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Abstract

In this thesis graph spectral methods and kernel methods are combined together

for the tasks of rigid and non-rigid feature correspondence matching and consis-

tent labelling. The thesis is divided into five chapters.

In Chapter 1 we give a brief introduction and an outline of the thesis. In

Chapter 2 we review the main techniques in the literature which are related to

the developments in this thesis. Topics covered include data representation, the

data classification methods, spectral graph matching, and the kernel methods.

Chapter 3 aims at developing a new feature correspondence matching algo-

rithm for rigid and articulated motion. We focus on the point features extracted

from consecutive image frames. Specifically, a graph structure is used to rep-

resent the data-sets, and spectral graph theory is used for the correspondence

localization. The novelty is that a kernel viewpoint is adopted in constructing

the proximity matrix, and a consistent labelling process is incorporated into the

matching process when the objects under investigation undergoes articulated

motion. The algorithm is successfully applied to synthetic data-sets and a group

of feature point-sets extracted from real world image sequences.

Chapter 4 develops a new probabilistic relaxation labelling method, aimed at

a broader range of applications for feature correspondence matching as well as

data clustering. Here again the kernel methods are incorporated into the process,

and the evidence combination and propagation steps are governed by a diffusion

process defined on a support graph. The support graph is defined on the set of

object-label assignments. The problem of consistent labelling thus becomes that

of finding a state vector which gives the desired label probabilities. The newly

developed algorithm is first applied to a toy labelling example which is taken

from two classical relaxation labelling papers. Then the algorithm is applied to

the problems of data classification and feature correspondence matching. In the



feature correspondence matching application, the current label probabilities are

regarded as noisy vector from the original correct one. Thus the process is viewed

as running the diffusion process backwards in time. Experimental results on syn-

thetic and real world data show encouraging results in both of the two cases.

Finally, Chapter 5 concludes the thesis with a summary of the strengths and

weaknesses of the thesis, and finally gives suggestions for future work.
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Chapter 1

Introduction

1.1 The problem

The task of movement behaviour learning is concerned with understanding the

contents of a given image sequence and to provide information of the interest-

ing moving object in the scene. For this purpose, the motion analysis procedure

usually starts with the selection and extraction of image features. This is usually

followed by finding the correspondences between the extracted features in dif-

ferent image frames. After these two steps, further analysis can be performed,

for example, to recover the 3D structure of the object, or the location of objects

in the image frames. However, estimating the motion parameters and the struc-

ture of nonrigid objects by further analysis is not an easy task. To ease the prob-

lems, models are introduced for both the nonrigid objects and the motions that

the objects are undergoing. These models are usually problem-specific and work

under certain constraints. For example, to model the human body, stick figure

models, 2D contour models and volumetric models [3] are used. To model hand-

written digits, spline models are used in [65]. One important and influential ex-

ample of a motion model is the diffusion process introduced by Isard and Blake

in their CONDENSATION algorithm. The “point distribution model” developed

by Cootes et al. in [29, 30] is an alternative way of modeling the motion of de-
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formable objects.

Consequently, the aim of this thesis is to develop methods for locating corre-

spondences between extracted image features using information concerning pu-

tative motion predictions elicited from the features. A key task under investi-

gation in this problem is that of comparing detections in a scene at time t1 with

detections at an earlier time t0. This is approached using two different yet com-

plementary methods, namely, feature correspondence matching and consistent

labelling. When used alone, or when combined together, the two methods pro-

vide an effective way of tracking interesting objects in image sequences.

The main techniques of interest to us in this thesis are spectral graph theory

and kernel methods on graphs. Graph theory has been extensively studied in the

mathematics community for many decades. Graph spectral methods have been

frequently used in sequence analysis problems such as image segmentation [111,

116] and feature correspondence matching [127, 112, 114, 22] over the past two

decades. In fact, spectral graph theory is the first technique that is of interest in

processing feature correspondence matching and unsupervised clustering tasks

[9].

Kernel methods have been applied in statistical learning for problems such

as classification and regression. Successful applications with supervised or un-

supervised learning algorithms based on kernel methods, such as support vec-

tor machines [128, 108], Gaussian processes [85] and kernel PCA [109], can be

found in the literature. They provide a way of applying linear classification or

regression techniques to data in a non-linear way. It also provides a way for non-

linear dimensionality reduction. Due to this ‘nonlinear’ capacity, there has been

increasing interest in kernelizing traditional computer vision and pattern recog-

nition algorithms recently, to develop new algorithms that are more efficient and

robust tasks [108, 109, 81, 11, 28].
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1.2 The objective

The objective of this thesis is to develop new graph spectral matching and re-

laxation labelling methods for the problems of feature correspondence matching

and consistent labelling. The ‘nonlinear’ capacity of kernel methods is of partic-

ular interest here. Therefore the focus of this thesis is to explore kernel methods

for the aforementioned problems. In particular, our first aim is to combine kernel

methods with conventional graph spectral methods for the problem of rigid fea-

ture correspondence matching. This is based on the kernel principal components

analysis (kernel PCA) method developed by Schölkopf, et.al.[109]. With the aid of

a relaxation labelling process as well as kernel PCA, the second aim in this thesis

is to develop a kernelized graph spectral matching algorithm for the problem of

articulated feature correspondence matching.

Relaxation labeling is a powerful technique that was originally developed for

assigning object labels to features extracted from images. It has also been used as

an effective feature correspondence matching technique, e.g., [25, 136]. The sec-

ond original contribution of the thesis is thus to develop a kernelized probabilistic

relaxation labelling method for our consistent labelling and feature correspon-

dence matching tasks. Drawing on the properties of random walks and diffusion

processes on graphs from the literature, our new probabilistic relaxation labelling

method is formularized as a diffusion process on a graph. By taking advantage

of the eigenfunction representation of the kernel matrix, an efficient and effective

relaxation labelling technique is developed.

The new algorithms are designed to accommodate uncertainties such as small

deformation, occlusion, random point missing, and noise. Encouraging and ef-

fective results are thus expected from experiments on both synthetic and real

world data-sets.

3



1.3 Thesis outline

The structure of the thesis is as follows. Chapter 2 first reviews the basic ideas

of data representation in computer vision with an emphasis on graph represen-

tations. Then it provides a review of the main developments of the techniques of

interest in this thesis, namely, spectral graph theory, consistent labelling, and ker-

nel methods. Applications of these methods are also reviewed. Chapter 3 then

presents the first contribution of the thesis, namely, generalized kernel spectral

methods for rigid and articulated feature correspondence matching. The devel-

opment is based on kernel principal components analysis on graphs and ideas

concerning consistent labelling drawn from the literature on relaxation labelling.

Chapter 4 presents a new probabilistic relaxation labelling method. The develop-

ment is based on the idea of applying kernel methods with the diffusion equation.

The state space of the diffusion process is represented by a graph, and the state-

vector represent the probabilities of object-label assignment. The method is then

applied to the problems of data classification and feature correspondence match-

ing. That is, we develop a kernelized relaxation labelling method in a graph

setting for a broad variety of tasks from computer vision and pattern recogni-

tion. Finally Chapter 5 concludes the thesis. The strengths and weakness of the

described work are analyzed, and possible improvements and suggestions for

future research are given.
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Chapter 2

Literature review

This chapter reviews the main research literature related to the problem of motion

behaviour learning in image sequences. The study of this problem has attracted

considerable attention. Generally speaking, it depends on the type of motion and

the structure of the object.

One way of learning the motion behaviour is to use parameterized mod-

els to describe the moving object itself, or to describe the motion of the object.

Examples of the former include the point distribution model for describing de-

formable objects by Cootes, et.al. [30], the “card-board person model” by Ju, Black

and Yacoob for describing a human being [75], and the “snake” model by Kass,

Witkin and Terzopoulos for the representation of deformable objects in images

[79]. Early work on motion analysis from the signal processing literature includes

the Kalman filter [76]. The particle filtering approach was originally developed

by Gordon, Salmond and Smith [51]. In computer vision the CONDENSATION

algorithm developed by Isard and Blake [72] uses a diffusion equation to describe

the motion of moving people in image sequences. Although attractive, model

based object tracking requires prior knowledge of the extracted corresponding

features between each image frame pair. The same requirement exists in many

other approaches for the problem of motion behaviour learning. One example is

the early approach of stereopsis described by Barnard and Fischler in [10]. An-
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other example is the approach of structure and motion recovery by matrix fac-

torization [125, 31, 98] which use landmarks to assist the localization of feature

correspondences across image frames.

However, using landmarks is not convenient or even possible in many situ-

ations. Also tracking corresponding features is not an easy task. The reason for

this is that uncertainties such as noise, occlusion, and outliers are introduced dur-

ing the processes of image formation and feature extraction. Besides, objects that

are of interest are usually not static in image sequences. Instead they undergo

either rigid or non-rigid motions [3]. This chapter focuses on research described

in the literature concerning rigid and articulated motion.

Many approaches have been developed for solving the feature correspon-

dence matching problem. Among these, those based on spectral graph theory

play an important role and are the main interest here. Consistent labelling meth-

ods have already been used effectively in feature correspondence matching [25,

137, 136, 49], as well as in other applications such as scene analysis and edge

detection[9]. Consequently this literature review covers the main techniques and

recent developments in the literature for these two areas. Specifically, an empha-

sis is placed on those techniques which combine kernel methods with various

algorithms in a graph setting. Statistical and machine learning techniques, and

various data representation models are also pertinent to the topic of the thesis.

2.1 Data representation

An important issue in computer vision and pattern recognition is the representa-

tion of data. Roughly speaking, data points are represented either by a collection

of vectors, or by a graph with each graph vertex a data point in the original data-

set and the edges represent affinity relationship. The former representation re-

gards the data points residing in a d-dimensional data space for data points with

d components. It is widely adopted in machine learning tasks.
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Compared with the vector representation, graphs are richer and natural rep-

resentations for data-sets. In addition to each individual data point, the pairwise

relational information contained in a data-set is also represented. In this thesis

the graph representation is adopted, and the emphasis of data representation is

placed on affinity relations.

Among the various graph representations for data-sets, of interest in this the-

sis are those weighted simple graphs. That is, graphs which have no self-loops

or multi-edges, and where each edge in the edge set is characterized by a weight-

ing function. Suppose we have a given graph, denoted by G(V, E), where V =

{v1, v2, . . . , vn} is the finite set of vertices of the graph, and E is the edge-set which

represents the structure and connection of the nodes in the graph. A node pair

(vi, vj) is an element of the edge set E if and only if they are immediate neigh-

bours of each other (denoted by i ∼ j). Given a data-set, an intuitive graph

construction is to take each data-point in the data-set as a vertex of the graph,

and connect the vertices that are immediate neighbours to each other. A weight

function may then be applied to each connection. However, the neighbourhood

relationships are not always at hand and need to be extracted from the data.

Many graph construction methods have been developed in the literature. The

most commonly used include the Gabriel graph, the k-nearest neighbourhood

graph, and the Delaunay graph [73]. Each of these constructions also defines a

neighbourhood system on the graph, and thus the edge set. The Gabriel graph is

defined as a set of point pairs in which an edge has a diametrical sphere (or hy-

persphere in higher dimensions) which does not contain any other points in the

set. The Delaunay triangulation is another widely used technique to construct a

graph representation for a given data-set. In a Delaunay graph, data-points xi

and xj , which are represented by vertices vi and vj in the graph, are connected by

an edge if and only if two cells of the Voronoi tessellation containing these two

points share a common boundary. Both the Gabriel and the Delaunay graphs

have been used in data classification or feature correspondence matching, e.g.,
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[102, 45, 73]. The k-nearest neighbour graph is a more pervasively used repre-

sentation. It is defined as a graph whose edge connections for each vertex are

those k-closest neighbours to the vertex, with the ‘closest neighbour’ measured

by some distance metric. Carreira-Perpiñán and Zemel [23] have a discussion

of various graph constructions for different machine learning tasks, and suggest

that graphs should be adapted locally to the structure of the data.

Once the graph is constructed, further graph theoretic analysis follows. One

way is to generate minimal or maximal spanning trees for the graph [144, 139, 15].

A more frequent used approach is to use matrix representations of the graph. This

approach offers the possibility of using the eigensystem of the graph to perform

analysis. One of the most popular matrix representation for a graph is a ‘prox-

imity’ or ‘affinity’ matrix, or the weighted adjacency matrix. In this thesis we are

interested in weighted graphs. Thus hereafter we use the term ‘adjacency ma-

trix’ and treat the traditional unweighted adjacency matrix as a special case of

adjacency matrix of a graph. Denote the weighted adjacency matrix by W . Its

elements Wij are given by [27]

Wij =





fij if i ∼ j;

0 otherwise

where fij is a weight function evaluated on the edge connecting vertices i and j,

and reflects the strength of the connection. For undirected graphs, fij is symmet-

ric; that is, fij = fji and thus Wij = Wji. Consequently, the matrix W is also sym-

metric. This representation has been used in many computer vision tasks such as

image segmentation [111] and feature correspondence matching [114, 127, 112].

Another pervasively used representation is the Laplacian matrix. Let D =

diag(deg1, . . . , degn) be the diagonal degree matrix of the edge weight matrix

W , where degi =
∑

j Wij is the degree of node i. The Laplacian matrix is then

L = D −W . It is so named as it is commonly regarded as a discrete version of

the Laplace operator on the graph. This matrix is of interest in various tasks such

as spectral clustering, data embedding, and feature correspondence matching. In
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the study of random walks on graphs, the Laplacian matrix also serves as a ma-

trix of the rate of state transitions between each pair of states. It is also called the

Q-matrix in the statistics and probability community. The second smallest eigen-

value of the Laplacian matrix also measures the mixing rate of a random walk.

It is also called the Fiedler value, and its corresponding eigenvector is called the

Fiedler vector. They are of broad interest since the early work by M. Fiedler [44],

mostly in the applications for spectral graph partitioning [120] and spectral data

clustering [131]. An alternative of the above matrix is the normalized Laplacian

matrix of a graph, and is given by L = D−1/2(D −W )D−1/2 [27]. The Laplacian

matrix is closely related to the edge-vertex incidence matrix B [17] The Laplacian

matrix can be factorized into the edge incidence matrices using the relationship

L = BBT (c.f.[27]). And the edge incidence matrix B can be regarded as the

discrete version of a gradient on the graph G.

Another important matrix for a graph, which is of great interest in this the-

sis, is the (one-step) transition matrix P . The elements Pij of this matrix repre-

sent the probability that a random walker moves to a node vj in the next step

given that he is currently at node vi. That is, P governs the discrete time random

walk on the graph G [32]. For weighted graphs, the elements of P are given by

Pij = Wij/
∑

k,i∼k Wik. The matrix P can also be regarded as a special case of the

adjacency matrix, with the matrix elements representing the similarity between

each vertex pair of the given graph. The random walk is of interest in most sci-

entific areas, and this matrix has been frequently used in data clustering [123],

image segmentation [52], network partitioning [113], and VLSI design [54].

In computer vision, the graph representation of an image is usually constructed

by taking its feature points as graph vertices. The edges of the graph then rep-

resent neighbourhood relationships between the vertices. The feature points can

be the complete set of pixels in an image, or it can represent segmental entities

such as edge points, corners, or image regions. In most situations, edges connect-

ing the vertices corresponding to feature points in images are given according

9



to the definition of a neighbourhood system. The graph construction methods

discussed above can also be applied to these image feature point-sets. A simple

and widely used technique for defining a graph is to give each data-point pair

in the data-set a connection; that is, the graph is assumed to be fully connected.

Then one weights this connection by a similarity or dissimilarity measure for

the two feature points. This defines the weighted adjacency matrix for a graph.

Furthermore, a threshold value can also be specified a priori to discard those con-

nections with the smallest similarity values. A commonly used weight function

is the Gaussian wij = e−d2
ij/σ, where dij is the Euclidean distances between two

points xi and xj , and σ is the parameter which controls the meaning of ‘closeness’

or ‘similarity’ between data-point pairs. The matrix representations of the graph

discussed above can thus be easily computed from this weighted adjacency ma-

trix.

2.2 Consistent labelling

Many problems in computer vision and machine learning can be posed as of con-

sistent labelling. Techniques for achieving consistent and unambiguous labelling

have been developed and applied in these areas since the very early stages [40].

Applications of these techniques such as edge detection [80], scene interpreta-

tion [106], image segmentation [60], and data clustering[101], where objects such

as image pixel values, extracted image features, or data samples are assigned to

their corresponding object or group labels are vast in the literature [74]. Among

the large number of algorithms for labelling, of interest here are those techniques

which have successful applications in the computer vision area. In particular, we

are interested in unsupervised or semi-supervised data classification techniques

in machine learning, and those which are based on contextual-constraints and

graph theoretical techniques. This section focuses on graph based unsupervised

and supervised classification techniques, and various relaxation labelling tech-
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niques. Belief propagation is closely related to the spirit of relaxation labelling,

and a brief review of classification using belief propagation is also included.

2.2.1 Data clustering

Data clustering is a general problem in pattern recognition. It is the process of

classifying a given set of data into meaningful groups, by some similarity mea-

sure, where the number of groups may be known beforehand. Thus each data

object is assigned a group label after a clustering process and, data objects within

the same group are more similar than those belong to different groups. Many

techniques have been developed for this problem in the literature [40] under the

name of unsupervised classification. Early approaches of unsupervised data clus-

tering methods include k-means, minimal spanning trees, and nearest neighbour

based hierarchical clustering methods using dendrograms [74]. Later on statis-

tical physics and random walk theories are also used to develop data clustering

methods [67, 15, 54, 124]. When the labels of a small percentage of the data-

points are known, semi-supervised classification methods are used. These two

families of techniques can be applied with little or no alteration to applications in

computer vision, for example, image segmentation (e.g., [52]). Among the above

techniques, of interest in this thesis are graph based techniques. Graph theoreti-

cal clustering approaches can be found in the literature from the early 1970s. One

example is the use of minimal spanning trees [144] for the problem of VLSI circuit

design. Subsequent applications of using spanning trees for data clustering also

exist, see [139].

Random walks are discrete time stochastic processes with a set of countable

states. Their properties have been applied to clustering in various areas. As early

as 1981, Hughes, Shlesinger and Montroll [70] presented a discussion of random

walks which exhibited clustering properties. An early application of random

walk based clustering is its use by Hagen and Kahng for VLSI circuit design [54].

In the machine learning area, Tishby and Slonim [124] used the adjacency matrix
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of a graph as the transition probability model of a discrete time random walk,

and the information loss during the Markov relaxation was used for data cluster-

ing. Recently random walk theory has also been used to develop semi-supervised

classification techniques. For example, Szummer and Jaakkola [123] used the ran-

dom walk technique to cluster “partially labelled data”. To do this they set their

labelled data-points as the absorbing states of the walk and posed the clustering

problem in terms of the probability of reaching one of these states. Yen, et.al. [141]

used random walks on graphs for bipartite data clustering. These methods are

mostly problem specific. Moreover, they do not address the problem of exploit-

ing knowledge concerning the semantic constraints that exist between different

class labels, nor do they use initial confidence in the assignment of class labels.

One exception is the work of Zhu, Ghahramani and Lafferty [147], in which ran-

dom walk theory is used for semi-supervised data clustering in a continuous state

space. Their method also makes use of initial label confidence for each object, but

like most of the data classification techniques, their model only deals with two

possible labels. However, prior knowledge about semantic constraints between

labels and initial label confidence are common in problem domains such as video

surveillance [69] and target tracking [1, 91] where interesting objects are usually

manually specified at the beginning of a data sequence.

While most of the random walk based data classification methods assume a

discrete time transition step with a discrete state space, methods based on con-

tinuous random walk theory can also be found in the literature. The work by

Hughes, Shlesinger and Montroll [70] we mentioned above is an early discussion

of clustering using continuous time random walk. In [140], Yeang and Szum-

mer also assumed a continuous distribution of the state space, and derived the

random walk approach in the limit to a diffusion equation. In fact, it is a com-

mon assumption in the computer vision and pattern recognition community that

given sufficient data points, a graph is capable of representing the underlying

manifold. Correspondingly, the graph Laplacian on a graph converges to a con-
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tinuous Laplace operator on the manifold [11, 64, 117]. In this thesis we also use a

continuous Markov process for the tasks of labelling and feature correspondence

matching.

2.2.2 Spectral graph methods

Graph spectral methods are classical tools for graph partitioning. As early as

1970, Hall [55] pointed out that the second smallest eigenvector of the Lapla-

cian matrix (the “disconnection matrix”) gave the nontrivial optimal solution of

minimizing the overall distances between connected nodes, and this eigenvector

separated nodes into local clusters. Early development of using this eigenvector

for data clustering can be traced back to the work by Donath and Hoffman in the

early 1970s [38, 39]. Shortly after, Fiedler also used the second smallest eigenvec-

tor of the Laplacian matrix to bipartite data-sets [44]. Subsequent applications

can be found in areas such as network partitioning [113], VLSI circuit design [6],

and sparse matrix partitioning [99]. A theoretical analysis of spectral graph par-

titioning by using the Fiedler eigenvector on bounded planar graphs and finite

element meshes can be found in the work of Spielman and Teng [120].

Recently, spectral clustering methods have also attracted widespread interest

in the machine learning community [90, 77, 46, 8, 145]. Spectral methods share

the feature of using a weighted graph to represent the data. They cluster data in

an unsupervised manner using the eigenvectors of the weighted data proximity

matrix for a given data-set. Apart from using the Fiedler vector of a Laplacian

matrix or the largest eigenvector of an adjacency matrix, using multiple leading

eigenvectors is suggested by several researchers [6, 90, 77]. Fischer and Poland in

[46] gave a useful comparison of different spectral clustering methods.

In computer vision, an early application of spectral graph theory for perform-

ing image segmentation is introduced by Scott and Longuet-Higgins [111]. Here,

a proximity matrix H was constructed from the extracted feature points to cap-

ture the similarities between the points. Then the first M eigenvectors of this

13



matrix were used to form a Q matrix which had elements equal to the cosine

angles between the point pairs. These matrix elements indicated whether two

points were in the same group (with a value close to 1) or not (with a value close

to 0). Their experimental results showed good performance for feature grouping.

Later on, Perona and Freeman also developed an algorithm based on graph spec-

tra [96]. They performed spectral clustering by thresholding the components of

the largest eigenvector of an affinity matrix computed from the given data-set.

Weiss [132] reviewed various spectral clustering methods, and proposed using a

normalized adjacency matrix instead of the unnormalized one in the algorithm

of Scott and Longuet-Higgins. A recent interesting example of graph spectral

image segmentation is the normalized cut (Ncut) of Shi and Malik [116]. They

commence from a graph theoretical viewpoint, and defined an objective function

based on the normalized cut quotient. They used the second largest generalized

eigenvector of the graph to approximate the optimum bipartition of the graph.

This eigenvector is in fact the largest eigenvector of the transition matrix of the

graph, and their method is closely related to discrete random walk clustering on

graphs, as analyzed in [86]. Although the Ncut algorithm cut an image into two

segments, multiple segments of an image can be obtained by a recursive applica-

tion of the algorithm. In an attempt to obtain multiple (k > 2) partitions in the

same time, Yu and Shi extended the Ncut algorithm and proposed to use the k

smallest eigenvectors instead of only a single eigenvector [143].

Despite the fact that the above algorithms give very good performances, the

spectral clustering algorithms are heuristic in nature. As a result, the problem of

how to characterize the behaviour of spectral clustering algorithms has attracted

considerable interest in the literature [120, 53, 90, 77]. For example, based on an

analysis of several spectral graph partitioning methods, Spielman and Teng [120]

gave examples of when good spectral partitioning results could be expected on

bounded planar graphs and finite element meshes. By contrast, Guattery and

Miller [53] analyzed when spectral methods gave poor clustering results. To im-
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prove the spectral partitioning and clustering results, Kannan, Vempala and Vetta

proposed a bicriterion to guide the partitioning [77]. However, a full analytical

understanding of spectral partitioning is still unclear. In addition, the use of the

Fiedler vector for partitioning, although successful, still present problems espe-

cially when the data-set is very large. In such cases, the computation of the sec-

ond smallest eigenvector is affected by round-off error and the precision of the

computing machine. Thus the potential for improving spectral methods is still

considerable.

2.2.3 Relaxation Labelling

Relaxation labelling processes are a class of mechanisms that were originally de-

veloped to deal with ambiguities and noise in object labelling. The key element is

an update rule based on the contextual information for each node to be labelled

([71, 130, 80, 58]). They have been used successfully for edge labelling, image

segmentation and feature pattern matching in the computer vision literature for

more than three decades [130, 106, 47, 80, 25, 61, 146]. The origin of the process

can be traced back to the line-labelling technique of Waltz [130] in the early 1970s.

However, interest in developing the theory of relaxation labelling methods and

applying them to pattern analysis tasks still continues [42, 146, 149].

The approaches of relaxation labelling may be classified as stochastic [47] or

deterministic [80, 137, 25]. The difference between them is that in a stochastic

relaxation process, the labelling probability may be chosen stochastically after

some iterations to avoid local minimum which is unavoidable in deterministic

processes. Relaxation processes may also be classified as discrete [130] or contin-

uous [106, 71]. These processes share the common feature of seeking a globally

consistent labelling. The definition of consistency is formally given by Hummel

and Zucker [71]. They also showed that consistency can be achieved using opti-

mization.

Discrete relaxation starts with a complete set of possible labels residing on
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each object. During each iteration inconsistent labels are discarded using a con-

straint filtering process. At convergence the multiple labels may still reside on

single objects. Waltz [130] reports a method for recovering multiple ambiguous

labelling. Hancock and Kittler [57] formulated discrete relaxation labelling as

a maximum a posteriori (MAP). The algorithm was successfully applied to the

problem of edge labelling. An early example of the continuous case is the prob-

abilistic relaxation labelling developed by Rosenfeld, Hummel and Zucker [106].

In [106] the object-label assignments are represented by a probability vector. The

probability vector is updated in a non-linear fashion using a support function to

combine evidence for different object-label assignments. Subsequent work has

refined the process in a number of ways. For instance, Faugeras and Berthod

[43] have posed relaxation labelling as an optimization process. Hummel and

Zucker [71] have shown how relaxation labelling can be viewed as satisfying a

set of variational inequalities. Hancock and Kittler [80] have posed the proba-

bilistic relaxation as Bayesian evidence combination. This makes it different from

the heuristic formulations in previous approaches. This development also allows

support functions to be constructed for a number of different neighbourhood sys-

tems. Pelillo [94] has shown how probabilistic relaxation can be viewed in a game

theoretic setting using the replicator equations. Christmas, Kittler and Petrou [25]

developed a probabilistic relaxation framework for the specific problem of at-

tributed relational graph matching. Using binary attribute relations, they have

successfully applied relaxation labelling to the matching of features extracted

from image pairs. A more recent example is the work by Zheng and Doermann

[146] in which the process was used to aid the task of feature correspondence

matching.

In relaxation labelling, it is common that objects being labelled are considered

as connected by a network (with neighbourhoods) and viewed as a graph with

nodes the objects and the arcs the compatibility relationships between nodes. In

[71], the neighbourhood system is defined as the whole object set and the sup-
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port for a label λ on object i is computed from all the remaining objects in the

network. In [80], the neighbourhoods are distinguished as if whether they are di-

rectly interacting or non-interacting objects. The support comes only from those

objects that are directly interacting. In the case of image labelling, the neigbhour-

hoods are chosen to lie in a a 3 × 3 window centred at the pixel of interest. This

significantly reduces the computational overhead.

Belief propagation [93, 131, 122] is also a local evidence combination and prop-

agation process that is widely used in machine learning. One of the attractive

features of belief propagation networks is that they can be used for Bayesian in-

ference. To construct belief networks Markov properties are usually assumed. As

a result each node in the network depends only on its immediate parent nodes,

and is independent of the nodes in the causal past given the current immedi-

ately connected (parent) nodes. An interesting example is given by Weiss in [131]

where belief propagation is used for the task of image interpretation. An analysis

of the relationship between classical relaxation methods based on pairwise arith-

metic support and belief propagation is also included. An advantage of belief

propagation over traditional relaxation labelling is that experimentally its rate of

convergence is demonstrated to be faster. However, more complex relaxation la-

beling methods based on product support also converge more rapidly than those

based on simple arithmetic support [80, 62].

2.3 Feature correspondence matching

2.3.1 The problem of feature correspondence matching

Generally speaking, the problem of feature correspondence matching is to find

a one-to-one correspondence of each feature point from the model image in the

data image. Ideally the process should also be capable of detecting outlier feature

points from either of the image frames being matched. The features could be the

detected interesting points, edge segments, corners, or other meaningful objects
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in an image. The difficulties in solving the feature correspondence problem lie in

the fact that uncertainties are unavoidable in the process of feature detection. For

example, the camera used to capture the images, or the process of digitizing the

images fequently introduce noise into images and this noise affects the accuracy

of feature extraction. In addition, the feature extraction algorithms themselves

also inevitably introduce uncertainties. Even if these processes are accurate, out-

liers and occlusions may still appear (and is usually the case in real world im-

ages). Besides, the objects are usually not static in different image frames. They

may undergo rigid or nonrigid motion.

The idea of correspondence matching is to use the invariant properties of

given unique features that are most similar under changes in viewpoint. The

invariants are usually related to the object motion type which can be either rigid

or non-rigid [2, 3]. In rigid motion, no deformation of the object will be detected.

While only the rotation and translation are present, the relative distances between

any two points on the object will be preserved. Because of these properties, it is

not too complicated to model the shape and the motion of a rigid object. The

problem of nonrigid motion analysis is generally harder than the rigid case since

in addition to translation and rotation, there are additional geometric transfor-

mations present. Here we are particularly interested in articulated motion [2, 3].

Henceforth, we will use features extracted from objects that undergo affine rigid

or articulated motion. For rigid motion, the Euclidean distance between two fea-

ture points is the most frequently used measure. For nonrigid motion, the mea-

sure is usually combined with a motion model. Other properties have also been

used, for example, the relative position with respect to other features, the struc-

ture of the features, pixel intensity values, the shape, colour, or texture of the

features have all been used in the literature [10, 110, 25, 107].
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2.3.2 Graph spectral methods for correspondence matching

The literature contains several examples of using the eigenvalues and eigenvec-

tors of point affinity matrices to locate the one-to-one correspondences between

feature point-sets. These methods show the common feature of commencing

from constructing a matrix representation of the given point-set using the dis-

tance between point features. This is similar to the representation used in spec-

tral graph partitioning. The idea underpinning spectral methods is to embed

point-sets into a common eigenspace, and to find correspondences by performing

alignment in this space. This is usually accomplished by applying the eigende-

composition techniques to the point affinity matrix.

The work by Umeyama ([127]) is an early example of attempting to use eigen-

decomposition to find the one-to-one correspondences between point-sets. The

work studies the weighted graph matching problem, where the graphs can either

be directed or undirected. A weighted adjacency matrix is chosen as the graph

representation: A = [Aij ], Aij = w(vi, vj) if i 6= j, and Aij = 0 otherwise, where

vi, vj are the ith and jth vertices of the graph. Umeyama tried to find a permu-

tation matrix P that minimized the quantity J(P ) = ‖PAGP T − AH‖2, where

AG and AH were adjacency matrices of undirected graphs G and H , respectively.

Umeyama showed that the permutation matrix P could be obtained by minimiz-

ing tr(PUHUG), where UH and UG were the absolute matrices of the left singular

vectors of AH and AG, respectively. He also showed that by constructing the cor-

responding Hermitian matrices from the adjacency matrices of graphs G and H , a

nearly optimal solution for the permutation matrix could also be obtained for the

case of directed graphs. The proposed method required that the two graphs had

the same number of nodes and the method worked well when the two graphs

were isomorphic or nearly isomorphic.

Scott and Longuet-Higgins ([112]) adopted a different approach to finding

point correspondences by calculating matrix operations. They located feature

correspondences by first building an inter-image proximity matrix by applying a
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Gaussian weighting function to the Euclidean distances between feature points

in the different images being matched. Correspondences were located by per-

forming singular value decomposition on this inter-image proximity matrix. This

method failed when the rotation or scaling between the images being matched

was large.

To overcome this problem, Shapiro and Brady ([114]) constructed intra-image

proximity matrices for the individual point-sets being matched with an aim to

capturing relational image structure. The eigenvectors of the individual proxim-

ity matrices were used as the columns of a modal matrix. Correspondences were

located by comparing the rows of the modal matrices for the point-sets under

match. This method can be viewed as projecting the individual point-sets into an

eigenspace, and seeking matches by locating for closest point correspondences.

To make the algorithm more robust, Shapiro and Brady used the eigenvalues to

scale their corresponding eigenvectors and place more emphasis on the more sig-

nificant eigenvectors.

A common weakness with existing spectral methods is that they are particu-

larly sensitive to structural variations in the point-sets. Carcassoni and Hancock

have attempted to improve the robustness to point-jitter by using robust error

kernels instead of the Gaussian [22]. They have overcome problems due to differ-

ences in the structure of the point-sets by using spectral clusters [21]. Kosibov and

Caelli [18] have extended Shapiro and Brady’s method by scaling the eigenvec-

tors, and seeking correspondences by searching for matches that maximize the

inner product of the normalized eigenvectors. A more sophisticated approach

which allows for rotation and scaling in the eigenspace is to apply multidimen-

sional scaling to the individual point-sets, so as to preserve their relational ar-

rangements, and to seek correspondences by performing Procrustes alignment in

the eigenspaces [83].
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2.3.3 Correspondence matching by relaxation labelling

Another efficient way of finding feature correspondences between two images is

to use relaxation labelling methods [25, 137, 45, 35, 4, 92]. The idea underlying this

approach is that by taking advantages of the relational constraints or contextual

information, data-points which have a similar context or neighbourhood support

can be considered as corresponding point pairs in the two images.

Christmas, Kittler and Petrou [25] have developed a probabilistic relaxation

process for the structural matching problem. In their work, each feature object

is represented by a unary measurement xi which normally takes the form of the

object i’s coordinate values in an appropriate coordinate system, and a binary

measurementAij which represents the relationship between object i and object j.

The support function in their updating function has the sum-product form, and

includes the binary measurements A. The density function p(Aij|θi = ωα, θj =

ωβ) is interpreted as the compatibility coefficients for label ωα on object θi with a

label ωβ assigned to its neighbour θj . Christmas, Kittler and Petrou claimed that

their approach was suited to many-to-one matching. The method operated with

different feature-set sizes. By using binary measurements in the support function,

matching performance was improved.

In contrast with Christmas, Kittler and Petrou’s probabilistic relaxation ap-

proach, Wilson and Hancock [137] have solved the structural matching problem

using discrete relaxation labelling. A probability distribution for the relational

errors that occur when there is significant structural corruption in the data-sets

is included to improve the matching performance. To overcome the problem of

outliers, measurement errors and other uncertainties, and to render the matching

process more robust, relaxation labelling has been enhanced by using additional

information. Cross and Hancock developed a dual-step EM algorithm in [35] for

solving the correspondence matching problem and recovering the transformation

matrix simultaneously. A probabilistic relaxation labelling process is included for

gating the matching of the two point-sets under a transformation matrix. The re-
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laxation process successfully computes the best correspondence matching and

provides a basis for the entire correspondence, structure and motion recovery

process. In the work by Pajares [92], the probabilistic relaxation labelling pro-

cess was worked in conjunction with the fundamental matrix and epipoles for

the problem of stereo image matching.

Recently, Ahmadyfard and Kittler [4] have applied a probabilistic relaxation

technique to object recognition. They use affine invariant image regions seg-

mented from images using the colours of the image pixels and the quantities are

normalized to improve the robustness. Each feature-set is first represented by

an attributed relational graph (ARG). Different object models are composed into

a single graph representation. As in [25], in addition to unary measurements,

binary measurements are also used in combining support from neighbourhood

objects. To overcome problems of complexity, the admissible labels for each object

in the scene are pruned before each iteration. A more recent application of using

relaxation labelling for point feature correspondence matching can be found in

the work by Zheng and Doerman [146].

2.3.4 Other correspondence matching methods

Apart from graph spectral methods and relaxation labelling, there are many alter-

native methods developed for the problem of feature correspondence matching.

The EM algorithm is a natural choice for point pattern matching due to its capac-

ity to deal with incomplete data. As a result there are many attempts to perform

correspondence matching using the EM algorithm [35, 83, 36, 20, 84]. These ap-

proaches usually aim to recover transformations as well as locating the feature

correspondences.

An early example of using the EM algorithm for feature correspondence match-

ing is the work by Cross and Hancock [35]. In their work a Bayesian probabilistic

framework is first built to cast the point matching problem into a modified EM

algorithm. They refer to it as the dual-step EM algorithm. The approach simulta-
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neously finds point correspondences and recovers the transformation matrix un-

derlying the motion. The transformation matrix is defined for the feature point

set from the model frame to the target frame. Commencing from an intial set of

values, in each E-step a new expected log-likelihood value is computed from the

resulting transformation matrix of previous step and the probability of feature

point correspondences. In each M-step, new parameters are computed by max-

imizing the objective function. The correspondence probabilities are computed

in the E-step. As mentioned above, a relaxation labelling process is incorpo-

rated into the updating processes to gate the contributions to the expected log-

likelihood function. Carcassoni and Hancock [22] later extended this approach

by using spectral information in the gating function.

Luo and Hancock [84] have also used the EM algorithm for solving the point

pattern matching problem. Commencing from a probability distribution for match-

ing errors, the graph matching problem is posed as a maximum likelihood prob-

lem and is solved using the EM algorithm. The aim is to accommodate signifi-

cant levels of structural corruption. A singular value decomposition approach is

adopted for finding the correspondences among the two data-sets. Another in-

teresting correspondence matching method is the work by Dellaert, Seitz, Thorpe

and Thrun [36] where the feature correspondences, the point structure and the

camera motion are recovered simultaneously by using the EM algorithm.

Random walk theory has also been used to solve the correspondence match-

ing problem. The idea is to locate correspondences by comparing the random

walks (or their properties) on the graph. One example is the work of Robles-

Kelly and Hancock [104] which compares the strings generated by two random

walks on different graphs. Another example is the work by Qiu and Hancock

[100] in which a spanning tree is constructed on the graph, and commute time is

used as a similarity measure for the two graphs.
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2.4 Kernel methods

Kernel methods have been attracting increasing interest recently in efforts to im-

prove classical pattern analysis methods [109, 108, 81, 11, 28, 34, 8]. There are a

number of reasons for this. Firstly, kernel methods are elegant and allow hitherto

formally opaque techniques to be understood in a more transparent geometric

way. Secondly, they frequently admit the use of eigenvector methods to locate

the required solution. Finally, they offer efficiency advantages in the sense that

using a kernel function takes the advantage of utilizing a high or even infinite

dimensional space without the curse of dimensionality. A large variety of ker-

nel based algorithms have been developed in the machine learning community

for tasks such as classification, regression and dimensionality reduction. For ex-

ample, support vector machines (SVM) [128], Gaussian processes [85], and kernel

principal components analysis (kernel PCA) [109] are all effective kernel methods

for various learning tasks. Applications of these methods in the computer vision

area are also increasing in the literature. In the following review, first a general

description of kernel methods in machine learning is given, then kernel func-

tions with dynamic properties on graphs are reviewed. This section ends with

a general discussion of applications of kernel learning methods in the literature

including those in the computer vision area.

2.4.1 The kernel methods

Kernel methods usually involve a first step of applying a kernel function K(xi,xj)

to each observed data pair (xi,xj) to form a Gram matrix of the observed data

set. In this way, the original data are implicitly mapped into a higher, possibly

infinite, dimensional feature space. That is, the operation with a kernel function

can be regarded as a mapping T : x 7→ φ(x) from the original data space R
d to a

new space F. The kernel function acts equivalently as a dot product on each data

pair in the feature space F; that is, K(xi,xj) = 〈(φ(x), φ(xj)〉. By this operation,
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it is expected that the unknown intrinsic structure of the data can be uncovered

in the new feature space. After the mapping, a second step is to apply various

machine learning techniques to the data in the new feature space. The mapping

operation T could be linear, as in early traditional approaches. But for real world

data, linearity does not always exist. Of more interest thus is to develop nonlin-

ear mappings and to provide good embedding for various data in a new feature

space.

A problem when choosing the function K(xi,xj) is that not every function

is guaranteed to give a valid feature space. One way of searching for a valid

kernel function is to draw on Mercer’s theorem [128] which states that any con-

tinuous symmetric function K(xi,xj) that is positive semidefinite is ensured to

be a kernel for some valid feature space. That is, any positive semi-definite

and symmetric function K(xi,xj) can be written in the form of a dot product

K(xi,xj) = 〈φ(xi), φ(xj)〉. The original data can then be regarded as been mapped

into a Hilbert space characterized by the dot-product. This provides a very flexi-

ble way of choosing the kernel mapping function.

The kernel function can also be regarded as a similarity or dissimilarity func-

tion in measuring the closeness of two data points. A great advantage, and in

fact the original motivation, of using kernel functions is to represent the data by

a group of simpler and more representative functions, referred to as the eigen-

functions of the kernel function. This is equivalent to performing an orthogonal

transformation on the original data which transfers the data from the original

space into another space spanned by the corresponding orthogonal basis. Viewed

from the perspective of data classification, the new representation separates the

original data in a way that the within class distances are made much smaller

than the between-class distances. A good example of this behaviour is the kernel

Fisher discriminant [87]. Usually a linear classification technique can be applied

in the kernel space, and this gives better results than those obtained in the original

space.

25



2.4.2 Kernels on graphs

Kernel methods provide promising techniques for a vast number of machine

learning tasks, and given that graphs are natural representations of objects in

the real world, it is of obvious interest to combine the two techniques together.

Recently there has been interest in seeking effective kernels for graph represen-

tations of data [118, 81, 124, 63]. In fact, for discrete data samples a graph rep-

resentation is implicitly included in almost all kernel based learning methods.

The Gram matrix obtained from a kernel function is just the proximity matrix

of the graph on the data-set. Recent efforts at designing kernels which exploit

the discrete structure of the data, include that of Haussler who has developed a

convolution kernel for structures such as strings, trees, and graphs [63].

The diffusion kernel developed by Kondor and Lafferty [81] takes advantage

of the fact that the exponentiation of a symmetric matrix always gives a sym-

metric and positive semidefinite matrix to construct kernel matrices. Further-

more, this construction satisfies the diffusion equation, giving good properties

and meaningful interpretations in terms of heat diffusion on a graph.

Random walk theory and other Markov processes have also been used to de-

velop new kernel methods for data represented by a graph. In [24], Chapelle,

Weston and Schölkopf used the radial basis function (RBF) kernel matrix as the

transition matrix of a random walk. They used this to construct new kernels by

transforming the eigen-spectrum of the RBF kernel matrix (that is, the affinity

matrix). They also showed the connections between the random walk kernel and

various spectral clustering methods. This construction of new kernels is central

to other work too. For example, Smola and Kondor [118] established a connec-

tion between regularization theory and Laplace operators on graphs. They pro-

vide transformation functions which give the diffusion kernel as a special case.

Belkin and Niyogi [12] also constructed kernels which was a transformation of the

affinity matrix spectrum. More recently, Zhu, Kandola, Ghahramani and Lafferty

[148] developed similar methods to obtain new kernels by performing transfor-

26



mation on the eigenspectrum of the Laplacian matrix of a graph representation.

The kernel was then used for developing a semi-supervised learning method for

data classification.

2.4.3 Applications

Applications of kernels on graphs can be found both in the machine learning and

in the computer vision literature. In machine learning, kernel based clustering

methods or semi-supervised learning by kernel methods are enormous [13, 24,

129, 123]. For example, Weston, et.al. [133] performed semi-supervised learning

for protein classification by improving the cluster kernels proposed by Chapelle,

Weston and Schölkopf [24], and Szummer and Jaakkola [123]. Another example

is the work by Vert and Kanehisa [129] which applies the diffusion kernel to the

problem of biological data analysis.

Kernel methods can also be used as a way of dimensionality reduction. An in-

teresting development is kernel PCA developed by Schölkopf, Smola and Müller

[109]. Conventional PCA provides a linear orthogonal transformation of the data

from a high dimensional space to a low dimensional one which maximally pre-

serves the variance of the original data. This is done by computing the eigenval-

ues and eigenvectors of the covariance matrix, and using the first few normal-

ized eigenvectors of the covariance matrix as the principal projection axes for the

training data. The method minimizes the residuals of the data points projected

into the common eigen subspace, and thus gives an optimum representation of

the original data in the projection space. Kernel PCA [109] can be regarded as a

generalization of conventional PCA from a linear to a non-linear transformation

space. In the literature, it has been shown to provide a better way of recover-

ing the underlying principal components of the given data, see for example, the

de-noising application in [88]. The main difference between kernel PCA and con-

ventional PCA is that kernel PCA first applies a kernel function K(xi,xj) on each

data-pair of the given data-set, which is equivalent to a transformation function
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T : x 7→ Φ(x) to map the data from the low dimensional space into a new feature

space F of higher, possibly infinite, dimension. An eigendecomposition is then

performed to obtain the principal components of the feature space and map the

data to a lower dimensional space. This gives kernel PCA the property of extract-

ing non-linear features from the data-set and makes it a powerful tool in many

pattern analysis applications. The kernel function here plays an important role in

kernel PCA. The most frequently used kernels are Gaussian kernels, polynomial

kernels, and sigmoid kernels. However, the Gaussian kernel and the polynomial

kernel are of particular interest in this thesis because of their invariance proper-

ties under rigid transformation and reflection.

Since kernel PCA provides a flexible way of embedding a given data-set into

a new feature space according to the properties of the data, it provides a po-

tentially important pre-processing step for many computer vision and pattern

recognition tasks. A natural development would be to combine graph spectral

methods and kernel PCA to develop new algorithms. In fact, such developments

can already be found in the literature, especially for the task of data classifica-

tion. The kernel Fisher discriminant analysis method developed by Mika, et.al.

[87] is an attempt to combine kernel methods with traditional learning methods.

It can also be used as a method for data dimensionality reduction. Brand and

Huang [16] have analyzed the relationship between kernel methods and spectral

clustering methods, and have developed a new method based on a polarization

theorem for spectral embedding and clustering. They have viewed the affinity

matrix as a kernel function K(xi,xj), and the mapped feature space was repre-

sented in a polar form. The eigenvectors and eigenvalues were assumed to be

sampled from the Fisher-Bingham distribution. Their experiments on “challenge

problems” show interesting results for data clustering and embedding. Bengio,

et.al. [14] have also noticed the equivalence of kernel PCA and spectral cluster-

ing. Its connection with the Nyström method has been pointed out by Williams

and Seeger [134]. The technique is used to solve the out-of-sample problem using
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kernel spectral methods with encouraging experimental results.

2.5 Conclusions

We have reviewed the main developments in the literature for the problems of

consistent labelling and feature correspondence matching, with emphases on spec-

tral graph theory, probabilistic relaxation labelling, and kernel methods.

Despite their heuristic nature, from the review, first of all we can have the

conclusion that graph spectral methods are promising in a wide area of scien-

tific research, including VLSI circuit design, network partitioning, data cluster-

ing, and feature correspondence matching. Interests in developing new spectral

methods are still increasing. However, their ability to cope with structural dis-

tortion together with their heuristic nature prevent them from being applied to

more difficult tasks.

Secondly, we conclude that consistent labelling techniques were also of great

interest in the computer vision and pattern recognition literature. The labelling

techniques themselves are very useful as they can be applied to solving tasks such

as scene labelling, object recognition, and data clustering. More interesting is the

fact that they can be combined with other techniques to provide more efficient

solutions for difficult problems. For example, relaxation labelling utilizes the se-

mantic constraints contained in the given object labels and thus provide more

information.

Finally, we conclude that kernel methods are attracting considerable inter-

est in computer vision and pattern recognition, as well as in machine learning.

Their nonlinearity property offers the potentials for developing new algorithms

for more “challenging” data analysis tasks. The flexibility choice of kernel func-

tion makes it possible to bring an almost unlimited variations into kernel meth-

ods. Graph kernels, especially those based on random walks and diffusion pro-

cesses on graphs have already shown their promise as tools for analysing desired
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data structures. We thus believe that by combining graph spectral theory, ker-

nel methods and consistent labelling, more challenging object labelling and fea-

ture correspondence problems including our nonrigid motion behaviour learning

problem, can be solved with satisfactory results.
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Chapter 3

Kernel spectral feature

correspondence matching

This chapter investigates spectral approaches to the problem of point pattern

matching. Two contributions are made. First, we consider rigid point-set align-

ment. Here we show how kernel principal components analysis (kernel PCA) can

be effectively used for solving the rigid point correspondence matching problem

when the point-sets are subject to outliers and random position jitter. Specifically,

we show how the point-proximity matrix can be kernelised, and how spectral

correspondence matching can be transformed into one of kernel PCA. Second,

we turn our attention to the matching of articulated point-sets. Here we show

how label consistency constraints can be incorporated into the definition of the

point proximity matrix. The new methods are compared with those of Shapiro

and Brady [114] and Scott and Longuet-Higgins [112], together with multidimen-

sional scaling [33]. Experiments on both synthetic and real world data are pro-

vided, with encouraging results.
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3.1 The problem

The idea in this chapter is to allow label consistency constraints to be incorpo-

rated into the spectral point correspondence process. Specifically, the objects we

are interested in here undergo articulated motion between image frames. That

is, the objects under investigation are composed of rigid components, with each

rigid component has its own rigid motion, but the overall motion is non-rigid.

We start from the problem of objects undergoing rigid motion, and later on this

is treated as a special case of our articulated motion process.

Suppose that feature points are already extracted from each image frame. In

each data-set the feature points are given in the form of Y = {y1, . . . ,yn} and

X = {x1, . . . ,xm} for the data point-set and the model point-set, respectively.

The points xi ∈ X, i = 1, . . . , m are represented by their image co-ordinate val-

ues; that is, xi = (xi1, xi2). Those of yi ∈ Y, i = 1, . . . , n are also represented by

their respective image co-ordinates. Furthermore, for non-rigid objects a label

probability vector is also attached to each feature point. This label information

specifies to which rigid component each feature point is likely to belong. Assume

there are l labels in each feature point-set, which represent the l rigid components

possibly existing in each image frame. Then an image point xi can be assigned

to each label ωj ∈ Ω, where Ω = {ω1, . . . , ωl}, with a probability. Denote it by

P (θi = ωj). Then the vector p(θi) = (P (θi = ω1), . . . , P (θi = ωl))
T repre-

sents the probability of assigning each of the possible labels to the point, with

0 ≤ P (θi = ωj) ≤ 1, and
∑l

j=1 P (θi = ωj) = 1. The collection of these label prob-

ability vectors F = {p(θ1),p(θ2), . . . ,p(θn)} represents the label probability dis-

tribution over the entire point-set. Our ultimate aim is to locate correspondences

between two point-sets on the basis of the above-mentioned label probability in-

formation and the theory of graph spectra.

The idea underpinning spectral correspondence matching methods is to em-

bed feature point-sets into a common eigenspace, and to find feature correspon-

dences by performing alignment in this space. The key idea is that of finding the
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appropriate function which captures the essential properties of the given data-set

which should also be robust under uncertainties such as outliers, random posi-

tion jitter, occlusion, etc., and be able to identify the common eigenspace. Also the

captured properties should be common in both data-sets. The problem of how to

select the best kernel function is a topic that has recently attracted considerable

interest in kernel learning theory. The development of kernel PCA [109] provides

us with a theoretically sound way of improving the existing spectral point pat-

tern matching algorithms since it shares many features in common with spectral

graph theory.

When the objects being tracked are not rigid, more considerations are re-

quired. In this chapter we intend to take advantage of the semantic relationships

between different rigid components. The idea is that by utilizing the consistency

constraints that are contained between rigid components, more effective match-

ing results can be obtained. To do this we draw ideas from probabilistic relaxation

labelling [106, 80, 95]. We characterize each point by augmenting the positional

information with a vector of label probabilities. In addition, the arrangement of

the points is represented using a Gaussian point proximity matrix. First we show

how the point proximity matrix can be incorporated into the definition of the sup-

port function for relaxation labelling. In this way when the label probabilities are

updated, then the strengths of the proximity relation are brought to bear on the

computation of label support. Next we show how the label probabilities can be

used to refine the point correspondence process. Here a kernelized version of the

Shapiro and Brady algorithm is used. The label probabilities are used to refine the

kernel matrix which will be used to locate point correspondences. The matching

process is realized in an iterative fashion where there are interleaved steps for

label probability update and for point correspondence matching. In both of the

rigid and articulated cases, we focus in detail on Gaussian and polynomial ker-

nels because of their transformation invariant properties.
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3.2 Graph spectral matching

Graph spectral methods for point pattern matching solve the point correspon-

dence problem by first constructing a graph representation for each data-set. Each

graph node corresponds to an image feature point. Each edge corresponds to

a spatial relationship between two feature points at the end of the edge. After

graph construction, we represent each point-set by a matrix on the basis of the

graph. We then find feature correspondences using matrix eigendecompositions.

These methods aim to embed the similarity (or dissimilarity) properties of the

original data into a common space in which correspondence matching can be

performed. For the case of matching feature points undergoing rigid motion, the

two essential ingredients are the similarity function and the embedding proce-

dure. Usually the similarity properties are regarded as weights of the edges, and

are expressed in the form of a proximity matrix W . In the literature both the ad-

jacency matrix and the Laplacian matrix have been used as the proximity matrix

for this problem. The elements Wij of the edge weight matrix W represents the

similarity relationship between feature points xi and xj and various similarity or

dissimilarity measurement functions can be used.

Our aim in constructing the matrix representations for the point-sets is to pro-

vide a basis for the correspondence process. As we are dealing with objects sub-

ject to transformations such as translation, rotation, scaling, and reflection as well

as small deformation, it is desirable for the similarity function to be invariant un-

der these transformations. It is known from geometry that the Euclidean distance

is invariant to the similarity transformation. Hence, similarity functions under-

pinning many existing methods are related to the Euclidean distance between

feature points. One example is the pervasively used Gaussian function which

has also been used in [114, 112]:

Wij = e−d2
ij/σ (3.1)

where dij is the Euclidean distance between the two feature points xi and xj ,
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and σ is a constant parameter. Another interesting example of the invariance of

the rigid transformation, is the directional properties of the feature points. This

property can also be considered as a good candidate for constructing a suitable

similarity function for spectral point pattern matching.

In this chapter we are interested in using the label information in the weighted

adjacency matrix for non-rigid motion. That is, we propose to use the label prob-

ability values for the problem of articulated feature correspondence matching.

The label of each feature point is also used to define the neighbourhoodship of it

with other points when building the matrix representation.

3.3 Kernel spectral methods

When viewed from the perspective of kernel principal components analysis (ker-

nel PCA, [109]), applying a dissimilarity or similarity function to the original data

set is equivalent to the process of using a kernel function to map the data into a

higher, possibly infinite, dimensional space. Moreover, this mapping interpolates

the data in the new space according to their transformation invariant properties

when an appropriate kernel function is applied. From this perspective, kernel

PCA appears to provide us with a sound theoretical basis for spectral pattern

matching.

Kernel PCA [109] can be regarded as a generalization of conventional princi-

pal components analysis (PCA) from a linear to a non-linear transformation. In

the literature, it has been shown to provide a better way of recovering the under-

lying principal components of the given data, e.g., the de-noising application in

[88]. Conventional PCA provides an orthogonal transformation of the data from

a high dimensional space to a low dimensional one which maximally preserves

the variance of the original data. This is done by first computing the eigenvalues
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and eigenvectors of the covariance matrix

C =
1

M − 1

M∑

i=1

(xi − x)(xi − x)T ,

where M is the dimension of the given data-set. Then the first N normalized

eigenvectors (where N ≤ M and the eigenvalues are sorted in descending mag-

nitude order) of the covariance matrix are used as the principal projection axes for

the data. Since the method minimizes the residual covariance of the data points

projected into the common eigen-subspace, it thus gives an optimum representa-

tion of the original data in the chosen projection space.

The main difference between kernel PCA and conventional PCA is that kernel

PCA first uses a function T : x 7→ Φ(x) to map the data from the low dimen-

sional space into a new feature space F of higher, possibly infinite, dimension.

Conventional PCA is then performed on the transformed data matrix to obtain

the data projection. This gives kernel PCA the property of extracting non-linear

features from the data-set, and makes it a powerful tool in many pattern analysis

applications. In practice, the mapping is performed implicitly by choosing a suit-

able kernel function K(xi,xj) for the data points xi and xj . Given that the chosen

function K(xi,xj) is continuous and symmetric, and also satisfies the positive

semidefinite condition

∫

X×X

K(xi,xj)f(xi)f(xj)dxidxj ≥ 0, (3.2)

it is ensured that k(xi,xj) is a valid kernel for some feature space. This provides

a flexible way of choosing kernel mapping functions.

To extract the principal components of the mapped data, first a covariance

matrix needs to be constructed for the data in the feature space F. Suppose that

the data {x1, . . . ,xm} in space F are centred, then the covariance matrix of the

mapped data in this space is:

C =
1

m− 1

m∑

i=1

Φ(xi)Φ(xi)
T .
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Then the eigenvalues and eigenvectors of C are to be computed by the following

equation:

Cv = λv. (3.3)

Since the explicit mapping T is possibly unknown, computing the covariance

matrix directly is not feasible. Schölkopf, Smola, and Müller showed in [109]

that by solving the eigen-equation mλu = Ku in which K is the Gram matrix

computed from the kernel function K(xi,xj), u is one of its eigenvectors, and mλ

is its corresponding eigenvalue, the pth principal component takes the form

< vp, Φ(x) >=
1√
λp

m∑

i=1

up,iK(xi,x),

which can be further simplified to ([56])

< vp, Φ(x) >=
1√
λp

(Kup)n =
√

λpup,n. (3.4)

Here vp is the pth eigenvector of C.

To generalize the method to non-centred data, the kernel matrix K becomes

[109, 56] K ′ = (I − eeT )K(I − eeT ) where e = m−1/2(1, 1, . . . , 1)T . In the case

when more than one rigid component is present in the data point-set, the data

need to be centered onto their respective subpart centre of movement. Thus, the

mean value of each data group in the feature space F needs to be computed and

subtracted from Φ(xi) in the covariance-matrix above. We make this separation

using the label probabilities. For the group with label λ, the mean-position (i.e.

subgroup centre) is given by

µλ =
1∑

i P (θi = λ)

∑

i

Φ(xi)P (θi = λ), for each λ ∈ Ω.

Let Φ̃(xi) = (Φ(xi)−
∑

λ µλP (θi = λ)), then the covariance matrix of centered data

is then given by

C̃ =
1

m− 1

m∑

i=1

Φ̃(xi) · Φ̃(xi)
T , (3.5)
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where

Φ̃(xi) · Φ̃(xi)
T = K(xi,xi)

−∑
λ∈Ω

P (θi=λ)
P

j P (θj=λ)

∑
j P (θj = λ)K(xi,xj)

−∑
λ∈Ω

P (θi=λ)
P

k P (θk=λ)

∑
k P (θk = λ)K(xk,xi)

+
∑

λ∈Ω
P 2(θi=λ)

P

j P (θj=λ)
P

k P (θk=λ)

∑
j

∑
k P (θj = λ)P (θk = λ)K(xk,xj)

(3.6)

and K(xi,xj) are the entries of the above kernel matrix K.

Based on their transformational invariants, two kernel functions, the Gaus-

sian kernel and the polynomial kernel, are of interest in this work. The Gaussian

kernel has the form defined in Equation (3.1). Since it is based on the Euclidean

distance between two feature points, it is invariant to the similarity transforma-

tion. The polynomial kernel has the form

K(xi,xj) = (xi · xj + c)d, (3.7)

where c and d are constants (d 6= 0). This kernel captures the directionality of

the data which is a useful property for correspondence matching. However, the

scalar or dot product is not invariant under scaling, and so there is still a magni-

tude problem to be considered. To solve this problem, one way is to normalize

the scaled and truncated eigenvectors. Another method is to scale both of the

two eigenvector matrices by the eigenvalue matrix of the model data-set. This is

based on the following matrix property. Suppose that two eigen-decomposable

symmetric matrices A and B, are related by the scalar multiplier s, i.e. A = s · B.

Let the eigen-decompositions of the two matrices be A = UA · DA · UT
A and

B = UB · DB · UT
B , where UA and UB form the orthonormal bases for the two

matrices. When these conditions are satisfied then DA = s ·DB. In this work, we

use this property to overcome the scale problem.

3.4 Label Process

Relaxation labelling is one of the most extensively studied approaches to the con-

sistent labelling problem in computer vision. For a given object-set X , and label
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set Ωi for each object xi ∈ X , the task is to assign a consistent and unambigu-

ous label to each object in X . The process of relaxation labelling can either be an

“offline” belief propagation one that distributes the previously learned labelling

confidence over the entire feature set, e.g., [95], or an “online” learning process

that learns the labelling information on the fly, e.g., [106, 80]. In discrete relaxation

process (e.g., [130]), initially each node is assigned with all possible labels. During

the iterative relaxation procedure, inconsistent labels are discarded until a final

consistent label distribution is obtained. In the continuous or probabilistic case,

each node is assigned an initial weight or probability distribution. Iteratively,

the label probabilities or weights are updated, again until a consistent distribu-

tion is reached. However, whichever labelling process is used, the performance

depends critically on the compatibility coefficients adopted and the support func-

tion used to combine evidence in the iterative process. The compatibility values

represent our prior knowledge concerning the constraints between different la-

bels. In [80], a dictionary is used. A more interesting example is given in [95]

where the compatibility coefficients are represented as a vector which is learned

offline. These definitions are not suitable for our point-correspondence problem.

However, our compatibility model does share some properties in common with

the compatibility vector in [95].

The labelling process that is being developed here is an evidence combining

one that propagates label constraints. In our developments for feature correspon-

dence matching, we incorporate label information into the kernel function to rep-

resent constraints on articulated motion for the feature correspondence matching

problem. Our label consistency model is derived from one of the feature point-

sets, which we refer to as the model. We hence learn the label compatibility infor-

mation from the model point-set, before attempting to match it against the data

point-set. Thus the first step is to collect label information and learn the compat-

ibility values of each label pair from the model point-set. Then the learned label

compatibility model is applied in the second step of the process which involves
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assigning consistent point labels to the “data” point-set.

For simplicity, in this chapter we assume that the label sets Ωk are identical for

the different objects, as is the case of most relaxation labelling applications, e.g.,

[80]. We denote this universal label-set by Ω = {ωi}li=1 where l is the number of

distinct labels. The compatibility between each label pair, that is, the contextual

information, is represented using compatibility coefficients or functions in the

form of a matrix, R = {Rij(ωi, ωj)}, where Rij(ωi, ωj)represents the compatibility

between the node xi being assigned a label ωi and the node xj being assigned a

label ωj . We also assume spatial homogeneity, that is, the entries Rij(ωi, ωj) are

invariant to object location [43]. For brevity, we denote the entries as R(ωi, ωj).

The compatibility matrix R ∈ R
l×l is of dimension l× l, and embodies knowl-

edge of the number of rigid components, i.e. labels, in each image, and the seman-

tic constraints between each pair of object-labels. In the following development

in this chapter, the matrix has elements

R(ωi, ωj) =





1 if xi and xj come from the same rigid part;

−1 otherwise.

This definition restricts the nodes to give total positive support to the nodes in the

same group and to contribute a negative support to nodes outside the group. The

proximity constraint is also acquired from the model image. We assume that in

any two consecutive image frames, the relative position of the rigid components

of the object under study will not change significantly.

With these ingredients the next step is to compute the support from the neigh-

bourhood for the label assignment θi to point xi. Let us denote the neighbour-

hood system for a point xi by Ni = {xi1 , . . . ,xik}, where k is the number of each

node’s nearest neighbours. Here we use the Euclidean distance between each

point pair xi and xj to define the neighbourhood. We further weight the support

that each object xi can obtain from its neighbours Ni using a similarity measure

between xi and each neighbour. This choice comes from the intuition that closer

neighbours should contribute more support. Unlike the traditional sum-product
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support (e.g., [71]), the support values are exponentiated and normalized further.

In this way, our computing of the support is in the spirit to the technique of prob-

abilistic nearest neighbours introduced by Holmes and Adams in [68]. The new

support function is as follow:

Si,ωi
=

exp{∑j∈Ni

∑
ωj∈Ω P (θj = ωj)R(ωi, ωj)Wij}∑

ωi∈Ω exp{∑k∈Ni

∑
ωk∈Ω P (θk = ωk)R(ωi, ωk)Wik}

, (3.8)

where R(ωi, ωj) are the elements of the label compatibility matrix R which mea-

sure the compatibility of the label pair ωi and ωj. Here the elements of the prox-

imity matrix W are defined using Equation (3.1) and are used to weight the label-

support.

With the label compatibility information learned from the model point-set

and the support values computed, the label probabilities can be updated for each

point using the formula:

P (n+1)(θi = ωi) =
P (n)(θi = ωi) + αS

(n)
i,ωi∑

ωj∈Ω(P (n)(θi = ωj) + αS
(n)
i,ωj

)
, (3.9)

where α is a constant parameter and n is the iteration index.

3.5 Matching

In this section, we describe our point matching algorithm and detail how it uses

kernel PCA and spectral graph theory. We develop two different algorithms. The

first of these is designed to work with single objects undergoing rigid motion,

while the second is designed to work with objects which have rigid components

that undergo articulated motion relative to one another. We commence by devel-

oping an efficient point pattern matching process for feature points under rigid

motion. Here we require a kernel function that captures the transformation in-

variants of the object movement, and allow the feature points to be embedded

into a lower dimensional feature space in a manner that provides a basis for one-

to-one correspondence matching. The contribution is to first develop a point pat-

tern matching method that can be applied to feature point-sets from objects that
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undergo rigid motion, and then extend the algorithm for locating feature corre-

spondences for feature points undergo articulated movement. The extension is

accomplished by incorporating label consistency constraints into the rigid match-

ing process.

3.5.1 Rigid Case

The idea underpinning the use of kernel spectral methods is to first represent the

transformation invariant relationships between the feature points in terms of a

proximity matrix for each feature point-set. Then correspondences are located by

using the eigen-decompositions of the matrix pairs. That is, we first choose an

appropriate kernel function to extract the transformation invariant feature prop-

erties from the point-sets. By performing kernel PCA on the given data-sets, we

extract a transformation invariant basis set for the feature points. For the feature

points from rigid motion, the Gaussian and polynomial kernel functions satisfy

our requirements. The procedure for performing rigid matching by kernel PCA

is described in the pseudo-code given in Table 3.1.

This matching algorithm is motivated by the approach described by Shapiro

and Brady [114]. In [114], a proximity matrix W is first constructed for each im-

age with the matrix elements given by Wij = exp{−d2
ij/2σ2}, where d2

ij is the Eu-

clidean distance between points xi and xj , and σ is a constant. Shapiro and Brady

explain this as the mapping of the original two dimensional data to a higher

dimensional space, and thus capture the structural arrangement of the feature

points. They then perform eigen-decomposition on matrix W to obtain its eigen-

values and eigenvectors. For each point set, a new modal matrix is constructed

with the eigenvectors sorted in descending eigenvalue order as its columns. The

rows of the matrix are then considered as the projections of the feature points

into the eigenspace. When the data sets are of different size, only the first k lead-

ing eigenvectors from each data sets are used where k is the size of the smaller

data set. To make the algorithm more robust, Shapiro and Brady also suggest
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Table 3.1: Kernel spectral matching, Algorithm I

1. Compute the proximity matrices:

W 1
ij = K(yi,yj),

W 2
ij = K(xi,xj) ;

2. Centre the obtained proximity matrices:

W 1 = (I − eeT )W 1(I − eeT )

W 2 = (I − eeT )W 2(I − eeT )

3. Eigen-decomposition:

W 1 = U1Λ1(U1)T ;

W 2 = U2Λ2(U2)T ;

4. Compute the projections:

y′ = U1
√

Λ1

x′ = U2
√

Λ2

5. Correspondence localization: x′
i = minyj ,j=1,...,n dist(x′

i,y
′
j).
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that the eigenvalues may be considered to scale the corresponding eigenvectors.

However, no further discussion is given. Instead, they focus on placing more em-

phasis on the more significant eigenvectors. When the eigenvalues are involved

in terms of scaling the corresponding eigenvectors, this approach is similar to

kernel PCA. When compared with the kernel PCA method described above, it is

clear that the Shapiro and Brady method is a special case where the data in the

mapped space has a mean zero and uses the Gaussian as the kernel function.

3.5.2 Articulated Case

In the case of matching feature point-sets resulting from articulated motion, the

above matching method can not be used directly since the motion of each indi-

vidual rigid component changes the relative positions of the feature points from

the different components. Thus, the overall structural change is large. Our idea is

to use label consistency constraints to construct a modified proximity matrix. In

particular, we propose to use the weighted adjacency matrix W̃ for each point-set

in which each element of the matrix is computed using the formula:

W̃ij =
∑

ωk∈Ω

P (θi = ωk)P (θj = ωk)Wij (3.10)

where Wij is defined in Equation (3.1). However, in order for W̃ to be a valid

kernel matrix, it must satisfy the conditions that it is symmetric and positive

semidefinite. Since Wij is symmetric, and each such element is re-weighted by

both the label probabilities of node xi and node xj , the symmetric property is

preserved. We know that a matrix is positive semidefinite if all its eigenvalues

are non-negative. Although at the moment it is not clear of a proof of the ma-

trix’s semi-definiteness, by computing its eigen-decomposition we found that all

its eigenvalues are non-negative. Thus we can say that W̃ is a valid kernel. This

matrix is then subjected to the kernelisation procedure outlined in Equation (3.6)

and its eigen-decomposition computed. The mapping of the feature vectors ỹj

and x̃i are thus computed by using Equation (3.4) for the respective modal and
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data point-sets; that is,

mλu = W̃u, x̃i,n =
√

λiui,n,

and a similar procedure is applied to ỹj . The next step is to compute the asso-

ciation matrix Mij = exp(−d2
ij/σ), where d2

ij = ‖ỹi − x̃j‖2 is the distance of the

point pairs. Let us denote the label agreement of the point pair yi and xj by

P (θj = θi = ωk, ∀ωk ∈ Ω). The association of the two feature vectors is further

gated by this constraint:

M̃ij = P (θj = ωk, θi = ωk, ∀ωk ∈ Ω)Mij , (3.11)

The correspondences are defined as the most similar node pairs. That is, for each

node xi in the data point-set, the correspondence in the model set is the node yj

that has the largest association M̃ . If we assume that the labels on each feature

point are independent of one-other, the consistency of the label assigned to point

xi and the label assigned to xj is given by:

P (θi = ωk, θj = ωk, ∀ωk ∈ Ω) ≡
∑

ωk∈Ω

P (θi = ωk)P (θj = ωk) (3.12)

The matching process is an iterative one in which at each step new label prob-

abilities are incorporated to improve matching. Since as an increasing number of

correspondences are found, the value of the quantity

E =
∑

i

exp(‖xi − yi‖F/2σ2), (3.13)

where xi and yi are the correspondence pair from data point-set and model point-

set, respectively, will increase, and ultimately reach a maximum value. Thus we

use this quantity as one of our stopping criteria for the matching process. The

other is a predefined iteration number. The matching process is summarised in

the pseudo-code listed in Table 3.2.
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Table 3.2: Kernel spectral matching, Algorithm II

1. Initialize pX , pold
Y ;

2. Initialize t = predefined-iteration-number, Eold = 0;

3. Learn the compatibility information R from X ;

4. Use pold
d to compute C̃X , C̃Y using Eq. (3.5) and Eq. (3.6), and com-

pute the principal compoents for each data-set;

5. Compute M̃ using the obtained principal components and Eq.

(3.11);

6. Find for each xi ∈ X its correspondence yj = maxj M̃ij ;

7. Compute E using Eq. (3.13), set diff = E −Eold;

8. If ( diff < threshold) or (iteration > t) return;

9. Run the labelling process, compute pnew
Y using the matching results;

10. Update pold
Y = pnew

Y ;

11. Go to step 3.
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3.6 Experiments

In this section we present experimental evaluation of both the rigid and articu-

lated matching methods. Our experiments are performed with both synthetic and

real world data. We also compare the proposed algorithms with algorithms of

Shapiro and Brady [114], Scott and Longuet-Higgins [112], and embedded point-

set matching using the multidimensional scaling. MDS is also a method widely

used for data dimensionality reduction, and is also based on eigenvalues and

eigenvectors of a dissimilarity matrix [33]. It attempts to preserve the pairwise

relationships between the data points while mapping the data into a low dimen-

sional space. The experiments are performed using the classical MDS in which

the Euclidean distance is taken as the dissimilarity measure.

The experiments focus on the performance of the algorithms when the data

are subjected to similarity transformations and, contain uncertainties such as out-

liers, random position jitter, and small deformations.

3.6.1 The data

The experiments are performed on both synthesized and real world data-sets.

They are chosen to cover the possible uncertainties mentioned above and which

are common in real cases. The experimental designs are as follows:

1. Synthetic data: Here we assume that the point sets are subject to a two di-

mensional affine transformation. Given a point-set X = {x1,x2, . . . ,xn}
sampled from a rigid object, a synthetic data-set X ′ = sTX + t is generated

for testing the algorithms, where s is a scaling parameter, t is the translation

vector, and T =


 cos θ − sin θ

sin θ cos θ


 is the 2D rotation matrix. In our experi-

ments with Algorithm I (the rigid variant), the rotation angle θ = 10◦

180
×π. In

the experiments for Algorithm II (the articulated variant), the transforma-

tion parameters are set as s = 0.8, t = (10, 15)T , and θ = (20◦/180)π, and in
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Figure 3.1: Synthetic data, data-set 6 in Table 3.4. Left: the original generated data;

Right: after rigid transformation.

the third component, s = 1.2, t = (10, 15)T , and θ = (30◦/180)π.

2. Real data: Here we use two sequences for Algorithms I. The first of these

is a sequence of infra-red images of a hand shown in Figure 3.2 which is

used as an example where the small geometric deformations are present.

The second sequence is the CMU house sequence ([21]) shown in Figure

3.3, which is used to study the effects of matching point-sets of different

sizes and where there is significant positional jitter. The image pairs in Fig-

ure 3.13 are used to experiment with Algorithm II on scenes where there is

articulated object movement. The top image shows two rectangular objects

that move relative to each other on the ground-plane. The bottom image

shows a pair of spectacles, where one of the limbs moves.

3. Noisy data: Here Gaussian noise is added to the data set to test the ro-

bustness of the algorithm. The data is synthesized in the following way.

First point position jitter is synthesized by generating a matrix A ∼ N(µ, Σ)

whose elements are Gaussian random variables with mean µ and covari-

ance matrix Σ. The point jitter is added to the matrix of feature point-set

positions for the second point set X2 using the equation X2 = X2 + A.

4. Data sets with different sizes: To simulate structural errors we delete a con-

trolled fraction of the feature points from the data point-set. This is done
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Figure 3.2: The hand image data (From left to right, top to bottom: frames 08, 09, 11,

25).

Figure 3.3: The CMU house data (From left to right, top to bottom: frames

01,02,03,04,10).
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in two different ways. Firstly q consecutive points, where q starts from 1,

to the integer number most close to 12% of the data-set size, are deleted to

simulate occlusion. Secondly, q points are deleted from random locations

to simulate the effect of segmentation errors. For the CMU house sequence

and the glasses sequence, the feature points are extracted using a corner de-

tector which produces errors and hence the point-sets are of different sizes.

For instance, in frames 01, 02, 03, 04, 05, and 06 of the CMU sequence dis-

played in Figure 3.3, the sizes of the point-sets are 30, 32, 32, 30, 30, and 32,

respectively.

3.6.2 Results

To compare the performance of the kernel approaches when deformations are

present, experiments are performed on synthetically generated data where a 2D

translation, rotation and isoscaling are added. The effect of missing points and

random point position jitter in terms of the 2-D Gaussian random matrices with

different covariance matrices as described above are also tested.

The σ value

When using the Gaussian kernel, the choice of the σ value significantly affects

the performance of the algorithm when the data points contain significant un-

certainties. We commence by investigating the effect of varying the parameter.

Intuitively, we expect the value of σ to be strongly dependent on the pairwise

distances between the feature points. Here we use the formula

σ = Nd
2

ij, d
2

ij =
∑

i,j

d2
ij/(n2 − n)

to estimate the parameter, where N is a scalar parameter used to control the value

of σ, dij is the Euclidean distance between the points xi and xj, and n is the size

of the feature point-set. For four different feature point-set pairs, in Figure 3.4

we show the effect of varying the parameter σ on the percentage of correctly
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Figure 3.4: Effects of different σ value (From left to right, top to bottom: data-set 3,

hand 08/09, hand 08/11, hand 08/25 ).

matched points. In these experiments, the value of N is set to start from 0.2 to 8,

and is increased by 0.2 in each experiment. The curve marked with crosses is for

the kernel PCA method with a Gaussian kernel and the curve marked with circles

is for the Shapiro and Brady method. In all four cases, the best performance of

the kernel PCA method is better than that delivered by Shapiro and Brady.

Label update process

We now turn our attention to experiments which focus on the performance of

the label process for both synthetic and real image point-sets. The initial values

of the label probabilities have an effect on the number of iterations and the rate
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Figure 3.5: Synthetic data with 2 and 3 rigid components, and their labeling re-

sults. Top: data-set pair 2 in Table 3.4; Bottom: data-set pair 1 in Table 3.4.

of convergence of the method. Figure 3.5 shows the result of labelling random

point-sets. The initial label probabilities were assigned uniformly in this instance.

The different symbols correspond to the labels assigned to the points. As the

clusters of points become more overlapped, then the number of labelling errors

increase.

Matching

We commence by considering the case of rigid correspondence. We first exper-

iment on the single component synthetic data generated using the methods de-

scribed above. For this pair of data-sets, our algorithm for rigid motion, Shapiro

& Brady’s method, and Scott & Longuet-Higgins’s method all give correspon-
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dences that are 100% correct, while the MDS approach results in a 5% error rate.

The effect of missing points for rigid point matching are shown in Figure 3.6.

The experimental results are obtained by consecutively deleting a predetermined

number of points from the data point-set. We then experiment with this data-set

on the problem of feature points with random position jitter. Results are shown

in Figure 3.7. Here we compare the results of using the Gaussian and polynomial

kernels on single label point-sets with increasing jitter. The experimential results

are the averages of 100 runs for each covariance matrix used for generating the

Gaussian random jitter. There is relatively little to distinguish their performance.

Matching results of applying the algorithms to real data sets with feature

points from rigid objects are shown in Figures 3.8 and 3.9. Here we show the

fraction of correspondence matching errors as a function of the number of miss-

ing points (performed in the same way as for the synthetic data). The differ-

ent curves in the two figures are for the different algorithms. As the number of

deleted points increases, then the best performance is obtained when kernel PCA

and a polynomial kernel are used. The poorest results are obtained with kPCA

and a Gaussian kernel in the experiments on synthetic data-sets. But in the ex-

periments on real image data, the kPCA with a Gaussian kernel performs better

than the approaches in [33, 112, 114]. In all of the experiments using Shapiro

and Brady’s method, the eigenvalues are used to normalise the corresponding

eigenvectors in order to improve the matching results. This gives results that are

comparable to MDS. More results from experiments on other data-sets are shown

in Table 3.3.

After experiments on feature point-sets with rigid motion, we turn to the

problem of articulated feature correspondence matching. Figures 3.10 and 3.11

respectively show the fraction of correct matches as function of the fraction of

random point deletions, and the fraction of points occluded. The former is ex-

perimented by randomly deleting a fraction of the feature points from the model

point-set. Each point in the diagram is the average value of 100 runs. The lat-

53



ter is simulated by deleting a fraction of consecutive feature points from the data

point-set (as described previously). The ability of the algorithm to cope with

the problem of random position jitter is also experimented for articulated case.

Figure 3.12 shows more experiments on instances of increasing random position

jitter with three articulated data-set pairs. Random position jitter is simulated by

adding randomly generated position errors sampled from a 2D Gaussian distri-

bution to the data point-set (as in the rigid matching experiments). The different

curves in the plots are for different numbers of components (labels). In each case

as the noise increases, then so the error also increases. The numbers used in these

plots are summarised in Table 3.4. We can see that the performance of the algo-

rithm copes well with this uncertainty. Figure 3.13 shows two examples of using

Algorithm II for matching feature points extracted from real image pairs.

From these experiments, it is clear that the kernel PCA approach gives encour-

aging results when compared with the approaches of Shapiro & Brady [114], Scott

& Longuet-Higgins [112], and the MDS method. Moreover, the kernel method is

less sensitive to noise than the alternatives.

The main computational overheads of the algorithms described are associ-

ated with constructing the kernel matrices, and computing their eigenvalues and

eigenvectors.This may prove burdensome for very large data-sets. If the feature

point-sets of a moderate size (e.g., less than 103 points) then computing the full

eigensystem for a matrix of size 5000 × 5000 takes less than half a minute on a

desktop PC with an AMD Athlon 2000 CPU and 256MB RAM. The computation

of the kernel matrix can be performed with time complexity that is polynomial in

the size of the point-sets. The number of iterations required is also an important

consideration. Algorithm II usually requires only three iterations. For the rigid

point correspondence matching problem, our algorithm is non-iterative.
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3.7 Conclusions

In this chapter we have made two contributions. First, we have explored the use

of kernel PCA with a polynomial kernel function and a Gaussian for finding cor-

respondences between two feature point sets. The relationship of the methods

with Shapiro and Brady’s correspondence method [114] is established and dis-

cussed. Experimental results reveal that the method offers performance advan-

tages over a number of alternative methods. Here the polynomial kernel proves

to be the most stable for point-sets of different sizes, and even in worst cases it

gives a tolerable error rate. The performance of our algorithm is also comparable

to the approaches described in [22, 21, 83]. One weakness of the Gaussian kernel

is the selecting of the width parameter σ. In [114], the value is chosen manually.

In this chapter, we use a heuristic formula based on the inter-point pairwise Eu-

clidean distance matrix to compute σ automatically. The kernel functions used in

this chapter are possibly not the best functions for extracting invariant properties

from the feature point-sets. Other kernels may be used in the matching process

to improve the results.

Our second contribution has been to extend the kernel method to articulated

point-sets. Here we show how label compatibility coefficients can be used to

refine the computation of the kernelised proximity matrix. The method improves

the correspondence process when there are different moving components of a

scene.
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Figure 3.6: Matching results with synthetic data.
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Figure 3.7: Effects of Gaussian random position jitter with a single label.
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Figure 3.8: Matching results, hand 08 and 09, occlusions.
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Figure 3.9: Matching results, hand 08 and 11, occlusions.
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Figure 3.10: Effects of random point deletions, multi-label.
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Figure 3.11: The effect of occlusions with multi-labels.
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Figure 3.13: Articulated matching results. Top: data-set 3 in Table 3.4; Bottom: data-

set 5 in Table 3.4.
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Table 3.3: Matching results, Algorithm I (Numbers of errors).

Hand data CMU House

Frames 08/25 09/11 09/25 11/25 01/02 01/03 01/04 01/05 01/06

KPCA,Gaussian 6 4 4 11 2 4 2 2 7

KPCA,Polynomial 5 7 6 12 4 5 3 5 13

MDS 35 5 26 27 5 5 25 25 28

Shapiro&Brady 9 6 8 17 3 5 2 2 9

SLH 4 3 5 10 7 6 3 7 9

Table 3.4: Matching and labeling results, Algorithm II (error%)

Data-set∗ Num of Num of No Label Articulated Articulated Labeling

points labels Information matching(1)∗∗ matching(2)∗∗∗ process results

1 100 3 95 93 16 7

2 60 2 53.33 13.33 13.33 0

3 30 2 35.48 0 0 0

4 55 2 18.18 7.27 3.64 1.82

5 53 3 45.28 81.13 3.77 7.55

6 10 3 10 0 0 0

Note: ∗: The data-sets are shown in Figures 3.1,3.5,and3.13;
∗∗: Results obtained based on the label information from the label process;
∗∗∗: Results obtained when correct label information is assumed.
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Chapter 4

Probabilistic Relaxation Labelling by

Diffusion

Motivated by the properties of diffusion processes and the properties of kernel

methods, this chapter aims to develop a new formulation of probabilistic relax-

ation labelling for the purposes of feature labelling and correspondence match-

ing. We use similar assumptions as classical relaxation labelling methods in our

new development. That is, we assume that we have a set of objects (i.e., extracted

image features or a set of data points), and we are given a set of all possible ob-

ject labels together with some initial confidences of the object-label assignments.

However, the pairwise compatibility relationships between the labels are not nec-

essarily given a priori. The main contribution is that we first place the probabilis-

tic relaxation labelling process into a graph setting, and use a diffusion equation

to guide the processes of evidence combination and propagation. To do this,

the kernel methods are used to construct a continuous time diffusion process on

a graph. In this way we place the relaxation labelling in a kernel framework.

Initial object-label probabilities then evolve across the graph according to an in-

finitesimal generator matrix constructed from the vertex and edge attributes of

the graph. The newly developed algorithm is applied to data classification and

feature correspondence matching problems. It is well-known that diffusion pro-
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cesses have smoothing effects, and tend to stabilise on a trivial uniform distri-

bution in the long run. Thus in our data classification case, when running for

a short time period, local grouping features will emerge in the given data. For

the feature correspondence matching case, we wish to sharpen the data, that is,

the current label probabilities can be viewed as a blurred version of the original

ones. Our objective is to de-blur the probabilities and recover the true pairwise

cluster labels. This pairwise grouping is found by running the diffusion back-

wards in time. This technique has been used for image and signal enhancing,

sharpening, and restoration over the last few decades [19, 48]. Although it is well

known that the process of running the diffusion backwards in time is unstable,

by applying certain constraints the process can be stabilized and interesting re-

sults are obtained. An early discussion of this issue can be found in the work

by Carasso, Sanderson and Hyman [19] and references therein. Recent work of

Gilboa, Sochen and Zeevi [48] also have a discussion on this problem. In addi-

tion to the development of the algorithm, its computational overheads are also

discussed and several approximation algorithms are suggested. For both data

classification and feature correspondence matching cases, experiments are per-

formed on different data-sets and encouraging results are obtained.

4.1 The problem

The problem studied in this chapter can be described as follows. Suppose we are

given a label-set which contains all possible labels for objects in a given object-

set. Denote the label-set by Ω = {ωk}lk=1, and the object-set by X = {xi}ni=1,

respectively. Here l is the number of labels, and n is the number of objects to

be labeled. Suppose also that some initial confidences of each object xi’s label

assignments are given in terms of an object-label probability assignment vector,

denoted by pi. In a probabilistic setting, this vector has the form p(θi) = [P (θi =

ω1), . . . , P (θi = ωl)] which represents our confidence of assigning a label ωk ∈
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Ω, k = 1, . . . , l, to object xi. As in the previous chapter, the pairwise relations

between each label pair, that is, the consistency constraints between the labels, are

expressed using a label compatibility matrix. The objective in this chapter is then

to assign each object in the given object-set a label which satisfies the consistency

constraints produced by the label pairs, in an unambiguous and consistent way.

As pointed out by Hummel and Zucker in their work [71], relaxation labelling

implicitly uses graphs as the representation for the object-set. Thus it is natural to

combine relaxation labelling methods with graph theory for our problem. In ad-

dition, we also wish to model the local evolution of the label probabilities using

the diffusion equation. Here we will use the diffusion equation to combine local

evidence and to propagate the evidence globally with time. Given these condi-

tions the basic setting is to construct a support graph on the basis of the given

object- and label-sets. The relaxation of the label probabilities is then defined as a

sequence of continuous time Markov diffusion processes on this support graph,

under the action of a diffusion equation. The initial object-label probability as-

signment vector is thus evolved with time during the diffusion process. The final

labels are obtained from the resulting probability distribution vector. The task of

assigning labels to nodes becomes that of finding the desired state probability dis-

tribution of the corresponding continuous time Markov process on the support

graph.

4.2 Relaxation Labelling

Suppose the object-set X = {xi}ni=1 are given with some structural information,

as shown in the example in Figure 4.1. As mentioned in the previous chapter,

the task of relaxation labelling is to assign a consistent and unambiguous label

ωik ∈ Ωi to each object xi ∈ X on the basis of contextual information between

the objects, and prior knowledge concerning the compatibility structure of the

labelling (i.e., label consistency constraints). For simplicity, in this chapter we

63



also assume that the label sets Ωi are identical for the different objects, as is the

case of most relaxation labelling applications. We denote this universal label-

set by Ω = {ωk}lk=1 where l is the number of distinct labels. The compatibility

matrix in this chapter is also denoted by R, and will have the same meaning as

before. The elements Rij(ωi, ωj) are not necessarily be given beforehand. They

may also be learned from the given data-sets. It is also convenient to assume

spatial homogeneity, that is, the elements Rij(ωi, ωj) are invariant to location [43].

x

x

x

i

j
k

Figure 4.1: An example of a set of networked objects to be labeled.

As we have introduced before, relaxation labelling can be cast into either a

discrete or a continuous setting. In this chapter, we keep our interest in the con-

tinuous case, and interpret the label confidences in a probabilistic manner. When

posed in this way the classicial relaxation labelling process involves the two dis-

tinct steps, namely, evidence combination and propagation. In the evidence com-

bination step, a support function is used to compute the total contextual support

using the current label probability estimates and the label compatibilities. In [71],

Hummel and Zucker used the following arithmetic average support function for
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assigning label ωj to object j:

S(k)(j ← ωj) =
∑

i∈Nj

∑

ωi∈Ω

Rij(ωi, ωj)P
(k)(i← ωi) (4.1)

where Nj is the set of neighbours of node j, and P (k)(i ← ωi) is the probability

that node i is assigned label ωi at the kth iteration. A powerful alternative to

the arithmetic average support in Equation (4.1) is to use the product support

function (e.g., [80]) given by:

S(k)(j ← ωj) =
∏

i∈Nj

∑

ωi∈Ω

Rij(ωi, ωj)P
(k)(i← ωi) (4.2)

With the support function to hand, the label probabilities are revised by using the

update equation, e.g., [106]:

P (k+1)(j ← ωj) =
P (k)(j ← ωj)S

(k)(j ← ωj)∑
ωi∈Ω P (k)(j ← ωi)S(k)(j ← ωi)

(4.3)

The process is iterated until a consistent and unambiguous labelling is found.

4.3 Diffusion Processes on Graphs

As mentioned above, in this chapter we aim to pose relaxation labelling as a diffu-

sion process on a graph whose nodes represent possible object-label assignments.

Before we embark on this endeavor, we review some of the related theory of dif-

fusion processes on graphs, and their links with spectral graph theory [27].

Diffusion processes are Markov processes with continuous time parameters

and continuous state spaces [78]. They are local probability evolution processes

with the property that the behaviour in the future is independent of the past

given the current probabilities. During probability evolution, the local confidence

of being in each state is propagated through time using a neighbourhood system

defined on the state space. In this chapter, we cast the problem of updating object-

label probabilities as a diffusion process on a support graph. We adopt this ap-

proach for a number of reasons. First, a graph provides a natural representation
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of the topology of object arrangement. Interactions between different states can

be easily represented by edge connections throughout the definition of a neigh-

bourhood system on the graph. Second, diffusion processes share the common

feature with relaxation labelling of propagating local confidence globally via lo-

cal computation. Finally, diffusion processes on graphs are of increasing topical

interest and have strong connection with the kernel methods [81, 11, 27, 28]. They

have already given rise to a number of successful applications, e.g., [126, 129].

A number of alternatives exist to define a diffusion process [5]. In this thesis

we follow the formulation based on the semi-group function. Such formulation

can be found in the book by Yoshida [142]. Given a subset Γ of the entire state

space S and a suitable probability measure, a Markov process {y(t); t ≥ 0} is

uniquely defined by an initial state probability vector p0 and a semi-group tran-

sition function P (t,x, Γ), t ∈ [0,∞) defined on the state space. The semi-group

transition function P (t,x, Γ) represents the probabilities for a state x to be in a

state in Γ at time t + s, starting from some time s, s ≥ 0. It satisfies the following

properties:

P (t,x, Γ) ≤ 1; (4.4)

P (t + s,x, Γ) =

∫
P (t,x, dy)P (s,y, Γ), (s, t ≥ 0) (4.5)

P (0,x, Γ\x) = 0. (4.6)

The property given in Equation (4.5) is also called the Chapman-Kolmogorov

equation, and forms a semi-group of the transformation of P (t,x, Γ). Further in

our application, we also have
∫
Γ
P (t,x, dy) = 1; that is, we assume conservative

Markov processes. In addition, the semi-group operator P satisfies the property

that P (t,x, Γ)→ I when t→ 0, where I is the identity transformation.

The probability transition function P (t,x, Γ) evolves according to the diffu-

sion equation:

dP (t,x, Γ)/dt = −FP (t,x, Γ), F =
d

dx

{
a(x)

d

dx
+ b(x)

}
, (4.7)
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where F is the so-called the Fokker-Planck operator. The state probability tran-

sition function at time t is then the solution of Equation (4.7), and takes on the

exponential form

P (t,x, Γ) = e−tF . (4.8)

For simplicity, we write P (t,x, Γ) as P (t). Given the initial state probability dis-

tribution p0, the probability distribution at time t is then computed from the for-

mula:

pt = P (t) · p0 = e−Ft · p0 (4.9)

In the discrete approximation, the operator F is explicitly represented by a

matrix, and the following formula can be used to compute the exponential:

e−tF =
∞∑

k=0

(−1)ktkFk

k!
(4.10)

However, the convergence of the series depends on the values of t and the matrix

F . Slow convergence of the series usually leads to expensive computations (see

[89] for a detailed discussion). When both the graph from the object set and the

graph from the label set are regular, an efficient way of computing the eigenvec-

tors can be found in the work by Chung and Yau [26]. Approximation methods

for computing eigensystems of large matrices can also be used. An example is

the Nyström method discussed in [134].

When F is real and symmetric, we can perform the eigen-decomposition F =

UΛUT , where U = (u1, . . . ,un) is the matrix formed from the eigenvectors of

F , and Λ is the diagonal matrix containing the corresponding eigenvalues. The

solution vector of the diffusion equation is thus

pt = Ue−ΛtUT · p0. (4.11)

From a kernel perspective, the above development can be regarded as defin-

ing a kernel function for the graph representation, and seeks a solution from the

mapped higher dimensional feature space. In fact, the construction of effective
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kernel functions from exponentiation can be found in recent literature. For exam-

ple, in [118, 81, 128] a new kernel matrix representation K ′ of a given data-set is

given by:

K ′ = Uρ(Λ)UT .

where Λ = (λ1, . . . , λm) are the eigenvalues, and U is the corresponding eigen-

vector matrix, of the matrix K, from the kernel functions. The function ρ(λh), h =

1, . . . , m is required to satisfy the condition that ρ(λh) → 0 as h → ∞. In [118],

several functions are introduced from regularization theory, including the regu-

larized Laplacian, ρ(λh) = 1 + σ2λh, and the diffusion kernel, ρ(λh) = exp(λh/σ
2).

The latter cases corresponds to Equation (4.11).

Of these methods, the diffusion kernel [81] deserves special note. In [81], Kon-

dor and Lafferty derived the diffusion kernel using kernel theory. According

to this viewpoint the diffusion kernel is a symmetric and positive semi-definite

function. For any square matrix H whose elements are determined by a weight

function, e.g., [H]x,y = f(x,y), we can compute the matrix exponential

Kβ = eβH (4.12)

The resulting matrix Kβ is a kernel function provided that the matrix H is sym-

metric. That is, Kβ is guaranteed to be symmetric and positive semi-definite if H
is symmetric. This kernel function also satisfies the diffusion equation:

d

dβ
Kβ = HKβ. (4.13)

In [81], the Laplacian of the graph is used as an example of a diffusion kernel

H on a graph. Equation (4.13) is also referred to as the backward equation for

a Markov process [32] (pp.181) if the graph nodes are interpreted as the discrete

state space of the process. In this case, H is analogous to the so-called Q-matrix

for a continuous time Markov chain, with the matrix entries determining the tran-

sition rates between states. When Q is conservative, i.e. qii = −∑
i6=j qij, it can

be shown that the corresponding Markov process is unique, and the matrix ex-
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ponentiation in Equation (4.12) is convergent [121]. The matrix Kβ also satisfies

the initial condition Kβ(0) = I [32].

4.4 Relaxation labelling by diffusion

In this section, we show how the theory of diffusion processes on graphs can be

used to formulate a new method for probabilistic relaxation labelling. To do this,

first of all we need to construct a support graph as the underlying state space of

the process. Denote the graph by GS(VS, ES,AS). The node-set VS = X ×Ω is the

Cartesian product of the object-set X and the label-set Ω. That is, each vertex of

the support graph viωi
= (xi, ωi) ∈ VS represents the assignment of label ωi ∈ Ω to

object xi ∈ X . We then define a label probability vector of our relaxation labelling

process as pt = [Pt(θ1 = ω1), . . . , Pt(θ1 = ωl), . . . , Pt(θn = ω1), . . . , Pt(θn = ωl)].

Each component Pt(θi = ωi) of this vector represents the confidence of assigning

a label ωi ∈ Ω to an object xi ∈ X . The components of the state-vector represent

the probability of a random walker or a particle under diffusion residing at the

node viωi
at time t.

To satisfy the Markov property, a neighbourhood system needs to be defined.

Here we use the object arrangement topology to define the neighbourhood. In

some applications, the neighbourhood can be defined using the spatial proximity

of the objects, and the requirement that two objects are neighbours can be es-

tablished by thresholding the distance function. As in the previous chapter, we

denote the set of neighbours of object xi as Ni. Hence, the objects can be repre-

sented by an arrangement graph GX = (X, EX , WX) with node-set X , edge-set

EX = {(xi,xj)|xj ∈ Ni} and edge-weight function WX . We will give explicit

examples of how to compute the edge-weight matrix WX when we discuss appli-

cations of our method in Section 5.

To pose the problem of relaxation labelling as a diffusion process on the sup-

port graph next we need to compute the infinitesimal generator F and this re-
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quires the weighted edge adjacency matrix AS defined in Equation (4.14). We

assign edge-weights to the support graph so as to incorporate the label compati-

bilities R and the current label probabilities pt. Following conventional relaxation

labelling methods, the edge weight on the support graph is set equal to the sup-

port associated with the object-label assignments for pairs of neighbouring nodes.

According we let

AS(viωi
, vjωj

) =





P (θi = ωi)P (θj = ωj)WX(xi,xj)Rij(ωi, ωj) if xj ∈ Ni

0 otherwise

(4.14)

The second step is to define the infinitesimal generator matrix F for the support

graph GS. This is derived from the one-step transition matrix P = D−1
S AS of the

support graph:

F = I −D−1
S AS (4.15)

where DS is the degree matrix of AS (as defined in Section 2.1, Chapter 2), and I

is the identity matrix. The probability of each object-label assignment is then up-

dated by Equation 4.9. To update the state-vector we can either perform matrix

exponentiation directly or compute it from the eigensystem. As noted previously,

the matrix P is generally not symmetric. Thus when computing the updated la-

bel probability vectors using the operator matrix’s eigensystem, the relationship

between its eigensystem and the symmetric adjacency matrix AS can be used.

Suppose that the weighted adjacency matrix AS has the eigen-decomposition

AS = UΛUT , and suppose that F has the eigen-decomposition F = V rΛ(V l)T .

Since V r · (V l)T = (V l)T · V r = I , we have:

pt = e−tF · p0

= e−t·V r·Λ(V l)T · p0

= V r · e−tΛ · (V l)T · p0

It is well known that the diffusion equation describes a smoothing effect, with

a short time behaviour defined by its local structure [105]. For the feature cor-
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respondence matching problem, smoothing or blurring is not the effect that we

want. We regard the current label probabilities as the smoothed version of the

initial sharp values. What we want is then to ‘push’ the diffused particles (prob-

abilities) back to the right position. This can be viewed as running the diffusion

process backwards in time [19, 48]. Thus now what we have is the probability

vector pt. Instead of computing pt from Equation (4.9), now we wish to obtain

p0 from this equation. Intuitively, we may multiply the inverse of the probability

transition matrix P (t) from the left on both sides of Equation (4.9) and obtain:

(P (t))−1pt = (P (t))−1 · P (t) · p0 (4.16)

e(tF) · pt = p0

It is well known that the matrix P needs to be symmetrized in order to be

a valid kernel. Two frequently used methods for symmetrizing the probability

transition matrix P are [121]

Psym =
P + P T

2
or Psym = P TP, (4.17)

The latter is more familiar and is conventionally used in the machine learning

community. In our experiments, we use this approach in the feature correspon-

dence matching and toy labelling applications. In the application to data clas-

sification, in addition to the asymmetric probability transition function, a sym-

metrized generator matrix is also experimented with. However, the symmetriza-

tion process is applied to the adjacency matrix of the object-set since the local

average distance between objects is used to scale the weight function. Specifi-

cally the matrix WX = W̃X
T
W̃X where W̃Xij = exp(−dxi,xj

/σi) and σi is a function

of the average distance from object xi to its neighbours.

Once the matrix operator F is set up, the transition matrix P (t) can be com-

puted using Equation (4.8). The label probabilities are then updated iteratively

using Equation (4.9). During each iteration, the label probabilities from the pre-

vious iteration are used to re-compute F .
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We also require a stopping criterion to halt the iteration of the labelling pro-

cess. One simple approach is to halt the process after a fixed number of itera-

tions. A more principled approach is to use the asymptotic properties of the label

probabilities. To this end we make use of the entropy associated with the label

probability distribution:

Ht = −
n∑

i=1

∑

ωi∈Ω

Pt(θi = ωi) lnPt(θi = ωi), (4.18)

where n is the number of objects in the object set X . The entropy can be regarded

as the amount of disorder of the given system of label probabilities. It reaches

its largest value if Pt(θi = ωi) has a uniform distribution, and decreases to zero

if Pt(θi = ωi) ∈ {0, 1}, ∀xi, ωi. The iteration of the relaxation process is halted if

the total entropy decreases below a threshold, or if its change between two con-

secutive iterations is small. The process is also halted if the number of iterations

exceeds a predefined value. The algorithm is summarized in Table 4.1.

4.5 Experiments

We experiment with our new relaxation labelling method on scene labelling and

data classification, and feature correspondence matching problems. These prob-

lems have all been extensively studied in the literature. For a review see in Chap-

ter 2. We commence our experiments with scene labelling using a toy labelling

example, which has been used previously in the literature on relaxation labelling

papers [106, 43]. We then consider the more general data classification tasks. Here

we experiment on both synthetic and real world data-sets which are publicly ac-

cessible [46, 37]. For the feature correspondence matching problem, we first in-

vestigate the matching of three-way junctions in infra-red images (Figure 4.17),

taken from Wilson and Hancock’s work [136]. We then use the new algorithm to

locate one-to-one point feature correspondences for points between frames in an

image sequence.
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Table 4.1: The relaxation labelling algorithm

1. Initialization: Initial object-label assignment probabilities p0, t, N ,

H, ∆H, Hthresh, ∆Hthresh;

2. Compute the weight matrix WX for the object graph;

3. Set pold = p0;

4. Compute the weighted adjacency matrix AS in current iteration us-
ing Eq. (4.14) and pold

:

AS(viωi
, vjωj

) =

8

<

:

P old(θi = ωi)P
old(θj = ωj)WX(vi, vj)Rij (ωi, ωj) if vjωj

∈ Niωi

0 otherwise

5. Compute the infinitesimal generator matrix F using the weighted

adjacency matrix AS;

6. For each iteration k, compute the updated label probabilities using

Eq.(4.9):

pnew = e−tF · pold;

7. Compute the entropy H using Eq. (4.18), and the variation ∆H =

H(n) −H(n−1). If (H < Hthresh) or (∆H < ∆Hthresh), go to step 10;

8. Set k = k + 1, and if k ≥ N , go to step 10;

9. Set pold = pnew, and go to step 4;

10. Assign maximum probability label to each object.
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4.5.1 Scene labelling — A toy example

The problem of scene labelling can be broadly characterized as that of interpret-

ing the structure of a scene by labeling image features extracted from it. We first

experiment our newly developed relaxation method on a toy example of scene la-

beling which has been well-studied in several classical relaxation labeling works.

One of the problems that hinders this task is that some of the feature labels may

not appear in the scene, and it is possible that the number of labels is greater

than the number of objects, i.e. features extracted. This may result in Markov

processes with disjoint state spaces. An example is shown in Figure 4.3, which

is from the classical relaxation labeling literature [106, 43]. In fact, relaxation la-

beling is one of the earliest techniques developed for solving this problem. For

instance, Waltz’s discrete relaxation [130] and Rosenfeld, Hummel and Zucker’s

probabilistic approach [106] both focused on interpreting objects in images.

In this section we explore how our relaxation process performs when applied

to the toy labelling problem which has been used in a number of early papers on

relaxation labelling [106, 43]. The problem is to assign labels to the three edges

of a triangle in order to interpret whether the object is a cutout floating above the

background, a hole in the background, or a triangular flap that is either folded

toward the viewer along one of its edges, or folded back onto the background

[106]. Figure 4.2 shows the original problem and the possible interpretations.

It is assumed that the label of each edge of the triangles belongs to a label set

Ω = {+,−,←,→} of four labels, which have the meaning ‘convex’, ‘concave’,

‘occluding with the right-hand region’, and ‘occluding with the left-hand region’,

respectively, as defined in [106]. We use the same compatibility matrices of these

labels as given in [43]. The are shown as the matrices R1 and R2 in Table 4.2. The

initial label probability assignments are also chosen the same as given in [43].

They are shown in the column ‘Initial Conditions’ in Table 4.2. In general not all

line combinations are possible for a real world triangle, and if there is high prob-

ability of an edge-label assignment, the label probabilities of the other two edges
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(a) The original

image

(b) (c)
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(d) (e)

(f) (g)

(h) (i)

Figure 4.2: The toy labeling problem: Label each of its edges to interpret the

triangle. (This is taken from Rosenfeld, et. al. [106].)
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Figure 4.3: The four possible labels ’+,−,←,→’ and their state transition graph

of the toy labeling example

shall be affected. These constraints are represented by the compatibility matri-

ces. We expect to reach the same consistent labeling which also satisfies these

constraints as the results in [43] for the three edges of a triangle. It is interesting

to note that some of the labels are exclusive of each other, as one can seen from

Figure 4.3. The entries in both the compatibility matrices and the initial label

probability matrices are indexed in the order of +,−,←,→.

To set up the weighted adjacency matrix AS we assume that all three objects

(here the three edges of a triangle) are neighbours to each other, and the corre-

sponding elements of the edge weight matrix WX are set equal to 1. We update

the label probabilities using equation (4.11). The state transition graph for all the

possible labels is shown in Figure 4.3. From this figure it is clear that the state

space of the corresponding Markov process has two disjoint subsets. Experimen-

tal results are shown in Table 4.2. From the table we can see that our results all

agree with those given in [43]. In other words, our diffusion-based relaxation

process locates the same consistent solutions.

4.5.2 Data classification

We now turn our attention to the problem of data-classification. This is a general

problem in pattern recognition that requires the data-points to be classified into
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Table 4.2: Relaxation labeling results on the toy example

Initial Conditions R1 =

2

6

6

6

6

6

4

0.5 0 0.5 0

0 0.5 0 1

0.5 0 0 0

0 0.5 0 0

3

7

7

7

7

7

5

R2 =

2

6

6

6

6

6

4

2

3
0 1 0

0 2

3
0 1

1

3
0 0 0

0 2

3
0 0

3

7

7

7

7

7

5

Our results∗ Faugeras&Berthod (α = 1) Our results Faugeras&Berthod (α = 1)

P1 =

.25 .25 .25 .25

.25 .25 .25 .25

.25 .25 .25 .25

.3623 .3623 .1377 .1377

.3623 .3623 .1377 .1377

.3623 .3623 .1377 .1377

.375 .375 .125 .125

.375 .375 .125 .125

.375 .375 .125 .125

.4214 .4214 .0786 .0786

.4214 .4214 .0786 .0786

.4214 .4214 .0786 .0786

.3333 .3333 .1667 .1667

.3333 .3333 .1667 .1667

.3333 .3333 .1667 .1667

P2 =

.5 0 .5 0

.5 0 .5 0

.5 0 .5 0

.7245 0 .2755 0

.7245 0 .2755 0

.7245 0 .2755 0

.75 0 .75 0

.75 0 .75 0

.75 0 .75 0

.8428 0 .1572 0

.8428 0 .1572 0

.8428 0 .1572 0

.6667 0 .3333 0

.6667 0 .3333 0

.6667 0 .3333 0

P3 =

.5 0 .5 0

.4 0 .6 0

.5 0 .5 0

.7282 0 .2718 0

.7153 0 .2847 0

.7282 0 .2718 0

.75 0 .75 0

.75 0 .75 0

.75 0 .75 0

.8450 0 .1550 0

.8351 0 .1649 0

.8450 0 .1550 0

.6667 0 .3333 0

.6667 0 .3333 0

.6667 0 .3333 0

P4 =

.5 0 .5 0

.3 0 .7 0

.5 0 .5 0

.7323 0 .2677 0

.7054 0 .2946 0

.7323 0 .2677 0

.75 0 .75 0

.75 0 .75 0

.75 0 .75 0

.8475 0 .1525 0

.8475 0 .1730 0

.8475 0 .1525 0

.6667 0 .3333 0

.6667 0 .3333 0

.6667 0 .3333 0

P5 =

.3 0 .7 0

.3 0 .7 0

.5 0 .5 0

.7135 0 .2865 0

.7135 0 .2865 0

.7396 0 .2604 0

.75 0 .75 0

.75 0 .75 0

.75 0 .75 0

.8322 0 .1678 0

.8322 0 .1678 0

.8519 0 .1481 0

.6667 0 .3333 0

.6667 0 .3333 0

.6667 0 .3333 0

P6 =

.2 0 .8 0

.3 0 .7 0

.5 0 .5 0

.7022 0 .2978 0

.7186 0 .2814 0

.7442 0 .2558 0

.75 0 .75 0

.75 0 .75 0

.75 0 .75 0

.8229 0 .1771 0

.8356 0 .1644 0

.8548 0 .1452 0

.6667 0 .3333 0

.6667 0 .3333 0

.6667 0 .3333 0

P7 =

.3 .2 .3 .2

.3 .2 .3 .2

.3 .2 .3 .2

.4347 .2898 .1653 .1102

.4347 .2898 .1653 .1102

.4347 .2898 .1653 .1102

.375 .375 .125 .125

.375 .375 .125 .125

.375 .375 .125 .125

.5057 .3371 .0943 .0629

.5057 .3371 .0943 .0629

.5057 .3371 .0943 .0629

.3333 .3333 .1667 .1667

.3333 .3333 .1667 .1667

.3333 .3333 .1667 .1667

P8 =

.3 .2 .3 .2

.25 .25 .25 .25

.2 .2 .4 .2

.4216 .3067 .1555 .1162

.4118 .3165 .1507 .1210

.4049 .3107 ..1666 .1178

.375 .375 .125 .125

.375 .375 .125 .125

.375 .375 .125 .125

.4902 .3550 .0892 .0657

.4791 .3660 .0859 .0690

.4739 .3616 .0974 .0671

.3333 .3333 .1667 .1667

.3333 .3333 .1667 .1667

.3333 .3333 .1667 .1667

Note: The results list the final label probabilities. The columns represent all possible labels in the order of +,−,←,→, and the rows represent the three edges.
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different groups, where the number of groups may be known beforehand. Here

we evaluate our newly developed algorithm on both synthetic and real world

data-sets. In order to compare our method with alternative data clustering meth-

ods, we use publicly available data-sets [46, 37]. We also experiment with the

same data-sets using spectral clustering and kernel k-means clustering methods

to provide comparison. We study the performance of the algorithm with differ-

ent numbers of clusters, different cluster size, and different cluster distributions.

These are considered to be the most common variations in real world data-sets.

Table 4.3: Representations of label compatibilities

R2 G3 RG G4 1 G4 2

21
1 2

3

1 2

3

4

1 2 3

2 3

1

4

2

4

1 .3

.3 1

3

5

2

6

6

6

4

1 0 .5

0 1 .5

.5 .5 1

3

7

7

7

5

2

6

6

6

4

1 0 .5

0 1 .5

.5 .5 1

3

7

7

7

5

2

6

6

6

6

6

4

1 0 0 .5

0 1 0 .5

0 0 1 .5

.5 .5 .5 1

3

7

7

7

7

7

5

2

6

6

6

6

6

4

1 0 .1 .5

0 1 .1 .5

0 .1 1 0

.5 .5 0 1

3

7

7

7

7

7

5

One advantage of relaxation labelling is its ability to reduce ambiguities in

label assignments. For this reason, we first assign all the objects in our data-sets

the correct labels. Next we experiment with our algorithm by randomly selecting

a fraction of the assigned object labels and flipping the label probabilities ran-

domly to take on new values. The fraction of labels to be flipped ranges from

10% to 1
|Ω| , i.e., the probability of uniform label assignment. We use a Gaussian

weight function to compute the weighted adjacency matrix A in Equation (4.14):

WX(xi,xj) = exp

(
−dij

σi

)
, (4.19)

where dij is the Euclidean distance between objects xi,xj ∈ X . The values of σi

in the weight function Equation 4.19 are chosen to be a function of the average

distance between nearest neighbours. The cluster label compatibility coefficients

for each synthetic data-set are shown in Table 4.3.
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(d) Labeling results of G3
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(e) Ring-Gaussian data-set (RG)
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(f) Labeling results of RG

Figure 4.4: Labeling results for synthetic and real world data-sets. Left column:

The original data-sets; Right column: The clustering results.
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We first experiment with the five synthetic data-sets shown in the left column

of Figures 4.4 and 4.5. The average clustering error on 20 runs for each data-set

with different initial label probabilities are shown in the right column of Figures

4.4 and 4.5. For each case, as the iteration number increases then so the error

falls rapidly. The eigenvalue distribution at each iteration of the G4 data-set is

shown in Figure 4.6. As the number of iterations changes then so the distribu-

tion of eigenvalues become more peaked towards the origin. As the magnitude

of eigenvalues illustrates the significance of the corresponding eigenvectors, the

cluster information becomes more concentrated within the first few eigenvectors.

Figure 4.7 shows the change of total entropy during iterations of the relaxation

process. As the algorithm iterates then so the entropy approaches a stable mini-

mum value. Figure 4.8 shows an example of the evolution of the label probability

vectors. Here we have used a random initialization. For ease of visualization, the

probability vectors in the diagrams are arranged as three groups for three clus-

ters. In each group, there are three subgroups which represent the probability

of assigning the objects to three different cluster labels. Initially the clusters are

poorly defined, but as the process iterates they become more clearly defined.

For comparison, we have also experimented on these data-sets using kernel

k-means and spectral clustering. For kernel k-means, the code (except the com-

puting of the kernel matrix) was taken from [115]. The kernel function we choose

here is the Gaussian kernel, and the initial cluster centres are chosen randomly,

as implemented in the code described in [115]. To avoid divide by zero errors, we

further added 1E − 5 to each entry in the initial cluster centre indicator matrix.

Since the performance of k-means depends on initial values, we provide the av-

erage values of 20 runs for each of the data-sets G3, G4 1, and G4 2. The number

of errors in these experiments are 2, 13.7, and 43.45, respectively. The results of

kernel k-means clustering are shown in Figure 4.9. The results for the RG and R2

data-sets are shown in Figures 4.10(a) and 4.10(b).

We also computed the eigenvectors of the data-sets G3, G4 1 and RG. The
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(a) Four-Gaussian data-set (G4 1)
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(c) Four-Gaussian data-set (G4 2)
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(d) Labeling results of G4 2

Figure 4.5: Labeling results for synthetic and real world data-sets. Left column:

The original data-sets; Right column: The clustering results.

proximity matrix we use is the weighted adjacency matrix (since the first eigen-

vector of the adjacency matrix corresponds to the Fiedler vector of the Laplacian

matrix). The first m − 1 eigenvectors, where m is the number of clusters in each

data-set, for each data-sets are shown in Figures 4.11, 4.12, and 4.13, respectively.

We next experiment with our algorithm on two real world data-sets, namely

Iris and Wine [37]. They have already been studied in a variety of papers, e.g.,

[46]. Both data-sets contain three clusters. The dimensionality of the Iris data is

four, while that of the Wine data is nine. The weight function is again chosen to

be the Gaussian, and the compatibility matrices are identical to those used with

synthetic data-sets. The results are shown in Figure 4.14. The average clustering
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Figure 4.6: The distribution of the first thirty eigenvalues of the Laplacian matrix

in data-clustering (G4 1 synthetic data-set, with randomly assigned initial label

probability values) at iterations 1, 7, 13, 19, 25, and 31.

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

140

160

180
Synthetic data−set, Gaussian distributed, three clusters

 

 

Last all−correct−label iteration

Entropy values
Difference of entropy values

Figure 4.7: The changing of entropy values during iteration (data-set G3).
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(c) Step 10
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(d) Step 15
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(e) Step 20
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(f) Step 25
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(g) Step 35
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(h) Step 55

Figure 4.8: Evolution of the label probabilities (data-set G3). The horizontal axis

gives the probability values and the vertical axis the components of the label

probability vector.
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(a) G4 1, good case
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(b) G4 1, bad case

Figure 4.9: Labeling results from kernel k-means.
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Figure 4.10: Labeling results from kernel k-means.
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(b) Second eigenvector

Figure 4.11: The first two eigenvectors of G3.
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(b) Second eigenvector
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(c) Third eigenvector

Figure 4.12: The first three eigenvectors of G4 1.

errors of the 20 runs from the kernel k-means algorithm for the Wine and Iris

data-sets are 6.3 and 17, respectively. The first two eigenvectors of the adjacency

matrix of the two data-sets are shown in Figures 4.15 and 4.16.

From the above experimental results we can see that the algorithm converges

rapidly in the above experiments to the desired distribution, where the majority

of the labels are assigned correctly. When less than 50% of the labels are initial-

ized in error, the algorithm corrects them in just a few iterations. The numbers

of iterations required are significantly smaller than for traditional relaxation la-

belling algorithms. The accuracy of the clustering are comparable with those

obtained using alternative data-clustering algorithms, e.g., the results given by

the work by Fischer and Poland [46]. Comparing with the kernel k-means and
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Figure 4.13: The first two eigenvectors of RG.
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(a) Labelling results, Iris
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(b) Labelling results, Wine

Figure 4.14: Labelling results of real world data-sets. Left: Iris; Right: Wine.
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Figure 4.15: The first two eigenvectors of Iris.
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Figure 4.16: The first two eigenvectors of Wine.

graph spectral clustering methods, we can see that our algorithm can cope with

a great variety of data distribution shapes.

4.5.3 Feature correspondence matching

The final experimental evaluation of our new relaxation labelling algorithm is

concerned with feature correspondence matching. This involves finding a bijec-

tive correspondence mapping between two feature point-sets. We provide ex-

periments on three different image data-sets. Here the first example is to match

three-way junctions in aerial images of road network. This example is taken from

the work of Wilson and Hancock [136]. The next two examples involve feature

points extracted from two image sequences.

Suppose that the features extracted from the pair of images to be matched are

represented by the undirected graphs GM = (VM , EM) and GD = (VD, ED) where

VM and VD are the node sets representing the features and EM and ED are the edge

sets representing the existence of connecting structure in the image. To perform

feature correspondence matching, we treat the nodes in the second graph as our

label set, and the nodes in the first graph as the objects being labelled. As a result

VS = VM ×VD and ES = EM ×ED. Following Wilson and Hancock [136] the label

compatibility coefficients Rij(ωi, ωj) of the matrix R are computed from the edge
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Figure 4.17: Matching three-way junctions. (a),(b): Original image pair; (c),(d) &

(e),(f): extracted edge contours; (g):results from contour pair (c),(d); (h): results from

contour pair (e),(f).
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(a) Frames 01 and 03 (b) Frames 01, 04

(c) Frames 01, 05 (d) Frames 01, 06

Figure 4.18: Matching results, CMU house data

densities of the graphs being matched:

Rij(ωi, ωj) =





|VM |2

|EM | if (ωj, ωi) ∈ EM

1 if (ωj, ωi) ∈ (φ× VM) ∪ (VM × φ)

0 if (ωj, ωi) ∈ VM × VM −EM

, (4.20)

The edge-weight matrix WX for the graph GD is computed using Equation (4.14)

in which the σi parameter is chosen as a constant proportional to the average

pairwise distance of all the nodes. The initial label probabilities are computed

from the feature measurement values using the road-length and the angle of each

junction following the method outlined in [136]. Results from the first and sec-

ond image pairs are shown in Figure 4.17(g) and Figure 4.17(h), respectively. The

matching results from two classical relaxation labelling methods using the sup-

port functions (4.1) and (4.2) are also shown for comparison (the probabilities are

updated by Equation (4.9)) and the results are taken from [136].

Our second experiment involves the problem of point feature correspondence

matching. Here we also choose the Gaussian function in Equation (4.19) as the
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weight function in computing the weighted adjacency matrix in Equation (4.14).

The label compatibility matrices are set as the simple adjacency matrices with

matrix components equal to 1 if the two labels are immediate neighbours of

each other. The immediate neighbours are defined as the four nearest Manhattan

neighbours of each node. We first choose four image pairs from the CMU house

sequence. These are the same as the examples chosen in Luo and Hancock’s work

of feature matching by using the EM algorithm and SVD methods [84]. Our ex-

perimental results of the matching are shown in Figure 4.18. From the figures

we can see that the matching results are significantly improved comparing with

the results in [84]. Another example is of applying the method on point-sets from

two images of a hand sequence. The matching results are shown in Figure 4.19. In

order to give the evolving behaviour of the eigenspectrum, Figure 4.20 shows the

first fifty eigenvalues of the adjacency matrix obtained from feature point-sets of

image frames 09 and 11 at iterations. Again as iteration proceeds, the distribution

becomes more peaked at the origin.

In these examples, the three-way junction matching examples and the hand

sequence data in Figure 4.19 contain visible shape deformations while in the ex-

ample of Figure 4.18 the number of feature points in each data-set are not the

same.

As we can see from the figures, the method copes well with these situations.

From these results we can see that the new relaxation labelling method is effective

in labelling and feature correspondence matching tasks.

4.5.4 Computational complexity

In classical relaxation labelling algorithms such as the one introduced in [80],

the computational complexity is of O(n2m2) where n and m are the number of

objects and labels, respectively. The computational overhead in our newly de-

veloped relaxation labelling algorithm comes mainly from computing the matrix

exponential e−tF . One frequently used method is scaling and squaring, as is the
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MATLAB implementation of the function expm [50]. The computation complex-

ity is of O((mn)3). When taking advantage of the symmetry of the given ma-

trix, the main computation is the eigen-decomposition and a matrix-vector prod-

uct at each iteration. The computational complexity is also of O((mn)3). In our

experiments, when the MATLAB expm function is used, the data-clustering of

G4 the data-set takes 216.8 seconds which involves 31 relaxation iterations. The

feature correspondence matching of the hand sequence data experiments takes

8465.3 seconds for matching each data-set pair, and requires 69 iterations. These

figures were obtained with a desktop PC with an AMD Athlon Dual Core Pro-

cessor 4200+ and 1GB memory. However, since our matrices here are generally

sparse, more efficient methods can be used to approximate the eigen-systems.

For example, the Lanczos method may be applied, which involves m · n matrix-

vector multiplications for our Cartesian product matrix of dimension (mn)×(mn)

[50]. The Krylov approximation method can be applied to compute the prod-

uct of the probability vector and the matrix exponential. In [66] the values of

e−tFv are computed directly by approximating the product of the exponential of

the matrix and the vector by finding an element of the Krylov subspace Km =

{v0, (tF)v0, . . . , (tF)k−1v0} that best approximates vt = e−tFv0. Generally k is

much smaller than the original dimension mn of matrix F . This gives the poten-

tial of improving the efficiency of our algorithm significantly.

4.6 Discussion

In this chapter we have developed a new relaxation labelling algorithm using the

diffusion equation. The starting point is a support graph whose nodes represent

possible object-label assignments and whose edges encode adjacency relations

together with label compatibility constraints. The state vector of the diffusion

process represents the object labelling probabilities. Under the diffusion equa-

tion, the updating of this probability is determined by the adjacency matrix of
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the support graph. Two distinguished cases were introduced, namely, the data

classification and the feature correspondence matching problems. The latter was

regarded as running the diffusion process ‘backwards in time’. Experiment with

the new relaxation labelling methods on a toy labelling problem, a group of data

classification tasks, and a set of feature correspondence matching problems gave

good performances.

The diffusion process setting of the development ensures the global propaga-

tion of local labelling confidence and the reduction in the number of iterations.

The essential component is the kernel function which defines the diffusion pro-

cess. For the tasks we applied in this paper, the exponential kernels are used

which is the natural formula for a diffusion process.

The work reported here can be extended in a number of ways. One obvi-

ous direction is to use the framework to develop a discrete relaxation algorithm

[130, 57]. Here, rather then dealing with label probabilities, a single label is as-

signed to each object at each epoch. To realize such an algorithm using a dif-

fusion process, an efficient sampling process is required. Alternatives here in-

clude particle filters [7] with an appropriate sampling method such as the impor-

tance sampling [103]. A second avenue for investigation would be to investigate

ways of rendering the process more efficient. These include a number of ap-

proximation techniques. As mentioned in the chapter, Krylov subspace approx-

imation method for computing the exponential of the matrix-vector product, or

the Nyström method for computing the approximate eigenvectors for the large

sparse matrix [134] can be used for improving the efficiency. The Krylov ap-

proach introduced in [89] also shows the possibility of running the computation

in parallel.

Finally, the algorithm developed in this chapter has only been applied to two

applications. There are potentially a much wider range of computer vision and

pattern recognition tasks that it can be applied to. For example, it can be used to

the tasks of image segmentation, with the different image segments as the data
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labels, and the rest runs similar to our data classification experiments.
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(a) Frames 08 and 11

(b) Frames 08 and 25

(c) Frames 09 and 25

(d) Frames 11 and 25

Figure 4.19: Point correspondence matching results of image frames from a hand

sequence.
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Figure 4.20: The distribution of the first fifty eigenvalues of the weighted adja-

cency matrix AS in a feature correspondence matching example at iterations 1, 7,

13, 19, 25, 31, 37, 43, 49, 55, and 61. The data-sets involved are the hand sequences

09 & 11.
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Chapter 5

Conclusions

The general objective in this thesis is to obtain the behaviour information of mov-

ing objects in image frames. Owing to their interesting properties as reviewed

in Chapter 2, kernel methods and graph spectral methods are of interest. For

this purpose, first a kernelized spectral graph matching algorithm was devel-

oped for rigid and articulated feature point-sets. Then in a second effort, a new

probabilistic relaxation labelling algorithm was developed, also in the spirit of

incorporating the kernel advantages. As presented in previous chapters, these al-

gorithms give encouraging results in feature correspondence matching and data

classification. In this chapter we conclude the contributions and analyze their

strengths and weaknesses. Further, we discuss possible improvements of the al-

gorithms and suggest potential future extension for more challenging correspon-

dence matching, consistent labelling, and data clustering tasks.

5.1 Correspondence matching

The novel parts of the correspondence matching algorithm we developed in this

thesis were the use of kernel functions on graphs, and the combination of label

consistency constraints into the proximity matrix for articulated motion. The de-

velopment also showed the links between the kernel PCA and early graph spec-
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tra based point matching approaches. Recently kernel methods are gaining an

increasing interest in various areas. The definition of kernels make it flexible in

choosing kernel functions for different purposes. This provides us with a broad

range of revitalising the existing graph spectral feature correspondence matching

approaches. For example, according to the problems in this thesis, the Gaus-

sian and polynomial kernels are used to construct the Gram matrix. It would

also be interesting to use other kernel functions when the data come from other

resources. In fact, the applications of the algorithm are not restricted in the com-

puter vision area.

The first weakness or limitation in the approach is that for the articulated

case, the performance also depends on the initial label probabilities. Also it still

remains heuristic in deciding the compatibility coefficients for each label pair,

although the performance in our experiments is encouraging with current com-

patibility values. In the experiments, we have an assumption that the relative

motion of two articulated components is not significant. This is represented in

the initial label probabilities, and also it is assumed that we always have the con-

fidence that the relative positions are not changed. Giving these assumptions,

the labelling process may be adapted to a semi-supervised one, and a random

walk process may be incorporated to improve the result. Another weakness of

this algorithm is that when using the Gaussian kernel, the value of the width pa-

rameter σ is not easy to choose. In Chapter 3 we used an heuristic function to

compute the parameter automatically. But this function only gave acceptable re-

sults. Better matching results were found using other parameter values. Thus a

more sophisticated method is required for choosing this value.

5.2 Consistent labelling

In this development, a new formulation of probabilistic relaxation labelling is

developed using the theory of diffusion processes on graphs. While many devel-
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opments have used discrete time random walks for the task of data classification,

many real world problems require a continuous setting. Currently not many

developments and applications in the computer vision and pattern recognition

area are based on the continuous time Markov processes. Although the diffusion

process has been used in image smoothing and enhancing applications in terms

of a discretized diffusion operator since the early 1990s (see, for example, refs.

[97, 48]), it has not been used for finding feature correspondences between image

frames. Our development of using a diffusion based probabilistic relaxation for

feature correspondence matching is thus the first attempt. The application of our

development to the problem of data classification is also a new one in the sense

that a diffusion process model is used on a graph setting with continuous state

space assumption, and multiple labels are assigned to the objects in the same

time. Other data classification developments which use discrete or continuous

time random walks mostly requires either at least one known label for each class,

that is, they are in the semi-supervised manner, or assume that there are only two

labels.

One weak point of our development is that it requires the computation of ma-

trix exponentiation, and the graph construction makes our Gram matrix grows

quickly when the number of data points increases. To improve the weakness,

first of all more efficient method for computing the matrix exponentiation may

be applied. In Chapter 4, we have mentioned using the Krylov subspace approx-

imation methods. We also briefly introduced the potential use of the Nyström

method to obtain the approximate eigenvectors of the matrix. It is of interest to

implement these approximation methods in our algorithm. Another interesting

attempt may be to adopt regular graphs to represent both the object-set and label-

set. In this way, the computational demand can be dramatically reduced since

now the algorithm requires the eigen-decomposition of only the small matrices,

as is discussed by Chung and Yau in [26], and by Ellis in [41].

The discussion of the diffusion process running backwards in time in Chapter
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4 is rather rough. It would be interesting to have a more sophisticated analysis of

its behaviour and computation.

5.3 Future work

Based on the analysis above and our experiments in previous chapters, it is inter-

esting to extend the current work in this thesis to a broader application in com-

puter vision and pattern recognition. One intuitive extension would be to apply

the newly developed method to the problem of image segmentation. Give that

the number of segments of an image is known, and some initial confidence about

which segment each image pixel belongs to is at hand, reasonable segmentation

results shall be expected by using our probabilistic relaxation algorithm. To cope

with the large number of data points in images, a coarse-to-fine hierarchical ap-

proach can be incorporated. Another interesting application would be to apply

our method to the problem of speech recognition. One example is to apply the

method for classifying different speakers in segments of speech data. In real life

when we hear a sample of a speech or a song record, we will have some confi-

dence of which person the speaker is. This initial confidence can be interpreted

into our initial label probabilities. Relationship between these different speak-

ers can be obtained either from labeled data, or from current data, or even from

experience.

While it is interesting to use approximation methods for computing the ma-

trix exponentiation discussed previously, it is also interesting to change the graph

construction and to remain using the diffusion process theory to improve the ef-

ficiency. Rather than putting all the object-label assignments into the graph node-

set, we may use only the object-set to build the graph. A q-state Potts model [138]

may be also included, where q is the number of possible labels, to accommodate

all the possible label assignments. A Markov process is then to be constructed

from the graph, allowing the diffusion of initial label confidences and jumps be-
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tween different states.

Gaussian processes are special cases of continuous time Markov processes in

which the components of the state probability distribution vector have a joint

multivariate Gaussian distribution [85, 135]. The process can be parameterized

by a mean function and a covariance function, which are the counterparts of the

drift and diffusion coefficients in the diffusion equation in Equation 4.7. Un-

der mild conditions Gaussian processes are good approximations to real world

random processes, and object tracking assuming Gaussian distribution has al-

ready had successful developments, e.g., the Kalman filter [76]. Research work

on defining the drift and covariance coefficients from the given data exist in lit-

erature, as introduced in the work of Williams [135], and the work in economics

by Hansen and Scheinkman [59]. As a standard diffusion process has a Gaussian

nature, it is also of interest to use Gaussian process to model our problem. When

the Gaussian assumption does not exist, more sophisticated models such as the

particle filters [72, 7] are of interest. These provide us interesting directions to

work with.

Another interest is to improve the underlying framework of the consistent

labelling method using more general stochastic diffusion equations and the geo-

metric properties of manifolds. Several researchers have already proved that un-

der mild conditions graphs and the graph Laplacian are capable of representing

the underlying Riemannian manifold, and the Laplace-Beltrami operator with a

suitably defined Riemannian metric, respectively [11]. The geodesic distance on

Riemannian manifold captures the structure of the data, and governs the diffu-

sion. In [105] Rosenberg has given a thorough analysis of the short time and

long time behaviour of diffusion processes on Riemannian manifold. Lafferty

and Lebanon [82] have also proposed a method of learning from data by com-

bining statistical theory with Riemannian manifold. Sochen has also developed

diffusion based methods on Riemannian manifolds based on short time diffusion

behaviour [119]. These provide us with sufficient theoretical basis for developing
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improved probabilistic relaxation labelling methods for a wide range of data-sets

and for broad applications. Thus it might be of interest to combine stochastic dif-

ferential equations and Riemannian manifold concept together to develop new

confidence collection and propagation algorithms.
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