T2

θ2
ab;ijXab;ij, (6.4.29)

where F(socp-t) and F(lp-s) are the feasibility regions of socp-t and lp-s

respectively. We use the notation (xT ,XT) ∈ F(socp-t) loosely to mean that

we can obtain a feasible solution (x,X) of socp-t such that the values of the

variables xa;i where a; i ∈ T and Xab;ij where (a; i, b; j) ∈ T × T are equal to

the values specified by xT and XT . The notation (xT ,XT) ∈ F(lp-s) is used

similarly. Note that for a given xT the possible values of XT are constrained such

that (xT ,XT) ∈ F(socp-t) and (xT ,XT) ∈ F(lp-s) (in the case of socp-t and

lp-s respectively). Hence different values of xT will provide different values of

eS
2 (xT) and eL

2 (xT).

The contribution of the tree G to the objective function of socp-t and lp-s

is given by

eS = min
xT

e1(xT)

2
+
eS
2 (xT)

4
, (6.4.30)

eL = min
xT

e1(xT)

2
+
eL
2 (xT)

4
(6.4.31)

respectively. Assuming that the trees G do not overlap, the total value of the

objective function would simply be the sum of eS (for socp-t) or eL (for lp-s)

over all trees G. However, since we use an arbitrary parameter θ in our analysis,

it follows that the results do not depend on this assumption of non-overlapping

trees. In other words if two trees G1 and G2 share an edge (a, b) ∈ E then we can

simply consider two map estimation problems defined using arbitrary parameters

θ1 and θ2 such that θ1 + θ2 = θ. We can then add the contribution of G1 for

the map estimation problem with parameter θ1 to the contribution of G2 for the

map estimation problem with parameter θ2. This would then provide us with

the total contribution of G1 and G2 for the original map estimation defined using

parameter θ.

Using the above argument it follows that if, for allG and for all θ, the following

holds true:

e1(xT)
2

+
eS
2 (xT)

4
≤ e1(xT)

2
+

eL
2 (xT)

4
, ∀xT ∈ [−1, 1]|T | (6.4.32)

⇒ eS
2 (xT) ≤ eL

2 (xT), ∀xT ∈ [−1, 1]|T |, (6.4.33)

146

6.4. QP and SOCP Relaxations over Trees and Cycles

then lp-s dominates socp-t (since this would imply that eS ≤ eL, for all G and

for all θ). This is the condition that we will use to prove that lp-s dominates all

socp relaxations whose constraints are defined over trees. To this end, we define

a vector ω = {ωk, k = 1, · · · , n′
C} of non-negative real numbers such that

∑

k

ωkC
k
ab;ij = θ2

ab;ij , ∀(a; i, b; j) ∈ T2. (6.4.34)

Due to the presence of the matrices Ck defined in equation (6.4.4) (which result

in the socp-ms constraints for all (a, b) ∈ E and li, lj ∈ l), such a vector ω would

always exist for any crf parameter θ. We denote the matrix
∑

k ωkC
k by C.

Clearly, C � 0, and hence can be written as C = UU⊤.

Using the constraints ||(Uk)⊤x||2 ≤ Ck •XT together with the the fact that

ωk ≥ 0, we get the following inequality1:

∑

k ωk||(Uk)⊤x||2 ≤∑k ωkC
k •X,

⇒ ||U⊤x||2 ≤ C •X,

⇒ ||U⊤x||2 ≤∑a;i∈T Caa;iiXaa;ii +
∑

(a;i,b;j)∈T1
Cab;ijXab;ij +

∑

(a;i,b;j)∈T2
Cab;ijXab;ij

⇒ ‖U⊤x‖2 −∑a;i∈T Caa;ii −
∑

(a;i,b;j)∈T1
Cab;ijXab;ij ≤

∑

(a;i,b;j)∈T2
θ2

ab;ijXab;ij ,

(6.4.35)

where the last expression is obtained using the fact that Cab;ij = θ2
ab;ij for all

(a; i, b; j) ∈ T2 and Xaa;ii = 1 for all va ∈ v and li ∈ l. Note that, in the absence

of any other constraint (which is our assumption), the value of eS
2 (xT) after the

minimization would be exactly equal to the lhs of the inequality given above

(since the objective function containing eS
2 (xT) is being minimized). In other

words,

eS
2 (xT) = min

∑

(a;i,b;j)∈T2

θ2
ab;ijXab;ij ,

= min ‖U⊤x‖2 −
∑

a;i∈T
Caa;ii −

∑

(a;i,b;j)∈T1

Cab;ijXab;ij. (6.4.36)

For the lp-s relaxation, from Lemmas 2.1 and 2.2, we obtain the following

value of eL
2 (xT):

|xa;i + xb;j | − 1 ≤ Xab;ij ≤ 1− |xa;i − xb;j|, (6.4.37)

⇒ eL
2 (xT) = min

∑

(a;i,b;j)∈T2
θ2

ab;ijXab;ij ,

=
∑

(a;i,b;j)∈T2+
θ2

ab;ij(|xa;i + xb;j |)−
∑

(a;i,b;j)∈T2−
θ2

ab;ij(|xa;i − xb;j |)−
∑

(a;i,b;j)∈T2
|θ2

ab;ij | (6.4.38)

We are now ready to prove the following theorem.

1Note that there are no terms corresponding to (a; i, b; j) ∈ T0 in inequality (6.4.35) since

Cab;ij = 0 if (a; i, b; j) ∈ T0. In other words, Xab;ij vanishes from the above inequality if

(a; i, b; j) ∈ T0.

147

6.4. QP and SOCP Relaxations over Trees and Cycles

Theorem 4: socp relaxations (and the equivalent qp relaxations) which

define constraints only using graphs G = (V,E) which form (arbitrarily large)

trees are dominated by the lp-s relaxation.

Proof: We begin by assuming that d(i, j) ≥ 0 for all li, lj ∈ l and later drop

this constraint on the distance function2. We will show that for any arbitrary

tree G and any matrix C, the value of eL
2 (xT) is greater than the value of eS

2 (xT)

for all xT . This would prove inequality (6.4.33) which in turn would show that

the lp-s relaxation dominates socp-t (and the equivalent qp relaxation which

we call qp-t) whose constraints are defined over trees.

It is assumed that we do not specify any additional constraints for all the

variables Xab;ij where (a; i, b; j) ∈ T1 (i.e. for Xab;ij not belonging to any of our

trees). In other words these variables Xab;ij are bounded only by the relaxation

of the integer constraint, i.e. −1 ≤ Xab;ij ≤ +1. Thus in equation (6.4.36) the

minimum value of the rhs (which is equal to the value of eS
2 (xT)) is obtained by

using the following value of Xab;ij where (a; i, b; j) ∈ T1:

Xab;ij =

{

1 if Cab;ij ≥ 0,

−1 otherwise.
(6.4.39)

Substituting these values in equation (6.4.36) we get

eS
2 (xT) = ||U⊤x||2 −∑a;i∈T Caa;ii −

∑

(a;i,b;j)∈T1
|Cab;ij|,

⇒ eS
2 (xT) =

∑

a;i∈T Caa;iix
2
a;i +

∑

(a;i,b;j)∈T1
Cab;ijxa;ixb;j +

∑

(a;i,b;j)∈T2
θ2

ab;ijxa;ixb;j

−∑a;i∈T Caa;ii −
∑

(a;i,b;j)∈T1
|Cab;ij|, (6.4.40)

where the last expression is obtained using the fact that C = U⊤U. Consider

the term
∑

(a;i,b;j)∈T1
Cab;ijxa;ixb;j which appears in the rhs of the above equation.

For this term, clearly the following holds true

∑

(a;i,b;j)∈T1

Cab;ijxa;ixb;j ≤
∑

(a;i,b;j)∈T1

|Cab;ij|
2

(x2
a;i + x2

b;j), (6.4.41)

since for all (a; i, b; j) ∈ T1

Cab;ij ≤ |Cab;ij |, (6.4.42)

xa;ixb;j ≤
(x2

a;i+x2
b;j)

2
. (6.4.43)

Inequality (6.4.41) provides us with an upper bound on the value of eS
2 (xT) as

follows:

eS
2 (xT) ≤∑a;i∈T Caa;iix

2
a;i +

∑

(a;i,b;j)∈T1

|Cab;ij |
2

(x2
a;i + x2

b;j) +
∑

(a;i,b;j)∈T2
θ2

ab;ijxa;ixb;j

−∑a;i∈T Caa;ii −
∑

(a;i,b;j)∈T1
|Cab;ij |. (6.4.44)

2Recall that d(·, ·) is a distance function on the labels. Together with the weights w(·, ·)
defined over neighbouring random variables, it specifies the pairwise potentials as θ2

ab;ij =

w(a, b)d(i, j).

148

6.4. QP and SOCP Relaxations over Trees and Cycles

Note that in order to prove inequality (6.4.33), i.e.

eS
2 (xT) ≤ eL

2 (xT), ∀xT ∈ [−1, 1]|T |, (6.4.45)

it would be sufficient to show that eL
2 (xT) specified in equation (6.4.38) is greater

than the rhs of inequality (6.4.44) (since the rhs of inequality (6.4.44) is greater

than eS
2 (xT)). We now simplify the two infimums eL

2 (xT) and eS
2 (xT) as follows.

LP-S Infimum: Let za;i =
√

|xa;i|(1− |xa;i|). From equation (6.4.38), we

see that the infimum provided by the lp-s relaxation is given by

∑

(a;i,b;j)∈T2+
θ2

ab;ij(|xa;i + xb;j |)−
∑

(a;i,b;j)∈T2−
θ2

ab;ij(|xa;i − xb;j |)−
∑

(a;i,b;j)∈T2
|θ2

ab;ij |
= −∑(a;i,b;j)∈T2+

|θ2
ab;ij |(1− |xa;i + xb;j|+ xa;ixb;j)

−∑(a;i,b;j)∈T2−
|θ2

ab;ij |(1− |xa;i − xb;j| − xa;ixb;j)

+
∑

(a;i,b;j)∈T2
θ2

ab;ijxa;ixb;j

≥ −∑(a;i,b;j)∈T2
|θ2

ab;ij |(1− |xa;i|)(1− |xb;j |)− 2
∑

(a;i,b;j)∈T2
|θ2

ab;ij |za;izb;j +

+
∑

(a;i,b;j)∈T2
θ2

ab;ijxa;ixb;j . (6.4.46)

The last expression is obtained using the fact that

(1− |xa;i + xb;j |+ xa;ixb;j) ≤ (1− |xa;i|)(1− |xb;j|) + 2za;izb;j , (6.4.47)

(1− |xa;i − xb;j | − xa;ixb;j) ≤ (1− |xa;i|)(1− |xb;j |) + 2za;izb;j . (6.4.48)

SOCP Infimum: From inequality (6.4.44), we see that the infimum provided

by the socp-t relaxation is given by

∑

a;i∈T Caa;iix
2
a;i +

∑

(a;i,b;j)∈T1

|Cab;ij |
2

(x2
a;i + x2

b;j) +
∑

(a;i,b;j)∈T2
θ2

ab;ijxa;ixb;j

−∑a;i∈T Caa;ii −
∑

(a;i,b;j)∈T1
|Cab;ij|

= −∑a;i∈T Caa;ii(1− x2
a;i)−

∑

(a;i,b;j)∈T1
|Cab;ij|(1−

x2
a;i

2
− x2

b;j

2
)

+
∑

(a;i,b;j)∈T2
θ2

ab;ijxa;ixb;j

≤ −∑a;i∈T Caa;ii(1− |xa;i|)2 −∑(a;i,b;j)∈T1
|Cab;ij|(1− |xa;i|)(1− |xb;j|)

−2
∑

a;i∈T Caa;iiz
2
a;i − 2

∑

(a;i,b;j)∈T1
|Cab;ij |za;izb;j

+
∑

(a;i,b;j)∈T2
θ2

ab;ijxa;ixb;j . (6.4.49)

The last expression is obtained using

1− x2
a;i ≥ (1− |xa;i|)2 + 2z2

a;i, (6.4.50)

1− x2
a;i

2
− x2

b;j

2
≥ (1− |xa;i|)(1− |xb;j|) + 2za;izb;j . (6.4.51)

In order to prove the theorem, we use the following two lemmas.

Lemma 4.1: The following inequality holds true for any matrix C � 0:

∑

a;i∈T Caa;ii(1− |xa;i|)2 +
∑

(a;i,b;j)∈T1
|Cab;ij|(1− |xa;i|)(1− |xb;j |)

≥∑(a;i,b;j)∈T2
|θ2

ab;ij |(1− |xa;i|)(1− |xb;j|). (6.4.52)

149

6.4. QP and SOCP Relaxations over Trees and Cycles

(a) (b)

Figure 6.3: (a) An example subgraph G which forms a tree. The weights of

the edges and corresponding elements of the vector m are also shown. (b) An

example subgraph G which forms an even cycle where all weights are positive.

The elements of s are defined using the {+1,−1} assignments of the vertices.

In other words, the first term in the rhs of inequality (6.4.46) exceeds the sum

of the first two terms in the rhs of inequality (6.4.49).

Proof: The proof relies on the fact that C is positive semidefinite. We

construct a vector m = {ma, a = 1, · · · , n} where n is the number of variables.

Let p(a) denote the parent of a non-root vertex a of tree G (where the root vertex

can be chosen arbitrarily). The vector m is defined such that

ma =



















0 if a does not belong to tree G,

1 if a is the root vertex of G,

−mp(a) if w(a, p(a)) > 0,

mp(a) if w(a, p(a)) < 0.

Here w(·, ·) are the weights provided for a given crf. Fig. 6.3(a) shows an example

of a graph which forms a tree together with the corresponding elements of m.

Using the vector m, we define a vector s of length nh (where h = |l|) such that

sa;i = 0 if a; i /∈ T and sa;i = ma(1 − |xa;i|) otherwise. Since C is positive

semidefinite, we get

s⊤Cs ≥ 0 (6.4.53)

⇒ ∑

a;i∈T Caa;ii(1− |xa;i|)2 +
∑

(a;i,b;j)∈T1
mambCab;ij(1− |xa;i|)(1− |xb;j)

+
∑

(a;i,b;j)∈T2
mambθ

2
ab;ij(1− |xa;i|)(1− |xb;j) ≥ 0, (6.4.54)

⇒ ∑

a;i∈T Caa;ii(1− |xa;i|)2 +
∑

(a;i,b;j)∈T1
mambCab;ij(1− |xa;i|)(1− |xb;j)

≥∑(a;i,b;j)∈T2
|θ2

ab;ij |(1− |xa;i|)(1− |xb;j), (6.4.55)

⇒ ∑

a;i∈T Caa;ii(1− |xa;i|)2 +
∑

(a;i,b;j)∈T1
|Cab;ij |(1− |xa;i|)(1− |xb;j |)

≥∑(a;i,b;j)∈T2
|θ2

ab;ij |(1− |xa;i|)(1− |xb;j |). (6.4.56)

Lemma 4.2: The following inequality holds true for any matrix C � 0:
∑

a;i∈T
Caa;iiz

2
a;i +

∑

(a;i,b;j)∈T1

|Cab;ij|za;izb;j ≥
∑

(a;i,b;j)∈T2

|θ2
ab;ij |za;izb;j. (6.4.57)

150

6.4. QP and SOCP Relaxations over Trees and Cycles

In other words the second term in the rhs of inequality (6.4.46) exceeds the sum

of the third and fourth terms in inequality (6.4.49).

Proof: Similar to Lemma 4.1, we construct a vector s of length nh such that

sa;i = 0 if a; i /∈ T and sa;i = maza;i otherwise. The proof follows by observing

that s⊤Cs ≥ 0.

Using the above two lemmas, we see that the sum of the first two terms of

inequality (6.4.46) exceed the sum of the first four terms of inequality (6.4.49).

Further, the third and the fifth terms of inequalities (6.4.46) and (6.4.49) are the

same. Since inequality (6.4.46) provides the lower limit of eL
2 (xT) and inequal-

ity (6.4.49) provides the upper limit of eS
2 (xT), it follows that eL

2 (xT) ≥ eS
2 (xT)

for all xT ∈ [−1, 1]|T |. Using condition (6.4.33), this proves the theorem.

The proofs of Lemmas 4.1 and 4.2 make use of the fact that for any neigh-

bouring random variables va and vb (i.e. (a, b) ∈ E), the pairwise potentials θ2
ab;ij

have the same sign for all li, lj ∈ l. This follows from the non-negativity property

of the distance function. However, Theorem 4 can be extended to the case where

the distance function does not obey the non-negativity property. To this end, we

define a parameter θ which is the reparameterization of θ (i.e. θ ≡ θ). Note that

there exist several reparameterizations of any parameter θ. We are interested in

a parameter θ which satisfies

∑

li,lj∈l

|θ2

ab;ij| = |
∑

li,lj∈l

θ2
ab;ij |, ∀(a, b) ∈ E . (6.4.58)

It can easily be shown that such a reparameterization always exists. Specifically,

consider the general form of reparameterization discussed in § 2.4.2, i.e.

θ
1

a;i = θ1
a;i +Mba;i, (6.4.59)

θ
2

ab;ij = θ2
ab;ij −Mba;i −Mab;j . (6.4.60)

Clearly one can set the values of the terms Mba;i and Mab;j such that equa-

tion (6.4.58) is satisfied. Further, the optimal value of lp-s for the parameter θ

is equal to its optimal value obtained using θ. For details, we refer the reader

to [46]. Using this parameter θ, we obtain an lp-s infimum which is similar in

form to the inequality (6.4.46) for any distance function (i.e. without the positiv-

ity constraint d(i, j) ≥ 0 for all li, lj ∈ l). This lp-s infimum can then be easily

compared to the socp-t infimum of inequality (6.4.49) (using slight extensions

of Lemmas 4.1 and 4.2), thereby proving the results of Theorem 4 for a general

distance function. We omit details.

As an upshot of the above theorem, we see that the feasibility region of lp-s

is always a subset of the feasibility region of socp-t (for any general set of trees

and soc constraints), i.e. F(lp-s) ⊂ F(socp-t). This implies that F(lp-s) ⊂
F(qp-t), where qp-t is the equivalent qp relaxation defined by socp-t.

We note that the above theorem can also be proved using the results of [102]

on moment constraints (which imply that lp-s provides the exact solution for the

151

6.5. Some Useful SOC Constraints

map estimation problems defined over tree-structured random fields). However,

the proof presented here allows us to generalize the results of Theorem 4 for

certain cycles as follows.

6.4.3 QP and SOCP Relaxations over Cycles

We now prove that the above result also holds true when the graph G forms

an even cycle, i.e. cycles with even number of vertices, whose weights are all

non-negative or all non-positive provided d(i, j) ≥ 0, for all li, lj ∈ l.

Theorem 5: When d(i, j) ≥ 0 for all li, lj ∈ l, the socp relaxations which

define constraints only using non-overlapping graphs G which form (arbitrarily

large) even cycles with all positive or all negative weights are dominated by the

lp-s relaxation.

Proof: It is sufficient to show that Lemmas 4.1 and 4.2 hold for a graph

G = (V,E) which forms an even cycle. We first consider the case where θ2
ab;ij > 0.

Without loss of generality, we assume that V = {1, 2, . . . , t} (where t is even) such

that (i, i+ 1) ∈ E for all i = 1, · · · , t− 1. Further, (t, 1) ∈ E thereby forming an

even cycle. We construct a vector m of size n such that ma = −1a if a ∈ V and

ma = 0 otherwise. When θ2
ab;ij < 0, we define a vector m such that ma = 1 if

a ∈ V and ma = 0 otherwise. Fig. 6.3(b) shows an example of a graph G which

forms an even cycle together with the corresponding elements of m. Using m, we

construct a vector s of length nh (similar to the proofs of Lemmas 4.1 and 4.2).

Lemmas 4.1 and 4.2 follow from the fact that s⊤Cs ≥ 0. We omit details.

The above theorem can be proved for cycles of any length whose weights are

all negative by a similar construction. Further, it also holds true for odd cycles

(i.e. cycles of odd number of variables) which have only one positive or only one

negative weight. However, as will be seen in the next section, unlike trees it is

not possible to extend these results for any general cycle.

6.5. Some Useful SOC Constraints

We now describe two socp relaxations which include all the marginalization

constraints specified in lp-s. Note that the marginalization constraints can be

incorporated within the socp framework but not in the qp framework.

6.5.1 The SOCP-C Relaxation

The socp-c relaxation (where c denotes cycles) defines second order cone (soc)

constraints using positive semidefinite matrices C such that the graph G (defined

in § 6.4.1) form cycles. Let the variables corresponding to vertices of one such

cycle G of length c be denoted as vC = {vb|b ∈ {a1, a2, · · · , ac}}. Further, let

152

6.5. Some Useful SOC Constraints

lC = {lj|j ∈ {i1, i2, · · · , ic}} ∈ lc be a set of labels for the variables vC . The

socp-c relaxation specifies the following constraints:

• The marginalization constraints, i.e.
∑

lj∈l

Xab;ij = (2− h)xa;i, ∀(a, b) ∈ E , li ∈ l. (6.5.1)

• A set of soc constraints

||U⊤x|| ≤ C •X, (6.5.2)

such that the graph G defined by the above constraint forms a cycle. The

matrix C is 0 everywhere except the following elements:

Cak,al,ik,il =

{

λc if k = l,

Dc(k, l) otherwise.

Here Dc is a c× c matrix which is defined as follows:

Dc(k, l) =











1 if |k − l| = 1

(−1)c−1 if |k − l| = c− 1

0 otherwise,

and λc is the absolute value of the smallest eigenvalue of Dc.

In other words the submatrix of C defined by vC and lC has diagonal elements

equal to λc and off-diagonal elements equal to the elements of Dc. As an example

we consider two cases when c = 3 and c = 4. In these cases the matrix Dc is

given by

D3 =







0 1 1

1 0 1

1 1 0






and D4 =











0 1 0 −1

1 0 1 0

0 1 0 1

−1 0 0 1











, (6.5.3)

respectively, while λ3 = 1 and λ4 =
√

2. Clearly, C = U⊤U � 0 since its only

non-zero submatrix λcI + Dc (where I is a c × c identity matrix) is positive

semidefinite. This allows us to define a valid soc constraint as shown in inequal-

ity (6.5.2). We choose to define the soc constraint (6.5.2) for only those set of

labels lC which satisfy the following:
∑

(ak ,al)∈E
Dc(k, l)θ

2
akal;ikil

≥
∑

(ak ,al)∈E
Dc(k, l)θ

2
akal;jkjl

, ∀{j1, j2, · · · , jc}. (6.5.4)

Note that this choice is motivated by the fact that the variables Xakal;ikil corre-

sponding to these sets vC and lC are assigned trivial values by the lp-s relaxation

in the presence of non-submodular terms (see example below), i.e.

Xakal;ikil =

{

−1 if θ2
akal;ikil

≥ 0,

1 otherwise.
(6.5.5)

153

6.5. Some Useful SOC Constraints

In order to avoid this trivial solution, we impose the soc constraint (6.5.2) on

them.

Since marginalization constraints are included in the socp-c relaxation, the

value of the objective function obtained by solving this relaxation would at least

be equal to the value obtained by the lp-s relaxation (i.e. socp-c dominates lp-

s, see Case II in § 6.1.1). We can further show that in the case where |l| = 2 and

the constraint (6.5.2) is defined over a frustrated cycle1 socp-c strictly dominates

lp-s. One such example is given below. Note that if the given crf contains no

frustrated cycle, then it can be solved exactly using the method described in [35].

(a) (b) (c)

Figure 6.4: An example crf defined over three random variables v = {va, vb, vc}
shown as unfilled circles. Each of these variables can take one of two labels

from the set l = {l0, l1} which are shown as branches (i.e. the horizontal lines)

of trellises (i.e. the vertical lines) on top of the random variables. The unary

potentials are shown next to the corresponding branches. The pairwise potentials

are shown next to the edges connecting the branches of two neighbouring variables.

Note that the pairwise potentials defined for (a, b) and (a, c) form a submodular

Ising model (in (a) and (b) respectively). The pairwise potentials defined for

(b, c) are non-submodular (in (c)).

Example: We consider a frustrated cycle and show that socp-c strictly dom-

inates lp-s. Specifically, we consider a crf with v = {va, vb, vc} and l = {l0, l1}.
The neighbourhood of this crf is defined such that the variables form a cycle of

length 3, i.e. E = {(a, b), (b, c), (c, a)}. We define a frustrated cycle which consists

of all 3 variables of this crf using the unary and pairwise potentials shown in

Fig. 6.4, i.e. the unary potentials are uniform and the pairwise potentials define

only one non-submodular term (between the vertices b and c). Clearly, the energy

of the optimal labelling for the above problem is 4. The value of the objective

function obtained by solving the lp-s relaxation is 3 at an optimal solution shown

in Fig. 6.5.

The lp-s optimal solution is no longer feasible when the socp-c relaxation is

1A cycle is called frustrated if it contains an odd number of non-submodular terms.

154

6.5. Some Useful SOC Constraints

(a) (b) (c)

Figure 6.5: An optimal solution provided by the lp-s relaxation for the crf shown

in Fig. 6.4. This solution is shown in red to avoid confusing it with the potentials

shown in Fig. 6.4. The value of variable xa;i is shown next to the ith branch of

the trellis on top of va. In this optimal solution, all such variables xa;i are equal

to 0. The value of the variable Xab;ij is shown next to the connection joining the

ith and the jth branch of the trellises on top of va and vb respectively. Note that

Xab;ij = −1 when θ2
ab;ij > 0 and Xab;ij = 1 otherwise. This provides us with the

minimum value of the objective function of lp-s, i.e. 3.

used. Specifically, the constraint

(xa;0 + xb;1 + xc;1)
2 ≤ 3 + 2(Xab;01 +Xac;01 +Xbc;11) (6.5.6)

is violated. In fact, the value of the objective function obtained using the socp-c

relaxation is 3.75. Fig. 6.6 shows an optimal solution of the socp-c relaxation for

the crf in Fig. 6.4. The above example can be generalized to a frustrated cycle

of any length. This proves that socp-c strictly dominates the lp-s relaxation

(and hence, the qp-rl and socp-ms relaxations).

The constraint defined in equation (6.5.2) is similar to the (linear) cycle in-

equality constraints [4] which are given by

∑

k,l

Dc(k, l)Xakal;ikil ≥ 2− c. (6.5.7)

We believe that the feasibility region defined by cycle inequalities is a strict subset

of the feasibility region defined by equation (6.5.2). In other words a relaxation

defined by adding cycle inequalities to lp-s would strictly dominate socp-c. We

are not aware of a formal proof for this. However, it will be seen in the next

chapter that the empirical analysis agrees with this conjecture. We now describe

the socp-q relaxation.

6.5.2 The SOCP-Q Relaxation

In this previous section we saw that lp-s dominates socp relaxations whose

constraints are defined on trees. However, the socp-c relaxation, which defines

its constraints using cycles, strictly dominates lp-s. This raises the question

155

6.5. Some Useful SOC Constraints

(a) (b) (c)

Figure 6.6: An optimal solution provided by the socp-c relaxation for the crf

shown in Fig. 6.4. This optimal solution provides us with the optimal value of

3.75 which greater than the lp-s optimal value for the solution shown in Fig. 6.5.

Note that the optimal solution of lp-s does not belong to the feasibility region of

socp-c as it violates constraint (6.5.6). This example proves that socp-c strictly

dominates lp-s.

whether matrices C, which result in more complicated graphs G, would provide

an even better relaxation for the map estimation problem. In this section, we

answer this question in an affirmative. To this end, we define an socp relaxation

which specifies constraints such that the resulting graph G from a clique. We

denote this relaxation by socp-q (where q indicates cliques).

The socp-q relaxation contains the marginalization constraint and the cycle

inequalities (defined above). In addition, it also defines soc constraints on graphs

G which form a clique. We denote the variables corresponding to the vertices of

clique G as vQ = {vb|b ∈ {a1, a2, · · · , aq}}. Let lQ = {lj |j ∈ {i1, i2, · · · , iq}} be

a set of labels for these variables vQ. Given this set of variables vQ and labels

lQ, we define an soc constraint using a matrix C of size nh × nh which is zero

everywhere except for the elements Cakal;ikil = 1. Clearly, C is a rank 1 matrix

with eigenvalue 1 and eigenvector u which is zero everywhere except uak;ik = 1

where vak
∈ vQ and lik ∈ lQ. This implies that C � 0, which enables us to obtain

the following soc constraint:

(

∑

k

xak ;ik

)2

≤ q +
∑

k,l

Xakal;ikil . (6.5.8)

We choose to specify the above constraint only for the set of labels lQ which

satisfy the following condition:

∑

(ak ,al)∈E
θ2

akal;ikil
≥

∑

(ak ,al)∈E
θ2

akal;jkjl
, ∀{j1, j2, · · · , jq}. (6.5.9)

Again, this choice is motivated by the fact that the variables Xakal;ikil correspond-

ing to these sets vQ and lQ are assigned trivial values by the lp-s relaxation in

the presence of non-submodular pairwise potentials.

156

6.5. Some Useful SOC Constraints

(a) (b) (c)

(d) (e) (f)

Figure 6.7: An infeasible solution for socp-q. The value of the variable xa;i is

shown next to the ith branch of the trellis on top of va. The value of Xab;ij is shown

next to the connection between the ith and the jth branches of the trellises on top

of vb and vb respectively. It can easily be verified that these variables satisfy all

cycle inequalities. However, they do not belong to the feasibility region of socp-q

since they violate constraint (6.5.12).

When the clique contains a frustrated cycle, it can be shown that socp-q

dominates the lp-s relaxation (similar to socp-c). Further, using a counter-

example, it can proved that the feasibility region given by cycle inequalities is

not a subset of the feasibility region defined by constraint (6.5.8). One such

example is given below.

Example: We present an example to prove that the feasibility region given

by cycle inequalities is not a subset of the feasibility region defined by the soc

constraint
(

∑

k

xak ;ik

)2

≤ q +
∑

k,l

Xakal;ikil , (6.5.10)

which is used in socp-q. Note that it would be sufficient to provide a set of

variables (x,X) which satisfy the cycle inequalities but not constraint (6.5.10).

To this end, we consider a crf defined over the random variables v =

{va, vb, vc, vd} which form a clique of size 4 with respect to the neighbourhood

relationship E , i.e.

E = {(a, b), (b, c), (c, d), (a, d), (a, c), (b, d)}. (6.5.11)

Each of these variables takes a label from the set l = {l0, l1}. Consider the

set of variables (x,X) shown in Fig. 6.7 which do not belong to the feasibility

region of socp-q. It can be easily shown that these variables satisfy all the cycle

157

6.6. Discussion

inequalities (together with all the constraints of the lp-s relaxation). However,

(x,X) defined in Fig. 6.7 does not belong to the feasibility region of the socp-q

relaxation since it does not satisfy the following soc constraint:

(

∑

va∈v

xa;0

)2

≤ 4 + 2





∑

(a,b)∈E
Xab;00



 . (6.5.12)

6.6. Discussion

We presented an analysis of approximate algorithms for map estimation which

are based on convex relaxations. The surprising result of our work is that despite

the flexibility in the form of the objective function/constraints offered by qp and

socp, the lp-s relaxation dominates a large class of qp and socp relaxations.

It appears that the authors who have previously used socp relaxations in the

Combinatorial Optimization literature [64] and those who have reported qp re-

laxation in the Machine Learning literature [75] were unaware of this result. We

also proposed two new socp relaxations (socp-c and socp-q) and presented

some examples to prove that they provide a better approximation than lp-s. An

interesting direction for future research would be to determine the best soc con-

straints for a given map estimation problem (e.g. with truncated linear/quadratic

pairwise potentials).

158

Chapter 7

Efficiently Solving Convex

Relaxations

159

The problem of obtaining the maximum a posteriori (map) estimate of a dis-

crete random field plays a central role in many applications. In the previous

chapter, we presented an analysis of convex relaxations for map estimation. In

this chapter, we build on the tree reweighted message passing (trw) framework

of [46, 101] which iteratively optimizes the Lagrangian dual of the linear pro-

gramming relaxation called lp-s (described in chapters 3 and 6). Specifically,

we show how the dual formulation of trw can be extended to include cycle in-

equalities [4]. We then consider the inclusion of the second order cone constraints

proposed in the previous chapter (which provide a better approximation for the

map estimation problem) in the dual formulation.

We propose efficient iterative algorithms for solving the resulting duals. Simi-

lar to the method described in [46], these methods are guaranteed to converge (i.e.

each iteration of algorithm does not decrease the value of the bounded dual). We

test our algorithms on a large set of synthetic data, as well as real data. Our ex-

periments show that the additional constraints (i.e. cycle inequalities and second

order cone constraints) provide better results in cases where the trw framework

fails (namely map estimation for non-submodular energy functions).

160

7.1. Introduction

7.1. Introduction

The problem of obtaining the maximum a posteriori (map) estimate of a dis-

crete random field is of fundamental importance in many areas of Computer

Science. In the previous chapter we presented an analysis of convex relaxations

based approaches which attempt to solve the map estimation problem, namely

lp-s [17, 51, 79, 101], qp-rl [75] and socp-ms [55, 64]. Specifically, we showed

that a large class of quadratic programming (qp) and second order cone program-

ming (socp) relaxations, including qp-rl and socp-ms, are dominated by the

linear programming (lp) relaxation lp-s. Based on these results, we proposed

two new socp relaxations which incorporate additional second order cone (soc)

constraints in the lp-s relaxation, i.e.

• socp-c, which include all the constraints of the lp-s relaxation in addition

to soc constraints that are defined over random variables which form a cycle

in the graphical model of the random field. As mentioned in the previous

chapter, these constraints are similar to the linear cycle inequalities [4]. We

also conjectured that adding cycle inequalities to lp-s provides a better

approximation of the map estimation problem than socp-c.

• socp-q, which include all the constraints of the lp-s relaxation in addi-

tion to cycle inequalities and soc constraints defined over random variables

which form a clique in the graphical model of the random field.

Using some example random fields, we proved that socp-c and socp-q dom-

inate previously proposed convex relaxations [17, 51, 55, 64, 79, 101]. In theory,

the socp-c and socp-q relaxations allow us to obtain better map estimates.

However, in practice, we are faced with the problem of solving these relaxations

for discrete random fields defined over a large number of variables and labels.

One method for obtaining the optimal solution of these relaxations is to use Inte-

rior Point algorithms which solve a large class of convex optimization problems.

However, the state of the art Interior Point algorithms can handle only a few

thousand variables and are usually extremely slow (e.g. the typical asymptotic

time complexity of such algorithms is a 3rd degree polynomial in the number of

variables and constraints). Hence, there is a need to design efficient methods

which are specific to the map estimation problem. In this work, we will address

the issue of efficiently solving the convex relaxations proposed in the previous

chapter.

Related Work: The lp-s relaxation has received considerable amount of at-

tention in the literature. Specifically, several closely related algorithms have been

proposed which solve the lp-s relaxation approximately [46, 79, 107, 101]. In

161

7.2. Preliminaries

this work we build on the approach of Wainwright et al. [101] who presented

two iterative algorithms to solve a particular formulation of the Lagrangian dual

problem (hereby referred to as simply the dual) of the lp-s relaxation. Their dual

formulation relies on a set of tree structured random fields (described in detail in

the next section). Similar to min-sum belief propagation (min-sum bp), the algo-

rithms in [101] are not guaranteed to converge. Kolmogorov [46] addressed this

problem by proposing a convergent sequential tree-reweighted message passing

(trw-s) algorithm for solving the dual1.

Despite its strong theoretical foundation, it was observed that trw-s provides

labellings with higher energies than min-sum bp when the energy function of the

discrete random field contains non-submodular terms [46]. This is not surprising

since the lp-s relaxation provides an inaccurate approximation in such cases

(e.g. see § 6.5.1, Fig. 6.4 and 6.5). We address this issue by appending the

lp-s relaxation with some useful constraints. Specifically, we incorporate an

arbitrary number of linear cycle inequalities [4] in the dual of the lp-s relaxation

(section 7.3). Furthermore, we show how the soc constraints proposed in the

previous chapter can be included within this framework (section 7.4). We also

propose convergent algorithms for solving the resulting duals. Our experiments

indicate that incorporating these constraints provides a better approximation for

the map estimation problem compared to lp-s alone (section 7.5).

7.2. Preliminaries

We begin by recalling some of the notation and concepts introduced in earlier

chapters. This would then allow us to concisely describe the map estimation

approach of [46, 101]. Throughout this chapter we assume, for convenience,

that the given discrete random field is a crf defined over random variables v =

{v0, v1, · · · , vn−1}, each of which can take a label from the set l = {l0, l1, · · · , lh−1}.
However, we note that the results presented here are equally applicable to the

mrf framework.

Given data D and a crf with parameter θ, the energy of the labelling f ,

where f : {0, · · · , n− 1} −→ {0, · · · , h− 1}, is specified as

Q(f ;D, θ) =
∑

va∈v

θ1
a;f(a) +

∑

(a,b)∈E
θ2

ab;f(a)f(b). (7.2.1)

Recall that E is the neighbourhood relationship defined over the random vari-

ables v by the crf. The terms θ1
a;f(a) and θ2

ab;f(a)f(b) are the unary and pairwise

potentials respectively. The problem of map estimation is to find a labelling f ∗

with the minimum energy (or equivalently the maximum posterior probability),

i.e.

f ∗ = arg min
f
Q(f ;D, θ). (7.2.2)

1We note here that trw-s is closely related to the node-averaging algorithm of [79, 107].

162

7.2. Preliminaries

For a given parameter θ, we denote the energy of an optimal (i.e. map) labelling

as q(θ), i.e.

q(θ) = Q(f ∗;D, θ). (7.2.3)

Min-marginals: We now describe the min-marginals associated with a crf

parameterized by θ. Recall that min-marginals were earlier introduced in § 2.3.2.

Consider a labelling f which assigns a particular label li to a random variable va.

The min-marginal of this assignment is defined as the minimum energy over all

such labellings f . Formally, the min-marginal qa;i(D, θ) is given by

qa;i(D, θ) = min
f,f(a)=i

Q(f ;D, θ). (7.2.4)

Similarly, we can define the min-marginal for assigning labels li and lj to two

neighbouring random variables va and vb respectively as

qab;ij(D, θ) = min
f,f(a)=i,f(b)=j

Q(f ;D, θ). (7.2.5)

Note that, for the work described in this chapter, the data D will always remain

fixed (since we are considering the map estimation problem). Hence, to make the

text less cluttered, we will drop the term D from the notation of min-marginals.

In other words, the min-marginal of assigning li to va (given parameter θ) will

be denoted by qa;i(θ) and the min-marginal for assigning li and lj to va and vb

respectively will be denoted by qab;ij(θ).

Reparameterization: The concept of reparameterization plays an important

role in many map estimation approaches (e.g. min-sum bp, st-mincut and trw-

s). Recall that a parameter θ is called a reparameterization of the parameter θ

(denoted by θ ≡ θ) if, and only if,

Q(f ;D, θ) = Q(f ;D, θ), ∀f. (7.2.6)

The concept of reparameterization, as defined above, is meaningful only when

considering the map estimation ip (since the definition only deals with non-

fractional, i.e. integer, labellings), and not any of its convex relaxations.

Kolmogorov [46] proved that, for the map estimation ip, all reparameteriza-

tions can be expressed in the following form:

θa;i = θa;i +
∑

b,(a,b)∈E
Mba;i, θab;ij = θab;ij −Mba;i −Mab;j . (7.2.7)

It is worth remembering this result as it will be used at several places throughout

this chapter.

163

7.2. Preliminaries

lp-s Relaxation: Since we build on the work of [46, 101], we would find it

convenient to use their notation to describe the lp-s relaxation. To this end, we

specify an over-complete representation of a labelling f using binary variables ya;i

such that

ya;i =

{

1 if f(a) = i,

0 otherwise.
(7.2.8)

We also specify binary variables yab;ij for all (a, b) ∈ E and li, lj ∈ l such that

yab;ij = ya;iyb;j. The vector y is then defined as consisting of variables ya;i and

yab;ij (in the order which matches the arrangement of potentials θ1
a;i and θ2

ab;ij in

the parameter vector θ). Note that the variable y is closely related to the binary

variables (x,X) used to describe the Integer Programming (ip) formulation of

the map estimation problem in § 3.3.1. Specifically,

xa;i = 2ya;i − 1, Xab;ij = 4yab;ij − 2ya;i − 2yb;j + 1. (7.2.9)

We will sometimes specify the additional constraints (i.e. cycle inequalities and

the soc constraints described in the previous chapter) using variables (x,X),

since they will allow us to write these constraints concisely. However, it is worth

noting that any constraint on (x,X) can be converted to a constraint on y using

the relationship in equation (7.2.9).

Using the vector y, the problem of map estimation can be formulated as an

ip as follows:

y∗ = arg miny y⊤θ,

MARG(v, E) =











ya;i ∈ {0, 1}, yab;ij ∈ {0, 1}, ∀va ∈ v, (a, b) ∈ E , li, lj ∈ l,
∑

li∈l ya;i = 1, ∀va ∈ v,

yab;ij = ya;iyb;j, ∀(a, b) ∈ E , li, lj ∈ l.

(7.2.10)

The term MARG(v, E) stands for marginal polytope which is defined as the

feasibility region of the map estimation ip. This notation has been borrowed

from [101]. Note that the above ip can easily be shown to be equivalent to the

ip described in § 3.3.1 (by converting variables y to (x,X)). The lp-s relaxation

is formulated as follows:

y∗ = arg miny∈LOCAL(v,E) y
⊤θ,

LOCAL(v, E) =











ya;i ∈ [0, 1], yab;ij ∈ [0, 1], ∀va ∈ v, (a, b) ∈ E , li, lj ∈ l,
∑

li∈l ya;i = 1, ∀va ∈ v,
∑

lj∈l yab;ij = ya;i, ∀va ∈ v, li ∈ l.

(7.2.11)

The term LOCAL(v, E) stands for local polytope which is defined as the feasibility

region of the lp-s relaxation [101] (i.e. the set of all vectors y with non-negative

elements that satisfy the uniqueness and the marginalization constraints). Note

that by definition of relaxation MARG(v, E) ⊂ LOCAL(v, E).

164

7.2. Preliminaries

Dual of the lp-s Relaxation: Before providing the dual formulation of [46,

101] for the lp-s relaxation, we need the following definitions. Let T represent

a set of tree-structured crfs, each of which is defined over a subset of variables

v. In other words, if the crf T ∈ T is defined over variables vT , then vT ⊆ v.

Further, if ET is the neighbourhood relationship of the crf T , then ET ⊆ E such

that the graphical model of T is connected and has no loops (i.e. it forms a tree).

We represent the parameter of this crf T as θT , which is the same size as the

parameter vector θ of the original crf. In other words, θT1
a;i = 0 if va /∈ vT and

θT2
ab;ij = 0 if (a, b) /∈ ET , where θT1

a;i and θT2
ab;ij are the unary and pairwise potentials

respectively.

Let ρ = {ρ(T), T ∈ T } be a set of non-negative real numbers which sum to

one. For such a set ρ we define the variable and edge appearance term1 as

ρa =
∑

T,va∈vT

ρ(T), (7.2.12)

ρab =
∑

T,(a,b)∈ET

ρ(T), (7.2.13)

respectively for all va ∈ v and (a, b) ∈ E . In other words, the variable and edge

appearance terms are the sum of terms ρ(T) over all tree structured crfs T which

contain that variable or edge respectively. Typically, the terms ρ(T) are set as
1
|T | for all tree structured crfs T ∈ T . This assignment is purely for convenience

and it is not yet known whether it significantly effects the performance of the

algorithms described in [46, 101]. As an example, consider three tree structured

crfs which together define a cycle of size 3 (as shown in Fig. 7.1). If we assign

ρ(T) = 1
3

for all three trees, then we obtain the following variable and edge

appearance terms:

ρa = 2
3
, ρb = 2

3
, ρc = 2

3
,

ρab = 1
3
, ρbc = 1

3
, ρac = 1

3
. (7.2.14)

Using the above notation, the dual of the lp-s relaxation can be written as

follows [46, 101]:

max
P

T∈T ρ(T)θ
T ≡θ

∑

T

ρ(T)q(θT). (7.2.15)

Recall that q(θT) indicates the energy of the map labelling of a crf parameterized

by θT . The above dual is valid for any choice of sets T and ρ as long as ρa > 0

and ρab > 0 for all va ∈ v and (a, b) ∈ E [46, 101]. For the sake of completeness,

we provide the proof that problem (7.2.15) is the dual of the lp-s relaxation.

This proof is based on [101] (along with its correction in [46]) and will be used in

subsequent sections.

1Note that in [46, 101], these terms were referred to as node and edge appearance probabil-

ities respectively. However, we prefer to use the word term instead of probabilities as their sum

over all variables or all edges is not necessarily 1 (i.e. they are not actually probabilities).

165

7.2. Preliminaries

Theorem of [46, 101]: The problem (7.2.15) is the dual of the lp-s relax-

ation.

Proof: We begin by writing the dual of the following problem:

max
∑

T ρ(T)q(θT),

s.t.
∑

T ρ(T)θT = θ, (7.2.16)

This was the problem considered in [101]. The equivalence of problems (7.2.16)

and (7.2.15) (i.e. using the equality constraint
∑

T ρ(T)θT = θ and the reparam-

eterization constraint
∑

T ρ(T)θT ≡ θ) was shown in [46]. After rearranging the

terms, the dual of problem (7.2.16) can be written as

min
τ

max
θ

T

∑

T

ρ(T)(q(θT)− τ⊤θT), (7.2.17)

where τ is a vector of (non-negative) Lagrangian multipliers. Using Lemma 2

of [101] we see that

max
θ

T

∑

T

ρ(T)(q(θT)−τ⊤θT) =

{

0 if τ ∈ LOCAL(v, E),
∞ otherwise.

(7.2.18)

Thus problem (7.2.17) can be reformulated as

minτ τ
⊤θ,

s.t. τ ∈ LOCAL(v, E), (7.2.19)

which is the same as the lp-s relaxation. Hence, the dual of the lp-s relaxation

is given by problem (7.2.16). Using the properties of the constraint set of lp-s

(i.e. the constraints which specify LOCAL(v, E)), we see that problem (7.2.16)

is equivalent to problem (7.2.15). This follows from the result that all reparam-

eterizations are of the form shown in equation (7.2.7), which implies that lp-s

provides the same solution for all reparameterizations (due to the presence of

uniqueness and marginalization constraint). This proves the theorem.

The trw-s Algorithm: Table 7.1 describes the trw-s algorithm [46] which

attempts to solve the dual of the lp-s relaxation. In other words, it solves for

the set of parameters θT , T ∈ T , which maximize the dual (7.2.15). There are

two main steps: (i) reparameterization, which involves running one pass of min-

sum bp on the tree structured crfs T2; and (ii) averaging operation. trw-s is

guaranteed to not to decrease the value of the dual (7.2.15) at each iteration.

Further, it can be shown that it converges to a solution which satisfies the weak

tree agreement described below.

2Recall that min-sum bp provides the exact min-marginals of the (arbitrarily chosen) root

variable of a tree-structured random field in one iteration called forward pass (see § 2.4.1).

166

7.2. Preliminaries

Weak Tree Agreement: Let OPT (θT) be the set of all optimal (i.e. map)

labellings of a crf with parameter θT . Note that a set OPT (θT) may contain

more than one labelling (i.e. the optimum labelling of a crf is not necessarily

unique). Further, for all ω ∈ v
⋃ E , let Tω ⊆ T be the set of all tree-structured

crf which contain ω. The parameters θT , T ∈ T , are said to satisfy the weak tree

agreement (wta) condition if, and only if, for all ω and for all pairs of parameters

θT1 and θT2 , where T1, T2 ∈ Tω, there exist labellings f ∗
1 ∈ OPT (θT1) and f ∗

2 ∈
OPT (θT2) which agree on the labelling of ω. In other words, if ω = va ∈ v then

f ∗
1 (a) = f ∗

2 (a), and if ω = (a, b) ∈ E then f ∗
1 (a) = f ∗

2 (a) and f ∗
1 (b) = f ∗

2 (b).

For example, Fig. 7.1 shows the parameters of three tree structured crfs

(denoted by θT1 , θT2 and θT3 respectively) which satisfy the wta condition. This

can be verified by observing that

OPT (θT1) = {{0, 0}, {1, 1}},
OPT (θT2) = {{0, 1}, {1, 0}},
OPT (θT3) = {{1, 1}, {1, 1}}. (7.2.20)

Thus if we consider ω = vb, then for parameters θT1 and θT2 there exist labellings

f ∗
1 = {0, 0} ∈ OPT (θT1) and f ∗

2 = {0, 1} ∈ OPT (θT2) which agree on the label

for vb (i.e. the label l0).

(a) (b) (c)

Figure 7.1: Example of the wta condition. Three tree structured crfs defined

over two variables, each of which can take one of two labels l = {l0, l1}. All the

unary potentials, shown next to the branches of the trellis, are 1. The pairwise

potentials (shown next to the connections between branches of neighbouring trel-

lises) in the (a) and (c) form an Ising model. The pairwise potentials between

vb and vc, shown in (b), are non-submodular. The trw-s algorithm converges

when it reaches this solution. However, it is not obvious how to obtain the primal

solution (i.e. the labelling of the variables va, vb and vc) using these parameters

θT , since for all parameters both l0 and l1 are the optimal solutions for all the

variables.

Note that trw-s only provides us with the set of parameters θT which satisfy

the wta condition. In other words, trw-s solves only the dual (7.2.15) and not

the primal problem (i.e. the lp-s relaxation) itself. If the energy Q(·;D, θ) of

167

7.3. Adding Linear Constraints

the crf is a binary submodular function, the method of [47] provides an optimal

labelling once the wta condition is satisfied. However, a binary submodular

energy function can be minimized more efficiently using the st-mincut approach

(see § 2.4.3). A more interesting property is that if the set OPT (θT) contained

a unique labelling for all θT which satisfy the wta condition, then the union

of all sets OPT (θT), T ∈ T , would provide us with the exact map estimate of

the original crf θ [101]. However, in practice, this is often not the case (e.g.

see Fig. 7.1). Hence, the final labelling of the random variables is found by a

sequential procedure used in [63, 46] (described in § 7.3.1). We refer the reader

to [46] for details.

7.3. Adding Linear Constraints

We now show how the results of [46, 101] can be extended to include an arbitrary

number of linear cycle inequalities [4] which are defined as follows. Consider

a cycle of length c in the graphical model of the given crf, which is specified

over a set of random variables vC = {vb, b = a1, a2, · · · , ac} such that EC =

{(a1, a2), (a2, a3), · · · , (an, a1)} ⊆ E . Further, let EF ⊆ EC such that |EF | (i.e. the

cardinality of EF) is odd. Using these sets of edges, a cycle inequality can be

specified as
∑

(ak ,al)∈EF

Xakal;ikil −
∑

(ak ,al)∈EC−EF

Xakal;ikil ≥ 2− c, (7.3.1)

where lC = {lj , j = i1, i2, · · · , ic} ∈ lc. The variables Xakal;ikil are defined in

equation (7.2.9). For example, consider a case where vC = {va, vb, vc} (i.e. c = 3)

and lC = {l0, l0, l0}. Note that, in this case, EC = {(a, b), (b, c), (a, c)}. By

choosing EF = {(a, b), (b, c), (a, c)}, we can obtain the following cycle inequality:

Xab;00 +Xbc;00 +Xac;00 ≥ −1. (7.3.2)

Similarly, when vC = {va, vb, vc, vd} (i.e. c = 4), lC = {l0, l0, l0, l0} and EF =

{(a, b), (b, c), (c, d)}, we get

Xab;00 +Xbc;00 +Xcd;00 −Xad;00 ≥ −2. (7.3.3)

Note that cycle inequalities are valid constraints, i.e. they can be included in a

relaxation of the map estimation ip. Further, it can be shown that adding cycle

inequalities to lp-s, i.e. problem (7.2.11), provides a better relaxation (i.e. the

resulting relaxation dominates lp-s) [4]. In other words, the feasibility region

obtained by including cycle inequalities is a strict subset of the feasibility region

of problem (7.2.11).

In general, a set of NC cycle inequalities defined on a cycle C = (vC , EC)

(using different sets lC) can be written as

ACy ≥ bC . (7.3.4)

168

7.3. Adding Linear Constraints

Initialization

1. For every ω ∈ v
⋃ E , find all trees Tω ⊆ T which contains ω.

2. Initialize θT such that
∑

T ρ(T)θT ≡ θ.
Typically, we set ρ(T) = 1/|T | for all T ∈ T .

Then we can initialize θT1
a;i = θ1

a;i
|T |
|Tva |

for all T ∈ Tva
.

Similarly, θT2
ab;ij = θ2

ab;ij
|T |

|T(a,b)| for all T ∈ T(a,b).

The above values are chosen for convenience.

trw-s is equally applicable for other values of the above terms.

Iterative Steps

3. Pick an element ω ∈ v
⋃ E .

4. For all T ∈ Tω, reparameterize θT to θ
T

such that

(i) θ
T1

a;i = qa;i(θ
T), if ω = va ∈ v,

(ii) θ
T1

a;i + θ
T1

b;j + θ
T2

ab;ij = qab;ij(θ
T), if ω = (a, b) ∈ E .

This step involves running one iteration (i.e. the forward pass) of

min-sum bp for all trees T ∈ Tω (see § 2.4.1).

5. Averaging operation:

(i) If ω = va ∈ v,

(a) Compute νa;i = 1
ρa

∑

T∈Ta
ρ(T)θ

T1

a;i .

(b) Set θ
T1

a;i = νa;i, for all T ∈ Tva
.

(ii) If ω = (a, b) ∈ T ,

(a) Compute νab;ij = 1
ρab

∑

T∈T(a,b)
ρ(T)(θ

T1

a;i + θ
T1

b;j + θ
T2

ab;ij).

(b) Set θ
T1

a;i + θ
T1

b;j + θ
T2

ab;ij = νab;ij , for all T ∈ T(a,b).

6. Repeat steps 3, 4 and 5 till convergence.

Table 7.1: The trw-s algorithm. Recall that θT1
a;i and θT2

ab;ij are the unary and

pairwise potentials for the parameter θT . Similarly, θ
T1

a;i and θ
T2

ab;ij are the unary

and pairwise potentials defined by the parameter θ. The terms ρa and ρab are the

variable and edge appearance terms for va ∈ v and (a, b) ∈ E respectively. In step

3, the value of the dual (7.2.15) remains unchanged. Step 4, i.e. the averaging

operation, ensures that the value of the dual does not decrease. trw-s converges

to a solution which satisfies the wta condition.

For every cycle we can define upto |l|c cycle inequalities using some or all sets

lC ∈ lc (i.e. NC ∈ {0, 1, · · · , |l|c}). Note that the variables (x,X) can be converted

to variable y using equation (7.2.9), which allows us to represent cycle inequalities

in the form (7.3.4). Let C be a set of cycles in the given crf. Theorem 1 (given

below) provides us with the dual of the lp relaxation obtained by appending

problem (7.2.11) with cycle inequalities (defined over cycles in the set C). We

refer to the resulting relaxation as lp-c (where c denotes cycles).

Theorem 1: The following problem is the dual of problem (7.2.11) appended

169

7.3. Adding Linear Constraints

with a set of cycle inequalities ACy ≥ bC , for all C ∈ C (hereby referred to as

the lp-c relaxation):

max
∑

T ρ(T)q(θT) +
∑

C ρ
′(C)(bC)⊤uC ,

s.t.
∑

T ρ(T)θT +
∑

C ρ
′(C)(AC)⊤uC ≡ θ,

uC
k ≥ 0, ∀k ∈ {1, 2, · · · , NC}, C ∈ C. (7.3.5)

Here ρ′ = {ρ′(C), C ∈ C} is some (fixed) set of non-negative real numbers which

sum to one, and uC = {uC
k , k = 1, · · · , NC} are some non-negative slack variables.

Proof: We begin by writing the dual of the following problem, which replaces

the reparameterization constraint in problem (7.3.5) with the equality constraint,

i.e.

max
∑

T ρ(T)q(θT) +
∑

C ρ
′(C)(bC)⊤uC ,

s.t.
∑

T ρ(T)θT +
∑

C ρ
′(C)(AC)⊤uC = θ,

uC
k ≥ 0, ∀k ∈ {1, 2, · · · , NC}, C ∈ C. (7.3.6)

The dual of problem (7.3.6) can be written as

min
τ ,µ

(

max
θ

T
,uC

∑

T

ρ(T)(q(θT)− τ⊤θT) +
∑

C

ρ′(C)(bC + µ−ACτ))⊤uC + τ Tθ

)

,

(7.3.7)

where τ and µ are some (non-negative) Lagrangian multipliers (see section 3.2).

Using equation (7.2.18) the above problem can be simplified as

min
τ ,µ

max
uC

∑

C ρ
′(C)(bC + µ−ACτ))⊤uC + τ Tθ,

s.t. τ ∈ LOCAL(v, E). (7.3.8)

Furthermore,

min
τ ,µ

max
uC

ρ′(C)(bC + µ−ACτ))⊤uC =

{

0 if ACτ = bC + µ,

∞ otherwise.

(7.3.9)

This can easily be verified by assuming ACτ 6= bC +µ, in which case each slack

variable uC
k which maximizes the lhs of equation (7.3.9) will take one of the

following values:

uC
k =

{

+∞ if bCk + µk > (ACτ)k

−∞ otherwise,
(7.3.10)

where (ACτ)k indicates the kth element of the vector ACτ . Either of these

values of uC
k would result in a value of +∞ for the expression in the lhs of

170

7.3. Adding Linear Constraints

equation (7.3.9). In other words, for the lhs of equation (7.3.9) to be bounded,

the following condition must hold true:

ACτ = bC + µ, (7.3.11)

⇒ ACτ ≥ bC . (7.3.12)

The last expression is obtained using the fact that µ ≥ 0. Thus problem (7.3.8)

can be reformulated as

minτ τ
⊤θ,

s.t. τ ∈ LOCAL(v, E),ACτ ≥ bC , ∀C ∈ C, (7.3.13)

which is the same as the lp-c relaxation. Hence, the dual of the lp-c relaxation

is given by problem (7.3.6). Using the fact that the constraint set of lp-c includes

all the constraints of lp-s (i.e. the uniqueness and marginalization constraints) it

follows that problem (7.3.6) is equivalent to problem (7.3.5) Recall that this is a

direct consequence of the form of reparameterizations (given in equation (7.2.7))

which implies that lp-s provides the same solution for all reparameterizations.

Hence, lp-c also provides the same solution for all reparameterizations (see [46]

for details). This proves Theorem 1.

Note that the above theorem provides the dual for an arbitrary number of

constraints NC per cycle (i.e. NC can be any number between 0 and |l|c. In our

experiments, we found it sufficient to use NC = 1 (see section 7.5 for details).

Similar to the dual (7.2.15) used in trw-s, the above problem can be solved

using standard software for only a small number of variables v. In order to

overcome this deficiency we propose a convergent algorithm (similar to trw-s)

to approximately solve problem (7.3.5). We call our approach the trw-s(lp-c)

algorithm. In order to describe trw-s(lp-c), we need the following definitions.

We say that a tree structured random field T = (vT , ET) ∈ T belongs to a

cycle C = (vC , EC) ∈ C (denoted by T ∈ C) if, and only if, there exists an edge

(a, b) ∈ ET such that (a, b) ∈ EC . In other words, T ∈ C if they share a common

pair of neighbouring random variables (a, b) ∈ E . We also define the following

problem:

max
∑

T∈C ρ(T)q(θT) + ρ′(C)(bC)⊤uC ,

s.t.
∑

T∈C ρ(T)θT + ρ′(C)(AC)⊤uC = θC ,

uC
k ≥ 0, ∀k ∈ {1, 2, · · · , NC}, (7.3.14)

for some parameter θC . The above problem is the dual for the lp-c relaxation

over one cycle C with parameter θC (with any number of cycle inequalities defined

over it). Note that problem (7.3.14) has fewer variables and constraints than

dual (7.3.5) and can be solved easily using standard Interior Point algorithms

for small cycles C. As will be seen in section 7.5, even using cycles of size 3

171

7.3. Adding Linear Constraints

or 4 results in much better approximations of the map estimation problem for

non-submodular energy functions.

Table 7.2 describes the convergent trw-s(lp-c) algorithm for approximately

solving the dual (7.3.5). The algorithm consists of two main steps : (i) solving

problem (7.3.14) for a cycle; and (ii) running steps 4 and 5 of the trw-s algorithm.

The properties of the algorithm are summarized below.

Initialization

1. Choose a set of tree structured random fields T (similar to trw-s).

Choose a set of cycles C. For example, if the 4-neighbourhood is

employed, C can be the set of all cycles of size 4. For 8-neighbourhood,

C can be all cycles of size 3.

2. Initialize θT such that
∑

T ρ(T)θT ≡ θ. Initialize uC
k = 0 for all C and k.

Iterative Steps

3. Pick an element ω ∈ v
⋃ C. Find all cycles Cω ⊆ C which contains ω.

4. For a cycle C ∈ Cω, compute θC =
∑

T∈C ρ(T)θT + ρ′(C)(AC)⊤uC

using the values of θT and uC obtained in the previous iteration.

Solve problem (7.3.14) using an Interior Point method. Update the values

of θT and uC .

5. For all trees T ∈ T which contain ω, run steps 4 and 5 of the trw-s

algorithm.

6. Repeat steps 3 and 4 for all cycles C ∈ Cω.

7. Repeat steps 3 to 5 for all elements ω till convergence.

Table 7.2: The trw-s(lp-c) algorithm.

7.3.1 Properties of the trw-s(lp-c) Algorithm.

Property 1: At each step of the algorithm, the reparameterization constraint

is satisfied, i.e.
∑

T

ρ(T)θT +
∑

C

ρ′(C)(AC)⊤uC ≡ θ. (7.3.15)

The constraint in problem (7.3.14) ensures that parameter vector θC of cycle

C remains unchanged. Hence, after step 3 of the trw-s(lp-c) algorithm, the

reparameterization constraint is satisfied. It was also shown that step 4 (i.e.

running trw-s) provides a reparameterization of θ (see Lemma 3.3 of [46] for

details). This proves Property 1.

Property 2: At each step of the algorithm, the value of the dual (7.3.5) never

decreases.

172

7.3. Adding Linear Constraints

Clearly, step 3 of the trw-s(lp-c) algorithm does not decrease the value of

the dual (7.3.5) (since the objective function of problem (7.3.14) is part of the

objective function of dual (7.3.5)). Kolmogorov [46] showed that step 4 (i.e. trw-

s) also does not decrease this value. Note that the lp-c relaxation is guaranteed to

be bounded since it dominates the lp-s relaxation (which itself is bounded [46]).

Therefore, by the Bolzano-Weierstrass theorem [27], it follows that trw-s(lp-c)

is guaranteed to converge.

Property 3: Like trw-s, the necessary condition for convergence of trw-s(lp-

c) is that the parameter vectors θT of the trees T ∈ T satisfy wta.

This follows from the fact that trw-s increases the value of the dual in a

finite number of steps as long as the set of parameters θT , T ∈ T , do not satisfy

wta (see [46] for details).

Property 4: Unlike trw-s, wta is not the sufficient condition for convergence.

One of the main drawbacks of the trw-s algorithm is that it converges as

soon as the wta condition is satisfied. Experiments in [46] indicate that this

results in high energy solutions for the map estimation problem when the energy

function is non-submodular. Using a counter-example, it can be shown that wta

is not the sufficient condition for the convergence of the trw-s(lp-c) algorithm.

One such example is given below.

Example: Fig. 7.1 shows an example of a set of three tree structured crfs.

Together, these crfs form a frustrated cycle C (i.e. a cycle with odd num-

ber of non-submodular pairwise potentials) where vC = {va, vb, vc} and EC =

{(a, b), (b, c), (c, a)}. As noted earlier, the crfs in Fig. 7.1 satisfy the wta con-

dition. The trw-s algorithm converges at this point. Assuming ρ(T) = 1/3 for

all T ∈ T , the value of the dual (7.2.15) is 3. In contrast, the trw-s(lp-c)

algorithm increases the value of the dual (7.3.5) to 4 when the problem (7.3.14)

is solved for the cycle C (i.e. wta is not the sufficient condition for convergence).

Obtaining the Labelling: Similar to the trw-s algorithm, trw-s(lp-c) solves

the dual (7.3.5) and not the primal problem. In other words, it does not directly

provide a labelling of the random variables. In order to obtain a labelling, we use

the same scheme as the one suggested in [46] for the trw-s algorithm. Briefly,

we assign labels to the variables v = {v0, v1, · · · , vn−1} in increasing order (i.e.

we label variable v0, followed by variable v1 and so on). Let θT =
∑

T ρ(T)θT .

At each stage, a variable va is assign the label lf(a) such that

f(a) = arg min
i,li∈l



θT 1
a;i +

∑

b<a,(a,b)∈E
θT 2

ab;i,f(b))



 , (7.3.16)

where θT 1
a;i and θT 2

ab;i,f(b) are the unary and pairwise potentials corresponding to

the parameter θT respectively. It can be shown that under certain conditions the

173

7.4. Adding Second Order Cone Constraints

above procedure provides the optimal labelling [63]1.

7.4. Adding Second Order Cone Constraints

We now describe how second order cone (soc) constraints can be added to the

dual (7.2.15). Specifically, we consider the two soc constraints proposed in the

previous chapter which result in the socp-c and socp-q relaxations (see § 6.5.1

and § 6.5.2 respectively). While socp-c adds constraints using random variables

which form a cycle, socp-q introduces soc constraints using random variables

connected in a clique.

In general, a set of NC soc constraints on a cycle/clique can be defined as

||AC
k y + bC

k || ≤ y⊤cC
k + dC

k , k ∈ {1, 2, · · · , NC}. (7.4.1)

Again, this is achieved by converting variables (x,X) to y using equation (7.2.9).

Note that, similar to cycle inequalities, we can define upto |l|c soc constraints for

a cycle/clique, where c is the size of the cycle/clique (i.e. NC ∈ {0, 1, · · · , |l|c}).
Let C be a set of cycles/cliques in the graphical model of the given random field.

The following theorem provides us with the dual of the socp relaxation obtained

by appending problem (7.2.11) with soc constraints defined over the set C.
Theorem 2: The following problem is the dual of problem (7.2.11) appended

with a set of soc constraints ||AC
k y + bC

k || ≤ y⊤cC
k + dC

k for k ∈ {1, 2, · · · , NC}
and C ∈ C.

max
∑

T ρ(T)q(θT)−∑C ρ
′(C)

∑

k((b
C
k)⊤uC

k + dC
k v

C
k),

s.t.
∑

T ρ(T)θT +
∑

C ρ
′(C)

∑

k((A
C
k)⊤uC

k + cC
k v

C
k) ≡ θ,

||uC
k || ≤ vC

k , ∀k ∈ {1, 2, · · · , NC}, C ∈ C. (7.4.2)

Here uC
k and vC

k are some slack variables. Recall that ρ′ = {ρ′(C), C ∈ C} is a

(fixed) set of non-negative real numbers which sum to one.

Proof: We begin by formulating the dual of the following problem:

max
∑

T ρ(T)q(θT)−∑C ρ
′(C)

∑

k((b
C
k)⊤uC

k + dC
k v

C
k),

s.t.
∑

T ρ(T)θT +
∑

C ρ
′(C)

∑

k((A
C
k)⊤uC

k + cC
k v

C
k) = θ,

||uC
k || ≤ vC

k , ∀k ∈ {1, 2, · · · , NC}, C ∈ C. (7.4.3)

Using the definition of dual (see section 3.2), this can be written as

min
τ ,µ

(

max
θ

⊤
,uC

k
,vC

k

∑

T

ρ(T)(q(θT)− τ⊤θT)−
∑

C

ρ′(C)
∑

k

DC
k + τ⊤θ

)

, (7.4.4)

1If the set of variables that have more than one optimum labelling in any of the tree struc-

tured random fields θT , T ∈ T , (satisfying wta) form disjoint, monotonic chains with respect

to the ordering of the variables (i.e. v0 < v1 < · · · , vn−1), then this procedure is guaranteed to

provide the exact map estimate.

174

7.4. Adding Second Order Cone Constraints

where

DC
k = vC

k (τ⊤cC
k + dC

k − µC
k) + τ⊤(AC

k)⊤uC
k + (bC

k)⊤uC
k + µC

k ||uC
k ||. (7.4.5)

Using equation (7.2.18), problem (7.4.4) can be simplified as

min
τ∈LOCAL(v,E),µ

max
θ

⊤
,uC

k
,vC

k

−
∑

C

ρ′(C)
∑

k

DC
k + τ⊤θ, (7.4.6)

From equation (7.4.5) we observe that DC
k is bounded if, and only if, µC

k =

τ⊤cC
k + dC

k . This can be easily verified by assuming µC
k 6= τ⊤cC

k + dC
k , in which

case vC
k will take one of the following values,

vC
k =

{

−∞ if µC
k < τ⊤cC

k + dC
k ,

∞ otherwise,
(7.4.7)

thereby making DC
k unbounded. Substituting the value of µC

k in equation (7.4.5),

we get

DC
k = τ⊤(AC

k)⊤uC
k + (bC

k)⊤uC
k + (τ⊤cC

k + dC
k)||uC

k ||. (7.4.8)

Before proceeding further, we require a lemma.

Lemma 4.1: The following expression holds true:

min
a,d

max
z

aTz− d||z|| =
{

0 if ||a|| ≤ d,

∞ otherwise.
(7.4.9)

Proof : Case (i): Let ||a|| ≤ d. Thus,

d2||z||2 ≥ ||a||2||z||2, (7.4.10)

= (a⊤z)2 + |a× z|2, (7.4.11)

≥ (a⊤z)2, (7.4.12)

⇒ d||z|| ≥ a⊤z. (7.4.13)

Here |a× z| represents the cross-product of vectors a and z. By making a and z

parallel (i.e. |a× z| = 0) , we see that the optimal value of the problem (7.4.9) is

0.

Case(ii): Let ||a|| > d. Thus,

(a⊤z)2 = ||a||2||z||2 − |a× z|2, (7.4.14)

= ||a||2||z||2, when a is parallel to z, (7.4.15)

> d2||z||2, (7.4.16)

⇒ (a⊤z) > d||z||. (7.4.17)

Thus the optimal value of problem (7.4.9) is ∞ (when a is parallel to z).

Applying the above lemma, we obtain the following equation:

min
τ

max
uC

k

−DC
k =

{

0 if ||AC
k τ + bC

k || ≤ τ⊤cC
k + dC

k ,

∞ otherwise.
(7.4.18)

175

7.4. Adding Second Order Cone Constraints

Substituting the above equation in problem (7.4.6), we get a reformulation of

the dual (7.4.3) as

minτ τ
⊤θ

s.t. τ ∈ LOCAL(v, E), ||AC
k τ + bC

k || ≤ τ⊤cC
k + dC

k , ∀C, k, (7.4.19)

which is the same as the socp-c or socp-q relaxation (depending upon the

choice of the soc constraints). Thus problem (7.4.3) is the dual of the socp-

c/socp-q relaxation. Again, using the fact that the constraint set includes all the

constraints of the lp-s relaxation, problem (7.4.3) can be shown to be equivalent

to problem (7.4.2) [46]. This proves Theorem 2.

Initialization

1. Choose a set of tree structured random fields T (similar to trw-s).

Choose a set of cycles/cliques C. For example, if the 8-neighbourhood is

employed, we can choose all cliques of size 4 or all cycles of size 3.

2. Initialize θT such that
∑

T ρ(T)θT ≡ θ. Initialize uC
k = vC

k = 0.

Iterative Steps

3. Pick an element ω ∈ v
⋃ C. Find all cycles/cliques Cω ⊆ C which contains ω.

4. For a cycle/clique C ∈ Cω, compute

θC =
∑

T∈C ρ(T)θT + ρ′(C)
∑

k((A
C
k)⊤uC

k + cC
k v

C
k)

using the values of θT , uC
k and vC

k obtained in the previous iteration.

Solve problem (7.4.20) using an Interior Point method. Update the values

of θT , uC
k and vC

k .

5. For all trees T ∈ T which contain ω, run steps 4 and 5 of the trw-s

algorithm.

6. Repeat steps 3 and 4 for all cycles /cliques C ∈ Cω.

7. Repeat steps 3 to 5 for all elements ω till convergence.

Table 7.3: The trw-s(socp-c)/trw-s(socp-q) algorithm.

Recall that for socp-c and socp-q relaxations, we specify one soc constraint

per cycle/clique (i.e. NC = 1, see § 6.5.1 and § 6.5.2). This soc constraint is

defined using variables which take a trivial value in the lp-s relaxation when the

energy function is non-submodular. Before proceeding further, we also define the

following problem:

max
∑

T∈C ρ(T)q(θT)− ρ′(C)
∑

k((b
C
k)⊤uC

k + dC
k v

C
k),

s.t.
∑

T∈C ρ(T)θT + ρ′(C)
∑

k((A
C
k)⊤uC

k + cC
k v

C
k) = θC ,

||uC
k || ≤ vC

k , ∀k ∈ {1, 2, · · · , NC}, (7.4.20)

where θC is some parameter vector. The above problem is the dual for the

socp-c/socp-q relaxation over one cycle/clique C with parameter θC (with any

176

7.5. Experiments

number of soc constraints defined over it). Like problem (7.3.14), we can solve

problem (7.4.20) using standard Interior Point algorithms for small cycles/cliques

C.

Similar to trw-s(lp-c), a convergent algorithm can now be described for

solving the dual (7.4.2). This algorithm, outlined in table 7.3, differs from trw-

s(lp-c) in only step 4, where it solves problem (7.4.20) for a cycle/clique C

instead of problem (7.3.14). Recall that the notation T ∈ C in table 7.3 implies

that, if T = (vT , ET) and C = (vC ,EC), then there exists a pair of neighbouring

random variables va and vb such that (a, b) ∈ ET and (a, b) ∈ EC .

We refer to this algorithm as either trw-s(socp-c) or trw-s(socp-q) de-

pending upon the socp relaxation that we are solving. When using the trw-

s(socp-q) algorithm, we include all slack variables corresponding to the cycle

inequalities defined over the cycles in clique C. It can easily be shown that both

trw-s(socp-c) and trw-s(socp-q) satisfy all the properties given in § 7.3.1.

Note that, like trw-s and trw-s(lp-c), these algorithms do not directly provide

a labelling for the random variables of the crf. Instead we use the procedure

described in § 7.3.1 to obtain the final solution.

7.5. Experiments

We tested the approaches described in this chapter using both synthetic and real

data. As will be seen, the results conform with the analysis of the previous chap-

ter. Specifically, we show that (i) socp-c outperforms the lp-s relaxation; (ii)

the lp-c relaxation provide a better approximation of the map estimation prob-

lem than socp-c; and (iii) socp-q (when applicable) obtains better labellings

than lp-c.

7.5.1 Synthetic Data

Datasets: We conducted two sets of experiments using binary grid crfs (i.e.

h = |l| = 2) of size 30 × 30. In the first experiment the edges of the graphi-

cal model, i.e. E , were defined using a 4-neighbourhood system while the second

experiment used an 8-neighbourhood system. Note that both these neighbour-

hood systems are commonly used in many Computer Vision applications [89].

The unary potentials θ1
a;0 and θ1

a;1 were generated using the normal distribution

N (0, 1). The pairwise potentials θ2
ab;00 and θ2

ab;11 were set to 0 while θ2
ab;01 and

θ2
ab;10 were generated usingN (0, σ2). We used three values for σ: σ ∈ { 2√

d
, 5√

d
, 10√

d
}

where d is the degree of the variables in the graphical model (i.e. d = 4 in the first

experiment and d = 8 in the second experiment). Note that when θ2
ab;01+θ

2
ab;10 < 0

then the energy function is non-submodular. For each value of σ, 50 crfs were

generated using the method described above (i.e. each experiment was conducted

177

7.5. Experiments

using 150 crfs).

Implementation Details: We tested the lp-c and the socp-c relaxations in

the first experiment. Constraints were defined on all cycles of size 4. The lp-c

and socp-q relaxation were tested in the second experiment. Cycles inequalities

were defined on all cycles of size 3. In addition for socp-q, soc constraints were

defined on all cliques of size 4. In both the experiments, the trees were chosen as

the individual edges of the graphical model. The terms ρ(T) and ρ′(C) were set

to 1/|T | and 1/|C| respectively for all T ∈ T and C ∈ C. We found it sufficient

to define one cycle inequality per cycle C using a set {li1 , li2, · · · , lic} ∈ lc which

satisfies
∑

(ak ,al)∈EF

θakal;ikil −
∑

(ak ,al)∈EC−EF

θ2
akal;ikil

≥
∑

(ak ,al)∈EF

θakal;jkjl
−

∑

(ak ,al)∈EC−EF

θ2
akal;jkjl

,

(7.5.1)

for all {lj1, · · · , ljc
} ∈ lc. Here EC = {(a1, a2), · · · , (an, a1)} and EF ⊆ EC such

that |EF | = 3. As mentioned earlier, we define one soc constraint per cycle/clique

when considering the socp-c and the socp-q relaxations (see § 6.5.1 and § 6.5.2).

At each iteration, problems (7.3.14) and (7.4.20) were solved using the mosek

software (available at http://www.mosek.com).

Results: Figure 7.2 shows the results obtained for the first experiment using

the three values of σ. Note that since the energy functions are non-submodular,

trw-s provides labellings with higher energies than min-sum bp. However, the

additional constraints in the lp-c and socp-c algorithm enable us to obtain

labelling with lower energies than min-sum bp. Further, unlike min-sum bp,

they also provide us with the value of the dual at each iteration. This value

allows us to find out how close we are to the global optimum (since the energy

of the optimal labelling cannot be less than the value of the dual). Also note

that the value of the lp-c dual is greater than the value of the socp-c dual.

This indicates that lp-c provides a better approximation for the map estimation

problem.

The results of the second experiment are shown in Figure 7.3. Again, min-sum

bp outperforms trw-s, while lp-c and socp-q provide better approximations.

The soc constraints defined over cliques in the socp-q relaxation provide a

greater value of the dual compared to the lp-c relaxation. The complexity and

timings for all the algorithms is given in tables 7.4 and 7.5.

7.5.2 Real Data - Video Segmentation

We now present the results of our method on the problem of video segmentation

which can be described as follows. Given some seed pixels for all the segments

present in a video, we would like to obtain the segmentation of all the frames.

178

7.5. Experiments

(a)

(b)

(c)

Figure 7.2: Results of the first experiment. (a) σ = 2. (b) σ = 5. (c) σ = 10.

The x-axis shows the iteration number. The lower curves show the average value

of the dual at each iteration over 50 random crfs while the upper curves show

the average energy of the best labelling found till that iteration. The additional

constraints in the lp-c and socp-c relaxations enable us to obtain labellings

with lower energy (or equivalently higher posterior probability) compared to trw-

s and min-sum bp. Cycle inequalities provide a better approximation than the

soc constraint of the socp-c relaxation.

For this work, we will describe a method which segments each frame individually

without making any use of the motion information.

179

7.5. Experiments

(a)

(b)

(c)

Figure 7.3: Results of the second experiment. (a) σ = 2. (b) σ = 5. (c) σ = 10.

Note that the value of the dual obtained using socp-q is greater than the value

of the dual of the lp-c relaxation.

Problem Formulation: The problem of obtaining the segmentation of a frame

can be cast within the crf framework (similar to the interactive binary image

segmentation crf described in § 2.2.2). Specifically, we define a crf over random

variables v = {v0, · · · , vn−1}, where each variable corresponds to a pixel of the

frame. Each label in the set l = {l0, · · · , lh−1} corresponds to a segment (where h

is the total number of segments). The unary potential of assigning a variable va

to segment li is specified by the negative log-likelihood of the rgb value of pixel

a, i.e. Da, given the seed pixels of the segment li. In our experiments, the unary

180

7.5. Experiments

Algorithm No. of Var. No. of Cons. Time(sec)

min-sum bp - - 0.0018

trw-s nh+ |E|h2 n + 2|E|h 0.0018

lp-c nh+ |E|h2 2n+ 2|E|h 7.5222

socp-c nh+ |E|h2 2n+ 2|E|h 8.9091

Table 7.4: Complexity and timings of the algorithms for the first synthetic data

experiment with a 4-neighbourhood relationship. Recall that n = |v| is the number

of random variables, h = |l| is the size of the label set and E is the neighbourhood

relationship defined by the crf. The second and third columns show the number

of variables and constraints in the primal problem respectively. The fourth column

shows the average time of the each algorithm for one iteration (in seconds). All

timings are reported for a Pentium IV 3.3 GHz processor with 2GB RAM.

Algorithm No. of Var. No. of Cons. Time(sec)

min-sum bp - - 0.0027

trw-s nh+ |E|h2 n + 2|E|h 0.0027

lp-c nh+ |E|h2 5n+ 2|E|h 7.7778

socp-q nh+ |E|h2 6n+ 2|E|h 9.1170

Table 7.5: Complexity and timings of the algorithms for the second synthetic data

experiment with an 8-neighbourhood relationship.

potential takes the form

θ1
a;i = − log Pr(Da|Hi), (7.5.2)

where Hi is the appearance model of li which is represented as a histogram of rgb

values of the seed pixels of li (with 15 bins each for r, g and b). The pairwise

potentials encourage continuous segments whose boundaries lie on image edges.

Specifically, they take a form similar to equation (2.2.16) (for interactive binary

image segmentation), i.e.

θ2
ab;ij =

{

κ1 if i = j,

κ2 − γ(a, b) otherwise,
(7.5.3)

where

γ(a, b) = λ

(

1− exp

(−∆2(a, b)

2σ2

)

1

dist(a, b)

)

. (7.5.4)

Recall that the term ∆(a, b) measures the difference in the rgb values Da and

Db and dist(a, b) is the Euclidean distance between pixels a and b. We use the

following weight values for all our experiments: κ1 = 1, κ2 = 2.2, λ = 1 and

σ = 5.

The problem of obtaining the segmentation of a frame then boils down to that

of finding the map estimate of the crf. Note that the energy function for the

181

7.5. Experiments

above crf, i.e.

Q(f ;D, θ) =
∑

va∈v

θ1
a;f(a) +

∑

(a,b)∈E
θ2

ab;f(a)f(b), (7.5.5)

is non-submodular (by the definition provided in § 2.4.3). Here, E is the neigh-

bourhood relationship of the crf. Typically, a 4 or 8-neighbourhood is used for

similar applications in Computer Vision [13, 89].

Datasets and Implementation Details: We used two well-known sequences

to conduct our experiments, namely the ‘Garden’ sequence (with frame size 120×
175) and the ‘Dayton’ sequence (with frame size 128× 192). For both sequences,

the seed pixels were provided using the ground truth segmentation of a keyframe

as shown in Fig. 7.4 and 7.5 respectively.

Similar to the synthetic data experiment, we defined the trees as individual

edges of the graphical model of the crf. In other words, a tree T = (vT , ET) ∈ T
such that vT = {va, vb} and ET = {(a, b)} ⊆ E . We specified one cycle inequality

and one soc constraint for each cycle/clique (as described in the previous section).

The terms ρ(T) and ρ′(C) were set to 1/|T | and 1/|C| respectively for all T ∈ T
and C ∈ C. Once again, problems (7.3.14) and (7.4.20) were solved using mosek.

Figure 7.4: Segmented keyframe of the ‘Garden’ sequence. The left image shows

the keyframe while the right image shows the corresponding segmentation pro-

vided by the user. The four different colours indicate pixels belonging to the four

segments namely sky, house, garden and tree.

Figure 7.5: The keyframe of the ‘Dayton’ video sequence partitioned into three

segments.

182

7.6. Discussion

Algorithm Sequence Avg. Time(sec)

min-sum bp Garden 0.1400

min-sum bp Dayton 0.1540

trw-s Garden 0.1400

trw-s Dayton 0.1540

αβ-swap Garden 0.1052

αβ-swap Dayton 0.1154

α-expansion Garden 0.1100

α-expansion Dayton 0.1200

lp-c Garden 140.3320

lp-c Dayton 150.4440

socp-c Garden 143.6365

socp-c Dayton 158.1820

Table 7.6: Average timings of the algorithms (per iteration) for the first experi-

ment on video segmentation with a 4-neighbourhood relationship. Again, all tim-

ings are reported for a Pentium IV 3.3 GHz processor with 2GB RAM.

Results: For the first set of experiments, we used a 4-neighbourhood system

and tested the following algorithms: trw-s, lp-c, socp-c, αβ-swap, α-expansion

and min-sum bp. Fig. 7.6 and 7.7 show the segmentations and the values of

the energy function obtained for all algorithms. Note that, by incorporating

additional constraints using all cycles of length 4, lp-c and socp-c outperform

other methods. Further, the cycle inequalities in lp-c provide better results than

the soc constraints of socp-c. Table 7.6 provides the average time taken per

iteration by all the algorithms for both the video sequences.

The second set of experiments used an 8-neighbourhood system and tested

the following algorithms: trw-s, lp-c, socp-q, αβ-swap, α-expansion and min-

sum bp. For the lp-c algorithm, cycle inequalities were specified for all cycles

of size 3. In addition, the socp-q algorithm specifies soc constraints on all

cliques of size 4. Fig. 7.8 and 7.9 show the segmentations and energies obtained

for all the algorithms. The average timings per iteration are shown in table 7.7.

Note that, similar to the synthetic data examples, socp-q outperforms lp-c by

incorporating additional soc constraints.

7.6. Discussion

We have extended the lp-s relaxation based approach of [46, 101] for the map

estimation problem. Specifically, we showed how cycle inequalities and the soc

constraints of the previous chapter can be incorporated within the dual of the

lp relaxation. We also proposed convergent algorithms for solving the resulting

183

7.6. Discussion

Algorithm Sequence Avg. Time(sec)

min-sum bp Garden 0.1740

min-sum bp Dayton 0.1810

trw-s Garden 0.1740

trw-s Dayton 0.1810

αβ-swap Garden 0.1201

αβ-swap Dayton 0.1564

α-expansion Garden 0.1240

α-expansion Dayton 0.1600

lp-c Garden 142.2226

lp-c Dayton 155.5560

socp-q Garden 144.9890

socp-q Dayton 162.3400

Table 7.7: Average timings of the algorithms (per iteration) for the second exper-

iment on video segmentation with an 8-neighbourhood relationship.

duals. Our experiments indicate that these additional constraints provide a more

accurate approximation for map estimation when the energy function is non-

submodular. Although our algorithm is much faster than Interior Point methods,

it is slower than trw-s and min-sum bp. An interesting direction for future

research would be to develop specialized algorithms for solving problems (7.3.14)

and (7.4.20) (which are required by the trw-s(lp-c), trw-s(socp-c) and trw-

s(socp-q) algorithms). Further research is also required to find out how many

cycle inequalities and soc constraints need to be imposed per cycle/clique for

map estimation problems with large number of labels (e.g. stereo and image

denoising).

184

7.6. Discussion

Input

min-sum bp

0380 0047 6098

αβ-swap

0778 0433 0585

α-expansion

0571 0094 0176

trw-s

0151 0126 1596

lp-c

0000 0000 0000

socp-c

0026 0086 1044

Figure 7.6: Segmentations obtained for the ‘Garden’ video sequence using 4-

neighbourhood. The corresponding energy values (scaled up to integers for using

αβ-swap and α-expansion) of all the algorithms are shown below the segmen-

tation. The following constant terms are subtracted from the energy values of

all algorithms for the three frames respectively: 5139499, 5145234 and 5126941.

These constant terms ensure that the minimum energy among all algorithms is 0.

185

7.6. Discussion

Input

min-sum bp

35845 51658 101670

αβ-swap

0109 0901 0958

α-expansion

0044 0435 0908

trw-s

0415 0541 0978

lp-c

0000 0000 0000

socp-c

0000 0309 0217

Figure 7.7: Segmentations obtained for the ‘Dayton’ video sequence using 4-

neighbourhood. The corresponding energy values (again scaled up to integers)

of all the algorithms are shown below the segmentation. The following constant

terms are subtracted from the energy value of all algorithms for the three frames

respectively: 6920341, 6780685 and 6495282.

186

7.6. Discussion

Input

min-sum bp

8175 25620 18314

αβ-swap

1187 1368 1289

α-expansion

2453 1266 1225

trw-s

6425 1309 0297

lp-c

0719 0264 0297

socp-q

0000 0000 0000

Figure 7.8: Segmentations obtained for the ‘Garden’ video sequence using 8-

neighbourhood. The corresponding energy values (reduced by 5304466, 5299756

and 5292224 for the three frames respectively) of all the algorithms are also shown.

187

7.6. Discussion

Input

min-sum bp

322185 236825 200810

αβ-swap

0266 0286 0629

α-expansion

0248 0194 0172

trw-s

0254 0523 0735

lp-c

0228 0120 0153

socp-q

0000 0000 0000

Figure 7.9: Segmentations obtained for the ‘Dayton’ video sequence using 8-

neighbourhood. The corresponding energy values of all the algorithms (reduced by

7127359, 7013665 and 6803425 for the three frames respectively) are also shown.

188

Chapter 8

Discussion

189

8.1. Contributions of the Thesis

8.1. Contributions of the Thesis

In this thesis, we examined and added to the growing role of optimization in

Computer Vision and Machine Learning. The major contributions are:

• In chapter 4, we presented a novel layered representation model which is

suitable for motion segmentation. Included in the model are the effects of

occlusion, and changes in appearance due to lighting conditions and motion

blur. We developed an approach for estimating the layered representation

for a given video sequence. The initial estimate of the layered represen-

tation was obtained by developing an efficient coarse-to-fine sum-product

bp algorithm. This algorithm is applicable for performing inference on any

random field whose pairwise potentials describe a non-regular Potts model.

A refinement of the initial estimate was obtained using the observation that

the energy of the model can be minimized by a combination of αβ-swap and

α-expansion algorithms.

• In chapter 5 we introduced a probabilistic model, called the Object Cate-

gory Specific cdrf, which goes beyond the previously used pairwise crfs

for image segmentation. Specifically, our model includes the clique poten-

tials of the pairwise crfs (which represent bottom-up information), as well

as strong shape potentials provided by an object category model (which

represent top-down information). We also proposed a novel object category

model for articulated objects (i.e. the lps) which is suited for applications

such as object category specific image segmentation. By employing the Ob-

ject Category Specific cdrf, the segmentations of previously unseen images

were obtained using two algorithmic contributions. Firstly, we showed how

samples of our choice of object category models (i.e. soe and lps) can be

found efficiently by matching them to the image. Secondly, we made the

observation that the object category model can be quickly marginalized

(using their samples) within the em algorithm. Our observation is appli-

cable for any latent variable (i.e. not just object category models) within

any random field model (i.e. mrf or crf), and can also be used for efficient

generalized em [30].

• In chapter 6, we presented a theoretical analysis of previously proposed con-

vex relaxations for the map estimation problem [17, 51, 55, 64, 75, 79, 101].

Specifically, we showed that the lp-s relaxation [17, 51, 79, 101] strictly

dominates the qp-rl [75] and socp-ms relaxations [55, 64]. We general-

ized this result by defining a large class of qp and socp relaxations which

are dominated by lp-s. Based on this analysis, we proposed two new socp

relaxations, namely socp-c and socp-q. With the help of some examples,

190

8.2. Future Work

we showed that socp-c dominates the previous relaxations considered in

the analysis. We conjectured that a linear programming relaxation, which

we call lp-c, dominates socp-c. However, using a numerical example, we

showed that lp-c itself is dominated by the socp-q relaxation. It is worth

noting that, although our analysis was concerned with map estimation, it

is equally applicable to the related theoretical Computer Science problems

such as maxcut, multi-way cut, metric labelling, and 0-extension.

• In chapter 7, we extend the trw framework of [46, 101] to efficiently solve a

large class of convex relaxations for map estimation (including lp-c, socp-

c and socp-q). The resulting algorithm attempts to iteratively maximize

the bounded dual of the relaxations. At each iteration, this algorithm

does not decrease the value of the dual. In other words, it is guaranteed

to converge. Our approach allows us to approximately solve the convex

relaxations on very large problems where Interior Point methods would

not be computationally feasible. Using both synthetic and real data, we

showed that the empirical results conform with our theoretical analysis. In

particular, socp-c dominates lp-s, lp-c dominates socp-c and socp-q

dominates lp-c.

8.2. Future Work

We now discuss some possible future directions which can extend the practical

and theoretical implications of our work.

Motion Segmentation

• It is sometimes possible to obtain a priori information about which object

categories are present in a given video sequence. For example, a video of

a football match would mostly contain humans while a video of an urban

traffic scene would contain vehicles (e.g. cars, bikes). The layered represen-

tation model developed in chapter 4 does not incorporate such information

(which may greatly improve its performance). An interesting direction for

future research would be to combine the strengths of the Object Category

Specific cdrf (which can represent top-down information about the ob-

ject categories) and the layered representation (which can handle occlusion,

lighting changes and motion blur) to obtain a better motion segmentation

algorithm for cases where a priori information is available.

• Given a video, we presented an approach which automatically learns the

parameters of the layered representation. Our method is currently restricted

to one visual aspect of the object. However, it is quite common for the visual

aspect to change in the video sequence (e.g. a person may turn towards the

191

8.2. Future Work

camera while walking). One possible solution to handle such scenarios is

to determine where the visual aspect changes in the video and learn a new

layered representation from that frame onwards. However, a more elegant

approach would be to learn a 3D representation of the object. The work of

Bray et al. [16] is a significant step towards achieving this goal. However,

their method relies on multiple views of the same scene which may not

always be available. Further, they consider the energy associated with only

one frame at a time (in contrast to the layered representation which sums

up the energy over the entire video). Sigal et al. [87] also propose a method

to learn the probability distributions of the relative positions of the limbs

corresponding to a 3D representation of a human. However, their method

does not learn the shape and appearance of the limbs automatically. Further

research is required to overcome these deficiencies.

• We proposed a method for combining the rigidly moving components, com-

puted for every pair of consecutive frames, in order to obtain the initial

estimate of the number of segments (together with their shape, appearance

and transformations). However, our method is susceptible to error in the

presence of a large amount of noise in a few frames of the video. Consider

one such noisy pair of frames which may result in erroneous components

(e.g. the component corresponding to the head of a person might be split

into two components). Each erroneous component can result in estimating

a wrong segment. Although we can hope to prune out the wrong segments

during the refinement stages (using αβ-swap and α-expansion algorithms),

a better solution would be to robustly estimate the number of segments in

an iterative fashion (similar to the work described in [73]).

Object Category Specific Image Segmentation

• We presented a method, ObjCut, in order to estimate the Object Category

Specific cdrf for image segmentation. Although our method is applicable

for any object category model, its efficiency depends heavily on quickly ob-

taining samples of the object category model. For this reason, we restricted

ourselves to segmenting only sideways or near-sideways views of objects

such as cows and horses. An interesting direction for future research would

be to develop algorithms for efficiently matching soe and lps models which

represent multiple visual aspects of an object category.

• The ObjCut algorithm goes beyond conventional image segmentation ap-

proaches by incorporating top-down information about the object category

(in the form of strong shape potentials). However, it uses several general

low-level Vision approaches, e.g. edge detection in order to compute Cham-

fer distance for matching object category models to images. Recent devel-

opments in Computer Vision show that the matching can be improved by

192

8.2. Future Work

considering only object category specific edges [71, 83]. Results in [71] indi-

cate that this leads to substantial improvements in the segmentation itself.

The efficiency of ObjCut can also be considerably increased by pruning

away those areas of the image which are not likely to contain an instance of

an object category (e.g. using low level cues such as colour, similar to [88]).

Such approaches need further investigation.

• The various parameters which define the energy of the Object Category

Specific cdrf (e.g. κ1, κ2, λ and σ) have been set up manually. In our

experiments, we showed that our choice of parameters provides accurate

segmentation for images of several object categories. However, the recent

trend in image segmentation is to learn these parameter values from a set

of segmented training images [3, 59, 76]. Parallel work in object category

recognition has made available large number of pre-segmented images such

as msrc, Sowerby and Pascal voc 2007 datasets. Using these datasets, it

would be interesting to develop parameter learning methods for the Object

Category Specific cdrf model and study their effects on the segmentation

accuracy.

Analysis of Convex Relaxations

• A direct consequence of our analysis was two new socp relaxations, namely

socp-c and socp-q. We showed that these relaxations provide better so-

lutions to the map estimation problem compared to a number of previously

proposed approaches. An interesting direction for future research would be

to devise strategies for obtaining other useful constraints, e.g. linear con-

straints on random variables connected in a clique, which define a smaller

feasibility region than socp-q.

• The class of relaxations considered in our analysis relaxed the variables

Xab;ij , where (a, b) /∈ E (i.e. for non-neighbouring random variables va and

vb), to simply lie in the interval [−1, 1]. It is well known that the sdp

relaxation which constrains all the elements of the matrix X (by specifying

X � 0), provides an accurate approximation for map estimation. However,

the increase in the number of constrained variables in the sdp relaxation

makes it computationally infeasible. A compromise between accuracy and

efficiency could be reached by constraining only a subset of variables Xab;ij ,

where (a, b) /∈ E . Further research is required to determine which of the

above variables should be constrained and which can be left unconstrained

without severely effecting the accuracy of the resulting relaxation.

• We conjectured that the lp-c relaxation (which includes all the constraints

of the lp-s relaxation together with linear cycle inequalities) dominates

the socp-c relaxation. Our experiments in chapter 7 support this conjec-

ture. These empirical results provide enough encouragement to attempt a

193

8.2. Future Work

more theoretical approach towards comparing lp-c and socp-c. Similar

to the analysis in chapter 6, this may lead to further insights about convex

relaxations based methods for the map estimation problem.

Efficient Algorithms for Convex Relaxations

• We extended the trw methods of [46, 101], which maximize the dual of the

lp-s, to efficiently solve a larger class of relaxations. Recently, convergent

optimization methods based on subgradients, which also solve the dual of

the lp-s, have received considerable attention in the literature [49, 80, 81].

Unlike trw-s (and similar to trw-s(lp-c), trw-s(socp-c) and trw-

s(socp-q)), wta is a necessary but not sufficient condition for their con-

vergence. This results in better solutions of some map estimation problems

encountered in Computer Vision [49]. Given their improvement in perfor-

mance, the extension of subgradient based algorithms to lp-c, socp-c and

socp-q requires further investigation.

• Olsson et al. [68] have also recently proposed a subgradient based algorithm

which attempts to solve the dual of the sdp relaxation. The merit of using

this algorithm for Computer Vision (compared to more efficient algorithms

such as trw-s) needs to be explored. It would also be interesting to develop

methods which take advantage of the strengths of the sdp relaxation solver

of [68] within the trw framework (e.g. for solving smaller subproblems

such as (7.3.14) and (7.4.20) using sdp and further increasing the dual by

reparameterization and averaging operation).

• All the methods discussed above (including our algorithms in chapter 7)

provide a dual solution of a convex relaxation (since the convex relaxation

itself is generally hard to solve efficiently). A labelling is then obtained us-

ing the dual solution, e.g. by employing the techniques of [46, 63] described

in chapter 7. However, as mentioned earlier, the labellings obtained by the

primal problems (i.e. the convex relaxation of the map estimation problem)

have many interesting theoretical properties. For example, if the pairwise

potentials of the random field define a Potts model, then the primal solution

of the lp-s relaxation can provide us with a labelling which has a multi-

plicative bound of 2. Further work is required to extend these theoretical

properties to the dual solutions of the convex relaxations.

194

Chapter 9

Appendix

195

Appendix A

Efficient Coarse to Fine Belief Propagation: We now modify the sum-

product bp algorithm to overcome its two main drawbacks: (i) computational

inefficiency; and (ii) large memory requirement. Recall that in sum-product bp,

the message that a variable va sends to its neighbour vb is given by

mab;k ← η1

∑

li∈l



exp(−ψ1
a;i) exp(−ψ2

ab;ij)
∏

vc∈Na\b
mca;i



 . (1)

All messages are initialized to 1. The belief (marginal) of a variable va taking

label li is given by

P ′
a;i ← η2 exp(−ψ1

a;i)
∏

b∈Na

mba;i. (2)

The time complexity of sum-product bp is O(nh2), where n is the number of

random variables in the crf and h is the number of labels. This makes sum-

product bp computationally infeasible for large h. However, since the pairwise

terms of the crf are defined by a non-regular Potts model (see equation (4.3.2)),

we show that the runtime of sum-product bp can be reduced to O(nh′), where

h′ ≪ h2 (using an extension of the method described in [24]). In particular, we

can speed-up the computation of the message mab by precomputing the terms

which are common in mab;k, for all labels lk as follows:

T =
∑

li



exp(−ψ1
a;i)

∏

c∈Na\b
mca;i



 . (3)

To compute the message mab;k for a particular label lk, we now consider only

those labels li which define a rigid motion with lk (see equation (4.3.2)). These

labels are denoted by the set Ra(lk). Specifically, let

Tc =
∑

li∈Ra(lk)



exp(−ψ1
a;i)

∏

c∈Na\b
mca;i



 , (4)

which can be computed efficiently by summing h′ = |Ra(lk)| ≪ h terms. Clearly,

the message mab;k defined in equation (1) is equivalent to

mab;k ← η1 (Tc exp(1) + (T − Tc) exp(ζ∇(ra, rb))) . (5)

Thus the messages can be computed efficiently in O(nh′) time where h′ ≪ h2.

Note that the above speed-up is valid for any random field with non-regular Potts

model pairwise potentials. For example, the same efficiency trick is used to match

the layered pictorial structures model to an image in § 5.5.2.

196

Another limitation of sum-product bp is that it has memory requirements

of O(nh). To overcome this problem, we use a variation of the coarse to fine

strategy suggested in [99]. This allows us to solve O(log(h)/ log(H)) problems of

H labels instead of one problem of h labels, where H ≪ h. Thus, the memory

requirements are reduced to O(nH). The time complexity is reduced further from

O(nh) to O(log(h)nH/ log(H)).

(a) (b)

Figure 9.1: Coarse to fine sum-product bp. (a) An example crf with 12 variables

and h = 20 labels (shown as trellises on top of the hidden nodes). (b) Each set of

5 consecutive labels is grouped into one representative label (shown as a diamond)

thereby resulting in a coarser crf with H = 4 labels. Inference is performed

on this crf using efficient sum-product bp [24]. In this case, the best R = 2

representative labels (shown as red diamonds) are chosen for each variable and

expanded. This results in an crf with 10 labels. The process of grouping the

labels is continued until we obtain the mmse estimate for all variables.

The basic idea of the coarse to fine strategy is to group together similar labels

in the label set l (differing slightly only in translation) to obtain H representative

labels Li (see Fig. 9.1). Let L denote the set of all representative labels Li. We

now define an crf where each variable va can take one of H labels from the

set L. The unary potentials of this crf are given by ψ̂1
a;i = maxlp∈Li

ψ1
a;p and

the pairwise potentials are defined as ψ̂2
ab;ik = maxlp∈Li,lq∈Lk

ψ2
ab;pq. Using sum-

product bp on this crf, we obtain the approximate marginal probability (i.e. the

beliefs) for each variable taking one of the representative labels. We choose the

best R representative transformations (unlike [99], which chooses only the best)

with the highest beliefs for each variable. These transformations are again divided

intoH representative transformations. Note that theseH transformations are less

coarse than the ones used previously. We repeat this process until we obtain the

best transformation (in terms of the mmse estimate) for each variable va. In our

experiments described in chapter 4, we use H = 165 and R = 20. Sum-product

bp was found to converge within 20 iterations at each stage.

197

Appendix B

Refining the shape of the segments by minimizing the energy of the layered repre-

sentation, defined in equation (4.2.4), requires a series of graph cuts (as described

in § 4.3.3). Below, we provide the graph constructions required for both the αβ-

swap and the α-expansion algorithms.

Graph Construction for αβ-swap: The αβ-swap algorithm swaps the as-

signments of certain points belonging to segments sα or sβ. We now present the

graph construction required for performing αβ-swap such that it minimizes the

energy of the layered representation. For clarity, we only consider the case when

there are two neighbouring points a and b, i.e. the ath and bth points in the mat-

tes ΩMα and ΩMβ. The complete graph can be obtained by concatenating the

graphs for all pairs of neighbouring points [48].

Each of the two points a and b are represented by one vertex in the graph (i.e.

vertices Va and Vb respectively). In addition, there are two special vertices called

the source and the sink which represent the segments sα and sβ. Recall that the

unary potential for assigning point a to segment sα is θ1
aα;1. Similarly, the unary

potential for assigning a to segment sβ is θ1
aβ ;1.

The pairwise potentials, given by equation (4.2.11), for all four possible as-

signments of two points a and b are summarized in Fig. 9.2. Here, γ′ik(ai, bk) =

κ2−γik(a, b) is the pairwise potential (i.e. prior term plus contrast term) for assign-

ing points a and b to segments si and sk. The corresponding graph construction,

also shown in Fig. 9.2, is obtained using the method described in [48]. After the

st-mincut of this graph is obtained, the points whose corresponding vertices are

connected to the source belong to the segment sα. Similarly, the points whose

corresponding vertices are connected to the sink belong to the segment sβ.

b ∈ sα b ∈ sβ

a ∈ sα 0 γ′
αβ(a, b)

a ∈ sβ γ′
βα(a, b) 0

Figure 9.2: Graph construction for αβ-swap. The table shown in the left summa-

rizes the pairwise potentials for two points a and b. The figure on the right shows

the corresponding graph construction. Here P1 and P2 are the (1, 2)th and (2, 1)th

(i.e. the non-zero) elements of the table respectively.

198

Graph Construction for α-expansion: The α-expansion algorithm relabels

some points aα to belong to the segment sα. In other words, it attempts to assign

the points which were missed by the initial estimate to the segment sα. Again,

we show the graph construction for only two neighbouring points, i.e. aα and bα
in the matte ΩMα, for clarity. These points are represented using vertices Vaα

and Vbα
respectively.

Similar to the αβ-swap case, the unary potential of assigning aα to sα is θ1
aα;1.

Recall that the unary potential of not assigning a point aα to a segment sα is

given by the constant c1 (see equation (4.2.5)).

The pairwise potentials for all four possible assignments of two points aα

and bα are summarized in Fig. 9.3. Note that in accordance with the energy of

the model, the pairwise potentials are summed over all segments which include

the ath or the bth point on the corresponding mattes. Using the source and

sink vertices to represent labels α and not-α (denoted by ∼ α) respectively the

corresponding graph construction, shown in Fig. 9.3, can be obtained by the

method described in [48]. After the st-mincut of this graph is obtained, the

points whose corresponding vertices are connected to the source belong to the

segment sα. Similarly, the points whose corresponding vertices are connected to

the sink do not belong to the segment sα.

bα ∈ sα bα /∈ sα

aα ∈ sα 0
∑

i,bi∈si
γ′

αi(aα, bi)

aα /∈ sα

∑

i,ai∈si
γ′

iα(ai, bα) 0

Figure 9.3: Graph construction for α-expansion. The table shown in the left sum-

marizes the pairwise potentials for two points aα and bα. The figure on the right

shows the corresponding graph construction. Again, P1 and P2 are the (1, 2)th

and (2, 1)th elements of the table respectively.

199

Bibliography

Bibliography

[1] A. Agarwal and B. Triggs. Tracking articulated motion using a mixture of

autoregressive models. In ECCV, pages III:54–65, 2004.

[2] S. Agarwal and D. Roth. Learning a sparse representation for object de-

tection. In ECCV, pages IV: 113–127, 2002.

[3] D. Anguelov, B. Taskar, V. Chatalbashev, D. Koller, D. Gupta, G. Heitz,

and A. Ng. Discriminative learning of markov random fields for segmenta-

tion of 3D range data. In CVPR, 2005.

[4] F. Barahona and A. Mahjoub. On the cut polytope. Mathematical Pro-

gramming, 36:157–173, 1986.

[5] A. Ben-Tal and M. Bendsoe. A new method for optimal truss topology

design. SIAM Journal of Optimization, 3:322–358, 1993.

[6] J. Besag. Spatial interaction and the statistical analysis of lattice systems.

Journal of Royal Statistical Society, 36, 1974.

[7] C. Bishop. Pattern recognition and machine learning. Springer, 2006.

[8] M Black and D. Fleet. Probabilistic detection and tracking of motion dis-

continuities. IJCV, 38:231–245, 2000.

[9] A. Blake, C. Rother, M. Brown, P. Perez, and P.H.S. Torr. Interactive

image segmentation using an adaptive GMMRF model. In ECCV, pages I:

428–441, 2004.

[10] E. Borenstein and S. Ullman. Class-specific, top-down segmentation. In

ECCV, pages II: 109–122, 2002.

[11] E. Boros and P. Hammer. Pseudo-boolean optimization. Discrete Applied

Mathematics, 123:155–225, 2002.

[12] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University

Press, 2004.

[13] Y. Boykov and M.P. Jolly. Interactive graph cuts for optimal boundary and

region segmentation of objects in N-D images. In ICCV, pages I: 105–112,

2001.

[14] Y. Boykov and V. Kolmogorov. An experimental comparison of min-

cut/max-flow algorithms for energy minimization in vision. PAMI,

26(9):1124–1137, 2004.

200

Bibliography

[15] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimiza-

tion via graph cuts. PAMI, 23(11):1222–1239, 2001.

[16] M. Bray, P. Kohli, and P. H. S. Torr. PoseCut: Simultaneous segmentation

and 3D pose estimation of humans using dynamic graph cuts. In ECCV,

pages II: 642–655, 2006.

[17] C. Chekuri, S. Khanna, J. Naor, and L. Zosin. Approximation algorithms

for the metric labelling problem via a new linear programming formulation.

In SODA, 2001.

[18] F. Cohen. Modeling and Applications of Stochastic Processes. Kluwer, 1986.

[19] D. Cremers and S. Soatto. Variational space-time motion segmentation. In

ICCV, pages II:886–892, 2003.

[20] D. Cremers, N. Sochen, and C. Schnoerr. Mutliphase dynamic labelling for

variational recognition-driven image segmentation. IJCV, 66:67–81, 2006.

[21] E. Dalhaus, D. Johnson, C. Papadimitriou, P. Seymour, and M. Yannakakis.

The complexity of multi-terminal cuts. SICOMP, 23(4):864–894, 1994.

[22] E. de Klerk, D. Pasechnik, and J. Warners. Approximate graph colouring

and max-k-cut algorithms based on the theta function. Journal of Combi-

natorial Optimization, 8(3):267–294, 2004.

[23] P.F. Felzenszwalb and D.P. Huttenlocher. Efficient matching of pictorial

structures. In CVPR, pages II: 66–73, 2000.

[24] P.F. Felzenszwalb and D.P. Huttenlocher. Fast algorithms for large state

space HMMs with applications to web usage analysis. In NIPS, 2003.

[25] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsu-

pervised scale-invariant learning. In CVPR, pages II: 264–271, 2003.

[26] M.A. Fischler and R.A. Elschlager. The representation and matching of

pictorial structures. TC, 22:67–92, January 1973.

[27] P. Fitzpatrick. Advanced Calculus. Thompson Brooks/Cole, 2006.

[28] D. Freedman and T. Zhang. Interactive graph cut based segmentation with

shape priors. In CVPR, pages I: 755–762, 2005.

[29] D.M. Gavrilla. Pedestrian detection from a moving vehicle. In ECCV, pages

II: 37–49, 2000.

[30] A. Gelman, J. Carlin, H. Stern, and D. Rubin. Bayesian Data Analysis.

Chapman and Hall, 1995.

201

Bibliography

[31] M. Goemans and D. Williamson. Improved approximation algorithms for

maximum cut and satisfiability problems using semidefinite programming.

Journal of ACM, 42:1115–1145, 1995.

[32] J. Goldstein, J. Platt, and C. Burges. Redundant bit vectors for quickly

searching high-dimensional regions. In Deterministic and Statistical Meth-

ods in Machine Learning, pages 137–158, 2005.

[33] D. Grieg, B. Proteous, and A. Seheult. Exact maximum a posteriori es-

timation for binary images. Journal of Royal Statistical Society, B(48),

1989.

[34] P. Hammer. Some network flow problems solved with pseudo-boolean pro-

gramming. Operations Research, 13:388–399, 1965.

[35] P. Hammer, P. Hansen, and B. Simeone. Roof duality, complementation

and persistency in quadratic 0-1 optimization. Mathematical Programming,

28:121–155, 1984.

[36] R. Huang, V. Pavlovic, and D.N. Metaxas. A graphical model framework

for coupling mrfs and deformable models. In CVPR, pages II: 739–746,

2004.

[37] H. Ishikawa. Exact optimization for Markov random fields with convex

priors. PAMI, 25(10):1333–1336, October 2003.

[38] N. Jojic and B. Frey. Learning flexible sprites in video layers. In CVPR,

pages I: 199–206, 2001.

[39] A. Karzanov. Minimum 0-extension of graph metrics. European Journal of

Combinatorics, 19:71–101, 1998.

[40] S. Kim and M. Kojima. Second-order cone programming relaxation of non-

convex quadratic optimization problems. Technical report, Tokyo Institute

of Technology, 2000.

[41] R. Kindermann and J. L. Snell. Markov random fields and their applica-

tions. AMS, 1980.

[42] J. Kleinberg and E. Tardos. Approximation algorithms for classification

problems with pairwise relationships: Metric labeling and Markov random

fields. In STOC, pages 14–23, 1999.

[43] P. Kohli, M. P. Kumar, and P. H. S. Torr. P3 & beyond: Solving energies

with higher order cliques. In CVPR, 2007.

[44] P. Kohli and P. H. S. Torr. Efficiently solving dynamic Markov random

fields using graph cuts. In ICCV, pages II: 922–929, 2005.

202

Bibliography

[45] P. Kohli and P. H. S. Torr. Measuring uncertainty in graph cut solutions:

Efficiently computing min-marginal energies using dynamic graph cuts. In

ECCV, pages I: 30–43, 2006.

[46] V. Kolmogorov. Convergent tree-reweighted message passing for energy

minimization. PAMI, 28(10):1568–1583, 2006.

[47] V. Kolmogorov and M. Wainwright. On the optimality of tree-reweighted

max-product message passing. In UAI, 2005.

[48] V. Kolmogorov and R. Zabih. What energy functions can be minimized via

graph cuts. IEEE PAMI, 26(2):147–159, 2004.

[49] N. Komodakis, N. Paragios, and G. Tziritas. MRF optimization via dual

decomposition: Message-passing revisited. In ICCV, 2007.

[50] N. Komodakis and G. Tziritas. A new framework for approximate labeling

via graph cuts. In ICCV, pages II: 1018–1025, 2005.

[51] A. Koster, C. van Hoesel, and A. Kolen. The partial constraint satisfaction

problem: Facets and lifting theorems. Operations Research Letters, 23(3-

5):89–97, 1998.

[52] J. Kruskal. On the shortest spanning subtree of a graph and the travelling

salesman problem. American Mathematical Society, 7(1):48–50, 1956.

[53] M. P. Kumar, P. H. S. Torr, and A. Zisserman. Extending pictorial struc-

tures for object recognition. In BMVC, pages II: 789–798, 2004.

[54] M. P. Kumar, P. H. S. Torr, and A. Zisserman. Learning layered pictorial

structures from video. In ICVGIP, pages 148–153, 2004.

[55] M. P. Kumar, P. H. S. Torr, and A. Zisserman. Solving Markov random

fields using second order cone programming relaxations. In CVPR, vol-

ume I, pages 1045–1052, 2006.

[56] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Prob-

abilistic models for segmenting and labelling sequence data. In ICML, 2001.

[57] J. Lasserre. Global optimization with polynomials and the problem of mo-

ments. SIAM Journal of Optimization, 11:796–817, 2001.

[58] B. Leibe and B. Schiele. Interleaved object categorization and segmentation.

In BMVC, pages II: 264–271, 2003.

[59] A. Levin and Y. Weiss. Learning to combine bottom-up and top-down

segmentation. In ECCV, pages IV: 581–594, 2006.

203

Bibliography

[60] D. MacKay. Information Theory, Inference and Learning Algorithms. Cam-

bridge Unviersity Press, 2003.

[61] D.R. Magee and R.D. Boyle. Detecting lameness using re-sampling conden-

sation and multi-stream cyclic hidden markov models. IVC, 20(8):581–594,

2002.

[62] P. Meer and B. Georgescu. Edge detection with embedded confidence.

PAMI, 23:1351–1365, December 2001.

[63] T. Meltzer, C. Yanover, and Y. Weiss. Globally optimal solutions for energy

minimization in stereo vision using reweighted belief propagation. In ICCV,

2005.

[64] M. Muramatsu and T. Suzuki. A new second-order cone programming

relaxation for max-cut problems. Journal of Operations Research of Japan,

43:164–177, 2003.

[65] K. Murphy. An introduction to graphical models. Technical report, UBC,

2001.

[66] K. Murphy, Y. Weiss, and M. Jordan. Loopy belief propagation for approx-

imate inference: An empirical study. In UAI, pages 467–476, 1999.

[67] G. Nemhauser and L. Wolsey. Integer and combinatorial optimization.

Wiley-Interscience, 1999.

[68] C. Olsson, A.P. Eriksson, and F. Kahl. Solving large scale binary quadratic

problems: Spectral methods vs. semidefinite programming. In CVPR, pages

I: 1–8, 2007.

[69] A. Opelt, A. Pinz, and A. Zisserman. Incremental learning of object detec-

tors using a visual shape alphabet. In CVPR, pages I: 3–10, 2006.

[70] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-

sible Inference. Morgan Kauffman, 1998.

[71] M. Prasad, A. Zisserman, A. W. Fitzgibbon, M. P. Kumar, and P. H. S.

Torr. Learning class-specific edges for object detection and segmentation.

In ICVGIP, 2006.

[72] R. Prim. Shortest connection networks and some generalizations. Bell

System Technical Journal, 36:1389–1401, 1957.

[73] S. Pundlik and S. Birchfield. Motion segmentation at any speed. In BMVC,

pages 427–436, 2006.

204

Bibliography

[74] D. Ramanan and D.A. Forsyth. Using temporal coherence to build models

of animals. In ICCV, pages 338–345, 2003.

[75] P. Ravikumar and J. Lafferty. Quadratic programming relaxations for met-

ric labelling and Markov random field MAP estimation. In ICML, 2006.

[76] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: interactive foreground

extraction using iterated graph cuts. In SIGGRAPH, pages 309–314, 2004.

[77] C. Schellewald and C. Schnorr. Subgraph matching with semidefinite pro-

gramming. In IWCIA, 2003.

[78] D. Schlesinger and B. Flach. Transforming an arbitrary minsum problem

into a binary one. Technical Report TUD-F106-01, Dresden University of

Technology, 2006.

[79] M. Schlesinger. Sintaksicheskiy analiz dvumernykh zritelnikh singnalov v

usloviyakh pomekh (syntactic analysis of two-dimensional visual signals in

noisy conditions). Kibernetika, 4:113–130, 1976.

[80] M. Schlesinger and V. Giginyak. Solution to structural recognition

(MAX,+)-problems by their equivalent transformations. Part 1. Control

Systems and Computers, 1:3–15, 2007.

[81] M. Schlesinger and V. Giginyak. Solution to structural recognition

(MAX,+)-problems by their equivalent transformations. Part 2. Control

Systems and Computers, 2:3–18, 2007.

[82] M. I. Schlesinger and B. Flach. Some solvable subclass of structural recog-

nition problems. In Czech Pattern Recognition Workshop, 2000.

[83] A. Shahrokni, F. Fleuret, and P. Fua. Classifier-based contour tracking for

rigid and deformable objects. In BMVC, 2005.

[84] J. Shotton, A. Blake, and R. Cipolla. Contour-based learning for object

detection. In ICCV, pages I: 503–510, 2005.

[85] J. Shotton, J. Winn, C. Rother, and A. Criminisi. TextonBoost: Joint

appearance, shape and context modeling for multi-class object recognition

and segmentation. In ECCV, pages I: 1–15, 2006.

[86] H. Sidenbladh and M.J. Black. Learning the statistics of people in images

and video. IJCV, 54(1):181–207, September 2003.

[87] L. Sigal, S. Bhatia, S. Roth, M.J. Black, and M. Isard. Tracking loose-

limbed people. In CVPR, pages 421–428, 2004.

205

Bibliography

[88] B. Stenger, A. Thayananthan, P.H.S. Torr, and R. Cipolla. Hand pose esti-

mation using heirarchical detection. In Intl. Workshop on Human-Computer

Interaction, pages 105–116, 2004.

[89] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agar-

wala, M. Tappen, and C. Rother. A comparative study of energy mini-

mization methods for markov random fields. In ECCV, pages II: 16–29,

2006.

[90] H. Taha. Operations research: An introduction. Prentice Hall, 2006.

[91] M. Tappen and W. Freeman. Comparison of graph cuts with belief propa-

gation for stereo. In ICCV, pages 900–907, 2003.

[92] A. Thayananthan, B. Stenger, P.H.S. Torr, and R. Cipolla. Shape context

and chamfer matching in cluttered scenes. In CVPR, pages I: 127–133,

2003.

[93] P. H. S. Torr. Solving Markov random fields using semidefinite program-

ming. In AISTATS, 2003.

[94] P. H. S. Torr, R. Szeliski, and P. Anandan. An integrated bayesian approach

to layer extraction from image sequences. IEEE PAMI, 23(3):297–304, 2001.

[95] P. H. S. Torr and A Zisserman. Feature based methods for structure and

motion estimation. In W. Triggs, A. Zisserman, and R. Szeliski, editors,

International Workshop on Vision Algorithms, pages 278–295, 1999.

[96] A. Torralba, K.P. Murphy, and W.T. Freeman. Sharing visual features for

multiclass and multiview object detection. PAMI, 29(5):854–869, 2007.

[97] K. Toyama and A. Blake. Probabilistic tracking in a metric space. In ICCV,

pages II: 50–57, 2001.

[98] M. Varma and A. Zisserman. Texture classification: Are filter banks nec-

essary? In CVPR, pages II:691–698, 2003.

[99] G. Vogiatzis, P. H. S. Torr, S. Seitz, and R. Cipolla. Reconstructing relief

surfaces. In BMVC, pages 117–126, 2004.

[100] M. Wainwright, T. Jaakola, and A. Willsky. Tree-reweighted belief prop-

agation and approximate ML estimation by pseudo-moment matching. In

AISTATS, 2003.

[101] M. Wainwright, T. Jaakola, and A. Willsky. MAP estimation via agree-

ment on trees: Message passing and linear programming. IEEE Trans. on

Information Theory, 51(11):3697–3717, 2005.

206

Bibliography

[102] M. Wainwright and M. Jordan. Graphical models, exponential families,

and variational inference. Technical Report 649, University of California,

Berkeley, 2003.

[103] M. Wainwright and M. Jordan. Treewidth-based conditions for exactness

of the Sherali-Adams and Lasserre relaxations. Technical Report 671, Uni-

versity of California, Berkeley, 2004.

[104] J. Wang and E. Adelson. Representing moving images with layers. IEEE

Trans. on IP, 3(5):625–638, 1994.

[105] Y. Weiss and E. Adelson. A unified mixture framework for motion segmen-

tation. In CVPR, pages 321–326, 1996.

[106] Y. Weiss and W. Freeman. On the optimality of solutions of the max-

product belief propagation algorithm in arbitrary graphs. IEEE Trans. on

Information Theory, 47(2):723–735, 2001.

[107] T. Werner. A linear programming approach to max-sum problem: A review.

PAMI, 2007.

[108] C. Williams and M. Titsias. Greedy learning of multiple objects in im-

ages using robust statistics and factorial learning. Neural Computation,

16(5):1039–1062, 2004.

[109] J. Wills, S. Agarwal, and S. Belongie. What went where. In CVPR, pages

I:37–44, 2003.

[110] J. Winn and A. Blake. Generative affine localisation and tracking. In NIPS,

pages 1505–1512, 2004.

[111] J. Winn and N. Jojic. LOCUS: Learning Object Classes with Unsupervised

Segmentation. In ICCV, pages I: 756–763, 2005.

[112] J. Winn and J. Shotton. The layout consistent random field for recognizing

and segmenting partially occluded objects. In CVPR, pages I: 37–44, 2006.

[113] C. Yanover and Y. Weiss. Finding the M most probable configurations in

arbitrary graphical models. In NIPS, 2004.

[114] J. Yedidia, W. Freeman, and Y. Weiss. Understanding belief propagation

and its generalizations. Technical Report TR2001-22, MERL, 2001.

[115] A. Yuille. CCCP algorithms to minimize the Bethe and Kikuchi free ener-

gies: Convergent alternatives to belief propagation. Neural Computation,

14(7):1691–1722, 2002.

207

